
RL-TR-93-1 6
Final Technical Report
August 1993 AD-A270 972

NPAC DISTRIBUTED-
PARALLEL SYSTEM
FEASIBILITY STUDY

Syracuse University

Dr. Nancy McCracken, Dr. Gary Craig, Don Hewitt,
and Kanchana Parasuramr C.. f•:,• C'L •0. 1993,"

APPROVED ,'FOR PRINL C RELE4SE, 0/SMTISIM T1ON UNLIMITED

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-93-164 has been reviewed and is approved for publication.

APPROVED:

JON B. VALENTE
Project Engineer

FOR THE COMMANDER X • •

JOHN A. GRANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form Approvea
REPORT DOCUMENTATION PAGE iOMB No 0704-0188

PLA* r~W~ m.J0E tol Wn dl-10 411vmu ~tm~ rowep i ., = noxr rc* We WtU. tg rw#OV 4bxx0w sarvv emu K ams
g~Wl•r ffx• rmTin-wrlg •l cama r~wx 3rl0 3-m' rewmaIg UUc 1 dmz rto'•. Swa W:o'rTY1W rUL~rJ • C.sn a rm' SWT • -~a' •mW •

Sirat w-• rxzu~tg m.u tcx r• wig 0u c•'t Wri•u' HemQ.tuw Sav Ozeavr. (cx rtaxffz1 OIuws 'aP• ni;ltxs 2' • we

Ou h•w W , SiL" 1204. A*,*i mn VA M2-4= I" to UW Ofl d MWM7W1 WrO 8tLu.• P Wsat R*&C.l Prnq (07040 8M. W*Wuca OC 2aMr

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE a3 REPORT TYPE AND DATES COVERED

I August 1993 lFinal Sep 90 - Sep 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-88-D-0025,

NPAC DISTRIBUTED-PARALLEL SYSTEM FEASIBILITY STUDY PE - b2702F Task 0045

PR - 5581
6. AUTHOR(S) TA - 21

Dr. Nancy McCracken, Dr. Gary Craig, Don Hewitt, WU - P1
and Kanchana Parasuram

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION

Northeast Parallel Architectures Center REPORT NUMBER

Center for Science and Technology N/A

Syracuse University
Syracuse NY 13244-4100

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGAONITORING
AGENCY REPORT NUMBER

Rome Laboratory (C3AB)
525 Brooks Rd RL-TR-93-164
Griffiss AFB NY 13441-4505

1. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Jon B. Valente/C3AB/(315) 330-3241

Prime Contractor is Georgia Institute of Technology.

12a. DISTRIBUTION/AVAILABILIfY STATEMENT 12b. DISTRIBUTION CODE

Approved for public.release; distribution unlimited.

13. ABSTRACT (14~o'1- 2vw,,)

This study established a distributed-parallel computing testbed, comprised of two
shared-memory multiprocessors linked by a wide-area network. A missile-tracking
simulator application was implemented on this testbed for the purposes of evaluating
the feasibility of distributed-parallel computing. Several scenarios were run and
performance data collected for each of four computing modes. Preliminary evaluation

of the software model and analysis of the scenario performance data are presented.

14. SUBJECT TERMS IS NUMBER OF PAGES
28

Distributed System, Parallel Processing la PRICE CODE

17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIEDUL
NSN 7540-01 .280-55M Stwi"wa Form 298 IRi@ 2-8M

Pr • ,j It ANSI StOi Z39- 18
2gs.10

NPAC Distributed-Parallel System Feasibility Study

Georgia Institute of Technology
Contract F30602-88-D-0025

Final Technical Report

Dr. Nancy McCracken
Dr. Gary Craig

Don Hewitt
Kanchana Parasuram

Northeast Parallel Architectures Center
at Syracuse University

seoossion lo -

_Tiil GRA&I
D~TIC TAB
Unaanced 0
jus-iIf. icatic ,

Bv. -- _ _

D a~ t Ud/ j
'11lailt7 Ocdf"-I

ad or

Introduction

Advances in the use of both distributed computing systems and in parallel computers
have led to the consideration of using a distributed-parallel computing system, which is
a distributed system of computing nodes in which some of the nodes may be parallel
computers. Such systems can combine attributes of both systems such as high perfor-
mance, redundancy and reliability, and physical proximity of parts of the computing to
the data.

One use of a distributed-parallel system is in the enhancement of an ordinary distrib-
uted system to one in which one or more of the nodes may be high performance com-
puters. Current projections of high performance computing architectures are that these
machines will necessarily be parallel computers. Examples of applications which will
require this sort of distributed-parallel system are those in which large numbers of
small computing nodes which may service requests or collect data may then send those
requests or data collections off to a large computing node for processing. Although
these applications add the issue of heterogeneity to the distributed computing model,
this issue has. been addressed by a number of systems without otherwise change to the
underlying distributed processing model.

The other use of a distributed-parallel system is in the enhancement of a single parallel
machine to the parallelism achievable by many (possibly parallel) nodes in a distributed
system. Essentially, this idea is to scale up the parallelism found in a single machine,
where the communication times are relatively fast over a bus or network, to a parallel
system where the communication times are relatively slow over a local area network
(LAN) or wide area network (WAN). In addition to enhanced computing power, this
use of a distributed system could add the distributed system capabilties of reliabilty and
redundancy, etc. to a high performance system. This use of a distributed processing
system may change the underlying processing model since using the distributed pro-
cesses as parallel processes implies a tighter coupling of the data and process interac-
tions as is found in parallel processing models. More investigations are needed in this
area to understand the parameters that make this kind of distributed-parallel comput-
ing feasible.

Scope of work

The goal of this project is to demonstrate the feasibility of distributed-parallel comput-
ing in the second case (as defined above) by implementing a parallel application on a
distributed system of parallel computers and designing evaluation criteria. The project
is designed as a sequence of four tasks as described in the GIT contract:

1. Establish a working distributed-parallel platform between the Northeast Parallel
Architectures Center (NPAC), located in Syracuse, New York, and Rome Laboratory,

2

located in Rome, New York, using the Cronus Distributed Operating System.*

2. Design and specify a distributed-parallel application which can exploit the capabili-
ties of a diverse set of parallel architectures where the entire computation must be
coordinated over a set of individual computational nodes.

3. Perform analysis to determine an appropriate criteria to evaluate the performance of
a distributed-parallel system.

4. Based upon recommendations from Task 3, a candidate demonstration will be speci-
fied by which the capabilities of the system developed in Task I can be shown.

The remainder of this report discusses the implementation and the results of each of
these tasks.

The Distributed-Parallel Computing Platform at Rome and Syracuse, NY

The establishment of the distributed-parallel computing platform made use of available
hardware and software at Rome Laboratory in Rome, NY, and NPAC at Syracuse Uni-
versity in Syracuse, NY. Although the design and evaluation phases of this project
were careful to plan for a more general case in which the parallel application may be
implemented on a heterogeneous distributed system, this implementation was chosen
to be carried out on a homogeneous system consisting of two Encore Multimaxes".
Both of these machines were shared memory MIMD Encore Multimax 320's. The one at
Rome has 16 parallel processors and the one at Syracuse 20 parallel processors.

Both of these Multimaxes are on local area networks at their respective sites with Sun
workstations (and other hardware not used in this project) and a gateway to the WAN
run by Nysernet. Between the gateways of Rome Laboratory and Syracuse University,
a distance of about 50 miles, is a Ti line with no other intermediate gateways (see Fig-
ure 1).

In addition to these machines, the hardware for this project included two Hewlitt-
Packard 4972A Local Area Network Protocol Analyzers (LANPAs). These were pro-
vided by Rome Laboratory. One was installed in the Rome Laboratory LAN and the
other in the Syracuse University LAN. These devices are able to monitor the actual
message packets of any communications between the two Multimaxes as the packets go
out and come in through the gateways.

The distributed operating system chosen for this platform was the Cronus distributed
programming environment from BBN. While this system is widely available as a het-
erogeneous distributed system, this project was one of the first to make use a new

" Cronus is a product of BBN Systems and Technologies Corporation
Multimax is a trademark of Encore Computer Corporation

3

extension to enable distributed processes to also take advantage of running on a parallel
machine like the Multimax. In fact, this was one of the uncertainties of the project.
Originally, it was planned to run Cronus on the Umax operating system and this plat-
form was established at Rome on the Multimax 320 and at Syracuse, the Multimax 520
(which differs essentially in having faster processors). However, the parallel computing
support was only available in Cronus under the Mach operating system, and the plat-
form was changed accordingly. Rome Laboratory acquired Mach and installed it with
Cronus on their Multimax 320, and NPAC installed Cronus on the Mach already run-
ning on their Multimax 320."

Another part of the software platform was the code written to collect message timings
from the LANPAs. The code to analyze packets on the LANPAs was written by the
team from Rome Laboratory and the code to sychronize docks between the LANPAs
and the Multimaxes was written by a systems administrator from NPAC and Rome
Laboratory.

Rome Laboratory Syracuse University

Suns F•Suns

•N'ysernet I•TI Link IiNysernet S

• ~Gateway i-•• Gateway

Encore Encore

Multimax 320 Multimax 320
16 processors 20 processors

LANPA, Figure 1: Network configuration

The Experimental Application

The first step in choosing an experimental application was to consider the characteris-
tics of an application that could take advantage of this kind of distributed-parallel
platform. During the consideration of characteristics of applications, both the team
from Rome Laboratory and the team from NPAC studied the distributed and parallel
process models. Assistance was given by training from Rome Laboratory about the
Cronus distributed system and from NPAC about parallel processes in Mach.

"We are grateful to the support given both by Encore Corporation for providing Mach and to BBN for
providing the parallel process implementation in Cronus.

4

Desired Characteristics

The characteristics which were found to be appropriate were those concerning the
computation to communication ratio and those of system-wide synchronization.

A suitable application must have sufficient granularity of parallelism to take advantage
of the combined total of 36 processors. It must not have so large an amount of commu-
nication thai the advantages of using two parallel computers is lost. Furthermore, it
must not have communication in a synchoniza"n pattern such that the advantage of
using two parallel computers is again lost. Finally, we decided against using an appli-
cation with essentially no communication, what is called an "embarassingly parallel"
application where the parallel subprocesses are totally independent of each other. This
kind of application would indeed take advantage of two distributed parallel processors,
but we preferred to concentrate on the more challenging case of an application where
the parallel subprocesses must have some degree of communication between them.
This would lead to an experiment that would show whether an even larger class of
parallel applications than the "embarrassingly parallel" ones would be feasible on this
system.

Multisource Tracking Simulation - Overview

The application chosen was a multisource missile tracking program originally written at
Caltech in conjunction with JPL for the Hypercube machine. [Gottschalk 1987] This
program is publicly available as part of the Caltech benchmarking suite. [Messina et al
19901 The tracking program receives a set of missile coordinates at each time step and
establishes a set of tracks based on calculated trajectories. The tracking program is
intended to be part of an application in a distributed system of sensors observing the
missile data, which is communicated to a large processing node running the tracking
program. Our experiment implements the large processing node as two parallel ma-
chines, and the sensor data is generated and controlled by a subroutine.

The structure of the program is a large loop based on time; the loop body is executed
once for each set of sensor data (see Figure 2). The main data structure of the program
is the current set of tracks being determined. The loop body consists of using the sensor
data to sequentially
1) extend the "current" tracks using a rough filter (which adds all possible extensions to
the tracks file)
2) a precision filter that deletes bad extensions, and
3) initiating any new tracks.
Most of the computational time is spent in the precision filter; all of these computations
can be parallelized over the tracks.

We had several versions of the program to work with: 1) a parallel version developed
for a distributed memory MIMD machine, 2) a sequential version derived from the first,

5

and 3) a parallel version adapted from the second for a shared memory MIMD machine.
The original code had been parallelized by dividing up the current set of tracks among
all the processors. The precision filter code is not completely indepedent in each track,
but depends only on other nearby tracks (primarily to detect false duplicate tracks).
During each loop body, tracks are created and deleted. Tracks must be moved between
the processors to: 1) colocate possible duplicate tracks and 2) insure that large differ-
ences in the number of tracks on each processor do not occur. Thus a load balancing
phase, in which tracks will be more evenly distributed among the processors is added
into the main loop body just prior to the precision filter computation.

Outline of program Data structure:
for each processor: (local) tracks file:

"m,•ain
initializations;
The Big Loop: (once around for each set of missile

data received)
get-data;
master; find track extensions using rough filter
balance; redistribute tracks among processors
ni_filt; deletes bad extensions using precision filter
batch; initiates new tracks

}

Figure 2: Application Structure

This application fits our criteria for a distributed-parallel system. There is plenty of
parallelism since the number of tracks will be in the hundreds for even fairly small
problems. The amount of computation is large with respect to the amount of communi-
cation. Although the distributed processors must synchronize during the communica-
tion of load balancing, this only happens once during each loop body.

Programming Model

An important aspect of this project was to examine several different computational
models: sequential processing, parallel processing, distributed processing and distrib-
uted -parallel processing. In order to facilitate this, Cronus, a distributed computing
environment developed by Bolt, Beranek and Newman Inc. (BBN), was chosen as our
development environment. Cronus utilizes an object-oriented client/server program-
ming model. Cronus' strengths lie in its support for a number of different platforms
(heterogeneity) and support for fault-tolerance.

6

In Cronus, objects are passive and are "managed" by a multi-threaded manager (server).
As such, each manager represents a shared address space for a set of common typed
objects. This maps well to either a uniprocessor or a shared-memory multiprocessor.
New threads of control are automatically generated to handle an operation invocation
(request) on the server. In addition, new threads may be explicitly created.

If several threads of control were ultra-lightweight and a server had a very large buffer
for pending operations, a very general programming model develops. This model is one
in which the managed objects are tracks and a simulation control task (associated with
each manager) generates asynchronous operation requests for each track in the local
tracks "database". The result, on different architectures, would be sequential processing
on a uniprocessor, and N-way multiprocessing on a N-node shared memory multipro-
cessor.

As will be noted in detail later, experimentation determined that no thread is infinitely
"lightweight" and there are real limits to the buffering capacity of a server. Thus, the
application was coded to uniformly distribute tracks to N explicitly created threads on
an N-node processor.

Partitioning

One manager, Tracks Manager, was implemented in C and instantiated once on each
distributed node (although we implemented this code on two nodes, the code was
written more generally). Cronus manages machine dependancies and permits the code
to be portable to a number of different platforms. Within each manager, the code is
parallelized over the tracks assigned to that node (see Fig. 3). The major programming
tasks were to rewrite the load balancing to use Cronus message-passing (by invoking a
method in another manager), and in.implementing the shared-memory parallelism
within each distributed node.

In implementing the parallelism within each distributed node, we used an extension of
Cronus in which the distributed process model was extended to a parallel process
model. In distributed process model, multiple invocations of operations (methods) in a
manager were shared memory concurrent processes. But, each of these processes was
implemented in a coroutine fashion on a single process)r. Under this implementation,
there were no synchronization problems with using shared memory since each process
was guaranteed to run to completion or until it yielded the processor.

The extention to allow truly parallel execution of the processes within one manager has
processes request to run on their processsor. Hence, multiple invocations of operations
can run many processors. However, now if more than one procedure may modify some
data in the shared memory, synchronization must be used to ensure data integrity.
Semaphores are available for this synchronization.

7

Manager1: (shared) trackfile-

master:
for all tracks

Extendtrack(trackid);
processors:

where
Extendtrack(x) F-i .

Getownprocessor;

Releaseownprocessor;

Figure 3: Form of parallelism in each manager

The general decomposition of "parallel" operations is demonstrated by example in Fig.3.
The original code would sequentially execute an operation, e.g., extendtrack, for each
track (in the managers trackfile). The parallel code creates an independent task (thread)
for each operation where the operation code explicitly asks for independent sheduling
via the TaskObtainOwnProcessor 0 call.

The Tracks Manager exports two distinct interfaces (sets of operations). The first inter-
face is used by the sensor data generator. There are three operations available in this
interface: NewSimulation, SimInit, and AcceptData. NewSimulation is used to deter-
mine the availability of a Tracks Manager (only one such manager can exist on a host
and it was coded so that only one simulation could be active at a time). SimInit is used
to pass general simulation data (initialization) to a manager, e.g. number and location of
sensors. Finally, AcceptData is invoked for each new sensor scan to pass the sensor data
to the Tracker.

The second is the one which enables managers from multiple hosts to cooperate on a
single simulation. These are the operations used to implement the (load) balancing
phase. This interface has two operations: AcceptTrackList and AddTrack.
AcceptTrackList is used to transfer a summary of a manager's local list of tracks to other
managers. This information is needed so that each manager can autonomously deter-
mine which tracks must be transfered and to which manager. AddTrack is the interface
which transfers a block of tracks from one manager to the other (see Fig. 4).

Distributed-Parallel Software Lessons

Even though it was not a main goal of our project to evaluate a distributed-parallel
software environment in general, or Cronus in particular, since we did use Cronus for
this project, a discussion of the problems and successes in using this kind of software
may be helpful to software designers.

8

Manager 1: Manager 2:

main main
initializations; (initializations;
The Big Loop: The Big Loop:

{ get-data; { getdata;
master; master;
balance; balance;

call AddTrack(trackid); - -Addtrack(x) { };

nl filt; nI nlfilt;
batch; batch;

The message "trackid" is passed by
invoking a method in the other manager.

Figure 4: Message passing between managers

The adva.tages of using a high-level software system like Cronus, instead of a low-level
system like Mach or Express, are great. We felt that the time spent porting code was
very small due to the tools for managing a group of distributed processes and the
simple message-passing model. It was also easy to design for a more general system
than we actually had; it was easy to structure the code for arbitrary numbers of nodes
and hetereogeneity is built in. We also felt that the extention of Cronus to include paral-
lel processing nodes was successful on the shared memory parallel processors.

Of course, we must expect to pay some overhead for using a high-level heterogeneous
software system, but there were a couple of areas where we felt that the overheads were
unacceptably large. Where possible we modified the software design so as to better
reflect the needs for our analysis. In other words, where possible we didn't want our
results to simply reflect constraints imposed by our design environment.

Our first design of the code was a standard Croius, persist-ant object-oriented cae
design, in which tracks were objects within the managers. However, Cronus keeps these
in a persistant database, which is appropriate for applications in which reliability and
redundancy are most important. In our application, with rapidly changing data as
tracks are added and removed, the overhead of persistant objects was prohibitive and
we made them into an ordinary volatile data structure.

Our initial pass at implementing parallel threads was to take advantge of the implicit
task creation which occurs during an object invocation on a manager. In this scenario, a
manager would have a coordinating task (executing the main loop), which would issue

9

asynchronous invocations upon the manager for each "track". Under this design, if a
manager could allocate multiple processors for incoming invocations (in the case of a
uniprocessor), it would just queue up the pending invocations and serve them sequen-
tially. In fact the TaskOwnObtainProcessor 0 nicely handles this situation in a way that
the manager code could be identical on both a uniprocessor and a multiprocessor.

Two separate performance issues required this solution to be redesigned. virst, opera-
tion invocation (and the subsequent task creation) is a relatively expensive activity (as
implemented in Cronus on the Mach OS on the Encore Multimax). Thus some opera-
tions, which were independent over tracks, could not effectively -e parallelized since
the invocation time dominated the actual processing time. Second, in any client-server
(message-passing) environment, message queues are implemented as finite buffers. We
found that we could easily overrun the message queue buffer. Messages were lost if we
did not explicity program in a wait after a certain number of messages were sent. This is
a common problem in message-passing systems and one which high-level software
paradigms should address.

In the final implementation, a single invocation was made to a parallel code block. The
code then checks to determine the number of available processors and creates up to that
number of parallel tasks, and correspondingly partitions up the track file to each task
(data parallelism). The resulting code was still portable between both uniprocessors and
multiprocessors. In addition, the partitioning code could amortize the cost of task cre-
ation over the amount of computation each task would perform. The result was signifi-
cantly better parallel performance.

Performance Evaluation Methodology

The most important aspect of performance evaluation of a distributed-parallel system is
its system-wide performance, as opposed to single parallel processor performance or
distributed operating system performance. This unit of measure is essentially that of
elapsed time of the implementation and can be compared with the other modes of
computing.

System-wide comparisons which can be made for any distributed-parallel application
are:

"* Sequential - running the application on one node with one processor.
"* Parallel - running the application on one node with many processors.
"* Distributed-parallel - running the application on more than one node where

each node may run many processors.
"* Distributed - running the application on more than one node where each node

only runs one processor.

In addition, if feasible, one can compare the effects of nodes of local area networks
versus wide area networks. In our case, our local area network machines were Sparc
workstations, so that our comparisons had to factor in relative cpu speeds. We also had

10

Analysis Objectives Tests

One node Two nodes
1 2 3 4 5 6 7 8

Cronus overhead for organization x x x x
Sequential vs. Distributed LAN x x
Sequential vs. Distributed WAN x x
Sequential vs. Parallel x x
Parallel vs. Distributed-parallel x x
Distributed vs. Distributed-parallel x x

1. Sequential SPARC
2. Sequential Multimax
3. Sequential SPARC Cronus
4. Sequential Multimax Cronus
5. Parallel Multimax Cronus
6. Dist.-parallel Multimax Cronus
7. Distributed SPARC Cronus LAN
8. Distributed Multimax Cronus WAN

Figure 5: Analysis Objectives

available more than one version of the code so that we could compare the software
overhead of distributed or parallel computing.

Analysis of system-wide performance can be bolstered by analyses of individual perfor-
mance components. These can be particularly important if one is looking for areas in
which to improve the overall system-wide performance.

One important area is the communication vs. computation ratio. We found it particu-
larly useful to analyze our application in terms of a communication/computation
profile. For this, we subdivided our application into components which would have
different communication/computation ratios based upon the algorithms used or which
had different degrees of parallelism. Again the unit of measure in comparing different
parts of the profile was elapsed time. We found this profile was useful both in tuning
our code for performance and in extrapolating how the performance of the application
would scale in terms of size. This analysis supersedes the more traditional measure-
ments of parallel scaling.

Another important area is load balancing. This can be measured as the percent of
elapsed time that any node has to wait for other nodes at a synchronization point.
Finally, some measurements may need to be taken of the communication traffic on the
wide area network. Although interference from other users of the processors or local

11

area networks can quite likely be controlled since they are locally "owned", interference
over a wide area network is quite likely not controllable. Thus, it may be important to
establish the performance of the communication under a variety of network loadings.
Hardware devices like the HP LANPAs can be used to collect time stamps of the pack-
ets.

Experimental Results

As the final phase of our project, the application was run on the distributed-parallel
platform established between Rome Laboratory and Syracuse University. The docks
were synchronized between the two Multimaxes, the application code was initiated on
the two Multimax nodes by Cronus, and time stamps were recorded by the application
and by the two LANPAs.

Although data analysis was not specified as a task of the project, some preliminary
analysis was done of system-wide performance based on the elasped times of communi-
cation/computation profile. In fact, based on the times of the initial demonstration,
some performance tuning was done on the code. We successfully shortened the com-
munication phase by sending groups of tracks together, i.e. we switched to fewer,
longer messages. We also adjusted some parts of the program which had minimal
amounts of parallelism as to whether they actuallly ran on parallel processors or ran
sequentially.

The communication/computation profile that we devised for our application was very
simply divided in terms of the main subroutines. Both the master routine and the batch
routine have some sequential parts and some minimally parallel parts, by which we
mean that the procedures that can be run in parallel are so short as to barely make it
worthwhile to incur the overhead of parallel invocation. The balance routine has all the
message-passing of the whole program; it's times are overwhelmingly communication.
Finally, the "ni_filt" routine has the main computation of the precision filter; it has
substantial parallelism in terms of the amount of computation per parallel invocation.
All the possible parallel routines have a grain size much larger than the total number of
processors of the two machines.

We tested our programs with a number of data sets which varied in the number of
missiles to be traced, the timing sequence in which the missiles were launched, etc.
However, relative timings did not vary significantly over these data sets, so we chose
one data set to report on here. A profile of this data set over 100 iterations of programs
is shown in Figure 6. In this data set, the bulk of the new missile tracks occurs between
iterations 10 and 25, yielding the peak of the tracks file, which contains all potential
tracks. As tracks are filtered, the number of tracks settles down by iteration 65 to the
correct number of missiles, around 680. After that time, tracks are dropped by the
program as they enter the "post-boot phase", which this program does not process.

The first set of timing tests that we ran was to compare sequential versus parallel. In

12

fact, we varied the number of processors on one parallel machine from 1 to 16 and
measured traditional parallel speedups. An example of these results is shown in Figure
7. In this graph, the running time of all procedures is totalled at each iteration step. The
biggest speedup occurs between one processor and two processors, where the total time
is almost halved. Good speedups continue as processors are added until five proces-
sors and then not more speedups occur. Suprisingly, this application only has useful
parallelism for up to five processors.

Since we were surprised at this result, we did extensive timings on the individual
procedures of the applications. In particular, we found that this limit on parallelism
was als(:rue of the nlfilt procedure, which is the main computational module and
should ! parallel in the number of tracks. In Figure 8, we show the cumulative run-
ning tir,.e of this module, that is, at each iteration we add in that iteration's time to a
running total. This, again, clearly shows the limitation of five processors, which again
points up the overhead limitations imposed by process invocation in this software
model.

We proceeded to the timings of the main goal of our project, which was to compare all
the processing modes: sequential, distributed, parallel, and distributed-parallel. In
Figure 9, these results are shown on a graph of cumulative running times for all proce-
dures up to 100 iterations. We limited the parallel case to six processors and the distrib-
uted parallel case (marked DP in the figure) to six processors on each of the two distrib-
uted machines, in view of our previous result on the parallel overhead limitation. Inter-
estingly, the distributed-parallel case still shows substantial improvement over the
parallel case, although it is far from being twice as fast. We noted that in the distribu-
tion process, which is also true in the distributed versus sequential cases, the tracks file
is divided in half and many of the task's applications, such as comparing a track to all
other local tracks, were also halved in time. Offsetting this gain, of course, was the time
spent in dividing the tracks and in communicating them to the other machine.

Finally, we would like to show some results regarding the communication/computa-
tion profile. For this, it is instructive to view several different problem sizes. In Figures
10, 11, and 12, we show cumulative elasped times for the different modules in different
computing modes for problem sizes of 130, 385, and 680 targets, respectively. The cu-
mulative elasped times are shown on a non-uniform scale so that the communication/
computation ratios are shown for each problem size. From theses figures, we see that
the percentage of time spent in the communication phase, contained in the balance
routines, tend to decrease as the problem size gets larger. Although this is too small a
collection to infer continuing decreases, it certainly indicates hope for successful distrib-
uted implementations of very large problems of this type.

Conclusions

This project certainly demonstrates the feasibility of distributed-parallel computing for
an interesting class of applications. No precise performance judgements can be given

13

based on such a limited investigation, but much promise is chown for the future. All of
the components of this system - the Encore Multimax processors, the TI line, and the
software - are known to be slower than the components that will be available in the
near future. This project shows no reason not to believe that the increased performance
shown on this platform cannot scale to future faster systems.

References

Huy T. Cao and Clive F. Baillie, Caltech Missile Tracking Program A Benchmark Com-
parison: Ncube and T800 vs. Sequent Balance and Symmetry, Caltech report, C3P 673,
October 1988.

P. Messina, C. Baillie, E. Felten, P. Hipes, and R. Williams, Benchmarking advanced
architecture computers, Concurrency: Practice and Experience, vol. 2(3), September 1990.

14

Number of objects

y x 0

Tracks File Size"
0.95- ------D-a-oits

0.90 Precision Tracks"---

0.85-
0.80 __ _ _A_ _ _ _ _ __ _ _ _ _ _ _ _

0.75

0.70 -. ; _

0.65~ - _ _ _ _ __ _ _ _

0.405- -H~ "

0.200 200 400 000 800 000

0.15

msec

1 processors
20.002poesrs

1.00 3 processors

A --, s -- s"
17 00 5 processors

16.00 V 5 processors'.

15V00 - Tprceisors'-T "

15.00__ _"T8
processors"

14.00 -__
v10 processors.

.•

13.00 16 processors"

12.00 - _

11.00

9.00

6.00

5.00 .

4.00 : -

300

2.00 - " U=

1.00 .

0`0 7,.,., -,tera.....on

0.00 20.00 40.00 60.00 80.00 100.00

Figure 7:

Parallel Speedup: Total running time of all procedures per iteration

16

msec

I processor"

3 processors450.00 - 0esos

4 processors"

400.00 -- 3 rocZessors`
6'pocessors
7 processors

350.00 -8 processors
10 processors

300.00- 16 processors"

250.00 -...

200.00-

150.00 -_____

100.00

0 0,

50.00 -e

Iteration

0.00 20.00 40.00 60.00 80.00 100.00

Figure 8:

Cumulative time of the procedure nfl.ilt up to 100 iterations

17

seconds x 103

Sequential"

1.10 -Disrbucd"

1.00 ,/ DP-2 * 6 procs"

0.90 -

0.80 ."

0.70 -

0.60 -- ""

0.50 -

0.40 /

0.30lII; -

0.20 -

0. 10 j

0.00

Iteration
0.00 20.00 40.00 60.00 80.00 100.00

Figure 9:

Mode Profile: Cumulative time for all procedures shown for each processing mode.

18

140

120

S 100

E batch

C 80 hni_flit
0
N 60 0 balance

D M master

S 40

2 0
..

o !i!:!i"! iiii !•J i~ ii•'i '•il ':ii! !!ii~ i......-.I ... ~~~~~~~~~~~.:::: :::::: :: ::::: : .

Sequential Parallel DistParallel Distributed

Computing Mode

Figure 10:
Elasped time for program modules on a small sized problem

19

600

S00

S 400
batch

C Unl-flit
o 300
N O balance

D 03 master
S

0 00

0 .T
Sequential Parallel DistParallel Distributed

Computing Mode

Figure 11:
Elasped time for program modules on a medium sized problem

20

900

800

700

S 600 ! batch
E

C 500Soonlfllt

0
N 400 U balance

D master

S 300

100 So o :::•- ~~~~~..:,: ::•..

0

Sequential Parallel DistParallel Distributed

Computing Mode

Figure 12:

Elasped time for program modules on a large sized problem

21

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary
program in research, development, test, and technology
transition in support of Air Force Command, Control,
Communications and Intelligence (C31) activities for all
Air Force platforms. It also executes selected
acquisition programs in several areas of expertise.
Technical and engineering support within areas of
competence is provided to ESC Program Offices (POs) and
other ESC elements to perform effective acquisition of
C31 systems. In addition, Rome Laboratory's technology
supports other AFMC Product Divisions, the Air Force user
community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research
programs in areas including, but not limited to,
communications, command and control, battle management,
intelligence information processing, computational
sciences and software producibility, wide area
surveillance/sensors, signal processing, solid state
sciences, photonics, electromagnetic technology,
superconductivity, and electronic
reliability/maintainability and testability.

o.4 pro 0--o ý11

