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Preface

The purpose of this study was to verify by comparison the contention of

relative estimation comparability between the centralized filter architecture

and the distributed filter architecture, specifically the federated filter

design. Along with this contention, it was proposed that the federated filter

offers better fault tolerance. Further, it was necessary to establish a test

environment which would allow this comparison to take place, and would also

allow further distributed filtering testing to occur in the future.

Extensive study of the limited amount of federated filter documentation

was performed. The limitations on the availability of documentation occurred

because the federated filter design is a relatively new filter concept.

Comprehensive testing was accomplished using the available simulation

software, DKFSIM Version 1.1, developed by Integrity Systems, Incorporateo.

The simulation software was also a relatively new development, resulting in a

limited amount of software documentation. Consequently, a protracted learning

curve was necessary to become familiar with all aspects of this project. It

is hoped that the work in this area can be continued so that this new filter

design might be implemented in today's aircraft and possibly future aircraft.

Several circumstances occurring during the performance of this project

required that ! seek the assistance of others. I am deeply grateful to my

faculty advisor, Lt Col Robert Riggins, board committee member, Dr. Peter ......

Maybeck, project consultant, Dr. Neal Carlson, and program manager, Mike

Berarducci, for their unending patience and consideration in times of need. I

Finally, I would like to thank my wife Linda and my children for their help

and understanding when I was very often consumed by this enormous task.

Availability 0S4e64
Aail and/gr

QUALIT 1 Dist Special



Table of Contents

Page

Preface ....................... .......................... ii

Table of Contents ................. ..................... iii

List of Figures ......... ...................... .... vi

List of Tables ........... ...................... ... xvii

Abstract ............... ......................... .... xviii

I. Introduction .................. ..................... 1-1

1.1 Background ..... ................ .... 1-3

1.2 Problem Definition ............... ... 1-5

1.3 Research Objectives .............. .. 1-7

1.4 Research Approach ........ ... ............ 1-9

1.5 Assumptions .... ............... ... 1-12

1.6 Overview of Thesis ............... ... 1-12

II. Filtering and Fault Detection Theory ........ .. 2-1

2.1 Overview ..... ................. .... 2-1

2.2 The Centralized Kalman Filter ...... 2-1

2.3 The Distributed'Kalman Filter ...... 2-5

2.4 The Federated Kalman Filter Architecture 2-8

2.4.1 The Federated Filter Reset Modes 2-10

2.4.2 The Information Sharing Principle. 2-13

2.5 DKFSIM Version 1.1. ............... ... 2-16

2.5.1 General Description ....... .. 2-16

2.5.2 Functional Description ...... .. 2-18

iii



2.6 The Chi-Squared Algorithm ........ .. 2-19

2.7 Summary .............. ................. 2-20

III. Foundations For Filter Comparisons ........... ... 3-1

3.1 Overview ..... ................. .... 3-1

3.2 The Truth Model State Description ..... 3-1

3.3 The Filter Model State Description . . .. 3-9

3.4 Fault Detection Considerations ...... 3-13

3.5 Summary ...... ................. .... 3-14

IV. Results and Observations .... .............. ... 4-1

4.1 Overview ..... ................. .... 4-1

4.2 DKFSIM Version 1.1. ........ ............ 4-1

4.2.1 Software Orientation ....... .. 4-2

4.2.2 DKFSIM Version 1.1

Source Code Changes ....... .. 4-7

4.3 The Centralized Versus Federated

Filter Comparisons ........... ............ 4-13

4.4 Fault Detection Considerations ...... .. 4-18

4.4.1 GPS and TAN Constant Bias

Simulated Failures ....... 4-18

4.4.2 GPS Ramp Bias and TAN Constant Bias

Simulated Failures ........ ... 4-22

4.4.3 Fault Detection of

Simulated Failures ........ ... 4-25

4.5 Additional Fault Tolerance Topics . . .. 4-27

4.6 Summary ...... ................. ... 4-29

V. Conclusions and Recommendations ... ........... .. 5-1

iv



5.1 Overview . . . . . . . . . . . . . . . . . 5-1

5.2 Filter Error States ... ........... .. 5-1

5.3 Fault Detection Considerations ...... 5-3

5.4 DKFSIM Version 1.1. ........ ............ 5-6

5.5 Summary ...... ................. ... 5-7

Bibliography ........... ....................... .... BIB-i

Appendix A: Centralized Kalman Filter

Efror State Plots .... .............. ... A-1

Appendix B: Federated Filter Error State Plots ...... B-1

Appendix C: Centralized Filter

Baseline Residual Plots ... ........... .. C-1

Appendix D: Federated Filter

Baseline Residual Plots ... ........... .. D-1

Appendix E: Centralized Filter Residual Plots

Soft Failure - Constant Bias ........... ... E-1

Appendix F: Federated Filter Residual Plots

Soft Failure - Constant Bias ........... ... F-1

Appendix G: Centralized Filter Residual Plots

Soft Failure - GPS Ramp Bias ....... ......... G-1

Appendix H: Federated Filter Residual Plots

Soft Failure - GPS Ramp Bias ........... ... H-1

Appendix I: Centralized and Federated Filter

Chi-Squared Detection Algorithm Plots . . . I-1

Appendix J: Federated Filter Input Data

Control File Example ........... ............. J-1

Vita ....................... ........................... V-1

V



List of Figures

Figure Page

1.1 Federated Filter Application to a Multi-Sensor

Navigation System ...... ................... .... 1-2

2.1 Discrete-Time Kalman Filter Block Diagram ....... 2-2

2.2 Typical Distributed Kalman Filter Architecture . . .. 2-5

2.3 Federated Filter Design With Feedback to the

Local Filters ........ ..................... .... 2-10

2.4 Federated Filter Design, No-Reset Mode ....... 2-11

A.1 Centralized Kalman 5°ilter Design, Filter State 1 . . . A-2

A.2 Centralized Kalman Filter Design, Filter State 2 A-3

A.3 Centralized Kalman Filter Design, Filter State 3 A-4

A.4 Centralized Kalman Filter Design, Filter State 4 A-5

A.5 Centralized Kalman Filter Design, Filter State 5 A-6

A.6 Centralized Kalman Filter Design, Filter State 6 . . . A-7

A.7 Centralized Kalman Filter Design, Filter State 7 . . . A-8

A.8 Centralized Kalman Filter Design, Filter State 8 . . . A-9

A.9 Centralized Kalman Filter Design, Filter State 9 . . . A-10

A.10 Centralized Kalman Filter Design, Filter State 10 . . . A-11

A.11 Centralized Kalman Filter Design, Filter State 11 . . . A-12

A.12 Centralized Kalman Filter Design, Filter State 12 A-13

A.13 Centralized Kalman Filter Design, Filter State 13 A-14

A.14 Centralized Kalman Filter Design, Filter State 14 . . . A-15

vi



A.15 Centralized Kalman Filter Design, Filter State 15 A-16

A.16 Centralized Kalman Filter Design, Filter State 16 A-17

A.17 Centralized Kalman Filter ,Design, Filter State 17 . . A-18

A.18 Centralized Kalman Filter Design, Filter State 18 A-19

A.19 Centralized Kalman Filter Design, Filter State 19 . A-20

A.20 Centralized Kalman Filter Design, Filter State 20 . A-21

A.21 Centralized Kalman Filter Design, Filter State 21 . A-22

A.22 Centralized Kalman Filter Design, Filter State 22 A-23

A.23 Centralized Kalman Filter Design, Filter State 23 . A-24

A.24 Centralized Kalman Filter Design, Filter State 24 A-25

A.25 Centralized Kalman Filter Design, Filter State 25 A-26

A.26 Centralized Kalman Filter Design, Filter State 26 A-27

A.27 Centralized Kalman Filter Design, Filter State 27 . A-28

A.28 Centralized Kalman Filter Design, Filter State 28 . . A-29

A.29 Centralized Kalman Filter Design, Filter State 29 A-30

B.1 Federated Filter Design, Master Filter State 1 .... B-2

B.2 Federated Filter Design, Master Mlter State 2 .... B-3

B.3 Federated Filter Design, Master Filter State 3 . . . . B-4

B.4 Federated Filter Design, Master Filter State 4 . . . B-5

B.5 Federated Filter Design, Master Filter State 5 . . . B-6

B.6 Federated Filter Design, Master Filter State 6 . . . B-7

B.7 Federated Filter Design, Master Filter State 7 . . . B-8

B.8 Federated Filter Design, Master Filter State 8 . . . B-9

B.9 Federated Filter Design, Master Filter State 9 . . . B-10

B.10 Federated Filter Design, Master Filter State 10 . . . B-lb

B.11 Federated Filter Design, Master Filter State 11 . . B-12

vii



B.12 Federated Filter Design, Master Filter State 12 . B-13

B.13 Federated Filter Design, Master Filter State 13 . B-14

B.14 Federated Filter Design, Master Filter State 14 . B-15

B.15- Federated Filter Design, Master Filter State 15 . B-16

B.16 Federated Filter Design, Master Filter State 16 . B-17

B.17 Federated Filter Design, Local Filter #1 State 17 . B-18

B.18 Federated Filter Design, Local Filter #1 State 18 . -19

B.19 Federated Filter Design, Local Filter #1 State 19 . B-20

B.20 Federated Filter Design, Local Filter #1 State 20 . B-21

3.21 Federated Filter Design, Local Filter #1 State 21 . B-22

B.22 Federated Filter Design, Local Filter #2 State 17 . B-23

B.23 Federated Filter Design, Local Filter #2 State 18 . B-24

B.24 Federated Filter Design, Local Filter #2 State 19 . B-25

B.25 Federated Filter Design, Local Filter #2 State 20 . B-26

B.26 Federated Filter Design, Local Filter #2 State 21 . B-27

B.27 Federated Filter Design, Local Filter #2 State 22 . B-28

B.28 Federated Filter Design, Local Filter #2 State 23 . B-29

B.29 Federated Filter Design, Local Filter #3 State 17 . B-30

C.1 GPS Sat 1 Residual and One-Sigma Bound,

Normal Conditions .................. ................... C-2

C.2 GPS Sat 1 Residual and One-Sigma Bound,

Normal Conditions ....... ................... . . .. c-3

C.3 GPS Sat 2 Residual and One-Sigma Bound,

Normal Conditions .......... ................... c-4

C.4 GPS Sat 2 Residual and One-Sigma Bound,

Normal Conditions ....... ..................... C-5

viii



C.5 GPS Sat 3 Residual and One-Sigma Bound,

Normal Conditions .................. ................... C-6

C.6 GPS Sat 3 Residual and One-Sigma Bound,

Normal Conditions .................. ................... C-7

C.7 GPS Sat 4 Residual and One-Sigma Bound,

Normal Conditions . . ............... . .. . c-8

C.8 GPS Sat 4 Residual and One-Sigma Bound,

Normal Conditionr ....... ...................... C-9

C.9 SARPVU Residual, One-Sigma Bound,

Normal Conditions .................. ................... C-10

C.10 SARPVU Residual, One-Sigma Bound,

Normal Conditions ....... ................... .... C-il

C.11 SARPVU Residual, One-Sigma Bound,

Normal Conditions ....... ...................... C-12

C.12 SAREO Residual, One-Sigma Bound,

Normal Conditions ....... ...................... C-13

C.13 SAREO Residual, One-Sigma Bound,

Normal Conditions .... ......................... C-14

C.14 SAREO Residual, One-Sigma Bound,

Normal Conditions ....... ...................... C-15

C.15 SAREO Residual, One-Sigma Bound,

Normal Conditions .................................... 0 C-16

C.16 Centralized Filter TAN Residual, One-Sigma Bound,

Normal Conditions ....... ...................... C-17

D.1 GPS Sat 1 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-2

ix



D.2 GPS Sat 1 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-3

D.3 GPS Sat 2 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-4

D.4 GPS Sat 2 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-5

D.5 GPS Sat 3 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-6

D.6 GPS Sat 3 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-7

D.7 GPS Sat A Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-8

D.8 GPS Sat 4 Residual and One-Sigma Bound,

Normal Conditions ....... ................... .... D-9

D.9 SARPVU Residual, One-Sigma Bound,

Normal Conditions ....... ................... .... D-10

D.10 SARPVU Residual, One-Sigma Bound,

Normal Conditions ......... .. ................ .. D-11

D.11 SARPVU Residual, One-Sigma Bound,

Normal Conditions ....... ................... .... D-12

D.12 SAREO Residual, One-Sigma Bound,

Normal Conditions ....... ................... .... D-13

D.13 SAREO Residual, One-Sigma Bound,

Normal Conditions ....... ................... .... D-14

D.14 SAREO Residual, One-Sigma Bound,

Normal Conditions ............ ............... D-15

x



D.15 SAREO Residual, One-Sigma Bound,

Normal Conditions .................. ................... D-16

D.16 Federated Filter TAN Residual, One-Sigma Bound,

Normal Conditions .................. ................... D-17

E.1 GPS Sat 1 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-2

E.2 GPS Sat 1 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ........ ................ E-3

E.3 GPS Sat 2 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ........ ................ E-4

E.4 GPS Sat 2 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-5

E.5 GPS Sat 3 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ........ ................ E-6

E.6 GPS Sat 3 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ........ ................ E-7

E.7 GPS Sat 4 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-8

E.8 GPS Sat 4 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... .................. E-9

E.9 SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ............ ... ................ E-1O

E.1O SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ................ ................ E-1

E.11 SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-12

xf



E.12 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-13

E.13 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-14

E.14 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-15

E.15 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... E-16

E.16 Centralized Filter TAN Residual,

GPS & TAN Constant Bias ..... ................ ... E-17

F.1 GPS Sat 1 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-2

F.2 GPS Sat I Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-3

F.3 GPS Sat 2 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-4

F.4 GPS Sat 2 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-5

F.5 GPS Sat 3 Residual and One-Si~aa Bound,

GPS & TAN Constant Bias ..... ................ ... F-6

F.6 GPS Sat 3 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-7

F.7 GPS Sat 4 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-8

F.8 GPS Sat 4 Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-9

xii



F.9 SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-10

F.10 SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-1i

F.11 SARPVU Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-12

F.12 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-13

F.13 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-14

F.14 SAREO Residual and One-Sigma Bound,

GPS & TAN Constant Bias ..... ................ ... F-15

F.15 SAREO Residual and One-Sigraa Bound,

GPS & TAN Constant Bias ..... ................ ... F-16

F.16 Federated Filter TAN Residual,

GPS & TAN Constant Bias ..... ................ ... F-17

G.1 GPS Sat 1 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............... G-2

G.2 GPS Sat 1 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... G-3

G.3 GPS Sat 2 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... G-4

G.4 GPS Sat 2 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ............ ............. G-5

G.5 GPS Sat 3 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ............ ............. G-6

xiii



G.6 GPS Sat 3 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............... G-7

G.7 GPS Sat 4 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... G-8

G.8 GPS Sat 4 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... G-9

G.9 SARPVU Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............... G-10

G.10 SARPVU Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............... G-il

G.11 SARPVU Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............... G-12

G.12 SAREO Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... .............. ... G-13

G.13 SAREO Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............... G-14

G.14 SAREO Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............... G-15

G.15 SAREO Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............... G-16

G.16 Centralized Filter TAN Residual,

GPS Ramp & TAN Constant Bias ... ............... G-17

H.1 CPS Sat 1 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-2

H.2 CPS Sat 1 Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............... H-3

xiv



H.3 CPS Sat 2 Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............. ... H-4

H.4 GPS Sat 2 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ......................... H-5

H.5 CPS Sat 3 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ......................... H-6

H.6 GPS Sat 3 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-7

H.7 CPS Sat 4 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-8

H.8 GPS Sat 4 Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-9

H.9 SARPVU Residual and One-Sigma Bound,

GES Ramp & TAN Constant Bias ... ............. ... H-10

H.10 SARPVU Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-li

H.11 SARPVU Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-12

H.12 SAREO Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias .... ............. . . H-13

H.13 SAREO Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-14

H.14 SAREO Residual and One-Sigma Bound,

CPS Ramp & TAN Constant Bias ... ............. ... H-15

H.15 SAREO Residual and One-Sigma Bound,

GPS Ramp & TAN Constant Bias ... ............. ... H-16

xv



H.16 Federated Filter TAN Residual,

GPS Ramp & TAN Constant Bias ... ............. ... H-17

I.1 Centralized Filter, GPS Residuals Chi-Squared Test 1-2

1.2 Centralized Filter, SAR Residuals Chi-Squared Test 1-3

1.3 Centralized Filter, TAN Residual Chi-Squared Test 1-4

1.4 Federated Filter, GPS Residuals Chi-Squared Test 1-5

1.5 Federated Filter, SAR Residuals Chi-Squared Test 1-6

1.6 Federated Filter, TAN Residual Chi-Squared Test .... 1-7

xvi



List of Tables

Table Page

3.1 Strapdown INS Original Truth Model States ....... 3-2

3.2 GPS Original Truth Model States .............. ... 3-3

3.3 SARPVU and SAREO Original Truth Model States ..... 3-5

3.4 TAN Original Truth Model States .............. ... 3-6

3.5 BARO-Altimeter Original Truth Model States ...... 3-6

3.6 System State Augmentations .... .............. ... 3-8

3.7 Specific Filter Truth Model State Totals ....... 3-9

3.8 System Filter Model State Representations ....... 3-11

3.9 Specific Filter Listings With System Model

State Assignments ....... ................... .... 3-12

3.10 Residual Listing by Sensor for

Both CKF and DKF Designs .... ............... ... 3-13

4.1 Example of an Error State Output Data File ...... 4-7

xvii



AFIT/GE/ENG/93S-06

Abstract

This project examined the results obtained by simulating an aircraft

navigation system with a partial complement of a typical avionics sensor

array. Two different techniques of estimation processes were utilized and

compared: the conventional Kalman and the federated filter architectures.

Areas of interest include error state estimation accuracy and overall

performance, residual behavior under normal and induced sensor failure

conditions, and potential for failure detection and isolation. Several

simulations were accomplished for each filter design and the results were

compared in order to verify the validity of the newly developed federated

filter architecture.

Comparison of the error state estimation accuracies of the two filter

designs revealed excellent overall performances for both. The identification

of failures showed a definite advantage in the federated filter design.

Having sensor-dedicated local filters allowed for easy sensor failure

identification for the federated filter, while the centralized filter design

suffered from navigation solution corruption under the same circumstances.

Once established as a valuable estimation technique, the federated

filter will add significantly to the viable alternatives when choosing a

particular filter architecture for current avionics modifications or future

avionics implementations. The federated filter may indeed prove to be the

most effective filter design overall, under any circumstances.

xviii



COMPARISON OF A

DISTRIBUTED KALMAN FILTER

VERSUS A CENTRALIZED KALMAN FILTER

WITH FAULT DETECTION CONSIDERATIONS

I. Introduction

The centralized Kalman filter is the most common filter design

implemented in the integrated navigation systems of United States Air Force

aircraft today. A centralized Kalman filter receives all available measure-

ments and combines all the information contained in those measurements to

obtain an optimal navigation solution. For simple, well-modeled linear

systems, the centralized Kalman filter is unquestionably the optimal estimator

(19). When considering tradeoffs of data flow, algorithmic requirements, and

processing speed versus optimality, fault tolerance, estimation in a multi-

sensor environment is often best treated as a distributed estimation problem

(19). The distributed filter architectures employ a bank of local Kalman

filters dedicated to the sensors which provide measurement information to the

system (19). A master filter combines the estimates from the bank of filters

to obtain a typically suboptimal navigation solution. This poses less of a

computational burden than a centralized filter implementation. Although these

estimates are typically suboptimal, the distributed filter offers improvements

over the centralized fault detection and isolation schemes. (1,2,3,19)
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The federated filter is a variation of the distributed filter theory

currently attracting the interest of the United States Air Force. The

advantage of the federated filter architecture is obtained through the sharing

of the estimation information by the local sensor-dedicated filters. The

recombination of this shared information in the master filter significantly

improves the quality of the error state estimates over previous distributed

filter designs (1,3,19). Figure 1.1 depicts the common structure of a

federated filter architecture application to a multi-sensor navigation system.

dxINS INS Oonscdo

IA

INS X I
REMEREXC 3VIMA

loper

GP OCP. I IS.;r '

LOCAL FILTER

zTAN

Figure 1.1 Federated Filter Application to a Multi-Sensor Navigation System
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From the block diagram in Figure 1.1, the master filter provides the

reset information to the sensor-dedicated local filters and the correction

information to the Inertial Navigation System (INS). The local filters

receive the measurements directly from the sensors, and then provide the error

state information to the master filter for recombination. The INS serves as

the reference system for the local filters and the master filter. While the

Global Positioning System (GPS), Synthetic Aperture Radar (SAR), and Terrain

Aided Navigation (TAN) systems are shown in this diagram, the federated

architecture can handle larger numbers of sensor-dedicated filters than this.

1.1 Background

The Wright Laboratory, Avionics Directorate worked closely with TAU

Corporation on the completion of the Common Kalman Filter development

program. This program's prime objective has been to establish a basic set of

estimation and fault detection, isolation and reconfiguration (FDIR) system

design techniques. (19) Advantages over conventional filtering techniques

were brought about by partitioning the centralized Kalman filter into several

local filters feeding a single, master filter (1,3,19).

The typical distributed filter designs have been characterized as

suffering from the cascading effect, which is described briefly by filter-

driven-filter instabilities (1). The federated filter design was deemed the

most auspicious choice for implementation of the possible distributed filter

designs because it is atypical and does not suffer from those instability

difficulties (19).

A means of evaluating this relatively new design was necessary to

justify its use in future navigation systems. Integrity Systems Inc. was
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contracted to provide simulation software for efficiently evaluating

distributed Kalman filter architectures. DKFSIM, Version 1.1 (10) has been

presented to Wright Laboratory, Avionics Directorate, Wright-Patterson AFB, OH

as the intended simulation tool. Wright Laboratory, Navigation and

Information Transmission Branch is the Office of Primary Responsibility (OPR)

for the DKFSIM simulation software and the sponsor for this thesis effort.

The final version is deliverable by July, 1993 and includes several changes

not available in the current version. This thesis does not involve the use of

the proposed updated version because of the timing of the delivery of the

final version of the software simulation tool.

DKFSIM Version 1.1 is currently used by the Air Force to evaluate

distributed filter architectures and compare their performance to equivalently

modeled centralized filters. However, as stated earlier, the current version

is incomplete as a totally comprehensive evaluation package. It is capable of

providing a means of testing the estimation accuracy of the filter, but is

missing the fault detection and isolation (FDI) evaluation portion, and the

capability to test the federated filter design in all of its reset modes.

There are currently two of the four proposed reset modes operational in

DKFSIM Version 1.1. The four reset modes encompass the information sharing

possibilities. They are the full fusion-reset mode, the partial fusion-reset

mode, the zero-reset mode, and the no-reset mode (1,3,7). The feedback mode

selected determines the relative amount of information fed back to the local

filters from the master filter. The full and partial fusion-reset modes

involve feedback of all or part of the master filter fused navigation

solution. The zero-reset mode involves no feedback from the master filter,

but the local filters retain none of the local information. The no-reset mode
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involves no feedback from the master filter, and each local filter retains its

own unique portion of the total system information. (1,3,7) The two federated

filter modes enabled in DKFSIM are the no-reset mode and the full fusion-reset

mode. In this thesis, we focus on the no-reset mode for reasons stated below.

1.2 Problem Definition

In order to verify the quality of the federated filter estimation

accuracy, it is prudent to compare the federated filter error state outputs to

that of the centralized filter. Another advantage in performing this

comparison is that the software simulation tool, DKFSIM Version 1.1, can be

evaluated.

Error state estimation accuracy can be determined by the state history

because it provides a measure of how accurate the filter's estimates are,

compared to the real world model. The error state filter formulation used in

DKFSIM Version 1.1 estimates the errors in the navigation and attitude

information using the difference between the INS and external source

information. The dynamics upon which the filter is based is the set of

inertial system error propagation equations, which are relatively well

developed, well behaved, low frequency, and very adequately represented as

linear. Because the filter is based on low frequency dynamics, its sample

rate can be much lower than that of a direct filter. For these reasons, the

error state space formulation is used in essentially all terrestrial aided

inertial navigation systems. (13) These error state outputs are computed

under normal operating conditions for a typical flight profile.

This thesis concentrates on a federated filter in the no-reset mode

(1,3,7) with three local filters operating independently on five different
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sets of sensor output data. The reference system is the Inertial Navigation

System (INS), and the four external sensor sources are the Global Positioning

System (GPS), the Synthetic Aperture Radar (SAR), the Terrain Aided Navigation

(TAN), and the Barometric Pressure Altimeter (BARO) (1,2,3,7). A centralized

Kalman filter with identical sensor model representations as is used for the

federated filter is selected for this comparison.

The fault detection aspects of this thesis effort are primarily centered

around monitoring and comparing the residual outputs provided by each of the

independent local filters and the centralized filter. The residual sequence

has been shown to be a white Gaussian sequence of zero-mean with covariance

being a function of the observation matrix H(ti), the error state covariance

P(ti-), and the measurement process noise R(t,):

Efr(ti)r T (t 1 )} = H(ti)P(tj)H T (t1 ) + R(ti) (1.)

This is a proper representation of the residual process because the model upon

which the filter is based accurately depicts the real world behavior. During

operation of the filter, the actual residual sequence can be monitored and

compared to this description. If the description appears to be violated

consistently, then one can deduce that something has occurred to invalidate

the model within the filter. Otherwise, if the violation occurs in only one

component of a vector residual process, then, in some cases, it can be assumed

that the measuring device generating that particular residual component is the

source of the difficulty. (13)
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Thus, monitoring the residuals of the centralized filter and those at

the local filter level in the federated design has the potential to provide

fault detection information. Further consideration should be given to master

filter fusion residual monitoring in the federated filter design, which is not

within the scope of this thesis.

Finally, the goals of this thesis require a comparison of the overall

estimation performances between the federated filter design and the well-

established centralized Kalman filter design, along with a comparison of their

respective FDI capabilities. These are the questions we want to address.

1.3 Research Objectives

The driving motivation for this research is to obtain an objective

comparison revealing any possible advantages of the federated architecture and

the centralized architecture over one another. This thesis initially

concentrates on comparing the estimation accuracy of the two designs.

Accuracy is the most crucial aspect since further thesis work is justifiable

if the federated filter's performance compares well to the centralized

filter's performance. An error state accuracy comparison between that of the

federated filter and of the centralized filter should indicate that under

normal operating conditions, the centralized filter cannot be out-performed by

the federated filter. However, the FDIR capabilities of the federated filter

is the area where the largest disparity is expected to occur in the

performances of the two designs, with substantial advantage being given to the

federated filter design.

The following objectives are based on the statement of the problem and

the desired results in order to validate the federated filter's performance
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and to facilitate the implementation of DKFSIM Version 1.1 at AFIT for future

thesis efforts:

1. Load DKFSIM Version 1.1 onto a local computer network, meet system

requirements, and perform trial runs for debugging. Investigate DKFSIM

Version 1.1 and its associated documentation to determine the existing state

dimensions of each local filter, the order of the master filter, the sensor

truth models, the sensor filter models, the master filter algorithm, the local

filter algorithm, and the implementation of the filter computations. Ensure

that the centralized and distributed simulations are based on identical

scenarios, such as flight profile and random number seed. Clean up output

data files to facilitate the plotting program's interface compatibility.

2. Perform a centralized filter analysis based on the preceding information.

Include a ten-run Monte Carlo analysis of all available error state outputs to

facilitate the initial phase of the comparison. Obtain baseline residual

output plots which represent ordinary magnitude residuals under normal

operating conditions for the next phase of the comparison. Simulate a hard

failure and a soft failure in the sensor measurements in order to evaluate the

impact on residual output plots of the centralized filter. Perform a chi-

squared test on the residual outputs with induced failures so that a relative

comparison can be obtained regarding fault detection.

3. Perform a federated filter analysis with the exact same truch and filter

model states as was used for the centralized filter. Compare the ten-run

error state estimation performances of the two filter designs. Compare
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baseline residual output plots from the centralized filter and the federated

local filters. Simulate identical hard and soft failures in the sensor

measurements for the federated filter to allow a direct comparison with the

centralized filter. Compare the chi-squared test results from both failed-

sensor simulations.

1.4 Research Approach

The largest obstacle in the approach to completing this research has

been to become familiar with DKFSIM Version 1.1. There was little

documentation available for instructional use. Nearly all the information

associated with the simulation tool was found in the headers of each software

module. Knowing what the software can accomplish, and what its limitations

are, is the key to efficient analysis of the filter designs.

The remainder of this section provides an overview of the approach to

completing each of the research objectives outlined in the previous section.

1. The AFIT VAX/VMS system is the current host for DKFSIM 1.1. Sufficient

memory allocation was made available for several runs of data storage.

Debugging was necessary because rehosting the simulation tool was required for

purposes of operation at AFIT. This involved treatment of the separate

software modules until all modules were operating cleanly. Comparison of the

error state plots from several independent simulations, discussed in Chapter

IV and presented in the Appendices, indicates no additional filter tuning was

required.

The state dimensions of t' truth and filter models play a large part in

the capability and validity of the two filter designs. A concise record

1-9



reflecting che state dimensions of the centralized filter, and those of the

local and master filters of the federated filter design was a functional

necessity. Chapter III addresses the filter error state representations for

all of the filters in this comparison.

The master filter algorithm forms tbe basis for whether or not the

distributed filter output is globally optimal (1,2,3,18,19). The centralized

filter algorithm coincides with the established linearized Kalman filter

theory and is therefore defined as an optimal estimator. Consequently, one

can expect similar estimation performances between the two filter designs.

The simulation scenarios were considered identical because the same

flight profile was used, the same random number seed was used for initializing

the simulations of white noises used in the truth models, and the input data

control files provided for comparable simulations. The input data file

includes variable settings for the filter implementation, the output data file

format, and seýveral truth and filter model parameters. A sample input data

file is provided in Appendix J. Several simulations were executed to confirm

that selection of a particular random number seed reproduces exactly the same

error state outputs from simulation to simulation. The output data files were

compared numerically as well as visually by plot generation. The time step

selection for the sensor measurement, the filter propagations, and the INS

reference system were unchanged for all simulations.

The software was modified so that the output data files were simply

columns of numbers. The plotting program available requires an input matrix

in strictly three-column format. This limited the output data to only one

error state, its standard deviation, and its time line outputs per simulation.
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2. An ensemble averaging of the Monte Carlo analyses is not an available

alternative for output from DKFSIM Version 1.1. Consequently, ten independent

Monte Carlo runs were performed for each error state and were subsequently

averaged utilizing the plotting program functions prior to output plotting.

Further, DKFSIM Version 1.1 does not compute one-sigma values for every Monte

Carlo run. The filter computed one-sigma values are computed for the first

Monte Carlo run, and it is then assumed these values are valid for all runs.

Residual outputs are not available in the current version of DKFSIM.

The software has been modified such that all residuals computed could be

obtained according to which sensor provided the measurements. Three residual

output data files are created for every Monte Carlo run; one for the GPS

sensor, one for the SAR sensors, and one for the TAN sensor. Induction of the

hard failure for both the federated and centralized filter cases consists of

simulating the removal of one set of sensor outputs without notifying the

central processor of the loss. Simulation of the soft failure consists of

adding a ramp bias as a function of time, or a constant bias, to the

measurement. The hard and soft failures induced were simulated by affecting

the magnitude of the measurement directly prior to residual calculations.

3. Using the models implemented in DKFSIM Version 1.1 for the sensors and the

reference system, develop the centralized and distributed truth and filter

models. The five sensors are the Synthetic Aperture Radar Precision Velocity

Update (SARPVU), Synthetic Aperture Radar Electro-Optical (SAREO), Global

Positioning System (GPS), Terrain Aided Navigation (TAN), and Barometric

Pressure Altimeter (Baro-Alt) (19). The reference system is a strapdown,

medium accuracy, Inertial Navigation System (INS) (1,7,12,18,19).

1-11



Comparison of the estimation performances during normal operations

depends on observations of error state outputs, state covariance behavior, and

residual outputs. It is important to show that the performances of the

distributed and centralized filters are nearly equivalent. The comparison of

the accuracies is valid only if the sensors and the INS are identically

represented in each architecture. (20) Comparison of the impact on the

residual outpuri for the two different filter designs should reveal the

respective fault detection capabilities. A chi-squared test applied to these

residuals simply facilitates conclusions based on the fault tolerances of the

two filter designs.

1.5 Assumptions

All truth and reduced-order filter models included in DKFSIM Version 1.1

are assumed well researched and correct (10). Verification of the master

filter data fusion algorithm is also assumed unnecessa:y. Because the

conservation of information principal is the foundation of the federated

filter design, it is assumed to be valid. However, Chapter II offers a

detailed theoretical description of the federated filter and the information

sharing principle.

1.6 Overview of Thesis

Chapter II provides a detailed description of the centralized, distri-

buted, and federated Kalman filter architectures and theory. A discussion of

the DKFSIM Version 1.1 software simulation tool is also provided. Additional

topics of interest are the information sharing principle which is imperative

to the formulation of the federated filter design, and the chi-squared
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algorithm used for fault detection. Chapter III lists the truth and filter

model state descriptions, and discusses the fault detection concepts used in

this thesis. Chapter IV provides a discussion of the comparison of the

estimation performances and fault detection capabilities observed from the

centralized and federated filter analyses. Additional information regarding

federated filter fault tolerance has been provided by Integrity Systems,

Incorporated so that a more comprehensive assessment of that filter's

capabilities can be realized. Chapter V contains the conclusions drawn from

the work and theory presented in this thesis. Recommendations for further

research in this area are also addressed.
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II. Filtering and Fault Detection Theory

2.1 Overview

This chapter is intended to refamiliarize the informed reader of the

pertinent areas of basic filtering theory and fault detection concepts

associated with this thesis. Other major areas covered are the distributed

Kalman filter, and the federated Kalman filter. An additional section is

provided as an overview of the software simulation tool used in this thesis

for filter evaluation and of the fault detection considerations made herein.

The reader who is not familiar with Kalman filtering should consult Maybeck's

textbooks on stochastic models, estimation, and control (13,14,15). The fault

detection scheme is based on monitoring and comparing the residual outputs

from the centralized filter and the DKF's local filters. Lastly, this thesis

deals only with linear Kalman filter designs so that the verification effort

is not unnecessarily complicated. Although the residuals of the DKF's master

filter would provide much information, only the local filter residuals are

considered in this thesis (4).

2.2 The Centralized Kalman Filter

The centralized Kalman filter architecture has been developed, tested,

and sufficiently documented (13,14,15). Regarding this thesis effort, the

centralized filter design forms the basis of comparison for the distributed
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filter architecture. Therefore, a brief description of the centralized Kalman

filter theory is warranted at this time as preparation for further discussion.

The standard centralized Kalman filter processes the data from different

systems in one step. The update and propagation equations are generally

treated in the discrete time domain for easy implementation by computer (19).

The discrete-time model formulation of the Kalman filter algorithm generates

the best prediction of the state at time ti before the measurement at time t,

is processed, and then updates that estimate with the measurement available at

time t,. Figure 2.1 is a block diagram representation of this algorithm (13).

To summarize the algorithm briefly, the optimal state estimate is propagated

from the measurement at time ti. 1 to time ti by the following relations:

(ti) = (ti, ti_1) (tt-,) + Bd (ti_1) U (ti_1) (2.1)

P(t -) = (ti, tj_1)P ( t!_,)4DT (ti, tj_1)

+ Gd(ti-1 )Qd(ti- 1 ) GJ(ti_1 ) (2.2)

To specify a Kalman filter of this form completely, the structure

[4(ti,ti. 1), Bd(ti.1), Gd(ti.1), H(ti) for all times of interest] and the

uncertainties [Qd(ti.1), R(tj), and the initial state and covariance estimates]

must be defined. (13) As such, for the system model, the measurement z(ti) is

given by:

Z(ti) = H(t 1 )x(t 1 ) + v(ti) (2.3)

2-2



A r(t t t( t

Z<t,) +
I °

X(t,) + l,,,

13,(%) < tI)

Figure 2.1 Discrete-Time Kalman Filter Block Diagram

At measurement time ti , the measurement becomes available and includes

the measurement process noise, v(t,), which is assumed independent of x(ti)

and the measurement history, and is assumed Gaussian with mean zero and

covariance matrix R(ti). Let the system state process of the system model

satisfy the linear equation

.k(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.4)

where x(t) would be the system state at time t, and F(t) is the system

dynamics matrix. Additionally, the state covariance matrix is defined by

P(ti), and the discrete-time propagations are defined using the state

transition matrix, *(titi. 1).

2-3



The matrix, H(ti), is defined as the measurement matrix for this system.

The matrix, Bd(ti.1), is the deterministic discrete-time input matrix, with

corresponding input control vector, u(t,), consisting of deterministic control

input functions. The matrix, Gd(ti.1), is the discrete-time noise input matrix

associated with the discrete-time dynamic driving noise, wd(ti), of the system

with strength Qd(ti.l).

The estimate is then updated by defining the Kalman filter gain

relationship K(ti) and using this relationship in both the mean and covariance

equations:

K(ti) = P(ti)HT (ti) [H(ti)P(ti)HT (ti) + R(ti)]-' (2.5)

S= + K (t1 ) [z(t1) - (2.6)

P(t!) = P(tl) - K(ti)H(tj)P(tj) (2.7)

This system model allows generation of the best prediction of what the

measurement will be before it is actually taken, H(ti)i(tf-). The input to

this algorithm is the realized value of the measurement at time tP. The

measurement residual is then generated as the difference between the true

measurement value and the best prediction of it before it is actually taken:

.r(ti) = z(tj) - H(ti).k(ti) (2.8)

This term is often referred to as innovations of the algorithm (13).
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For this case, the measurement noises for each of the different sensors

are assumed independent in time (20). Generally, all measurements taken are

sampled, transformed into the reference coordinate frame, Earth-Centered-

Earth-Fixed (ECEF), and then transmitted to the central filter for processing.

Due to uncertainties in the transformation process, the estimation information

transmitted to the central processor contains these additional transformation

errors (8,9). The processing and communication resources dictate the specific

design. This is common to both the centralized and distributed architectures.

However, since communication between processors is so critical, it is

important to determine the relative merits of transmitting raw data between

the nodes of the filter structures for comparison. (19)

The computational burden is approximately cube-proportional to the

dimension of the model and the storage requirement is approximately square-

proportional (13). Although diminished computational burden per filter is not

the prime motivation for consideration of the distributed filter architecture,

it is certainly a distinct advantage for real-time operations.

2.3 The Distributed Kalman Filter

This design has several variations, but, in general, it embodies the

background for this thesis effort. The distributed filter is a two-stage data

processing algorithm versus the single stage of the centralized filter. The

first stage requires the local filters to arrive at independent local

estimates (20).

A block diagram for a typical distributed Kalman filter architecture is

shown in Figure 2.2. In this example, there are 3 sensors (GPS, SAR, TAN) and

the three sensor-dedicated local filters provide estimation information to the
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Figure 2.2 Typical Distributed Kalman Filter Architecture

master filter. The master filter then combines this information to formulata

a navigation solution. The strapdown INS serves as the reference system for

the master filter and all of the local filters.

The sensors are usually described in their local coordinate systems and

the transformation to a single reference coordinate system always involves

errors (8,9). The second stage requires thc master filter to fuse the data

from the local filters (20). Assuming the master filter incorporates all of

the information provided by all of the sensors, this method will provide a

globally optimal state estimate (19).

Comparing the computational requirements of the centralized filter to

the distributed filter, it is apparent that, generically, the decentralized

versions require more overall computations per cycle than their centralized
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counterparts. However, it can generally be stated that the average

computation per processor is reduced approximately by a factor equal to the

number of local filters in the design. (17) This parallelism will give the

distributed filters potential for faster estimation.

The distributed filter is also well-suited to fault detection and

isolation because the local filters can enjoy complete autonomy from each

other. Any failed sensor, other than the INS, can be removed from the sensor

suite without affecting the results of the other local filters. (17) The INS

represents a significant exception regarding failed sensor removal, especially

when it is receiving feedback corrections from the navigation filter. In this

case, the INS outputs are h.t'•Iy correlated with those of the most accurate

radio navigation sensor (generally GPS) processed by the respective local

filter (12). The problem of highly correlated INS outputs with those of the

most accurate sensor can be avoided by having the local filters and the

reference system run independently such that a gradual failure in one sensor

eventually becomes visible and identifiable when compared to other local

filters' navigation solutions (10). The magnitude of the divergence in the

local filter solution with the failed sensor would have to exceed the

respective range of accuracy for the other sensor-dedicated filters in order

for the failure detection to occur under these circumstances. This is a

particularly difficult problem to overcome if the failed sensor is the GPS

because its accuracy is normally far better than that of the other sensors.

Consequently, a gradual failure in the GPS might never be detected.

2.4 The Federated Kalman Filter Architecture

The distributed filter is the predecessor to the federated filter. Dr.
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Neal Carlson developed the federated filter architecture as a variation of the

distributed filter (1,2,3). The intent was to improve the accuracy of the

distributed filter design without compromising its fault detection

capabilities. The foundation for success of this design is the principle of

conservation of information (1,2,3,7).

Without this information sharing principle, the distributed filter

design is subject to poor accuracy and even divergence (1). This principle

allows each local filter estimate to be treated independently by the master

filter data fusion process. The master filter simply fuses the weighted state

estimates and covariances together to form the globally optimal solution

accorditig to the ensuing demonstration. (1,2,3) In this case the global state

vector can be partitioned into disjoint segments and each segment or subvector

yields a compatible reduced-order local model.. Should two local models share

a common state component, the algorithms are then suboptimal. (17)

Suppose the full centralized filter solution is represented by the

covariance matrix Pf and the state vector Xf. Further, let the ith lccal

filter solution be represented by Pi and xi, and the master filter solution by

P and A The key to the new federated filtering method is the ability to

construct individual local filter and master filter solutions such that they

may be combined or recombined at any time. The ability to do so forms the

essence of the information sharing principle. (1)

i. .ie recombination of the partial solutions from the local filters was

properly executed, the disjoint information would be properly added, plus the

common initial conditions and process noise information would be split among

the local filters such that the double-counting of this information is

avoided. The information would, therefore, sum to the correct total. If the
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local filter solutions are statistically independent, i.e., the optimal

solution for each local partition can be determined independently at each

measurement time step, then they can be optimally combined by the following

additive information algorithm which yields the correct total solution (3,7):

pf 1 = Pi' + p• 1 +...+ p' + p-1 (2.9)

Pf = • +12 1 + Pl'k 2 + + pk + pM (2.10)

The process noise covariance matrices Qj for the ith local filter, and Qm for

the master filter, are additionally governed by the information sharing rules

such that:

Q•I = Qoi +Q 2  +...+ .+Q11)

Because it is the kinematic information, Qm, that is being shared, it is of

the greatest importance that this information be of the highest quality. The

interpretation is that the system process noise information is distributed to

the local filters in given portions Pm, as fractions of the information

shared. For the cases involving resets, the local filter solutions have to be

reset to the combined solution before the prediction 4s made. (7)

In addition, for this definition, it is assumed that the local filters

and the master filter are all full-sized such that the transition matrices Op

OM, and Of are equal. Additionally, the noise distribution matrices Gp, Gm,

ana Gf are equal. However, in actual practice, the local filters contain only

the common INS states plus their own unique sensor biases, therefore the
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matrices Pi, i, IQ, and Gi contain only the appropriate matrix partitions of

the full-sized matrices. The master filter also contains INS states and

possibly some master-filter-unique INS bias states. This application does not

include any of these unique states in the master filter formulation. (1)

2.4.1 The Federated Filter Reset Modes

The federated filter technique can be implemented in square root form :o

maximize computational efficiency, numerical stability, and effective

precision. (1,2) There are currently four primary federated filter

implementations embodying different information sharing methods. The

differences in the three designs relate primarily to the feedback process, but

also include the way the master filter fuses the data. (1,3) Figure 2.3 can

represent any of the feedback modes except the no-reset mode, because the

feedback path to the local filters is severed in the no-reset mode. Again,

the local filters receive sensor measurements and reference system information

from the INS. The master filter provides the INS corrections and the reset

information to the local filters, while combining the information provided by

the filters into a globally optimal navigation solution.

The equations of implementation of the following federated filter modes

correspond to those developed in the documents found in tt•e appendices

regarding the information sharing principle (1,2,3). The reset modes

correspond directly assuming the proper values for the information sharing

fractions for each of the local fflters, Pm, while the no-reset mode has no

reset information returned from the master filter.
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1. Zero-reset mode. The master filter retains all of the system long-term

L'emory and the local filters act as data compression filters with short-term

memory only. There is no feedback of the fused solutions to the local

filters. Instead, the local filter is given the command to reset to zero

information after each fusion update, resulting in an infinite covariance, or
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a zero inverse covariance. The local filters can be comprised of relatively

low order INS and sensor models. Higher order models can be implemented in

the master filter. Furthermore, data bus loads are reduced. (1,3)

2. Partial-reset mode: The master filter and the local filters share the

system long-term memory. This design involves feedback of only a portion of

the full-fused solution to the local filter. The master filter would benefit

from having higher order system models than the local filters, thereby,

allowing for improved fault detection because the sensor data is treated

independently. (1,3)

3. Full-reset mode: This mode operates much like the no-reset mode except

feedback of the fused solutions to the local filters is accomplished. The

long-term memory resides wholly in the local filters. (1,3)

4. No-reset mode, Figure 2.4: The master filter retains none of the fused

information, while the local filters collectively retain all of the local

information. This method is similar to the second, except that the master

filter solution may be propagated but does not participate in the next fusion

update. This no-reset design is highly fault tolerant and, therefore,

provides the best overall performance for FDI because the local filters

operate independently of each other. (1,3)

For each of the above reset modes, the no-reset, zero-reset, partial-

reset, and full-fusion-reset modes, the time propagation and measurement

update steps are essentially the same. During the propagation cycles, each of

the local filters multiplies its common process noise variances by the
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Figure 2.4 Federated Filter Design, "No-Reset" Mode

information sharing fractions in order to split the whole process noise

information up between them. During measurement update cycles, the local

filters perform normal processing of the data from their independent sensors.

2.4.2 The Information Sharing Principle

In the federated filter, the entire system is similar to the general

distributed filter architecture in that it is decentralized into a number of

subsystems. Then, an information sharing process is carried out in which the

dynamic information is distributed to the individual local filters. (7)
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The basic idea of information sharing is to divide the global system

information among the several component filters and then perform local

processing before recombining the updated local information into a new global

sum within the master filter. The precise definition of the principle is the

"total system information can remain constant or decrease, but never increase,

due to sharing". (3)

The primary reasons for considering the information sharing procedure

are: 1) to increase the total system throughput by parallel operation of the

local filters, 2) further increase system throughput by use of local filters

for local data compression, and 3) improve overall system reliability by

maintaining multiple component solutions usable as back-ups. (3)

In a standard Kalman filter, the optimal solution is propagated from one

time to the next by adding the next propagation term to the sum, and

recursively updating the solution. Measurements are incorporated into the

optimal solution by adding the next measurement to the sum, and again

recursively updating the solution. This sequential updating process is the

basis of the discrete Kalman filter. (3)

Imagine an optimal solution i^, Pi obtained by incorporating only the

measurements from an arbitrary ith sensor via the sequential process described

above. This so-..-ion would be optimal relative to that subset of information

including the initial conditions and process noises. Because this solution

ignores measurements from any other existing sensors, this solution would be

considered suboptimal relative to the entire set of information. (3)

If an attempt was made to combine all of the partial solutions from any

number of dedicated local filters, the disjoint information could be added

from the sensors. However, this would incorrectly include the common initial
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conditions and process noise information from each filter redundantly. To

avoid such multiplicities of the common process information, it is necessary

to divide the information among che partial solutions so they may sum to the

correct overall total. (3) Again, we start with a full solution Pf, If, and

then divide that solution so that each of the local filters and the master

filter all receive fractions, Pi and Pm, of the total information:

The conservation of information principle requires the fractional values

sum to unity. (1) The average inverse of the multipliers is equal to 1/n,

implying equal division among the local filters.

PM i1 pi(2.12)

This equation ensures that there is no information lost during the

information-sharing process. Thus, we can consider this information sharing

technique valid because it conserves information and results in no increase of

information relative to the original total. We can refer to this technique as

optimal if it results in no loss of information, and efficient if the usable

information loss is relatively small. (3,7)

The master filter computes the local filter reset solutions required

when the federated filter operates in the fusion-reset modes. Therefore, the

local filter reset solutions are generated in accordance with the information

sharing principle, by means of the local filter information sharing fractions:

P= J3 1p + ... + (2.13)

P141XM =piPýI'X + .. + fPnpM2Xm (2.14)
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Our basic goal is to split the global estimation process into a set of

smaller local estimation processes. This splitting must be performed in such

a way that simple recombination of the local solutions yields a theoretically

correct and an optimal, or at least, a conservatively suboptimal result. By

simple recombination we mean a weighted least squares average involving the

local estimates and covariances but not involving any cross-covariances. By

optimal we mean the globally optimal solution. By conservatively optimal we

mean a solution which ignores some of the information available, while making

optimum use of the information utilized by the filter. (3)

2.5 DKFSIM Version 1.1

The distributed Kalman filter simulation software tool, DKFSIM Version

1.1, was developed by Integrity Systems, Incorporated (10). It is designed to

support performance evaluation of Distributed Kalman Filter (DKF) techniques

applied to integrated, multi-sensor navigation systems (10,19).

2.5.1 General Description. This software consists of a general purpose

simulation environment for distributed Kalman filtering. Navigation sensor

models are embedded so that problem-specific tailoring may be accomplished.

DKFSIM is divided into a real-world simulation segment and an onboard computer

simulation segment. (10)

The real-world segment generates the sensor output data that is fed to

the onboard computer for uso by the navigation filters. It is comprised of

models describing the vehicle environment, trajectory, and navigation sensor

suite. (10)
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The onboard computer segment includes the DKF algorithms that process

the sensor outputs to obtain estimates of the vehicle position, velocity, and

attitude. It also includes the task scheduling and input/output control

routines. (10)

The input data control file, indata.dat, allows for the control of the

entire set of simulation control parameters, variables, and switches. An

example of an indata.dat control file is provided in Appendix J. Selection of

the different modes of operation are controlled by this input data file, along

with selection of subsystem control parameters, such as measurement time step,

and sensor specific model options.

The navigation sensors embedded within DKFSIM Version 1.1 are:

A) The Synthetic Aperture Radar Precision Velocity Update (SAR-PVU)

B) The Synthetic Aperture Radar Electro-Optical (SAR-EO)

C) The Global Positioning System (GPS)

D) The Terrain Aided Navigation (TAN)

E) The Central Air Data Computer (CADC) Barometric Pressure Altimeter

(BARO-Alt).

F) The Inertial Navigation System (INS).

Each sensor has a representative truth model and filter model. The

truth model generates the time-varying behavior and data outputs of the actual

sensor, including errors. The filter model describes the sensor's initial

state, time propagation characteristics, and measurement processes. (10,19)

Each of the external sensors may be assigned to a local Kalman filter if

some requirement specifies its use for a particular scenario. Each local

filter employs data from the common INS reference system. These local filters

can either be operated as integrated centralized filters or as part of a DKF
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architecture. The DKF structure usually has several local filters feeding a

master filter so an optimal navigation solution may be obtained. Master

filter parameters control the specific operations of the master filter data

fusion process. This flexibility allows for an efficient means of evaluating

the DKF architecture and comparing it simultaneously with an equivalent

centralized architecture. (10)

2.5.2 Functional Description. Ideally, the real-world and onboard

computer simulation segments run simultaneously in parallel. This is not

easily done with one computer system. To obviate this problem, the two

segments are interleaved to emulate real-time parallel operation between the

two simulation segments. In order to establish a frame of reference for the

simulation, a flight trajectory input data file provides DKFSIM Version 1.1

with a flight profile that provides aircraft translational and rotational

dynamics describing the truth state. (10)

The second integral simulation segment performs the onboard navigation

computer tasks. These tasks include input and output data transfers, the

distributed local filter controls, and the local and master filter tasks, such

as the reset, propagation, measurement and update cycles.

Input data provides for controlling parameters that specify the

configuration of the simulation. There are four categories of potential

variation:

A) Simulation control parameters: controls how the simulation is

performed, duration, number of Monte Carlo runs, etc.

B) Output control parameters: defines the format and specifies the

content of the output data files.
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C) Filter configuration parameters: allows the designation of the

sensors to a specified local or master filter.

D) Sensor truth and filter model parameters: allows tuning of the

dynamic variables, and designation of the sensor measurement sample period.

Each of these sets of parameters allows for inserting desired parameter

values, switching selected modes on or off, or as applicable, changing the

operating characteristics of the system.

2.6 Chi-Squared Algorithm

The fault detection scheme used for this project is the chi-squared

algorithm, and is based on the centralized and sensor-dedicated local filter

residuals. These residuals y(t1 ) are zero-mean and white with known residual

covariance A(t 1 ). The chi-squared random variable X(tk) is given by

k

X (tk) = , YT(tj) A-` (tj)y (tj) (2.15)
j-k-N+l

with N being the size of the sliding window. Notice that the system dynamics

are not included in Equation (2.15) and that only one failure hypothesis is

available. A detection rule based on an established threshold e would be:

X (tk) > e FAILURE

X(tk) e e NOFAILURE (2.16)

The simulated sensor failures implemented in this study were small

intentionally, yet large enough for detection by the chi-squared algorithm
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with a nominal threshold established. Each set of sensor residuals, GPS, SAR,

and TAN, was treated separately by the use of this algorithm, and each set of

residuals was compared such that the CKF and DKF designs could reveal their

respective fault detection capabilities. Chapter IV elaborates on the results

obtained.

2.7 Summary

This chapter has provided a discussion of the centralized, distributed,

and federated filter techniques utilized in this thesis. A brief description

of the reset modes of the federated filter architecture was given, along with

some discussion of the information sharing principle. A detailed de.,cription

of the truth and filter models for both the centralized and distributed

filters used in this thesis are presented in Chapter III.
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III. Foundations For Filter Comparisons

3.1 Overview

The objective of this chapter is to provide the truth and filter model

descriptions and the fault detection models used in the performance compari-

son of the centralized and distribtuted filter architectures. The truth models

are composed of original error states and those states denoted as wide-band

noises which are to be incorporated via state augmentation of the original

system description. (11) The original error states and the wide-band noise

representations are listea. separately for clarity except in the filter model

descriptions. The filter models are composed of all the states available for

output to the output data files. A complete and thorough treatment of the

true state representation has been implemented. Further consideration is

given to the master filter residuals later on in Chapter IV.

3.2 The Truth Model State Description

The following tables apply for both the Centralized Kalman Filter (CKF)

and the Distributed Kalman Filter (DKF) implementations. While the CKF design

used all of the truth states for the INS, GPS, SAR, TAN, and BARO systems for

its real-world operations, the sensor-dedicated filters in the DKF design used

only the INS truth states plus the appropriate truth states for each of their

respective sensors. Table 3.1 delineates the original truth states for the

3-1



INS TRUTH MODEL STATES REPRESENTATION COORD. FU

3 Position drifts Linearized propagation ECEF
driven by velocity drifts

3 Velocity drifts Linearized propagation ECEF
driven by accel'n errors

3 Attitude drifts Linearized propagation ECEF
driven by angular rate
errors

3 Gravity perturbations First-order markovs
(independent)

3 Accelerometer biases First-order markovs Body frame
(independent)

3 Accelerometer scale Random constants Body frame
factor errors (independent)

6 Accelerometer Random constants Body frame
misalignments (independent)

3 Gyro bias drift rates First-order markovs Body frame
(independent)

3 Gyro scale factor Random constants Body frame
errors (independent)

6 Gyro input-axis Random constants Body frame
misalignments (independent)

6 Gyro accel-sensitive Random constants Body frame
drift coefficients (independent)

42 TOTAL ORIGINAL STATES

Table 3.1 Strapdown INS Original Truth Model States

medium accuracy strapdown INS. The INS truth model states are listed along

with their mathematical representation and their respective coordinate frames.

There are a total of 42 original truth model states, with additional state

augmentations yet to come.

The GPS truth model assumes four-satellite operation. Several states

are pertinent only to their respective satellite. Table 3.2 delineates the

29 original GPS truth model states, while additional state augmentations are

provided later. All of the original GPS truth model states are listed with

their respective mathematical representations and the applications of each

3-2



GPS TRUTH MODEL STATES REPRESENTATION APPLICATION

Four Satellite Operation

1 User clock phase drift Integral of user clock All
frequency drift channels

4 Satellite range errors Second-order markov Each
due to satellite position errors (independent) channel
& clock phase drifts

4 Ionospheric range errors Second-order markov Each
after LI/L 2 correction errors (independent) channel

4 Tropospheric range errors Seccnd-order markov Each
after compensation with l/sin(ek) scale factor channel

1 User clock frequency First-order markov All
bias drift channels

3 User clock frequency Random constants All
accel-sensitivity (independent) channels
drift coefficients

4 Satellite range-rate Derivatives of satellite Each
errors due to satellite range errors channel
velocity and clock (independent)

frequency drifts
4 Ionospheric range-rate Derivatives of ionospheric Each

errors after LI/L 2  range errors channel

correction (independent)
4 Tropospheric range-rate Derivatives of tropospheric Each

error after compensation range error with l/sin(ek) channel

scale factor

29 TOTAL ORIGINAL STATES

Table 3.2 CPS Original Truth Model States

with regard co CPS channel utilizations. In this table, l/sinek represents

the deterministic path-length factor for tropospheric errors.

Simulated outages of normal satellite operations are not modeled such

that the number of states in the truth model is reduced accordingly. Three-

satellite, or less, simulated CPS operation is not an available alternative

for a CPS scenario. T:h- study of CPS failure modes would include these

scenarios plus others, such as poor Geometrical Dilution of Precision (GDOP).
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This is not viewed as a drawback in the implementation of the DKFSIM se.ftware.

At this time, the software is not intended to serve as a tool for any number

of unspecified sensor failures. It is intended to concentrate in the area of

fault detection, but requires significant source code changes prior to

accomplishing this task beyond the simplest of failure mode simulations.

The total SAR system utilizes two subsystems for normal operations. The

SARPVU and SAREO original truth model states are delineated in Table 3.3,

while further state augment..ion is provided later. Each of the 20 original

SAR TRUTH MODEL STATES REPRESENTATION APPLICATION

SARPVU

3 Velocity measurement First-order markovs All
bias errors (independent) components

3 Velocity scale factor First-order markovs All
errors (independent) components

6 Mounting misalignment Random constants All
errors (independent) components

SAREO

3 Landmark position bias First-order markovs Each
components (independent) landmark

1 Range bias error First-order markov All range
measurements

1 Range, scale factor error Random constant All range
measurements

1 Range-rate bias error First-order markov All rng-rate
measurements

1 Elevation bias error First-order markov All elev.
measur£ents

I Azimuth bias error Fi-st-order markov All azimuth
measuremnts

20 TOTAL ORIGINAL STATES

Table 3.3 SARPVU and SAREO Original Truth Model States
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states are listed along with their mathematical tepresentation, and their

respective applications. The StRPVU errors included in the truth model

consist of instrument, measurement bias, and scale factor errors. The SAREO

errors included in the truth model consist of instrument, measurement bias,

scale factor, and landmark location errors.

While the SARPVU and SAREO subsystems may operate independently in the

DKF filter implementation of the SAR dedicated local filter, these two systems

complement each other such that simulations using independent operation of the

two systems is not recommended. The SAREO capability is useful because it

bounds the growth of the INS position errors when GPS is not available, while

the SARPVU capability provides more accurate velocity estimates. (11)

Table 3.4 delineazes the original truth model states for the TAN

system, while further state augmentation is provided later in this section.

There are a total of 33 original TAN truth model states. Each of the states

are listed with their mathematical representations and their respective

parameters.

In practice, each TAN fix reduces the vehicle position uncertainties in

two directions normal to the local elevation contours. No information is

gained parallel to the contours. Given several fixes with a variety of

contour directions, and an INS to associate the fixes relative to one another,

the positional uncertainty can be reduced in all three spatial

directions.

The BARO-altimeter models are intended to represent the Central Air Data

Computer (CADC) performance typical of current aircraft systems. Table 3.5

delineates the 4 original truth model states for the BARO-altimeter, along

with its corresponding mathematical representation.
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TAN TRUTH MODEL STATES RRESENTATION PARAMETERS

1 Radar altimeter bias error First-order markov
1 Radar altimeter scale First-order markov

factor error
1 Terrain map elevation Second-order markov

variation
1 Terrain map sector bias First-order markov

(vertical)
2 Terrain map sector bias First-order markov

(horizontal)
1 True slope along-track Second-order markov, spatially

correlated; variable roughness
1 True slope across-track Second-order markov, spatially

correlated; variable roughness
25 Random point elevation Random constants 5 pt square

errors grid

33 TOTAL ORIGINAL STATES

Table 3.4 TAN Original Truth Model States

BARO TRUTH MODEL STATES REPRESENTATION

1 Pressure altitude bias First-order markov
error

1 BARO-altitude scale First-order markov
factor error due to
nonstandard temperature

1 Static pressure Random constant
coefficient error

1 BARO-altimeter time delay Random constant

4 TOTAL ORIGINAL STATES

Table 3.5 BARO-Altimeter Original Truth Model States
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STATE AUGMENTATION REPRESENTATION APPLICATION

INS Truth Model

3 Accelerometer wide-band Wide-band noises on velocity Body frame
noises drifts with constant power

(independent)
3 Gyro wide-band noises Wide-band noises on attitude Body frame

drifts with constant power
(independent)

GPS Truth Model

4 Receiver channel random Purely random range Each
phase noises errors (independent) channel

4 Receiver channel random Purely random range-rate Each
frequency noises errors (independent) channel

SAR Truth Model
3 Velocity random Purely random All

measurement noises (independent) components
1 Range random Purely random All

measurement noise range msmts
1 Range-rate random Purely random All range-

measurement noise rate msmts
1 Elevation random Purely random All

measurement noise elev. msmts
1 Azimuth random Purely random All

measurement noise azim. msmts

TAN Truth Model

1 Radar altimeter random Purely random
measurement noise

BARO Truth Model

1 BARO-altimeter random Purely random
measurement noise

23 TOTAL ADDITIONAL STATES

Table 3.6 System State Augmentation
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Thus far we have shown listings totalling 128 original truth states for

all of the pertinent systems. Table 3.6 describes the 23 total additional

states required for augmenting the original state truth models. Each of the

systems utilized in the centralized and distributed filter implementations

contributes to this state augmentation listing.

The INS truth model is augmented by adding 3 accelerometer and 3 gyro

wide-band noise representations. The GPS truth model is augmented by adding

one channel random phase noise and one channel random frequency noise per

satellite. The SAR truth model is augmented by adding one random measurement

noise for each of the seven SAR measurements provided. The TAN and BARO truth

models are also augmented by adding a random measurement noise for each of

their respective measurements.

The final form of the CKF truth model results in combining the original

and the augmenting states for a total of 151 truth model states. The final

form of the DKF truth models depends on the filter designation. Local filter

#1 utilizes only the INS, GPS, and BARO system truth model states for a total

of 90 truth states. Local filter #2 utilizes only the INS, SAR, and BARO

system truth model states for a total of 80 truth states. Local filter #3

utilizes only the INS, TAN, and BARO system truth model states for a total of

87 truth states. The master filter in the no-reset mode utilizes only the INS

and BARO system truth model states for a total of 53 truth states. Table 3.7

delineates these state totals for clarity.
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FILTER DESIGNATION STATE DESCRIPTION STATE TOTAL

Centralized Filter Includes all systems
Original state formulation 128
Augmenting states 23
Total state formulation 151

Local Filter #1 CPS dedicated with INS
Original state formulation 75
Augmenting states 15
Total state formulation 90

Local Filter #2 SAR dedicated with INS
Original state formulation 66
Augmenting states 14
Total state formulation 80

Local Filter #3 TAN dedicated with INS
Original state formulation 79
Augmenting states 8
Total state formulation 87

Master Filter Reference systems only
Original state formulation 46
Augmenting states _7
Total state formulation 53

Table 3.7 Specific Filter Truth Model State Totals

3.3 The Filter Model State Description

The filter models provided for the CKF and DKF designs are reduced-order

implementations of the truth models for each system as appropriate. For the

sake of expediency in achieving operational status for software simulations,

all of the previously implemented filter order reductions are assumed correct.

The CKF and DKF filter models include states from the INS and all of the

sensors except the BARO-altimeter. These BARO states were not utilized in the

filter model representation, for simplicity, even though the truth model

includes the BARO truth states. When BARO damping for the vertical channel is

off in the filter model representation, the INS vertical channel must be
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stabilized by corrective feedback from the filter. (10) Dedication of a

fourth local filter for the BARO-altimeter alone was not an available

alternative for testing. Also, inclusion of the BARO-altimeter sensor in one

of the other sensor-dedicated local filters might obscure that sensor's

behavioral characteristics.

There are three different INS filter model selections available. The

BASIC filter model consists of the first 10 states listed in the INS filter

model description. The GBIAS includes the first 10 states plus the additional

3 gyro bias drift rate error states. The AGBIAS was chosen for completeness

in the filter model representation. It includes the 13 INS states in the

GBIAS filter model, plus the 3 additional accelerometer bias error states, for

a total of 16 filter states.

Table 3.8, located on the next page, describes the filter state model

representations for each of the systems utilized. The AGBIAS model for the

INS includes 16 total filter model states. The GPS model chosen includes 5

states. The SAR systems include 3 states for the SARPVU system and 4 states

for the SAREO system. Lastly, the TAN model consists of only one state.

There are two different GPS filter model selections available. The

minimum filter model representation requires only user clock phase drift and

the user clock frequency bias drift. Again, for completeness the enhanced

filter model representation of 5 states was chosen. This consists of the user

clock frequency bias drift, and four states which represent the four satellite

range errors, plus clock phase drift components for each of the four channels.

3-10



FILTER MODEL STATE REPRESENTATION PARAMETERS

INS States - AGBIAS Model
3 Position drifts Linearized propagation ECEF

driven by velocity drifts
3 Velocity drifts Linearized propagation ECEF

driven by accel'n errors
3 Attitude drifts Linearized propagation ECEF

driven by angular rate
errors

1 Vertical acceleration First-order markov
error (independent)

3 Accelerometer biases First-order markovs Body frame
(independent)

3 Gyro bias drift rates First-order markovs Body frame
(independent)

16 TOTAL INS FILTER STATES

GPS States - 5 State Model
4 Satellite range errors Second-order markovs Each

due to satellite position (independent) channel
& clock phase drifts

1 User clock frequency First-order markov All
bias drift channels

5 TOTAL GPS FILTER STATES

SARPVU States
1 X-axis mounting Random constant

misalignment error (independent)
1 Y-axis velocity scale First-order markov

factor error (independent)
1 Z-axis mounting Random constant

misalignment error (independent)
3 TOTAL SARPVU FILTER STATES

SAREO States
1 Range bias error First-order markov All msmts
1 Range-rate bias error First-order markov All msmts
1 Elevation bias error First-order markov All msmts
1 Azimuth bias error First-order markov All msmts

4 TOTAL SAREO FILTER STATES
7 TOTAL SAP. FILTER STATES

TAN States
1 Radar altimeter First-order markov

bias error
1 TOTAL TAN FILTER STATE

Table 3.8 System Filter Model State Representations
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SPECIFIC FILTER SYSTEM ASSIGNMENT STATES

Centralized filter INS 16
GPS 5
SAR 7
TAN I

CKF TOTAL 29

Local Filter #1 INS 16
GPS 5

LF1 TOTAL 21

Local Filter #2 INS 16
SAR 7

LF2 TOTAL 23

Local Filter #3 INS 16
TAN 1

LF3 TOTAL 17

Master Filter INS 16
MF TOTAL 16

Table 3.9 Specific Filter Listings With System Model State Assignments

Table 3.9 depicts the application of each system filter state model as

required for each of the filter implementations, i.e., centralized, local and

master filter utilizations. The DKF design applies each system filter state

model according to its specified dedicated local filter. The master filter of

the DKF design encompasses only those states of the INS filter model, while

the CKF design encompasses all of the filter states.

This completes the discussion of the truth and filter models used for

the performance comparison. These representations fulfill all of the minimum

requirements necessary for this comparison.
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SENSOR RESID DIMENSIONS

GPS - 4 Satellite Operation
2 Satellite #1 Pseudorange ft

Pseudorange-rate ft/sec
2 Satellite #2 Pseudorange ft

Pseudorange-rate ft/sec
2 Satellite #3 Pseudorange ft

Pseudorange-rate ft/sec
2 Satellite #4 Pseudorange ft

Pseudorange-rate ft/sec
8 TOTAL GPS RESIDUALS

SAR
3 SARPVU X-Velocity ft/sec

Y-Velocity ft/sec
Z-Velocity ft/sec

4 SAREO Range ft
Range-rate ft/sec
Elevation ft
Azimuth ft

7 TOTAL SAR RESIDUALS

TAN
1 TAN Ground clearance ft

1 TOTAL TAN RESIDUAL

16 TOTAL SENSOR RESIDUALS

Table 3.10 Residual Listing by Sensor for Both CKF and DKF Designs

3.4 Fault Detection Considerations

Residual monitoring is the foundation of the fault detection scheme

utilized for this comparison. Table 3.10 delineates the residuals used

according to the measurements available from the specific sensors. The CKF

design resulted in processing all sensor measurements through one Kalman

filter. The DKF design resulted in Local Filter #1 processing only the GPS

residuals, Local Filter #2 processing only the SAR residuals, Local Filter #3

processing only the TAN residual, and the Master Filter having access to all

the residual outputs from the local filters. Because there are 16 like
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residuals for each design, we are able to observe directly the fault detection

capabilities of the two filters.

The principal effort of residual monitoring for the DKF design was

conducted at the local filter level. Local filter residual monitoring was the

auspicious choice for fault detection because the required source code changes

were minimized, and the local filter level monitoring allowed for efficient

extraction of the centralized filter residuals and sensor-dedicated filter

residuals simultaneously. Further, this facilitated direct comparison of the

most desirable fault tolerance aspects, detection and isolation of sensor

failures. Additional information regarding residual monitoring at the master

filter level involves detection of INS and other sensor failures, and will be

discussed further in Chapters IV and V.

3.5 Summary

The foremost topics of this chapter allow for an understanding of the

basis of the comparison between the centralized and distributed architectures.

The truth and filter model states define the implementations of the designs.

Residual monitoring provides a means for conclusions regarding fault

detection. Chapters IV and V will expand upon the information provided here

and will describe the steps taken and the results obtained by using these

architectures as defined.
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IV. Results and Observations

4.1 Overview

The objective of this chapter is to reconstritct the method and process

of obtaining the results of this thesis, to providf. the information obtained

from the simulations and subsequently analyze thoie results. An opening

discussion is presented on the discoveries made while using DKFSIM Version

1.1. The subsequent discussions address the comparison between the

centralized and federated filters, the error state and residual outputs, and

then the fault detection considerations. Finally, some observations and

commentary in the documentation provided by Integrity Systems, Incorporated is

augmented to the conclusions of this thesis.

4.2 DKFSIM Version 1.1

DKFSIM Version 1.1 was utilized as the software simulation tool for thiL

thesis effort. This particular version of the software was quite capable of

providing Monte Carlo simulations of the federated and centralized filter

performances for study. However, there are several aspects of this software

which required attention, and, in fact, complicated che research process.

Because the final version of DKFSIM was not available at the time of

performing the research, the software orientation involved a great deal of

investigation into the source code itself. Further, the req'iired software
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changes made to facilitate the achievement of the thesis goals were made under

unfavo 'able conditions due to the inherent complexity of the software.

4.2.1 Soft,!are Orientation

Initially, the largest obstacles were the incompatibilities with the

tools available at AFIT. The conversion from one fortran format to another

was necessary due to a change of the computer host. Additionally, the

plotting tools available were incompatible with the format of the output data

files. Once a basic implementation of the software was compiled and linked,

the trial and error verification phase began. Immediately, the data files had

to be restricted to just three column format in order to load them into the

plotting software. This restricted the data output files to including only

one state, its corresponding one-sigma values, and the time line associated

with the pertinent time steps of the simulation. This was no fault of the

version of DKFSIM available, but had an impact on the efficiency of the

performance of the full-state simulations.

To further ensure the duplication of simulation characteristics between

the federated and centralized filters, it was necessary to use the exact same

flight profile for each error state output for both filters and, likewise, all

of the residual outputs for both filters. A typical flight profile was used

for the exercise and includes ingress to a low level terrain following and

terrain avoidance segment, a SAR target acquisition pop-up maneuver, a target

bombing run, and egress from the low level portion (19).

As a result of breaking up the simulation into state-by-state testing,

it was absolutely essential to verify chat the random number sequences from

one simulation to the next were identical. The exact same random number
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sequences were used for all of the simulations, except for the ten-run Monte

Carlo analyses for the error state outputs, and to verify the contention of

repeatability. A multiple-run analysis was accomplished to provide data

representing the ten-run performance of an arbitrary filter configuration.

This exact same scenario was run again, and the data points were compared

directly. The comparison revealed identical results.

Another ten-run simulation was performed using a different random number

seed to verify the differences of the random number seeds. The comparison of

these data files to the previous ones revealed that the simulations were not

identical. Therefore, it was acceptable to obtain the entire set of error

state output data files for one simulated scenario one state at a time.

Further, this permitted a reasonable federated and centralized filter compari-

son with respect to the random number sequences.

A comprehensive study of the input control data file, indata.dat, a

sample of which is found in Appendix J, was the next logical step in the

research process. Variables such as IRUNI, IRUNL, TSTART, and TFINAL were

identified as critical system control switches, with IRUIT designating the

first run in the simulation, IRUNL designating the last run, TSTART equalling

the simulation start time, and TFINAL equalling the simulation completion

time. The desired simulation data required a ten-run Monte Carlo analysis,

accomplished with a flight duration from zero to 7200 seconds.

The input control data file is labeled indata.dat. This file provides

the opportunity to vary certain parameters ar.d variables, along with the

simulation control switches. Several simulatioxs were accomplished just to

verify the application of the control switches in indata.dat. It was

discovered that the error-state one-sigma values were computed for the first
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Monte Carlo run of the simulation only. It was attempted to set the UPSTAT

switch to true in order to verify the impact oi, the one-sigma values. The

proposed function of UPSTAT is when the Monte Carlo statistics of one run are

to be added to those from a previous series of runs (10). There was no

apparent impact to any of the output data files, in any manner, by selecting

the variable as true. It was set to false for the remainder of the

simulations.

The variables OUTASC and OUTSIG were used to designate the output data

file format to ASCII form, and to include the one-sigma values in the output

data file. OUTERR set to true indicates that the error state outputs were

provided in these data files. The last step in output file designation, aside

from selecting the desired state per file, was to select the time step

increments for the filter computations and sensor measurements. All other

aspects of the indata.dat file correspond to the filter definition and the

system parameter definitions.

The first attempts at verifying the filter mode options yielded only two

available modes; the full-fusion-reset and no-reset modes (see Chapter II).

The full-reset mode was used initially in getting the software operating

smoothly. A visual comparison revealed that the centralized and federated

filter outputs were virtually indistinguishable. All the information in the

master filter is shared with the sensor-dedicated local filters to the point

where the sensor with the greatest accuracy dominated all local filter outputs

essentially like a centralized filter. This mode was not used qny further

than taking this cursory lGok at the outputs for operational verification.

The real intent of using the federated filter design for this thesis is

to show the benefit from its fault detection and identification capabilities
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of the local and master filters. Consequently, the only mode used in

subsequent federated filter implementations was the no-reset mode, because

this mode has been shown to be the most fault tolerant. No information is fed

back to the sensor-dedicated local filters so that there is no corruption of

the local filter navigation solution when a failure occurs in any of the other

sensors. Although some compromise is expected in the estimation accuracy when

using the no-reset mode instead of the other modes available, the no-reset

mode is the most efficient federated filter mode with respect to fault

detection and isolation.

DKFSIM Version 1.1 allow& the single-sensor-dedicated local filter #1

operations to convert easily to a centralized filter by simply designating all

of the sensors to provide measurements. Thus, local filter #1 was the

designated filter location for the centralized filter Implementation and had

all of the sensors selected for those simulations. For the federated filter

implementations, local filter #1 was dedicated to the GPS sensor, local filter

#2 was dedicated to the SAR sensor array, and local filter #3 was dedicated to

the TAN sensor.

Residual tolerance values are selectable for filter residual rejection

thresholds from within the indata.dat file. These tolerance values are set so

the filter will compare the magnitude of the newly available residual against

that of the desired acceptable magnitude. If the residual falls outside of

this range of tolerance, the filter will not use this most recent measurement

for an update cycle. The filter will propagate the estimate again without an

update for this particular cycle. For effective filter fault tolerance, these

tolerance values are set low, about 3 to 5, representing multiples of the one-

sigma values, so that the filter does not incorporate the bad information.
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The time segment designations in indata.dat allow for simulating long-

term measurement rejection by the filter by increasing the tir'_ step between

measurements for each sensor. The number of segr.ents which may be designated

is up to the user. However, the simulations revealed that there were maximum

and minimum limitations on the size of the time step for the SAR and TAN

sensors. The simulation would fail and halt when the step sizes were too

large or too small for the SAR or TAN. The GPS sensor appeared to be

unlimited in its step size. Independent testing was accomplished to verify

this contention.

The input control file, indata.dat, also allows for selection of the INU

model; either the BASIC, GBIAS, ABIAS, or AGBIAS (see Chapter III). The BASIC

model includes only the first ten INS error states. The GBIAS model has the

basic ten INS error states plus 3 gyro bias states. Likewise, the ABIAS has

the basic ten INS error states plus 3 accelerometer bias states. Finally, the

AGBIAS includes the basic ten INS error states plus the 3 gyro bias and 3

accelerometer bias states, totalling 16 error states. This is the desired INU

model for this thesis, because it offers more information to compare between

the two filter error state outputs.

The alignment mode is also selectable from the indata.dat file. The

ALNMOD variable can either be set to SIMALN, representing a normal ground

alignment of the INU, or to AIRALN, representing an in-flight alignment. The

AIRALN mode was not uzed in any of the simulations performed.

The. verification of the states pertaining to the state output select

switches in indata.dat qas the next step in becoming familiar with the

software. While there exists documentation which lists the states of the

truth and filter models, there is not an actual listing of the states as they
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are assigned for output by the control file. It was necessary to verify the

expected state designation to each of these switches by investigating the

source code of DKFSIM Version 1.1 and by observing the behavior of the output

variables. It was concluded that the state assignments in indata.dat were as

expected according to the state listings found in the documentation (11).

Finally, familiarity of the software turned out to be the most critical

aspect of this thesis. It was certainly the largest obstacle to the beginning

of the software simulations. Eventually, the simulations were accomplished

and the results obtained represented the desired scenarios., Then, it was

possible to continue on with the next phase of the research.

4.2.2 DKFSIM Version 1.1 Source Code Changes

Several source code changes were required because this version of DKFSIM

required a clean-up of the existing error state output data files in order to

plot the error state data for the local and master filters. Plus, DKFSIM does

not provide the filter residual output data necessary for fault detection.

Once the residual data was obtained, the simulated failures had to be

accomplished by affecting the measurements directly.

The output data files for the error states consisted of four ASCII-

character columns, as shown in Table 4.1. The first column described the

function accomplished for a particular increment of time. Several functions

could be shown for each time step depending on the filter control definitions.

The column was titled TASKID, which identified the task being accomplished.

The possibilities for this column included initialization (LFINIT, MFINIT),

measurement receipt and update (LFMEAS), filter reset mode operations (LFRSET,

MFRSET), filter propagation (LFPROP,MFPROP), and end run (ENDRUN). Almost all
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of the same TASKID possibilities exist for the master filter output files as

the local filter output files, simply having different designations. The

write statements were altered to replace the TASKID characters with blank

spaces such that the top row of information could be deleted, then the three

column matrix could be given a name and executed into the plotting software.

The remaining columns represent the time step designation, the error

states, and their associated one-sigma values. The error state columns are

shown first and then their one-sigma values are the columns to the right. The

numbers at the top of the columns indicate the state assignments for that

column. The table lists data which shows a run initialization at the 1600.00

second time step, and the end of the run occurring at the 2000.00 second time

step. This was done for no specific purpose other than to shorten the run for

illustrative purposes.

TASKID TIME 1 1
LFINIT 1600.00 -19.8715 173.205
LFRSET 1600.00 -19.8715 173.205
LFPROP 1605.00 -19.8340 173.418
LFMEAS 1605.00 5.06294 18.5948
LFRSET 1605.00 4.50609 31.8418
LFPROP 1610.00 4.64870 31.8517
LFMEAS 1610.00 5.92014 20.8378
LFRSET 1610.00 5.29310 26.4917
LFPROP 1615.00 5.23778 26.5019
LFMEAS 1615.00 -10.5534 21.4807
LFRSET 1615.00 -1.56338 24.4573

it t, It It

ENDRUN 2000.00 -6.78328 29.6733

Table 4.1 Example of an Error State Output Data File.
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All of the following software changes pertain to the task of obtaining

the basic residual output data files, and then modifying the residual

computations to simulate hard and soft failures in the sensor measurements.

The initial residual output files were the most difficult changes to execute

because of the location of the "pick-off" is essential to know.

Local filter residual monitoring was determined as the most auspicious

choice for the fault detection scheme. The purpose of this choice was

twofold. Monitoring the residuals from the dedicated local filters allowed

for greater certainty in the problem of fault identification. Knowing which

sensor is exhibiting the failure provides a distinct advantage in fault

detection because no further failed-system identification is required. Thus,

the source code associated with the residual computations of the local filters

and its output routines was the starting point for changes to the software.

Secondarily, local filter #I was not only dedicated to the GPS sensor

for the federated filter architecture, but it was also the filter used for the

centralized filter implementations in the simulations. This required the

residual output from that local filter.

When DKFSIM performs its checks on residual values versus the set

tolerances, and with the tolerances set as low as five times the one-sigma

bounds, the rate of rejection of the residuals was expected to be very high

under even the smallest induced failed conditions. Therefore, the normal-

valued residuals were simply picked off after the residual calculation and the

measurement update cycle, while the rejected residuals were picked off prior

to calling the source code routine which compares the tolerances with the

magnitudes and then rejects if bad. This allows continuity in the plotting of

the residual data points. Without maintaining a record of the rejected
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residuals at the time of their occurrence relative to normal-valued residuals,

the fault detection algorithm has no failure information to work with, thus,

no detection. However, it is quite undesirable for the filter to be forced to

use this bad measurement information. Having set the tolerance levels so low

allows the filter to continue to reject the bad measurements while, at the

same time, the entire residual sequences are saved for evaluation.

The input control data file, indata.dat, has the capability to simulate

a hard sensor failure by increasing the time step increment to a value which

represents the length of time during which measurements from that sensor are

unavailable. This is sufficient for evaluating the error state performance

with hard failure conditions for a particular sensor, but fault detection is

not available under these circumstances. This simply represents residual

rejection without ever calculating a residual under the failed scenario.

There are a total of three residual output data files. This was done

for simplicity. The GPS, SAR, and TAN residuals were maintained in their

respective groups so they might be treated independently, especially in light

of the fact that they had different time step increments. An appropriate

condition statement was used to test for the proper sensor prior to calling

the associated write statement. The GPS provides eight measurements every

five seconds. The four satellite operation requires a pseudorange and a

pseudorange-rate residual for each satellite. The SARPVU and SAREO systems

provide seven measurements every 100 seconds. The TAN sensor provides one

measurement every ten seconds. These time step values were chosen based on

the observed filter performance. Several time step selections were made to

maximize the number of time steps per simulation without receiving simulation

interrupts or fatal errors.
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Initially, some difficulty arose during the centralized filter testing

where the residual output data files were providing twice as many residual

outputs as expected. It was determined that each filter calculates its own

residuals when a sensor is assigned to that local filter for measurement

inputs. The other local filter sensor assignments did not have to be

deselected, but, as one might expect, the other local filter sensors produced

similar residual calculations. As a result of this discovery, there was then

the requirement not only to test for the right sensor, but also to test for

the right local filter depending on the desired filter operation, federated or

centralized, before the residual was chosen for output to the data file.

The residuals obtained under normal operating conditions are found in

Appendix C for the centralized filter and Appendix D for the federated filter.

These plots are referred to as baseline plots and were necessary to establish

the proper starting point for the order of magnitude change in the measurement

values. As it turned out, the nominal residual values were the same for the

centralized and federated filters. This was useful because the same values

could be used equating the failures in the federated and centralized filters.

The next step for obtaining fault detection evaluations, was to

implement the hard failures by directly affecting the measurements prior to

the calculation of the residuals. Just prior to the write statement for data

output, the hard failure result was achieved by setting the measurement, ZM,

equal to zero in the following residual calculation, where DZ is the residual,

DZ = ZM - ZF (1)

ZM is the measurement, and ZF is the filter computed expectation of the

measurement's value. Thus, with ZM equal to zero, then the measurement is
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representing a hard failure for the sensor. It was determined that the value

of ZM should equal only the measurement noise values with no measurement

information. The shear magnitude of the hard failure eliminated the reason

for this proposal because of its dominance in the residual calculations. In

other words, the level of measurement noise would be utterly undetectable

under any hard failure circumstances. So, it was noL pursued any further.

Soft failures were not induced in all the measurements for all the

sensors. It was decided that a constant bias on the second GPS residual, the

pseudorange-rate residual for satellite #1, and on the TAN residual would

represent a soft constant bias failure quite well for this study. This proved

to be is a feasibility study, and does not intend to look at all possible

failure scenarios. The constant biases were turned on abruptly and turned off

abruptly for expediency. A further condition statement was used to test for

the proper residual before the biases were initiated. The effective time of

GPS biases is from 1000 seconds to 3500 seconds. This was deemed a sufficient

duration for failure and detection. The effective time of the TAN bias is

from 4500 seconds to 6500 seconds so that there was sufficient time for filter

recovery before inducing the TAN failure. The constant bias added to the TAN

residual was unchanged for all failure subsequent simulations in this study.

Another important soft failure was a ramp bias added to the same GPS

residual. The ramp bias scenario can be representative of gradual failures in

the sensors. These gradual failures can be the most difficult to detect

because the filter tends to track the ramping affect of the bias without any

notice of a failure. The peak magnitude of the additive ramp bias was chosen

to be twice that of the constant bias so as to maintain relativeness. The

ramp bias was also started at 1000 seconds and gradually grew to its peak
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value at 3500 seconds. It was then abruptly reset to a zero bias value so

that the large transient effects would be detectable. This coincides with a

possible scenario of having a satellite with a soft failure contributing to

the navigation solution, and then when that satellite passes out of range, an

unfailed satellite would immediately take its place providing accurate

information. Thus, an abrupt change in residual calculations wouid occur.

Additional discussion regarding fault detection is provided later on in this

chapter.

Finally, it was discovered that the current residual values are impacted

by the previous residuals when the filter performs the associated update cycle

for that previous residual. This is because the software implementation uses

scalar measurement update cycles so that the filter handles one measurement at

a time. It would be most efficient to handle the residuals in vector form so

that the filter computed expectation of the new measurement is not affected by

bad information provided by a residual during that measurement and update

cycle. There was nothing to be done to the source code regarding this aspect

of the residual characteristics. Implementing a change to offset this

procedure would require enormous changes in the source code. This is not the

purpose of this thesis effort. However, it will remain a consideration upon

further discussion.

4.3 The Centralized Versus Federated Filter Comparisons

The error state behavior for the centralized and federated filters can

be visually inspected by viewing the plots located in Appendices A and B.

Appendix A contains the 29 error state plots for the centralized filter design

and Appendix B contains the 29 error state plots for the federated filter
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design. Please, make note of the scales used for plotting when comparing

these state plots. The plotting software was somewhat inconsistent when

assigning the vertical magnitude scales when generating these plots. Some

contribution to this complication was made by an initial large transient in

the error estimations. This would account for a relatively small plot of the

data versus what might seem to be a more appropriate scale. Further, the

error states are shown with their respective one-sigma bound instead of two-

or three-sigma bounds because the plotting resolution is much better without

unnecessarily increasing the vertical scaling.

A general comparison can be made with respect to filter performance by

comparing the like error state plots for each filter implementation. For both

the centralized and federated filters, the first 16 states correspond to the

INU filter states and can be compared directly regarding relative magnitudes

of error and their associated one-sigma bounds. The last 13 states correspond

to the GPS, SAR, and TAN filter error states. The centralized filter provides

these state outputs based on single filter operations. The federated filter

design has the GPS states output from local filter #1, the SAR states output

from local filter #2, and the TAN state output from local filter #3. While a

direct comparison can be made of these last 13 sensor-specific states, it is

important to remember that the two filter designs have created these error

state histories differently.

The X and Y components of position drift, Figures A.1, B.1, A.2, and

B.2, for each filter, compare favorably with the exception of the degree of

variance divergence in the two filters. The two filters have excellent

estimate histories until about 4000 seconds when the error appears to increase

resulting in a corresponding increase in the one-sigma bounds. Although the
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one-sigma bounds apparently increase more for the federated filter, the

vertical scales on these plots seem to over-emphasize this phenomena. It is

assumed that this divergence is attributed to the high-dynamics portion of the

flight profile beginning at about 4000 seconds into the mission.

The Z component of the position drift, Figures A.3 and B.3, for each

filter, appears to exceed the one-sigma bounds. This is not a point of

difficulty because the errors do not appear to be large enough to exceed a

three-sigma bound value, three times the plot of the one-sigma bound. It

should be noted that this state was estimated poorly when expectations for

excellent performance was so high for all states. The vertical channels are

hardest to estimate.

All three components of the velocity drift, shown in Figures A.4, B.4,

A.5, B.5, A.6, and B.6, for each filter, are difficult to view because of the

initial large transients in the states. This shrinks the plots down to a

relatively small vertical range. It is, however, evident that all three

states remain within their one-sigma bounds as desired and the estimates

appear accurate.

The three components of the attitude drift, Figures A.7, B.7, A.8, B.8,

A.9, and B.9, for both filters, indicate excellent performance. The federated

filter performance appears slightly better than that of the centralized

filter, but not by much. Perhaps, an analysis which involves more than ten

Monte Carlo runs would not provide the same results. The one-sigma bounds

seem to follow the behavior of the ensemble average more closely than the

previous states. Also, the ensemble average has more variations than what was

expected. This 4s not a drawback, however, because all of the errors are

within the one-sigma bounds.
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The vertical acceleration error, Figures A.10 and B.10, for both

filters, indicates excellent performance. The greatest error is obtained when

the aircraft experiences its greatest altitude changes during the flight. The

one-sigma bounds for the centralized filter appears to be somewhat larger than

that of the federated filter, although the error state performance appears to

be quite similar with regard to the magnitude of the errors in the estimates.

The body frame accelerometer biases, Figures A.11, B.11, A.12, B.12,

A.13, and B.13, for each filter, clearly indicate where the high-dynamic

portions of the flight profile are encountered. Again, the one-sigma bounds

for the csntralLzed filter seems to be somewhat larger than that of the

federated filrer while the estimation accuracies are similar.

The body frxae gyro bias drift rates, Figures A.14, B.14, A.15, B.15,

A.16, and B.16, for each filter, also clearly indicate where the high-dynamic

portions of the flight profile are encountered. These error values are seen

to be very small when conditions of high-dynamics are present, and especially

when they are not. It is apparent that the errors and one-sigma bounds for

the majority of the flight profile are relatively insignificant compared to

those of the high-dynamics portions.

The four satellite range errors, Figures A.17, B.17, A.18, B.18, A.19,

B.19, A.20, and B.20, for each filter, are estimated quite well. The growth

of the one-sigma bound on the federated filter states would seem to indicate a

lack of confidence in the measurements, but the performance of the estimates

compares favorably with that of the centralized filcer. These error states

and one-sigma values provided by the federated filter design are extracted

directly from the GPS dedicated local filter. The master filter does not have

these states available for output. Consequently, it is considered that this
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coudition is due to the local filter's efforts to provide the master filter

with t much of the measurement information as possible. The centralized

filter's errors are relatively similar to that of the federated filter's,

however, the centralized filter's one-sigma bounds behave much more

appropriately. As expected, they maintain relatively constant magnitudes

under normal oper.'lting conditions.

The CPS user clock frequency bias drift, Figures A.21 and B.21, for each

filter, behaves almost identically. The differences between the two plots are

virtually indistinguishable.

All SAR plots, Figures A.22 thru A.28 and B.22 thru B.28, with respect

to each filter, compare favorably. The jerky appearance of the plots is due

to the 100 second time step increment in the measurement availability. The

one-sigma bounds behave more erratically for the federated filter than for the

centralized.

Finally, the TAN radar altimeter bias error, Figures A.29 and B.29,

compare exceptionally well. There appears to be very little difference in the

error and one-sigma values for both filters. Regarding the magnitude of the

errors throughout the mission, it would seem that the closer the aircraft is

to the ground, the better the error estimation performance becomes.

The objective of this section was to show the comparability of the

federated filter estimation accuracy versus that of the centralized filter.

The results are quite favorable in this respect. Therefore, there is no

significant loss of estimation accuracy when selecting the federated filter

over the centralized filter. When selecting between the two filter

implementations, the contention of accuracy deficiencies of the federated

filter should not employ a great deal of influence on that decision.
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4.4 Fault Detection Considerations

As was stated earlier in this chapter, the baseline residual plots

provided a measure as to the amount of the bias that should be added to each

affected residual. Becauso each residual has its own range of magnitudes, the

application of any one magnitude of bias failure could not easily be applied

to all sensor residuals at once. The objective for this thesis is to show how

a possible failure scenario might impact certain specific residuals, and how

those failures could be detected and perhaps dealt with appropriately.

The hard failure scenario residual plots are not provided in the

Appendix because the residuals responded so dramatically to the simulation of

a zero-valued measurement. There was no advantage in pursuing this avenue

because the application of the fault detection algorithm would provide no

additional information. The failure was so blatantly obvious that even if the

residual tolerance levels were set to 50 times the one-sigma bounds, the

filter would still reject these residuals. The only possible advantage to

this scenario would have been to observe the error state performance under

these failed conditions based on filter rejection of the bad residual values.

The prime motivation of this research effort was to show the filter behaviors

when performing fault detection of soft failures which distinguish the two

designs from each other.

4.4 and TAN Constant Bias Simulated Failures

The first soft failures implemented were constant bias values added to

the GPS pseudorange-rate residual of satellite #1, and to the TAN ground

clearance residual, during different phases of the flight prifile. Ar indix E
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displays the residual plots from the centralized filter, while Appendix F

displays those of the local filters from the federated filter design.

For the sake of brevity, only those scenarios which provide an efficient

display of the intent of the research are presented. Several simulations were

run as trial and error testing to ensure the proper magnitudes for affecting

the measurement in the failure scenarios. However, it seems worth mentioning

that constant bias values were also added to the pseudorange residual of

satellite #1. It was determined, after several iterations, that the

appropriate bias value would be about 100 ft for minimum fault detection. The

SAR residuals were left unaffected for the entire research effort because the

GPS is the most accurate sensor and the TAN was the easiest to affect.

The GPS pseudorange-rate residual of satellite #1 was initially affected

from 1000 seconds to 3500 seconds by adding a constant value of 1.00 ft/sec to

the incoming measurement. This resulted in a much greater than desired

reaction from the filter. The next value attempted was 0.25 ft/sec and this

value was found to be nearly undetectable. The original intent was to

implement a constant bias value which could be detected, yet would still allow

a close comparative analysis to the normal-valued residuals. The value chosen

for the magnitude of the bias was 0.5 ft/sec over the entire duration of the

GPS failure.

The TAN ground clearance residual was initially affected from 4500 to

6500 seconds by adding a constant bias value of 1000 ft to the incoming

measurement. Again, the filter reaction was far beyond the desired response,

so smaller values were chosen until the proper value was found, 150 ft. The

TAN failure was left unchanged for all failed-condition simulations for
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convenience which allows two different sensor failure evaluations to take

place simultaneously.

The residual behavior of the pseudoranga of satellite #1 for both

filters, Figures E.1 and F.1, reflected the greatest impact. RUZth sets of

residuals showed a bias of about 20 feet. This occurs because, when viewing

the pseudorange-rate residual of satellite #1, the filter has an initial

transient due to the constant bias addition at 1000 seconds, and then settles

back into normal operations accepting the biased residual as accurate.

Consequently, the pseudorange calculations are impacted by a 0.5 ft/sec error

and the filter is continuously mistaken when calculating the pseudorange.

Another transient is experienced when the constant bias is renoved, and the

filter again settles into normal operations accepting these values as

accurate. This shows another benefit of using the smallest detectable bias

for each of the residuals. The filter does not reject these biased residuals,

but instead uses them to update the navigation solution. All GPS residuals

for both filters behaved nearly identically. Lastly, even though the TAN

residual failed from 4500 to 6500 seconds, the dominance of the GPS accuracy

did not allow this failure to impact the GPS residuals even in the centralized

filter design.

The subsequent GPS pseudorange-rate residual calculations for both

filter designs are affected by the induced failure in the first satellite

pseudorange-rate measurement. The bias is evident in the pseudorange residual

for satellite #1 but is not carried to the other satellites' pseudorange

residuals because this is an error produced by the calculations involving the

pseudorange-rate measurements. The other pseudorange-rate residuals are

affected because the filter expectation of the residuals is calculated after
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the most recent update cycle from the one-by-one scalar measurement processing

algorithm used in the software, as was discussed previously. The plots in

both appendices clearly show reactionary characteristics because the filter

expects a smaller pseudorange-rate measurement than what was actually

received, thereby forcing the filter to expect a larger pseudorange-rate

measurement from satellite #2 than what was actually received, and so forth,

for all four satellites. However, this effect is diminished as more and more

measurements are received, which is indicated by the smaller transients in the

pseudorange-rate for satellite #4. The one-sigma bounds for the transient

portions of the GPS pseudorange-rate residuals are seen to increase

appropriately. The one-sigma bounds for the offset portion in the pseudorange

residuals of satellite #1 do not increase appropriately because the filter is

unaware of the failure and continues "n without compensation.

The real benefit of this comparison is seen when comparing the SAR

residuals of the two filter designs, Figures E.9 thru E.16 and F.9 thru F.15.

The federated filter SAR residuals, located in Appendix F, are unaffected by

the CPS or TAN failures as expected because the SAR dedicated local filter

does not have access to the bad measurement information from the OPS or TAN.

Intentionally, there was no failure induced in the SAR system. The SAR

residuals are the tools with which an efficient evaluation of fault tolerance

can be made. The centralized filter SAR residuals, located in Appendix E, are

adversely affected just before and at the time the simulated GPS failure is

finally removed. Fault indications in the SAR residuals, specifically E.13,

E.14, and E.15, occur before the GPS failure is removed. This might indicate

the disagreement in the centralized filter between the SAR and CPS systems.
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There is no actual failure in the SAR system, yet fault detection occurs

falsely and perhaps forces the sensor to be taken out of the navigation

solution. Therefore, isolating the failures in the centralized filter would

be much more difficult.

The federated filter TAN ground clearance residual in Appendix F, Figure

F.16, shows the same type of residual behavior characteristic of a constant

bias failure, as was shown in the GPS pseudorange-rate residuals. The

residual spikes at 4500 and 6500 seconds indicate the TAN failure and reset.

For the federated filter, the GPS failure is not affecting the TAN dedicated

filter residuals because there is no information fed back to this local filter

by the master filter and the local filter is therefore not receiving any of

the bad measurement information. This occurs as expected and by design.

The centralized filter TAN ground clearance residual in Appendix E,

Figure E.16, shows the effects of the GPS failure and as a secondary

consideration, it also shows the relative effects of the SAR residual impact

due to the GPS failure. The filter "sees" a SAR failure when actually the

system is operating normally. There is still a transient at 4500 and 6500

seconds, but the filter reacts much differently to this information.

Additionally, it would appear that the filter believes the TAN has failed

during most of the entire mission, also possibly incorrectly convincing an FDI

algorithm to remove it from the navigation solution.

4.4.2 GPS Ramp Bias and TAN Constant Bias Simulated Failures

The GPS ramp bias and TAN constant bias failures were implemented in the

same fashion as the previous constant bias failures. The gradual failure

scenario is the most important failure simulation because it is the most
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difficult to detect. The objective is to show how each filter design reacts

to these gradual failures and what difficulties might be experienced by each.

As stated earlier, the TAN constant bias failure was left unchanged as a

contrasting comparison with the ramp bias failure. The GPS ramp bias affects

the same pseudorange-rate residual for satellite #1 during the exact same

portion and duration of the mission. This, too, allows for a contrasting

comparison with the constant bias failure. Appendix G displays the residual

plots for the centralized filter design, while Appendix H displays those of

the federated filter design.

As was seen for the constant bias failure, the pseudorange residual for

satellite #i for both filters, Figures G.1 and H.1, has been affected by the

ramping failure. The residual values ramp downward from zero-mean in an

apparent display of the filters' erroneous expectations due to the calcula-

tions from the pseudorange-rate measurements. Again, no other pseudorange

residuals from the other satellites for either filter are affected.

For this scenario, the pseudorange-rate residuals, Figures G.2 and H.2,

have no initial transient, but do have a final transient indicating that the

ramp failure has been removed. Both filter designs allow the failures to ramp

and then track them with no detection of the failure at all, except in the

pseudorange residual. The filter assumes normal operating conditions during

this failure and then settles back into normal operations again after the

transient. Therefore, a transient in the behavior of a residual sequence does

not necessarily indicate a failure. It may, in fact, represent the removal of

a failure. This poses a problem for failure identification. Also, as

observed previously, the TAN failure has no affect on the dominant GPS

residuals in either filter design implementation.
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The residuals for the remaining satellites, Figures G.3 thru G.8 and H.3

thru H.8, behave as expected from the observations of the previous constant

bias simulations. Only the pseudorange-rate residuals are affected.

A similar reaction from the SAR residuals, Figures G.9 thru G.15 and H.9

thru H.15, was observed. In the centralized filter design, Appendix G, the

residuals are adversely affected. The federated design, Appendix H, shows no

impact at all, as expected.

Likewise, the TAN residual reacts as expected for the federated design,

Figure H.16, showing no impact from the GPS failure, and only its transient

behavior for its own constant bias failure. The TAN residual for the

centralized filter, Figure G.16, is affected adversely by the GPS failure and

mistaken SAR system failure, while showing the transients due to its own

constant bias failure.

The two filter designs suffered from failure detection problems under

uheqe simulated ramp bias failure circumstances. While the federated filter

did not show any isolation problems with regard to which sensor was

experiencing the failure, it did not appear to provide any advantage over the

centralized filter in detecting the failure.

It should be noted that the first part of fault tolerance involves

detection, which neither filter was able to do until the SAR and TAN systems

disagreed with the GPS. The ;wo filter designs treat this information

differently. The centralized filter would appear to vote the SAR and TAN

sensor measurements out of the navigation solution, while the federated filter

would allow the SAP, and TAN dedicated local filters to vote the CPS local

filter out of the master filter navigation solution. However, this would not
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occur until the errors in the GPS local filter solution become large enough

for the SAR and TAN filters to detect.

Because the GPS sensor is the most dominant in accuracy, it would be

difficult to detect an impact in the centralized filter's GPS residuals due to

any other, less-accurate, sensor having failed. This was shown by the failure

of the TAN sensor in the latter parts of the simulations. However, the

federated filter, by design, does not allow corruption of the other local

filter navigation solutions when a particular sensor is failed, regardless of

the sensor's accuracy.

4.4.3 Fault Detection of Simulated Failures

The purpose of obtaining the residual output data files for this thesis

is to apply an algorithm, such as the chi-squared algorithm, with the

intention of detecting a failure in a subsystem of a complex navigation suite.

The detection algorithm is applied to the residuals for each sensor from both

of the filter designs. The centralized filter provIdes all of the residuals

necessary, while the federated filter residuals are obcained from the three

dedicated filters within its architecture. Appendix I displays the plots

created from the application of the chi-squared algorithm on these sets of

residuals. There are six plots, three for each filter, and there is one plot

for each sensor used, GPS, SAR, and TAN.

As expected, because the GPS residual behaviors, Figures I.1 and 1.4,

were so similar for the two filter designs, the cwo chi-squared plots indicate

almost identical detection information. Tne window of calculation for these

plots was chosen to be 25 sample periods. This choice provided sufficient

evidence of the failure simulated in the GPS sensor. While this failure does
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not appear to be obviously detectable from these plots, the failure was

intended to represent a minimum bias value which could be possibly detected.

If the threshold for detection were to be set very low, it is conceivable that

the fault alarm would be set off at about the 3000 second mark. The plot

peaks at 3500 seconds for this failure and then resumes apparent normal

operations.

The SAR residual behavior for the federated filter, Figure 1.5,

indicates normal operations. There is no failure, so the threshold would be

set far above these peaks. The SAR residual behavior for the centralized

filter, Figure 1.2, clearly implies failed conditions beyond the 3000 second

mark. The occurrence of the fault alarm is inevitable even though there was

no SAR system failure. This shows that isolating the failure in the

centralized filter would be complicated.

The window for calculations in the detection algorithm for these sets of

SAR residuals was chosen to be 5 sample periods. It was necessary to choose

this number because of the small number of measurements available to the

filter. One set of residuals was available only every 100 seconds. 'Ibis put

a constraint on the algorithm's performance. Although it was small, suffi-

cient response was obtained with this value for the window. A larger window

was attempted, but the chi-squared plot did not provide enough information

regarding the relative time of failure. It simply ramped upward, peaked at

about 3500 seconds, and then ramped downward to zero again at 7200 seconds.

This was deemed insufficient for detection considerations.

The TAN residual behavior for the federated filter, Figure 1.6, barely

indicates the failed condition of the TAN sensor at 4500 seconds. The

transient upon the removal of the failure is more evident than the initial
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transient. Again, this failure exhibits the minimum constant bias detectable

by this algorithm.

The TAN residual behavior for the centralized filter, Figure 1.3, allows

for very easy detection at the 2000 second mark, but the true TAN failure does

not occur until 4500 siconds. The failure at 4500 seconds is easily

detectable, but the magnitude of the failure indication is far less than for

the period where the TAN residual is affected by the GPS failure. The

potential for failure misidentification is indicated by this behavior.

The window for calculations in the detection algorithm for the TAN

residuals was chosen to be 15 sample periods. This proved to be adequate for

both filter designs because the measurements were available every 10 seconds,

and the plot characteristics were quite responsive to the failure indications.

The window size for any -f the applications of the chi-squared detection

algorithm was a variable. Although several -alues could have been used for

GPS and TAN residuals, the window size was left relatively small intentionally

to maintain an equitable view when considering the constrained calculations of

the SAR detection scheme.

This detection algorithm does not allow the individual residual failure

indications to be identified. All of the residuals for one sensor are handled

by the algorithm simultaneously, yielding only an indication of a whole sensor

failure. More information might be obtainable if the residuals were treated

independently for failure identification. This could possibly provide more

options for reconfiguration of the failed system.

4.5 Additional Fault Tolerance Topics

As a result of the literature review and personal consultations with Dr.
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Neal Carlson (1,2,3,4), additional comments should be made regarding the FDI

capability of the federated filter design. The objective of this section is

to reveal the additional possibilities available to the federated filter

design with regard to fault tolerance and detection. Specifically, residual

monitoring of the local filters is not the only method for fault detection in

the federated filter design. The federated filter supports sensor fault

detection at both the local and master filter levels, to include the INS, via

residual monitoring.

The individual local filters can accumulate sufficient sensor informa-

tion such that a sensor soft failure has more time to reach a detectable

magnitude before it meets the residual tolerance testing in the master filter.

Each local filter maintains its corresponding sensor bias states. Once a

sensor fault has occurred, an uncorrupted navigation solution will still exist

in the other local filters. Thus a clean navigation solution will be

available immediately.

The master filter also provides some additional capability to detect and

isolate INS failures. The propagated master filter solution allows an INS

fault to be more visible than in the local filter solutions, when the master

filter uses no external sensor data between fusion updates. This is

especially so when the master filter contains an enhanced INS truth and filter

model in comparison to the local filter models. Up to this point, the INS

failures have not been considered for detection, but do pose an interesting

problem. Gradual INS failures can be the most difficult failures to detect.

The no-reset mode of the federated filter design provides an important

advantage regarding fault tolerance. Once a fault has been detected from a

sensor-dedicated filter, a new master filter solution can be generated
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immediately from the remaining local filter solutions. In contrast to this,

unless detected, the centralized filter will distribute a failure into all of

the navigation state and sensor bias estimates. If the centralized filter

incorporates the bad information into its solution, it becomes irreversibly

corrupted. Consequently, the only safe means of recovery is to reinitialize

the centralized filter solution.

4.5 Summary

The topics covered in this chapter encompass the essential aspects of

the research accomplished for this thesis. The error state estimation

accuracies of the centralized and federated filter designs were witnessed and

indicated excellent results for both filters. The residual monitoring from

both of the filter designs revealed some of the fault tolerance and fault

identification capabilities. One of the most difficult faults to detect was

investigated, the ramp bias, and revealed some of the difficulties associated

with gradual sensor failures. Chapter V provides the conclusions and

recommendations drawn from these results.
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V. Conclusions and Recommendations

5.1 Overview

The comments of this chapter are provided as an objective opinion based

on the results and observations, along with the theoretical considerations,

obtained from the research effort put forth. Discussions of the main purposes

of this thesis follow, including the comparison of the error state perfor-

mances, the fault detection considerations, and the software tool itself,

DKFSIM Version 1.1. Recommendations for further study are also provided as

additional insight into the potential for future usage.

5.2 Filter Error States

The error-state estimation performance comparison c-f the centralized and

federated filter architectures establishes a reasonable basis for considering

the federated filter design as a viable alternative to centralized filtering

for future filtering implementations. The two filter designs performed with

very nearly the same accuracy when estimating the 29 error states using the

ten-run Monte Carlo analysis. The critical aspects of this comparison

involved a visual and numerical analysis of the filters' performances in

estimating the INS error states.
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Although it was not necessary to compare the sensor bias states, one-

for-one, the comparison done in this thesis depicted the two filter error

state estimation accuracies also as nearly equal. The sensor bias states are

not considered the prime motivation for this effort. However, with the

exception of some of the one-sigma bounds of the federated filter being larger

than those of the centralized filter, the overall comparison of the error-

state estimation performances showed the federated filter's performance

resulted in no significant loss of accuracy compared to the centralized

filter's performance. This eliminates the contention that the federated

filter should be ruled out of the possibilities for future implementations in

aircraft avionics systems because of the disparity in the accuracies of the

two filters. This result is based on the use of the GPS, SAR, and TAN sensors

with the medium-accuracy strapdown INS, under normal conditions.

Also, the filter designs under scrutiny performed excellently

considering the variations in the flight dynamics of the aircraft for the

flight profile used. It is easily seen that the two filter designs compare

quite well in all aspects during all phases of the simulations.

Additional testing under simulated sensor and INS failure conditions

would allow the extended comparison of the two filters' performances. A

comparison of the error-state estimation accuracies would prove interesting

when several different failure conditions could be simulated during the most

adverse flight conditions in this flight profile. Filter stability factors

could prove to be an additional deciding factor under certain high-dynamic,

failed-sensor circumstances. Improved modelling of the subsystems would

facilitate enhanced simulations involving higher flight dynamics. It appears

that the error-state performance suffers during these high-dynamic manea'.vers.
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The best way to seek out the solutions to these problems is to attempt to

simulate them more efficiently and then to allow for proper compensation in

the systems.

5.3 Fault Detection Considerations

The conclusions formed regarding fault detection and fault tolerance

make up the bulk of the objective of this thesis because the two filter

designs were deemed comparable in their estimation accuracies. Although the

software did not lend itself easily to the task of fau:t detection, it proved

to be adequate for this purpose.

Residual monitoring of the local filters was decidedly the most

efficient implementation of fault detection of all the options available.

This task was necessary, not only to monitor the sensor-dedicated local filter

residuals, but it also was necessary because local filter #1 implements the

centralized filter operations. The centralized filter residuals would have to

have been monitored under any circumstances. Thus, the objective of detecting

a sensor failure for a centralized or federated filter was accomplished while

minimizing the source code changes.

The performances of the two filter designs under failed-sensor condi-

tions revealed their respective fault tolerance capabilities. The obvious

choice for fault tolerance would have to be the federated filter design using

the no-reset mode because the sensor-dedicated filters' measurements and

navigation solutions are kept independent. Other federated filter modes do

not offer the same tolerance, and yet they also do not offer sufficient

justifica-tion to select them over the no-reset mode with regard to estimation

accuracy.
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The centralized filter suffers from the lack of accurate sensor fault

identification when a failure occurs. It is noted that the exception is the

hard failure which exists and is detected immediately, and the filter rejects

that bad information immediately. If the detection is not immediate and the

failure information is incorporated into the navigation solution, missed

detections and false alarmi appear inevitable under almost any failed

conditions. Thus, a perfectly good sensor may be removed from the navigation

solution. This is based upon the level of confidence the filter places on the

particular sensor's accuracy. The GPS is so dominant that the filter would

have more confidence in its measurement information than that of the SAR or

TAN under these circumstances. This is the reason for the GPS residuals not

reflecting any impact from the TAN failures.

The federated filter allows for a more efficient voting scheme because

the residuals from the local filters are not affected by the other sensor's

bad information. This is limited to the level of accuracy of each of the

respective sensors. It would take a great deal of error on the part of the

CPS before the TAN and SAR could vote that filter out of the master filter

navigation solution.

While the master filter will enhance the fault detection of the INS, it

is still considered efficient to monitor the residuals of the local filters

for sensor failures because of the advantages of the separation of the

navigation solutions in those filters. Any further fault detection enhance-

ments to DKFSIM should be seriously considered as viable alternatives to the

existing fault detection schemes implemented as part of this thesis.
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Additionally, failure modelling would allow more complicated failure

modes in the sensor operations. Perhaps, for the CPS system, allowing for

three or fewer satellite operations, or even satellite selection based on

optimum Geometric Dilution of Precision (GDOP), would prove fruitful for

further study.

Further, INS failure modes could easily be implemented in source code.

Gradual failures of the INS appear to be a topic of great concern. The

failure simulations in the SAR and TAN systems can be relatively de-emphasized

in both filter implementations because the CPS obviously dominates the

estimation processes due to its greater accuracy. The SAR and TAN systems

proved most useful when considering the impact of CPS failures on other

systems and the aspects of filtering. It appears to be worth investigating

the SAR residuals' behavior for the centralized filter prior to the large

reactions while being affected by the GPS failed conditions. The plots were

so insignificantly small prior to these harsh responses that the residuals'

characteristic behaviors were indistinguishable.

Finally, the central conclusion here is that the detection scheme used

does not allow for the determination of the specific residuals affected by any

sensor failure, unless, like in the TAN sensor, there is only one residual to

affect. The federated filter allows better sensor-fault isolatior than the

centralized filter. Consequently, the centralized filter suffers from false

alarms in the fault detection scheme, while the federated filter does not.

This proves to be a critical deficiency of the centralized filter's ability

for system reconfiguration under sensor-failed conditions.
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5.4 DKFSIM Version 1.1

This version of DKFSIM has a great deal of capability, but with respect

to fault tolerant testing, this tool was deficient as received and therefore

modified. The ability to simulate the federated filter was limited to two

modes, however, the most important mode of operation was available, the no-

reset mode. In addition, the centralized filter implementation was available

to provide the essentials for the comparison of the two designs.

Improvement to the software could be wide-ranging, covering many

aspects. Perhaps, one of the most important aspects of fault detection is the

application of the detection algorithm. If the software had this algorithm

included such that it could provide detection information to the output data

files, then failure analysis, and possibly system reconfiguration, could be

performed on line while the simulation is being performed. This might also

include some Multiple Model Adaptive Estimation (MMAE) considerations. Thus,

enhancing the possibilities for system reconfiguration testing under failed

subsystem condicions.

As a further suggestion for software enhancements, it would certainly be

beneficial to augment the data output capabilities to include an ensemble

average of a ten-run, or more, Monte Carlo analysis. By utilizing an ensemble

average for the comparisons, the error-state behavior is more efficiently

characterized, thus yielding a more valid comparison. Lastly, it would seem

important to include all of the ten-run statistics when calculating the one-

sigma values for each error state.
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5.5 Summary

The potential for follow-on study is great in this area. The federated

filter is an excellent implementation of filtering theory. Comparisons of the

federated design to the centralized design will likely be carried on into the

twenty-first century. Hopefully, any advancements in filtering theory which

enable engineers to simplify the task of obtaining a navigation solution under

normal or failed operating conditions will be utilized to their full

advantage. This study definitely shows that the federated filter is worthy of

serious consideration under any circumstances.
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Appendix A: Centralized Kalman Filter Error State Plots

GENERAL INFORMATION

Each of the error state plots contained in this appendix are obtained

from Monte Carlo simulations using DKFSIM Version 1.1. All error state

outputs are recorded for the entire 7200 second duration of the simulation.

The information provided represents error state outputs at the time of the

measurements, after the update cycle, and after the propagation cycle-, plotted

versus time in increments of five seconds for the centralized Kalman filter

algorithm.

Ten simulations were performed for each state. Therefore, the plots

provided represent the ensemble average of the error state output data plus

the upper and lower one-sigma bounds computed for that state. The one-sigma

bound was computed only for the first Monte Carlo simulation.

There are 29 plots, one for each centralized filter error state. Each

plot has the state designation along with its corresponding error definition.

A listing of the titles of each these figures is found in the List of Figures

at the beginning of this document.

KEY TERMS

1. ECEF: Earth-Centered-Earth-Fixed coordinate frame.

2. Yaw, Pitch, and Roll Axes: Body Frame with respect to the aircraft.
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Appendix B: Federated Filter Error State Plots

GENERAL INFORMATION

Each of the error state plots contained in this appendix are obtained

from Monte Carlo simulations using DKFSIM Version 1.1. All error state

outputs are recorded for the entire 7200 second duration of the simulation.

The information provided represents error state outputs at the time of the

measurements, after the update cpzle, and after the propagation cycle, plotted

versus time in increments of five seconds for the federated filter algorithm.

Ten simulations were performed for each state. Therefore, the plots

provided represent the ensemble average of the error state output data plus

the upper and lower one-sigma bounds computed for that state. The one-sigma

bound was computed only for the first Monte Carlo simulation.

There are 29 plots, 16 for each master filter error state, plus the

error states associated with the sensor dedicated local filter. Each plot has

the state and filter designation along with its corresponding error defini-

tion. A listing of the titles of each these figures is found in the List of

Figures at the beginning of this document.

KEY TERMS

1. ECEF: Earth-Centered-Earth-Fixed coordinate frame.

2. Yaw, Pitch, and Roll Axes: Body Frame with respect to the aircraft.
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Appendix C: Centralized Filter Baseline Residual Plots

GENERAL INFORMATION

The series of plots in this appendix allows for a baseline comparison

for the fault detection considerations of this thesis. Establishing the

specific expectations for the centralized filter residual behavior during

normal operating conditions with no induced failures is the intent.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIM Version 1.1. All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

values were extracted from two different locations in the software operations.

Residuals which fall within the designated tolerance for that particular

sensor are output to the data file normally. Residuals which are rejected by

the filter due to excessive magnitude were picked off prior to rejection.

This allows for continuity in the residual data point plotting regardless of

whether or iot the filter uses the measurement for an update cycle. This is a

critical aspect of the filter residual monitoring scheme for fault detection.

The residual outputs and the upper and lower one-sigma bounds were computed

for one Monte Carlo simulation.

There are 16 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the appropriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this documenc.
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Appendix D: Federated Filter Baseline Residual Plots

GENERAL INFORMATION

The series of plots in this appendix allows for a baseline comparison

for the fault detection considerations of this thesis. Establishing the

specific expectations for the federated filter residual behavior during normal

operating conditions with no induced failures is the intent.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIA Version 1.1. All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

values were extracted from two different locations in the software operations.

Residuals which fall within the designated tolerance for that particular

sensor are output to the data file normally. Residuals which are rejected by

the filter due to excessive magnitude were picked off prior to rejection.

This allows for continuity in the residual data point plotting regardless of

whether or not the filter uses the measurement for an update cycle. This is a

critical aspect of the filter residual monitoring scheme for fault detection.

The residual outputs and the upper and lower one-sigma bounds were computed

for one Monte Carlo simulation.

There are 16 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the apprcpriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this document.
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Appendix E: Centralized Filter Residual Plots

Soft Failure - Constant Bias

GENERAL INFORMATION

The series of plots in this appendix allows for a comparison of the

fault detection considerations of this thesis. Establishing the specific

results for the centralized filter residual behavior during simulated failed

operating conditions with the failure represented as a constant bias of

reasonable magnitude added directiy to the residual computation from 1000 to

3500 seconds on the GPS Satellite #1, PseudoRange-Rate residual, and a

constant bias added directly to the residual computation from 4500 to 6500

seconds on the TAN Ground Clearance residual.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIM Version 1.1. All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

outputs and the upper and lower one-sigma bounds were computed for one Monte

Carlo simulation.

There are 16 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the appropriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this document.
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Appendix F: Federated Filter Residual Plots

Soft Failure - Constant Bias

GENERAL INFORMATION

The series of plots in this appendix allows for a comparison of the

fault detection considerations of this thesis. Establishing the specific

results for the federated filter residual behavior during simulated failed

operating conditions with the failure represented as a constant bias of

reasonable magnitude added directly to the residual computation from 1000 to

3500 aeconds on the GPS Satellite #1, PseudoRange-Rate residual, and a

constant bias added directly to the residual computation from 4500 to 6500

seconds on the TAN Ground Clearance residual.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIM Version 1.1. All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

outputs and the upper and lower one-sigma bounds were computed for one Monte

Carlo simulation.

There are 16 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the appropriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this document.
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Appendix G: Centralized Filter Residual Plots

Soft Failure - GPS Ramp Bias

GENERAL INFORMATION

The series of plots in this appendix allows for a comparison of the

fault detection considerations of this thesis. Establishing the specific

results for the centralized filter residual behavior during simulated failed

operating conditions with the failure represented as a ramp bias of reasonable

magnitude added directly to the residual computation from 1000 to 3500 seconds

on the GPS Satellite #1, PseudoRange-Rate residual, and a constant bias added

directly to the residual computation from 4500 to 6503 seconds on the TAN

Ground Clearance residual. The TAIL bias was left unchanged for simplicity.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIM Version 1.1, All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

outputs and the upper and lower one-sigma bounds were computed for one Monte

Carlo simulation.

There are J.6 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the appropriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this document.
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Appendix H: Federated Filter Residual Plots

Soft Failure - GPS Ramp Bias

GENERAL INFORMATION

The series of plots in this appendix allows for a comparison of the

fault detection considerations of this thesis. Establishing the specific

results for the federated filter residual behavior during simulated failed

operating conditions with the failure represented as a ramp bias of reasonable

magnitude added directly to the residual computation from 1000 to 3500 seconds

on the GPS Satellite #1, PseudoRange-Rate residual, and a constant bias added

directly to the residual computation from 4500 to 6500 seconds on the TAN

Ground Clearance residual. The TAN bias was left unchanged for simplicity.

Each of the residual plots contained in this appendix are obtained from

Monte Carlo simulations using DKFSIM Version 1.1. All residual outputs are

recorded for the entire 7200 second duration of the simulation. The residual

outputs and the upper and lower one-sigma bounds were computed for one Monte

Carlo simulation.

There are 16 plots, 8 for the GPS, 7 for the SAR, and one for the TAN

sensor measurements. Each plot has the appropriate residual description. A

listing of the titles of each these figures is found in the List of Figures at

the beginning of this document.
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Appendix I: Centralized and Federated Filter

Chi-Squared Detection Algorithm Plots

GENERAL INFORMATION

The series of plots in this appendix allows for a comparison of the

fault detection considerations of this thesis. Establishing the specific

characteristics of the centralized and federated filter residual behavior

during simulated failure-mode conditions is the intent.

Each of the plots contained in this appendix are obtained from an

application of the chi-squared algorithm on the Monte Carlo simulations from

DKFSIM Version 1.1. All chi-squared values are recorded and computed for the

entire 7200 second duration of the simulation.

There are 6 plots, two for the GPS, two for the SAR, and two for the TAN

sensor measurements. The first set of detection plots applies to the central-

ized filter residual output data files corresponding to the GPS, SAR, and TAN

sensors. The second set of detection plots applies to the federated filter

output data files corresponding to the GPS, SAR, and TAN sensor dedicated

filter residuals. A ramp bias failure was added to the PseudoRange-Rate

residual for GPS Satellite #1 for both filter designs. Both sets of data

include the effects of the constant bias added to the TAN sensor filter

residual.

Each plot has the appropriate description. A listing of the titles of

each these figures is found in the List of Figures at the beginning of this

document.
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Appendix J: Federated Filter

Input Data Control File Example

GENERAL INFORMATION

The data file in this appendix is a sample of the input data. control

files, named indata.dat, used for this thesis effort. The parameter values

and switches are indicative of the simulations performed for the federated

filter design.

This particular input data file requires the first state and its one-

sigma values output in ASCII format. Ten runs are accomplished for durations

of 7200 seconds each. Local filter #1 is dedicated to the GPS sensor. Local

filter #2 is dedicated to the SAR sensor array. Local filter #3 is dedicated

to the TAN sensor. The no-reset mode is selected for the federated filter's

operating mode.

There are a maximum of 29 states selectable per local filter and 16

states for the master filter. The INU model used is the AGBIAS model,

implying a 16-state INU filter model. The GPS model used is the GPS5 model,

implying a 5-state GPS filter model. Various tolerances and time segments are

specified in this example to show the possible variations. For a description

which elaborates on the meaning and options for each variable in this data

file, please refer to the DKFSIM user's manual, reference (9).
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EXAMPLE OF "INDATA.DAT" CONTROL FILE

"nKF SIMULATION TITLE - ', 'DKFSIM PR2LIMINARY PRODUCTION RUN',

SLKULATION PARAMETERS, INPUT RANDOM NUMBER SEEDS:
$SIMCON
IRUNI - 1, IRUNL - 10,
TSTART - 0., TFINAL - 7200.,
FSEED - 0, VSEED = 9,
LTRAJ - F, FLTFIL - 'FLIGHT'
$END

OUTPUT AND POST PROCESSING CONTROL:
$OUTPPR
SCASE - 'DKF',
DHEADL(1) - 'LF/GPS - GPS5/INU16
DHEADL(2) - 'LF/SAR - SAR/INU16
DHEADL(3) - 'LF/TAN - TAN/INUI16
DHEADL(4) -
DHEADM - 'MF - GPS5/SAR/TlN/INU16

STYP - 'NONE', UPSTAT - F,

MPLOT - F,
OUTASC - T,
OUTERR = T, OUTSIG = T,
EFSAV - T,

DTSTAT - 1000.,
LPLOT - F, LPLMES - F,
LPTRAJ - F, LPTASK = F,

LFSOUT(I,I) - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

LFSOUT(1,2) = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

LFSOUT(1,3) = 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

LFSOUT(1,4) - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

MFSQUT(1) - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

$END INDEX--> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13: 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 3J, 32
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FILTER DEFINITION
$FILDEF
MFON -T,

NLF- 4, LREF- 4,
LFON(1) - T, T, T, F,
LF2MF(1) 1, 1, 1, 0,
BETLLO(1) - 1.0, 1.0, 1.0, 1.0,
BETLCO(1) - 0.33, 0.33, 0.33, 0.,
BETMLO(1) - 0., 0., 0., 0.,
LNAME(1) - 'GPS5', 'SAR', 'TAN4, 'REF',
i3ETMCO - D.,
DTLF - 5., DTMF - 5., DTFUSO= 10., DTFDI - 0.,
FBKMDO - 'NRESET',
MFMODO - 'MFLOCAL',
LSHAP - 'LOWER',
MSHAP - 'LOWER'

NSEN - 5,
SNAME(1) - 'GPS!, 'SARPV', 'SAREO', 'TAN', 'BARO',
TSENO(1) - 0., 0., 0., 0., 0.,
S2LF(I,I) - 1, 0, 0, 0, 0.,
S2LF(1,2) - 0, 1, 1, 0, 0,
S2LF(1,3) - 0, 0, 0, 1, 0,
S2LF(1,4) = 0, 0, 0, 0, 0,
S2MF(1) - 0, 0, 0, 0, 0,
$END

INERTIAL NAVIGATION UNIT (INU) PARAMETERS
$INUPR
DTINUR 1 I.,
SGGBR - 3.889E-8, TCGBR = 3600..
SGGSR - 2.E-6, SGGMR = 15.E-6, SGGADR = 8.6E-11,
SGABR - 1.283E-3, TCABR - 3600.,
SGASR - 60.E-6, SGAMR = 50.E-6,
NPHIR - 3.4028E-13, NVR - .000!,

SGGVR - 1.123E-3, SGGHR - .802E-3,
DCGR(1) - 5.804E4, 5.804E4, 3.696E5,

DPO(1) - 10., 10., 10.,
DVO(1) = .05, .05, .05,
DTHO(1) = 1OE-6, 1OE-6, IOOE-6,
ALNMOD - 'SIMALN',

BARDMP - F,
KBAR1 - .02, KBAR2 = 1.03E-4,
$MND
DPO(1) - 100., 100., 100.,
DVO(1) - 1.0, 1.0, 1.0,
DTHO(1) - 100E-6, 100E-6, 500E-6,
ALNMOD - 'AIRALN',
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SINUPC
INUMOD - 'AGBIAS',,
SGGBC - 3.889E-8, TCGBC - 3600.,
SGGSC - 2.E-6, SGGMC = 15.E-6, SGGADC 8.6E-11,
SGABC - 1.283E-3, TCABC - 3600.,
SGASC - 60.E-6, SGAMC - 50.E-6,
NPHIC - 8E-12, NVC - .0004,

SGGVC - 1.123E-3, SGGHC - .802E-3,
DCGC(1) - 5.804E4, 5.804E4, 3.696E5,

TCHAGC - 10., TCHGGC = 10., TCVTHC - 10.,

DTIFBC - 10., KIFBC - 1.,

SGPNOC(1) - 100., 100., 100.,
SGVNOC(1) - 1.0, 1.0, 1.0,
SGFNOC(1) - 100E-6, 100E-6, 500E-6,
$END

GLOBAL POSITIONING SYSTEM (GPS) TRUTH PARAMETERS
$GPSPR
NSATR - 5,
TREFG - 2200., LONG - -84.3, LATG - 47.2,
RGPS - 84E6, IGPSD - 55., GEIMIN - -90.,
AZMOD(1) - -80., 80., 180., 180., 180.,
ELVOD(1) - 20., 20., 20., 70., 45.,

NGPSSG - 5,
DTGPS(1) - 5.0, 5.0, 5.0, 5.0, 5.0,
TGPSSF(1) - 1600., 2300., 2400., 3600., 9999.,

SGCPOT - 10000.,
SGCFT - 0.05, TGCFT = 1800.,
SGCFAT - .0015,
SGIRT = 10., TGIRT - 3600., ZGIRT = 0.7,
SGSRT - 10., TGSRT - 3600., ZGSRT 0.3,
SGTRT - 5., TGTRT - 3600., ZGTRT - 0.7,
SGRPNT - 20., SGRFNT - 0.075,
USESAT(1) - T, T, T, T, F,
USEPR - T, USEPRR T,
OUTSAT = F,
$END
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GPS FILTER PARAMETERS:
$GPSPC
GPSMOD - 'GPS5',
SGCPOC - 10000., SGCFOC - 0.05,
SGCFC - 0.05, TGCFC - 1800.,
SGCFAC - 0.0015,
SGRPNC - 20., SGRFNC - 0.075,
SGTRC - S., TGTRC = 3600.,
SGIRC 10.,
SGSRC - 10.,
NGCPC 1.0, NGSRC - 1.0,
TOLGPR 5., TOLGRR- 5.,
$END

SAR-EO SYSTEM PARAMETERS, REAL-WORLD
$SEOPR
NSEOSG - 2,
DTSEO(1) - 300., 300.,
TSEOSF(1) - 3000., 9999.,

SSRSFR - .0004,
SSLMR - 50., DSLMR - 50000.,
SSRBR - 100., TSRBR = 600.,
SSRRBR- .1,' TSRRBR - 600.,
SSABR - .001, TSABR = 600.,
SSEBR - .001, TSEBR - 600.,
SSRNR - 50., SSRRNR - 0.1, SSANR - .0005, SSENR - .0005,
UREOR - T, URREOR - T, UAZEOR - T, UELEOR - T,
SRNGHX - 500000., SAZMMX = 4., SELVMX - 4., WBMAX- 100.,

NSEOTG - 4,
DR(1) - 125000., 125000., 125000., 125000.,
CT(1) - 25000., -25000., 25000., -25000.,
ALTLM(1)- 5000., 5000., 6000., 8000.,
DTTARG(1) = 100., 100., 100., 100.,
$END

SAR-EO SYSTEM PARAMETERS, COMPUTER
$SEOPC
SSRSFC - .0004,
SSuMC - 50.,
SSRBC - 100., TSRBC - 600.,
SSRRBC - .1, TSRRBC - 600.,
SSABC .001 TSABC - 600.,
SSEBC a .001, TSEBC - 600.,
SSRNC 50., SSRRNC = 0.1, SSANC - .0005, SSENC - .0005,
TOSRN a 5., TOSRRN - 5., TOSAN - 5., TOSEN - 5.,
$END
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SAR-PVU SYSTEM PARAMETERS. REAL-WORLD
$SPVPR
NSPVSG - 2,
DTSPV(1) - 300., 300.,
TSPVSF(1) - 3000., 9999.,

SSVNR - .5,

SSVMR - .001,
SSVSR - .001, TSVSR = 1000.,
SSVBR - 1., TSVBR 1 1000.,
UPV(1) - T, T, T,
SALTMX = I.E6, VMIN - 100.,
$END

SAR-PVU SYSTEM PARAMETERS, COMPUTER
$SPVPC
SSVNC - .5,
SSVMC - .001, TSVMC - 1000.,
SSVSC - .001, TSVSC = 1000.,
SSVBC - 1., TSVBC - 1000.,
TOSVN = 5.,
$END

BARO-ALTIMETER INPUT DATA 4-10-89 HRM
$BARPR
NBARSG -

DTBAR(1) - 10.0,
TBARSF(1) - 9999.,

SBBR - 200.,
DBAR - 6.8E6,
SBSR -, .03,
SBTDR = .25,
SBSPR - 1.5E-4,
SBNR - 10.,
UBARO - T,

$END
SBBR - 500.,
DBAR - 1.25E6,

$BARPC
SBBC - 500.,
SBSC - .03,
SBTDC - .25,
SBSPC - 1.5E-4,
SBNC - 10.,
DBAC - 1.25E6,
TOBAN - 5.,
$END
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NTANSG -
DTTAN(1) *. 20,
TTANSF(1) 9999.,

NMAPI - 3,
SRABR •- 20., TRABR - 600., SPJQ.R = 10.,
SRASFR - .001,
TERTYP - -1I
STERI -- 150., DTtBR 5 5000.,

STMFER - 45., DTMFER 5000., STMVER - 15.,
DLA'TR - IOE-6,
DLONR -- 14E-6,
UTANO - T

ELBOR - -2000.,
NTERSG - 3,
STSAR(1) = 05, .10, .05,
DTEAR(1) - 1800., 1800., 1800,,
ZTEAR(1) - 2., 2., 2.,
STSCR(1) = .05, .10, .05,
DTECR(1) - 1800., 1.800., 1800.,
TTERSF(1) - 2600., 3300., 9999.,
SEND

$TANPC
SRABC - 20., TRABC - 600., SRANC 50.,
SRASFC = .001,
STSC = 0.1,
STMHC = 150.,
STMEC = 45., DTMEC = 5000.,
TLTANA - 5.,
$END
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