L4

A TRIDENT SCHOLAR
PROJECT REPORT

ADTA27O 754 NO. 201
AT R

"A Stereoscopic Vision System with Appli::ationa
to Automated Docking and Tracking

UNITED STATES NAVAL ACADEMY
ANNAPOLIS, MARYLAND

This document has been approved for public
release and sale; its distribution is unlimited.

93-24151
AR

Best ,
Available

Copy

U.S.N.A. ~ Trident Scholar project report; no. 201 (1993)

"A Stereoscopic Vision System with Applications
to Automated Docking and Tracking"

by

Midshipman Michael M. Hsu, Class of 1993
U.S. Naval Academy
Anrapclis, Maryland

Adviser: Assistant Professor William 1. Clement
Department of Weapons and Systems Engineering

Tacooion For

PTIS ClRa

Accepted for Trident Scholar Committed Y'i”

TR3

S =

e nonnoed
Justocstion
(;VLJAM4;AQ AjLz:oJLQJLCA: BY e
Di: tibution]
Chair Availability Codes
. Avail andjor
Wiay 17, 1943 R
Date

|

USNA-1531-2

Form Approved
REPORT DOCUMENTATION PAGE OMB no. 07040188

b)ic _t M .'l le‘- LA \- 5 sutionted te u TOAgEARY , 1RCuging the tiap fer Mu\q 3.
ing and roviewing the gt oot ben oF taforautien. Send regarding this Berdun eofimats’ e = Ary -v this
m’ utf-ta t-‘ = f‘_‘% o reicine s herde o' wih ingien resemartans services, Birectarite for 1-0-_.“:,- werstions “' k“ TR

1. AGENCY USE ONLY (Leave blank) 2. REFORT DAIE 3. REPORT TYPE AND DATES COVERED

May 17, 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A stereoscopic vision system with applications to
automated docking and tracking

6. AUTBOR(S)
Michael Ming Hua Hsu

8. PERFORMING ORGANIZATION
7. PERFORMING ORGANIZATIONS MAME(S) AND ADDRESS(ES) REPORT NUMBER

U.S. Naval Academy, Annapolis, MD U.S.N.A. - Trident

scholar project
report ; no. 201

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES
Accepted by the U.S. Trident Scholar Committee

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

This document has been approved for public
release; its distribution is UNLIMITED.

13. ABSTRACT (Maxmimun 200 words)

A current project of great import to the National Aeronautics and Space Administration is the development of an
automated docking and tracking system to facilitate autonomous operations in space. Such a system would have to
be able to determine the relative positions, velocities, and orientations of a multitude of bodies.

A stereoscopic vision system was developed to implement an automated docking solution. This system used
artificial neural networks to identify beacons or fixed points on the objects to be tracked. Specifically, this research
sought to solve the problems inherent in the planned 1995 docking of the U.S. Space Shuttle to the former Soviet
Space Station Mir.

In addition to the basics of an optical ranging and object-recognition system, a simple user interface for
operation monitoring was designed. Specifically, the coordinates of the space station, shuttie waypoints, and
smooth trajectory position, velocity, and acceleration information were calculated and displayed. A mock docking
was also simulated, with the vision system providing the range and orientation data. By placing the vision system at
known coordinates and checking its computed trajectory, the accuracy of the algorithms and given hardware were
checked.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Space docking and tracking systems, stereoscopic vision 77
systems, object-recognition systems, automated systems 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURIZ: CLASSIFICATION GF 20. LIMITATATION OF
OF REPORT TLI® PAGE ABSTRACT ABSTRACT
| _UNCIASSIFIED | UNCIASSIFIED | UNCIASSIFIED | UNCIASSIFIED |
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Abstract

A current project of great import to the National
Aeronautics and Space Administration is the development of
an automated docking and tracking system to facilitate
autonomous operations in space. Such a system would have to
be able to determine the relative positions, velocities, and
orientations of a multitude of bodies.

A stereoscopic vision system was developed to
implement an automated docking solution. This system used
artificial neural networks to identify beacons or fixed
points on the objects to be tracked. Specifically, this
research sought to solve the problems inherent in the
planned 1995 docking of the U.S. Space Shuttle to the former
Soviet Space Station Mir.

In addition to the basics of an optical ranging and
object-recognition system, a simple user interface for
operation monitoring was designed. Specifically, the
coordinates of the space station, shuttle waypoints, and
smooth trajectory position, velocity, and acceleration
information were calculated and displayed. A mock docking
was also simulated, with the vision system providing the
range and orientation data. By placing the vision system at
known coordinates and checking its computed trajectory, the

accuracy of the algorithms and given hardware were checked.

Iable of Contents:
Page:
Abstract 1
Motivation and Purpose 4
Approach 5
Background;
Why the Optical Approach? Advantages and Problems 7
The Mir Space Station 9
The U.S. Space Shuttle 11
The Shuttle Camera System 12
Hardware;
Experimental System Components 13
System Setup 14
Basic Ranging Problem 15
Determination of Bearing to Objects 18
Determination of the Structure Orientation 20
Determination of Waypoints and Trajectory 21
Automation of Calibration and Ranging Algorithms 23
Compensation for Camera Irregularities 24
Visual Beacons 25
Holographic Beacons 27
Discussion of Pattern Recognition Approach 28
Neural Networks for Object Recognition 29
Identification of Beacons using Neural Networks 30
Neural Network Trainers and Expert Systems 32
Horizons, Vision, and Conclusion 32
Credits, Fiqures, and Appendices:
Footnotes 34
Bibliography 35
Figures (1 - 14) 38

Appendix: Stereo Vision Program 52

Note: The majority of the ideas and algorithms presented in
this paper were developed either in collaboration with or

solely by Assistant Professor William I. Clement.

Motivation and Purpose

Currently, the policy of maintaining humans in space is
called into question by the cost of transporting the
essentials for human survival into space. Other than for
reasons of medical research and publicity, humans in space
are neither vital nor economical at this time. The use of
robotics to accomplish some human missions could drastically
cut the costs of future operations in space exploration and
development of space for humanity. One prerequisite to
practical robot operations in space is a flexible sensor
system with which more complete automation can be
accomplished. Systems using the spectrum visible to the
human eye are the sensors most conducive to operational
systems designed to mimic human functions.

The use of robotics is definitely not limited to space.
Aerial or even undersea robotic systems would require the
same type of visual sensory data to be truly effective.
Furthermore, automation enhanced by machine vision has
already revolutionized some aspects of our lives. The
automated car assembly line operated by robots is one
example.

However, before truly effective multi-purpose robots
can be made, they must be given the essential tools through

which they can have awareness of their surrounding

environment. Of the many sensor technologies available,
vision will be the most important because of its
flexibility. Robots must be able to ’‘see’ the objects
around them, determine if and how they are moving, and
identify them as well. Once a robot can open its ’eyes’,
analyze its surroundings, and identify the objects in its
environment, it will be capable of performing innumerable
tasks.

The ultimate goal of this Trident project was the
design of a vision system capable of locating, tracking, and
recognizing objects in its environment. These goals may be
pursued to widely varying degrees of refinement and success.
The technology explored by this project will have vital uses
in future exploration and development in all realms -
atmospheric, terrestrial, space, and aquatic. The automated
docking and tracking system described here is a substantial

first step to such a system.

Approach

In the docking situation simulated, a space shuttle
must rendezvous and dock with a space station, using a
stereoscopic vision system connected to its flight computer
as a sensor. The space shuttle has already been maneuvered
to the general vicinity of the station, and to the general

area of the side of the station with which it is to dock.

6
Figure 1 shows a nearly completed docking between the space
shuttle and a futuristic space station.

The system was designed to isolate the basic problems
encountered in a stereoscopic vision system. This project
was a simplification of the general case by limiting the
area in which the system had to search for its target, and
limiting the target to a specific beacon of known and unique
characteristics. These restrictions were imposed in part by
the hardware used, as seen in the field of view of the
camera, and in part by lack of sufficient progress made thus
far in some vision technologies, such as edge detection.
Later work was directed towards the optimization of this
system, and development of algorithms to fine—-tune the
tracking process.

The majority of the work on this project was done in
computer code. The final product was not hardware, but a
set of algorithms in the form of a program, which was
adaptable to more advanced hardware than that of the current
system setup. All algorithms, including the interaction
with the frame-grabbing and frame-processing boards and the
software-based artificial neural network, were written in
the ’'C’ programming language.

The automatic range-finding algorithms were relatively
straightforward. The goal of the investigator was to
automate this process to the greatest extent. Further

development of the project was initially planned to

incorporate the development and use of specific geometries
of visual beacons which could enhance the ranging process
and help automate the finding of corresponding points on
each image. This approach was later deemed unnecessary, as
there already exist on space stations many distinctive
objects which could be isolated by vision systems.

Instead, the use of neural networks and pattern
recognition was incorporated to identify the beacons, and
aven the cbjects themselves with speed and accuracy. The
goal of this project was the production of a system which,
when given a target, would automatically lock onto it and
determine its range, bearing, orientation, and identity, and

compute waypoints and a trajectory to it.

Why the Optical Approach? Advantages and Problems

The optical approach to this problem was superior to
the radar approach. First, at close proximity, radar
interference with objects and with other similar systems
caused significant problems. In this case, the passive
nature of the optical solution was also superior. Aan
optical system was far more effective at tracking a
multitude of objects at one time. It was limited mainly by
its field of view and computer processing speed. Second,
the detail accommodated by optical systems allowed much more

precise mapping of objects in order to determine object

8
orientation. The detail provided by visual data could also
be exploited to develop a pattern recognition approach to
object identification and/or categorization.

While the development of a docking system was the
primary goal of this project, the system has a variety of
other capabilities. One is the capability to track a
multitude of smaller objects, such as the tools and
components of a space structure under construction. Further
refinement of this vision system to enhance tracking is
facilitated by the curreat approach. By using a pattern
recognition system based on a simple computer-based neural
network, objects on the space station (for orientation
purposes) and independent objects in proximity of the system
can be identified. This combination of capabilities allows
an automated system to have awareness of its environment; a
nrerequisite to fully automated operations in space.

There were also several problems with vision systems
which were either briefly considered in this project or
relegated to ongoing vision research. These issues included
interference (in the form of glare), image improvement, and
edge detection. The first two obstacles were found to be
partially solved by the use of the artificial neural network
approach. The interpolating nature of solutions achieved by
artificial neural networks compensates for some degree of
error and noise interference in object descriptors.

However, accurate edge detection, a subject of extensive

research, will be vital to the success of this project.
Obviously, use of this system is precluded in regions
where sunlight was either unavailable or eclipsed by the
space station itself. Spotlights could partially solve this
problem. Examination of current space operations shows
similar limitations. The astronauts must have liqht to see
and the sun must not be in a position which blinds them.
Therefore, this system could at least be used in the

majority of docking situations already encountered.

The Mir Space Station

The Mir Space Station was launched on February 20,
1986. The name, meaning "Peace", signified the Soviets’
opposition to the Strategic Defense Initiative. [1] Mir’s
commonality with its predecessors, the Salyut stations, was
determined primarily because of the dimensions of its launch
vehicle, which were the same. However, Mir featured a
significant improvement: six docking ports, rather than the
two of the Salyut. While Salyuts had docking ports at each
end of their cylindrical structures, Mir had four more ports
spaced around the node of its forward transfer compartment.
[2] 1Its 20 metric ton initial form was designed to be
expanded by means of these ports to a 120 ton, six—-module
configuration, some of which is shown in Figure 2.

To date, three additional modules have been added. The

10
Kvant-1 ("Quantum") astrophysics module was docked to the
stern port, with some difficulty, on Apxril 12, 1987. This
ll1-ton module incorporated advanced equipment from the
Netherlands, Great Britain, the European Space Agency, and
West Germany, in addition to Soviet equipment. Kvant-2 (20
tons) was manually docked to one of the four forward radial
ports in December, 1989. Twenty-ton Kristall, known as the
T-module, was added to the opposite radial port in 1990.
Additionally, Kristall, a materials processing and
biotechnology module, was to function as a docking port for
the Soviet Buran space shuttle and other future
international manned spacecraft. This module is equipped
with the Androgynous-~Peripheral Docking System (APDS-89),
which was based on the system used in the U.S. - U.S.S.R.
Apollo-Soyuz Test Project of 1975. One of the U.S. Space
Shuttles will dock with this module in 1995. [3]

In addition to the four current modules, Mir is
occasionally visited by Prognoz M ("Progress") and Soyuz TM
("Union") vehicles, which respectively provide the Salyut
and Mir space stations with resupply and crew transfer
capabilities. Each weighs seven tons. When the U.S.
docking occurs with Mir, the entire station complex will
weigh between 71 and 85 metric tons. [1,2,3] This mass,
coupled with the U.S. Space Shuttle’s variable mass,

(between 73 and 102 metric tons) poses a difficult docking

problem to solve because of the large momenta. Both

11
vehicles are moveable under their own power. Only one,
however, the shuttle, will maneuver independently. Previous
U.S. and Russian docking operations have relied on manual
operation of the vehicles, involving visual cues or radio
signals. Examples include the Igla and newer Kurs

rendezvous and docking systems. [3])

The U.S. Space Shuttle

The U.S. Space Shuttles were designed with the
capability to dock with other objects in space. Within
their 4.6 by 18.3 meter cargo bays [4], the shuttles can
carry L-shaped docking ports which lie flat at launch and
rotate to a vertical protruding position upon commencement
of docking operations. [S5] Access to and from the space
shuttle is available at the aft of the mid deck, through a
2.1 meter high airlock, which has an inside diameter of 1.6
meters. The aft flight deck station of the shuttle serves as
the command center for rendezvous maneuvering, and has hand
controls and attitude indicators for that purpose. 1In
addition, the shuttle has a pair of windows facing out of
its top, and a pair of windows facing aft into its cargo bay
from which crew members can supervise and control docking
and robot manipulator operations. [4]

To provide thrust and attitude control in orbit, space

shuttles are equipped with two Orbital Maneuvering System

12
(OMS) Engines to the left and right of the upper main
engine, 38 primary Reaction Control System (RCS) jets (14 in
the nose, and 12 each in the OMS pods), and 6 vernier RCS
engines (2 in the nose, 2 each in the OMS pods). The OMS
engines provide a thrust of 6,000 pounds for major
trajectory changes (they can be swivelled 8 degrees in any
direction), the primaries 870 pounds, and the verniers 25
pounds for fine control. The shuttle computer can fire
these engines to make large orbital changes for rendezvous,
or maintain precision pointing with an accuracy ¢f less than

half a degree. [4,5]

The Shuttle Camera System

At all four corners of the 15 by 60 feet cargo bay are
surveillance cameras with a nominal purpose of monitoring
the robet manipulator’s operations with the payload. These
four cameras are monitored from the aft flight deck at the
payload operator’s station. The two cameras placed nearest
this station are shown in Figure 3. In addition, selection
processes are currently underway to choose surveillance
cameras for use on board Space Station Freedom for both
monitoring and docking purposes. Cameras similar to these
will likely be mounted on either side of the docking
assembly within the shuttle bay as well to further aid

rendezvous operations. This assortment of cameras,

13
totalling six will include the existing four in the shuttle
bav. They provide an excellent sensor array for a

.ereoscopic docking system, with minimal adjustment of the
available hardware. To maximize existing hardware to
accomplish stereo vision and object recognition, this
project simulated the use of camera pairs already on board

the shuttle.

Experimental System Components
The system used in this investigation consisted of:

(1) Two Panasonic Mini-~Cameras with variable apertures
and assorted lenses. The lenses used have focal lengths of
7.5 mm.

(2) A Unisys 80386 Computer with 80387 Math
Co-processor and the "C" Programming Language.

(3) The Data Translation DT2867 frame grabber and frame
processing board.

(4) The Data Translation DT2878 high performance image
and signal processing board.

(5) The "NeuralWorks Professional II/PLUS" neural
network software, which provides a software~based artificial

neural network.

An illustration of the setup is found in Figure 4.

14
System Setup

The baseline setup for basic ranging functions placed
the cameras a variable distance apart, depending on the
probable distance of the object to be ranged. For initial
calculations, the cameras were set up on a stand which kept
them at a four inch separation. An experiment to determine
the optimum distance between the cameras for variable ranges
was found to be unnecessary. In general, wider camera
separation and greater resolution of the cameras will
provide greater stereo ranging accuracy. However, a
combination of wide camera separation and limited field of
view can cause problems for stereo ranging and
identification of objects very close to the camera array.
One solution to the variable range/variable resolution
problem adds a third camera and allows the user to switch
be. <een camera pairs. By thus selecting the pair, optimal
results may be attained under varying conditions.

The actual hardware custom-built by NASA to accomplish
the docking solution would be reduced in size to a box even
smaller than the 80386 computer actually used to conduct
experimentation. This box would be connected to the cameras
within the shuttle payload bay in much the same
configuration as the current system setup. Some means for
the Shuttle’s on-board computer to activate the docking
system would be necessary to initiate acquisition and

tracking of the space station. Once the hard-wired

15
algorithms for stereo vision, object recognition, location
and orientation determination, and waypoint and trajectory
computation were executed, some means of transferring the
calculated information to the Shuttle’s on-board computers

would also be necessary.

Basic Ranging Problem

In order to allow the computer to range an object, a
camera constant, in units of image pixels per inch of
surface along the imaging array at the back of the camera,
had to be determined. Only then could algorithms be written
to calculate the distance based on the correspondence of
images from the two cameras. The number of pixels the image
displaced frow one camera to another, combined with the
pixels per inch constant, enabled the computer to determine
the effective length of the apparent image separation in
length units rather than pixel units.

The pixels per inch of the cameras was determined by a
basic experiment which used only one of the cameras and
assumed that both were reasonably similar. The focal length
was already known to be 7.5 millimeters. A target of known
width and distance from the camera was taken, and a one-
camera ranging equation was used to determine how long of a
stretch of the Charge-Coupled Display (CCD) the image

occupied. This equation operated on the premise of similar

16
triangles. The distance to target and length of target was
one set of variables, and the focal length and actual length

of subtended CCD was the other (Figure 95).

Target Length . Length of Subtended CCD
Distance to Target Focal Length

By simply using a program to count the number of pixels
subtended by the object, the pixels per inch were determined

by:

Number of Pixels Subtended by Target
Length of Subtended CCD

Pixels per inch =

A rough estimate of the camera variable was found by
repeated experiments using a four inch (10.16 cm) target at
a distance of 32 inches (81.28 cm). The target subtended
98.25 pixels in the camera image. The value of the constant
was found to be approximately 2,655 pixels/inch.

Stereo ranging utilizes the mathematical relationship
among focal length, distance to target, camera separation,
and image disparity (parallax) of the two cameras. The
general equation relating these four variables is derived

using similar triangles as shown in Figures 6 and 7. [6]

17

Rangi n rti Variable E ion

Distance to Target _ Distance to Target + Focal Length
Camera Separation Length of Subtended CCD

Length of Subtended CCD = Camera Separation + Image Parallax

Image Parallax = Number of Pixels Offset ° Inches per pixel

In order to accomplish stereo ranging with the system
used, it was necessary to determine the effective parallax
between two images of a single object in both cameras.
First, the object was isolated using image binarization.
Binarization transforms the image from one containing many
shades of gray to a black and white image based on a certain
threshold (gray-level value). This gray-level is determined
by observing the gradient in gray-level values between the
object and its background. A simple method for determining
the threshold is to use the mean of the gray-levels found
for the object and background. For convenience in initial
experimentation, black and white objects and backgrounds
were used. The large gray-level gradients they provided
simplified the binarization process.

In calculating image parallax between the two cameras,

object centroids were chosen as corresponding points. The

18
centroids were determined using the method of chain coding.
Chain coding is an algorithm which traverses the perimeter
of a binarized object, thus allowing for the calculation of
its mass moments and perimeter. The object’s centroid may
be determined from its mass moments. Once the centroid is
found, the number of pixels of offset between the two images
is calculated as the horizontal displacement of one image
relative to the other. This corresponds to the centroid
column value differences in both cameras. The distance to
the designated object was then found using the stereo
ranging equation. For this experiment, only horizontal
corre;pondence was used. Vertical or even diagonal
correspondence could be easily used if it was proven
necessary to accommodate the dual camera configuration.

With the cameras in a side-by-side configuration, only

horizontal correspondence was necessary.

Determination of Bearing to Objects

Once stereoscopic ranging had been accomplished, the
next step involved determination of bearings to target
objects. The azimuth and elevation to the target were
necessary to compute the location of the beacon in 3-D
space. The easiest method of computing the offset of the
beacons from the cameras was observation of the displacement

of the centroid of the beacon from the centerline of the

19
camera. Unlike ranging, which required two cameras, bearing
computation could be done with just one.

For determination of the centerline pixels, the
experimental program simply took the average of the minimum
and maximum row numbers. Computation of the centerline
columns was conducted in the same way. This method assumed
identical pixel dimensions along each row, and orientation
of the camera such that the light detection elements were
aligned perfectly normal to the centerline. The centerline
passed through the middle of the detection array. With
actual cameras on the shuttle, checks will have to be done
to ensure this is the case.

Instead of computing the azimuth and elevation, the
program computed the distances along the x- and y-axes, the
range computed using stereoscopic vision, the focal length,
and the number of pixels offset from the centerline.

Figures 8 and 9 illustrate the relationships used to
determine bearing. The distances were computed according to
the following formula, which was derived from the stereo

ranging equation:

¢t = ¥ Pixels Offget - Inches/Pixel - Distance to Target

X offse Focal Length

In this fashion, the x, y, and z coordinates of each beacon

are determined, as illustrated in Figure (10). The next

20
problem lies in computation of the Roll-Pitch-Yaw
orientation of the space station relative to the space

shuttle.

Determination of the Orientation of the Space Station

An initial orientation experimentation was performed
using three light targets marked in white on a black
background. This polarity shift between object and
background made it necessary to incorporate the analysis of
light objects on dark backgrounds in the chain-coding
routine. The three targets were positioned to form a
Cartesian coordinate frame, with beacon 1 at the origin and
beacons 0 and 2 along the x- and y-axes. The 2-axis of this
frame coincided with the approach direction for docking.
This arrangement was chosen to allow complete determination
of the space station’s orientation, as seen in Figure (11).
These three vectors, normalized to unit length, were
arranged into a 3-by-3 rotational transformation matrix.
This matrix held all of the orientation information
necessary to compute the roll, pitch, and yaw of the three-

beacon structure relative to the docking platform.

Determination of Waypoints and Trajectory

Once the orientation and coordinates of the space

21
station are known relative to the shuttle, the waypoints
which the shuttle should pass through or near on its path to
the docking port may be calculated (See Figure 12). The
first waypoint is the shuttle’s current location. The
second is a point straight ahead of the shuttle at a
distance which would allow it twice the time necessary to
rid itself of any current translational or rotational
velocity (i.e., come to a complete stop). The thi: soint
is similarly located in front of the space station docking
port, but at a distance to allow three times the minimum
deceleration time (to force a slow approach). The fourth
and fifth points are at the docking port itself. This
duplication provides for a complete stop in the trajectory
calculations.

Richard P. Paul [7] provides some simple equations to
accomplish the smoothing of trajectories given the waypoints
through which a robotic end effector, or a shuttle in this
case, must pass. A smooth trajectory provides more
efficient use of energy since complete accelerations and
decelerations at each point are unnecessary. The shuttle

need only pass near most of the waypoints.

Trajectory Algorithm:

22

acceleration = 1. (AC - LA AB)
212 T

velocity = - (AC - -;i, - AB) *h+ Até

Al

position = [(AC - —;-, ~AB) *h + 2AB) *h + Initial position

These equations are used with each set of three consecutive
waypoints. The position, velocity, and acceleration refer
to each of the x, y, and 2z coordinates and pitch, roll, and
yaw orientations of the shuttle. AB is the difference
between the parameters at the first and second waypoints,
while AC is the difference between the second and third.
Tau (T) is the transition time before and after the central
waypoint state over which acceleration occurs. T is the
total time over which each transition and region of linear
motion occurs. H (0 < h < 1) is a counter to allow
computation of the position, velocity, and acceleration at
any point in the trajectory (0 is the beginning, and 1 is
the end of the trajectory leg). The entire trajectory over
five waypoints may be calculated using two loops of the
described equations. Leg one would include waypoints one,
two, and three, and Leg two would include waypoints three,
four, and five. The duplication of points four and five

provide for a complete stop at the docking port. (7]

23

Automation of Calibration and Ranging Algorithms:

Determination of the pixels per inch scale factor of
one camera was accomplished thruugh the use of an
interactive program between user and vision system.
Variations on this approach, using a computer "mouse" as
input, could be implemented on the deployable unit. This
problem requires the determination of the number of pixels
subtended by an object of known width at a known range. The
edges of the target can be determined by finding the two
sharpest gradients in the selected region. The region is
chosen such that these correspond to the left and right
edges of the object. For the two cameras mounted behind the
crew deck of the shuttle, an example of a suitable object is
the large vertical stabilizer prominently mounted in the
cameras’ field of view. After counting the pixels, the
algorithm would have the user enter the width of the target
and the distance to it, or it could use known values in the
case of the fixed vertical stabilizer. The pixels per inch
constant will generally remain unchanged for any given
camera, assuming negligible expansion of camera imaging
elements from post-launch heating of the shuttle orbiter.
The incorporation of these automatic calibration routines
mostly assists in the ’‘portability’ of this software docking
system to include other camera systems.

Automatic calibration of the alignment between the two

24
cameras (only accounting for horizontal plane cant) could
also be accomplished. This algorithm would allow the user
to determine the limiting columns between which the
calibrating target is located, and determine the edges of
the target in each camera by finding the two sharpest
gradients in the designated regions.

Correlation would be used to find corresponding edges
in both images. By using a loop and a 3,5, or 7-pixel
segment from one camera, preferably centered around an edge,
it could be slid along the same row of pixels from the other
camera. Based on the user’s prediction of the corresponding
location, a reduced area could be searched. The point of
maximum correlation would be the location of the
correspondence point between the two images. This
information, along with the user-supplied range to target,
is enough to determine the yaw angle of one camera relative

to the other.

Compensation for Camera Irregularities

Because of the "fishbowl" effect caused by the
distortion from the cameras’ lenses, only the central
portion of the screen was used for computations. The whole
camera area could be utilized once the extent of the
"fishbowl" effect on measurements near the edge of the
screen had been determined. It would require the

development of a screen masking system or formula which

25
would take into account the increased distortion at the

limits of the camera’s view.

Visual Beacons

Current NASA approaches to its spacecraft docking and
tracking problems utilize visual beacons. Visual beacons
must be contrasted against the background of the docking
object in order to be easily located by eye. Visual beacons
must also provide necessary ranging and orientation
information to the approaching spacecraft, in order to allow
the operator to perceive the necessary trajectory to achieve
docking.

This research incorporated the development and use of
visual beacons to simplify the tracking problem. If the
system were required to identify the space station, and home
in on it, problems would be encountered once the approaching
spacecraft closed within a certain distance of the target.
The camera system would not be able to visualize the entire
object even if it were mounted at the extreme aft areas of
the spacecraft.

A more logical approach involves using the tracking
system to identify the space station at longer distances,
and to identify the visual beacon, and home in on it at
shorter distances. A possible criteria for the initiation

of the switch between space station tracking and visual

26

beacon tracking would be the percentage of the screen the

space station filled. Once the station filled half the

screen, the system would start searching the image for the

visual beacon.

To facilitate the search for and use of the visual

beacon, the design of the beacon itself is important. There

should be great contrast between the beacon and its

background (the space station). Beacons could be of unique

and simple geometric design, to allow the vision system to

identify it with simpler pattern recognition algorithms.

The unique design and arrangement of the beacons must also

convey all necessary range and orientation information in

detail to the tracking system.

The current visual beacon used by NASA is three-

dimensional. Simply described, it is a pole projecting from

a circular background. The tip of the pole is one color,

while the background is another. 1If the approaching

spacecraft is not coming in on a straight trajectory, the

tip of the pole will appear offset within the circular
background, indicating the direction and degree of
correction necessary to restore the proper approach path.
Range is indicated by the apparent size of the circular
background, based on a scale built into the video systems of

the approaching spacecraft.

eliminates the need for prior knowledge of the dimensions of

The stereoscopic nature of the proposed system

e ——————————————————————]

27
the beacon. However, thus far, knowledge of the relative
orientation of the two objects still requires some type of
three-dimensional beacon structure. A series of two-
dimensicnal beacons would be preferable, as they could be
painted or placed more conveniently at any docking location.

Part of the experimentation in this research involved
the development and evaluation of scaled versions of two-

dimensional visual beacons.

Holographic Beacons

A fascinating possibility is that of a holographic
visual beacon. Given the advances in holography and LED
lasers, it is feasible to have a flat plate of holographic
film laid over a bed of Light-Emitting Diode (LED) lasers.
As spacecraft approached the docking location, the visual
beacon could be turned on. The holographic beacon could
possibly contain the image of a ten-foot pole projecting
into or out of the spacecraft. A beacon of this nature
would provide very accurate information on the orientation

of the spacecraft while taking up minimal space.

Discussion of Pattern Recognition Approach
Among the attributes of a desirable visual beacon would

be distinctive characteristics which would make it easily

28
distinguishable to a machine vision system. These include
different orders of moments about the centroid of the image
of the beacon. If the size of the beacon were known, then
the observed range and size of the object could be
incorporated into the pattern recognition criterion. After
using histograms, binarization, and edge-detection
techniques to isolate high-contrast objects within the field
of vision, the system would analyze each to determine
whether its moment characteristics matched those of the

desired visual beacon.

If the average albedo (image lightness or darkness) of
the space station were known, which it would probably be,
then the system could normalize the image operated upon
based on that value. Assuming also that the albedo of the
visual beacon were known relative to the space station, one
possible approach o quickly identify the beacon would be to
choose its color w.ereby reflectivity and location in the

spectrum were unique.

This approach is hampered by a fundamental difficulty:
the variable lighting of the sun. On the day side of the
earth, reflection would require dampening filters. On the
night side, searchlights might be necessary to provide
enough information to the vision systems. An alternative is

the use of infrared vision systems, active or passive, to

29
find the beacon. However, this approach will not be covered

by the scope of this project.

Neural Networks for Object Recognition

Because of the uncertainties involved in the
correlation of unknown object parameters to those of the
beacon, an artificial neural network could greatly speed the
identification process. An artificial neural network is,
according to Robert Hecht-Nielsen, "...a computing system
made up of a number of simple, highly interconnected
processing elements, which processes information by its
dynamic state response to external inputs."™ [8]) An
illustration of an individual artificial neuron model is
found in Figure (13). Using the various momenta of the
objects as input parameters, a trained artificial neural
network would output the degree to which the unknown object
matched the characteristics of the known beacon.

This project investigated the effectiveness of varying
numbers of parameters in a neural network in identifying a
visual beacon from among a pool of unknown objects. Other
than moments, neural networks could also search for other
patterns, possibly allowing the use of distinctive,
intricate designs as the framework of the beacon. Software
based neural networks are available for use on personal

computers, and can be incorporated into the C routines

30
already being used to interact with the frame-grabbing and

frame-processing boards.

Identification of Beacons using Neural Networks
Differentiation among the three beacons (0, 1, and 2)
was necessary for proper determination of the orientation of
the station. The preferred method of distinguishing objects
was an artificial neural network approach. Artificial
neural networks using four of invariant moments of Hu [9])
and compactness (perimeter?/area) as inputs proved to be an
effective way of classifying the digits zero, one, two, and
three from inclinations of up to 60 degrees from horizontal.
A simple demonstration of this capability was performed on a
separate camera system, and the resulting neural network
subroutine was incorporated into the trajectory-computation
program. Training of the neural network was accomplished
using simple duplicates of the actual beacons. These
targets were photographed repeatedly using a camera system.
Their invariant moments and compactness were calculated, and
the value of the digits broken down into binary
representation by two bits of 0 and 1. The resulting data
was saved to a disk file from which the training program
retrieved the information. Therefore, a five input, two
output neural network was used. One hidden layer neuron

proved to be sufficient in this case to distinguish between

31
these simple digits. Figure (14) illustrates a schematic of
the applied artificial neural network.

This approach assumed that beacons similar to the ones
used in experimentation would have to be placed onto the
space station, either before launch or during an
extra-vehicular activity afterwards. Given that the Mir
space station is already in place, and that extra-vehicular
activities to place such beacons on the station would be
costly and probably inaccurate in their results, an
alternative method of fixing the station’s coordinates and
orientation was found to be necessary. The three-beacon
approach was still feasible. However, instead of
subsequently placed targets specially designed for docking
operations, existing structures on the station were to be
used.

The same neural network could have been trained to
recognize individual objects integral to the construction of
the space station. Examples include the solar arrays, an
antenna, or even the name of the vehicle, if it were
emblazoned prominently on the side of the spacecraft.

Given that the computer had prior information fixing the
locations of these identified objects in a given three-
dimensional pattern on the station, the orientation of the
station could be calculated in the same method used to
determine orientation of the previously discussed three-

beacon structure.

32

Neural Network Trainers and Expert Systems

Further flexibility of this system could be
accomplished by combining the artificial neural network
training scheme with an artificial intelligence "expert
system®”. Combined with a simple database, this format would
have a picture inventory of prominent objects to be found on
any number of space vehicles. With input from what aspect
and which vehicle the shuttle was to rendezvous, the
autonomous docking system could choose objects for use as
beacons, formulate their two-dimensional images as
determined from their three-—dimensional computer models, and

compute their predicted characteristics.

Horizons, Vision, and Conclusion

This research covers many of the fundamentals of
machine vision. Stereo vision and the location and tracking
of an object in three-dimensional space was accomplished.
Use of three of these beacons helped accomplish
determination of the orientation of a larger object, such as
the simulated space station. The success of artificial
neural networks in distinguishing between these beacons (in
a Cartesian coordinate frame) was necessary to calculate the
normal point projecting from the docking port and further

automate the docking process. From this information,

33
waypoints and trajectories were calculated to the station.
These valuable sensor technologies, coupled with other
developing technologies such as artificial intelligence,
will permit practical automation of space operations on a
large scale.

With the incredible potential that automation
technologies offer, scientists will definitely proceed with
their studies in these fields. Machine vision is one of the
major keys to the fascinating fields of robotics and

automation.

34

Footnotes

(1] The Soviet Space Programme. R. Humble. Routledge Co.
London and New York. 1988.

[2] The Soviet Year In Space 1988. N. Johnson. Teledyne
Brown Engineering. Colorado Springs, Colorado. 1988.

[3] The Soviet Year In Space 1989. N. Johnson. Teledyne
Brown Engineering. Colorado Springs, Colorado. 1989.

[4) Space Shuttle. M. Smith. Haynes Publications, Inc.
Newbury Park, California. 1986.

(S] The Space Shuttle At Work. H. Allaway. Scientific and
Technical Information Branch and Division of Public Affairs,
NASA. Washington, D.C. 1979.

(6] "Application of Rapid Automatic Passive Optical Ranging
(RAPOR) to Ship Control". Proceedings of the Ninth Ship
Control Systems Symposium. vol. 4. pp. 4.426-4.437. W.I.
Clement and K.A. Knowles. 1990.

(7] Robot Motion: Planning and Control. M. Brady et. al.
The MIT Press. Cambridge, Massachusetts. 1984.

[8] A Practical Guide to Neural Nets. M. Nelson and W.
Illingworth. Addison-Wesley Publishing Company. Reading,
Massachusetts. 1991.

[9] T™Visual Pattern Recognition by Moment Invariants". IRE
Transactions on Information Theory. vol. IT-8, pp. 179-187.
M. K. Hu. 1962.

35

Bibliography

Computing Depth from Temporal Cross-Correlation: A
Comparison of Two Methods of Computation. J. A. Horst.
National Institute of Standards and Technology (NEL),
Gaithersburg, MD. Unmanned Systems Group.

Near Real-Time Stereo Vision System: Patent Application.
L. H. Matthies and C. H. Anderson. National Aeronautics and
Space Administration, Pasadena, CA. Pasadena Office.

Kinematic Calibration of an Active Camera System. G. S.
Young, T. H. Hong, M. Herman, and J. C. S. Yang. National
Institute of Standards and Technology (NEL).

Marker Recognition Using a Single Transputer. C. C. Chiu,
R. G. Gosine, and R. D. Jackson. Cambridge University
(England) Department of Engineering.

Real-Time Model-Based Tracking Combining Spatial and
Temporal Features. K. Chaconas and M. Nashman. National
Institute of Standards and Technology (NEL).

Recognition of Three Dimensional Objects Using
HU-Invariants: Technical report. R. Lopez-Bonilla and B.
Singh. Bradford University (England) Postgraduate School of
Electrical and Electronic Engineering.

Range from Triangulation Using an Inverse Perspective Method
to Determine Relative Camera Pose. K. Chaconas. National
Institute of Standards and Technology.

Determii:ing the Translation of a Rigidly Moving Surface,
without Correspondence. Defense Technical Information
Center. Rochester Computer Science Department. John
Aloimonos.

Determining the 3-D Motion of a Rigid Surface Patch without
Correspondence, under Perspective Projection: I. Planar
Surfaces. 1II. Curved Surfaces. John Aloimonos and Isidore
Rigoutsos. Rochester Computer Science Department.

Binocular Image Flows: Steps Toward Stereo-motion Fusion.
Allen M. Waxman. University of Maryland Computer Vision
Laboratory Center for Automation Research.

Stereo and Eye Movement. Davi Geiger and Alan Yuille.
Massachusetts Institute of Technology Artificial
Intelligence Laboratory.

36

Space Environment Robot Vision System. H.J. Wood and W.L.
Eichhorn. NASA Goddard Space Flight Center, Greenbelt, MD.

Telepresence and Space Station Freedom Workstation
Operations. D.G. Jensen and S.C. Adam. NASA Johnson Space
Center, Houston, TX.

Depth Perception in Remote Stereoscopic Viewing Systems.
NASA, Washinagton, D.C.

Connectionist Model-Based Stereo Visicn for Telerobotics.
W. Hoff and D. Mathis. Martin Marietta Aerospace, Denver,
Co.

A Practical Guide to Neural Nets. M. Nelson and W.
Illingworth. Addison-Wesley Publishing Company. Reading,
Massachusetts. 1991.

Introductory Computer Vision and Image Processing. A. Low.
McGraw-Hill Book Company. England. 1991.

The C Programming Language. B. Kernighan and D. Ritchie.
Prentice Hall. Englewood Cliffs, New Jersey. 1988.

Introduction to Robotics. P. McKerrow. Addison Wesley
Publishing Co. New York, New York. 1991.

Robot Motion: Planning and Control. M. Brady et. al. The
MIT Press. Cambridge, Massachusetts. 1984.

Artificial Intelligence for Space Station Automation. O.
Firschein et. al. Noyes Publications. Park Ridge, New
Jersey. 1986.

The Space Station. K. Alexander. Gallery Books. New York,
New York. 1988.

Space Shuttle. M. Smith. Haynes Publications, Inc.
Newbury Park, California. 1986.

The Space Shuttle At Work. H. Allaway. Scientific and
Technical Information Branch and Division of Public Affairs,
NASA. Washington, D.C. 1979.

The Soviet Space Programme. R. Humble. Routledge Co.
London and New York. 1988.

The Soviet Year In Space 1988. N. Johnson. Teledyne Brown
Engineering. Colorado Springs, Colorado. 1988.

37

The Soviet Year In Space 1989. N. Johnson. Teledjyne Brown
Engineering. Colorado Springs, Colorado. 1989.

Space Technology. K. Gatland. Salamander Books Ltd. New
York, New York. 1989.

Encyclopedia of Space. N. Booth. Mallard Press. New York,
New York. 1990.

38

]

(tepuexejy ') ‘886 | ‘Uojiels ededs Wouj uexs])
"uope}s eveds afsHMINY YiM SnoAzepuel o) Inoge (1eydepy Buppog Yyum) emnys :} esnbi4

39

(uosuyop

"N ‘6861 ‘e0edS U] Jea)

19]A0S Y] WoJj uexey)

‘suopeoyeds Jiey)

pue ‘sejnpows s} ‘uopels
ededs JW eyl 2 eunbiy

NOWUYOVNOIG 13NV UVI06 Wil 0L 3N0 SSIT 81 MAMOJ LNBNIND

S [1) .. (X) 4 [1 M) NOLYUINIO ¥IN0J RNANIVE
e [) .- [_J ” [1] o AVENY NVI08 40 VUV IO
i'e [1) Lad [y] ” [) - WP AVUUY YVIO8

L]] L3 1 3 SAVUY ¥VI08 40 SRERNN
0ng [/3 [4 [_J 0 [)] % "TMI0A niaen

- T " (4] [4] (Y3 S Sew ‘SEVIN WL
e &3 3 [214 [44 &3 W ‘YRLMIIO AGOS RNV
" " ” LB " [] LA]

[3 L00) 0e) [3 [] ANSI0 40 UVIA

Hd“&h"hxv NESIOOUd | 3 ANVAN | wi | 3avan | miznacs LSNOSND

XFWN0D NOLLYLS IDVdS ts 311 ‘) 31aVL

40

B s Sl TRRY L. el i
* aearrrter HR
1 e G,

(WS’ ‘9861 ‘OMNyS eceds wouj uexel)
(uogels Mei) Yy) SUoREeOOT BleweD enys € einbly

41

dmes welsAg oiseg pue uopeinbjuo) asempieH p eanbi4

SJONUOW

e, 0
L3S &
BSOS o

=—

eAuoD [elfjjg/Bojeuy

preog Buiqqes ewei
298210 ey Bujureiuoo
ndwo) Xa9eseos

.| Ajquiessy elawe)

uoneinblyuon alempieH

42

youl Jad sjexid eujwisiap 0} pasn diysuonejey :g ainbiy

@09 papuelans jo yibue

W6ue reood

” _ 1061e] 0} eduelsiq

1eb.e] Jo YIPIM

lllllllllllllllllllll

lllllllllllllllllllll

—-—

44

suolenb3 pue sajqeue/ uoisip 0alas -/ ainbl4

_— uopeledes
(youy/siexid ebew)| uaseddy

X (sjex|d u)) xejered ebewy)

+ Uojjesedag elewe) yibuen)
[edcod '
= uopesedeg efew) yueseddy .

uonesedas
Blowe)

uonesedes ebew Jusseddy jebue | o)
eouelsig
yibuen [ed04 + 1eb.e] o} souelsiq

uonesedas viowe)

jeb1e] 0} eouessiq

10b1e |

46

suonenb3 pue sejqeleA uoneulw

.)
eouBISIp A |
o:_uw.&o_mv eduelsip X
_ L" _
MOIA Biewe) by

Jejoq Buueegq .6 84nbi4

(eoue)siq 1ebie |

hes}yo X) uisoly
= 8|buy Yyinwizy

ejBuy ynwzy

eouels|q 1ebs8)

(lexid/seyouy) X (eouslsip X)

1880 X

47

s}e(qQ Jo suoyoeo q-¢ Bunoideq |epon dlydess :oL einbig

sajeuIploo) ueisaue) U
SJulod 8.y JO UoneooT

@
<

uopels eoeds ybBnouy) eur] feuLION JO uopeujweleq Jo uopdideq : 1 L esnbid4

X

Sjui0d 981yl
ife Buisojus sue|d

\

eul [eULION

(2]
<

uopsujuueleq Aiowefesy yioows pus ujodAep jo uopdideq 21 einbi

50

uopesedQ UCINGN [EOYIY JO [OPON feonewsaLe| €| enbid

\ induj
Wbiom

€ Wblem

¢ Indy|

ndino

/
2 Wbiem 2 Induj

o~

QU7 VY L indu

UOCINSN [eloyILY
uy jo [SPOIN [edliewsyieN

-

51

Juewuedx3 ul pasn YOMIBN [einaN Jo [9poW 1 8nbid

1e8fa Indino Jeke ueppiH Jehe indu)
(vie.d)
ssoupedwo)

(1 100)

ndino 0.2
sjuswiopy

2100) T
ndino .2 JuelBAU| N0

uoine|N JeAe ueppiH |

}JOMION eine [eryy uopebedold-yoeg ‘IndinQ g ‘induj g

52

r *

I* Serengoopic Vislon Routine written by Michasl M. Heu, MIDN 1/C 1993 */
I* This program uses the DT2867 Frame Grabbing board In conjunction with */
P a pair of Panasonic minl-camerss and analog-to-dighal converters. b
F* Seversl roulines were writion with the assistance of Professor v

rmmuhmuwa.?mw *
P

£ Run on Microsoft C 7.0, using 80288 processor, large memory model, */
F* and 14338 stack options. Inciude CELIB.LIB, DTIFMS.LIB, GRAPHICS.LE */
F* and LIBE7.LIB in the file list. o

#inalude «conion» P for kbhit */

Sinclude emalioc.h>

Sinclude dontlin P required for Microsoft's open/cioss */
Sinclude <sysitypes.h>

Sinclude <sys'stath>

#inciude do>

Sinclude earmo.r>

Sinclude <sidich> 1* required for printf */

Sinclude <dtitypn> I* file of DT specific types */
#include "c:\dthincludeNoctlLh® P 10CTL stuft */

#include «id_info> F* nseded by IOCTL commands */
Sinclude <string.» * for chain code string oparstions */
/* mouss routine includes */
Sinclude <dos.> P for \Im86(, Inmt88x() */
#include "mouse.n” /* for “struct oursor_struct” */
struct object { P this structure hoids the information for ’
it row; * objects analyzed by the chain_code function Y
int ool;
float xber; F* row and ool designate the locstion of the *
flost yber; P starting pixel from which chain_code operates.*/
fioat phifS); I* xbar and ybar designate the centrold, phi{5] ¥
fiocat compectness; F designates the first 4 invariant moments, and */
% I* compactness retums the compactness of the o
I* object analyzed o
struct beacen {
float xbar{2],ybar{2]; 1* camers 0 and 1 centroids of beacon */

float xdistydistzdist; I* cartesian coordinates of beacon */

struct waypoint {
flost matrix{4]{4]; I* homogeneous transform matrix at this */
fiost xdist,ydist,zdist; /* waypoint. siso, the coordinstes and ¥/
fiost phich,yaw,roll; * otientation of the shuitie here. *
k

struct trajectory {
flost time; I* individual trajectory time, position, */
float xdist[2],ydist[2],2dist{2]; I* velocity, and accelerstion at */

ficat pitch{2],ysw(2].roli[2]; /* this point in the trajectory. */

struct deita { * for purposes of trajectory smoothing, */

53

float xdlietydist pdist; F the deltab and deitac differences in */
float piwch,yew, roll; P position and origntation batween *
k I* thres sucosesive waypoints *
struct poin2 { P generic siructure format for & *
it matrixi2); * 2-point veator *f
k
struct polnt3 { P generic structute format for a *f
float matrix{3]; P 3-point vector)
k
struct homog { P generic structure format for 8 *
fRoat matrixf3)Ns}: F* 3-by-3 homogensous matrix *
5
char oont; /* continue flag, 0 to repeat ¢/
short int color; * shont integer color Index ¥/
nt polarity; /° fiag *o indicate background/object contrast direction */
nt numbeacon; I* coumer for cycling through beacons */
nt numwaypolint; * counter for cydling through waypoints */
float cosmterf2]: /* canteriine columns for cameras 0 and 1 */
float rosnter{2]; F* csnteriine rows for cameras 0 and 1 */
nt classnumber; /* number of class beacon Is recognized age */
/* for computation of the orientation of a thres-bescon structure */
fioat XY,Xx; /* X unit vector */ /* waypoint homogeneous matrix */
float yRYyY.yZ; /*y unit vecior *) rosstion values */
float nzyz; 2 unit vector */
float xd,yd.2d; /* "unit’ vecior magnitudes for acaling purposes */
float tace, tau, h, teg, vmax, distance, tvmax; /7 tmoc */

* for transformation batwesn coordinate systems - normal and worid

float veciorif4]; £ input vecior of change in distance siong normal */
float vector2{4); I* output vector of actual distances slong axes */
float view_position[3];

I* neural network classification constants */

float data_ins); /* 8 input values for network */

float dats_outf2]; * 2 output values for network */

float result; /" weighted sum of outputs for clasaification */

I* structure aliocations */

/* object sent 10 chain_code */
1 3 beacons identified end analyzed */

struct waypoint waypoints{S); I 5 waypoints computed for docking */
struct trajectory H I* 40 trajectory points analyzed */

struct deita deitab, deitac, 8; /* difference computation between waypolnts */
F* for draw_sli_figures and graphics routines */

struct point3 pts{a]; /* for drawing coordinate axes */

struct poim3 [<" H

struct point3 p3b;

struet point2 p2s;

struct point2 p2b;

struct homog AA[3];

int maxX,max¥; /* max pixel count for graphics mode %/
unsigned char *axis_textid]; P for marking identity of axes */

unsigned char fillmask(8); P for later filling in of polygons o/
fiost aspect; /* aspect ratio of monlitor b

flost scale; I scaling of image *
float dist; P distance of ‘eye’ from origin */

r for determining when 10 change cursor shape: */
static int MAX_x, MAX_y; #* number of pixeis in sach directions */
static int b_topa73, b_bottioms73, b_left=100, b_right=100;

static it u_flagx1, |_flagat;

r general mouse varigbies: ¢/
static int status, num_butions;
static int driver_instalied_fiaga0;

static unsigned int_seg, int_off, int_mask;

I* information gathering routines for stereo vision */

void take_pix(intjnt.nt);

vold take_two_pix (int);

vold get_polnt(int *.int * Jntint);

void chain_code(struct object ‘objectt, flost sipha,int threshold,int buftnt &);

1* grephical trajectory display routines */

void ini);

vold compute_view_transform(fioat theta, flost gamma, flogt metrix{3)s);

void compute_RPY_transionm(fiost yaw, fioat pitch, ficst roll, float matrix{3)f3]);
void compute_AZE!_transform(fi - &z, float ol, flcat matrix{3][3));

void transform_point(int ¥, float p1[3), Int po[2]);

void draw_all_figures():

void dispiay_trajectory();
/* neural network classification routine */
void classify();
r o
int main()
{
Int 13,k P loop counters */
I* mouse routine variables */
Int 5% H P old mouse position ¥/
int x1,yt; /* new mouse position */
Int [1H /* button prass/relesse indicator */
int P2, p3; /* button press location */
Int P4, p5; /* button release location ¥/
int msiatus; /* mouse status indicator */
int flag; I flag for mouss button press */
int ok_flag=0; I fiag for restoration of image */

I get_point 10 chain_code transport variables */

54

55

| oolnum Jownum; I veiues obtained from mouss routine */
£* monitor oursor vasiables */
nt row, colit1, colett; /* row, isft column, right column numbers */
nt rowup2,rowdn2,00l; /* col, top row, bottom row numbers */
1* camera snd LUT informsiion for DT2887 boerd */
It buft, camers; P bufisr/oamers numbers */
nt id, status; /* DT2087 board handie and siatus indioator */
nt thresh, threshold; /* binarization end comparison thwresholds */
Int cambDnum, caminum; / number of pixels in camers 0,1 kne arrays */
m onmera(768}; /* camers 0 ine arvay */
int oamera1[768); 1* camera 1 ine array */
* variables for distance computation using edge detection along rows - not used */
It found, pixbegin; /* edge found flag, starting pixel value */
int edgecol0,edgecolt; /* objact edge in camers 0,1 */
flost time;
float sipha;
1* starececopic ranging constants */
float soaifact; * scsling factor in millimeters */
float focaleng; /* focal length in millimeters */
float camesp; * camers separation in millimeters *
P sterecscopic ranging veriables */
int pixdift; /* difference In pixels */
fiost paraliax; /* paraliax between two camera images */
float distanoe; I computed distance from stereoc vision */
u_long red]2586), green{256], biue[256];
XY_rgn_buf rgh, rgn2, biank_line, blank_line2;
/* START OF MANN PROGRAM */

I* set video mode 10 18-color VGA */
_setvidsomode{ _VRESI1SCOLOR);

1 olear the screen */
_clesrsoreen(_GCLEARSCREEN);

/* open the DT2887 board */
i ((1sopen("DT286730", O_RDWR))=x-1) {
primti("Error opening DT-2067 device. Exiting .\n\n");

oxit(1);
}
dw87_disp (1d, DT67_ON); 1* tims the device on */
d87_inp_sync (id, DT67_SYNC_CUR); I* use current channal as syne souroe */

d187_lnp_timing (id, DTS7_EXTERNAL); / timing source is external to board */

P initial configuration of Input Look Up Tables */
for (in0; k256; lo+) /* Sot ILUT values */
green(ijsi; I Normal picture */
status = d167_inp_lut (1, DTS7_WRITE, DT87_ILUT, DT67_LUTD, 0, 256, green);
If (status Ix E_NORMAL)
primtf(~Abnormal ILUT operation ..\n");

/* Uncomment this function for demonstration of two-camera peraliax */
I take_two_pix(td); */

 This section simply takes a single picture with camera 0, aliows the user
10 designate an object, and find its centroid using chain_code */

56

 Take first pictuse using camera 0 */
P printi("nPreparing 1o taks picture with camers 0:);
camerand;

Dued;
fahe_plx{oamera bult,id);

bulial;

get_poini{Sooinum Arownum,buff,id);

printi("n(ool %3d Jow %3d) is the position selecied " oolnum fownum);
object2. rowsrownum;

objsct2.colucoinum;

aiphaxt.0;

thresholda128;

chain_ocode{&object2,alpha.threshoid buftid);

PRI, %80) Is the (row,ool) of the centrold” object2 xbar,object2.ybar);
aliphant 0; %

alphast.0; /* camers pixels are square %/
thresholds128; /* middie grey-vailue 10 allow detaction of G and 238 */

I* determine centeriine pixels of cameras */

for{cameran(;cameracn i ;camerses) {
rosniirfcamerajx233.5; rsiva-s
coenierioamera}=383.5; 1 788/2-8 *
}

/* This loop cycies through both cameras, *
P taking pictures of and analyzing each beacon */

for(cameran(;cameraen 1 ;CamMarass) {
bufiacamers; £ bufer corresponding to camaera */
take_pix{camera,bufl,if); * take picture and threshoid */

I* This loop cycies through all thres bescons in the current image */
for(numbescon=0;numbeaconc2;numbeacone+s) {
printi™n\nCamera #%3d, Buffer #%3d, Beacon #%3d ".camers.camera,numbeacon);
printi("\nPlease sslect a point 1o the left of beaocon %3d " numbeacon);

get_point(&ooinum,&rownum, buft,id); /* get start row and oolumn from mouss */
object2.rowsrownum; I give object2 structure mouse inputs */
object2.oolacoinum;

polarity=0; /* black on white polerity */
chain_ocode(&object2 alpha threshoid buff,fd); /* perform chain code on beacon ¢/
beacons{numbeacon].xbaricamerajzcbjecti2xbar; /* give beacons structure centroid values */
:uouu[nummbﬂmmm

}

1* Beacon identification routine using neural networks */
I take plcture with camera 0 */

camera = 0;

buft = camera;

take_pix{camera,buft,id);

printi(™\nPlease select a point 10 the left of object %3d *J);

/* mouss input 10 left of graphical designator */
get_point{&colnum,&rownum,buft,fd);
object2.rowxrownum;

object2.col=colnum;

/* chaln coding of white on biack object */
polaritys1;
chain_oode(&object2 alpha,threshoid buft,fd);

—]

7 returned descriptors for use by neural network */
data_in{Ojsobject2.phi{1);
duta_in{1}=object2.phi(z);
duta_in{2jmobject2 phi[s];
“.m
dais_in{4}=object2.compaciness;
for (ln0;icBiies)
PN data_in{l]);

P neural network classificstion of object using deacriptors */
claseify(:
printi("\nNaural Nat Output §1 = %8(, Output £2 = %6 date_out{0)dete_out{1]);

° interpretation of network output */
resuiin2*dats_out{0}edata_out{t];
H (resulien.5)
classnumbers0;
oles
i ((rosuit> 5) &4 (resuften1.5))
clsssnumbers1;
olse
if ((resuit>1.5) && (resuli<s2.5))
classnumbers2;

olse
It (resul>2.5) && (result<xd.B))
classnumbers3;

olse
classnumbers100;
prnt™nObject Belongs ‘o Class Number: %3d" classnumber);
}

/* Calibration of camera centeriine pixeis, pitch, yaw, roll? */
1 knowiedge of the camera lens optics wouid heip increase acouracy */

I* Coordinate Computation Routine */

/* Siep 1: determinstion of beacon distances from cameras */

soaifact = (1.0/2655.0)"254; /* scaling factor in millimeters per pixel */
focsleng = 7.5; 1 focel length in millimeters */
camsep = 4.0°25.4; /* camera seperation in miliimeters */

for(numbescons;NUMbescon<a2;NuMbescon++) {
pixditt s beacons{numbeacon).ybar{0}-besconsinumbescon].ybar{1};
printi(™n\nPixsl difference betwesn images = %4d plxels” pixdiff);

paraliex = pixdif * scalfact; I paraliax in millimeters */
distancs = focaleng * camsep / paraliax; 1 distance from cameras in millimeters */
printi("n%8r parailax);

printi{("\nDistance from camerss in millimeters = %81 distance);
printi"\nDistance from cameras In inches = %&I" distance254);

P z distance In millimsters - straight out from shuttie */
bescons{numbeacon).zdist = distance;

£ from the camera's view, xdist |s positive 1o the top along rows
ydist is positive 10 the right along columns */

I* determination of ‘bearing’ of beacons from camers setup */
I determine xdist and ydist from 2dist, rcenter, cosnier, xber, yber */
using only camera 0, and figuring in the proper ydist compensation */

cameras?;

pixdittsroenter{camera)-bescons{numbeacon].xbarfcamersa};
mmmmwmmwwamm
plxdiffzbsacons{numbeacon].ybar{camersj-cosnter{camera]

MMMLﬂMMMWGMMHM%;

PNt \n xdista%8!, ydistz%8¢, 2dista%0f *
Jescons{numbeacon).xdist,beaconsinumbeacon).ydist
Jhescons{numbeacon).zdist);

57

}
oontegetoh();

normalize veotorns X (1-00), y (1-2) and take cross product 1o */
find vector along normal. Take the negative of this vector o */
get the 2 veoior. Place these thres vectors inio @ 33 o
orientation matrix. Augment ik with 8 position vector *
get a 4 ansionn matrix. Nots: this is s leh-handed o
ooordinets frame o

TIIITT

/* x unit vector */
/* compute directional differsnces */
1) xdist;

/* normalize current vector into unit vector */
tmaot/xd;
xy=xy/xd;
xeuxz/ud;

/* y unit vector */

I* compute in same manner as X unit vector */
yusbeacons|2).xdist-beacons|1).xdist;
yysbeacons{2]. ydist-beacons|1].ydist;
yxsbeacons|2].xdist-bescons{1).zdist;
ydesqri(pow(yx 2)epow(yy.2)spow(yz,2));
yxsyx/yd;

yy=yylyd;
yeayziyd;

/* 2 unit vector */
P use oross product of x and y, then use same method */
=Xy y2-X2°YY;

ymaxs=2s; * maximum velocity is 30 mm/sec */
tacoe10; P minimum time of acosleration/deceleration is 10 seconds */

I* formation of final waypoint matrix - docking point */
I* orientation matrix */

waypoints{dl.matrix{1]{3}=beacons{1].ydIst;

waypointsid].matrix2)S)cbancons({1] rdist;
P Duplicate this point on waypoint before 1o siop at docking ¢/
for(is0;iudzies) {

forjaljetjee) {

}

Leatrix()0L;

}

/* Duplicate this point and subiract v*1au from the 2-axis */
P this witl aliow @ trajectory straight into the docking port ¥/

for(iab;let;iee) {
for(u0jedjes) {
}
}

I* compute components of negative nonmal as waypoint 2 and add in */
vectort(0j0;

veotor! [2)e-2'vmax*meac; /* this distance out from the station */

P Initial waypoint Is 0,0,0 RPY, and 0 transiation */
£* orfentation matrix */
waypolnts{0).matrix{O}{0}=1;
waypeints{0).mstrix{1}{0}=0;
waypoints{0 HO}=0;
}1)=0;
waypolnts{O].matrix{1){1)=1;

I second waypoint Is some distance straight ahead, 10 ceass velocity */
£ Duplicete this point and add a z-component ahead */
for(is0;ied;les)
for(a0jed;jee) {
;nypmmuummmwmmmmm;

}
waypoints{1].mstrix{2][3)}=3*vmax‘tace; I this distance shead */

I* computation of angles from orientation matrices */
for(kal;k<S:kee) {

J.matrix{2}{0]);
waypoints[k].yawsasin(waypoints{k].matrix{2][1}/ cos(waypoints{k].pitch));

59

*!

¥ ((waypoints{k).matrix{1 {0} cos{waypoints{k).pisch)0) {
i {(waypointe{k].matix{0}0)cos(waypointefk].pitch)}»0) {
waypointsik)roliatabs(asin{weypoints{k].matrix{ 1 J0)coe(waypoints{k).pitch)));
}
oloe {
W’ -1)-sbe(asin({weypoinis{k].matrix{t)0)cos(weypoints{k].plch)));
}
olee {
¥ ((waypointe{kj.matrix{0)0)oos(waypaintalk].pitch)»0) {
waypointe{kj.rolia-labe(asin{waypoints{k].matrix{1)[0)/cos(weypoints{k].pitch)));
}
oles {
W-i)efaba(ssin(waypoints{k].matrix{t)0)/cos(waypoints{k].pitch)));
}

}

P printout of waypoint matrices and urientation angles */
for(kal;ke:kee) {
printi"\n");
for(ilalied;les) {
printi™n");
for(a0jetjes)
; printd(™%8¢ ~ waypoints{k].matrix{T}i]);

, printi"%8f %8¢ %8r", waypoints{k].pitch,waypoints{i].yaw weypoints{k].rolt);
oontagetch(;

Sdefine pi 3.1415826536

typadef dauble homoga[4)4};
homogé °posi,’pos,’pos3,‘poss,’pos_temp;
double deitab{6],deltac(6];

double Ti,htacen;
double 81,82,83,01,02,03.2,0,

Pos1 = (homogs *) malioc(sizeoihomog4));
Pos2 x (homog4 *) malloc{sizeot(homogd));
Pos3 = (homog4 *) mailoc(sizeof{homogd));
posa = (homog4 *) malloc(sizect(homogd));

for (ia0;icd;l++)
for (ja03j«4;j++)
ints{o].matrix{1]f]];

for (1a0;icd;lee)
for (J=0;jedijee)
pos3fil[l=waypoints]t . matrix{i}{j};

for (zal;zen2e+) {
pos_tempupost;
posizposs;
posazpos_temp;

POS_tompupos2;
pos2sposd;
pos3zpos_temp;

for (Ia0;led;l++)
for (j=0;lcd)ss)
1} matrix(f]Q};

60

61

 computetion of smoothed trajectory points from waypoints */
P inkislize first point of trajectory 1o first waypoint */
=t;

tmesD;
Bus2*mos; £ time is twice minimum acosieration time */
wrajectories]0].udist{0)weypoinis{O).xdiat;
wrajectories{0].ydist{O)mweypoints{0].ydist;
trajectories{0].2disi{0ewaypoints{0].adist;
trejectories{0].pitch{Ujswaypoints{0].pitch;
trajectories]0]. yaw{Olswaypoints{0].yaw;
trajectories]0).roll{Cjlewaypoints{0]).rolt;
trajectories({0).timesl;
1 loop through three imes using thres waypoints 10 complete trajectory */
for (kntkanS;kes) {
1).ndlet;

deltab.ydistswaypoints{k].ydist-waypoints{k-1].ydist;

deltab zdist=waypoints{k).zdist-weypoints{k-1).2dist;

deitab pitchawaypoints{k].pltch-waypoints{k-11.pitch;

a.yawswaypoints{k-1).yaw;
distancessqri{pow(deitac.xdist,2)spow{deitac.ydist,2)spow(delinc.2dist 2));

tvmaxsdistancs/vmax; * tme 10 travel log st maximum velocity */
tlega(tvmax«2°tacc) ? 2°tace : tvmax+2°tacc; /* log Is aither twice minimum acceleration time or tmaxvel */
for(hal:hantzies) {

hahe.1;

imestimesh*2'tauy;

trajectories{T]-xdist{2)=(1X2pow(tau,2)))*(deltac xdisttau/tieg-deitab xdist);
trajectories{l).ydist2]={142 pow(te:: 2))) (deitac.ydisttautieg-deiab.ydist);
trajectories{l].zdist{2]n(1/2° powltau,2))) (deltac.zdistau/tieg-deltab 2dist);
trajectories{iL.pitch{2)s(112° pow(tau,2)))(deltac.pitch*taunieg-delteb pisch);
trajectories{l).roli{2}=(1/(2*pow(tau,2))) (deltac.roli*tauieg-deitab.roil);
trajectories{l].yaw{2]=(1/(2°pow(tau,2)))*(deitac.yaw taurieg-deitab.yaw);
trajectories{l).xdist[1 j(Wiau)*(deitac.xdistmutieg-deltab xdist)edeitab xdist/tau;
trajectories{i].ydist{1 ja(hiau)'(deitac.ydisttauieg-deltab.ydist)sdeltab.ydist/tau;
trajectories{i).zdist]1)}a{Visu)(deltac.zdist"tauntieg-deltab 2dist)+deitab.zdistiau;

ist*tau/tiag-deltab.xdist)
Wﬁﬁhﬁﬁ“mqwmuymm
trajectories{l).roli{0}=pow(h,2) (deitac.roll*tau/tieg-deltab.roll)sdeitab roll ‘2*hea.roll;
trajectories{l].yaw{0]}zpow(h,2)*(deitac. yaw*tau/tieg-deltab.yaw)edeliad.yaw 2 hea yaw;

62
trajectoties{ll.imestime;
’
for (js2ped) {
printi("n");
printi"%3d\n"J);
ar printi(“xdist %Ntydist %BMrdist %BANPIch %SNIroll %INysw
srejectories{l).xdist{]L.wejectories(l). trajectorieal].pitch]] trejectories(i}.rolifj) srajectories{lL.y
}
contagetch(); */
}
}
display_trajsctory(;
oontugetoh();
cloes (d);
_setvideomode(_DEFAULTMODE);
! :
vu:m_mmmwmwuwmmm
XY_rgn_buf rgn, rgn2, blank_line, biank_line2;
int status, flag, n;
Int rstart, cstart, rowtemp, collemp, nc; P holding variebles for chain code start location */
nt deita, length, dirout, dirin, decision;
nt dirint, diroutt;
it L L p, 9, gamma;
fioat numerator, denominator, theta, perimeter, ares;
float m{4}4];
float muf4]i4):
float nu{4)i4);
float phi[s];
cher s;
static int do{8)8] = {
{0.0,0037333),
{22220,1,1,1),
{222.200,,1),
{22220,00,1),
22220000},
0,1,1,13,333),
{0,0,1,13333]},
; {0,00,13333}
l'.lglh = 768;
/* initisllze arrays and variables */
for(pal;ped;pes) {
for(qa0;q<4:qe+) {
mipliqis0.0;
mu{pliq)=0.0;
nuipliq}=0.0;
. }
for(psl;pend;pes)
phi[p]=0.0;
perimeters0.0;
/* open specified bufter */
if (butf=a0)
di157_lo_sel (fd, DTS7_BUFU); /* Prapare 1o talk to Bufter 0 */
oise

a1s7_lo_sel (fd, DTE7_BUF1); /* Prepare to talk to Buffer 1 ¢/

» = 0bjectt-»00ie100;
dirns 1;
7 read first pixel %
gnsegionx s ebjecti-»col; P column 0 is loft edge */
rgnsegion.y s objecti-slow; F* y-coordinam s the ROW */
rgnsegionawidth = 1; £ entire line %
"\Wﬁ; only ONE row */
gn.aize = * BUFFER 0 hoids 1-byle slements */
W-hu')dhc(mﬂmm
sizeol{char));
statue = logl (id, GET_XY_RGN, &rgn); I* get the region */

If (status Iu E_NORMAL) {
printi("Error reading line of image. Exiting _wn");
;lli):

i (polarity == 1) {
* continue reading pixels unill first light pixel is found */
whils ({(Oxfth{({char Yrgnbuf)i0])«sthreshoid) && (objecti-»00lean)) {

objecti-scoles;

rgn.repion.x = object!-s0ol; * column 0 is lefht edge ¥/
rgn.region.y = objecti-srow; P y-coordinate is the ROW ¢/
rgnsegion.width = 1; P entire iine %/

rgn.segion.height = 1; P only ONE row */

gnsizes 1; * BUFFER 0 holds 1-byte elements */
rgn.but = (cher *) cslioc (rgn.region.width*rgn.region.height,

sizeokchar));
status = loct! (fd, GET_XY_RGN, &rgn); /* get the region */
if (status s E_NORMAL) {

prntiC"Error reading line of image. Exiting ..\nn");

exi(t);
}
}
}
olse {
while (((0xf1&{(char “Frgn.buf){0]>athreshoid) && (objecti->ooian)) {
objecti->coles;
rgnsegion.x = objecti->col; * column 0 Is left edge */
rgn.region.y = objecti-»row; P y-coordinate is the ROW */
rgn.seglon.width = 1; I entire line */
rgnsegion.height = 1; P only ONE row */
gnsize = 1; I* BUFFER 0 holds 1-bye elements */
rgnbut = (char *) calloc (rgn.region.width*rgn.region.height,
sizeokchar));
status = loctl (K, GET_XY_RGN, &rgn); /* get the region */
i (status = E_NORMAL) {
printK"Error reading line of image. Exiting ..\n\n");
oxiyl);
}
}
}
i (objecti-scob»n) * no object found on this row */
printi{™\nNo object found on this row...");
olse {
/* start chain code computation */
ne=0; * number of elements in chain code */
ratartsobjecti-orow; /* holding variables for start of chain code */
catartsobjecti-»col;
PHN™\N row %4d, col %4d™,rstart, cstart);
perimeters0;

flags0;

63

64

do{
P Grab pixel
rgnregion.x = objecti-ecol; I column 0 Is loft adge */
rghsegion.y s cbjectt-srow; F* y-coordinate is the ROW */
=1 P entire ine %/
rgn.region.height = 1; / only ONE row */
gnaize = 1; P BUFFER 0 hoids 1-byte elements */
gn.but s (ohar *) calloc (rgn.reglon.widih*rgnregion.height,
sizeci(cher');
status = locsl (i, GET_XY_RGN, &rgn); I gat the region */

if (statue Is E_NORMAL) {
printi("Ervor reading line of image. Exiting ..\n\n");
rlﬁ:

1 check 1 see ¥ back at initial edge pixel */
If (rsterteaobjecttorow &4 cstartasobjecti-«col && nora?)
flags1;

dirin = (dirine2)%8; Mnitial search direction */
rowtampuobjecti-orow;
ooltempuobjscti-aool;
for (a1 ;iaB;iee) {
owitch (dirin) {
oaee 0:
objecti-s00les;
break;
oaee 1:

cbjecti-arow—;
objecti-»o0tes;
break;

cane 2:
objecti-arow--;
breai;

oase 3:
objectiarow—;
objecti->00k-;
brealk;

case 4:
chjectt-»00l-;
breek;

case 5:
objecti->rowes;
objecti->00}—;
breelk;

case 6:
objectielowes;
break;

case 7:
objectiarowes;
objectio00lee;
break;
defsult:
) break;
/ Grab pixel %
rgnreglonx = objecti-sccl; P column 0 I left edge */
rgnregion.y = objecti-»row; I* y-coordinate is the ROW ¢/
rgnreglon.width = 1; I* entire line ¥/
rgn.oreglon.height = 1; I* only ONE row */
rgnsize = 1; I* BUFFER 0 holds 1-byte elements */
7gn.but = (char *) calioc (rgn.region.widih*rgn.reglion.height,
sizeot{char));
status x loct (1d, GET_XY_RGN, &rgn); /* get the region */
if (status k= E_NORMAL) {
pﬂmmmr reading line of image. Exiting ..\n\n");
10

rgn2.region.x = rgnreglon.x; P oolumn 0 is left edge ¥/
rgn2.region.y = rgnregion.y; F* y-coordinate is the ROW */
rgn2region.width = 1; 1* entire line */

rgn2.region.height = 1; 1* only ONE row */

gn2.eize = 1; £* BUFFER 0 haids 1-byte slements */
rgn2.but = (char *) calloc (rgnreglon.width*rgn.regionheight,

sizeci(chean));
{(char Jgn2.bunji0] = 200;
status = loct (fd, PUT_XY_RGN, &rgn2); I* restore the region */
if (status t= E_NORMAL) {
printi("Error restoring line of image. Exiting .\W\n"™);
;Xﬂi):
noes; /* updsate spixels in chain code */

i (nc>u2) {

dirin1adiroutt;
dirouttadirin;
decislonadcidirint)[dirout1);
switch (dirin1) {
case 0:
perimeterse;
break;
case 1:
perimeterzperimeters+sqri(1+pow(aipha,2));
break;

case 2:
perimatersperimeter«alphs;
break;

case 3:
perimetersperimeter+sqri{1+pow(aipha 2));
break;

oaee 4:
perimeteree;
break;

case §:
perimetersperimeter+aqri(1+pow(aiphe2));
break;

case 6:
perimetersperimetersaipha;
break;
case 7:
perimeterzperimetersaqri(1 spow(alpha 2));

65

break;
delault:
break;

}
switch (decision) {
onee 1:
for(s0;jed;jee) {
m{J)0}am[]}{0}»pow((sipha‘rowtemp).));
mY1}em{]}{1]+powi(aipha‘rowiemp))’ coltemp;
m{iii2}=m{i{2]+pow((siphe*rowtemp).])*powcotiemp,2.0);
m3jum{i3}+pow((aipha‘rowtemp)]) powscoltemp3.0);
}
brealk;
case 2:
for(alzjed;joe) {
m)N0Jem{ilo-{pow((aipha‘rowtemp))(coltemp-1.0));
m{)1Jam{l1Hpow((sipha*rowiemp)) 'coitemp*(coitemp-1.0)2.0);
mji2jsm}2}{pow({{alpha‘rowtemp)])'coltemp*{coliemp-1.0)(2 coltemp-1.06.0);
;IMSMWHM(WWPHM(NW1M1 A)y2.0),2.0));

brask;
case 3:
for(a0jed;jes) {
m{j{0}=m{){0]epow{(aiphaTowtemp),J) coltemp;
s} 1}xm{]l{1]}+pow((aipha‘Towlemp),]) coltemp*(coltemp+1.0)2.0;
m)i2}=m{2)+pow((sipha‘rowitemp),])*coltemp*(coliemp+1.0)*(2.0°coltemp+1.0/8.0;
?mnmm«w«dmmmm'm«mﬂwwmmmn
break;

break;
}
}
sise
divouttisdirin;

j while (ftag);
Ki{nc<2)
printi("\nNull chain code™);

abjectt->xbar=m{1]{0}m[0]{0];

objecti->ybarsm{0][1)/m[0){0];

mul0}[0}am[0]{0];

mu{1){0}=0;

mul0){1}=0;

mu[2){0]=m[2]{0}-m[1){0]*objecti->xbar;

mufo}{2}=m{0]{2]}-m[0][1]"objecti-sybar;

mu[1]{1}em[1)X1]-m[1][0] objecti->ybar;

muf3][0j=m{3][0{3 objecti->xbar'm{2][0])+(2'm{1][0] (pow(objecti-»xbar,2)));
muf1]{2}=m[1][2]{2*cbjecti-sybar'm[1}{1]){objecti->xber'm{0]2]+{2'(pow(cbjecti->ybar,2))* m{1][0]);
mu{2][1j=m[2][1}{2*cbjecti->xbar'm{1}{1])-{object1->ybar'm{2][0]+{2"(pow(objecti->xbar,2))*'m[0]{1]);
mul0][3]sm[0}{3)(3 objecti->ybar'm[0][2])«(2 pow({object! >ybar,2)'m[0){ 1));

1 inveriant moment computation for iater object recognition %'
for(ps0;ped;pee) {
for(qa0;qcd;gee) {
{3 H

gammen(p+q)2
?Ubnqmulpl[qmm"lﬂlolm);

}
phil1j=nuf2’l0}+nul0](2];
phif2)=pow((nuf2]{0}-nu0](2]),2)s4°pow(nu]1]1},2);
phif3j=pow((nuf3J{0]-3°nul1][2]).2)+pow({3°nu2]{1 wO][3]),2);
phifél=pow((nuf3](0j+nu[1]{2]),2)}spow({nuf2]1]+nu[0](3]).2);
philSi=(nuf3l[0]-3 nult](2D) (nuf3}{0Jenu1][2])" (Powl(nui3]i0}-3°nul 1}{2]),2)-3 pow((nu[2}{ 1}+nul0)(3]),2))

+(3°nu(2][1}-nu(0H3]*(nuf2){1}enu0]{3])" (3 pow(nul3][0j+nul1][2]),2)-pow((nuf2][1 }+nu0][3]),2));

phiS)=(nuf2}[0+nul0J2]) (Pow({nuf3)[0]snul1]I2]).2)-pow((nu]2][1}enu{O]I3].2))

66

SA* N1 (S0} enult N21) (2] 1 JenfO)ID);
PR)u(3 nusf2)11 - SHOD(nu[SJ0Jenul 1§21 (powl((nulS]I0}snu[1}(2]),2)-3 Pow((nuf2){ 1}+nulo]I3]).2))
(T nu{1R2}-nuIX0D (Puf2) 1 Jenu{OXS] (3 pow((nulS){0}snx 1 K2]).2)-powi(nui2) 1 Jenu[OX3D.2));

*
/* wanster of arreys Into structure format */
for(patlpai;pee)
objecti-ophi[plphilp];

area=muf{0)0);

objecti-acompactnessxpow(perimeter 2)ares;

printi(Mn%Bf is the perimeter of the object ~.perimeter);

printi("n%86¢ Is the compaciness of the object ",objecti-scompactness);
Print™\n(%81,%861) is the (row,00l) of the centroid” objecttsxbar objecti-»ybar);
}

}
r Y
void get_polny(int ‘colnum,int *rownum,int butt,nt 1)

67

/"int colnum, rownum, buft, id;*/ I* mouse column and row, buffer number, device */

{
I* continue fiag, 0 % repeat */

|

oont;
status, |, thresh; re

|
|
i

t B'H P oid mouse position */

x1,yt; [new mouse position */

p1; /* bution press/release indicstor */

P2, p3; /° button press location */

PA, p3; I button release location */

msiatus; /° mouse status indicator */

fiag; /* fiag for mouse bution press */

ok_flags0; I* fing for restorstion of image */

row, colitt, coirty; I* row, left column, right column numbers */

NIFIFAFRINR

_rgn_buf rgn, rgn2, diank_line, blank_line2;

if (buftasd)

d187_lo_sel (1d, DTS7_BUFD); /* Prepare 10 talk to Buffer 0 */
olse

d157_lo_sel (1d, DT67_BUF1); /* Prepare %o talk 10 Buffer 1 */

I* Prepare 1o save and biank 8 line of the image */

rgnregionx = 0; £* column 0 is left adge */
rgnregion.width = 788; /* entire line */
rgnJegion.height = 1; I* only ONE row ¢/
rgnsize = 1; /* BUFFER 0 hoids 1-byte elements ¥/
rgnbuf = (char *) calioc (rgn.reglon.width*rgn.seglon.height,

sizeot(char));
blank_lineregionx = 0; P ocolumn 0 Is left edge */
blank_lineseglon.width = 768; /* entire line */
biank_linesegionheight = 1; I* only ONE row */
bllntllmm:'l; I* BUFFER 0 hoids 1-byte slements */

blank_fine.buf = (char *) calioc (blank_line.region.width*biank_line.reglon.height,
sizect(char));

rgn2.region.x = 0; 7 column 0 is left edge ¥/
rgn2.region.width = 1; I* entire line %
rgn2.region.height = 512; 1 only ONE row %/
rgn2.size = 1; 1* BUFFER 0 hoids 1-byte slements */
rgn2.buf = (char *) calioc (rgn2.region.wiith rgn2.region.height,

stzeof(char));
blank_line2.reglon.x = 0; I* column O is left edge */

rowup2, rowdn2, col; I* 1op row, bottom row, column number */

blank_line2 region.width = 1; 1 entire line */
blank_lneZregion.height = 512; * only ONE row */
blank_line2.alze = 1; I BUFFER 0 hoids 1-byte slements */
blank_line2.buf = (char *) calioc (blank_tine2_region.width*blank_line2.region.height,
sizeckcher));
mouse_nitQ;
ows1;
Xa=1; /* impossibie vaiues */
y=-1; 7 impossibie vaives */
flagat;
hide_ocureor();
do{
do{
xlax;
yisy;
get_mouse_xy(&mstatus, &x, &y);
get_button_press(0, &mstatus, &p1, &p2, &p3);
get_button_release(0, &mstatus, &pt, &p4, &p5);
Hipt =0){
‘colnumapd;
*rownumsps;
flagsd;}
} while (x=xx1 && yxxyt &4& ip1);
it (ok_fagus1) {
status = octl ([, PUT_XY_RGN, &sgn); /* restore the region *
status = loct! (1d, PUT_XY_RGN, &rgn2); restore the reglon

if (status t= E_NORMAL) {
printi(“Ervor restoring line of image. Exiting _\n\n");
;tmk

}
ok_flag=1;

it (>=10 || x<=302) {
ocoliti=x-10;
oolrtizx+10;}
olse {

i (x<10) {
colitiax;
oolrtiax+10;)

olse {
oolittax-10;
colrtiax;}

}
rowsy;

if (y»=10 || y<=758) {
rowup2xy-10;
rowdn2ay+10;}
olse {
if (y<10) {

rgnreglon.y = row; P y-coordinate is the ROW ¥/
rgnregion.x = oolitt; /* column 0 is left edge */
rgnregion.width = coirti-colitiet; /* entire line */

blank_line.regionx = colitt; /* column 0 is left edge */
blank_line.region.width = coirtt-coliti+1; /* entire line */

status = loctl (fd, GET_XY_RGN, &rgn); /* get the region */

if (status be E_NORMAL) {

68

PAMIError reading ine of image. Exiting .\n\n");

oxi(1);

}
rgn.region.y s rOWup2; 1 y-coordinste is the ROW */
rgn2.reglonx = cof; / column 0 Is left adge ¥/
rgnZregion.width = 1; * entire line ¢/
rgn2.segion.hwight = rowdn2-rowup2e1;
blank_line2.reglonx s col; P column 0 is left edge */
blank_line2segion.height = rowdn2-rowup2+1; /* entire line */
status = loct (id, GET_XY_RGN, &rgn2): P get the region */
f (statue = E_NORMAL) {

ﬂw); reading line of image. Exiting ..\n\n");

1

}

blank_line.region.y = rgnregion.y;
for (In0; ica{ooirti-coliti o1); lee)

{(char *)blank_lnebuf)l]) = 253-((char *Irgn.bufi];
status = locll (§d, PUT_XY_RGN, &blank_line); /* biank the iine */
Hf {(status s E_NORMAL) {

printi("Error bianking line of image. Exiting _\n\n");

;ﬂlﬂ):

blank_line2.region.y s rgn2.region.y;
for (1a0; lea{rowdn2-rowup2e1); lee)
((char “)blank_line2.buf){T] = 255-{(char *gn2.buf)l]);
status = loctl (1, PUT_XV_RGN, &biank_line2); /* bienk the line */
i (status t= E_NORMAL) {
print("Error bianking kine of inage. Exiting ..nn"™);

exit(1);
}
} while (lkbhit) && fiag);
status = loct (td, PUT_XY_RGN, &rgn); * restore the region */
status = ioct (1d, PUT_XY_RGN, &rgn2); /* restore the region */
it (status t= E_NORMAL) {
Wmmam Exiting ..\»W\n");

}
r

}

*

void take_pix(int camera,int buft,int #d)
£ Plcture-taking procsdure using Camera 0 or 1 %/

{

int i, thresh, status;
cher oont;
u_long red{256), green[256], biue{236);
L]
d67_lnp_chan (id, DT67_CHANQC); I* use camera 0 */
oise
daw7_inp_chan (id, DT67_CHAN1); 1" use camera 1 ¥/
if (butfexd) {
a187_lo_sel (fd, DTS7_BUFD); /* Prepare 1o talk to Buffer 0 */
a187_lnp_sel (1d, DTB7_ACQO); P picture goes to buffer 0 */
daws7_disp_sel (id, DTS7_BUFO); I select butter O for display */
}
olse {
a187_lo_sel (14, DTS7_BUF1); /* Prepare 10 talk 1o Buffer 1*/

69

}
$7_inp_gain (1, DTE?_GAN1); I* set Input &/d gain 0 1 %/
dW7_disp_mask (1d, OXFF); I set bit-wise diaplay mask */
d97_passthru (id);

oont = 48;

grean(lj=238;

siatus = d187_lnp_lut (Id, DTS7_WRITE, DT67_RLUT, DTE7_LUTY, 0, 256, green);
it (status \= E_NORMAL)

print"Abnormal L.UT operstion ..\n");
as7_passtivu (id);
print™wnis this threshold satistactory? (0 1o retry) *);
contegetch();
}
) d187_stop (d);
r Y
void taks_two_pix (M)
int id;
{
int I
long k
d187_lnp_gain (id, DT67_GAINt); Festinputa/d gainto 1%/
de87_disp_mask (fd, OxFF); /* st bit-wise displey mask */
a¥87_lnp_chan (M, DTE7_CHAND); * use camera 0 */
a167_inp_sel (id, DTE7_ACQO); F* picture goes %0 bufier 0 */
G187_disp_sel (1d, DTE7_BUFD); 1* select bufter 0 for display */
printf ("\n"CAMERA 0 Live image. Press sny key (o freszs ... *);
@157_passthvu (Id);
¢187_stop (K); * take & picture *
a187_inp_ohan (id, DT87_CHANT); I* use camera 1 ¥/
d187_inp_sel (14, DTS7_ACQ1); I* picture goes 10 buffer 1 ¢/
ai167_disp_sel (1d, DTS7_BUF1); I* selact butfer 1 for display */
printf ("NCAMERA 1 Live image. Press sny key to fresze . *);
di157_passthru (id);
getch(;
d167_stop (Id); 1 take a picture */

printi("n\nToggling pictures. Press any key to quit . °);
mﬂdzml;iﬂ(

a187_disp_sel (fd, DT67_BUFD); I* select buffer 0 for display */

di67_disp_sel (1d, DTS7_BUF1); I* select butfer 1 for display */
for (j=0; }<200000; jo+)

}
while (kbhit()
getch(); /* use up keys in buffer */

70

sonlex.11;
Slotx15000.0;
F ¥ (1_setvideomode{_ VRESISCOLOR))
pute("Can’t anter _wres18coior graphics mode”); */

£ ransformation from 110 2 */
matrix{o]{0] = -st;

matrix{1}{0] = -ct'og;
merrixi2][0] = -ct'sg;
matrix{O}[1] = ct;

matrix{1)1] = -st'cg;
matrix{2){1] = -st'sg;
matrix{0)f2] = 0;

matrix{1}{2] = -8g;

matrix{2]{2] = og;

/* compute viewer's position in worid coordinates */
view_position[0]=og°ct;

view_position[1}=0g°*st;

view_position[2]=sg;

}
r o

void compute_RPY_transform(fioat yaw, float pisch, flost roll, float matrix{SJ3])
{

float SP,OP, 81,01, 8Y.CY;
int [H
float 2_ooord;

matrix{1}{0] = sy“cp;
matrix{2}{0] = sp;

matrix{0)1] = -sy“cr-cy‘ep®st;
matrix{1]{1] = cy*cr-ay*sp'sr;
matrix(2)[1] = cpter;

71

maiix{ON2] » sy“sr-cy“spior;
matrix{1)2] = -cy*sr-oy*spor;
matrix{2)2] op*or;

}
r Y
void compute_AzEl_transform(ficst az, flost el, float matrix{S)3])

fost saseee0e;

r %
void trangform_poini(int tr, float p1]3], Int p0{2])

int LK P loop courtters */
flost perspective_scale;

float p_temp{3}.p2[3);

float p_intermediate(2];

for (katriiou0k=) { #* perform ail transfroms from &7 10 0 */
for (ls0;lan2;lee) { .
P g
for (=0 jax2jes)
) p_Semp(ilnp_temp{ijeAAIK].matrix{1}0]"p1(]:

}

F* next perform perspective transformation into 2-D %/
perspective_scalex1Ap_temp{1]}edist);
p_intermediate[0)=p_temp{0]"perspective_scale; /* perspective view x-coord */
p_intermadiate{1)=p_temp{2]°perspective_scale; /* perspective view y-coord */

* now scale 2-D data o fit viewport */

* make sure pO is an INTEGER */

PO[O)=p_intermediate[0]*xscalesxoffset;
, PO{1 ja-p_intermaediate{1]'yscaiesyoifset;

r L7
vold draw_all_figures)
{

m i2; /" loop counters */

r_setiinestyle{OXFFFF); */

I* Piot of shuttie trajectory */

for (In0;icn26ies) {

path(l}.matrix{0]=trajectories{i].ydist{0];
pethill.matrix{{ jstrajectories{i].zdist{0];
path[lj.matrix{2xtrajectories{i].xdist{0];
transform_point(1 path{il.mstrix.pathpiot{l].matrix);
PANKT\N%EL, %81 pathpiot{ll.matrix{0],pathplot{il.matrix{1]);

72

_olearscresn(_GCLEARSCREEN):
oolor = 14;
_estooior{oolor); /* GRAY */
—moveto(pathgiotf0} matrix{OLpathplot{oLmatrix{1];
for(lat jea2€iies) { -
Sneto(pathpiot(ij.metrtx{0.pathplotl].matrix(1

r K

mm_gmmn.m
for(ial;icnd o)
angles{i}s0;

_gemma, AA[O].matrix);
compute_RPY_transform(anglesi2],angles{0],angles{1},AA{1]}.matrix);
compute_AzEl_transform{angies{3],angles{4), AA[2).matrix);
draw_sll_figures();

}
’.
r
\‘mdehul!yo
Ik
float n_out{B], net;

for (is0;l<S;1es)

73

print"n %S data_in{l]);
P soale input velues */
n_oulg0] = { 32232619401) * detn_Inf0] ¢ (~40768040+00);
n_oult] = (ST155830+01) ° dane_in{1] + (-20843080-02);
n_outf2) = (.14291020+04) * data_inf2] + (0.00000008+00);
n_ou3] = (.17338040404) * data_in(3) « (0.00000008+00);
n_ou4] = (23076810-01) * data_in4] « (-20011980+00);

et 3 { ~50239780002);

Aot eu (~285279176+02) * n_ou0];
net eu (~10007640002) * n_ouf1];
net e (~.16747440402) * n_out{2];
0ot om (~20747330402) * n_oul3}:
uet em (~31740270002) * n_oun{4];
printi{“net = %6 net);

n_oulfS] = 1 / (1eexp(-nat));

Aot » (~ST267170002);
net em (~21177800002) * n_out(V];
net +u { ~10000000403) * n_outf1];
net o (34417220402) * n_outf2];
net +u (33208050402) * n_out{3}:
net ¢a (.10000000+03) * n_outfd);
net om { ~.19113830402) * n_out{S]:
= %NS, net);
n_outfB] = 1 / (1eaxp(-net));

nat = { -26531160+02);

net +a (.10000000+03) * n_out{0];
net «= (.10000000+03) * n_out(t]l;
net += (.10000000+03) * n_out{2];
net ox { .10000000+03) * n_out{3);
net o= (-83795100+02) * n_outi4];
net +a (~30387640+02) * n_out(3};
prini{"net = %S net);
n_out{7] = 1/ (1eaxp(-net));

/* scale output values */

deta_out{0) = (n_outf8] - (0.00000000+00)) / { .9996099e+00);
deta_out{1] = (n_out{7] - (0.00000008+00)) / (.$0999998+00);
PANK™NOUtPUL T = %8¢, Output 2 = %6 duta_outi0Ldata_outf1]);
prANt("NObject s Numaeral %6 (2.0°dats_out{0)edata_out{1D);

Y

7 "mouss_Lc” —~ module of mouse routines based on calls to “Int 51*.

W. Clament, 891. %/

74

75

r “
r vy
mouse_ni)
{
flag_resst (&status, &num_butions);
W (taeatue)
printi"Mouse driver NOT INSTALLED.\n\n");
olee {
driver_instalied_flag = 1;
20¢_mouss_xy (10000, 10000); P choose very lerge numbers */
get_mouss_xy { &status, SMAX_x, SMAX_y)
flag_reset { Astatus, &num_butions }; /* resst 1o center */
show_oursor();
oot_horiz_lmks(0, 773);
ast_vert_fimite(0, 517);
}
- ’
choose_mousse_oursor(siatus,x.y) I selects mouse shape 10 use based on */
int ‘status, °x, °Y;: P locution and returns coordinates */
{
i (\driver_instalied_flag)
return(0);
get_mouse_xy (status, X, Y)
}
r o
r “Nag_resei()” is Used 10 detarmine whether the mouse driver has been
Installed and, ¥f 90, the number of butions on the mouss. Also, the
mouse’s position is reset 10 the middie of the scresn afier this call.
Upon returmn:
if mouse driver NOT instalied:
statusal, hum_buttonss0
Iif mouse driver I8 instalied:
statusa-1, num_butionssnumber of mouse butions
¢
r]

ﬂq_nu(mm buttons)
*status, "num_butions;
(

regs.xax = 0; I Mouse Driver system cali 0 */

1* Show or Hide the mouse cursor. */
r Y
show_ocursor()

{
#f (ldrives_instalied_flag)
return(0);
regexaxs1; /* Mouse Driver system call 1 %/
IntBG(MOUSE_INT, ®s, ®s);

*
oureor()

*;jw
|

76

it (Mriver_inswalied_flag)

relurn(0);
rge.Xax = 2; I* Mouse Driver system call 2 */
IMBE(MOUSE_INT, dregs, Lregs);

’-'

q

“get_mouse_xy()" retums the horizontal (x) and vertical (y) pixel
aumber. “sst_mouse_xy()” repositions the mouse oursor.

q

Mouse_xy (sistus, X, y)
‘swatus, °x, °y;

i (Mdriver_instalied_flag)
return(0);
regs.x.ax = 3; /* Mouse Driver system call 3 */

’“!"lw! h

X = rege.X.0X;
) °y = regs.xdx;

r o

s6t_mouse_xy (x,¥)
:ll LY

¥ (Wiriver_instalied_fleg)
%
regsax = 4; I Mouse Driver system call 4 */
gesXcX = X
regs.xsdx = y;
IBS(MOUSE _INT, ®s, ®s);

N
2

P "get_bution_press()” and “get_bution_releass()” return the same vaiues
for “status” regardiess of the vaiue sent in variable “bution™:
statusal) ~o NO button pressed.
statussl =» Joft bution pressed.

However, the “x” and “y" positions are tied %0 the “bution” you choose.
butionnl -+ ieft mouss bution

butionn! -» right mouse bution
For “get_bution_press()”, the values retumed In “X” and “y" ere the
horizontal and vertical pixsl vaiues of the iast position at which the
bution was pressed.

For "get_button_release(", the values returned in “x* and "y” are the
hortzontal and vertical pixsl values of the last position at which the
bution was released.

“press_oount™ and “release_ocount™ are, respectively, the number of
times the designated bution was pressed of released since the last call
1o this function.

*f

r b
get_bution_press (button, status, press_ocount, X,y)
:m button, *sistus, *press_count, °X, *y;

if (ldriver_linstalied_flag)
return(0);
regsx.ax s §; I* Mouse Driver system call § */
regs.bx = bution;
IntBG(MOUSE_INT, ®s, ®s);

‘elnius & NGS.XEX;
*press_count = regs.x.ba;
X 8 FOQOeILOX;

Y = rega.xdx;

)
r o

u_mm_w(m.mw_m;n
nt bution, *siatus, *release_oount, “X, *Y;
{

¥ (Mdriver_instalied_flag)
rexrn(0);
regexax s §; * Mouse Driver system call § */
rege.x.bx = button;
IMBS(MOUBE_INT, ®s, ®s);
*SIalUS & NGSJILEX;
‘velense_ocount = rege.x.bx;
°X & FOQS.X.EX;
Yy = regsdx;

r‘.u_mu_ﬂu’uﬁmmnmnodvdmmwm
take In the horizonta! (x) direction. This value specifies the
location of the upper left pixel in the 18x18 pixel mouse cursor

(in graphics mode).
" “set_vert_limits” performs similarly.
r o
set_horiz_limits (minx, maxx) ’
ot minX, Maxx;
{

if (idriver_instalied_flag)

return(0);

regsxaxs 7; 1* Mouse Driver system oall 7 */

fegsX.0x s minx;

regs.x.dx s maxx;

IBG(MOUSE_INT, ®s, ®s);
}
” *
set_vert_limits (miny, maxy)
Int miny, maxy;
{

it (\driver_instalied_flag)

return(0);

regsxaxs 8; 1* Mouse Driver system call § */

regs.x.cx s miny;

regs.x.dx s maxy;
) InBS(MOUSE_INT, ®s, ®s);
r o
screen_on()

77

