
AD-A270 887

Techncal Repor 1398

Statistical
Object Recognition

William M. Wells, Il

MIT Artificial Intelligence Laboratory

TI

93-24310
_9J 3. . ,• iiitli,,:Ili,• iit



Best
Avai~lable

Copy



REPORT DOCUMENTATION PAGE Forr 'Cpprove

PUDICrgac two'in oud8Cff to, "is o Ci ?orl'o of info-a.or ,i cis etiated to average Inou.r a, ft-oo e nciuaiý,; te time 'or fev'evv-ili mitructiom searcn' exst rro C~ata
ateq i gn and rma-mito-n-n tve oata needed dco rro c if~aetna &no re-e-i~n t~ri (1cnemon 0? iro"'mau On SenaO comments r qaoi'on this DQdr eS,1r'at. o, -1 ?'r ~ci
CoiecOi t , no ran riý r %'O e" ;J 'gC 'r O regucsing !, s oi.roe,, 1t Aa~ri r'o!0 ~eaoQ.a,1eS SeC'ýcr' ý.'ec!Drje4tf 0C' & Oa s -C' o-,o.

Davis Highway. Suite 1204 Aring;ton, A 22202-1302 and ic t,,e 0
7

'ie of maniaqirrvie' andS Budget PaJOCviO'rg AeRCc.'cy PrC~ect 10704-3 80) cAiss ,,gtcr' C .25

l. AGENCY USE ONLY (Leae~ blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
IJanuary 1993 technical report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Statistical Object Recognition NOOO 14-85-K-O1 24

N00014-91-J-4038

6. AUTHOR(S) DACA76-85-C-OO 10

William M. Wells, III

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION

Artificial Intelligence Laboratory REPORT NUMBER

545 Technology Square A-R19
Cambridge, Massachusetts 02139 A-R19

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMIIR

Office of Naval Research w', 7

Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE.

Distribution of this document is unlimited

13. ABSTRACT (Maximumn 200 words)

To be practical. reco~.nition systemis miust deal with uncertainty. Positions of itapte
features i1n SC"Ines Valry. Features somietimies fail to appear because of unfavorable il~u-
inination. In this work. mnethods of statistical inference are comibined with emipirical
mo1dels of uncertainty Hin order to evaluate and refine hypotheses about the occurrence
of a known object in a scene.

Probabilistic miodels are used to characterize imiage features and their correspon-
'fences. A Statistical approach is taken for the acquisition of ob~ject miodels fromi
observ-ations in iima,,es: .if an Edgc Imnaqcs are used to capture object features that.
are reasonably stable with respect to variations in illumlination.

(continued on back)
14. SUBJECT TERMS (key words) 15. NUMBER OF PAGES

expectation-maximization model matching 177
object recognition pose estimation 16. PRICE COVE

-computer Vision __________

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE j OF ABSTRACT

L-UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
%S". 7540-0r -280S550-- Sianoairc -c~r 2198 -. -89



Block 13 continued:

The A.lignnent approach to reconii it ion, that has been described I v Huttenlocher
an(dI 1'1man, is •sed. The inechaulsins that are employed to generate initial hypothe-
ses are distinct from those that are used to verify (and refinei them. In this work.
posterior probability and Maximum Likelihood are the criteria for evaluating and
refhing hypotheses. The recognition strategy advocated in this work may be sum-
marized as .AhgI Refine Verify. whereby local search in pose space is utilized to refine
hypotheses from the alignment stage before verification is carried out.

Two formulations of model-based object recognition are described. .IAP Model
Matching evaluates joint hypotheses of match and pose. while Posterior Marginal
Pose Estimation evaluates the pose only. Local search in pose space is carried out
with the Expectation-Maximization (EM) algorithm.

Recognition experiments are described where the EM algorithm is used to refine
and evaluate pose hypotheses in 2D and 31D. Initial hypotheses for the 2D experiments
were generated by a simple indexing method: Angle Pair Indexing. The Linear
'ombination of Views method of Ullnian and Basri is employed as the projection

model in the 3[) experiments.

13%. , C%,Ive am

0~



Statistical Object Recognition

William M. Wells III

Copyright @ Massachusetts Institutt, of Technology, 1993



Statistical Object Recognition

by

\\illiam Mer('er Wells III

Submitted to the Department of Electrical Engineering and Computer Science
on November 24, 1992. in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

To be practical. recognition systems must deal with uncertainty. Positions of image
features in scenes vary. Features sometimes fail to appear because of unfavorable illu-
mination. In this work. methods of statistical inference are combined with empirical
models of uncertainty in order to evaluate and refine hypotheses about the occurrence
of a known object in a scene.

Probabilistic models are used to characterize image features and their correspon-
dences. A statistical approach is taken for the acquisition of object models from
observations in images: Mean Edge Images are used to capture object features that
are reasonably stable with respect to variations in illumination.

The Alignment approach to recognition. that has been described by Huttenlocher
and U'llman. is used. The mechanisms that are employed to generate initial hypothe-
ses are distinct from those that are used to verify (and refine) them. In this work.
posterior probability and Maximum Likelihood are the criteria for evaluating and
refining hypotheses. The recognition strategy advocated in this work may be sum-
marized as Align Refine Verify, whereby local search in pose space is utilized to refine
hypotheses from the alignment stage before verification is carried out.

Two formulations of model-based object recognition are described. MAP Model
Matching evaluates joint hypotheses of match and pose. while Posterior Marginal
Pose Estimation evaluates the pose only. Local search in pose space is carried out
with the Expectation-Maximization (EM) algorithm.

Recognition experiments are described where the EM algorithm is used to refine
and evaluate pose hypotheses in 2D and 3D. Initial hypotheses for the 2D experiments
were generated by a simple indexing method: Angle Pair Indexing. The Linear
C(ombination of Views method of Ullman and Basri is employed as the projection
model ii the 3D experiments.

Thesis Supervisor: W. Eric L. Grimson
Title: Associate Professor of Electrical Engineering and Computer Science

, , I i I I



Acknowledgments

I feel fortunate to have had Professor W. Eric L. Grimson as mv thesis advisor, mentor

and friend. His deep knowledge was a tremendous asset. His sharp instincts and

thoughtful guidance helped me to stay focussed on the problem of object recognition.

V•hile his support and generous advising style provided me the freedom to find aind

solve my own problems.

I appreciate the help offered by my reading comnmittee, Professors Tomas Lozano-

Pt;rez..Jeffrev Shapiro and Shimon Ullman. Their insights and criticism improved

my work. In particular, I thank Professor Shapiro for offering his ti.ne and statistical

expertise. His contribution to my research went well beyond his close reading of my

thesis. Among his valuable suggestions was use of the EM algoritlhm. In thanking

thie above comnmittee, however, I claim any errors or inconsistencies as mxy own.

I feel lucky for my years at MIT. I have enjoyed Professor Grini-on's research

group. I learned much about recognition from: Tao Alter, Todd Cass, David Clemens.

David Jacobs, Karen Sarachick, Tanveer Syeda and Steve White as well as Aninon

Shashua. In moving on, I shall miss working with such a critical mass of talent, and

beyond this, I know I shall miss them as friends.

My early days at the Al Lab were spent in Professor Rodney Brook's robotics

group. There, I learned a lot working on Squirt the robot from him and Anita Flynn.

I appreciate their continued friendship. I found much to admire in them as colleagues.

I also thank Flynn for her assistance with some experimental work in this thesis.

In the Al Lab as a whole, I enjoyed my contacts with Paul Viola, Professors Tom

Knight and Berthold Horn, and others too numerous to mention. Sundar Narasimhan.

.Jose Robles and Pat O'Donnell provided invaluable assistance with the Pu[ma robot.

(;rimson's administrative assistant, Jeanne Specklnan. was terrific. I thank Professor

Patrick Winston, director of the Al Lab. for providing the unique environment that

the Al Lab is. My stay has been a happy one.

I spent three summers as a student at MIT Lincoln Laboratory in Group 53.



4

Croup leader Al Gschwendtner provided support and a good environment for pursuing

some of the research found in this thesis. There. I enjoyed collaborating with Murali

Menon on image restoration, and learned some things about the EM algorithm from

Tom (;reen. Steve Rak helped prepare the range images used in Chapter 7.

Prior to MIT, I worked with Stan Rosenschein at SRI International and Teleos

Research. The earliest incarnation of this research originated during those years.

Rosenschein led a muobile robot group comprised of Leslie Kaelbling. Stanley Reifel.

myself and more loosely of Stuart Shieber and Fernando Pereira. Working with them.

I learned how enjoyable research can be.

Professor Thomas 0. Binford at Stanford University introduced me to computer

vision. There, I found stimulating contacts in David Lowe, David Marimont. Professor

Brian Wandell and Christopher Goad. After Stanford, my first opportunity to work

on computerized object recognition was with Goad at Silma Incorporated.

I owe much to my parents who have always been there to support and encourage

me. My time at the Al Lab would not have been possible without them.

And finally, this work depended daily upon the love and support of my wife,

Colleen Gillard, and daughters, Georgia and Whitney, who will soon be seeing more

of me.

This research was supported in part by the Advanced Research Projects Agency

of the Department of Defense under Army contract number DA(CA76-85-(C'-0010 and

under Office of Naval Research contracts N00014-85-K-0124 and N00014-91-0J-40:38.



To Colleen. Georgia and Whitney



Contents

1 Int:'oduction 11

1.1 The Problem.. .......... ............................... 11

1.2 The Approach .......... ............................... 1:3

1.2.1 Statistical Approach ....... ........................ 3•

1.2.2 Feature-Based Recognition.. ........................... 14

1.2.3 Aligniient.... ..................................... 15

1.3 Guide to Thesis ......... .............................. 18

2 Modeling Feature Correspondence 21

2.1 Features and Correspondences ........ ...................... 21

9.2 .:_ Indepe,:dtent (,orroeF'.. dence Model . . . .. . . . . . . . . .. . . . 24

2.3 A Markov (Correspondence Model ........ .................... 25

2.4 Incorporating Saliency ......... .......................... 27

2.5 ('onclusions ........... ................................ 2S

3 Modeling Image Features 29

3.1 A Uniform Model for Background Features .................... 30

3.2 A Normal Model for Matched Features ...... ................. 30

3.2.1 Empirical Evidence for the Normal Model ................ 31

3.3 Oriented Stationary Statistics ........ ...................... 40

3.3.1 Estimating the Parameters ........ .................... 40

S. . . . . . . , • ., = , . . , , m m a n u m m n m v • • m .. m~ m n I|7



{ (V)I.\ °IEN1

3.3.2 Specializing the ('ovariance ..... .............. 42

4 Modeling Objects 43

4.1 Monolithic 3D Object Models ........ ...................... I I

4.2 Interpolation of Views ...................................... I

4.3 Object Models from Observation ......... .................... 46

4.4 Mean Edge Images ........... ............................ 47

4.5 Automatic 3D Object Model Acquisition .....................

5 Modeling Projection 57

5.1 Linear Projection Models ................................. 5

5.2 2[) Point Feature Model ....... .......................... 5S

5.3 2D Point-Radius Feature Model ...... ...................... 59

5.4 2D Oriented-Range Feature Model ....... ................... 61

5.5 Linear Combination of Views ........ ...................... 61

6 MAP Model Matching 65

6.1 Objective Function for Pose and Correspondences ..... .......... 66

6.1.1 Using thie Markov Correspondence Model ................. 72

6.2 Experimental Implementation ...... ...................... .

6.2.1 Search in Correspondence Space ....................... 73

6.2.2 Example Search Results ...... ..................... T5

6.3 Search in Pose Space ......... ........................... 7-)

6.4 Extensions .......... ................................. S4

6.5 Related Work ......... ................................ 14

6.6 Summary . .......... ................................ .(i

7 Posterior Marginal Pose Estimation 87

7.1 Objective Function for Pose ....... .......................

7.2 ('sing the Markov Correspondence Model ..................... .1



CON.\"TEN TS

7.3 Range lim age Experim1erl ... .. .. .. . .. .. .. .. .. .. . .. .5

7.3.1 Preparatie,, -,' rteatures . . . . . . . . . . . . . . . . . . . . . .

7.3.2 Satnp!ing The O1,hjectiye Fuucttion ................

7.4 Video inage Experiment ....... 1..".

I Preparation of Features ...................... 1t

7.4.2 Search in Pose Space ........ ...................... . .

7.4.3 Sampling The Objective Function.. ...................... 05

7.5 Relation to Robust Estimation. ....... ...................... . .

7.5.1 (Connection to Neural Network Sigmoid Function. .......... 112

7.6 PMPE Efficiency Bound ........ ......................... 115

7.7 Related Work ........... ............................... 119

7.8 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8 Expectation - Maximization Algorithm 123

S.1 Definition of EM Iteration.. ................................ 123

8.2 Convergence .......... ................................ 1:27

S.3 Implementation Issues .......... .......................... 127

8.4 Related Work ........... ............................... 12s

9 Angle Pair Indexing 129

9. 1 Description of Method ....... .......................... 129

9.2 Sparsification.. ........................................ 132

9.3 Related Work ........... ............................... 132

10 Recognition Experiments 135

10.1 2D Recognition Experiments ............................... 135

10.1.1 (;enerat ing Aliginments ....... ..................... :39

10.1.2 Scoring Indexer Alignments ....... ................... 140

10.1.3 Refining lndexer Alignments ......................... 140

10.1.4 Final EM Weights .......... ........................ 144



10 CO ' N l," S

10.2 Evaluat i g Ra ,idoin Aligimiient . ..1. 1..I

10.3 (CoImver~ei•,e with O(ccisiol . .. ... .... .... .. ...... . 14"

10.A 3D) R'ecoa niittiu[ Experim etits . . . . . . . . . . . . . . . . . . . . . . . 14",

10.1.1 Retiningi [ 3D A igIIlitents ... I.. . . . . . .. . 1-1"

10.1.2 Reti miii g Pertwrhed Po.eI . . . . . . . . . . . . . . . . . . .. 1.-

11 Conclusions 163

A Notation 165

References 168



Chapter 1

Introduction

Visual object recognition is the focus of the research reported in this thesis. Recogni-

tion must deal with uncertainty to be practical. Positions of image features belonging

to objects in scenes vary. Features sometimes fail to appear because of unfavorable

illunination. In this work, methods of statistical inference are combined with empir-

ical models of uncertainty in order to evaluate hypotheses about the occurrence of a

known object in a scene. Other problems, such as the generation of initial hypotheses

and the acquisition of object model features are also addressed.

1.1 The Problem

Representative recognition problems and their solutions are illustrated in Figures 1-1

and 1-2. The problem is to detect and locate the car in digitized video images. usinlg

previously available detailed information about the car. In these figures, object model

features are superimposed over the video images at the position and orientation where

the car was found. Figure 1-1 shows the results of 2D recognition, while Figure 1-2

illustrates the results of 3D recognition. These images are from experiments that are

described in Chapter 10. Practical solutions to problems like these will improve the

flexibility of robotic systems.

11
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1.2. THE APPROACH 13

InI this work, the recognition problem is restricted to finding occurrences of a single

object in scenes that may contain other unknown objects. Despite the simplificatioll

and vears of research, the problem remains largely unsolved. Robust systems that

can recognize smooth objects having six degrees of freedom of position, under varying

conditions of illumination, occlusion, and background, are not commercially available.

Much effort has been expended on this problem as is evident in the comprehensive

reviews of research in computer-based object recognition by Besl and Jain [5]. who

cited 203 references, and Chin and Dyer [18], who cited 155 references. The goal of

this thesis is to characterize, as well as to describe how to find, robust solutions to

visual object recognition problems.

1.2 The Approach

In this work, statistical methods are used to evaluate and refine hypotheses in object

recognition. Angle Pair Indexing, a means of generating hypotheses. is introduced.

These mechanisms are used in an extension of the Alignment method that includes a

pose refinement step. Each of these components are amplified below.

1.2.1 Statistical Approach

In this research, visual object recognition is approached via the principles of Maximum

Likelihood (ML) and Maximum A-Posteriori probability (,MAP). These principles.

along with specific probabilistic models of aspects of object recognition. are used to

derive objective functions for evaluating and refining recognition hypotheses. The NIL

and MAP criteria have a long history of successful application in formulating decisions

and in making estimates from observed data. They have attractive properties of

optimality and are often useful when measurement errors are significant.

In other areas of computer vision, statistics has proven useful as a theoretical

framework. The work of Yuille. (eiger and Biilthoff on stereo ITS] is one example.



14 CHAPTER 1. INTRODIU'TIO.\

while in image restoration the work of Geman and G(eman [28], Marroquin [54]. and

Marroquin, Mitter and Poggio [55] are others. The statistical approach that is used

in this thesis onverts the recognition problem into a well defined (although not nec-

essarily eas / optimization problem. This has the advantage of providing an explicit

characterization of the problem, while separating it from the description of the algu-

rithms used to solve it. Ad hoc objective functions have been profitably used in some

areas of computer vision. Such an approach is used by Barnard in stereo matching

[2], Blake and Zisserman [7] in image restoration and Beveridge. Weiss and Riseinaii

[6] in line segment based model matching. With this approach. plausible forms fur

components of the objective function are often combined using trade-off parameters.

Such trade-off parameters are determined empirically. An advantage of deriving ob-

jective functions from statistical theories is that assumptions become explicit - the

forms of the objective function components are clearly related to specific probabilistic

models. If these models fit the domain then there is some assurance that the resulting
criteria will perform well. A second advantage is that the trade-off parameters in the

objective function can be derived from measurable statistics of the domain.

1.2.2 Feature-Based Recognition

This work uses a feature-based approach to object recognition. Features are abstrac-

tions like points or curves that sununarize some structure of the patterns in an image.

There are several reasons for using feature based approaches to object recognition.

e Features call concisely represent objects and images. Features derived froml

brightness edges can summarize the important events of an image in a way that

is reasonably stable with respect to scene illumination.

* In the alignment approach to recognition (to be described shortly). hypotheses

are verified by projecting the object model into the image. then comparing the

prediction against the image. By using compact, feature-based representatioiis
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of the object, projection costs may be kept low.

* Features also facilitate hypothesis generation. Indexing methods are attractive

mechanisnms for hypothesis generation. Such methods use tables indexed by

properties of small groups of image features to quickly locate corresponding

model features.

Object Features from Observation

A major issue that must be faced in model-based object recognition concerns the

origin of the object model itself. The object features that are used in this work are

derived from actual image observations. This method of feature acquisition automat-

ically favors those features that are likely to be detected in images. The potentially

difficult problem of predicting image features from abstract geometric models is by-

passed. This prediction problem is manageable in some constrained domains (with

polyhedral objects, for instance) but it is often difficult, especially with smooth ob-

jects, low resolution images and lighting variations.

For robustness, simple local image features are used in this work. Features of this

sort are easily detec , :1 in contrast to extended features like line segments. Extended

features nave been used in some systems for hypothesis generation because their ad-

ditional structure provides more constraint than that offered by simple local features.

Extended features, nonetheless, have drawbacks in being difficult to detect due to

occlusions and localized failures of image contrast. Because of this, systems that rely

on distinguished features can lose robustness.

1.2.3 Alignment

H ypot hesize-aiid-test. or alignimcnt methods have proven 9ffective in visual object

ec( ognition. Huttenlocher and I'lhian [431 used search over minimal sets of corre-

spondiiig features to establish candlidate hypotheses. In their work these ..potheses.
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or ahgmnerits, are tested by projecting the object model into ýhe image using the

pose (position and orientation) implied by the hypothesis, and then by performing a

detailed comparison with the image. The basic strateg3 of the alignment method is

to use separate mechanisms for generating and testing hypotheses.

Recently. indexing methods have become available for efficiently generating hv-

potheses in recognition. These methods avoid a significant amount of search by using

pre-computed tables for looking up the object features that might correspond to a

group of image features. The geometric hashing method of Lamdan and Wolfson [49J

uses invariant properties of small groups of features under affine transformations as

the look-up key. Clemens and .Jacobs [19] [20]. and Jacobs [45] described indexing

methods that gain efficiency by using a feature grouping process to select small sets

of image features that are likely to belong to one object in the scene.

In this work, a simple form of 2D indexing, Angle Pair Indexing, is used to generate

initial hypotheses. It uses an invariant property of pairs of image features under

translation. rotation and scale. This is described in Chapter 9.

The Hough transform [40] [44] is another commonly used method for generating

hypotheses in object recognition. In the Hough method, feature-based clustering is

performed in pose spacr, the space of the transformations describing the possible

motion of the object. This method was scE-d by Crimson and Lozano-P6rez [36] to

localize the search in recognition.

These fast methods of hypothesis generation provide ongoing reasons for using the

alignment approach. They are often most effective when used in conjunction with

verification. Verification is important because indexing methods can be susceptible

to table collisions, while Hough methods sometimes generate false positives due t,,

their aggregation of inconsistent evidence in pose space bins. I ilis last point has been

argued by Grinmon and Huttenlocher [35).

The usual alignment strategy may be summarized as align r rify. Alignment and

verification place differing pressures on the choice of features for recognition. Mech-
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anisms used for generating hypotheses typically have computational complexity that

is polynomial in the number of features involved. Because of this, there is significant

advantage to using low resolution features - there are fewer of them. Unfortunately.

pose estimates based on coarse features tend to be less accurate than those based on

high resolution features.

Likewise, verification is usually more reliable with high resolution feature,. This

approach yields more detailed comparisons. These differing pressures may be accom-

inodated by employing coaors-fiii- approaches. The coarse-fine strategy was utilized

successfully in stereo by Grimson (33]. In the coarse-fine strategy, hypotheses de-

rived from low-resolution features limit the search for hypotheses derived from high-

resolution features. There are some potential difficulties that arise when applying

coarse-fine methods in conjunction with 31D object models. These may be avoided

by using view-based alternatives to 3D object modeling. These issues are discussed

more fully in Chapter 4.

Align Refine Verify

The recognition strategy advocated in this work may be summarized as align refinl

verify. This approach has been used by Lipson [50] in refining alignments. The key

observation is that local search in pose space may be used to refine the hypothesis

from the alignment stage before verification is carried out. In hypothesize and test

methods. the pose estimates of the initial hypotheses tend to be somewhat inaccurate.

since they are based on minimal sets of corresponding features. Better pose estimates

(hence, better verifications) are likely to result from using all supporting image feature

data, rather than a small subset. (Chapter 8 describes a method that refines the pose

estimate while simultaneously identifying and incorporating the constraints of all

supporting image features.



is CHAPTER 1. INTRODU'CTIO.N

1.3 Guide to Thesis

Briefly. the presentation of the material in this thesis is essentially bottom-lip. The

early chapters are concerned witii building the components of the formulation, while

the main contributions, the statistical formulations of object recognition, are de-

scribed in Chapters 6 and 7. After that, related algorithms are described, followed

by experiments and conclusions.

In more detail, Chapter 2 describes the probabilistic models of tile correspon-

dences. or mapping between image features and features belonging to either the ob-

ject or to the background. These models use the principle of maximumn-entropy where

little information is available before the image is observed. In Chapter :3. probabilis-

tic models are developed that characterize the feature detection process. Empirical

evidence is described to support the choice of model.

('hapter 4 discusses a way of obtaining average object edge features from a se-

quence of observations of the object in images. Deterministic models of the projection

of features into the image are discussed in (Chapter 5. The projection methods used

in this work are linear in the parameters of the transformations. Methods for 2[) and

3D are discussed, including the Linear Combination of Views method of Ilhlinan and

Basri [71].

In Chapter 6 the above models are combined in a Bayesian framework to construct

a criterion. MAP Model Matching. for evaluating hypotheses in object recognition.

In this formulation, complete hypotheses consist of a description of the correspon-

dences b-'tween image and object features, as well as the pose of the object. These

hypotheses are evaluated by their posterior (after the image is observed) probability.

A recognition experiment is described that uses the criteria to guide a heuristic search

over correspondences. A connection between MAP Model Matching and a method of

robust chanmfer matching [47] is described.

Building on tile above, a second criterion is described in Chapter 7: Posterior

.\larginal Pose Estimation IPMPE). Here. the solution being sought is simply tihe
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pose of the object. The posterior probability of poses is obtained by taking tihe

formal marginal, over all possible matches, of the posterior probability of the joint

hypotheses of MAP Model Matching. This results iin a smooth, non-linear objective

function for evaluating poses. The smoothness of the objective function facilitates

local search in pose space as a mechanism for refining hypotheses in recognition.

Some experimental explorations of the objective function in pose space are described.

These characterizations are carried out in two domains: video imagery and synthetic

radar range imagery.

Chapter 8 describes use of the the Expcctation-Maxrirnization (EM) algorithm [21j

for finding local maxima of the PMPE objective finction. This algorithm alternates

between the M step - a weighted least squares pose estimate, and the E step - re-

calculation of the weights based on a saturating non-linear function of the residuals.

This ,.gc:sim , used to iefine and evaluate poses in 2D and 3D recognition ex-

periments that are described in Chapter 10. Initial hypotheses for the 2D experiments

were generated by a simple indexing method, Angle Pair hldcxing. that is described

in Chapter 9 . The Linear Combination of Views method of Ulhman and Basri [71] is

employed as the projection model in the 3D experiments reported there.

Finally, some conclusions are drawn in Chapter 11. The notation used throughout

is summarized in Appendix A.
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Chapter 2

Modeling Feature Correspondence

This chapter is concerned with probabilistic models of feature correspondences. These

models will serve as priors in the statistical theories of object recognition that are

described in Chapters 6 and 7. and are important components of those formulations.

They are used to assess the probability that features correspond before the image data

is compared to the object model. They capture the expectation that some features

in an image are anticipated to be due to the object

Three different models of feature correspondence are described, one of which is

used in the recognition experiments described in Chapters 6, 7, and 10.

2.1 Features and Correspondences

This research focuses on feature-based object recognition. The object being sought

and tie image being analyzed consist of discrete features.

Let the image that is to be analyzed be represented by a set, of v-dimelnsional

point features

V = Y~j.14 1~E R'

Image features are discussed in more detail in Chapters 3 and 5.

21
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The object to be recognized is also described by a set of features.

Al {A.I, M 2 .... , }

The features will usually be represented by real matrices. Additional details o0l object

features appears in Chapters 4 and 5.

In this work, the interpretation of the features in an image is represented by the

variable F, which describes the mapping from image features to object features or the

scene background. This is also referred to as the correspondences.

r = , F2, F,, F, E .1u{2-}

In an interpretation, each image feature, Y', will be assigned either to some,- object

feature Al1, or to the background, which is denoted by the symbol 2-. This symbol

plays a role similar to that of the null character in tile interpretation trees of Grimson

and Lozano-PNrez [36]. An interpretation is illustrated in Figure 2-1. F is a collection

of variables that is indexed in parallel with the image features. Each variable F,

represents the assignment of the corresponding image feature 1,. It may take on as

value any of the object features Ms, or the background, -L. Thus, the meaning of the

expression F1 = M6 is that image feature five is assigned to object feature six. likewise

[77 =_ means that image feature seven has been assigned to the background. III an

interpretation each image feature is assigned. while some object features may not be.

Additionally, several image features may be assigned to the same object feature. This

representation allows image interpretations that are implausible - other nIechaiiismus

are used to encourage metrical consistency.
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Figure '2-1: limage Features. Object Features. and C'orrespondences
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2.2 An Independent Correspondence Model

Ih tihis sectIion i simple probabi list W iiodel of correspondenices is des,,cril ed. 71 le

intent is to capture some information bearing oil correspondences before the image is

compared to tile object. This model has been designed to be a reasonable compromise

b etween simplicity and accuracy.

In this model, the correspondence status of differing image features are assumed

to he independent, so that

pl.F) = p(F,)

Here, p(F) is a probability mass function on the discrete variable F. There is

evidence against using statistical independence here. for example, occlusion is locally

correlated. Independence is used as an engineering approximation that simplifies the

resulting formulations of recognition. It may be justified by the good performance

of the recognition experiments described in ('hapters 6. 7. and 10. Few recognition

systems have used non-independent models of correspondence. Breuel outlined one

approach in his thesis [9]. A relaxation of this assumption is discussed in the followingo

sect ion.

The component probability function is designed to characterize the amount of

clutter in tle image. but to be otherwise as non-committal as pc.sible:

B if F , = _t ( 2.2 1
)(UH) t 1-e.__) otherwise

The joint model p(Y) is the maxi mum entropy probabiility function that is ,', -

sistent with the constraint that the probability of an image feature belongin1g to tle

background is B. B may be estimated by taking simple statistics on images from the

domain. B = .9 would mean that 90 V7 of imnage features are expected to be d(ue to

the background.

Having B constant during recognition is an approximation. The number of fea-
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tures due to the object will likely vary according to tlie size of the object in the 5,'et-.

B could be estimated at recognition time by pre-processing mechanisms that evaluate
image clitter. and factor in expectations about the size of the object. In practice.

the approximation works well in controlled situations.

The independent correspondence model is used in the experimenlts reported iII

this research.

2.3 A Markov Correspondence Model

As indicated above, one inaccuracy of the independent correspondence model is that

sample realizations of r drawn from the probability function of Equations 2.1 and

2.2 will tend to be overly fragmented in their modeling of occlusion. This section

describes a compromise model that relaxes the independence assumption somewhat

by allowing the correspondence status of an image feature (F1) to depend on that of

its neighbors. In the domain of this research, image features are fragments of image

edge curves. These features have a natural neighbor relation, adjacency along the

image edge curve, that may be used for constructing a ID Markov Random Field

(MRF) model of correspondences. MRF's are collections of random variables whose

conditional dependence is restricted to limited size neighborhoods. MIRF models are

discussed by Geman and Geman [28]. The following describes an MRF model of

correspondences intended to provide a more accurate model of occlusion.

p(F) = q(Fi)q(F2) ... q(F, )r.(( 1 ,F 2 )r(F 2 , F3 ). ..,_(F,,_., F,) (2.3)

where

q(F,)= el if F,=(24)
e •2 otherwise
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anld I(3 if a =1_ and b =
(4 if a3 : L and b -_ if features i and I + I are iieighhlur:r,(a.b)=

(5 otherwise

otherwise

(2.5)

The assignment of indices to image features should be done in such a way that

neighboring features have adjacent indices. The functions r7(., -) mode! the interac-

tion of neighboring features. The parameters el ... es may be adjusted so that the

probability function p(r) is consistent with observed statistics on clutter and fre-

quency of adjacent occlusions. Additionally, the parameters must be constrained so

that Equation 2.3 actually describes a probability function. When these constraints

are met, the model will be the maximum entropy probability function consistent with

the constraints. Satisfying the constraints is a non-trivial selection problem that may

be approached iteratively. Fortunately. this calculation doesn't need to be carried out

at recognition time. Goldman (30] discusses methods of calculating these parameters.

The model outlined in Equations 2.3 - 2.5 is a generalization of the Ising spin

model. Ising models are used in statistical physics to model ferromagnetism [73].

Samples drawn from Ising models exhibit spatial clumping whose scale depends on

the parameters. In object recognition, this clumping behavior may provide a more

accurate model of occlusion.

The standard Ising model is shown for reference in the following equations,. It has

been restricted to ID. and has been adapted to the notation of this section.

P(o7,72 . .. (,, ) - q(7 1 )q(7r2 ).. . (a,,) , 0'2) • ) . ((,, -. (,

I I I P I
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) exp(-H) if a = 1

exp(- k) otherwise

= exp(-L) ifa = b

exp(- ) otherwise

Here. Z is a normalization constant, u is the moment of the magnetic dipoles.

H is the strength of the applied magnetic field, k is Boltzmann's constant. T is

temperature, and J is a neighbor interaction constant called the exchange energy.

The approach to modeling correspondences that is described in this section was

outlined in Wells [74] [75]. Subsequently, Breuel [9] described a similar local interac-

tion model of occlusion in conjunction with a simplified statistical model of recognition

that used boolean features in a classification based scheme.

The Markov correspondence model is not used in the experiments reported in this

research.

2.4 Incorporating Saliency

Another route to more accurate modeling of correspondences is to exploit bottom-up

saliency processes to suggest which image features are most likely to correspond to

the object. One such process in described by Ullman and Shashua [66].

For concreteness, assume that the saliency process provide a per-feature iieasure

of saliency, .1. To incorporate this information, we construct p(r, =.J I"/). This may

be conveniently calculated via Bayes' rule as follows:

p((S, I F, =i)p(F, =_1)P(r, = 11 Sz) =7)"'

p(., I F, =1L) and p(,';) are probability densities that may be estimated from

observed frequencies in training data. As in Section 2.2, we set p(F, =1_) = B.
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A feature specific background probability may then be defined as follows:

B, p(.s, I r, =-L)B
B, =p(i, =± ,s',) = BP([p(.'•)

In this case the complete probability function o1 l r, will be

P(F') = B, ifF,=.(_
i(). otherwise

This model is not used in the experiments described in this research.

2.5 Conclusions

The simplest of the three models described, the independent correspondence model.

has been used to good effect in the recognition experiments described in Chapters 6. 7.

and 10. In some domains additional robustness in recognition might result from using

either the Markov correspondence model. or by incorporating saliency informaatio0.



Chapter 3

Modeling Image Features

Probabilistic models of image features are the topic of this chapter. These are an-

other important component of the statistical theories of object recognition that are

described in Chapters 6 and 7.

Tile probability density function for the coordinates of image features. conditioned

onl correspondences and pose, is defined. The PDF has two important cases, depend-

ing on whether the image feature is assigned to the object, or to the background.

Features matched to the object are modeled with normal densities, while uniform

densities are used for background features. Empirical evidence is provided to support

the use of normal densities for matched fl-tures. A form of stationaritv is descrilbed.

Many recognition systems implicitly -,'e uniform densities (rather than n(ormal

densities) to model matched image features (bounded error models). The empirical

exidence of Section :3.2.1 indicates that the normal model may sometimes be better.

Because of this, use of normal models may provide better performance in recognition.

29
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3.1 A Uniform Model for Background Features

The image features, Yt, are v dimensional vectors. When assigned to the background.

they are assumed to be uniformly distribute(d.

i
p(YZ I l 3) = frp(}W, if F, =1 (3.1

(The PDF is defined to be zero outside the coordinate space of the image features.

which has extent 1,', along dimension i.) F describes the correspondences from image

features to object features. and 4 describes the position and orientation, or pose of

the object. For example, if the image features are 2D points in a 640 by 480 image.

then p(Y' JIL,3) = 65480 within the image. For Y,, this probability function depeds,

only on the i'th component of r.

Providing a satisfying probability density function for background features is prob-

lematical. Equation 3.1 describes the maximum entropy PDF consistent with the

constraint that the coordinates of image features are always expected to lie within

the coordinate space of the image features. E.T. .Jaynes [461 has argued that maxi-

mum entropy distributions are the most honest representation of a state of incomplete

knowledge.

3.2 A Normal Model for Matched Features

Image features that are matched to object features are assumed to be normally dis-

tributed about their predicted position in the inmage.

P(Y1 1 F.3) =yG" ; (;, -'P(M, 12. 3)) if F, .= 5I (3.2)

Here 1'. F. and .3 are defined as above.

(;,,, is the v-dimensional Gaussian probability density function with covariance



3.2. A NORMAL MODEL FOR MATCHED FEAT!'RES 31

. .... ..--. -.-

2_ 2 - -.1

- -, ( x ) = (2 7r)--. I. -- 2 - ,l . 1
__ ,- ...- ., .-----z..'....--

Figure :3-1: Fine Image Features and Fine Model Features

matrix •U

The covariance matrix >',ij is discussed more fully in Section 3.3.

W\hen F, = w3, tile predicted coordinates of imnage feature YI are given by

TP(M 3. 3), the projection of object feature j into the image with object pose 3. Pro-

jection and pose are discussed in more detail in Chapter 5.

3.2.1 Empirical Evidence for the Normal Model

This section describes some empirical evidence from the domain of video image edge

features indicating that normal probability densities are good models of feature fluc-

tuations, and that they can be better than uniform probability densities. The ev-

idence is provided in the form of observed and fitted cumulative distributions andt

Kolmogorov-Sinirnov tests. The model distributions were fitted to tile data using the

Maximum Likelihood method.

The data that is analyzed are tile perpendicular and parallel deviations of fine

and coarse edge features derived from video images. The fine and coarse feature., are

shown in Figures 3-1 and 3-3 respectively.

The model features are from Mean Edge Images, these are described in Section

4.4. The edge operator used in obtaining the image features is ridges in the magnitude
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Figure :3-4: (Coarse Feature (CorrespondencesK • , |-
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of the image gradient. as discussed in Section 4.4. The smoothing standard deviation

used in the edge detection was 2.0 and 4.0 pixels respectively, for the fine and coarse

features. These features were also used in the experiments reported i'l Section 10.1.

and the correspondences were used there as training data.

For the analysis in this section, the feature data consists of the average of the

.r and y coordinates of the pixels from edge curve fragments - they are 2D point

features. The features are displayed as circular arc fragments for clarity. The, ,.

curves were broken arbitrarily into 10 and 20 pixel fragments for tile fine and ý ou ,e

features respectively.

Correspondences from image features to model features were established by a

neutral subject using a mouse. These correspondences are indicated by heavy lines

in Figures 3-2 and 3-4. Perpendicular and parallel deviations of the corresponding

features were calculated with respect to the normals to edge curves at the image

features.

Figure 3-5 shows the cumulative distributions of the perpendicular and parallel

deviations of the fine features. The cumulative distributions of fitted normal densities

are plotted as heavy dots over the observed distributions. The distributions were fitted

to the data using the Maximum Likelihood method - the mean and variance of the

normal density are set to the mean and variance of the data. These figures show good

agreement between the observed distributions, and the fitted normal distributions.

Similar observed and fitted distributions for the coarse deviations are shown in Figure

3-6. again with good agreement.

The observed cumulative distributions are shown again in Figures 3-7 and 3-K.

this time with the cumulative distributions of fitted uniform densities over-plotted

in heavv (lots. As before, the uniform densities were fitted to the data using tile

Maximum Likelihood method - in this case the uniform densities are adjusted to just

include tile extreme data. These figures show relatively poor agreement between tile

observed and fitted distributions, in comparison to normal densities.
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Normal Hypothesis Uniform Hypothesis
Deviate N Do P(D > D0 ) D, P(D > D,)
"Fine Perpendicular 118 .0824 .3996 .2244 .000014
Fine Parallel 118 .0771 .4845 .1596 .0049
Coarse Perpendicular 28 .1526 .5317 .2518 .0574
Coarse Parallel 28 .0948 .9628 .1543 .5172

Table 3.1: Kolmogorov-Smirnov Tests

Kolmogorov-Srnirnov Tests

The Kolmogorov-Smirnov (KS) test [59] is one way of analyzing the agreement be-

tween observed and fitted cumulative distributions, such as the ones in Figures 3-5

to 3-8. The KS test is computed on the magnitude of the largest difference between

the observed and hypothesized (fitted) distributions. This will be referred to as D.

The probability distribution on this distance, under the hypothesis that the data were

drawn from the hypothesized distribution, can be calculated. An asymptotic formula

is given by

P(D > Do) = Q(V'INDo)

where

Q(x) = 2Z(-1)j-' exp(-2j21. 2 ) 2

and D0 is the observed value of D.

The results of KS tests of the consistency of the data with fitted normal and

uniform distributions are shown in Table 3.1. Low values of P()D > Dj suggest

incompatibility between the data and the hypothesized distribution. In the cases

of fine perpendicular and parallel deviations, and coarse perpendicular deviations.

refutation of the uniform model is strongly indicated. Strong contradictions of the

fitted normal models are not indicated in any of the cases.
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3.3 Oriented Stationary Statistics

The covariance matrix i, 'z, that appears in the model of matched image features ill

Equation 3.2 is allowed to depend on both the image feature and the object feature

involved in the correspondence. Indexing on Z allows dependence oil the image feature

detection process, while indexing in j allows dependence on the identity of the model

feature. This is useful when some model features are know to be noisier than others.

This flexibility is carried through the formalism of later chapters. Although such flex-

ibility can be useful, substantial simplification results by assuming that the features

statistics are stationary in the image, i.e. zpi-, for all ij. This could be reason-

able if the feature fluctuations were isotropic in the image, for example. In its strict

form this assumption may be too limiting, however. This section outlines a compro-

mise approach, oriented stationary statistics, that was used in the implementations

described in Chapters 6, 7, and 8.

This method involves attaching a coordinate system to each image feature. The

coordinate system has its origin at the point location of the feature, and is oriented

with respect to the direction of the underlying curve at the feature point. When

(stationary) statistics on feature deviations are measured, they are taken relative to

these coordinate systems.

3.3.1 Estimating the Parameters

The experiments reported in Sections 6.2, 7.1, and Chapter 10 use the normal model

and oriented stationary statistics for matched image features. After this choice of

model. it is still necessary to supply the specific parameters for the model. namely.

the covariance matrices, ili,, of the normal densities.

The parameters were estimated froui observations on matches dlone by halld onl

sample images from the domain. Because of the stationarity assumption it is possible

to estimate the common covariance, •,, by observing match data on one image. For
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this purpose, a match was done with a mouse between features from a Mean Edge hn-

age (these are described in Section 4.4) and a representative inage from the domain.

During this process, the pose of the object was the same in the two images. This

produced a set of corresponding edge features. For the sake of example, the process

will be described for 2[) point features (described in Section 5.2). The procedure has

also been used with 2D point-radius features and 2D oriented-range features, that are

described in Sections 5.3 and 5.4 respectively.

Let the observed inmage features be described by Yi, and the corresponding mean

model features by Yi. The observed residuals between the "data" image features, and

the "'mean" features are Ai = Yi - Yi.

The features are derived from edge data. and the underlying edge curve has an

orientation angle in the image. These angles are used to define coordinate systems

specific to each image feature Y1. These coordinate systems define rotation matrices

R, that are used to transform the residuals into the coordinate systems of the features.

in the following way: A' = RiAj.

The stationary covariance matrix of the matched feature fluctuations observed

in the feature coordinate systems is then estimated using the Maximum Likelihood

method. as follows,

Here T denotes the matrix transpose operation. This technique has some bias. but

for the reasonably large sample sizes involved (n z 100) the effect is millor.

The resulting covariance matrices typically indicate larger variance for deviations

along the edge curve than perpendicular to it, as suggested by the data in Figures

3-5 and 3-6.
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3.3.2 Specializing the Covariance

At recognition time, it is necessary to specialize the constant covariance to each image

feature. This is done by rotating it to orient it with respect to the image feature.

A covariance matrix transforms like the following product of residuals:

This is transformed back to the image system as follows,

T I RT
RT AiA R1

Thus the constant covariance is specialized to the image features in the following way.

,/', = RT ,Ri



Chapter 4

Modeling Objects

What is needed from object models? For recognition, the main issue lies in predicting

the image features that will appear in an image of the object. Should the object model

be a monolithic 3D data structure? After all, the object itself is 3D. In this chapter.

some pros and cons of monolithic 3D models are outlined. An alternative approach.

interpolation of views, is proposed. The related problem of obtaining the object

model data is discussed, and it is proposed that the object model data be obtained

by taking pictures of the object. An automatic method for this purpose is described.

Additionally, a means of edge detection that captures the average edges of an object

is described.

4.1 Monolithic 3D Object Models

One motivation for using 3D object models in recognition systems is the observation

that computer graphics techniques can be used to synthesize convincing images from

3D models in any pose desired.

For some objects, having a single 3D model seems a natural choice for a recognition

system. If the object is polygonal, and is represented by a list of 3D line segments and

vertices, then predicting the features that will appear in a given high resolution view

43
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is a simple matter. All that is needed is to apply a pose dependent transformation to

each feature, and to perform a visibility test.

For other objects, such as smoothly curved objects, the situation is different. Pre-

dicting features becomes more elaborate. In video imagery, occluding edges (or himbs)

are often important features. Calculating the limb of a smooth 3D surface is usually

complicated. Ponce and Kriegman [58] describe an approach for objects modeled

by parametric surface patches. Algebraic elimination theory is used to relate image

limbs to the model surfaces that generated them. Brooks' vision system, Acronym

[10], also recognized curved objects from image limbs. It used generalized cylinders

to model objects. A drawback of this approach is that it is awkward to realistically

modeling typical objects, like telephones or automobiles, with generalized cylinders.

Predicting reduced resolution image features is another difficulty with monolithic

3[) models. This is a drawback because doing recognition with reduced resolution

features is an attractive strategy: with fewer features less search will be needed. One

solution would be to devise a way of smoothing 3D object models such that simple

projection operations would accurately predict reduced resolution edge features. No

such method is known to the author.

Detecting reduced resolution image features is straightforward. Good edge fea-

tures of this sort may be obtained by smoothing the grayscale image before using an

edge operator. This method is commonly used with the Canny edge operator [13].

and with the Marr-Hildreth operator [53].

An alternative approach is to do projections of the object model at full resolution,

and then to do some kind of smoothing of the image. It isn't clear what sort of

smoothing would be needed. One possibility is to do photometrically realistic projec-

tions (for example by ray tracing rendering), perform smoothing in the image, and

then use the same feature detection scheme as is used on the images presented for

recognition. This method is likely to be too expensive for practical recognition system

that need to perform large amounts of prediction. Perhaps better ways of doing this
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will be found.

Self occlusion is an additional complexity of the monolithic 3D model approach.

In computer graphics there are several ways of dealing with this issue, among themn

hidden line and z-buffer methods. These methods are fairly expensive, at least in

comparison to sparse point projections.

In summary, monolithic 3D object models address some of the requirements for

predicting images for recognition, but the computational cost may be high.

4.2 Interpolation of Views

One approach to avoiding the difficulties dist ,issed in the previous section is to use an

image-based approach to object modeling. Ullman and Basri [71J have discussed such

approaches. There is some biological evidence that animal vision ss,'ni .... .

nition subsystems that are attuned to specific views of faces [251. This may provide

some assurance that image-based approaches to recognition aren't unreasonable.

An important issue with image-based object modeling concerns how to predict

image features in a way that covers the space of poses that the object may assume.

Bodies undergoing rigid motion in space have six degrees of freedom, three in

translation, and three in rotation. This six parameter pose space may be split into two

parts - the first part being translation and in image-plane rotations (four parameters)

- the second part being out of image-plane rotations (two parameters: the "'view

sphere").

Synthesizing views-of an object that span the first part of pose space can often

be done using simple and efficient linear methods of translation, rotation, and scale

in the plane. This approach can be precise under orthographic projection with scal-

ing, and accurate enough in some domains with perspective projection. Perspective

projection is often approximated in recognition systems by 3D rotation combined

with orthographic projection and scaling. This has been called the weak perspectivc
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approximation [70].

The second part of pose space, out of plane rotation, is more complicated. The

approach advocated in this research involves tesselating the view sphere around the

object, and storing a view of de object for each vertex of twe tesseldaion. A,1 itrarv

views will then entail, at most, small out of plane rotations from stored views. These

views may be synthesized using interpolation. The Linear Combination of Views

method of Ulinan and Basri [711], works well for interpolating between nearby views

(and more distant ones, as well).

Conceptually, the interpolation of views method caches pre-computed predictions

of images, saving the expense of repeatedly computing them during recognition. If

the tesselation is dense enough, difficulties owing to large changes in aspect may be

avoided.

Breuel [91 advocates a view-based approach to modeling, without interpolation.

4.3 Object Models from Observation

How can object model features be acquired for use in the interpolation of views

framework? If a detailed CAD model of the object is available, then views might be

synthesized using graphical rendering programs (this approach was used in the (single

view) laser radar experiment described in Section 7.3).

Another method is to use the object itself as its own model, and to acquire views

by taking pictures of the object. This process can make use of the feature extraction

method that is used on images at recognition time. An advantage of this scheme is

that an accurate CAD style model isn't needed. Using the run-time feature extraction

mechanism of the recognition system automatically selects the features that will be

salient at recognition time, which is otherwise a pot,'ntially difficult problem.

One difficulty with the models from observation approach is that image features

tend to be somewhat unstable. For example, the presence and location of edge features
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is intluened by illumination conditions, as illustrated in the following fiIgiires. 17i, IrI

4- 1 shows a series of nine grayscale images where the only variation is in lightini. A

corresponding set of edge images is shown in 4-2. The edge operator used in prep,,lilg

the images is dPscribed in '4ectior 4.4. The standard deviation of the sintloiin2

operator was 2 pixels.

4.4 Mean Edge Images

It was pointed out above that the instability of edge features is a potential difficulty

of acquiring object model features from observation. The Mean Edge Image uuetlio.I

solves this problem by making edge maps that are averaged over variations due to

illumination changes.

Brightness edges may be characterized as the ridges of a measure of brightness

variation. This is consistent with the common notion that edges are the 1D loci of

maxima of changes in brightness. The edge operator used in Figure 4-2 is an example

of this style of edge detector. It is a ridge operator applied to the squared discrete

gradient of smoothed images. Here, the squared discrete gradient is the measure of

brightness variation. This style of edge detection was described by Mercer [57]. The

mathematical definition of the ridge predicate is that the gradient is perpendicular to

the direction having the most negative second directional derivative. Another similar

definition of edges was proposed Haralick [37]. For a general survey of edge detection

methods, see Robot Vision, by Horn [39].

The preceding characterization of image edges generalizes naturally to mean edges.

Mean edges are defined to be ridges in the average measure of brightness fluctuation.

In this work, average brightness fluctuation over a set of pictures is obtained by

averaging the squared discrete gradient of the (smoothed) images.

Figure 4-3 shows the averaged squared gradient of smoothed versions of the images

that appear in Figure 4-1. Recall that only the lighting changed between these images.
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Figure 4-1" C rayscale Images
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Figi-re 4-2: Edge Images
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Figure 4-3: Averaged Squared Gradient of Smoothed Images

Figure 4-4 slows the ridges from the image of Figure 4-:3. Hysteresis thresholding

based om the magnitude of the averaged squared gradient has been used to suppress

weak edges. Such hysteresis thresholding is used with the Canny edge operator. Note

that this edge image is relatively immune to specular highlights, in comparison to tth.

individiual edge images of Figure 4-4.

4.5 Automatic 3D Object Model Acquisition

This section outlines a method for automatic 3D object model acquisition that com-

bines interpolation of views and Mean Edge Images. The method involves automati-

cally acquiring (many) pictures of the object inder various combinations of pose an I

illmination. A preliminary implementation of the method was used to ac'quire object

model features for the 3[) recognition experiment discussed in Section 10.4.
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Figure 4-4: Ridges of Average Squared Gradient of Smoothed Images
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Figure 4-5: A Pentakis Dodecahedron

The object, a plastic car model, was mounted on the tool flange of a PUMA 560

robot. A i(deo camera connected to a Sun Microsystems VF(' video digitizer was

mounted near the robot.

For the purpose of Interpolation of Views object model cotnstruction, the view

sphere around the object was tesselated into :32 view points, the vertices of a pentakis

dodecahedron (one is illustrated in Figure 4-5). At each view point a "ammoiical pose"

for the object was constructed that oriented the view point towards the camera, while

keeping the center of the object in a fixed position.

Nine different configurations of lighting were arranged for the purpose of con-

structing Mean Edge Images. The lightin)g configurations were made by moving a

spotlight to nine different position that illuminated the object. The lamp positions

roughly covered the view hemisphere centered on the camera.

The object was moved to the canonical poses corresponding to the 21 vertices inI
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the q.pper part (roughly 2/3) of the object's view sphere. At each of these poses.

pictures were taken with each of the nine lamp positions.

Mean Edge Images at various scales of smoothing were constructed for each of

the canonical poses. Object model features for recognition experiments described in

Chapter 8 were derived from these Mean Edge Images. Twenty of the images from

one such set of Mean Edge Images are displayed in Figures 4-6 and 4-7.

Two of these Mean Edge Images were used in an experiment in 3D recognition

using a two-view Linear Combination of Views method. This method requires corre-

spondences among features at differing views. These correspondences were established

by hand, using a mouse.

It is likely that such feature correspondence could be derived from the results

of a motion program. Shashua's motion program [65], which combines geometry

and optical flow, was tested o0n images from the experimental setup and was able

to establish good correspondences at the pixel level, for views separated by 4.75

degrees. This range could be increased by a sequential bootstrapping process. If

correspondences can be automatically deternmined, then the entire process of building

view-based models for 3D objects can be made fully automatic.

After performing the experiments reported in Chiapter 10, it became apparent that

the views were separated ky too large of an angle (about 38 degrees) for establishing

a good amount of feature correspondence between some views. This problem may be

relieved by using more views. Using more views also makes automatic (leternifiiat ion

of correspondences easier. If the process of model construction is fully automatic.

having a relatively large number of views is potentially workable.

The work of Taylor and Reeves [69] provides some evidence for the feasibility of

multiple-view-based recognition. They describe a classification-based vision system

that uses a librarv of views from a 252 vertex iosahedron-based tesselation of The-,

view sphere. Their views were separated by 6.0 to 8.7 degrees. They report good

classification of aircraft silhouettes using this approach.
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--4-6: M ean E e I s at C

Figuire 4-f: Nlean Eg~e Images at ('aiuoic-al Poses
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Figure 4-7: Mean Edge Images at (Canonical Poses
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Chapter 5

Modeling Projection

This chapter is concerned with the representations of image and object features, and

with the projection of object features into the image, given the pose of the object.

Four different formulations are described, three of which are used in experiments

reported in other chapters.

The first three models described in this chapter are essentially 2D, the trans-

formations comprise translation, rotation, and scaling in the plane. Such methods

may be used for single views of 3D objects via the weak perspective approximation.

as described in [70]. In this scheme, perspective projection is approximated by or-

thographic projection with scaling. Within this approximation, these methods can

handle four of the six parameters of rigid body motion - everything but out of plane

rotations.

The method described in Section 5.5, is based on Linear Combination of Views.

a view-based 3D method that was developed by ('lmnan and Basri [71].

5.1 Linear Projection Models

Pose determination is often a component of model-based object recognition systems,

including the systems described in this thesis. Pose determination is frequently framed

57



58 (HAPTER 5. MODELIN; PR•O.IE'CTION\

as an optimization problem. The pose determination problem may be significantly

simplified if the feature projection model is linear in the pose vector. The systems de-

scribed in this thesis use projection models having this property, this enables solving

the embedded optimization problem using least squares. Least squares is advanta-

geous because unique solutions may be obtained easily in closed form. This is a

significant advantage, since the embedded optimization problem is solved many times

during the course of a search for an object in a scene.

All of the formulations of projection described below are linear in the parameters

of the transformation. Because of this they may be written in the following form:

7 i = W -M3,) = A '3 (5.1)

The pose of the object is represented by 3. a column vector, the object model

feature by Mi, a matrix. 77,, the projection of the model feature into the image by

pose 3. is a column vector.

Although this particular form may seem odd, it a natural one if the focus is oi

solving for the pose and the object model features are constants.

5.2 2D Point Feature Model

The first, and simplest, method to be described was used by Faugeras and Avache in

their vision system HYPER [1]. It is defined as follows: ?7, = .11,3. where

hr -Ply= 1 0 aind ,=
p ly p i , 0 1

t e f

The coordinates of object model point i are pX and p?,. TIhe coordinates of the
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model point i, projected into the image by pose 3, are p,, and p,,. This transformation

is equivalent to rotation by 0, scaling by .s, and translation by T. where

T= K] s 2 + V2 0 = arctan

This representation has an un-synunetrical way of representing the two classes

of features, which seems odd due to their essential equivalence, however tile trick

facilitates the linear formulation of projection given in Equation 5.1.

In this model, rotation and scale are effected by analogy to the multiplication of

complex numbers, which induces transformations of rotation and scale in the complex

plane. This analogy may be made complete by noting that the algebra of complex

numbers a + ib is isomorphic with that of matrices of the form

-b a

5.3 2D Point-Radius Feature Model

This section describes an extension of the previous feature model that incorporates

information about the normal and curvature at a point on a curve (in addition to the

coordinate information).

There are advantages in using richer features in recognition - they provide more

constraints, and can lead to space and time efficiencies. These potential advantages

must be weighed against the practicality of detecting the richer features. For example.

there is incentive to construct features incorporating higher derivative information at

a point on a curve; however, measuring higher derivatives of curves derived from video

imagery is probably impractical. because each derivative magnifies the noise present
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C:

Figure 5-1: Edge Curve, Osculating Circle, and Radius Vector

in the data.

The feature described here is a compromise between richness and detectability. It

is defined as follows 77i = M,3, where

P'u Pix -Ply 1 0 Ip

Py =Mi Py and 3 =
c'•'-, -C 0 0t•

Lc', j ciy c,- 0 0 ty

The point coordinates and 3 are as above. and CzY represent the radtiuis vector

of the curve's osculating circle that touches the point on the curve, as illustrated

in Figure 5-1. This vector is normal to the curve. Its length is the inverse of the

curvature at the point. The counterparts in the image are given by (-, and cly. With

this model, the radius vector c rotates and scales as do the coordinates p. but it does

not translate. Thus. the aggregate feature translates, rotates and scales correctly.

This feature model is used in the experiments described in Sections 6.2. 7.4. and
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10.1 When the underlying curvature goes to zero, the length of the radius vector

diverges, and the direction becomes unstable. This has been accommodated in the

experiments by truncating c. Although this violates the "transforms correctly" crite-

rion, the model still works well.

5.4 2D Oriented-Range Feature Model

This feature projection model is very similar to the one described previously. It was

designed for use in range imagery instead of video imagery. Like the previous feature.

it is fitted to fragments of image edge curves. In this case, the edges label disconi-

tinuities in range. It is defined just as above in Section 5.3, but the interpretation

of c is different. The point coordinates and (3 are as above. As above. q, and c',

are a vector whose direction is perpendicular to dhe (range discontinuity) curve frag-

ment. The difference is that rather than encoding the inverse of the curvature, the

length of the vector encodes instead the inverse of the range at the discontinuity. The

counterparts in the image are given by c,, and K*y. The aggregate feature translates,

rotates and scales correctly when used with imaging models where the object features

scale according to the inverse of the distance to the object. This holds under per-

spective projection with attached range labels when the object is small compared to

the distance to the object.

This model was used in the experiments decribed in Section 7.3.

5.5 Linear Combination of Views

The technique used in the above methods for synthesizing rotation and scale amounts

to making linear combinations of the object model with a copy of it that ha. Iheen

rotated 90 degrees inI the plane.

In their paper, "Recognition by Linear (Combination of Models" [71]. lUllman and

Basri describe a scheme for synthesizing views under 31) orthography with rotation
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and scale that has a linear parameterization. They show that the space of images of

an object is a subspace of a linear space that is spanned by the components of a few

images of an object. They discuss variants of their formulation that are based onl two

views, and oil three and more views. Recovering conventional pose parameters from

the linear combination coefficients is described in [60].

The following is a brief explanation of the two-view method. The reader is referred

to [71] for a fuller description. Point projection from 3D to 2D under orthography, ro-

tation. and scale is a linear transformation. If two (2D) views are available, along with

the transformations that produced them (as in stereo vision), then there is enough

data to invert the transformations and solve for the 3D coordinates (three equations

are needed, four are available). The resulting expression for the 3D coordinates will

be a linear equation in the components of the two views. New 2D views may then

be synthesized from the 3D coordinates by yet another linear transformation. Com-

pounding these linear operations yields an expression for new 2D views that is linear

in the components of the original two views. Th-ere is a quadratic constraint on the

3D to 2D transformations, due to the constraints on rotation matrices. The usual Li,-

ear Combination of Views approach makes use of the above linearity property while

synthesizing new views with general linear transformations (without the colnstraintsr.

This practice leads to two extra parameters that control stretching transformation01s

in the synthesized image. It also reduces the need to deal with camera calibrationis -

the pixel aspect ratio may be accommodated in the stretching transformations.

The following projection model uses a two view variant of the Linear ('ombination

of Views method to synthesize views with limited 3D rotation and scale. Additionallv.

translation has been added in a straightforward way. 71, = .,.3. where

711r ] p~ , 0 q ty 0 pig 0 1 0K ] 0 pl 0 ql
1

0 pix 0 1
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and

'3 303132'$330 445 6371

The coordinates of the i'th point in one view are pr and p,,; in the other view

they are q, and qi,.

When this projection model is used, 3 does not in general describe rigid transfor-

mation, but it is nevertheless called the pose vector for notational consistency.

This method is used in the experiment described in Section 10.4.
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Chapter 6

MAP Model Matching

MAP Model Matching 1 (MMM) is the first of two statistical formulations of object

recognition to be discussed in this thesis. It builds on the models of features and

correspondences, objects, and projection that are described in the previous chapters.

M.MM evaluates joint hypotheses of match and pose in terms of their posterior prob-

ability, given an image. MMM is the starting point for the second formulation of

object recognition, Posterior Marginal Pose Estimation (PMPE), which is described

in Chapter 7.

The MMM objective function is amenable to search in correspondence space,

the space of all possible assignments from image features to model and background

features. This style of search has been used in many recognition systems, and it is

used here in a recognition experiment involving low resolution edge features.

It is shown that under certain conditions, searching in pose space for maxima of

the MMM objective function is equivalent to robust methods of chamfer matching

[47].

'Early versions of this work appeared in [74] and [75].

65
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6.1 Objective Function for Pose and Correspon-

dences

In this section all objective function for evaluating joint hypotheses of match and

pose using tile MAP criterion will be derived.

Briefly, probability densities of image features, conditioned on tile parameters of

match and pose (-"the parameters"), are combined with prior probabilities on the

parameters using Bayes' rule. The result is a posterior probability density on the pa-

rameters. given an observed image. An estimate of the parameters is then formulated

by choosing them so as to maximize their a-posteriori probability. (Hence the term

MAP. See Beck and Arnold's textbook [4] for a discussion of MAP estimation.) MAP

estimators are especially practical when used with normal probability densities.

This research focuses on feature based recognition. The probabilistic rood. , of

image features described in Chapter :3 are used. Initially, image features are assumed

to be inutually independent (this is relaxed in Section 6.1.1). Additionally. matched

image features are assumed to be normally distributed about their predicted positions

in the image. and unmatched (background) features are assumed to be uniformly

distributed in the image. These densities are combined with a prior model of the

parameters. When a linear projedtion model is used. a simple objective function for

match and pose results.

As described in ('hapter 2, the image that is to be analyzed is represented hy it

set of c-diiensioinal column vectors.

T o m.Yi....'I . ¾ b

Thle ol je,"t in u~ Id is deniott~r 1 1v .11,

M = {.I•..Al 2.. .. ,,}
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When iinear projection modeis are used, as discussed in Chapter ,5. the object features
will be represented by real matrices: .11 R" (z is defined below).

The parameters to be estimated in matching are the correspondences het weeli

image and object features, and the pose of the object in the image. As discussed in

Section 2.1, the state of match, or correspondences, is described by the variable F:

r- =F,,r 2 ... ,r} , EM u {±}

Here F, = M. means that image feature i corresponds to object model feature j, and

Y, =1_ means that image feature i is due to the background.

The pose of the object is a real vector: j3 E R2 . A projection function, 'P(). maps

object model features into the v-dimensional image coordinate space according to the

pose,

P(M1 , 3) ER"

The probabilistic models of image features described in Chapter 3 may be written

as follows:

if Fi =1
p(I r ,/3) W1w2 W. (6.1){G, ,(Y - (MP ,I)) if F, = Mi

where
,, 1

(2r)1`1ij- exp (-~jr 2 -1tIC

Here 1,,j is the covariance matrix associated with image feature i and object niodel

feature j. Thus image features arising from the background are uniformlvy distributed

over the image feature coordinate space (thle extent of the image feature coordinate

space along dimension i is given by VV), and matched image features are normally

distributed about their predicted locations in the image. In some applications i.,' could

be independent if 1 and j - an assumption that the feature statistics are stationary

in the image, or v, may depend only on i. the image feature index. The latter is the

case when the oriented stationary statistics model is used (see Section 3.3).
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Assuming independent features, the joint probability density on image feature

coordinates may be written as follows

pj4 II-3)Ip( i r.,i)= HI . 1 (;,q(,; -0 (. ..
i t: = T':T, =AM

((i.2J

This assumption often holds when sensor noise dominates in feature fluctuations.

The next step in the derivation is the construction of a joint prior on correspon-

dences and pose. In Chapter 2. probabilistic models of feature correspondences were

discussed. The independent correspondence model is used here for simplicity. Use of

the Markov correspondence model is discussed in the following section. The proba-

bility that image feature i belongs to the background is B,, while the remaining prob-

ability is uniformly distributed for correspondences to the in object model features.

In some situations, Bi may be a constant, independent of i. Recalling Equations 2.1

and 2.6. J B, if F?=_±(63

p(F) = Ilp(F2 ) and p(FAi)= ihrwe(6:3)
? -B otherwise

Prior information on the pose is assumed to be supplied as a normal density.

p(d) = (;?,(3 - 30)

where

;,,,(x) = (27) • 7,";3- exp (- 2x ?,3 )

Here ?,3 is the covariance matrix of the pose prior and _z is the diimensionalitv of

the pose vector. 3. With the combination of normal pose priors and linear p)rojection

models the system is closed in the sense that the resulting pose estimate will alm,

ibe normal. This is convenient for coarse-fine. as discussel in Section 6.4. If little is

known about the pose a-priori, the prior may be made quite b)road. This is expected

to be often the case. If nothing is known about the pose beforehand, the pose prior
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may be left out. In that case the resulting criterion for evaluating hyp~theses will be

based on Maximum Likelihood for pose, and on MAP for correspondences.

Assuming independence of the correspondences and the pose (before thle inal-e Is

compared to the object model), a mixed joint probability function may be written a&,

follow's,

p(r, 3) = - 3o) I- B, rJ 1 - Bi

,:F,=.= ::,: .L

This a good assumption when view-based approaches to object modeling are used

(these are discussed in Chapter 4 and used in the experiments described in Chapter

10). (With general 3D rotation it is inaccurate, as the visibility of features depends

on the orientation of the object.) This probability function on match and pose is now

used with Bayes' rule as a prior for obtaining the posterior probability of F and 3:

p(F, ;3 I Y) = P(Y I rj)p(Frft3) (6.4)
p(Y)

where p(Y) = Er f d/3 p(Y I F, 13)p(F, /3) is a normalization factor that is formally

the probability of the image. It is a constant with respet to F and 3, the parameters

being estimated.

The MAP strategy is used to obtain estimates of the correspondences and pose

by inaxiJ~izing their posterior probability with respect to F and 3, as follows

F,3 = argmax p(F, ;31 Y)

For convenience, an objective function. L, is introduced that is a scaled logarithm

of p(F. i Y). The same estimates will result if the maximization is instead carried

out over L.

F,,3 = argmax L(F.3)
FA,1

where

L(F.3) n (IFn 3 )) (6.5)C•1;.5



70 CHAPTER 6. MAP MODEL MA.T(CHING

The deionoinator in Equation 6.5 is a constant that lia. been 'hosell to cancel (ol-

stants from the numerator. Its value, which is independent of F and .3 is

B, B2 ... B• ,,C (14', '2 ..7 14,,),, (2() ]•a p Y )

After some manipulation the objective function may be expressed as

L(F. 3) 2(3( 3(i1i)

where

A,J = II B(2,r) ) B, V ."-' (6.7/

When a linear projection model is used., P(MA, 3) = A1.3. (Linear projection

models were discussed in Chapter 5.) In this case, the objective function takes the

following simple form

1 1. , -

L(F.'3) =- _ I (!- -3o)+ E [A,-., (¾-M2 3)%'i 1 (Y-MI3)] (6.8)
2 2j:,=M,

When the background probability is constant, and when the feature covariance

matrix determinant is constant (as when oriented stationary statistics are used). the

formulas simplify further -

A In (-B) W1 W .. .),21))

and

L(F. .) ( 3 ol,,.r (3_-3o)+ E [A--(1 - M, j)Tr,'? ( 1-1%) . (i.)to
2 Jr,=M:F,=I?2

Here. t.' is the stationary feature covariance matrix, and t', is the specialized

feature covariance matrix. These were discussed in Section 3.3.
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The first term of the objective function of Equation 6.8 expresses the influence of

the prior oil the pose. As discussed above, when a useful pose prior isn't available.

this term may be dropped.

The second term has a simple interpretation. It is a sum taken over those image

features that are matched to object model features. The A, are fixed rewards fur

making correspondences, while the quadratic forms are penalties for deviations of ob-

served image features from their expected positions in the image. Thus the objective

function evaluates the amount of the image explained in terms of the object. with

penalties for mismatch. This objective function is particularly simple in terms of 3.

When F is constant, /3 and its (posterior) covariance are estimated by weighted least

squares. When using an algorithm based on search in correspondence space, the es-

timate of 3 can be cheaply updated by using the techniques of sequential parameter

estimation. (See Beck and Arnold [4].) The A,, describe the relative value of a match

component or extension in a way that allows direct comparison to the entailed mis-

match penalty. The values of these trade-off parameter(s) are supplied by the theory

(in Equation 6.7) and are given in terms of measurable domain statistics.

The form of the objective function suggests an optimization strategy: make cor-

respondences to object features in order to accumulate correspondence rewards while

avoiding penalties for mismatch. It is important that the A,J be positive, otherwise a

winning strategy is be to make no matches to the object at all. This condition defines

a critical level of image clutter, beyond which the MAP criteria assigns the feature to

the background. Ai, describes the dependence of the value of matches on the amount

of background clutter. If background features are scarce, then correspondences to

object features become more important.

This objective function provides a simple and uniform way to evaluate match

and pose hypotheses. It captures important aspects of recognition: the amount of

image explained in terms of the object, as well as the metrical consistency of the

hypothesis: and it trades them off in a rational way lased on doliaiii statistics. Most
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previous approaches have not made use of both criteria simultaneously in evaluating

hypotheses, thereby losing some robustness.

6.1.1 Using the Markov Correspondence Model

When the Markov correspondence model of Section 2.3 is used instead of the indepen-

dent correspondence model, the functional form of the objective function of Equation

6.6 remains essentially unchanged, aside from gaining a new term that captures the

influence of the interaction of neighboring features. The names of some of the con-

stants changes, reflecting the difference between Equations 2.2 and 2.4. Noting that

p(F1,3 I Y) is linear in p(F), it can be seen that the new term in the logarithmic

objective function will be:
n-I

j In 7i(ri, ri+i)
i=l

As before, when an algorithm based on search in correspondence space is used, the

estimate of 3 can still be cheaply updated. A change in an element of correspondence.

some F, will now additionally entail the update of two of the terms in the expression

above.

6.2 Experimental Implementation

In this section an experiment demonstrating the use of the MMM objective function

is described. The intent is to demonstrate the utility of the objective function in a

domain of features that have significant fluctuations. The features are derived from

real images. The domain is matching among features from low-resolution edge imaoes.

The point-radius feature model discussed in Section 5.3 is used. Oriented stationary

statistics, as described in Section 3.3. are used to model the feature fluctuations. so

that A, = A'.
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6.2.1 Search in Correspondence Space

(C0od soluitionis of tile objective function of Equation 6.8 are sought bv a -earch iII

correspondence space. Search over the whole exponential space is avoided bY heuristic

pruning.

An objective function that evaluates a configuration of correspondences, or match

(described by F), may be obtained as follows:

£(F) = max L(FV,3)
J

This optimization is quadratic in ;I and is carried out by least squares. Sequential

techniques are used so that the cost of extending a partial match by one correspon-

dence is 0(1) .

The space of correspondences may be organized as a directed-acyclic-graph (DAG)

by the following parent-child relation on matches. A point in correspondence space.

or match is a child of another match if there is some i such that F, =1_ in the parent.

and F, = .11,, for some j, in the child, and they are otherwise the same. Thus, the

child has one more assignment to the model than the parent does. This DAG is rooted

in the match where all assignments are to the background. All possible matches are

reachable from the root. A fragment of an example DAG of this kind is illustrated

in Figure 6-1. Components of matches that are not explicit in the figure are assigned

to the background.

Heuristic beam search, as described in [64]. is used to search over matches for gol

solutions of £. Success depends on tile heuristic that there aren't many impostors iII

the image. An impostor is a set of image features that scores well but isn't a subset

of the optimum match implied by the objective function. Another way of stating the

heuristic is that the best match to n + 1 object features is likely to contain the best

match to n object features.

The search method used in the experiments employs a bootstrapping mechanism
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= ... NI\

r2=M7

Figure 6-1: Fragment of Correspondence Space DAG

based on distinguished features. Object features 1, 2 and 3 are special, and must

be detected. The scheme could be made robust by considering more initial triples

of object features. Alternatively, indexing methods could be used as an efficient and

robust means to initiate the search. Indexing methods are described by Clemens and

.Jacobs [19], and in Section 9.1.

The algorithm that was used is outlined below.

BEAM-SEAR('H( (M, Y)

CURRENT -- {F: exactly one image feature is matched to each of N11 M2 and Mi}

• the rest are assigned to the background.

Pruie CURRENT according to £. Keep 50 best.

Iterate to Fixpoint:

Add to CURRENT all children of members of CURRENT

Prune CURRENT according to £. Keep N best.

N is reduced from 20 to .5 as the search proceeds.
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Figure 6-2: Images used for Matching

Return(CURRENT)

Sometimes an extension of a match will I)rodIice one that is already in CIUR-

RENT, that was reached in a different sequence of extensions. When this liappelws.

the matches are coalesced. This condition is efficiently detected It" ;,-tring for miear

equality of the scores of the items in CURRENT. Because the features are derived fromn

observations containing some random noise, it is very unlikely that two hypotheses

having differing matches will achieve the same score, since the score is partly based

on sunumed squared errors.

6.2.2 Example Search Results

The search method described in the previous section was used to obtain good matches

in a domain of features that have significant fluctuations. The features were derivtc,

from real images. A linear projection model was used.

Images used for matching are shown in Figure 6-2. The object model was dlerived

from a set of 16 images. of which the image on the left is an example. In this set. onIl

the light source position varied. The image features used in the search were dlerived(

from the image on the right.

The features used for matching were derived from the edge maps slown in Figu'lre
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Figure 6-3: Edge Maps used for \latchilnQ

6-:3. The image on the left shows the object moldel edges andl the image on the 1'.10it

shows the image edges. These edges are from the (Canny edge detector 13]. 1Tie

smoothing standard deviation is eight pixels - these are low resolution edge mlaps.

Thie object model edges were derived from a set of 16 edge maps. corresponding to the

16 images described above. The object model edges are essentially the mean edlges

with respect to fluctuations induced bv variations in lighting. (Low resolution edges

are sensitive to lighting.) They are similar to the Mean Edge Images described ili

Section 4.4.

The features used in matching are shown in Figure 6-4. These are pointt-radills

features, as described in Section 5.3. Tie point coordinates of the features are inidi-

cated yv (lots, while the normal vector and curvature are illustrated Lv arc fragnentis.

Each feature represents :30 edge pixels. The 40 object features appear in the upper

picture, the 125 image features lower picture. The distinguished features used in I hie

bootstrap of the search are indicated with circles. The object features have been

transformned to a new pose to insure generality.

The parameters that appear iln the objective function are: B. the background

probability and e,', the stationary feature covariance. These were derived from it

matchl done bvl hand in the example domain. The oriented stationary statistics modhel

of Section 3.3 was used here. (A normal model of feature fluctuations is implicit in
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Figure 6-5: Pose Prior used in Search

the objective function of Equation 6.8. This was found to be a good model in this

domain.)

A loose pose prior was used. This pose prior is illustrated in Figure 6-5. The prior

places the object in the upper left corner of the image. The one standard deviation

intervals of position and angle are illustrated. The one standard deviation variation 4f

scale is :30 percent. The actual pose of the object is within the indicated one standard

deviation bounds. This prior was chosen to demonstrate that the method works well

despite a loose pose prior.

The best results of the beam search appear in Figure 6-6. In the upper image.

the object features are delineated with heavy lines. They are located according to

the pose associated with the best match. In the lower image. the object features and
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image features are illustrated, while the IS correspondences assuciated with the t

match appear as heavy lines and dots.

The object features located according to the poses associated with the hve ,e>r

matches are seen in Figure 6-7. The results are difficult to distinguish because the

poses are very similar.

6.3 Search in Pose Space

This section will explore searching the MMM objective function in pose space. ('on-

nections to robust chamfer matching will be described.

A pose estimate is sought by ordering the search for maxima of the MMM objective-

function as follows,

3 = arg max nax LT'I)
,a r

Substituting the objective function from Equation 6.6 yields

VI B ))T<,,-I (y _ p(
3 = argmax max [A,.- -(Y 2 P( ), 3 '\.' ) )] .J r 2 t

The pose prior term has been dropped in the interest of clarity. It would be easily

retained as an additional quadratic term.

This equation may be simplified with the following definition.

Diz) W- l ?,-1X.

2

Di,(.x) may be thought of as a generalized squared distance between observed ;tmid

predicted features. It has been called the squared Mahalonobis distance [22].

The p)ost, estimator may now be written as

3 = arg max max E [A, Y - - 'P(,t, 3))]
J F 

t
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Figure 6-7: Best Five Match Results

or equivalently. as a minilization rather that maximization.

3 argminin mini '\'~¾ (~.3)-AtJ F

The sum is taken over those image features that are assigned to miodel featiires

(not the background) in the match. It may be re-writ tei in t lie followiii_ Wii.

. a= rg m ill 111111 0 if v, =
. J - ,if F:

ar.ý mi L m li , miii I)n i,' ,- PfI..1--. , 1,

If thie currespon,'ieice reward is (uuil,1i,, t' , o tlie miuilel feat ilire I lli'. IIt l , V, \ !,.i

ori•ented statI onarv stat >tics are ulsed A). , - A,. III tllis case. \, inIay . , t
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each term in the sum without affecting the minimizing pose. yielding tile following

form for the pose estimator.

3 = arg min m min(A,, riin D,(1(' - P('. -.1))) 6.l1
,3 j

This objective function is easily interpreted - it is the sum. taken over image

features of a saturated penalty. The penalty (before saturation) is the smallest gen-

eralized squared distance from the observed image feature to some projected model

feature. The penalty rnins D,,(x - 'P(,f, 3)) has the form of a Voronoi surface. as

described bv Huttenlocher et. al. [42]. They describe a measure of similarity on

image patterns, the Hausdorff distance, that is the upper envelope (maximum) of

Voronoi surfaces. The measure used here differs in being saturated, and by using the

sum of Voronoi surfaces, rather than the upper envelope. In their work. the upper

envelope offers some reduction in the complexity of the measure. and facilitates the

use of methods of computational geometry for explicitly computing the measure in 2

and 3 dimensional spaces.

('omputationa] geometry methods might be useful for computing the objective

function of Equation 6.11. In higher dimei-sional pose spaces (4 or 6. for example)

KD-tree methods may be the only such techniques currentlv available. Br,-iel ha&

Used KD-tree search algorithlis in feature matching.

Next a connection will be shown between MMM search in pose space and a nletliud

of robust chamfer matching. First. the domain of MNIMM is simplified in the followinla
way. Full stationarity of feature fluctuations is assumed (as covered in Section .i

Fizrtlher. the feature covariance is assumed to be isotropic. With these assumlptiowi

we have . = 2I. aid , = ,1 . . .dlti allv. assumim - c,,st alit lhackor,,lim

I)rloalfilitY. wt- have A,ý = A. Thi- pose estimatur of Equation (1.11 iliav .\ 1,
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written in the following simplified form,

3=arg iiin iiiiin(A. niiiin(y 1 -1 TNAI 3,)2f

When the projection function is linear, invertible, and distance preserving. 2[)

and 31) rigiid transformations satisfy these properties), the estimator may be expre>v.ed

as follows.

,3 = arg min, min(A., min(., IIT-'( I." i5) - jI))L .

This may be further simplified to

3 =argmin • min(A. d2 (P'-(' 1 , 3))) (6.12)

by using the following definition of a minimum distance function.

d(x) - I min Ix - MAl , (6.13)

Chamfering methods may be used to tabulate approximations of d2 (x) in an image-

like array that is indexed by pixel coordinates. ('hamfer-based approaches to image

registration problems use the array to facilitate fast evaluation of pose .objective

functions. Barrow et al. [3] describe an early method where the objective function

is the sum over model features of the distance from the projected model feature to

the nearest image feature. Borgefors [8] recommends the use of RMS distance rather

than summed distance in the objective function.

Recently. .Jia ug et al. [47] describI)ed a method of robust chamfer matching. In

otrler to make the method less susceptible to (1isturratice },v outliers and occlu-j.>iou.

th-y ai Ied saturation to the R.MS olbjective function of Borrgefors. Their oh jectivr
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function has the following form

1 1

where d' is the squared distance from the j'th projected model point to tile near-

est image point. Aside from the constants and square root, which don't affect the

minimizing pose, this objective function is equivalent to Equation 6.12 if the role of

image and model features is reversed, and the sense of the projection function is in-

verted. Jiang et a). show impressive results using robust chanmfer matching to register

multi-modal 3D medical imagery.

6.4 Extensions

MAP Model Matching performs well on low resolution imagery in which feature

uncertainty is significant. It could be used to bootstrap a coarse-fine approach to

model matching, yielding good results with reasonable running times. ('oarse-fine

approaches have proven successful in stereo matching applications. (See Griinson

[33] and Barnard [2].) A coarse-fine strategy is straightforward in the framework

described here. In a hierarchy, the pose estimate from solviing the objective function

at one scale is used as a prior for the estimation at the next. Having a good prior on

the pose will greatly reduce the amount of searching required at high resolution.

Finiding a tractable model that incorporates pose dependent visibility conditioiis

would ihe useful for applying MMM in non view-based recognition.

6.5 Related Work

The HYPER- vision system of Avache and Faugeras [1) uses sequential linear-leas;-

squares pose estimation as well as the linear 2D point feature and projection model

le-scrilhed in Section 5.2. HYPER is descrilbed as a search algorithm. Different criteria
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are used to evaluate candidate matches and to evaluate competing "'whole" hypothe-

ses. An ad hoc threshold is used for testing a continuous measure of the metrical

consistency of candidate match extensions. Whole match hypotheses are evaluated

according to the amount of image feature accounted for - although not according to

overall metrical consistency. HYPER works well on real images of industrial part,.

(Coad outlined a Bayesian strategy of match evaluation based on feature and

background statistics in his paper on automatic programming for model-based vision

[29]. In his system. search was controlled by thresholds on probabilistic measures of

the reliability and plausibility of matches.

Lowe describes in general terms the application of Bayesian techniques in his book

on Visual Recognition [51]. He treats the minimization of expected running time of

recognition. In addition he discusses selection among numerous objects.

Object recognition matching systems often use a strategy that can be summarized

as a search for the maximal matching that is consistent. Consistency is frequently

defined to mean that the matching image feature is within finite bounds of its expected

position (bounded error models). Cass' system (14] is one example. Such an approach

may be cast in the framework defined here by assuming uniform probability density

functions for the feature deviations. Pose solution with this approach is likely to be

more complicated than the sequential linear-least-squares method that can be used

when feature deviations have normal models. ('ass' approach effectively finds the

global optimum of its objective function. It performs well on occluded or fragmented

real images.

Beveridge, 'Weiss and Riseman [6] use an objective function for line segment based

recognition that is similar to the one described here. In their work, tHie penalty for

deviations is quadratic. while the reward for correspondence is non-linear (expoileil-

tial) in the amount of niissing segment length. (By contrast, the reward describedI iI

this paper is, for stationary models, linear in the length of aggregate features.) The

trade-off parameters in their objective function were determined empirically. Their
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system gives good performance in a domain of real images.

Burns and Riseman [12] and Burns [11] describe a classification based recognition

systenm. They focus on the use of description networks for efficiently searching among

multiple objects with a recursive indexing scheme.

Hanson and Fua [27] (26] describe a general objective function approach to image

understanding. They use a minimum description length (MDL) criterion that i>

designed to work with generic object models. The approach presented here is tailored

for specific object models.

6.6 Summary

A MAP model matching technique for visual object recognition has been described.

The resulting objective function has a simple form when normal feature deviation

models and linear projection models are used. Experimental results were shown

indicating that MAP Model Matching works well in low resolution matching. where

feature deviations are significant. Related work was discussed.



Chapter 7

Posterior Marginal Pose

Estimation

In the previous chapter on MAP Model Matching the object recognition prol)lem was

posed as an optimnization problem resulting from a statistical theory. In that formu-

lation, complete hypotheses consist of a description of the correspondences between

image and object features, as well as the pose of the object. The method was shown

to provide effective evaluations of match and pose.

The formulation of recognition that is described in this chapter. Posterior Marginal

Pose Estimation ' (PMPE), builds on MAP Model Matching. It provides a smooth

objective function for evaluating the pose of the object - without commnitment to a

particular match. The pose is the most important aspect of the problem, in the sense

that knowing the pose enables grasping or other interaction with the object.

In this chapter, the objective function is explored by probing in selected parts of

pose space. The domain of these experiments is features derived from synthetic laser

radar range imagery. and grayscale video imagery. A limited pose space search is

performed in the video xperiment.

In ('hapter 8 the Expectation - Maxinization (EM) algorithm is discussed as a

'An early version of this work appeared in [76]

S7
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Ineails of searching for local maxima of the objectivo function in pose space.

Additional experiments in object recognition using the PM PE objective fti'ict'ion

are described in (Chapter 10. There, the EM algorithm is used in conjunction with

aii indexing method that generates initial hypotheses.

7.1 Objective Function for Pose

The following method was motivated by the observation that in heuristic searches over

correspondences with the objective function of MAP Model Matching. hypotheses

having implausible matches scored poorly in the objective function. The implication

was that sunuming posterior probability over all the matches (at a specific pose) might

provide a good pose evaluator. This has proven to be the case. Although intuitively.

this might seem like an odd way to evaluate a pose, it is at least democratic in that

all poses are evaluated in the same way. The resulting pose estimator is smooth.

and is amenable to local search in pose space. It is not tied to specific matches -

it is perhaps in keeping with Marr's recommendation that computational theories of

vision should try to satisfy a principle of least comnmitment [52].

Additional motivation was provided by the work by Yuille Geiger and Biilt3ioff

on stereo [78]. They discussed computing disparities in a statistical theory of stereo

where a marginal is computed over matches.

In MAP Model Matching, joint hypotheses of match and pose were evaluated by

their posterior probability, given an image - p(F, 3 1 v). F and 3 stand for cor-

respondences and pose, respectively. and Y for the image features. The p•osterior

prolbability was built from specific models of features and correspondlences. ,,,ect .

and projection that were described in the previous chapters. The present for:nihla-

tion will first Ihe lescribed using the independent correspomdemce model. I's.e if the

Markoe correspondence model will be described in the following section.

Here we use the same strategy for evaluating object poses: they are evalumat.ed
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by tieier posterior probability, given an image: p( 3 I V). The posterior probability

density of the pose may be computed from the joint posterior probability on pose and

match. by formally taking the marginal over possible matches:

p(,3 I Y)= = p(r,,3 1 Y)
F

In Section 6.1. Equation 6.4, p(F,,,3 I Y) was obtained via Bayes" rule from prob-

abilistic models of image features, correspondences, and the pose. Substituting for

p(F. 3I Y), the posterior marginal may be written as

P("5 V) p(Y I F. 3)P(F(71)

r PMY)

Using equations 2.1 (the independent feature model) and 6.2, we may express the

posterior marginal of 3 in terms of the component densities:

p(,3Y I -) EE-.."Erl ,P(Yi I r, i3) Ip(ri)P(:3)
M Y 1 2 I

or

p(,3IY) = p(-) EE..[E ( 2 j rF,3)p(r,)]

Breaking one factor out of the product gives

P " ) I EL ). . .* . [ p(LY .F1) p ( F, ) ] p ( ; , ,. ,3) ; 4 , , )

Or

])(,'I • [ , I r, - P(r,)] P1K,, 1r .' )P(F,,)
FiY 1-)n-l Lt~l 2
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(Continuing in similar fashion yields

p(3 P.-- p(I r 3.)p(1F7)

This may be written as

P~dI) 7 7 1P(Y. 1  K

sin ce

p(Y, 1 3)= -p(o'; I F,. )p(Fr) (7.3)
F,

Splitting the Fi sum into its cases gives,

P(,; I A3)= P( I F, =_L, 3 )p(F, =_L)+ Zp(Y, I F, M1 . 3)p(F, =.

Substituting the densities assumed in the model of Section 6.1 in Equations 6.1 and

2.2 then yields

p(Y i )= Bi + I,- p ( M) , 3)) 1B (7.4)p(• /3 _ W , ... W", M)

installing this into Equation 7.2 leads to

_oI B , .. Bnp3 +_____ V14...W~ 14 ,I-B,(
,(,3I )= (,,71 ,V- 1::,- ),, (,- l F + ... B , ,,(Y ; - 'P(M.(. B,

As in Section 6.1 the objective function for Posterior Marginal Pose Estimation i1.

defined as the scaled logarithm of the posterior marginal probability of the pose.

L(U3) = p( )]
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where, as before,

B, B2 ... B)
(27r)ýj .,WT-ý-

This leads tot the foliow Ing expressilon fort the object Ive funct Ion (use of a njormalI jmý>t-

prior is assumed)

L( -(-.1) i,-7'(3_3)+•ln II I +ZB.., ( - T' Ali,- U, B1 a•(,,} •\:.'

This objective function for evaluating pose hypotheses is a smooth function of the

pose. Methods of continuous optimization may be used to search for local maxima.

although starting values are an issue.

The first term in the PMPE objective function (Equation 7.5) is due to the po•se

prior. It is a quadratic penalty for deviations from the nonminal pose. The second

term essentially measures the degree of alignment -f the object model with the image.

It is a sum taken over image features of a smoc , non-linear function that peaks up

positively when the pose brings object features into alignment with the image feat ure

in question. The logarithmic term will Ibe near zero if there are no n• odel feature.-

close to the image feature in question.

In a straightforward implementation of the objective function. the cost of evalu-

ating a pose is O(mn), since it is essentially a non-linear double sum over image and

model features.

7.2 Using the Markov Correspondence Model

When the Markov (Correspondence model of Section 2.3 is used instead of the in-

dependent correspondence model, the summing techniques of the previous section

no longer apply. Because of this, a computationally attractive closed form formula
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for the posterior probability no longer obtains. Nevertheless. it w ill be sihuwii that

the posterior probability at a pose can still be efficiently evaluated using dyiiamiC

prog raimini ig.

Referring to Equation 7.1, and using the independence of match and pose in the

prior (discussed in Section 6.1 . the posterior marginal probability of a pose may be

written as follows.

p(.1I V ) = - .i)p(F)p(3)

P(V)

lsing Equations 2.3 and 6.1.

P(,3 1'}) = p(.3) y
p- E p(vi Fr. ,i)p(i 2  I r[ .3)--.. p. , r [..3) q(F, )q(U2 1 . q(F,,i

rl( I. z~2(F . F•) -. r,_ (F, 1. V,,

This may be re-written as follows.

p(; Y)M- y)

where

c, = ,(I F, 3)q(F,)

Here. the dependence of c on .3 has been suppressed for notational brevitv.

Next it will be shown that p(.3 I V ) may be written using a recurrence relation:

p( I Y)) - 1 h,,(F,-)c,L([,) (7.7

P(V )r,

where

111(a) =-i Ec 1(b)7r1(b.a) iTS

h,,+,(a) = • h,,(b)c,,+7 (b),',,+1 (b, a) 7.9)
b
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Expanding Equation 7.7 in terms of the recurrence relation.

P(.3 1V ) = P( ) : h,,-2(F,,_-~ , ,_ ,_ )'?,,_I(F?,,_l.r,) 17, 1,

011

p(3 - ) V) h,2,2 (F,_I C101) r,,i(k ._1 . F,. K
I- n--

Again using the recurrence relation,

_O 11" p( )h~ ( r,,-2 )CI- A (E -2 )?'?L 2 ( 17,.2, 17 1)P(A 31 Y')- p(Y r _r ,

. 1- c,(F,)*,',,_(r,,-,.Fr,,) ,

7 L - 1

or

pp Y) E h,,_ 3 (F,,_ 2 ) 1" c,(F,) 171 r,(F,. F,.),
rn-2Ir,-,I. t=Y---2 1=n- 2

Continuing in similar fashion leads to

p(jIY) • 1 h( 17) 7jc,, lr

P(MY) r2r... n =2 Z=2

and now using the base expression for h(

PO(1 Y) I,(= )7.1(rI ' r) H '(17]) yIj p , 1,•,+)P(3 )-p(V) r2,3 ...r In I,=2 t=2

or finally.
V) (• = L- E ftCIr) 7-,,(r,. r,+,)

A3 7' Y) - ( z ... F, r =1 j
which is the same as Equation 7.6. This completes the verification of Equation 7.

Next. a dynamic programming algorithm will be described that efficiently evalui-

ates an objective function that is proportional to the posterior marginal probability
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of a pose. The objective function is 01 1 h a 1 .

p-•T~ t .# - T ilt algorithin *,, a direct inple-

mentation of the recurrence defined in Equations 7.7, 7.8 and 7.9. that builds a table

of values of h,( ) from the bottorn up. Note that h,(bb on]\ has two valueý. depending

on whether b =_1 or not. In the following description. the symbol 7- i, used to stand

for an anonvmous model feature. H.. (lenotes array locations that store values of 1,.

111d H(-. ) is an access function, defined below, that acceý,ýes tih stored value,-

I ( '.e Dyviamic Prograunming to evaluate PAIPE with Alarkm ('orres.,pontle-ict-' Ald-,Il.

EVALUATE-POSE(3)

H. F C('(1. b, 3)r1 (b. I)

H -- C6 ('(1,b. 3)ril(b, T)

For i 2 To N- I

H L - F 6 H(i - 1, b)('(i, b. 3)r,,+1 (b, -.L)

H,T, E- , H(i - 1. b)('(i, b. (br,,(b. T)

RETURN (2b H(N - 1.b)('(n,b,3))

"Define the auxiliary function C.

C'(1,. 3)

RETURN(p(1, 4 h3)q(b))

Access values of H stored in a table.

H(a.b)

IF b =_1 RETURN (H,,1 )

ELSE RETURN (HT)

The loop in EVALUATE-POSE executes 0(n) times, and each time through the

loop does O(m) evaluations o' the sunimands, so the complexity is O(7711). This
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has the same complexity as a straightforward implenmentation of tIhe PM PE objective

function when the Markov model is not used (Equation 7 5).

The summing technique used here was described by ('heeseman [17] in a paper

about using maximum-entropy methods in expert systems.

7.3 Range Image Experiment

An experiment investigating the utility of Posterior Marginal Pose Estimation is de-

scribed in this section. Additional experiments are described in Chapter 10.

The objective function of Equation 7.5 was sampled in a domain of synthetic range

imagery. The feasibility of coarse-fine search methods was investigated by sampling

smoothed variants of the objective function.

7.3.1 Preparation of Features

The preparation of the features used in the experiment is summarized in Figure 7- 1.

The feature,, were oriented-range features, as described in Section 5.4. Two sets of

features were prepared, the "model features", and the "image features".

The object model features were derived from a synthetic range image of an M35

truck that was created using the ray tracing program associated with the BRL ('AD

Package [23]. The ray tracer was modified to produce range images instead of shaded

images. The synthetic range image appears in the upper left of Figure 7-2.

In order to simulate a laser radar, the synthetic range image described above was

corrupted with simulated laser radar sensor noise, using a sensor noise model that

is described by Shapiro. Reinhold. and Park [62]. In this noise model. mneasured

ranges are either valid or anomalous. Valid measurements are normally distributed,

and anomalous measurements are uniformly distributed. The corrupted range image

appears in Figure 7-2 on the right. To simulate post sensor processing. the corrupted

image was "restored" via a statistical restoration method of Menon and Wells [56].
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CAD MODEL

RAY TRACER

RANGE ENRANGE IAERANGE
IMAGE SOIMAGE IMAGE

NOISY E

FEATURES

FuEPerooeuFEATURES

Figur 7-1"PrepaatioRAfNFeture

I ~ ~ ~ B ITEII STII



R.AUE AGAE EXP~ERJIMENT

Fiur 72:Sytetc ane maeNosyRageImg dldReord age m



= III 
III

/ --' 
/

Fip;u e -3 M o el Fe tu es N ois Fe t r s-1 d [ a;e F a~ e

!



7.3-. RANGE IMAGE EXPERIMENT 99

The restored r'ange image appears in the lower position of Figure 7-2.

Oriented range features, as described in Section 5.4, were extracted from the Mvn-

thetic range image. for use as model feature:s - and from the restored range i1ilage.

these are called the noisv features. The features were extracted from the range images

in the following manner. Range dis( ontnuities were located by threslhlding neigh-

boring pixels, yielding range discontinuity curves. These curves were then segmented

into approximately 20-pixel-long segments via a process of line segment approxima-

tion. The line segments (each representing a fragment of a range discontinuity curve)

were then converted into oriented range features in the following manner. The X and
V coordinates of the feature were obtained from the mean of the pixel coordinates.

The normal vector to the pixels was gotten via least-squares line fitting. The range

to the feature was estimated by taking the mean of the pixel ranges on the near side

of the discontinuitv. This information was packaged into an oriented-range feature.

as described in Section 5.4. The model features are shown in the first image of Fig-

ure 7-3. Each line segment represents one oriented-range feature, the ticks on the

segments indicate the near side of the range discontinuity. There are 113 such object

features.

The noisy features, derived from the restored range image, appear in the second

image of Figure 7-3. There are 62 noisy features. Some features have been lost due

to the corruption and restoration of the range image. The set of image features was

prepared from the noisy features by randomly deleting half of the features, transform-

ing the survivors according to a test pose, and adding sufficient randomly generated

features so that I of the features are due to the object. The 248 image features appear
8

in the third image of Figure 7-3.

7.3.2 Sampling The Objective Function

The obhective functiotn of Equation 7.5 was sampled along four straight lines passing

through the (known) location in pose -pare of the test pose. Oriented satiora,%I
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statistics were used, as described in Section 3.3. The stationary feature ck,,'ariance

was estimated from a hand match done with a mouse between the model features and

the noisy features. The background rate parameter B was set to

Samples taken along a line through the location of the true pose in pose space.

parallel to the X axis are shown in Figure 7-4. This corresponds to moving the object

along the X axis. The first graph shows samples taken along a 100 pixel length (the

image is 256 pixels square). The second graph of Figure 7-4 shows samples taken

along a 10 pixel length, and the third graph shows samples taken along a 1 pixel

length. The X coordinate of the test pose is 55.5, the third graph shows the peak of

the objective function to be in error by about one twentieth pixel.

Samples taken along a line parallel to the y axis of pose space are shown in Figure

7-5. This corresponds to a simultaneous change in scale and angular orientation of

the object.

Each of the above graphs represents 50 equally spaced samples. The samples are

joined with straight line segments for clarity. Sampling was also done parallel to the
V and v axes with similar results.

The sampling described in this section shows that in the experimental domain the

objective function has a prominent, sharp peak near the correct location. Some local

maxima are also apparent. The observed peak may not be the dominant peak - no

global searching was performed.

Coarse-Fine Sampling

Additional sampling of the objective of Equation 7.5 was performed to investigate the

feasibility of coarse-fine search techniques. A coarse-fine search method for fndinig

maxima of the pose-space objective function would proceed as follows. Peaks are

initially located at a coarse scale. At each stage, the peak from the previous scale is

used as the starting value for a search at the next (less smooth) scale.

The objective function was smoothed by replacing the stationary feature covari-
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ance matrix 1.' in1 tile following: manner:

The effect of the smoothing matrix v,,' is to increase the spatial scale of tle co-

variance matrices that appear inI the objective function.

Probes along the AX axis through the known location of the test pose, with variolu

amounts of smoothing are shown in Figure 7-6. The smoothing matrices used in tle

probing were as follows, in the same order as the figures.

DIAG((.1 )2, (.1 )2, (10.0)2. (10.0)2)

DIAG((.025) 2 , (.025)2, (2.5)2, (2.5)2)

and

DIAG((.01 )2,(.01 )2, 1.0, 1.0)

where DIAG(.) constructs diagonal matrices from its arguments. These smoothing

matrices were determined empirically. (No smoothing was performed in the fourth

figure.)

These smoothed sampling experiments indicate that coarse-fine search may be

feasible in this domain. In Figure 7-6 it is apparent that tile peak at one scale may

be used as a starting value for local search in the next scale. This indicates that a

final line search along the X axis could use the coarse fine strategy. It is not sufficient

evidence that such a strategy will work in general. As before, there is no guarantee

that the located maximum is the global maximum.
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Figure 7-6: X Probes in Smoothed Objective Function
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7.4 Video Image Experiment

In this section, another experiment with the PMPE objectivc- fu mtin -i te-,rI,,t.

The features are point-radius features derived fromi video images. A ,,hwal -earch iI

pose space is carried out. and the objective function. and a sinoothed variant. art,

prolbed in tlhe vicinityv of the peak.

7.4.1 Preparation of Features

The features used in this experiment are the same as those used in the MIAP Model

Mlatching correspolldelnce search experiment reported iii Section 6.2. They are point-

radius features, as described in Section 5.-3. The features appear in Figure 6-4.

7.4.2 Search in Pose Space

A search was carried out in pose space from a starting value that was determined by

hand. The search was implemented with Powell's method [59] of multidimensional

non-linear optimization. Powell's method is similar to the conjugate-gradient method,.

but derivatives are not used. The line nunimizations were carried oJut with Brent's

method [59]. which uses successive parabolic approximations. The pose resulting

from the search is illustrated in Figure 7-7. This result is close to the best result

from the MIAP Model Matching correspondence search experiment. That result Is

reproduced here in Figure 7-8. It is comforting that these two substantially different

search methods (combinatorial versus continuous) provide similar allsx ers iII. at least.

olle experiment.

7.4.3 Sampling The Objective Function

Samples were taken along four straight lines passing through tihe peak in the objec-

tive function resulting from the search in pose space reported above. (In the range

experiIlei)t. samimpling was done through the known true pose.) The results are illhis-
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/ K e

Figure 7-9: Probes of Objective Function Peak

tratedl in Figure 7-9. The peak in this data is not as sharp as the peak in the range

experiment reported in the previous section. This is likely due to the fact that the

features used in the video experiment are substantially less constraining that those

used in the range experiment - which have good range information in them.

Sampling of the objective function with snioothing was also performed, is ill

Sect ion 71.2.
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Smoothing was performed at one scale. The smoothiniii matrix was

DI A(((.03)2 , (.0:3)2, (3.0)2, (:3.O)'

Probing. performed in the same manner as in Figure 7-9 was performed on the

smoothed objective function. The results arc shown in Figure 7-10. In comparison

to the range image experiment, local maxima are more of an issue here. This ,nay he

partly due to the background features here having more structure than the raudoinly

generated background features used in the range image experiment. Because of this.

anomalous pose estimates (where the pose corresponding to the global maximum of

the objective function is seriously in error) may be more likely in this domain than

in the range experiment.

7.5 Relation to Robust Estimation

This section describes a relationship between PMPE and robust estimation. By

simplifying the domain a robust estimator of position is obtained. A connection

between the simplified robust estimator and neural networks is discussed.

Consider the following simplifications of the domain:

* drop the pose prior

* the object has one feature

e the image is one-dimensional with width WV

* the pose is a scalar

* the projection function translates: P(-. 3) =
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Figure 7-10: Probes of Smoothed Objective Function
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With these simplifications, the observation model of Equation 6.1 become.

I & -
if r , = - -

p(V F.3) = ifw=

,(- 3) otherwise

here

G'(X) = -exp (-+

In this simplified domain F may be interpreted as a collection of variables that de-

scribe the validity of their corresponding measurements in Y. Thus. F, #14_L may be

interpreted as meaning that V' is valid, and F, =1 as Y' being invalid. p( 1") is defined

to be zero outside of the range [-W W-].

The prior on correspondences of Equation 2.2 takes the following form

p(,)= B ifr,=IL

1 - B otherwise

Using Bayes" rule and the independence of F, and :3 allows the following probability

of a sample and its validity,

B If r, =2-

p(YZ. F, I 3) = p( r, F,. 3)p(F,) = (1 - B)( - if Fthrwi(7.10)
( I- ) G (Y1 ý3)otherwise

The probability of a sample may now be expressed by taking a marginal over the

probability in Equation 7.10. as follows.

B3).B = Z1(;' F !) = - + (1 - B(;,(V - 3)

Defining an objective function as a log likelihood of 3

L(3) = In I 3)
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leads to the analog of the PMPE objective function for this simplified domain.

L(o) =ZIn [-•-+ - B)(;C,(z -3) 17.11

This may also be written

L(3) = ,(- 3) (712)

where

= In + (1 - B)Gix)]

This is the Maximum Likelihood objective function for estimating the mean of a

normal population of variance o,', that is contaminated with a uniform population of

width W, where the fraction of the mixture due to the uniform population is B.

The function S(x) is approximately quadratic when the residual is small, and

approaches a constant when the residual is large. When B goes to zero, S(x) becomes

quadratic. and the estimator becomes least squares, for the case of a pure normal

population. When -,(x) is viewed as a penalty function, it is seen to provide a

quadratic penalty for small residuals, as least squares does. but the penalty saturates

when residL JS become large. Robust estimation is concerned with estimators that

are. like this one, less sensitive to outliers that least squares. As with many robust

estimators. the resulting optimization problem is more difficult than least squares,

since the objective function is non-convex. This estimator falls into the class of re-

descending M-estimators as discussed by Huber [41].

PM PE is somewhat different from robust estimation in that the satmlrating aspect

of the objective function not only decreases the influence of "'outliers" (bv analoy.

the background features). it also reduces the influence of image features that don't

correspond to (are not close to) a given object feature.
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7.5.1 Connection to Neural Network Sigmoid Function

There is an important connection between the estimator of Equation 7.12 and tile

sigmoid function of neural networks,

1q<x) =
1 + exp (-X)

The sigmoid function is a smooth variant of a logical switching function that has

been used for modeling neurons. It has been used extensively by the neural network

community in the construction of networks that classify and exhibit some forms of

learning behavior. The NETtalk neural network of Sejnowski and Rosenberg [61] is

a well know example.

It turns out that, under some conditions oil the parameters, the sigmoid function

of X 2 is approximately equal to S(x), ignoring shifting and scaling. This near equality

is illustrated in Figure 7-11.

The two functions that are plotted in the figure are

f (x) = 2.0 [a (xr) - .5] and g(x) = ln[.25 + .75exp(-xr2 )]
fn[.251

The upper graph shows f(x)andg(x) plotted together, while the lower graph show"

their difference. It can be see ' a' they agree to better than one percent.

Because of this near equality, for a special 1ase of the parameters. a network that

evaluates the ML estimator of Equation 7.12 for a c-mtaminated normal population

will have the form illustrated in Figure 7-12.

This network, with its arrangement of sigmoid and sum units seems to fit the

definition of a neural network.

The robust estimator of Equation 7.12. and its neural network approximation. are

(approximately) optimal for locating a (aII.'I:., cluster in uniform noise.

A similar neural network realization of the PMPE objective function would like-

wise be near optimal for locating an object against a uniform background.
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Fligure 7-12: Network Imlplementation of MAP Estimator for ( 'ontanminated .Normal
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7.6 PMPE Efficiency Bound

This section provides a lower bound on the covariance matrix of the PMPE estimator.

Estimators of vector parameters (like pose) may be characterized by tile covarialice

matrix of the estimates they produce. The Cramer-Rao bound provides a lower

limit for the covariance matrix of unbiased estimators. Ulnbiased estimators that

achieve this bound are call cfficirnt estimators. Discussions of estimator efficiencv

and ('ramer-Rao bounds appear in [63] and [72].

The ('ramer-Rao bound on the covariance matrix of estimators of 3 based oln

observations of X is given by the inverse of the Fisher information matrix.

C OV(;3) > I•,'(,3) .

Here, COV(-) denotes the covariance matrix of the random vector argument. This

matrix inequality means that (,OV(O) - IF' (3) is positive semi-definite.

The Fisher information matrix is defiued as follows.

IF(3) =- Ex([Vj In p(X I 3)][V 3 In p(X 13)]T)

where Vj is the gradient with respect to 3. which yields a colunm-vector, and EV(.)

stands for the expected value of the argument with respect to p(X).

The covariance matrix, and the (Cramer-Rao bound, of the PMPE estimator are

difficult to calculate. Instead, the ('ramer-Rao bound and efficiemy will be deter-

mined for estimators that have access to both observed features V,. and the corre-

sponldences r'. The (ramer-Rao bound for these "complete-data'" estimators will ibe

found. and it will be shown that there are no efficient complete-data estimators. Be-

calise of this. the PMPE estimator is subject to the same bound as the complete-data

estimators, and the PM PE estimator cannot l)e efficient. This follows. because the

P.\lPE estimator can lie considered to be technically a complete-data estimator that



116 CHAPTER 7. POSTERIOR MARGINAL POSE ESTIMATION

ignores the correspondence data.

In terms of the complete-data estimator, the Fisher information has the following

form.

IF(3 ) = EyFr([Vj lnp( . r I )][-n Inp(I, F T. 13)

Assuming independence of feature coordinates and of correspondences, tihe prob-

ability of the complete-data is

p(O. F 1 3)= Ip0, -, ;3)

Using Bayes rule and the independence of F and 3,

3),;, r. [!)-=p(Y, I Fr, 3)p(F,) . (7.14)

Referring to Equations 6.1 and 6.3, and using constant background probability B.

and linear projection, the complete-data component probability may be written as

follows, Bs if 17, = _L

p(o,. r, 13) = KJ 2 ., ' i
• -1(;•-B (;I" - .1433) if F, = m3l

Working towar&- expression for the Fisher information, we differentiate the complete-

data probability to obtain

V3, np(Y, F r 3) = Vj Inl'P( I ,. = IP Vp(Yl'. F, 13)
Sp(Yi. F, I 3)

When F, =_1. V jp(}. F, .3) = 0. otherwise, in the case Y, = M3.

. . 7, 3) = 
I I B
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Differentiating the normal density (a formula for this appears in 8.3). 1ives

I B(_ , T

so that

( ', F, 3) - _ f , ,(t - I 3) when F, = .11,

p( Y, 17,I 3)

Then the gradient of the complete-data probability may be expressed as

V, III P(Y. F I )= - Q Tr I(Y ,•3)
:J:F, =M)

Note that setting this expression to zero defines the Maximum Likelihood estimator

for 3 inl the complete-data case, as follows:

',I r jT,-i 'V'jTý,-1,jV1I; U•f',• = w,<,w

or

U: Ms i.r:,=M,

This estimator is linear in Y. The inverse has been assumed to exist - it will exist.

provided certain linear independence conditions are met, and enough correspondences

to model features appear in the match. This typically requires two to four correspon-

lences in the applications described here.

Returning to the Fisher information. we need to evaluate the expectation:

IF = Ey.r T) ,,, ,
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where the ij'th residual has been written as follows.

Re-naming indices and pulling out the sums gives

IF= Ey,F (Z J I'd Ili
L/:I-,=Ai, IT':,,--N/F

Referring to Equation 7.14. the expectation may be split and moved as follows.

IF = E- ( Lj':i, Aq.t , YllYE1Ik~JtTix.)

The inner expectation is over mutually independent Gaussian random vectors, and

equals their covariance matrix when the indices agree, and is zero otherwise. so

IF = E- ) T""
( 1 -F.=A ,\I F : =Af),

This expression simplifies to the following:

IF = Er (E:,j IIT,,,- I Ml)

The sun. may be re-written in the following way by using a delta function comparmii

F, and .1I,.

The expectation is just the probability that an image feature is matched to solme

model featulre. This is 1-. so the Fisher information may be written in the follohwil!ý
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simple form.

IF H.1 1 Ir111 ~'lj

or as.

IF =(- B)n 1 Z ;T . .-

This is an attractive result, and may be easily interpreted, in relation to the Fisher

information for the pose when the correspondences are fixed (a standard linear esti-

mator). The Fisher information in that case is E 1, 1.t, M1. it may be interpreted

as the sum over matches of the per-match Fisher information.

In light of this, the complete-data Fisher information is seen to be the average

of the per-match Fisher information, multiplied by the expected number of featiures

matched to the model, (1 - B)n.

An efficient unbiased estimator for the complete-data exists if and only if

i = 3 + iF' (,))v in p( m. F 13)

This requires that the right hand side be independent of 3. since the estimator .1

(Equation 7.15) is not a function of 3. Expanding the right hand side,

.± + (1 - B)n .ZVT1 Ti. -'.u JA .IT,.,i(-.,

This is not inmdependent of 3. One way to see this is to note that the factor unuItipiving

3 i", the second term is a function of F. Thus. no effcieint estimatotr existS in 1lie

complete-data case. and consequently, no efficient estimator exists for P.MPE.

7.7 Related Work

(Green [31] and (Green and Sbapiro [321 describe a theory of Maximum Likelihl,,,

laser radar range profiling. The researclh focuses oin statistically .ptimal detectors
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am I recog-nizers. Thle singlIe pixel stat i~tlci> are lescrihed lhv a Itinxt 1 re of liiiiiiori

and( niormnal coinpoteiit,. Range profiliing, i, Implemented uigthe EM aI~oiltliiic

1 t1ler >,oiiie circiliistailce~s. least syiares, provides, all adequate >,tarli in vallue. A

coiitiiiuiatioill-tvle variant is described1. where a range accuracy para!--eter i, varied

between EM convergences from a coarse v-.]iue to its true value. GAreeni [3 11 cuinnitite>

( rainer-Rao bounds for thle comiplete-data case of Maximum Likelihood range p)rofile

estimator. and compares simulated1 and real-data performance to the limit".

Cass [16] [15] describes anl approach to visual object recognition that m-archje>

iii pose space fur maxmimal alignments under tilie bounded-error miodel. Tile pose-

space objective function used there is piecewise constant. and is thus not amenable

to continuous search methods. The search is based oil geometric formulation of thle

constraints onl feasible t ransformatilonls.

There are some connections between PMIPE and standard inethodls of robust pose

estimation. like those described by Haralick [38,1. and K umar and Hanisoni HTI othI

c'an providIe robust estimates of the pose of anl object. based onl ail ol erved mimage.

The main dhifference is that the st andard methods reqlui re specificat ion of thle feat ire

correspondences. while PMPE does not - by considering all possible corres ,Jol (tlelices.

PMPE reqIuires a starting value for the pose (as (10 standlard miethods- of robust pose

estimation that use non-convex objective functions).

As mentioned above. Yuille, Geiger and Bfithoff [7,S] discussed compuiting di>.1-

parities iii a statistical theory of stereo where a marginal Is computed over matclie,.

'uil le extends thliis technique [79] to other domains of v-,Iisio and neural niet work>,.

amiong them w'inner-take-all networks. stereo. long-range motion, thle traveling sls

man probllem. deformiable template matching, learning. content addressable memio

7ies. anld mnodel s of brain development. Iii adldi tioii to comuput ing margiiia I> over Ii>,-

crete filed s. thle Gi bbs probabidlity distribution Is uisedl. This facilitates con t iiiat tolmu-

stveopt imnizat ion m~ethIods by variat ion of thle tempera tlire paramilet er. Thiere arie

Io nesiiarities I ut weeii tIi is; approach and( isi ii coarse-ti te with Ii lie P NIP E ol jec-
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tive fuiiction.

I-,Mma ii aii It Pogio 1,24] describe a met hod of 3D recogn it ion that uM-es a trained

ent'ra iized Radial Basis Fmictioni network. Their methodt reqluires cotrre)tt•uýho I(eitC

to be known during training and recognition. One similarity between their schemle

and PKIPE is that both are essentially arrangements of smooth imniodal foimctiaas.

There is a similarity between Posterior Marginal Pose Estimation and Hough

transform (HT) methods. Roughly -peaking, HT methods evaluate parameters by

accumulating votes in a discrete parameter space, based on observed features. {.ee

the survey paper by lllingworth and Kittler i44] for a discussion of Hough methods.)

In a recognition application, as described here. the HT method would evaluate a

discrete pose by counting the number of feature pairings that are exactly consistent

somewhere within the cell of pose space. As stated. the HT method has diflicult ies

with noisy features. This is usually addressed by counting feature pairings that are

exactly consistent somewhere nearby the cell in pose space.

The utility of the LIT as a stand-alone method for recognition in the presence of

noise is a topic of some controversy. This is discuissed by Grimson in [34]. pp. 220.

Perhaps this is due to an unsuitable noise model implicit in the Hough Transform.

Posterior Marginal Pose Estimation evaluates a pose by accumulating the loga-

rithin of posterior marginal probability of the pose over image features.

The connection between HT methods and parameter evaluation via the logarithm

of posterior probability has been described by Stephens [67]. Stephens proposes to call

the posterior probability of paraimeters given image observations "The Probabilistic

Houghl Transform". He provided an example of estimating line parameters from

image point features whose probability densities were described as having uniform

and ior-mal components. He also states that the method has been used to track 3D

objects. referring to his thesis [68] for definition of the method used.
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7.8 Summary

A method of evaluating poses in object recognition, Posterior Marginal Pos-e Estimia-

tion. has been described. The resulting objective function was seen to have a simple

form when normal feature deviation models and linear projection models are used.

Limited experimental results were shown indicating that in a domain of synthetic

range discontinuity features, the objective function may have a pronuinent sharp peak

near the correct pose. Some local maxima were also apparent. Another experiment.

in which the features were derived from video images. was described. ('onnections to

robust estimation and neural networks were examined. Bounds on the performance of

simplified PMPE estimators were indicated, and relation to other work was discussed.



Chapter 8

Expectation - Maximization

Algorithm

The Expectation - Maximization (EM) algorithm was introduced in its general form

byv Dempster, Rubin and Laird ill 1978 [21]. It is often useful for computing estimates

in domains having two sample spaces. where the events in one are unions over events

in the other. This situation holds among the sample spaces of Posterior Marginal

Pose Estimation (PMPE) and MAP Model Matching. In the original paper. the wide

generality of the EM algorithm is discussed, along with several previous appearances

in special cases, and convergence results are described.

In this chapter, a specific form of the EM algorithm is described for use with

P.MPE. It is used for hypothesis refinement in the recognition experiments that ar,

described in C(hapter 10. Issues of convergence and implementation are discussed.

8.1 Definition of EM Iteration

In this section a variant of the EM algorithm is presented for use with Posterior

Marginal Pose Estimation. which was descril)ed in (Chapter 7. The following modeling

assuilptions were use(. Normal models are used for matched image features. while

12:3
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uniform models are used for unmatched (background) features. If a prior on the pose Is

available, it is normal. The independent correspondence model is used. Ad4litionallY.

a linear model is used for feature projection.

In PNIPE. the pose of an object, 3. is estimated by maximizing its pu-.terinu

probabitity. given an image.

3 = arg max p(.1 I V)

A iecessarv condition for the maximum is that the gradient of the posterior prob-

ability with respect to the pose be zero. or eqii'.alently. that the garadient of the

logarithm of the posterior probability be zero:

0 = Vj lnp(O I Y) .

in Section 7.1, Equation 7.2 the following formula was given for the posterior prob-

ability of the pose of an object, given an image. This assumes use of the independent

correspondence model.
p( ,31p( =)p(y3) p(Y,. I ý1)•

Imposing the condition of Equation 8.1 yields the following.

0 = V'3 [II I + ln p(3 ) + ZIn p( '3)]

(itY
of,

0 _
p(3) + o" Is.2)

As ill Equation 7.3. we may write the feature PDF conditioned on pose in the

following way.

p(o; 1 :) = Z p( Y I F1 3)p(r,)

or. iisi iig the specific models assumed in Section 7. 1. as reflected in Equation 7.4. ait'I
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1iSIii a linear projectiou model.

1 1, - H, -1)W- 1  (1,1')_ 1II

The zero gradient condition of Equation 8.2 may now be expressed as follows.

p( 3) , • g Zj , ( Y -. .3)

With a normal pose prior.

p(3) = K(•(3 
- 30) and V 3p(3) = -p(3)1,','(. -30)

The gradient of the other normal density is

- M1 ;3) = -GV- A!3,.3).,VTj (;,7j - M3).

Returning to the gradient condition, and using these expressions (negated),

S W, W2 ... Wv +I" ,,, s ( Y'( - 1Itj3"

Finally. the zero gradient com".tion may be expressed compactly as follows,

0 = i 14-(1 -3) + Z wr,-f(Y; -T63) .. 4

with the following definition:

Wij = - MM,) 8.5

1 -B, W, W2-...Wv j im

Equation 8.4 has the appearance of being a linear equation for the pose estimate 3
that satisfies the zero gradient condition for being a maximum. I nfortunately. it isn't
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a linear equlation, because It',, (the " ut I are nut conIstants. they are fillctinuns

ut" . r. Ft, tint sululti ins to Equation s. I. t lie ENI algorithm iterate> t he futliuwing t%,

e Treating the weights, I1V, as constants, solve Equation 8.4 as a linear equatilju

for a new pose estimate .1. This is referred to as the M step.

* sl'sing the most recent pose estimate ,1, re-evaluate the weights. W,,, accogrdilR

to Equation 8.5. This is referred to as the E step.

The NI step is so named because, in the exposition of the algorithm in [21]. it

corresponds to a Maximum Likelihood estimate. As discussed there, the algorithm

is also amenable to use in MAP formulations (like this one). Here the M step corre-

sponds to a NIAP estimate of the pose, given that the current estimate of the weights

is correct.

The E step is so named because calculating the VV,, corresponds to taking the

expectation of some random variables, given the image data, and that the most recent

pose estimate is correct. These random variables have value I if the i'th image feature

corresponds to the J-th object feature, and 0 otherwise. Thus, after the iteration

converges, the weights provide continuous- valued estimates ou the correspondences.

that vary between 0 and 1.

It seems somewhat ironic that, having abandoned the correspondences as being

part of the hypothesis in the formulation of PMPE, a good estimate of them has

re-appeared as a byproduct of a method for search in pose space. This estimate, the

posterior expectation, is the minimum variance estimator.

Being essentially a local method of non-linear optimization. the EM algorithm

needs good starting values in order to converge to the right local maximum. It may

be started on either step. If it is started on the E step, an initial pose estimate is

required. When started on the M step. an initial set of weights is needed.

An initial set of weights can be obtained from a partial hypothesis of correspon-
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Ienices iII a simple mainier. The weights associat ed with each >et of -r(e) ý,l(,m iil

teat i ires iiI thie vhypot liesis are set to IL the rest to 0. [idexini met hod s are tite w,) iri(e

otf stuich ilYpot heses. III ('hapter 10, Angle Pair Indexinig is lised to gelierate cai ndidiatte

hypotheses. In this scenario, indexing provides initial alignmeints. these are refied
using the ENI algorithm, then they are verified by examining the valuie ,f the peak of

the PM PE objective function that tihe refinement step found.

8.2 Convergence

In the original reference [21], the EM algorithm was shown to have good convergence

properties under fairly' general circumstances. It is shown that the likelihood seq~uence

produced by the algorithm is monotonic, i.e., the algorithm never reduces the value

of the objective function (or in this case, the posterior probability) from one step to

the next. Wu [77] claims that the convergence proof iII the original EM reference is

flawed, and provides another proof, as well as a thorough discussion. It is possible

that it will wander along a ridge, or become stuck in a saddle point.

In the recognition experiments reported in Chapter 10 the algorithm typically

converges in 10 - 40 iterations.

8.3 Implementation Issues

Some thresholding methods were used speed up the computation of the E anid M

steps.

The weights W,, provide a measure of feature correspondence. As the algorithm

operates, most of the weights have values close to zero. since most pairs of image and

object feature don't align well for a given pose. In the computation of the M step,

most terms were left out of the sum, based on a threshold for SJ. Some representative

weights from an experiment are displayed in Table 10.1 in Chapter 10.

In the E step, most of the work is in evaluating the (;aussian functions, which have
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q[liadrat-ic forms in them. For the reason stated above. most of these expressionis have

valt e> very ,loýe to zero . 'he evaluation oft these expressionss Was ina le CoditIorial

onI a t Ir-sln l test applied to the residuals V - .l, .•. W\hen the Nx.%- p) rt of thtlt

residl al exceeded a certain length. zero was substituted for the value of the ( ;a ll

expression. Tables indexed by image coordinates might provide another effective way

of implementig the thresholding here.

The value of the PMPE objective function is computed as a byproduct of the E

step for little additional cost.

8.4 Related Work

The work of Green [31] and Green and Shapiro [32] that is discussed in Section 7.7

describes use of the EM algorithm in a theory of laser radar range profiling.

Lipson [50] describes a non-statistical method for refining alignments that iterates

solving linear systems. It matches model features to the nearest image feature under

the current pose hypothesis, while the method described here entertains matches to

all of the image features, weighted by their probability. Lipson's method was shown

to be effective and robust in an implementation that refines alignments under Linear

('ombination of Views.



Chapter 9

Angle Pair Indexing

9.1 Description of Method

Angle Pair Indexing is a simple method that is designed to reduce the anioumt of

search needed in finding matches for image features in 2D recognition. It ,uses features
having location and orientation.

An invariant property of feature pairs is used to index a table that is constructed

ahead of time. The property used is the pair of angles between the feature orientations

and the line joining the feature's locations. These angles are 01 and 02 in Figure 9- 1.

The pair of angles is clearly invariant under translation, rotation, and scaling in the

plane.

I'sing orientations as well as point locations provides more constraint than point

features. Because of this, indexing may be performed on pairs of simple features.

rather than groups of three or more.

The table is constructed from the object features in a pre-processing step. It is

indexed by the angle pair, and stores the pairs of object features that are consistent

with the value of the angles, within the resolution of the table. The algorithm for

constructing the table appears below.

A distance threshold is used to suppress entries for features that are very close.

129
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F2

Fl

Figure 9-1: Angles for Indexing

Such features pairs yield sloppy initial pose estimates and are poor initial hypotheses

for recognition.

Givern an array model-features and a table size. 11

fills in the 2 index array ANGLE-PAIR-TABLE by side-effect.

BuILD-ANGLE-TABLE( (model-features, ii, distance- threshold)

II LENGTH(model-features)

:: First clear the table.

For i 0 To m

For j +- 0 To in

ANGLE-PAIR-TABLE[i, j] - 0

Now fill in the table entries.

For i +- 0 To in

For j +- 0 To Im

Ifi $:j

fl. - model-features[i]

f2 - model-features~jJ
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If DisfxAM -ifl, f2) > tthire srl oldll

< (I r > - CALC'LATE-INDI'Eslfl. f2. ii)

AN(;LE-PAIR-TABLE[q. r] - AN(;LEF-PAIRu-T.,tAI.Eri. r.' I I

The following function is used to calculate the table i n lices for a pair of fai ,iir,>.

Noute that the indexing wraps arounid when the angles are inc'reased IbY 7. IhJi>

was doone because tihe features used in the recognition experiments described in thii

research are often straight edge segments, and their orientations are anibiguous by

Calculate indices into ANGLE-PAIR-TABLE for a pair of features.

CALCULATE-INDICES(fl, f2, n)

60

L.- kJ mo. n)
1 1-( Jmod n)

return(< ij >)

The following algorithm is used at recognition-time to generate a set of pairs of

correspondences from image features to object features that have consistent values of

the angle pair invariant. The indexing operation saves the expense of searching fur

pairs of object model features that are consistent with pairs of image features. Table

entries from adjacent cells are included among the candidates to accommodate angle

values that are "on the edge" of a cell boundary.

Map over the pairs of features in an image and generate

candidate pairs of feature correspondences

G EN E RAT E-CAN DI DAT ES(image-features. n)

candidates - 0

II -- LEN GT-H (image-features)
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For i -- T lo In

For J - i + I to [,

r.,I > -- C .\L FL.lE- I NIMlcEs 1111aa ,t-ftlitt uvI I I,. InII le-t rat III I-i . tý

Fur /i1 -1 to I

For +r.---1 to I

For < k I > E ANGLE-PAIR-TAB[E[((,q + - q) Mod 11 ý. ((r (-, ,1, 1,"1 N,.

candidates - candidates u < < i k > < j I > >

Ret I irn( cand idates)

9.2 Sparsification

In the recognition experiments described below and in Section 10.1, an additional

technique was used to speed up recognition-time processing, and reduce the size of

the table. As the table was built, a substantial fraction of the entries were left out
of the table. These entries were selected at random. This strategy is based on The

following observation: For the purpose of recognizing the object, it is only necessary

for some feature pair from the object to be both in the table and visible in the image. If

a reasonable fraction of the object is visible, a substantial number of feature pairs will

he available as potential partners in a candidate correspondence pair. It is unlikely

that the .orresponding pairs of object model features will all have been rahdomly

eliminated when the table was built. even for fairly large amounts of sparsificatiot.

9.3 Related Work

Indexing based on invariant properties of sets of image features has been used by

Lamdan and Wolfson, in their work on geometric hashing [49], and by Clemens and

.Jacobs [19][20], Jacobs [45], and Thompson and Mundy [70]. In those cases the
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wet- thtre atre tu'rr paramlet-rM., Thomllpson anid \Ilidiil desi!LW '111 ilivar-la ill

vert ex pairsý. Thiese are h ased on an ides relatti ri to pall-~ (A %~tlti e, o4 31) pAlý lit Ir.

anld their project ions into 2D. Anigle Pair Indlexing, i,, ý,orewhiat rrimilar. hut 1ý -Mipicr

-- being designed for 2D fromn 2D recogrnItio1.

leniens an't .1 acoks rI ' 2(J] atid .1 acob, iY I >t-ro IIIII ' 111 efle I Ii a IIn I~~ to I~ i~
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Chapter 10

Recognition Experiments

This chapter describes several recognition experiments that use Posterior Marginal

Pose Estimation with the EM Algorithm. The first is a complete 2D recognition

system that uses Angle Pair Indexing as the first stage. In another experiment, the

PMPE objective function is evaluated on numerous random alignments. Addition-

ally, the effect of occlusions on PMPE are investigated. Finally, refinement of 3D

alignments is demonstrated.

In the following experiments, image edge curves were arbitrarily subdivided into

fragments for feature extraction. The recognition experiments based on these features

show good performance, but the performance nmight be improved if a more stable

subdivision technique were used.

10.1 2D Recognition Experiments

The experiments described in this section use the EM algorithm to carry out local

searches in pose space of the PMPE objective function. This is used for evaluating

and refining alignments that are generated by Angle Pair Indexing. A coarse - fine

approach is used in refining the alignments produced by Angle Pair Indexing. To this

end, two sets of features are used, coarse features and fine features.
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Figure 10-1: G~rayscale Image
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The video image used for the recognition experiment appears in Fleiure 10-1. The

mode-l features were derived from Mean Edge inages. as described i) Section 4.4.

The standard deviation of the smoothing that was used in preparing the model and

inmage edge maps was 3.97 for the coars, features, and 1.93 for the fine features. The

edge cu'r'ves were broken arbitrarily everv 20 pixels for the coarse features. and every

10 pixels for the fine features. Point-radius features were fitted to the edge curve

fragments, as described in Section 5.3. The coarse model and image features appear

in Figure 10-2, the fine model and image features appear in Figure 10-3. There are SI

coarse model features, 334 coarse image features, 246 fine model features, and 1063

fine image features.

The oriented stationary statistics model of feature fluctuations was used (this

is described in Section 3.3). The parameters (statistics) that appear in the PMPE

objective function, the background probability and the covariance matrix for the

oriented stationary statistics, were derived from matches that were done by' hand.

These training matches were also used in the empirical study of the goodness of

the normal model for feature fluctuations discussed in Section 3.2.1, and they are

described there.

10.1.1 Generating Alignments

Initial alignments were generated using Angle Pair Indexing (described in Chapter 9)

on the coarse features. The angle pair table was constructed with 80 by 80 cells, and

sparsification was used - 5 percent of the entries were randomly kept. The distance

threshold was set at 50 pixels (the image size is 640 by 480). The resulting table

contained 234 entries. With these values, uniformly generated random angle pairs

have .0365 probability of "hitting" in the table.

When the image feature pairs were indexed into the table, 20574 candidate feature

correspondence pairs were generated. This is considerably fewer that the 7:32 million

possible pairs of correspondences in this situation. Figure 10-4 illustrates three of
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tile candItidate alignments by superimposing tile objet in the images at the pw'e

a.',,Ciated( with the initial alignment implied by tile pairs of feature correspondences.

The indicated scores are the negative of the PMPE objective function computed with

the coarse features.

10.1.2 Scoring Indexer Alignments

The initial alignments were evaluated in the following way. The indexing process

produces hypotheses consisting of a pair of correspondences from image features to

object features. These pairs of correspondences were converted into an initial weight

matrix for the EM algorithm. The M step of the algorithm was run, producing a

rough alignment pose. The pose was then evaluated using the E step of the EM

algorithm, which computes the value of the objective function as a side effect (in

addition to a new estimate of the weights). Thus, running one cycle of tile EM

algorithm, initialized by the pair of correspondences, generates a rough alignment.

and evaluates the PMPE objective function for that alignment.

10.1.3 Refining Indexer Alignments

This section illustrates the method used to refine indexer alignments.

Figure 10-5 shows a closer view of the best scoring initial alignment from Angle

Pair Indexing. The initial alignment was refined by running the EM algorithm to con-

vergence using the coarse features and statistics. The result of this coarse refinement

is displayed in Figure 10-6. The coarse refinement was refined further by running the

EM algorithm to convergence with the fine features and statistics. Tile result of this

fine refinement is shown in Figure 10-7, and over the video image in Figure 10-8.

(,round truth for the pose is available in this experiment, as the true pose is the

null pose. The pose before refinement is

[.99595, -0.0084747, -0.37902, 5.00 4 81 T
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Figure 10-8: Fine Refinement with Video Image
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Figure 10-9: Correspondences with Weight Larger than .5

and after the refinement it is

[1.00166,0.0051108, 0.6862,-1 .7817]

The encoding of these poses is described in Section 5.3 (the null pose is [1, 0. 0.O]T. )

The initial pose is in error by about .01 in scale and 5 pixels in position. The filial

pose errs by about .005 in scale and 1.8 pixels in position. Thus scale accuracy is

improved by a factor of about two, and position accuracy is improved by factor of

about three. An experiment showing more dramatic improvement is described below,

in Section 10.4.1.

In these experiments, less that 15 iterations of the EM algorithm were needed for

convergence.

10.1.4 Final EM Weights

Ni- .-.

II~--
L %I-~ §- /~
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A., discussed in Section 8.1. a nice aspect of using the EM algorithmn with PMPE I>

that estimates of feature correspondences are available in the weight matrix. Fivire

1t)- ,displays the correspondences that have weight greater than .5. for the tiial

CuViergolece shown in Figure 10-7. Here, the image and model features are ,lis'pltavei

as thin curves, and the correspondences between them are shown as heavy linues

joining the features. Note the strong sinilarity between these correspondences. and

those that the system was trained on, shown in Figure 3-2.

Table 10.1 displays the values of some of the weights. The weights show have

value greater than .01. There are 299 weights this large among the 41:1,507 weights.

The :39 weights shown are those belonging to 20 image features.

10.2 Evaluating Random Alignments

An experiment was performed to test the utility of PMPE in evaluating randomly

generated alignments. Correspondences among the coarse features described in Sec-

tion 10.1 having assignments from two image features to two model features were

randomly generated, and evaluated as in Section 10.1.2. 19118 random alignments

were generated, of which 1200 had coarse scores better than -30.0 (the negative of

the PMPE objective function). Anmong these 1200, one was essentially correct. The

first, second, third, fourth, fifth, and fifteenth best scoring alignments are shown in

Figure 10-10.

With coarse - fine refinement, the best scoring random alignment converged to

the same pose as the best refinement from the indexing experiment, shown in Figure

10-7. with fine score -355.069. The next best scoring random alignment converged to

a grossly wrong pose, with fine score -149.064. This score provides some indication

of the noise level in the fine PMPE objective function in pose space.

This test, though not exhaustive, produced no false positives, in the sense of a bad

alignment with a coarse score better than that of the correct alignment. Additionally.
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Image Index Model Index Weight
90 86 0.022738026840027032
90 101 0.014615921646994348

90 102 0.80796669:3444096

90 103 0. 09581539482455806
91 103 0.9633441301926663
92 85 0.24166197059125494

92 103 0.19778274847425015
93 87 0.02784697957543993
93 88 0.37419218245:379466

94 87 0.747866772:3520142
95 87 0.440:30413275215486
96 86 0.612790257699:3082
97 85 0.9293665165549775

98 85 0.8621763443868999
99 84 0.96:348274:38267516
100 5 0.6499527214931725
1o0 84 0.19705210016850308
101 0 0.0114007259:3457:3982
101 67 0.95596759:39354566
102 66 0.9194110795990801
102 67 0.054164359:35:3:3511
103 64 0.04765362703894284
103 65 0.8454128520499249

10:3 66 0.05787873660955701
104 63 0.05270908685541295
104 64 0.8854088:356653954
104 65 0.014744194821866506
105 62 0.06158503222464117
105 63 0.91:399:39556525918
106 61 0.09270729594689026
106 62 0.86:357:39185353283

106 63 0.010447389024937672
107 61 0.9108899984969661
107 62 0.021204649868405194
108 60 0.8618:31671427887
108 61 0.04922012525099:3084
109 58 0.0180772:32316743887
109 59 0.925731118:30429:34
109 60 0.0154:34004217119308

Table 10.1: Some EM Weights
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the fine score of the rehiie ienIt of the lilost promii ilng iiit frrect ra.tdill .hi.llillielIT

was siontiIicaitly lower thani the fine score 0 f the correct refined best aligneri.

10.3 Convergence with Occlusion

The convergence behavior under occlusion of the EM algorithm with PM PE was eval-

tiated using the coarse features described in Section 10.1. Images features simulatting

varying amounts of occlusion were prepared by shifting a varying portion of the image.

These images, along with results of coarse - fine refinement using the EM algorithm

are shown in Figure 10-11.

The starting value for the pose was the correct (null) pose. The refinements

converged to good poses in all cases, demonstrating that the method can converge

from good alignments with moderate amounts of occlusion.

The final fine score in the most occluded example is lower than the noise level

observed in the experiment of Section 10.2. This indicates that as the amount of

occlusion increases, a point will be reached where the method will fail to produce a

good pose having a score above the noise level. In this experiment it happens before

the method fails to converge properly.

10.4 3D Recognition Experiments

10.4.1 Refining 3D Alignments

This section demonstrates use of the EM algorithm with PMPE to refine alignments

in 3D recognition. The linear combination of views method is used to acconunodate

a limited amount of out of plane rotation. A two-view variant of LCV, described in

Section 5.5, is used.

A coarse - fine approach was used. Coarse PMPE scores were computed by

smoothing the PMPE objective function, as described in Section 7.3.2. The smoothing
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Figure 10- 12: Grayscale lImage

matrix was

DIA(;((7.07)2, (3.0)')

These numbers are the amounts of additional (artificial) variance added for parallel

and perpendicular deviations, respectively, in the oriented stationary statistics model.

The video test image is shown in Figure 10-12. It differs from the model images

bv a significant 31D translation and out of plane rotation. The test image edges are

shown in Figure 10-13.

The object model was derived from the two Mean Edge Images shown in Figure

10-14. These were constructed as described in Section 4.4.

The smoothing used in preparation of the edge maps had 1.93 pixels standard

deviation, and the edge curves were broken arbitrarily every 10 pixels. Point-radius

features were fitted to the edge curve fragments, as described in Section 5.3. for

purposes of display and for computing the oriented stationary statistics, although the

features used with PMPE and the EM algorithm were simp!y the X and Y coordinates

of the centroids of the curve fragments. Both views of the model features are shown
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Figure 10-13: Image Edges

in Figure 10-15. The linear combination of views method requires correspondences

among the model views. These were established by hand, and are displayed in Figure

10-16.

The relationship among the viewpoints in the model images and the test image is

illustrated in Figure 10-17. This represents the region of the view sphere containing

the viewpoints. Note that the test image is not on the line joining the two model

views.

The oriented stationary statistics model of feature fluctuations was used (this is

described in Section 3.3). As in Section 10.1, the parameters (statistics) that appear in

the PMPE objective function, the background probability and the covariance matrix

for the oriented stationary statistics, were derived from matches done by hand.

A set of four correspondences was established manually from the image features

to the object features. These correspondences are intended to simulate an alignment

generated by an indexing system. Indexing systems that are suitable for 3D recogni-

tion are described by Clemens and .Jacobs [19] and Jacobs [45]. The rough align'imen

and score were obtained from the correspondences by one cycle of the EM algorithm.



152 (HA PTER? 10. RECOGNITION ENPERL\IENT.S

Figure 10- 14: Model Mean Edge Images
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Figure 10-1): Model Features (Both Views)
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Figure 10- 16: Model Correspondences

Model Views
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Figure 10-17: Model and Test Image View Points
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Figure 10-29: Coare Refinied Alignment and Coare Score
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Figure 10-21: Fine Refined Alignment with Video Image
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its described above in Section 10.1.2. They are displayed in Figure 10-1' . where the

four correponding features appear circled. A coarse alignment was theni uhtaitied

by running the EM algorithim to convergence with smoothing. the result appears iI

Figure 10-19. This alignment was refined further by running the EM algorithm again.

without smoothing. The resulting alignment and score are shown in Figure 10-20. In

these figures, the image features are shown as curve fragments for clarity, althouigh

only the point locations were used in the experiment. The image features used are a

subset taken from a rectangular region of the larger image.

Figure 10-21 displays the final alignment superimposed over the original video

image. Most of the model features have aligned well. The discrepancy in the forward

wheel well may be due to inaccuracies in the LCV modeling process, perhaps in the

feature correspondences. This figure demonstrates good results for aligning a smooth

3D object having six degrees of freedom of motion, without the use privileged features.

10.4.2 Refining Perturbed Poses

This section describes an additional demonstration of local search inI pose space lising

PMPE in 3D.

The pose corresponding to the refined alignment displayed in Figure 10-20 was

perturbed by adding a displacement by 4.0 pixels in Y. This pose was then refined

by running the EM algorithm to convergence. The perturbed alignment and the

resulting coarse - fine refinement is shown in Figure 10-22. The result is very close

to the pose prior to perturbation.

A similar experiment was carried out with a larger perturbation, 12.0 pixels in

Y. The results of this appear in Figure 10-23. This time the convergence is to

a clearly wrong alignment. The model has been stretched to a thin configuration.

and nmismatched to the image. The resulting fine score is lower than that of the

good alignment in Figure 10-21. This illustrates a potential drawback of the linear

combination of views method. In addition to correct views, L(CV (-an synthe.size
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views where the mudel is stretched. L('V. as ited here. has S parameters,. rather

than the 6 of rigid motiion. The two extra parameters detern 'ne tLe stretching part
of the transformation. This problem can he addressed by checking, or eifor,'i , a

quadratic constraint on the parameters. This is discussed in [71].

Another similar experiment was performed starting with a very bad aligliinent.

The results appear in Figure 10-24. The algorithm was able to bring soite features

into alignment. but the score remained low.
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Chapter 11

Conclusions

Visual object recognition - finding a known object in scenes, where the object is

smooth, is viewed under varying illunmination conditions, has six degrees of freedom

of position, is subject to occlusions and appears against varying backgrounds - still

presents problems. In this thesis, progress has been made by applying methods of

statistical inference to recognition. Ever-present uncertainties are accommodated

by statistical characterizations of the recognition problem: MAP Model Matching

(MMM) and Posterior Marginal Pose Estimation (PMPE). MMM was shown to be

effective for searching among feature correspondences and PMPE was shown effective

for searches in pose space. The issue of acquiring salient object features under varyinmg

illumination was addressed by using Mean Edge Images.

The alignment approach, which leverages fasz indexing methods of hypothesis

generation, is utilized. Angle Pair Indexing is introduced as an efficient 2D indexing

method that does not depend on extended or special features that can be hard to

detect. An extension to the alignment approach that may be summarized as align

rCfinc verify is advo,'ated. The EM algorithm is employed for refining the estimate of

the object's pose while simultaneously identifying and incorporating the constraints

of all supporting image features.

Areas for future research include the following:
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" inlexitilg was not used in tihe 3D recognition experiments. Idtenttifyting a suitabtle

TleClianism for this purpose that meshes well with the type of features used here.

wotild be an improvement.

"* Too few views were Iised in model construction. Filjll ant onitatin"n the m noutel

acquisition process, as described in (Chapter 4. and , acqt-iring modlels frum more

views would help.

"* Extending the formulations of recognition to handle multiple objects is straight-

forward, but identifying suitable search strategies is an important and non-

trivial task.

"* Incorporating non-linear models of projection into the formulation would allow

robust performance in domains having serious perspective distortions.

"* Using image-like tables could speed the evaluation of the PMPE objective func-

tion.

"* Investigating the use of PMPE in object tracking or in other active vision do-

mains might prove fruitful.

More work in these areas will lead to practical and robust object recognition

systems.
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Notation

.Sy;i.bol A.haninq Df finlnq .- ct;oei

I= {'. • 2 . 1} the image 2.1

n number of image features

YI E Rv image feature 2.1

M = {AMl, 1 2 ...... 11,,} the object model 2.1

In number of object features

Alj model feature, frequently M, E R-'× 2.1

_ the background feature 2.1

= {F .. 2, F,} correspondences 2.1

Fi c m U {u } assignment of image feature i 2.1

3 E R- pose of object 5.1

P(Mj, 3) projection into image 5.1

GV,(x) Gaussian probability density 3.2 6.1

covariance matrix of feature pair 3.3

stationary feature covariance matrix 3.3

covariance matrix of pose prior 6.1

B, B, background probability 2.2 2.4

Wk extent of image feature dimension k 3.1

Aj, A correspondence reward 6.1

estimate of x

p(.) probability (see below)

Probability notation is somewhat abused in this work, in the interest of brevity.

p(x) may stand for either a probability mass function of a discrete variable x, or for a

probability density function of a continuous variable x. The meaning will be clear in



I T,

context Ihaset on the type of tihe variahle arlinietit ..AXhlit ionallV. nixe, Iru)1'i Ji1dtie•

are described with the same notation. For example p( F. i V) •tawii ftor t lie nil xe,

proba ili ty fi lnction that is a probability mass finction of F t ihe dij c'rete výari abt

de"-cribitn, correspondences), and a probability (lensi ty fyiunction of .1 (t Ie it-pse v\'t-cl(I

both conditioned on V' (the image feature coordinates).
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