

AFIT/DS/ENG/93-11

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

DISSERTATION
Nancy L. Crowley, Major, USAF

AFIT/DS/ENG/93-11

93-23852
TR

Approved for public release; distribution unlimited

03 10 8 041

AFTT/DS/ENG/93-11

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

DISSERTATION

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Education and Training Command
In Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy

Nancy L. Crowley, B.S., M.S.

Major, USAF
"PTIC QUALITY INCFCi=U &

September 1993

Accession ror

NTIS GRAZI T4

DTIC TaB
Approved for Public Release; distribution unlimited Unannounceq 0
Justiry cation |

\
By
Mzi'?u}.}_@./‘“
Availgpility fodes

Avail andsor
Dist Special

ﬂ l
*
H pry 3
vi,&j
TV ey
e

AFIT/DS/ENG/93-11

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

Nancy L. Crowley, B.S., M.S.
Major, USAF

Approved:)
/ﬂcﬁ 17 Ay 3

/18 Ave 93
/8 g 73
V4
EA, 73

|6 A6 93

Accepted:

/\zé/ 93

Dean, School of Engineering

The correct capture of user requirements is an essential and difficult first step in
software development. One method that aids in this process is object-oriented
requirements analysis (OORA). This process makes use of method and domain
knowledge to develop an object-oriented requirements specification. This research
developed an object-oriented model that could be used as a basis for an automated system.
An automated system, called the OORA Automated Knowledge System (OAKS), was
also developed. OAKS assists in the development of an object-oriented specification
through the use of domain knowledge and knowledge of the structure of an object-
oriented requirements specifications and the relationships among its components.

There are two people that deserve thanks for their help in getting me through this
research. First, many thanks to my advisor, Lt Col Patricia Lawlis, who was always there
to lend a hand when I necded it and whose encouragement kept me going. A special
thanks to my husband, Bruce, for always being there tor me yet giving me the space to

work the long hours.

3 {51 € (& T RO RO OR RO URR]
Table Of CONENLS.........oooiiiiiiiiirert ettt ettt e s ee e nee e aessnaesennes v
LASE O FRBUIES ..ttt e et et e et e s eta e sneee s viii
LSt Of TabIES ...ttt e et e e ennnes X
List Of ABDIEVIAIONScooiiiiiiiiiiieiicii ettt e eve e e e e e nree e e ennns X
LiSt OF SYMDBOLS <ot xi
ADSITACT ..ceieeiiiieeiieeee e e e e et e e s tt e e s e e s st e e e s st e s s b et e e s taeee s eaeeenaneeeeenstaeaeennsteanans Xii
I. Background and Statement of the Problem...........coooiiiiniininiiiiieieeec 1-1
BaCKZrOUNd . ..ottt e st s e e s e e 1-1
OVETVIEW ittt ettt e et e s te st aessee e e s e e esne s sraannsseesneeenns 1-1
Object-Oriented Requirements Analysis.......cccooceieeiiiiiiiniieeeccineneennnen. 1-1
ODBJECT ..ttt ettt e e et a e e a e e sana e et e e e e s aneeans 1-3
ClaSS ..ottt ettt ettt e e e a e e e e aa e e s s b e e e sanaeenneean 1-3
AUIIDULE <.ttt e s ne e ses e et e e e nneeenes 1-3
SEALE -ttt e e e et e et e s e e st ee e e et e e e naeeensaenns 1-4
SEIVICE ... uteeuitreicite ettt ettt e st e e e st e s as et e e ae e seeaanaa e sen 1-4
Protocol... ...ttt e 1-4
INREIIANCE ...ttt e e et e e s eee e s ve e e e 1-4
General Relationships........c.ooooveeiciiinininininccctnce e 1-5
MesSage PaSSING ...c.oeeemiiiiiiiiiitc e 1-6
OORA Process SIEPS .c..evienveiiiiiiiiteceeeeitecie ettt eeneeaeaane s 1-6
Statement of the Problem...........ccoooiiiiiiii e 1-8
II. LIterature REeVIEWccooiiiiiiiieieceiente ettt et ettt et eeeee s e e e aae e enee s 2-1
OVETVIEW ...ttt ettt s e snt e e sb et e st e e seeeesee e e et asssneasans 2-1
ReqQUIremMEnts ANALYSIScovverecerrieeeeeniienteeirressestesreeesseeaeeseesseeessessaseseeenns 2-2
Requirements Analysis Systems Using Artificial Intelligence Technology 2-8
Object-Oriented Domain Analysis.........c.ccoeiviiiecinnininnnnneeeeeeeee e 2-11
Object-Oriented Requirements Analysisccoeecveeeviirrerieerieennrieeeieeeveeeneenn 2-12
Background ... 2-12
Finding Classes and ObJECtScocoriiiiiriciiiireieeeeceeccte e 2-14
Defining the Inheritance Structure.............ccccoeiriirieninicesenieceerrenen. 2-15
Defining Object Relationships.........ccceeeiiiviiniiniceiiiciiinieeneecreeeeen. 2-17
Defining Class AtHbULES..........oceeeviiiiiiiiierteeeeceeeeceee e 2-18
Defining Class SEIVICESccuiiviiviiriiiieicetrree ettt 2-20
Developing a State Model For Each Class..........c.cccecoveiieeeinienniannee.. 2-21
EXIStNE SYSIEMS......covriiiiiiiiieiitiir ettt 2-22
Systems That Use a Natural Language Front End..................cccooo... 2-22
Systems Using Constrained Input, Not Formal Language, as the
INput FOMM....coii e, 2-25
Systems Using Formal Language as Input and Representation of the
SPECIICALON ..ottt ettt st e s e 2-30

v

Relationship of Technology Area 1o OAKS....oo e 2-32

OVEIVIEW Lottt et ene e eneen 2-32
Requirements Analysisoooviiiiiiiiiiniiiiiecee e 2-32
Requirements Analysis and Artificial Intelligence................................. 2-33

OODA ... ettt 2-33

OORA ... ettt te e e rae e eaean 2-33
EXISUNG SYSEMSeeiniiieieeiticeet ettt e et e eaae e e 2-34

III. MEthOAOLOZY ... eeeeeieeeieiieeeeec ettt e ete e et aaa e e e e e e e eaneaans 3-1
OVETVIEW ...ttt sn st r e e et e easa et e e s saaassaeasasaeenseaennns 3-1
Step 1. Define an OORA Mathematical Model...............ccccnvnn 3-3
Step 2. Define Acquisition and Evaluation of the OORA Model....................... 34
Step 3. Detine Application of Guidelines and Rules.............coccooiieiiniinniinnnnn. 3-5
Step 4. Prototype OAKS L. 3-6
Step 5. Test the OAKS Prototype.......cooovvciiiieniieeciiiiireceeeiee e 3-7
Step 6. Analyze the Results...........oooooire e 3-8
IV. OORA Mathematical Model...........cccceoiiiiiiiiiiiiieeceec e 4-1
GENETALootiiiieiteeee ettt et et e sttt e e e b e e ts et a b e nsea e neaeananns 4-1
Class ALTDULESooiieiiiiiieeiieee ettt cee et ae st e e s s e aasssessnnaenaes 4-1
ClaSS SEIVICES ... ecieitiiiiirtieeeee ettt sttt st ssae st e s ea e s sea e anae 4-3
CLASSESeeeereeeeieeeenteraiteesnteseas e e e et e e sas e s as e e nte s sae e s s men e e st e s st e eeanraesnntansanananne 4-8
Inheritance RelationShip..........coovuiieiiiniiiiiiiitittccte et a s eas 4-9
Whole/Part Relationshipcc..cooiviieiiiiiiiiiiirccce e 4-11
Other RelationShipscccoceeiiireiireieiecerr ettt s sae e e s e s e s e 4-13
CONSLIAINESeeeiiiiieieenee ittt et et e as s b s s e ms e e ba e meeeas 4-16
SUDJECLS ..ttt ettt sttt r e ae 4-17
The OORA MOdEL......ooiiiiiiiiicce ettt 4-17
Ordering of OORA Model Components..........ccoociviiieenenneninereseneeenneeenees 4-18
V. Acquisition and Evaluation of COmMPONENtS........c..occciiiiiiiiiiiiiiiiiieee e 5-1
OVETVIEW ...ttt ettt eat ettt soate s ran e s et e s aeeeenseeseneanesneeanns 5-1
St O _ClaSSES....c.eeeeeeeeeieereeieieeeeeeireetreeererrerursseeeseseeeeseereannanesssassssssmennamasnns 5-3
Superclass Relation.........cccoiiiiiiiiniiiiiiiec et e 5-9
WHhOIE/Part SETUCLUTEcc.eeiiiiieceiicetiecie ettt e e e et e e ne e 5-11
Class_State_SPACE.....cciiieirirririieetirte sttt e et e et e saeeessae s e rna e s st e e e nraaanans 5-12
Other RelationSRIPSocveevceiiieiecereeeecci ettt et ae s es 5-14
SEIVACES ...uerieiieetecuteeet ettt st sae s e s e s b e et e e s anenanenn 5-15
WHhOIE MOdEL.......ooiinniiiiie ettt ettt et ee e s ne e 5-18
VI. Application of Evaluation Guidelines and Rules..................cocooiniiiininiiinnnnne. 6-1
OVETVIEW ...ttt st st ss e s et e st e s e see st e s aneees 6-1
Evaluating Classesccceivierrernerriiiniinciee sttt sve st e saasieens 6-2
Evaluating the Inheritance Relation.............ccooiiiiiiiiiiiiiiiicicieniencee 6-5
Evaluating the Whole/Part Relationc.cccooeeviiriiiinniiiniciiiciieece e 6-7
Evaluating the Class State Space..........cccccvveviiriiiiiiiiiiiintcnceer et 6-8
Evaluating Other Relationshipscccceeeeeiiniiicciniiceecesreeeeeee e 6-9
Evaluating ServiCes........cocoeeriiiiiiieeeiieneie ettt s et e e setaeesene e raeeeane s 6-10

Evaluaung the Whole Model.............c.oool, e 6-14

Domain-Dependent Guidelines and Rules.............oooooiiiiiieee 6-16
VIL. Prototyping, Testing and ARalysSisoccociiiiiiiiiiii e 7-1
OVEIVIEW oot e e 7-1
Domain Model Code SIWUCTUTE ..ooveinee e 7-1
CLOS Class SUUCIUTEeeoiiiiiiiiii et 7-6

CLOS AUrbUte SIRUCIUTE ...t 7-9

CLOS Service StNUCIUTC ... 7-11
Attribute and Service COMPONENLScooeieeriiiiiiie e 7-13
AUADULE ValUES....oooeiiiiiiiiie e 7-13

Input and Output Sets of SErvicescoovveevieeieriieiieeieeeee 7-17
Preconditions of SEIVICESooivimiviiiiiiiiiieeeeeeeeeeeee e 7-18
Postconditions Of SEIVICES........coooviivviiiieiicceeeeeeeeeeeeeeeee e e e 7-18
INREALANCEeiiiiii ittt e e s e e 7-20
RelationShips.......c.oooiiiiiiiii et 7-20
Example of a Class Structure..............coccoieeiiieniinieececeeie et 7-22

Entire MOdel.......onniie e 7-27
Domain-Independent Guidelines and Rulesccccceoiiiiineeiiiiiieeee, 7-28
Structure-Based Guidelines and Rulescccoovveiiiiciiiiiiiiiicnes 7-28
ClaSSES ... ueieeeeeeeeeiteee e e et e e eee et e e e e et ae e e e e e e e e naberr e e e e e enanee 7-28

ALIFIDULES ..ottt e s e 7-28

SEIVICES .neiiiieieeeeectiite e e e e ettt ee e e e e e e e e e e eeeeeanneereeaesesnsatraeeeesans 7-29
WROLE/PAIL...... ..ot e e e eeeaae e 7-30
Relationships.......ccoooviiiiiiiiie e 7-30
INRETIANCE .. 7-30

General OORA Guidelines and Rulescooveveviieiiiiiiiiiiiieeeeeene, 7-31

LSS ittt ettt et e e e e e e e e 7-31
INhETIANCE (oo 7-32

SHAE SPACE ..o 7-33

SEIVICES ..ttt eee e eeeeeseeee e e e et emeemnnnes 7-34

WHhOole MOdEL ...t 7-36

Model Evaluation.........ccccoiiiiiiiieeeieiecceeeeeeeeeee et eeee e 7-37
Domain-Dependent Guidelines and Rules...........o.coocoiiiiiiinnie, 7-41
Problem Model ModifiCatIONSoooiiiiiiiee e eeaaeen 7-42
OVEIVIEW ...ttt ettt e e eeeee et e e e e e s e s e e s e e s ameeememmenee 7-42
Change the Name of @ Classcccooceeeiiiircreiicieeceecceeie e 7-43
Change the Description of @ Classccccecveeveieeiesiieiecece e 7-45
Change the Name of an Attributeccccoooeeviiiieniiiincccceeeee 7-45
Change the Description of an Attribute...........cccccoeoeviiieeiiicieeeirecnee. 7-47
Change the A-Set Slot of an Attributecccooeeieiiiiiiiiiciee, 7-47
Change the Initial Value of an Attribute...........ccooooionniiiiiiiie, 7-49

Delete an Attribute From a Class............oveeeviviiiiiiiieineeeeeeeeeeeeeeeeeeeeeae 7-49

Add an Attribute t0 2 Classoooovvviiiiieieeceee et 7-51
Change the Name of @ Service.........cccceoriivvieninniiicecinieee e 7-52

Change the Description of @ Service ..o e e 1-52

Change the Input Set of a Service ... 7-53

Change the Output Setof a Service ... 7-56

Change the Precondition of @ Service ... 7-57

Change the Atts Slot of the Postcondition of a Servicecc..o.o........ 7-57

Change the Messages Slot of the Postcondition of a Service................ 7-60

Delete @ SErvICe oo, 7-61

Add @ SEIVICE. ..ot e 7-62

Change the Whole/Part or Relation Stucture of a Class 7-63

Change the Parents of @ Class......c....coceecveninieeeneneceeeeee e, 7-65

AQd @ ClASS ...ttt 7-67

Delete @ Class c.o.voviieeieeieee et 7-68

Verify @ Class......oooveeeiiiiiti et e 7-69

Pending ISSUES ..o e 7-70

AAVISOTY ISSUESooiiiiiiiiiiii e 7-76

USer INterface........eieeiiieeeeec et 7-77
Backgroundoccooeiiiiiiiiie et srn e 1-77

Overview of the Ulcoooociiiiiiiiiictieeeeeeecre e, 7-78

Model/Class MENUcociviiiiieiiiniiecere ettt ee e eeta e e 7-80

The Component MENUccocciiiiiiiiiie et vteeesae s 7-81

The Attribute Components Menu..........ccooiveiriiiiniinnienienieneeeeceeenn 7-83

The Service Components MenuU.........cccccoveriiiiinnienceniecnnneceeeenen 7-84

The ACtON MENU ..ottt ettt e e e eaes 7-85

Advisory Issues Button ..ot 7-94

Save BULION ...coiii et 7-94

VIII. Conclusions and Recommendationsccooiiiriieierieiniiiianieeneie e, 8-1
CONCIUSIONSeiieeeeeneiii ettt et e e ettt e e st ee e nabeaessasseeaeaveaesannranens 8-1
Recommendationsooiiiiiiiiir e 8-4
Appendix A: Domain Model...........ccooiiiiie e A-1
Appendix B: Example QAKS SesSIon.........cooiiiiiiiniiiiiiiecce e B-1
Appendix C: OAKS €Code ...t C-1
BIibHOZIaphY....c.eeiiiiiie e BIB-1

' 1 1 t f
19 — — N r= —

~N AW W

List of Figures

INREIIANCE SIMUCIUIEoiitiiiiiieieeeee e 2-16
Domain Model Creation........co.oveeeiieiiieiieeee e eee e 31
ReSCAICH SIEPS ... e 33
Inheritance Digraph........ccooiiiits e 4-11
OAKS SITUCIUTR oo e et e e ettt e e e s e e e e e e e e e e e e e ene e ans 7-3
USCE INUETTACE «oe e ettt e e et e e e e e er e eseeeeaennnnns 7-79

st of Tabl

7-1. Relationship Between CLOS Class and OORA Model...........ocooooviviiiiiiiee. 7-9
7-2 Relationship Between CLOS Attribute Structure and OORA Model................... 7-11
7-3. Comparison of CLOS Service Structure and OORA Model.............cocoeeeenn. 7-13
7-4. Legal Sets tor Attribute Values ..o 7-14

l. of !!‘V.'.

Common LISP Object System

OORA Automated Knowledge System
Object-Orented Design
Obhject-Oriented Domain Analysis
Object-Oriented Programming
Object-Oriented Requirements Analysis

Structured Analysis

I &

>

m

M

List of Symbols

Universal quantitier, for all
Existential quantifier, there exists
Function

Implication

Cross product

Member

Is defined as

Encloses an ordered pair
Encloses a set

Binary AND

Binary OR

Set union

The set of natural numbers

[s equivalent to

AFIT/DS/ENG/93-11

Abstract

This research investigated the possibility that an object-oriented requirements analysis
(OORA) specitication model can be represented in a computer system and used as a basis
for the elicitation of the informal information necessary for the development of an object-
oriented specification for a particular problem. The proof-of-concept system developed is
called the OORA Automated Knowledge Sysiem (OAKS). OAKS contains a generic
domain model that is modified to satisfy a particular problem in the domain. First, a model
was developed that captures the essential characteristics and components of an OORA
specification and the relationships among those components. Based on that model,
constraints were defined on the order in which the components must be gathered. This
intormation was used as the basis for the elicitation of requirements from the user of
OAKS and for the guidelines and rules used in evaluating the object-oriented requirements
model. These guidelines and rules were used by OAKS to evaluate the generic domain
model and the developing problem model. The OAKS system was then developed and
tested based on the model, component order, and the guidelines and rules.

The research showed that such a system is possible and useful. The generic domain
model that is used as a basis for OAKS proved to be one that contained all the essential
information needed for the development and analysis of object-oriented requirements. The
guidelines and rules encoded in OAKS provided the means to maintain consistency and
completeness in the OORA model in reference to those rules as changes were made. It
was also possible to evaluate the generic domain model prior to its use using these

guidelines and rules.

The core of QAKS is a reusable domain model, which represents a domain of interest.
The domain model is used as a basis tor user changes that are made 1o meet the specitic
requirements of a particular problem. The domain model structure was developed to
allow it to be ported to other domains of interest and inserted into the OAKS syswem.
Therefore, OAKS represents an OORA system that can be used in numerous domains to

develop an OORA specitication for a specific problem.

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

L. Background and Statement of the Problem

Background

Overview, The object-oriented requirements analysis (OORA) process is one that is
crucial to the development of software that meets the needs of the end user. There have
been numerous articles and books written on the OORA process and how the process may
be aided using a computer-based system. Because of the variance in the different OORA
processes there is a need for a well-defined uniform model that can be used as a basis for a
computer-based system to aid in conducting an OORA. This research developed an
OORA model that was used as the basis for an automated system that assists in the OORA
process. The automated system contains information on the domain of interest, the
problem to be solved, the OORA process and the resulting specification, and the process
of requirements analysis in general.

Object-Oriented Requirements Analysis. OORA is a software development method
used to develop a specification of a system's intended behavior. OORA examines the
problem domain with the object-oriented perspective of classes and objects
[COYO91][BOOCY1]. This specification can take any number of forms but represents an
object-oriented model of the essential characteristics and behavior of the system. Essential
characteristics are those that allow the system to satisfy the user's requirements. OORA is
conducted during the requirements phase of the software development process. It is done

in place of more traditional software analysis methods, the most popular of which is some

1-1

form of structured analysis (SA). Where OORA is based on object abstraction, SA is
based on functional abstraction. The two different analysis techniques produce
fundamentaily different structures and views of the same problem. Although there are a
number of methods that have been developed 1o move from a SA to an object-oriented
approach. most researchers agree that the best front-end to object-oriented software
development is OORA. [BAIL89] [BERA92a] [BOOC91] {COLB89] [COYO91]
[FIRE91] [KURT90}

OORA is used in the analysis phase as a front end to object-oriented design (OOD)
and object-oriented programming (OOP). The unifying scheme through the three phases
is the use of objects as central elements [KORS90]. The OORA results, however, must be
independent of the programming language and the target hardware [BERA92a]. OORA
identifies problem space objects, which are entities that the system uses to maintain
information or to interface with systems outside itself [JAW(O90]. The problem-space
objects describe what the system is to do, without addressing how the system is to do it.
In contrast, OOD produces solution-space objects. These are derived from the problem-
space objects but take into account things such as the computer architecture, performance
considerations, and the programming language. The solution-space objects hide the target
environment from the problem-space objects and act as controlling objects [WHIT89).
The design process . ates an implementation plan for the system by describing how the
system 1s to do its job [KURT90]. After OOD, the system is implemented in a
programming language. If that language is object-oriented, this step is called OOP.

In general, object-oriented techniques are characterized by the use of abstract
objects with explicit interfaces and the use of inheritance [BERZ89]. There i5 no one
OORA process or even a common set of terminology. There are many different
approaches to OORA; these include different steps, models, products, definitions,

graphical and textual representations, heuristics, and levels of formality. However, the

processes have a number of basic concepts in common. The following sections discuss the
OORA concepts and the steps in the OORA process that wili be used in this research.

Object. An object is an abstraction of some entity in the problem domain that
encapsulates state and behavior information and has identity. An object is characterized
by its state, the services it provides, and the services it requires from other objects to do its
function. An object is an abstraction because it represents some real-world entity. The
object encapsulates its state and services by controlling access to its state and the services
that provide the object's behavior. The state of an object is accessed and modified only by
messages that tell the object what to do, but not how to do it [RUBI90]. An object is an
instance of a class. Some authors use the terms class and object interchangeably, but
especially for OORA, it is important to distinguish between the two.

Class,

"A description of one or more objects with a uniform set of attributes and services,
including a description of how 1o create new objects in the class." [COY091]
Classes are the templates for objects. When an object is created, it is an instance
of a class, which means it is a copy ot the class except it has its own state. The state is the
set of values of all the attributes of an object. Classes represent sets of closely related
entities in the problem domain. An example of a class would be the class of dogs, with
Fido as an instance of that class (an object). Classes are developed in OORA. Objects are
not considered until OOD.

Attribute, An attribute is an abstraction of a charactenstic that is held by all the
instances of a particular class [SHLAS89]. Each attribute contains information concerning
the set of values the attribute can be assigned, and each object has a particular value for
that attribute from that set of legal values. The set of legal values can be any type of

value, from numbers and characters to composite types. For example, if an attribute for

1-3

the class Dog is Owner, the legal values are the members ot the set of names: the object
Fido could have the value "John Doc" for the auribute Owner.

State. The state of an object is the collecion of values instantating the set of
attributes. If the attributes are represented by {al,....an} and the values tor the attributes
are {vl,...,vn}, then the state = {vl,...,vn}. A class contains the template for the state of
an object. The state of an object can only be changed or accessed through the services. If
the object Fido had attributes = {Owner, License_Number}, the state could be {"John
Doe", 1234}.

Service, Services implement the required behavior of an object [COYOQ9Y1]. The
behavior of an object describes all possible state changes and the method of invocation
required for it to do its function. In this research, message passing will be used to invoke
services. Services can be represented by functions. A service takes zero or more
arguments and returns zero or more results. For example, to change the owner-attribute
of the object Fido, the class would have to contain a service that allows the changing of
that attribute. A message would be sent to Fido through that service requesting a change
of the attribute Owner. For example, to change the value of the Owner attribute, a service
is provided called Change_Owner that takes as its one argument the value of the new
owner's name. Therefore, to change the value of the attribute Owner to Jill Small, a
message would be sent to Fido through the service Change_Owner with the argument "Jill
Small". This service may require the use of other services in one or more objects; this
would require messages from Fido to those other objects.

Protocol. The protocol of a class is the set of all of its services [RUBI90]. The set of
messages the class can respond to maps to the set of services, or protocol, of that class.

_Inheritance. Inheritance models an "is a kind of" structure between classes. It is also
known as a generalization-specialization structure [COYO91]. Inheritance creates a

hierarchy of classes, with the lower classes (subclasses) in the hierarchy inheriting from

1-4

higher classes, or superclasses. A subclass is an “is a kind of” or a "specialization of™ a
superclass. A subclass inherits both attributes and services trom its superclasses. A
subclass will theretore contain at least the same attributes and services as its superclasses.
A subclass may add attributes or services, or it may change the way that an inherited
service 1s implemented. A class can inherit from a single class (single inheritance) or trom
more than one class (multiple inheritance). An example is the class of Dogs as a subclass
inheriting from the class ot'bAnimals, the superclass. The class of Animals may have
attributes of Number_ot_Legs and Natural_Habitat. The class of Dogs may also be a
subclass of the class of Pets. This may add the attribute of Owner and add services to
access and change owner name. This shows the use of multiple inheritance. The class of
Dogs may also add the attribute of License_Number, and it may then add services to
access and change the license number. This illustrates specialization.

General Relationships. There are binary relationships between objects that need to
be modeled. One such relationship s a "whole-part” relationship where an object is made
up of other objects [COYO91]. For example, a plane is made up of wings, engine, etc.
Instance connections are relationships in which an object needs an association with
another object in order to fulfill its responsibilities [COYO91]. In general, a relationship
is an abstraction of an association between two real-world entities that are themselves
abstracted as objects [SHLA89]. All relationships are identitied by using numeric bounds
that show the range of the connections. These bounds are usually finite, although infinite
bounds are allowed. For example, a bound may be represented by (1,n), where the lower
bound is 1 and the upper bound is some integer represented by n. In general, in a
graphical representation a relationship is shown by a line between two objects or classes
with a range specified on each side of the connection. For example, assume there exists a
relationship R between two classes, A and B. Further assume that the range identitied

with A is represented by [l:u], where 1 is the lower bound and u is the upper bound.

Therefore an instance of A has relatonship R with as few as 1 and as many as u instances
of B. For example, it A is an object of class Person and B is an object of class Dog. one
possible relationship R between A and B is ownership, where A owns B and B is owned
by A. The range associated with A might be [O:n], signifying that a person can have as
few as no dogs and as many as n dogs. The range associated with B might be [1.1},
signifying that a dog can only have one owner and that it must be owned by someone.
This relationship is also an instance connection.

Message passing. In the majority of object-oriented techniques, the services of
objects communicate with the services of other objects through message passing. When
an object's service needs another object's services to complete its processing, it requests
those services through a message. The message may pass values, it may return values, it
may do both, or it may do neither. The message-connections between objects show
processing dependencies and threads of execution. For example, an
Animal_Control_Ofticer object may request the value of the attribute License_Number
from the Fido object. There must be a service, such as Get_License_Number, in the class
Dogs in order for Fido to respond to this request.

OORA Process Steps. Although there is much disagreement concerning the steps that
should be used and their order, there are certain steps that are common to most of the
OORA techniques. Most agree that an important early step is the identification of objects
and/or classes. This is also commonly accepted as being the most difficult step. The
identification of objects requires the use of domain experts that understand the concepts of
object-oriented analysis, or OORA experts that understand, in depth, the requirements and
peculiarities of the domain [COLB89]. In general, an analyst trained in object-oriented
methods will gather all existing information on the domain and the problem to be solved,
and extract information from the domain experts through dialog. The analyst will apply all

available heuristics and other knowledge of an OORA method to develop an initial set of

1-6

classes. There is no standard method for creating a “good" set of classes; neither is there
an adequate definition of what "good” is. Difterent processes are used for class
identificanon. Most use either middle-out, top-down, outside-in, or bottom-up. Middle-
out class identification starts with a central, unifying class and works outward by
examining classes connected to this middle class. Top-down class identification starts
with the system as a class that is broken down into its component classes, and so on, untl
the lowest level of classes is reached. Outside-in class identification starts with the classes
that intertace with objects outside the system, then identifies classes connected to those
classes, and so on. Bottom-up starts with the classes that do the work of the system,
identified through specification and interviews, and connects them. Even though some
rules and guidelines have been identified, the OORA processes rely greatly on the
experience of their analysts. After the classes have been identified, the static and dynamic
class relationships can be identified. The two static relationships are general relationships
and inheritance. The two dynamic rclationships are message passing and state changes
within a class. The relationships are usually described using graphical techniques
augmented with textual information in some form. State charts, or some derivation, are
widely used to show siate transitions. Attributes and services are identified sometime after
the classes.

Problems exist with current OORA methods. The problems are the lack of a
uniform process or terminology, and the lack of formalization of the process. For
example, in most of the current methodologies getting the right information from the
domain experts is treated as an art form, not a science. It is heavily based on the
experience of the analyst. Knowledge about a problem domain is often implicit and
informal [ARANS89]. There is no agreement on what a "good" OORA is or even on what
structures, information, and the level of detail it should contain. In most existing OORA

methods, terms like "best represent” are used without further definition in selecting

classes. This lack of a good definuon of terms is partly due to the immaturity of the

OORA process.

Statement of the Problem

The thesis of this research was that OORA process and structure knowledge can
be represented in a computer system and used as a basis for the elicitation of the informal
information necessary for the development of an object-oriented specification for a
problem in a particular domain.

The main objective of the research was to investigate the feasibility of a computer-
based system that can guide the conduct of an OORA and result in an object-oriented
specification of the system to be developed. The computer based system would use a
generic domain model as the template for other problems in the domain. The research
developed a basic OORA model that contains the components and relationships necessary
for an OORA specitication. Using existing OORA processes, guidelines and rules for the
evaluation of an existing OORA model were developed. The OORA model and guidelines

and rules were then used as a basis tor the computer-based system.

1-8

Overview

This research used technology from a number of different areas. These are:
¢ Requirements analysis
* Requirements analysis systems using artificial intelligence technology
¢ Object-oriented domain analysis
o Object-oriented requirements analysis
o Existing systems that use a combination of software engineering and artificial

intelligence techniques to conduct a requirements analysis

Each of the above technology areas are discussed in a separate section. The first
section discusses the general process of requirements analysis and the general nature of
software specifications. Next discussed is the general nature of computer systems that
conduct requirements analysis and how knowledge-based techniques can be used in the
process of requirements acquisition. In the next two sections the general processes of
object-oriented domain analysis and object-oriented requirements analysis are discussed.
These two processes form the basis for the knowledge in OAKS. The fifth section
summarizes the research on existing systems that combine software engineering and
artificial intelligence techniques for conducting a requirements analysis. After all five
technology areas have been discussed, the last section in this chapter discusses the

relationship of the technology areas to QAKS.

2-1

Requirements analysis is the process of elictung the user's needs. dewermining what
information goes into the software system, and representing that information in a
requirements specification. The requirements clicitation process is the first part of
requirements analysis. It is the process that elicits the information from the user on what
to build [HOLB9)]. After the elicitation phase, the analyst must determine what
information is required to be in the requirements specitication. The requirements
specification is a precise set of statements about the intended behavior of the sysiem
[ZERO91].

The process of requirements analysis is considered to be that of building a conceptual
model of the system to be developed. The conceptual model is a model of the application
domain as perceived by both the users and the analysts. It is the common understanding
that the users and the analysts have of the system to be developed and is therefore the
basis tor communication between the analysts and the users. The conceptual model is
uscd as the basis for all further development, including design and coding [KUNG89).

The requirements analysis phase of the software development process is crucial
because the etfective transter of knowledge from the problem domain to the requirements
specification is a prime factor affecting the quality of the software system [CARV90)]
[ZERO91]. Studies indicate that errors in requirements are more costly than any other
kind of errors [REUB91]). Therefore, there will be greater gains in productivity and
quality in assisting the requirements analysis process than in assisting the design and
coding processes, because the requirements document is the basis for all later processes
[LOUCRS].

Informality will always exist during the requirements analysis process and is inherent in
the initial stages of the process. This is because the process is primanly cognitive and
deals with material which is uncertain, unreliable, and inconsistent [KUNG89] [ZERO91].

2-2

The queston s whether the informal torm will only exist outside a computer system i
someone’s head or in informal. unanaly zable documentation, or whether this intormal form
can be explicidy entered into the computer and wanstormed into a more tormal form
{BALZT78].

[Informality is portrayed in the intal stages of the process. as the user makes
postulations about the functionality and constraints of the system to the analyst. This
knowledge is often incomplete, fuzzy, and incoherent. This i1s not a tault of the process,
but the nature of how humans deal with complexity. Informality is an essential part of the
human thought process. The process is to start with an almost-right description and then
incrementally modity it until 1t accurately represents the system to be developed
[REUB91]. Theretore, the requirements analysis process will require a series of feedback
analyses and refinements of the user’s initial concept of the system to a more complete,
unambiguous torm [BOBBY(]. This transtormation process can be made more etficient
through the use of a computer-based aid that will accept the informal form and aid in the
transformation to the formal. This requires the development of formalized methods used
to gather the informal torm. Examples of these methods are structured question and
answer sessions and formalized languages.

The process of converting from the informal requirements gathered from the domain
¢xperts to a requirements specitication is error-prone and labor-intensive. The activities
involved in this process are knowledge-intensive, informal, human-intensive, and largely
undocumented. There is a need tor a system that manages these knowledge-intensive
activities [BALZ85]. The system must provide mechanisms which encourage the
development of informal models and assist in experimentation prior to developing a formal
spectfication [LOUC90].

The requirements analysis process is a problem-solving process that derives a

statement of the problem, which is refined into the conceptual modeil of what is needed.

2-3

This requires the real world to be mapped into some requirements specitication language

or representatien and that representation communicated to the user. The user then
validates the conceptual model to ensure that 1t meets the user's requirements. The
purpose of the process s to evolve the initial requirements statements into a state of
consistency and adequacy [LOUCRKS].

There are three basic phases in the requirements anaiysis process:

(1) Elicitation. The analyst acts as a tacilitator gathering the requirements information
from the user, with the product an informal specification.

(2) Formalization. The analyst creates a tormal or unambiguous specification from an
informal one.

(3) Validation. The confidence that the specitication conforms to the user's desires is
increased in this phase [REUB91].

The process of writing a requirements specification requires several iterations of these
phases to get the content of the specification to match the user's intent ([BALZ85]. The
process requires knowledge on how to interact with a user to extract the initial set of
requirements. how to take those requirements and build a specification, how to recognize
an incomplete, inconsistent, and unresponsive specification, and how to explain the
specification to the user and validate it. The process also requires a thorough
understanding ot the application domain.

The hardest part of the requircments analysis process is the elicitation of the
requirements from the users. Current techniques require a knowledgeable analyst that is
able to extract the proper information from the users. The users often only have a vague
notion of what they want and a narrow view of what is possible. They bring with them the
expertise in the domain where the analyst has expertise in the requirements analysis
process. Therefore the analyst must have expertise in pulling out the necessary

information and filling in details that are found to be missing {FICK88].

2-4

There are some basic characteristics that expert analysts share:

(1) They use hypothetical examples 1o explain concepts to the users, o argue for or
against inclusion of a component, and to retine their understanding of a problem.

(2) They are aware of higher-level policy issues in a domain and are able to use this
knowledge to include or exclude components.

(3) They use summarization to verify their understanding and to verify that they have
covered all concepts {FICK88].

(4) They use analogy to relate current problems to previous experience.

(5) They construct hierarchies ot concepts starting with an abstract mental model and
refining that into a concrete model.

(6) They use domain knowledge. They construct complex artifacts by using their
previous expericnce. It is difficult to acquire new knowledge unless one already has a
large amount of relevant old knowledge.

(7) Thetr reasoning process is guided by some underlying generic process appropriate
to the task and the domain [LOUC90].

The analyst uses informal communication with the users to gather information. During
this informal communication, the users employ language containing special woirds and
jargon, ambiguity which must be disambiguated by using the surrounding context,
statements in poor ordering, and contradictory information. The intormation provided by
the user is often incomplete and can be inaccurate in that it does not reflect what the
speaker had in mind [REUB91). These problems must be addressed by the analyst.

The specification that is a result of the analysis process and is used as input to the
design and coding phase can take a number of forms. Specifications are, in reality,
programs written in a very high level abstract programming language {[BALZ78]. This
language can be in natural language form, in the form of a formal specification language,

or defined using formalized representations. These formalized representations include

2-5

petri nets, trames, rule-bases, regular expressions. transition diagrams, state diagrams, data
flow diagrams, ctc. Each of these representations has ditterent properties that allow
ditferent degrees of tormality and difterent theorem-proving properties. The specification
should capture the observable behavior of a system and allow all valid implementauons.

In addition to its final form, the specification may have other forms during its
development. For example, if the final specification form is some formal specification
language, the specification may start in some informal form and then be converted into the
formal specification language.

A specification form must have certain characteristics:

(1) It must be able to express various aspects of the specification, and then have the
ability to combine them.

(2) It must be able to be used in diftferent and varying domains.

(3) It must not force a certain sequence of decisions that may force the users to make
decisions they don't wish to make or are not entitled to make [BABB8S5].

(4) It must be testable and modifiable.

(5) It must specify what the system is to do, and not how it is to do it.

(6) It should be a cognitive model, not a design or implementation model.

(7) 1t should be tolerant of incompleteness and augmentable. No specitication is ever
totally complete because of the complex environments it models [BALZ79].

As stated, the specification can be represented by the use of a formal specification
language. The use of formal specification languages require the entire specification to be
conceived at once. A better method is through gradual claboration, where the process
starts with a simplified kernel, and then expands out. This requires an incremental
specification language such as Gist [BALZ85]. Also, formal specification languages are
not good for communication with the user and do not provide mechanisms for

decomposing the real-world problem. As a result, the use of formal specification

2-6

languages is usually preceded by the application of an informal method [CARVH)]. There
are three b~ (¢ sets of tools that can be used to check a tormal specification:

(1) Theorem provers that prove that all behaviors have some desired set of properties.
The problem is that it is hard to charactenze the behavior using the properties, and
theorem provers only check the expected.

(2) Interpreters tor specification languages that allow the languages to be executable.
These provide narrow case-by-case feedback on the testing of the specification.

(3) Symbolic e¢valuation that allows the test cases for the specification to be partually
specified. Those aspects not specitied are treated symbolically. Therefore, entire classes
of test cases can be explored automatcally.

Instead of using a formal specification language, natural language can be used as the
form of the specification. The main differcnce between a natural-language specification
and the formal equivalent is that partial descriptions rather than complete descriptions are
used. The partial descriptions can be completed from the surrounding text by a computer
system. The compietion of the partial descriptions may produce zero, one, or several valid
interpretations. The partial descriptions focus attention on the relevant issues and
condense the size of the specification. Formal specifications do not have these properties
[BALZ78].

A desirable characteristic of a specification is that it be operational. If the specification
is operational, it can be used to prove that a proposed implementation satisfies the
specification. This means that it must be able to generate possible behaviors among which
must be the proposed solution [BALZ79]. If the specitication is operational, it can be
directly evaluated as a software prototype. An operational specification can be translated
into code that will preserve program correctness. [TSAI89]. The problem with
operational specitications is that they are hard to construct because they are formal. Every

reference to an object or action must be consistent and complete [BALZ78).

2-7

Another desirable charactenistic of a specification is that it be executable. This
requires it to be represented by some exccutable language. To make a speciticauon
language executable, it can either be a wide-spectrum language or an interpreted language.
A wide spectrum language contains both low-level and high-level constructs. The low-
level constructs in the language can be directly executed. Interpreted languages are
declarative, but their constructs can be given operational interpretations. An example of
an interpreted language is Prolog, which is based on Homn clauses. Requirements
expressed in Hom-clause logic are executable using an abstract interpreter (as mn a Prolog
program). Using the Prolog theorem-proving mechanism, the validity of the requirements
can be checked. The requirements can also be checked against the domain model by
formulating goal clauses expressing some fact about the system and determining whether
that fact can be derived tfrom the requirements. The problem with Horn clause logic is
that there is neither an inheritance mechanism nor an exception mechanism to its rules and
constraints [TSAI91}. The use of Prolog therefore requires the coding of structures to

add these capabilities.

Requir nts An i m ing Artificial Intelligence T |

The greatest source of variance in software productivity is in the ditferences in skill
among analysts. Applying knowledge is the key to developing effective software.
Therefore, developing software is a knowleg2«-intensive activity [LOUC88].

A system that captures the entire requirements acquisition process, starting with the
informal requirements, would be very useful because of the criticality and the complexity
of this phase of the software development process. Knowledge representation techniques
can form a useful platform for such a system because of the nature of the software analysis

process [IPCH91]. Requirements analysis is a cognitive activity that is based on informal

2-8

models of domain knowledge, problem-solving knowledge, analysis process knowledge,
and general software problem-solving knowledge.

In the process of developing a software specitication, the analyst uses knowledge on
how to conduct a requirements analysis with associated heuristics. This knowledge is
suited to being represented in a knowledge-based system. A knowledge-based approach
can also provide useful tools in the process of capturing requirements from a user. This
approach offers the facilities needed for the acquisition and validation of requirements,
such as rapid prototyping, knowledge bases, intelligent interfaces, and heuristic
approaches. Paradigms like restricted Horn clauses, semantic networks, and rule-based
production systems are suitable tor declarative representation of knowledge. Frames
combine declarative, inheritance structure and procedural knowledge [BOBB90].

There are a number of categories of knowledge that could be embodied in a
requirements analysis system. The categories are: the domain, the environment in which
the software is to operate, the software requirements analysis process itself, knowledge
elicitation techniques, informal and formal models of the specitication, and transformation
techniques among the various representations.

It the system starts with the user supplying the formal model, there is no requirement
for knowledge elicitation techniques. Otherwise, the system has to have knowledge on
how to elicit the information it needs in order to develop a requirements specification.
Artificial intelligence techniques in knowledge acquisition, natural language interaction,
and question-answer systems can be used.

How much (if any) domain specific knowledge needs to be in such a system is
arguable. It may be argued that domain-specific information could be entered into the
system as part of the specification. In this scenario, the user would enter both domain and
problem information and would therefore have to be a domain, problem, and requirements

process expert. The problem is that domain-specific knowledge consists not just of

2-9

detiniuons, but also of general knowledge of prior typical systems. [t is also ditficult tor
the computationally naive user to express domain knowledge unless the system already
knows a significant amount [BARZ85] [CHINgY). The system would have to conuwin
extensive domain knowledge in order 1o operate with the computationally naive user and
develop a specification.

Another scenario is that the user understands the domain but may not possess the
knowledge to explain in proper form the task the system is to perform and the method to
solve the problem. The system would emulate an expert analyst that has limited domain
knowledge but has knowledge about the requirements analysis process and how to elicit
information from the user. In this case the system would contain knowledge concerning
the form that the requirements specification is expected to take, the process by which the
specification evolves, and the process of eliciting the information from the user. The
system would not contain much domain knowledge. Therefore, the system would judge
the quality of the specification without necessarily understanding its contents [SCHO91).

In gathering the required information from the user, the system might assume a
number of different roles. Its role could be passive, in that it provides tools to enter the
constructs but does not guide the process in any way. In such a role, it might do checking
on the completed specification or portions of the specification, and may transform the
entered specification. The user of such a system would have to have both domain
knowledge and process knowledge on how to build a requirements specification. Systems
that take on a passive role are those that take as input natural-language text and those that
provide a formal specification language for building a specification.

A second role could be that used in "sloppy" modeling, where knowledge acquisition
is viewed as a cooperative process between the user and the system. The user is not
required to develop a complete and well-structured model before interacting with the

system. The emphasis is on a cooperative, mixed-initiative modeling process. There is no

2-10

tixed, unchangeable dialog, so the user can use any of the system’s facilitics at any time.
The system tries o organize and complete the knowledge entered by the user. The system
ofters small operations, used to create the specification components, that can be done at
any ume and in any order. The information that is entered into the system can be changed
atany time. The system tries to maintain integrity and consistency of the information and
provides immediate feedback on the consequences of all operations. The system allows
the user to view the evolving model at any time, and supports ditterent user levels from
user-controlled modeling to mixed initiative modeling. For this type of system the user
would have to have domain knowledge and at least some process knowledge [WROBSS).
The "sloppy" modeling approach is the basic approach used in OAKS.

A third approach is to have the system guide the user through the steps of gathering
the knowledge necessary to create the specification. The system does not enforce a rigid
sequence of steps; it allows the user to go back to add and modify previously entered
information. However, it is more rigid than sloppy modeling systems in that the system is
the guide for the acquisition of the information and contains the knowledge on how a
model should be built. The assumption underlying such a system is that the user has

domain knowledge but not process knowledge.

OODA is the process of identifying the objects, operations, and relationships in a
problem domain so they can be reused in software specification and construction. A
problem domain is based on a shared understanding in a community that includes a shared
vocabulary, shared semantics, and a shared knowledge of domain concepts and methods
[ARANR9]. Therefore, there are identifiable experts in a domain, and a set of related

problems to be solved in the domain.

OODA is distinguished from OORA because OODA is separate trom any one
problem. It secks to find a set of objects, operations, and relationships that are common
across a number of problems in an application domain. The results of OODA can be used
in OORA, and the main purpose of OODA is the reuse of the common structures in many
OQORA:s for various problems in the domain. Therefore, most of the discussion on OODA
in the literature occurs in the context of reuse.

As with OORA, there are difterent approaches to OODA and ditferent terminology
used. Some authors [SHLA89] use domain analysis as a synonym for OORA because
OORA requires domain analysis in the problem domain in order to identify the structures
of OORA. The difference is that in OORA, a specific problem is being addressed,
therefore objects and relationships in the domain but not needed by the specific problem
are not addressed at all or are addressed in lesser detail. OODA examines all possible
structures in a domain and tries to determine which should be modeled for later reuse in
OORA.

The result of an OODA is a general object-oriented model of the problem domain.
OODA can aid in OORA by the identification of complete, robust objects and thetr

interactions [BERA92b].

Object-Oriented Requirements Analysis (OORA)

Background. Requirements analysis is the study of a problem domain leading to the
specification of observable behavior. It is the process of extracting the needs that the
system must fulfill. (COYO091] OORA conducts requirements analysis with the object-
oriented perspective of classes and objects and their relationships. In OORA, the classes

and objects that best represent the problem are developed [WALT78].

2-12

Any model of the QORA process should be unambiguous. abstract and consistent
[HAYEY1]. It should be unambiguous in that there is only one meaning tor everything in
the model. It should be abstract in that it represents real-world entities that are needed to
satisty the requirements and it does not contain any implementation information. The
model should be consistent so there are no conflicting requirements.

Many models have been proposed for the OORA process. They accomplish difterent
steps in different orders. There is, however, some commonality among many of the
concepts in the different models that are used in conducting an OORA [BERA92a]
[BOOC91] {BULM91] [COLE92] [COLB89] [COYO91] [HAYES91] [JAOLSY|
([LADE89] ([SHLLA88] [YAULS8]. These concepts are:

» Finding classes and objects.

e Defining the inhernitance structure.

e Detining object relationships.

o Defining class attributes.

o Defining class services.

o Developing a state model of each class.

In each of the models, these concepts are not necessarily examined in the order shown,
or sequentially. They are examined iteratively, with each concept having influence on the
others.

Not all of the concepts discussed by the different models described in the literature are
listed above. In some of the models, the concepts are grouped together into one step or
broken into more than one step. The concepts, or possible OORA steps, listed here
represent the most common and basic concepts in the various methods. Not used as
references in the development of these basic concepts were those articles that descnbed
methods that use the results of a structured analysis as a basis for an OORA or OOD. The

methods referred to here start with an informal requirements document developed by the

2-13

user. with supplemental information from general domain documentation, prior projects in
the domain, and direct discussions with domain experts.

Besides the differences in the concepts, the wrminology used by the various reterenced
methods was not consistent. Therefore, the terminology defined in Chapter 1 will be used.

Finding Classes and Objects. The classes are considered during analysis and object
instances during design, although when examining a problem domain to uncover classes.
sets of objects are looked for. To avoid contusion, the terminology of [COYO91} will be
used. The term “class-&-object” will be used for a class and its instances. Class-&-
objects are structures, systems outside the system under consideration, devices that the
system needs to interact with, a time that needs to be recorded, an event that needs to be
recorded, human roles, organizational roles, operational procedures, physical locations,
specifications, quality critenia, aggregations of equipment, steps in a process, tangible
things, interactions between two or more objects, or something toward which thought or
action is directed.

One method for finding classes and objects is to start by identifying class-&-objects
that are associated with interfaces between the system and the outside world, or with
messages the system receives from its environment, and then to work in by identitying
those class-&-objects associated with the classes already identified [BULM91]
[MRDA90] [ROSS90]. Another method is to start with the top level class-&-object,
which is the overall system, and then break out the class-&-objects hierarchically, by
having class-&-objects at a higher level composed of class-&-objects at a lower level
[COLB89] [ROSS90]. Another method is to build models of the problem and derive the
class-&-objects from the models [COLE92). Still another method is to identify class-&-
objects directly from the problem information by looking for class-&-objects in the various
categories [COYO91] [JALOS89]. A final method is the identification of nouns in the
problem information as potential class-&-objects [BOOC91] [WHIT89).

2-14

Once the inital set of class-&-objects 1s identitied, there are various processes used to
refine the set by adding. deleting, and combining class-&-objects. Objects are also
categonized in some of the methods.

Class-&-objects can be defined as active or passive. An active class-&-object is one
that can act without any outside stimulus or initiation. A passive class-&-object only acts
when motivated by an active object [COLB89]. Another way to classify class-&-objects is
as directors, servers, or agents. A director is an active object that sends messages to other
class-&-objects based on external or internal stimulus. Agents are like passive objects in
that they do not initiate action until called. Servers are passive objects that do not send
messages to other class-&-objects [WALT78].

New classes can be created by combining classes, creating a subclass of an existing
class, or breaking a complex class into a number of smaller, cooperating classes.
[RUBI9O] A class-&-object should have at least two instances, otherwise it should be
combined into another class-&-object [WIRF90)].

There are numerous other heuristics tor deciding whether a class-&-object is
"appropriate” tor the problem, e.g., that a class-&-objects should have more than one
attribute.

Inheritan Inhentance structure is an "is a kind of™
relationship between classes. The inheritance structure may be between classes already
identified, or between classes identified and other classes yet to be uncovered.

One method tor identifying the inheritance structure is to start with the existing classes
and see how they are related to each other, determine if there are potential generalizations
of the class that may be a superclasses, and examine the possibility that there are
specializations needed of the class. Any new class will have to be examined to see if it

meets all the requirements of a class and that it is in the problem domain {COYO91] .

2-15

Another related method 1s o find similanues and ditterences between the uncovered
classes to build a class inheritance hierarchy [LADDY).

The class structure 1s normally represented as a graph, with the superclasses on top
and the subclasses undemeath. There 1s a hine between cach class and the class or classes
from which it inherits. Figure | <hows an example class structure using multiple
inheritance. Class A is the direct superclass of Classes B, C, and D. Class E inherits from
both Class B and Class C (multiple inheritance). In actuality, Class A is a superclass for

all of the classes in the Figure because all the classes inherit the attributes and services of

Class A.
Class A
Class B Class C Class D
Class E Class F
Figure 2-1. Inheritance Structure

There is no one perfect inheritance structure for a problem. There are good and bad

structures, depending on how well the problem domain is modeled and the results of the

2-16

cvaluation of the structure using other metnes such as the coupling between classes.
Classcs should be as independent and self-contained as possible. A class should need
informatior. through message passing from as tew other classes as possible and should not
depend on any other class's internal structure. There are tradeotts on the depth of the
inhentance structure. Class structures that are wide and shallow have classes that are
tairly independent and therefore are not as likely to require changes when other classcs
change. These classes can also be used in difterent ways without having to rewrite the
class. Class structures that are deep exploit the commonality between classes, so each
class contains less information than classes in the wide and shallow structure, but the
classes are very dependent on each other [BOOC91].

Defining Object Relationships. Class-&-objects can have difterent relationships,
other than that of inheritance. An object relauonship is an abstraction of an association
between two real-world entities that are abstracted as class-&-objects. Relationships are
labeled with numeric bounds that show the range of the connections.

Whole-part relationships can be identitied by looking for assembly parts, container
contents, and the menbers of collections. It those entities that make up the whole-part
structure are candidate class-&-objects, and they are part of the problem domain. then
they should be part of the model (if they are not already) [COYO91].

It two class-&-objects are related, a new class-&-object should be added that contains
the relationship information. This makes the classes independent and therefore more
usable [BULMS91]. For example, a relationship between the class-&-object Cai. .nd the
class-&-object People is ownership. A person can own zero or more cars, and a car must
be owned by one person but can be owned by more than one person. This may be

modeled by:

2-17

ownership
People ---m-csemmmcianaees Cars
[0:n] (1.n]

The OORA methodology adds a new class-&-object that contains the information on who
owns what car. This may be called "Car_Ownership” and will contain all information
about car ownership, instead of the information being spread across two class-&-objects.
This new class-&-object is called an associative class-&-object [SHLA89].

These relationships can be found in the documentation or by asking domain experts the
possible relationships that already identified class-&-objects have with other entities.

Relationships in OORA are similar to the entity-relation diagrams used in structured
analysis methods. In entity-relation diagrams, entities, which are real world objects, are
shown as rectangles and the relationships between we entities are represented as diamonds
[DAVI90]. The entitics would correspond to classes in OORA and the relationships to
object relationships.

Defining Class Attributes. Attributes define how a class-&-object is viewed in the
domain by defining the characteristics of the class-&-object that are important in the
problem. For example, there are many possible attributes for the class-&-object Person,
such as name, address, phone, height, weight, marital status, hair color, place of birth, etc.
The key is to pick those attributes that are required in the problem. For example, if the
problem is a mailing system for school announcements, probably only name and address
would be required. It is highly unlikely that the system would have to keep information on
hair color, height and weight.

The attributes are defined by the analyst examining what the objects of a class are
responsible for knowing or keeping information about over time. The analyst determines

what subset of the object’s attributes is needed in the problem domain. Since the values of

2-18

the attributes make up the object's state, possible states the object can be in duning its
lifcime must be examined. A key is to look at what the system needs to know about that
object [COYO91].

Each attribute should be a single value or a tightly related group of values. The actual
way the attributes will be identified and stored will not be determined until OOD
[COYO91].

A set of attributes should completely describe the necessary state, each attribute
should capture a separate concept, and attributes should be independent of each other.
Attributes can be placed in three categories. Descriptive attributes are those that can be
used in the sentence, "The ATTRIBUTE of OBJECT is". For example, "Color" is an
attribute of the class-&-object "Dress”, since it can be used in the sentence, "The color of
the dress is red.” Naming attributes are arbitrary names and labels, such as a social
security number. Referential attributes are facts that tie one object to another. An
example is the class-&-object Student, which may have the attribute School_Name that
would tie that student to a particular school. The domain of each attribute, or the set of
values each attribute can take on, must be able to be identitied. Attributes must represent
a characteristic of the entire class-&-object, and not just of another attribute. For
example, if there is a class-&-object Student with the attributes Name and School_Name,
there should not be an attribute of School_Address. This attribute only applies to the
attribute School_Name, and not to the entire class-&-object. School_Address should be
an attribute of a class-&-object School which also includes the attribute School_Name
[SHLASS].

Where the attributes are placed is determined by the class-&-object to which the
attribute is most tightly related. The attribute should be put on the highest level of the
inheritance structure where the attribute applies. An attribute should always have a value

in an object. If there is an attribute that does not apply to some of the objects, either the

2-19

attribute is in the wrong class-&-object or the inheritance structure needs to be moditied
[COYOII].

Defining Class Services. The services contain the necessary processing for a class-&-
object. Any change ot state is accomplished through the execution of a service. The
information required about a service are the service's name, input (if any) and output (if
any), services needcd from other objects, and the staic change caused by the service (if
any). The specification of how the service is implemented is left to OOD and OOP.

Before the services can be defined, the possible states an object can go through must
be defined. For example, if Address is an attribute of the class-&-object Person, an
address change of a particular Person object would cause a change of state. This address
change can only be done through the invocation of a service. State models are used to
show state transitiois for an object.

Once the state transitions have been defined, the services can be identified. Services
can be categorized into algorithmically-simple services and algorithmically-complex
services. The algorithmically-simple services are those that create a new object in the
class, connect or disconnect an object with another, access or change the attribute values
of an object, or release or delete an object. An example of an algorithmically-simple
service is one that changes the address of a Person object, given that Address is an
attribute. The algorithmically-complex services calculate results from attribute values or
monitor an external system or device. An example would be a service that calculates the
pay based on the hours worked, the dollars per hour, and the tax tables. Services are
identtied by looking at the categories and the required state transitions and determining
what is required for each class-&-object [COYO91].

Related to the identification of services is the identification of the required message
connections. If a service requires information from another object, it sends a message that

invokes that object's services. The message connections show the processing

2-20

dependencies between objects. For example, it a Paycheck object needs to calculate an
cmployee's pay, it may have to access the Employee object, and a State_Tax table object,
and a Federal_Tax table object to get all the information required. It may be desirable 10
show the tming relationships between objects through the message connections. For
example, if a User object requests information through the use of a service, the trace of
message tlow through the system could be analyzed by tracing the messages starting with
the messages invoked by that service through all messages required to fulfill the
requirements of the first service call.

The services should provide all the processing needed for an object, but there is
disagreement on the level of the services. In [COYQ91], a basic set of services is
emphasized, whereas [BULM91] states that the higher the level of the operations in the
object, the better. For example, if the object is a stack, two services could be Get_Top
and Pop. These two could be required to pop the stack and get back the item at the top of
the stack if basic services were provided. On the other hand, one service could be
provided that does both functions, if that is all the object will be required to do and higher-
level services were used.

One method recommends that if an object has too many operations, it should be
examined for decomposition into several smaller objects. Also, an object should not
contain both high-level and low-level operations. Two class-&-objects should be created:
one with the high-level operations and one with the low-level operations [WHIT89].

The number of message connections that a class-&-object has with other class-&-
objects should be minimized. This minimizes the system coupling and makes for a system
that is easier to test and change [CHID91] [WIRF90)].

Developing a State Model For Each Class. The state of an object is the set of values
of its attributes. The state can only be changed through invocation of a service. Most

models provide a notation for describing the possible state changes that an object of a

2-21

class can go through. This is also called the dynamic behavior of a class [BERA92a]
(COLB8Y] [HAYE91] [SHLASY].

There are often restrictions on when an object can change state, or, in other words.
when a service can change the state. These restrictions are typically portrayed as either
preconditions on the service or annotations on a graph showing possible state changes.
Pre- and post-conditions can be written for each service. These declare when state
changes are allowed (precondition) and what changes are made it the precondition is met
(postcondition). Given some initial state, the dynamic behavior can be determined using
these preconditions and postconditions. The dynamic behavior can also be shown
graphically using state transition diagrams, statecharts, or variations. These show all
possible states of a class and all possible transitions between states. The transitions are
labeled with the event that causes the transition and the conditions for the transition to
occur.

Some OORA models do not address the dynamic behavior to the degree of showing
all state changes. Coad and Yourdan's approach shows the message passing possible and

the services, but not all possible states or preconditions and postconditions.

Existine Syst

Existing systems that support parts or all of the requirements analysis process are
briefly described. They are placed into one of three groupings. Members of the first
group use a natural language front end, those of the second use a constrained input, and
those of the third use formal specifications as input.

Systems That Use a Natural Language Front End.

[ARIN89] presents a natural language front end for knowledge acquisition for a

knowledge base. Because the system uses natural language, it is constrained to a limited

2-22

problem domain. Natwral language, being characterized by ambiguity, idiomatic
expressions, and context dependence, requires a restricted domain for the systems to be
able to disambiguate the input text with low failure rates. The system maps from natural
language to a knowledge representation in the knowledge base. The system includes
expertise in the knowledge clicitation task. The system does consistency and integrity
testing, which is where much of the difficulty is. The system is intended to greatly reduce
the role of the knowledge éngineer in the initial acquisition and totally replace the
knowledge engineer after the system has been implemented and initially tested. The
system must be pre-calibrated with high-quality basic domain knowledge for the natural
language front end to be able to accurately parse the user input. The knowledge is
represented in Prolog.

The SAFE system takes a natural language text that has been parenthesized to show
the sentence structure as input and produces a formal operational specification (it has
executable semantics). The natural language input must be small (about 10 or so
sentences). The parentheses are used to avoid syntactic parsing problems. The system
resolves issues such as missing operands, incomplete references, and terminology changes.
The operational specification is in a language called GIST [BALZ78} [BALZ85].

MOANA uses natural language dialog to acquire formal software requirements. In
order to understand the user, MOANA uses knowledge about the structure and
requirements of typical software systems. MOANA is not domain specific. It uses natural
language without constraining the domain because it does not have to completely
understand the entire natural language input. The user of MOANA is a domain expert
who is not a software engineer. The dialog is designed to avoid unconstrained textual
input by controlling the initiative in the dialog. The system looks for keywords that can be
matched to a set of stereotypical software models. These models are used as a starting

point for building models of the user's desired software system and consist of necessary.

2-23

typical, and optional components. MOANA has a script that specifies the type and order
of information that is obtained from the user. The system asks clarifying questions and
identifies incompleteness and inconsistencies. It uses a natural language generator to
communicate with the user. The system requirements are represented using operational
and data flow models. The output of MOANA is a series of software models which 1s fed
to the software designer [CHINE9].

IDeA is an environment for supporting high-level specitication and design. It provides
graphical support for data flow diagrams and a natural language tront end for interpreting
informal specifications. [ts unifying model is based on data flow representations and
methodologies. There are generic data tlow diagrams in the system that are instantiated to
create the design [LUBAS&6].

The unnamed system in [DOHE90] takes as input a functional specification written in
English. It reduces ambiguities and shows the revised sentences to the user for review.
Once they are accepted, the sentences are converted into predicate form. Usually the
initial information entered is incomplete and inconsistent, so the system uses internal
domain knowledge or queries the user. The domain knowledge in the system is
represented in Prolog structures in a conventional tree inheritance structure. The goal is
to get the information to a point where an established design algorithm can be used.

[SAEK89] discusses parsing a natural language specification with human interaction to
develop an object-oriented specification that can be transformed into a design
specification, and then into code. The system concentrates on extracting verb phrases.
The user has to decide which of the extracted nouns and verbs are important, and
therefore the system relies heavily on user interaction. There is domain information in the
system and no class hierarchies are produced. The system is used for time-oriented

systems.

2-24

KAPS is a system that provides knowledge-based assistance 1o the requirements phase
from an object-oriented perspective. The goal is to add formalism - not to produce a
formal specification. The system accepts the user's natural language descnipuon of a
system's behavior. The input must be grammatically correct with no pronouns. The
system does an interactive parse and produces a standard Lisp expression. Using the
parsed sentences, facts are asserted into the knowledge base. The result is object-
oriented, although the model is not a complete object-oriented model. Feedback with the
user refines the model. Knowledge about OORA is not encoded. No domain knowledge

is contained in the system [CARV90].

[BARSS8S] discusses an automatic programming system that starts with an informal
specification consisting of preconditions, postconditions, inputs and outputs that are in a
higher order language (HOL)-like form. This form is transformed into a formal
specification and then coded. This is done using knowledge about programming, the
application domain, manipulating mathematical expressions, and the target architecture

nd language. The informal input is formalized by either recognizing the informal form

and replacing it with a formal one, or trying to apply problem-solving heuristics to
decompose the problem into smaller ones. The domain-independent problem solving
heuristics are represented as pattern (the informal input) - action (decomposition or a
formal specification) rules. The basic facts and relationships of domain knowledge are
represented as structured objects and stored in a knowledge base. The system is
dependent on being able to operate in a very narrow domain.

In [BOBB90], the software requirements are elicited from the end user using a logic-
based, declarative tool. The attributive information (objects and attributes) is elicited and
represented using Prolog. This produces Prolog programs that can be analyzed for

consistency, completeness, omission, and ambiguity through execution of the

2-25

representation. The data elicited is in rule and fact torm. The behavior is eliciied in frame
form.

ORM (object relauonship model) is an alternative model to object-oriented modeling
that uses complex, or composite objects. It uses the standard object-oriented concepts of
objects, relationships, and classes. A role is assigned to each class in a relationship and
cardinality constraints are specified for both classes involved in the role. Attributes are
considered to be a special kind of object class. The objects and relationships are grouped
to form complex objects. The analyst enters the information in graphical form and then
asks for an evaluation of the model. A heuristic approach is taken in evaluating
consistency and completeness, using forward chaining rules. An example of
incompleteness is a totally isolated object. Inconsistency rules are activated whenever
there is a change to the model. An example of an inconsistency is that the max is less than
the min in cardinality constraints [[PCH91].

[KUNGS89] describes a conceptual model that uses a visual and formal approach that
models static and dynamic aspects in one model. This conceptual model can incrementally
describe the information, has a mathematical basis, and produces an executable
specification that can be translated into Prolog. There is no discussion on how the
information is entered into the system. Once the information is in, the system evaluates
the model. The static information is modeled in an entity-relationship-like language. The
dynamic information is modeled in expanded data flow diagrams (DFDs). The elementary
processes are modeled similar to Petri nets. Each elementary process has a pre- and post-
condition. This format allows for formal analysis of liveness, invariance, and some aspects
of correctness. It is different from the object-oriented model because in this model entities
are passive components and the separate processes are active components.

The Analyst Assist (AA) project is a knowledge-based tool environment to assist

developers in constructing and maintaining a requirements specification. It assists the

2-26

analyst in capturing informal requirements, improving the transition trom informal to
formal requirements, specitying and documenting the requirements using the Jackson
Software Development (JSD) method, and validating the specification using prototyping
and animation. The initial process of eliciting information is machine-assisted through the
use of checklists and facilities for recording the user's answers. A user fact base is created
using a fact input tool. The tool is guided by a formulator, which makes use of the domain
knowledge base and the current state of the user fact base. Using the information from
the checklists, user fact-base, and method and domain knowledge, JSD models are built
and presented tor checking [LOUC88] [LOUC90].

The Programmer's Apprentice project is studying how software engineers analyze,
modify, specify, verify, and document software systems and how these tasks can be
automated. The near-term goal is the development of a Programmer's Apprentice, which
can act as a software engineer's partner and critic, taking over simple tasks and helping
with more complex ones. Part of this project is the Requirements Apprentice (RA), which
assists the analyst in the creation and modification of software requirements. The RA
does not interact with the end user, but is an assistant to the analyst. Theretore it does not
have to deal with natural language input and can use a more restrictive command
language. The RA produces as output conclusions drawn and inconsistencies found, a
machine-manipulable knowledge base that contains everything known about an evolving
requirement, and a requirements document summarizing the knowledge base. The RA has
three components. Cake is a knowledge representation and reasoning system that
supports propositional deduction and equality reasoning. Cake also maintains
dependencies between deduced facts and the incremental retraction of facts. There is an
executive that handles user interaction. The last component is a cliché library that
contains information on requirements in general and on domains of interest. The clichés

are the heart of the system and allow the RA to critique what is in the requirements as well

2-27

as what is missing. Clichés are a way of representing, organizing, and applying domain
knowledge. They represent commonly occurring structures in the domain. A major
research goal of the RA is the codification ot the clichés. Every requirement entered into
the RA has to be recognized as an instance of some existing cliché. New domains are
covered by defining new clichés. A cliché consists of a set of roles and constraints
between them. The roles are the parts that vary from one use of the cliché to another.
The constraints specify how the roles interact, and they place limits on the parts that can
be used to fill the roles. The clichés are organized hierarchically and are represented as
frames. These trames are linked by constraints and arranged in an inheritance library.
Roles are represented by slots, and the constraints are predicates on the slots.
Incompleteness in the specification is handled by making sure that all necessary roles
(slots) of the cliché are filled in. An example of a cliché is a repository with roles of
collection, patrons, staff, repository additions, and repository deletions. The user inputs a
Lisp expression whose first component indicates the type of the command [REUB91].
Kibitzer was created to address the stages of problem identification and
conceptualization in knowledge based system design. It helps an analyst create a model of
the problem domain that consists of concepts and relations. The domain model is encoded
in MetaClass, an object-oriented environment for Common Lisp. The Kibitzer system
monitors the editing commands and formulates suggestions and warnings regarding the
course of model development. The user interface is graphical using multiple windows.
The user input is constrained English and menu-type suggestions. The concepts (like
classes) are defined, and the relationships between the concepts are identified by the user
of Kibitzer. The Kibitzer system uses inheritance. Based on how the concepts and
relationships are named, Kibitzer can tell if a concept is a subclass of another concept and
what classes relationsiips belong to. Kibitzer uses a library of clichés for domain

knowledge that are very much like those of the RA [SCHO91].

2-28

STES (specification transtormation expert system) is @ system that translates a
requirements specificaton expressed in terms of DFDs into a design specification in wrms
of structure charts. STES contains a knowledge base that contains information on the
structured design methodology and heunstic guidelines to help determine when certain
methods should be applied [TSAI88].

The KIT-LERNER project is based on the use of sloppy modeling. The BLIP system.
which is part of the KIT-LERNER project, is a knowledge acquisition system designed to
acquire basic problem-solving independent knowledge about a domain, including
terminology and simple empirical knowledge. The user enters facts, predicates, and rules
in a windowed environment. There are no prestructured activity sequences; any of the
operations are available to the user at any time. The BLIP system is implemented in
Prolog and Lisp [WROBS8].

ESA (Expert Supported OOA Tool) is a system based on an extension of Coad and
Yourdan's OOA methodology. ESA is a graphical environment that provides icons for
OOA structures and a limited knowledge-based analysis to critique the completed OORA
model. There is no assistance for creating the model [SCHA92].

The KBRAS system is intended to automate the process of acquiring software
requirements by providing eliciting and modeling tacilities. KBRAS's conceptual models
consist of an environmental and virtual model. The environmental model defines objects,
object types, attributes, relationships, and associated constraints. The virtual model
consists of objectives, activities and states for achieving those objectives, and the control
knowledge that describes the software behavior. The KBRAS user intertace is graphical
and accepts restricted natural language. It contains knowledge on the form of the
representation of a domain, the process for how the domain specific knowledge is
acquired, combined, and used to model a system, the heuristics used to guide and optimize

the integration of system components, and the knowledge required for checking for

2-29

inconsistencies and contlicts. The requirements acquisition knowledge 1s a set of
procedures, and the domain specitic knowledge is represented by rules and trames. The

internal notation produced as output is not formal [ZERO91}].

Kate takes as input a tormal specification and a context in which to analyze it and

outputs a cntque which consisls of textual reports and simulation. Kate is a computer-
based critic. The formal language has the expressive power of Petri nets, plus it adds a
class hierarchy, place capacites, and the ability to associate computable predicates with
arcs. The critic contains a model of the domain, a matcher to connect the model with the
input specification, and a critiquer that does the analysis. The model has a set of policy
issues for building systems in the domain and relevant cases. Policy issues are potential
specification goals. These represent past experiences in a domain in the form of cas:s and
scenarios. The cases are operational, and they provide an abstract behavioral description
that ties the nonoperational policy issues with the concrete behavior in the specification.
The critic identifies policies that are not supported. are obstructed, or are not necessary
(FICKSS].

FRORL (Frame and Rule Oriented Requirements Language) is used with a method
called the predominance/particular method and a knowledge base to support the
requirements acquisition process. FRORL uses frames for object-oriented modeling and
production rules for specifying actions and constraints of the domain. Abstract
relationships used in FRORL are is_a (instantiation), a_pari_of (whole/part), and
a_kind_of (inheritance). The predominance/particular method emphasizes that the main
featurcs should be represented first using simple and general descripuons; details are then
added incrementally. The knowledge base contains rules for specification evaluation,

prototype validation, and the translation of the specification into Prolog code. The

2-30

production rules are i Prolog. The winput to the system is a set of frames. FRORL starts
by describing the main system teatures using frames and then adds dewtl. The
specificaton 1s executed in order to validate it. A query system allows the user to ask
questions about the evolving specification. FRORL supports default and muluple
inheritance. Two types of frames are input: object frames and acuvity frames. Object
trames contain information on the relatuonship with other object trames (is_a, a_part_of,
a_kind_of), the attribute names and the associated attribute values. Acuvity frames
represent changes taking place in the domain. They have five slots: the abstract relation
(usually a_part_of), part (the objects or attributes taking part in the activity), precondition
for the activity, action (if the precondition is met, do the action). and alt_action (if the
precondition is not met, do the alt_action). The parameter list of the activity is the set of
parts. To allow the specification to be incrementally built, nonterminal symbols are used
to express a term that will be precisely defined later in the development of the specification
within FRORL. The knowledge base contains knowledge for checking the specification
tor proper syntax and consistency, prototype validation knowledge that is used to exccute
the specification and answer queries, and transtormation knowledge that produces Prolog
code trom the specification [TSAI89).

HCLIE (Horn Clause Logic with Inheritance and Exception) is a language that is a
superset of ordinary Prolog. It adds the syntactic category of common nouns. Common
nouns are distinguished from predicates by the prefix "kind". HCLIE allows default
inheritance. which is where inherited properties can be overridden. It also allows multiple

inheritance [TSAI91).

2-31

Relationship of Technology A DAKS

Overview, OAKS is built around an object-oriented domain model that is moditied to
produce an object-oriented model for a particular problem in that domain. The QAKS
system is based on OORA principles, structures, methods, and guidelines and rules. Only
object-oriented structures, relationships, and techniques were used to develop the OAKS
system, in contrast with using other techniques such as function-oriented or dynamic-
oriented.

Requirements Analysis. OAKS produces a requirements specification in the form of
an object-oriented model of the problem to be solved, which is referred to as the problem
model. The problem model of OAKS is the conceptual model of the system to be
developed. The OAKS evolving problem model is in informal form, as inconsistencies and
incompleteness are allowed. These are removed before the problem model is considered
completed.

The main purpose of OAKS is to manage the requirements analysis process. OAKS
contains knowledge of a process that is used to elicit requirements trom the user, build the
problem model, recognize an incomplete and inconsistent problem model, and display the
evolving problem mcdel to the user for verification. The OAKS problem model adheres
to the concept of a specification in that it specifies what the required system that is to do,
but not how to do it.

OAKS represents the specification using a formalized representation consisting of
CLOS and LISP code. This representation can be used in different and varying domains.

OAKS does not force a certain sequence of decisions on the user. Instead, it allows
the user great flexibility in choosing the sequence of changes made to the problem

specification.

OAKS is tolerant of incompleteness, and is easily augmentable.

Future work in OAKS should examine the transtormation of the problem model into a
tormal specification that could be used to develop code.

Requirements Analysis and Artificial Intelligence, OAKS contains knowledge of
the domain of interest, the OORA process, the structure of the model of the OORA
specification, techniques for transtorming the domain model into the problem model, and
the process of eliciting information from the user.

OAKS?'s role is closest to that of "sloppy” modeling [WROB88]. The user is not
required to develop a complete problem model before interacting with OAKS. There is a
minimum order imposed on the changes that can be made to the evolving problem model.
OAKS tries, where possible, to organize and complete changes entered by the user.
OAKS tries to maintain integrity and consistency of the problem model and provides
immediate feedback on the consequences of all changes. OAKS allows the user to view
the problem model at any time and at various levels.

OQODA. The OAKS domain model contains the objects, operations, and relationships
in a problem domain so they can be modified to produce different problem models in the
domain. An OODA must be conducted to produce the domain model. This research did
not, however, address the process of OODA. It addressed the form, use, and changes of a
domain model, once it is created through the OODA process. OAKS does not provide the
tools or guidance for conducting the OODA. This would be done by an analyst and the
results encoded in OAKS prior to a user's interacting with OAKS.

QORA. OAKS conducts an OORA by creating a problem model that represents an
object-oriented specification.

OAKS does not copy any one OORA model or process. Instead, it borrows
components, relationships, steps and guidelines from numerous OORA processes.

Therefore, the first step in developing the OAKS system was the development of a math-

2-33

based model containing the components and relationships that would be used in OAKS.
This step also developed the wrminology and definitions used in the OAKS system. The
second step evaluated existing OORA processes to gather guidelines and rules that could
be used in the OAKS domain model and in the evaluaton of the evolving problem model.

Existing Systems. OAKS contains all the components and relationships of an object-
oriented specification in their object-oriented form. That is, classes are the central, active
components that encapsulate their altribl;tes and services. OAKS also does more than
provide a set of structures from which to construct a specification. OAKS contains
knowledge of the OORA process to guide in the development of a problem model that is
consistent and complete with respect to the defined object-oriented guidelines and rules
and the structure of the OAKS domain and problem models. These two characteristics of
OAKS make it unique among the existing automated systems.

The existing systems either do not express an object-oriented specification in a true
object-oriented form or they provide little guidance and contain little if any knowledge of
the OORA process. The systems using frame-based techniques encapsulate attributes
within the classes, but services are separate, active entities that are only referred to within
the class. Those that produce a true object-oriented specification provide graphical
support and limited checking but provide little process support or knowledge. The
Analyst Assist and the KBRAS projects come closest to the concept of OAKS, except that
neither produces an object-oriente:” specification. Some, like the Requirements
Apprentice, are centered around a particular domain of interest, but they contain little
OORA process or model knowledge.

OAKS does not currently contain a natural language front-end, although such a front-
end would be ultimately desirable. It also does not require a formal specification as input.
This enables the user of OAKS to interact in a way more natural for this phase of software

development.

2-34

OAKS is the only knowledge-based sysiem that was started from a basis of an OORA
system and built around this defined system. The development of OAKS placed
importance on a pure object-oriented approach to the model components, relauonships,

and the evaluation of the evolving model.

2-35

The main objective of this research was to investigate the teasibility of a computer-
based system that can guide a user of the system in the conduct of an OORA resulting in
an object-oriented specification of the system to be developed. The proof-of-concept
system developed is called the OORA Automated Knowledge System (OAKS). OAKS
contains a domain model that serves as a system template, and it is modified by the user to

produce a model of a particular system.

éa)
jLoooA

OODA
Domain Model

Transform | Analyst

OAKS
Domain Model

N Insert
OAKS

J
=

N

Modify
N
Problem
Model

User

_ J

Figure 3-1 Domain Model Creation

The do:nain model is developed by an analyst who is tamiliar with a domain and with
OORA. Figure 3-1 shows the steps involved in creating a domain model for OAKS. The
analyst tirst conducts an OODA in a domain. This results in a generic set of classes and
relationships for that domain. The analyst then transtforms the OODA results into the code
structure used for the OAKS domain model. This code is inserted into OAKS and tested
to ensure it meets OAKS guidelines and rules. After the tests have been successfully
completed, OAKS is ready for the user to modify the domain model and create a problem
model in that domain. The research addresses the basis and structure of OAKS, but does
not address the OODA process used to create the domain model.

OAKS was developed in six steps. Each of the steps built on the findings of the
previous step(s). The first step defined an OORA mathematical model which contains the
components of the OORA model and their relationships. All order constraints on
acquisition ot the components were defined. The second step detined how to acquire and
evaluate the components of the OORA model. The evaluation information took the form
of guidelines and rules. This provided information on how to evaluate the model and the
model component interactions. The third step defined how to implement the guidelines
and rules developed in step two for the purpose of evaluating the object-oriented
requircments model. Step four prototyped OAKS. The prototyping of the system
required the development of a code structure that represents the domain model, a
component that analyzed the domain and evolving problem model, a component that
moditied the domain model to produce the problem model, and a user intertace. The fitth
step tested OAKS, and the sixth analyzed the results. Figure 3-2 shows all the steps and

their order.

3-2

OORA Math Model
(components and relationships)

Step 1

Order Constraints on
Component acquisition

_ .

N
Acquisition and Evaluation of Components
Domain and Model Independent Guidelines/Rules

Step 2

N
Application of IndependentGuidelines and Ruleq
Domain-Dependent Guidelines and Rules

Step 3

N
Prototype OAKS Step 4

72
Test OAKS Step 5

L

Analyze Results Step 6

Figure 3-2 Research Steps

Step 1. Define an OORA Mathematical Model

The OORA mathematical model is one that contains the components and relationships
necessary for the development of an object-oriented requirements model of the system to
be developed. The system to be developed is the solution to a particular problem in a
domain, called the "problem model".

The OORA mathematical model was developed by analyzing existing OORA

processes. These processes were used as a basis for a set of components and their

relationships that are necessary for an object-oriented specification. These components
were used as the components of the OORA mathematical model. This mathematical
model was used as the basis for the domain model in OAKS.

Step 1 produced information on what, for the purposes of this research, was
considered a "good" OORA model and the required relationships between the components
of the model. This information was required to enable OAKS to evaluate the
completeness and consistency of the domain model and the evolving problem model as far
as the inclusion and form of the necessary components.

This step enumerated all the components necessary for an OORA and the resulting
specification, their allowed relationships and the order in which they are acquired.
Another product of this step was a rationale on why the components and relationships of
the resultant OORA model were selected and why certain components of existing OORA

models were included or excluded.

fine Acquisiti nd Ev ion of

Step 1 defined the components, their relationships, and the order of acquisition of the
components. Step 2 collected domain and model independent guidelines and rules on how
to acquire and evaluate those components and relationships to ensure they meet OORA
constraints, rules and guidance. These guidelines and rules were collected by analyzing
existing OORA processes and extracting guidelines and rules on the creation, form and
changes of components of the OORA model. The guidelines are those criteria that are
suggested but not required. An example of a guideline is that a class should have more
than one service. A rule is a criteria that must be adhered to. An example of a rule is that
a subclass must inherit all the attributes and services of its superclass(es). The guidelines

and rules on acquiring the model components were used in the development of the OAKS

domain model. Some of the guidelines and rules for evaluating the model components
were embodied in the OAKS model and some were quantified in step 3 so they could be
applied by OAKS to the domain and problem models.

These guidelines and rules that were based on existing processes were in a form that
was informal and not directly usable by a computer-based system. Furthermore, they did
not form a complete set. These guidelines and rules were gathered from a review of the
literature. In Step 3, these guidelines and rules were retined and further guidelines and
rules are added based on the domain information. Step 4 developed guidelines and rules
that were based on the OAKS domain and problem model structure, and the OAKS model
modification process.

The guidelines and rules analyzed in this step were independent of the domain and of
the OAKS model structure. They were developed based on the desired static
characteristics of the OORA model. Their purpose is to evaluate the model components,
the interactions between the model components, and the entire model. These domain-
independent guidelines and rules are applied to any domain used in OAKS, because they

are based on the desired characteristics of any OORA model.

Step 3. Define Applicati f Guideli i Rul

Step 2 developed a set of domain-independent guidelines and rules that were
applicable to any OORA model. However, these guidelines and rules were not in a form
that could be used by a computerized system. Many were t0o subjective, using words
such as "best" and "may be"”. These guidelines and rules also did not take into account the
domain of interest or the structure and process of the implemented OAKS system.
Guidelines and rules based on the domain of interest are discussed in this step. Guidelines

and rules based on OAKS structure are discussed in Step 4.

3-5

In this step. the guidelines and rules of Step 2 were examined to determine which
would be used to evaluate the domain and problem model and how they would be used.
Some of the guidelines and rules were used in the development of the domain model but
not used to evaluate the model once it was in OAKS. For example, standard terminology
for the domain was used to create the class names in OAKS. A user manual tor OAKS
would contain suggestions to use standard terminology when creating a new class in
OAKS, but the OAKS system itselt cannot check for standard terminology.

The form of domain-dependent guidelines and rules was also developed during this
step. Domain-dependent guidelines and rules provide a more complete analysis of the
domain model. This information is used by the OAKS system to ensure consistency and
completeness of a model in a particular domain. An example of a domain-dependent rule
is that a certain class in a domain cannot be deleted because it is essential in that domain.

A particular domain was chosen in this step. The chosen domain was that of a system
that manages the scheduling and maintenance and flights for an Air Force aircraft

squadron.

Step 4. Prototype OAKS

The prototyping of OAKS was required as a proot-of-concept of the feasibility of a
computer-based system that guides the OORA process. OAKS required the design and
implementation of code structures to represent the OORA model and the relationships
between components in the model. The code structure contained all the components and
relationships in a form that could be used in any domain in which an QOODA could be
performed. The model had to be flexible yet accessible, so that the structure could be

constantly checked during the user modification process.

3-6

After the structure of the OAKS domain model was completed. the structures in code
that analyzed both the domain and problem model in accordance with the guidelines and
rules established in step 3 were developed. The analysis code was used both to check the
validity of the domain model prior to its use, and to check the validity ot the evolving
problem model.

The development of code structures that would enable the moditication of the domain
model by the user followed the development of the analysis code because the analysis code
was used to evaluate all changes. This code controlled the modification process so that
the mode! remained consistent and complew in accordance with model structure and
OORA guidelines and rules. It also controlled the order in which changes were made, if
such an order was necessary to maintaining a valid model.

The last code developed was the graphical user interface. This allowed easier access
to the model and the modification process. OAKS uses the domain model as an iniual
template and then guides the user through the creation of a problem model through a
series of refinements to the domain model. The refinements can be done in any order,
except for the requirements for order based on the model itself, and previous refinements

can be changed at any time.

Step 5. Test the QAKS Prototype

The testing of the OAKS prototype was an integral part of the development of the
OAKS code. As each LISP procedure was developed, it was tested as a separate entity to
ensure proper operation. The LISP procedures were then grouped into functional areas of
code, such as a set of procedures that checked the proper structure of an attribute. and
then tested again. Each of the files that make up OAKS was then tested. First the file

"oaksd:lisp", which contains the OAKS model structure and the domain model, was

37

developed and tested. Next, the model evaluation code in "oaksno.lisp” was developed
and tested. This required the use of "oaksd.lisp”. The OAKS modification procedures in
"oaksmod.lisp” were developed and tested next. These required the use of the files
"oaksd.lisp” and "oaksno.lisp". The user interface (UI) was developed next. The Ul uses
three files: "oaksut.lisp”, which contained the LISPView code that creates the windowed
user interface; "oaksave.lisp” which saves the evolving domain model to a file and
retrieves it tor any OAKS sesSion; and "oaks.lisp" which loads all of the above files and
created the environment for using OAKS. The Ul code is dependent on code from
"oaksd.lisp”, "oaksno.lisp" and "oaksmod.lisp”. Therefore, the development of QAKS
followed a building block approach, with each procedure building a file, which was used in

the development of the next file.

Step 6. Analyze the Results

The results were analyzed for tuture directions, problems, usefulness, areas that need
further investigation, and overall results. Given the size of the task, an important part of
the analysis was what work is left to be done and how it fits into the existing OAKS
system. OAKS was developed as a proof-of-concept system, whose emphasis was on the
development of a system that adhered as closely as possible to object-oriented concepts
and contained knowledge of OORA process and principles to guide in specification
development. Areas such as the user interface, dynamic characteristics of the model and

translation to design and code were de-emphasized.

3-8

General

An OORA model consists of a set of classes, denoted as Set_Ot_Classes, and the
relationships among the classes. These relationships are the inheritance relation which
consists of the superclass and the ancestor relation, the whole/part relation, and other
relations. The OORA model will be discussed by describing all of its components and
building these components into a full model.

A class consists of a name, a set of attributes, and a set of services. The services

include how to create and destroy objects of that class.

Class Attributes

Each class contains a set of attribuies. Each attribute is identified by a name and a set
that detines all possible values that attribute can be assigned. For example, for the class
"Flight-Schedule” there may be an attribute named "Take-Off-Time” whose legal set of
values is the set of integers between O and 2400 (using military time). Each object
contains its own value for each of the attributes of the class for which it is an instance.
Therefore, the value of an attribute can only be determined from knowledge of the object
identification. For example, if there is a flight schedule "Schedule-A" that is an instance of
the class "Flight-Schedule”, the attribute "Take-Otf-Time" may take on the value "1300"
for the object Schedule-A. For another object, the attribute may take on another value
from the set of legal values. The values of all the attributes of an object make up the

object state.

The name of each autribute, .ttr_Name_i. can be modeled as a tuncuon. The
domain of an attribute tunction is the set of all objects that are instances of the class to
which the attnbute belongs. The set of all objects of a class named Class_Name, denoted

by OBJ(Class_Name), is detined as shown in relation (1).

OBJ(Class_Name) = {cby | obj is an instance of Class_Name} D

The range of an attribute function is a set of legal values for .2 attribute, Range_i.
The tunction associated with each attribute name takes as input the name of an object and
returns the value of the attribute for that object. The returned value must be a member of
the set of legal values for the attribute, Range_i. In particular, Attr_Name_i maps values

from OBJ(Class_Name) into Range_i.

Attr_Name_i1 : OBJ(Class_Name) — Range_i (2)

where Attr_Name_i is the name of an attribute within Class_Name, OBJ(Class_Name) is
the set of objects that are instances ot Class_Name, and Range i is the set of legal values
for Attr_Name_i.

The class state space, Class_State_Space, can be represented as a finite set of pairs

consisting of attribute names and their ranges.

Class_State_Space = {(Attr_Name_1, Range_1), .., (Attr_Name_n, Range_n)} (3)

where Class_State_Space is the state space of a class, Attr_Name_1 and Attr_Name_n are

attribute names of that class, and Range_l and Range_n are the legal values of

Attr_Name_1 and Attr_Name_n respectively.

4-2

If there are default values for the atributes, these are shown within the CREATE
service tor the class in the postcondition. The CREATE service creates a new object of

that class with any desired detault values of the attnibutes.

Class Services

Each class contains a set of services that implement the behavior of the class. The
service names, denoted by Service_Name, can be represented as functions whose domain
consists of an object state, denoted by Object_State, and a list that represents an optional
input parameter list, Input_List, and whose range is the possibly changed object state,
Object_State, and a list that represents an optional output parameter list, Qutput_List.

Chject_State is a set that consist of the values of all the attributes of the object.

Object_State = { Attr_Name_1 (Object_Name). .. , Attr_Name_n (Object_Name)} (4)

where Object_State is the set that consists of the values of the attributes of the class,
Aur_Name_i is the name of an attribute of the class, and Object_Name is the name of an
object of the class.

Input_List is a list of sets that represent the legal values ihat bound each of the
required input parameters of the service. Output_List is a list of sets that bound each of

the output values of the service.

Input_List = <Input_Set_1, ..., Input_Set_m> (5

Output_List = <Output_Set_1, .., Output_Set_x> (6)

4-3

where Input_Set_i is the set of legal values tor one input parameter and Qutput_Set_i is
the set of legal values tor one output parameter.

Theretore, each service name can be represented as:

Service_Name : Object_State X Input_List — Object_State X Output_List (7)

where Service_Name is the name of the service, Object_State is the set that consists of the
values of the attributes of a class before the service is executed, Input_List is a list of sets
that represents the legal values for the input parameters, Object_State is the set that
represents the values of the attributes of the class after the service is executed, and
QOutput_List is a list of sets that represents the legal values for the output parameters. The
symbol X represents the cross product.

The values making up the object state are accessed by the use of the attribute names,
a function, as described in the previous section.

For example, the class of Dog contains an attribute License_Number, which is an
integer, and a service Change_License_Number that takes a new license number and
replaces the old one. An instance of the class of Dog is Fido. Object_State would consist
of the value of the one attribute, which in this case would be {License_Number(Fido)}.
The input list is a value from the set of integers that represents the new license number.
The output list is empty in this example.

In addition to specifying a representation for the service name, the operation of the
service must also be specified. The operation of the service can be specified by using a
precondition and a postcondition. The precondition, denoted by Pre, is a predicate that
represents assumptions on the object state (Object_State) prior to the execution of the
service, and the assumptions on the values of the input parameters in Input_List. The

postcondition, denoted by Post, is also a predicate that represents the required relationship

between the input values, which consists of the Object_State and Input_List, and the
output values consisting of the Object_State and Output_List.

Hence, given relationship (7), then:

Pre(s, il, .., im) — {True, False} (8)

Post(s, i1, .., im, §', o1, .. ,0x) = {True, False} 9

where:

Pre is the precondition

Post is the postcondition

s € Object_State

(i1 € Input_Set_1) A ... A (im € Input_Set_m)
s' € Object_State

(01 € Output_Set_1) A ... A (ox € Output_Set_x)

If the input is in the domain and the precondition is true, then the postcondition is
implied. If the input is not in the domain or the precondition is false, nothing is known
about the output values of the service.

If the services of other classes are required to satisfy the requirements of the service,
the postcondition representation must contain references to those services. The form of
the reference to services of other classes is dependent on the form of the postcondition. In
this research, the services of other classes are represented by using a dot notation, where
the class name is separated from the service name using a dot, such as in
"Class_A.Service_A". For example, the class Squadron may have a service called

"Number-Operational” that returns the number of aircraft in the squadron that are fully

mission capable. This would require a message from Squadron to each Aircraft object in

the squadron asking its status. This message would refer to the service of the Aircraft
class, called "Get-Status”. By using the dot notation, the "Get_Status” service of an
object of the aircraft class is represented in a postcondition of the "Number_Operational”
service by "Aircraft.Get_Status”.

When the operation of a service is specified, it is assumed that the service will be
operating on the state of a object that is an instance of the class to which that service
belongs. Theretore, the information required when specifying a service denoted as
Service_i, is the service name Service_Name (which is a function name), the input
parameters Input_List, the output parameters Output_List, the precondition Pre, and the
postcondition Post. Both the input parameters and the output parameters are optional,
and the precondition may be "true”, signifying that any input state is acceptable. All input
and output values are assumed to be members of the corresponding input and output sets.

Therefore, a service can be specified using the following tuple:

Service_i = (Service_Name_i, Input_List_i, Pre_i, OQutput_List_i, Post_i) (1)

where Service i is a service, Service_Name_i is the name of Service_i as defined by
relationship (7), Input_List_i is the input parameter list as defined by relauonship (5),
Pre_i is the precondition as defined by relationship (8), Output_List_i is the output
parameters as defined by relationship (6), and Post_i is the postcondition as defined by
relationship (9).

The set of all services of a class, denoted by Services, is denoted by:

Services = { Service_1, .., Service_s} (1Y

4-6

where Services is the set of all services of a class and Service_ i is one service of the class
as detined by relationship (10).

The preconditions and postconditions of the services of a class reflect all the possible
states of the class. The preconditions show all possible states prior to service execution
and the postconditions after service execution. The CREATE service shows the inital
state of an object of a class through its postcondition. Any service whose precondition is
true in the inital state of the object can be executed in that initial state, and the
postcondition shows the new state. Therefore, all possible states are specified by
following all possible service execution paths through the lifecycle of an object.

In reality, the only states that are of interest are those that are specified in the
preconditions of the services. For example, there may be a service called "Change-
Squadron" that changes the Squadron attribute of the Aircrew class discussed above. The
precondition for this service will most likely be "true”, because any squadron will be
replaced by the new squadron. Theretore, even though there is a change in the state of the
object, it is not a state change that would allow different services to execute or not
execute because the value ot the preconditions changed. On the other hand, going back to
the Aircraft class example, if there existed a service called "Schedule-Recheck”, a likely
precondition would be that the aircraft already had the initial check of the system in
question. Therefore, two states of interest would be (1) the aircratt has not had its initial
check, and (2) the aircraft has had its initial check. This state would be changed by a
service such as "Conduct-Initial-Check".

Certain states of a class Jetermine how a service operates and therefore constitute the
states of interest for a class. All possible states of interest of a class are not mutually
exclusive. An object may simultaneously exist in more than one state of interest. The
precondition of a service may use information on the status of none, one or more states of

interest to determine its true or false value. For example, assume there is a difference in

4-7

how a service or services in the Aircratt class operate based on the value of the Status
attribute and a difference on how a service or services operate based on whether the
aircraft has had its imtal check of a system. Therefore, an aircraft can simultaneously
exist in two states of interest: the state of interest of being tully-mission-capable and the

state of interest of not having had the initial check.

Classes

The identification of classes by name is a key component of OORA. Object names
are used to find classes by looking at how the objects may be grouped into classes, but the
objects are not used in the final model. The emphasis in OORA is the identification of
classes. The identification of the specific objects is done during design. The classes
represent the structure of the objects of the system. That is why Coad and Yourdan
[COYO91] call the structures created during analysis “class-&-objects”. It is not
necessary during analysis to identify all objects that may be created by a particular class. It
is only necessary to identify all problem space classes by name. Solution space classes will
be identified during design.

Classes consist of the class name, denoted by Class_Name, the set of class services,
denoted by Services, and the state space or the set of attributes, denoted by
Class_State_Space. Services were defined in section 3.3 and Class_State_Space in

section 3.2. Therefore, each class, denoted by Class_i, can be represented by the tuple:

Class_i = (Class_Name_i, Class_State_Space_i, Services_i) (12)

where Class_1 1s a particular class, Class_Name_1 18 the name of the class.
Class_State_Space_i is the state space as detined by relationship (3), and Services_i are
the services of the class as detined by relationship (11).

All the classes in an OORA model can be represented as a set denoted as

Set_Of _Classes:

Set_Of_Classes = {Class_1, Class_n} (13)

where Set_Of_Classes is all the classes in the OORA model and Class_i is one class as

defined by relationship (12).

Inheri Relationshi

The inheritance structure is a key element of object-oriented analysis results. All
OORA methods include this structure in some form, mostly represented as a digraph.
The inheritance relationship can be described as a binary mathematical relation. Let A

and B be sets. The Cartesian cross product of A and B is defined by:

AXB=(<ab>lae A, be B} (14)

A binary relation R is a subset of A X B, where A is the domain of R and B is the

codomain.

<ab>e R < aRb (15)

4-9

Theretore, the inheritance relationship, denoted by Ry, is a binary relation on the set of

classes in the system, denoted as Set_Ot_Classes. That is,

R, ={<ab>la.b € Set_Of_Classes A a is the immediate parent of b} (16)

where R, is the inheritance relationship and Set_Of_Classes is the set of all classes in the
model as defined by relationship (13).

This inheritance relation R, is called the superclass relation, where the superclass is

the immediate parent of each class. R, has the following characteristics:

(1) R, is irreflexive, thatis, <x.x>¢& R;, V x € Set_Of_Classes.

(i) R, is antisymmetric, that is, (x Rjy Ay R x) > (x =y), V xy e
Set_Of_Classes.

The ancestor relation, which describes all cla'sses from which a class inherits, is
described by the transitive closure of R;, denoted by t(R)). The transitive closure of R, is
the relation t(R,) such that:

(1) (Ry) is transitive.

(i) (R D R;.

(ii1) For any transitive relation t(t(R))). it t(t(R,)) D R|, then «((R})) D (R)).

Therefore, if R, is a binary relation on A, then <a,b> € t(R)) iff there is a sequence of
elements <cg, ¢y, .., >, C; € A,wheren21,¢y=aandc, =b,and for 0 <i<n, <c,c, >
€ R,

Both the superclass relation, R;, and the ancestor relation, t(R,). can be represented as
digraphs. An inheritance digraph D, is an ordered pair D; = <A,R;> where A is the set of
vertices and R; is the superclass binary relation on Set_Of_Classes. The elements of

Set_Of_Classes are vertices of D;. The clements of R, are the arcs. Also, <a,b> € «(R))

iff there exists a path of nonzero length from vertex a to vertex b.

4-10

Class_A

Class_B Class_C

Class_E Class_F Class_G

Figure 4-1 - inheritance Digraph

In Figure 4-1:

R, = {<Class_A, Class_B>, <Class_B, Class_E>, <Class_B, Class_F>, <Class_C,
Class_F>, <Class_C, Class_G>}

UR)) =R, U {<Class_A, Class_E>, <Class_A. Class_F>}

Whole/Part Relationshi

Some of the OORA methods break out the whote/part relationship separately and
some identify it as a named relationship. Because it is a relationship that is widely
discussed as an important relationship to model, it is discussed separately here. According
to [COYO91], one of the ways to deal with the complexity of the OORA model is by
breaking the model into its component parts, and then dealing with each of the parts.
Also, looking at classes in the view of what they could be part of and what the
components of the classes are helps identify other classes in the problem space.

To model the binary whole/part relation, denoted by Ryy;

Let Ry, represent the binary relation on N, the Natural numbers, such that:

Ry={<ab>labe N} (17)

Let Ry represent the binary relation with Set_Of_Classes as the domain and R, the

codomain such that:

Rgc = {<a,b>la e Set_Of_Classes,b € Ry } (18)

where Set_Of_Classes is the set of all classes in the model as defined by relationship (13).

Therefore, Ry, can be represented as a binary relation on Rg.:

Ry ={<ab>labe Ry} (19)

The element of Ry associated with the tirst element of Ry, includes two Natural
numbers indicating the least and greatest number of parts that a whole might have at any
given moment. The element Ry associated with the second element of Ry, includes two
Natural numbers indicating the least and greatest number of wholes to which a part may
belong.

For example, let w, X, y, z € N, the Natural numbers, and:

<<Class_1, <w,x>>, <Class_2, <y, z>>> € Ry, (20)

Then:

<Class_1, <w,x>> € Ry and <Class_2, <y,z>> € Ry (21)

4-12

where:
Class_1, Class_2 € Set_Ot_Classes

<w,x> € Ry and <y,z> € R,

This indicates that Class_1 (the whole) consists of as few as w and as many as x of
Class_2 (the part). Also, Class_2 is part of as few as y and as many as z of objects of

Class_1.

Other Relationshi

Whole/Part relationships are a type of general relationship. Relationships are also
called associations [RUM91] and instance connections [COYQ91]. Relationships
represent a connection between objects. This connection shows objects that are
responsible for either representing a concept in the problem or those that together satisfy a
responsibility. This connection does NOT represent an inheritance connection or message
passing through services.

An example of a relationship is that between an aircraft part and its repair symptoms.
An aircraft part has a set of repair symptoms, and there is a set of repair symptoms for
each part, but the symptoms are not part of an aircraft part. An aircraft part can have one
or more symptoms and a symptom can be associated with more than one part. This
relationship is not represented by inheritance, whole/part, or message connection. It
should, however, be represented by attributes in one or both classes. For example, the
Aircraft-Part class could contain an attribute List-of-Symptoms, that is, the names of all
the symptoms that apply to this part. In this case, however, since the relationship is a
many-to-many connection, a new class should be created that contains information on

what symptoms apply to which aircraft parts.

4-13

Relatonships are not required to be named. Naming can be confusing because each
relatonship has two names depending on which object is examined first. For example. an
aircraft part "has-a" group of symptoms, but the symptoms "belong-10" aircraft parts.
Theretore, the "has-a” relationship would have objects of the class of Aircratt-Pan as the
domain and objects of the class of Repair-Symptom as the codomain. The "owns”
relationship would have Rcepair-Symptom as the domain and Aircraft-Part as the
codomain.

According to [RUM91], most relauonships can be represented as binary relations, or
can be transtormed into binary relations.

Like whole/part relationships, the existence of relationships in the class structure
is not known except through the existence of attributes that contain the necessary
information describing the relationship. If the knowledge of the relationship is needed for
a pair of classes to fulfill some responsibility of the system, then the information in the
relationship is needed by one or more services. Services operate on state information, or
the attributes. Therefore. the relatonship information must be modeled in an attribute or
attributes.

[RUMB91] states that a relatonship should not be modeled as an attribute within a
class. Rather, it should be modeled only as a named relationship. However, if the
knowledge of the relationship is needed for a pair of classes to fulfill some responsibility of
the system, then the information in the relationship is needed by one or more services.
Services operate on state information, or the attributes. Therefore, the relationship
information should be named and modeled in an attribute or attributes and not modeled
solely as a relationship name within the model.

An obvious question comes to mind. If relationships are represented in attributes or in
a new class that contains the attributes that represent that relationship, then why do

relationships need to be separately modeled? The answer is that the identification of

4-14

associations aids in the idenufication of attrnibutes and new classes, and in the evaluauon of
the structure of existing classes. For example. a many-to-many relationship shows that a
new class needs to be created. The relauonship itself is a model of a concept that will not
have a direct translation into code, as message connections do. The idenuficauon of
relationships documents where certain concepts are represented in the object-onented
model.

Any general relationship can be modeled in the same manner as the whole/part
relationship. The relationship must be modeled with the name of both representations.
The relationship "has-a/belongs-to” will be used as an example. The same relations used
in the whole/part relation can be used to model any general relationship, denoted by Ry:

Let Ry, represent a binary relation on N, the Natural numbers, such that:

Ry={<ab>labe N} (17)

Let Ry represent a binary relation with Set_Of_Classes as the domain and Ry the

codomain such that:

Ryc = {<a,b>la e Set_Ot_Classes,b e Ry } (18)

where Set_Of,_Classes is the set of classes in the model as detined by relationship (13).

Therefore, Ry, can be represented as a binary relation on R.:

Rp={<ab>labe Ry} 22)

The element Ry associated with the first element of Ry includes two numbers

indicating the lcast and greatest number of objects that are in the relationship at any given

moment in time. The element of Ry associated with the second element of Ry includes
two numbers indicating the least and greatest number of objects involved in the
relatonship.

For example, let Ry represent the “has-a/belongs-to” relationship. Let:

<<Aircrafit-Part, <1.n>>, <Repair-Symptom, <l.m>>> € Ry (23)

Then:

<Aircraft-Part, <1.n>> € Ry and <Repair-Symptom, <l.m>> € Rge (24)
where:
Ry is the relation "has-a/belongs-to”
Aircraft-Part, Repair-Symptom € Set_Of_Classes

<l.n> € R and <l.m>e Ry

This indicates that objects of Aircraft-Part can have the relationship "has-a” with as
few as 1 and at most n objects of class Repair-Symptom. Also, objects of class Repair-
Symptom can have the relationship "belongs-to” with as few as 1 and as many as m

objects of class Aircraft-Part.

Constraints

Constraints are functional relationships between classes that restrict the values that
the attributes can assume. An example of a constraint would be that an employee may not

have a salary higher than that of her boss. Constraints are implemented by the services

that change the values of the attributes. For example, when a salary is changed, the
service will need 1o ensure that the salary 1s not greater than that of the boss.

Constraints should be identfied and the OORA model developed that satisties those
constraints. Constraints are not separate parts of the model but are used to guide

development of the model.

Subjects

Subjects, or subsystems, are a way of orgarizing a model with a large number of
classes into groups of classes which form smailer and more manageable pieces. Because
this research will only deal with a small problem within the abilities of one analyst, subjects

will not be used.

Th Model

The entire OORA model, denoted by OORA _Model, can be represented as a tuple
that consists of the Set_Of Classes, which contains the classes in the model, the
inheritance relation R, the ancestor relation t(R;), the whole/part relation Ry, and other

relations Ry:

OORA_Model = (Set_Of_Classes, R;, t(R;),R,,Rg)

where Set_Of_Classes is the set of classes in the model as detined by relationship (13), R,
is the inheritance relation as defined by relationship (16), t(R)) is the ancestor relation
which is the transitive closure of R, , R, is the whole/part relation as defined by

relationship (19), and R, represents other relations as defined by relationship (22).

The OORA model contains all the information required for the development of an
object-oriented requirements specification. All components discussed in the literature
reviewed are represented in this model in some form.

Whole/part relationships are discussed separately from other relationships because
they are consistently used in the OORA as a named relationship to help structure the
model. The other relationships are problem dependent. They are used when and if the
problem requires that type of modeling. Therefore, the process of looking at the model in
terms of its wholes and associated parts is consistently used, while other relationships are
uncovered as part of the analysis.

When the OORA mathematical model is implemented, the superclasses of each class
can be represented as a part of the class structure instead of in a separate inheritance tree.
This means that information on the parents of cach class is contained in each class. There
is an argument for this, because each class must know its superclasses in order to access
inherited attributes and services. In the OORA mathematical model, the information on
the superclass ot cach class is contained in R, the superclass structure. The same
argument applies to not explicitly creating a separate message passing tree structure,
whole/part tree structure, or other relationships tree structure. This information can be
contained within the class structure itself. In the case of the message passing tree
structure, this tree can be derived from the relations for the postconditions of the services

of all the classes because they contain information on other classes used.

Ordering of OORA Model Components

There is no strict sequential order for obtaining the elements of the OORA model.

Every process discussed in the literature is iterative, but each has a starting point and

there are dependencies between elements of the model. Parts of the process can repeat

many times, with information discovered later in the analysis process causing additon and
moditication of elements of the model.

[COYO91], [RUMB91], ([SIBL89], [MONA92], and [NERS92] start with
identfication of classes. These classes form the basis for all further work on the model.
Only [RUBI92] takes a different approach. [RUBI92] focuses on idenufying the system
behavior first and then defines objects that will exhibit the behavior. The two views are
interrelated. Prior to the identification of classes, the analyst must understand thoroughly
what the system is to do. This, in essence, is understanding the behavior the system must
exhibit. The difference between the two approaches, behavior-first vs. classes-first, is
where the emphasis is placed early in the analysis. In the behavior-first approach, the
behavior of the system is analyzed and modeled in detail, and then classes are identified
that will satisfy the needed behavior. 'n classes-first, class identification methods are
emphasized early in the process so that behaviors can be identified with classes. The
system behavior is used as a check to be sure that all necessary classes have been
identified.

There are potential problems with the behavior-first approach. First, there is the
danger that a more functional, rather than object-oriented, approach will be taken because
of the early emphasis on system behavior. This problem can be overcome with careful
management of the process. The second potential problem, niore relevant to this research,
is the potential difficulty of using a domain model as a basis for new, evolving models. If
the start of the process identifies behaviors, it will be difficult to map those behaviors to an
existing object-oriented domain model, which consists of a class structure. OAKS would
have to identify where in the domain model the behavior is (or is not) satisfied. This is
much more difficult than determining if a class exists in the domain model. For these two
reasons, and because the classes-first approach is more commonly used, the classes-first

approach was used in this research.

Even though there is no strict ordering of the steps and the process is iterative, there
are dependencies between elements of the model. These dependencies will be shown

using the tfollowing notation:

Tuple_Name.Tuple_Component

This notation identifies a component of a certain tuple. For example,
"Class_Name.Class_State_Space” identifies the Class_State_Space of a certain class,
called Class_Name.

The dependencies between a class name and its components can be shown as follows,

where = is the symbol for implication:

V Class_Name € Potential_Class_Names,
(Auribute € Class_Name.Class_State_Space = Class_Name € Set_Of_Classes) A

(Service € Class_Name.Services = Class_Name € Set_Ot_Classes)

This states that for all classes in a particular model, the class name must exist, prior to
the identification of any of its attributes, which make up the state space, or any of its
services. This does not state that all class names must be identified before any attributes
or services can be identified. It just states that the name of a class must be identified
before any of the components of that class. Potential_Class_Names represents all possible
class names.

There are relationships between components of the OORA model and the classes as

shown in relationships (16), (19), and (22):

Let R, = {<p,, ¢;>, <P3, €3>, .. » <Py €,>)

4-20

ThenVie 1. n (p e Set_Of_Classes) A (¢, € Set_Of_Classes)

This states that the class must exist betore it can be used in an inheritance relation, or

any other relationship, such as whole/part, as the tfollowing shows:

Let Ry, ={<<a,, <b;, ¢,>>, <d|, <e|, {>>>, .. ,<<a, <b,.c,>>, <d, <¢,, {,>>>}

Then Vie I .. n, (a € Set_Of_Classes) A (d, € Set_Of_Classes)

Let Rg={<<a,, <b, ¢,>>, <d,, <e,, [;>>>, .. ,<<a,, <b,.c,>>, <d,, <e,, {,>>>}

ThenVie 1. n,(a € Set_Of_Classes) A (d, € Set_Of_Classes)

These state that the classes must exist before they are used in a relationship, not that
all classes must exist before any relationship must be defined.

This chapter defined an OORA mathematical model that included OORA components
and relationships between the components. This model was used as the basis for the
domain and problem model in the computer-based system called OAKS. The components
of the model were also used as the basis for the development of the guidelines and rules
that evaluate them. The development of the model was necessary to analyze the
similarities and differences in existing OORA methods. No one existing OORA method
provided the basis that could be used for the development of an automated system to
conduct OORA.

Now that an OORA mathematical model has been developed that defines a set of
OORA components and relationships, the next chapter reviews existing OORA methods
to develop a set of guidelines and rules that can be used to evaluate the components and

relationships in the model. These guidelines and rules will be refined and supplemented by

4-21

domain-specitic guidelines and rules in Chapter 6, and then by guidelines and rules based

on the LISP structure ot the OAKS domain model in Chapter 7.

4-22

Overview

The previous chapter defined an OORA model containing the model components and
relationships. It also defined any order required on the acquiring of the components. The
next step, discussed in this chapter, is an analysis of exising OORA methods. This
analysis produced a set of guidelines and rules for the acquisition and evaluation of each
component of the OORA model and of the entire model. These guidelines are rules are
independent of any domain chosen for the domain model in the OAKS system.

This chapter discusses this analysis and the guidelines and rules resulting from the
analysis. How these guidelines and rules are quantified so they can be used in a computer
system is discussed in the next chapter. Also discussed in the next chapter are guidelines
and rules that were developed based on knowledge of the domain used for the domain
model in OAKS.

The literature surveyed provided numerous processes for both acquiring and
evaluating the components. These processes were evaluated and the information
combined and refined to produce the guidelines and rules discussed in this chapter. Based
on an analysis of the process of acquiring problem model information, a decision was
made to have OAKS develop a system by starting with a domain model as an inital
template. The domain model is then modified to produce a problem model.

The elements that must be acquired, as defined by chapter 4, are:

1. Set_Of _Classes
1.1 Class_Name
1.2 Class_State_Space

1.2.1 Attr_Name

1.2.2 Set of Aunbute Values
1.3 Services

1.3.1 Service_Name

1.3.2 Input_Sets

1.3.3 Output_Sets

1.3.4 Preconditions

1.3.5 Postconditions
2. R, which is the superclass relation
3. Ry, which is the whole/part relation
4. Ry, which is other relations

The first question to be answered was what knowledge the user of OAKS should be
assumed to have. This affects how the clements are acquired. It was determined that the
user should have knowledge of the problem domain, the system's responsibilities, the
problem scope, the application context, and any assumptions of the domain. These are
reasonable assumptions given a user that is working in a particular domain.

The second question was what approach should be taken in acquiring and modeling
the information. Three approaches were discussed in [MONA92]:

(1) The combinative approach. In the combinative approach, ditferent techniques are
used to model the structure, functional behavior, and dynamic behavior. Modeling
techniques used include object-oriented, function-oriented and dynamic oriented. A
method is defined for integrating the different approaches. This is the approach of
[RUMBY1] and {SHLAS88]). The main problem with this approach is the difficulty
encountered when trying to integrate the different views. It is difficult to determine how

the different views directly relate.

5-2

(2) The adaptive approach. This approach uses existng wchniques. usually from
structured analysis, in a new object-oriented way. or exwends these wechniques to include
object-o-entation.

(3) The pure object-oriented approach. New techniques are used for the whole
model. A translation process is not required, but a complexity-management scheme is
needed to allow viewing of the data from different levels of complexity, at varying levels
of detail, and from various perspectives.

The approach used in this research was the pure object-oriented approach. The
combinative approach would be difficult to implement in a automated system because
there would not be a human to make the mental translation from one model to another.
Any modeling scheme used by OAKS would have to be tightly integrated because the
same information must be used for all views and the reasoning must be done on one
evolving model. The decision was already made not to use any structured analysis
techniques and to assume an object-oriented perspective from the start of the requirements
analysis process. This decision eliminated the adaptive approach.

The remainder of the sections in this chapter discuss each of the elements and
subelements of the OORA model, how they will be acquired, and guidelines and rules for
their acquisition. The formalization of these guidelines and rules for use in a computer

system is postponed until the next chapter.

Set Of Classes

The first step in acquiring an OORA model is to determine the overall strategy of
acquiring classes. Classes can be acquired by looking at nouns in the documents, by
identifying the top-level class first and working down, by starting with the classes that

interface with outside devices and working in, by identifying key abstractions and building

5-3

up the problem model trom them, or by starting with a domain model and modifying this
model to develop the problem model. The decision on which approach to use is partially
based on how the domain information will be used in OAKS. The domain information can
be used as a template for the problem model or as a comparison tool. A twemplate is used
to create a problem model by adding clements, deleting elements, and modifying the
structure. The domain information can also be used for comparison with the evolving
problem model in order to provide guidance and corrections.

One advantage to using the domain model as a template is that it would provide a lot
of support to the user through its ability to illustrate an OORA structure. This OORA
structure would serve to act as a model for a good object-oriented analysis. Modifications
to the structure would be evaluated to ensure the structure remains consistent and that the
changes do not violate any rules and constraints. The disadvantage of using the domain
model as a template is that the user of OAKS has less flexibility in developing a new
system. This is an advantage when dealing with a user who is inexperienced in object-
oriented analysis. An analyst expericnced with object-oriented techniques may feel
constrained by this approach.

The use of the domain model as a wmplate also assumes that the template will be
valid iur a reasonable period of time. If the domain model needs constant changing
because the domain it represents changes rapidly, the usefulness of a system such as
OAKS would be diminished. [ARANS89] states that there are stable problem domains that
evolve gradually Gver time. Within these domains, there are communities of users that
develop large numbers of software systems in the domain. These communities of users
have a common vocabulary with shared semantics, and there is expertise on how to build
systems in that domain. Given that one of these stable problem domains is used, it is

reasonable to assume that a domain model would have a useful life. Also, further

5-4

moditications to OAKS could incorporate a leamning mechanism that would update the
domain model based on the problems that it was presented.

Another argument for using the domain model tor a wmplaw is that a structured
approach with a well-defined path, like that used by a computer system, is best suited to a
well-known domain, where previous experience would provide much of the structure of
the domain model. If the domain is unfamiliar, then the domain knowledge must be
uncovered and retined. This process of domain discovery requires the use of a minimum
number of constraints and only high-level guidance to allow for a more unconstrained and
therefore creative process [WHIT90).

Using the domain model as a comparison tool requires a problem model that is less
constrained as to form and content. The problem model will still have to meet the rules
and constraints of the system, but the form is more flexible.

Because the user is assumed to be an analyst who is not experienced in object-
oriented techniques, and because the system is compuier-based, the decision was made to
use the domain model as a template. Based on that decision, new classes are developed by
additions to the domain model. or by changing the name or components of an existng
class in the model. The process of acquisition of classes or any components in the model,
is not explicitly coded in the OAKS system. Rather, the onginal domain model was
developed by an analyst experienced in OODA using these acquisition guidelines and
rules. The domain model serves as a template and provides guidance by example of the
types of classes in the domain. Since classes are the most stable components in the
domain model, these should be changed the least by the user of OAKS. The names of the
classes may change to meet the particular problem, but the classes themselves will be
relatively stable. Any acquisition guidelines and rules that would be needed by the user
would be contained in a user's manual for OAKS. For example, the guidelines and rules

for acquiring classes by examining the nouns in the domain would be contained in any

5-5

user's manual developed for the system, so the user can choose appropriate new classes, if
needed.

For the OAKS proof-of-concept system, a user's manual was not developed. The
user interface developed was sufticient to show the OAKS concepts to be sound, but the
user interface is not a robust user's environment. Discussed in this chapter are the types of
concepts that should be included in a user's guide for a system modeled on the OAKS
concepts.

The remainder of this chapter discusses the guidelines and rules for acquiring and
evaluating the components and relationships in the OORA model that is used as the basis
for the domain model in OAKS.

There is much discussion in the literature on the general characterisucs of classes.
These characteristics are used as a basis for the guidelines and rules that evaluate a
problem model. However, these general characteristics are not specitic enough to be used
directly by a system. For example, one general charactenstic is that a class have crisp
boundaries. That statement cannot be used to evaluate a class objectively, because there
are no measurement criteria that can evaluate if a boundary is crisply defined or not.

Some general characteristics are as tollows:

- autonomous, coherent, encapsulated, crisp boundaries [RUMB91] [BOOC91]

[MEYESS].

- can be concrete or conceptual [RUMB91] [KORS90).

- have identity [RUMB91].

- tangible/visible [BOOCI1].

- may be apprehended intellectually {[BOOC91].

- represent the common vocabulary ot the problem domain [BOOC91] [WIRF90].

- strictly controlled communication channels [MEYES88].

5-6

- designed as problem space classes. which are those needed o sausty the
requirements in an ideal environment, 1.¢.. one large program on a tast machine
[WHIT89]. This means the classes developed for requirements do not need to
concern themselves with time or space requirements.

A process discussed in [SIBL89] and used in some form by others is classitying the
classes as active or passive. An active class is one that can act upon other classes by
sending messages. A passive class is one that accepts messages but does not send any out.
Such a classification is not useful in this research. Whether the class is active or passive
will be obvious trom its final form. In the analysis process, there is no advantage in trying
to classity the class as active or passive, and that classification may change.

Although some guidelines and rules are t0o general to be evaluated effecuvely, a set
of guidelines and rules must be developed to analyze the developing model. Discussed in
this chapter will be the domain-independent guidelines and rules that only require
knowledge of the classes for their evaluation. Some guidelines and rules require
knowledge of the domain and some require knowledge of the structure of the domain
model. The guidelines and rules based on domain knowledge are discussed in Chapter 6.
and those based on the OAKS domain structure are discussed in Chapter 7, after the
structure is developed.

The guidelines and rules for analyzing classes are:

1. Name the class with a singular noun, or an adjective and a noun. The name describes
a single object in the class [COYO91]. The name should not reflect the role it plays
in a relationship [RUMB91].

2. Use standard terminology for class names using the common vocabulary of the

domain [COYO91] [WIRF90].

10.

11.

12.

13.

Eliminate classes that have litde or nothing to do with the problem. Keep a class of
the system needs to remember anything about the objects in the class. {COYO91]
[RUMBYI].

Ensure that you are able to describe an object in the class, and some potenual
attributes {[COYO91].

Ensure that the class provides some processing [COYO91). You should be ablz to
write a statement of purpose tor the class [WIRFY0).

Look tor more than one object in a class. It there is not. louk for similar classes and
put the class information into those classes [COYO9Y1].

Ensure that the requirements the class satstfiec are domain-based requirements and
not implementation constructs. Make sure the class is satistying requirements that are
needed regardless of the computer technology that will be used to build the system.
Do not model windows, menus, task management, or number of processors
[COYO91] [RUMBI1].

Eliminate classes that are merely derived results. For example, you do not want a
class that is a printed report consasting of existing data [COYO91].

Rename class names that primarly describe individual objects as attnibutes
[RUMBO91].

Eliminate classes that describes an operation that is applied to objects and is not
manipulaycd in its own right, because they are not classes. A telephone call to
someone is an event and not a class if you do not need to track calls [RUMB91].
Ensure that you can answer how objects of the class are created, copied, or destroyed
[BOOCI1].

When an adjective is used with a noun to name a class. it is probably a subclass of the
noun [WIRF90].

Ensure that each class is not just an encapsulated subroutine [MEYES88].

5-8

14. Ensure that every object of the class has the same characteristics and is subject to the
same rules [SHLASS].

15. List the criteria for object inclusion in a class. It the word "or” is used significantly. it
is not a class. Also, if the criteria are just a list of objects, you don't have a class
[SHLARS).

In the following sections, each component of the OORA model is discussed. First
shown are the domain-independent guidelines and rules that are used for acquiring ecach
component of the model. These would be used during the OODA in order to create the
initial domain model in OAKS. These would also be placed in a user's manual so the user
would have guidance on how to modify that component of the domain model, if it is
needed to produce the problem model. Next shown are the guidelines and rules for
evaluating each component of the model, once the component is in the model. These are

used when possible in evaluating the domain and problem model in OAKS.

Superclass Relation

The superclass relation is used to create the inheritance structure for the problem
model. The guidelines and rules tor acquiring the inheritance structure are:

1. Consider each class as a potential superclass. What are its possible subclasses? For
each possible subclass considered, ensure that it is in the problem domain, within the
system's responsibilities, inherits the attributes and services of the superclass, and
meets the requirements of a class. If there are many superclasses possible, first
identify the most complex and then the simplest, and then identify the rest of the
superclasses [COYO91] [RUMBI1].

2. Consider each class as a potential subclass. What are its possible superclasses? For

each possible superclass considered, ensure that it is in the problem domain, within

the system’s responsibilitics. will contain a subset of the attributes and services of the
subclasses, and meets the requirements ot a class [COYOQ91].

When creating subclasses, only one property should be discriminated at once
[RUMB91]. This means that the differences between the subclasses on one level
should be the difterence in one property in the superclass. For example, it the
superclass is "Aircraft”, a set of subclasses at level 1 may be jet-powered aircraft and
propeller-driven aircraft. From that level, the next level ot subclasses at level 2 may
break each of those into Air Force vs. Army aircraft. The level 1 subclasses should
not be jet-powered Army aircraft, jet-powered Air Force aircraft, propeller-driven
Army aircraft, and propeller-driven Air Force aircraft.

A superclass can be created by generalizing common aspects of existing classes into a
superclass [RUMB91] [RUBI92]. These aspects include behavior, attributes, and
services [WIRF90] [BULM91].

When several classes appear to be analogous, it is a sign that they may share a
common superclass [RUMB91].

The guidelines and rules for evaluating the inheritance structure are:

The distinctions between subclasses must be important within the problem domain.
Specialize around those important distinctions. For example, it may be important to
distinguish between dogs and cats and not between male and female pets [COYO91].

Some set of attributes and services must be common to all the subclasses of a
superclass [COYO91]. Subclasses should support all the responsibilities of their
superclasses [WIRF90].

If the only distinction between two subclasses is the value of one attribute, then just
use the superclass with different values of one attribute. For example, if the only
difference between two types of pets is whether they are male or female, just use a

"sex" attribute in the superclass and remove the subclasses [COYO91].

5-10

10.

It multiple inheritance is used. the subclass does not have to add attributes or services
to be a good subclass [COYO9].

The inheritance structure should reflect naturally occurring structure in the domain.
Do not use inheritance just to extract out a common attribute [COYO91].

Do not nest subclasses too deeply. Look suspiciously at those that are over three
levels deep [RUMBY1].

Services may not change the Input_Set and Output_Sets, but they may change their
behavior [RUMB91]. If a subclass redefines a service inherited from a superclass, it
may redetine the behavior of the service, but it may not redefine the form of the
Input_Set and the Output_Set.

Factor a common responsibility as high as possible in the inheritance hierarchy
[RUMBS1].

There should be at least two subclasses per superclass [RUMB91].

If there is trouble naming a superclass, there is probably a problem. Try another

superclass [WIRF90).

Whole/Part Structure

The guidelines and rules for acquiring the whole/part structure are:

Look for assembly parts, container contents, and collection members [COYO91].
Consider each object as a whole. For each potential part, ensure that it is in the
problem domain, within the system's responsibilities. captures more than just status
value, and provides a usetul abstraction [COYO91].

Consider each object as a part. For each potential whole, ensure that it is in the
problem domain, within the system's responsibilities, captures more than just status

value, and provides a usetul abstraction [COYO91].

5-11

4. Ask if you would use the phase "part of" in an association between two classes
[RUMBI1].
The guidelines and rules tor evaluating the whole/part structure are:

1. If a part does not capture more than just status value, include an attribute for that
value in the whole and eliminate the part [COYO91).

2. There can be some operations on the whole that are applied to its parts, but never
from the parts to the whole [RUMB91].

Class State Space
Guidelines and rules tfor acquiring the class state space are:

1. Ask how each class is described in general [COYO91].

2. Ask how each class is described in this problem domain [COYO91].

3. Ask how each class is described in the context of the system's responsibilities
[COYO91].

4. Ask what each class needs to know to function [COYOQO91].

5. Ask what state information needs to be remembered over time [COYO91].

6. Ask what states can each class be in. These states are represented by attribute values
[COYO91].

7. Put the attribute in the uppermost class in an inheritance structure where it remains
applicable to all subclasses ([COYO91].

8. Use the standard vocabulary of the problem domain to name attributes [COYO91].

9. Auributes are described by their name, type and default value [COYQO91]
[RUMB91].

10. Attributes usually correspond to nouns followed by possessive phrases, such as "The

color of the car" [RUMB91].

5-12

11

10.
11.
12.

Define all the characteristics that cach object of the class possesses and what
information is needed to know if an object is an instance of a particular class
[SHLASS].

Guidelines and rules for evaluating the class state space are:

Each auribute should represent an atomic concept in the form of either a single value
or a tightly related group of values [COYO91] [SHLAS88].

The attributes should apply to every object in the class. If not, create another set of
classes using inheritance [COYQO91].

Attributes should not be derived results, such as Age when you know the date of birth
[COYO91].

Data redundancy is acceptable during the analysis phase [COYO91].

If attributes are repeated in other classes, there may be additional classes required in
the inheritance structure [COYO91].

Do not use internal identifiers as attributes. The object IDs are implicit in that they
are assumed for every object [COY(QY1] [RUMB91]. Internal identifiers have no
meaning in the problem domain.

An attribute should be a class it the independent existence of an entity is important
rather than just its value [RUMB91].

If an attribute describes an internal state that is invisible outside the object, eliminate it
[RUMBQI].

An attribute that is completely different from and unrelated to other attributes may
indicate the class should be broken into two classes [RUMB91].

Each attribute should be independent of the other attributes in a class [SHLARS8].
Each attribute should take on only one value at a time [SHLARSS].

There must be a value for every attribute [SHLA88]. The possible value for an

attribute should not be N/A.

5-13

Other Relationshi

~

Guidelines and Rules for acquiring other relationships are:

Look for a tie between objects that is used to satisty a responsibility of the system
[COYO91].

Look for dependencies between classes [RUMBY1].

Relationships often correspond to verb or verb phrases. These include physical
location (next to), directed actions (drives), communications (talks to), ownership
(has), or satistaction of some condition (works for, married to, manages).

In a one-to-one relationship, take an identifier in one class and make it an attribute in
another. For example, each state has a governor. Put the attribute State_Name in
class Governors [SHLAS8S8].

In one-to-many relationships, take an identifier from the "one" class and make 1t an
attribute in the “many”. For example, place Owner's name as an attribute in the Dog
class [SHLARS].

Guidelines and rules for evaluating other relationships are:

When there is a many-to-many relationship either between objects of ditferent classes
or objects for a single class, ask what attributes describe the connection. Then make
a class between the two connected classes that contains those attributes [COYQO91]
[BULM91] [SHLASS].

Do not add a relationship if the mapping between two objects can be made through
other relationship connections [COYO91] [RUMB91].

Challenge one-to-one relationships. Often the object on either end is optional or

multiplicity is needed [RUMB91].

5-14

4. Eliminate relatonships that are outside the problem domain or deal with
implementation [RUMB91].
S. A relationship should not describe a transient cvent, but a permanent relationship

[RUMBO91].

The uncovering of relationships is not as obvious as finding the other components of
the model discussed so far. This is because the relationships that are needed are highly
problem dependent. This implies that possible relationships should be encoded in the
domain model and used as guidance for the possible creation of new relationships. The
issue will be whether these new relationships will be the reused relationship names used on
a different pair of classes, or whether new relationship names will have to be added to the
model. The more difficult task for the user of OAKS will be the adding of new
relationship names to the model. The user will also have to define the multiplicity of all

new and moditied relationships.

rvi

Service information will be the most difficult to obtain. This is because the possible
object states as well as the pre- and post-conditions will have to be obtained in some form.
The form that it will take and how it might be acquired will be discussed in the next
chapter. In this section only the basic information that must be acquired and guidelines
and rules for evaluation once the acquisition is complete are discussed.

Guidelines and rules for acquiring the services are:

1. The process requires the steps of identitying the possible states, identifying the service
names, identifying what services of other classes are needed for the service to perform
its function, and then identifying the pre- and post-conditions in some form. To

identify the states, the potential values for the attributes are examined to determine

5-15

whether there is difterent behavior for those potential values. When there is ditferent
behavior, there exists some state. There are two type of services: algorithmically-
simple and algonithmically-complex. The simple services consist of those that create
an object, get or set an attribute value, or delete an object. The complex services
calculawe or monitor.

In order to identify the niessage connections, ask:

- what other object does it need services from?
- what other objects need one of its services? [WIRF90]

Last, the services are specified. The pre-condition will show the states in which
the service is valid and the service arguments. The post-condition shows the results
of the service and what other classes are needed (message passing) [COYO91).
Identify the input and output values of the service. Show how input values are
computed from output values. Specify pre- and post-conditions. Specify
optimization criteria [RUMB91].

A class of free programs may be created. These are services that are useful to more
than one class. It reduces the coupling batween classes [BOOC91].

Look at the verbs in the requirements specification for possible service names
[(WIRF90].

Examine how the system will be invoked. Go through a variety of scenarios using all
system capabilities [WIRF90].

Look at each class and ask what responsibility it was created to satisty. What
responsibilities are required for managing its attributes? Compare and contrast the
roles of various classes [WIRF90)].

If more than one class must maintain the same information, then either create a new

class that has the common information, assign the responsibility to one class if it is the

5-16

.Lll

primary behavior for one of the classes, or collapse the different classes into one class
[WIRF90).

To identify message passing, ask if each class is capable ot fulfilling its responsibilities
itselt. If not, what else does it need and what classes provide this informaton
[WIRF90].

To design the service intertace:

- Define the most general message; one that allows clients to supply all possible
required parameters.

- Provide default values tor any parameters where it seems reasonable to do so.

- Analyze how clients use the messages. Define messages that allow clients to specify
only some of the parameters while providing default values for others [WIRF90].

- Design services with a single purpose {WINB90].

Guidelines and rules for evaluating services are:

Lock at possible reusability of the service. Ask if the service would be usetul in
more than one context. Try to make the services as reusable as possible [BOOC91).
Look at the complexity of the service and ask how difficult it would be to implement.
You may have to break the service into two services [BOOC91] [WINB90].

Ask how applicable the service is to the class in which it is placed [BOOC91].

Make sure that the implementation of a service does not depend on the internal details
of another class [BOOC91].

Each service should send messages to a limited set of classes. This creates loosely
coupled classes [BOOC91].

Services should be named with active verb phrases [BOOC91].

Make sure all known system actions are accounted for through service actions

[WIRF90].

5-17

——

8. The intelligence of a system should be evenly distributed. Intelligence is measured by
how much a class knows or can do. and how many objects it can aftect [WIRF9].

9. Keep services with related information. It a class has attributes, then the services that
manipulate those attributes should be in the same class. If a service requires certain
information, then that information should be in its class [WIRF90).

10. It a class has no message connections with other classes, it should be discarded. Be
sure necessary message connections have not been overlooked (WIRF90].

11. Services should not have to check the class of an object [WINB9O].

12. A service should not have more than six arguments. Reduce the number of arguments
by breaking the service into several [WINB9S(].

13. Keep the amount of work a service does to a minimum. Smaller services can be
selectively inherited, refined, or overmidden [WINB90].

14. Idenuty common services and put them in a superclass [WINB9)].

15. Eliminate from a superclass those services that are trequently overridden rather than
inherited by its subclasses [WINB90].

16. Services should apply to all the objects in a class. It not, the inhentance structure
needs to be moditied [COYO91].

17. If a class has too many services, break it into multiple classes [WHIT89].

Whole Model

The whole model is acquired through the acquisition of the components of the model.
This is done as the OAKS domain model is created, prior to its use in OAKS as a
template. However, the whole model must be evaluated both when it is created and after
each change is made by the OAKS user.

The guidelines and rules for evaluating the whole model are:

5-18

tI

10.

One autribute in a class is suspicious. [t is likely that atinbute should be included in
other classes ar< that class removed [COYO91 .

A class should have services other than just create and destroy (COYO91].

Weakly coupled classes are desirable, but there is a wnsion between weak coupling
and inheritance. You want a minimum of message passing [BOOC91} {CHIDS1].

A class should be highly cohesive. Preferably, functional cohesion is used where all
clements of the class work together to provide some well-bounded behavior
[BOOCY1]). Also, you want the union of the set of instance variables used by all the
services of a class to be as large as possible [CHIDY1].

All services of a class should be primitive [BOOC9Y1].

The complexity of a class is measured by the total number of attributes and services.
The complexity ot a class should be kept low [BOOC91].

Eliminate redundant classes. These are two or more classes that encapsulate the same
information [RUMBY1} [BULM9Y!].

Redetine classes that have ill-detined boundaries or are too large in scope [RUMBY1].
Make sure that cvery functional requirement is met by the classes [BAIL8Y]
[WIRF90] [RUBI92].

If a class does not have a rich set of services, then it may be better to put its attributes
and services in other classes (WALT78].

This chapter evaluated existing OORA methods and. based on these methods, defined

a set of guidelines and rules for the acquisition and evaluation of components of the

OORA mathematical model. The next chapter evaluates these guidelines and rules and

determines which, and in what form, can be used in the computer-based OORA system

OAKS. The next chapter also defines guidelines and rules that are based on the specific

domain chosen for an UAKS domain model.

5-19

VI, . ication v ion idelin Rul

verview

The previous chapter defined a set of domain-independent guidelines and rules that
could be applied to evaluate an OORA model of a system. The problem is that many of
the guidelines and rules are subjective and must be defined objectively before they can be
used by a computer-based syswem such as OAKS. This chapter examines each of the
evaluation guidelines and rules of the previous chapter and determines how they can be
applied in the QOAKS system. This chapter also defines guidelines and rules that are
defined based on the domain currently in use by OAKS.

Also defined in the previous chapter were a set of guidelines and rules on how to
acquire components of the OORA model. These guidelines and rules for acquiring an
OORA model component are not used in checking the domain and evolving problem
model in QAKS. These are embodied in how the initial domain model is constructed and
should be placed in any user's guide developed tor an OAKS-based system. An example
of this type of guideline and rule is that the class names should use the common
vocabulary of the domain. The evaluation guidelines and rules can be checked when the
domain model is created and as the problem model is evolving. For example, classes
unconnected with other classes are identified.

The last set of guidelines and rules is discussed in Chapter 7. These are based on the
code structure of the domain model and problem model in OAKS. These are applied to
both the domain model and the evolving problem model.

In the following sections, the evaluation guidelines and rules from the previous
chapter are annotated by "GR" and the number that was used in the previous chapter.

Their use in the OAKS model is annotated by "USE" before their number.

6-1

Evaluating Classes

Most of the guidelines and rules defined for evaluating classes are embodied in the
domain model and in the process OAKS uses tor acquiring new classes based on that
model. For example, the existing classes in the domain ‘nodei will be named appropriately
with descriptions of properties and purpose attached to them. However, some of the
guidelines and rules will need to be applied when a new class is created.

GR1. The class name is a singular noun, or an adjective and a noun. It describes a
single object in the class ([COYO91]. The name should not retlect the role it plays in a
relationship [RUMB91].

USEI. This is checked crudely by checking for "s” endings on the name. Classes
using an adjective and a noun should have an underscore between the words. Eventually,
a system such as OAKS will require a parser for the user input that can analyze whether
the noun is singular or plural. and to ensure the leading word is an adjective.

GR2. Use standard terminology for class names using the common vocabulary of the
domain [COYO91] [WIRF90].

USE2. In a user's guide, the user would be instructed to name new classes using
standard terminology. Also the user's guide should have the user ensure the new class is
not just a new name of an existing class in the domain model.

GR3.8.9,10,13. It is a class if the system needs to remember anything about the
objects in the class. Eliminate classes that have little or nothing to do with the problem
[COYOY1] [RUMBI1]. A class should not merely be derived results. For example, you
do not want a class that is a printer report from cxisting data [COYQ91]. Class names
that primarily describe individual objects should be renamed as attributes [RUMBY91]. A

name that describes an operation that is applied to objects and is not manipulated in its

own right is not a class. A wlephone call to someone 1s an event if you do not need o
track calls [RUMB91]. A class should not just be an encapsulated subroutine [MEYESR].

USE3.8.9.10.13. The domain model provides guidance to the user on what are
proper classes tor the domain through the use of the existing classes, the inheritance
structure, and the whole/part relations. The user is not intended to be an object-oriented
expert, so the domain model is used as an example of where to look for classes and how
they fit together. Also, if there are classes that have no connections to other classes when
the problem model is complete, those classes are either not needed for the problem or
there are relatdons between classes not yet defined. Any classes not connected to other
classes are brought to the user's attention for resolution.

GR4.5,11. You are able to describe an object in the class, and some potential
attributes [COYO91]. The class needs to provide some processing [COYO91]. You
should be abie to write a statement of purpose for the class (WIRF90]. You should be
able (o answer how objects of the class are created, copied, or destroyed [BOOC91).

USE4.5.11. The user is asked for an English description of the class that included its
general properties. its purpose, and the processing it needed to do. If a user can provide
this information. then it is probably a good class. The English description is not analyzed
in QOAKS, because of the absence of a parser, but it i1s stored with the new classes.
Existing classes in the domain model carry this information also. It is not reasonable to
ask a user how objects are created, copied, or destroyed. This is based more on how the
system is designed and on the implementation language used than with requirements.

GR6. There usually should be more than one object in a class. If not, look tor similar
classes and put the class information into those classes [COYO91].

USE6. The user's guide should advise the user to create a potential set of objects for
any new class. If there are no possible objects, or just one, the class may have to be

redesigned.

6-3

GR7. The requirements the class satisfics should be domain-based requirements and
not implementation constructs. Make sure the class is satistying requirements that are
needed regardless of the computer technology that will be used to build the system. Do
not model windows, menus, task management, or number of processors [COYQ91]
(RUMB91].

USE7. The user should be cautioned through a user's guide about creating a class
that is implementation-dependent. This requires providing the user with examples of
implementation-dependent classes in that domain.

GR12. When an adjective 1s used with a noun to name a class, it is probably a
subclass of the noun [WIRF90)].

USE12. This is used to analyze the inheritance relation. The user is asked to place
the underscore character between words composing a class name. Matches are made on
the words making up the name.

GR14. Every object of the class must have the same characteristics and be subject to
the same rules [SHLASE].

USE14. A user's guide should instruct the user that all the objects of a class should
have the same characteristics.

GR15. List the criteria for object inclusion in a class. If the word "or" is used
significantly, it is not a class. Also, if the criteria are just a list of objects, you don't have a
class [SHLAS88].

USE1S5. This information should be placed in the user's guide.

6-4

Evaluating the Inheri Relati

GR1. The distinctions between subclasses must be important within the problem
domain. Specialize around those important distinctions. For example, it may be important
to distinguish between dogs and cats and not between male and female pets [COYO91].

USE1L. The domain knowledge in OAKS is in the form of the domain model. When
new classes are acquired, they are acquired with the purpose of gathering information that
is needed for the problem model. The domain model acts as a template, or model, for how
the classes and the inheritance structure should be organized for that domain.

GR2,7. Some set of attributes and services must be common to all the subclasses of a
superclass [COYO91]. Subclasses should support all the responsibilities of their
superclasses [WIRF90]. Services may not change the Input_Set and Output_Sets, but
they may change their behavior [RUMB91].

USE2,7. The inheritance structure in the domain model requires that subclasses
inherit all attributes and services from their superclasses, although the services may be
implemented differently. The requirement is that the service intertace is the same for the
subclasses of a superclass. If the user creates a new class, it must obey all these rules also.

OAKS could be tlexible enough to allow the superclass to be redefined so that the
subclass would fit under that superclass. The problem with this approach is that this may
invalidate large segments of the domain model. If the superclass is changed, all subclasses
under it must be redefined. This is a large task for a user not familiar with object-oriented
techniques. This would create the possibility for the user to do major damage to the
domain model. If the user is considered to be an object-oriented expert, the system could
be more open and allow any changes desired. However, given the assumed expertise of
the user, OAKS does not allow changes to classes that are superclasses of other classes in
the domain model. OAKS permits changes to classes that are not superclasses as long as

those changes do not violate the constraint that the class must inherit all attributes and

6-5

services trom its superclass. For example, assume class Aircraft is a leat of the domain
model inheritance tree and the user wants to create a class Helicopters that is a subclass of
Aircraft. Further assume that Aircraft has an attribute Wing_Span that is NOT an
attribute inherited from its superclasses, and further assume that the Helicopter class has
no use tor this attribute, but can inherit all other attributes and services of the Aircratt
class. The user of OAKS could remove the Wing_Span attribute from Aircraft and create
a class Fixed_Wing_Aircraft as a subclass of Aircraft that contains the Wing Span
attribute. The helicopter class can now be made a subclass of the Aircraft class.

If the user defines a new class that does not fit under any of the existing classes in the
model, the new class is created by the user as an independent class.

GR3. If the only distinction between two subclasses is the value of one attribute, then
just use the superclass with different values of one attribute. For example, if the only
ditference between two types of pets is whether they are male or female, just use a “sex”
attribute in the superclass and remove the subclasses [COYO91).

USE3. The analyst that creates the domain model uses OAKS to determine if there
are a large number of attributes of any two classes that are similar in structure. If there
are, these are identified by OAKS so the analyst can determine if the two classes are
related and if the model needs to be changed.

GR4. If multiple inheritance is used, the subclass does not have to add attributes or
services to be a good subclass [COYO91].

USE4. If a class is added using single inheritance, OAKS ensures that the new class
has at least one new attribute and/or service. But if a class is added using multiple
inheritance, OAKS does not use this requirement.

GRS. The inheritance structure should reflect naturally occurring structure in the
domain. Do not use inheritance just to extract out a common attribute [COYO91].

USES. The inheritance structure in the domain model follows the guideline.

6-6

GR6. Do not nest subclasses too deep. Look suspiciously at those that are over
three levels deep [RUMB9Y.

USE6. The inheritance structure of the domain model minimizes the nesting of the
subclasses. Also, the inheritance structure of the domain and problem model is analyzed
and too deep a nesting level is tlagged to the developer of the OAKS domain model and
the user for possible model changes.

GR8. Factor a common responsibility as high as possible [RUMB91].

USES8. This guideline is used in the development of the domain model. Also, the
model is evaluated to determine if there are a large number of services in any two classes
that are similar in structure. If there are, this information is provided to the developer of
the domain model and the user of OAKS.

GR9. There should be at least two subclasses per superclass [RUMB91].

USE9. This guideline is used in the development of the domain model and also in any
structure that the user creates. If a class only has one subclass, that is flagged and brought
to the user's attention for possible model changes.

GR10. If there is trouble naming a superclass, there is probably a problem. Try
another superclass [WIRF90).

USE10. The user must identify names for each new class. There is no method for
determining if the user had difficulty in determining a name or not. The users guide should

provide the guidance (o the user in naming classes.

Evaluating the Whole/Part Relati

GR1,2. If a part does not capture more than just status value. include an attribute for

that value in the whole and eliminate the part {COYQO91]. There can be some operations

6-7

on the whole that are applied to its parts, but never from the parts to the whole
[RUMBOII].

USEL.2. The whole/part structure of the domain model tollows this guideline.

Evaluating the Class State Space

GR1,3,4,6,7.8.9,10. Each attribute should represent an atomic concept in the form of
either a single value or a tightly related group of values [COYO91] [SHLAS88]. Attributes
should not be derived results, such as Age when you know the date of birth [COYQ91).
Data redundancy is acceptable during the analysis phase [COYO91]. Do not use internal
identifiers as attributes. The object IDs are implicit in that they are assumed for every
object (COYO91] [RUMB91]. Intemal identifiers have no meaning in the problem
domain. An attribute should be a class if the independent existence of an entity is
important rather than just its value [RUMB91]. If an attribute describes an internal state
that is invisible outside the object, eliminate it [RUMB91]. An attribute that 1s completely
different from and unrelated to other attributes may indicate the class should be broken
into two classes [RUMB91}. Each attribute should be independent of the other attributes
in a class [SHLAGSS].

USE1,3,4,6.7,8,9,10. These guidelines and rules are used by the researcher when
developing the attributes used in the OAKS domain model. The users guide should
provide information on the proper selection of attributes. Attributes are more likely to
change than classes from problem to problem in a domain, so the attribute structurc is
more likely to change than the class or inheritance structures.

GR2,11,12. The attributes should apply to every object in the class. If not, create

another set of classes using inheritance [COYQO91]. Each attribute should take on only

6-8

one value at a ume [SHLASS]. There must be a value tor every attribute {SHLARS]. The
possible value for an attribute should not be N/A.

USE2,11.12. The OAKS domain model adheres to the guideline that the aunbutes
apply to every object in the class. The domain model also forces a legal set of values tor
each attribute, which ensures the attribute must have a value, but only one value at any
point of time.

GRS. If attributes are repeated in other classes, there may be additional classes
required in the inheritance structure [COYQ91].

USES. This guideline is used internally by OAKS to evaluate the initial domain
model. Also, attributes in new classes that are used in other classes point to possible
relations between them. OAKS brings these similarities to the attention of the developer
of the OAKS domain model for possible relations or for possibly combining the new class

with another.

Ev ing Other Relationshi

GR1,2,3.4,5. When there is a many-to-many relationship either between objects of
different classes or objects for a single class, ask what attributes describe the connection.
Then make a class between the two connected classes that contains those attributes
[COYO91] [BULMO91] [SHLAS88]. Do not add a relationship it the mapping between two
objects can be made through other relationship connections [COYO91] [RUMB91].
Challenge one-to-one relationships. Often the object on either end is optional or
multiplicity is needed [RUMBY91]. Eliminate relationships that are outside the problem
domain or deal with implementation [RUMB91]. A relationship should not describe a

transient event, but a permanent relationship [RUMB91].

6-9

USE1.2.3.4,5. Other relationships are highly domain dependent. Where inheritance
and whole/part relationships are used in almost all domains, the other relationships used, it
any, are based on the domain. Each domain carries with it a set of other relations that are
normally used in that domain that are represented in the domain model. New relationships
are added by the user of OAKS as needed. Also, OAKS allowes the modification of the
existing other relationships, to include changing any ot the components and deleting an
entire relationship. The user's guide should provide guidance on how to identify other

relationships.

In analyzing examples of pre- and post-conditions of services for the domain model,
several points became clear. First of all, the only information needed for OAKS to analyze
the services is the identification of services of other classes that are used. This provides
information on the coupling between classes and the execution flow starting from a given
service. Second, acquiring the algorithms from a user would be ditficult, and would be
better done using a tool specifically designed for that purpose and then placing the results
in the OAKS model. The algorithms can take a number of forms, from pseudo-English to
a more structured program design language to a higher-order language like Ada,
depending on the experience of the user. Third, it is possible to acquire the preconditions
from the user by requesting information on the required values (if any) of the attributes
prior to service execution. Fourth, it is also possible to ask the user what attributes (if
any) change as a result of the service execution.

Based on these conclusions, the following information is acquired from the user on

services:

6-10

(1) The name of the service.

(2) The ‘nput parameters (it any). This includes the name of the parameter and its
type. The type is the legal set of values the parameter can assume.

(3) The output parameters (if any). This includes the name of the parameter and its
type.

(4) The preconditions. This takes the form of the required values (if any) of the
attributes of the class. It is assumed that the input parameters are of their respective type
so that the checking of the type of the input parameters does not have to be explicily
shown. For example, if the input parameter to a service called "Change_Age" is the new
age, which is an integer between 0 and 100, it is assumed any input parameter value will
be an integer in that range.

(5) The postconditions containes two parts. One part is information on the services
of other classes required for this service to perform its function. This takes the form of
the class name and the service name. The second part is information on the new state of
the class upon completion of the service tunction. This is the changes in attribute values
(if any) ot the class.

This information is acquired by direct questions for the name of the service, the input
parameters, the output parameters, the precondition and the postcondition, or through the
use of templates for certain types of services. For services created without templates,
checking is done on some of this information to ensure it is consistent with the model. For
example, any attribute name used in defining the new state of the class in the postcondition
had to exist in the class. The service name could not be the same as any other service
name in that class. Also, the messages must be from existing classes and services within
those classes. Other checks that are made on new services are described in more detail in

Chapter 7.

Templates tor services were created that greatdy simplity the creation of 2 new
service. Templates for services that change attnibute values and rewurn auribute values are
provided in OAKS. These templates automatically fill in the values tor the description,
input set, output set, preconditions and postconditions given intormation on the type of
template and the attnibute the template operates on.

GRI1. Look at possible reusability of the service. Ask if the service would be usetul in
more than one context. Try to make the services as reusable as possible [BOOC91].

USEL. This should be one of the primary considerations when the domain model is
developed. It is desirable to reuse as many of the services in the domain model as possible
in the problem models of that domain. Therefore, the user of OAKS is not forced to
create new services or make extensive changes (o existing services.

GR2,3,4,5,6,8,9,11,12,13,15,16,17. Look at the complexity of the service and ask
how difficult it would be to implement. You may have to break the service into two
services [BOOC91] [WINB90). Ask how applicable the service is to the class in which it
is placed [BOOC91]. Make sure that the implementation of a service does not depend on
the internal details of another class [BOOC91]. Each service should send messages to a
limited set of classes. This creates loosely coupled classes [BOOC91]. The intelligence of
a system should be evenly distributed. Intelligence is measured by how much a class
knows or can do, and how many objects it can affect [WIRF90]. Keep services with
related information. If a class has attributes, then the services that manipulate those
attributes should be in the same class. If a service requires certain information, then that
information should be in its class [WIRF90]. Services should not have to check the class
of an object [WINB90]. A service should not have more than six arguments. Reduce the
number of arguments by breaking the service into several [WINB90]. Keep the services
small. Smaller services can be selectively inherited, refined, or overridden [WINB90].

Services should be named with active verb phrases [BOOC91]. Eliminate from a

6-12

superclass those services that are frequendy overnidden rather than inherited by it
subclasses [WINB90O]. Services should apply to all the objects in a class. It not. the
inheritance structure needs to be modified [COYO91]. 1If a class has too many services,
break it into multiple classes [WHIT89].

USE2,3,4,5,6,89,11,12,13,15,16,17. The use of the service wemplates provides a
structure tor these services that followed the guidelines for services. The existing services
in the domain model attempl.lo capture atomic concepts so that they can be more easily
reused and understood by the user. The users guide should provide guidance for creation
of a service if the user needs to create a service without the use of a service template.

GR7. Make sure all known system actions are accounted for through service actions
[WIRF90].

USE7. OAKS asks the user for a list of all the services of other classes that are
needed tor each service to perform its function. This process helps in identifying services
that are missing from classes. OAKS also makes it possible to follow the flow of a system
action through the problem model and present that tflow to the user for validation. This
requiress the user to provide an iniual state and a stimulus to the system. Shown are the
classes that are atfected and the services used and the order in which the services are
invoked, as well as state changes.

GR10. If a class has no message connections with other classes, it should be
discarded. Be sure necessary message connections have not been overlooked [WIRF90].

USE10. OAKS examines the problem model to identify classes that are unconnected
with other classes through message connections. These classes are brought to the user’s
attention. The user must then determine if the class is needed, and if the class is needed,
what message connections have not yet been modeled.

GR14. Identify common services and put them in a superclass [WINB90].

6-13

USE14. The domain model is created using this guideline. Also, QOAKS provides a
list of classes that may be related by examining if a majonity of the services of any (wo

classes are similar in structure.

Evaluating the Whole Model

GR!. One attribute in a class is suspicious. It is likely that attribute should be
included in other classes and that class removed [COYO91].

USELl. The completed problem model is evaluated and all classes with just one
attribute identitied and brought to the user's attention. The user determines if this is
acceptable or not.

GR2,10. A class should have services other than just create and destroy [COYO91}].
It a class does not have a rich set of services. then it may be better to put its attributes and
services in other classes {WALT78).

USE2.10. The completed problem model is evaluated tor classes with no services
since the services of create and destroy are not explicitly defined but are assumed to be
part of cvery class. The user determines if the class is needed in the problem model. If it
is needed. there may be other services are not identified. If the class is eliminated. the
attributes of that class, if they are needed tor the problem, are relocated in other classes, or
a new class or classes defined that containes the attributes but with their own set of
services.

GR3. Coupling. Weakly coupled classes are desirable, but there is a tension between
weak coupling and inheritance. You want a minimum of message passing [BOOC91]
[CHID91].

USE3. The domain model attemptes to keep the coupling between classes low by the

design of the classes themselves and the services.

6-14

GR4. A class should be highly cohesive. Preterably. functional cohesion is used
where all elements ot the class work together to provide some well-bounded behavior
[BOOCY1]. Also. you want the union of the set of instance variables used by all the
services of a class to be as large as possible [CHIDY0).

USE4. The domain model containes classes that are cohesive, and preterably,
tunctionally cohesive.

GRS. All services of a class should be pnmitve [BOOC91]).

USES. See USE2,3,4.5,6,8,9,11.12,13,15.16,17 of Services.

GR6. The complexity of a class is measured by the total number of attributes and
services. The complexity of a class should be kept low [BOOC91].

USE6. This guideline is used in the development of the domain model. OAKS
provides a procedure that analyzes the complexity of classes and brings overly complex
classes to the domain developer's attention.

GR7. Eliminate redundant classes. This is two classes that encapsulate the same
information [RUMB91] [BULMY1].

USE7. The domain model is examined by OAKS for classes that contain the same
attributes and services, or share a majority ot the attributes and services. i is possible that
these classes could be combined. These classes are brought to the domain developer's
attention.

GR8. Redefine classes that have ill-defined boundaries or are too large in scope
[RUMB91].

USES. This guideline is used in developing the domain model.

GR9. Make sure that every functional requirement is met by the classes [BAIL89]
[WIRF90] [RUBI92].

GR9. See USE7 of Services.

in- ideli R

The domain-dependent guidelines and rules are based on the requirements on the type
of information required in the domain model for a particular domain. The domain-
dependent guidelines and rules will change for each domain of interest implemented for
OAKS. The domain chosen for this research is that of a system that manages the
scheduling of maintenance and flights for an Air Force maintenance squadron. The
domain model used as a basis for this research is shown in Appendix A. This domain
model provided the information for the implemented domain model within OAKS.

The domain-dependent guidelines and rules contain information on those classes and
any of its attributes and services that are recessary to the completed model and therefore
cannot be deleted from the model. The names and components of these classes, attributes
and services can change, therefore allowing the user to adapt these structures to the
problem being solved. The ciasses in the model are the most likely not to change from one
problem in the domain to another, and the most likely to be required in a domain. For
example, if the domain is an aircraft maintenance squadron, the "aircraft” class would be
required in all problems in the domain. There would also be an attribute that would
represent some identitication of the aircraft, such as the tail number. The class and the
attribute would be required, even though the name, "tail-number” could change if that
terminology is not used in the problem.

Relationships are more likely to change than classes, and therefore are not included in
the domain-dependent guidelines and rules. Also, inheritance is not included because
classes that are parents are not allowed to be deleted from the model. These restrictions
could be added if deemed necessary for a particular domain. For purposes of illustration
of the concept of domain-dependent guidelines and rules, the most likely constant

structures were chosen for implementation.

6-16

It a new class is added that is not in the domain model. OAKS cannot currently apply
any domain-dependent guidelines and rules.

The process of dewermining which classes, attributes and services are necessary
requires an extensive domain analysis which is beyond the scope of this research.
Theretore, certain classes, attributes and services of the domain model were chosen to be
used as an example of how they would be used in the OAKS system.

The groundwork has now been laid for an automated OORA system. Starting with
the OORA mathematical model, which defined components, relationships and ordering,
guidelines and rules have been defined on the acquisition and evaluation of those
components. The guidelines and rules are based on OORA concepts independent of the
domain in which they operate, and guidelines and rules have been defined based on the
domain of interest. The next step, discussed in the next chapter, is the development of a
code structure for the domain and problem model in OAKS based on the OORA
mathematical model, the methods for analyzing that structure using the guidelines and
rules defined in this chapter. and the development of the user interface. Also included in
the next chapter is the development of guidelines and rules based on the code structure for

the domain and problem model in OAKS.

6-17

Overview

The purpose of the research was to investigate the feasibility of a computer-based
system assisting in the OORA process. This required the development of a proof-of-
concept computer-based system, which was called OAKS. It would not be sufficient to
define the OORA model and the guidelines and ruies without creating a system that
implements the defined process. The proper selection of code structures, code
organization, and techniques for evaluating the model in code is crucial to the achievement
of the goals of this research. This chapter discusses the development of the OAKS
software.

The OAKS system contains a domain model that is modified by the user of OAKS to
produce a specification for a particular problem in that domain, called the problem model.
The domain model is created by an analyst after conducting an OODA. The OODA
process would follow the guidelines and rules outlined in the previous chapters. The
components of the domain model are those of the mathematical OORA model developed
in chapter 4. The analyst should create the domain model and examine the results using
the code that analyzes the model based on the guidelines and rules. This would be done
prior to the domain model being modified by a user. As changes are made by the user, the
analysis code continues to identify any deviations from the desired final model.

The proper selection of the code structures to implement the OORA mathematical
model components, the ordering of the component acquisition, and the guidelines and
rules were critical to the successful implementation of OAKS. Selection of certain code
structures, such as frames, would make the task of creating a pure object-oriented system

very difficult. The code needed to represent the object-oriented concepts and structures

7-1

as naturally as possible. The code structures must be in a torm so any changes made to
the domain model can be checked for their consistency and completeness using the
guidelines and rules. It was also important to organize the code so new domains can be
implemented with a minimum of impact on the code that is non-domain specitic.

Discussed in this chapter is the structure of the domain model, the additional
guidelines and rules used to analyze both the domain and problem models based on the
structure of the models in OAKS, the implementation ot the guidelines and rules defined in
chapter 6, the permissible modifications to the domain model used to produce the problem
model, and the user intertace. The guidelines and rules used to analyze the problem and
domain models are those defined in chapter 6 plus those introduced in this chapter that are
based on the structure of the domain model. These guidelines and rules together insure
that the model remains consistent and complete in accordance with the OORA
mathematical model and the desired OORA process.

LISP was chosen as the implementation language tor OAKS because of its ease of use
as a prototyping language and its flexibility. LISP provides the structures and
environment necessary tor the OAKS development.

OAKS contains five primary code structures. The first, called the domain model,
contains the domain model that is moditied to create the problem model and any domain-
dependent guidelines and rules that are used to evaluate the user's evolving problem
model. This is the only code structure that must be reimplemented for each domain. The
remaining four code structures remain constant across all domains.

The second code structure, called the domain-independent guidelines and rules,
contains domain-independent guidelines and rules that are used to evaluate the model to
ensure it meets object-oriented requirements analysis, general requirements analysis
objectives, and requirements based on the structure of the domain model. These rules

evaluate any new domain model in OAKS and the user's evolving model.

7-2

The third code structure is the model modification code. This code contains the
functions that allow the modifications to the domain model and the evolving problem
model. The model modification functions use the code implementing the domain-
independent and domain-dependent guidelines and rules to ensure that changes meet all
system requirements.

The fourth code structure, the evolving model, is the user's evolving model. This
model will start as a copy ot the domain model. It is moditied by the user using the OAKS
system and, once modified, stored separately from the domain model.

The fifth code structure, the user interface, handles all communication between

OAKS and the user. Figure 7-1 shows the general structure of OAKS.

OAKS
User Interface
User
Model
Moadification
Domain Model Functions
Domain-de| t
?n , penden Domain-independent
guidelines ideiines
and rules gut
and rules
Evolving Model
Figure 7-1. OAKS Structure

7-3

The following sections will discuss and analyze the five code structures. The
implementation and analysis of the resulting structure of the domain model is covered first.
Next, the implementation of the domain-independent guidelines and rules is discussed and
analyzed. The domain-dependent guidelines and rules are discussed and analyzed next.
The evolving model is treated in the context of the code structure that allows
moditications to the domain model. Therefore, these two code structures are discussed
and analyzed together. Ahhough the user intertace has nothing to do with the
functionality provided by OAKS, it is important because it establishes how the user
communicates with OAKS. This chapter concludes by looking at the user interface

developed to complement this research.

Domain Model Code Structure

The OAKS domain model contains the information for a domain with the following
components. These components were defined as in the OORA mathematical model. This
list contains the components themselves, but does not show multiple occurrences of a
component. For example, there are a number of classes in Set_Of_Classes.

1. Set_Ot_Classes

1.1 Class_Name

1.2 Class_State_Space
1.2.1 Attr_Name
1.2.2 Set

1.3 Services
1.3.1 Service_Name
1.3.2 Input_Sets
1.3.3 Qutput_Sets

7-4

1.3.4 Preconditions

1.3.5 Postconditions
2. R, which is the superclass relation
3. Ry, which is the whole/part relation
4. Rg. which is other relations

The structure in LISP which naturally matches the structure defined for classes is the
class structure in the Common LISP Object System (CLOS). The classes were
implemented as a CLOS class structure called generic-class. The attributes and services
were also implemented as CLOS class structures because their structures also naturally
matched the class structure. Each of the components of the OORA model correspond to a
slot of the CLOS data structures.

The advantage to using CLOS class structures was that all components of each class
are hidden inside the class. Therefore, there is no possibility of name clashes or confusion
between the class names and the attribute and service names. The names of the attributes
and services from one class can be used in another without any confusion as to where the
attribute or service belongs. There cannot be two classes with the same name within any
one model. There cannot be two attributes named the same within one class nor can there
be two services with the same name within one class. Other than those restrictions, the
names of classes, attributes and services can be repeated as other classes, attributes and
services.

Detail on the method for accessing the components of each class will be discussed
after the structures of the classes are discussed.

In the following sections, the CLOS class structure will be described, to be followed
by the attribute class structure, the service class structure, and finally, the components of
the attributes and services. These components are written using LISP's record structure,

or defstruct structure.

7-5

CLOS Class Strycture. Each class in the domain model is an instance of the
following CLOS class, called generic-class. This class consists of a set of named slots.
The number of slots in a given CLOS class and the contents of each slot are detined by the
creator of the class based on the descriptors given to cach slot. In the case of the class
generic-class, there are eight slots detined. The name slot contains the name of the class.
The "description” slot contains a description of the class. The state-space slots contains
information on all attributes ot a class. Each attribute is an instance of another CLOS
class, described in the next section. The services slot contains information on all the
services of a class. The services are also implemented as CLOS classes, and are defined
later. The inheritance slot contains any parents of the class. The whole-part slot contains
any whole-part relations for the class. The relationships slot contains any other
relationships for the class. Finally, the need-verified slot contains "no" if the class has not
been verified by the user and "yes" it it has.

Each slot can have zero or more slot options associated with it. These slot options
provide mechanisms for customizing the slots, such as supplying detault initial values,
automatically generating functions for reading and writing slots, supplying initialization
arguments used in instance creation, and supplying a documentation string for the slot.

Each slot in the generic-class class has been defined with particular slot options. The
slot options used are the initial value for the slot when an instance of the class is created
(cinitarg), the name used to access the value of the slot (:accessor), and a documentation
string that describes the function of the slot (:documentation). Examining generic-class,
the initial value of the slot named description is set through the use of the function :desc
when an instance class is first created. After the class is created, the value of the slot is
accessed and changed through the use of the function of the name desc. The

documentation string at the end of the class is not part of the class slot structure but is one

or more sentences used describe the generic-class structure. The following is the CLOS

structure for the class generic-class which was used tor each class in the model.

(clos:defclass generic-class ()
((name :initarg :name
:accessor name
:documentation "The name of the class:)
(description :initarg :desc
:accessor desc
:documentation "A description of the class")
(state-space :initarg :state-space
:accessor state-space
:documentation "The class state space)
(services :initarg :services
:aCCessor services
:documentation "The class services")
(inheritance :initarg :inheritance
:accessor inheritance
:documentation "The immediate superclasses")
(whole-part :initarg :whole-part
:accessor whole-part
:documentation "The whole-part relation”)
(relationships :initarg :relation
:accessor relations
:documentation "QOther relationships”)

(need-verified :initarg :verif

:accessor verif
:documentation "Does the class need user verificaton”

(:documentation "A generic class"))

In order to access any slot of an instance of genmeric-class, the instance must be
reterenced. For example, if One-Class is an instance of class generic-class, the name of
One-Class would be accessed through the function (name One-Class). This function
would return the name of One-Class. The value of the name of One-Class would be
changed by using (sett (name One-Class) New-Name). This would set the value of the
name slot of One-Class to New-Name. Using this class structure within CLOS therefore
provides an encapsulation of the components of a class within the class. This avoids any
conflicts caused by the names of attributes of different classes being the same, for
example. The attributes of each class are only accessible through the class itself and are
not stored as global names. This structure therefore embodies the object-oriented concept
of encapsulation within a class of the class's attributes and services.

Using this CLOS structure also enables the capturing of all the components of the
OORA mathematical model in one class structure. There is no requirement for separate
inheritance, whole/part, other relationship, and message passing structures. All this
information is contained in the CLOS class structure generic-class. This causes the
information about whole/part and other relationships to be repeated in each of the classes
involved in the relationship. The advantage is that there is only one structure to monitor
compliance with the defined guidelines and rules and to ensure each class in the model
remains consistent and complete throughout the model modification process. The
inheritance, whole/part, other relationships, and message passing trees can be created
through the use of the information in the CLOS class structure. This process was

automated in the case of the message-passing tree and is discussed in a later section.

7-8

The tollowing table relates the slots from the CLOS generic-class to the components

of the OORA model.

Table 7-1
Relationship Between CLOS Class and OORA Model

Class_Name ' name

Class_State_Space state-space

Services services

R,, which is the superclass relation inheritance
| Ry, which is the whole/part relation whole-part

Ry, which is other relations relationships

The need-verified slot is initially set to '(), or "no", stating that the user has not
reviewed the requirements for the class as of yet. Once the user has verified the class, the
value is set to true, or "yes".

CLOS Attribute Structure. Each attribute is an instance of the CLOS class called
attribute. There are four slots defined. The name slot contains the name of the attribute.
The descriptrion slot contains a description of the attribute. The initial-value slot contains
any initial value required for the attribute when a new instance of this class is created. The
default value for this slot is null, meaning no initial value is specified. The a-set slot
contains the set of legal values for the attribute. The need-verified slot is false if the
attribute has not been verified by the user and true if it has. The slots in the artribute class
have the same options as the slots of the class generic-class except for the addition of a
slot option, :initform, that is used to set the initial value for every instance of the class.

For example, in the class attribute, the value of the a-set slot is initially set to an empty list

7-9

when an instance s created. This value can be set through the inittorm option when the
instance is created or the :accessor option atter the instance is created.

The tollowing is the CLOS attribute structure.

(clos:defclass attribute ()
((name :initarg :name
:initform " "
:accessor name
:documentation "The name of the attribute.”)
(description :initarg :desc
:accessor desc
:documentation "A description of the attribute.”)
(inidal-value :initarg :initial-value
:initform ()
:accessor initial-value
:documentation "Any initial value used when an object is created.”)
(a-set :initarg :a-set
:initform ()
:accessor a-set
:documentation "The legal set of vaiues.”)
(need-verified :accessor verif
:initform '())))

(:documentation "A general structure for an attribute."))

The following table relates the components from the CLOS attribute structure to the

components in the OORA model.

Table 7-2
Relationship Between CLOS Attribute Structure and OORA Model

OORA Components attribute slots
Attr-Name name
Set a-set

CLOS Service Structure. Every service is an instance of the CLOS class service.
There are four slots detined. The name slot contains the name of the service. The
description slot contains a description of the service. The input-ser slot contains
information on the input parameters of the service. The output-ser slot contains
information on any output parameters of the service. The preconditions slot contains any
preconditions for the service. The postconditions slot contains information on attributes
that changed value as a result of the execution of the services and messages required for
the service to do its function. The need-verified slot is false if the attribute has not been
verified by the user, and true if it has. The slot options used in the service are the same as

described for the class arrribute. The tollowing is the CLOS service structure.

(clos:defclass service ()
((name :ipitarg :name
:accessor name
:documentation "The name of the service”)
(description :initarg :desc

:accessor desc

:documentation "A description of the service")

(input-set :initarg (input-set
ainittorm ()
:aceessor input-set
:documentation "The output parameter list™)
(output-set :initarg :output-set
:accessor output-set
:documentation "The output parameter list")
(preconditions :initarg :pre
:accessor pre
:documentation "The preconditions™)
(postconditions :initarg :post
:accessor post
:documentation "The postconditions”)
(need-verified :initarg :verit
:accessor verit
:initform '()))

(:documentation "A generic service class”))

The following table relates the components from the CLOS service structure to the

components in the OORA model.

7-12

Table 7-3
Companison of CLOS Service Structure and OORA Model

OORA Components service slots

Service_Name name

Input_Sets input-set

Output_Sets output-set

Preconditions preconditions

Postconditions postconditions
n vi nen

Attribute Values, The legal set of values for each attribute is described in the
record structure in LISP detined by defstruct, shown later. This record structure is named
artrib and consists of the components base, lower and upper. The base component is the
base set; the lower and upper values are optional and have different meanings depending
on the base set. The following table describes all combinations of base set and upper and
lower values that are used by OAKS. The words in parenthesis match those used in the
LISP implementation. These words for the legal base sets are not LISP defined types but

only have meaning in the context ot the OAKS system.

7-13

Table 7-4
Legal Sets tor Auribute Values

Base Set Lower Value | Upper Value | Comments
(base) (ower} {upper)
Enumerated | A list of values All the possible values are shown in
(enum) the lower value.
Integer The lowest The highest The range of integers is optional.
(int) integer integer
Real The lowest The highest The real number are those with
(real) real real decimal points.
Character | The lowest The highest The range of characters is optional.
(char) character character
String The lowest The highest The range of strings is optional.
(str) string (in string (in

alpha-numeric | alpha-numeric

order) order)
Booican True or false.
(bool)
Class a-class The value is from the set of instances
(class) of a-class.
Attribute a-class an-attribute The value is from the legal set of
(attrib) values specified for an-attribute of a-

class.

List of A list, each of whose components is
components the "attrib” record structure defined

above.

7-14

The structures shown below are the LISP implementation of the table. The first
structure, proper-attr-setp defines the permissible names that can be used for the base sets
of attributes. These names are the same as those in the base set column of the table above.
This establishes the basis tor the second structure called legal-set, whereby a value is a
legal-set type if it is one of the names contained in proper-anr-setp. The third LISP
structure is the record structure for the legal set of values of an attribute. It shows three
slots. The first contains a value that must be of type legal-set and has an initial value of
int. The initial value is used only because LISP will not allow the type of a slot to be
specified without an initial value. The second slot is the !ower value and the third the
upper value. There is no requirement, in general, to have values in these slots, so their

default values are set to "none”.

(defun proper-attr-setp (a-set)
(or
(eql a-set '())
(eql a-set 'enum)
(eql a-set 'int)
(eql a-set 'real)
(eql a-set 'char)
(eql a-set 'str)
(eql a-set 'bool)
(eql a-set 'class)
(eql a-set 'attrib)

(listp a-set)))

(deftype legal-set ()

'(satisfies proper-atir-setp))

(defstruct attrs
(base "int :type legal-set)
(lower 'none)

(upper 'none))

The aircraft maintenance and aircraft mission scheduling processes will be used to
turther illustrate the OAKS CLOS structure. The system contains the aircraft, aircrew,
and maintenance (or support) personnel in a squadron. A squadron typically consists of a
number of flights of aircraft. The aircraft contain parts, each of which is repaired by a
certain repair shop. Maintenance personnel are assigned to a particular repair shop.
Aircrew are qualified to fly certain aircraft. When an aircraft part needs maintenance, it
may require the scheduling of space in a hangar for the repair as well as the scheduling of
maintenance personnel qualified to repair the part. An aircraft mission requires the
scheduling of aircraft, aircrew, and the range space in which the mission is flown.

To illustrate the use of the constructs, consider the class squadron. To create an

attribute called name within the class the LISP construct would be:

(make-instance 'attribute
:name 'name
:desc "The name of the squadron.”

:a-set (make-attrs :base 'str))

7-16

To create an attribute called the-aircraft, which is a list of all the aircraft in an object

of class squadron, the LISP construct would be:

(make-instance 'attribute
:name 'the-aircraft
:desc "A list of the aircraft in the flight."
:a-set (make-attrs :base “(,(make-attr :base ‘class
:lower ‘aircraft))))

Input and Output Sets of Services. The members of the input and output sets are

represented by a LISP defstruct called parameterf with slots of name and values.

(defstruct parametert
(name '())

values)

Each member of the input set must contain the input parameter name in slot name and
the legal set of values for that parameter in slot values. Each member of the output set
contains just the legal set of values for the output parameter it represents. This is because
output parameters are not named. The legal set of values for input and output sets can be
one of the legal sets for attributes such as “int", the name of an attribute in the class which
indicates the legal values are the same as for the named attribute, or the name of an
attribute of another class. If the legal set of values is that of an attribute of another class,
the set of values is a list of the form (:a class-name attr-name). If the legal set of values is
an instance of another class, the set of values is a list of the form (:c class-name).

The ":a" and ":c" notation used to identify the legal set of values for the input and

output sets was necessary to distinguish between the names of attributes within the class

7-17

and the names of attributes of other classes. It is possible for the name of an attnbute to
be the same as the name of another class in the model or an attribute in another class.

For example, an input set consisting of one parameter whose name is symproms and
whose legal set of values is that for the attribute legal-symproms-list of class repair-

symptoms, would use the following structure:

:input-set *(,(make-parametert :name 'symptoms

:values '(:a repair-symptoms legal-symptoms-list)))

The services are modeled as functions and return a single value. This value can be a

single element or a list of elements. Each output parameter is therefore defined solely by

its set of legal values and no name is required.
For example, an output set consisting of one parameter whose value is the name of an
object of class aircraft would use the following structure:

:output-set *(,(make-parametert :values '(:c aircraft)))

Preconditions of Services. The preconditions were implemented in LISP as an

expression that evaluates to true or false. An example of a precondition is as follows:
'(not (member new-flight flights))
Postconditions of Services. The postconditions are represented by a LISP

defstruct record structure with possible defstruct structures embedded.

The basic postcondition is as follows:

7-18

(defstruct postt
(atts '() :type hist)
(messages '() :type list))

The urs slot of posrf consists of structures that represent a list of attributes of the
class that have possibly changed as a result of the service call, and the value of those
changed attributes upon leaving the service. This arts slot consists of a list of defstruct
structures that contain the attribute name and the new attribute value.

The tollowing is the structure for the list of attributes that have changed as a result of

the service call:

(defstruct attr-val
name

value)

The name is the name of an attribute of the class. The value is a free-form structure
that shows the new value of the attribute. The new value of the attribute can be
"changed", indicating that an exact value cannot be determined but the attribute may be
changed as a result of the service call.

The messages slot of postf represents the services of other classes used by this
service. This information is represented as a list of pairs. Each pair is a list consisting of
the class and the service.

Again, as an example, a postcondition that adds a new-person to an aircrew list and

sends a message to create a new instance of aircrew would be represented by:

:post
(make-postf :atts *(,(make-attr-val :name aircrew
:value ‘(cons new-person aircrew)))

:messages '((aircrew create))))

Inheritance. The inheritance structure of the model is contained in the information in
the inheritance slot of each class. The inheritance slot of each class contains a list of
parents of the class. If the class has no parents, the inheritance slot is empty. For
example, if the inheritance slot of the class aircrew contains the list "(personnel)”, this
indicates that personnel is the only parent of aircrew.

Relationships. Both whole/part and other relationships are represented by the

defstruct structure as follows:

(defstruct relation
(name 'whole/part)
classl
rangel
class2

range2)

The default for the name is "whole/part”. If relation is used to represent a whole/part
structure, class1 is the whole and class2 is the part. The whole/part relation is shown in
both the whole and the part classes as structures in the whole-part slot of both classes.
This provides a means to easily trace effects of changes on any class. The whole/part
relations are checked when they are changed, removed or added by OAKS to cnsure the

system ‘remains consistent. For example, when a whole/part relation is deleted in one

7-20

class, it is automatically deleted in the other class involved in the whole/part relaton.
Other checks made on whole/part relauons are discvssed in later sectons on the
implementation of the guidelines and rules and the model moditication proccss.

An example of a whole/part relatonship is as follows:

:whole-part " (,(make-relation :class1 'squadron
:fangel (1n)
:class2 'flight
range2 (1 1))
.(make-relation :class1 ‘flight
:rangel ‘(1 n)
:class? ‘aircraft

:range2 ‘(1 1)))

This is part of the class flight. This shows flight has between 1 and n aircraft as a
part and that it is part of only one squadron. These whole/part relations will also be
contained in the squadron and the aircraft classes.

Other relationships are handled in a similar manner. The relationship is named with
the two part name as previously described, and that same name is used in both classes
involved in the relationship.

An example of other relationships is as follows:

7-21

:relation " (,(make-relation :name 'has-a/tor-a
:classl ‘aircraft
crangel ‘(1 1)
:class? "aircraft-schedule

:range2 ‘(1 1))

Aircraft has-a aircraft-schedule and aircraft-schedule is for-a aircraft. This relation
will be shown exactly as above in both the "aircraft” and the "aircraft-schedule” class.
Therefore, the relation must be inserted into both classes.

Example of a Class Structure, The OAKS model consists ot a set of classes. Each
class is an instance of the CLOS class “generic-class”. The attributes are instances of the
"attribute" ciass and the services of the "service" class. The following is an example of the

"plans-and-scheduling” class:

(setf plans-and-scheduling
(let*
((range
(make-instance 'attribute
:name 'range
:desc "The range schedule."
:a-set (make-attrs :base ‘class

:lower 'range-schedule)))
(missions

(make-instance ‘attribute

:name 'missions

7-22

:desc "The missions that have been scheduled.”
:a-set (make-attrs :base ~(,(make-attrs :base ‘class

:lower 'mission)))))

(mission-request
(make-instance 'service
:name 'mission—fequest
:desc "A request for the scheduling of a mission."
:input-set " (,(make-parameterf :name 'ac-list
:values '((:c aircraft)
(:a aircraft configuration)))
,(make-parameterf :name 'list-of-aircrew
:values '((:c aircrew)))
,(make-parameterf :name 'duration
:values '(:a schedule-event duration))
,(make-parametert :name 'range-info
:values '(:a mission range-info)))
:output-set ‘()
:pre ()
_:post
(make-postf :atts *(,(make-attr-val
:name ‘missions
:value '(cons new-mission missions)))
:messages '((aircrew get-sched)
(aircraft get-sched)

(mission create)

7-23

(aircraft-schedule add-mission)
(aircrew-schedule add-mission)

(range-schedule add-mission)))))

(mission-complete
(make-instance ‘service
:name 'mission-complete
:desc "A mission has been completed.”
:input-set "(,(make-parametert :name ‘the-mission
:values '(:c mission))
,(make-parameterf :name 'hours
:values '(:a mission ac-info))
,(make-parametert :name ‘crew
:values '(:a mission aircrew-list))
,(make-parametert :name 'date
:values 'int)
.(make-parametert :name 'time
:values '(:a mission time)))
:output-set '()
:pre '(member mission missions)
:post
(make-postf :messages '((aircraft configuration)
(aircraft-part update-tlight-hours)
(aircrew update-hours)
(mission change-date)

(mission change-time)

7-24

(mission change-ac-info)

(mission change-status)))))

(cancel-mission
(make-instance 'service
:name ‘cancel-mission
:desc "A mission is canceled.”
:input-set *(,(make-parameterf :name ‘the-mission
:values '(:c mission)))
:output-set ‘()
:pre '(member the-mission missions)
:post
(make-postt :messages '((aircraft-schedule remove-mission)
(mission get-date)
(mission get-duration)
(mission get-contig)
(aircrew-schedule remove-mission)
(mission get-mission-type)
(range-schedule remove-mission)
(mission get-aircraft)
(mission get-range-info)

(mission change-status))))))

(make-instance 'generic-class

:name 'plans-and-scheduling

:desc "Schedule missions."”

7-25

:state-space (list range missions)
:services (list mission-request mission-complete
cancel-mission)

:inhertance ()

:whole-part ()

:relation “(,(make-relation :name 'uses/used-by
:class1 'plans-and-scheduling
crangel ‘(0 n)
:class2 'mission

:range2 (1 1)))

The entire class contains two attributes, named range and missions, and three
services, named mission-request, mission-complete, and cancel-mission. These show
local attributes and services only and not those possibly inherited frora other classes. In
this example, the inheritance slot is an empty list. signifying this class does not inherit from
any other class.

The set of values of the attribute named range is all objects of the class range-
schedule. The set of values of the attribute named missions is all lists of objects of class
mission.

The service mission-request has four input parameters that are shown in the input-set.
This service does not return a value; this is indicated by the empty list in the output set.
The first parameter, ac-list, is a list of pairs consisting of objects of class aircraft and
values of type of attribute configuration in the class aircraft. The second parameter, list-
of-aircrew, is a list of objects of class aircrew. The third parameter is a single value of the
type of the attribute duration of class schedule-event. And the fourth parameter, range-

info, is a single value of the type of the attribute range-info of class mission.

7-26

The service mission-request possibly modifies one local auribute, missions. by
changing its value to "(cons new-mission missions)”. This is shown in the arns slot of the
postcondition in the :post slot. The service mission-request also uses four services of
classes outside this class. This is shown in the :messages slot of :post. The service of
aircraft named get-sched is used, along with the create service of mission, the add-
mission service of aircraft-schedule, the add-mission service of aircrew-schedule, and the
add-mission service of range-schedule.

The plans-and-scheduling class has a relation to the class mission as shown in the
:relation slot of the class.

Entire Model. The entire model is represented by the global list, *list-of classes*.
This list contains the classes as represented by their CLOS generic-class structure.
Set_Of_Classes in the domain model is represented by *list-of-classes* in OAKS.

This section established the LISP structures used to implement the defined OORA
mathematical model components and relationships. The OAKS domain model consists of
the global list *list-of-classes*, cach clement of which in an instance of the class "generic-
class". The OAKS domain model represented in *list-of-classes* is the basis for the
analysis done by the guidelines and rules and the moditications performed to create the
problem model. It is this *list-of-classes* that is analyzed so the moditications made to 1t
keep the model consistent and complete with respect to the detined guidelines and rules.

The next section first defines additional guidelines and rules not defined in the
previous chapter. These additional guidelines are rules are based on the LISP structures
that make up the OAKS domain model. The section then discusses how the domain-
independent guidelines and rules defined in the previous chapter are implemented in

0OAKS.

7-27

Structure-Based Guidelines and Rules. Chapter 6 defined domain-independent
guidelines and rules that were based on existing OORA methods. These guidelines and
rules are independent of the code structure of the domain model within OAKS. This
section discusses and analyzes guidelines and rules that are based on the required
characteristics of the LISP code structure in OAKS. These guidelines and rules could not
be developed until the code étructure for the classes was developed as was done in the
previous section. An example of a structure-based rule is that any classes used in the a-set
slot of an attribute must exist in the model.

The following sub-sections define each structure-based guideline and rule, first using
an English description and then using first-order predicate logic.
Classes, All class names must be unique within a single model. This requirement

is implemented in the LISP function unique-class-names.
Va,b = *list-ot-classes* [(a # b) < (name a) # (name b)]
Attributes. For all classes in the "a-set” slot of attributes, there must exist a class
in *list-of-classes*. This requirement is implemented in the LISP function model-att-class-

check.

V¢ € *list-of-classes*, Va € (state-space ¢), Vx € (a-set a)

[((x.base = class) V (x.base = attrib)) = (x.lower € *list-of-classes*)]

For all attributes and their classes in the "a-set” slot of attributes, there must exist an
attribute of that name wn that class. This requirement is implemented in LISP function

model-att-att-check.

7-28

V¢ € *list-of-classes*, Va € (state-space ¢), Vx € (a-set a)

{ (x.base = attrib) = [(x.upper € *list-of-classes*) A (x.lower € (aturs x.upper))]}

Services, For all services in all classes, for all input sets, if there are values that are
instances of a class, that class must be in the *list-of-classes*. This requirement is

implemented in model-serv-att-check.

V¢ e *list-of-classes*, Vs € (services ¢), Vx € (input-set s)
{[((first (x.values)) = :c V ((second (x.values)) =:a)] =

[second(x.values)) € *list-of-classes*]}

For all services of all classes, for all input sets, if there are values whose types are
attributes of other classes, those attributes must exist in that class. This requirements is

implemented in model-serv-att-check.

V¢ e *list-of-classes*, Vs € (services ¢), Vx € (input-set s)

{[first (x.values) = :a] = [third (x.values) € (state-space (second (x.values)))]}
For all s: vices of all classes, for all attribute/value pairs in the postconditions, the
attributes must exist in the class. This requirements is implemented in model-serv-att-

check.

Vc e *list-of-classes*, Vs € (services ¢), Vp € (post s), Va € (p.atts)

[p.value € (state-space c)]

7-29

For all services of all classes, tor all messages in the postconditions, the classes and

their services must exist. This requirement is implemented in model-serv-att-Check.

V¢ € *list-of-classes*, Vs € (services ¢), Vp € (post s), Vi € (p.messages)

{[(first m) € *list-of-classes*] A [(second m) € (services ¢)]}

Whole/Part. For all classes, if there exists a whole/part structure in one class, it

must exist in the other. This requirement is implemented in model-wp-check.

V¢ € *list-of-classes*
{{w € (whole-partc) A ((d=w.classl) V(d=w.class?)) A(c#d) | =
w € (whole-part d)}

Relationships. For all classes, if there exists a relationship in one class, it must
exist in the other class involved in the relationship. This requirement is implemented in

model-rel-check.
V¢ e *list-of-classes*

{[r e (relationc) A ((d=rclassl) V(d=r.class2)) A(c#d)] =

r € (whole-part d)}

Inheritance, For all classes, any parents in the inheritance slot must exist in the

model. This requirement is implemented in model-parent-check.

V¢ € *list-of-classes*

(i € (inheritance ¢) = i € *list-of-classes*]

7-30

General OORA Guidelines and Rules. These are the domain-independent guidelines

and rules defined in chapter 6 that are used by OAKS to evaluaw the domain and problem
models. Each guideline and rule used is identified by the same numbering scheme used in
chapter 6.
Class.

GRI1

Class names should be singular nouns. To evaluate the use of singular nouns without
the use of a parser, OAKS finds classes that have "s" endings on their name. These classes
are not necessarily named wrong, but they should be flagged and shown to the user. For
example, the class name "dress” ends in "s" but is a singular noun. The LISP function
singular-noun-check takes one class and returns true if it is not a singular noun. The
procedure model-singuiar-noun-check evaluates the entire model for class names that end
n "s" and returns a list of those names.

GR3,8.9,10,13

OAKS determines which classes have no connection to other classes. A class can be
connected to other classes in one of five ways:

- It is the parent of another class.

- It is part of a whole-part relationship.

- It is part of a general relationship.

- It is called by another class through a message connection.

- It calls another class through one of its services.

The function connectionp returns true if the class is connected to other classes. The
function unconnected-classes evaluates the entire model and returns a list of classes that

are unconnected.

7-31

GR12

The name of any new class is evaluated by OAKS to determine if it is related to an
existing class name. This is crudely done by looking for the first dash (it any) in the class
name and matching the remainder of the name with the full names of existing classes. For
example, "an-aircraft” would match with "aircraft”. "any-old-aircraft” would match with
"old-aircraft" but not with "aircraft”. This identifies a possible inhenitance link between
classes.

The function class-name-match takes a new class name and returns any existing class
names that match it.

GR15

The description of a class contains information on what the class represents, its
general properties, and what processing is required other than that for updating attribute
values. The description is contained in the description slot of each class.

Inheritance.

GR3

OAKS looks for attributes that are the same in different classes. These classes may
share an inheritance structure. This is checked when the domain model is entered. An
attribute contains slots for its name, description, and the valid set for its values. The name
and description are not good for comparison. A different name could be used to represent
the same attribute, and the description would not be exactly the same. Therefore, the
comparison is made on the legal set of values. OAKS checks to determine if 80% or more
of the attributes of the new class share the same legal values for each attribute as
attributes in another class. The 80% was arbitrary and can easily be changed in the code.
If another class matches 80% of the new class's attributes, the class is brought to the user's

attention. It is possible an existing class is related to the new class through inheritance.

7-32

This check does not guarantee there is any relationship between the two classes: it merely
identities a possible relationship.

The function similar-atts returns a list of other classes that have similar attributes.
The function model-similar-atts examines the entire model and returns a list of class names
that have similar attributes.

GR6

Do not nest subclasses déeper than three levels. If the level of the bottom-most class
in an inheritance structure is considered level 0, then if any of the superclasses are at level
3 or above, the model should be examined for changes. The check of the depth level of all
classes in the model is recommended as one of the checks the creator of the domain model
should conduct. It is also one of the tests run when the user asks for issues that are
advisory (i.e., they do not have to be resolved before the model is considered complete).
These advisory issues are discussed in depth in a later section.

The function class-depth returns the level of a class. If the child class is at level n the
parent is defined to be at level n+1. It allows for multiple inheritance by returning the
maximum class depth. The function model-class-depth returns a list of pairs of class
names and the class level.

GR9

There should be at least two subclasses per superclass.

The function two-subclass-check returns the name of the current class if it has only
one child. The function model-two-subclass-check checks the entire model and returns
superclasses that have only one child.

State Space.

GRS

See Inheritance GR3.

7-33

Services,

GR2.3,4,5,6,89.11,12,13,15,16,17

Four service templates were developed as LISP functions. The templates either
return the value of an attribute or change the value of an attribute. The use of a template
greatly simplifies the creation of a service by automatically filling in many of the service
slots based on knowledge of the functioning of the service. The tollowing are descriptions
of the tunctions that implement the four service templates.

1. Change-att-template

This function is used to create a new service. This new service changes the value of
an attribute it the attribute consists of a single value. If the value of the attribute is a list of
values, either remove-clement-template or add-clement-template is used. The input
parameters for this function are the new service's name and the name of the attribute
whose value is changed by the new service. When the function creates the service, it
automatically fills in the values for the new service's description, input set, output set,
precondition and postcondition.

2. Return-att-template

This function is used to create a new service that returns the value of an attribute.
The input parameters tor this function are the new service's name and the name of the
attribute whose value is returned by the new service. When the function creates the
service, it automatically fills in the values for the new service's description, input set,
output set, precondition and postcondition.

3. Add-element-template

This function is used to create a new service. This new service adds an element to an
attribute for attributes that consist of a list of values. The input parameters for this
function are the new service's name and the name of the attribute whose value is changed

by the new service. When the function creates the service, it automatically fills in the

7-34

values for the new service's description, input set, output set, precondition and
postcondition.

4. Remove-clement-template

This function is used to create a new service that removes an clement from an
attribute for attributes that consist of a list of values. The input parameters for this
function are the new service's name and the name of the attribute whose value is changed
by the new service. When the function creates the service, it automatically fills in the
values for the new service's description, input set, output set, precondition and
postcondition.

GR7

The messages are traced through the model using the procedure trace-messages. An
initial class and service name are given, and a trace of the message connections is output.

GR10

The function message-connectionsp takes a class and returns true if it either has
message connections with another class or is a parent of another class. The function
model-message-connectionsp examines all classes in the model and returns a list of those
that do not have message connections or are not parents.

GR14

The function similar-servs takes a class name and returns a list of classes whose
services match at least 80% of the services of the original class. A service matches
another service if the values slots of the input set and output set are equal. The name of
the service is arbitrary and would not be a good basis for comparison. The same argument
holds for the names of the input parameters. The values slots of the parameters represent
the legal set of values those parameters can take on. If the values slot contains the name
of a local attribute, the legal set of values for the local parameter is used as a basis for

comparison, and not the attribute name, which is arbitrary.

7-35

The services of the input class (class A) are compared to the set of services of cach
class in the model. If the services are being compared to the services of class B and if a
service of class A matches a service of class B, the maiwching service of ciass B is marked
and is not used for comparison again. This ensures one service of class B does not match
every service of Class A. If 80% or more of the services of Class A matches those of
Class B, Class B is considered possibly related to class A.

The tunction model-similar-servs looks at all classes in the model and returns a list of
class names and the classes possibly related to it.

Whole Model.

GR1

The function one-attributep takes a class name and returns true if the number of
attributes is less than two. The function model-one-attributep returns a list of all classes in
the model which have less than two attributes.

GR2.10

The function one-servicep takes a class name and returns true if the number of
services is less than two. The tunction model-one-servicep returns a list of all classes in
the model which have less than two services.

Instead of using a create service to show detault values tor the attributes of a class, a
default-value slot was used in the attribute structure. By default, this value is set to (),
which means the attribute value is empty when a new object of that class is created. If any
other value is needed, the attribute would override the default with a value other than '() in
the default-value slot.

GR6

The function num-att-ser returns the total number of attributes and services in a class.
The function model-num-att-serv returns a list of class names and the number of attributes

and services in each class. Model-ave-att-serv returns the average number of attributes

and services in the model. This is used in the evaluation of the domain model. If a new
class has 20% or more than the average, this will be brought to the attention of the analyst
to determine if it can be broken into smaller classes.

GR7

The function share-att-serv takes a class and returns any classes that share 80% of its
attributes and 80% of its services. The function model-share-att-serv looks at the entire
model for any classes that share 80% of their attributes and services with another class.

Model Evaluation. Before the user can use and modify the domain model to fit a
particular problem, the domain model must adhere to the guidelines and rules outined
above. Some of the guidelines and rules are required in that they must be adhered to
before the model is used. Some of the guidelines and rules are advisory, in that they can
be violated and the problem model would still be valid.

These model evaluation functions proved extremely useful during the development of
the domain model. Using these functions, many errors in the domain model were
uncovered and casily identified for correction. Originally, these evaluation functions were
envisioned solely for use during creation of the problem model. It became apparent that
these were as useful, if not more usetul, to the developer of the initial domain model.
These functions can be used on any domain model in OAKS since they are totally domain-
independent.

The tollowing are LISP functions that must run successtully before the model can be
used. A successful completion returns a null result.

1. unique-class-names ()
Ensures the class names within a model are unique.
2. model-att-class-check ()
Evaluates all the attributes to ensure any classes used in the a-set slot of an attribute

exist in‘the model.

3. model-att-att-check ()
Evaluates all the attributes to ensure any attributes, ¢xternal or internal, used in the a-
set slot exist.
4. model-serv-att-check ()
Evaluates all the services to ensure any classes, attributes or services used are valid.
5. model-wp-check ()
Examines all whole/pari structures to ensure they are repeated in their respective
class.
6. model-rcl-check ()
Examines all other relationships to ensure they are repeated in their respective class.
7. model-parent-check ()
Checks all parents 1o ensure they exist in the model.
8. model-input-set-names ()
Checks all input set names of services for validity.
9. model-relation-classes-different ()
Ensures that the two classes in relation and whole-part structures are different.
10. model-remove-repeated-relations ()
Removes any repeated relations in a class.
11. model-remove-repeated-messages ()
Removes any repeated messages in a class.
12. model-unique-att-names ()
Evaluates attribute names to ensure they are unique within a class and are not equal to
the names of valid attribute values.
13. model-unique-serv-names ()

Evaluates services names to ensure they are unique within a class.

7-38

These 13 mandatory requirements are evaluated as the model is changed. In some
cases the model is not allowed 10 be changed if one of these 13 are violated. For example,
an attribute that has the same name as an existing attribute cannot be added to a class. In
other cases, the change is allowed but an entry is added to a global list called *pending-
issues* that represents a problem that must be tixed betore the model is complete. The
pending-issues list must be null betore the model is considered complete. An example
of a change that would cause entries in *pending-issues* would be the addition of a
relation where one class in the relation does not yet exist in the model. What type of
entries are allowed in *pending-issues* and when they can be removed are discussed later.

Some requirements are advisory in that they point to a possible, but not definite,
problem in the model. For example, a class name normally should not end in "es" because
class names should be singular nouns. But a class name of "bus" would be legal. Until a
better parser is added to OAKS, this crude check of "s" at the end of a name can be
violated.

The following are the advisory guidelines and rules
1. unconnected-classes ()

Returns all classes that are unconnected to any other class in the model.

2. class-name-match ()

Determines if a class has a possible relaton to another class in the model by
examining its name.
3. model-singular-noun-check ()

Retums all class names that end in "s".
4. model-class-depth ()

Returns a list of class names and their depth in the inheritance tree.
5. model-two-subclass-check ()

Returns all classes that are parents that only have one child.

7-39

6. model-similar-atts ()

Retumns all classes that have similar attribuwes.
7. model-similar-servs ()

Returns all classes that have similar services.
8. model-one-attributep ()

Returns all classes that have one or zero attributes.
9. model-one-servicep ()

Returns all classes that have zero or one service.
10. model-share-att-serv ()

Returns classes that share 80 percent of their attributes and services.

These ten guidelines and rules are not evaluated each time the model is changed, but
at the user's request or before the model is considered complete. Any violations of these
rules are brought to the user's attention, but the user is not required to adhere to any of
them. Any violations of these advisory guidelines and rules are ~~ptured in a list called
advisory-issues, which is discussed in more detail later.

This section defined new structure-based guidelines and rules and defined and
analyzed how these new guidelines and rules and the domain-independent guidelines and
rules defined in Chapter 6 were implemented in OAKS. These guidelines and rules are
used to define consistency and completeness in OAKS and therefore are used to flag the
user when the problem model becomes inconsistent or incomplete. The LISP functions
that implement these guidelines and rules are used to evaluate the init:al domain model and
the evolving problem model. The results of the evaluation are shown to the analyst who
develops the initial domain model and to the user who develops the problem model.
These results are either shown as issues that must be resolved prior to the model being

considered complete or as advisory issues that may or may not need to be addressed.

7-40

in- ideli nd Rul

Chapter 6 detined a set of domain-dependent guidelines and rules. This secuon
implements and analyzes this last set of guidelines and rules.

The domain-dependent information in OAKS is represented by the associative list
called *necessary-classes*. This list contains those classes and any of its attributes and
services that are necessary to the completed model and therefore cannot be deleted from
the model. However, the names and components of these classes, attributes and services
can change, allowing the user to adapt these structures to the problem being solved. The
classes in the model are the most likely not to change trom one problem in the domain to
another; hence they are the most likely to be required in a domain. For example, if the
domain is an aircraft maintenance squadron, the "aircraft” class would be required in all
problems in the domain. There would also be an attribute that would represent some
identification of the aircraft, such as the tail number. The class and the attribute would be
required, even though the name. "tail-number” could change if that erminology is not
used in the problem.

Relationships are more likely to change than classes and therefore were not included
in the *necessary-classes*. Also, inheritance was not included, because classes that are
parents are not allowed to be deleted from the model. These restiictions could be added if
deemed necessary for a particular domain. For purposes of illustration of the concept of
domain-dependent guidelines and rules, the most likely constant structures were chosen
for implementation.

The list *necessary-classes* is in the form of a list of subiists. Each sublist contains
the class name, a possibly null list of attributes that cannot be deleted, and a possibly null

list of services that cannot be deleted. An example of the LISP construct is as follows:

7-41

(defparameter *necessary-classes*
'((aircratt (tail-number) ())
(aircrew () (get-sched))

(aircraft-part () ()

This shows that the classes of aircraft, aircrew and aircraft-part cannot be deleted. In
addition, the attribute tail-number of aircraft and the service get-sched of aircrew cannot
be deleted.

This section discussed the implementation of the last set of guidelines and rules. The
OAKS system now contains guidelines and rules based on general OORA principles and
methods, based on the OAKS domain model structure, and based on the domain itself.
These implemented guidelines and rules torm the code for the model evaluation portion of

OAKS.

Problem Model M

Overview, This section defines the allowed changes to the evolving problem model.
The LISP functions that implement these allowed changes use the code in the model
evaluation portion to determine if a change will cause the model to become inconsistent or
incomplete. If the model does become inconsistent or incomplete, the model modification
code must determine whether to allow the change and handle the problem using a pending
issues or an advisory issues, or to not allow the change. These issues and how they were
handled in the OAKS implementation are discussed in this section.

The problem model is created by changes to the domain model. Not all changes are

allowed, and a few changes must occur in a certain order. For example, a class that is a

parent cannot be deleted, and an attribute cannot be added unless the class it is part of is in

the model. However, most of the changes are not required to be accomplished in any
particular order. The changes to one class do not have to be complete betore changing
another class, for example. Another example 1s adding a whole/part relation to an existing
class. A whole/part relation is a relation between two classes. The other class ot the
relation does not have to exist in the model in order to add the whole/part relaton to an
existing class. All that is required is that one class in the relation exist. This allows for
great tlexibility in creating the problem model and allows the user to revisit any portion of
the model as many times as desired.

The problem model is complete when all issues in the *pending-issues* list have been
satisfied, i.e., when the *pending-issues* list is empty. When a user first starts to create a
problem model, the *pending-issues™ list starts with an entry indicating that all the classes
in the model have not been verified. This forces the user to at least examine the structure
of each class, attribute and service. This issue is discussed in detail later in this section.
As changes are made to the model, issues may be added or removed from the *pending-
issues™* list.

The LISP functions that implement the model modification process use the evaluation
functions discussed in the previous section to determine if a change has violated any
guidelines and rules.

The following sections discuss the changes that can be made to each component »f
the model, the possible modifications to the *pending-issues* list based on the changes,
and the LISP functions used to implement the changes. When a LISP function calls
another LISP function, the functions that are called are shown indented under it.

Change the Name of a Class., Because all the class names must be unique, the new
name must first be checked to sce if it is already the name of another class. If it is not,

then the class name can change. This involves changing the class itself, the name of the

7-43

class in the list-of-classes. wherever that class name is used in attributes and services, and
the name in inheritance and relauon slots of the class itself and other classes.

If the old class name is used in any entries in *pending-issues*®, it is changed to the
new name. Also, a new class name may resolve some entries in pending issues. For
example, if there is a class name used in the a-set slot of an attribute that was nonexistent,
there would be an entry in *pending-issues*. If the new class name is the same as the
nonexistent class, the entry would be removed. Also, when there is a relation created, one
of the classes in the relation may not exist at the time the relation is created. This would
add an entry in *pending-issues* on the class that is missing and the relation that must go
into the class. If the new class name matches this missing class name, the relation is added
and the entry in *pending-issues* is deleted.

The name of the class is also changed in *necessary-classes*, if the class is in that list.

Entries that can be removed from *pending-issues* are:

(1) (atts-classc class-name att-name)

The a-set slot of att-name contains the new class name
(2) (atts-attc class-name att-name)
The a-set slot of att-name contains the new class name

(3) (check-parameter class-name service-name input-set parameter)
The parameter contains the new class name

(4) (check-parameter class-name service-name output-set parameter)
The parameter contains the new class name

(5) (check-messages class-name service-name message)

The message contains the new class name
(6) (missing-class-and-relation class-name the-relation)
The class-name is the same as the new class name.

LISP functions used are:

7-44

change-class-name
change-class-name-slot
change-name-in-class
change-class-in-inheritance
change-class-in-relations
change-class-name-in-pending
new-class-pending
add-rel-to-new-class
change-name-in-class
change-name-in-atts
change-name-in-servs
change-class-name-in-pending
change-class-in-io-parameter
change-class-in-rel
Change the Description of a Class. Changing the description simply requires
replacing the old description with the new. There are no checks to be made, except that
the new description must be a string.
LISP functions used are:
change-class-desc
Change the Name of an Attribute. The attribute names must be unique within a
class, but they can be the same as an attribute name in another class. First, the attribute
name is checked to see if it is unique in the class and that it is not the same as the name of
one of the legal attribute sets. The legal attribute sets are enum, int, real, char, str, bool,
class, and attrib. The name cannot be the same as a legal attribute set because it would
cause confusion if it is used in the input set or output set of a service. The values of the

input or output parameters can be an attribute name of a local attribute, an attribute of

7-45

another class, or one of the legal set of attnibute values. It it is a local auribute name,
OAKS checks to ensure the name is one of the aurnbutes of the class. Therefore. the
attribute names cannot be one of the names of the legal set of attribute values.

If the attribute name passes these checks, the name is changed in the local slot and the
local services. The name must also change globally, in the attributes and services of other
classes. An attribute of another class may use this attribute as its value. If there are
classes or attributes of other classes with the same name as the changed attribute name,
these names are not modified. OAKS marks all attribute names so it is known what class
the attribute belongs to.

If the old attribute name is used in *pending-issues*, the old name must be changed to
the new name. Any entries in *pending-issues* resolved by changing the atribute name
are removed. For example, there may be an input parameter that references a nonexistent
attribute name that may be the new name of the attribute.

If the old name is used in *necessary-classes*, it is changed there.

Entries that can be removed from *pending-issues* are:

(1) (atts-attc class-name attribute-name)

The attribute-name is the same as the new attribute name and in the same class.

(2) (check-parameter class-name service-name input-set parameter)
The new attribute name is used in the parameter.

(3) (check-parameter class-name service-name output-set parameter)
The new attribute name is used in the parameter.

(4) (check-attr-val class-name service-name att-name)
The new attribute name is the same as att-name.

LISP functions used are:

change-att-name

proper-attr-setp

7-46

change-au-name-in-atts
change-att-name-in-servs
change-att-name-in-pending
remove-missing-att-entries
change-att-name-in-atts
att-name-sub
change-att-name-in-servs
change-att-io-set
change-att-post
Change the Description of an Attribute, Changing the description simply requires
replacing the old description with the new. There are no checks to be made, except that
the new description must be a string.

LISP functions used are:

change-att-desc

Change the A-Set Slot of an Attribute. The new value consists of a base and
optional lower and upper values. If the base is a list, there are no lower or upper values.
In this case, the a-set value is a list of elements. Each element of the list is a sublist made
of a base and optional upper and lower values. The sublist represents the structure of each
element of the list.

The new value structure is checked to ensure it is proper. If the base value is not a
list, it must satisfy proper-attr-setp, i.e., it must be one of the legal set of attribute values.
If the base value is a list, the base values of each of the sublists must satisfy proper-attr-
setp. For any base value (whether the value structure is an atom or the value structure is a
list), if the value is "class” there must be a lower value. If the value is "attrib”, there must

be a lower and upper value.

1-47

It the structure of the value is correct, the attribute a-set 1s changed in the local slot of
the attribute. The a-set value is not used outside the attribute, except through the attribute
name, so no replacements are made outside the attribute.

System-wide checks must be made based on the changes. First, the LISP function
atts-classc examines the attribute (not the name - the attribute CLOS class structure) and
ensures all classes used as a basis tor attribute sets, either as classes or classes and
attributes, are members of the set of classes. A null result means all classes are members
of the set of classes. If the result is not null, that means there is a class used that is not a
member of the set of classes. In this case, a list consisting of (atts-classc class-name att-
name) is added to the list of *pending-issues*. This means the missing class must be
added before the model is complete. The class name may not have been added yet by the
user and may be added later. If atts-classc result is not null, atts-attc automatically fails
because if the class does not exist, the system cannot check to see if the attribute exists
within the class. If the result of atts-classc is null, atts-attc is run to check to see if any
attributes of other classes used as a basis for the attribute are attributes of that class. If the
result of atts-attc is not null, the list (atts-attc class-nanme att-name) is added to the list of
pending issues.

If either of the system-wide checks passes, the *pending-issues* list is checked to see
if any entry matches either (atts-classc class-name att-name) or (atts-attc class-name att-
name). If there is a match, the matching entry is removed because now the test has passed
successfully. It may be that the user has changed the structure to remove the problems.

A list is not added to pending issues if it is already on the list. For example, a class
may be used more than once as a basis for an attribute, but the test only needs to pass
once to prove the class now exists.

Entries that can be removed from *pending-issues* are:

7-48

(1) (ats-classc class-name attribute-name)

(2) (aus-attc class-name attnbute-name)
It the old a-set slot contained classes and/or attributes that do not exist in the model, there
are entries in *pending-issues*. If the new a-set slot is valid, the entries are removed.

Entries that can be added to *pending-issues* are:

(1) (atts-classc class-name attribute-name)
The class that is used in the new a-set slot does not exist.

(2) (aus-attc class-name attribute-name)
The class and/or attribute that is used in the new a-set slot does not exist.

LISP functions used are:

change-attr-a-set

create-attrs-structure
Change the Initial Value of an Attribute. An attribute can have an initial value that

the attribute takes on when a class containing that attribute is first created. The inital
value is set to the empty list unless an initial value is ¢cxplicidy given. There are no entries
that are added or removed from *pending-issues* when the inital value is changed
because the initial value is a free-form list.

LISP function used is:

change-initial-value

Delete an Attribute From a Class. An attribute can only be deleted from a class if

the class is not a parent of another class. This is so the effect of removing the attribute is
minimized within one class and does not cascade into child classes. Since the user of the
system is assumed not to be knowledgeable in OORA methods, deleting an attribute from
a class will have effects the user will not understand nor may not be able to resolve. Also,
keeping an attribute in a class does not cause problems with the model's ability to satisfy

the uset's requirements.

7-49

An attrnibute cannot be deleted if it is in the *necessary-classes* associative list. This
list contains those classes and any of its attributes and services that cannot be removed
from the model.

Any entries in *pending-issues* associated with the deleted attribute are removed.
Entries are added to *pending-issues* for any attributes and services that reference the
deleted attribute.

Entries that can be removed from *pending-issues™* are:

(1) (atts-classc class-name attribute-name)

The attribute-name is that ot the attribute being deleted.
(2) (atts-attc class-name attribute-name)

The attribute-name is that of the attribute being deleted.
(3) (null-a-set class-name attribute-name)

The attribute-name is that of the attribute being deleted.
Entries that can be added to *pending-issues* are:
(1) (atts-attc class-name attribute-name)

The a-set slot of attribute name uses the deleted attribute.

(2) (check-parameter class-name service-name input-set input-parameter)
The values slot of the input parameter uses the deleted attribute.

(3) (check-parameter class-name service-name input-set output-parameter)
The values slot of the output parameter uses the deleted attribute.

(4) (check-attr-val class-name service-name att-name)

The class-name is the class of the deleted attribute and att-name is the name of the deleted
attribute.

LISP functions used are:

delete-attribute

attr-del-check

7-50

attr-del-check
atts-classc
atts-attc
check-parameter
check-attr-val
Add an Attribute to a Class. The input is the class name, the new attribute name, a
description for the new attribute, and the a-set slot value for the attribute. If the a-set
value is not a valid one, the a-set slot is set to null and an entry is added to *pending-
issues* indicating the a-set slot needs to be filled in. Entries in *pending-issues* that are
resolved by the addition of the attribute are removed tfrom the issues list.
Entries that can be removed from *pending-issues* are:
(1) (aus-attc class-name attribute-name)
The new attribute is used in the a-set of attribute-name.
(2) (check-parameter class-name service-name inpul-set parameter)
The new attribute is used in the values slot of an input parameter.
(3) (check-parameter class-name service-name output-set parameter)
The new attribute is used in the values slot of an output parameter.
(4) (check-attr-val class-name service-name att-name)
The new attribute is att-name, which is an attribute used in the postcondition as an
attribute that has changed as a result of execution of the service.
Entries that can be added to *pending-issues* are:
(1) (null-a-set class-name attribute-name)
The a-set slot of the new attribute is null.
LISP functions used are:
add-attribute

change-attr-a-set

7-51

remove-missing-att-entries
change-attr-a-set

atts-atic

check-parameter

check-attr-val

Change the Name of a Service, Changing a service name requires changing the name

in the local service name slot and in the message slot of the postconditions of other
classes. First, the new service name is checked to ensure it is not the name of an existing
service in that class. Service names within a class must be unique.

The name of the service must also be changed wherever it is used in *pending-
issues*. Any entries in *pending-issues* that are resolved due to the change of name are
removed.

If the name of the service is used in *necessary-classes*, it is changed there.

Entries that can be removed from *pending-issues* are:

(1) (check-messages class-name service-name message)

The message contains the new service name.
LISP functions used are:
change-service-name
change-ser-name-in-messages
change-ser-name-in-pending
remove-missing-serv-entries
Change the Description of Service, Changing the description simply requires
replacing the old description with the new. There are no checks to be made, except that
the new description must be a string.
LISP functions used are:

change-ser-desc

7-52

Change the Input Set of a Service. The input set consists of a parameter name and
its type, or legal set of values. The name of a parameter is arbitrary, but it may be used in
the precondition or postcondition of a service. The name also must be unique within the
input set of a service and must not be the name of an attribute or one of the legal attnbute
types, such as "enum” and "int". The type of an input parameter must be any of the legal
attribute types, a local attribute name, an attribute of another class, a class, or a list
consisting of any legal elements.

There are three changes that can be made to one parameter of the input set. Only one
parameter of the input set is changed at a ime. An existing parameter could be deleted, a
parameter could be added, or an existing parameter could be changed.

The input list to any one of these changes is the class name, class-name, the service
name, service-name, the existing name and type in a list, old-name-val-list, and the new
name and type in a list, new-name-val-list.

(1) Delete an existing paramelter.

Since there is no new parameter, the new-name-val-list equals (*delete). The
old-name-val-list contains the old name and values, (old-name old-values). First, the input
parameter list is searched to ensure the parameter exists. The existing parameter is
removed, and then the *pending-issues* list is cxamined to see if there are any issues
relating to the value of the old name. For example, if the old name had a value that
contained the name of a class that did not exist, an entry would be added to the pending
issues list. Then the precondition and atts slots of the postcondition are examined to see if
the deleted parameter name is used. If it is, an entry is added to the *pending-issues* list
to indicate the name is no longer valid.

(2) Add a new parameter.

Since there is no old parameter, the old-val-name-list equals (*add). The new

val-name-list contains the new name and values, (new-name values). The new-val-name-

7-53

list 1s evaluated to ensure it contains two clements, and the name is legal for an input
parameter name. The new parameter is then added to the input set. The values of the
new parameter are tested and if they are not legal, an entry is added to *pending-i1ssues*.
Also, *pending-issues* is examined to see if any entries can be removed. If there is an
entry caused by a deleted input parameter name that was used in the precondition or the
postcondition, the name of that missing input parameter is examined. If it 1s the same as
the name of the new parameter, these entries in *pending-issues* can be removed.

(3) Change an existing paramelter.

This would require name and values information in both the old-val-name-list and
the new-val-name-list. The input set is examined to ensure that the old-val-name-list
exists. the new-val-name-lis: is examined for proper structure and a legal name. There
are three possibilities: only the name of the parameter i1s changed, only the value of the
parameter is changed, or both are changed.

If the name is changed and if the old name was used in the precondition or
postcondition, the name is changed to the new one. Also, *pending-issues* is examined
to see iIf any entries can be removed. It there is an entry caused by a deleted input
parameter name that was used in the precondition or the postcondition, the name of that
missing input parameter is examined. It it is the same as the name of the new parameter
name, these entries in *pending-issues* can be removed.

It the value is changed, the values of the new parameter are tested and if they are
not legal, an entry is added to *pending-issues*. The *pending-issues* is checked to see if
there is an entry because of illegal values of the old-val-name-list. If there are, they are
removed because the old set of values has been replaced.

Entries that can be removed from *pending-issues* are:
(1) (check-parameter class-name service-name input-set parameter)

The values of a replaced or deleted parameter were not valid.

7-54

(2) (service class-name service-name pre missing input-set para-name)
(3) (:service class-name service-name post missing input-set para-name)
The name of a new parameter matches a missing input parameter name.
Entries .nat can be added to *pending-issues* are:
(1) (:service class-name service-name pre missing input-set para-name)
(2) (:service class-name service-name post missing input-set para-name)
If an input parameter is deleted or the name changed, and the name is used in the
precondition or postcondition, an entry is added stating the parameter name is no longer
valid.
(3) (check-parameter class-name service-name input-set parameter)
The values of a new or replaced parameter have invalid references.
LISP functions used are:
change-input-set
unique-para-name
add-to-i10-set
in-para-list
replace-name-in-io-set
replace-value-in-io-set
remove-val
add-to-i0-set
check-classes-and-atts
check-10-name-pending
replace-value-in-10-set
check-classes-and-atts
unique-para-name

check-classes-and-atts

7-58

check-parameter

check-10-name-pending

in-para-list

check-pre-and-post

check-name-pending

Change the Output Set of a Service, The output set of a service consists of a set of
output parameters. The name of each the parameters is set to null, and the type or values
of an output parameter must be any of the legal attribute types, a local attribute name, an
attribute of another class, a class, or a list consisting of any legal element. The name is
null because there is no requirement to name the output parameters of a service, just to
state its legal values.

There are three changes that can be made to one parameter of the output set. Only
one parameter of the output set is changed at a ime. An existing parameter could be
deleted, a parameter could be added, or an existing parameter could be changed. The
inputs required are the class name, the service name, the old values and the new values.

When a parameter is deleted or changed, any entries in pending-issues referring to the
old values being illegal are removed. When a parameter is added or changed, the new
values are checked to see if they are valid. If they are not, an entry is added to peading-
1ssues.

Entries that can be removed from *pending-issues* are:

(1) (check-parameter class-name service-name output-set parameter)

The values of a replaced or deleted parameter were not valid.

Entries that can be added to *pending-issues* are:

(1) (check-parameter class-name service-name output-set parameter)
The values of a new or replaced parameter have invalid references.

LISP functions used are:

7-56

change-output-set
add-to-i0-set
remove-val
in-para-list
replace-value-in-io-set
add-to-10-set
check-classes-and-atts
check-io-name-pending
replace-value-in-io-set
check-classes-and-atts
Change the Precondition of a Service, The precondition is a free form list that
evaluates to true or false. The new precondition is a list that replaces the old
precondition. If the existing precondition is other than null, pending-issues is checked.
Any entries referring to an invalid parameter name in the old precondition are removed if
the new precondition does not use this parameter.
Entries that can be removed from *pending-issues* are:
(1) (:service class-name service-name pre missing input-set para-name)
The precondition had contained reference to the name of an input parameter that no
longer exists. If the precondition is changed and no longer contains reference to the
missing name, the entry in *pending-issues* is removed.
LISP functions used are:
change-serv-pre
Change the Atts Slot of the Postcondition of a Service, The atts slot contains a list
of attr-val structures that each contain an attribute name and the new attribute value. The

changes that can be made is an existing attr-val can be deleted, a new attr-val structure

7-57

could be added, or either the attribute name, the attribute value, or both, of an existing
attr-val structure can be replaced.

The inputs are the class name (class-name), the service name (service-name), the old
attr-val list (old-list), and the new attr-val list (new-list).

(1) A new attr-val structure is added.

The old-list is set to (*add) and the new-list consists of a new attribute and a
value in the list form (attribute-name value). The attribute name cannot be the name of
any attribute currently in the atts slot, because there should be only one value for an
atribute. The new attribute name is checked to see if it is the name of an attribute
currently in the class. If not, the new structure is added but an entry is added to *pending-
issues* indicating the attribute does not exist in the class. This allows the user to add the
attribute later.

(2) An old attr-val structure is deleted.

The new-list is set to (*delete) and the old-list consists of an existing attribute
and value in list form, (attribute-name value). The currents atts slot is examined to ensure
the old-list exists. If so, the old-list is removed trom the atts slot. Any entries in pending-
issues referring to an invalid attribute name in the old structure are removed. Also, any
entries in *pending-issues* referring to the use of a non-existent input parameter name in
the value portion are removed if the name is not used in the value slot of any of the other
structures in atts.

(3) An old attr-val structure is changed.

Either the attribute name, the value, or both can be changed. When the name is
changed, the new name is checked to ensure it is not the name of an existing structure in
atts. If it isn't, the name is changed, and then checked to determine if it is the name of an
attribute in the class. If it is not, an entry is added to pending-issues indicating the

attribute-value structure refers to a non-existent attribute. When the value is changed, any

7-58

entries in *pending-issues* refernng to the use of a non-existent input parameter name in
the old value are checked. These are removed if the name is not used in the new value or
used in any of the other value slots in atts.
Entries that can be removed from *pending-issues* are:
(1) (check-attr-val class-name service-name att-name)
An old attribute name, that is now replaced or deleted, was invalid.
(2) (:service class-name service-name post missing input-set para-nanie)
The value is changed or deleted, and there is an entry about an invalid input parameter,
and that invalid input parameter is not used in the new value.
Entries that can be added to *pending-issues* are:
(1) (check-attr-val class-name service-name att-name)
The attribute name of a new attr-val (either new or replaced) is not the name of an
attribute in the class.
LISP functions used are:
change-serv-post-atts
unique-attr-atts
add-to-postt-atts
in-post-atts
remove-from-post-atts
replace-post-atts-attr
replace-post-atts-value
add-to-postf-atts
check-post-atts-attr
remove-from-post-atts
check-post-atts-attr

- check-post-atts-missing-input-para

replace-post-atts-attr
check-post-atts-attr
replace-post-atts-value
check-post-atts-missing-input-para
check-post-atts-aur
check-attr-val
Change the Messages Slot of the Postcondition of a Service, The messages slot
consists of a list of messages. Each message is a list consisting of a class name and a
service name. A message can be deleted, a message added, or a message replaced. The
input is the class name, the service name, the old message and the new message.

If a message is added or replaced, the new message is checked for the validity of the
class and service. If either is invalid, an entry is added to *pending-issues*. When an
existing message is deleted or replaced, entries in pending-issues on the invalidity of the
old messages class and/or service are removed. When a new message is added, it must not
be the same as an existing message.

Entries that can be deleted trom *pending-issues* are:

(1) (check-messages class-name service-name message)

If a message with an entry is changed or deleted.

Entries that can be added to *pending-issues™* are:

(1) (check-messages class-name service-name message)
A new message has invalid references.

LISP functions used are:

change-serv-post-mess

unique-message
add-to-post-messages

remove- from-post-messages

replace-post-message
add-to-post-messages
check-post-atts-mess
remove-{rom-post-messages
check-post-atts-mess
replace-post-message
check-post-atts-mess
Delete a Service, The service of a class that is a parent cannot be deleted for the same
reason as that for not deleting an attribute of a class that is a parent. If the service can be
deleted, all entries in *pending-issues* for that service are deleted. Deleting the service
may cause messages in other services to have invalid references, which causes entries to be
added to *pending-issues*.
A service cannot be deleted if it is in the *necessary-classes* list.
Entries that can be deleted from *pending-issues* are:
(1) (:service class-name service-name pre missing input-set parameter)
(2) (:service class-name service-name post missing input-set parameter)
(3) (check-parameter class-name service-name input-set parameter)
(4) (check-parameter class-name service-name output-set parameter)
(5) (check-attr-val class-name service-name att-name)
(6) (check-messages class-name service-name message)
All entries with service-name the same as the deleted service are removed.
Entries that can be added to *pending-issues* are:
(1) (check-messages class-name service-name message)
Messages that have invalid references due to the deletion of the service.
LISP functions used are:

Jelete-service

7-61

remove-serv-entrics
serv-del-check
Add 3 Service. There are two methods for adding services. The first adds any generic
service without using a service template. The second uses one of tour service wemplates
that are set up for services that either get or change the value of an atribute.

The method without using a wemplate takes the class name, the new service name and
the descniption of the service and creates a service with the slots for input-set, output-set,
precondition and postcondition set to null. The function add-to-io-set would be used to
enter input and output parameters, change-serv-pre for the pre, change-serv-post-atts for
the atts portion of the postcondition, and change-serv-post-mess for the messages portion
of the postcondition. Any entries in *pending-issues* resolved by the addition of the
service are removed.

Adding a service based on a template requires input of the class name, a new service
name, a template name, an auribute name and an optional message list. The four
templates supported are changing the value of an attribute, returning the value of an
attribute, adding a value to an attribute that is a list of values, and removing a value from
an attribute that is a list of attributes. The service is then completely created from that
template, including input and output sets, the precondition and the postcondition. Any
entries in *pending-issues* resolved by the addition of the service are removed.

Entries that can be deleted from *pending-issues* are:

(1) (check-messages class-name service-name message)

The new service name is used in the message.

LISP functions used are:

add-service

remove-missing-serv-entrics

7-62

add-template
remove-missing-serv-entries
Change the Whole/Part or Relation Structure of a Class, The whole/pan and
relation slots in a class are made up of a list of individual relations. A single relation
structure that is part of the whole-part and relation slots in a class can change in one of
tive ways:

(1) The ranges in the relation can change. Two new ranges are used as a
replacement for the existing ranges. This requires that the relaton exists in at least one
class and the two ranges are lists of two elements. It is possible that the other class of the
relation does not exist. This can occur when a relation is added or changed and one class
of the relation is not in the model. When this occurs, an entry is added to *pending-
issues* indicating there is a missing class and an associated relation. If the other class
exists, the ranges are changed in the other class as well. If the other class does not exist,
there must already be an entry in *pending-issues* on the nonexistence of that class and
the relation. Therefore, the relation in *pending-issues* is updated to reflect the new
range information.

(2) A relation is added. An existing class and a new relation is input. The new
relation is added to the class if it does not already exist in the class and the relation is of
proper torm. The relation is of proper form if the two classes in the relation are different,
one of the classes in the relation is the existing class to which the relation is to be added,
and the ranges are lists of two elements. If the other class in the relation exists in the
model, the relation is added to that class. If the other class does not exist, an entry is
added to *pending-issues* with the class name and the added relation.

(3) A relation is deleted. The input is an existing class and the relation to be deleted.
The relation must be in the existing class. The relation is deleted in the existing class. If

the other class in the relation exists, the relation is deleted in that class as well. If the

7-63

other class does not exist, the entry in *pending-issues® tor that class and relauon is
deleted.

(4) The other class of a relaton is changed. The input is an existing class, a relation
of that class, and a new class that replaces the current other class of the relation. The
relation must exist in the input parameter class. If the current other class of the relation
exists in the model, the relation is removed from that class. If it does not, the entry in
pending issues for the other class and the relation is deleted. The new class replaces the
existing other class in the relation. If the new class exists in the model, the relation is
added to it. If the new class does not exist, and entry is added to *pending-issues*.

(5) The name of the relation is changed. This can only occur in other general
relations, and not whole/part relations. The input is an existing class, a relation in that
class, and a new relation name. The relation name is changed in that class. If the other
class in the relation exists, the name is changed in that class as well. If it does not exist,
the entry in *pending-issues* on the class and relation is changed to reflect the new
relation name.

Entries that can be deleted from *pending-issues* are:

(1) (missing-class-and-relation class-name the-relation)

When a relation is deleted and the old relation had a missing class.

Entries that can be added to *pending-issues* are:

1 (migsing-class-and-relation class-name the-relation)

The other class in the relation does not exist in the model. Used when a relation is added
or modified.

LISP functions used are:

change-relation-name

remove-relation-class-missing

add-relation-class-missing

7-64

add-new-relation
add-relation-class-missing
delete-relation
remove-relation-class-missing
change-relation-class
remove-relation-class-missing
add-relation-class-missing
change-relation-name
remove-relation-class-missing
add-relation-class-missing
remove-relation-class-missing
add-relation-class-missing
Change the Parents of a Class. There are three permissible changes to the parents of
a class. Changes in the parents of a class are changes made to the inheritance slot of a
class.

(1) Remove a parent of a class. This requires that the class must not be the parent of
another class. If the class is the parent of other classes, a change in the parent would
affect all classes that inherit from it. This 1s a far-reaching change that changes the basic
structure of the model. Since it is assumed the user is not familiar with object-oriented
techniques, this type of dramatic change is not permitted. If the user finds it necessary to
change the structure to this extent, the domain model should be redone to more accurately
reflect the domain. If the class is not a parent of another class, the desired parent is
removed. The attributes and services of the class are then checked to determine if there
are attributes used that are no longer valid because the attributes of the removed parent
are no longer available. If there are any attributes or services that are invalid, the

information is added to the *pending-issues* list.

7-65

(2) Add a parent to a class. This requires that the new parent exast in the model.
The parent is added, and the *pending-issues™ list examined for any issues about non-valid
attributes and services that can be removed.

(3) Change a parent of a class. This requires the removal of the old parent and the
addition of a new parent, so all the requirements of the removal and addition of a parent
apply.

Entries that can be deleted from *pending-issues* are:

(1) (atts-attc class-name att-name)

Used when a parent is removed which causes an aurnibute to become invalid.

(2) (check-parameter class-name service-name input-set parameter)

(check-parameter class-name service-name output-set parameter)

Used when a parent is removed which causes the value slot of an input or output
parameter to become invalid.

(3) (check-attr-val class-name service-name att-name)

Used when a parent is removed which causes the attribute to become invalid.

Entries that can be added to *pending-issues* are:

(1) (atts-attc class-name att-name)

Removed when a parent is added which causes an attribute to become valid.

(2) (check-parameter class-name service-name input-set parameter)

(3) (check-parameter class-name service-name output-set parameter)

Removed when a parent is added which causes the value slot of an input or output
parameter to become valid.

(4) (check-attr-val class-name service-name att-name)

Removed when a parent is added which causes the attribute to become valid.

LISP functions used are:

remove-parent

7-66

atts-atte
check-parameter
check-attr-val
add-parent
atts-attc
check-parameter
check-attr-val
change-parent
remove-parent
add-parent
Add a Class. The inputs are the new class name and a class description. The
remainder of the class's slots are set to null. The attributes are added using add-attribute.
The services are added using either add-service or add-template. The parents are added
using add-parent, and the relations are added using add-new-relation.

Any entries in *pending-issues* resolved by adding the class are removed. Also, if
there are relations tor that class in *pending-issues*, they are added to the class and
removed from *pending-issues*.

Entries that can be deleted trom *pending-issues* are:

(1) (atts-classc class-name att-name)

(2) (atts-attc class-name att-name)

An attribute contains the new class name in the a-set slot.

(1) (check-parameter class-name service-name input-set parameter)

(2) (check-parameter class-name service-name input-set parameter)
The values slot of an input or output parameter contains the new class.

(3) (check-messages class-name service-name message)

The message slot contains the new class.

7-67

LISP tuncuons used are:
add-class
new-class-pending
add-rel-to-new-class
Delete a Class. A class can only be deleted if it is not the parent of another class. This

follows the same reasoning as that for deleting an attribute or service of a parent class.
Also, a class cannot be deleted it it is in the *necessary-classes* list. Any relations in the
class are removed from the other class in the relation, if it exists in the model. Deleting a
class causes all entries in *pending-issues* for that class to be deleted, and entries in
pending-issues added for all attribute and service slots that now have invalid references
to the deleted class.

Entries that can be deleted from *pending-issues* are:

(1) (atts-classc class-name att-name)

(2) (atts-attc class-name att-name)

(3) (:service class-name service-name pre missing input-sct para-name)

(4) (:service class-name service-name post missing input-set para-name)

(5) (check-parameter class-name service-name input-set parameter)

(6) (check-parameter class-name service-name input-set parameter)

(7) (check-attr-val class-name service-name att-name)

(8) (check-messages class-name service-name message)

(9) (null-a-set class-name attribute-name)
If the deleted class name equals class-name, the entries are removed.

(10) (missing-class-and-relation class-name the-relation)
If the deleted class name is the other class (not class-name) in the relation, the entry is

removed.

7-68

Entries that can be added to *pending-issues* are:
(1) (atts-classc class-name att-name)
The deleted class is used in the a-set slot of an atribute.
(2) (atts-attc class-name att-name)
The deleted class contained an attribute that is used in the a-set slot of an attribute.
(3) (check-parameter class-name service-name input-set parameter)
The deleted class or one of its attributes is used in the values slot of the input set of a
service.
(4) (check-parameter class-name service-name output-set parameter)
The deleted class or one of its attributes is used in the values slot of the output set of a
service.
(5) (check-messages class-name service-name message)
A service of the deleted class is used in the messages slot of the postcondition of a service.
LISP functions used are:
delete-class
delete-relation
remove-a-class-pending
attr-del-check
serv-del-check
Xexi&_agm The class verification is used to require the user to review all classes,
to include their attributes and services, that were part of the original model and kept in the
revised model. Each class, as well as each attribute and service, has a verify slot that is
initially set to "false”, indicating the user has not verified the need for that class or
component yet. The user must set all verify slots to true before the problem model can be
considered complete. The verify siot of a class cannot be set to true until the verify slots

of all the attributes and services in that class are set to true.

7-69

When a new class. attribute or service 1s created. the venty slot is initially set to true.
This is because the user has obviously determined there is a need for that component.

As stated above. the model i1s not considered complete until the verify slot of all
classes is set to true. Therefore, when the model is first created, there is already an entry
in *pending-issues* stating that all the classes have not been verified. This entry is
removed when all the classes have been verified.

Entry that can be deleted from *pending-issues*:

(1) (classes need veritied)

This is deleted when all classes in the model have been verified.

b. LISP functions used:

(verify-class class-name)

Pending Issues. The list of pending issues is critical to the development of the
problem model. The requirement for resolution of entries on the list insures the problem
model is consistent and complete with respect to all guidelines and rules. The problem
model could be developed without the use of this list and still be kept consistent and
complete. However, this would require much more intellectual work on the part of the
user and it would be far more error prone. The user would have make changes in certain,
strict orders. For example, in order to delete a class without using a pending issues list, all
references to that class in other classes would have to be changed first, before the class is
deleted. The use of the pending issues list is much more in keeping with the practice of
goud software engineering by providing as much support as possible for the process which
was most intuitive for the user.

The following are all possible entries in the *pending-issues* list. and when they are
added and removed from the list.

1. A class name is not valid in the a-set slot of an attribute.

(atts-classc class-name att-name)

7-70

a. Added when:

The a-set slot of an attribute is changed and a class in the a-set is not valid.

A class is deleted that is used in the a-set slot of an attribute.

b. Removed when:

The a-set slot of an attribute is changed, the old a-set had an entry in pending issues,
and the new a-set is valid.

The attribute whose a-set slot was invalid is deleted.

The missing class in the a-set slot is added.

The class of the attribute whose a-set slot was invalid is deleted.
2. An attribute name is not valid in the a-set slot of an attribute.

(atts-attc class-name att-name)

a. Added when:

The a-set slot of an attribute is changed and a class and/or attribute in the new a-set is
not valid.

When removing a parent from a class, an attribute used in the a-set slot of an attribute
becomes invalid.

A class is deleted which contains an attribute used in the a-set slot of an attribute.

An attribute is a class is deleted that is used in the a-set of other attributes.

b. Removed when:

The a-set slot of an attribute is changed, the old a-set had an entry in pending issues,
and the new a-set is valid.

The attribute which had an invalid a-set slot is deleted.

The missing attribute of the a-set slot is added.

A parent is added to a class which contains the missing attribute for an a-set slot.

A class is added which contains the missing attribute of the a-set slot.

A class is deleted which contains the attribute with the invalid a-set slot.

7-71

3. An input-parameter name is used in the precondition no longer exists.

(:service class-name service-name pre missing input-set para-name)

a. Added when:

An input parameter is deleted that contains a name used in the precondition.

b. Removed when:

A parameter is added whose name is that of the missing input parameter.

The name of a parameter is changed and the new name matches the missing parameter
name.

The precondition is replaced with one that does not use the missing input parameter
name.

The service is deleted that contains the precondition.

A class is deleted that contains the service with the precondition.
4. An input parameter name used in the atts slot of the postcondition no longer exists.

(:service class-name service-name post missing input-set para-name)

a. Added when:

An input parameter is deleted that is used in the atts slot of a postcondition.

b. Removed when:

The name of a parameter is changed and the new name matches the missing parameter
name.

An attribute-value is deleted that contains the non-existent input parameter name.

The value part of an attribute-value is changed to remove the non-existent input
parameter name.

A service is deleted that contains the postcondition with the non-existent input
parameter name.

A class is deleted that contains the service with the postcondition with the non-

existent input parameter name.

7-72

5. A class and/or local or external attribute of the value slot of an input set is invalid.

(check-parameter class-name service-name input-set parameter)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

When removing a parent from a class, an attribute used in the values slot of an input
parameter of a service becomes invalid.

The value of a parameter is changed and the new value is invalid.

A parameter is added whose value slot is invalid.

A class is deleted that is used in the value slot of an input parameter.

b. Removed when:

An attribute is added that satisfies the value slot of an input parameter.

The invalid parameter is deleted.

The value slot of a parameter is changed to a valid value.

A service is deleted which contains the input parameter with the invalid value slot.

A parent is added to a class which contains the missing attribute needed to satsfy the
value slot of an input parameter.

A class is added that satisfies the value slot of an input parameter.

A class is deleted that contains a service with an invalid values slot for an input
parameter.
6. A class and/or local or external attribute of the value slot of the value slot of an output
set is invalid.

(check-parameter class-name service-name output-set parameter)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

When removing a parent from a class, an attribute used in the values slot of an output

paraméter of a service becomes invalid.

7-73

The value slot is changed and the new value is invalid.

A parameter is added whose value slot is invalid.

A class is deleted that is used in the value slot of an output parameter.

b. Removed when:

An attribute is added that satisfies the value slot of an input parameter.

The invalid output parameter is deleted.

The value slot of a outpui parameter is changed to a valid value.

A service is deleted which contains the output parameter with the invalid value slot.

A parent is added to a class which contains the missing attribute needed to satisfy the
value slot of an output parameter.

A class is added that satisties the value slot of an output parameter.

A class is deleted that contains a service with an invalid values slot for an output
parameter.
7. Invalid attribute name in the atts slot of the postcondition.

(check-attr-val class-name service-name att-name)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

An attribute-value is added containing an invalid attribute name.

The attribute name of an attribute-value is changed to an invalid attribute name.

When removing a parent from a class, an attribute used in the attr-val slot of the
postcondition slot becomes invalid.

b. Removed when:

An attribute-value is deleted that contains an invalid attribute name.

The attribute name of an attribute-value is changed from an invalid name to a valid
name.

A service is deleted that contains a postcondition with an invalid attribute name.

7-74

A parent is added to a class which contains the missing attribute that satisfies the
invalid attribute name.

A class is deleted which contains the service with the reference to the invalid attribute
name.
8. Invalid class name and/or service name in a message of the messages slot of the
postcondition.

(check -messages class-name service-name message)

a. Added when:

A message is added with an invalid class or service name.

A message is replaced with one with an invalid class or service name.

A service is deleted that is used in the messages ot another service.

A class is deleted which contains services used in the messages of other services.

b. Removed when:

A message is deleted that contains reference 1o invalid classes or services.

A invalid message is replaced.

A service is deleted which contains invalid messages.

A service is added which satisfies the invalid messages in another service.

A class is added with services that satisfy the invalid messages.

A class is deleted which contains services with invalid messages.
9. A class in a relation (either whole/part or other relation) is not in the model.

(missing-class-and-relation class-name the-relation)

a. Added when:

A relation is added using a non-existent class.

The other class of a relation is changed to a non-existent class.

b. Removed when:

A relation is deleted which contains reference to a non-existent class.

7-75

The other class of a relation is changed from a non-existent class o an existing class.
A class is deleted that contains a relation with reference 1o a non-existent class.
The non-existent class in a relation is added.
10. The value of the a-set in an attribute is null.
(null-a-set class-name attribute-name)
a. Added when:
An attribute is added with a null a-set.
b. Removed when:
An attribute with a null a-set is deleted.
A class is deleted that contains an attribute with a null a-set.
11. All classes in the model have not been verified.
a. Added when:
The model is first created.
b. Removed when:
All classes in the model have been verified.

Advisory Issues. These entries are created and shown to the user on the request of
the user. These are also used by the developer of the domain model to evaluate the
model. The list is recreated each time it is requested. These issues are advisory only, and
are not required to be resolved before the model is complete.

1. The class is not connected to any other class in the model.
(connectionp class-name)

2. The class is a parent and it has only one subclass.
(two-subclass-check class-name)

3. The class has zero or one attributes.

(one-attributep class-name)

7-76

4. The class has zero or one service.

(one-servicep class-name)

5. The class shares 80% of its attributes and services with another class.

(share-att-serv class-name)

6. The depth of a class in the inheritance structure is greater than 2.

(class-depth class-name)

This section discussed and analyzed the LISP functions used to modify the problem
model. The modification of the problem model is a complicated process that requires an
analysis of each change to evaluate any possible inconsistencies and incompleteness caused
by each change. These are harglled in one of three ways. In some cases the change is not
allowed. In a majority of the cases, the change is allowed but the inconsistencies and
incompleteness are recorded in the pending issues list for later resolution. In some cases,
the system cannot determine if the problem is one that must be resolved, so the issues is
placed on the advisory issues list for possible resolution by the user. The use of a pending
issues list is an important one tor the OAKS system. It allows many model changes to be
made without imposing any order on the changes, yet ensures that the model will be
consistent and complete when the pending issues are resolved.

The last section of this chapter discusses the user intertace implemented for OAKS.

User Interface

Background. The tunctions shown in the model modification portion can be used to
fully manipulate the model and create a new problem. However, this would force the user
of OAKS to type in LISP commands at the LISP prompt. Although the object of this
research is a proof-of-concept system rather than a production system, a more appropriate

interface for the expected user can better illustrate the concept of an automated system for

7-77

OORA. Hence, a window-based user interface (U was crcatcd. using LISPView.
LISPView was chosen because it was a package available in the SUN Common LISP
environment that contained all the features required tor a windowed user intertace.
LISPView uscs CLOS classes tor each of its compenents. such as windows and menus.

Because OAKS is a proof-of-concept system. extensive user input checking was not
implemented. The OAKS system, for the most part, requires the user input to be in the
expected torm. For example, if a hist is expected, the OAKS system requires a list to be
input. the checking that is done is based on the desired structure of the changed model.
For cxample, a new class is not allowed to be created if it bas the same name of an existing
class in the model.

The following is a guide to using the OAKS LISPView user interface. It also explains
the connection between the user interface and the OAKS domain model and model
moditication functions.

Overview of the UL Figurc 7-2 is a drawing of the windows and menus available in
OAKS.

There are three main windows. The window labeled 1 displays either the entire model
or the components of one class depending on which class has been selected by the user.
The window labeled 2 displays the component that is currently selected by the user. The
window labeled 3 always displays the entries in the *pending-issucs* list. What is
displayed in each window is based on the selection the user makes through the use of the
menus that run across the top bar. These menus and the actions generated by the
selections on the menus are described in the next sections.

To see what item is currently selected on the menu, the menu button is pressed using
the left mouse button. To select a ditferent menu item. the right mouse button is used to
produce a pull-down list of menu items. In some cases. there are submenus to these pull-

down mienus.

7-78

‘ Moaet C.ass ’ Gamponent ’ Gttunute :omponams) ‘ Sarvce Componems) Qc!,cr) Gcwsory 'ssues)

2
Current Selected Component

Entire Model
or

One Class

3

Pending issues

Figure 7-2. User Interface

The general process a user would go through in using OAKS is to first initiate a SUN
Common LISP environment containing the LISPView and CLOS packages. At the LISP
prompt, the user would type (load "oaks.lisp”). This file loads the files "oaksd.lisp". which
contains the domain model structure and the domain model, "oaksno.lisp” which contains
the model evaluation functions, "oaksmod.lisp” which contains the model modification
functions, "oaksave.lisp" which saves the changed model to a file, executes the function
"read-data”, which reads trom the file "userfil”, and then loads "oaksui.lisp” which
contains the LISPView user intertace. The file "userfil” contains the problem model. This
is the model the user modifies to create a model for the particular problem of interest.

When QAKS is first used, "usertil” contains the unmodified domain model. The user then

7-79

types (in-package ‘oaks) at the LISP prompt. All the files are loaded inwo this package.
The next step is to select the component the user would like to view or modity using the
"Component” menu. and then use the "Action” menu to change that component. The
"Action” menu may bring up a pop-up box that gathers the user input. User teedback
comes in the form of another box that tells the user ot the consequences of an action or
errors in entering information. As changes are made, the entnies in window 3. pending
issues, are changed to retlect the ettect of those changes. The model is not complete unal
there are no longer any entries in pending issues. Appendix B walks through an example
OAKS session.

To create the file “usertil” tor the first session with OAKS requires that *usertil”
contains the domain model with no changes. This is done by loading "oaksd.lisp”.
"oaksno.lisp”. "oaksmod.lisp" and "oaksave.lisp”. Then the function "write-data” is run.
Because the only model loaded is the domain model, the domain model will be saved to
"usertil”.

Model/Class Menu, The "Model/Class” menu selects either the entire model or one
class in the model. The pull-down menu produces a list with one menu selection of
"Entire Model” and the remaining menu selections are the names of the classes in the
model. The menu will change as the classes in the model are added, deleted, or the names
changed.

It "Entire Model" is selected, window 1 will show a list of every class in the model
with any parents of a class shown indented under the class. Window 2 will be blank. The
"Component” menu is inactive, which means it cannot be used. The "Attribute
Components” and "Service Components” menus are also inactive. The "Action” menu
consists of the action "Add a Class”, which is the only action allowed on the entire model.

It one class is sclected, a class and its components will be shown in window 1. The

components shown are the class name, description, a list of the attribute names but not the

7-80

attribute components, a list of the service names but not the service components, the
whole/part relations, the other relations, the parents of the class, and if the class is verified
or not. The "Component” menu is actve. The "Attribute Components” and “Service
Components” menus are inactive. The "Action” menu consists of the actions "Delete the
Class”, "Verity the Class”, "Add an Attribute”, "Add a Service", and "Add Service Using
Template”. When a class is imtially selected, no particular component of the class is
sclected, but the entire class is selected. Therefore, window 2 is blank. Once a class is
selected, any component of the class can be selected using the "Component” menu. When
a component is selected, window 2 will show that component.

At any point in the development of the problem model, if a new class is selected using
the "Model/Class" menu, any components selected for the previous class are cleared and
the entire new class is selected. with window 2 blank, the "Component” menu active, and
the "Attribute Components” and "Service Components” menu inactive. The "Action”
menu once again consists of the actions "Delete the Class”, "Verify the Class", "Add an
Auribute”, "Add a Service”, and "Add Service Using Template”.

The Component Menu, The "Component” menu is active whenever a class is
sclected, rather than the entire model. This menu is used to select a particular component
ot a class. The menu consists of "Entire Class”, "Class Name", "Class Description”, "One
Attribute”, "One Service”, "Whole-Part”, "Relations”. and "Inheritance”. The "One
Attribute” and "One Service" menu selections display submenus consisting of the attribute
and service names, respectively.

The "Entire Class” selection is the initial selection when a class is first chosen from
the "Model/Class” menu. Window 2 is blank and the "Action" menu consists of the
actions "Delete the Class"”, "Verity the Class", "Add an Attribute”, "Add a Service", and

"Add Service Using Template".

7-81

It "Class Name" 1s selected, the class name is shown in window 2. The "Action”
menu consists of "Change Class Name".

It "Class Description” is selected, the class description is shown in window 2. The
"Action” menu consists of "Change Class Description”.

It "One Attribute” is selected, a submenu is shown of all the attribute names. This
submenu changes when attributes are added, deleted, or the names are changed. Once an
attribute name is selected, the "Attribute Components” menu is activated. The attribute
components are shown in window 2. These components are the attribute name,
description, the legal values, and whether or not the attribute has been verified. When an
attribute is first selected, the entire attribute is selected. Therefore, the "Action” menu
contains "Delete the Attribute”, and "Verify the Attribute”. To select a particular attribute
component, the "Attribute Components” menu is used. The "Attribute Components”
menu is only active while an attribute is selected. Once any other component of a class is
selected, the "Auribute Components” menu is inactive.

It "One Service" is sclected, a submenu is shown of all the service names. This
submenu changes when services are added, deleted, or the names are changed. Once a
service name is selected, the "Service Components” menu is activated. The service
components are shown in window 2. These components are the service name, description,
input set, output set, precoendition, postcondition, attributes changed as a result of the
service, and messages. When a service is first selected, the entire service is selected.
Therefore, the "Action" menu contains "Delete the Service"”, and "Verity the Service”. To
select a particular service component, the “Service Components” menu is used. The
"Service Components” menu is only active while a service is selected. Once any other

component of a class is selected, the "Service Components” menu is inactive.

7-82

If "Wholc-Part" 1s selected, the whole-part relauons of the class are shown in window
2. The "Action" menu consists of "Add Whole/Part Relation”, "Remove Exisung
Whole/Part Relation”, "Change Ranges”, and "Change Other Class”.

It "Relations” is selected, the other general relations of the class are shown in window
2. The "Action” menu consists ot "Add an Other Relation”, "Remove an Other Relation”,
"Change Ranges", "Change Other Class", and Change Relation Name".

If "Inheritance” is selected, the parents of the class are shown in window 2. The
"Action" menu consists of "Add a Parent", "Remove a Parent”, and "Change Existing
Parent".

The Attribute Components Menu, The "Attribute Components” menu is active
when an attribute of a class is selected. The menu consists of "Entire Attribute”, "Name",
Description”, "Initial Value" and "Legal Values®.

When an attribute is first selected, the entire attribute is selected, which is the same as
selecting "Entire Attribute”. The attribute components are shown in window 2. These
components are the attribute name, description, the legal values. and whether or not the
attribute has been verified. The "Action" menu contains "Delete the Attribute”, and
"Verify the Attribute”. Window 2 will not change based on the component of the attribute
selected. The window will always show all components of the attribute as long as the
attribute is selected. The selection of items on the attribute component menu will affect
the choices available on the "Action" menu.

If "Name" is selected, the "Action" menu consists of "Change Attribute Name".

If "Description” is selected, the "Action” menu consists of "Change Attribute
Description".

If "Initial Value" is selected, the "Action” menu consists of "Change Initial Value".

It "Legal Values" is selected, the "Action" menu consists of "Change Legal Values".

7-83

The Service Compounents Menu., The “Service Components” menu is active when a

"

service of a class is selected. The menu consists of "Entire Service”. "Name",
"Description”, "Input Set". "Output Set”, "Precondition”, "Postcondition Attributes”, and
"Postcondition Messages”.

When 7 ervice is first selected, the entire service is selected, which is the same as
selecting "Entire Service". The service components are shown in window 2. These
components are the service name, description, input set, output set, precondition,
postcondition, attributes changed as a result of the service, and messages. The "Action”
menu contains "Dclete the Service”, and "Verity the Service”. Window 2 will not change
based on the component of the service selected. The window will always show all
components of the service as long as the service is selected. The selection of items on the
"Service Components" menu will atfect the choices available on the "Action" menu.

If "Name" is selected, the "Action" menu consists of "Change Service Name".

If "Description” is selected, the "Action” menu consists of "Change Service
Description”.

It "Input Set" is selected, the "Action” menu consists of "Add Input Parameter”.
"Remove Existing Input Parameter”, and "Change Existing Input Parameter”.

If "Output Set” is selected, the "Action” menu consists of "Add Qutput Parameter".
"Remove Existing Qutput Parameter”, and "Change Existing Output Parameter".

If "Precondition” is selected, the "Action” menu consists of "Change Precondition”.

If "Postcondition Attributes” is selected, the "Action" menu consists of "Add an
Attribute/Value", "Remove Existing Attribute/Value”, and "Change Existing
Attribute/Value".

If "Postcondition Messages" is selected, the "Action” menu consists of "Add Message
to Postcondition”, "Remove Message From Posicondition”, and "Change Existing

Message in Postcondition".

7-84

The Action Menu The "Acuon” menu is used to make all modification to the model.
The entries on the "Acton” menu change to retlect the component that is currendy
selected. The following will go through each possible entry in the "Action” menu and the
actions that are taken if that entry is selected. There are two pop-up boxes that are shown
as the result ot selecting an action. One is a pop-up data collection box that collects user
input, it any is required. The user enters what is requested and when the user is done,
selects the "Done" button on the bottom of the box. The second is a pop-up message box
that tells the user any problems with the requested action, such as it could not be taken
because some input was invalid, or that there was a pending issue entry created as a result
of the change. The box contains a push pin in the upper left hand corner. When the push
pin is selected, it is "pulled out” and the message box disappears. After the action is
taken, all the windows are refreshed, and they will reflect any changes in the current
components and the pending issues.

One peculiarity of the system is the ":", before the "c" or "a" used in values slot of the
input and output sets of services, to indicate it 1s an external class or attribute respectively,
is not shown when that component is shown in a window. The user must know it is
always there and also know to insert it when entering a new component. For example, if
the values slot of an input set is "(:c aircraft)”, indicating the parameter is an object of the
class aircraft, the ":" will aot be shown in window 2 when the service is selected. It will
be shown as "(c aircraft)’. Also, if the user wants to change the input set values to
another class, such as "aircrew", the user would have to enter "(:c aircrew)”. This
peculiarity is due to the way LISP handles names that are preceded by a colon. They are
treated as special keywords.

Each of the possible entries in the "Action” menu will gather any data necessary to

carry out that action using the data collection pop-up box. After any necessary data is

collected, a LISP function is called to carry out that action. This tunction is described in

7-85

the previous section that describes the OAKS model modification functions. Any message
to the user, such as "The class name is already the name of a class in the model”, is shown
using the pop-up message box. The following summarizes the data collected for each

possible action in the "Acton” menu ikm and the LISP function used 1o carry out that

acton.
"Add a Class"
Information collected: Class name
Class description
LISP functon called: add-class

"Delete a Class”

Information collected: None (use the currently selected class)
LISP tunction called: delete-class
"Change Class Name"
Information collected: New class name
LISP tunction called: change-class-name

"Change Class Description”

Information collected: New description

LISP Function called: change-class-desc
"Verify the Class"

Information collected: None (just set to verifiec)

LISP function called: None - set slot to true

7-86

"Add an Attribute”

Information collected:

LISP function called:

"Delete the Attribute”
Information collected:

LISP function called:

“Change Attribute Name"
Information collected:

LISP function called:

"Change Attribute Description”

Information collected:

LISP function called:

Name

Description

Base value

Lower value (optional)
Upper value (optional)

add-attribute

None (delete the selected attribute)

delete-attribute

New name

change-att-name

New description

change-att-desc

"Change Attribute Legal Value"

Information collected:

LISP function called:

Base value
Lower value (optional)
Upper value (optional)

change-attr-a-set

7-87

"Verity the Attribute”
Information collected:

LISP tuncton called:

"Add a Service"

Information collected:

LISP tunction called:

"Add Service Using Template”

Information collected:

LISP tunction called:

"Delete the Service"
Information collected:

LISP function called:

"Change Service Name"
Information collected:

LISP function called:

"Change Service Description”

Information collected:

None

None (set slot to true)

New service name
New service desc

add-service

Template name (change, return, add, remove)
Attribute name
Service name

add-template

None (delete current selected service)

delete-service

New name

change-service-name

New description

7-88

LISP tunction called: change-serv-desc

" Add Input Parameter”
Information collected: New parameter name
New parameter values
LISP tunction called: change-input-set

"Remove Existing Input Parameter"

Information collected: Parameter name
Parameter values
LISP function called: change-input-set

"Change Existing Input Parameter”
Information collected: Old parameter name
Old parameter value
New parameter name
New parameter value

LISP function called: change-input-set

"Add Output Parameter”
Information collected: New parameter value

LISP function called: change-output-set

"Remove Existing Output Parameter”

Information collected: Old parameter values

LISP function called: change-output-set

7-89

"Change Existing Output Parameter”

Information collected:

LISP functon called:

"Change Precondition”

Information collected:

LISP function called:

"Add an Attribute/Value"

Information collected:

LISP function called:

Old parameter values
New parameter values

change-output-set

New precondition

change-serv-pre

New attnbute name
New attribute value

change-serv-post-atts

"Remove an Existing Attribute/Value”

Information collected:

LISP function called:

OId attribute name
OId attribute value

change-serv-post-atts

"Change Existing Attribute/Value"

Information collected:

LISP function called:

Old attribute name
Old attribute value
New attribute name
New attribute value

change-serv-post-atts

7-90

"Add Message to Postcondition”

Information collecied:

LISP tuncton called:

Class name
Service name

change-serv-post-mess

"Remove Message From Postcondition”

Information collected:

LISP functon called:

Class name
Service name

change-serv-post-mess

"Change Existing Message in Postcondition”

Information collected:

LISP function called:

"Verify the Service"
Information collected:

LISP function called:

"Add Whole/Part Relation”

Information collected:

OId class name
Old service name
New class name
New service name

change-serv-post-mess

None

None (set the slot to true)

Classl
Rangel
Class2

7-91

LISP functon called:

Range2

add-new-relation

"Remove Existing Whole/Part Relation”

Information collected:

LISP tuncton called:

"Change Ranges”

Information collected:

LISP function called:

"Change Other Class"

Information collected:

Classl
Rangel
Class2
Range2

delete-relation

OId relation name
Classl

Rangel

Class2

Range2

New rangel

New range2

change-relation-range

Relation name
Class1

Rangel
Class2

Range?2

7-92

LISP tuncuon called:

"Add an Other Relation”

Information collected:

LISP tuncuon called:

"Remove an Other Relation”

Information collected:

LISP tuncton called:

"Change Relation Name"

Information collected:

New other class

change-relation-class

Relation name
Class1

Rangel
Class2
Range?2

add-new-relation

Relation name
Classl

Rangel

Class2
Range2

delete-relation

Relation name
Classl

Rangel
Class2
Range2

New relation name

7-93

LISP funcuion called: change-relation-name

"Add a Parent”
Information collected: Parent to be added
LISP functon called: add-parent

"Remove a Parent”
Information collected: Parent to be removed

LISP tuncuon called: remove-parent

"Change Existng Parent”

Information collected: Parent to be changed

LISP function called: change-parent

Advisory Issues Button, The "Advisory Issues” button puts a list of the advisory
issues in window 2 when it is pushed. The advisory issues are removed from window 2
whenever any component of the model is selected through one of the other menus.

Save Button, The "Save” button saves the current state of the problem model in a tile
called "usertil”. Each time OAKS is used the file "userfil” is used to create the problem
model. The tirst time OAKS is used, the problem model is the same as the domain model.
When changes are made to the domain model. the "Save" button saves these changes in
"userfil" so they are present in any subsequent sessions.

This chapter described the development and analysis of the OAKS system. This
started with the structure of the domain model. Guidelines and rules based on the
structure of the domain model were developed and implemented. Next, th* guidelines and
rules defined in Chapter 6 were implemented. These guidelines and rules formed the

model evaluation portion of OAKS. This model evaluation code provided the basis from

7-94

which to determine it the evolving problem model was consistent and complete. These
evaluation tunctions were used by the model moditication tunctions, which were the next
portion of OAKS to be developed and implemented. These model modification functions
made use of a pending issues list and an advisory issues list to keep the model consistent
and complete. with respect to the guidelines and ruies, throughout the problem model
changes. Last, a windowed user interface was added 1o OAKS.

The OAKS system prototyped in this chapter has shown that a computer-based
system that aids in the conduct of the OORA process is feasible and valuable. The OAKS
system is based on an OORA mathematical model which embodies the basic principles of
the OORA process. This model was implemented in QAKS in a {orm closely resembling
the original mathematical model. All components and relationships in the model are
embodied in the OAKS model. The OAKS system also captures the essence of a class by
encapsulating the attributes and services in a class in a code structure that enforces that
encapsulation. The domain-independent and domain-dependent guidelines and rules were
implemented in such a way that they were usable as an evaluation tool on both the original
OAKS domain modcl and the evolving problem model. The domain model can be
checked using the LISP functions that implemented these guidelines and rules prior to the
domain model's being moditied. This ensures that the user starts with a consistent and
complete model. It also provides a tool that can be used to check any OORA model
before it is used in design and code. The evaluation functions are also used by the
functions that implemented the mcdel modification process to ensure that the changing
model remained valid. Using a pending issues list allowed changes to be made to the
model without adherence to any strict ordering of the changes, while ensuring that the
model remained consistent and complete. The OAKS prototype has the features required
to produce a sound model that represents an object-oriented specification of the system to

be developed.

7-95

Conclusions

The software development method of OORA is one that is still maturing with many
research questions still to be answered. This research has addressed an important gap in
the development of processes and associated tools in the assistance of conducting an
OORA. OAKS attacks the problem by developing a model that is truly object-oriented,
and not a hybrid of processes (chapter 4), and evaluating that model based on concrete
object-oriented criteria (chapters 5 and 6).

OAKS does not force formality in a process that is inherently informal. Informality
will always exist during the requirements analysis process because this process is primarily
cognitive, and deals with information that is uncertain and inconsistent. One way OAKS
supports informality is by imposing minimum constraints on the order in which the
components of the model must be acquired by the use of a list of issues that must be
resolved before the model is considered complete. This list allows the user to make a
majority of changes without regard to the order in which they are made. yet still maintain a
valid meodel. Forcing the user to make changes in a rigid order could run counter to the
developer's method of thinking (chapter 7).

Even though OAKS supports informality, the model developed is consistent and
complete with respect to a defined set of OORA structures, relationships, guidelines and
rules. The guidelines and rules consisted of those that were domain-independent based on
the desired OORA components and relationships (chapter 6), those that were domain-
dependent (chapter 6), and those that were based on the code structure of OAKS (chapter

7.

8-1

OAKS is not dependent on any particular domain tor proper operation. It can be
used in any domain where an QODA can be conducted. The results of an QODA are a sct
of object-oriented components and relationships. These components and relatonships are
modeled in the OAKS domain model which is based on the OORA mathematcal model
(chapter 4).

Specifically, the contributions of OAKS to the OORA process are the OORA math
model, the OAKS domain model developed in CLOS, the guidelines and rules used to
evaluate that model and the evolving problem model, the modification process used to
create the problem model, and the modularity of OAKS, allowing changes or additions to
the domain model or user interface without affecting the proper functioning of the system.

The OORA math model (chapter 4) provides a set of components and relationships
that are critical to the development of an object-oriented system. These components are
used in some torm by a vast majority of the OORA processes and those that were required
for an analysis of any object-oriented system. This math model can be used as a basis for
the development of any OORA process; it was used as the basis tor the OAKS domain and
problem model.

The OAKS domain model, represented in CLOS (chapter 7), proved to be a very
robust and flexible structure. The basic structure of the components in the generic domain
model was easily used in developing the specific domain model for the particular domain
chosen for the proof-of-concept in this research. The structure, though, is domain
independent. Any domain in which an OODA can be conducted can be translated into the
OAKS domain model. The generic domain model structure in QAKS contains all the
components and relationships defined in the OORA math model. The classes in the
generic domain model adhere to the object-oriented philosophies of a class and are
encapsulated entities. with all structures and relationships in to the OORA math model

contairied in the classes. This is a significant change from the majority of other systems,

8-2

where oft» - service information is treated ditferenty than the remainder of the class
components. The domain model also proved 1o be one that is casily analyzed for the form
oi the components and their adherence to any guidelines and rules. Because the domain
structure is a separate file in the OAKS system, the domain information can be easily
replaced with no etfect on the operation of OAKS.

The guidelines and rules that were applied to the domain and the evolving problem
model (chapters 6 and 7) proved to be extremely useful to both the problem model and the
domain model. It is envisioned that the initial domain model is developed by conducting
an OODA, the rcsults of which have the form of Appendix A. This model is then
translated into CLOS and inserted into OAKS. Once the domain model is in OAKS, the
guidelines and rules would be extremely useful in identifying problems with the domain
model prior to use by a user in OAKS. By applying the guidelines and rules to the domain
model, violations are uncovered, thereby ensuring that the system starts with a consistent
and complete domain model. Even if the domain model were never modified, OAKS
could casily be used as a check to OORA results by entering those results into OAKS and
testing them against the guidelines and rules. The process of entering the OORA results
and the analysis of the guidelines and rules would provide an excellent check prior to
going to OOD. The guidelines and rules were also essential to maintaining a consistent
and complete model as the user modified the domain model to create a problem model.

The quiﬁcation process in OAKS supports a relatively unstructured approach
(chapter 7). Minimal restrictions we: > put on the order in which components of the model
could be added, deleted or modified. This lack of restrictions on order would normally
cause problems because the model would become inconsistent or incomplete if changes
were not made in a certain order. However, this problem was overcome by using a list of
pending issues. These pending issues are items that must be resolved before the model is

considered complete. Each time a change is made that causes the model to become

8-3

inconsistent or incomplete in accordance with its guidelines and rules. an entry is added to
pending issues. These entries are automatically removed when the problem was resolved.
The user is always aware of these issues and can see what is added when certain changes
are made. This form of system development is very supportive of the principles of good
software engineering, yet it does not place the severe constraints of strict formality on the
developer.

OAKS was coded using modules for the different code components so changes could
be made without invalidating the system (chapter 7). The code modules were the domain
model, the guidelines and rules, the modification procedures, and the user interface. The
specific domain coded in the domain model or the user interface can be easily changed to a
new domain or totally different user interface. Even changes in the guidelines and rules or

modification procedures would not require any major changes to the system.

Recommendations

Even though OAKS addresses some of the current problems ii OORA systems, there
is much work left to be done. This work ranges from expanding the capabilities of OAKS
to further evaluation of the potential of the OAKS system.

Dynamic properties of an OORA system were not addressed in OAKS. Even though
a message trace through OAKS was pos:iblz, that was the extent of the analysis of any
dynamic properties of the system. The only information gathered on state change within a
class was data on which attributes may change as a result of the execution of a service.
The elicitation of the dynamic properties of a class would require a special tool because of
its nature. Research would have to be done on what form the information should take,

how the information could be elicited, and how it could be integrated into OAKS.

A nawral language parser would be desirable as an additon to QAKS. This would
allow OAKS to more accurately identity possible relationships between classes in the
system by looking at names that have the same meaning and knowing whether a name is a
singular noun, or a verb, for cxample, according to the naming conventions of the model.

OAKS could incorporate learning, so that it learns from each problem model that is
developed in a domain. Over time, the OAKS domain model would have to be modified
to keep the model current. This modification would normally be done by an analyst in that
domain. A research question is whether OAKS could track the changes that are made to
the domain model to create the problem model and "leamn” itself how the domain model is
changing over time. This might allow OAKS to make changes to the domain model itself
and keep itself current in the domain.

The user interface in OAKS, even though it is windows-based, is stll not very
sophisticated or robust. A better user intertace could easily be attached to the OAKS
system, replacing the current vser interface. The current user interface simply uses LISP
functions to modify the OAKS problem model. Some features missing from the existing
user intertace are the ability to select an item using the mouse without going through menu
selections, a better way of presenting the list of pending issues, perhaps by highlighting the
problem areas in the model, a better way of presenting the model itself using more
graphical techniques, and better methods for getting user input

Related to the user interface is the development of a user's guide for OAKS. The
information that would be placed in a user's guide on the changing of components and the
creation of new components in the OAKS model has been already been defined in this
research. This information should be supplemented with information on how to use the
user interface.

Another area for further research is how to transform the problem model produced in

OAKS into a formal specification or into a system for conducting OOD. This formal

specitication could be used to go into the OOD phase or perhaps directly into code. The
OAKS model seems to be conductve to this type of transformation.

OAKS should be used in testing in one domain for a variety of probiems and also in a
number of domain to evaluate its use across ditferent domains.

Assistance could be built into OAKS for inserting the initial domain model. This
would require the development of a user interface and process specifically for this task.

Even though there remains much to be done in this area of research, OAKS has
created a solid foundation for future work. The basic structure of QAKS provides a
sound yet flexible plattorm for expanding its capabilities with only minor changes to the
existing OAKS structure. The concepts developed in OAKS and how those concepts are
used provide an important contribution to the research in object-oriented requirements

analysis.

8-6

A ndix A:

The domain model chosen for this reserach was a system that manages the scheduling
of maintenance and flight for aircratt squadron.

A squadron consists of tlights of aircraft, personnel, facilities and a tlight range. The
personnel are the aircrew and the support personnel. The aircrew consist of pilots,
navigators, and electronic wartare otticers (EWQO). Each support person is assigned to
one shop. The facilities consist of maintenance hangars, spots on the tlight line for parking
aircraft, and the shops.

Aircraft maintenance is pertormed by the following shops:

1. A-shop (avionics)

2. B-shop (avionics)

3. C-shop (avionics)

4. Fuel

5. Hydraulics
Electrical and environmental
Egress

Propulsion

L »® N

Machine shop

10. Corrosion

11. Non-destructive inspection (NDI)

12. Weapons

13. PMEL

14. ECM pods

15. AIS (maintains line replaceable units (LRU))
16. Parachute

17. Flight line personnel (includes crew chiefs)

18. Automatic ground equipment (AGE)

The scheduling of tlights is done by the Plans and Scheduling shop.

There are two type of mainwnance: maintenance required when a part is not
operating correctly, and periodic inspection/maintenance.

Schedules must be kept on aircrew, aircraft flights, hangar use, ilight line slot use,
runway use, and range use.

The events that must be handled by the system are:

1. A part of a particular aircratt breaks.

a. The repair is scheduled with the appropriate shop.

b. The shop adds the broken part as a write-up for the aircraft, which may
change the aircraft's status. The aircraft status can be tully mission capable, partly mission
capable, or not mission capable.

¢. The shop determines the number of hours required for the repair and whether
a maintenance hangar is needed.

d. The shop schedules personnel to do the repair and a hangar, if necessary.

¢. It a hangar is necessary, the shop must wait until the hangar is available to
start the repair.

2. A repair is complete.

a. If the plane is in a hangar, it is moved to a spot on the flight line.

b. The personnel that were assigned to the repair are released.

c. The aircraft write-ups are updated and the aircraft status changed as
necessary.

3. Schedule periodic maintenance.
a. The periodic maintenance/inspection is scheduled with the appropriate shop.
c. The shop determines the number of hours required for the repair and whether

a maintenance hangar is needed.

d. The shop schedules personnel to do the work and a hangar, if necessary.

¢. It a hangar is necessary, the shop must wait until the hangar is available to
start the work.

4. The periodic maintenance/inspection is complete.

a. If the plane is in a hangar, it is moved to a spot on the tlight line.

b. The personnel that were assigned to the work are released.

¢. The aircraft maintenance log is updated.

5. Schedule a sortie.

a. The request for the sortie is given to the plans and scheduling shop. The
request includes the desired date, aircraft required, their configurations, the aircrew
required (by name or in general), the amount of time, and the part of the range required.

b. The sortie is scheduled and the information sent to the aircrew and the flight
line shop.

6. Sortic complete

a. Update the schedule to show actual sortie information.

b. Update the number of hours on each aircratt part. This may require the
scheduling of periodic maintenance.

¢. Update the hours and types of missions for each aircrew.

7. Cancel a sortie.

The sortie is marked as cancelled.

The system must also handle the creation of a squadron. This will be done through
the implied create service of every class. For this model, the squadron will be created and
then used to create the remainder of the model.

This model is a very simplified one. It does not take into account such things as spare
parts, repair done at the depot, etc. It also looks at components at a very high level. In an

actual system, the aircraft components would be broken down into a smaller grouping of

components with each grouping containing information on how to repair. tols required,
skills required, faciliies required, repair umes, and others. The model could easily be
extended to the proper level.

The domain model is represented as a set of classes. The notaton for the domain

model is as follows:

list-of name :: This is a list of all whose elements are of name
class ;; a class name
class-name. service ;; a service of that class

Class squadron

Superclass : none

Parts : flight, aircraft-parking, aircrew, support-person

Auributes;

name : string

flights : list-of flight

parking : aircraft-parking

aircrew : list-ot aircrew

personnel : list-of support-person

Services:

change-name (new-name : name) return ()
pre : none
post :

(setf name new-name)

add-flight (new-flight : flight) return ()
pre : (not (member new-flight flights))
post :

(flight.create (new-tlight))

(cons new-flight tlights)
remove-flight (old-tlight : flight) return ()
pre : (member old-tlight tlights)
post :
(flight.delete (old-flight))
(delete old-tlight tlights)
add-aircrew (new-person : aircrew) return ()
pre : (not (member new-person aircrew))
post :
(aircrew.create (new-person))
(cons new-person aircrew)
remove-aircrew (old-person : aircrew) return ()
pre : (member old-person aircrew)
post :
(aircrew.delete (old-person))
(delete old-person aircrew)
add-support (new-person : support-person) return ()
pre : (not (member new-person personnel))
post :
(support-person.create (new-person))
(cons new-peir,on personnel)
remove-support (old-person : support-person) return ()
pre : (member old-person personnel)
post:
(support-person.delete (old-person))

(delete old-person personnel)

A-5

Class flight
Part-of : Squadron
Parts : aircraft
butes:
name : string
type-aircraft : string
the-aircraft ; list-of aircraft
squadron : squadron
Services:
change-name (new-name : name) return ()
pre : none
post :
(setf name new-name)
change-type-aircraft (new-type : type-aircraft) return ()
pre : none
post :
(setf type-aircraft new-type)
add-aircraft (new-ac : aircraft)
pre : (not (member new-ac the-aircraft))
post :
(aircraft.create (new-ac))
{cons new-ac the-aircraft)
remove-aircraft (old-ac : aircraft)
pre : (member old-ac the-aircraft)
post :

(aircraft.delete (old-ac))

There is one instance of the class aircraft tor every aircratt in the squadron
Class aircraft
Part-of : flight
Related to : aircraft-schedule
Parts : aircraft-part
Attributes :
model-number : string
tail-number : integer
the-flight : flight
status : (fully-mission-capable, partly-mission-capable, not-mission-capable)
inop-parts : list-of aircraft-part
;; inop-parts is the current list of parts of the aircratt that arc inoperative.
schedule : aircraft-schedule
contiguration : list-of aircraft-part
. all the parts that are on the aircraft
Serviges :
in-op-part (ap : aircraft-part) return ()
pre : (member ap configuration)
post:
(cons ap inop-parts)
(possibly change status)
op-part (ap : aircraft-part) return ()
pre : (member ap inop-parts)
post :
(delete ap inop-parts)

(possibly change status)

get-tail-number () return integer
pre : none
post :
(tail-number)
get-flight () return flight
pre : none
post :
(the-flight)
get-status () return status
pre : none
post :
(status)
get-config () return configuration
pre : none
post :
(configuration)
add-part (new-part : aircraft-part) return ()
pre : (not (member new-part configuration))
post :
(aircraft-part.create (new-part))
(cons new-part configuration)
remove-part (old-part : aircraft-part) return 0
pre : (member old-part configuration)
post:
(aircraft-part.delete (old-part))

(delete old-part configuration)

get-sched () return aircratt-schedule
pre : none
post :
(schedule)
Class aircraft-part
Superclass : none
Part-of : aircraft
Related to : support-shop, repair-symptoms, maintenance-history, periodic-
maintenance
Auributes:
part-name : string
a-aircraft : aircraft
;; There is an object created for each part on each aircraft. Each object is uniquely
identifed by the aircraft it is part of.
number-of-flight-hours : integer
;; The number of hours on the part
repair-shop : support-shop
current-symptoms : repair-symptoms.legal-symptoms-list
status : (operative, need-repair)
symtom-analysis : repair-symptoms
history : maintenance-history
periodic : periodic-maintenance
Services:
get-aircraft () return aircraft
pre : none

- post :

(a-aircraft)
get-part-name () return string
pre : none
post :
(part-name)
get-sym-analysis () return repair-symptoms
pre : none |
post :
(symptom-analysis)
inoperative (symptoms : repair-symptoms.legal-symptoms-list) return ()
pre : none
post :
;; If the current status is operative, then the repair of the part must be scheduled.
If not, the part is already scheduled for repair so add the new symptoms to the list. When
the part is being repaired, the technician will look at the current symptoms list.
(if (eql status 'operative))
(repair-shop.schedule-repair (aircraft-part))
(a-aircraft.in-op-part (aircraft-part)
(setf status 'need-repair))
_ (cons symptoms current-symptoms)
repaired (type : maintenance-history.type) return ()
pre : none
post :
(if (eql type 'fix)
(setf status 'operative)

(a-aircraft.op-part (aircraft-part)

A-10

(setf current-symptoms '())))
(history.add-maintenance (date, type))
update-tlight-hours (new-hours : integer) return ()
pre : none
post :
(setf number-of-flight-hours (+ number-of-flight-hours new-hours))
(periodic.check-list (number-of-flight-hours))
current-symptoms-list () return repair-symptoms.legal-symptom-list
pre : none
post :
(current-symptoms)
shop-name () return support-shop
pre : none
post :
(repair-shop)
Class periodic-task
Superclass : none
Part-of : periodic-maintenance
Auributes:
part-name : aircraft-part
hours : integer
;; number of hours on a part before the task is to be done.
hangar-required : boolean
task-name : string
Services:

hours-to-task () return hours

A-11

pre : none
post :
(hours)
change-time-betore-repair (new-hours : integer) return ()
pre : none
post :
((setf hours new-hours
hangar-needed () return boolean
pre : none
post :
(hangar-required)
Class periodic-maintenance
Superclass : none
Related to: aircraft-part
Parts : periodic-task
Attributes:
part : aircraft-part
task-list : list-of periodic-task
Services:
check-list (new-hours : integer) return ()
;» when a part has its number of hours updated, the periodic maintenance list is
checked. If maintenance needed, it is scheduled.
pre : none
post:
(let ((result '())

(dolist (task task-list)

A-12

(if (< task.hours-to-task new-hours)
(cons task result)))
(if result
(let ((the-shop part.shop-name))
(dolist (one-task result)
(the-shop.schedule-periodic (part-name, one-task)

;; There is one object for each type of part, not for each aircraft.
Class repair-symptoms

Superclass : none

Related to : aircraft-part

Auributes:

part-name : aircraft-part

legal-symptoms-list : enumerated-list

Services:

determine-hangar-need (symptoms : legal-symptoms-list) retun boolean

pre : none
post :
(return true or false based on the current symptoms)

;» There is one for each part on each aircraft
Class maintenance-history

Superclass : none

Related to : aircraft-part

Attributes:

part : aircraft-part

type : support-shop.type

history-list : list-of (date : schedule-event.day, type : support-shop.type)

A-13

add-maintenance (date : schedule-event.day, a-type : support-shop.type) retum ()
pre : none
post :
(cons '(date a-type) history-list)
Class people
Superclass : none
Auributes
name : string
ssan : integer
squad : squadron
AFSC : string
Services :
change-squadron (new-squadron : squadron) return ()
pre : none
post :
(setf squad new-squadron)
Class support-person
Superclass : people
Part-of : squadron
Auributes:
shop : support-shop
type : support-shop.type
jobs-to-do : list-of (aircraft-part, support-shop.type)
Services:

job-list () return list-of-jobs

A-14

pre : none
post :
(jobs-to-do)
add-job (new-job : aircraft-part, the-type : type) return ()
pre : none
post :
(cons ‘(aircraft-bart type) jobs-to-do)
remove-job (job : aircraft-part; the-type : type) return ()
pre : none
post :
(delete '(job the-type) jobs-to-do)
Class support-shop
Superclass : none
Related to : aircraft-part
Alributes ;
list-of-people : list-of support-person
shop-name : (a-shop, b-shop, c-shop, fuel-shop, hydraulics, electrical-and-
environmental, egress, propulsion, machine-shop, corrosion-control, non-destructive-
inspection, weapons, PMEL, LRU, parachute, flight-line-support, aircraft-ground-
equipment)
type : (fix, periodic-task)
jobs-pending : list-of (aircraft-part, type)
jobs-in-hangars : list-of (aircraft-part, hangar, type)
Services:
schedule-repair (ap : aircraft-part) return ()

pre : none

A-15

post:
(let ((sym ap.get-sym-analysis))
(if (sym.determine-hangar-need (ap.current-symptoms-list))
;» then
((aircraft-parking.schedule-hangar (support-shop., ap, fix))
(append jobs-pending '(ap fix)))
> else
(let ((the-person (first list-of-people))
(dolist (a-person list-of-people)
(if (< (length a-person.job-list) (length the-person.job-list))
(setf the-person a-person)))
(the-person.add-job(ap tix)))))
hangar-available (ha. : hangar; ap : aircraft-part; a-type : type) return ()
pre : (not (eql jobs-pending '()))
post :
(let ((the-person (first list-of-people))
(dolist (a-person list-ot-people)
(if (< (length a-person.job-list) (length the-person.job-list))
(setf the-person a-person)))
(the-person.add-job(ap a-type)))
(delete ap jobs-pending)
(cons (ap han) jobs-in-hangar)
schedule-periodic (ap : aircraft-part; pt : periodic-task) return ()
pre : none
post :

(if (pt.hangar-needed)

A-16

,; then
((aircraft-parking.schedule-hangar (support-shop, ap. pt))
(append jobs-pending '(ap pt)))
5 else
(let ((the-person (first list-of-people))
(dolist (a-person list-of-people)
(if (< (length a-person.job-list) (length the-person.job-list))
(setf the-person a-person)))
(the-person.add-job(ap pt)))))
repair-complete (ap : aircraft-part; the-type : type) return ()
pre : none
post :
;; free up the person
(dolist (a-person list-of-people)
(dolist (a-job a-person.job-list)
(if (and (member ap a-job)
(member the-type a-job))
(a-person.remove-job (ap the-type))))
;; change status of part
(ap.repaired (the-type))
;; release hangar, if in hangar, and get a free flight line slot
(let ((hangar '()))
(if (eql (first job-in-hangars) ap)
(setf hangar (second job))
(if hangar

(aircraft-parking.release-hangar (hangar))

A-17

(delete (ap the-type) jobs-in-hangars)
Class aircrew
Superclass : people
Part-of : squadron
Related to : aircrew-scheduie
Auributes;
type : (pilot, navigator, EWO)
aircraft-checked-out-in : aircraft
hours : integer
schedule : aircrew-schedule
Services ;
get-sched () return aircrew-schedule
pre : none
post:
(schedule)
update-hours (new-hours : hours) return ()
pre : none
post :
(setf hours (+ hours new-hours))
Class mission
Related to : plans-and-scheduling
Auributes:
date : integer
mission-type : (‘est, eval)
ac-info : list-of (aircraft, schedule-event.duration, aircraft.configuration)

;; these hours are those needed for each aircraft

A-18

aircrew-list : list-of (aircrew, aircratt)
time : (schedule-event start-time, schedule-event.duration)
., this is the time for the entire mission
range-info : (real, int)
status : (cancelled, complete)
Services:
get-aircraft () return list-of aircraft
pre : none
post :
(let ((ac-list '()))
(dolist (an-ac ac-info)
(cons (first an-ac) ac-list))
(ac-list))
get-duration () return time
pre : none
post :
(second time)
get-date () return date
pre : none
post:
(date)
get-config (ac : aircraft) return aircraft.configuration
pre : none
post:
(dolist (an-ac ac-info)

(if (eql (first an-ac ac))

A-19

(return (third an-ac)))
all-aircrew () retum aircrew-list
pre : none
post :
(aircrew-list)
get-mission-type () return mission-type
pre : none
post :
(mission-type)
get-range-info () return range-info
pre : none
post :
(range-info)
get-aircrew () return list-of-aircrew
pre : none
post :
(let ((ac-list '()))
(dolist (one-crew aircrew-list)
(cons (first one-crew) ac-list))
(ac-list))
change-date (new-date : date) return ()
pre : none
post :
(setf date new-date)
change-time (new-time : time) return ()

pre : none

A-20

post :
(setf time new-ume)
change-ac-info (new-ac-into : ac-into) rewin ()
pre : none
post :
(sett ac-inf¢ new-ac-info)
change-aircrew-list (new-aircrew-list ; aircrew-list) return ()
pre : none
post :
(setf aircrew-list new-aircrew-list)
change-status (new-status : status) return ()
pre : none
post :
(setf status new-status)
Class plans-and-scheduling
Related to : mission
Aunbutes |
range : range-schedule
missions : list-of mission
Services ¢
mission-request (ac-list : (aircraft, aircratt.configuration), list-of-aircrew : list-of
aircrew, schedule-event.duration, mission.range-info) return ()
pre : none
post :
;» schedule the mission based on all the existing schedules.

(aircrew.get-sched)

A-21

(aircraft.get-sched)
(range)
., create the mission
(cons (mission.create (date, type, time, ac, aircrew, time, range) missions)
.» schedule aircraft
(dolist (ac-info ac)
((first ac-info).get-sched.add-mission (date, (first time), (second time),
(third ac-info)))
.» schedule aircrew
(dolist (arc aircrew)
((first arc).get-schedule.add-mission (date, (first time), (second time),
(second arc), type)))
:» schedule range
(let ((acl ')
(dolist (an-ac ac)
(cons (first an-ac) acl))
(range.add-mission (date, time, acl, range)))
mission-complete (the-mission : mission, hours : mission.ac-info, crew
mission.aircrew-list, date : integer, time : mission.time) return ()
pre : (member mission missions)
post :
;» update hours on aircraft parts and aircrew hours
(dolist (each-ac hours)
(dolist (each-part (first cach-ac).get-contig)
(each-part.update-tlight-hours (second.each-ac)))

(dolist (a-crew crew)

A-22

(if (member (first each-ac) a-crew)
(a-crew.update-hours (second each-ac)))))
;> update mission info
(the-mission.change-date (date))
(the-mission.change-time (time))
(the-mission.change-ac-info (hours))
(the-mission.change-aircrew-list (crew))
(the-mission.change-status (complete))
cancel-mission (the-mission : mission) return ()
pre : (member the-mission missions)
post :
(the-mission.change-status (cancelled)
;» cancel for an aircratt
(dolist (ac the-mission.get-aircraft)
((ac.get-sched).remove-mission (mission.get-date (first mission.get-
duration), (second mission.get-duration), mission.get-config(ac))))
;» cancel for aircrew
(dolist (an-aircrew mission.all-aircrew)

((first (an-aircrew.get-sched)).remove-mission (mission.get-date, (first
mission.get-duration), (second mission.get-duration), (second an-aircrew), mission.get-
mission-type)))

;; cancel range
(range.remove-mission (mission.get-date, mission.get-duration, mission.get-
aircraft, mission.get-range-info)
Class schedule-event
autrbutes:

A-23

day : integer
start-time : real
duration : real
o
get-day () return integer
pre : none
post :
(day)
get-start () return real
pre : none
post :
(start-time)
get-duration () return real
pre : none
post :
(duration)

Class aircrew-schedule-event
Superclass : schedule-event
Part of : aircrew-schedule
type-of-mission : (test, eval)
the-aircraft : aircraft
Services :
get-type () return (test, eval)

pre : none

post :

A-24

(type-of-mission)
get-aircraft () return aircraft
pre : none
post :
(the-aircraft)

Class aircraft-schedule-event
Superclass : schedule-event
Part of : aircraft-schedule
Auributes ;
configuration : aircraft.configuration
Services :

get-config () return config

pre : none
post :
(contiguration)
Class range-schedule-event
Superclass : schedule-event
Part of . plans-and scheduling.range
Auributes ;
ac : list-of aircraft
range-use : mission.range-info
Services ©
get-aircraft () return list-of-aircraft
pre : none
post :

(ac)

A-25

get-range-into () return list-of (altitudes, airspace, facilities)
pre : none
post :
(range-use)
Class aircrew-schedule
Related to : aircrew
Parts : aircrew-schedule-event
schedule : list-of aircrew-schedule-event
the-aircrew : aircrew
Services:
add-mission (day : aircrew-schedule-event.day, start-time : aircrew-schedule-
event.start-time, duration : aircrew-schedule-event.duration, an-aircraft : aircraft,
mission-type : aircrew-schedule-event.type-of-mission) returmn ()
pre : none
post :
(cons (aircrew-schedule-event.create(day, start-time, duration, an-aircraft,
mission-type)) schedule)
remove-mission (day : aircrew-schedule-event.day, start-time : aircrew-schedule-
event.start-time, duration : aircrew-schedule-event.duration, an-aircraft : aircraft,
mission-type : aircrew-schedule-event.type-of-mission) return ()
pre : none
post :
(dolist (one-event schedule)
(if (and (eql one-event.get-day day)

(eql one-event.get-start start-time)

A-26

(eql one-event.get-duration duration)
(eql one-event.get-aircraft an-aircraft)
(eql one-event.get-type mission-type))
((delete one-event schedule)
(aircrew-schedule-event.delete (one-event))))
get-sched () return list-of aircrew-schedule-event
pre : none
post:
(schedule)
Class aircraft-schedule
Related to : aircraft
Part : aircraft-schedule-event
Auributes
schedule : list-of aircraft-schedule-event
the-aircraft : aircraft
Services:
add-mission (day : aircraft-schedule-event.day, start-time : aircraft-schedule-
event.start-time, duration : aircraft-schedule-event.duration, config
aircraft.configuration) return ()
pre : none
post :
(cons (aircraft-schedule-event.create(day, start-time, duration, config))
schedule)
remove-mission (day : aircraft-schedule-event.day, start-time : aircraft-schedule-
event.start-time, duration : aircraft-schedule-event.duration, config : aircraft-schedule-

event.configuration) return ()

A-27

pre : none
post:
(dolist (one-event schedule)
(if (and (eql one-event.get-day day)
(eql one-event.get-start start-time)
(egl one-event.get-duration duration)
(eql one-event.get-config config))
((delete one-event schedule)
(aircraft-schedule-event.delete (one-event))))
get-sched () return list-of aircraft-schedule-event
pre : none
post :
(schedule)
Class range-schedule
Parts : range-schedule-event
Auributes
schedule : list-of range-schedule-event
Services ©
add-mission (day : range-schedule-event.day, time : mission.time, aircraft : range-
schedule-event.ac, range-info : range-schedule-event.range-use) return ()
pre : none
post:
(cons (range-schedule-event.create (day, (first time), (second time),
aircraft, range-info)) schedule)
remove-mission (day : range-schedule-event.day, time : mission.time, aircraft :

range-schedule-event.ac, range-info : range-schedule-event.range-use) return ()

A-28

pre : none
post :
(dolist (one-event schedule)
(if (and (eql one-event.get-day day)
(egl (one-event.get-start one-event.get-duration) time)
(eql one-event.get-aircraft aircraft)
(eql ohe-event.get-range-info range-info))
((delete one-event schedule)
(range-schedule-event.delete (one-event))))
get-sched () return list-of range-schedule-event
pre : none
post :
(schedule)
Class aircraft-parking
Superclass : none
Part of : squadron
Parts : hangar, flight-line-spots
Auributes :
spots : list-of flight-line-spots
hangars : list-of hangar
type : maintenance-history.type
requests-pending : list-of (support-shop, aircraft-part, maintenance-history.type)
Services:
add-hangar (new-hangar : hangar) return ()
pre : (not (member new-hangar hangars))

post :

A-29

(hangar.create (new-hangar))
(cons new-hangar hangars)
remove-hangar (old-hangar : hanger) return ()
pre : (member old-hangar hangars)
post :
(hangar.delete (old-hangar))
(delete old-hangar hangars)
release-hangar(the-hangar : hangar) return (flight-line-spots)
pre : none
post :
(the-hangar.release (the-aircraft))
(if requests-pending
(let ((fill (first requests-pending)))
((first fill).hangar-available (the-hangar, (second fill), (third fill))
(the-hangar.new-aircraft ((second fill).get-aircraft))
(delete fill requests-pending)
(dolist (a-spot spots)
(if (not (a-spot.occupied))
(a-spot.till (the-aircraft))
(return a-spot)))))
schedule-hangar (ss : support-shop, ap : aircraft-part, typc : maintenance-
history.type) return ()
pre : none
post:
(let ((avail '()))
(dolist (h hangars)

A-30

(if h.available
(cons h avail)))
(if avail
;s then
(((first h).new-aircraft (ap.get-aircraft))
(ss.hangar-available ((first h) ap type))
»» release tlight line spot
(let ((ac ap.get-aircraft))
(dolist (a-spot spots)
(if (eql a-spot.occupied ac)
(a-spot.empty)
(return))))
selse
(append requests-pending '((ss ap type)))))
add-spot (new-spot : flight-line-spots) return ()
pre : (not (member new-spot spots))
post :
(cons (flight-line-spots.create (new-spot)) spots)
delete-spot (old-spot : flight-line-spots) return ()
pre : (member old-spot spots)
post :
(delete old-spot spots)
(flight-line-spots.delete (old-spot))
Class hangar
Superclass : none

Part of : aircraft-parking

A-31

\uributes:
occupied-by : aircraft
Services:
new-aircraft (ac : aircraft) return ()
pre : none
post :
(setf occupied-by aircraft)
available () return boolean
pre : none
post :
(it occupied-by
‘0
9]
release () return aircraft
pre : none
post :
(let ((ac-in occupied-by))
(setf occupied-by ()
(ac-in))
Class flight-line-spots
Superclass : none
Part-of : aircraft-parking
Auribute:
the-aircraft : aircraft
Services :

occupied () return aircraft

A-32

pre : none
post :
(the-aircraft)
fill (ac : aircraft) return ()
pre : (null the-aircraft)
post :
(setf the-aircraft ac)
empty () return aircraft
pre : none
post :
(let ((ac the-aircraft))
(setf the-aircraft '())
(ac))

The following is a tracing of each of the major events discussed in the beginning of
the appendix. These traces show the use of the various classes and services in the model.
The format is "class-name.service-name”. The leftmost class and service name calls the
class and service names indented beneath it.

Ev -
aircraft-part.inoperative (Symptoms)

support-shop.schedule-repair (aircraft-part)

aircraft.in-op-part (aircraft-part)
support-shop.schedule-repair (aircraft-part)

aircratt-part.get-sym-analysis

repair-symptoms.determine-hangar-need (symptoms)

aircraft-part.current-symptoms-list

aircraft-parking.schedule-hangar (support-shop, aircratt-part, fix)

A-33

support-person. job-list
support-person.add-job (aircraft-part, fix)
aircraft-parking.schedule-hangar (support-shop, aircraft-part, fix)
hangar.available
hangar.new-aircraft (aircraft)
support-shop.hangar-available (hangar, aircraft-part, type)
aircratt-part.get-aircraft |
flight-line-spots.occupied
tlight-line-spots.empty
support-shop.hangar-available (hangar, aircraft-part, type)
support-person.job-list

support-person.add-job

}ran part. moperanvo
Gupport-shop, schedule-repair ‘h

support person.job-list)

Glrcraﬂ-part.current—symptoms-list’

aircran-part.got-sym-analysos)

Gepair-syrnptoms.detannino—hangar-neod ’ aircraft-part. current-symptoms-list)

aireraﬂ-parking.sd\odm-hang@ support-person. add-@

Gangar.availabh) Gangar.new-aifcraft) \\6'9“ -line~-spots. O"\PW

mgm line-spots.occupied)

Cairuaﬂ-part.get-aircraD Csuppon-shop.hangar-availab@

\

@ppor(—person. job-list) Csuppon-person.add-}oa

Trace of Event *

A-34

support-shop.repair-complete (aircraft-part, type)
support-person. job-list
support-person.remove-job (aircraft-part, type)
aircraft-part.repaired
aircraft-parking.release-hangar (hangar)
aircraft-part.repaired
aircraft.op-part(aircraft-part)
maintenance-history.add-maintenance (date, type, aircraft-part)
aircrart-parking.release-hangar (hangar)
hangar.release (aircraft)
support-shop.hangar-available (hangar, aircraft-part, type)
flight-line-spots.occupied
flight-line-spots.fill
hangar.new-aircraft (aircraft)
aircraft-part.get-aircraft
support-shop.hangar-available (hangar, aircraft-part, type)
support-person.job-list

support-person.add-job

A-35

support-shop.repair-complete

Gupport-person. Job-list ’ @ppon-personmmove-job ’

< aircraft-pan.repai recD aircraft-parking.release-hangar

(anrcraft-part.op—part) Gangar.relea@ Q\angar.newalrcraft)

(maintenance-history.add-mamtenance) Guppon-shop.hangar-avaulable)

flight-line-spots.fill

Gircraﬂ-pan.gotaimmD

‘ ﬂight-line-spots.occupaed)
‘ suppon-person.job-lisD @pport-person.add-job)

Trace of Event B

vent C - Sc¢ le Mission

plans-and-scheduling. mission-request (ac-list, aircrew-list, time-range, range-info)
aircrew.get-sched
aircratt.get-sched
mission.create
aircraft-schedule.add-mission (date, start, duration, config)
aircrew-schedule.add-mission (date, start, duration, airciatt, type)
range-schedule.add-mission (date, time, aircraft-list, range)
aircraft-schedule.add-mission (date, start, duration, config)
aircraft-schedule-event.create (day, start-time, duration, config)
aircrew-schedule.add-mission (date, start, duration, aircraft, type)

aircrew-schedule-event.create (day, start-time, duration, aircraft, mission-type)

A-36

range-schedule.add-mission (date, time. aircratt-list, range)

range-schedule-event.ereate (day. (tirst time). (second time), ac, range-info)

plans-and-scheduling. mission-request

mis sion.create ®

(alrcrew-schedule.add—missaon ’ range-schedule—add-mission) (aircraft—schodule.add—miss@

(mrcrew-schedule—event.create) Caircraﬂ-scheduh‘event‘aea(e—)

Gange—schedule-event.create)

Trace of Event C

vent D - Mission Compl

plans-and-scheduling.mission-complete (mission, hours, crew, date, time)
aircraft.get-config
aircraft-part.update-flight-hours (hours)
aircrew.update-hours (hours)
mission.change-date (date)
mission.change-time (time)
mission.change-ac-info (ac-into)
mission.change-aircrew-list (aircrew-list)
mission.change-status (status)

aircraft-part.update-flight-hours (hours)
periodic-maintenance.check-list (hours)

periodic-maintenance.check-list (hours)

periodic-task.hours-to-task

A-37

aircraft-part.shop-name
support-shop.schedule-periodic (part, one-task)
support-shop.schedule-periodic (part, one-task)
periodic-task.hangar-needed
aircraft-parking.schedule-hangar (support-shop, part, periodic-task)
support-person.job-list
support-person.add-job (par, periodic-task)
aircraft-parking.schedule-hangar (support-shop, aircraft-part, periodic-task)
hangar.available
hangar.new-aircraft (aircratt)
support-shop.hangar-available (hangar, aircraft-part, type)
aircraft-part.get-aircraft
flight-line-spots.occupied
tlight-line-spots.empty
support-shop.hangar-available (hangar, aircraft-part, type)
support-person.job-list

support-person.add-job

A-38

plans-ang-scheduling. mission-complete

aircraft get-config

< mnssuon.change—status)
< aircrew update—hou@ Gnssnon.change—ac-mto }
Gnission.change-ume ’ lession.chango-daD

Gziss&onchange—au‘crsw-list anrcraﬂ-pan.updata—ﬁignt-hours)

Qeriodi&maintenanee,check~list

periodic-task.hours-to-task ’

@craﬂ-pan.shop-namg

support-shop.schedule-periodic ’

Geriodicotask.hangar-needed @ppon-porson,add-job)

(suppon-person. jobs-list aircraft-parking. schedule—hangar)

hangar.available / Gight-line—spots.empty)
Gangar.new-aircraft) @ght-lins—spots.oocupied ’

(support-shop.hangar-available) aircraﬂ-pan.get-aircraa

/ \

Gupport—person. job-lisD Csupport—person.add—job)

Trace of Event D

\% - Mission | 1

plans-and-scheduling.cancel-mission
aircraft-schedule.remove-mission
mission.get-date

mission.get-duration

A-39

mission.get-contig (ac)
aircrew-schedule.remove-mission
mission.get-mission-type
range-schedule-remove-mission
mission.get-aircraft
mission.get-range-info
mission.change-status
aircraft.get-sched
mission.all-aircrew

aircrew.get-sched

aircraft-schedule.remove-mission

aircraft-schedule-event.get-day
aircraft-schedule-event. get-start
aircraft-schedule-event.get-duration

aircraft-schedule-event.get-config

atrcraft-schedule-event.delete (one-event)

aircrew-schedule.remove-mission

aircrew-schedule-event.get-day

aircrew-schedule-event. get-start

aircrew-schedule-event.get-duration

aircrew-schedule-event.get-aircraft

aircrew-schedule-event.get-type

aircrew-schedule-event.delete (one-event)

range-schedule.remove-mission

range-schedule-event.get-day

range-schedule-event.get-start

range-schedule-cvent.get-duration
range-schedule-event. get-aircraft
range-schedule-event.get-range-info

range-schedule-cvent.delete (one-event)

A-41

plans-and-schedulng cancei-mission

misston get-aircraft

mission ali-aircrew

Gmssmn.change-status)

‘ mission.get-duration

Gmssion ,get-mlssnon-typa

‘ aircrew-schedule remove-mission

Grcrew-schedule-event.ge\-daD__._
™\
< aircrew-schedule-event.get-start)
Glrcrew-schedule-eventidslete ,
(aircrew-schedule—event.get—aircraﬂ , ‘
(aircrew-schedule—event.get-type ,
Grcrew-schedule-eventget—duration , '

aircraft-get-sched

mission.get-config

mission. get-date

Gmss;on.ga(—rango—i@

aircrew-get-sched

Gang&sd\emte‘rsmovo-miss@
—
\ rango-sche@b—ovont.got-dab

}_ ___‘ range-schodde-evont.got-smn)

] _Gango-schodule-event.got-dxaﬁon)

_‘ range-schedule-event.get-aircraft)

__Gange—schembeventget-rango-infcb

L__.@ge-scheduleevent,we\o)

(aircraft-schedule. remove-mission)

Glrcraft-schedule—event.get-daD /

Gircraft-schedule-event.get-s@

(aircraft- schodule-event.got—duraﬁoa

(anrcraﬂ-schedule—eventget—con@

Grcraft—schedule—evem.dalete)

Trace of Event E

A-42

\ lix B: E le QAKS Sessi

This appendix contains the steps involved in an OAKS session where the user adds a
new class into the model. The class that is added is the class "mainwenance-equipment”,
which is the equipment used to maintain the aircraft in the squadron. The class
"maintenance-equipment” is a part of the class "squadron” and will contain the attribute of
“name” and the service "change-name”.

In the appendix, the following conventions are used:

The selection of a menu item with the right mouse button is shown in italics, as in
Menu-Item.

Text output by the OAKS system is shown as underlined text, as in QAKS Text.

Text typed in by the user is shown in bold, as in User Input.

The session is started by initiating a SUN Common LISP environment containing the
LISPView and CLOS packages. At the LISP prompt, the user would type (load
"oaks.lisp''). This file loads the files "oaksd.lisp", which contains the domain model
structure and the domain model, "oaksno.lisp” which contains the model evaluation
procedures, “"oaksmod.lisp" which contains the model modification procedures,
“oaksave.lisp" which saves the changed model to a file, executes the procedure "read-
data”, which reads from the file "userfil", and then loads "oaksui.lisp” which contains the
LISPView user interface. The file "userfil” contains the problem model. This is the model
the user modifies to create a model for the particular problem of interest. When OAKS is
first used, "userfil" contains the unmodified domain model.

The user then types (in-package 'oaks) at the LISP prompt. All the files are loaded

into this package.

B-1

The user interface creates the LISPView OAKS window as described in Chapter 7
and shown in Figure 7-2. The three windows as shown in that tigure will be referenced as
well as the menus.

When the LISPView OAKS window is first created, window 1 contains a list of ail
classes in the model including the parents of the classes, window 2 is blank, and window 3
contains the pending issues. If this is the first ime the user has used OAKS, the only entry
in pending issues will be (CLASSES NEED VERIFIED), which will remain in the pending
issues list until all classes in the model have been verified.

The user now will operate exclusively in the LISPView OAKS window.

The user wants to add a new class to the model called "maintenance-equipment”
which is a part of the class "squadron”. The user can either first create the new class, or
first put the new whole/part structure in the "squadron” class and then create the new
class. The order of the operations will not make any difference to the final outcome. The
user decides to first place the new whole/part structure in the "squadron” class.

Model/Class

squadron

The user uses the Model/Class menu to select the "squadron” class. Window | now
contains the information on the class "squadron", which includes the class name,
description, the attribute names, the service names, the whole/part structure which
includes class names and ranges, the relation structure which includes the relation name,
class names a'.nd ranges, the parents of the class, and whether or not the class is verified.
Windows 2 and 3 are unchanged.

Component

Whole-Part

The component menu is used to select the whole-part component of the "squadron”
class. Windows | and 3 are unchanged, but window 2 now contains the whole/part
structures of the "squadron” class.

Action

Add Whole/Part Relation

The action menu is used to add a new whole/part relation to the “squadron” class. At
this point, a pop-up box appears to gather the information required from the user. The
user goes to the first piece of requested information by clicking on the line after "Class1"
using the left mouse button. The user can move between tields in the pop-up box by using
the up and down arrow keys. The tollowing are the fields requested and the user input.

Class] squadron

Rangel (1 n)

Class2 maintenance-equipment

Range2 1 1)

The user then presses the "Done” tutton using the left mouse button and the pop-up
box disappears and the changes are made to the model.

Windows 1 and 2 now show the new whole/part relation. Window 3 contains a new
pending issues entry:

(MISSING-CLASS-AND-RELATION MAINTENANCE-EQUIPMENT
#S(RELATION NAME WHOLE/PART CLASS! SQUADRON RANGE!l (I N)
CLASS2 MAINTENANCE-EQUIPMENT RANGE?2 (1 1))

This indicates that one of the classes in the new relation, "maintenance-equipment”,
does not currently exist in the model.

The next step is to add the new class.

Model/Class

Entire Model

The entire model must be selected in order to add a new class. This changes window
I back to showing the classes in the model, window 2 is blank and window 3 is
unchanged.

Action

Add a Class

The pop-up box is filled out as follows.

Class pame¢ maintenance-equipment

Class description Equipment required to repzir aircraft.

The "Done" button is pressed. Window 1 is changed to include the "maintenance-
equipment” class. Window 2 is still blank. In window 3, the pending issue on the missing
class and relation is removed. The OAKS system automatically added the whole/part
relation to the new class. This can be seen by the user doing the following actions.

Model/Class

maintenance-equipment

Window 1 now contains the "maintenance-equipment” class, and the whole/part slot
will contain the relation with the "squadron” class.

The next step is to add the "name" attribute.

Action

Add an Antribute

The pop-up box is filled out as follows.

Name name

Desc The name of the equipment

Base valye str

Lower value (opt)

Upper value (opt)

The information for lower and upper value is left blank and "Done" is selected.

B-4

Window | changes to show the new attribute name. To see the entire auribute
structure, the following is done.
Component
One Antribute
NAME
Windows 1 and 3 are unchanged, but window 2 now contains the attribute structure
containing the name, description, initial value, legal values to include the base, lower and
upper values, and whether or not the attribute is verified. Since this attribute was created
by the user, it is automatically set as verified.
The last step is to add the service that changes the "name" attribute.
Component
Entire Class
Windows 1 and 3 are the same, but window 2 is now blank.
Action
Add Service Using Template
Since the service changes the value of an attribute, one of the four service templates
can be used. These templates save the user time and effort by filling out many of the slots
in the service automatically.
The pop-up box is filled out as follows:
Template (change, return, add, remove) change
Aurbute name name
Service name change-name
After "Done" is selected, the new service is created. Window 1 will now contain the
service name. To see the new service:
Component

One Service

B-5

CHANGE-NAME

Windows 1 and 3 are unchanged. Window 2 contains the service and its components.
The components of the service are its name, description, input parameters, output
parameters, preconditiva, postcondition changed auributes, postcondition messages and
whether or not the service is veritied. The service template automatically filled in all the
information not supplied by the user, which was the description, input parameters, output
parameter, precondition and the postcondition. The service is shown as verified because it
was created by the user.

To save the changes made thus far, the user would select the "Save” menu item.

B-6

Appendix C: OAKS Code

Due to its size, Appendix C was not attached to this report. The appendix is distnbuted

separately as an Air Force Insutute of Technology Technical Report, AFIT/EN/TR/93-07.

C-1

Bibliography

[ARAN89] Arango, Guillermo, "Domain Analysis - From Art Form to Engincering
Discipline.” SIGSOFT Engineering Notes, Vol 14(3), May 89, p. 152-159.

[ARIN8Y] Arinze, Bay, "A Natural Language Front End for Knowledge Acquisition.”
SIGART Newslener, No. 108, Apr 89, p. 106-114.

[(BABB&5] Babb, Robert B.; Kieburtz, R hard; et al, "Workshop on Models and Languages
for Software Specitication and Feign," Computer, Vol 18, No 3, Mar 85, p. 103-
108.

[BAIL89] Bailin, Sidney C., "An Object-Oriented Requirements Specification Method."
Communications of the ACM, Vol 32, No 5, May 89, p. 608-623.

[BALZ78] Balzer, Robert; Goldman, Neil; Wile, David, “Informality in Program
Specifications,” IEEE Transactions on Software Engineering, Vol. SE-4, No. 2,
Mar 78, p. 94-103.

[BALZ79] Balzer, Robert; Goldman, Neil, "Principles of Good Software Specification and
Their Implications for Specification Language,” Proceedings of the Specifications
for Reliable Software Conference, Apr 79, p. 58-67.

[BALZ8S] Balzer, Robert, "A 15 Year Perspective on Automatic Programming,” [EEE
fransactions on Software Engineering, Vol. SE-11. No. 11, p. 1257-1267.

[BARS85] Barstow, David R.. "Domain-Specific Automatic Programming," JEEE
Transactions on Software Engineering, Vol. SE-11, No. 11, Nov 85, p. 1321-
1336.

[BERA92a] Berard, Ed, "Object-Oriented Requirements Analysis,” Unpublished, Received
through E-mail Jan 92, Berard Software Engineering, Inc, (301)417-9884.

(BERA92b] Berard, Ed. "Object-Orniented Domain Analysis," Unpublished, Received through
E-mail Jan 92, Berard Software Engineering, Inc, (301)417-9884.

[BERZ89] Berzins, Valdis, "Object-Oriented Techniques Based on Specifications,” SIGSOFT
Engineering Notes, Vol 14(3), May 89, p. 437-438.

[BOBB90] Bobbie, Patrick O.; Urban, Joseph E., "A Knowledge-Driven Methodology for
Eliciting and Restructuring Software Requirements for Distributed Design,”

BIB-1

Proceedings of the Second International Conference on Tools for Artificial
Intelligence, Nov 90, p. 584-592.

[BOOC91] Booch, Grady, "Object-Oriented Design with Applications,” ¢1991,
Benjamin/Cummings Publishing Co.

[BULM91] Bulman, David, "Refining Candidate Objects,” Computer Language, Vol 8, No 1,
Jan 91, p. 30-37.

[CARV90] Carver, Doris L.; Cordes, David W., "An Object-Orientzd Framework to Support
Architectural Design Development,” Proceedings of the Twenty-Third Annual
Hawaii International Conference on System Sciences, Volume 2: Software Track,
Jan 90, p. 349-357.

[CHID91]) Chidamber, Shyam; Kemerer, Chris, "Towards a Metric Suite for Object-Oriented
Design," OOPSLA ‘91, Nov 91, p. 197-211.

[CHIN89] Chin, David N.; Takea, Koji; Miyamoto, Isao, "Using Natural Language and
Stereotypical Knowledge for Acquisiton of Software Models,” IEEE
International Workshop on Tools for Artificial Intelligence: Architectures,
Languages, and Algorithms, 1989, p. 290-295.

[COLB89] Colbert, Edward, "The Object-Oriented Software Development Method: A
Practical Approach to Object-Oriented Development,” Tri-Ada '89, Oct 89, p.
400-415.

[COLE92] Coleman, Derek; Hayes, Fiona; Bear, Stephan, "Introducing Objectcharts or How
to Use Statecharts in Object-Oriented Design,” IEEE Transactions on Software
Engineering, Vol 18, No 1, Jan 92, p. 9-18.

[COYO91] Coad, Peter and Yourdan, Edward, Object-Oriented Analysis, ¢1991, Prentice-
Hall, Inc.

[DAVI9O] Davis, Alan M., Software Requirements Analysis and Specification, c1990,
Prentice-Hall, Inc.

(DOHE90] Doherty, B. S., "Elicitation and Verification of a functional Specification,” ECA/
90, Proceedings of the 9th European Conference on Artificial Intelligence, p.
234-239,

[FICK88] Fickas, Stephan; Nagarajan, P., "Critiquing Software Specifications,” IEEE
Software, Vol 5, No 6, Nov 88, p. 37-47.

BIB-2

(FIRE91] Firesmith, Donald, "Strucwured Analysis and Object-Oriented Development are not
Compatible,” ACM Ada Leuters. Vol X1, No 9, Nov/Dec 91, p. 56-65.

[HAYE91] Hayes, Fiona; Coleman, Derek, "Coherent Models tor Object-Oriented Analysis,"
OOPSLA 91, ACM/SIGPLAN, Vol 26, No I, p. 171-183.

(HOLB90] Holbrook, Hilliard, "A Scenario-Based Methodology for Conducting
Requirements Elicitation,” ACM SIGSOFT Software Engineering Notes, Vol 15,
No 1, p. 95-104.

[[PCHI91} Ip, Saimond; Cheung, Louis C. Y.; Holden, Tony, “Complex Objects in
Knowledge-Based Requirements Engineering,” 6th Annual Knowledge-Based
Software Engineering Conference, Sep 91, p. 1-11.

[JAWQ90] Jaworski, Allan; LaVallee, David, "Principles for Defining an Object-Oriented
Design Decomposition in Ada," WADAS 90, Jun 90, p. 173-182.

[JALO89] Jalote, Pankaj, "Functional Refinement and Nested Objects for Object-Oriented
Design," IEEE Transactions on Software Engineering, Vol 15, No 3, Mar 89, p.
264-270.

[KORS90] Korsen, Tim; McGregor, John D., "Understanding Object-Oriented: A Unifying
Paradigm," Communications of the ACM, Vol 33, No 9, Sep 90, p. 40-60

[KUNG89] Kung, C. H., "Conceptual Modeling in the Context of Software Development,”
IEEE Transactions on Sottware Engineering, Vol 15, No 10, Oct 89, p. 1176-
1187.

[KURT90] Kurtz, Barry D.; Woodfield, Scott N.; Erably, David W., "Object-Oriented
Systems Analysis and Specitication: A Model Driven Approach,” COMPCON
Spring ‘90, 26 Feb - 2 Mar 90, p. 328-332.

{LADD90] Ladd, Scott Robert, "Right and Wrong (Picking Classes in Object-Oriented
Programming," Computer Language, Vol 7, No 4, Apr 90, p. 103-107.

[LADES9) Ladden, Richard M., "A Survey of Issues to be Considered in the Development of
an Object-Oriented Development System for Ada," ACM Ada Letters, Mar/Apr
89, Vol IX, No 2, p. 78-88.

[LOUCS88] Loucopoulos, P.; Layzell, P. J.; Champion, R. E. M.; Gibson, M. D., "A

Knowledge-Based Requirements Engineering Environment,” Proceedings of the
Conference on Knowledge-Based Software Assistance. Aug 88, p. 139-154.

BIB-3

[LOUCY0] Loucopoulos, P.; Champion, R. E. M., "Concept Acquisition and Analysis tor
Requirements Specification,” Software Engineering Journal, Vol S, No 2, Mar 90,
p. 116-124.

[LUBAS86] Lubars, Mitchell D.; Harandi, Mehdi T.." Intelligent Support for Software
Specification and Design," IEEE Expert, Vol. 1, No. 4, Winter 86, p. 33-42.

[MEYES8] Meyer, Bertrand, "Object-Oriented Software Construction,” Prentice-Hall, ¢ 1988.

[MONA92] Monarchi, David E.; Puhr, Gretchen L., "A Research Topology for Object-
Oriented Analysis and Design," Communications of the ACM, Vol. 35, No. 9, Sep
92, p. 35-47.

[MRDA90] Mrdalj, Steven, "Stepwise Object-Oriented System Design,"” COMPEURO '90,
May 90, p. 520-521.

[NERS92} Nerson, Jean-Marc, "Applying Object-Oriented Analysis and Design,"
Communications of the ACM, Vol. 35, No. 9, Sep 92, p. 63-74.

[REUB91] Reubenstein, Howard B.; Waters, Richard C., "The Requirements Apprentice:
Automated Assistance for Requirements Acquisition,” IEEE Transactions on
Software Engineering, Vol 17, No. 3, Mar 91, p. 226-240.

[ROSS90] Ross, Donald L., "Issues in Object-Oriented Requirements Analysis,” WADAS 90,
Jun 90, p. 77-99.

[RUMB91] Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick;
Lorensen, William, "Object-Oriented Modeling and Design," Prentice Hall, ¢1991.

[RUBI9O] Rubin, Kenneth S., "Reuse in Software Engineering: An Object-Oriented
Approach," IEEE COMPCON, Spring '90, p. 340-346.

[RUBI92] Rubin, Kenneth S.; Goldberg, Adele, "Object Behavior Analysis,"
Communications of the ACM, Vol. 35, No. 9, Sep 92, p. 48-62.

[SAEK89] Saeki, Motoshi; Horai, Hisayuki; Enomoto, Hajime, "Software Development
Process from Natural Language Specification,” 11th International Conference on

Software Engineering, May 89, p. 64-73.

[SCHA92] Schaschinger, Harald, "ESA - An Expert Supported OOA Method and Tool,”
ACM SIGSOFT Sofrware Engineering Notes, vol 17, no 2, Apr 92, p50-56.

BIB-4

[SCHOY1] Schoen, Eric, "Active Assistance tor Domain Modeling,” 6th Annual Knowledge-
Based Software Engineering Conterence, Sep 91. p. 28-39.

[SHLAS89] Shlaer, Sally; Mellor, Stephen J.. "An Object-Oriented Approach to Domain
Analysis," ACM SIGSOFT Software Engineering Notes, Jul 89, p. 66-77.

(SHLAS88] Shlaer, Sally; Mellor, Siephen J., "Object-Oriented Svstems Analysis: Modeling
the World in Data", ¢ 1988, Prentice-Hall Inc.

[SIBL89] Sibley, Edgar H., ".xn Object-Oriented Requirements Specificaton Method,"
Communications of the ACM, May 89, Vol. 32, No. §, p. 608-623.

[TSAI88] Tsai, Jeffrey J. P.; Ridge, Joel C., "Intelligent Support for Specification
Transtormations,” IEEE Software, Vol. 5, No. 6, Nov 88, p. 28-36.

[TSAI89] Tsai, Jeftrey J. P.; Tsai, Shun-Tzu; Liu, Alan, "A Frame and Rule Based System to
Support Software Development Using an Integrated Software Engineering
Paradigm," /EEE International Workshop on Tools for Artificial Intelligence:
Architectures, Languages and Algorithms, 1989, p. 282-289.

[TSAI91] Tsai, Jeffrey J. P.; Weigert, Thomas, "HCLIE: a Logic-Based Requirement
Language for New Software Engineering Paradigms,” Software Engineering
Journal, Vol 6, No 4, Jul 91, p. 137-151.

[WALT78] Walters, Neal, "An Ada Object-Based Analysis and Design Approach,” Ada
Letters, Ju/Aug 91, Vol XI, No 5, p. 62-78.

[WHIT89] Whitcomb, Mark J.; Clark, Boyd N., "Pragmatic Definition of an Object-Oriented
Development Process tor Ada," Tri-Ada '89, Oct 89, p. 380-399.

[WHITY90] Whitng, Mark, "Workshop: Finding the Object,” OOPSLA/ECOOP '90, Oct 99,
p. 99-107.

[WINB90] Winblad, Ann L.; Edwards, Samuel D.; King, David R., Object-Oriented
Software, ¢1990, Addison-Wesley Publishing Co.

[WIRF90] Wirfs-Brok, Rebecca, "Surveying Current Research in Object-Oriented Design,”
Communications of the ACM, Vol. 33, No. 9, p. 104-123.

[WROBS88] Wrobel, Stefan, "Design Goals for Sloppy Modeling Systems,” International
Journal of Man-Machine Studies, Vol. 29, No. 4, Oct 88, p. 461-477.

BIB-5

[YAULSS8] Yau, Stephen S.; Liu, Chung-Shyan, "An Approach 10 Software Requirement
Specification,” /JEEE COMPSAC ‘88, Feb 88, p. 83-88.

[ZERO91] Zeroual, K, "KBRAS: A Knowledge-Based Requirements Acquisition System,”
6th Annual Knowledge-Based Software Engineering Conference, Sep 91, p. 40-

52.

BIB-6

T~ v L re -~

oo T ‘ GE AN TATES Tt et

H B . .

| September 1993 . Doctoral Dissertation

4T T0E AND SUBT T ‘.S TUND NG wONBC AN

. On the Automation of Object-Oriented Requirements Analysis |

|
56. AUTHOR(S)
!

Nancy L. Crowley, Major, USAF

8. PERFORMING ORGANIZATION

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)
’ REPORT NUMBER

1
i

'Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/DS/ENG/93-11

10. SPONSORING ' MONITORING
AGENCY REPORT NUMBER

9. SPONSORING MONITORING AGENCY NAME{S) AND ADDRESS(ES)
]Software Technology for Adaptable Reliable Systems (STARS)
j Suite 400
801 North Randolph Street
Arlington, VA 22203

{11. SUPPLEMENTARY NCTES

i

123 DISTRIBUTION A, AL 331 T “TATIAINT 12b. DISTRIBUTION CQOOE

Distribution Unlimited

13 ABSTRALT Maxmum. ~. o,

‘The research investigated the possibility that an object-oriented requirements
analysis (OORA) specification model can be represented in a computer system and used
;as a basis for the elicitation of the information necessary for the development of an
iobject-oriented specification for a particular problem. The proof-of-concept system

rdeveloped is called the OORA Automated Knowledge System (OAKS). OAKS contains a

- generic domain model that is modified to satisfy a particular problem in the domain.
| The core of OAKS is a reusable domain model, which represents a domain of interest.
i The domain model is used as a basis for user changes that are made to meet specific
! requirements of a particular problem. The domain model was structured to allow it
!to be ported to other domains of interest and inserted into the OAKS system.

. Therefore, OAKS represents an OORA system that can be used in numerous domains to
;develop an OORA specification for a particular problem.

—
1
!

[

114, SUBJECT TERMS 15. NUMBER OF PAGES
i 27
'Object-Oriented,Requirements,Requirements Analysis 16. PRICE CODE

|

117 SECURITY CLASSIFICATION
! OF REPORT

UNCLACSIFIED

18 SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRA(CT

UL

NSN 7340-0°-.80-5309

Starcarg “o'm J38 Fey 139
Semacc omg by 25 sz 99 4
98712

