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ABSTRACT

The Lorentz force equation governing the interaction between radiation and

charged particles in the presence of a static magnetic field can be reduced to the form

of the simple pendulum equation, when applied to the Free Electron Laser (FEL) and to

the amplification of whistler waves in the magnetosphere.

The first topic in this thesis is the start-up of an FEL with a compact design having

a small, spatial undulator period, many periods, and a small undulator field strength.

Under these conditions, the number of photons spontaneously emitted into the

resonator mode each pass is so small that a classical field cannot be established.

Quantum fluctuations affect the wave-particle interaction and therefore diminish weak-

field gain. An FEL start-up condition, several orders of magnitude more restrictive than

determined by quantum recoil alone, is derived from the photon rate equation.

The next topic is the evolution of a weak, classical radiation field driven by a long

electron pulse. Assuming low gain, it is possible to reduce the coupled optical wave

and electron pendulum equation to a simple, first-order, partial differential equation

including electron dynamics, slippage, desynchronism, and resonator loss. This

analytical method is used to study coherence development, and the effects of varying

the electron beam pulse shape.

Next, the Boeing Average Power Laser Experiment (APLE) is investigated using

two and three dimensional numerical simulations. Various methods of reducing the

electron-radiation coupling in the oscillator are examined in order to minimize the

electron beam energy spread introduced into the FEL amplifier. An alternative for

achieving high power makes use of the oscillator alone, but with a tapered undulator to

increase the electron-radiation coupling.

The final topic is charged particles, following helical trajectories, traveling in the

magnetosphere between mirror points along the earth's magnetic field lines. When

electrons interact with a whistler wave near the geomagnetic equator, their motion can

again be described by the simple pendulum equation. The inhomogeneity of the

earth's magnetic field near the geomagnetic equator is analogous to the field in a

tapered undulator. Numerical phase-space simulations are developed to investigate

the interaction.
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I. INTRODUCTION

A free electron laser (FEL) oscillator uses a beam of relativistic electrons

passing through a periodic undulator to produce and amplify light stored within a

resonator. Since this light is a product of the electron - undulator interaction, its

properties (i.e. wavelength and power) can be changed by altering the properties

of the electron beam and the undulator. The ease of tunability of the FEL over a

wide range of wavelengths is beginning to make the FEL a sought after piece of

equipment by many aisciplines in universities, research labs, and industry. The

promise of high efficiency and high average power has made the FEL a

research priority of the armed forces as they seek a speed-of-light weapon.

The basic physics of an FEL is presented in Chapter II as a starting point for

the research chapters that follow. The FEL theory presented here uses

Maxwells' field equations to describe the evolution of the light in response to the

bunching electrons, and self-consistently uses the pendulum equation to

describe the evolution of the bunching electrons in response to the light [1].

Chapter III examines FEL physics during the first several passes of the

electrons through a compact undulator that uses many short periods and a small

undulator parameter. Spontaneous emission is introduced, and the effects of a

small number of photons in the resonator causes statistical fluctuations of i.h&

photon number. These quantum fluctuations, if large enough, can significantly

degrade the classical, small-signal gain of the FEL causing slow start-up or

possibly the failure of the FEL to start.

New and original research concerning the problem of quantum limitations on

the start-up of FELs is presented in Chapter Ill. The previously derived equation

for gain including photon fluctuations is incorporated into the photon rate
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equation to obtain a new start-up condition. The photon rate equation is then

solved analytically using the new expression for gain. This and other analytical

results are compared with those obtained by other authors using a completely

quantum mechanical method. Also, the new expression for gain is incorporated

into a numerical simulation to solve for optical mode evolution.

Chapter IV follows the evolution of long optical pulses using a partial-

differential equation which includes effects of desynchronism and resonator

losses. Desynchronism describes the misalignment between the optical and

electron pulses on successive passes through the resonator. Analytical

expressions are derived for the optical wave evolution assuming a long electron

pulse, while the FEL operates in the small signal, low gain regime. The first-

order, partial-differential equation is th-jen used to examine the effects of the

electron pulse shape on the final optical pulse. Also, the coherence

development from a random incoherent optical pulse to a final coherent optical

pulse is examined.

A partial-differential equation describing optical pulse evolution is used for

new and original research in Chapter IV. The single-pass, first-order partial-

differential equation is extended from one to multiple passes including

desynchro, iism ar'd resonator losses. The partial-differential equation is solved

analytically for the case of a continuous electron beam, a parabolic electron

pulse shape, and a Gaussian electron pulse. A desynchronism curve showing

the variation of optical power with desynchronism is then created from the

analytical solution for a parabolic electron pulse shape and compared to

desynchronism curves produced numerically, experimentally, and with analytical

methods used by other authors. It is shown that exact synchronism gives zero

optical power in steady-state. The case of a triangular electron pulse is solved

analytically. A numerical FEL simulation is modified to solve the single-pass
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partial-differential equation and used to study coherence evolution. Finally, a

numerical code is deve-,ded to compare the analytical solution and the

numerical FEL simui'..,on for the cases of a parabolic, triangular or continuous

electron pulse.

O•ny weak optical fields are studied through Chapter IV. Chapter V

examines the Boeing/LANL high Average Power Laser Experiment (APLE).

Since the proposed design of APLE has a single electron beam powering both

an oscillator and amplifier FEL in series, it is important that the oscillator FEL not

induce a large energy spread in the electron beam prior to the amplifier FEL.

Chapter V examines methods of reducing the electron - light coupling in the

oscillator. One method of reducing the coupling calls for inducing a ramp, or a

slew, in energy along the electron pulse. Running the oscillator alone as a high

average power FEL is also examined.

The investigation into methods of reducing the electron beam energy spread

induced by the FEL oscillator at the Boeing APLE project is new and original

research. A numerical FEL simulation is extended to accurately calculate the

optical field evolution in the presence of large desynchronism. Using this

modification, a desynchronism curve is presented for the APLE oscillator. The

desynchronism that best reduces the electron energy spread for the APLE

oscillator is found. The simulation is modified further to include the effects of

energy and timing jitter of the electron pulse from the accelerator. These effects

are explored for large and small values of desynchronism. The simulation is

modified again to include an energy slew across the electron micropulse in order

to show that the energy spread induced in the electron beam is more than

Boeing researchers had expected. The final APLE topic explores the tapered

oscillator design as a high average power device. Conditions are obtained for

achieving the optimum power from the FEL oscillator alone with no amplifier.
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Finally, Chapter VI examines whistler wave amplification employing the

similar theoretical and simulation methods used to understand the FEL. The

whistler and FEL both have electrons in heiical trajectories coupling to and

amplifying a transverse electromagnetic wave. The wave and electron

equations of motion are developed for the whistler interaction including the

inhomogeneity due to the variation in magnetic field strength along a field line of

the earth's magnetic field. Simulations are then developed from these equations

in order to describe stimulated VLF emission.

Chapter IV includes new and original research on whistler wave

amplification using a wave equation driven by the pendulum equation. As a

member of a team, I participated in the derivation of the homogeneous and

inhomogeneous wave equation and electron equations of motion. Next, the

team developed numerical simulations of VLF wave amplification. Using the

numerical simulations, the effects of homogeneous and inhomogeneous

magnetic fields are explored, as well as the effects of a spread in phase velocity.

The phase- space evolution of the electrons and the growth of the optical pulse

power and phase are displayed graphically in order to better understand their

coupled dynamics.

Much of the research in this thesis has been presented at scientific

conferences, published, or submitted for publication. The research in Chapter III

will be submitted to Physical Review Letters under the title "A Quantum

Limitation on the Start-up of Compact Free Electron Lasers" by K. A. Sturgess

and W. B. Colson. The research in Chapter IV was presented at the Thirteenth

International Free Electron Laser Conference in Sante Fe, New Mexico (August

1991), and resulted in the publication of a paper titled "An Analytical Solution to

Longitudinal Modes in Free Electron Lasers" by K. A. Sturgess and W. B.

Colson in Nuclear Instruments and Methods in Physics Research, A318, pages
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576-581, (1992). The research in Chapter V was presented at the Fourteenth

International Free Electron Laser Conference in Kobe, Japan. (August 1992)

and accepted for publication in Nuclear Instruments and Methods in Physics

Research with the title "Short Pulse Evolution in the Boeing/LANL APLE

Oscillator" by K. Sturgess, D. J. Frost and W. B. Colson. The research in

Chapter VI was presented at the Fourteenth International Free Electron Laser

Conference in Kobe, Japan, (August 1992), and accepted for publication in

Nuclear Instruments and Methods in Physics Research with the title "Analogies

Between the Free Electron Laser and Whistler Wave Amplification in the

Magnetosphere" by W. B. Colson, B. Gately, D. L. Caudle, and K. Sturgess.
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II. FREE ELECTRON LASER THEORY

A. INTRODUCTION

An operating Free Electron Laser (FEL) consists of an accelerator capable

of driving electrons to relativistic energies, an undulator composed of a

transverse, periodic magnetic field that "wiggles" the electrons, and optical

devices necessary to collect and transport the amplified radiation. The

periodically deflected relativistic electrons radiate spontaneously, and in

addition, couple to the radiation store in an optical resonator leading to coherent

stimulated emission. The idea of an FEL was conceptually introduced in 1971

by J.M.J. Madey [2]. Related work which contributed to the FEL include the

traveling wave tube of Motz [3], and the ubitron developed by Philips [4].

Successful experimental operation of the FEL amplifier in 1976 [5] and an FEL

oscillator in 1977 [6] demonstrated the feasibility and potential of this new laser

device.

As mentioned above, the undulator's role in an FEL is to give the relativistic

electrons periodic transverse deflections as they travel with the light pulse down

the length of the undulator. This deflection, provided by either permanent

magnets or electromagnets, allows the electrons to couple to, and transfer

energy with the transverse optical pulse along the undulator length, L = N)"0

where A. is the undulator wavelength and N is the number of periods in the

undulator. An important dimensionless quantity characterizing the undulator is

the undulator parameter K = eB92 0 /2 IMzc 2 , where B is the rms field strength

over one period of the undulator, e is the electron charge magnitude, m is the

mass of the electron, and c is the speed of light. In most FEL's, K %t 0.1 --) 5.
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There are two main types of undulator, based on the paths electrons take

within them: helical and linearly polarized. A helical undulator produces helical

electron paths, which produces and couples to circularly-polarized light. The

ideal helical magnetic field is constant in magnitude along the longitudinal axis

of the undulator, and in rectangular coordinates is given by (1]

13H = B[cos(koz), sin(koz), 0]. (2-1)

where B is the peak magnetic field strength on this axis, and k0 = 2;r/2) is the

undulator wave number. The helical undulator design focuses electrons toward

the undulator axis, since the average magnetic field can be expanded and

shown to increase off-axis as

B(B1l+ ko rY4+. (2-2)

where r is the distal distance from the axis of the undulator.

A linearly-polarized undulator produces periodic planar motion in the

electron beam which in turn produces and couples to linearly-polarized light.

The linear magnetic field has an rms field strength of B/lr2 which is less than

the helical case, and so, couples less well to the light and produces half the

gain. In rectangular coordinates, the linear field is given by

BL = B[O, sinl koz), 0] (2-3)

and provides magnetic focusing in one direction only.

The accelerators used in various FEL projects range from low energy Van

De Graff electrostatic accelerators to high energy storage rings, including

intermediate energy microtrons and linear accelerators. They span an energy

range giving Lorentz factors y z 10 -_ 103, where y-1 = - v2/c 2 , and

7



electron beam currents ranging from ]t 1 _+ 103A. The typical RF linac

produces electron micropulses of length, /4 ft mm -* cm, separated by about

one to several meters grouped together in a long macropulse of I1ps to 1ms.

Th transverse radius of the electron beam is on the order of millimeters

resulting in an electron density of p z 1012 _+ 1013 cm"3 .

The electron beam quality is characterized by its energy spread and

emittance. Energy spread describes the spread of electron velocities in the

beam and is characterized by Ay/y. Emittance is defined as e m FoA, where F.

is the rms initial position spread of the electrons in the beam, and 8 is the rms

initial angular spread in the beam. Although the angular and position spread of

the beam can be varied, the emittance of the beam tends to be a constant for an

accelerator at a given energy. Normalized emittance, c %t ye, tends to be

constant along the accelerator while the electrons are increasing their energies.

When the electron beam enters the undulator, it is desirable to choose the

angular and position spreads in the beam so that it does not excessively focus

or expand as it travels down the length of the undulator. For a fixed value of

emittance, a small beam radius at one point along the undulator results in a

large angular spread, and consequently a large beam radius farther along the

undulator. A small angular spread results in a large beam radius everywhere.

The condition that minimizes the beam radius along the undulator is called the

'matching condition,' and gives Kkoo yo [1]. This condition determines an

electron beam radius of re = ,yenA/V2,zK where A = 2rl/k is the optical

wavelength. A beam matched in this way gives a phase velocity spread of

Av= 2,;NKke/y. Since the phase velocity spread must be less than the gain

band-width, Av< 2;r, an upper limit on the allowable emittance is

eax <_ y1/2VrNK.
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There have been many approaches to understanding how the FEL works.

Among the methods used to develop FEL theory has been a quantum

mechanical approach, the use of quantum electrodynamics, the application of

plasma physics theories, and the use of plasma physics many-particle computer

codes [1]. Early on in the theoretical development, it was shown that a classical

approach provided an accurate description of the FEL [7]. The classical

approach using a charged-particle current driving Maxwells equations will be

presented here.

B. ELECTRON DYNAMICS

The only significant force acting on an electron as it travels the length of the

undulator is the Lorentz force given by the relativistic equations [1]

-(7 ) e ) (2-4)

dt mc

dt mc

y-2 = 1- (2-6)

where ,i = •/c is the electron's normalized velocity, B[ = B[cos(koz),sin(koz),O]

is the helical undulator magnetic field, E = E[cos V, - sin y, 0] and

Br = E[sin , cos V/, 0] are the optical electric and magnetic fields,

= kz - ag + 0, k = 2 ;r/2 is the optical wavenumber, o) = ck is the optical

frequency, and 4 is the phase of the optical wave. Equations of motion for the

electrons are obtained by inserting the electric and magnetic fields into the

equations above. The plane wave form for the electric and magnetic fields is

9



accurate near the axis of the undulator. Since there are a total of five equations

above, and only four unknowns, [I(t),y(t)], one c. the equations, the z

component of equation (2-4), will be ignored. Expanding the remaining

equations yields

e= [ -e - 3,z)[cos V,- sin y,,0] +fEB[- sin(koz),cos(koz),O]] (2-7)

dt mc

dy = -eE (,8 cos v-,8y sin (2-8)
dt mc

y = 1(2-9)

where, = [P, ,, ,,0] is the transverse electron velocity. Since the electrons in

an FEL are relativistic, v, =c, we have (1 -P,)E <<p,8.B, so that the transverse

optical force is much smaller than the unr-,ulator field force. This removes the

first term on the right side of equation (2-7). The remaining term can be directly

integratedyielding

- K
= -[cos(koz),sin( kz),O]. (2-10)

The constants of integration art-, tken to be zero representing an electron beam

that is injected perfectly into helical orbits.

The transverse amplitude of the electrons can be found from integrating

equation (2-10) further. First, assume that r(t) is a constant, which is a good

approximation for low efficiency FELs. Next, assume that z =/oct, so that the

electron oscillation frequency in the undulator is w. =kJJoc. The arguments

within the trigonometric functions Uf E-.. .!tirn (2-10) can then be rewritten as

koz w=ot. Integrating now leads to

xi z K)- [--sin(wot),cos(woot), 0] (2-11)

10



which yields a transverse amplitude of oscillation, Ax, f K.A/21ry

Continuing with pendulum equation derivation, substitute equation (2-10)

into the energy equation (2-8). Using a trigonometric identity leads to

dy eEK( cos((kck + k)z - w + 0). (2-12)
dtymc

The electron's phase is identified in equation (2-12) as ;= (k + k,)z - ed. We

see from equation (2-12) that electron phases such that -;r/2 < 4+ 0 < zr2 will

gain energy from the radiation, while electron phases such that

r/2 < ;+ 0 < 3,r 2 will lose energy to the radiation.

Differentiating the electron phase velocity twice yields ý= (k + ko)flc.

Inserting the magnitude of equation (2-10) into the definition of Y from equation

(2-9) and differentiating with respect to time yields */y = y2,z,*z. Combining

these equations with equation (2-12) gives the pendulum equation

y2emE cos(;+ 0) (2-13)

which governs the electron's motion in the presence of the combined radiation

and undulator fields. Defining the dimensionless time as r= ct/L (so that

r = 0 -o 1 as the electrons travel from the beginning to the end of the undulator)

normalizes equation (2-13) as

L? 2ek0 KE cos(,;+ 0) = jalcos(;+ 0) (2-14)
oYo

where (..)=d 2(..) d = (L c)2 d2 (. .)/dt2 and jal = 4,zNeEKL/y2mc 2 is the

dimensionless optical fieid strength. The relativistic Lorentz factor y in equation

(2-13) has been replaced by its initial value y, in equation (2-14) by assuming

low efficiency: the energy changes of the electrons are insignificant during the

11



interaction time r. The electron pendulum equation for a helical undulator (2-

14) is appropriate for low and high gain and correctly follows the development of

electron bunching. For the linear undulator, lal should be modified by letting

K-+K(Jo(ý)-J,(f)), where J0 and J1 are Bessel functions and

Using the expressions above, a dimensionless phase velocity can be

defined by

oL[(k + ko)6, - k]. (2-15)

The electron experiences resonant undulator and radiation field forces when

v= 0. The resonant relationship between the radiation and undulator

wavelengths is

A 0 1 + K (2-16)

Equation (2-16) shows that the operating wavelength of an FEL can be altered

by changing the electron beam energy y, the undulator wavelength A.o, or the

undulator parameter K.

C. THE SELF-CONSISTENT WAVE EQUATION

While the Lorentz force law governs the evolution of the electron's trajectory,

Maxwell's equations govern the evolution of the optical field in the FEL.

Spontaneous emission in an FEL oscillator grows to form a classical field with a

bandwidth proportional to the inverse of the number of periods in the undulator.

This narrow bandwidth implies that the optical wave varies slowly in space and

time over one wavelength. This means we may assume (E' << kE, E- << wE,

0'<<ko, «<<owo), where (..)' = d(..)/dz, and (..)=d(..)/dt. These

12



assumptions comprise the slowly-varying amplitude and phase approximation

(SVAP) [1].

Neglecting transverse effects, the radiation present in the undulator can be

taken to be a circularly-polarized plane wave whose vector potential is

A = E(t)[sin y,cos V,0] (2-17)
k

where V = kz - o.t + 0. Using this vector potential in the Coulomb gauge of the

wave equation yields

,ý 2~ _ 2 A ý 2 O E + 1 [ , O E,-O s in • , 0
C2dt2 ) z c e~72 ysin~,0](2-18)

-2E ( o+ 1 0 [sin u/,cos v,0] == 4 -,r

Jez c 9t) c

where the SVAP approximation has been used to eliminate all terms with two

derivatives. The total beam current density j, is the sum of all the single

particle currents J1 ,----ec.• 3 (, -h), where T, is the trajectory of the ith

electron and ,. is given in equation (2-10). The fast rotating sine and cosine

functions of y/ can be eliminated by defining two orthogonal unit vectors

, = [cos y, -sin v,0] and ý2 = [sin y/,cos 4,0]. Projecting (2-18) onto these two

unit vectors separates the wave equation into two first-order scalar differential

equations

eE 1 iE 2,,z-
ez +J C a C(2-19)•9z cdt c

and

-Edz + 1 -c- Jr- ý2 (2-20)c
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Making the change in coordinates z = i + ct in equations (2-19) and (2-20)

simplifies the differential operator to (c4•z + c-' 1. ) --* c-1 .6/. The new

coordinate 1 stays with a point on the field envelope traveling at speed c. The

electrons then drift back with a relative speed c(1-z Inserting this change, as

well as the expression for the current density, yields

S2-zeKcos (2-21)
Ot 7

and

E = 2  eKcsin( y + k)3( ) (2-22)
et Y

Next we substitute , + kz =+ 0.

A volume element much smaller than the coherence volume, but larger than

one wavelength of light, is selected to sample electrons. Since the fields are

slowly varying, only one wavelength of phase space is selected and sampled

from this volume element, because all wavelengths in the volume must evolve in

the same-way [1]. The electrons in one wavelength of phase space are sampled

to achieve an accurate representation of initial phase space distribution, so the

sum over all particles in equations (2-21),and (2-22) can be replaced by an

average over the sampled electrons weighted by the electron density p [1].

Indicating the ensemble average of particles at a site z by (..), the optical wave

equations become

eE 2;zeKcp (cos( •+ 0)) (2-23)
et r

and

E t2eKc) (sin + 0)) (2-24)
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Finally, by introducing the dimensionless time r=ct/L, current density

j = 8N(e7rKL) 2p/'rmc2, and field strength jai = 4;zNeEKL/y~ mc2, equations (2-

23) and (2-24) further simplify to

Ial -j(cos(:+ 0)), = ýJ(sin(;+ 0)). (2-25).1 lal

In low efficiency FELs, the energy loss per electron within the undulator is small,

and so we hold the electron's energy constant at its initial value of Yo- In

complex notation, the wave equation is

a = -j(e- -,(2-26)

where a = jale'O [1]. Equations (2-25) and (2-26) show that electron phases near

;'+ 0;-7r drive the optical amplitude and lead to gain, while the optical phase is

driven by electron phases near -+ 0,& ir/2. These equations complete the

feedback mechanism of the FEL. The pendulum equation describes the

bunching of electrons which drives the optical amplitude, and the optical

amplitude controls the amount of bunching that takes place. For the linear

undulator, the dimensionless current j is modified by letting

K -> K(J 0(;)- Jj()) where J0 and J1 are Bessel functions and 4= K2/2(1+K2).

The previous derivation of the wave equation disregarded the transverse

evolution of the fields by making the plane-wave approximation. To include

these transverse diffraction effects, the three-dimensional FEL wave equation

uses the SVAP approximation in a similar manner to equations (2-26) and

results in the parabolic wave equation [8)

(,ý 1 +'a( ) 0 (e) (2-27)
_4 J
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where V2_ = 6ý + , and transverse coordinates are normalized to the

characteristic mode size, so that x(ir/LA) 1 2 -- x, and y(r/lu)/ 2 --+ y, and the

longitudinal coordinate is (z - ct)/N2 -- z. Equation (2-27) can be used to

include the effects of electron beam radius and diffraction effects.

D. FEL DIMENSIONLESS PARAMETERS

Dimensionless parameters are extremely useful when discussing FEL

attributes. Several of them have already been defined and used, such as the

undulator parameter K, the electron phase and phase velocity ý and v, the

current density j, and the optical field a.

The general method of normalizing consists of finding characteristic lengths

and times, used as divisors to remove all dimensions. The characteristic time

scale is given by the time for an electron to traverse the undulator, L/c. The

characteristic longitudinal length for macroscopic processes is the undulator

length, L. The characteristic transverse macroscopic length is the optical mode

waist size [1]. The characteristic microscopic longitudinal distance is the

slippage distance, or the distance that light passes over an electron bunch as it

travels down the undulator. Looking at an electron - photon race down the

undulato1 , the photon beats the electron by a distance

As= Av.At=(c-,6zc)L/c=(1-/?#)N;o. Using (1-,8) z (1+K2)/2y2, for

relativistic electrons combined with the resonance condition (2-16), the slippage

distance can be written as As z W. The slippage distance is the characteristic

length over which an electron and photon can exchange energy.

Finally, the Rayleigh length, 4, is a measure of the optical beam diffraction

[1] and is determined by the resonator configuration including mirror separation

and curvature. The optical mode waist is related to the Rayleigh length by
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r%2 =2__•. The dimensionless Rayleigh length is given by z. =Z4/L [1], and the

optical mode waist is normalized by ,.JE)-7r so that w. = ýZo
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III. QUANTUM LIMITATION ON FREE ELECTRON

LASER START-UP

A. INTRODUCTION

A natural place to begin examining the FEL is at start-up This chapter looks

into processes that occur during the first few passes of the electrons through the

undulator. For special FEL designs, the number of photons in the resonator may

be few enough to cause quantum mechanical effects in this otherwise classical

laser.

On each pass through the FEL oscillator, the periodic magnetic fields of the

undulator give the electron a transverse acceleration, causing it to

spontaneously emit radiation into the resonator modes [9]. On subsequent

passes through the oscillator, the electrons continue to spontaneously emit

radiation, but now in the presence of existing radiation. This results in

stimulated emission and absorption of photons by the electrons. As the number

of photons in the resonator increases sufficiently to describe a classical field,

the radiation frequencies with the largest gain grow to dominate the resonator

mode and the spectrum narrows. If the single-pass gain of the FEL is above the

resonator losses (the "threshold condition"), the radiation power grows

exponentially to saturation in strong fields. For most operating FELs, the start-

up process occurs in a few hundred passes. However, a new class of compact

FELs with short undulator periods ;,0, a large number of periods N, and a low

undulator parameter K = e-B20o/2nmc 2 , may experience significant delays in

start-up due to large fluctuations caused by the low number of photons

spontaneously emitted into the resonator mode each pass. In some cases, the
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FEL reaches steady-state without sufficient photons to achieve a classical field,

and the FEL fails to operate.

B. COMPACT FEL DESCRIPTION

Compact FELs are a new, exLi"ing direction in FEL research and offer

attractive advantages over conventional FELs in several ways. The compact

FEL has a significantly reduced undulator period, .1- = 1mm, which should

reduce the size, weight, and cost of the FEL. The shorter undulator period also

allows production of a short wavelength radiation with a less powerful

accelerator, since the radiation wavelength is inversely proportional to the

electron beam energy yrnc2, (1 = 0 (1 + K2)/2y2. Unfortunately, decreasing

the undulator period reduces the coupling of the electrons to the transverse

radiation field, since the deflection of the electrons in the undulator is given by

Ax = K2)0/2,zy. To make matters worse, there are technological problems with

obtaining high magnetic field densities in very short undulator periods, thereby

reducing the undulator parameter to a value K <<1. This problem acts to further

reduce the gain. The length L = N, 0 of the compact undulator must be

increased to compensate for the reduced gain.

The accelerator used by the compact FEL to produce short wavelength

radiation may be much less energetic than that required by a typical FEL since

the undulator period is reduced. But, because the compact FEL has an

increased number of periods, the accelerator must have higher beam quality

consistent with the decreased gain spectrum bandwidth, 1/(2N). In this

analysis, the beam quality is considered achievable, so that neither emittance

nor energy spread degrades the FEL gain. In this compact FEL design, the

undulator period is small which leads to a small undulator parameter K <<1. A
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large number of undulator periods are used to insure the expected classical gain

is above the threshold condition.

C. START-UP OF THE COMPACT FEL
On each pass through the undulator, the number of spontaneously emitted

photons from a single electron into the resonator mode is calculated as follows.

The total power radiated by a single electron is given by [10]

P = 2e 2r 4/3• (3-1)

3c

where ,3, = Kkoc/y is the electron's transverse acceleration. The energy of a

photon emitted at the radiation frequency satisfying the resonance condition,

o) = 2 y 2 k0c, is

E = 2hckoy2 . (3-2)

The number of photons emitted by one electron in one pass through the

undulator is then obtained by multiplying the power equation (3-1) by the time an

electron spends in the undulator, At = L/c, and then dividing by the photon

energy to obtain

WT = 2NaK2 . (3-3)

Here a = e 2 / c is the fine structure constant.

The quantity in equation (3-3) is the number of photons emitted into the solid

angle y-2 [10]. As Figure 3-1 shows, this solid angle is typically large enough

so that most photons miss the mirror at the ends of the resonator and are lost.

In order to calculate the fraction of the photons captured in the resonator, we
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must multiply WT by the ratio of the solid angle subtended by the fundamental

resonator mode.

Figure 3-1. Diagram showing relative sizes of the emission angle y and the largest angle at
which photons can be stored within the resonator, ec.

The optical mode radius is given by w2 Z_-WO2 (1 + z2/z), where w0 is the optical

mode waist, z0 = ,rw, / 2 is the Rayleigh length, so that the solid angle

subtended- by the optical mode is z 1/(2N7?). Multiplying the number of photons

emitted by an electron per pass, WT, by the ratio of solid angles gives W, = aK 2

[3] as the number of photons emitted per pass that are saved in the resonator

mode.

Each electron in the beam emits W, photons into the resonator mode. The

volume, V ~- N222 Ao, is used to count electrons and photons and is determined

by a longitudinal length corresponding to the gain bandwidth NA, and the

transverse mode area UL = N2,20 [1]. The number of photons spontaneously

emitted in one pass into this volume is SY =pFaK'N222 '% where p is the electron

beam particle density, F = rb2/7rw0
2 is the filling factor describing the transverse

overlap of the electron and optical beams, rb is the electron beam radius, and

w. =(L)/3r)1/ 2 is the radiation mode waist.
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After a few passes, there are N, photons in the volume V,. The resulting

radiation field follows a Poisson distribution giving a fluctuation in the photon

number of N-1/ 2 [11]. If these fluctuations are larger than the gain bandwidth of

the FEL, 1/(2N), they act to reduce gain. To include the effect of these photon

fluctuations we consider a simple analogy. Since the dimensionless radiation

field is given by la! = 4 'zNeKLE/r2omC2 , where E is the radiation's electric field, a

fractional fluctuation in E is equivalent to a fractional fluctuation in the undulator

parameter K. Thus, to the electron, the radiation fluctuations are equivalent to

an imperfect undulator field of N1 2 coherent periods. Clearly, N1/2: N

signals the presence of a classical field within the resonator. The gain in the

undulator is proportional to the dimensionless current density

j = 8N3(ertcKo) 2 pF/ymc2 , although j must be corrected by the ratio

(N1/2/N) 3 for the calculated gain to account only for the coherent number of

periods in the undulator. However, there are (N/N7 1/2) coherent undulators

acting in series. Thus, the actual gain per pass after one pass, including

quantum fluctuations, is estimated as

G= G(3-4)

where Go ft 0.135j is the classical small-signal gain. If the number of photons

spontaneously emitted on the first few passes is low, the photon fluctuations may

be large and lead to a significant decrease in gain.

After many passes, the number of photons in the resonator will change due

to continued spontaneous emission, the resonator Q losses, and possible gain

from stimulated emission. The differential equation describing the evolution of

the photon number, N., over many passes, n, is [ill]
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IN_. = SY + NY(G - Q-) (3-5)

dn

where Q represents the loss within the resonator. The FEL may remain below

threshold, G < Q-1 , and yield a steady state when the number of photons

reaches

NY '= N2Q 1_+ 1- SGQ 2N.2GQN (3-6)

Equation (3-6) shows the possibility of a complex number of photons, which can

be interpreted as the absence of a steady-state solution and no start-up of the

FEL. From this interpretation, it is inferred that the start-up condition is

4SGOQ21/N2 > 1. Substituting S , = pFaK2N2)2?0 , the dimensionless current

density j, the small signal gain Go =0.135j, and introducing the Compton

wavelength X, = h/mc leads to a general start-up condition

0.135( jQ)2 Ay >(2-) 2 N3XC. (3-7)

In the classical limit, kc -,-,0, all FELs satisfy this requirement and start. A

typical FEL (such as the originai Stanford SCNFEL designed with jQ =(4;-)2,

Lorentz factor y v80, 2= 3prm, and N = 160) satisfies the requirement of

equation (3-7) by two orders of magnitude.

On the other hand, a compact FEL with parameters of y = 24, A = 86Aim,

jQ .=70, and N = 103 results in no start-up. Two figures, 3-2 and 3-3, appear

below. Figure 3-2 represents the results of a conventional ("classical")

calculation which does not include quantum fluctuations. This calculation and

that figure erroneously predict successful start-up. Figure 2-3, which does

include quantum fluctuations, correctly predicts that the FEL does not start up.

23



The numerical simulation including the classical spontaneous emission line

spectrum is used to determine the photon evolution per pass without the

quantum fluctuation term included in the spectrum. The bottom panel shows the

classical spontaneous emission spectrum while the middle panel shows the

photon number evolution over n=300 passes with the final spectrum at the top.

Over a few passes, the photon number spectrum shifts to the maximum gain

frequency and narrows to a classical FEL line spectrum. The gain spectrum Gy

is displayed with the dotted line showing the loss per pass. The total number of

photons spontaneously emitted per pass is given by S, = 278. The total number

of photons in the final laser spectrum is NIr = 2.9 x 1015. Normally, high-power

saturation would limit the final number of photons to a value less than Nf before

n =300 passes, but high-power saturation is not included in this simulation.

_Nyf (V) I N. (v)=S (v) +NY (v) [G (V)-I/Q]

S(Coherence Evolution

j= 0.813 Q=90
n K=0.01 N=1000

0
G(V) SY =2 827B G= 0.11

-6 V 6

Figure 3-2. Photon number evolution using small-signal gain.
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Figure 3-3 displays the results of including quantum fluctuations in the gain

term. After n=2000 passes, the upper panel shows the photon number spectrum

begins to increase in amplitude and evolve toward the maximum gain frequency.

Before reaching the threshold, a steady state is reached with N7 f = 2.7 .10 4

photons, where the increase in photons per pass due to spontaneous emission

S, =278, and stimulated emission GNr, is equal to the losses in the system,

QN,. The actual gain of the laser, including the quantum fluctuation term, is

below the losses of the laser, as shown in the center panel. Although this

compact FEL would be expected to work according to classical FEL theory,

Figure 3-3 shows a steady state photon number is reached in the resonator

below that required for a classical field. Thus, the gain never exceeds the

losses and the laser does not start.

Nyf (V) 8NIt (V) =S 7(V) +N'Y(V) [G (v,)-l/Q]

2000 
G(%') = 0.135j(Ny IN2 )

Coherence Evolution
j= 0.813 Q=90

n K=0.01 N=1000

uV) ' S =278 G-0.003
[.Nyf=2. 7 e+04

-6 6

Figure 3-3. Photon number evolution using the modified equation (3-4) as the gain.
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D. ANALYTICAL RESULTS

Assuming a form for the gain of G = Go NY/N 2 , the photon rate equation (3-

5) can be solved analytically for the photon number evolution per pass. Again,

this solution is valid only up to N, = N ' at which time the model used to develop

the gain formula is no longer valid. The solution separates into two cases: one

when the start-up condition (3-7) is satisfied, and the other when it is not. If the

start-up condition is not satisfied, the photon number after the nd pass is given

by

NY = 2G-Q 1+ q1+ e+_2rJ] (3-8)

where q= (1- 4GoS,.Q2/N2)"ý and r= (1+q)/(q-1)1. This solution displays a

linear growth dependence on n for small n. However, there are never enough

photons in the resonator for the gain to overcome FEL loss defined by Q, so a

steady-state is reached with an insufficient number of photons in the resonator

to form a classical field. If the start-up condition (3-7) is satisfied. the photon

number after thenth pass is

S= p 1- tan np"

2GQQ 1 (3-9)p .2Q)

where p = (4GS'Q2/N22 - 1)'2. This solution for the photon number evolution

grows slowly per pass initially due to contributions primarily from spontaneous

emission. As the number of photons in the resonator grows, stimulated emission

begins to add photons and their number increases dramatically. This continues
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until the fluctuations in photon number are much less than the gain spectrum

bandwidth resulting in classical gain.

The threshold for which stimulated emission produces as many photons as

does spontaneous emission is obtained by setting S, =NG. Dattoli [12] gives

an expression for this threshold number of photons as (N,),, = y),/(32,?AtQ

using a quantum mechanical formalism. This expression can be reproduced

with all the correct functional proportionalities much more simply by setting the

gain equal to the small signal gain G = 0.135j. However, when quantum

fluctuations are included, and the gain is determined by (3-4), the condition for

the stimulated emission to equal the spontaneous emission is

)112.(N,) 2 .~k (3-10)

This new condition is different from Dattoli's and takes into account the reduced

gain initially present due to fluctuations in the radiation field. It can be seen that

if the laser start-up condition is not fulfilled, the steady-state photon number

within the resonator, N, will be less than the threshold number of photons

required for equal spontaneous and stimulated emission rates.

E. CONCLUSIONS AND FURTHER RESEARCH SUGGESTIONS

The type of FEL that may exhibit start-up problems due to quantum

fluctuations is one that attempts to produce short optical wavelengths with a low

energy electron beam. The low energy electron beam necessitates a small

period undulator, which in turn reduces the undulator parameter. Both of these

properties act to reduce the expected gain of the FEL. In order to achieve
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sufficient gain, the number of periods in the undulator must be increased.

However, this design logic can lead to an FEL that may not operate due to

quantum fluctuations during start-up.
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IV. ANALYTICAL DESCRIPTION OF LONGITUDINAL
MODES

A. INTRODUCTION

The optical power in the FEL oscillator starts from spontaneous emission

and grows to strong-field saturation over many passes. During the crucial

startup process, coherence develops in the weak optical field and small

microscopic bunching develops in the electron beam. In this chapter the FELs

considered are typical in the sense that the quantum effects previously explored

do not occur. The FELs considered here have weak classical fields, low gain,

and electron pulses much longer than the slippage distance NW.

Assuming low gain, a long pulse, and weak optical fields, Elleaume [12]

showed that FEL optical pulse evolution could be described by a Schroedinger-

type equation with a non-Hermitian harmonic oscillator Hamiltonian . Using the

same assumptions, Dattoii [13.14,15,16] employed methods of quantum optics and

an integro-differential equation to obtain his solution to the same problem. In

each case, the mathematical result involves second-order derivatives. In this

chapter, we expand the optical and electron pulse shapes in a Taylor series to

derive a first-order partial-differential equation describing the optical field

evolution over many passes through the undulator. This equation is used to

investigate coherence development and the effects of the electron pulse shape

on the optical field amplitude and phase.
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B. MATHEMATICAL DEVELOPMENT

In order to generalize the optical field in the longitudinal direction, to allow

for multiple optical modes, we must follow the optical field envelope evolution all

along z. The extension to multi-mode theory by transforming a -- a(z) is

equivalent to allowing the optical field a continuum of wavenumbers a -+ a(k).

Fully extending the theory uses a--> a(z), .- + ý(z), and ;-+ 4z).[1] As

discussed in Chapter II, all longitudinal distances are normalized to the slippage

distance, the distance over v hich the light and electrons can exchange

information, so that z/N. -- z. The electrons slip back one slippage distance,

or Az = 1, with respect to the light during the interaction time r- =0 1 I leading to

N .= AZ =.

The FEL interaction can be described by the optical wave equation [1],

o

a(z, -r) = ya~z + r)(exp[-i&( + r-, r))(4-1)

coupled to the electron pendulum equation [1],

41z, r) = doz, r) =a(z - r, -)jcos[4(zr) + - r)], (4-2)

where (..) = d(..) / dT, = (k + ko)z - ok is the electron phase,
o

v= L[(k + ko),z - k] = " is the electron phase velocity, a(z, r)j is the optical

electric field amplitude, O(z, -r) is the optical phase, and <..> represents an

average over all of the electrons in the beam. The electrons' pulse shape is

described by a(z) with peak value of unity. The longitudinal field sites z refer to

positions on the optical field envelope. In (4-1), the light remains fixed in z while

the electrons slip back to a field site z + r-, while in (4-2), the electrons remain

fixed and the light slips ahead by z - T as it moves through the undulator. This
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slippage allows the light and electrons to exchange information, and allows the

electrons to transfer of information from one optical site to another.1]i

When the FEL is operating in the low-gain regime, we expand equation (4-1)

to lowest order in the current density, j, and assume the field changes are small

over a single pass, al <<jai and 4<< 0. Since the optical fields are weak, the

electron phase may be expanded to lowest order in the field magnitude a~l,

giving ; = ;o + vor+... . Here ;', is the initial electron phase, and v. is the initial

electron phase velocity. The long pulse shapes may be expanded in a Taylor

series in the normalized slippage distance, r: o0z+ -)= oz)+-'(z)+...,

a(z- r)0= a(z) - zja(z)'+-.. and 0(z- z-) = 0(z)- r•'(z)+... where

(..)'= d(..) /dz. These assumptions allow the expansion and integration of

equation (4-2),

4(z + [_ = + +o-.+ [-cos(;0 + vor+ 0 + cos(;c + 0) _- o +(o

V0

S[2sin(;o + y. +) -2sin(," + 0)- 2yo rCOS(o + ) Vo2 2 o + 0)

2 vo3

+11 V[2cos(o o,+v r+ )- 2cos(;o + 0)- 2sin(;o + 0)+ vo•r 10os(;o+ )]

+....... (4-3)

where jal = ja(z)j, lal = ýa(z)1, 0= o(z), and 0'= 0(z).

For a monoenergetic beam (where all electrons have the same initial phase

velocity, v.) the electron dynamics expressed in equation (4-3) can be

incorporated into the optical field equation (4-1) using the phase average
2,r

(".) = J (.'")d4 / 2;r. The complex optical field equation then becomes
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da a' 1- e-" - ivoze-/&,," -a" 2e-,,--= j 'a+- ]
vO ] 2vo (4-4)F -- vr+ ia j r o " 1 e - ' '", -iV . e - ' v,

where a = a(z)jexp(iO(z)) This equation includes the electron dyi;amics of

equation (4-2) using the assumption of low gain, weak fields, and long pulses as

expressed in equation (4-3).

Integrating over a single pass, r = 0 -. 1, yields the following partial-

differential equation for the net change, Aa, in the complex optical field,

a -- jaog(v) - i.aja h(VO)--ja-C1g(vO) (4-5)

with constant coefficients for a given initial electron phase velocity

2 - 2e-" - i vo(1 + e_1`0) 6 -6e'i, ~6i vo-'~c + vi. (1 + 2e&"b)(4)
h,g' - . (4-6)

With no pulses, a =1 and a'=O so there are no longitudinal modes. The

second and third terms on the right side of equation (4-5) are zero. In that case,

equation (4-5) describes the usual single-mode, low-gain evolution of the

complex optical field [1]. The real part of g(v0 ) is the familiar antisymmetric gain

spectrum in v., and the imaginary part describes the symmetric shift in the

optical phase [1]. The phase velocity v. determines the resonance between the

optical wavelength, undulator wavelength, and electron z velocity; maximum gain

occurs for vo =2.60616. The functions h(v.) and g'( vo) in (4-5) determine the

effects of slippage and the electron pulse shape on the optical field evolution.

Elleaume [13] and Dattoli [14,15,16,17] obtained similar functions of vo in their
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treatment of the long pulse problem, but they also keep some second-order

derivatives in the expansion of the field.

Over many passes n through the undulator, the effects of resonator losses

and desynchronism must be included [1]. Desynchronism measures the

mismatch at the beginning of the undulator between the arrival times of the

succession of electron pulses from the accelerator, and the rebounding optical

pulse in the resonator cavity. The dimensionless desynchronism is

d =-2AS / N, where dS is the difference between the actual resonator length

and the synchronous cavity length [1]. The resonator loss over many passes is

described by the resonator quality factor Q. The resulting first-order partial

differential equation gives the development of longitudinal modes in a long pulse

over many passes n in weak fields of a low gain FEL,

=.i Oa a 0a
=jao-g( v.) - -ja--h(v0 ) - -jg-g'(v, - (4-7)

-n -2 z 2 ° - 2Q ez

The complicated optical pulse evolution determined by equation (4-7) depends

only on the dimensionless current j, the resonator Q, the desynchronism d, the

electron pulse shape a(z), the initial optical pulse amplitude jao(z)j and phase

p0(z), and the initial phase velocity v0.

Since the shape of the phase, O(z), is free to evolve, the phase velocity vo is

somewhat arbitrary. For instance, if the phase has a linear slope, A(z) =Azkz, it

is equivalent to a change in wave number, k --.* k +,4k, and alters the effective

value of the phase velocity. Therefore, the phase velocity vo in equation (4-7)

can be chosen for convenience with no loss of generality. A unique and

important value of v. is the phase velocity giving peak FEL gain, g,'( VO) = 0.

The optical pulse will naturally evolve towards V. =2.60616 because of mode
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competition. In fact, v. cannot be chosen far from vo, because the slope of the

phase required to evolve to peak gain can exceed the restrictions of the slowly-

varying amplitude and phase approximation. This phenomenon can be seen by

beginning with the phase velocity v, = L[(k + ko)#,, - k] and deriving the change

in phase velocity for a change in wave number Av= -Ak = -p'. It can be seen

that the slope of the phase provides the change in wave number. Next, using

the slowly-varying phase approximation, the change in the slope of the phase

must be small as the optical field makes one pass in the undulator, so AtvAr•- 1.

During one pass, the optical phase interacts over a dimensionless distance of

Az which can be linked to the size of the electron pulse oz. This in turn gives a

new requirement A vAaoz _ 1. Since one of the basic assumptions of this analysis

that cz >> 1, the restriction Av <<1 is implied. When vo = v. and g,'--0, the

equations for the amplitude and phase in (4-7) become uncoupled, and are

given by

(d-1jgi)---= (jgia +1Jha'-1/2Q)ja', (4-8)

g+(o- -Jg'a) = g - jh-,. (4-9)

The equations describing the evolution of the optical amplitude and phase can

now be solved separately.

C. ELECTRON PULSE EFFECTS

In this section, three different shapes for the electron pulse are considered

and then used to solve equations (4-8) and (4-9) analytically. The method of

characteristics (18] will be used to solve equations (4-8) and (4-9).
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The left-hand-side of equations (4-8) and (4-9) can be seen to be the

directional derivative of ja(z,n) and •z,n) respectively, in the direction of the

vector [1,(d- Ijgo)]. The equations

-= dz - A - (4-10)
ds 2

and

dn= 1 (4-11)
ds

determine a family of curves z = z(s) and n = n(s) whose tangent vector,

[z'(s),n'(s)], coincides with the vector [1,(d--!jg~a)]. Therefore, the derivative

of a(z, n) along these curves becomes

_da dja[z(s),n(s)]I jai ez e' jaic n

dtai~~ -- =___

ds ds .6z es Cfn es (A-12)
e-" - -d- = (jgr + 2 ) !a-I

en2 a j 2gQ~

and
d•O d~z(s),n(s)] = ,o z +/ do n

ds ds Tz es onen (1s
--0 + -•)A• = jg, + jr,

after using the chain rule and equations (4-10) and (4-11). The family of curves

Z = Z(s), n= n(s), and a(s)= la(s)e', determined from the solutions of the

system of ordinary differential equations (4-10) through (4-12) or (4-10),(4-11),

and (4-13) are called the "characteristic curves" of the partial differential

equations (4-8) or (4-9) (18]. The approach of solving equations (4-8) or (4-9) by

using the solutions of equations (4-10) through (4-12) or (4-10),(4-11), and (4-

13) is called the "method of characteristics". The existence and uniqueness
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theorem assumes certain smoothness conditions on the functions of z and n

which guarantee that exactly one solution curve (z(s),n(s),a(s)) of equations (4-

10) through (4-13) passes through the initial condition point (zo,no,ao). Using

the initial values to create the parametric initial solution curve gives z = z0 , n = 0,

and tai = Iao(zo)t where Iao(z,)t is the initial optical field shape and €= 0,(z,)
where •o(zo) is the initial optical phase. Equations (4-10) and (4-11) can be

solved for z and n as functions of s and z.. These solutions are then inverted

and equations (4-12) and (4-13) are solved and substitutions made to obtain

ja(z, n)I and O(z, n). The three specific cases follow.

1. Continuous Electron Beam

For the special case of a continuous electron beam, a(z)= 1 for all z, at

the phase velocity for the peak gain, vi, the optical pulse can still evolve over

many passes. The first-order, partial-differential equations (4-8) and (4-9) are

solved using the method of characteristics.

Solving equations (4-10) through (4-13) yields

z(s,zo) = z0 + (d- -jg,)s, (4-14)

n(s,zo) = s, (4-15)

la(s,zo)l = Ia(zo)Iexp J[r iS] (4-16)

and SsZo) = jgs + q 00(Zo) (4-17)

which can be inverted to solve for s and z. in terms of n and z. These results

are then substituted into the expression for Jaf and 0 to yield solutions for the

optical amplitude and phase,

ta(z,n)l = Iao(zo)jexp[(jgr - 1/2Q)n] , (4-18)

and

O(z,n) = jg, n+ 0o(zo), (4-19)
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where Iao(z 0)l and 0,(zo) describe the initial optical pulse, g, =Re(g) is the real

part of g(vo), g, =lm(g) is the imaginary part of g(vo), and the position

z= z - (d - jig,')n describes the optical pulse centroid shifting over n passes

through the resonator due to desynchronism. If d 2 1jg, the optical pulse shifts

back over many passes toward the trailing edge of the electron pulse. Further, if

d2> jg, , the optical pulse shifts forward toward the front edge of the electron

pulse. The shape of the optical pulse amplitude and phase remains the same as

the initial pulse throughout the evolution. Figure 4-1 shows a comparison of the

analytical solution (4-18) and (4-19) with the results of a numerical simulation for

the same conditions. The electron pulse is continuous in length with all

electrons at phase velocity Vo for maximum gain.

**** FEL Pulse Evolution ****
j=l Y =10 d=0.018
0=100 ýa0.001 v%=2.606

-a(z,n) I 0:0.04 P(v,n) _ (z,n)

n

-9 z 9 -41 V 41 -9 z 9

z g (V) 0.13 G(n 0.141

-9 z 9-41 v 410 n 60

Figure 4-1. Optical pulse evolution comparing a numerical simulation with the analytical solution
for a square electron pulse.
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The desynchronism is d=0.018, the initially weak optical field amplitude is

parabolic with a maximum of a0 = 0.001 and a full width of ca = 10; the initial

phase is 40(z)=O for all z; and the resonator loss is determined by Q=100.

The lower-left panel displays the continuous electron pulse shape with a = 1 for

all z. The middle-left panel shows the evolution of the optical pulse over n = 60

passes with the final optical field amplitude and shape in the top-left panel. The

analytical solution gives a slightly larger amplitude than the numerical

simulation, but the centroids and shapes of the two solutions are in close

agreement. The middle-right panel shows the evolution of the optical phase

over the n = 60 passes with the analytical and numerical solutions after the final

pass displayed at the top-right. The similarity of the two solutions is quite

apparent within the portion of the window occupied by the optical pulse with

significant amplitude. In regions where the optical amplitude is small, the optical

phase becomes meaningless.

2. Parabolic Electron Beam

The parabolic electron pulse has the form o(z) = 1- 2z 2 / az 2 for

IzI < az / %, and 0(z) =0 otherwise. The parabolic electron pulse shape is

often used in FEL simulations. In addition, the parabolic equation expresses the

same z dependence as the first two terms in a Taylor expansion of any pulse

shape. Using the parabolic electron pulse shape, equations (4-8) and (4-9) can

be solved analytically for arbitrary initial optical pulse amplitude Iao(z)I, and

phase, 0,(z) using the method of characteristics.

The solution to equations (4-8) and (4-9) yields results for two cases

depending on whether the optical pulse shifts forward due to large

desynchronism, d > -Ijg,', or backward due to large gain, d < jg,'.
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In the first case, where desynchronism dominates gain, d > -Ijg,' and the

optical pulse tends to shift forward, equations (4-10) through (4-13) yield

FtaI r zans'z 0) -g] (4-20)

n(s,zo) = s, (4-21)

ja(s,zo)= Iao(zo) exp[fjgr - + s

cos tan-'(q)

exp[-2_. + g,sr- 2i Iorb)/.j[ • ttanq)J

(4-22)

2h oosn- (qjz oz)'/

wr b =d-tjg,' and

q = tan-1 jgz2 1/2 Z

O~, o 0+ gS j, ,= - ___L bjg.,)12tnq

Substituting equations (4-20) and (4-21) into equations (4-22) and (4-23) gives

the optical amplitude
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Ia(z,n)t = jao(zo)lexp j9r - 1 +2gb)n]

ex -29rZ + 2jgrb%/2°rz tan(q) csn- 2 (4-24)

e gp (jugi,) cos(q) ,

and the optical phase

+ 2hr In cos(q)
9 cos[tel((ig,1Z2 /baZ2) 2)]

where z0 = (o-2b / jgi )1f2 tan(q), and q is redefined as

q = tan"-) - (bjgi)1•2.

In the second case, where gain dominates desynchronism, d<1.jg9' and

the optical pulse tends to shift backward, equations (4-10) through (4-13) yield

b z(s,zO)$(-b)jgf' b +Z z,(--b)jg'

IIz O'z In az (4-26)
2,(- b)jgl b z (s, z,) (--b)jg;l 2V(--b)jg' b -~ (b) jg,'

az IJ z

n(s,z 0) = s, (4-27)
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Ia(s,zO)j = IaO(zO)Iexp[~~ 1 _2gb 2h -b,)1

-b 1/2 1) J r 2h,,g,
gx [ 4 r z~ g r 1  re -* jg1  (4-28)

AS, Z Obb( )1
jg, r± Ire 3 ý l re w -) ( -9

~ ( s ~ z )- b(z) 1 /2g + 2g h r ± w +. 4 I n r e -
-1ajz 3 Tgr ±1 - g rl±J

Substituting equations (4-26) and (4-27) into equations (4-28) and (4-29)

and redefining w = 2n((-b)(jg1'))1/ 2 / oz yields the optical amplitude

Ia(z,n)l = la,0(z0)Iexp +2grb - 2jh I.f -b, 1V
jg, (ni re2w+i1 re-W + 1I

and the optical phase
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0 = •o(Zo) + jgin+ +- -4gjoz( b)2

(- g,' Lg\r + re- _±1 (4-31)
-b)1g2 -w

wz and z-- / r1

b0 ( D ) / [r1/21
where r - z-- (-bjgi' y2'z\ ) -bjgi')ll re'• T

The upper sign is used when IzI < -baz / (_-big ') 2 , and the lower sign is used

when z is not between these limits but is within the limits of the electron pulse.

Outside the limits of the electron pulse, the phase remains constant and the

optical amplitude has the form

ja(z,n)j = (1- 2(z -dn)2/a)exp(-n/2Q) (4-32)

where a, is the width of the optical pulse.

The expressions (4-24), (4-25), and (4-30) through (4-32), provide an

analytical solution for an initially parabolic optical and electron pulse. Figure 4-2

shows the comparison of the analytical solution with the results of a numerical

solution for the same conditions. The desynchronism is d = 0.015, the initial

field amplitude a0 = 0.001 for all z, the phase q0(z)= 0 for all z, the electron

pulse length is az = 10 at phase velocity vo for maximum gain, and Q= 100.

The initially long optical pulse takes on the apparently Gaussian shape shown at

the upper left after n = 60 passes.
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*** EL Pulse Evolution '

j=1 a =10 d=O.015
0=100 a,=0.001 vn=2.606

la(z,n)l 0 0.03 P(V,n) *(z,n)

60 ... ij--

1=0 _. ___
0-9 z 9__-________ __9______9

-9 z 9 -41 V 41 0 n 60

Figure 4-2. Optical pulse evolution comparing a numerical simulation with the analytic3l
solutions for a parabolic electron pulse.

The analytical solution gives a slightly greater amplitude than the numerical

simulation after n =60 passes, but the shape and centroids of the pulses are

nearly the same. The difference in amplitude is probably due to an

accumulation of small numerical errors in the calculation of gain each pass. A

difference in gains of only 0.3% over n =60 passes would account for the

discrepancy.

When d = 0, the second case is appropriate because g,'(vo) > 0 and

equation (4-30) shows that the field a(z,n)j- 0 as n --# o. This situation is the

well-known result that a pulsed FEL cannot operate at zero desynchronism [1].

Physically, the centroid of the optical pulse is shifting back over the electron

pulse by an amount -Ijg1' for each pass through the undulator. Eventually there

is no overlap between the pulses and the optical field decays to zero. Figure 4-3
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shows a gain versus desynchronism curve for the parabolic electron pulse and

initially constant optical pulse. The desynchronism for maximum gain is located

at d = I jg,', which is the desynchronism necessary for the optical pulse centroid

and electron pulse centroid alignment at the beginning of the undulator each

pass.

Gain

0.12

0.05- 70 (1
0.110

/\

0.S

a An

/

0 .006 .01 .015 e e .06

Desynchronism
Figure 4-3. Gain vs. desynchronism for a parabolic electron pulse.

3. Triangular Electron Pulse

Another electron pulse shape that can be solved analytically using the

method of characteristics with equations (4-8) and (4-9) is the triangular pulse

shape of the form 0(z) =1- Iz / z with width o-z for jzj <az and o(z)=0

otherwise. This case compares the differences in optical pulse shape and

phase caused by the z 2 dependence of the parabolic electron beam with the z

dependence of the triangular electron beam. Due to the discontinuity in the

triangular pulse at its peak, z = 0, the solution has slight differences in form for

z <0 and z >0. An error near z = 0 is to be expected, since the triangular pulse
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shape violates the assumption that the electron pulse shape varies slowly:

a' (z) << 1. As in the parabolic case, the optical pulse slipping backward due to

large desynchronism, d-> - jg,', or forward due to predominant gain, d > jjg,

appears. However, the solutions to equations (4-8) and (4-9) for the triangular

electron pulse shape do not lend themselves to being displayed in a form that

makes these two cases obvious. Therefore, we shall solve for cases of

Izl-5 2foz / jgi' and IzI > 2foz / jg,'.

Solving equations (4-10) through (4-13) for the first case of IzI _< 2faz / jg,'

yields

z(s.zo) = -[• :/!- z2 ° exP t2O jJ- (4-33)

n(s,zo) = s (4-34)

ja( ~ z~ j = j O ~ O~ e x [C g, 2 az 2 Q) S ]
[C jg ' i2 e(z ,43

S.Zo)= 0o(Zo) +(2g.d + jh, s

+gre _ , _ exu J (4-36)

jg, '2 2oz 2tz

where f =Ijg,' -d. Substituting equations (4-33) and (4-34) into equations (4-

35) and (4-36) gives the optical amplitude
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ta(z~n)l =IaO(zO)jexp[ 2grd jh, _1)n[C___ g, 2oar 2Q)(-7
x exp± jg'2o ex-[gan/(2,]

and optical phase

+ (4grUz' f~g zý(, -jg,'n])EC , j2 1 L _1 -exp[ Ijg, } ' 0 z L 2u J)J

The second set of analytical solutions are for IzI > 2fuz / jg,A. Solving

equations (4-10) through (4-13) for the case of IzI > 2fcuz / jg,' gives

z(s, z0)=±2 az -f + ALexp[~ Aii+ (4-39)

n(s,zo) = s (4-40)

a~s~ j 0(z)~xp.?2gŽ jhj i 1

LYsz~ j =j O zOj x[ g, 2 a z 2Q )jI (4-41)

[(P~I jg j2 2 a,( -\p - jg 9 J 2 z)

g i ' 2 a z(4 -4 2 )(49rcaz g'~f jz ('1 ~ -jg,' sill
ijg, t 2 )2 1- 2cyzj
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Substituting equations (4-39) and (4-40) into (4-41) and (4-42) gives the optical

amplitude

jaznj= jaUOjeý2g,,d jh 1

ja 0z I g,[~~ 2cyz 2Q )J(4-43)
xgu exp f9a +jgL! i- xpxexp-[-jg, 2 j 2g (exp- [jg'n /(2A) (-

where Ia0(zo)j is the arbitrary initial optical pulse amplitude, and the optical

phase

O•z, n) = 00o(Zo) + 2.d + 2O-z n

k 4gruoz fgiz r (- 1 jgn (4-44)
jg, 2 L_ -°z• exp- 4-4

where o0(zo) is the initial optical phase and

z0 =f -2 z exp + f I.
jg, 2oz ) p( 2a) +J

For both the amplitude and the phase solutions, the upper sign is used when

z >0 and the lower when z <-0.

The expressions (4-37), (4-38), (4-43) and (4-44) provide an analytical

solution to the opti.;al pulse amplitude, shape, and phase in the presence of a

triangular electron pulse. Figure 4-4 shows a comparison of a numerical

simulation and these analytical solutions for the same initial conditions- The

desynchronism is d= 0, the initial field amplitude is a. 0.001 for all z, the

phase is p0(z) = 0 for all z, the electron pulse length is az = 10 at phase velocity

VO for maximum gain, and Q = 100. The lower-left panel shows the triangular

electron pulse at the beginning of the undulator when r = 0, and at the end when

-=1 , showing the slippage distance. The middle-left panel shows the optical
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pulse evolution over n = 40 passes with the final pass displayed at the top-left.

The analytical results are slightly larger in amplitude and more sharply peaked

than the numerical simulation, but the centroid and shape correspond well. The

middle-right panel shows the optical phase evolution over n = 40 passes with

the final phase displayed at the top-right. As can be seen, there is excellent

agreement between the analytical and numerical solutions.

**** FEL Pulse Evolution ****

j=1 a =10 d=0
o=I 00 az=0.001 v,=2.6

I= (z,n)l 0 00.01 P•(V,, n) fz,n) 7

40

n

01
-9 2 9-38 V 38-9 z 9
j (v) 0.13 G(n)

-9 2 9-38 v 380 n 40

Figure 4-4. Optical pulse evolution comparing a numerical simulation with the analytical
solutions for a triangular electron pulse.

D. COHERENCE DEVELOPMENT

The evolution of the optical amplitude and phase over many passes can be

used to analytically examine coherence development. Taking the parabolic
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electron beam with d -2 -jg,' as an example, the optical amplitude solution (4-30)

on the first pass is given by la(z,n) = lao(zo)j where jaI(zo)j represents an

arbitrary optical pulse shape as a function of zo (z). After many passes,n -n ®,

the expression for zo becomes

S-ba1 (4-45)
(-big; )1/

and the optical amplitude becomes

2g~d 1 ( jh, ' 1/2
ja(z,n)j = ja(zO)j exo g 29r I 1_-jg- n

LLg, 2Q '0 oZjg1 ,) IJJ

jg, ,3 r(z) ± 1 "

To obtain (4-46) from (4-30) we note that each term involving w as a negative

exponent goes to zero since w -+ ao as n -+ ao. Since z0 is a constant after

many passes, the first term in (4-46), which represents the effect of the initial

optical pulse shape on the pulse shape after n --> o, has been reduced to a

constant. This indicates that, after many passes, the optical pulse shape is not

affected by the characteristics of the initial optical pulse. Therefore, this theory

predicts that an initially random optical pulse evolves into the same shape as an

initially smooth optical pulse. It follows that the theory should be applicable to

FELs starting from classical spontaneous emission through coherence

development to the onset of strong optical fields. It should be noted that the

spontaneous, random field described here is classical, and does not involve the

quantum processes analyzed in the previous section.

49



To observe the evolution of coherence development in a more quantitative

way, several numerical solutions of equation (4-7) were obtained. Shown in

Figure 4-5 is the coherence development of an initially random continuous wave

optical field with average strength a. = 1, dimensionless current j = 1.8, initial

phase velocity vO, and parabolic electron pulse shape o(z) = 1- 2z 2 / Oz 2 for

IzI < [2-az and zero for IzI> ,F2-z, of width a. with losses determined by Q = 6.

The desynchronism is d = 0.02, and the initial optical amplitude has a random

component added at each size z. The plot of j(z - r) at the lower-left panel

shows the parabolic electron pulse shape and the small slippage as r goes from

zero to one. The optical amplitude evolution Ia(zn)i in the middle-left panel

shows an initially random pulse which becomes much more coherent over n = 40

passes. The final pulse shape in the upper-left panel is much smoother and

shows a high degree of coherence. The gain spectrum, g,.(v' in the lower-

center panel shows the antisymmetric gain function for reference. The evolution

of the logarithm of the optical power spectrum, log (P(v,n)) is shown in the

middle-center panel. The evolution of coherence leads to a spectrum centered at

the phase velocity for maximum gain. The final power spectrum in the upper-

center panel is narrow indicating long range phase coherence. The optical

phase evolution O(z, n) in the middle-right panel shows the development of the

optical phase over n = 40 passes with the final phase profile at the upper-right.

The power evolution P(n) in the lower-right panel shows power initially decrease

as incoherent parts of the optical field are removed by losses. Then the power

begins to grow as the pulse becomes more coherent and more centered at the

frequency for maximum gain. Figure 4-5 also implies that the optical shape is

determined primarily by the shape of the electron pulse.
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*t Analytic TEL Pulse Evolution *t
j-1.8 as=20 vO=2.6

0=6 .o=- ba=o.5 d=O. 02
a(z. n)l I ý 111 log(P (v, n)) 40( n

40

n

-16 16-25 v 25-16 z 16
j o-T T0 7Z. 024 PF7I

-16 z 16-25 v 250 n 40

Figure 4-5. Optical coherence development from a random pulse solving (4-7) numerically.

E. CONCLUSIONS AND FURTHER RESEARCH SUGGESTIONS

By assuming a long electron pulse, weak optical fields, and low gain, the

electron and optical pulse shapes have been expanded in a Taylor series in

order to solve the pendulum and wave equations. The result is a single first-

order, partial-differential equation describing the evolution of an optical pulse.

By including the effects of desynchronism and resonator losses, a more

complete partial-differential describes optical evolution over many passes in an

FEL oscillator. As a direct consequence of deriving the differential equation, the

familiar antisymmetric gaincurve and symmetric optical phase shift are obtained,

as well as functions describing the effects of slippage and the electron pulse

shape. Solving the differential equation (4-7) for a continuous electron beam
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yields the simple single-mode gain value of 0.1 35j and results in no change in

the optical pulse shape. Electron pulses with parabolic and triangular shapes

are shown to yield gains less than predicted by single-mode gain calculations

since there are fewer electrons distributed over the entire length of the electron

pulse'. The shape of the electron pulse is shown to determine of the shape of

the optical pulse in steady state after many passes. Coherence evolution of an

initially random pulse is also studied.
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V. SHORT PULSE EVOLUTION IN THE BOEING

APLE OSCILLATOR

A. INTRODUCTION
The previous chapters have looked at FELs with low gain and weak optical

fields. We now examine an FEL oscillator that can produce high gain and strong

fields, but is designed to produce only moderate optical fields as a seed laser

for an FEL amplifier. Indeed, the problem investigated is how to make an

oscillator work poorly, or to reduce the electron-light coupling, so that only a

small energy spread is induced in the electron beam. This chapter discusses

the Boeing/LANL Average Power Laser Experiment (APLE) which is designed to

produce 100 kW of average power for 3 minutes from a FEL using a Single

Accelerator, Master Oscillator, Power Amplifier (SAMOPA) design, shown in

Figure 5-1 [19,20].

1. Photo Injector 6. Bunchers

2. Accelerator Section 6. Accelerator Section

3. FEL Oscillator 7. FEL Amplifier
4. Accelerator Section

Figure 5-1. Schematic diagram of the Boeing APLE SAMOPA
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In Figure 5-1, the accelerator section (2) preceding the FEL oscillator (3)

gives the beam 17 MeV energy with an instantaneous energy spread of 0.3% at

an average current of 0.23 A and a normalized emittance (90% edge) of

e, = 80;r mm-mrad. The electron beam, with a peak current of 140 A is then

directed into the oscillator (Q) where it produces A=10.6pm wavelength

radiation of approximately 100 W average power. Each electron micropulse

may have an energy slew of up to 3% across the pulse. Emerging from the

oscillator, the electron beam is accelerated (4), and then may be compressed in

two interleaved bunchers (5) to increase peak current. The beam is then

accelerated further (6) to 34 MeV and the energy slew removed. The electron

beam enters the power amplifier (7) with a peak current of 450 A and an

instantaneous energy spread of _ 1.0%. In the amplifier, the optical pulse from

the oscillator experiences a gain of G - 1000 to meet the design criteria of 100

kW average laser power for 3 minutes [19,20].

This chapter examines the goal of passing an electron beam through the

oscillator (3) without increasing its energy spread beyond ---1.0%. This

procedure produces an optical pulse with 100 W average power, and determines

an optical pulse shape and size that optimizes the amplifier efficiency. The

effect of an energy slew in the electron beam is investigated, and we also

consider the optimum design for a high power oscillator.

B. OSCILLATOR DESCRIPTION

The APLE oscillator uses a linearly polarized undulator of wavelength

A0 =2.36 cm over N=100 periods for a length of L=NA0 =2.36 m and

undulator parameter K = eBgAo/2 ntrc 2 = 0.23. The optical wavelength

produced is determined from the resonance condition as
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A= Ao (I+ K2)/2y2 ,10.6pm. The relatively large optical mode waist,

Wo = 0.2cm, compared to the small matched electron beam radius 01],

rfe,,Ao/2,rK)=0.08 cm, leads to an averaged filling factor of

F= (r1Wo0 )2/(1+ L21224) m0.12 with Rayleigh length Zo = L/2. The electron

beam density p= 1.4 x 1012 cm-3 gives a dimensionless current of

j = 8N( ,eKLJJ) 2p/y3mc2 = 250 where the Bessel function factor

JJ = Jo(ý)- Jj(ý) ft 0.987 with = K2/2(1 + K2) = 0.025 is present in order to

account for the linearly polarized undulator [1]. The theoretical single-mode gain

is estimated by G = 0.135jF = 58%, but is not self consistent and does not

include the effects of energy slew, beam quality, or optical mode distortion. The

length of the electron micropulse is I* = 1.8 cm, or a. = 17 slippage distances,

NA.

The electron phase velocity, v = L[(k +k), - k], measures the resonance

between the electron, undulator, and optical fields [1]. An electron beam energy

spread causes a Gaussian spread in z velocities and phase velocities with

standard deviation Av= -G = 4nNAy/r = 1 where Ay/y= 0.0015 for the APLE

oscillator. A linear energy slew of 3% over the electron micropulse causes a

ramp in phase velocities from va -25 to v,- 25. An angular spread of the beam

causes an exponential spread in the phase velocity characterized by a 1/e width

of Av, = o- = 1.5. The energy and angular spreads do not significantly degrade

APLE oscillator performance. The large energy slew of Av= 50 over O-z 4 17

slippage distances means that each slippage length of the beam experiences a

phase velocity shift of Av _- 3 during each pass.
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C. DIFFRACTION EFFECTS

When the effects of optical diffraction are included in the FEL interaction,

the phase velocity for maximum gain is shifted by the Rayleigh length zo [1]. The

electron phase velocity that gives the optimum peak single pass gain was found

to be votx w 2.6 + 1/zo ft 5 [1]. Optical mode distortion results from high current

which amplifies the radiation overlapping the electron beam. This effect causes

the optical mode at the end of the undulator to decrease in size and increase the

filling factor. A single pass, three dimensional, self-consistent numerical

simulation including diffraction, electron beam radius, and beam quality was

used to determine the electron phase velocity that produces the peak single-

pass gain, 0l,"x , and the new effective filling factor. The simulation used a peak

current density of j-250, normalized electron beam radius ao = r.ý;-rIL, = 0.28

with a parabolic shape [1], energy spread with standard deviation a. =1

distributed as a Gaussian, angular spread described by an exponential

distribution of 1/e width a, = 1.5, and a weak optical field.

The strong fields attained over many passes and the resonator mirrors can

affect the steady-state distortion that occurs in steady-state. A multiple-pass

numerical simulation including resonator mirrors and losses was next used to

determine the optical mode distortion over multiple passes in strong optical

fields. The losses were characterized by Q = 5, where 1 !Q represents the

fractional loss of optical power per pass in the resonator from both outcoupling

and absorption. The resonator was characterized by a mirror radius so that the

fundamental mode has edge loss around the mirrors of 1 %. Strong optical fields

cause the gain to decrease until the gain just equals the loss on each pass

through the undulator. Since the gain is reduced, the amount of mode distortion

is reduced. The effective filling factor now obtained by comparing the cross
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sections of the undistorted optical mode with the distorted optical mode obtained

from the multiple pass simulation gives F m 0.04. It is estimated that transverse

diffraction and mode distortion in the FEL oscillator can be summarized by using

an effective jF = 10 in two dimensional codes that explore longitudinal pulse

effects.

D. PULSE EFFECTS

Running the APLE oscillator with a relatively large current of jF = 10, and

extracting only 100W average power, while inducing less than 1% energy

spread requires the electron-optical coupling to be significantly reduced. The

first two cases presented below examine options for reducing the coupling. The

last case increases the coupling to achieve high efficiency without the amplifier.

1. No Energy Slew in the Undulator

One method used to reduce electron - optical beam coupling is to operate

at a large desynchronism, d = - 2AS/NA, where AS is the mirror deviation from

exact synchronism [1]. Small desynchronism values are known to cause

unstable operation because a small change in resonator length can alter the

FEL from high power to low power, or even zero power [1]. Figure 5-2 shows

optical power versus desynchronism for the APLE oscillator. It was obtained

using a two dimensional numerical simulation, including slippage effects with an

electron pulse length of o-a - 17, a Gaussian spread in electron phase

velocities of UG = 1.5, and outcoupling and losses characterized by Q = 5.
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Figure 5-2. Power versus desynchronism for the APLE oscillator.

A larger, more optimum desynchronism of d-=0.34 gives low power, a long

optical pulse, and a small induced energy spread, as shown in Figure 5-3. The

long parabolic electron pulse of length a-, = 17 is displayed in the lower-left

panel showing the slippage over one pass through the undulator from

dimensionless time r = ct/L = 0 to r = 1. The middle-left panel shows the optical

pulse evo•lution growing from shot noise over n = 800 passes to a final peak

optical amplitude of JA = 18 shown at the top-left. The shot noise is introduced

by including a random electron phase with standard deviation of .5.= 10-5. The

middle-center panel shows the evolution of the optical power spectrum over

n = 800 passes with the top-middle panel displaying the final power spectrum.

The bottom-center panel shows the single-mode gain spectrum for reference.

The evolution of the electron distribution over the n = 800 passes is shown in the

middle-right panel with the final distribution at the top-right. The bottom-right

panel displays the evolution of the total optical power within the oscillator over

n = 800 passes, with the final dimensionless power P = 86 corresponding to

approximately 2200 W. Since the trailing half of the electron pulse never
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interacts with the optical pulse, most of the energy distribution is kept within a

narrow band. Only the electrons on the leading edge of the electron pulse give

up energy to the light which produces the small bump on the left of the final

electron distribution spectrum. The final energy spread is only about 0.6% and

satisfies the APLE criteria.

**** TEL Pulse Evolution *it.

j=10 YZ=17 9=16-05 GG=I. 5
0=5 d=0.34 N=I00

la(z,n) I _O 18 P(v,n) f(v,n)

Boo "" "

n

-20 z 20-38 v 38-38 38

-20 z 20-38 v 380 n 800

Figure 5-3. Optimum desynchronism of d=0.34 produces required power without inducing large
energy spread.

-The effects of a small random "jitter" in the electron energy coming from

the accelerator was also explored. The study used the two-dimensional

simulation but included a small random phase velocity component to each

electron micropulse. A timing jitter was included by adding a small random

change to the desynchronism length on each pass. These jitters had a
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significant effect on small values of desynchronism and caused the FEL to not

operate for the negative desynchronism values. This effect could be expected

since the region of small desynchronism in Figure 5-2 is considered unstable.

The jitters had little or no effeL,1 on the power at moderate to large

desynchronism values.

2. Energy Slew in the Oscillator

Another option for the APLE SAMOPA design induces a linear electron

energy slew of between 1% and 3% along the micropulse. The effect is to

reduce electron-optical beam coupling in an attempt to leave large portions of

each micropulse unaffected by interactions with the radiation field. The energy

slew is converted to a slew in the electron phase velocities by A v = 4 NAy/ y.

The slew in phase velocities over a pulse length of az = 17 slippage distances

results in a shift of r/4 (1 % slew) or 3;r/4 (3% slew) over each slippage

distance. Superimposing a Gaussian energy spread of -G = I on the slewed

pulse causes light to interact with electrons with phase velocity differences of

-,r-. Since the change in phase velocity is greater than the gain bandwidth, the

FEL interaction is affected. In order to reach a stable power and stable optical

pulse shape when there is a significant energy slew, the desynchronism must be

near zero so that the light continues to interact with the same energy component

of each electron micropulse. Unfortunately, when the desynchronism is small,

the FEL coupling is large resulting in strong optical fields and a large electron

energy spread at the end of the interaction. A large desynchronism causes the

light to experience a significant change in resonance condition as discussed

above. In that case, a chaotic optical pulse shape and power evolution are

observed in simulations.
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Figure 5-4 shows the results of a two-dimensional multimode numerical

simulation with jF =10, a large desynchronism of d =0.06, energy spread of

aG = 1.5, and an energy slew of 3% over n = 1500 passes. The middle-left panel

displays the chaotic optical pulse evolution with the final pulse shape shown at

the top-left. The two upper-center panels show the broad optical power

spectrum evolution due to a broad range of resonance conditions contained in

the slewed electron pulse. The lower-right panel displays the chaotic power

evolution in the resonator with about 50% power variations over a few hundred

passes.

**** FEL Pulse Evolution ****

j=10 a =17 aG=..5
Q=5 d=0.06 NW100

la(z,n)l 0 21 P (v,n) f (z, v)

1500 ~n=1500

:•i!•ii i;n=750 -"

0 n._______ 421 i
-16 z 16-47 V 47-16 z 16
j (z-t) - n) 73

T'c=

-16 .z 16-47 V 470 n 1500

Figure 5-4. APLE oscillator with 3% linear electron energy slew present.

The three upper-right panels display the electron energy distribution as a phase

velocity distribution at the end of passes n = 1, 750, and 1500. On the first pass,

the 3% energy slew and the 0.3% Gaussian energy spread in the electron
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micropulse are shown. In later passes, the electron-light interaction induces

two to three times the energy spread originally present, which is the maximum

allowable by APLE specifications.

3. High Power Oscillator Experiment

Another possible goal for the APLE laser system is the operation of the

oscillator alone at the high average power of 10 kW for 3 minutes. This goal

requires a complete change in design criteria and objectives from those of the

previous two sections. Rather reducing the electron-optical beam coupling, the

goal here is to increase coupling to get maximum power from the FEL oscillator.

The first method for increasing power simply increases the current density

j ac K 2 by increasing the undulator parameter K. This is accomplished by

reducing the gap, g, between the undulator magnets, since K oc e-'i•4. The

increase in coupling is expressed by j occurs because increasing K will increase

the transverse wiggling motion of the electrons; the amplitude of transverse

oscillations is Ax =KAo0/2zs,.

Secondly, the FEL power can be increased by using a small value of

desynchronism as seen in Figure 5-2.

The two methods above increase FEL coupling and should lead to

saturation in strong optical fields. Saturation occurs when a significant number

of electrons have lost enough energy to move through the gain spectrum

bandwidth Ay/y z - 1/2N, which corresponds to a phase velocity change of

Av= 47dVAy/y z -2z. Another view of the saturation process uses the FEL

resonance condition A = A0 (1 + K2)/2v . If a significant number of electrons lose

enough energy, (y - 1)mc2 , the optical wavelength no longer remains in

resonance with the electrons.
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The resonance condition reveals several ways to go beyond the

saturation point. As electrons lose energy along the undulator, the undulator's

wavelength, ,Ao, or the parameter, K, could be decreased so that resonance is

maintained along the undulator. An undulator designed to take advantage of

this concept is known as a "tapered undulator". Conceptually, reducing A. or K

provides a phase acceleration for the electrons with the effect of simply adding a

phase velocity to the pendulum equation (2-14) describing the electrons'

microscopic motion [1]:

v= v=.5+ al cos(4+ ), where =jko(r')dcr'+kz+owt, (5-1)

0

where ko(r) = 2r-/2o(T) is the changing undulator wavenumber along the

undulator. Such tapering yields a phase acceleration of [1]

8 = L2 dko(z) (5-2)
dz

In order to increase coupling, the undulator parameter is increased to

K = 0.8. The three-dimensional numerical simulation using K=0.8 yields a new

effective filling factor resulting in jF = 70. A small value of desynchronism

d-=0.001 enhances electron-optical beam coupling further. The phase

acceleration = 8;r continues to extract energy from the electrons after

saturation. Figure 5-5 displays the results of a two-dimensional numerical

simulation using losses represented by Q=10 over n= 1000 passes. The

optical pulse is modulated by the trapped-particle instability and grows to a final

peak amplitude of jal = 570. The trapped-particle instability occurs when

electrons trapped in phase space oscillate at the synchrotron frequency leading

to the formation of several sidebands. The final average power P = 2.5 x 10"
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corresponds to approximately 20 kW and is twice the high power goal of the

oscillator.

ELPulse Evolution **j=,z0 a _=81 d-=0. 001 cOG=-3.4

0=10 N=100

la(z,n) I 0F 570 P(v,n) f(v,n)

1000 :•..1..1 ':•iI.

-16 z 16-50 v 50-50 v 50

-16 z 16-50 v 500 a 1000

Figure 5-5. High average power from tapered oscillator.

E. CONCLUSIONS AND FURTHER RESEARCH SUGGESTIONS

The Boeing/LANL Average Power Laser Experiment (APLE) design required

limiting the electron-optical coupling in the oscillator in order to reduce the

energy spread of the electron pulse prior to injection into the amplifier. Several

methods of limiting the coupling were examined, including the use of large

desynchronisms and the use of an energy slew in the electron pulse. Large

desynchronisms were found to meet the requirements of a smooth, relatively

long optical pulse with less than double the initial energy spread of the electron

pulse.
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Using an energy slew to reduce electron-optical coupling resulted in a

chaotic optical pulse and energy extraction from a large portion of the electron

pulse.

Producing a high average power optical pulse using a tapered oscillator

without the amplifier was examined in this chapter. Further investigation on the

ability of the mirrors to withstand the high optical powers incident on them, or a

proposal for a mirror system that can operate at those powers, is needed.
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VI. WHISTLER WAVE AMPLIFICATION IN THE

MAGNETOSPHERE

A. INTRODUCTION

1. Description of Whistler Waves

Whistler waves are very low frequency (VLF) electromagnetic radiation

that propagates through the earth's ionosphere and magnetosphere, and are

detected at magnetically conjugate field points on the earth's surface [21].

Whistler waves were first commonly detected during World War I by each side

as they used amplifiers on long telephone lines to listen to the other's

conversations [22]. Instead, what they sometimes heard were whistling sounds

decreasing in frequency from several to one kHz over a period of about one

second. The long telephone lines were acting as antennas for these whistlers,

and the high gain devices boosted the otherwise weak signal. It also found that

the rate of whistler activity varied with time of day, magnetic activity, and location

on the earth [21]. Whistlers are more common at night, in mid-latitudes, and

during periods of increased lightning activity [22].

The correlation between periods of high lightning activity and whistler

detection led to the following explanation for their occurrence. A lightning flash

in the southern hemisphere dumps electromagnetic energy into the atmosphere

in a short broad-band pulse. This pulse may then propagate through the

ionosphere and into the magnetosphere. The magnetosphere is highly

dispersive, so as the pulse travels along a magnetic-field-aligned duct it is

spread out due to higher frequencies traveling faster than lower ones. The wave

may also be amplified as it propagates along the field line by interactions with
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energetic charged particles. As the wave emerges from the magnetosphere at

the conjugate point in the northern hemisphere, it is detected as a whistler

beginning with higher frequencies and trailing off to lower frequencies.

Other mechanisms have also been found to generate whistler waves.

Morse code dashes longer than 150 milliseconds may produce whistlers

accidentally [22]. VLF transmitters placed in mid-latitudes may stimulate

whistlers detected at the conjugate point. Over the last forty years, whistler

waves have primarily been studied using VLF transmitters to simulate the

injected whistler [22].

2. Descnption of the Magnetosphere

The immediate environment of the earth consists of a neutral atmosphere

extending up to about 60 km above the earth's surface, the ionosphere, a region

consisting of increasingly ionized gas as well as neutral particles extending up to

about 1000 km in altitude, and the magnetosphere, consisting of ionized

hydrogen and free electrons, extending out to distances of about 100,000 km

from the earth [23]. There is no distinct boundary between the ionosphere and

magnetosphere; it is rather a smooth continuum.

The structure and processes of the magnetosphere are controlled by the

earth's magnetic field and the solar winds from the sun. The interaction of the

solar wind and the earth's magnetic field forms the bow-shock at approximately

12R, (where R. = 6370 km is the mean radius of the earth) with the solar wind

dragging field lines around the earth forming a tail on the anti-solar direction.

The region in space in which the earth's magnetic field is closely

approximated by a centered dipole field inclined at 11 0 to the spin axis is known

as the inner magnetosphere [23]. The inner magnetosphere extends out to

about 7R, and is populated by a background 'cold' plasma with energies of 0.1
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to 1 eV and a less dense 'hot' plasma with energies from 1 keV to 100 MeV [23].

These energetic charged particles are magnetically trapped in helical orbits

spiraling along field lines and make up the radiation belts. Figure 6-1 shows the

inner magnetosphere with dipole magnetic field lines and the helical paths of

energetic trapped particles. The cold plasma is responsible for the index of

refraction for VLF while the part of the hot plasma that is resonant with the VLF

wave can amplify the wave. A typical value for the index of refraction is n S-, 20

to 30 due to the cold plasma.

• ... .......,./.

Figure 6-1. Inner magnetosphere with dipole field lines and energetic particle paths.

Approximating the earth's magnetic field as a centered dipole inclined by

11 0 from the axis of rotation yields the following equation for the magnetic field:
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((R,A)-=B0 (6-1)

where 8o is the magnetic field at the surface of the earth, R is the geocentric

distance to the field line, and A is the geomagnetic latitude 123]. A dipole field

line can be described by

R = Re cos 2 A, (6-2)

where Rq is the geocentric distance to the field line at the equator [23]. Field

lines are uniquely identified by the L parameter

L = Re (6-3)
R

The term "ducting" is used to describe the bending of the wave as it

travels up along a field line in the southern hemisphere and back down the field

line in the northern hemisphere. Ducts consisting of crests of higher electron

density, or troughs of lower electron density, have been found to exist along field

lines in the magnetosphere [22]. The electron density gradient creates an index

of refraction gradient within a duct that causes a wave initially entering a duct to

become trapped much like light in an optical fiber. Since the wave is traveling

from a higher to a lower index of refraction, a form of total internal reflection may

take place under the right initial conditions.

B. WAVE PARTICLE INTERACTIONS

1. The Cold Background Plasma

VLF waves propagating through the magnetosphere are affected by the

hot and cold plasma in the region of interaction. The electrons in the cold

plasma are several orders of magnitude less energetic than the electrons in the
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hot plasma and are not resonant with the VLF wave. The only effect of the cold

plasma on the VLF wave is to cause dispersion. The cold particle density P, is

several orders of magnitude greater than the density of the hot particles.

Since the VLF wave travels along a magnetic field line, a useful

coordinate system near the geomagnetic equator has the z-axis follow a field

line, as seen in Figure 6-2.

Y, •

"WAVE

Figure 6-2. A field line showing the direction of propagation of the wave and electrons and a
relevant coordinate system.

The cold particles' motion is governed by the Lorentz force law

Mv =qw.+'(6.+[)) (6-4)

where (..) =d(..)/dt, q is the charge on the particle, E, =Ei +Eyj is the VLF's

arbitrary electric field, B3, is the VLF's arbitrary magnetic field, B =Boi is the
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earth's magnetic field, and ý is the velocity of the particle. Since the free ions

are much more massive than the free electrons, they can be considered as

being immobile at VLF driving frequencies. Assuming the wave oscillates at

frequency w', the linearized equation (6-4) yields

-imwvY =eE - ýLO,(6-5)

and

-imWVx = -e E +-L- BO, (6-6)

the VLF wave magnetic field has been dropped since it is always measured to

be much less than the earth's magnetic field [21]. Solving equations (6-5) and

(6-6) algebraically for the cold electron velocity, we find

x=e _(,Ex - 9 EY)(1 - .02)J. (6-7)

and

e= _ iEY + 2E,) -f, (6-8)
mV o = 00)W2J

where D2- eB 0 /mc is the electron gyro-frequency.

The Lorentz force law shows how the VLF wave affects the motion of the

cold electrons. The wave equation is required to see how the cold electrons

affect the wave. Ampere's law and Faraday's law are
41= 1 OEw

B 4= , c + _ (6-9)
C C '?tO

V x E,,(6-10)
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and result in the wave equation

I~w)+ k2tw i 4 j. + 2 -) .

C2 C 2w'(-1
where J---ePg is the cold electron current density. Substituting the cold

electron velocity equations (6-7) and (6-8) into the wave equation (6-11) yields

(W2C2k2)E 1 (6-12)

and

1- 2 £k2)E2,'W2 EX - i QEy ,(65-13)

where a4W2 = 4ne2pj/m is the cold electron plasma frequency. Solving

equations (6-12) and (6-13) simultaneously then yields the dispersion equation

relating k and w. From the dispersion equation may be obtained the index of

refraction caused by the cold electrons,

22 ck2 
2n 2 - 1 - PC (6-14)

The plus sign corresponds to the index of refraction for a left-hand circularly-

polarized wave; the minus sign corresponds to a right-hand circularly-polarized

wave. The whistler wave has a frequency less than the electron gyro-frequency,

and must be a right-hand circularly-polarized wave.

2. The Whistler Wave Equation

Having developed the index of refraction, which is interpreted as the

effect of the cold electrons on the whistler wave, the effect of the hot electrons

on the whistler wave is now explored. Referring back to Maxwell's equations

used in the last section, the current density must now include the hot electrons
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also: J =J +J, where J. =-ev.[-sinecos@,O] is the single particle current

density and 0 = fO9(t')dt' is the phase of the electron cyclotron motion. When

the wave envelope is a narrow band whistler, the slowly varying amplitude and

phase approximations may be used in Maxwell's equations, A E, << wJEw,

,zE, << kE., .t << wo, 6zc << ko, where e, =0 (..)10z and e, = 6 (..)/et [1].

Having shown in the last section that whistler waves are right-hand

circularly-polarized, the fields can be expressed as

Ew = Ew[cos /,-sin y/,,O], B1 = B,[sin y/,cos v,O], (6-15)

where y=kz -oft +¢. Inserting the whistler fields into Ampere's law while

allowing the amplitude and phase to evolve results in the following equation:

i9zB,[-Cos V1,sin V,0] + B, (k + ez)[sin y,cos yO] -I E 4,r-(6-16)

C CC

Defining the two orthogonal unit vectors

ý,=[sin y,cosy.,O] and i2 = [cos V/,-sir y,O] (6-17)

and projecting equation (6-16) onto them yields the following two scalar, first-

order differential equations:

2E

cB, z 0 + E ebt + ckBw Ew _ W 4- vcos(,+), (6-18)

and

cdzB, + etEw = -4zevhl sin( V + 0). (6-19)

These equations can be further simplified by using the index of refraction

equation (6-14) and nE, =Bw to obtain
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ncezBz + OtBz = -4,nenv,± sin( Y, + 0), (6-20)

and

B,( nC~9z@+ 8t@) = -4ye/v.±cos(Y+ +). (6-21)

We next define a complex whistler field b as

b = eBw 0. (6-22)
mc

Then equations (6-20) and (6-21) further simplify to

(nc e-- -+ b= i4n2vexo(-i(ý+e) (6-23)
9Z Ot)

where v = nvh±IC is the normalized hot electron transverse velocity and

=kz - at + f'tf(t') dt'

is the longitudinal electron phase.

The single-particle current for the hot electron in equation (6-23) is

transformed into a beam of electrons by a weighted average over their

transverse velocities v, their transverse phases 6?, and their longitudinal phase

;. The averaging is weighted by the hot electron density Ph. We also can

assume the whistler wave is spatially flat over many wavelengths [26] so that

9 b/1 z . 0 to obtain the whistler wave equation

h= - (V exp(-i(; o))). (6-24)

A whistler wave entering the magnetosphere encounters many electrons

randomly spread in phase. As the whistler wave equation (6-24) shows, the

interaction with randomly spread electrons has no effect on the whistler and the

wave does not grow. However, the whistler wave affects the motion of the hot

electrons. It is this feedback mechanism that allows electron bunching and wave
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amplification. The effect of the wave on the motion of the electrons is the next

topic to be examined.

3. The Hot Electron Equations of Motion

The motion of the hot electrons in the presence of the earth's magnetic

field and the whistler wave fields is governed by the Lorentz force law

eh% + wYX ([3w + )J (6-25)

However, unlike the cold electron case, the whistler magnetic field is retained to

describe electron bunching. Since the contributions of the cold electrons has

been completely contained in the dispersion relation (6-14), the subscripts "h"

for hot and "c" for cold are now dropped after 6-25.

The microscopic bunching of the electrons due to th" wave-particle

interaction is a small perturbation on the macroscopic gyro-motion and the

bounce motion of the electrons in the earth's magnetic field. The earth's field

near the geomagnetic equator is not exactly uniform, because the dipole's

magnetic field lines diverge as they leave the north pole and converge as they

enter the south pole. This results in a component of the field in the radial

direction i, as well as in the previously defined i direction [24]. In order to find

the effect of the radial component B, of the earth's magnetic field on the motion

of the electrons, Maxwell's equation V-.B = 0 is used to find Br:

1 6 (rB,) + iBz = 0 (6-26)
rjr ýr ,z

which gives

B =1 r B 1)O (6-27)
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The Lorentz force in the i direction due to this field is

= =1 evr Bz (6-28)mvZ 2 c CZ

where v, is the hot electron's gyro-velocity. Averaging over one gyration and

identifying r = mv.Lc/eB as the Lamor radius of gyration yields [24]

ýz _ _2 z (6-29)2Bz &z

Since the electron energy is roughly constant while spiraling along field lines

(Vz2 + v±2 = constant), we have vzvz -v.LL, so that

AX= VxVz MZ (6-30)2Bz

and

VyVz ,z (6-31)

2Bz z

Recognizing v_/(2Bz) in equation (6-29) as a form of the first adiabatic invariant

[24], it is therefore a constant. Thus equation (6-29) can be written in terms of

the values of the initial transverse velocity vj.o and magnetic field, B0 , at the

equator.

Adding equations (6-29), (6-30) and (6-31) into (6-25) gives the hot

electron's equation of motion including the effects of the whistler wave and the

earth's inhomogeneous magnetic field. Expressing each velocity component

yields

_~ eFE +l(vBVzB) +2 (6-32)

v m X +cxYz YJJ + (6-32)
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= Ey + 1(vB] - vB) + vyvz° OBz (6-33)v, = I 2B. + ez-V e

ý Z = ± _ V . y _ Y .) _-_O 2 B ( 6 -3 4 )
mc 2B0,Oz

Since the region of space most often identified with the whistler wave-

particle interaction is within a few degrees of the geomagnetic equator, a useful

approximation to the earth's dipole magnetic field in that region is

B, = B(z)= Bo(1- qz2), (6-35)

where q = 9/(2L2R.2), Bo is the magnitude of the earth's magnetic field on the

field line at the equator, and z is distance measured along a field line from the

equator [25].

Substituting the form in equation (6-35), for Bz as well as for Bx and BY

and the right-handed circularly-polarized whistler wave from equation (6-15) into

equations (6-32), (6-33), and (6-34) yields

vX= _e (cos V + LI B(z) - a-nEcos, + VVzoqz, (6-36)

Y = -e ( -E sin v-x B(z) - -z nEsin V + vyvzqz, (6-37)

S=(L VnEcos y/-YnEsin -()qz. (6-38)

These equations can be further simplified in terms of the perpendicular velocity

vJ and the angle 0 between the whistler wave fields and the electron's velocity,
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Vy = VL cos 0, v, -v_ sin®. (6-39)

where 0 = 0+ f 'O(t')dt'. After some algebra, the equations of motion reduce

to

eB v
=-vloqz + ' sin(yl + 0), (6-40)mc

•) B~) eBw (1 - nvz )sn )=Z v-vLqz + -m C)i~i+) (6-41)

= + eB I nvz )cos( v + ®). (6-42)
mc nmv. . C J

Introducing the whistler wave amplitude fbj = eB./mc and the electron gyro-

frequency n = eB(z)/mc yields

v, =-v2Lqz + Jbjv. sin( / + 0), (6-43)

vý = Vzvqz + ci-i 1- _ nVzosin( V + E), (6-44)

cbl (nv )
n)= (z) + _Jb 1 - V-Cos( Y/ + 0). (6-45)

The first terms on the right side of each equation (6-43) through (6-45) describe

the fast macroscopic electron motion in the large scale dipole field of the earth.

The last terms are proportional to the VLF wave field Abf and describe the small

microscopic scale motion in the combined dipole and VLF fields.

Since the hot electrons spend much less time in the interaction region

than the bounce period in the dipole field, the electron motion in the first term on

the right side of equations (6-43) through (6-45) can be described by

Zmaro (t )Vzot. (6-46)
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According to experimental observations, most whistler activity and VLF

wave amplification occurs when co =0.5D2, known as the "cutoff frequency" [22]

At the cutoff frequency, the phase and group velocities of the wave are given by

vP= c/n and v = dwo/dk = c/n respectively. Since at resonance vm 0, the

electrons satisfy kvo = w- Q so that v,, = - wik = -vp = - c/n. Hence, the wave

at the cutoff frequency and the resonant electrons are traveling with equal

velocities in opposite directions.

Recognizing that 9 has both fast and a slowly rotating terms allows us to

separate out the simple, fast periodic gyro-motion of the electrons in order to

concentrate on the more interesting slower evolution of the bunching electrons.

Redefining e = Of + 0,, with Of = O(t)dt', allows the use of 0,(t) for the slow

evolution of the VLF wave.

The arguments within the trigonometric functions in equations (6-43)

through (6-45) can be rewritten in terms of the longitudinal electron phase

4= kz - at Q(t')dt', (6-47)

where y/ + 9 = yv + Of + 0. = Os 9s + 0. Defining the electron longitudinal phase

velocity as

R~C t2
c ,+_2t (6-48)

where (6-46) is used to replace z in terms of t in the inhomogeneous term. Thus,

the electron phase acceleration becomes

73V= •= k•/z + 4q-2-t. (6-49)
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Substituting the electron phase and electron phase velocity into equations

(6-43) through (6-45) while using (6-46) for the macroscopic z terms, v,, = W/k

for the macroscopic terms, and v.o = - c/n in the microscopic terms yields

i= (4 - v,2, )!q3t + Iblv sin(4 + 9+ (6-50)

Vq = 2t + 21b sin( -+ 0+vA), (6-51)

21b- cos(,;+ 9+ (6-52)
V

where the definition v = kv. is a normalized perpendicular velocity, v0 = kvo is

the normalized perpendicular velocity at the equator, and the subscript s is

dropped from Os, since all coordinates are now slowly evolving. The

macroscopic z motion along the inhomogeneous field line uses the substitution

z=ct/n. The microscopic z describing electron bunching in the VLF wave uses

the fact that the wave and electrons are counter-propagating which causes

Vzo = -c/n.

The first term on the right side of equations (6-50) and (6-51) represents

the acceleration of the 1,c4 electrons due to the inhomogeneity of the earth's

magnetic field. The acceleration term is analogous to the "taper' term in a free

electron laser as discussed in Chapter V, and so the acceleration term is

referred to as a "taper' here. Define

__q 9ow2
=- 2kq--R2, (6-53)

where L defines the number of geocentric earth radii at the equator to the

magnetic field line being used, and R, =6370 km is the mean radius of the
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earth. Presenting the hot electron equations of motion using the taper term

gives

v= (4- vo2) +!blvosin( 0+ (6-54)

v = vct + 2Ibjsin(4+ 0+ 0) (6-55)

9= -jbj cos(4 + 9+ 0). (6-56)
v

Several interesting observations can be made about the equations of

motion (6-54) through (6-56). Equation (6-54) follows the longitudinal evolution

of the electrons, and includes the pendulum equation with a phase acceleration

identified as taper. The taper term in equation (6-54) shows that certain

electrons with an equatorial normalized perpendicular velocity of v ±_2

experience no effect on their longitudinal phase velocity due to the

inhomogeneity of the earth's magnetic field. A normalized perpendicular velocity

of vo = ±2 corresponds to a pitch angle of & ±630. The electron phase velocity,

v = kvz(t) - w + 0Ž(t), shows that the parallel velocity and the gyro-frequency

are each changing in opposite directions at the same rate at this particular pitch

angle, thereby canceling. The perpendicular velocity is only slightly affected by

taper since (6-55) evolves much slower than the longitudinal phase velocity

equation (6-46) due to the presence of the large factor Wo 1 04S.

C. NUMERICAL SIMULATIONS

The equations of motion (6-54) through (6-56), together with the wave

equation (6-24), are now numerically integrated. The solutions reveal many of
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the same characteristics found in free electron lasers, including the observation

of electron-bunching, saturation, trapped particle instability, and taper.

The parameters used for the simulations are taken from measurements

made by the Space, Telecommunications, and Radioscience Laboratory at

Stanford University from Siple Station, Antarctica. This data was obtained using

their >100 kW transmitter to send VLF signals at between one and six kilohertz

using a long horizontal dipole antenna [26]. The amplified signals were then

received at the conjugate point at Lake Mistissini, Quebec [26]. The data being

simulated here is a transmitted signal at W = 1041s estimated by the observers

through time of flight measurements as traveling along approximately the L = 5

field line. An index of refraction within the interaction region close to the equator

was estimated to be approximately n = 25. The hot electrons present are

represented by electrons uniformly spread in the electron phase, 4'o = 0 -+ 2;f,

and the electron cyclotron phase, 60 = 0 -+ 2;r. The time of interaction is taken

to be T=is.

The first case examined is in the weak-field, high-gain regime. In an FEL, a

weak optical field is identified by lal < ,r. Similarly, a weak whistler field is

identified when JbJwT2 _< v which corresponds to Ibi z 3 x 10-4/s [27]. Figure 6-3

shows the results of high gain in a weak whistler field of initial value

bo= b(0)J = 5 x 10-5 /s as it interacts with a hot plasma of frequency of

h= 0.2/s. The electron beam has a small Gaussian spread in phase velocities

characterized by width standard deviation a, = 0.5 Is about the initial phase

velocity vo =0. All electrons have a normalized perpendicular vrtlocity of v, = 1

corresponding to an initial pitch angle of ,r/4. The whistlers frequency is

W = 104 Is with an interaction time of T= 1 second. The taper term is S =0,

which indicates a homogeneous magnetic field. An FEL, with current density
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i ?r is in the high gain regime and experiences exponential gain. Similarly,

wn'en O2 oT 3 >_ r, (or Wh > - 0.021s) the whistler wave is said to be in

the high gain regime where exponential growth occurs [27]. After a characteristic

time elapses allowing the electrons to bunch (approximately 0.35s in this

example) the gain becomes exponential. In an FEL the exponential gain is

calculated from FEL ( r) :- exp[(J/2)1, 3 /3 ri / 9 [1]. Similarly, the exponential

gain for the whistler wave is calculated by [27]

G(T) x[(o/)T]/9. (6-57)

Equation (6-57) yields a final gain after the one second interaction of G W 34 dB.

This valie is slightly larger than that shown in Figure 6-3 since equation (6-57)

does not take into account gain degradation due to a spread in electron

longitudinal phase velocities or the delay due to the bunching time. The phase

is shifted linearly by nearly the same factor used in the exponential to calculate

the gain, A• (co2/2)'3T / 2 z 3 [27]. The phase space in (4, v) displays the

final positions of 2000 sample electrons after the one-second interaction. Those

electrons going up in phase velocity remove energy from the wave, while the

electrons going down in phase velocity transfer more energy to the wave and

cause amplification. The bunching of electrons in phase is clearly present at two

locations in phase space since there are two phase factors (4;0 = 0 --- 2;r and

0, = 0 -+ 2z) within the trigonometric functions in the equations of motion. The

two dark horizontal lines on the phase-space plot show the maximum height of

the closed-orbit region given by A v, z 4 VjboT 2 (see Figure 6-3).

83



**** Whistler Phase Space ****

bo=0.O0005/s 0-=10000/s V0 =0 V0o=
T=ls coh=O.2/s b=0 Or=0.5/s

10/3. 10 log(l+G) 33dB

• ...K; •" ."'"::" .,.j

-10/s ______________

Figure 6-3. Whistler interaction in a weak VLF field with high gain.

Most whistlers reach strong field saturation during the interaction time.

Once saturation occurs the electrons become trapped in closed orbits in phase

space and execute synchrotron oscillations at a frequency Ws = F [27].

These oscillations can evidence themselves as oscillations in the power and

gain of the whistler wave. Figure 6-4 shows the results of a Gaussian

distribution of hot electrons of width a-, = 10 Is about the resonant phase

velocity v. = 0 interacting with a strong whistler field for a time of T = 0.4 s. The

electrons are at a pitch angle of ;r/4 determined by vo=1.0, with a density

corresponding to a hot plasma frequency of C0h = 10/s. The whistler wave has

an initial amplitude bo = Ib(0)1=0.01/s with frequency ) = 104 Is. Again, there is

no taper so S=0. The phase space plot of Figure 6-4 shows the final positions

of 3000 sample electrons showing their bunching at two phase regions and each

with lower energy. The spread in phase velocities causes the bunching to be
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more diffuse and creates much of the random scatter of electrons seen in the

phase-space plot. Electrons appearing outside the final separatrix lines have

been trapped by the previou3ly larger whistler field in the oscillating pattern seen

in the gain plot. Note that the final gain is at a minimum caused by the

synchrotron oscillations.

**** Whistler Phase Space ****

bo=0.01/s C=10000/s Vo0 0 Vo=l

T=0.4s %h=lO/s b=0 Ov=10/s

300/S[ - 10 1og(l+G) 43dB

v .. . . . . . -- • -

- 3 0 0 /s - _ _ _ _ _ _ _ 0 _ _ _ _.4 S

Figure 6-4. Whistler interaction in a strong VLF field with high gain.

The beginning of the gain curve shows that after the short bunching time, the

gain is exponential until strong field saturation occurs at a value of

I , 2( 1.3 /s. The strong fields trap the electrons and cause them

to perform synchrotron oscillations. The presence of approximately 4.5

synchrotron oscillations is clear in the gain plot and agrees closely with the

calculated value of oSz aýbI-& 36;r /s which would predict 7 full oscillations
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over the interaction time of 0.4s. The small discrepancy between the number of

synchrotron oscillations observed and the estimate ow5 m 36;r Is occurs because

of the spread in electron phase velocities. Saturation in strong fields, electron

trapping and synchrotron oscillations are all nonlinear effects observed in both

FELs and whistler waves [27].

The previous figures used a short time of interaction and a homogeneous

magnetic field with 5= 0. For a longer interaction time, the effects of the

inhomogeneity in the earth's magnetic field acts as a phase acceleration

analogous to taper in an FEL. In Figure 6-5, the electrons begin away from the

geomagnetic equator and far off resonance with a Gaussian spread of phase

velocities characterized by a width o, = 10 /s centered at v0 = 2360 Is. The

electrons have an equatorial pitch angle of ;r/4 determined by v. = 1, with a

density creating a hot plasma frequency of '0 h = 10 Is. These hot electrons

interacting with an initially weak whistler field of bk = jb(0)j = 0.01/s of frequency

) = 10 4 Is for a time of T = 1 s. The taper value of 5= 0.2;r corresponding to

the duct at L = 5 with index of refraction n %z 25. The phase-space diagram

displays the final positions of 3000 sample electrons. The electrons begin far

above resonance, but their phase velocity decreases as they move into

resonance near the geomagnetic equator. The simulation is designed so the

sampled electrons are in resonance with the wave at the geomagnetic equator at

a time t = T/2. After strong coupling between the hot electrons and the VLF

wave near the equator, the taper causes the electrons to increase their phase

velocity as they move past the equator and away from resonance. However, as

seen in Figure 6-5 most of the electrons are trapped by the strong whistler wave

field and continue to give energy to the wave.
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S*** Whistler Phase Space *

bo=0.01/s 1=I0000/s VO=2360/s V0 =l

T=ls ah=10/s 8= 0.20n Ov=10/s

3000/s 10 log(1+G) 56dB

-3000/s 
_4A

-IT E0tl

Figure 6-5. Whistler interaction in a inhomogeneous magnetic field with a strong VLF field and
high gain.

The gain evolution in this figure shows no coupling between the electrons and

whistler until the electrons' phase velocity is nearly resonant at time t = 0.5 s.

Once sufficiently near resonance, the electrons become bunched and the gain

becomes exponential. Synchrotron oscillations begin. The effect of the taper

causes the trapped electrons to continue to give up energy to the wave after the

normal saturation. Most of the electrons remain trapped near resonance by the

sirong whistler field, even though the earth's dipole field provides a phase

acceleration to move them away from resonance. Those electrons not trapped

by the strong VLF wave are moved off resonance by the taper. The gain

evolution shows that because the electrons 3re far off resonance initially, there

is no growth in the wave. As the electrons approach resonance at the equator,

the same exponential growth seen in the homogeneous case occurs in the wave,
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leading to saturation and synchrotron oscillations. The inhomogeneity of the

earth's magnetic field provides a phase acceleration that allows continued

energy extraction from the trapped electrons. This is seen as the gain slowly

increases even after the homogeneous saturation level. The wave's phase

initially decreases, a characteristic of tapering, and then begins to grow quickly.

The rate of phase growth decreases in conjunction with decreasing gain growth.

The general characteristics of the gain and phase evolutions shown in Figure 6-

5 are in agreement with those obtained by Carlson et. al. of Stanford University

[28]. Their simulations also show gain initially growing exponentially and then

reaching either a steady value or growing slowly [28]. They also found the phase

would initially decrease during the exponential growth, and then would increase

parabolically [28].

D. CONCLUSIONS AND FURTHER RESEARCH SUGGESTIONS

Although apparently an unrelated process, the amplification of whistler

waves is shown in this chapter to be closely related to the amplification of an

optical wave in a free electron laser. The radiation field in both whistlers and

FELs couples in resonance to 'Wiggling" electrons for efficient energy transfer.

Nonlinear effects such as saturation and the trapped-particle instability are

observed in both. For the whistler, the inhomogeneity of the earth's magnetic

field lines acts in an analogous manner to tapering an undulator. The electron

equations of motion and the wave equation derived in the chapter are used show

many of the same effects seen in whistler and FEL research. The results closely

reproduce the results of other researchers using more traditional approaches to

the study of whistler wave amplification.
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This chapter solves for whistler wave amplification of a single mode using

either monoenergetic hot electrons or electrons in a Gaussian distribution of

phase velocities with a single pitch angle Further, all electrons are forced to be

in resonance at the equator, or at time t = T/2, regardless of their initial phase

velocity. The research needs to be extended by adding a more realistic

distribution of hot electron energies and pitch angles. A multimode numerical

simulation should be developed, similar to those used in FEL research, so that

the experimentally observed sweeps in frequency of the whistler waves can be

investigated numerically.
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