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Block 13 continued:

The Aligument approach to recognition. that has been described by Huttenlocher
and Ullman. s used. The mechanisms that are emploved to generate initial hyvpothe-
ses are distinct from those that are used to verify (and refine) them. In this work.
posterior probability and Maxitmum Likelihood are the criteria for evaluating and
refining hypotheses. The recognition strategy advocated in this work may be sum-
marized as Align Refine Verifv. whereby loral search in pose space is utilized to refine
hivpotheses from the alignment stage before verification is carried out.

Two tormulations of model-based object recognition are described. MAP Model
Matching evaluates joint hypotlieses of match and pose. while Posterior Marginal
Pose Estimation evaluates the pose only. Local search in pose space is carried out
with the Expectation-Maximization (EM) algorithm.

Recognition experiments are described where the EM algorithm is used to refine
and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2] experiments
were generated by a simple indexing method: Angle Pair Indexing. The Linear
(‘'ombination of Views method of Ullman and Basri is emploved as the projection
model in the 3D experiments.
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Abstract

To be practical. recognition svstems must deal with uncertainty. Positions of image
features in scenes vary. Features sometimes fail to appcar because of unfavorable illu-
mination. In this work. methods of statistical inference are combined with empirical
models of uncertainty in order to evaluate and refine hvpotheses about the occurrence
of a known object in a scene.

Probabilistic models are used to characterize image features and their correspon-
dences. A statistical approach is taken for the acquisition of object models from
observations in images: Mean Edge Images are used to capture object features that
are reasonably stable with respect to variations in illumination.

The Alignment approach to recognition. that has been described by Huttenlocher
and Ullman. is used. The mechauisms that are emploved to generate initial hypothe-
ses are distinct from those that are used to verify (and refine) them. In this work.
posterior probability and Maximum Likelihood are the criteria for evaluating and
refining hypotheses. The recognition strategy advocated in this work may be sum-
marized as Align Refine Verify, whereby local search in pose space is utilized to refine
hypotheses from the alignment stage before verification is carried out.

Two formulations of model-based object recognition are described. MAP Model
Matching evaluates joint hypotheses of match and pose. while Posterior Marginal
Pose Estimation evaluates the pose only. Local search in pose space is carried out
with the Expectation-Maximization (EM) algorithm.

Recognition experiments are described where the EM algorithin is used to refine
and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2D experiments
were generated by a simple indexing method: Angle Pair Indexing. The Linear
(‘ombination of Views method of Ullman and Basri is emploved as the projection
model in the 3D experiments.
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Chapter 1

Introduction

Visual object recognition is the focus of the research reported in this thesis. Recogni-
tion must deal with uncertainty to be practical. Positions of image features belouging
to objects in scenes vary. Features sometimes fail to appear because of unfavorable
ilumination. In this work, methods of statistical inference are combined with empir-
ical models of uncertainty in order to evaluate hypotheses about the occurrence of a
known object in a scene. Other problems, such as the generation of initial hypotheses

and the acquisition of object model features are also addressed.

1.1 The Problem

Representative recognition problems and their solutious are illustrated in Figures 1-]
and [-2. The problem is to detect and locate the car in digitized video images. using
previously available detailed information about the car. In these figures, object model
features are superimposed over the video images at the position and orientation where
the car was found. Figure 1-1 shows the results of 2D recognition, while Figure 1-2
illustrates the results of 3D recognition. These images are from experiments that are
described in Chapter 10. Practical solutions to problems like these will improve the

flexibility of robotic systems.
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In this work, the recognition problem is restricted to finding occurrences of a single
object in scenes that may contain other unknown objects. Despite the simplification
and vears of research. the problem remains largely unsolved. Robust svstems that
can recognize smooth objects having six degrees of freedom of position, under varving
conditions of illumination. occlusion, and background. are not commercially available.
Much effort has been expended on this problem as is evident in the comprehensive
reviews of research in computer-based object recognition by Besl and Jain [3]. who
cited 203 references. and C'hin and Dyer [18]. who cited 133 references. The goal of
this thesis is to characterize, as well as to describe how to find. robust solutions to

visual object recognition problems.

1.2 The Approach

In this work. statistical methods are used to evaluate and refine hypotheses in object
recognition. Angle Pair Indexing, a means of generating hypotheses. is introduced.
These mechanisms are used in an extension of the Alignment method that includes a

pose refinement step. Each of these components are amplified below.

1.2.1 Statistical Approach

In this research, visual object recognition is approached via the principles of Maximum
Likelihood (ML) and Maximum A-Posteriori probability (MAP). These principles.
along with specific probabilistic models of aspects of object recognition. are used to
derive objective functions for evaluating and refining recognition hypotheses. The ML
and MAP criteria have a long history of successful application in formulating decisions
and in making estimates from observed data. They have attractive properties of
optimality and are often useful when measurement errors are significant.

In other areas of computer vision. statistics has proven useful as a theoretical

framework. The work of Yuille. Geiger and Bilthoff on stereo [T8] is one example.
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while in 1mage restoration the work of Geman and Geman [23], Marroquin [54]. and
Marroquin, Mitter and Poggio [53] are others. The statistical approach that is used
in this thests ~onverts the recognition problem into a well defined (although not nec-
essarily eas ; optimization problem. This has the advantage of providing an explicit
characterization of the problem, while separating it from the description of the aigo-
rithms used to solve it. Ad hoc objective functions have been profitably used in some
areas of computer vision. Such an approach is used by Barnard in stereo matching
[2]. Blake and Zisserman [7] in image restoration and Beveridge. Weiss and Riseman
[6] in line segment based model matching. With this approach. plausible forms fur
comporents of the objective function are often combined using trade-off parameters.
Such trade-off parameters are determined empirically. An advantage of deriving ob-
jective functions from statistical theories is that assumptions become explicit - the
forms of the objective function components are clearly related to specific probabilistic
models. If these models fit the domain then there is some assurance that the resulting
criteria will perform well. A second advantage is that the trade-off parameters in the

objective function can be derived from measurable statistics of the domain.

1.2.2 Feature-Based Recognition

This work uses a feature-based approach to object recognition. Features are abstrac-
tions like poiats or curves that sununarize some structure of the patterns in an image.

There are several reasons for using feature based approaches to object recognition.

e Features can concisely represent objects and images. Features derived from
brightness edges can summarize the important events of an image in a way that

1s reasonably stable with respect to scene ilJumination.

e In the alignment approach to recognition (to be described shortly). hvpotheses
are verified by projecting the object model into the image. then comparing the

prediction against the image. By using compact, feature-based representations
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of the object, projection costs may be kept low.

o Features also facilitate hypothesis generation. Indexing methods are attractive
mechanisms for hypothesis generation. Such methods use tables indexed by
properties of small groups of image features to quickly locate corresponding

model features.

Object Features from Observation

A major issue that must be faced in model-based object recognition concerns the
origin of the object model itself. The object features that are used in this work are
derived from actual image observations. This method of feature acquisition automat-
ically favors those features that are likely to be detected in images. The potentially
difficult problem of predicting image features from abstract geometric models is by-
passed. This prediction problem is manageable in some constrained domains (with
polyhedral objects, for instance) but it is often difficult, especially with smooth ob-
jects, low resolution images and lighting variations.

For robustness, simple local image features are used in this work. Features of this
sort are easily detec -1 in contrast to extended features like line segments. Extended
features nave been used in some systems for hypothesis generation because their ad-
ditional structure provides more constraint than that offered by simple local features.
Extended features, nonetheless. have drawbacks in being difficult to detect due to
occlusions and localized failures of image contrast. Because of this. svstems that rely

on distinguished features can lose robustness.

1.2.3 Alignment

Hyvpothesize-and-test. or alignment methods have proven =ffective in visual object
recognition. Huttenlocher and Ullman [43] used search over minimal sets of corre-

sponding features to establish candidate hypotheses. In their work these ! ipotheses.
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or alignmeunts, are tested by projecting the object model into the image using the
pose (position and orientation) implied by the hypothesis. and then by performing a
detailed comparison with the image. The basic strategy of the alignment method is
to use separate mechanisms for generating and testing hvpotheses.

Recently. indexing methods have become available for efficiently generating hyv-
potheses in recognition. These methods avoid a significant amount of search by using
pre-computed tables for looking up the object features that might correspond to a
group of image features. The geometric hashing method of Lamdan and Wolfson [49]
uses invariant properties of small groups of features under affine transformations as
the look-up key. Clemens and Jacobs [19] [20]. and Jacobs [45] described indexing
methods that gain efficiency by using a feature grouping process to select small sets
of 1mage features that are likely to belong to one object in the scene.

In this work. a simple form of 2D indexing, Angle Pair Indexing, is used to generate
initial hypotheses. It uses an invariant property of pairs of image features under
translation. rotation and scale. This is described in Chapter 9.

The Hough transform [40] [44] is another commonly used method for generating
hyvpotheses in object recognition. In the Hough method, feature-based clustering is
performed in pose space, the space of the transformations describing the possible
motion of the object. This method was sed by Grimson and Lozano-Pérez {36] to
localize the search in recognition.

These fast methcds of hypothesis generation provide ongoing reasons for using the
alignment approach. They are often most effective when used in conjunction with
verification. Verification is important because indexing methods can be susceptible
to table collisions. while Hough methods sometimes generate false positives due te
their aggregation of inconsistent evidence in pose space bins. This last point has been
argued by Grimson and Huttenlocher [33].

The usual alignment strategy may be summarized as align verify. Alignment and

verification place differing pressures on the choice of features for recognition. Mech-
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anisms used for generating hypotheses typically have computational complexity that
is polvnomial in the number of features involved. Because of this, there is significant
advantage to using low resolution features - there are fewer of them. Unfortunately.
pose estimates based on coarse features tend to be less accurate than those based on
high resolution features.

Likewise, verification is usually more reliable with high resolution features. This
approach vields more detailed comparisons. These differiug pressures may be accom-
modated by emploving coarse-fine approaches. The coarse-fine strategy was utilized
successfully in stereo by Grimson {33]. In the coarse-fine strategy. hypotheses de-
rived from low-resolution features limit the search for hypotheses derived from high-
resolution features. There are some potential difficulties that arise when applyving
coarse-fine methods in conjunction with 3D object models. These may be avoided
by using view-based alternatives to 3D object modeling. These issues are discussed

more fully in Chapter 4.

Align Refine Verify

The recognition strategy advocated in this work may be summarized as align refine
verify. This approach has been used by Lipson [50] in refining alignments. The key
observation is that local search in pose space may be used to refine the hypothesis
from the alignment stage before verification is carried out. In hypothesize aud test
methods. the pose estimates of the initial hypotheses tend to be somewhat inaccurate.
since they are based on minimal sets of corresponding features. Better pose estimates
(hence, better verifications) are likely to result from using all supporting image feature
data. rather than a small subset. C'hapter 8 describes a method that refines the pose
estimate while simultaneonsly identifying and incorporating the constraints of all

supporting image features.
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CHAPTER 1. INTRODUCTION

1.3 Guide to Thesis

Brieflv. the presentation of the material in this thesis is essentially bottom-up. The
early chapters are concerned withi building the components of the formulation. while
the main contributions. the statistical formulations of object recognition, are de-
scribed in Chapters 6 and 7. After that, related algorithms are described. followed
by experiments and conclusions.

In more detail, Chapter 2 describes the probabilistic models of the correspon-
dences. or mapping between image features and features belonging to either the ob-
ject or to the background. These models use the principle of maximuin-entropy where
little information is available before the image is observed. In Chapter 3. probabilis-
tic models are developed that characterize the feature detection process. Empirical
evidence is described to support the choice of model.

(‘hapter 4 discusses a way of obtaining average object edge features from a se-
quence of observations of the object in images. Deterministic models of the projection
of features into the image are discussed in (‘hapter 5. The projection methods used
in this work are linear in the parameters of the transformations. Methods for 2D and
3D are discussed. including the Linear Combination of Views method of Ullman and
Basri [71].

In C'hapter 6 the above models are combined in a Bayesian framework to coustruct
a criterion. MAP Model Matching. for evaluating hypotheses in object recognition.
In this formulation. complete hypotheses consist of a description of the correspon-
dences between image and object features, as well as the pose of the object. These
hypotheses are evaluated by their posterior (after the image is observed) probability.
A recognition experiment is described that uses the criteria to guide a heuvristic search
over correspondences. A connection between MAP Model Matching and a method of
robust chamfer matching [47] is described.

Building on the above. a second criterion is described in C‘hapter 7: Posterior

Marginal Pose Estimation (PMPE). Here. the solution being sought is simply the
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puse of the object. The posterior probability of poses is obtained by taking the
formal marginal. over all possible matches. of the posterior probability of the joint
hypotheses of MAP Model Matching. This results in a smooth, non-linear objective
function for evaluating poses. The smoothness of the objective function facilitates
local search in pose space as a mechanism for refining hypotheses in recognition.
Some experimental explorations of the objective function in pose space are described.
These characterizations are carried out in two domains: video imagery and synthetic
radar range imagery.

Chapter 8 describes use of the the Erpectation-Marimization (EM) algorithu (21]
for finding local maxima of the PMPE objective finction. This algorithm alternates
between the M step - a weighted least squares pose estimate, and the E step - re-
calculation of the weights based on a saturating non-linear function of the residuals.

This alge:thim 5 used tu refine and evaluate poses in 2D and 3D recognition ex-
periments that are described in Chapter 10. Initial hypotheses for the 2D experiments
were generated by a simple indexing method, Angle Pair Indering. that is described
in Chapter 9. The Linear Combination of Views method of Ullman and Basri [71] is
employed as the projection model in the 3D experiments reported there.

Finally, some conclusions are drawn in Chapter 11. The notation used throughount

is summarized in Appendix A.
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Chapter 2

Modeling Feature Correspondence

This chapter is concerned with probabilistic models of feature correspondences. These
models will serve as priors in the statistical theories of object recoguition that are
described in Chapters 6 and 7. and are important components of those formulations.
They are used to assess the probability that features correspond before the image data
is compared to the object model. They capture the expectation that some features
in an image are anticipated to be due to the object

Three different models of feature correspondence are described. one of which is

used in the recognition experiments described in Chapters 6, 7, and 10.

2.1 Features and Correspondences

This research focuses on feature-based object recognition. The object being songht
and the 1mage being analyzed consist of discrete features.

Let the image that is to be analyzed be represented by a set of r-dimensional

point features

Y ={". Y, . ... Y.} . e R
Image features are discussed in more detail in Chapters 3 and 5.

21
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CHAPTER 2. MODELING FEATURE CORRESPONDENCE

The object to be recognized is also described by a set of features.

M={M. M, .. ... M.}

The features will usually be represented by real matrices. Additional details on object
features appears in Chapters 4 and 5.

In this work. the interpretation of the features in an image is represented by the
variable I, which describes the mapping from image features to object features or the

scene background. This is also referred to as the correspondences.

F:{rl,rz.....r,l} N r,€‘\lU{.L} .

In an interpretation, each image feature, Y;, will be assigned either to some object
feature M. or to the background. which is denoted by the symbol L. This symbol
plays a role similar to that of the null character in the interpretation trees of Grimson
and Lozano-Pérez [36]. An interpretation is illustrated in Figure 2-1. T is a collection
of variables that is indexed in parallel with the image features. Each vanable [
represents the assignment of the corresponding image feature ¥,. It may take on as
value any of the object features M;, or the background, L. Thus. the meaning of the
expression ['s = Mg is that image feature five is assigned to object feature six. likewise
[ =L means that image feature seven has been assigned to the background. Iu an
interpretation each image feature is assigned. while some object features may not be.
Additionally. several image features may be assigned to the same object feature. This
representation allows image interpretations that are unplausible - other mechanisms

are used to encourage metrical consistency.
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FEATURES AND (CORRESPONDENCES
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Figure 2-1: Image Features. Object Features. and (‘orrespondences
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2.2 An Independent Correspondence Model

In this section a simple probabilistic model of correspondences 1s described. The
intent is to capture some information bearing on correspondences before the image is
compared to the object. This model has been designed to be a reasonable compromise
between sumplicity and accuracy.

In this model. the correspondence status of differing image features are assumed

to be independent. so that

plTy =[] pl,) - 2.1

Here. p(I') 1s a probability mass function on the discrete variable I'. There is
evidence against using statistical independence here. for example, occlusion is locally
correlated. Independence is used as an engineering approximation that simplifies the
resulting formulations of recognition. It may be justified by the good performance
of the recognition experiments described i C‘hapters 6. 7. and 10. Few recognition
systems have used non-independent models of correspondence. Breuel outlined one
approach in his thesis [9]. A relaxation of this assumption is discussed in the following
section.

The component probability function is designed to characterize the amount of

clutter in the image. but to be otherwise as non-committal as pcssible:

B ifl, =4
pll) = ) {.

l;—H otherwise
[y

to
[

The joint model p(T') is the maximum entropy probability function that is con-
sistent with the constraint that the probability of an image feature belonging to the
background is B. B may be estiniated by taking simple statistics on images from the
domain. B = .9 would mean that 90 % of image features are expected to be due to
the background.

Having B constant during recognition is an approximation. The number of fea-
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tures due to the object will likely vary according to the size of the object in the scene.
B could be estimated at recognition time by pre-processing mechanisms that evalunate
immage clatter. and factor in expectations about the size of the object. Iu practice.
the approximation works well in controlled situations.

The independent correspondence model is used in the experiments reported in

this research.

2.3 A Markov Correspondence Model

As indicated above, one inaccuracy of the independent correspondence model is that
sample realizations of ' drawn from the probability function of Equations 2.1 and
2.2 will tend to be overly fragmented in their modeling of occlusion. This section
describes a compromise model that relaxes the independence assumption somewhat
by allowing the correspondence status of an image feature (I';) to depend on that of
its neighbors. In the domain of this research. image features are fragments of image
edge curves. These features have a natural neighbor relation, adjacency along the
image edge curve, that may be used for constructing a 1D Markov Random Field
(MRF) model of correspondences. MRF’s are collections of random variables whose
conditional dependence is restricted to limited size neighborhoods. MRF models are
discussed by Geman and Geman [28]. The following describes an MRF model of

correspondences intended to provide a more accurate model of ocelusion.

P = g(T)g(F2) (T (T Do) T o) oo (T T (2.3)

where
€1 lf rl =1
g(l) = (2.4)

¢, otherwise
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and

€3 fa=landb=1

; €g fa#Landb#1L if features ¢ and / + 1 are neighbors
rda.b) =

s otherwise

(e}
]

1 otherwise .

(2.5)
The assignment of indices to image features should be done in such a way that
neighboring features have adjacent indices. The functions r,(-,-) mode! the interac-
tion of neighboring features. The parameters €, ...es may be adjusted so that the
probability function p(T') is consistent with observed statistics on clutter and fre-
quency of adjacent occlusions. Additionally, the parameters must be constrained so
that Equation 2.3 actually describes a probability function. When these constraints
are met, the model will be the maximum entropy probability function consistent with
the constraints. Satisfying the constraints is a non-trivial selection problem that may
be approached iteratively. Fortunately. this calculation doesn't need to be carried out
at recognition time. Goldman (30] discusses methods of calculating these parameters.
The model outlined in Equations 2.3 - 2.5 is a generalization of the Ising spin
model. Ising models are used in statistical physics to model ferromagnetism [73].
Samples drawn from Ising models exhibit spatial clumping whose scale depends on
the parameters. In object recognition, this clumping behavior may provide a more
accurate model of occlusion.
The standard Ising model is shown for reference in the following equations. It has

been restricted to 1D. and has been adapted to the notation of this section.

o, €{-1.1}

1
ployo,... o) = 'Z:‘[(Ul)‘l(ffz) gl r{oy o) r(og. o) - - r(o,_1.0y)
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exp(&=) ifa=1
qla) = u
exp(—4&%) otherwise

r(a,b) = exp(iF fa=0b

exp(—¢F) otherwise .

Here. Z is a normalization coustant, g i1s the moment of the magnetic dipoles.
H is the strength of the applied magnetic field, k& is Boltzmann's constant. T is
temperature, and J is a neighbor interaction constant called the exchange energy.

The approach to modeling correspondences that is described in this section was
outlined in Wells [74] [75]. Subsequently, Breuel [9] described a similar local interac-
tion model of occlusion in conjunction with a simplified statistical model of recognition
that used boolean features in a classification based scheme.

The Markov correspondence model is not used in the experiments reported in this

research.

2.4 Incorporating Saliency

Another route to more accurate modeling of correspondences is to exploit bottom-up
saliency processes to suggest which image features are most likely to correspond to
the object. One such process in described by Ullman and Shashua [66].

For concreteness. assume that the saliency process provide a per-feature measiure
of saliency, S;. To incorporate this information, we construct p(I'; =L{ 5;). This may

be conveniently calculated via Bayes’ rule as follows:

p(S; | T, =L)p(l, =1)
p(S)

p(rz =-LI Si) =

p(S, | T, =1) and p(S5,) are probability densities that may be estimated from

observed frequencies in training data. As in Section 2.2, we set p(I', =1) = B.
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A feature specific background probabibty may then be defined as follows:

ST, =
P IL =1)p

B, =p(l,=L]8,) =
4 5 p(S)

In this case the complete probability function on T, will be

B, ifl. =1 .
p(T,) = . (2.6)

1_:“5; otherwise

This model is not used in the experiments described in this research.

2.5 Conclusions

The simplest of the three models described, the independent correspondence model.
has been used to good effect in the recognition experiments described in C‘hapters 6. 7.
and 10. In some domains additional robustness in recognition might result from using

either the Markov correspondence model. or by incorporating saliency information.




Chapter 3

Modeling Image Features

Probabilistic models of image features are the topic of this chapter. These are an-
other important component of the statistical theories of object recognition that are
described in Chapters 6 and 7.

The probability density function for the coordinates of image features. conditioned
on correspondences and pose, is defined. The PDF has two important cases, depend-
ing on whether the image feature is assigned to the object, or to the background.
Features matched to the object are modeled with normal densities, while uniform
densities are used for background features. Empirical evidence is provided to support
the use of normal densities for matched f-atures. A form of stationarity is described.

Many recognition systems implicitly -.~e uniform densities (rather than normal
densities) to model matched image features (bounded error models). The empirical
evidence of Section 3.2.1 indicates that the normal model may sometimes be better.

Because of this, use of normal models may provide better performance in recognition.
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3.1 A Uniform Model for Background Features

The image features. ;. are v dimensional vectors. When assigned to the background.

they are assumed to be uniformiy distributed.

P l : _
p(),“,,j)——m ifl=1 . (3.1

{The PDF is defined to be zero outside the coordinate space of the image features.
which has extent W', along dimension ¢.) T’ describes the correspondences from image
features to object features. and ;4 describes the position and orientation. or pose of
the object. For example. if the unage features are 2D points in a 640 by 430 image.

then p(Y, |L,3) = within the image. For Y,, this probability function depends

only on the 2'th component of T.

Providing a satisfying probability density function for background features is prob-
lematical. Equation 3.1 describes the maximum entropy PDF consistent with the
constraint that the coordinates of image features are always expected to lie within
the coordinate space of the image features. E.T. Jaynes [46] has argued that maxi-

mum entropy distributions are the most honest representation of a state of incomplete

knowledge.

3.2 A Normal Model for Matched Features

Image features that are matched to object features are assumed to be normally dis-

tributed about their predicted position i the 1mage.
p(Yi | T.3) = Gy (Vi = P(M,. 3)) if, =M, . (3.2)

Here Y,. I'. and .3 are defined as above.

G,,, 1s the v-dimensional Gaussian probability density function with covariance
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Figure 3-1: Fine Image Features and Fine Model Features

matrix ,;,

£ - Lt _
Gu, (£) = (2m)7E ||~ exp (= 527w b))

The covariance matrix 1;; is discussed more fully in Section 3.3.
When T, = M,, the predicted coordinates of image feature Y, are given by
P(M,. 3), the projection of object feature j into the image with object pose 3. Pro-

jection and pose are discussed in more detail in Chapter 5.

3.2.1 Empirical Evidence for the Normal Model

This section describes some empirical evidence from the domain of video image edge
features indicating that normal probability densities are good models of feature flne-
tuations, and that they can be better than uniform probability densities. The ev-
idence is provided in the form of observed and fitted cumulative distributions and
Kolmogorov-Smirnov tests. The model distributions were fitted to the data using the
Maximum Likelihood method.

The data that is analyzed are the perpendicular and parallel deviations of fine
and coarse edge features derived from video images. The fine and coarse features are
shown in Figures 3-1 and 3-3 respectively.

The model features are from Mean Edge lmmages. these are described in Section

+.4. The edge operator used in obtaining the image features is ridges in the magnitude
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Figure 3-3: Cloarse Image Features and (‘oarse Model Features
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of the image gradient. as discussed in Section 4.4. The smoothing standard deviation
used 1 the edge detection was 2.0 and 4.0 pixels respectively. for the tine and coarse
features. These features were also used in the experiments reported in Section 10.1.
and the correspondences were used there as traiuing data.

For the analysis in this section, the feature data consists of the average of the
r and y coordinates of the pixels from edge curve fragments - they are 2D point
features. The features are displayed as circular arc fragments for clarity. The .
curves were broken arbitrarily into 10 and 20 pixel fragments for the fine and couise
features respectively.

(Correspondences from image features to model features were established by a
ueutral subject using a mouse. These correspondences are indicated by heavy lines
in Figures 3-2 and 3-4. Perpendicular and parallel deviations of the corresponding
features were calculated with respect to the normals to edge curves at the image
features.

Figure 3-5 shows the cumulative distributions of the perpendicular and parallel
deviations of the fine features. The cumulative distributions of fitted normal densities
are plotted as heavy dots over the observed distributions. The distributions were fitted
to the data using the Maximum Likelihood method - the mean and variance of the
normal density are set to the mean and variance of the data. These figures show good
agreement between the observed distributions. and the fitted normal distributions.
Similar observed and fitted distributions for the coarse deviations are shown in Figure
3-6. again with good agreement.

The observed cumulative distributions are shown again in Figures 3-7 and 3-5.
this time with the cumulative distributions of fitted uniform densities over-plotted
in heavy dots. As before. the uniform densities were fitted to the data using the
Maximum Likelihood method - in this case the uniform densities are adjusted to just
include the extreme data. These figures show relatively poor agreement between the

observed and fitted distributions, in comparison to normal densities.
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Figure 3-6: Observed Cumulative Distributions and Fitted Normal C'umulative Dis-
tributions for (‘oarse Features
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Normal Hypothesis | Uniform Hypothesis
Deviate N D, |P(D>D,){ D, | P(ID>D,)
Fine Perpendicular 118 | .0824 .3996 2244 .000014
Fine Parallel 113 | .0771 4845 1596 .0049
Coarse Perpendicular [ 28 | .1526 5317 2518 0574
(‘oarse Parallel 28 | .0948 9628 1543 D172

Table 3.1: Kolmogorov-Smirnov Tests

Kolmogorov-Smirnov Tests

The Kolmogorov-Smirnov (KS) test [59] is one way of analyzing the agreement be-
tween observed and fitted cumulative distributions, such as the ones in Figures 3-5
to 3-8. The KS test is computed on the magnitude of the largest difference between
the observed and hypothesized (fitted) distributions. This will be referred to as D.
The probability distribution on this distance, under the hypothesis that the data were
drawn from the hypothesized distribution, can be calculated. An asymptotic formula
is given by

P(D > D,)=Q(WND,)

where

and D, is the observed value of D.

The results of KS tests of the consistency of the data with fitted normal and
uniform distributions are shown in Table 3.1. Low values of P(D > D,) suggest
incompatibility between the data and the hypothesized distribution. In the cases
of fine perpendicular and parallel deviations. and coarse perpendicular deviations.
refutation of the uniform model is strongly indicated. Stroung contradictions of the

fitted normal models are not indicated in any of the cases.
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3.3 Oriented Stationary Statistics

The covariance matrix yx; that appears in the model of matched image features in
Equation 3.2 is allowed to depend on both the image feature and the object feature
involved in the correspondence. Indexing on 7 allows dependence on the image feature
detection process. while indexing in 7 allows dependence on the identity of the model
feature. This is useful when some model features are know to be noisier than others.
This flexibility is carried through the formalism of later chapters. Although such flex-
ibility can be useful, substantial simplification results by assuming that the features
statistics are stationary in the image, i.e. y;; = 1, for all z5. This could be reason-
able if the feature fluctuations were isotropic in the image, for example. In its strict
form this assumption may be too limiting, however. This section outlines a compro-
mise approach, oriented stationary statistics, that was used in the implementations
described in Chapters 6, 7, and 8.

This method involves attaching a coordinate system to each image feature. The
coordinate system has its origin at the point location of the feature, and is oriented
with respect to the direction of the underlying curve at the feature point. When
(stationary) statistics on feature deviations are measured, they are taken relative to

these coordinate systems.

3.3.1 Estimating the Parameters

The experiments reported in Sections 6.2, 7.1, and Chapter 10 use the normal model
and oriented stationary statistics for matched image features. After this choice of
model. it is still necessary to supply the specific parameters for the model. namely.
the covariance matrices, #,,, of the normal densities.

The parameters were estimated from observations on matches done by hand on
sample images from the domain. Because of the stationarity assumption it is possible

to estimate the common covariance, 1, by observing match data on one image. For
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this purpose, a match was done with a mouse between features from a Mean Edge -
age (these are described in Section 4.4) and a representative image from the domain.
During this process, the pose of the object was the same in the two images. This
produced a set of corresponding edge features. For the sake of example, the process
will be described for 2D point features (described in Section 5.2). The procedure has
also been used with 2D point-radius features and 2D oriented-range features. that are
described in Sections 5.3 and 5.4 respectively.

Let the observed image features be described by Y;, and the corresponding mean
model features by ¥;. The observed residuals between the “data” image features, and
the “mean” features are A; = Y, — Y,

The features are derived from edge data. and the underlying edge curve has an
orientation angle in the image. These angles are used to define coordinate systems
specific to each image feature Y;. These coordinate systems define rotation matrices
R, that are used to transform the residuals into the coordinate systems of the features,
in the following way: A! = R;A,.

The stationary covariance matrix of the matched feature fluctuations observed
in the feature coordinate systems is then estimated using the Maximum Likelihood

method. as follows,

“__l_ t AT
u,_n;AiAi .

Here T denotes the matrix transpose operation. This technique has some bias. but
for the reasonably large sample sizes involved (n = 100) the effect is minor.

The resulting covariance matrices typically indicate larger variance for deviations
along the edge curve than perpendicular to it, as suggested by the data in Figures

3-5 and 3-6.
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3.3.2 Specializing the Covariance

At recognition time, it is necessary to specialize the constant covariance to each image
feature. This is done by rotating it to orient it with respect to the image feature.

A covariance matrix transforms like the following product of residuals:
AT
This is transformed back to the image system as follows,
RTAIATR, .
Thus the constant covariance is specialized to the image features in the following way.

T
1,/‘1'] = Ri TI’RI' .




Chapter 4

Modeling Objects

What is needed from object models? For recognition, the main issue lies in predicting
the image features that will appear in an image of the object. Should the object model
be a monolithic 3D data structure? After all, the object itself is 3D. In this chapter.
some pros and cons of monolithic 3D models are outlined. An alternative approach.
interpolation of views, is proposed. The related problem of obtaining the object
model data is discussed, and it is proposed that the object model data be obtained
by taking pictures of the object. An automatic method for this purpose is described.
Additionally, a means of edge detection that captures the average edges of an object

is described.

4.1 Monolithic 3D Object Models

One motivation for using 3D object models in recognition systems is the observation
that computer graphics techniques can be used to synthesize convincing images from
3D models in any pose desired.

For some objects, having a single 3D model seems a natural choice for a recognition

system. If the object is polygonal, and is represented by a list of 3D line segments and

vertices, then predicting the features that will appear in a given high resolution view

43
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1s a simple matter. All that is needed is to apply a pose dependent transformation to
each feature, and to perform a visibility test.

For other objects, such as smoothly curved objects, the situation is different. Pre-
dicting features becomes more elaborate. In video imagery, occluding edges (or limbs)
are often important features. Calculating the limb of a smooth 3D surface is usually
complicated. Ponce and Kriegman [58] describe an approach for objects modeled
by parametric surface patches. Algebraic elimination theory is used to relate image
limbs to the model surfaces that generated them. Brooks’ vision system, Acronym
[10]. also recognized curved objects from image limbs. It used generalized cylinders
to model objects. A drawback of this approach is that it is awkward to realistically
modeling typical objects, like telephones or automobiles, with generalized cylinders.

Predicting reduced resolution image features is another difficulty with monolithic
3D models. This is a drawback because doing recognition with reduced resolution
features is an attractive strategy: with fewer features less search will be needed. One
solution would be to devise a way of smoothing 3D object models such that simple
projection operations would accurately predict reduced resolution edge features. No
such method is known to the author.

Detecting reduced resolution image features is straightforward. Good edge fea-
tures of this sort may be obtained by smoothing the grayscale image before using an
edge operator. This method is commonly used with the Canny edge operator [13].
and with the Marr-Hildreth operator [53].

An alternative approach is to do projections of the object model at full resolution,
and then to do some kind of smoothing of the image. It isn't clear what sort of
smoothing would be needed. Oune possibility is to do photometrically realistic projec-
tions (for example by ray tracing rendering). perform smoothing in the image. and
then use the same feature detection scheme as is used on the images presented for
recognition. This method is likely to be too expensive for practical recognition system

that need to perform large amounts of prediction. Perhaps better ways of doing this
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will be found.

Self occlusion is an additional complexity of the monolithic 3D model approach.
In computer graphics there are several ways of dealing with this issue. among them
hidden line and z-buffer methods. These methods are fairly expensive, at least in
comparison to sparse point projections.

In summary, monolithic 3D object models address some of the requirements for

predicting images for recognition, but the computational cost may be high.

4.2 Interpolation of Views

One approach to avoiding the difficulties dis: :issed in the previous section is to use an
image-based approach to object modeling. Ullman and Basri [71] have discussed such
approaches. There is some biological evidence that animal vision systems have rocar
nition subsystems that are attuned to specific views of faces [25]. This may provide
some assurance that image-based approaches to recognition aren’t unreasonable.

An important issue with image-based object modeling concerns how to predict
image features in a way that covers the space of poses that the object may assume.

Bodies undergoing rigid motion in space have six degrees of freedom, three in
translation, and three in rotation. This six parameter pose space may be split into two
parts — the first part being translation and in image-plane rotations (four parameters)
- the second part being out of image-plane rotations (two parameters: the “view
sphere™).

Synthesizing views.of an object that span the first part of pose space can often
be done using simple and efficient linear methods of translation. rotation. and scale
in the plane. This approach can be precise under orthographic projection with scal-
ing. and accurate enough in some domains with perspective projection. Perspective
projection is often approximated in recognition systems by 3D rotation combined

with orthographic projection and scaling. This has been called the weak perspective
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approximation [70].

The second part of pose space, out of plane rotation, is more complicated. The
approach advocated in this research involves tesselating the view sphere around the
object, and storing a view of viie ubject for each vertex of the tesselatiou. A.bitrary
views will then entail, at most, small out of plane rotations froin stored views. These
views may be synthesized using interpolation. The Linear Combination of Views
method of Ullman and Basri [71], works well for interpolating between nearby views
(and more distant ones, as well).

Conceptually, the interpolation of views method caches pre-computed predictions
of images, saving the expense of repeatedly computing them during recognition. If
the tesselation is dense enough, difficulties owing to large changes in aspect may be
avoided.

Breuel {9] advocates a view-based approach to modeling, without interpolation.

4.3 Object Models from Observation

How can object model features be acquired for use in the interpolation of views
framework? If a detailed CAD model of the object is available, then views might be
synthesized using graphical rendering programs (this approach was used in the (single
view) laser radar experiment described in Section 7.3).

Another method is to use the object itself as its own model, and to acquire views
by taking pictures of the object. This process can make use of the feature extraction
method that is used on images at recognition time. An advantage of this scheme is
that an accurate C'AD style model isn't needed. Using the run-time feature extraction
mechanism of the recognition system automatically selects the features that will be
salient at recognition time, which is otherwise a potentially difficult problem.

One difficulty with the models from observation approach is that image features

tend to be somewhat unstabie. For example, the presence and location of edge features
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15 inflnenced by illumination conditions, as illustrated in the following figures. Fire
4-1 shows a series of nine grayscale images where the only variation is in lighting. A
corresponding set of edge images is shown in 4-2. The edge operator used in preparing
the images is described in Section 4.4, The standard deviation of the smoothine

operator was 2 pixels.

4.4 Mean Edge Images

[t was pointed out above that the instability of edge features is a potential difficulty
of acquiring object model features from observation. The Mean Edge Image method
solves this problem by making edge maps that are averaged over variations due to
illumination changes.

Brightness edges may be characterized as the ridges of a measure of brightness
variation. This i1s consistent with the common notion that edges are the 1D loci of
maxima of changes in brightness. The edge operator used in Figure 4-2 is an example
of this style of edge detector. It is a ridge operator applied to the squared discrete
gradient of smoothed images. Here, the squared discrete gradient is the measure of
brightness variation. This style of edge detection was described by Mercer [57]. The
mathematical definition of the ridge predicate is that the gradient is perpendicular to
the direction having the most negative second directional derivative. Another similar
definition of edges was proposed Haralick [37]). For a general survey of edge detection
methods. see Robot Vision, by Horn [39].

The preceding characterization of image edges generalizes naturally to mean edges.
Mean edges are defined to be ridges in the average measure of brightness fluctuation.
In this work, average brightness fluctuation over a set of pictures is obtained by
averaging the squared discrete gradient of the (smoothed) images.

Figure 4-3 shows the averaged squared gradient of smocihed versions of the images

that appear in Figure 4-1. Recall that ounly the lighting changed between these images.
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Figure 4-1: Grayscale [mmages
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Figure 4-2: Edge Images
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Figure 4-3: Averaged Squared Gradient of Smoothed Images

Figure 4-4 shows the ridges from the image of Figure 4-3. Hysteresis thresholding
based on the magnitude of the averaged squared gradient has been used to suppress
weak edges. Such hysteresis thresholding is used with the Canny edge operator. Note
that this edge image is relatively immune to specular highlights, in comparison to the

individual edge images of Figure 4-1.

4.5 Automatic 3D Object Model Acquisition

This section outlines a method for automatic 3D object model acquisition that com-
bines interpolation of views and Mean Edge Images. The method involves antomati-
cally acquiring (many) pictures of the object under various combinations of pose and
illumination. A preliminary implementation of the method was used to acquire object

model features for the 3D recognition experiment discussed in Section 10.4.
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Figure 4-4: Ridges of Average Squared Gradient of Smoothed Images
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Figure 1-5: A Pentakis Dodecahedron

The object, a plastic car model, was mounted on the tool lange of a PUMA 360
robot. A video camera connected to a Sun Microsystems VF(' video digitizer was
mounted near the robot.

For the purpose of Interpolation of Views object model coustruction. the view
sphere around the object was tesselated into 32 view points. the vertices of a pentakis
dodecahedron (one is illustrated in Figure 4-5). At each view point a “canonical pose”
for the object was counstructed that oriented the view point towards the camera. while
keeping the center of the object in a fixed position.

Nine different configurations of lighting were arranged for the purpose of con-
structing Mean Edge Images. The lighting configurations were made by moving a
spotlight to nine different position that illuminated the object. The lamp positions
ronghly covered the view hemisphere centered on the camera.

The object was moved to the canonical poses corresponding to the 21 vertices in
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the upper part (roughly 2/3) of the object’s view sphere. At each of these poses.
pictures were taken with each of the nine lamp positions.

Mean Edge Images at various scales of smoothing were constructed for each of
the canonical poses. Object model features for recognition experiments described in
("hapter 8 were derived from these Mean Edge Images. Twenty of the images from
one such set of Mean Edge Images are displayed in Figures 4-6 and 4-7.

Two of these Mean Edge Images were used in an experiment in 3D recognition
using a two-view Linear C'ombination of Views method. This method requires corre-
spondences among features at differing views. These correspondences were established
by hand. using a mouse.

It is likely that such feature correspondence could be derived from the results
of a motion program. Shashua’s motion program [65], which combines geometry
and optical flow, was tested on images from the experimental setup and was able
to establish good correspondences at the nixel level, for views separated by 4.75
degrees. This range could be increased by a sequential bootstrapping process. If
correspondences can be automatically determined. then the entire process of building
view-based models for 3D objects can be made fully automatic.

After performing the experiments reported in Chapter 10, it became apparent that
the views were separated hy too large of an angle (about 38 degrees) for establishing
a good amount of feature correspondence between some views. This problem may be
relieved by using more views. Using more views also makes automatic determination
of correspondences easier. If the process of model construction is fully automatic,
having a relatively large number of views is potentially workable.

The work of Tayvlor and Reeves [69] provides some evidence for the feasibility of
multiple-view-based recognition. They describe a classification-hased vision svstem
that uses a library of views from a 252 vertex icosahedron-based tesselation of the
view sphere. Their views were separated by 6.0 to 8.7 degrees. They report good

classification of aircraft silhouettes using this approach.
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Chapter 5

Modeling Projection

This chapter is concerned with the representations of image and object features. and
with the projection of object features into the image, given the pose of the object.
Four different formulations are described, three of which are used in experiments
reported in other chapters.

The first three models described in this chapter are essentially 2D, the trans-
formations comprise translation, rotation, and scaling in the plane. Such methods
may be used for single views of 3D objects via the weak perspective approximation.
as described in {70]. In this scheme, perspective projection is approximated by or-
thographic projection with scaling. Within this approximation, these methods can
haundle four of the six parameters of rigid body motion - everything but out of plane
rotations.

The method described in Section 3.5, is based on Linear Combination of Views.

a view-based 3D method that was developed by Ullman and Basri [71].

5.1 Linear Projection Models

Pose determination is often a component of model-based object recognition systems,

including the systems described in this thesis. Pose determination is frequently framed

|
-1
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as an optimization problem. The pose determination problem may be significantly
simplified if the feature projection model is linear in the pose vector. The systems de-
scribed in this thesis use projection models having this property, this enables solving
the embedded optimization problem using least squares. Least squares is advanta-
geous because unique solutions may be obtained easily in closed form. This is a
significant advantage, since the embedded optimization problem is solved many times
during the course of a search for an object in a scene.

All of the formulations of projection described below are linear in the parameters

of the transformation. Because of this they may be written in the following form:

N = P(M,B) = M3 . (5.1)

The pose of the object is represented by /3. a column vector. the object model
feature by M, a matrix. 7,, the projection of the model feature into the image by
pose 3, is a column vector.

Although this particular form may seem odd, it a natural one if the focus is on

solving for the pose and the object model features are constants.

5.2 2D Point Feature Model

The first. and simplest, method to be described was used by Faugeras and Ayache in

their vision system HYPER [1]. It is defined as follows: 5, = M, 3. where

0]
P, e —Pw 10 I
N = M, = ! Pry and 3=
p:y Py Pir 0 1 tr
L tl’ J

The coordinates of object model point i are p,, and p;,. The coordinates of the

_
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model point 7, projected into the image by pose 3, are p, and p;,. This transformation

is equivalent to rotation by 8, scaling by s, and translation by T'. where

U

tr
T = { s=/p?+ 17 f = arctan (K)
ty

This representation has an un-synunetrical way of representing the two classes
of features, which seems odd due to their essential equivalence, however the trick
facilitates the linear formulation of projection given in Equation 5.1.

In this model, rotation and scale are effected by analogy to the multiplication of
complex numbers, which induces transformations of rotation and scale in the complex
plane. This analogy may be made complete by noting that the algebra of complex

numbers a + ¢b is isomorphic with that of matrices of the form

b a

5.3 2D Point-Radius Feature Model

This section describes an extension of the previous feature model that incorporates
information about the normal and curvature at a point on a curve (in addition to the
coordinate information).

There are advantages in using richer features in recognition - they provide more
constraints. and can lead to space and time efficiencies. These potential advantages
must be weighed against the practicality of detecting the richer features. For example.
there is incentive to construct features incorporating higher derivative information at
a point on a curve: however, measuring higher derivatives of curves derived from video

imagery is probably impractical. because each derivative magnifies the noise present
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Figure 5-1: Edge Curve, Osculating Circle, and Radius Vector

in the data.
The feature described here is a compromise between richness and detectability. It

is defined as follows n; = M, 3, where

S _ - ..
Piz Piz  — Py 1 0 M
: w Pir 01 v
n, = Pry M, = Py P and 3=
e Gr —Cy 00 t,
| chy ] [ Gy Gr 0 0] [ 1y ]

The point coordinates and .3 are as above. ¢, and ¢,, represent the radins vector
of the curve’s osculating circle that touches the point on the curve. as illustrated
in Figure 5-1. This vector is normal to the curve. Its length is the inverse of the
curvature at the point. The counterparts in the image are given by ¢, and ¢;,. With
this model. the radius vector ¢ rotates and scales as do the coordinates p. but it does
not translate. Thus. the aggregate feature translates. rotates and scales correctly.

This feature model is used in the experiments described in Sections 6.2. 7.4. and
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10.1 When the underlying curvature goes to zero, the length of the radius vector
diverges, and the direction becomes unstable. This has been accommodated in the
experiments by truncating ¢. Although this violates the “transforms correctly™ crite-

rion, the model still works well.

5.4 2D Oriented-Range Feature Model

This feature projection model is very similar to the one described previously. It was
designed for use in range imagery instead of video imagery. Like the previous feature.
it 1s fitted to fragments of image edge curves. In this case, the edges label discon-
tinuities in range. It is defined just as above in Section 5.3, but the interpretation
of ¢ is different. The point coordinates and 3 are as above. As above. ¢,; and ¢,
are a vector whose direction is perpendicular to the (range discontinuity) curve frag-
ment. The difference is that rather than encoding the inverse of the curvature. the
length of the vector encodes instead the inverse of the range at the discontinuity. The
counterparts in the image are given by ¢;, and c/,. The aggregate feature translates.
rotates and scales correctly when used with imaging models where the object features
scale according to the inverse of the distance to the object. This holds under per-
spective projection with attached range labels when the object is small compared to
the distance to the object.

This model was used in the experiments described in Section 7.3.

5.5 Linear Combination of Views

The technique used in the above methods for synthesizing rotation and scale amounts
to making linear combinations of the object model with a copy of it that has been
rotated 90 degrees in the plane.

In their paper. "Recognition by Linear ('ombination of Models™ [71]. Ullman and

Basri describe a scheme for synthesizing views under 3D orthography with rotation
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and scale that has a linear parameterization. They show that the space of images of
an object is a subspace of a linear space that is spanned by the components of a few
images of an object. They discuss variants of their formulation that are based on two
views, and on three and more views. Recovering conventional pose parameters from
the linear combination coefficients is described in [60).

The following is a brief explanation of the two-view method. The reader is referred
to [T1] for a fuller description. Point projection from 3D to 2D under orthography. ro-
tation. and scale is a linear transformation. If two (2D) views are available. along with
the transformations that produced them (as in stereo vision), then there is enough
data to invert the transformations and solve for the 3D coordinates (three equations
are needed, four are available). The resulting expression for the 3D coordinates will
be a linear equation in the components of the two views. New 2D views may then
be synthesized from the 3D coordinates by yet another linear transformation. Com-
pounding these linear operations yields an expression for new 2D views that is linear
in the components of the original two views. There is a quadratic constraint on the
3D to 2D transformations, due to the constraints on rotation matrices. The usual Lin-
ear Combination of Views approach makes use of the above linearity property while
svuthesizing new views with general linear transformations (without the constraints).
This practice leads to two extra parameters that control stretching transformations
in the synthesized image. It also reduces the need to deal with camera calibrations -
the pixel aspect ratio may be accommodated in the stretching transformations.

The following projection model uses a two view variant of the Linear Combination
of Views method to synthesize views with limited 3D rotation and scale. Additionally.
translation has been added in a straightforward way. 7, = M, 3. where

Nir hr 0 qir 0 1 0 10
] Al = 2 f Pry

Ty 0 py 0 qy O p 01

UE
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and
T

3= [ ,‘30."31 Jziij,ijpjs,js;j-;
The coordinates of the i'th point in one view are p,. and p,,; in the other view
they are ¢,; and q;,.
When this projection model is used, ;3 does not in general describe rigid transfor-
mation. but it is nevertheless called the pose vector for notational consistency.

This method is used in the experiment described i Section 10.4.
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Chapter 6

MAP Model Matching

MAP Model Matching ' (MMM) is the first of two statistical formulations of object
recognition to be discussed in this thesis. It builds on the models of features and
correspondences, objects, and projection that are described in the previous chapters.
MMM evaluates joint hypotheses of match and pose in terms of their posterior prob-
ability, given an image. MMM is the starting point for the second formulation of
object recognition, Posterior Marginal Pose Estimation (PMPE), which is described
in Chapter 7.

The MMM objective function is amenable to search in correspondence space.
the space of all possible assignments from image features to model and background
features. This style of search has been used in many recognition systems. and it is
used here in a recognition experiment involving low resolution edge features.

It is shown that under certain conditions, searching in pose space for maxima of
the MMM objective function is equivalent to robust methods of chamfer matching

[47].

!Early versions of this work appeared in [74] and [75].

65 .
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6.1 Objective Function for Pose and Correspon-

dences

In this section an objective function for evaluating joint hypotheses of match and
pose using the MAP criterion will be derived.

Briefly. probability densities of image features. conditioned on the parameters of
match and pose (“the parameters™), are combined with prior probabilities on the
parameters using Bayes' rule. The result is a posterior probability density on the pa-
rameters. given an observed image. An estimate of the parameters is then formulated
by choosing them so as to maximize their a-posteriori probability. (Hence the term
MAP. See Beck and Arnold’s textbook [4] for a discussion of MAP estimation.) MAP
estimators are especially practical when used with normal probability densities.

This research focuses on feature based recognition. The probabilistic mod: . of
image features described in (‘hapter 3 are used. Initially. image features are assumed
to be mutually independent (this is relaxed in Section 6.1.1). Additionally. matched
image features are assumed to be normally distributed about their predicted positions
in the image. and unmatched (background) features are assumed to be uniformlv
distributed in the image. These densities are combined with a prior model of the
parameters. When a linear projection model is used. a simple objective function for
match and pose results.

As described in C‘hapter 2, the image that is to be analvzed is represented by a

set of v-dimensional column vectors.

The object model is denoted by V.

‘l = {\[1\[2. ..\Im}
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When iinear projection modeis are used, as discussed in C'hapter 5. the object features
will be represented by real matrices: M, € R"** (= is defined below).

The parameters to be estimated in matching are the correspoudences between
image and object features, and the pose of the object in the image. As discussed in

Section 2.1, the state of match, or correspoudences, i1s described by the variable I':

[={l,T5...,T.} . T,e MU{L) .

Here I', = M, means that image feature i corresponds to object model feature ). and
', =L means that image feature z is due to the background.

The pose of the object is a real vector: 3 € R*. A projection function, P(}. maps
object model features into the v-dimensional image coordinate space according to the

pose.

P(M,,5) € R .

The probabilistic models of image features described in Chapter 3 may be written

as follows:
p(Y, | T, B) = MWW ! 6.1)
Gy, (Y = P(M,, 3)) if T, =M,
where

v 1
G, (2) = (27) F ] % exp (—5oTv] )

Here 1,; is the covariance matrix associated with image feature 7 and object model
feature ;. Thus image features arising from the background are uniformly distributed
over the image feature coordinate space (the extent of the image feature coordinate
space along dimension ¢ is given by W)). and matched image features are normally
distributed about their predicted locations in the image. In some applications v* could
be independent if ¢ and j - an assumption that the feature statistics are stationary
in the image. or ¥ may depend only on 7. the image feature index. The latter is the

case when the oriented stationary statistics model is used (see Section 3.3).
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Assuming independent features, the joint probability density on image feature

coordinates may be written as follows

I
[T e (Y = P(ML S
Wi, W IT G. 0N =P 5

v =M,

Py T3 =TI T3 = ]
v =1
(6.2)

This assumption often holds when sensor noise dominates in feature fluctuations.
The next step in the derivation is the construction of a joint prior on correspon-
dences and pose. In Chapter 2. probabilistic models of feature correspondences were
discussed. The independent correspondence model is used here for simplicity. Use of
the Markov correspondence model is discussed in the following section. The proba-
bility that image feature 7 belongs to the background is B,. while the remaining prob-
ability is uniformly distributed for correspondences to the m object model features.

In some situations, B, may be a constant. independent of . Recalling Equations 2.1

and 2.6.

B; flr; =L
p(C)=T[»(T;) and  p(Ty) = (6.3)

=B, stherwise .

m

Prior information on the pose is assumed to be supplied as a normal density.

P(3) = Guy(3 = 3)

where

o !
Guy(x) = (27) F w2 exp (205 r)

Here w3 is the covariance matrix of the pose prior and z is the dimensionality of
the pose vector. 3. With the combination of normal pose priors and linear projection
models the system is closed in the sense that the resulting pose estimate will also
be normal. This is convenient for coarse-fine. as discussed in Section 6.4. If little is
known about the pose a-priori. the prior may be made quite broad. This is expected

to be often the case. If nothing is known about the pose beforehand. the pose prior

:_
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may be left out. In that case the resulting criterion for evaluating hyrotheses will be

based on Maximum Likelihood for pose, and on MAP for correspoudences.
Assuming independence of the correspondences and the pose (before the image s
compared to the object model), a mixed joint probability function may be written as

follows.
,, . , 1 - B,
pL.3)=Gu,(3-3) I B [ — -
ul,=1 L #1 m

This a good assumption when view-based approaches to object modeling are used
(these are discussed in Chapter 4 and used in the experiments described in Chapter
10). (With general 3D rotation it is inaccurate, as the visibility of features depends

on the orientation of the object.) This probability function on match and pose is now

used with Bayes’ rule as a prior for obtaining the posterior probability of I' and .3:

p(Y | T, 3)p(T, 5)
p(Y)

p(T,3|Y) = : (6.4)

where p(Y) = Y [dB3 p(Y | T,3)p(T, B) is a normalization factor that is formally
the probability of the image. It is a constant with respect to I' and .3, the parameters
being estimated.

The MAP strategy is used to obtain estimates of the correspondences and pose

by maxiiuizing their posterior probability with respect to I and 3, as follows

e

[, =arg max pl.31Y) .

For convenience. an objective function. L, is introduced that is a scaled logarithm
of p(T.3]Y). The same estimates will result if the maximization is instead carred

out over L.

o

I3 =argmax L(T..3)
r.g

where

(6.5)

L(F.3) =l (M)

(
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The denominator i Equation 6.5 is a constant that has been clhiosenu to cancel cou-

stants from the numerator. Its value, which is independent of I' and .7 1s
B]Bg*“Bn . == =1 1

(27)F 0] F —r

(Wil W pY)

¢ =

After some manipulation the objective function may be expressed as

L(r’j)’"” AT =)+ 3] —P(M,. )T (Y, =P(M,. 3))]
i;:M =M,
(6.6)
. where
1 (1= B)YW\W,...W, -
Ay = 2 ; : 6.
J n ((271')5771. B, W—’i]i7 > (6.7)

When a linear projection model is used, P(M,.3) = M,3. (Linear projection
models were discussed in Chapter 5.) In this case, the objective function takes the

following simple form

1 ) :
L(T.3) = _5(;5—;3) YB—130)+ Z 5 Y-—de) v (=M, 3)] . (6.8)

17:IN =M
When the background probability is constant, and when the feature covariance
matrix determinant is constant (as when oriented stationary statistics are used). the

formulas simplify further -

- W, W
)\=1n<‘ L (- B) W, W, M”). (6.9)

(2m)zm B [&]%

and

LT . 3) = Zu—s)f =3+ Y /\—— Yi—M,3) TN (Y= M, )] . (6.10)

1:M =M,

Here. v is the stationary feature covariance matrix. and 1, is the specialized

feature covariance matrix. These were discussed in Section 3.3.
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The first term of the objective function of Equation 6.8 expresses the influence of
the prior on the pose. As discussed above. when a useful pose prior isn’t available.
this term may be dropped.

The second term has a simple interpretation. It is a sum taken over those image
features that are matched to object model features. The A, are fixed rewards for
making correspondences, while the quadratic forms are penalties for deviations of ob-
served image features from their expected positions in the image. Thus the objective
function evaluates the amount of the image explained in terms of the object. with
penalties for mismatch. This objective function is particularly simple in terms of 3.
When T is constant, 3 and its (posterior) covariance are estimated by weighted least
squares. When using an algorithm based on search in correspondence space. the es-
timate of 3 can be cheaply updated by using the techniques of sequential parameter
estimation. (See Beck and Arnold [4].) The );; describe the relative value of a match
component or extension in a way that allows direct comparison to the entailed mis-
match penalty. The values of these trade-off parameter(s) are supplied by the theory
(in Equation 6.7) and are given in terms of measurable domain statistics.

The form of the objective function suggests an optimization strategy: make cor-
respondences to object features in order to accumulate correspondence rewards while
avoiding penalties for mismatch. It is important that the A,; be positive, otherwise a
winning strategy is be to make no matches to the object at all. This condition defines
a critical level of image clutter, beyond which the MAP criteria assigns the feature to
the background. A;; describes the dependence of the value of matches on the amount
of background clutter. If background features are scarce. then correspondences to
object features become more important.

This objective function provides a simple and uniform way to evaluate match
and pose hypotheses. It captures important aspects of recognition: the amount of
image explained in terms of the object. as well as the metrical consistency of the

hypothesis: and it trades them off in a rational way based on domain statistics. Most
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previous approaches have not made use of both criteria simultaneously in evaluating

hyvpotheses. thereby losing some robustuess.

6.1.1 Using the Markov Correspondence Model

When the Markov correspondence model of Section 2.3 is used instead of the indepen-
dent correspondence model, the functional form of the objective function of Equation
6.6 remains essentially unchanged, aside from gaining a new term that captures the
influence of the interaction of neighboring features. The names of some of the con-
stants changes, reflecting the difference between Equations 2.2 and 2.4. Noting that
p(l'.3 | Y) is linear in p(I'), it can be seen that the new term in the logarithmic

objective function will be:

n-1
Z Inri(Fi Ciga)
=1
As before, when an algorithm based on search in correspondence space is used, the
estimate of 3 can still be cheaply updated. A change in an element of correspondence,

some I';, will now additionally entail the update of two of the terms in the expression

above.

6.2 Experimental Implementation

In this section an experiment demonstrating the use of the MMM objective function
is described. The intent is to demonstrate the utility of the objective function in a
domain of features that have significant fluctuations. The features are derived from
real images. The domain is matching among features from low-resolution edge images.
The point-radius feature model discussed in Section 5.3 is used. Oriented stationary
statistics, as described in Section 3.3. are used to model the feature fluctuations. so

that A, = A,.
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6.2.1 Search in Correspondence Space

Good solutions of the objective function of Equation 6.8 are sought by a search in
correspondence space. Search over the whole exponential space is avoided by heuristic
pruning.

An objective function that evaluates a configuration of correspondences, or match

{described by I'). may be obtained as follows:
L) = max L(T..3)

This optimization is quadratic in ;3 and is carried out by least squares. Sequential
techniques are used so that the cost of extending a partial match by one correspon-
dence is O(1) .

The space of correspondences may be organized as a directed-acyclic-graph (DAG)
by the following parent-child relation on matches. A point in correspondence space.
or match is a child of another match if there is some 7 such that ', =L in the parent.
and I, = M, for some j, in the child, and they are otherwise the same. Thus, the
child has one more assignment to the model than the parent does. This DAG is rooted
in the match where all assignments are to the background. All possible matches are
reachable from the root. A fragment of an example DAG of this kind is illustrated
in Figure 6-1. Components of matches that are not explicit in the figure are assigned
to the background.

Heuristic beam search. as described in [64]. is used to search over matches for good
solutions of £. Success depends on the heuristic that there aren’t many impostors in
the image. An impostor is a set of image features that scores well but isn’t a subset
of the optimum match implied by the objective function. Another way of stating the
heuristic is that the best match to n + 1 object features is likely to contain the best
match to n object features.

The search method used in the experiments emplovs a bootstrapping mechanism
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Figure 6-1: Fragment of Correspondence Space DAG

based on distinguished features. Object features 1, 2 and 3 are special, and must
be detected. The scheme could be made robust by counsidering more initial triples
of object features. Alternatively, indexing methods could be used as an ethicient and
robust means to initiate the search. Indexing methods are described by Clemens and
Jacobs [19], and in Section 9.1.

The algorithm that was used is outlined below.

BEAM-SEARCH(M.Y)
CURRENT « {I': exactly one image feature is matched to each of M; M, and M}
i the rest are assigned to the background.
Prune CURRENT according to £. Keep 50 best.
[terate to Fixpoint:
Add to CURRENT all children of members of CURRENT
Prune CURRENT according to £. Keep N Dest.

o N s reduced from 20 to 5 as the search proceeds.

_4
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Figure 6-2: [mages used for Matching

Returu(CURRENT)

Sometimes an extension of a match will produce one that is already in CUR-
RENT, that was reached in a different sequence of extensions. Wheun this happens.,
the matches are coalesced. This condition is efficiently detected b:- teiting for near
equality of the scores of the items in CURRENT. Because the features are derived from
observations containing some random noise, it is very unlikely that two hypotheses
having differing matches will achieve the same score, since the score is partly based

on summed squared errors.

6.2.2 Example Search Results

The search method described in the previous section was used to obtain good matches
in a domain of features that have significant fiuctuations. The features were derived
from real images. A linear projection model was used.

Images used for matching are shown in Figure 6-2. The object model was derived
from a set of 16 images. of which the image on the left is an example. In this set. ouly
the light source position varied. The image features used in the search were derived
from the image on the right.

The features used for matching were derived from the edge maps shown in Fignre
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Figuce 6-3: Edge Maps used for Matching

6-3. The image on the left shows the object model edges and the image on the right
shows the image edges. These edges are from the Canny edge detector [13]. The
smoothing standard deviation is eight pixels - these are low resolution edge maps.
The object model edges were derived from a set of 16 edge maps. corresponding to the
16 images described above. The object model edges are essentially the mean edges
with respect to fluctuations induced by variations in lighting. (Low resolution edges
are sensitive to lighting.) They are similar to the Mean Edge Iimages described in
Section +.4.

The features used in matching are shown in Figure 6-4. These are point-radius
features. as described in Section 5.3. The point coordinates of the features are indi-
cated by dots, while the normal vector and curvature are illustrated by arc fragments.
Each feature represents 30 edge pixels. The 40 object features appear in the upper
picture, the 125 image features lower picture. The distinguished features used in the
bootstrap of the search are indicated with circles. The object features have been
transformed to a new pose to insure generality.

The parameters that appear in the objective function are: B. the background
probability and ', the stationary feature covariance. These were derived from a
match done by hand in the example domain. The oriented stationary statistics model

of Section 3.3 was used here. (A normal model of feature Huctuations is implicit in
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Figure 6-4: Point-Radius Features used for Matching




™ (CHAPTER 6. MAP MODEL MATCHING
T
AN - ~
[ > il
b - _— ! 1

Figure 6-3: Pose Prior used in Search

the objective function of Equation 6.8. This was found to be a good model in this
domain.)

A loose pose prior was used. This pose prior is illustrated in Figure 6-3. The prior
places the object in the upper left corner of the image. The one standard deviation
intervals of position and angle are illustrated. The one standard deviation variation of
scale 1s 30 percent. The actual pose of the object is within the indicated one standard
deviation bounds. This prior was chosen to demonstrate that the method works well
despite a loose pose prior.

The best results of the beam search appear in Figure 6-6. In the upper image.
the object features are delineated with heavy lines. They are located according to

the pose associated with the best match. In the lower image. the object features and




6.3. SEARCH IN POSE SPACE T4

inage features are illustrated. while the 15 correspondences associated with the best
match appear as heavy lines and dots.

The object features located according to the poses associated with the five hest
matches are seen in Figure 6-7. The results are difficult to distinguish because the

poses are very similar.

6.3 Search in Pose Space

This section will explore searching the MMM objective function in pose space. (‘on-
nections to robust chamfer matching will be described.

A pose estimate is sought by ordering the search for maxima of the MMM objective
function as follows,

3 = arg max max LT 9) .

Substituting the objective function from Equation 6.6 yields

. | . =10\
3 = arg max max Z (A = E(Y,- - P(M,, "3))7-1;'!]‘(}- ~P(M,. ) .
yl,=M,
The pose prior term has been dropped in the interest of clarity. It would be easilv
retained as an additional quadratic term.

This equation may be simplified with the following definition.

Dy, (r) may be thought of as a generalized squared distance between observed and
predicted features. It has been called the squared Mahalonobis distance [22].

The pose estimator may now be written as

3 = arg max max A
& 3 r Z g
=M,

— Dy, (Y, = P(M,.3))] .

J
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Figure 6-7: Best Five Match Results

or equivalently. as a nunimization rather that maximization.

3 = arg min min Z (D (Y, =P(M, ) — A, .
o r ' ’
=M,
The sum is taken over those unage features that are assigned to model features

(not the background) in the match. It may be re-written in the following wav.

- . . 0 if I, =2
g = arg min Z nii

DY = PIM S = A BT =

I

O as

3= 4rg min Z mintO. min D, 1Y, = PiM ) — A

!
If the correspondence reward is tndependent of the model feature (this holds when

oriented stationary statistics are used ). A, = A In this case. N, mav be added 1o
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each term in the sum without affecting the minimizing pose. vielding the following

form for the pose estimator.
3 = arg nbin Z min(A,. lll]jl] D, (Y, = P(M,. 35)) . (.11

This objective function is easily interpreted - it is the sum. taken over image
features of a saturated penalty. The penalty (before saturation) is the smallest gen-
eralized squared distance from the observed image feature to some projected model
feature. The penalty min, D, (r — P(M,, 3)) has the form of a Voronoi surface. as
described by Huttenlocher et. al. [42]. They describe a measure of similarity on
image patterns, the Hausdorff distance, that is the upper envelope (maximum) of
Voronoi surfaces. The measure used here differs in being saturated. and by using the
sum of Voronoi surfaces, rather than the upper envelope. In their work. the upper
envelope offers some reduction in the complexity of the measure. and facilitates the
nse of methods of computational geometry for explicitly computing the measure in 2
and 3 dimensional spaces.

(‘omputational geometry methods might be useful for computing the objective
function of Equation 6.11. In higher dimensional pose spaces (4 or 6. for example)
KD-tree methods may be the only such techniques currently available. Breuel has
used KID-tree search algorithms in feature matching.

Next a connection will be shown between MMM search in pose space and a method
of robust chamfer matching. First. the domain of MMM is simplified in the followine
wav. Full stationarity of feature fluctuations is assumed (as covered in Section 3.31.
Further. the feature covariance is assumed to be isotropic. With these assmmptions

1 .12

we have o= o and D, = s (4 Additionally. assumine constant hackerond

probabilitv. we have A, = A The pose estimator of Equation 6.11 mav now he
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written in the following simplified form,

-

- : . U B
3= arg min Z: min(A. 111}111(;)—02- Y, — P(M, %) .

When the projection function is linear. invertible. and distance preserving. (20)
aud 3D rigid transformations satisfy these properties). the estimator may be expressed

as follows.

1

3 = arg mgn Z min( A, 111Jin(2u,2 IPH (Y., 3) = M%) .
This may be further simplified to
3. : : 2 -1y Sy
3 = argmin Z mim(A, d(P7(Y,.9)) . (6.12)

by using the following definition of a minimum distance function.

1

dir) = Tog

min |z — M,| . (6.13)
J

(‘hamfering methods may be used to tabulate approximations of d%(.r) in an image-
like array that is indexed by pixel coordinates. (‘hamfer-based approaches to image
registration problems use the array to facilitate fast evaluation of pose objective
functions. Barrow et al. (3] describe an early method where the ohjective function
1s the sum over model features of the distance from the projected model feature to
the nearest image feature. Borgefors [8] recommends the use of RMS distance rather
than summed distance in the objective function.

Recently. Jiang et al. [47] described a method of robust chamfer matching. In
order to make the method less susceptible to disturbance by outliers and occliusions,

thev added satnration to the RMS objective function of Borgefors. Their objective




84 (HAPTER 6. MAP MODEL MATCHING

function has the following form

11 C 2k

o Z mm(tz.dj))2

3 n

J

where d? is the squared distance from the j'th projected model point to the near-
est 1mage point. Aside from the constants and square root, which don’t affect the
minimizing pose. this objective function is equivalent to Equation 6.12 if the role of
image and model features is reversed, and the sense of the projection function is in-
verted. Jiang et al. show umpressive results using robust chamfer matching to register

multi-modal 3D medical imagery.

6.4 Extensions

MAP Model Matching performs well on low resolution imagery in which feature
uncertainty is significant. It could be used to bootstrap a coarse-fine approach to
model matching, yielding good results with reasonable running times. (‘oarse-fine
approaches have proven successful in stereo matching applications. (See Grimson
[33] and Barnard [2].) A coarse-fine strategy is straightforward in the framework
described here. In a hierarchy, the pose estimate from solviug the objective function
at one scale 1s used as a prior for the estimation at the next. Having a good prior on
the pose will greatly reduce the amount of searching required at high resolution.
Finding a tractable model that incorporates pose dependent visibility conditions

would he useful for applying MMM in non view-based recognition.

6.5 Related Work

The HYPER vision system of Avache and Fangeras [1] uses sequential linear-least-
squares pose estimation as well as the linear 2D point feature and projection mode]

deseribed in Section 5.2. HYPER is described as a search algorithm. Different criteria
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are used to evaluate candidate matches and to evaluate competing “whole™ hyvpothe-
ses. An ad hoc threshold is used for testing a continuous measure of the metrical
consistency of candidate match extensions. Whole match hvpotheses are evaluated
according to the amount of image feature accounted for - although not according to
overall metrical consistency. HYPER works well on real images of industrial parts.

Goad outlined a Bayvesian strategy of match evaluation based on feature and
background statistics in his paper on automatic programming for model-based vision
[29]. In his system. search was controlled by thresholds on probabilistic measures of
the reliability and plausibility of matches.

Lowe describes in general terms the application of Bayesian techniques in his book
on Visual Recognition [51]. He treats the minimization of expected running time of
recognition. In addition he discusses selection among numerous objects.

Object recognition matching systems often use a strategy that can be summarized
as a search for the maximal matching that is consistent. Counsistency is frequently
defined to mean that the matching image feature is within finite bounds of its expected
position (bounded error models). Cass' system [14] is one example. Such an approach
may be cast in the framework defined here by assuming uniform probability density
functions for the feature deviations. Pose solution with this approach is likelv to be
more complicated thau the sequential linear-least-squares method that can he used
when feature deviations have normal models. (‘ass’ approach effectively finds the
global optimum of its objective function. It performs well on occluded or fragmented
real images.

Beveridge, Weiss and Riseman [6] use an objective function for line segment based
recognition that is similar to the one described here. In their work. the penalty for
deviations is quadratic. while the reward for correspondence is non-linear (exponen-
tial) n the amount of nussing segment length. (By contrast, the reward described in
this paper is, for stationary models. linear in the length of aggregate features.) The

trade-off parameters in their objective function were determined empirically. Their
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svstem gives good performance in a domain of real umages.

Burns and Riseman [12] and Burns [11] describe a classification based recognition
svstem. They focus on the use of description networks for efficiently searching among
multiple objects with a recursive mdexing scheme.

Hanson and Fua [27] {26] describe a general objective function approach to image
understanding. They use a minimum description length (MDL) criterion that 1s
designed to work with generic object models. The approach presented here is tailored

for specific object models.

6.6 Summary

A MAP model matching technique for visual object recognition has been described.
The resulting objective function has a simple form when normal feature deviation
models and linear projection models are used. Experimental results were shown
indicating that MAP Model Matching works well in low resolution matching. where

feature deviations are significant. Related work was discussed.




Chapter 7

Posterior Marginal Pose

Estimation

In the previous chapter on MAP Model Matching the object recognition problem was
posed as an optimization problem resulting from a statistical theory. In that formu-
lation, complete hypotheses consist of a description of the correspondences between
image and object features, as well as the pose of the object. The method was shown
to provide effective evaluations of match and pose.

The formulation of recognition that is described in this chapter. Posterior Marginal
Pose Estimation ' (PMPE), builds on MAP Model Matching. It provides a smooth
objective function for evaluating the pose of the object - without commitment to a
particular match. The pose is the most important aspect of the problem. in the sense
that knowing the pose enables grasping or other interaction with the object.

In this chapter, the objective function is explored by probing in selected parts of
pose space. The domain of these experiments is features derived from svnthetic laser
radar range imagery. and grayscale video imagery. A limited pose space search is
performed in the video xperiment.

In Chapter 8 the Expectation - Maximization (EM) algorithm is discussed as a

"An early version of this work appeared in [76]

-1
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means of searching for local maxima of the objective function in pose space.

Additional experiments in object recognition using the PMPE objective function
are described in Chapter 10. There. the EM algorithm 1s used in conjunction with

an indexing method that generates initial hypotheses.

7.1 Objective Function for Pose

The following method was motivated by the observation that in heuristic searches over
correspondences with the objective function of MAP Model Matching. hypotheses
having implausible matches scored poorly in the objective function. The implication
was that summing posterior probability over all the matches (at a specific pose) might
provide a good pose evaluator. This has proven to be the case. Although intuitively.
this might seem like an odd way to evaluate a pose, it is at least democratic in that
all poses are evaluated in the same way. The resulting pose estimator i1s smooth.
and is amenable to local search in pose space. It is not tied to specific matches -
it is perhaps in keeping with Marr’s recommendation that computational theories of
vision should try to satisfy a principle of least commitment [52].

Additional motivation was provided by the work by Yuille Geiger and Biilthoff
on stereo [78]. They discussed computing disparities in a statistical theory of stereo
where a marginal is computed over matches.

In MAP Model Matching, joint hypotheses of match and pose were evaluated by
their posterior probability, given an image - p(T'.3 | ¥'). T and .3 stand for cor-
respondences and pose, respectively, and Y for the image features. The posterior
probability was built from specific models of features and correspondences. vbjects,
and projection that were described in the previons chapters. The present formula-
tion will first be described using the independent correspondence model. Use of the
Markov correspondence model will be described in the following section.

Here we use the same strategy for evaluating object poses: they are evalnated
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by their posterior probability, given an image: p(.3 | ¥Y'). The posterior probabihity
density of the pose may be computed from the joint posterior probability on pose and

match. by formally taking the marginal over poussible matches:

p(:3]Y) Zpr 3

In Section 6.1. Equation 6.4, p(T', 3 | Y') was obtained via Bayes’ rule from prob-
abilistic models of image features, correspondences. and the pose. Substituting for

p(I'.3|Y), the posterior marginal may be written as

r.3
) . (7.1)

(Y |T.3)p
p(3]Y) = ZP | )(

Using equations 2.1 (the independent feature model) and 6.2, we may express the

posterior marginal of 3 in terms of the component densities:

p(8 | =—-—;Z DB IEAARN) Hp

2 n ¢

or
p3 1Y) = Bl S5 ST T Al
T
Breaking one factor out of the product gives
p(3]Y) = ‘T)ZZ Z [H (Y | rvd)P(ri)]] p(Yu [T (I
ry My [n Li=l
or

, (i oy
],(J;y):l'__)zz.,. [H[,,(Y,H,‘.J } Zp Yo [T )p(l,
P(} ) r, r; Tpoy L=t
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Continuing in similar fashion vields

) 3 .
pA|Y)= Lln Y op(Y T )
p(}) 1 r,

This may be written as

. p(.7) . .
FY) = —— Y, | .9) . T2
p(3|Y) p(),,)np( | 9) (7.2)
sice
p(Yo | 3) =Y p(Y | T..3)p(l,) . (7.3)
Iy

Splitting the I'; sum into its cases gives,

p(Yo | A =pYi | Ti=L3)p(li=L)+ > p(Y, | T, = M, 3)p, = M) .
M,
Substituting the densities assumed in the model of Section 6.1 in Equations 6.1 and
2.2 then yields
1 1 - Bl

p(Yi | 8) = mB,— + %(,%(}', - P(M,, ,3))T . (7.4)

Installing this into Equation 7.2 leads to

. BB, ---B, p(3) W,...W, 1 -B, . .
3|Y)= l e (Y, = P(M 3
p( , ) (W’l W2 T W'1/)7l p(}’) H + % m 31 ( "'\)( ' P( ’ ,)

1

As in Section 6.1 the objective function for Posterior Marginal Pose Estimation is

defined as the scaled logarithm of the posterior marginal probability of the pose.

L(J)=In {ﬂj—(l—z—)} .
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where, as before,

(" = BB, B, (2m) T |y

(Wi, T O

This leads to the foliowing expression for the objective function {use of a normal pose

prior is assumed)

I - B,
B,

1 Wy W .
L(3) = =5(3=3) 05 (=) + I {1+ 3 — Gy, (Yo = PO, 50
Z \ M, m

(7.0

This objective function for evaluating pose hypotheses is a smooth function of the
pose. Methods of continuous optimization may be used to search for local maxima.
although starting values are an issue.

The first term in the PMPE objective function (Equation 7.5) is due to the pose
prior. It is a quadratic penalty for deviations from the nominal puse. The second
term essentially measures the degree of alignment ~f the object model with the image.
It 1s a sum taken over image features of a smoc > non-linear function that peaks up
positively when the pose brings object features into alignment with the image feature
i question. The logarithmic term will be near zero if there are no model features
close to the image feature in question.

In a straightforward implementation of the objective function. the cost of evalu-
ating a pose is O(mn}), since it is essentially a non-linear double sum over image and

model features.

7.2 Using the Markov Correspondence Model

When the Markov Correspondence model of Section 2.3 is used instead of the in-
dependent correspondence model. the summing techniques of the previous section

no longer apply. Because of this. a computationally attractive closed form formula

—_
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for the posterior probability no longer obtains. Nevertheless. it will be shuwn that
the posterior probability at a pose can still be efficiently evaluated using dvuamic
programming.

Referring to Equation 7.1. and using the independence of match and pose iy the
prior (discussed in Section 6.1). the posterior marginal probability of a pose mav he

written as follows,

T A)pDipls)

. WY
iy =Y

7 p(Y)
Using Equaticns 2.3 and 6.1.
Sy = p(.3) . . .
pl3|Y) = mz plhy [ Dy 3)p(Yo ( Toe3) - p(Y [ Tl d) (T )qDyh - gL,
r

rl(rl*rl)r'Z(r'l'rf}) "'rn—l(ru-h rn}

This may be re-written as follows.

AN ) = -
P(dl}’):m Z HC, 1 H (T,. F!+1) . (7.6)

l'll"z.ul',, t=1 =1

where

=p(Y | T 3)g(T) .

Here. the dependence of ¢ on .3 has been suppressed for notational brevity.

Next it will be shown that p(.3 | }') may be written using a recurrence relation:

p(3 .
p(" = —Z -1 7L C'll. ) . (TT}
) Tn
where
hy(a) Z(, (b a) (7T.X)
and
hn-{-l(([) = Zh11(b)cn+1(b)7'11+1(b,(1) . (T'))

b
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Expanding Equation 7.7 in termns of the recurrence relation.

{3
Pt 3 | ) = —TZZ l:z hu—l(rn-])('u-l(rn-l )ru-l(r’.-b rn ’} ('hlv.rn) .
r rn—l
or
v pl3)
p(‘j = —}— Z - 1 u—\, H C ([ n—\ 1—\~rul N
-1 1=~
Again using the recurreunce relation,
) . ‘
P(J l } ) = T x Z Z hn—3( rn—'l)('n—z(rn—'l)711—2(ru—2- rn-l)
p( )rn—lrn rn—2
' H Ct(rl) rn-l(rn—l-rn) )
t=n-1
or
| o P(-j) n w—1 ‘
p(j')’)_———— Z hri—f}(rn—Z) H C:(rz) H 7:(rz-rz+l) .
p(y ) | PSR t=n—2 1=n-2

Continuing in similar fashion leads to

j n=1 -
P =B 5 i [ T nlre o
rzrq Tn =2 1=2

and now using the base expression for A;(-).

i3 ol
p(d\yr):_l]:((_fz)_ ) [Z U1 T }H H, (F.Tipy)

| P9 E T P S Y 1=2
or finally.
- plI)
]'('1‘))—_‘ Z H(z(r H r rl+})
PY) e, L

which is the same as Equation 7.6. This completes the verification of Equation 7.7.
Next. a dynamic programming algorithm will be described that efficiently evali-

ates an objective function that is proportional to the posterior marginal probability
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. . . . oy . . . . . .
of a pose. The objective function 1s ;((J)’p(.f Yo The algorithm s a direct unple-

mentation of the recurrence detined in Equations 7.7. 7.8 and 7.9, that builds a table
of values of h,(-) from the bottom up. Note that k,(b) only has two values. depending

ot whether b =1 or not. In the following descriptiou. the svmbol T is used to stand

for an anonvmous model feature. H. denotes array locations that store values of h,.

and H(-.-.-) is an access function. defined below. that accesses the stored values.

o Use Dvnamic Programuming to evaluate PMPE with Markov Correspondence Model.
EvVALUATE-POSE(3)
Hy 3, C(1b ) (b. L)
Hit = 2, CLb. ) (b, T)
Fori —2To N -1
H,, — >, H(t = 1.0)Ce b 3, 41(b. L)
Hor — 5, H( = 1.O)CE b 3 ) (0. T)
RETURN (3, H(LV = 1,0)C(n. b, .3))

;2 Define the auxiliary function (.
Cli.b. 3)
RETURN(p(Y, | b.3)q(0))

2o Access values of H stored in a table.
H(a.b)
IF b =1L RETURN (H,)

ELSE RETURN (H,7)

The loop in EVALUATE-POSE executes O(n) times. and each time through the

loop does Ofm) evaluations of the summands, so the complexity is O(mn). This
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has the same complexity as a straightforward implementation of the PMPE objective
function when the Markov model is not used (Equation 7 5).
The summing technique used here was described by Cheeseman [17] in a paper

about using maximum-entropy methods in expert systems.

7.3 Range Image Experiment

An experiment investigating the utility of Posterior Marginal Pose Estimation is de-
scribed in this section. Additional experiments are described in Chapter 10.

The objective function of Equation 7.5 was sampled in a domain of synthetic range
imagery. The feasibility of coarse-fine search methods was investigated by sampling

simoothed variants of the objective function.

7.3.1 Preparation of Features

The preparation of the features used in the experiment is summarized in Figure 7-1.
The features were oriented-range features, as described in Section 5.4. Two sets of
features were prepared, the “model features”, and the “image features™.

The object model features were derived from a synthetic range image of an M35
truck that was created using the ray tracing program associated with the BRL ('AD
Package [23]. The ray tracer was modified to produce range images instead of shaded
images. The synthetic range image appears in the upper left of Figure 7-2.

In order to simulate a laser radar. the synthetic range image described above was
corrupted with simulated laser radar sensor noise. using a sensor noise model that
is described by Shapiro. Reinhold. and Park [62]. In this noise model. measnred
ranges are either valid or anomalous. Valid measurements are normally distribnted.
and anomalous measurements are uniformly distributed. The corrupted range image
appears in Figure 7-2 on the right. To simulate post sensor processing. the corrupted

image was “restored” via a statistical restoration method of Menon and Wells [36].
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Figure 7-2: Synthetic Range Image, Noisy Range Image, and Restored Range Image
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Figure 7-3: Model Features, Noisv Features, and [mage Features
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The restored range image appears in the lower position of Figure 7-2.

Oriented range features, as described in Section 5.4, were extracted from the svn-
thetic range image. for use as model features - and from the restored range image.
these are called the noisy features. The features were extracted from the range images
in the following manner. Range discontinuities were located by threshclding neigh-
boring pixels, yielding range discontinuity curves. These curves were then segmented
into approximately 20-pixel-long segments via a process of line segment approxima-
tion. The line segments (each representing a fragment of a range discontinuity curve)
were then converted into oriented range features in the following manner. The X and
Y coordinates of the feature were obtained from the mean of the pixel coordinates.
The normal vector to the pixels was gotten via least-squares line fitting. The range
to the feature was estimated by taking the mean of the pixel ranges on the near side
of the discontinuity. This information was packaged into an oriented-range feature,
as described in Section 5.4. The model features are shown in the first image of Fig-
ure 7-3. Each line segment represents one oriented-range feature, the ticks on the
segments indicate the near side of the range discontinuity. There are 113 such object
features.

The noisy features, derived from the restored range image. appear in the second
image of Figure 7-3. There are 62 noisy features. Some features have been lost due
to the corruption and restoration of the range image. The set of image features was
prepared from the noisy features by randomly deleting half of the features. transform-
ing the survivors according to a test pose, and adding sufficient randomly generated
features so that :; of the features are due to the object. The 248 image features appear

i the third image of Figure 7-3.

7.3.2 Sampling The Objective Function

The obiective function of Equation 7.5 was sampled along four straight lines passing

through the (known) location in pose space of the test pose. Oriented s.ationar,
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statistics were used. as described in Section 3.3. The stationary feature covariance
was estimated from a hand match done with a mouse between the model features and
the noisy features. The background rate parameter B was set to %

Samples taken along a line through the location of the true pouse in pose space.
parallel to the X axis are shown in Figure 7-4. This corresponds to moving the object
along the X axis. The first graph shows samples taken along a 100 pixel length (the
image is 236 pixels square). The second graph of Figure 7-4 shows samples taken
along a 10 pixel length, and the third graph shows samples taken along a 1 pixel
length. The X coordinate of the test pose is 55.5, the third graph shows the peak of
the objective function to be in error by about one twentieth pixel.

Samples taken along a line parallel to the u axis of pose space are shown in Figure
7-3. This corresponds to a simultaneous change in scale and angular orientation of
the object.

Each of the above graphs represents 50 equally spaced samples. The samples are
joined with straight line segments for clarity. Sampling was also done parallel to the
Y and v axes with similar results.

The sampling described in this section shows that in the experimental domain the
objective function has a prominent. sharp peak near the correct location. Some local
maxima are also apparent. The observed peak may not be the dominant peak - no

global searching was performed.

Coarse-Fine Sampling

Additional sampling of the objective of Equation 7.5 was performed to investigate the
feasibility of coarse-fine search techniques. A coarse-fine search method for finding
maxima of the pose-space objective function would proceed as follows. Peaks are
initially located at a coarse scale. At each stage. the peak from the previous scale is
used as the starting value for a search at the next (less smooth) scale.

The objective function was smoothed by replacing the stationary feature covari-
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Figure 7-5: Objective Function Samples Along u-Oriented Line Through Test Pose.
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aunce matrix ¢ in the tollowing manner:

Vo Ly

The effect of the smoothing matrix v, is to increase the spatial scale of the co-
variance matrices that appear in the objective function.

Probes along the X axis through the known location of the test pose, with various
amounts of smoothing are shown in Figure 7-6. The smoothing matrices used in the

probing were as follows, in the same order as the figures.

DIAG((.1)%. (1) (10.0)2. (10.0)?)

DIAG((.025)%, (.025)%,(2.5)%.(2.5)%) .

and

DIAG((.01)%.(.01)%.1.0,1.0)

where DIAG(-) constructs diagonal matrices from its arguments. These smoothing
matrices were determined empirically. (No smoothing was performed in the fourth
figure.)

These smoothed sampling experiments indicate that coarse-fine search may be
feasible in this domain. In Figure 7-6 it is apparent that the peak at one scale mav
be used as a starting value for local search in the next scale. This indicates that a
final line search along the X axis could use the coarse fine strategy. It is not sufficient
evidence that such a strategy will work in general. As before. there is no gnarantee

that the located maximum is the global maximum.




104 CHAPTER 7. POSTERIOR MARGINAL POSE ESTIMATION

1 Prabes O Obrect ive Minction T Propes f X iect.ve Func.on '
ni
I
i
|
I
TR [N
b
i
P
L LR b
i
i
s0 ) 4 o 4
*© 00
0 e
!
2 T v T T T T 2 ' > T T T i al r
<60 J-40 G300 VU C 00 400 60 G 80 3100 0120 0140 v 180 40 lCC 20 ¢ 3O R 48 0 SC 3 80 1 Doy WG L S £ sl
X Protces Of Object ive funceian I % Probes 4t X ect .ve Punct.on
T [PTS
|
! 5
f T
I
. %0 o 4
| 1
1
i
| 4 i 00
P
'
15
S
.
T T T T * T v+ - *
¢ 109 200 300 400 S0 0 0% “UJ 0D 90 0100 0110 i 008 160 100 IO ¢ 40C %0 C 6.0 T0 G B O 90 01LL T it
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7.4 Video Image Experiment

In this section, another experiment with the PMPE objective function i~ described.
The features are point-radius features derived from video images. A local search
puse space is carried out. and the objective function. and a smoothed variant. are

probed in the vicinity of the peak.

7.4.1 Preparation of Features

The features used iu this experiment are the same as those used in the MAP Model
Matching correspondence search experimment reported in Section 6.2, They are point-

radius features, as described in Section 5.3. The features appear in Figure 6-4.

7.4.2 Search in Pose Space

A search was carried out in pose space from a starting value that was determined by
hand. The search was implemented with Powell’s method [59] of multidimensional
non-linear optimization. Powell's method is similar to the conjugate-gradient method,
but derivatives are not used. The line minimizations were carried out with Brent’s
method [39]. which uses successive parabolic approximations. The pose resulting

7.

from the search is illustrated in Figure 7-7. This result is close to the best result
from the MAP Model Matching correspondence search experiment. That result is
reproditced here in Figure 7-3. It is comforting that tlicse two substantially different

search methods (combinatorial versus continnous) provide similar answers . at least,

one experiment.

7.4.3 Sampling The Objective Function

Samples were taken along four straight lines passing through the peak in the objec-
tive function resulting from the search in pose space reported above. (In the range

experiiment. sampling was done through the known true pose.) The results are illus-
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Figure 7-9: Probes of Objective Function Peak

trated in Figure 7-9. The peak in this data is not as sharp as the peak in the range
experiment reported in the previous section. This is likely due to the fact that the
features used in the video experiment are substantially less constraining that those
used in the range experiment - which have good range information in them.
Sampling of the objective function with smoothing was also performed, as

Section 7.3.2.
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Smoothing was performed at one scale. The smoothing matrix was

DIAG((.03)2. (.03)%. (3.0). (3.0)%)

Probing. performed in the same manner as in Figure 7-9 was performed on the
smoothed objective function. The results are shown in Figure 7-10. In comparison
to the range image experiment, local maxima are more of an issue here. This mayv be
partly due to the background features here having more structure than the randomly
generated background features used in the range image experiment. Because of this.
anomalous pose estimates (where the pose corresponding to the global maxinium of
the objective function is seriously in error) may be more likely in this domain than

in the range experiment.

7.5 Relation to Robust Estimation

This section describes a relationship between PMPE and robust estimation. By
simplifying the domain a robust estimator of position is obtained. A connection
between the simplified robust estimator and neural networks is discussed.

Consider the following simplifications of the domain:
e drop the pose prior

o the object has one feature

o the image is one-dimensional with width W

o the pose is a scalar

¢ the projection function translates: P(-. 3) = 3
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With these simplifications, the observation model of Equation 6.1 becomes

= fl =L
pu;lr..f):{ 2 '

G,(Y, — 4) otherwise

here

2
Go(r) = 217m exp (—;7)
[n this simplified domain ' may be interpreted as a collection of variables that de-
scribe the validity of their corresponding measurements in Y. Thus. I, #1 may be
interpreted as meaning that Y, is valid, and I', =1 as Y, being invalid. p(},) is defined
Cw

to be zero outside of the range [=-. %].

The prior on correspondences of Equation 2.2 takes the following form

B ifl, =1
p(l,) =

1 — B otherwise

Using Bayes' rule and the independence of I'; and 3 allows the following probability

of a sample and its validity,

2 if [, =1

p(Y..T, | 3) = p(Y; | r,.J)p(r,):{ (7.10)

(1 = B)G,(Y, — 3) otherwise

The probability of a sample may now be expressed by taking a marginal over the

probability in Equation 7.10. as follows.
. . B . :
Wﬁﬁzzmhﬂwbﬁﬁﬂ—mmm—ﬂ.
T,

Defining an objective function as a log likelihood of .3

L(3)=1In [Hp()’} l J)}
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leads to the analog of the PMPE objective function for this simplified domain.
L(3)=>"1 [5 L~ B)GL(Y, - 3 (7.1l
J) = : 1 T {1~ l,,( P ) . 0. )

This may also be written

-1
—
[ R

L(3) =3 S(Y, - 3) (

where

S(z) = In [§ +(1 = B)(,;,(I)]

This is the Maximum Likelihood objective function for estimating the mean of a
normal population of variance o2, that is contaminated with a uniform population of
width W', where the fraction of the mixture due to the uniform population is B.

The function S(r) is approximately quadratic when the residual is small. and
approaches a constant when the residual is large. When B goes to zero, S(r) becomes
quadratic. and the estimator becomes least squares, for the case of a pure normal
population. When —S(r) is viewed as a penalty function. it is seen to provide a
quadratic penalty for small residuals. as least squares does. but the penalty saturates
when residu .ic become large. Robust estimation is concerned with estimators that
are. like this one, less sensitive to outliers that least squares. As with many robust
estimators. the resulting optimization problem is more difficult than least squares.
since the objective function is non-convex. This estimator falls into the class of re-
descending M-estimators as discussed by Huber [41].

PMPE is somewhat different from robust estimation in that the satnrating aspect
of the objective function not only decreases the influence of ~ontliers™ (by analogy.
the background features). it also reduces the influence of image features that don't

correspond to (are not close to) a given object feature.
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7.5.1 Connection to Neural Network Sigmoid Function

There is an important connection between the estimator of Equation 7.12 and the

sigmoid function of neural networks.

!

or) = 1 +exp(—r)

The sigmoid function is a smooth variant of a logical switching function that has
been used for modeling neurons. It has been used extensively by the neural network
community in the construction of networks that classify and exhibit some forms of
learning behavior. The NETtalk neural network of Sejnowski and Rosenberg [61] is
a well know example.

[t turns out that, under some conditions on the parameters, the sigmoid function
of r* is approximately equal to S(.r). ignoring shifting and scaling. This near equality
is illustrated in Figure 7-11.

The two functions that are plotted in the figure are

_ In[.25 + .75 exp (—r?)]

fle)=20[0(s*) = 5] and  g(x) In[25]

The upper graph shows f(r)andg(r) plotted together, while the lower graph shows
their difference. It can be see1 +. a* they agree to better than one percent.

Because of this near equality. for a special :ase of the parameters. a network that
evaluates the ML estimator of Equation 7.12 for a contaminated normal population
will have the form illustrated in Figure 7-12.

This network, with its arrangement of sigmoid and sum units seems to fit the
definition of a neural network.

The robust estimator of Equation 7.12. and its neural network approximation. are
(approximately) optimal for locating a Gauseic,n cluster in uniform noise.

A similar neural network realization of the PMPE objective function would like-

wise be near optimal for locating an object against a uniform background.
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Figure 7-11: f(r) and g(r). and f(r) - g(r)
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7.6 PMPE Efficiency Bound

This section provides a lower bound on the covariance matrix of the PMPE estimator.
Estimators of vector parameters (like pose) may be characterized by the covariance
matrix of the estimates they produce. The Cramer-Rao bound provides a lower
limit for the covariance matrix of unbiased estimators. Unbiased estimators that
achieve this bound are call efficient estimators. Discussions of estimator ethiciency
and ('ramer-Rao bounds appear in [63] and [72].

The (‘ramer-Rao bound on the covariance matrix of estimators of .3 based on

observations of X is given by the inverse of the Fisher information matrix.
COV(3) > IF'(3) .

Here, COV(-) denotes the covariance matrix of the random vector arguimnent. This
matrix inequality means that COV(3) — IF'{3) is positive semi-definite.

The Fisher information matrix is defined as follows.
Ir(3) = Ex([Vslnp(X | D)[Vslup(X | H]F)

where ¥V is the gradient with respect to 3. which yields a column-vector. and Ey(-)
stands for the expected value of the argument with respect to p(X).

The covariance matrix, and the (‘ramer-Rao bound. of the PMPE estimator are
difficult to calculate. Instead, the (‘ramer-Rao bound and efficiency will be deter-
mined for estimators that have access to both observed features Y,. and the corre-
spondences I',. The (‘ramer-Rao bound for these “complete-data™ estimators will be
found. and 1t will be shown that there are no efficient complete-data estimators. Be-
canse of this. the PMPE estimator is subject to the same bound as the complete-data
estimators. and the PMPE estimator cannot be efficient. This follows. because the

PMPE estimator can he considered to be technically a complete-data estimator that
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ignores the correspondence data.
In terms of the complete-data estimator. the Fisher information has the following
form.

Ie(3) = Eyr([Volnp(Y.T | H[Volup(Y T .)’)}T} . (7.13)

Assuming independence of feature coordinates and of correspondences. the prob-

ability of the complete-data 1s

p(Y.T | 3)=[]p(Y.. T [ 3) .

Using Baves rule and the independence of ' and .3,
pY. T 3)=pY, | T..3)pT) . (7.14)

Referring to Equations 6.1 and 6.3, and using constant background probability 5.
and linear projection. the complete-data component probability may be written as
follows,

m?-—w‘- if =4

p(Y. T | 3) = .
=BG (Y, =M 3) ifT, =M, .

Working towards  expression for the Fisher information. we differentiate the complete-

data probability to obtain

Valnp(YT | 9) = Vo[0T |3 = £ =

1

When I', =L, Vyp(Y,.T, | 3) = 0. otherwise, in the case [, = M

g

| —
(YT | ) = V)—_B-(;L.l (Y, = M, 3) .

m /
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Differentiating the normal density (a formula for this appears in 2.3}, gives

. |- B _ :
Tl T 3) = (=) ——G, (Yo = M J) MTe (Y, = M3y

mm
so that

Vap(Y.. T ] 9)
p()l*rt ' ’3)

=-Mle ' (Y, - M 3)  when T, =M

i
Then the gradient of the complete-data probability may be expressed as

Volnp(Y T [y =~ Y MIu ' (Y, - M9 .
1:le=M,
Note that setting this expression to zero defines the Maximum Likelihood estimator

for .3 in the complete-data case. as follows:

4T . —1y- AT - b
Z Arlj L"Uly,' = Z 1\’[1 L'UIA\KIJJ .
1:M=M, 1:l=M,

or

-1
3:( 3 Mfu,;w,) Yo My (7.15)

=M, izl =M,
This estimator is linear in Y. The inverse has been assumed to exist — it will exist.
provided certain linear independence conditions are met, and enough correspondences
to model features appear in the match. This typically requires two to four correspon-
dences in the applications described here.

Returning to the Fisher information. we need to evaluate the expectation:

T
Ir = Eyr [ > .ufp;‘el,H > .\1]:.«;‘5,]}

=M, 1.0, =M,
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where the 1) th residual has been written as follows,
e, =Y. - MJ .
Re-naming indices and pulling out the sums gives

IF = EY,I‘ Z Z .‘IJTL"_lfU(T h"l—:]lt./\l_,'

‘J x’Jl
=M, NI WER

Referring to Equation 7.14. the expectation may be split and moved as follows.
Ir=Er| Y S© M 'Eypie, el Juit M
F==Lr PRLATIES) 4 RN LT L
y:Fe=M, :']':f.,:,‘\rljf

The inner expectation is over mutually independent Gaussian random vectors, and

equals their covariance matrix when the indices agree, and is zero otherwise. so

T -1, -1
lF = Er Z Z ‘\IJ A Y 1 zj(gnl&”lh 1'J“\l-}’

=M, x’]’:r',=‘\1):

This expression simplifies to the following:

Ir =Er Z A\IJTIJ"‘JIMJ

i:T =M,

The sun. may be re-written in the following way by using a delta function comparing

[, and M.

Ir =Y Er (6r.a1) MTu M, = 3 Er, (8ra, ) MT05' M,

1 ]

The expectation is just the probability that an image feature is matched to some

model feature. This is -'—1‘”—5 so the Fisher information may be written 1 the following
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simple form.

I- 8
IF =Y —=MT.00,

m
LV}
or as.

Ir = (1 - B)n —I-Z .\]JTI,';I.UJ

mn
t)

This is an attractive result, and may be easily interpreted. in relation to the Fisher
iformation for the pose when the correspondences are fixed (a standard linear esti-
mator). The Fisher information in that case is 3_ A\IJTI.';‘.UJ.it may be interpreted
as the sum over matches of the per-mateh Fisher information.

In Light of this, the complete-data Fisher information is seen to be the average
of the per-match Fisher information, multiplied by the expected number of features
matched to the model. (1 — B)n.

An efficient unbiased estimator for the complete-data exists if and only if
J=3+I7'(HV up(Y.T |3

This requires that the right hand side be independent of 3. since the estimator 3
(Equation 7.15) is not a function of 3. Expanding the right hand side.

-1

| -
J+ (1= Bjn—> MTu tM, Yo MY - M3

mn Y
u ty y:li=M,

This s not independent of 3. One way to see this is to note that the factor nmltipiving
4w the second term s a function of . Thus. no ethicient estimator exists i the

complete-data case. and consequently, no ethicient estimator exists for PMPE.

7.7 Related Work

Green [31] and Green and Shapiro [32] describe a theory of Maximmum Likelihood

laser radar range profiling. The research focuses on statistically optimal detectors
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and recognizers. The single pixel statistics are Jdescribed by a mixture of uniform
and normal compouents. Range profiling is implemented using the EM algonithn.
Under some circumstances. least squares provides an adequate starting value. A
continmation-stvle variant is described. where a rauge accuracy parameter is varied
between EM convergences from a coarse value to its true value. Greeu [31] computes

('ramer-Rao bounds for the complete-data case of Maximum Likelihood range profile

estimator. and compares simulated and real-data performance to the limits.

(ass {16) [13) describes an approach to visual object recoguition that searches
in pose space for masimal alignments under the bounded-error model. The pose-
space ubjective function used there is piecewise constant. and is thus not amenable
to continuous search methods. The search is based on geometric formulation of the
constraints on feasible transformations.

There are some connections between PMPE and standard methods of robust pose
estimation. like those described by Haralick [38). and Kumar and Hanson {45}, Both
can provide robust estimates of the pose of an object. based on an observed image.
The main difference is that the standard methods require specification of the feature
correspondences. while PMPE does not - by considering all possible correspondences.
PMPE requires a starting value for the pose (as do standard methods of robust pose
estimation that use non-convex objective functions).

As mentioned above, Yuille. Geiger and Biilthoff [78] discussed computing dis-
parities in a statistical theory of stereo where a marginal is computed over matches.
Yuille extends this technique [79] to other domains of vision and neural networks.
among them winner-take-all networks. stereo. long-range motion. the traveling sales-
man problem. deformable template matching. learning. content addressable memo
ries. and models of brain development. In addition to computing marginals over dis-
crete fields. the Gibbs probability distribution is used. This facilitates continnation-
stvle optimization methods by variation of the temperature parameter. There are

some similarities between this approach and using coarse-fine with the PMPE objec-
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tive function.

Edelman and Poggio [21] deseribe a method of 3D recogunition that uses a trained
Generalized Radial Basis Funetion network. Their method requires correspondences
to be known during training and recognition. One similarity between their scheme
and PMPE is that both are essentially arrangements of smooth unimodal functions.

There is a similarity between Posterior Marginal Pose Estimation and Hough
transform (HT) methods. Roughly peaking, HT methods evaluate parameters by
accumilating votes in a discrete parameter space, based on observed features. (See
the survey paper by Illingworth and Kittler (44] for a discussion of Hough methods.)

In a recognition application, as described here. the HT method would evaluate a
discrete pose by counting the number of feature pairings that are exactly consistent
somewhere within the cell of pose space. As stated. the HT method has difficulties
with noisy features. This is usually addressed by counting feature pairings that are
exact]yv consistent somewhere nearby the cell in pose space.

The utility of the HT as a stand-alone method for recognition in the presence of
noise 1s a topic of some controversy. This is discussed by Grimson in [34]. pp. 220.
Perhaps this is due to an unsuitable noise model implicit in the Hough Transform.

Posterior Marginal Pose Estimation evaluates a pose by accumulating the loga-
rithm of posterior marginal probability of the pose over image features.

The connection between HT methods and parameter evaluation via the logarithm
of posterior probability has been described by Stephens [67]. Stephens proposes to call
the posterior probability of parameters given image observations "The Probabilistic
Hough Transform™. He provided an example of estimating line parameters from
image point features whose probability deusities were described as having uniform
and norimal components. He also states that the method has been used to track 3D

objects. referring to his thesis [68] for definition of the method nsed.
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7.8 Summary

A method of evaluating poses in object recognition, Posterior Marginal Pose Estima-
tion. has been described. The resulting objective function was seen to have a simple
form when normal feature deviation models and linear projection models are used.
Limited experimental results were shown indicating that in a domain of svnthetic
range discontinuity features, the objective function may have a prominent sharp peak
near the correct pose. Some local maxima were also apparent. Another experiment.
in which the features were derived from video images. was described. Connections to
robust estimation and neural networks were examined. Bounds on the performance of

simplified PMPE estimators were indicated, and relation to other work was discussed.




Chapter 8

Expectation — Maximization

Algorithm

The Expectation - Maximization (EM) algorithm was introduced in its general form
by Dempster. Rubin and Laird in 1978 [21]. It is often useful for computing estimates
in domains having two sample spaces. where the events in one are unions over events
in the other. This situation holds among the sample spaces of Posterior Marginal
Pose Estimation (PMPE) and MAP Model Matching. In the original paper. the wide
generality of the EM algorithm is discussed, along with several previous appearances
in special cases, and convergence results are described.

In this chapter, a specific form of the EM algorithm is described for use with
PMPE. It is used for hypothesis refinement in the recognition experiments that arc

described in Chapter 10. Issues of convergence and implementation are discussed.

8.1 Definition of EM Iteration

In this section a variant of the EM algorithm is presented for use with Posterior
Marginal Pose Estimation. which was described in Chapter 7. The following modeling

assumptions were used. Normal models are used for matched image features. while

123
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uniform models are used for unmatched (background) features. If a prior on the pose is
available. it is normal. The independent correspondence model is used. Additionally.
a linear model is used for feature projectiou.

In PMPE. the pose of an object, 3. is estimated by maximizing its posterior

probability. given an image.
3 = arg max p(J | Y) .
~

A 1ecessary condition for the maximum is that the gradient of the posterior prob-
ability with respect to the pose be zero. or equitalently. that the gradient of the

logarithm of the posterior probability Le zero:
0=Vylnp(3|Y) . (R.1)

{n Section 7.1, Equation 7.2 the following formula was given for the posterior prob-
ability of the pose of an object, given an image. This assumes use of the independent

correspondence model.

. p(d) o
31Y)= — Y: | B} .
p(31Y) p(Y)I:IP( | 3)

Imposing the condition of Equation 8.1 yields the following.

1 A \
0=V,|ln—+1np(3)+ ) Inp(Y,|3)
s |y + Il Z p(Y: |

or

0 V,jpf.;’) N Z Nap(Y, | 3) .

p(3) = op(Yi )

As in Equation 7.3. we may write the feature PDF conditioned on pose in the

(N.2)

following way.

pYo3) =2 p(Y I Ted)p(T) .
r,

or. nsing the specific models assumed in Section 7.1. as reflected in Equation 7.4. and
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nsing a linear projection model,

—— Bl
TN T

. | - B
(Y. |3 + NG Y, =M )
plyc] g —~ ; oY= M)

The zero gradient condition of Equation 8.2 may now be expressed as follows.

(. LB UG, (Y, = M3
0= JPA( 3}+Z i Z] J t.‘,( 7 )

p(f) tW, lel..‘u-'u + =E ZJ (;L.,(}! - ‘\[J;) .

n

With a normal pose prior.
p(3) =Gu,(3—3) . and  Vyp(3) = —p(3)e' (3 - %) .
The gradient of the other normal density is
VG, (Yi— M;3) = -G, (Y: — MJ,J)MJT(:);J'(}'} - M3 . (X.3)

Returning to the gradient condition, and using these expressious (negated).

1-B, ) A NAgT, =1 . 3
0= ')+ 3 z; (.u,,,(y,1 l;wju)A‘l] o5 (Y = M)
1 Wl W;---W,, + 7”' - ZJ (ld,l] ( yl - ‘\/[J -j)

Finally. the zero gradient con tion may be expressed compactly as follows.

0=u;'(3 -3+ WyMTw 'Y, = M,3) . (3.4)
1]
with the following definition:
Gy, (Y: = M, 3)

B m ’ a2y
=5 wwew, T 2 G, (Yo — M, 9)

Wi = (8.5)

Equation 8.4 has the appearance of being a linear equation for the pose estimate .3

that satisfies the zero gradient condition for being a maximum. Unfortunately. it isn't
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a linear equation. because 1, (the "weights™) are not constants. thev are functions
of 4. To tind solutious to Equation 5.4, the EM algorithm iterates the following two

steps:

o Treating the weights, 11}, as constants, solve Equation 5.4 as a linear equation
a J 1 |

for a new pose estimate 3. This is referred to as the M step.

o Using the most recent pose estimate .3, re-evaluate the weights. W | according

to Equation 8.5. This is referred to as the E step.

The M step is so named because. in the exposition of the algorithm in [21]. it
corresponds to a Maximum Likelihood estimate. As discussed there. the algorithm
is also amenable to use in MAP formulations (like this one). Here the M step corre-
sponds to a MAP estimate of the pose, given that the current estimate of the weights
1s correct.

The E step is so named because calculating the W), corresponds to taking the
expectation of some random variables, given the image data, and that the most recent
pose estimate is correct. These random variables have value | if the :'th image feature
corresponds to the j'th object feature, and 0 otherwise. Thus. after the iteration
converges, the weights provide continuous-valued estimates oi tiie correspondences.
that vary between 0 and 1.

[t seems somewhat ironic that, having abandoned the correspondences as being
part of the hypothesis in the formulation of PMPE, a good estimate of them has
re-appeared as a byproduct of a method for search in pose space. This estimmate, the
posterior expectation, i1s the minimum variance estimator.

Being essentially a local method of non-linear optimization. the EM algorithm
needs good starting values in order to converge to the right local maximum. It may
be started on either step. If it is started on the E step, an initial pose estimate is
required. When started on the M step. an initial set of weights is needed.

An initial set of weights can be obtained from a partial hypothesis of correspon-
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dences in a sumple manuner. The weights associated with each set of correspouding
features in the hypothesis are set to 1. the rest to 0. Indexing methods are one source
of such hypotheses. In Chapter 10, Angle Pair Indexing is used to generate candidate
hiypotheses. In this scenario, indexing provides initial alignments. these are refined
nsing the EM algorithm. then they are verified by examining the value of the peak of

the PMPE objective function that the refinement step found.

8.2 Convergence

In the original reference [21], the EM algorithm was shown to have good convergence
properties under fairly general circumstances. It is shown that the likelihood sequence
produced by the algorithm is monotonic, i.e.. the algorithm never reduces the value
of the objective function (or in this case, the posterior probability) from one step to
the next. Wu [77] claims that the convergence proof in the original EM reference is
Hawed. and provides another proof, as well as a thorough discussion. It is possible
that it will wander along a ridge, or become stuck in a saddle point.

In the recognition experiments reported in Chapter 10 the algorithm typically

converges in 10 - 40 iterations.

8.3 Implementation Issues

Some thresholding methods were used speed up the computation of the E and M
steps.

The weights W), provide a measure of feature correspondence. As the algorithm
operates, most of the weights have values close to zero. since most pairs of image and
object feature don't align well for a given pose. In the computation of the M step,
most terms were left out of the sum, based on a threshold for W,,. Some representative
weights from an experiment are displayed in Table 10.1 in Chapter 10.

In the E step, most of the work is in evaluating the Gaussian functions, which have
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(quadratic forms in them. For the reason stated above. most of these expressions have

valnes very close to zero. The evaluation of these expressions was made conditional

on a threshold test applied to the residuals Y, = M, 4. When the (x3) part of the
residnal exceeded a certain length, zero was substituted for the value of the Ganssian
expression. Tables indexed by image coordinates might provide another effective way
of implementing the thresholding here.

The value of the PMPE objective function is computed as a byproduct of the E

step for little additional cost.

8.4 Related Work

The work of Green [31] and Green and Shapiro [32] that is discussed in Section 7.7
describes use of the EM algorithm in a theory of laser radar range profiling.

Lipson [30] describes a non-statistical method for refining alignments that iterates
solving linear systems. It matches model features to the nearest image feature under
the current pose hypothesis, while the method described here entertains matches to
all of the image features, weighted by their probability. Lipson’s method was shown
to be effective and robust in an implementation that refines alignments under Linear

(‘ombination of Views.




Chapter 9

Angle Pair Indexing

9.1 Description of Method

Angle Pair Indexing is a simple method that is designed to reduce the amount of
search needed in finding matches for image features in 2D recognition. [t uses features
having location and orientation.

An invariant property of feature pairs is used to index a table that is constructed
ahead of time. The property used is the pair of angles between the feature orientations
and the line joining the feature’s locations. These angles are 6, and 8, in Figure 9-1.
The pair of angles is clearly invariant under translation, rotation, and scaling in the
plane.

Using orientations as well as point locations provides more constraint than point
features. Because of this, indexing may be performed on pairs of simple features.
rather than groups of three or more.

The table is constructed from the object features in a pre-processing step. [t is
indexed by the angle pair, and stores the pairs of object features that are consistent
with the value of the angles, within the resolution of the table. The algorithm for
coustructing the table appears below.

A distance threshold is used to suppress entries for features that are very close.
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Figure 9-1: Angles for Indexing

Such features pairs yield sloppy initial pose estimates and are poor initial hyvpotheses

for recognition.

;o Given an array model-features and a table size, n
:;; fills in the 2 index array ANGLE-PAIR-TABLE by side-effect.
BUILD-ANGLE-TABLE(model-features, n, distance-threshold)
m — LENGTH(model-features)
.. First clear the table.
Fori «— 0 Tom
For j — 0 Tom
ANGLE-PAIR-TABLE[:. j] < §
2 Now fill in the table entries.
Fori — 0 Tom
For j « 0 To m
Ifi#]
fl « model-features[i]

f2 — model-features[j]
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If DISTANCE{fL. £2) > distance threshold
< qr > — CALCULATE-INDICES(f]. {2, n}

ANGLE-PAIR-TABLE[q. 1] — ANGLE-PAIR-TABLE (. v/« 1]

The following function is used to calculate the table indices for a pair of featnres.
Note that the indexing wraps around when the angles are increased by 7. Ths
was done because the featires used in the recognition experiments described in this

research are often straight edge segments, and their orientations are ambiguous by =.

;i Calculate indices into ANGLE-PAIR-TABLE for a pair of features.
CALCULATE-INDICES(fL, f2, n)
60 — £
L%J mod n)
92
¥

— ([ Z]mod n)

return(< 1 j >)

The following algorithm is used at recognition-time to generate a set of pairs of
correspoudences from image features to object features that have consistent values of
the angle pair invariant. The indexing operation saves the expense of searching for
pairs of object model features that are consistent with pairs of image features. Table
entries from adjacent cells are included among the candidates to accommodate angle

values that are “on the edge” of a cell boundary.

i Map over the pairs of features in an image and generate
.. candidate pairs of feature correspondences
GENERATE-CANDIDATES(image-features, n)

candidates — 0

m + LENGTH(image-features)
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Fori — 0 Tom
Forj — 1+ 1 tom
<ot » = CALCULATE-INDICES timage-features i, miage-featnres j .
For ég — -1 to 1
Foreér — -1 tol
For < k| > € ANGLE-PAIR-TABLE[((¢ + ¢¢) mod ni it + ormmod o
candidates «— candidates U < <ik > < jl > =

Return(candidates)

9.2 Sparsification

[n the recognition experiments described below and in Section 10.1. an additional

technique was used to speed up recognition-time processing, and reduce the size of

the table. As the table was built, a substantial fraction of the entries were left out
of the table. These entries were selected at random. This strategy is based on the
following observation: For the purpose of recognizing the object. it is only necessary
for some feature pair from the object to be both in the table and visible in the image. If
a reasonable fraction of the object is visible, a substantial number of feature pairs will
be available as potential partners in a candidate correspondence pair. It is unlikely
that the orresponding pairs of object model features will all have been randomly

eliminated when the table was built. even for fairly large amounts of sparsification.

9.3 Related Work

Indexing based on invariant properties of sets of image features has been used by

Lamdan and Wolfson, in their work on geometric hashing [49]. and by Clemens and

Jacobs [19][20], Jacobs [45]. and Thompson and Mundy [70]. In those cases the
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9.3 RELATED WORK ;

1

Mmvariance i~ with respect to atfine transformations that Lave el patamerers. o
this work the invariance is with respect to translation. rotation. and ~scale i 2D,

where there are fonr parameters. Thompsou aud Muudy deseribe an mvariau called

vertex pairs. These are hased on angles relating to pairs of vertices of 3D polvhedra.
and their projections into 2D. Angle Pair Indexing is somewhat sinular. but = simpler
- heiug designed for 2D from 2D recognition.

Clemens and Jacobs [19] 120]. and Jacobs [13] use grouping mechanisms to select

amall sets of image features that are likely to belong to the same object m the scene.
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Chapter 10

Recognition Experiments

This chapter describes several recognition experiments that use Posterior Marginal
Pose Estimation with the EM Algorithm. The first is a complete 2D recognition
system that uses Angle Pair Indexing as the first stage. In another experiment, the
PMPE objective function is evaluated on numerous random alignments. Addition-
ally, the effect of occlusions on PMPE are investigated. Finally. refinement of 3D
alignments is demonstrated.

In the following experiments, image edge curves were arbitrarily subdivided into
fragments for feature extraction. The recognition experiments based on these features
show good performance, but the performance might be improved if a more stable

subdivision technique were used.

10.1 2D Recognition Experiments

The experiments described in this section use the EM algorithm to carry out local
searches in pose space of the PMPE objective function. This is used for evaluating
and refining alignments that are generated by Angle Pair Indexing. A coarse - fine
approach is used in refining the alignments produced by Angle Pair Indexing. To this

end, two sets of features are used, coarse features and fine features.
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Figure 10-1: Grayscale Image
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The video image used for the recognition experiment appears in Figure 10-1. The
model features were derived from Mean Edge lmages. as described in Section 4.4
The standard deviation of the smoothing that was used in preparing the model and
image edge maps was 3.97 for the coarse features, and 1.93 for the fine features. The
edege curves were broken arbitrarily every 20 pixels for the coarse features. and every
10 pixels for the tine features. Point-radius features were fitted to the edge cnrve
fragments, as described in Section 3.3. The coarse model and image features appear
in Figure 10-2, the fine model and image features appear in Figure 10-3. There are Sl
coarse model features, 334 coarse image features, 246 fine model features, and 1063
fine unmage features.

The oriented stationary statistics model of feature fluctuations was used (this
is described in Section 3.3). The parameters (statistics) that appear in the PMPE
objective function, the background probability and the covariance matrix for the
oriented stationary statistics, were derived from matches that were done by hand.
These training matches were also used in the empirical study of the goodness of
the normal model for feature fluctuations discussed in Section 3.2.1, and they are

described there.

10.1.1 Generating Alignments

[nitial alignments were generated using Angle Pair Indexing (described in Chapter 9) .
on the coarse features. The angle pair table was constructed with 80 by 80 cells, and
sparsification was used - 5 percent of the entries were randomly kept. The distance
threshold was set at 50 pixels (the image size is 640 by 480). The resulting table
contained 234 entries. With these values, uniformly generated random angle pairs
have .0365 probability of “hitting” in the table.

When the image feature pairs were indexed into the table, 20574 candidate feature
correspondence pairs were generated. This is considerably fewer that the 732 million

possible pairs of correspondences in this situation. Figure 10-4 illustrates three of

—4—
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the candidate alignments by superimposing the object in the images at the pose
associated with the initial alignment implied by the pairs of feature correspondences.
The indicated scores are the negative of the PMPE objective function computed with

the coarse features.

10.1.2 Scoring Indexer Alignments

The initial alignments were evaluated in the following way. The indexing process
produces hypotheses consisting of a pair of correspondences from image features to
object features. These pairs of correspondences were converted into an initial weight
matrix for the EM algorithm. The M step of the algorithm was run, producing a
rough alignment pose. The pose was then evaluated using the E step of the EM
algorithm, which computes the value of the objective function as a side effect (in
addition to a new estimate of the weights). Thus, running one cycle of the EM
algorithm, initialized by the pair of correspondences, generates a rough alignment.

and evaluates the PMPE objective function for that alignment.

10.1.3 Refining Indexer Alignments

This section illustrates the method used to refine indexer alignments.

Figure 10-5 shows a closer view of the best scoring initial alignment from Angle
Pair Indexing. The initial alignment was refined by running the EM algorithm to con-
vergence using the coarse features and statistics. The result of this coarse refinement
is displayed in Figure 10-6. The coarse refinement was refined further by running the
EM algorithm to convergence with the fine features and statistics. The result of this
fine refinement is shown in Figure 10-7, and over the video image in Figure [0-8.

Ground truth for the pose is available in this experiment, as the true pose is the

null pose. The pose before refinement is

(99595, —0.0084747, —0.37902, 5.0048]7
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Score: -34.3719

Figure 10-5: Best Alignment from Indexer, with Coarse Score

Figure 10-6: Coarse Refinement, with (‘oarse Score
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Figure 10-7: Fine Refinement, with Fine Score

Figure 10-8: Fine Refinement with Video Image
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Figure 10-9: Correspondences with Weight Larger than .5

and after the refinement it is
[1.00166,0.0051108,0.68621,—1.7817]T .

The encoding of these poses is described in Section 5.3 (the null pose is [1,0.0.0]7.)
The initial pose is in error by about .01 in scale and 5 pixels in position. The final
pose errs by about .005 in scale and 1.8 pixels in position. Thus scale accuracy is
improved by a factor of about two, and position accuracy is improved by factor of
about three. An experiment showing more dramatic improvement is described below,
in Section 10.4.1.

[n these experiments, less that 15 iterations of the EM algorithm were needed for

convergence.

10.1.4 Final EM Weights
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As discussed in Section 3.1, a nice aspect of using the EM algorithim with PMPE 1«
that estimates of feature correspondences are available in the weight matrix. Figure
10-9 displays the correspondences that have weight greater than 5. for the final
convergence showu in Figure 10-7. Here, the image and model features are displaved
as thin curves, and the correspondences between them are shown as heavy lines
joining the features. Note the strong similarity between these correspondences. and
those that the system was trained on, shown in Figure 3-2.

Table 10.1 displays the values of some of the weights. The weights show have
value greater than .0l. There are 299 weights this large among the 413,507 weights.

The 39 weights shown are those belonging to 20 image features.

10.2 Evaluating Random Alignments

An experiment was performed to test the utility of PMPE in evaluating randomly
generated alignments. Correspondences among the coarse features described in Sec-
tion 10.1 having assignments from two image features to two model features were
randomly generated, and evaluated as in Section 10.1.2. 19118 random alignments
were generated, of which 1200 had coarse scores better than -30.0 (the negative of
the PMPE objective function). Among these 1200, one was essentially correct. The
first, second, third, fourth, fifth, and fifteenth best scoring alignments are shown in
Figure 10-10.

With coarse - fine refinement, the best scoring random alignment converged to
the same pose as the best refinement from the indexing experiment, shown in Figure
10-7. with fine score -355.069. The next best scoring random alignment converged to
a grossly wrong pose, with fine score -149.064. This score provides some indication
of the noise level in the fine PMPE objective function in pose space.

This test, though not exhaustive, produced no false positives, in the sense of a bad

alignment with a coarse score better than that of the correct alignment. Additionally.
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Image Index | Model [ndex | Weight

90 36 0.0227330263400270:32
90 101 0.01461392164699434%
90 102 0.30796669:3444096

90 103 0.09581539432455806
91 103 0.9633441301926663
92 85 0.24166197059125494
92 103 0.19778274847425015
93 87 0.0278469795754:3993
93 3% 0.374192138245379466
94 87 0.7478667723520142
95 87 0.44030413275215486
96 86 0.612790257699:3082
97 85 0.9293665165549775
93 85 0.3621763443863999
99 84 0.9634827438267516
100 5 0.6499527214931725
100 84 0.19705210016850308
101 0 0.011400725934573982
101 67 0.9559675939354566
102 66 0.91941107959903801
102 67 0.0541643593533511
103 64 0.04765362703894284
103 65 0.8454128520499249
103 66 0.05787873660955701
104 63 0.05270908685541295
104 64 0.8854088356653954
104 65 0.014744194821866506
105 62 0.06153503222464117
105 63 0.9139939556525913
106 61 0.09270729594689026
106 62 0.8635739185353283
106 63 0.010447389024937672
107 61 0.910889998496966 1
107 62 0.021204649868405194
108 60 0.361831671427887
108 61 0.04922012525099:3084
109 58 0.018077232316743887
109 59 0.9257311183042934
109 60 0.015434004217119308

Table 10.1: Some EM Weights
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Figure 10-10: Random Alignments
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the tine score of the refinement of the most promising mcorrect random alignment

was significantly lower than the tine score of the {correct) refined best alignment.

10.3 Convergence with Occlusion

The convergence behavior under occlusion of the EM algorithm with PMPE was eval-
nated using the coarse features described in Section 10.1. Images features simulating
varving amounts of occlusion were prepared by shifting a varyving portion of the image.
These images, along with results of coarse - fine rehnement using the EM algorithm
are shown in Figure 10-11.

The starting value for the pose was the correct (null) pose. The refinements
converged to good poses in all cases, demonstrating that the method can converge
from good alignments with moderate amounts of occlusion.

The final fine score in the most occluded example is lower than the noise level
observed in the experiment of Section 10.2. This indicates that as the amount of
occlusion increases, a point will be reached where the method will fail to produce a
good pose having a score above the noise level. In this experiment it happens before

the method fails to converge properly.

10.4 3D Recognition Experiments

10.4.1 Refining 3D Alignments

This section demonstrates use of the EM algorithm with PMPE to refine alignments
in 3D recognition. The linear combination of views method is used to accommodate
a limited amount of out of plane rotation. A two-view variant of LCV, described in
Section 5.3, 1s used.

A coarse ~ fine approach was used. Coarse PMPE scores were computed by

smoothing the PMPE objective function, as described in Section 7.3.2. The smoothing
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Figure 10-11: Fine Convergences with Occlusion
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Figure 10-12: Grayscale Image

matrix was

DIAG((7.07)%,(3.0)%) .

These numbers are the amounts of additional (artificial) variance added for parallel
and perpendicular deviations, respectively, in the oriented stationary statistics model.

The video test image is shown in Figure 10-12. It differs from the model images
by a significant 2D translation and out of plane rotation. The test image edges are
shown in Figure 10-13.

The object model was derived from the two Mean Edge Images shown in Figure
10-14. These were constructed as described in Section 4.4.

The smoothing used in preparation of the edge maps had 1.93 pixels standard
deviation. and the edge curves were broken arbitrarily every 10 pixels. Point-radius
features were fitted to the edge curve fragments, as described in Section 5.3. for
purposes of display and for computing the oriented stationary statistics. although the
features used with PMPE and the EM algorithm were simp!y the X and ¥ coordinates

of the centroids of the curve fragments. Both views of the model features are shown
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Figure 10-13: Image Edges

in Figure 10-15. The linear combination of views method requires correspondences
among the model views. These were established by hand, and are displayed in Figure
10-16.

The relationship among the viewpoints in the model images and the test image is
illustrated in Figure 10-17. This represents the region of the view sphere containing
the viewpoints. Note that the test image is not on the line joining the two model
views.

The oriented stationary statistics model of feature fluctuations was used (this is
described in Section 3.3). Asin Section 10.1, the parameters (statistics) that appear in
the PMPE objective function, the background probability and the covariance matrix
for the oriented stationary statistics, were derived from matches done by hand.

A set of four correspondences was established manually from the image features
to the object features. These correspondences are intended to simulate an alignment
generated by an indexing system. Indexing systems that are suitable for 3D recogni-
tion are described by Clemens and Jacobs {19] and Jacobs [45]. The rough alignmen-

and score were obtained from the correspondences by one cycle of the EM algorithm.
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Figure 10-14: Model Mean Edge Images
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Figure 10-15: Model Features (Both Views)
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Figure 10-21: Fine Refined Alignment with Video Image
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as described above in Section 10.1.2. Theyv are displayved in Figure 10-1%. where the
four corresponding features appear circled. A coarse alignment was then obtained
by rununing the EM algorithm to convergence with smoothing. the result appears in
Figure 10-19. This alignment was refined further by running the EM algorithm again.
without smoothing. The resulting alignment and score are shown in Figure 10-20. 1
these figures, the image features are shown as curve fragments for clarity. although
only the point locations were used in the experiment. The unage features used are a
subset taken from a rectangular region of the larger image.

Figure 10-21 displays the final alignment superimposed over the original video
image. Most of the model features have aligned well. The discrepancy in the forward
wheel well may be due to inaccuracies in the LCV modeling process, perhaps in the
feature correspondences. This figure demonstrates good results for aligning a smooth

3D object having six degrees of freedom of motion, without the use privileged features.

10.4.2 Refining Perturbed Poses

This section describes an additional demonstration of local search in pose space using
PMPE in 3D.

The pose corresponding to the refined alignment displayed in Figure 10-20 was
perturbed by adding a displacement by 4.0 pixels in Y. This pose was then refined
by running the EM algorithm to ccavergence. The perturbed alignment and the
resulting coarse — fine refinement is shown in Figure 10-22. The result is very close
to the pose prior to perturbation.

A similar experiment was carried out with a larger perturbation, 12.0 pixels in
Y. The results of this appear in Figure 10-23. This time the convergence is to
a clearly wrong alignment. The model has been stretched to a thin coufiguration.
and mismatched to the image. The resulting fine score is lower than that of the
good alignment in Figure 10-21. This illustrates a potential drawback of the linear

combination of views method. In addition to correct views, LCV can synthesize
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Figure 10-22: Mildly Perturbed Alignment and Resulting Refinement




10.4. 3D RECOGNITION EXPERIMENTS L3y

|
o
\l LA . l
) ot o~
| T e TN
e TN
Lo =
e —— =T J == D
N T e Y e T
— — — ’ e
= o> A ——— ““‘—)
~ — ) —_—

m\i\}%} BT

Crore: -15.468S

Figure 10-23: Perturbed Alignment and Resulting Refinement with Fine Score




160

(HAPTER 10. RECOGNITION EXPERIMENTS

| Lo
| o Tt : :
J’ o~ ’,~__~ .
LD 9 S=INT _
—m == TSy AT T
N e
—— —_—— - O —
& N e —m—

—_—— l _— - —_—
. \
Y | :
) :———_—"-.A _/( .- )
) (== -
| SO Ty ;
—_— o =T S == -0
T oS ST T e <
— Y - s L T —
W, o gt ot )
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views where the model is stretched. LCV. as used here. has X parameters, rather
than the 6 of rigid motion. The two extra parameters deternune the stretching part
of the transformation. This problem can be addressed by checking, or enforeing. a
e : ) ' . P
quadratic constraint on the parameters. This is discussed in [T1].
Another similar experiment was performed starting with a very bad alignment.
The results appear in Figure 10-24. The algorithm was able to bring some features

into alignment. but the score remained low.
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Chapter 11

Conclusions

Visual object recognition ~ finding a known object in scenes, where the object is
smooth. is viewed under varying illumination conditions, has six degrees of freedom
of position, is subject to occlusions and appears against varying backgrounds - still
presents problems. In this thesis, progress has been made by applying methods of
statistical inference to recognition. Ever-present uncertainties are accommodated
by statistical characterizations of the recognition problem: MAP Model Matching
(MMM) and Posterior Marginal Pose Estimation (PMPE). MMM was shown to be
effective for searching among feature correspondences and PMPE was shown effective
for searches iu pose space. The issue of acquiring salient object teatures under varying
illununation was addressed by using Mean Edge Images.

The alignment approach, which leverages fasi. indexing methods of hypothesis
generation, is utilized. Angle Pair Indexing is introduced as an efficient 2D indexing
method that does not depend on extended or special features that can be hard to
detect. An extension to the alignment approach that may be summarized as align
refine verify is advor~ated. The EM algorithm is employed for refining the estimate of
the object’s pose while simultaneously identifying and incorporating the constraints
of all supporting image features.

Areas for future research include the following:
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e ludexing was not used in the 3D recognition experiments. [dentifving a suitable

mechanism for this purpose that meshes well with the type of features used here,

would be an improvement.

Too few views were nsed in model construction. Fullv automating the model
acquisition process. as described in Chapter 4. and acquiring models from more

views would help.

Extending the formulations of recognition to handle multiple objects is straight-
torward. but identifyving suitable search strategies i1s an important and non-

trivial task.

Incorporating non-linear models of projection into the formulation would allow

robust performance in domains having serious perspective distortions.

Using image-like tables could speed the evaluation of the PMPE objective func-

tion.

[nvestigating the use of PMPE in object tracking or in other active vision do-

mains might prove fruitful.

More work in these areas will lead to practical and robust object recognition

systeins.
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Notation

Symbol

Y, € R

M= {M_ ,My...... V. }
m

M,

L
I={l,,T,...
e Mu{Ll}
3 € R?
P(M,,3)
Gy(r)

T}

Wi

[

(i‘ 3

APPENDIN A,

Meaning

the nmage

number of image features

image feature

the object model

number of object features

model feature. frequently M, € R¥**
the background feature
correspondences

assignment of image feature ¢

pose of object

projection into image

Gaussian probability density
covariance matrix of feature pair
stationary feature covariance matrix
covariance matrix of pose prior
background probability

extent of image feature dimension &
correspondence reward

estimate of r

probability

NOTATION

Defining Section

i~

[
—

[
—

(3§ [ [ S8
p— — —

|8
=

3.26.1

(see below)

Probability notation is somewhat abused in this work, in the interest of brevity.

p(x) may stand for either a probability mass function of a discrete variable z, or for a

probability density function of a continuous variable . The meaning will be clear in
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context based on the type of the variable argiument. Additionallv. mixed probabilities
are described with the same notation. For example p(I .4 { Y} stands for the niixed
probability function that is a probability mass function of I' {the discrete variable
describing correspondences), and a probability deusity function of 7 {(the pose vector)

- both conditioned on Y (the image feature coordinates).
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