
'u'.

AD-A270 673

()N THEL AU'ToMATIO)N Of
()BJECT-O)RIENTEI) REQUIREMENTS ANALYSIS

I PISSEk i\IO

ELECTE

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

ýIR FORCE INSTITUTE OF TECI-NOI.OGY

Wright-Patterson ,Ai force BaseOi

AFIT/I)S/ENG/93- ! 1

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

DISSERTATION

Nancy L. Crowley, Major, USAF

AFIT/DSIENG/93-11

93-23852

Approved for public release; distribution unlimited

93 10 8 041

AFIT/DS/ENG/93-11

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

DISSERTATION

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air Education and Training Command

In Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

Nancy L. Crowley, B.S., M.S.

Major, USAF

September 1993

.._ 00oosson For ' -XTIS GRA&I
DTIC TAB 0

Approved for Public Release; distribution unlimited UlanounoeCed 0
Justl/'ieat lo

Distributloo

Availability Codes
Avai- ad/or

fiatt Speciaj

A', -- _

AFIT/DS/ENG/93-11

ON THE AUTOMATION OF
OBJECT-ORIENTED REQUIREMENTS ANALYSIS

Nancy L. Crowley, B.S., M.S.
Major, USAF

Approved:

J144

______ ______ _____8 I A06-~

Accepted:

SDean, School of Engineering

ii

The correct capture of user requirements is an essential and difficult first step in

software development. One method that aids in this process is object-oriented

requirements analysis (OORA). This process makes use of method and domain

knowledge to develop an object-oriented requirements specification. This research

developed an object-oriented model that could be used as a basis for an automated system.

An automated system, called the OORA Automated Knowledge System (OAKS), was

also developed. OAKS assists in the development of an object-oriented specification

through the use of domain knowledge and knowledge of the structure of an object-

oriented requirements specifications and the relationships among its components.

There are two people that deserve thanks for their help in getting me through this

research. First, many thanks to my advisor, Lt Col Patricia Lawlis, who was always there

to lend a hand when I needed it and whose encouragement kept me going. A special

thanks to my husband, Bruce, for always being there for me yet giving me the space to

work the long hours.

Ui

Table of Co.t1nt1

Preface .. iii
Table of Contents ... iv
List of Figures ... viii

List of Tables .. Ix
List of Abbreviations ... x
List of Symbols ... xi
Abstract ... xii
1. Background and Statement of the Problem ... 1-1

Background .. 1-1
Overview .. 1-1
Object-Oriented Requirements Analysis ... 1-1
Object ... 1-3
Class ... 1-3
Attribute ... 1-3
State ... 1-4
Service .. 1-4
Protocol .. 1-4
Inheritance .. 1-4
General Relationships .. 1-5
M essage Passing ... 1-6
OORA Process Steps .. 1-6

Statement of the Problem .. 1-8
II. Literature Review ... 2-1

Overview .. 2-1
Requirements Analysis .. 2-2
Requirements Analysis Systems Using Artificial Intelligence Technology 2-8
Object-Oriented Domain Analysis ... 2-11
Object-Oriented Requirements Analysis .. 2-12

Background .. 2-12
Finding Classes and Objects .. 2-14
Defining the Inheritance Structure ... 2-15
Defining Object Relationships .. 2-17
Defining Class Attributes ... 2-18
Defining Class Services ... 2-20
Developing a State M odel For Each Class ... 2-21

Existing Systems ... 2-22
Systems That Use a Natural Language Front End 2-22
Systems Using Constrained Input, Not Formal Language, as the
Input Form .. 2-25
Systems Using Formal Language as Input and Representation of the
Specification ... 2-30

iv

Relationship of Technology Area to OAKS ... 2-32
Overview .. 2-32
Requirements Analysis .. 2-32
Requirements Analysis and Artificial Intelligence 2-33
OODA .. 2-33
OORA .. 2-33
Existing Systems ... 2-34

III. M ethodology ... 3-1
Overview .. 3-1
Step 1. Define an OORA M athematical M odel ... 3-3
Step 2. Define Acquisition and Evaluation of the OORA Model 3-4
Step 3. Define Application of Guidelines and Rules .. 3-5
Step 4. Prototype OAKS ... 3-6
Step 5. Test the OAKS Prototype .. 3-7
Step 6. Analyze the Results .. 3-8

IV. OO RA M athem atical M odel .. 4-1
General ... 4-1
Class Attributes .. 4-1
Class Services ... 4-3
Classes ... 4-8
Inheritance Relationship .. 4-9
W hole/Part Relationship ... 4-11
Other Relationships .. 4-13
Constraints ... 4-16
Subjects .. 4-17
The OORA M odel .. 4-17
Ordering of OORA M odel Components .. 4-18

V. Acquisition and Evaluation of Com ponents ... 5-I
Overview .. 5-1
SetOfClasses ... 5-3
Superclass Relation ... 5-9
W hole/Part Structure ... 5-11
ClassStateSpace .. 5-12
Other Relationships .. 5-14
Services .. 5-15
W hole M odel .. 5-18

VI. Application of Evaluation Guidelines and Rules ... 6-1
Overview .. 6-1
Evaluating Classes .. 6-2
Evaluating the Inheritance Relation ... 6-5
Evaluating the W hole/Part Relation .. 6-7
Evaluating the Class State Space ... 6-8
Evaluating Other Relationships ... 6-9
Evaluating Services ... 6-10

V

Evaluating the W hole M odel ... 6-14
Domain-Dependent Guidelines and Rules .. 6-16

VII. Prototyping, Testing and Analysis .. 7-1
Overview ... 7-1
Domain M odel Code Structure ... 7-4

CLOS Class Structure ... 7-6
CLOS Attribute Structure ... 7-9
CLOS Service Structure .. 7-11
Attribute and Service Com ponents .. 7-13

Attribute Values .. 7-13
Input and Output Sets of Services ... 7-17
Preconditions of Services .. 7-18
Postconditions of Services ... 7-18

Inheritance .. 7-20
Relationships ... 7-20
Exam ple of a Class Structure ... 7-22
Entire M odel ... 7-27

Domain-Independent Guidelines and Rules ... 7-28
Structure-Based Guidelines and Rules ... 7-28

Classes .. 7-28
Attributes .. 7-28
Services .. 7-29
W hole/Part .. 7-30
Relationships .. 7-30
Inheritance .. 7-30

General OORA Guidelines and Rules .. 7-31
Class ... 7-31
Inheritance .. 7-32
State Space ... 7-33
Services .. 7-34
W hole M odel .. 7-36

M odel Evaluation .. 7-37
Domain-Dependent Guidelines and Rules .. 7-41
Problem M odel M odifications ... 7-42

Overview .. 7-42
Change the Nam e of a Class .. 7-43
Change the Description of a Class ... 7-45
Change the Name of an Attribute .. 7-45
Change the Description of an Attribute .. 7-47
Change the A-Set Slot of an Attribute ... 7-47
Change the Initial Value of an Attribute ... 7-49
Delete an Attribute From a Class ... 7-49
Add an Attribute to a Class ... 7-51
Change the Name of a Service ... 7-52

vi

Change the Description of a Service 7-52
Change the Input Set of a Service .. 7-53
Change the Output Set of a Service ... 7-56
Change the Precondition of a Service .. 7-57
Change the Atts Slot of the Postcondition of a Service 7-57
Change the Messages Slot of the Postcondition of a Service 7-60
Delete a Service .. 7-61
Add a Service .. 7-62
Change the Whole/Part or Relation Stucture of a Class 7-63
Change the Parents of a Class .. 7-65
Add a Class ... 7-67
Delete a Class ... 7-68
Verify a Class .. 7-69
Pending Issues .. 7-70
Advisory Issues ... 7-76

User Interface ... 7-77
Background .. 7-77
Overview of the UI ... 7-78
M odel/Class M enu .. 7-80
The Com ponent M enu .. 7-81
The Attribute Com ponents M enu .. 7-83
The Service Components M enu ... 7-84
The Action M enu .. 7-85
Advisory Issues Button ... 7-94
Save Button ... 7-94

VIII. Conclusions and Recom mendations .. 8-1
Conclusions .. 8-1
Recom mendations .. 8-4

Appendix A : Dom ain M odel .. A-1
Appendix B: Example OAKS Session .. B-1
Appendix C: OAKS Code ... C- 1
Bibliography ... BIB-1

vii

2-1. Inheritance Structure .. 2-16
3-1. Domain M odel Creation ... 3-1
3-2. Research Steps ... 3-3
4-1. Inheritance Digraph ... 4-11

7-1. OAKS S:ructure .. 7-3
7-2. User Interface .. 7-79

viii

7-1. Relationship Between CLOS Class and OORA Model .. 7-9
7-2 Relationship Between CLOS Attribute Structure and OORA Model 7-11
7-3. Comparison of CLOS Service Structure and OORA Model 7-13
7-4. Legal Sets for A ttribute V alues .. 7-14

ix

List of Abbreviations

CLOS Common LISP Object System

OAKS OORA Automated Knowledge System

(X)D Object-Oriented Design

OODA Object-Oriented Domain Analysis

OOP Object-Oriented Programming

OORA Object-Oriented Requirements Analysis

SA Structured Analysis

x

kiListf ymbols

V Universal quantifier, for all

3 Existential quantifier, there exists

--• Function

Implication

X Cross product

E Member

Is defined as

< > Encloses an ordered pair

{ } Encloses a set

A Binary AND

V Binary OR

U Set union

. The set of natural numbers

Is equivalent to

xi

AFIT/DS/ENG/93-11

Abstract

This research investigated the possibility that an object-oriented requirements analysis

(OORA) specification model can be represented in a computer system and used as a basis

for the elicitation of the informal information necessary for the development of an object-

oriented specification for a particular problem. The proof-of-concept system developed is

called the OORA Automated Knowledge System (OAKS). OAKS contains a generic

domain model that is modified to satisfy a particular problem in the domain. First, a model

was developed that captures the essential characteristics and components of an OORA

specification and the relationships among those components. Based on that model,

constraints were defined on the ordei in which the components must be gathered. This

information was used as the basis for the elicitation of requirements from the user of

OAKS and for the guidelines and rules used in evaluating the object-oriented requirements

model. These guidelines and rules were used by OAKS to evaluate the generic domain

model and the developing problem model. The OAKS system was then developed and

tested based on the model, component order, and the guidelines and rules.

The research showed that such a system is possible and useful. The generic domain

model that is used as a basis for OAKS proved to be one that contained all the essential

information needed for the development and analysis of object-oriented requirements. The

guidelines and rules encoded in OAKS provided the means to maintain consistency and

completeness in the OORA model in reference to those rules as changes were made. It

was also possible to evaluate the generic domain model prior to its use using these

guidelines and rules.

xii

The core of OAKS is a reusable domain model, which represents a domain of interest.

The domain model is used as a basis for user changes that are made to meet the specific

requirements of a particular problem. The domain model structure was developed to

allow it to be ported to other domains of interest and inserted into the OAKS system.

Therefore, OAKS represents an OORA system that can be used in numerous domains to

develop an OORA specification for a specific problem.

xiii

ON THE AUTOMATION OF

OBJECT-ORIENTED REQUIREMENTS ANALYSIS

1. Background and Statement of the Problem

Bakground

Overview. The object-oriented requirements analysis (OORA) process is one that is

crucial to the development of software that meets the needs of the end user. There have

been numerous articles and books written on the OORA process and how the process may

be aided using a computer-based system. Because of the variance in the different OORA

processes there is a need for a well-defined uniform model that can be used as a basis for a

computer-based system to aid in conducting an OORA. This research developed an

OORA model that was used as the basis for an automated system that assists in the OORA

process. The automated system contains information on the domain of interest, the

problem to be solved, the OORA process and the resulting specification, and the process

of requirements analysis in general.

Object-Oriented Requirements Analysis. OORA is a software development method

used to develop a specification of a system's intended behavior. OORA examines the

problem domain with the object-oriented perspective of classes and objects

[COYO91][BOOC91]. This specification can take any number of forms but represents an

object-oriented model of the essential characteristics and behavior of the system. Essential

characteristics are those that allow the system to satisfy the user's requirements. OORA is

conducted during the requirements phase of the software development process. It is done

in place of more traditional software analysis methods, the most popular of which is some

1-1

form of structured analysis (SA). Where OORA is based on object abstraction, SA is

based on functional abstraction. The two different analysis techniques produce

fundamentally different structures and views of the same problem. Although there are a

number of methods that have been developed to move from a SA to an object-oriented

approach. most researchers agree that the best front-end to object-oriented software

development is OORA. [BAIL891 [BERA92a] [BOOC91 [COLB891 [COYG91

[FIRE911 [KURT90]

OORA is used in the analysis phase as a front end to object-oriented design (OOD)

and object-oriented programming (OOP). The unifying scheme through the three phases

is the use of objects as central elements [KORS90]. The OORA results, however, must be

independent of the programming language and the target hardware [BERA92a]. OORA

identifies problem space objects, which are entities that the system uses to maintain

information or to interface with systems outside itself [JAWO90]. The problem-space

objects describe what the system is to do, without addressing how the system is to do it.

In contrast, OOD produces solution-space objects. These are derived from the problem-

space objects but take into account things such as the computer architecture, performance

considerations, and the programming language. The solution-space objects hide the target

environment from the problem-space objects and act as controlling objects [WHIT891.

The design process . :-ates an implementation plan for the system by describing how the

system is to do its job [KURT90]. After OOD, the system is implemented in a

programming language. If that language is object-oriented, this step is called OOP.

In general, object-oriented techniques are characterized by the use of abstract

objects with explicit interfaces and the use of inheritance [BERZ89]. There is no one

OORA process or even a common set of terminology. There are many different

approaches to OORA; these include different steps, models, products, definitions,

graphical and textual representations, heuristics, and levels of formality. However, the

1-2

processes have a number of basic concepts in common. The following sections discuss the

OORA concepts and the steps in the OORA process that will be used in this research.

Ob~ic1t. An object is an abstraction of some entity in the problem domain that

encapsulates state and behavior information and has identity. An object is characterized

by its state, the services it provides, and the services it requires from other objects to do its

function. An object is an abstraction because it represents some real-world entity. The

object encapsulates its state and services by controlling access to its state and the services

that provide the object's behavior. The state of an object is accessed and modified only by

messages that tell the object what to do, but not how to do it [RUBI90]. An object is an

instance of a class. Some authors use the terms class and object interchangeably, but

especially for OORA, it is important to distinguish between the two.

"A description of one or more objects with a uniform set of attributes and services,

including a description of how to create new objects in the class." [COYO91l

Classes are the templates for objects. When an object is created, it is an instance

of a class, which means it is a copy of the class except it has its own state. The state is the

set of values of all the attributes of an object. Classes represent sets of closely related

entities in the problem domain. An example of a class would be the class of dogs, with

Fido as an instance of that class (an object). Classes are developed in OORA. Objects are

not considered until OOD.

Attibute, An attribute is an abstraction of a charactenstic that is held by all the

instances of a particular class [SHLA89]. Each attribute contains information concerning

the set of values the attribute can be assigned, and each object has a particular value for

that attribute from that set of legal values. The set of legal values can be any type of

value, from numbers and characters to composite types. For example, if an attribute for

1-3

the class Dog is Owner, the legal values are the members of the set of names: the object

Fido could have the value "John Doe" for the attribute Owner.

State. The state of an object is the collection of values instantiating the set of

attributes. If the attributes are repiesented by {al,....an) and the values for the attributes

are {vl,...,vn), then the state = I vl,...,vn). A class contains the template for the state of

an object. The state of an object can only be changed or accessed through the services. If

the object Fido had attributes = (Owner, LicenseNumber), the state could be ("John

Doe", 1234).

Service. Services implement the required behavior of an object [COYO91]. The

behavior of an object describes all possible state changes and the method of invocation

required for it to do its function. In this research, message passing will be used to invoke

services. Services can be represented by functions. A service takes zero or more

arguments and returns zero or more results. For example, to change the owner-attribute

of the object Fido, the class would have to contain a service that allows the changing of

that attribute. A message would be sent to Fido through that service requesting a change

of the attribute Owner. For example, to change the value of the Owner attribute, a service

is provided called Change-Owner that takes as its one argument the value of the new

owner's name. Therefore, to change the value of the attribute Owner to Jill Small, a

message would be sent to Fido through the service Change-Owner with the argument "Jill

Small". This service may require the use of other services in one or more objects; this

would require messages from Fido to those other objects.

trootcol. The protocol of a class is the set of all of its services [RUB1901. The set of

messages the class can respond to maps to the set of services, or protocol, of that class.

Inheritance Inheritance models an "is a kind of' structure between classes. It is also

known as a generalization-specialization structure [COYO91]. Inheritance creates a

hierarchy of classes, with the lower classes (subclasses) in the hierarchy inheriting from

1-4

higher classes, or superclasses. A subclass is an "is a kind of' or a "specialization or, a

superclass. A subclass inherits both attributes and services from its superclasses. A

subclass will therefore contain at least the same attributes and services as its superclasses.

A subclass may add attributes or services, or it may change the way that an inherited

service is implemented. A class can inherit from a single class (single inheritance) or from

more than one class (multiple inheritance). An example is the class of Dogs as a subclass

inheriting from the class of Animals, the superclass. The class of Animals may have

attributes of Number-ofLLegs and NaturalHabitat. The class of Dogs may also be a

subclass of the class of Pets. This may add the attribute of Owner and add services to

access and change owner name. This shows the use of multiple inheritance. The class of

Dogs may also add the attribute of LicenseNumber, and it may then add services to

access and change the license number. This illustrates specialization.

General Relationships. There are binary relationships between objects that need to

be modeled. One such relationship is a "whole-part" relationship where an object is made

up of other objects [COYO9 1]. For example, a plane is made up of wings, engine, etc.

Instance connections are relationships in which an object needs an association with

another object in order to fulfill its responsibilities [COYO911. In general, a relationship

is an abstraction of an association between two real-world entities that are themselves

abstracted as objects [SHLA891. All relationships are identified by using numeric bounds

that show the range of the connections. These bounds are usually finite, although infinite

bounds are allowed. For example, a bound may be represented by (1,n), where the lower

bound is 1 and the upper bound is some integer represented by n. In general, in a

graphical representation a relationship is shown by a line between two objects or classes

with a range specified on each side of the connection. For example, assume there exists a

relationship R between two classes, A and B. Further assume that the range identified

with A is represented by [l:u], where 1 is the lower bound and u is the upper bound.

1-5

Theretore an instance of A has relationship R with as few as I and as many as u instances

of B. For example, if A is an object of class Person and B is an object of class Dog, one

possible relationship R between A and B is ownership, where A owns B and B is owned

by A. The range associated with A might be [O:nj, signifying that a person can have as

few as no dogs and as many as n dogs. The range associated with B might be [1,1],

signifying that a dog can only have one owner and that it must be owned by someone.

This relationship is also an instance connection.

Message passing. In the majority of object-oriented techniques, the services of

objects communicate with the services of other objects through message passing. When

an object's service needs another object's services to complete its processing, it requests

those services through a message. The message may pass values, it may return values, it

may do both, or it may do neither. The message-connections between objects show

processing dependencies and threads of execution. For example, an

AnimalControlOfficer object may request the value of the attribute LicenseNumber

from the Fido object. There must be a service, such as GetLicenseNumber, in the class

Dogs in order for Fido to respond to this request.

OORA Process Steps. Although there is much disagreement concerning the steps that

should be used and their order, there are certain steps that are common to most of the

OORA techniques. Most agree that an important early step is the identification of objects

and/or classes. This is also commonly accepted as being the most difficult step. The

identification of objects requires the use of domain experts that understand the concepts of

object-oriented analysis, or OORA experts that understand, in depth, the requirements and

peculiarities of the domain [COLB89]. In general, an analyst trained in object-oriented

methods will gather all existing information on the domain and the problem to be solved,

and extract information from the domain experts through dialog. The analyst will apply all

available heuristics and other knowledge of an OORA method to develop an initial set of

1-6

classes. There is no standard method for creating a "good" set of classes, neither is there

an adequate definition of what "good" is. Different processes are used for class

identification. Most use either middle-out, top-down, outside-in, or bottom-up. Middle-

out class identification starts with a central, unifying class and works outward by

examining classes connected to this middle class. Top-down class identification starts

with the system as a class that is broken down into its component classes, and so on, until

the lowest level of classes is reached. Outside-in class identification starts with the classes

that interface with objects outside the system, then identifies classes connected to those

classes, and so on. Bottom-up starts with the classes that do the work of the system,

identified through specification and interviews, and connects them. Even though some

rules and guidelines have been identified, the OORA processes rely greatly on the

experience of their analysts. After the classes have been identified, the static and dynamic

class relationships can be identified. The two static relationships are general relationships

and inheritance. The two dynamic relationships are message passing and state changes

within a class. The relationships are usually described using graphical techniques

augmented with textual information in some form. State charts, or some derivation, are

widely used to show state transitions. Attributes and services are identified sometime after

the classes.

Problems exist with current OORA methods. The problems are the lack of a

uniform process or terminology, and the lack of formalization of the process. For

example, in most of the current methodologies getting the right information from the

domain experts is treated as an art form, not a science. It is heavily based on the

experience of the analyst. Knowledge about a problem domain is often implicit and

informal [ARAN89I. There is no agreement on what a "good" OORA is or even on what

structures, information, and the level of detail it should contain. In most existing OORA

methods, terms like "best represent" are used without further definition in selecting

1-7

classes. This lack of a good definition of terms is partly due to the immaturity of the

OORA process.

Statement of the Problem

The thesis of this research was that OORA process and structure knowledge can

be represented in a computer system and used as a basis for the elicitation of the informal

information necessary for the development of an object-oriented specification for a

problem in a particular domain.

The main objective of the research was to investigate the feasibility of a computer-

based system that can guide the conduct of an OORA and result in an object-oriented

specification of the system to be developed. The computer based system would use a

generic domain model as the template for other problems in the domain. The research

developed a basic OORA model that contains the components and relationships necessary

for an OORA specification. Using existing OORA processes, guidelines and rules for the

evaluation of an existing OORA model were developed. The OORA model and guidelines

and rules were then used as a basis for the computer-based system.

1-8

11. Literature Review

Overview

This research used technology from a number of different areas. These are:

" Requirements analysis

"* Requirements analysis systems using artificial intelligence technology

"* Object-oriented domain analysis

"* Object-oriented requirements analysis

"* Existing systems that use a combination of software engineering and artificial

intelligence techniques to conduct a requirements analysis

Each of the above technology areas are discussed in a separate section. The first

section discusses the general process of requirements analysis and the general nature of

software specifications. Next discussed is the general nature of computer systems that

conduct requirements analysis and how knowledge-based techniques can be used in the

process of requirements acquisition. In the next two sections the general processes of

object-oriented domain analysis and object-oriented requirements analysis are discussed.

These two processes form the basis for the knowledge in OAKS. The fifth section

summarizes the research on existing systems that combine software engineering and

artificial intelligence techniques for conducting a requirements analysis. After all five

technology areas have been discussed, the last section in this chapter discusses the

relationship of the technology areas to OAKS.

2-1

Requirements Analysis

Requirements analysis is the process of eliciting the user's needs, determining what

information goes into the software system, and representing that information in a

requirements specification. The requirements elicitation process is the first part of

requirements analysis. It is the process that elicits the information from the user on what

to build [HOLB901. After the elicitation phase, the analyst must determine what

information is required to be in the requirements specification. The requirements

specification is a precise set of statements about the intended behavior of the system

[ZERO91 1.

The process of requirements analysis is considered to be that of building a conceptual

model of the system to be developed. The conceptual model is a model of the application

domain as perceived by both the users and the analysts. It is the common understanding

that the users and the analysts have of the system to be developed and is therefore the

basis for communication between the analysts and the users. The conceptual model is

used as the basis for all further development, including design and coding IKUNG891.

The requirements analysis phase of the software development process is crucial

because the effective transfer of knowledge from the problem domain to the requirements

specification is a prime factor affecting the quality of the software system [CARV901

[ZERO911. Studies indicate that errors in requirements are more costly than any other

kind of errors [REUB911. Therefore, there will be greater gains in productivity and

quality in assisting the requirements analysis process than in assisting the design and

coding processes, because the requirements document is the basis for all later processes

[LOUC881.

Informality will always exist during the requirements analysis process and is inherent in

the initial stages of the process. This is because the process is primarily cognitive and

deals with material which is uncertain, unreliable, and inconsistent [KUNG89] [ZERO91 1.

2-2

The question is whether the informal form %&ill only exist outside a computer s):stcm III

someone s head or in informal. unanaly/able documentation, or whether this informal form

can be explicitly entered into the computer and transformed into a more formal form

IBALZ78I.

Informality is portrayed in the initial stages of the process, as the user makes

postulations about the functionality and constraints of the system to the analyst. This

knowledge is often incomplete, fuzzy, and incoherent. This is not a fault of the process,

but the nature of how humans deal with complexity. Informality is an essential part of the

human thought process. The process is to start with an almost-right description and then

incrementally modify it until it accurately represents the system to be developed

I REUB91]. Therefore, the requirements analysis process will require a series of feedback

analyses and refinements of the user's initial concept of the system to a more complete,

unambiguous form [BOBB9OJ. This transformation process can be made more efficient

through the uje of a computer-based aid that will accept the informal form and aid in the

transformation to the formal. This requires the development of formalized methods used

to gather the informal form. Examples of these methods are structured question and

answer sessions and tormalized languages.

The process of convening from the informal requirements gathered from the domain

experts to a requirements specification is error-prone and labor-intensive. The activities

involved in this process are knowledge-intensive, informal, human-intensive, and largely

undocumented. There is a need for a system that manages these knowledge-intensive

activities [BALZ85I. The system must provide mechanisms which encourage the

development of informal models and assist in experimentation prior to developing a formal

specification [LOUC9o1.

The requirements analysis process is a problem-solving process that derives a

statement of the problem, which is refined into the conceptual model of what is needed.

2-3

This requires the real world to be mapped into some requirements specification language

or representation and that representation communicated to the user. The user then

validates the conceptual model to ensure that it meets the user's requirements. The

purpose of the process is to evolve the initial requirements statements into a state of

consistency and adequacy ILOUC88I.

There are three basic phases in the requirements analysis process:

(1) Elicitation. The analyst acts as a facilitator gathering the requirements information

from the user, with the product an informal specification.

(2) Formalization. The analyst creates a formal or unambiguous specification from an

informal one.

(3) Validation. The confidence that the specification conforms to the user's desires is

increased in this phase [REUB9 11.

The process of writing a requirements specification requires several iterations of these

phases to get the content of the specification to match the user's intent [BALZ85]. The

process requires knowledge on how to interact with a user to extract the initial set of

requirements. how to take those requirements and build a specification, how to recognize

an incomplete, inconsistent, and unresponsive specification, and how to explain the

specification to the user and validate it. The process also requires a thorough

understanding of the application domain.

The hardest part of the requirements analysis process is the elicitation of the

requirements from the users. Current techniques require a knowledgeable analyst that is

able to extract the proper information from the users. The users often only have a vague

notion of what they want and a narrow view of what is possible. They bring with them the

expertise in the domain where the analyst has expertise in the requirements analysis

process. Therefore the analyst must have expertise in pulling out the necessary

information and filling in details that are found to be missing [FICK881.

2-4

There are some basic characteristics that expert analysts share:

(I) They use hypothetical examples to explain concepts to the users, to argue for or

against inclusion of a component, and to refine their understanding of a problem.

(2) They are aware of higher-level policy issues in a domain and are able to use this

knowledge to include or exclude components.

(3) They use summarization to verify their understanding and to verify that they have

covered all concepts [FICK881.

(4) They use analogy to relate current problems to previous experience.

(5) They construct hierarchies of concepts starting with an abstract mental model and

refining that into a concrete model.

(6) They use domain knowledge. They construct complex artifacts by using their

previous experience. It is difficult to acquire new knowledge unless one already has a

large amount of relevant old knowledge.

(7) Their reasoning process is guided by some underlying generic process appropriate

to the task and the domain [LOUC901.

The analyst uses informal communication with the users to gather information. During

this informal communication, the users employ language containing special words and

jargon, ambiguity which must be disambiguated by using the surrounding context,

statements in poor ordering, and contradictory information. The information provided by

the user is often incomplete and can be inaccurate in that it does not reflect what the

speaker had in mind [REUB91]. These problems must be addressed by the analyst.

The specification that is a result of the analysis process and is used as input to the

design and coding phase can take a number of forms. Specifications are, in reality,

programs written in a very high level abstract programming language [BALZ78I. This

language can be in natural language form, in the form of a formal specification language,

or defined using formalized representations. These formalized representations include

2-5

petri nets, frames, rule-bases, regular expressions. transition diagrams. state diagrams, data

flow diagrams, etc. Each of these representations has different properties that allow

different degrees of formality and different theorem-proving properties. The specification

should capture the observable behavior of a system and allow all valid implementations.

In addition to its final form, the specification may have other forms during its

development. For example, if the final specification form is some formal specification

language, the specification may start in some informal form and then be converted into the

formal specification language.

A specification form must have certain characteristics:

(1) It must be able to express various aspects of the specification, and then have the

ability to combine them.

(2) It must be able to be used in different and varying domains.

(3) It must not force a certain sequence of decisions that may force the users to make

decisions they don't wish to make or are not entitled to make [BABB85].

(4) It must be testable and modifiable.

(5) It must specify what the system is to do, and not how it is to do it.

(6) It should be a cognitive model, not a design or implementation model.

(7) It should be tolerant of incompleteness and augmentable. No specification is ever

totally complete because of the complex environments it models [BALZ79].

As stated, the specification can be represented by the use of a formal specification

language. The use of formal specification languages require the entire specification to be

conceived at once. A better method is through gradual elaboration, where the process

starts with a simplified kernel, and then expands out. This requires an incremental

specification language such as Gist [BALZ85I. Also, formal specification languages are

not good for communication with the user and do not provide mechanisms for

decomposing the real-world problem. As a result, the use of formal specification

2-6

languages is usually preceded by the application of an informal method [CARV90]. There

are three b- ic sets of tools that can be used to check a formal specification:

(1) Theorem provers that prove that all behaviors have some desired set of properties.

The problem is that it is hard to characterize the behavior using the properties, and

theorem provers only check the expected.

(2) Interpreters for specification languages that allow the languages to be executable.

These provide narrow case-by-case feedback on the testing of the specification.

(3) Symbolic evaluation that allows the test cases for the specification to be partially

specified. Those aspects not specified are treated symbolically. Therefore, entire classes

of test cases can bc explored automatically.

Instead of using a formal specification language, natural language can be used as the

form of the specification. The main difference between a natural-language specification

and the formal equivalent is that partial descriptions rather than complete descriptions are

used. The partial descriptions can be completed from the surrounding text by a computer

system. The completion of the partial descriptions may produce zero, one, or several valid

interpretations. The partial descriptions focus attention on the relevant issues and

condense the size of the specification. Formal specifications do not have these properties

[BALZ781.

A desirable characteristic of a specification is that it be operational. If the specification

is operational, it can be used to prove that a proposed implementation satisfies the

specification. This means that it must be able to generate possible behaviors among which

must be the proposed solution [BALZ79]. If the specification is operational, it can be

directly evaluated as a software prototype. An operational specification can be translated

into code that will preserve program correctness. [TSAI89]. The problem with

operational specifications is that they are hard to construct because they are formal. Every

reference to an object or action must be consistent and complete [BALZ78].

2-7

Another desirable characteristic of a specification is that it be executable. This

requires it to be represented by some executable language. To make a specification

language executable, it can either be a wide-spectrum language or an interpreted language.

A wide spectrum language contains both low-level and high-level constructs. The low-

level constructs in the language can be directly executed. Interpreted languages are

declarative, but their constructs can be given operational interpretations. An example of

an interpreted language is Prolog, which is based on Horn clauses. Requirements

expressed in E orn-clause logic are executable using an abstract interpreter (as in a Prolog

program). Using the Prolog theorem-proving mechanism, the validity of the requirements

can be checked. The requirements can also be checked against the domain model by

formulating goal clauses expressing some fact about the system and determining whether

that fact can be derived from the requirements. The problem with Horn clause logic is

that there is neither an inheritance mechanism nor an exception mechanism to its rules and

constraints [TSAI91]. The use of Prolog therefore requires the coding of structures to

add these capabilities.

Requirements Analysis Systems Using Artificial Intelligence Technology

The greatest source of variance in software productivity is in the differences in skill

among analysts. Applying knowledge is the key to developing effective software.

Therefore, developing software is a knowle&-;n.--tensive activity [LOUC88].

A system that captures the entire requirements acquisition process, starting with the

informal requirements, would be very useful because of the criticality and the complexity

of this phase of the software development process. Knowledge representation techniques

can form a useful platform for such a system because of the nature of the software analysis

process [IPCH91]. Requirements analysis is a cognitive activity that is based on informal

2-8

models of domain knowledge, problem-solving knowledge, analysis process knowledge,

and general software problem-solving knowledge.

In the process of developing a software specification, the analyst uses knowledge on

how to conduct a requirements analysis with associated heuristics. This knowledge is

suited to being represented in a knowledge-based system. A knowledge-based approach

can also provide useful tools in the process of capturing requirements from a user. This

approach offers the facilities needed for the acquisition and validation of requirements,

such as rapid prototyping, knowledge bases, intelligent interfaces, and heuristic

approaches. Paradigms like restricted Horn clauses, semantic networks, and rule-based

production systems are suitable for declarative representation of knowledge. Frames

combine declarative, inheritance structure and procedural knowledge [BOBB90].

There are a number of categories of knowledge that could be embodied in a

requirements analysis system. The categories are: the domain, the environment in which

the software is to operate, the software requirements analysis process itself, knowledge

elicitation techniques, informal and formal models of the specification, and transformation

techniques among the various representations.

If the system starts with the user supplying the formal model, there is no requirement

for knowledge elicitation techniques. Otherwise, the system has to have knowledge on

how to elicit the information it needs in order to develop a requirements specification.

Artificial intelligence techniques in knowledge acquisition, natural language interaction,

and question-answer systems can be used.

How much (if any) domain specific knowledge needs to be in such a system is

arguable. It may be argued that domain-specific information could be entered into the

system as part of the specification. In this scenario, the user would enter both domain and

problem information and would therefore have to be a domain, problem, and requirements

process expert. The problem is that domain-specific knowledge consists not just of

2-9

definitions, but also of general knowledge of prior typical systems. It is also difficult for

the computationally naive user to express domain knowledge unless the system already

knows a significant amount IBARZ851 [CHIN89]. The system would have to contain

extensive domain knowledge in order to operate with the computationally naive user and

develop a specification.

Another scenario is that the user understands the domain but may not possess the

knowledge to explain in proper form the task the system is to perform and the method to

solve the problem. The system would emulate an expert analyst that has limited domain

knowledge but has knowledge about the requirements analysis process and how to elicit

information from the user. In this case the system would contain knowledge concerning

the form that the requirements specification is expected to take, the process by which the

specification evolves, and the process of eliciting the information from the user. The

system would not contain much domain knowledge. Therefore, the system would judge

the quality of the specification without necessarily understanding its contents ISCHO91 .

In gathering the required information from the user, the system might assume a

number of different roles. Its role could be passive, in that it provides tools to enter the

constructs but does not guide the process in any way. In such a role, it might do checking

on the completed specification or portions of the specification, and may transform the

entered specification. The user of such a system would have to have both domain

knowledge and process knowledge on how to build a requirements specification. Systems

that take on a passive role are those that take as input natural-language text and those that

provide a formal specification language for building a specification.

A second role could be that used in "sloppy" modeling, where knowledge acquisition

is viewed as a cooperative process between the user and the system. The user is not

required to develop a complete and well-structured model before interacting with the

system. The emphasis is on a cooperative, mixed-initiative modeling process. There is no

2-10

fixed, unchangeable dialog, so the user can use any of the system's facilities at any time.

The system tries to organize and complete the knowledge entered by the user. The system

offers small operations, used to create the specification components, that can he done at

any time and in any order. The information that is entei'ed into the system can be changed

at any time. The system tries to maintain integrity and consistency of the information and

provides immediate feedback on the consequences of all operations. The system allows

the user to view the evolving model at any time, and supports different user levels from

user-controlled modeling to mixed initiative modeling. For this type of system the user

would have to have domain knowledge and at least some process knowledge [WROB881.

The "sloppy" modeling approach is the basic approach used in OAKS.

A third approach is to have the system guide the user through the steps of gathering

the knowledge necessary to create the specification. The system does not enforce a rigid

sequence of steps; it allows the user to go back to add and modify previously entered

information. However, it is more rigid than sloppy modeling systems in that the system is

the guide for the acquisition of the information and contains the knowledge on how a

model should be built. The assumption underlying such a system is that the user has

domain knowledge but not process knowledge.

Obiect-Oriented Domain Analysis (OODA)

OODA is the process of identifying the objects, operations, and relationships in a

problem domain so they can be reused in software specification and construction. A

problem domain is based on a shared understanding in a community that includes a shared

vocabulary, shared semantics, and a shared knowledge of domain concepts and methods

[ARAN89]. Therefore, there are identifiable experts in a domain, and a set of related

problems to be solved in the domain.

2-11

OODA is distinguished from OORA because (X)DA is separate from any one

problem. It seeks to find a set of objects, operations, and relationships that are common

across a number of problems in an application domain. The results of OODA can be used

in OORA, and the main purpose of OODA is the reuse of the common structures in many

OORAs for various problems in the domain. Therefore, most of the discussion on OODA

in the literature occurs in the context of reuse.

As with OORA, there are different approaches to OODA and different terminology

used. Some authors [SHLA89] use domain analysis as a synonym for OORA because

OORA requires domain analysis in the problem domain in order to identify the structures

of OORA. The difference is that in OORA, a specific problem is being addressed,

therefore objects and relationships in the domain but not needed by the specific problem

are not addressed at all or are addressed in lesser detail. OODA examines all possible

structures in a domain and tries to determine which should be modeled for later reuse in

OORA.

The result of an OODA is a general object-oriented model of the problem domain.

OODA can aid in OORA by the identification of complete, robust objects and their

interactions [BERA92b].

Object-Oriented Requirements Analysis (OORA)

Backgmund, Requirements analysis is the study of a problem domain leading to the

specification of observable behavior. It is the process of extracting the needs that the

system must fulfill. [COYO911 OORA conducts requirements analysis with the object-

oriented perspective of classes and objects and their relationships. In OORA, the classes

and objects that best represent the problem are developed [WALT781.

2-12

Any model of the (X)RA process should be unambiguous. abstract and consistent

[HAYE91]. It should be unambiguous in that there is only one meaning for everything in

the model. It should be abstract in that it represents real-world entities that are needed to

satisfy the requirements and it does not contain any implementation information. The

model should be consistent so there are no conflicting requirements.

Many models have been proposed for the OORA process. They accomplish different

steps in different orders. There is, however, some commonality among many of the

concepts in the different models that are used in conducting an OORA [BERA92al

[BOOC9Il [BULM9I] [COLE921 [COLB89] [COYO91I [HAYE91I [JAOL891

[LADE89] [SHLA88J [YAUL88]. These concepts are:

"* Finding classes and objects.

"* Defining the inheritance structure.

"* Defining object relationships.

"* Defining class attributes.

"* Defining class services.

"* Developing a state model of each class.

In each of the models, these concepts are not necessarily examined in the order shown,

or sequentially. They are examined iteratively, with each concept having influence on the

others.

Not all of the concepts discussed by the different models described in the literature are

listed above. In some of the models, the concepts are grouped together into one step or

broken into more than one step. The concepts, or possible OORA steps, listed here

represent the most common and basic concepts in the various methods. Not used as

references in the development of these basic concepts were those articles that described

methods that use the results of a structured analysis as a basis for an OORA or OOD. The

methods referred to here start with an informal requirements document developed by the

2-13

user. with supplemental information from general domain documentation, prior projects in

the domain, and direct discussions with domain experts.

Besides the differences in the concepts, the terminology used by the various referenced

methods was not consistent. Therefore, the terminology defined in Chapter 1 will be used.

Finding Classes and Objects. The classes are considered during analysis and object

instances during design, although when examining a problem domain to uncover classes,

sets of objects are looked for. To avoid confusion, the terminology of [COYO91] will be

used. The term "class-&-object" will be used for a class and its instances. Class-&-

objects are structures, systems outside the system under consideration, devices that the

system needs to interact with, a time that needs to be recorded, an event that needs to be

recorded, human roles, organizational roles, operational procedures, physical locations,

specifications, quality criteria, aggregations of equipment, steps in a process, tangible

things, interactions between two or more objects, or something toward which thought or

action is directed.

One method for finding classes and objects is to start by identifying class-&-objects

that are associated with interfaces between the system and the outside world, or with

messages the system receives from its environment, and then to work in by identifying

those class-&-objects associated with the classes already identified [BULM911

[MRDA90] [ROSS90]. Another method is to start with the top level class-&-object,

which is the overall system, and then break out the class-&-objects hierarchically, by

having class-&-objects at a higher level composed of class-&-objects at a lower level

[COLB89] [ROSS90]. Another method is to build models of the problem and derive the

class-&-objects from the models [COLE92]. Still another method is to identify class-&-

objects directly from the problem information by looking for class-&-objects in the various

categories [COYO91] [JALO89]. A final method is the identification of nouns in the

problem information as potential class-&-objects [BOOC91] [WHIT89].

2-14

Once the initial set of class-&-objects is identified, there are various processes used to

refine the set by adding, deleting, and combining class-&-objects. Objects are also

categorized in some of the methods.

Class-&-objects can be defined as active or passive. An active class-&-object is one

that can act without any outside stimulus or initiation. A passive class-&-object only acts

when motivated by an active object [COLB89]. Another way to classify class-&-objects is

as directors, servers, or agents. A director is an active object that sends messages to other

class-&-objects based on external or internal stimulus. Agents are like passive objects in

that they do not initiate action until called. Servers are passive objects that do not send

messiges to other class-&-objects [WALT78].

New classes can be created by combining classes, creating a subclass of an existing

class, or breaking a complex class into a number of smaller, cooperating classes.

[RUBI901 A class-&-object should have at least two instances, otherwise it should be

combined into another class-&-object [WIRF90].

There are numerous other heuristics for deciding whether a class-&-object is

"appropriate" for the problem, e.g., that a class-&-objects should have more than one

attribute.

Defining the Inheritance Structure. Inheritance structure is an "is a kind of'

relationship between classes. The inheritance structure may be between classes already

identified, or between classes identified and other classes yet to be uncovered.

One method for identifying the inheritance structure is to start with the existing classes

and see how they are related to each other, determine if there are potential generalizations

of the class that may be a superclasses, and examine the possibility that there are

specializations needed of the class. Any new class will have to be examined to see if it

meets all the requirements of a class and that it is in the problem domain [COYO91]

2-15

Another related method is to find similarities and differences between the uncovered

classes to build a class inheritance hierarchy [LAD9DW).

The class structure is normally represented as a graph, with the superclasses on t1p

and the subclasses underneath. There is a line between each class and the class or classes

from which it inherits. Figure 1 ;hows an example class structure using multiple

inheritance. Class A is the direct superclass of Classes B, C, and D. Class E inherits from

both Class B and Class C (multiple inheritance). In actuality, Class A is a superclass for

all of the classes in the Figure because all the classes inherit the attributes and services of

Class A.

Class A

Class B CasCClass D

Class E Class F

Figure 2-1. Inheritance Structure

There is no one perfect inheritance structure for a problem. There are good and bad

structures, depending on how well the problem domain is modeled and the results of the

2-16

evaluation of the stru,.'re using other metrics such as the coupling between classes.

Classes should be as independent and self-contained as possible. A class should need

informatiorn through message passing from as few other classes as possible and should not

depend on any other class's internal structure. There are tradeoffs on the depth of the

inheritance structure. Class structures that are wide and shallow have classes that are

fairly independent and therefore are not as likely to require changes when other classLi

change. These classes can also be used in different ways witl'out having to rewrite the

class. Class structures that are deep exploit the commonality between classes, so each

class contains less information than classes in the wide and shallow structure, but the

classes are very dependent on each other [BOOC91 i.

Defining ObJect Relationships. Class-&-objects can have different relationships,

other than that of inheritance. An object relationship is an abstraction of an association

between two real-world entities that are abstracted as class-&-objects. Relationships are

labeled with numeric bounds that show the range of the connections.

Whole-part relationships can be identified by looking for assembly parts, container

contents, and the memnbers of collections. If those entities that make up the whole-part

structure are candidate class-&-objects, and they are part of the problem domain, then

they should be part of the model (if they are not already) [COYO9 I].

If two class-&-objects are related, a new class-&-object should be added that contains

the relationship information. This makes the classes independent and therefore more

usable [BULM91]. For example, a relationship between the class-&-object Caio, -nd the

class-&-object People is ownership. A person can own zero or more cars, and a car must

be owned by one person but can be owned by more than one person. This may be

modeled by:

2-17

ownership

People - Cars

10:n] [1,n]

The OORA methodology adds a new class-&-object that contains the information on who

owns what car. This may be called "CarOwnership" and will contain all information

about car ownership, instead of the information being spread across two class-&-objects.

This new class-&-object is called an associative class-&-object [SHLA89J.

These relationships can be found in the documentation or by asking domain experts the

possible relationships that already identified class-&-objects have with other entities.

Relationships in OORA are similar to the entity-relation diagrams used in structured

analysis methods. In entity-relation diagrams, entities, which are real world objects, are

shown as rectangles and the relationships between the entities are represented as diamonds

[DAVI90. The entities would correspond to classes in OORA and the relationships to

object relationships.

Defining Class Attributes. Attributes define how a class-&-object is viewed in the

domain by defining the characteristics of the class-&-object that are important in the

problem. For example, there are many possible attributes for the class-&-object Person,

such as name, address, phone, height, weight, marital status, hair color, place of birth, etc.

The key is to pick those attributes that are required in the problem. For example, if the

problem is a mailing system for school announcements, probably only name and address

would be required. It is highly unlikely that the system would have to keep information on

hair color, height and weight.

The attributes are defined by the analyst examining what the objects of a class are

responsible for knowing or keeping information about over time. The analyst determines

what subset of the object's attributes is needed in the problem domain. Since the values of

2-18

the attributes make up the object's state, possible states the object can be in during its

liti'tme must be examined. A key is to look at what the system needs to know about that

object [COYO91].

Each attribute should be a single value or a tightly related group of values. The actual

way the attributes will be identified and stored will not be determined until OOD

[COYO9 1].

A set of attributes should completely describe the necessary state, each attribute

should capture a separate concept, and attributes should be independent of each other.

Attributes can be placed in three categories. Descriptive attributes are those that can be

used in the sentence, "The ATTRIBUTE of OBJECT is ". For example, "Color" is an

attribute of the class-&-object "Dress", since it can be used in the sentence, "The color of

the dress is red." Naming attributes are arbitrary names and labels, such as a social

security number. Referential attributes are facts that tie one object to another. An

example is the class-&-object Student, which may have the attribute SchoolName that

would tie that student to a particular school. The domain of each attribute, or the set of

values each attribute can take on, must be able to be identified. Attributes must represent

a characteristic of the entire class-&-object, and not just of another attribute. For

example, if there is a class-&-object Student with the attributes Name and School-Name,

there should not be an attribute of SchoolAddress. This attribute only applies to the

attribute SchoolName, and not to the entire class-&-object. SchoolAddress should be

an attribute of a class-&-object School which also includes the attribute SchoolName

[SHLA88].

Where the attributes are placed is determined by the class-&-object to which the

attribute is most tightly related. The attribute should be put on the highest level of the

inheritance structure where the attribute applies. An attribute should always have a value

in an object. If there is an attribute that does not apply to some of the objects, either the

2-19

attribute is in the wrong class-&-object or the inheritance structure needs to be modified

ICOYO9 11.

Defining Class Services. The services contain the necessary processing for a class-&-

object. Any change of state is accomplished through the execution of a service. The

information required about a service are the service's name, input (if any) and output (if

any), services needed from other objects, and the state change caused by the service (if

any). The specification of how the service is implemented is left to OOD and OOP.

Before the services can be defined, the possible states an object can go through must

be defined. For example, if Address is an attribute of the class-&-object Person, an

address change of a particular Person object would cause a change of state. This address

change can only be done through the invocation of a service. State models are used to

show state transitions for an object.

Once the state transitions have been defined, the services can be identified. Services

can be categorized into algorithmically-simple services and algorithmically-complex

services. The algorithmically-simple services are those that create a new object in the

class, connect or disconnect an object with another, access or change the attribute values

of an object, or release or delete an object. An example of an algorithmically-simple

service is one that changes the address of a Person object, given that Address is an

attribute. The algorithmically-complex services calculate results from attribute values or

monitor an external system or device. An example would be a service that calculates the

pay based on the hours worked, the dollars per hour, and the tax tables. Services are

identfied by looking at the categories and the required state transitions and determining

what is required for each class-&-object [COYO9 1].

Related to the identification of services is the identification of the required message

connections. If a service requires information from another object, it sends a message that

invokes that object's services. The message connections show the processing

2-20

dependencies between objects. For example, if a Paycheck object needs to calculate an

employee's pay, it may have to access the Employee object, and a State-Tax table object,

and a FederalTax table object to get all the information required. It may be desirable to

show the timing relationships between objects through the message connections. For

example, if a User object requests information through the use of a service, the trace of

message flow through the system could be analyzed by tracing the messages starting with

the messages invoked by that service through all messages required to fulfill the

requirements of the first service call.

The services should provide all the processing needed for an object, but there is

disagreement on the level of the services. In [COYO911, a basic set of services is

emphasized, whereas [BULM91] states that the higher the level of the operations in the

object, the better. For example, if the object is a stack, two services could be Get-Top

and Pop. These two could be required to pop the stack and get back the item at the top of

the stack if basic services were provided. On the other hand, one service could be

provided that does both functions, if that is all the object will be required to do and higher-

level services were used.

One method recommends that if an object has too many operations, it should be

examined for decomposition into several smaller objects. Also, an object should not

contain both high-level and low-level operations. Two class-&-objects should be created:

one with the high-level operations and one with the low-level operations [WHIT89].

The number of message connections that a class-&-object has with other class-&-

objects should be minimized. This minimizes the system coupling and makes for a system

that is easier to test and change [CHID91] [WIRF90].

Developing a State Model For Each Class. The state of an object is the set of values

of its attributes. The state can only be changed through invocation of a service. Most

models provide a notation for describing the possible state changes that an object of a

2-21

class can go through. This is also called the dynamic behavior of a class IBERA92al

[COLB891 [HAYE911 [SHLA891.

There are often restrictions on when an object can change state, or, in other words.

when a service can change the state. These restrictions are typically portrayed as either

preconditions on the service or annotations on a graph showing possible state changes.

Pre- and post-conditions can be written for each service. These declare when state

changes are allowed (precondition) and what changes are made it the precondition is met

(postcondition). Given some initial state, the dynamic behavior can be determined using

these preconditions and postconditions. The dynamic behavior can also be shown

graphically using state transition diagrams, statecharts, or variations. These show all

possible states of a class and all possible transitions between states. The transitions are

labeled with the event that causes the transition and the conditions for the transition to

occur.

Some OORA models do not address the dynamic behavior to the degree of showing

all state changes. Coad and Yourdan's approach shows the message passing possible and

the services, but not all possible states or preconditions and postconditions.

Existng Systems

Existing systems that support parts or all of the requirements analysis process are

briefly described. They are placed into one of three groupings. Members of the first

group use a natural language front end, those of the second use a constrained input, and

those of the third use formal specifications as input.

Systems That Use a Natural Language Front End.

[ARIN89] presents a natural language front end for knowledge acquisition for a

knowledge base. Because the system uses natural language, it is constrained to a limited

2-22

problem domain. Natural language, being characterized by ambiguity, idiomatic

expressions, and context dependence, requires a restricted domain for the systems to be

able to disambiguate the input text with low failure rates. The system maps from natural

language to a knowledge representation in the knowledge base. The system includes

expertise in the knowledge elicitation task. The system does consistency and integrity

testing, which is where much of the difficulty is. The system is intended to greatly reduce

the role of the knowledge engineer in the initial acquisition and totally replace the

knowledge engineer after the system has been implemented and initially tested. The

system must be pre-calibrated with high-quality basic domain knowledge for the natural

language front end to be able to accurately parse the user input. The knowledge is

represented in Prolog.

The SAFE system takes a natural language text that has been parenthesized to show

the sentence structure as input and produces a formal operational specification (it has

executable semantics). The natural language input must be small (about 10 or so

sentences). The parentheses are used to avoid syntactic parsing problems. The system

resolves issues such as missing operands, incomplete references, and terminology changes.

The operational specification is in a language called GIST [BALZ78I [BALZ85I.

MOANA uses natural language dialog to acquire formal software requirements. In

order to understand the user, MOANA uses knowledge about the structure and

requirements of typical software systems. MOANA is not domain specific. It uses natural

language without constraining the domain because it does not have to completely

understand the entire natural language input. The user of MOANA is a domain expert

who is not a software engineer. The dialog is designed to avoid unconstrained textual

input by controlling the initiative in the dialog. The system looks for keywords that can be

matched to a set of stereotypical software models. These models are used as a starting

point for building models of the user's desired software system and consist of necessary,

2-23

typical, and optional components. MOANA has a script that specifics the type and order

of information that is obtained from the user. The system asks clarifying questions and

identifies incompleteness and inconsistencies. It uses a natural language generator to

communicate with the user. The system requirements are represented using operational

and data flow models. The output of MOANA is a series of software models which is fed

to the software designer [CHIN891.

IDeA is an environment for supporting high-level specification and design. It provides

graphical support for data flow diagrams and a natural language front end for interpreting

informal specifications. Its unifying model is based on data flow representations and

methodologies. There are generic data flow diagrams in the system that are instantiated to

create the design [LUBA86J.

The unnamed system in [DOHE90] takes as input a functional specification written in

English. It reduces ambiguities and shows the revised sentences to the user for review.

Once they are accepted, the sentences are converted into predicate form. Usually the

initial information entered is incomplete and inconsistent, so the system uses internal

domain knowledge or queries the user. The domain knowledge in the system is

represented in Prolog structures in a conventional tree inheritance structure. The goal is

to get the information to a point where an established design algorithm can be used.

[SAEK89] discusses parsing a natural language specification with human interaction to

develop an object-oriented specification that can be transformed into a design

specification, and then into code. The system concentrates on extracting verb phrases.

The user has to decide which of the extracted nouns and verbs are important, and

therefore the system relies heavily on user interaction. There is domain information in the

system and no class hierarchies are produced. The system is used for time-oriented

systems.

2-24

KAPS is a system that provides knowledge-based assistance to the requirements phase

from an object-oriented perspective. The goal is to add formalism - not to produce a

formal specification. The system accepts the user's natural language description of a

system's behavior. The input must be grammatically correct with no pronouns. The

system does an interactive parse and produces a standard Lisp expression. Using the

parsed sentences, facts are asserted into the knowledge base. The result is object-

oriented, although the model is not a complete object-oriented model. Feedback with the

user refines the model. Knowledge about OORA is not encoded. No domain knowledge

is contained in the system [CARV90I.

Systems That Use Constrained Input. Not Formal Language. as the Innut Form.

[BARS85] discusses an automatic programming system that starts with an informal

specification consisting of preconditions, postconditions, inputs and outputs that are in a

higher order language (HOL)-like form. This form is transformed into a formal

specification and then coded. This is done using knowledge about programming, the

application domain, manipulating mathematical expressions, and the target architecture

nd language. The informal input is formalized by either recognizing the informal form

and replacing it with a formal one, or crying to apply problem-solving heuristics to

decompose the problem into smaller ones. The domain-independent problem solving

heuristics are represented as pattern (the informal input) - action (decomposition or a

formal specification) rules. The basic facts and relationships of domain knowledge are

represented as structured objects and stored in a knowledge base. The system is

dependent on being able to operate in a very narrow domain.

In [BOBB90], the software requirements are elicited from the end user using a logic-

based, declarative tool. The attributive information (objects and attributes) is elicited and

represented using Prolog. This produces Prolog programs that can be analyzed for

consistency, completeness, omission, and ambiguity through execution of the

2-25

representation. The data elicited is in rule and fact form. The behavior is elicited in frame

form.

ORM (object relationship model) is an alternative model to object-oriented modeling

that uses complex, or composite objects. It uses the standard object-oriented concepts of

objects, relationships, and classes. A role is assigned to each class in a relationship and

cardinality constraints are specified for both classes involved in the role. Attributes are

considered to be a special kind of object class. The objects and relationships are grouped

to form complex objects. The analyst enters the information in graphical form and then

asks for an evaluation of the model. A heuristic approach is taken in evaluating

consistency and completeness, using forward chaining rules. An example of

incompleteness is a totally isolated object. Inconsistency rules are activated whenever

there is a change to the model. An example of an inconsistency is that the max is less than

the min in cardinality constraints [IPCH911.

[KUNG89] describes a conceptual model that uses a visual and formal approach that

models static and dynamic aspects in one model. This conceptual model can incrementally

describe the information, has a mathematical basis, and produces an executable

specification that can be translated into Prolog. There is no discussion on how the

information is entered into the system. Once the information is in, the system evaluates

the model. The static information is modeled in an entity-relationship-like language. The

dynamic information is modeled in expanded data flow diagrams (DFDs). The elementary

processes are modeled similar to Petri nets. Each elementary process has a pre- and post-

condition. This format allows for formal analysis of liveness, invariance, and some aspects

of correctness. It is different from the object-oriented model because in this model entities

are passive components and the separate processes are active components.

The Analyst Assist (AA) project is a knowledge-based tool environment to assist

developers in constructing and maintaining a requirements specification. It assists the

2-26

analyst in capturing informal requirements, improving the transition from informal to

fbrmal requirements, specifying and documenting the requirements using the Jackson

Software Development (JSD) method, and validating the specification using prototyping

and animation. The initial process of eliciting information is machine-assisted through the

use of checklists and facilities for recording the user's answers. A user fact base is created

using a fact input tool. The tool is guided by a formulator, which makes use of the domain

knowledge base and the current state of the user fact base. Using the information from

the checklists, user fact-base, and method and domain knowledge, JSD models are built

and presented for checking [LOUC881 [LOUC90].

The Programmer's Apprentice project is studying how software engineers analyze,

modify, specify, verify, and document software systems and how these tasks can be

automated. The near-term goal is the development of a Programmer's Apprentice, which

can act as a software engineer's partner and critic, taking over simple tasks and helping

with more complex ones. Part of this project is the Requirements Apprentice (RA), which

assists the analyst in the creation and modification of software requirements. The RA

does not interact with the end user, but is an assistant to the analyst. Therefore it does not

have to deal with natural language input and can use a more restrictive command

language. The RA produces as output conclusions drawn and inconsistencies found, a

machine-manipulable knowledge base that contains everything known about an evolving

requirement, and a requirements document summarizing the knowledge base. The RA has

three components. Cake is a knowledge representation and reasoning system that

supports propositional deduction and equality reasoning. Cake also maintains

dependencies between deduced facts and the incremental retraction of facts. There is an

executive that handles user interaction. The last component is a clichd library that

contains information on requirements in general and on domains of interest. The clicht~s

are the heart of the system and allow the RA to critique what is in the requirements as well

2-27

as what is missing. C0chs are a way of representing, organizing, and applying domain

knowledge. They represent commonly occurring structures in the domain. A major

research goal of the RA is the codification of the clich&s. Every requirement entered into

the RA has to be recognized as an instance of some existing clichM. New domains are

covered by defining new clichds. A clich6 consists of a set of roles and constraints

between them. The roles are the parts that vary from one use of the clichd to another.

The constraints specify how the roles interact, and they place limits on the parts that can

be used to fill the roles. The cliches are organized hierarchically and are represented as

frames. These frames are linked by constraints and arranged in an inheritance library.

Roles are represented by slots, and the constraints are predicates on the slots.

Incompleteness in the specification is handled by making sure that all necessary roles

(slots) of the clich6 are filled in. An example of a clicht, is a repository with roles of

collection, patrons, staff, repository additions, and repository deletions. The user inputs a

Lisp expression whose first component indicates the type of the command IREUB911.

Kibitzer was created to address the stages of problem identification and

conceptualization in knowledge based system design. It helps an analyst create a model of

the problem domain that consists of concepts and relations. The domain model is encoded

in MetaClass, an object-oriented environment for Common Lisp. The Kibitzer system

monitors the editing commands and formulates suggestions and warnings regarding the

course of model development. The user interface is graphical using multiple windows.

The user input is constrained English and menu-type suggestions. The concepts (like

classes) are defined, and the relationships between the concepts are identified by the user

of Kibitzer. The Kibitzer system uses inheritance. Based on how the concepts and

relationships are named, Kibitzer can tell if a concept is a subclass of another concept and

what classes relationships belong to. Kibitzer uses a library of cliches for domain

knowledge that are very much like those of the RA [SCHO91 1.

2-28

STES (specification transformation expert system) is a iystem that translates a

requirements specification expressed in terms of DFDs into a design specification in terms

of structure charts. STES contains a knowledge base that contains information on the

structured design methodology and heuristic guidelines to help determine when certain

methods should be applied [TSAI88J.

"The KIT-LERNER project is based on the use of sloppy modeling. The BLIP system.

which is part of the KIT-LERNER project, is a knowledge acquisition system designed to

acquire basic problem-solving independent knowledge about a domain, including

terminology and simple empirical knowledge. The user enters facts, predicates, and rules

in a windowed environment. There are no prestructured activity sequences; any of the

operations are available to the user at any time. The BLIP system is implemented in

Prolog and Lisp [WROB88].

ESA (Expert Supported OOA Tool) is a system based on an extension of Coad and

Yourdan's OOA methodology. ESA is a graphical environment that provides icons for

OOA structures and a limited knowledge-based analysis to critique the completed OORA

model. There is no assistance for creating the model [SCHA92].

The KBRAS system is intended to automate the process of acquiring software

requirements by providing eliciting and modeling facilities. KBRAS's conceptual models

consist of an environmental and virtual model. The environmental model defines objects,

object types, attributes, relationships, and associated constraints. The virtual model

consists of objectives, activities and states for achieving those objectives, and the control

knowledge that describes the software behavior. The KBRAS user interface is graphical

and accepts restricted natural language. It contains knowledge on the form of the

representation of a domain, the process for how the domain specific knowledge is

acquired, combined, and used to model a system, the heuristics used to guide and optimize

the integration of system components, and the knowledge required for checking for

2-29

inconsistencies and conflicts. The requirements acquisition knowledge is a set of

procedures, and the domain specific knowledge is represented by rules and frames. The

internal notation produced as output is not formal [ZERO91 1.

Systems Using Formal Language as Input and Representation of the

Kate takes as input a ftrmal specification and a context in which to analyze it and

outputs a critique which consists of textual reports and simulation. Kate is a computer-

based critic. The formal language has the expressive power of Petri nets, plus it adds a

class hierarchy, place capacities, and the ability to associate computable predicates with

arcs. The critic contains a model of the domain, a matcher to connect the model with the

input specification, and a critiquer that does the analysis. The model has a set of policy

issues for building systems in the domain and relevant cases. Policy issues are potential

specification goals. These represent past experiences in a domain in the form of cas .s and

scenarios. The cases are operational, and they provide an abstract behavioral description

that ties the nonoperational policy issues with the concrete behavior in the specification.

The critic identifies policies that are not supported, are obstructed, or are not necessary

[FICK881.

FRORL (Frame and Rule Oriented Requirements Language) is used with a method

called the predominance/particular method and a knowledge base to support the

requirements. acquisition process. FRORL uses frames for object-oriented modeling and

production rules for specifying actions and constraints of the domain. Abstract

relationships used in FRORL are isa (instantiation), apari- of (whole/part), and

ajkind-of (inheritance). The predominance/particular method emphasizes that the main

features should be represented first using simple and general descripuons; details are then

added incrementally. The knowledge base contains rules for specification evaluation,

prototype validation, and the translation of the specification into Prolog code. The

2-30

production rules are in Prolog. The input to the system is a set of frames. FRORL starts

by describing the main system features using frames and then adds detail. The

specification is executed in order to validate it. A query system allows the user to ask

questions about the evolving specification. FRORL supports default and multiple

inheritance. Two types of frames are input: object frames and activity frames. Object

frames contain information on the relationship with other object frames (is-a, a-part_of,

a_kind-of), the attribute names and the associated attribute values. Activity frames

represent changes taking place in the domain. They have five slots: the abstract relation

(usually a-part of), part (the objects or attributes taking part in the activity), precondition

for the activity, action (if the precondition is met, do the action). and alt-action (if the

precondition is not met, do the alt-action). The parameter list of the activity is the set of

parts. To allow the specification to be incrementally built, nonterminal symbols are used

to express a term that will be precisely defined later in the development of the specification

within FRORL. The knowledge base contains knowledge for checking the specification

for proper syntax and consistency, prototype validation knowledge that is used to execute

the specification and answer queries, and transformation knowledge that produces Prolog

code from the specification [TSAI891.

HCLIE (Horn Clause Logic with Inheritance and Exception) is a language that is a

superset of ordinary Prolog. It adds the syntactic category of common nouns. Common

nouns are distinguished from predicates by the prefix "kind". HCLIE allows default

inheritance, which is where inherited properties can be overridden. It also allows multiple

inheritance [TSAI911.

2-31

Relationship of Technology Areas to OAKS

Overview. OAKS is built around an object-oriented domain model that is modified to

produce an object-oriented model for a particular problem in that domain. The OAKS

system is based on OORA principles, structures, methods, and guidelines and rules. Only

object-oriented structures, relationships, and techniques were used to develop the OAKS

system, in contrast with using other techniques such as function-oriented or dynamic-

oriented.

Requirements Analysis. OAKS produces a requirements specification in the form of

an object-oriented model of the problem to be solved, which is referred to as the problem

model. The problem model of OAKS is the conceptual model of the system to be

devt loped. The OAKS evolving problem model is in informal form, as inconsistencies and

incompleteness are allowed. These are removed before the problem model is considered

completed.

The main purpose of OAKS is to manage the requirements analysis process. OAKS

contains knowledge of a process that is used to elicit requirements from the user, build the

problem model, recognize an incomplete and inconsistent problem model, and display the

evolving problem model to the user for verification. The OAKS problem model adheres

to the concept of a specification in that it specifies what the required system that is to do,

but not how to do it.

OAKS represents the specification using a formalized representation consisting of

CLOS and LISP code. This representation can be used in different and varying domains.

OAKS does not force a certain sequence of decisions on the user. Instead, it allows

the user great flexibiLity in choosing the sequence of changes made to the problem

specification.

2-32

OAKS is tolerant of incompleteness, and is easily augmentable.

Future work in OAKS should examine the transformation of the problem model into a

formal specification that could be used to develop code.

Requirements Analysis and Artificial Intelligence. OAKS contains knowledge of

the domain of interest, the OORA process, the structure of the model of the OORA

specification, techniques for transforming the domain model into the problem model, and

the process of eliciting information from the user.

OAKS's role is closest to that of "sloppy" modeling [WROB88]. The user is not

required to develop a complete problem model before interacting with OAKS. There is a

minimum order imposed on the changes that can be made to the evolving problem model.

OAKS tries, where possible, to organize and complete changes entered by the user.

OAKS tries to maintain integrity and consistency of the problem model and provides

immediate feedback on the consequences of all changes. OAKS allows the user to view

the problem model at any time and at various levels.

OODA. The OAKS domain model contains the objects, operations, and relationships

in a problem domain so they can be modified to produce different problem models in the

domain. An OODA must be conducted to produce the domain model. This research did

not, however, address the process of OODA. It addressed the form, use, and changes of a

domain model, once it is created through the OODA process. OAKS does not provide the

tools or guidance for conducting the OODA. This would be done by an analyst and the

results encoded in OAKS prior to a user's interacting with OAKS.

OORA. OAKS conducts an OORA by creating a problem model that represents an

object-oriented specification.

OAKS does not copy any one OORA model or process. Instead, it borrows

components, relationships, steps and guidelines from numerous OORA processes.

Therefore, the first step in developing the OAKS system was the development of a math-

2-33

based model containing the components and relationships that would he used in OAKS.

This step also developed the terminology and definitions used in the OAKS system. The

second step evaluated existing OORA processes to gather guidelines and rules that could

be used in the OAKS domain model and in the evaluation of the evolving problem model.

Existing Systems, OAKS contains all the components and relationships of an object-

oriented specification in their object-oriented form. That is, classes are the central, active

components that encapsulate their attributes and services. OAKS also does more than

provide a set of structures from which to construct a specification. OAKS contains

knowledge of the OORA process to guide in the development of a problem model that is

consistent and complete with respect to the defined object-oriented guidelines and rules

and the structure of the OAKS domain and problem models. These two characteristics of

OAKS make it unique among the existing automated systems.

The existing systems either do not express an object-oriented specification in a true

object-oriented form or they provide little guidance and contain little if any knowledge of

the OORA process. The systems using frame-based techniques encapsulate attributes

within the classes, but services are separate, active entities that are only referred to within

the class. Those that produce a true object-oriented specification provide graphical

support and limited checking but provide little process support or knowledge. The

Analyst Assist and the KBRAS projects come closest to the concept of OAKS, except that

neither produces an object-oriente; specification. Some, like the Requirements

Apprentice, are centered around a particular domain of interest, but they contain little

OORA process or model knowledge.

OAKS does not currently contain a natural language front-end, although such a front-

end would be ultimately desirable. It also does not require a formal specification as input.

This enables the user of OAKS to interact in a way more natural for this phase of software

developinent.

2-34

OAKS is the only knowledge-based system that was started from a basis of an OORA

system and built around this defined system. The development of OAKS placed

importance on a pure object-oriented approach to the model components, relationships,

and the evaluation of the evolving model.

2-35

!111, Methodology

Overview

The main objective of this research was to investigate the teasibility of a computer-

based system that can guide a user of the system in the conduct of an OORA resulting in

an object-oriented specification of the system to be developed. The proof-of-concept

system developed is called the OORA Automated Knowledge System (OAKS). OAKS

contains a domain model that serves as a system template, and it is modified by the user to

produce a model of a particular system.

OODA
OD A

Domain Model

ITransform Analyst

OAKS
Domain Model

I Insert

LLOAKS

Modify

Problem User
!Mod lel

Figure 3-1 Domain Model Creation

3-1

The do; 'ain model is developed by an analyst who is familiar with a domain and with

OORA. Figure 3-1 shows the steps involved in creating a domain model for OAKS. The

analyst first conducts an OODA in a domain. This results in a generic set of classes and

relationships for that domain. The analyst then transforms the OODA results into the code

structure used for the OAKS domain model. This code is inserted into OAKS and tested

to ensure it meets OAKS guidelines and rules. After the tests have been successfully

completed, OAKS is ready for the user to modify the domain model and create a problem

model in that domain. The research addresses the basis and structure of OAKS, but does

not address the OODA process used to create the domain model.

OAKS was developed in six steps. Each of the steps built on the findings of the

previous step(s). The first step defined an OORA mathematical model which contains the

components of the OORA model and their relationships. All order constraints on

acquisition of the components were defined. The second step defined how to acquire and

evaluate the components of the OORA model. The evaluation information took the form

of guidelines and rules. This provided information on how to evaluate the model and the

model component interactions. The third step defined how to implement the guidelines

and rules developed in step two for the purpose of evaluating the object-oriented

requirements model. Step four prototyped OAKS. The prototyping of the system

required the development of a code structure that represents the domain model, a

component that analyzed the domain and evolving problem model, a component that

modified the domain model to produce the problem model, and a user interface. The fifth

step tested OAKS, and the sixth analyzed the results. Figure 3-2 shows all the steps and

their order.

3-2

(components and relationships)
Step I

Order Constraints onw
Component acquisitioon

Acquisition and Evaluation of Components I
omain and Model Independent Guidelines/Rules Step 2

Application of IndependentGuidelines and Rulep 3
Domain-Dependent Guidelines and Rules Step

Prototype OAKS Step 4

Test OAKS Step .5

[Analyze Results] Step 6

Figure 3-2 Research Steps

Step .Defia an OORA Mathematical Model

The OORA mathematical model is one that contains the components and relationships

necessary for the development of an object-oriented requirements model of the system to

be developed. The system to be developed is the solution to a particular problem in a

domain, called the "problem model".

The OORA mathematical model was developed by analyzing existing OORA

processes. These processes were used as a basis for a set of components and their

3-3

relationships that are necessary for an object-oriented specification. These components

were used as the components of the OORA mathematical model. This mathematical

model was used as the basis for the domain model in OAKS.

Step I produced information on what, for the purposes of this research, was

considered a "good" OORA model and the required relationships between the components

of the model. This information was required to enable OAKS to evaluate the

completeness and consistency of the domain model and the evolving problem model as far

as the inclusion and form of the necessary components.

This step enumerated all the components necessary for an OORA and the resulting

specification, their allowed relationships and the order in which they are acquired.

Another product of this step was a rationale on why the components and relationships of

the resultant OORA model were selected and why certain components of existing OORA

models were included or excluded.

Step 2. Define Acquisition and Evaluation of the OORA Model

Step I defined the components, their relationships, and the order of acquisition of the

components. Step 2 collected domain and model independent guidelines and rules on how

to acquire and evaluate those components and relationships to ensure they meet OORA

constraints, rules and guidance. These guidelines and rules were collected by analyzing

existing OORA processes and extracting guidelines and rules on the creation, form and

changes of components of the OORA model. The guidelines are those criteria that are

suggested but not required. An example of a guideline is that a class should have more

than one service. A rule is a criteria that must be adhered to. An example of a rule is that

a subclass must inherit all the attributes and services of its superclass(es). The guidelines

and rules on acquiring the model components were used in the development of the OAKS

3-4

domain model. Some of the guidelines and rules for evaluating the model componentL

were embodied in the OAKS model and some were quantified in step 3 so they could he

applied by OAKS to the domain and problem models.

These guidelines and rules that were based on existing processes were in a form that

was informal and not directly usable by a computer-based system. Furthermore, they did

not form a complete set. These guidelines and rules were gathered from a review of the

literature. In Step 3, these guidelines and rules were refined and further guidelines and

rules are added based on the domain information. Step 4 developed guidelines and rules

that were based on the OAKS domain and problem model structure, and the OAKS model

modification process.

The guidelines and rules analyzed in this step were independent of the domain and of

the OAKS model structure. They were developed based on the desired static

characteristics of the OORA model. Their purpose is to evaluate the model components,

the interactions between the model components, and the entire model. These domain-

independent guidelines and rules are applied to any domain used in OAKS, because they

are based on the desired characteristics of any OORA model.

Step 3. Define Application of Guidelines and Rules

Step 2 developed a set of domain-independent guidelines and rules that wzre

applicable to any OORA model. However, these guidelines and rules were not in a form

that could be used by a computerized system. Many were too subjective, using words

such as "best" and "may be". These guidelines and rules also did not take into account the

domain of interest or the structure and process of the implemented OAKS system.

Guidelines and rules based on the domain of interest are discussed in this step. Guidelines

and rules based on OAKS structure are discussed in Step 4.

3-5

In this step, the guidelines and rules of Step 2 were examined to determine which

would be used to evaluate the domain and problem model and how they would be used.

Some of the guidelines and rules were used in the development of the domain model but

not used to evaluate the model once it was in OAKS. For example, standard terminology

for the domain was used to create the class names in OAKS. A user manual for OAKS

would contain suggestions to use standard terminology when creating a new class in

OAKS, but the OAKS system itself cannot check for standard terminology.

The form of domain-dependent guidelines and rules was also developed during this

step. Domain-dependent guidelines and rules provide a more complete analysis of the

domain model. This information is used by the OAKS system to ensure consistency and

completeness of a model in a particular domain. An example of a domain-dependent rule

is that a certain class in a domain cannot be deleted because it is essential in that domain.

A particular domain was chosen in this step. The chosen domain was that of a system

that manages the scheduling and maintenance and flights for an Air Force aircraft

squadron.

Step 4. Prototype OAKS

The prototyping of OAKS was required as a proof-of-concept of the feasibility of a

computer-based system that guides the OORA process. OAKS required the design and

implementation of code structures to represent the OORA model and the relationships

between components in the model. The code structure contained all the components and

relationships in a form that could be used in any domain in which an OODA could be

performed. The model had to be flexible yet accessible, so that the structure could be

constantly checked during the user modification process.

3-6

After the structure of the OAKS domain model was completed. the structures in code

that analyzed both the domain and problem model in accordance with the guidelines and

rules established in step 3 were developed. The analysis code was used both to check the

validity of the domain model prior to its use, and to check the validity of the evolving

problem model.

The development of code structures that would enable the modification of the domain

model by the user followed the development of the analysis code because the analysis code

was used to evaluate all changes. This code controlled the modification process so that

the mode! remained consistent and complete in accordance with model structure and

OORA guidelines and rules. It also controlled the order in which changes were made, if

such an order was necessary to maintaining a valid model.

The last code developed was the graphical user interface. This allowed easier access

to the model and the modification process. OAKS uses the domain model as an initial

template and then guides the user through the creation of a problem model through a

series of refinements to the domain model. The refinements can be done in any order,

except for the requirements for order based on the model itself, and previous refinements

can be changed at any time.

Step 5. Test the OAKS Prototype

The testing of the OAKS prototype was an integral part of the development of the

OAKS code. As each LISP procedure was developed, it was tested as a separate entity to

ensure proper operation. The LISP procedures were then grouped into functional areas of

code, such as a set of procedures that checked the proper structure of an attribute, and

then tested again. Each of the files that make up OAKS was then tested. First the file

"oaksd:lisp", which contains the OAKS model structure and the domain model, was

3-7

developed and tested. Next, the model evaluation code in "oaksno.lisp" was developed

and tested. This required the use of "oaksd.lisp". The OAKS modification procedures in

"oaksmod.lisp" were developed and tested next. These required the use of the tiles

"oaksd.lisp" and "oaksno.lisp". The user interface (UI) was developed next. The UI uses

three files: "oaksui.lisp", which contained the LISPView code that creates the windowed

user interface; "oaksave.lisp" which saves the evolving domain model to a tile and

retrieves it for any OAKS session; and "oaks.lisp" which loads all of the above files and

created the environment for using OAKS. The UI code is dependent on code from

"oaksd.lisp", "oaksno.lisp" and "oaksmod.lisp". Therefore, the development of OAKS

followed a building block approach, with each procedure building a file, which was used in

the development of the next file.

Step 6. Analyze the Results

The results were analyzed for future directions, problems, usefulness, areas that need

further investigation, and overall results. Given the size of the task, an important part of

the analysis was what work is left to be done and how it fits into the existing OAKS

system. OAKS was developed as a proof-of-concept system, whose emphasis was on the

development of a system that adhered as closely as possible to object-oriented concepts

and contained knowledge of OORA process and principles to guide in specification

development. Areas such as the user interface, dynamic characteristics of the model and

translation to design and code were de-emphasized.

3-8

IV. OORA Mathematical Model

An OORA model consists of a set of classes, denoted as SetOfClasses, and the

relationships among the classes. These relationships are the inheritance relation which

consists of the superclass and the ancestor relation, the whole/part relation, and other

relations. The OORA model will be discussed by describing all of its components and

building these components into a full model.

A class consists of a name, a set of attributes, and a set of services. The services

include how to create and destroy objects of that class.

Class Attributes

Each class contains a set of attributes. Each attribute is identified by a name and a set

that defines all possible values that attribute can be assigned. For example, for the class

"Flight-Schedule" there may be an attribute named "Take-Off-Time" whose legal set of

values is the set of integers between 0 and 2400 (using military time). Each object

contains its own value for each of the attributes of the class for which it is an instance.

Therefore, the value of an attribute can only be determined from knowledge of the object

identification. For example, if there is a flight schedule "Schedule-A" that is an instance of

the class "Flight-Schedule", the attribute "Take-Off-Time" may take on the value "1300"

for the object Schedule-A. For another object, the attribute may take on another value

from the set of legal values. The values of all the attributes of an object make up the

object state.

4-1

The name of each attribute. . AtrName i. can he modeled as a function. The

domain of an attribute function is the set of all objects that are instances of the class to

which the attribute belongs. The set of all objects of a class named Class-Nam, denoted

by OBJ(ClassName), is defined as shown in relation (1).

OBJ(ClassName) = {c~j I obj is an instance of ClassName) (1)

The range of an attribute function is a set of legal values for ti.e attribute, Range-i.

The function associated with each attribute name takes as input the name of an object and

returns the value of the attribute for that object. The returned value must be a member of

the set of legal values for the attribute, Rangeji. In particular, AttrNameji maps values

from OBJ(ClassName) into Rangei.

Attr_Name_i : OBJ(ClassName) -4 Rangei (2)

where AttrNamei is the name of an attribute within ClassName, OBJ(ClassName) is

the set of objects that are instances of Class-Name, and Range-i is the set of legal values

for AttrNamei.

The class state space, ClassStateSpace, can be represented as a finite set of pairs

consisting of attribute names and their ranges.

Class_StateSpace- {(AttrName_ 1, Rangel).., (Attr_Namen, Range-n)) (3)

where ClassStateSpace is the state space of a class, AttrName_1 and AttrNamen are

attribute names of that class, and Range_1 and Range-n are the legal values of

Attr_NameI and AttrNamen respectively.

4-2

If there are default values for the attributes, these are shown within the CREATE

service for the class in the postcondition. The CREATE service creates a new object of

that class with any desired default values of the attributes.

Class Services-

Each class contains a set of services that implement the behavior of the class. The

service names, denoted by Service-Name, can be represented as functions whose domain

consists of an object state, denoted by Object-State, and a list that represents an optional

input parameter list, InputList, and whose range is the possibly changed object state,

Object State, and a list that represents an optional output parameter list, OutputList.

Cbject State is a set that consist of the values of all the attributes of the object.

Object-State = {AttrName_I (ObjectName), .. , AttrNameAn (ObjectName)} (4)

where ObjectState is the set that consists of the values of the attributes of the class,

AttrNamei is the name of an attribute of the class, and ObjectName is the name of an

object of the class.

Input-List is a list of sets that represent the legal values that bound each of the

required input parameters of the service. Output-List is a list of sets that bound each of

the output values of the service.

Input-List = <InputSet_, InputSetm> (5)

Output-List = <OutputSet_1,.... OutputSetx> (6)

4-3

where InputSeti is the set of legal values for one input parameter and OutputSet_i is

the set of legal values for one output parameter.

Therefore, each service name can be represented as:

ServiceName : ObjectState X Input-List -4 ObjectState X Output-List (7)

where ServiceName is the name of the service, ObjectState is the set that consists of the

values of the attributes of a class before the service is executed, Input-List is a list of sets

that represents the legal values for the input parameters, Object-State is the set that

represents the values of the attributes of the class after the service is executed, and

Output-List is a list of sets that represents the legal values for the output parameters. The

symbol X represents the cross product.

The values making up the object state are accessed by the use of the attribute names,

a function, as described in the previous section.

For example, the class of Dog contains an attribute LicenseNumber, which is an

integer, and a service ChangeLicenseNumber that takes a new license number and

replaces the old one. An instance of the class of Dog is Fido. Object-State would consist

of the value of the one attribute, which in this case would be {LicenseNumber(Fido)).

The input list is a value from the set of integers that represents the new license number.

The output list is empty in this example.

In addition to specifying a representation for the service name, the operation of the

service must also be specified. The operation of the service can be specified by using a

precondition and a postcondition. The precondition, denoted by Pre, is a predicate that

represents assumptions on the object state (Object-State) prior to the execution of the

service, and the assumptions on the values of the input parameters in Input-List. The

postcondition, denoted by Post, is also a predicate that represents the required relationship

4-4

between the input values, which consists of the Object-State and InputList, and the

output values consisting of the Object-State and OutputList.

Hence, given relationship (7), then:

Pre(s, il I, im) -((True, False) (8)

Post(s, i l .. im, s', o 1 .. ox) -- (True, False)} (9)

where:

Pre is the precondition

Post is the postcondition

s e ObjectState

(it E InputSetjl) A ... A (im r InputSet-m)

s'E ObjectState

(ol r OutputSet_l) A ... A (ox r OutputSet-x)

If the input is in the domain and the precondition is true, then the postcondition is

implied. If the input is not in the domain or the precondition is false, nothing is known

about the output values of the service.

If the services of other classes are required to satisfy the requirements of the service,

the postcondition representation must contain references to those services. The form of

the reference to services of other classes is dependent on the form of the postcondition. In

this research, the services of other classes are represented by using a dot notation, where

the class name is separated from the service name using a dot, such as in

"ClassA.ServiceA". For example, the class Squadron may have a service called

"Number-Operational" that returns the number of aircraft in the squadron that are fully

mission capable. This would require a message from Squadron to each Aircraft object in

4-5

the squadron asking its status. This message would refer to the service of the Aircraft

class, called "Get-Status". By using the dot notation, the "GetStatus" service of an

object of the aircraft class is represented in a postcondition of the "Number-Operational"

service by "Aircraft.GetStatus".

When the operation of a service is specified, it is assumed that the service will be

operating on the state of a object that is an instance of the class to which that service

belongs. Therefore, the information required when specifying a service denoted as

Service-i, is the service name ServiceName (which is a function name), the input

parameters Input-List, the output parameters OutputList, the precondition Pre, and the

postcondition Post. Both the input parameters and the output parameters are optional,

and the precondition may be "true", signifying that any input state is acceptable. All input

and output values are assumed to be members of the corresponding input and output sets.

Therefore, a service can be specified using the following tuple:

Serviceci - (ServiceName-i, InputListi, Prei, OutputList-i, Posti) (10)

where Servicei is a service, ServiceNamei is the name of Servicei as defined by

relationship (7), InputListi is the input parameter list as defined by relationship (5),

Prei is the precondition as defined by relationship (8), OutputListji is the output

parameters as defined by relationship (6), and Posti is the postcondition as defined by

relationship (9).

The set of all services of a class, denoted by Services, is denoted by:

Services -Service_ 1,.. Service_s} (11)

4-6

where Services is the set of all services of a class and Servicei is one service of the class

as defined by relationship (10).

The preconditions and postconditions of the services of a class reflect all the possible

states of the class. The preconditions show all possible states prior to service execution

and the postconditions after service execution. The CREATE service shows the initial

state of an object of a class through its postcondition. Any service whose precondition is

true in the initial state of the object can be executed in that initial state, and the

postcondition shows the new state. Therefore, all possible states are specified by

following all possible service execution paths through the lifecycle of an object.

In reality, the only states that are of interest are those that are specified in the

preconditions of the services. For example, there may be a service called "Change-

Squadron" that changes the Squadron attribute of the Aircrew class discussed above. The

precondition for this service will most likely be "true", because any squadron will be

replaced by the new squadron. Therefore, even though there is a change in the state of the

object, it is not a state change that would allow different services to execute or not

execute because the value of the preconditions changed. On the other hand, going back to

the Aircraft class example, if there existed a service called "Schedule-Recheck", a likely

precondition would be that the aircraft already had the initial check of the system in

question. Therefore, two states of interest would be (1) the aircraft has not had its initial

check, and (2) the aircraft has had its initial check. This state would be changed by a

service such as "Conduct-Initial-Check".

Certain states of a class dletermine how a service operates and therefore constitute the

states of interest for a class. All possible states of interest of a class are not mutually

exclusive. An object may simultaneously exist in more than one state of interest. The

precondition of a service may use information on the status of none, one or more states of

interest to determine its true or false value. For example, assume there is a difference in

4-7

how a service or services in the Aircraft class operate based on the value of the Status

attribute and a difference on how a service or services operate based on whether the

aircraft has had its initial check of a system. Therefore, an aircraft can simultaneously

exist in two states of interest: the state of interest of being fully-mission-capable and the

state of interest of not having had the initial check.

Clascse

The identification of classes by name is a key component of OORA. Object names

are used to find classes by looking at how the objects may be grouped into classes, but the

objects are not used in the final model. The emphasis in OORA is the identification of

classes. The identification of the specific objects is done during design. The classes

represent the structure of the objects of the system. That is why Coad and Yourdan

[COYO911 call the structures created during analysis "class-&-objects". It is not

necessary during analysis to identify all objects that may be created by a particular class. It

is only necessary to identify all problem space classes by name. Solution space classes will

be identified during design.

Classes consist of the class name, denoted by ClassName, the set of class services,

denoted by Services, and the state space or the set of attributes, denoted by

ClassStateSpace. Services were defined in section 3.3 and ClassStateSpace in

section 3.2. Therefore, each class, denoted by Class-i, can be represented by the tuple:

Classi - (ClassName-i, ClassState_Spaceji, Services-i) (12)

4-8

where Class_i is a particular class, ClassNamei is the name of the class.

Class_StateSpaceli is the state space as defined by relationship (3), and Services-i are

the services of the class as defined by relationship (11).

All the classes in an OORA model can be represented as a set denoted as

SetOfClasses:

SetOfClasses a (Class_ 1. Class-n (13)

where SetOfClasses is all the classes in the OORA model and Classi is one class as

defined by relationship (12).

Inheritance Relationship

The inheritance structure is a key element of object-oriented analysis results. All

OORA methods include this structure in some form, mostly represented as a digraph.

The inheritance relationship can be described as a binary mathematical relation. Let A

and B be sets. The Cartesian cross product of A and B is defined by:

AXB={<a,b>lae A,be B} (14)

A binary relation R is a subset of A X B, where A is the domain of R and B is the

codomain.

<a,b> c R 4-* aRb (15)

4-9

Therefore, the inheritance relationship, denoted by R,, is a binary relation on the set of

classes in the system, denoted as SetOfClasses. That is,

R, - { <a,b>la,b r SetOfClasses A a is the immediate parent of b } (16)

where R, is the inheritance relationship and SetOfClasses is the set of all classes in the

model as defined by relationship (13).

This inheritance relation RI is called the superclass relation, where the superclass is

the immediate parent of each class. R, has the following characteristics:

(i) R, is irreflexive, that is, <x,x> 0 R, , V x r SetOfClasses.

(ii) R, is antisymmetric, that is, (x R, y A y R, x) =ý (x = y), V x,y E

SetOfClasses.

The ancestor relation, which describes all classes from which a class inherits, is

described by the transitive closure of RI, denoted by t(Rt). The transitive closure of R, is

the relation t(R,) such that:

(i) t(R,) is transitive.

(ii) t(R1) D R, .

(iii) For any transitive relation t(t(R,)), if t(t(R,)) z R, , then t(t(R,)) : t(R1).

Therefore, if RI is a binary relation on A, then <a,b> r t(RI) iff there is a sequence of

elements <c0, C11 cn>, ci E A, where n > 1, co = a and c,, = b, and for 0 < i < n, <c1,c,. 1>

eR 1.

Both the superclass relation, R,, and the ancestor relation, t(R,), can be represented as

digraphs. An inheritance digraph D, is an ordered pair D, = <A,R,> where A is the set of

vertices and R, is the superclass binary relation on SetOfClasses. The elements of

SetOfClasses are vertices of D,. The elements of R, are the arcs. Also, <a,b> r t(R1)

iff there exists a path of nonzero length from vertex a to vertex b.

4-10

Class-A

Class-B ls-

ClassE ls- a$G

Figure 4-1 - Inheritance Digraph

In Figure 4- 1:

R, = { <ClassA, ClassB>, <ClassB, ClassE>, <ClassB, ClassF>, <ClassC,

Clas-_F>, <ClassC, ClassG>}

t(R1) = R, U (<ClassA, Class-E>, <Class A. ClassF>)

Whole/Part Relationship

Some of the OORA methods break out the whole/part relationship separately and

some identify it as a named relationship. Because it is a relationship that is widely

discussed as an important relationship to model, it is discussed separately here. According

to [COYO91I, one of the ways to deal with the complexity of the OORA model is by

breaking the model into its component parts, and then dealing with each of the parts.

Also, looking at classes in the view of what they could be part of and what the

components of the classes are helps identify other classes in the problem space.

To model the binary whole/part relation, denoted by Rw;

4-11

Let RN represent the binary relation on .W, the Natural numbers, such that:

R {<a,b> I a,b E .W} (17)

Let Rsc represent the binary relation with SetOfClasses as the domain and RN the

codomain such that:

Rsc = {<a,b> I a e SetOfClasses, b E R. 1 (18)

where SetOfClasses is the set of all classes in the model as defined by relationship (13).

Therefore, Rw can be represented as a binary relation on Rsc:

Rw a{<a,b> I a,b E Rsc) (19)

The element of Rsc associated with the first element of Rw includes two Natural

numbers indicating the least and greatest number of parts that a whole might have at any

given moment. The element Rsc associated with the second element of Rw includes two

Natural numbers indicating the least and greatest number of wholes to which a part may

belong.

For example, let w, x, y, z r .V, the Natural numbers, and:

<<Class 1, <w,x>>, <Class_2, <y,z>>> e Rw (20)

Then:

<Class-1, <w,x>> E Rsc and <Class_2, <y,z>> r Rsc (21)

4-12

where:

Class_- , Class_2 E SetOfClasses

<w,x> E R.. and <y,z> r RN

This indicates that Class I (the whole) consists of as few as w and as many as x of

Class_2 (the part). Also, Class_2 is part of as few as y and as many as z of objects of

Class 1.

Other Relationshims

Whole/Part relationships are a type of general relationship. Relationships are also

called associations [RUM91 and instance connections [COYO91]. Relationships

represent a connection between objects. This connection shows objects that are

responsible for either representing a concept in the problem or those that together satisfy a

responsibility. This connection does NOT represent an inheritance connection or message

passing through services.

An example of a relationship is that between an aircraft part and its repair symptoms.

An aircraft part has a set of repair symptoms, and there is a set of repair symptoms for

each part, but the symptoms are not part of an aircraft part. An aircraft part can have one

or more symptoms and a symptom can be associated with more than one part. This

relationship is not represented by inheritance, whole/part, or message connection. It

should, however, be represented by attributes in one or both classes. For example, the

Aircraft-Part class could contain an attribute List-of-Symptoms, that is, the names of all

the symptoms that apply to this part. In this case, however, since the relationship is a

many-to-many connection, a new class should be created that contains information on

what symptoms apply to which aircraft parts.

4-13

Relationships are not required to be named. Naming can be confusing because each

relationship has two names depending on which object is examined first. For example. an

aircraft part "has-a" group of symptoms, but the symptorns "belong-to" aircraft parts.

Therefore, the "has-a" relationship would have objects of the class of Aircraft-Part as the

domain and objects of the class of Repair-Symptom as the codomain. The "owns"

relationship would have Repair-Symptom as the domain and Aircraft-Part as the

codomain.

According to [RUM911, most relationships can be represented as binary relations, or

can be transformed into binary relations.

Like whole/part relationships, the existence of relationships in the class structure

is not known except through the existence of attributes that contain the necessary

information describing the relationship. If the knowledge of the relationship is needed for

a pair of classes to fulfill some responsibility of the system, then the information in the

relationship is needed by one or more services. Services operate on state information, or

the attributes. Therefore, the relationship information must be modeled in an attribute or

attributes.

[RUMB91 states that a relationship should not be modeled as an attribute within a

class. Rather, it should be modeled only as a named relationship. However, if the

knowledge of the relationship is needed for a pair of classes to fulfill some responsibility of

the system, then the information in the relationship is needed by one or more services.

Services operate on state information, or the attributes. Therefore, the relationship

information should be named and modeled in an attribute or attributes and not modeled

solely as a relationship name within the model.

An obvious question comes to mind. If relationships are represented in attributes or in

a new class that contains the attributes that represent that relationship, then why do

relationships need to be separately modeled? The answer is that the identification of

4-14

associations aids in the identification of attributes and new classes. and in the evaluation of

the structure of existing classes. For example. a many-to-many relationship shows that a

new class needs to be created. The relationship itself is a model of a concept that will not

have a direct translation into code, as message connections do. The identification of

relationships documents where certain concepts are represented in the object-oriented

model.

Any general relationship can be modeled in the same manner as the whole/part

relationship. The relationship must be modeled with the name of both representations.

The relationship "has-a/belongs-to" will be used as an example. The same relations used

in the whole/part relation can be used to model any general relationship, denoted by RR:

Let R,, represent a binary relation on WN, the Natural numbers, such that:

RN =- <a,b> I a,b EN} (17)

Let Rsc represent a binary relation with SetOfClasses as the domain and RN the

codomain such that:

Rsc -{<a,b> I a E Set Of Classes, b E R.) (18)

where SetOfClasses is the set of classes in the model as defined by relationship (13).

Therefore, RR can be represented as a binary relation on Rsc:

RR {<a,b> I a,b E Rsc } (22)

The element Rsc associated with the first element of RR includes two numbers

indicating the least and greatest number of objects that are in the relationship at any given

4-15

moment in time. The element of Rs(. associated with the second element of Rit includes

two numbers indicating the least and greatest number of objects involved in the

relatIonship.

For example, let RR represent the "has-a/belongs-to" relationship. Let:

<<Aircraft-Part, < l,n>>, <Repair-Symptom, < 1,m>>> RR (23)

Then:

<Aircraft-Part, <l,n>> E Rs: and <Repair-Symptom, <l,m>> e Rsc (24)

where:

RR is the rlation "has-a/belongs-to"

Aircraft-Part, Repair-Symptom E SetOfClasses

<ln> E R.. and<l,m> e RN

This indicates that objects of Aircraft-Part can have the relationship "has-a" with as

few as I and at most n objects of class Repair-Symptom. Also, objects of class Repair-

Symptom can have the relationship "belongs-to" with as few as I and as many as m

objects of class Aircraft-Part.

oMltraLint

Constraints are functional relationships between classes that restrict the values that

the attributes can assume. An example of a constraint would be that an employee may not

have a salary higher than that of her boss. Constraints are implemented by the services

4-16

that change the values of the attributes. For example, when a salary is changed, the

service will need to ensure that the salary is not greater than that of the boss.

Constraints should be identified and the OORA model developed that satisfies those

constraints. Constraints are not separate parts of the model but are used to guide

development of the model.

Subjects, or subsystems, are a way of orga:iLing a model with a large number of

classes into groups of classes which form smaller and more manageable pieces. Because

this research will only deal with a small problem within the abilities of one analyst, subjects

will not be used.

The OORA Model

The entire OORA model, denoted by OORAModel, can be represented as a tuple

that consists of the SetOfClasses, which contains the classes in the model, the

inheritance relation R,, the ancestor relation t(R,), the whole/part relation Rw, and other

relations RR:

OORAModel - (Set Of Classes, R,, t(RI), R,, RR)

where SetOfClasses is the set of classes in the model as defined by relationship (13), R,

is the inheritance relation as defined by relationship (16), t(R,) is the ancestor relation

which is the transitive closure of R, , Rk is the whole/part relation as defined by

relationship (19), and RR represents other relations as defined by relationship (22).

4-17

The (X)RA model contains all the information required for the development of an

object-oriented requirements specification. All components discussed in the literature

reviewed are represented in this model in some form.

Whole/part relationships are discussed separately from other relationships because

they are consistently used in the OORA as a named relationship to help structure the

model. The other relationships are problem dependent. They are used when and if the

problem requires that type of modeling. Therefore, the process of looking at the model in

terms of its wholes and associated parts is consistently used, while other relationships are

uncovered as part of the analysis.

When the OORA mathematical model is implemented, the superclasses of each class

can be represented as a part of the class structure instead of in a separate inheritance tree.

This means that information on the parents of each class is contained in each class. There

is an argument for this, because each class must know its superclasses in order to access

inherited attributes and services. In the OORA mathematical model, the information on

the superclass of each class is contained in R,, the superclass structure. The same

argument applies to not explicitly creating a separate message passing tree structure,

whole/part tree structure, or other relationships tree structure. This information can be

contained within the class structure itself. In the case of the message passing tree

structure, this tree can be derived from the relations for the postconditions of the services

of all the classes because they contain information on other classes used.

Ordering of OORA Model Components

There is no strict sequential order for obtaining the elements of the OORA model.

Every process discussed in the literature is iterative, but each has a starting point and

there are dependencies between element- of the model. Parts of the process can repeat

4-18

many times, with information discovered later in the analysis process causing addition and

modification of elements of the model.

[COYO91, [RUMB91], [SIBL89I, [MONA92], and [NERS92] start with

identification of classes. These classes form the basis for all further work on the model.

Only [RUBI92] takes a different approach. [RUBI92I focuses on identifying the system

behavior first and then defines objects that will exhibit the behavior. The two views are

interrelated. Prior to the identification of classes, the analyst must understand thoroughly

what the system is to do. This, in essence, is understanding the behavior the system must

exhibit. The difference between the two approaches, behavior-first vs. classes-first, is

where the emphasis is placed early in the analysis. In the behavior-first approach, the

behavior of the system is analyzed and modeled in detail, and then classes are identified

that will satisfy the needed behavior. !n classes-first, class identification methods are

emphasized early in the process so that behaviors can be identified with classes. The

system behavior is used as a check to be sure that all necessary classes have been

identified.

There are potential problems with the behavior-first approach. First, there is the

danger that a more functional, rather than object-oriented, approach will be taken because

of the early emphasis on system behavior. This problem can be overcome with careful

management of the process. The second potential problem, more relevant to this research,

is the potential difficulty of using a domain model as a basis for new, evolving models. If

the start of the process identifies behaviors, it will be difficult to map those behaviors to an

existing object-oriented domain model, which consists of a class structure. OAKS would

have to identify where in the domain model the behavior is (or is not) satisfied. This is

much more difficult than determining if a class exists in the domain model. For these two

reasons, and because the classes-first approach is more commonly used, the classes-first

approach was used in this research.

4-19

Even though there is no strict ordering of the steps and the process is iterative, there

are dependencies between elements of the model. These dependencies will be shown

using the following notation:

TupleName.TupleComponent

This notation identifies a component of a certain tuple. For example,

"ClassName.ClassStateSpace" identifies the ClassStateSpace of a certain class,

called ClassName.

The dependencies between a class name and its components can be shown as follows,

where =* is the symbol for implication:

V ClassName e PotentialClassNames,

(Attribute E ClassName.ClassStateSpace * ClassName E SetOfClasses) A

(Service E ClassName.Services • ClassName E SetOfLClasses)

This states that for all classes in a particular model, the class name must exist, prior to

the identification of any of its attributes, which make up the state space, or any of its

services. This does not state that all class names must be identified before any attributes

or services can be identified. It just states that the name of a class must be identified

before any of the components of that class. PotentialClassNames represents all possible

class names.

"There are relationships between components of the OORA model and the classes as

shown in relationships (16), (19), and (22):

Let R, = (<Pl, c1>, <P2 1 C2>, <p, Cn>)

4-20

Then V i E I .. n, (p, E Set-OfClasses) A (C, E SetOfClasses)

This states that the class must exist before it can be used in an inheritance relation, or

any other relationship, such as whole/part, as the following shows:

Let Rw ={<<a,, <bj, c,>>, <d1 , <eI, f»>>>, .. <<a., <b1,c»>>, <d, <en, fl>>>l

Then V i c 1 .. n, (a, E SetOfClasses) A (d, E SetOfClasses)

Let RR={<<aI, <b1 , c,>>, <d,, <e1, fl>>>,.. <<a,, <b,,c,»>>, <d., <e., fo>>>}

Then V i E I .. n, (a, E SetOf Classes) A (d, c SetOfClasses)

These state that the classes must exist before they are used in a relationship, not that

all classes must exist before any relationship must be defined.

This chapter defined an OORA mathematical model that included OORA components

and relationships between the components. This model was used as the basis for the

domain and problem model in the computer-based system called OAKS. The components

of the model were also used as the basis for the development of the guidelines and rules

that evaluate them. The development of the model was necessary to analyze the

similarities and differences in existing OORA methods. No one existing OORA method

provided the basis that could be used for the development of an automated system to

conduct OORA.

Now that an OORA mathematical model has been developed that defines a set of

OORA components and relationships, the next chapter reviews existing OORA methods

to develop a set of guidelines and rules that can be used to evaluate the components and

relationships in the model. These guidelines and rules will be refined and supplemented by

4-21

domain-specific guidelines and rules in Chapter 6, and then by guidelines and rules based

on the LISP structure of the OAKS domain model in Chapter 7.

4-22

V. Acquisition and Evaluation of Components

Overview

The previous chapter defined an OORA model containing the model components and

relationships. It also defined any order required on the acquiring of the components. The

next step, discussed in this chapter, is an analysis of existing OORA methods. This

analysis produced a set of guidelines and rules for the acquisition and evaluation of each

component of the OORA model and of the entire model. These guidelines are rules are

independent of any domain chosen for the domain model in the OAKS system.

This chapter discusses this analysis and the guidelines and rules resulting from the

analysis. How these guidelines and rules are quantified so they can be used in a computer

system is discussed in the next chapter. Also discussed in the next chapter are guidelines

and rules that were developed based on knowledge of the domain used for the domain

model in OAKS.

The literature surveyed provided numerous processes for both acquiring and

evaluating the components. These processes were evaluated and the information

combined and refined to produce the guidelines and rules discussed in this chapter. Based

on an analysis of the process of acquiring problem model information, a decision was

made to have OAKS develop a system by starting with a domain model as an initial

template. The domain model is then modified to produce a problem model.

The elements that must be acquired, as defined by chapter 4, are:

1. SetOf Classes

1.1 ClassName

1.2 ClassStateSpace

1.2.1 AttrName

5-1

1.2.2 Set of Attribute Values

1.3 Services

1.3.1 ServiceName

1-3.2 Input-Sets

1.3.3 Output-Sets

1.3.4 Preconditions

1.3.5 Postconditions

2. RV, which is the superclass relation

3. Rw, which is the whole/part relation

4. RR, which is other relations

The first question to be answered was what knowledge the user of OAKS should be

assumed to have. This affects how the elements are acquired. It was determined that the

user should have knowledge of the problem domain, the system's responsibilities, the

problem scope, the application context, and any assumptions of the domain. These are

reasonable assumptions given a user that is working in a particular domain.

The second question was what approach should be taken in acquiring and modeling

the information. Three approaches were discussed in [MONA921:

(1) The combinative approach. In the combinative approach, different techniques are

used to model the structure, functional behavior, and dynamic behavior. Modeling

techniques used include object-oriented, function-oriented and dynamic oriented. A

method is defined for integrating the different approaches. This is the approach of

[RUMB911 and [SHLA881. The main problem with this approach is the difficulty

encountered when trying to integrate the different views. It is difficult to determine how

the different views directly relate.

5-2

(2) The adaptive approach. This approach uses existing techniques, usually from

structured analysis, in a new object-oriented way, or extends these techniques to include

object-1e-ntation.

(3) The pure object-oriented approach. New techniques are used for the whole

model. A translation process is not required, but a complexity-management scheme is

needed to allow viewing of the data from different levels of complexity, at varying levels

of detail, and from various perspectives.

The approach used in this research was the pure object-oriented approach. The

combinative approach would be difficult to implement in a automated system because

there would not be a human to make the mental translation from one model to another.

Any modeling scheme used by OAKS would have to be tightly integrated because the

same information must be used for all views and the reasoning must be done on one

evolving model. The decision was already made not to use any structured analysis

techniques and to assume an object-oriented perspective from the start of the requirements

analysis process. This decision eliminated the adaptive approach.

The remainder of the sections in this chapter discuss each of the elements and

subelements of the OORA model, how they will be acquired, and guidelines and rules for

their acquisition. The formalization of these guidelines and rules for use in a computer

system is postponed until the next chapter.

The first step in acquiring an OORA model is to determine the overall strategy of

acquiring classes. Classes can be acquired by looking at nouns in the documents, by

identifying the top-level class first and working down, by starting with the classes that

interface with outside devices and working in, by identifying key abstractions and building

5-3

up the problem model from them, or by starting with a domain model and modifying this

model to develop the problem model. The decision on which approach to use is partially

based on how the domain information will be used mi OAKS. The domain information can

be used as a template for the problem model or as a comparison tool. A template is used

to create a problem model by adding elements, deleting elements, and modifying the

structure. The domain intbrmation can also be used for comparison with the evolving

problem model in order to provide guidance and corrections.

One advantage to using the domain model as a template is that it would provide a lot

of support to the user through its ability to illustrate an OORA structure. This OORA

structure would serve to act as a model for a good object-oriented analysis. Modifications

to the structure would be evaluated to ensure the structure remains consistent and that the

changes do not violate any rules and constraints. The disadvantage of using the domain

model as a template is that the user of OAKS has less flexibility in developing a new

system. This is an advantage when dealing with a user who is inexperienced in object-

oriented analysis. An analyst experienced with object-oriented techniques may feel

constrained by this approach.

The use of the domain model as a template also assumes that the template will be

valid ior a reasonable period of time. If" the domain model needs constant changing

because the domain it represents changes rapidly, the usefulness of a system such as

OAKS would be diminished. [ARAN89] states that there are stable problem domains that

evolve gradually over time. Within these domains, there are communities of users that

develop large numbers of software systems in the domain. These communities of users

have a common vocabulary with shared semantics, and there is expertise on how to build

systems in that domain. Given that one of these stable problem domains is used, it is

reasonable to assume that a domain model would have a useful life. Also, further

5-4

modifications to OAKS could incorporate a learning mechanism that would update the

domain model based on the problems that it was presented.

Another argument for using the domain model for a template is that a structured

approach with a well-defined path, like that used by a computer system, is best suited to a

well-known domain, where previous experience would provide much of the structure of

the domain model. If the domain is unfamiliar, then the domain knowledge must be

uncovered and refined. This process of domain discovery requires the use of a minimum

number of constraints and only high-level guidance to allow for a more unconstrained and

therefore creative process [WHIT90.

Using the domain model as a comparison tool requires a problem model that is less

constrained as to form and content. The problem model will still have to meet the rules

and constraints of the system, but the form is more flexible.

Because the user is assumed to be an analyst who is not experienced in object-

oriented techniques, and because the system is computer-based, the decision was made to

use the domain model as a template. Based on that decision, new classes are developed by

additions to the domain model, or by changing the name or components of an existing

class in the model. The process of acquisition of classes or any components in the model,

is not explicitly coded in the OAKS system. Rather, the original domain model was

developed by an analyst experienced in OODA using these acquisition guidelines and

rules. The domain model serves as a template and provides guidance by example of the

types of classes in the domain. Since classes are the most stable components in the

domain model, these should be changed the least by the user of OAKS. The names of the

classes may change to meet the particular problem, but the classes themselves will be

relatively stable. Any acquisition guidelines and rules that would be needed by the user

would be contained in a user's manual for OAKS. For example, the guidelines and rules

for acquiring classes by examining the nouns in the domain would be contained in any

5-5

user's manual developed for the system, so the user can choose appropriate new classes, if

needed.

For the OAKS proof-of-concept system, a user's manual was not de-,eloped. The

user interface developed was sufficient to show the OAKS concepts to be sound, but the

user interface is not a robust user's environment. Discussed in this chapter are the types of

concepts that should be included in a user's guide for a system modeled on the OAKS

concepts.

The remainder of this chapter discusses the guidelines and rules for acquiring and

evaluating the components and relationships in the OORA model that is used as the basis

for the domain model in OAKS.

There is much discussion in the literature on the general characteristics of classes.

These characteristics are used as a basis for the guidelines and rules that evaluate a

problem model. However, these general characteristics are not specific enough to be used

directly by a system. For example, one general characteristic is that a class have crisp

boundaries. That statement cannot be used to evaluate a class objectively, because there

are no measurement criteria that can evaluate if a boundary is crisply defined or not.

Some general characteristics are as follows:

- autonomous, coherent, encapsulated, crisp boundaries [RUMB91] [BOOC91I

[MEYE88].

- can be concrete or conceptual [RUMB91I [KORS90.

- have identity [RUMB91 1.

- tangible/visible [BOOC91l.

- may be apprehended intellectually [BOOC911.

- represent the common vocabulary of the problem domain [BOOC911 [WIRF90].

- strictly controlled communication channels [MEYE88].

5-6

- designed as problem space classes, which are those needed to satisty "he

requirements in an ideal environment, i.e., one large program on a iast machine

[WHIT89]. This means the classes developed for requirements do not need to

concern themselves with time or space requirements.

A process discussed in [SIBL891 and used in some form by others is classifying the

classes as active or passive. An active class is one that can act upon other classes by

sending messages. A passive class is one that accepts messages but does not send any out.

Such a classification is not useful in this research. Whether the clss is active or passive

will be obvious from its final form. In the analysis process, there is no advantage in trying

to classify the class as active or passive, and that classification may change.

Although some guidelines and rules are too general to be evaluated effectively, a set

of guidelines and rules must be developed to analyze the developing model. Discussed in

this chapter will be the domain-independent guidelines and rules that only require

knowledge of the classes for their evaluation. Some guidelines and rules require

knowledge of the domain and some require knowledge of the structure of the domain

model. The guidelines and rules based on domain knowledge are discussed in Chapter 6,

and those based on the OAKS domain structure are discussed in Chapter 7, after the

structure is developed.

The guidelines and rules for analyzing classes are:

I. Name the class with a singular noun, or an adjective and a noun. The name dec•,ribes

a single object in the class [COYO9 11. The name should not reflect the role it plays

in a relationship [RUMB91 1.

2. Use standard terminology for class names using the common vocabulary of the

domain [COYO91] [WIRF90].

5-7

3. Eliminate classes that have little or nothing to do with the problem. Keep a class if

the system needs to remember anything about thL. objects in the class. JCOYO91]

[RUMB9l].

4. Ensure that you are able to describe an object in the class, and some potential

attribu:es [COYO911.

5. Ensure that ,h'e class provides some processing [COYO911. You should be able to

write a statement of purpose for the class [WIRF90].

6. Look for more than one object in a class. If there is :%ot. loui for similar classes and

put the class information into those classes [COYO9 1].

7. Ensure that the requirements the class satisfie.. are domain-based requirements and

not implementation constructs. Make sure the class is satisfying requirements that are

needed regardless of the computer technology that will be used to build the system.

Do not model windows, menus, task management, or number of processors

[COYO91] [RUMB91 1.

8. Eliminate classes that are merely derived results. For example, you do not want a

class that is a printed report conisting of existing data JCOYOg9 1.

9. Rename class names that primarily describe individual objects as attributes

[RUMB91] .

10. Eliminate classes that describes an operation that is applied to objects and is not

manipulated in its own right, because they are not classes. A telephone call to

someone is an event and not a class if you do not need to track calls [RUMB91].

11. Ensure that you can answer how objects of the class are created, copied, or destroyed

[BOOC9 1].

12. When an adjective is used with a noun to name a class, it is probably a subclass of the

noun [WIRF90].

13. Ensure that each class is not just an encapsulated subroutine [MEYE88].

5-8

14. Ensure that every object of the class has the same characteristics and is subject to the

same rules ISHLA881.

15. List the criteria for object inclusion in a class. If the word "or" is used significantly, it

is not a class. Also, if the criteria are just a list of objects, you don't have a class

[SHLA88].

In the following sections, each component of the OORA model is discussed. First

shown are the domain-independent guidelines and rules that are used for acquiring each

component of the model. These would be used during the OODA in order to create the

initial domain model in OAKS. These would also be placed in a user's manual so the user

would have guidance on how to modify that component of the domain model, if it is

needed to produce the problem model. Next shown are the guidelines and rules for

evaluating each component of the model, once the component is in the model. These are

used when possible in evaluating the domain and problem model in OAKS.

Superclass Relation

The superclass relation is used to create the inheritance structure for the problem

model. The guidelines and rules for acquiring the inheritance structure are:

1. Consider each class as a potential superclass. What are its possible subclasses? For

each possible subclass considered, ensure that it is in the problem domain, within the

system's responsibilities, inherits the attributes and services of the superclass, and

meets the requirements of a class. If there are many superclasses possible, first

identify the most complex and then the simplest, and then identify the rest of the

superclasses [COYO91] [RUMB911.

2. Consider each class as a potential subclass. What are its possible superclasses? For

each possible superclass considered, ensure that it is in the problem domain, within

5-9

the system's responsibilities, will contain a subset of the attributes and services of the

subclasses, and meets the requirements of a class ICOYO91 1.

3. When creating subclasses, only one property should be discriminated at once

[RUMB91I. This means that the differences between the subclasses on one level

should be the difference in one property in the superclass. For example, if the

superclass is "Aircraft", a set of subclasses at level 1 may be jet-powered aircraft and

propeller-driven aircraft. From that level, the next level of subclasses at level 2 may

break each of those into Air Force vs. Army aircraft. The level I subclasses should

not be jet-powered Army aircraft, jet-powered Air Force aircraft, propeller-driven

Army aircraft, and propeller-driven Air Force aircraft.

4. A superclass can be created by generalizing common aspects of existing classes into a

superclass [RUMB91] [RUBI92]. These aspects include behavior, attributes, and

services [WIRF90 [BULM911.

5. When several classes appear to be analogous, it is a sign that they may share a

common superclass [RUMB911.

The guidelines and rules for evaluating the inheritance structure are:

1. The distinctions between subclasses must be important within the problem domain.

Specialize around those important distinctions. For example, it may be important to

distinguish between dogs and cats and not between male and female pets [COYO9 I].

2. Some set of attributes and services must be common to all the subclasses of a

superclass [COYO91]. Subclasses should support all the responsibilities of their

superclasses [WIRF90].

3. If the only distinction between two subclasses is the value of one attribute, then just

use the superclass with different values of one attribute. For example, if the only

difference between two types of pets is whether they are male or female, just use a

"sex" attribute in the superclass and remove the subclasses [COYO91].

5-10

4. If multiple inheritance is used. the subclass does not have to add attributes or services

to be a good subclass (COYO91 i.

5. The inheritance structure should reflect naturally occurring structure in the domain.

Do not use inheritance just to extract out a common attribute [COYO91].

6. Do not nest subclasses too deeply. Look suspiciously at those that are over three

levels deep [RUMB91 1.

7. Services may not change the Input-Set and Output-Sets, but they may change their

behavior [RUMB9 11. If a subclass redefines a service inherited from a superclass, it

may redefine the behavior of the service, but it may not redefine the form of the

Input-Set and the Output-Set.

8. Factor a common responsibility as high as possible in the inheritance hierarchy

[RUMB91 1.

9. There should be at least two subclasses per superclass [RUMB9 1].

10. If there is trouble naming a superclass, there is probably a problem. Try another

superclass [WIRF90].

Whole/Part Structure

The guidelines and rules for acquiring the whole/part structure are:

1. Look for assembly parts, container contents, and collection members [COYO9 1].

2. Consider each object as a whole. For each potential part, ensure that it is in the

problem domain, within the system's responsibilities, captures more than just status

value, and provides a useful abstraction [COYO911.

3. Consider each object as a part. For each potential whole, ensure that it is in the

problem domain, within the system's responsibilities, captures more than just status

value, and provides a useful abstraction [COYO9 I].

5-11

4. Ask if you would use Lhe phase "part of" in an association between two classes

[RUMB91 I.

The guidelines and rules for evaluating the whole/part structure are:

1. If a part does not capture more than just status value, include an attribute for that

value in the whole and eliminate the part [COYO91 .

2. There can be some operations on the whole that are applied to its parts, but never

from the parts to the whole [RUMB9 1].

Class State Space

Guidelines and rules for acquiring the class state space are:

1. Ask how each class is described in general [COYO9 I].

2. Ask how each class is described in this problem domain [COYO91].

3. Ask how each class is described in the context of the system's responsibilities

[COYO91].

4. Ask what each class needs to know to function [COYO911.

5. Ask what state information needs to be remembered over time [COYO911.

6. Ask what states can each class be in. These states are represented by attribute values

[COYO91].

7. Put the attribute in the uppermost class in an inheritance structure where it remains

applicable to all subclasses [COYO911.

8. Use the standard vocabulary of the problem domain to name attributes [COYO911.

9. Attributes are described by their name, type and default value [COYO91]

[RUMB911.

10. Attributes usually correspond to nouns followed by possessive phrases, such as "The

color of the car" [RUMB9 11.

5-12

11. Define all the characteristics that each object of the class possesses and what

information is needed to know if an object is an instance of a particular class

[SHLA881.

Guidelines and rules for evaluating the class state space are:

1. Each attribute should represent an atomic concept in the form of either a single value

or a tightly related group of values [COYO91] [SHLA881.

2. The attributes should apply to every object in the class. If not, create another set of

classes using inheritance [COYO911.

3. Attributes should not be derived results, such as Age when you know the date of birth

[COYO911.

4. Data redundancy is acceptable during the analysis phase [COYO911.

5. If attributes are repeated in other classes, there may be additional classes required in

the inheritance structure [COYO91].

6. Do not use internal identifiers as attributes. The object IDs are implicit in that they

are assumed for every, object [COYO911 [RUMB911. Internal identifiers have no

meaning in the problem domain.

7. An attribute should be a class if the independent existence of an entity is important

rather than just its value [RUMB9 I].

8. If an attribute describes an internal state that is invisible outside the object, eliminate it

[RUMB911.

9. An attribute that is completely different from and unrelated to other attributes may

indicate the class should be broken into two classes [RUMB911.

10. Each attribute should be independent of the other attributes in a class [SHLA88].

11. Each attribute should take on only one value at a time [SHLA881.

12. There must be a value for every attribute (SHLA88I. The possible value for an

attribute should not be N/A.

5-13

Other Relationships

Guidelines and Rules for acquiring other relationships are:

1. Look for a tie between objects that is used to satisfy a responsibility of the system

[COY09 11.

2. Look for dependencies between classes [RUMB911.

3. Relationships often correspond to verb or verb phrases. These include physical

location (next to), directed actions (drives), communications (talks to), ownership

(has), or satisfaction of some condition (works for, married to, manages).

4. In a one-to-one relationship, take an identifier in one class and make it an attribute in

another. For example, each state has a governor. Put the attribute StateName in

class Governors [SHLA881.

5. In one-to-many relationships, take an identifier from the "one" class and make it an

attribute in the "many". For example, place Owner's name as an attribute in the Dog

class [SHLA88I.

Guidelines and rules for evaluating other relationships are:

1. When there is a many-to-many relationship either between objects of different classes

or objects for a single class, ask what attributes describe the connection. Then make

a class between the two connected classes that contains those attributes [COYO91]

[BULM91] [SHLA881.

2. Do not add a relationship if the mapping between two objects can be made through

other relationship connections [COYO91] [RUMB9 1].

3. Challenge one-to-one relationships. Often the object on either end is optional or

multiplicity is needed [RUMB91].

5-14

4. Eliminate relationships that are outside the problem domain or deal with

implementation IRUMB91].

5. A relationship should not describe a transient event, but a permanent relationship

[RUMB91I.

The uncovering of relationships is not as obvious as finding the other components of

the model discussed so far. This is because the relationships that are needed are highly

problem dependent. This implies that possible relationships should be encoded in the

domain model and used as guidance for the possible creation of new relationships. The

issue will be whether these new relationships will be the reused relationship names used on

a different pair of classes, or whether new relationship names will have to be added to the

model. The more difficult task for the user of OAKS will be the adding of new

relationship names to the model. The user will also have to define the multiplicity of all

new and modified relationships.

Services

Service information will be the most difficult to obtain. This is because the possible

object states as well as the pre- and post-conditions will have to be obtained in some form.

The form that it will take and how it might be acquired will be discussed in the next

chapter. In this section only the basic information that must be acquired and guidelines

and rules for evaluation once the acquisition is complete are discussed.

Guidelines and rules for acquiring the services are:

1. The process requires the steps of identifying the possible states, identifying the service

names, identifying what services of other classes are needed for the service to perform

its function, and then identifying the pre- and post-conditions in some form. To

identify the states, the potential values for the attributes are examined to determine

5-15

whether there is different behavior for those potential values. When there is different

behavior, there exists some state. There are two type of services: algorithmically-

simple and algorithmically-complex. The simple services consist of those that create

an object, get or set an attribute value, or delete an object. The complex services

calculate or monitor.

In order to identify the message connections, ask:

- what other object does it need services from'?

- what other objects need one of its services? [WIRF90I

Last, the services are specified. The pre-condition will show the states in which

the service is valid and the service arguments. The post-condition shows the results

of the service and what other classes are needed (message passing) [COYO91].

2. Identify the input and output values of the service. Show how input values are

computed from output values. Specify pre- and post-conditions. Specify

optimization criteria [RUMB911.

3. A class of free programs may be created. These are services that are useful to more

than one class. It reduces the coupling between classes [BOOC91 1.

4. Look at the verbs in the requirements specification for possible service names

[WIRF90.

5. Examine how the system will be invoked. Go through a variety of scenarios using all

system capabilities [WIRF90].

6. Look at each class and ask what responsibility it was created to satisfy. What

responsibilities are required for managing its attributes? Compare and contrast the

roles of various classes [WIRF90].

7. If more than one class must maintain the same information, then either create a new

class that has the common information, assign the responsibility to one class if it is the

5-16

primary behavior for one of the classes, or collapse the different classes into one class

[WIRF9OI.

8. To identify message passing, ask if each class is capable of fulfilling its responsibilities

itself. If not, what else does it need and what classes provide this information

[WIRF901.

9. To design the service interface:

- Define the most general message; one that allows clients to supply all possible

required parameters.

- Provide default values for any parameters where it seems reasonable to do so.

- Analyze how clients use the messages. Define messages that allow clients to specify

only some of the parameters while providing default values for others [WIRF90.

- Design services with a single purpose [WINB90].

Guidelines and rules for evaluating services are:

1. Look at possible reusability of the service. Ask if the service would be useful in

more than one context. Try to make the services as reusable as possible [BOOC91 1.

2. Look at the complexity of the service and ask how difficult it would be to implement.

You may have to break the service into two services [BOOC91 1 [WINB90].

3. Ask how applicable the service is to the class in which it is placed [BOOC91].

4. Make sure that the implementation of a service does not depend on the internal details

of another class [BOOC9 I].

5. Each service should send messages to a limited set of classes. This creates loosely

coupled classes [BOOC911.

6. Services should be named with active verb phrases [BOOC91.

7. Make sure all known system actions are accounted for through service actions

[WIRF90I.

5-17

8. The intelligence of a system should be evenly distributed. Intelligence is measured by

how much a class knows or can do. and how many otbjec•s it can affect [WIRF901.

9. Keep services with related information. If a class has attributes, then the services that

manipulate those attributes should be in the same class. If a service requires certain

information, then that information should be in its class [WIRF90I.

10. If a class has no message connections with other classes, it should be discarded. Be

sure necessary message connections have not been overlooked (WIRF901.

11. Services should not have to check the class of an object [WINB901.

12. A service should not have more than six arguments. Reduce the number of arguments

by breaking the service into several [WINB901.

13. Keep the amount of work a service does to a minimum. Smaller services can be

selectively inherited, refined, or overridden [WINB90].

14. Identify common services and put them in a superclass [WINB90].

15. Eliminate from a superclass those services that are frequently overridden rather than

inherited by its subclasses [WINB90).

16. Services should apply to all the objects in a class. If not, the inheritance structure

needs to be modified [COYO91 1.

17. If a class has too many services, break it into multiple classes [WHIT891.

The whole model is acquired through the acquibition of the components of the model.

This is done as the OAKS domain model is created, prior to its use in OAKS as a

template. However, the whole model must be evaluated both when it is created and after

each change is made by the OAKS user.

The guidelines and rules for evaluating the whole model are:

5-18

1. One attribute in a class is suspicious. It is likely that attribute should he included in

other classes ar2 !hat class removed ICOYO9 1.

2. A class shouild have services other than just create and destroy (COY)91 I.

3. Weakly coupled classes are desirable. but there is a tension between weak coupling

and inheritance. You want a minimum of message passing [B(X)C911 ICHID91 I.

4. A class should be highly cohesive. Preferably, functional cohesion is used where all

elements of the class work together to provide some well-bounded behavior

[BOOC91I. Also, you want the union of the set of instance variables used by all the

services of a class to be as large as possible ICHID9l I.

5. All services of a class should be primitive [BOOC91 I.

6. The complexity of a class is measured by the total number of attributes and services.

The complexity of a class should be kept low [BOOC9 11.

7. Eliminate redundant classes. These are two or more classes that encapsulate the same

information !RUMB91 11 BULM9I 1.

8. Redefine classes that have ill-defined boundaries or are too large in scope [RUMB91 g.

9. Make sure that every functional requirement is met by the classes IBAIL891

iWIRF901 IRUBI921.

10. If a class does not have a rich set of services, then it may be better to put its attributes

and services in other classes [WALT781.

This chapter evaluated existing OORA methods and, based on these methods, defined

a set of guidelines and rules for the acquisition and evaluation of components of the

OORA mathematical model. The next chapter evaluates these guidelines and rules and

determines which, and in what form, can be used in the computer-based OORA system

OAKS. The next chapter also defines guidelines and rules that are based on the specific

domain chosen for an OAKS domain model.

5-19

V1. Application of Evaluation Guidelines and Rules

Overview

The previous chapter defined a set of domain-independent guidelines and rules that

could be applied to evaluate an OORA model of a system. The problem is that many of

the guidelines and rules are subjective and must be defined objectively before they can be

used by a computer-based system such as OAKS. This chapter examines each of the

evaluation guidelines and rules of the previous chapter and determines how they can be

applied in the OAKS system. This chapter also defines guidelines and rules that are

defined based on the domain currently in use by OAKS.

Also defined in the previous chapter were a set of guidelines and rules on how to

acquire components of the OORA model. These guidelines and rules for acquiring an

OORA model component are not used in checking the domain and evolving problem

model in OAKS. These are embodied in how the initial domain model is constructed and

should be placed in any user's guide developed for an OAKS-based system. An example

of this type of guideline and rule is that the class names should use the common

vocabulary of the domain. The evaluation guidelines and rules can be checked when the

domain model is created and as the problem model is evolving. For example, classes

unconnected with other classes are identified.

The last set of guidelines and rules is discussed in Chapter 7. These are based on the

code structure of the domain model and problem model in OAKS. These are applied to

both the domain model and the evolving problem model.

In the following sections, the evaluation guidelines and rules from the previous

chapter are annotated by "GR" and the number that was used in the previous chapter.

Their use in the OAKS model is annotated by "USE" before their number.

6-1

Evaluating Classes

Most of the guidelines and rules defined for evaluating classes are embodied in the

domain model and in the process OAKS uses for acquiring new classes based on that

model. For example, the existing classes in the domain .nodei will be named appropriately

with descriptions of properties and purpose attached to them. However, some of the

guidelines and rules will need to be applied when a new class is created.

GR . The class name is a singular noun, or an adjective and a noun. It describes a

single object in the class [COYO911. The name should not reflect the role it plays in a

relationship [RUMB911.

USE I. This is checked crudely by checking for "s" endings on the name. Classes

using an adjective and a noun should have an underscore between the words. Eventually,

a system such as OAKS will require a parser for the user input that can analyze whether

the noun is singular or plural, and to ensure the leading word is an adjective.

GR2. Use standard terminology for class names using the common vocabulary of the

domain [COYO91 [WIRF90].

USE2. In a user's guide, the user would be instructed to name new classes using

standard terminology. Also the user's guide should have the user ensure the new class is

not just a new name of an existing class in the domain model.

GR3,8,9,10,13. It is a class if the system needs to remember anything about the

objects in the class. Eliminate classes that have little or nothing to do with the problem

[COYO91] [RUMB91]. A class should not merely be derived results. For example, you

do not want a class that is a printer report from existing data [COYO91 1. Class names

that primarily describe individual objects should be renamed as attributes [RUMB9 1]. A

name that describes an operation that is applied to objects and is not manipulated in its

6-2

own right is not a class. A telephone call to someone is an event if you do not need to

track calls [RUMB91]. A class should not just be an encapsulated subroutine IMEYEXXI.

USE3,8,9,10,13. The domain model provides guidance to the user on what are

proper classes for the domain through the use of the existing classes, the inheritance

structure, and the whole/part relations. The user is not intended to be an object-orientcd

expert, so the domain model is used as an example of where to look for classes and how

they fit together. Also, if there are classes that have no connections to other classes when

the problem model is complete, those classes are either not needed for the problem or

there are relations between classes not yet defined. Any classes not connected to other

classes are brought to the user's attention for resolution.

GR4,5,1 1. You are able to describe an object in the class, and some potential

attributes [COYO91]. The class needs to provide some processing [COYO91I. You

should be abie to write a statement of purpose for the class (WIRF90]. You should be

able to answer how objects of the class are created, copied, or destroyed [BOOC9I 1.

USE4,5,1 1. The user is asked for an English description of the class that included its

general properties, its purpose, and the processing it needed to do. If a user can provide

this information, then it is probably a good class. The English description is not analyzed

in OAKS, because of the absence of a parser, but it is stored with the new classes.

Existing classes in the domain model carry this information also. It is not reasonable to

ask a user how objects are created, copied, or destroyed. This is based more on how the

system is designed and on the implementation language used than with requirements.

GR6. There usually should be more than one object in a class. If not, look for similar

classes and put the class information into those classes [COYO91 1.

USE6. The user's guide should advise the user to create a potential set of objects for

any new class. If there are no possible objects, or just one, the class may have to be

redesigned.

6-3

GR7. The requirements the class satisfies should be domain-based requirements and

not implementation constructs. Make sure the class is satisfying requirements that are

needed regardless of the computer technology that will be used to build the system. Do

not model windows, menus, task management, or number of processors [COYO91]

[RUMB91].

USE7. The user should be cautioned through a user's guide about creating a class

that is implementation-dependent. This requires providing the user with examples of

implementation-dependent classes in that domain.

GR12. When an adjective is used with a noun to name a class, it is probably a

subclass of the noun [WIRF90.

USE12. This is used to analyze the inheritance relation. The user is asked to place

the underscore character between words composing a class name. Matches are made on

the words making up the name.

GR14. Every object of the class must have the same characteristics and be subject to

the same rules [SHLA881.

USE 14. A user's guide should instruct the user that all the objects of a class should

have the same characteristics.

GR15. List the criteria for object inclusion in a class. If the word "or" is used

significantly, it is not a class. Also, if the criteria are just a list of objects, you don't have a

class [SHLA88].

USE 15. This information should be placed in the user's guide.

6-4

Evaluating the Inheritance Relation

GRI. The distinctions between subclasses must be important within the problem

domain. Specialize around those important distinctions. For example, it may be important

to distinguish between dogs and cats and not between male and female pets [COYO91 l.

USE I. The domain knowledge in OAKS is in the form of the domain model. When

new classes are acquired, they are acquired with the purpose of gathering information that

is needed for the problem model. The domain model acts as a template, or model, for how

the classes and the inheritance structure should be organized for that domain.

GR2,7. Some set of attributes and services must be common to all the subclasses of a

superclass [COYO91]. Subclasses should support all the responsibilities of their

superclasses [WIRF90. Services may not change the Input-Set and Output-Sets, but

they may change their behavior [RUMB9 1].

USE2,7. The inheritance structure in the domain model requires that subclasses

inherit all attributes and services from their superclasses, although the services may be

implemented differently. The requirement is that the service interface is the same for the

subclasses of a superclass. If the user creates a new class, it must obey all these rules also.

OAKS could be flexible enough to allow the superclass to be redefined so that the

subclass would fit under that superclass. The problem with this approach is that this may

invalidate large segments of the domain model. If the superclass is changed, all subclasses

under it must be redefined. This is a large task for a user not familiar with object-oriented

techniques. This would create the possibility for the user to do major damage to the

domain model. If the user is considered to be an object-oriented expert, the system could

be more open and allow any changes desired. However, given the assumed expertise of

the user, OAKS does not allow changes to classes that are superclasses of other classes in

the domain model. OAKS permits changes to classes that are not superclasses as long as

those changes do not violate the constraint that the class must inherit all attributes and

6-5

services from its superclass. For example, assume class Aircraft is a leaf of the domain

model inheritance tree and the user wants to create a class Helicopters that is a subclass of

Aircraft. Further assume that Aircraft has an attribute Wing-Span that is NOT an

attribute inherited from its superclasses, and further assume that the Helicopter class has

no use for this attribute, but can inherit all other attributes and services of the Aircraft

class. The user of OAKS could remove the Wing-Span attribute from Aircraft and create

a class FixedWingAircraft as a subclass of Aircraft that contains the Wing-Span

attribute. The helicopter class can now be made a subclass of the Aircraft class.

If the user defines a new class that does not fit under any of the existing classes in the

model, the new class is created by the user as an independent class.

GR3. If the only distinction between two subclasses is the value of one attribute, then

just use the superclass with different values of one attribute. For example, if the only

difference between two types of pets is whether they are male or female, just use a "sex"

attribute in the superclass and remove the subclasses [COYO91).

USE3. The analyst that creates the domain model uses OAKS to determine if there

are a large number of attributes of any two classes that are similar in structure. If there

are, these are identified by OAKS so the analyst can determine if the two classes are

related and if the model needs to be changed.

GR4. If multiple inheritance is used, the subclass does not have to add attributes or

services to be a good subclass [COYO91 1.

USE4. If a class is added using single inheritance, OAKS ensures that the new class

has at least one new attribute and/or service. But if a class is added using multiple

inheritance, OAKS does not use this requirement.

GR5. The inheritance structure should reflect naturally occurring structure in the

domain. Do not use inheritance just to extract out a common attribute [COYO91].

USE5. The inheritance structure in the domain model follows the guideline.

6-6

GR6. Do not nest subclasses too deep. Look suspiciously at those that are over

three levels deep [RUMB91 1.

USE6. The inheritance structure of the domain model minimizes the nesting of the

subclasses. Also, the inheritance structure of the domain and problem model is analyzed

and too deep a nesting level is flagged to the developer of the OAKS domain model and

the user for possible model changes.

GR8. Factor a common responsibility as high as possible [RUMB91].

USE8. This guideline is used in the development of the domain model. Also, the

model is evaluated to determine if there are a large number of services in any two classes

that are similar in structure. If there are, this information is provided to the developer of

the domain model and the user of OAKS.

GR9. There should be at least two subclasses per superclass [RUMB91].

USE9. This guideline is used in the development of the domain model and also in any

structure that the user creates. If a class only has one subclass, that is flagged and brought

to the user's attention for possible model changes.

GRIO. If there is trouble naming a superclass, there is probably a problem. Try

another superclass [WIRF90].

USE 10. The user must identify names for each new class. There is no method for

determining if the user had difficulty in determining a name or not. The users guide should

provide the guidance to the user in naming classes.

Evaluating the Whole/Part Relation

GR 1,2. If a part does not capture more than just status value, include an attribute for

that value in the whole and eliminate the part [COYO9 1]. There can be some operations

6-7

on the whole that are applied to its parts, but never from the parts to the whole

[RUMB911.

USE 1,2. The whole/part structure of the domain model follows this guideline.

Evaluating the Class State Space

GRI,3,4,6,7,8,9,l0. Each attribute should represent an atomic concept in the form of

either a single value or a tightly related group of values [COYO91] [SHLA88]. Attributes

should not be derived results, such as Age when you know the date of birth [COYO91].

Data redundancy is acceptable during the analysis phase [COYO9I. Do not use internal

identifiers as attributes. The object IDs are implicit in that they are assumed for every

object [COYO91] [RUMB91]. Internal identifiers have no meaning in the problem

domain. An attribute should be a class if the independent existence of an entity is

important rather than just its value [RUMB91. If an attribute describes an internal state

that is invisible outside the object, eliminate it [RUMB91]. An attribute that is completely

different from and unrelated to other attributes may indicate the class should be broken

into two classes [RUMB9 11. Each attribute should be independent of the other attributes

in a class [SHLA88].

USE1,3,4,6,7,8,9,10. These guidelines and rules are used by the researcher when

developing the attributes used in the OAKS domain model. The users guide should

provide information on the proper selection of attributes. Attributes are more likely to

change than classes from problem to problem in a domain, so the attribute structurc is

more likely to change than the class or inheritance structures.

GR2,11,12. The attributes should apply to every object in the class. If not, create

another set of classes using inheritance [COYO91]. Each attribute should take on only

6-8

one value at a time [SHLA88]. There must be a value for every attribute ISHLA881. The

possible value tor an attribute should not be N/A.

USE2,11,12. The OAKS domain model adheres to the guideline that the attributes

apply to every object in the class. The domain model also forces a legal set of values for

each attribute, which ensures the attribute must have a value, but only one value at any

point of time.

GR5. If attributes are repeated in other classes, there may be additional classes

required in the inheritance structure [COYO9 1].

USE5. This guideline is used internally by OAKS to evaluate the initial domain

model. Also, attributes in new classes that are used in other classes point to possible

relations between them. OAKS brings these similarities to the attention of the developer

of the OAKS domain model for possible relations or for possibly combining the new class

with another.

Evaluating Other Relationships

GRI,2,3,4,5. When there is a many-to-many relationship either between objects of

different classes or objects for a single class, ask what attributes describe the connection.

Then make a class between the two connected classes that contains those attributes

[COYO91] [BULM91I [SHLA88]. Do not add a relationship if the mapping between two

objects can be made through other relationship connections [COYO91] [RUMB91.

Challenge one-to-one relationships. Often the object on either end is optional or

multiplicity is needed [RUMB91I. Eliminate relationships that are outside the problem

domain or deal with implementation [RUMB91]. A relationship should not describe a

transient event, but a permanent relationship [RUMB9 I].

6-9

USE 1,2,3,4,5. Other relationships are highly domain dependent. Where inheritance

and whole/part relationships are used in almost all domains, the other relationships used, if

any, are based on the domain. Each domain carries with it a set of other relations that are

normally used in that domain that are represented in the domain model. New relationships

are added by the user of OAKS as needed. Also, OAKS allowes the modification of the

existing other relationships, to include changing any of the components and deleting an

entire relationship. The user's guide should provide guidance on how to identify other

relationships.

Evaluating Services

In analyzing examples of pre- and post-conditions of services for the domain model,

several points became clear. First of all, the only information needed for OAKS to analyze

the services is the identification of services of other classes that are used. This provides

information on the coupling between classes and the execution flow starting from a given

service. Second, acquiring the algorithms from a user would be difficult, and would be

better done using a tool specifically designed for that purpose and then placing the results

in the OAKS model. The algorithms can take a number of forms, from pseudo-English to

a more structured program design language to a higher-order language like Ada,

depending on the experience of the user. Third, it is possible to acquire the preconditions

from the user by requesting information on the required values (if any) of the attributes

prior to service execution. Fourth, it is also possible to ask the user what attributes (if

any) change as a result of the service execution.

Based on these conclusions, the following information is acquired from the user on

services:

6-10

(1) The name of the service.

(2) The ;,put parameters (if any). This includes the name of the parameter and Its

type. The type is the legal set of values the parameter can assume.

(3) The output parameters (if any). This includes the name of the parameter and its

type.

(4) The preconditions. This takes the form of the required values (if any) of the

attributes of the class. It is assumed that the input parameters are of their respective type

so that the checking of the type of the input parameters does not have to be explicitly

shown. For example, if the input parameter to a service called "Change-Age" is the new

age, which is an integer between 0 and 1M, it is assumed any input parameter value will

be an integer in that range.

(5) The postconditions containes two parts. One part is information on the services

of other classes required for this service to perform its function. This takes the form of

the class name and the service name. The second part is information on the new state of

the class upon completion of the service function. This is the changes in attribute values

(if any) of the class.

This information is acquired by direct questions for the name of the service, the input

parameters, the output parameters, the precondition and the postcondition, or through the

use of templates for certain types of services. For services created without templates,

checking is done on some of this information to ensure it is consistent with the model. For

example, any attribute name used in defining the new state of the class in the postcondition

had to exist in the class. The service name could not be the same as any other service

name in that class. Also, the messages must be from existing classes and services within

those classes. Other checks that are made on new services are described in more detail in

Chapter 7.

6-11

Templates for services were created that greatly simplify the creation of a new

service. Templates for services that change attribute values and return attribute values are

provided in OAKS. These templates automatically fl]l in the values for the description.

input set, output set, preconditions and postconditions given information on the type of

template and the attribute the template operates on.

GR 1. Look at possible reusability of the service. Ask if the service would be useful in

more than one context. Try to make the services as reusable as possible [BOOC911.

USE I. This should be one of the primary considerations when the domain model is

developed. It is desirable to reuse as many of the services in the domain model as possible

in the problem models of that domain. Therefore, the user of OAKS is not forced to

create new services or make extensive changes to existing services.

GR2,3,4,5,6,8,9,11,12,13,15,16,17. Look at the complexity of the service and ask

how difficult it would be to implement. You may have to break the service into two

services [BOOC9)1 [WINB90. Ask how applicable the service is to the class in which it

is placed [BOOC91 1. Make sure that the implementation of a service does not depend on

the internal details of another class [BOOC91]. Each service should send messages to a

limited set of classes. This creates loosely coupled classes [BOOC91 1. The intelligence of

a system should be evenly distributed. Intelligence is measured by how much a class

knows or can do, and how many objects it can affect [WIRF90]. Keep services with

related information. If a class has attributes, then the services that manipulate those

attributes should be in the same class. If a service requires certain information, then that

information should be in its class [WIRF90]. Services should not have to check the class

of an object [WINB90]. A service should not have more than sIx arguments. Reduce the

number of arguments by breaking the service into several [WINB90]. Keep the services

small. Smaller services can be selectively inherited, refined, or overridden (WINB90].

Services should be named with active verb phrases [BOOC91]. Eliminate from a

6-12

superclass those services that are frequently overridden rather than inherited by its

subclasses [WINB90I. Services should apply to all the objects in a class. If not. the

inheritance structure needs to be modified [COYO91 1. If a class has too many services,

break it into multiple classes [WHIT891.

USE2,3,4,5,6,8,9,11,12,13,15,16,17. The use of the service templates provides a

structure for these services that followed the guidelines for services. The existing services

in the domain model attempt to capture atomic concepts so that they can be more easily

reused and understood by the user. The users guide should provide guidance for creation

of a service if the user needs to create a service without the use of a service template.

GR7. Make sure all known system actions are accounted for through service actions

[WIRF90I.

USE7. OAKS asks the user for a list of all the services of other classes that are

needed for each service to perform its function. This process helps in identifying services

that are missing from classes. OAKS also makes it possible to follow the flow of a system

action through the problem model and present that flow to the user for validation. This

requiress the user to provide an initial state and a stimulus to the system. Shown are the

classes that are affected and the services used and the order in which the services are

invoked, as well as state changes.

GRIO. If a class has no message connections with other classes, it should be

discarded. Be sure necessary message connections have not been overlooked [WIRF90].

USEI0. OAKS examines the problem model to identify classes that are unconnected

with other classes through message connections. These classes are brought to the user's

attention. The user must then determine if the class is needed, and if the class is needed,

what message connections have not yet been modeled.

GR14. Identify common services and put them in a superclass [WINB90].

6-13

USE 14. The domain model is created using this guideline. Also, OAKS provides a

list of classes that may be related by examining if a majority of the services of any t•,o

classes are similar in structure.

Evaluating the Whole Model

GRI. One attribute in a class is suspicious. It is likely that attribute should be

included in other classes and that class removed [COYO91 J.

USEl. The completed problem model is evaluated and all classes with just one

attribute identified and brought to the user's attention. The user determines if this is

acceptable or not.

GR2,10. A class should have services other than just create and destroy [COYO91 I.

If a class does not have a rich set of services, then it may be better to put its attributes and

services in other classes IWALT78N.

USE2.10. The completed problem model is evaluated for classes with no services

since the services of create and destroy are not explicitly defined but are assumed to be

part of every class. The user determines if the class is needed in the problem model. If it

is needed. there may be other services are not identified. If the class is eliminated, the

attributes of that class, if they are needed for the problem, are relocated in other classes, or

a new class or classes defined that containes the attributes but with their own set of

services.

GR3. Coupling. Weakly coupled classes are desirable, but there is a tension between

weak coupling and inheritance. You want a minimum of message passing [BOOC911

[CHID91 1.

USE3. The domain model attemptes to keep the coupling between classes low by the

design of the classes themselves and the services.

6-14

GR4. A class should he highly cohesive. Preferably. functional cohesion is used

where all elements of the class work together to provide some well-bounded behavior

[B(X)C91]. Also, you want the union of the set of instance variables used by all the

services of a class to be as large as possible ICHID9OI.

USE4. The domain model containes classes that are cohesive, and preferably,

functionally cohesive.

GR5. All services of a class should be primitive IBOOC91 1.

USE5. See USE2,3,4,5,6,8,9,11,12,13,15,16,17 of Services.

GR6. The complexity of a class is measured by the total number of attributes and

services. The complexity of a class should be kept low [BOOC911.

USE6. This guideline is used in the development of the domain model. OAKS

provides a procedure that analyzes the complexity of classes and brings overly complex

classes to the domain developer's attention.

GR7. Eliminate redundant classes. This is two classes that encapsulate the same

information [RUMB9g I BULM91 1.

USE7. The domain model is examined by OAKS for classes that contain the same

attributes and services, or share a majority of the attributes and services. I1. is possible that

these classes could be combined. These classes are brought to the domain developer's

attention.

GR8. Redefine classes that have ill-defined boundaries or are too large in scope

[RUMB91].

USE8. This guideline is used in developing the domain model.

GR9. Make sure that every functional requirement is met by the classes [BAIL891

[WIRF90] [RU1I921.

GR9. See USE7 of Services.

6-15

Domain-Dependent Guidelines and Rules

The domain-dependent guidelines and rules are based on the requirements on the type

of information required in the domain model for a particular domain. The domain-

dependent guidelines and rules will change for each domain of interest implemented for

OAKS. The domain chosen for this research is that of a system that manages the

scheduling of maintenance and flights for an Air Force maintenance squadron. The

domain model used as a basis for this research is shown in Appendix A. This domain

model provided the information for the implemented domain model within OAKS.

The domain-dependent guidelines and rules contain information on those classes and

any of its attributes and services that are necessary to the completed model and therefore

cannot be deleted from the model. The names and components of these classes, attributes

and services can change, therefore allowing the user to adapt these structures to the

problem being solved. The ciasses in the model are the most likely not to change from one

problem in the domain to another, and the most likely to be required in a domain. For

example, if the domain is an aircraft maintenance squadron, the "aircraft" class would be

required in all problems in the domain. There would also be an attribute that would

represent some identification of the aircraft, such as the tail number. The class and the

attribute would be required, even though the name, "tail-number" could change if that

terminology is not used in the problem.

Relationships are more likely to change than classes, and therefore are not included in

the domain-dependent guidelines and rules. Also, inheritance is not included because

classes that are parents are not allowed to be deleted from the model. These restrictions

could be added if deemed necessary for a particular domain. For purposes of illustration

of the concept of domain-dependent guidelines and rules, the most likely constant

structures were chosen for implementation.

6-16

If a new class is added that is not in the domain model. OAKS cannot currently apply

any domain-dependent guidelines and rules.

The process of determining which classes, attributes and services are necessary

requires an extensive domain analysis which is beyond the scope of this research.

Therefore, certain classes, attributes and services of the domain model were chosen to be

used as an example of how they would be used in the OAKS system.

The groundwork has now been laid for an automated OORA system. Starting with

the OORA mathematical model, which defined components, relationships and ordering,

guidelines and rules have been defined on the acquisition and evaluation of those

components. The guidelines and rules are based on OORA concepts independent of the

domain in which they operate, and guidelines and rules have been defined based on the

domain of interest. The next step, discussed in the next chapter, is the development of a

code structure for the domain and problem model in OAKS based on the OORA

mathematical model, the methods for analyzing that structure using the guidelines and

rules defined in this chapter, and the development of the user interface. Also included in

the next chapter is the development of guidelines and rules based on the code structure for

the domain and problem model in OAKS.

6-17

VII. Prototyping. Testing and Analysis

Overview

The purpose of the research was to investigate the feasibility of a computer-based

system assisting in the OORA process. This required the development of a proof-of-

concept computer-based system, which was called OAKS. It would not be sufficient to

define the OORA model and the guidelines and rules without creating a system that

implements the defined process. The proper selection of code structures, code

organization, and techniques for evaluating the model in code is crucial to the achievement

of the goals of this research. This chapter discusses the development of the OAKS

software.

The OAKS system contains a domain model that is modified by the user of OAKS to

produce a specification for a particular problem in that domain, called the problem model.

The domain model is created by an analyst after conducting an OODA. The OODA

process would follow the guidelines and rules outlined in the previous chapters. The

components of the domain model are those of the mathematical OORA model developed

in chapter 4. The analyst should create the domain model and examine the results using

the code that analyzes the model based on the guidelines and rules. This would be done

prior to the domain model being modified by a user. As changes are made by the user, the

analysis code continues to identify any deviations from the desired final model.

The proper selection of the code structures to implement the OORA mathematical

model components, the ordering of the component acquisition, and the guidelines and

rules were critical to the successful implementation of OAKS. Selection of certain code

structures, such as frames, would make the task of creating a pure object-oriented system

very difficult. The code needed to represent the object-oriented concepts and structures

7-1

as naturally as possible. The code structures must be in a form so any changes made to

the domain model can be checked for their consistency and completeness using the

guidelines and rules. It was also important to organize the code so new domains can be

implemented with a minimum of impact on the code that is non-domain specific.

Discussed in this chapter is the structure of the domain model, the additional

guidelines and rules used to analyze both the domain and problem models based on the

structure of the models in OAKS, the implementation of the guidelines and rules defined in

chapter 6, the permissible modifications to the domain model used to produce the problem

model, and the user interface. The guidelines and rules used to analyze the problem and

domain models are those defined in chapter 6 plus those introduced in this chapter that are

based on the structure of the domain model. These guidelines and rules together insure

that the model remains consistent and complete in accordance with the OORA

mathematical model and the desired OORA process.

LISP was chosen as the implementation language for OAKS because of its ease of use

as a prototyping language and its flexibility. LISP provides the structures and

environment necessary for the OAKS development.

OAKS contains five primary code structures. The first, called the domain model,

contains the domain model that is modified to create the problem model and any domain-

dependent guidelines and rules that are used to evaluate the user's evolving problem

model. This is the only code structure that must be reimplemented for each domain. The

remaining four code structures remain constant across all domains.

The second code structure, called the domain-independent guidelines and rules,

contains domain-independent guidelines and rules that are used to evaluate the model to

ensure it meets object-oriented requirements analysis, general requirements analysis

objectives, and requirements based on the structure of the domain model. These rules

evaluate any new domain model in OAKS and the user's evolving model.

7-2

The third code structure is the model modification code. This code contains the

functions that allow the modifications to the domain model and the evolving problem

model. The model modification functions use the code implementing the domain-

independent and domain-dependent guidelines and rules to ensure that changes meet all

system requirements.

The fourth code structure, the evolving model, is the user's evolving model. This

model will start as a copy of the domain model. It is modified by the user using the OAKS

system and, once modified, stored separately from the domain model.

The fifth code structure, the user interface, handles all communication between

OAKS and the user. Figure 7-1 shows the general structure of OAKS.

OAKS

SUser Interface I User

Model
Modification

Domain Model Functions

Domain-dependent Domain-independent
guidelines guidelines
and rules

and rules

Evolving Model

Figure 7-1. OAKS Structure

7-3

The following sections will discuss and analyze the five code structures. The

implementation and analysis of the resulting structure of the domain model is covered first.

Next, the implementation of the domain-independent guidelines and rules is discussed and

analyzed. The domain-dependent guidelines and rules are discussed and analyzed next.

The evolving model is treated in the context of the code structure that allows

modifications to the domain model. Therefore, these two code structures are discussed

and analyzed together. Although the user interface has nothing to do with the

functionality provided by OAKS, it is important because it establishes how the user

communicates with OAKS. This chapter concludes by looking at the user interface

developed to complement this research.

Domain Model Code Structure

The OAKS domain model contains the information for a domain with the following

components. These components were defined as in the OORA mathematical model. This

list contains the components themselves, but does not show multiple occurrences of a

component. For example, there are a number of classes in SetOfClasses.

1. SetOfClasses

1.1 ClassName

1.2 ClassStateSpace

1.2.1 AttrName

1.2.2 Set

1.3 Services

1.3.1 ServiceName

1.3.2 Input-Sets

1.3.3 Output-Sets

7-4

1.3.4 Preconditions

1.3.5 Postconditions

2. RV, which is the superclass relation

3. Rw, which is the whole/part relation

4. RR, which is other relations

The structure in LISP which naturally matches the structure detimed for classes is the

class structure in the Common LISP Object System (CLOS). The classes were

implemented as a CLOS class structure called generic-class. The attributes and services

were also implemented as CLOS class structures because their structures also naturally

matched the class structure. Each of the components of the OORA model correspond to a

slot of the CLOS data structures.

The advantage to using CLOS class structures was that all components of each class

are hidden inside the class. Therefore, there is no possibility of name clashes or confusion

between the class names and the attribute and service names. The names of the attributes

and services from one class can be used in another without any confusion as to where the

attribute or service belongs. There cannot be two classes with the same name within any

one model. There cannot be two attributes named the same within one class nor can there

be two services with the same name within one class. Other than those restrictions, the

names of classes, attributes and services can be repeated as other classes, attributes and

services.

Detail on the method for accessing the components of each class will be discussed

after the structures of the classes are discussed.

In the following sections, the CLOS class structure will be described, to be followed

by the attribute class structure, the service class structure, and finally, the components of

the attributes and services. These components are written using LISP's record structure,

or defstruct structure.

7-5

CLOS Class Structure, Each class in the domain model is an instance of the

following CLOS class, called generic-cla.s. This class consists of a set of named slots.

The number of slots in a given CLOS class and the contents of each slot are defined by the

creator of the class based on the descriptors given to each slot. In the case of the class

generic-class, there are eight slots defined. The name slot contains the name of the class.

The "description" slot contains a description of the class. The state-space slots contains

information on all attributes of a class. Each attribute is an instance of another CLOS

class, described in the next section. The services slot contains information on all the

services of a class. The services are also implemented as CLOS classes, and are defined

later. The inheritance slot contains any parents of the class. The whole-part slot contains

any whole-part relations for the class. The relationships slot contains any other

relationships for the class. Finally, the need-verified slot contains "no" if the class has not

been verified by the user and "yes" if it has.

Each slot can have zero or more slot options associated with it. These slot options

provide mechanisms for customizing the slots, such as supplying default initial values,

automatically generating functions for reading and writing slots, supplying initialization

arguments used in instance creation, and supplying a documentation string for the slot.

Each slot in the generic-class class has been defined with particular slot options. The

slot options used are the initial value for the slot when an instance of the class is created

(:initarg), the name used to access the value of the slot (:accessor), and a documentation

string that describes the function of the slot (:documentation). Examining generic-class,

the initial value of the slot named description is set through the use of the function :desc

when an instance class is first created. After the class is created, the value of the slot is

accessed and changed through the use of the function of the name desc. The

documentation string at the end of the class is not part of the class slot structure but is one

7-6

or more sentences used describe the generic-class structure. The following is the CLOS

structure for the class generic-class which was used for each class in the model.

(clos:defclass generic-class 0

((name :initarg :name

:accessor name

:documentation "The name of the class:)

(description :initarg :desc

:accessor desc

:documentation "A description of the class")

(state-space :initarg :state-space

:accessor state-space

:documentation "The class state space)

(services :initarg :services

:accessor services

:documentation "The class services")

(inheritance :initarg :inheritance

:accessor inheritance

:documentation "The immediate superclasses")

(whole-part :initarg :whole-part

:accessor whole-part

:documentation "The whole-part relation")

(relationships :initarg :relation

:accessor relations

:documentation "Other relationships")

(need-verified :initarg :verif

7-7

:accessor verif

;documentation "Does the class need user verification"

(:documentation "A generic class"))

In order to access any slot of an instance of generic-class, the instance must be

referenced. For example, if One-Class is an instance of class generic-class, the name of

One-Class would be accessed through the function (name One-Class). This function

would return the name of One-Class. The value of the name of One-Class would be

changed by using (setf (name One-Class) New-Name). This w,,uld set the value of the

name slot of One-Class to New-Name. Using this class structure within CLOS therefore

provides an encapsulation of the components of a class within the class. This avoids any

conflicts caused by the names of attributes of different classes being the same, for

example. The attributes of each class are only accessible through the class itself and are

not stored as global names. This structure therefore embodies the object-oriented concept

of encapsulation within a class of the class's attributes and services.

Using this CLOS structure also enables the capturing of all the components of the

OORA mathematical model in one class structure. There is no requirement for separate

inheritance, whole/part, other relationship, and message passing structures. All this

information is contained in the CLOS class structure generic-class. This causes the

information about whole/part and other relationships to be repeated in each of the classes

involved in the relationship. The advantage is that there is only one structure to monitor

compliance with the defined guidelines and rules and to ensure each class in the model

remains consistent and complete throughout the model modification process. The

inheritance, whole/part, other relationships, and message passing trees can be created

through the use of the information in the CLOS class structure. This process was

automated in the case of the message-passing tree and is discussed in a later section.

7-8

The following table relates the slots from the CLOS generic-class to the components

of the OORA model.

Table 7-1
Relationship Between CLOS Class and OORA Model

Class Name name

Class State-Space state-space

Services services

Rf, which is the superclass relation inheritance

Rw, which is the whole/part relation whole-part

RR, which is other relations relationships

The need-verified slot is initially set to '(), or "no", stating that the user has not

reviewed the requirements for the class as of yet. Once the user has verified the class, the

value is set to true, or "yes".

CLOS Attribute Structure. Each attribute is an instance of the CLOS class called

attribute. There are four slots defined. The name slot contains the name of the attribute.

The description slot contains a description of the attribute. The initial-value slot contains

any initial value required for the attribute when a new instance of this class is created. The

default value for this slot is null, meaning no initial value is specified. The a-set slot

contains the set of legal values for the attribute. The need-verified slot is false if the

attribute has not been verified by the user and true if it has. The slots in the attribute class

have the same options as the slots of the class generic-class except for the addition of a

slot option, :initform, that is used to set the initial value for every instance of the class.

For example, in the class attribute, the value of the a-set slot is initially set to an empty list

7-9

when an instance is created. This value can be set through the :initformn option when the

instance is created or the :accessor option after the instance is created.

The following is the CLOS attribute structure.

(clos:defclass attribute 0

((name :initarg :name

:initform "..

:accessor name

:documentation "The name of the attribute.")

(description :initarg :desc

:accessor desc

:documentation "A description of the attribute.")

(initial-value :initarg :initial-value

:initform '0

:accessor initial-value

:documentation "Any initial value used when an object is created.")

(a-set :initarg :a-set

:initform '()

:accessor a-set

.documentation "The legal set of values.")

(need-verified :accessor verif

:initform '0)))

(:documentation "A general structure for an attribute."))

The following table relates the components from the CLOS attribute structure to the

components in the OORA model.

7-10

Table 7-2
Relationship Between CLOS Attribute Structure and (X)RA Model

OORA Components attribute slots

Attr-Name name

Set a-set

CLOS Service Structure. Every service is an instance of the CLOS class service.

There are four slots defined. The name slot contains the name of the service. The

description slot contains a description of the service. The input-set slot contains

information on the input parameters of the service. The output-set slot contains

information on any output parameters of the service. The preconditions slot contains any

preconditions for the service. The postconditions slot contains information on attributes

that changed value as a result of the execution of the services and messages required for

the service to do its function. The need-verified slot is false if the attribute has not been

verified by the user, and true if it has. The slot options used in the service are the same as

described for the class attribute. The following is the CLOS service structure.

(clos:defclass service ()

((name :initarg :name

:accessor name

:documentation "The name of the service")

(description :initarg :desc

:accessor desc

:documentation "A description of the service")

7-11

(input-set :initarg :input-set

:initform '()

:accessor input-set

:documentation "The output parameter list")

(output-set :initarg :output-set

:accessor output-set

:documentation "The output parameter list")

(preconditions :initarg :pre

:accessor pre

:documentation "The preconditions")

(postconditions :initarg :post

:accessor post

:documentation "The postconditions")

(need-verified :initarg :verif

:accessor verif

:initform ')))

(:documentation "A generic service class"))

The following table relates the components from the CLOS service structure to the

components in the OORA model.

7-12

Table 7-3
Comparison of CLOS Service Structure and (ORA Model

OORA Components service slots

Service Name name

Input_Sets input-set

OutputSets output-set

Preconditions preconditions

Postconditions postconditions

Attribute and Service Components.

Attribute Values. The legal set of values for each attribute is described m the

record structure in LISP defined by defstruct, shown later. This record structure is named

attrib and consists of the components base, lower and upper. The base component is the

base set; the lower and upper values are optional and have different meanings depending

on the base set. The following table describes all combinations of base set and upper and

lower values that are used by OAKS. The words in parenthesis match those used in the

LISP implementation. These words for the legal base sets are not LISP defined types but

only have meaning in the context of the OAKS system.

7-13

Table 7-4
Legal Sets for Attribute Values

Base Set Lower Value Upper Value Comments

(base) (lower) (upper)

Enumerated A list of values All the possible values are shown in

(enum) the lower value.

Integer The lowest The highest The range of integers is optional.

(int) integer integer

Real The lowest The highest The real number are those with

(real) real real decimal points.

Character The lowest The highest The range of characters is optional.

(char) character character

String The lowest The highest The range of strings is optional.

(str) string (in string (in

alpha-numeric alpha-numeric

order) order)

Booicr True or false.

(bool)

Class a-class The value is from the set of instances

(class) of a-class.

Attribute a-class an-attribute The value is from the legal set of

(attrib) values specified for an-attribute of a-

class.

List of A list, each of whose components is

components the "attrib" record structure defined

above.

7-14

The structures shown below are the LISP implementation of the table. The first

structure, proper-artr-setp defines the permissible names that can be used for the base sets

of attributes. These names are the same as those in the base set column of the table above.

This establishes the basis for the second structure called legal-set, whereby a value is a

legal-set type if it is one of the names contained in proper-anir-setp. The third LISP

structure is the record structure for the legal set of values of an attribute. It shows three

slots. The first contains a value that must be of type legal-set and has an initial value of

int. The initial value is used only because LISP will not allow the type of a slot to be

specified without an initial value. The second slot is the lower value and the third the

upper value. There is no requirement, in general, to have values in these slots, so their

default values are set to "none".

(defun proper-attr-setp (a-set)

(or

(eql a-set '0)

(eql a-set 'enum)

(eql a-set 'int)

(eql a-set 'real)

(eql a-set 'char)

(eql a-set 'str)

(eql a-set 'bool)

(eql a-set 'class)

(eql a-set 'attrib)

(listp a-set)))

7-15

(deftype legal-set ()

'(satisfies proper-attr-setp))

(defstruct attrs

(base 'int :type legal-set)

(lower 'none)

(upper 'none))

The aircraft maintenance and aircraft mission scheduling processes will be used to

further illustrate the OAKS CLOS structure. The system contains the aircraft, aircrew,

and maintenance (or support) personnel in a squadron. A squadron typically consists of a

number of flights of aircraft. The aircraft contain parts, each of which is repaired by a

certain repair shop. Maintenance personnel are assigned to a particular repair shop.

Aircrew are qualified to fly certain aircraft. When an aircraft part needs maintenance, it

may require the scheduling of space in a hangar for the repair as well as the scheduling of

maintenance personnel qualified to repair the part. An aircraft mission requires the

scheduling of aircraft, aircrew, and the range space in which the mission is flown.

To illustrate the use of the constructs, consider the class squadron. To create an

attribute called name within the class the LISP construct would be:

(make-instance 'attribute

:name 'name

:desc "The name of the squadron."

:a-set (make-attrs :base 'str))

7-16

To create an attribute called the-aircraft, which is a list of all the aircraft in an object

of class squadron, the LISP construct would be:

(make-instance 'attribute

:name 'the-aircraft

:desc "A list of the aircraft in the flight."

:a-set (make-attrs :base '(,(make-attr :base 'class

:lower 'aircraft))))

Input and Output Sets of Services. The members of the input and output sets are

represented by a LISP defstruct called parameterf with slots of name and values.

(defstruct parameterf

(name 0)

values)

Each member of the input set must contain the input parameter name in slot name and

the legal set of values for that parameter in slot values. Each member of the output set

contains just the legal set of values for the output parameter it represents. This is because

output parameters are not named. The legal set of values for input and output sets can be

one of the legal sets for attributes such as "int", the name of an attribute in the class which

indicates the legal values are the same as for the named attribute, or the name of an

attribute of another class. If the legal set of values is that of an attribute of another class,

the set of values is a list of the form (:a class-name attr-name). If the legal set of values is

an instance of another class, the set of values is a list of the form (:c class-name).

The ":a" and ":c" notation used to identify the legal set of values for the input and

output sets was necessary to distinguish between the names of attributes within the class

7-17

and the names of attributes of other classes. It is possible for the name of an attribute to

be the same as the name of another class in the model or an attribute in another class.

For example, an input set consisting of one parameter whose name is symptoms and

whose legal set of values is that for the attribute legal-symptoms-list of class repair-

symptoms, would use the following structure:

:input-set "(,(make-parameterf :name 'symptoms

:values '(:a repair-symptoms legal-symptoms-list)))

The services are modeled as functions and return a single value. This value can be a

single element or a list of elements. Each output parameter is therefore defined solely by

its set of legal values and no name is required.

For example, an output set consisting of one parameter whose value is the name of an

object of class aircraft would use the following structure:

:output-set '(,(make-parameterf :values '(:c aircraft)))

Preconditions of Services. The preconditions were implemented in LISP as an

expression that evaluates to true or false. An example of a precondition is as follows:

'(not (member new-flight flights))

Postconditions of Services. The postconditions are represented by a LISP

defstruct record structure with possible defstruct structures embedded.

The basic postcondition is as follows:

7-18

(defstruct postf

(atts '() :type list)

(messages '0 :type list))

The atts slot of posif consists of structures that represent a list of attributes of the

class that have possibly changed as a result of the service call, and the value of those

changed attributes upon leaving the service. This ans slot consists of a list of defstrucr

structures that contain the attribute name and the new attribute value.

The following is the structure for the list of attributes that have changed as a result of

the service call:

(defstruct attr-val

name

value)

The name is the name of an attribute of the class. The value is a free-form structure

that shows the new value of the attribute. The new value of the attribute can be

"changed", indicating that an exact value cannot be determined but the attribute may be

changed as a result of the service call.

The messages slot of postf represents the services of other classes used by this

service. This information is represented as a list of pairs. Each pair is a list consisting of

the class and the service.

Again, as an example, a postcondition that adds a new-person to an aircrew list and

sends a message to create a new instance of aircrew would be represented by:

7-19

:post

(make-postf :atts '(,(make-attr-val :name aircrew

:value '(cons new-person aircrew)))

:messages '((aircrew create))))

Inheritawt, The inheritance structure of the model is contained in the information in

the inheritance slot of each class. The inheritance slot of each class contains a list of

parents of the class. If the class has no parents, the inheritance slot is empty. For

example, if the inheritance slot of the class aircrew contains the list "(personnel)", this

indicates that personnel is the only parent of aircrew.

&IaionshoUL Both whole/part and other relationships are represented by the

defstruct structure as follows:

(defstruct relation

(name 'whole/part)

class 1

rangel

class2

range2)

The default for the name is "whole/part". If relation is used to represent a whole/part

structure, class 1 is the whole and class2 is the part. The whole/part relation is shown in

both the whole and the part classes as structures in the whole-part slot of both classes.

This provides a means to easily trace effects of changes on any class. The whole/part

relations are checked when they are changed, removed or added by OAKS to ensure the

system *remains consistent. For example, when a whole/part relation is deleted in one

7-20

class, it is automatically deleted in the other class involved in the whole/part relation.

Other checks made on whole/part relations are discu,'ssed in later sections on the

implementation of the guidelines and rules and the model modification proccss.

An example of a whole/part relationship is as follows:

:whole-part '(,(make-relation :class 1 'squadron

:rangel '(1 n)

:class2 'flight

:range2 '(1 1))

,(make-relation :class1 'flight

:rangel '(1 n)

:class2 'aircraft

:range2 '(1 1)))

1his is part of the class flight. This shows flight has between I and n aircraft as a

part and that it is part of only one squadron. These whole/part relations will also be

contained in the squadron and the aircraft classes.

Other relationships are handled in a similar manner. The relationship is named with

the two part name as previously described, and that same name is used in both classes

involved in the relationship.

An example of other relationships is as follows:

7-21

:relation '(,(make-relation :name 'has-a/for-a

:class I 'aircraft

:rangel '(1 1)

:class2 'aircraft-schedule

:range2 '(1 1)))

Aircraft has-a aircraft-schedule and aircraft-schedule is for-a aircraft. This relation

will be shown exactly as above in both the "aircraft" and the "aircraft-schedule" class.

Therefore, the relation must be inserted into both classes.

Example of a Class Structure. The OAKS model consists of a set of classes. Each

class is an instance of the CLOS class "generic-class". The attributes are instances of the

"attribute" class and the services of the "service" class. The following is an example of the

"plans-and-scheduling" class:

(setf plans-and-scheduling

(let*

((range

(make-instance 'attribute

:name 'range

:desc "The range schedule."

:a-set (make-attrs :base 'class

:lower 'range-schedule)))

(missions

(make-instance 'attribute

:name 'missions

7-22

:desc "The missions that have been scheduled."

:a-set (make-attrs :base '(,(make-attrs :base 'class

:lower 'mission)))))

(mission-request

(make-instance 'service

:name 'mission-request

:desc "A request for the scheduling of a mission."

:input-set '(,(make-parameterf :name 'ac-list

:values '((:c aircraft)

(:a aircraft configuration)))

,(make-parameterf :name 'list-of-aircrew

:values '((:c aircrew)))

,(make-parameterf :name 'duration

:values '(:a schedule-event duration))

,(make-parameterf :name 'range-info

:values '(:a mission range-info)))

:output-set '0

:pre '()

:post

(make-postf :atts '(,(make-attr-val

:name 'missions

:value '(cons new-mission missions)))

:messages '((aircrew get-sched)

(aircraft get-sched)

(mission create)

7-23

(aircraft-schedule add-mission)

(aircrew-schedule add-mission)

(range-schedule add-mission)))))

(mission-complete

(make-instance service

:nane 'mission-complete

:desc "A mission has been completed."

:input-set '(,(make-parameterf :name 'the-mission

:values '(:c mission))

,(make-parameterf :name 'hours

:values '(:a mission ac-info))

,(make-parameterf :name 'crew

:values '(:a mission aircrew-list))

,(make-parameterf :name 'date

:values 'int)

,(make-parameterf :name 'time

:values '(:a mission time)))

:output-set '0

:pre '(member mission missions)

:post

(make-postf :messages '((aircraft configuration)

(aircraft-part update-flight-hours)

(aircrew update-hours)

(mission change-date)

(mission change-time)

7-24

(mission change-ac-info)

(mission change-status)))))

(cancel-mission

(make-instance 'service

:name 'cancel-mission

:desc "A mission is canceled."

:input-set '(,(make-parameterf :name 'the-mission

:values '(:c mission)))

:output-set '0

:pre '(member the-mission missions)

:post

(make-postf :messages '((aircraft-schedule remove-mission)

(mission get-date)

(mission get-duration)

(mission get-config)

(aircrew-schedule remove-mission)

(mission get-mission-type)

(range-schedule remove-mission)

(mission get-aircraft)

(mission get-range-info)

(mission change-status))))))

(make-instance 'generic-class

:name 'plans-and-scheduling

:desc "Schedule missions."

7-25

:state-space (list range missions)

:services (list mission-request mission-complete

cancel-mission)

:inheritance'()

:whole-part ')

:relation '(,(make-relation :name 'uses/used-by

:class I 'plans-and-scheduling

:range 1 '(0 n)

:class2 'mission

:range2 '(1 1))))))

The entire class contains two attributes, named range and missions, and three

services, named mission-request, mission-complete, and cancel-mission. These show

local attributes and services only and not those possibly inherited frora other classes. In

this example, the inheritance slot is an empty list. signifying this class does not inherit from

any other class.

The set of values of the attribute named range is all objectsc of the class range-

schedule. The set of values of the attribute named missions is all lists of objects of class

mission.

The service mission-request has four input parameters that are shown in the input-set.

This service does not return a value; this is indicated by the empty list in the output set.

The first parameter, ac-list, is a list of pairs consisting of objects of class aircraft and

values of type of attribute configuration in the class aircraft. The second parameter, list-

of-aircrew, is a list of objects of class aircrew. The third parameter is a single value of the

type of the attribute duration of class schedule-event. And the fourth parameter, range-

info, is a single value of the type of the attribute range-info of class mission.

7-26

The service mission-request possibly modifies one local attribute, missions. by

changing its value to "(cons new-mission missions)". This is shown in the arts slot of the

postcondition in the :post slot. The service mission-request also uses four services of

classes outside this class. This is shown in the :messages slot of :post. The service of

aircraft named get-sched is used, along with the create service of mission, the add-

mission service of aircraft-schedule, the add-mission service of aircrew-schedule, and the

add-mission service of range-schedule.

The plans-and-scheduling class has a relation to the class mission as shown in the

:relation slot of the class.

Enre Mol The entire model is represented by the global list, *list-of classes*.

This list contains the classes as represented by their CLOS generic-class structure.

SetOfClasses in the domain model is represented by *list-of-classes* in OAKS.

This section established the LISP structures used to implement the defined OORA

mathematical model components and relationships. The OAKS domain model consists of

the global list *list-of-classes*, each element of which in an instance of the class "generic-

class". The OAKS domain model represented in *list-of-classes* is the basis for the

analysis done by the guidelines and rules and the modifications performed to create the

problem model. It is this *list-of-classes* that is analyzed so the modifications made to it

keep the model consistent and complete with respect to the defined guidelines and rules.

The next section first defines additional guidelines and rules not defined in the

previous chapter. These additional guidelines are rules are based on the LISP structures

that make up the OAKS domain model. The section then discusses how the domain-

independent guidelines and rules defined in the previous chapter are implemented in

OAKS.

7-27

Domain-Independent Guidelines and Rules

Structure-Based Guidelines and Rules. Chapter 6 defined domain-independent

guidelines and rules that were based on existing OORA methods. These guidelines and

rules are independent of the code structure of the domain model within OAKS. This

section discusses and analyzes guidelines and rules that are based on the required

characteristics of the LISP code structure in OAKS. These guidelines and rules could not

be developed until the code structure for the classes was developed as was done in the

previous section. An example of a structure-based rule is that any classes used in the a-set

slot of an attribute must exist in the model.

The following sub-sections define each structure-based guideline and rule, first using

an English description and then using first-order predicate logic.

Classes. All class names must be unique within a single model. This requirement

is implemented in the LISP function unique-.class-names.

Va,b E *list-of-classes* [(a # b) <-* (name a) # (name b)]

Attributes, For all classes in the "a-set" slot of attributes, there must exist a class

in *list-of-classes*. This requirement is implemented in the LISP function model-att-class-

check.

'Vc E *list-of-classes*, Va E (state-space c), Vx E (a-set a)

[((x.base = class) V (x.base = attrib)) * (x.lower e *list-of-classes*)]

For all attributes and their classes in the "a-set" slot of attributes, there must exist an

attribute of that name in that class. This requirement is implemented in LISP function

model-att-att-check.

7-28

Vc E *list-of-classes*, Va E (state-space c), Vx E (a-set a)

{ (x.base = attrib) • [(x.upper E *list-of-classes*) A (x.lower E (attrs x.upper))] }

Services, For all services in all classes, for all input sets, if there are values that are

instances of a class, that class must be in the *list-of-classes*. This requirement is

implemented in model-serv-att-check.

Vc E *list-of-classes*, Vs E (services c), Vx E (input-set s)

{[((first (x.values)) = :c V ((second (x.values)) = :a) I]

[second(x.values)) E *hist-of-classes*] }

For all services of all classes, for all input sets, if there are values whose types are

attributes of other classes, those attributes must exist in that class. This requirements is

implemented in model-serv-att-check.

Vc E *list-of.classes*, Vs E (services c), Vx E (input-set s)

{ [first (x.values) = :a] = [third (x.values) e (state-space (second (x.values)))I }

For all s vices of all classes, for all attribute/value pairs in the postconditions, the

attributes must exist in the class. This requirements is implemented in model-serv-att-

check.

Vc - *list-of-classes*, Vs E (services c), Vp E (post s), Va E (p.atts)

[p.value E (state-space c)]

7-29

For all services of all classes, for all messages in the postconditions, the classes and

their services must exist. This requirement is implemented in model-serv-att-check.

Vc E *list-of-classes*, Vs E (services c), Vp e (post s), Vm E (p.messages)

([(first m) E *list-of-classes*] A [(second m) E (services c)] }

Whole/art For all classes, if there exists a whole/part structure in one class, it

must exist in the other. This requirement is implemented in model-wp-check.

Vc E *list-of-classes*
{ [w E (whole-part c) A ((d = w.class 1) V (d = w.class2)) A (c # d)] ,

w E (whole-part d))

Reationship& For all classes, if there exists a relationship in one class, it must

exist in the other class involved in the relationship. This requirement is implemented in

model-rel-check.

Vc E *list-of-classes*

([r ((relation c) A ((d = r.classl) V (d = r.class2)) A (c # d) 1

r E (whole-part d) I

.LInhelitanc• For all classes, any parents in the inheritance slot must exist in the

model. This requirement is implemented in model-parent-check.

Vc E *list-of-classes*

[i E (inheritance c) => i e *list-of-classes*l

7-30

General OORA Guidelines and Rules. These are the domain-independent guidelines

and rules defined in chapter 6 that are used by OAKS to evaluate the domain and problem

models. Each guideline and rule used is identified by the same numbering scheme used in

chapter 6.

Class,

GRI

Class names should be singular nouns. To evaluate the use of singular nouns without

the use of a parser, OAKS finds classes that have "s" endings on their name. These classes

are not necessarily named wrong, but they should be flagged and shown to the user. For

example, the class name "dress" ends in "s" but is a singular noun. The LISP function

singular-noun-check takes one class and returns true if it is not a singular noun. The

procedure model-singuiar-noun-check evaluates the entire model for class names that end

in "s" and returns a list of those names.

GR3,8,9,10,13

OAKS determines which classes have no connection to other classes. A class can be

connected to other classes in one of five ways:

- It is the parent of another class.

- It is part of a whole-part relationship.

- It is part of a general relationship.

- It is called by another class through a message connection.

- It calls another class through one of its services.

The function connectionp returns true if the class is connected to other classes. The

function unconnected-classes evaluates the entire model and returns a list of classes that

are unconnected.

7-31

GRI2

The name of any new class is evaluated by OAKS to determine if it is related to an

existing class name. This is crudely done by looking for the first dash (if any) in the class

name and matching the remainder of the name with the full names of existing classes. For

example, "an-aircraft" would match with "aircraft". "any-old-aircraft" would match with

"old-aircraft" but not with "aircraft". This identifies a possible inheritance link between

classes.

The function class-name-match takes a new class name and returns any existing class

names that match it.

GR15

The description of a class contains information on what the class represents, its

general properties, and what processing is required other than that for updating attribute

values. The description is contained in the description slot of each class.

Inheritance.

GR3

OAKS looks for attributes that are the same in different classes. These classes may

share an inheritance structure. This is checked when the domain model is entered. An

attribute contains slots for its name, description, and the valid set for its values. The name

and description are not good for comparison. A different name could be used to represent

the same attribute, and the description would not be exactly the same. Therefore, the

comparison is made on the legal set of values. OAKS checks to determine if 80% or more

of the attributes of the new class share the same legal values for each attribute as

attributes in another class. The 80% was arbitrary and can easily be changed in the code.

If another class matches 80% of the new class's attributes, the class is brought to the user's

attention. It is possible an existing class is related to the new class through inheritance.

7-32

This check does not guarantee there is any relationship between the two classes: it merely

identifies a possible relationship.

The function similar-atts returns a list of other classes that have similar attributes.

The function model-similar-atts examines the entire model and returns a list of class names

that have similar attributes.

GR6

Do not nest subclasses deeper than three levels. If the level of the bottom-most class

in an inheritance structure is considered level 0, then if any of the superclasses are at level

3 or above, the model should be examined for changes. The check of the depth level of all

classes in the model is recommended as one of the checks the creator of the domain model

should conduct. It is also one of the tests run when the user asks for issues that are

advisory (i.e., they do not have to be resolved before the model is considered complete).

These advisory issues are discussed in depth in a later section.

The function class-depth returns the level of a class. If the child class is at level n the

parent is defined to be at level n+l. It allows for multiple inheritance by returning the

maximum class depth. The function model-class-depth returns a list of pairs of class

names and the class level.

GR9

There should be at least two subclasses per superclass.

The function two-subclass-check returns the name of the current class if it has only

one child. The function model-two-subclass-check checks the entire model and returns

superclasses that have only one child.

GR5

See Inheritance GR3.

7-33

Services,

GR2,3,4,5,6,8,9.11,12,13,15,16,17

Four service templates were developed as LISP functions. The templates either

return the value of an attribute or change the value of an attribute. The use of a template

greatly simplifies the creation of a service by automatically filling in many of the service

slots based on knowledge of the functioning of the service. The following are descriptions

of the functions that implement the four service templates.

1. Change-att- template

This function is used to create a new service. This new service changes the value of

an attribute if the attribute consists of a single value. If the value of the attribute is a list of

values, either remove-element-template or add-element-template is used. The input

parameters for this function are the new service's name and the name of the attribute

whose value is changed by the new service. When the function creates the service, it

automatically fills in the values for the new service's description, input set, output set,

precondition and postcondition.

2. Return-att-template

This function is used to create a new service that returns the value of an attribute.

The input parameters for this function are the new service's name and the name of the

attribute whose value is returned by the new service. When the function creates the

service, it automatically fills in the values for the new service's description, input set,

output set, precondition and postcondition.

3. Add-element-template

This function is used to create a new service. This new service adds an element to an

attribute for attributes that consist of a list of values. The input parameters for this

function are the new service's name and the name of the attribute whose value is changed

by the new service. When the function creates the service, it automatically tills in the

7-34

values for the new service's description, input set, output set, precondition and

postcondition.

4. Remove-element-template

This function is used to create a new service that removes an element from an

attribute for attributes that consist of a list of values. The input parameters for this

function are the new service's name and the name of the attribute whose value is changed

by the new service. When the function creates the service, it automatically fills in the

values for the new service's description, input set, output set, precondition and

postcondition.

GR7

The messages are traced through the model using the procedure trace-messages. An

initial class and service name are given, and a trace of the message connections is output.

GR1O

The function message-connectionsp takes a class and returns true if it either has

message connections with another class or is a parent of another class. The function

model-message-connectionsp examines all classes in the model and returns a list of those

that do not have message connections or are not parents.

GR14

The function similar-servs takes a class name and returns a list of classes whose

services match at least 80% of the services of the original class. A service matches

another service if the values slots of the input set and output set are equal. The name of

the service is arbitrary and would not be a good basis for comparison. The same argument

holds for the names of the input parameters. The values slots of the parameters represent

the legal set of values those parameters can take on. If the values slot contains the name

of a local attribute, the legal set of values for the local parameter is used as a basis for

comparison, and not the attribute name, which is arbitrary.

7-35

The services of the input class (class A) are compared to the set of ser-;c,ýs of each

class in the model. If the services are being compared to the services of class B and if a

service of class A matches a service of class B, the matching service of class B is marked

and is not used for comparison again. This ensures one service of class B does not match

every service of Class A. If 80% or more of the services of Class A matches those of

Class B, Class B is considered possibly related to class A.

The function model-similar-servs looks at all classes in the model and returns a list of

class names and the classes possibly related to it.

Whole Model.

GRI

The function one-attributep takes a class name and returns true if the number of

attributes is less than two. The function model-one-attributep returns a list of all classes in

the model which have less than two attributes.

GR2,10

The function one-servicep takes a class name and returns true if the number of

services is less than two. The function model-one-servicep returns a list of all classes in

the model which have less than two services.

Instead of using a create service to show default values for the attributes of a class, a

default-value slot was used in the attribute structure. By default, this value is set to '0,

which means the attribute value is empty when a new object of that class is created. If any

other value is needed, the attribute would override the default with a value other than '0 in

the default-value slot.

GR6

The function num-att-ser returns the total number of attributes and services in a class.

The function model-num-att-serv returns a list of class names and the number of attributes

and services in each class. Model-ave-att-serv returns the average number of attributes

7-36

and services in the model. This is used in the evaluation of the domain model. If a new

class has 20% or more than the average, this will be brought to the attention of the analyst

to determine if it can be broken into smaller classes.

GR7

The function share-att-serv takes a class and returns any classes that share 80% of its

attributes and 80% of its services. The function model-share-att-serv looks at the entire

model for any classes that share 80% of their attributes and services with another class.

Model Evaluation. Before the user can use and modify the domain model to fit a

particular problem, the domain model must adhere to the guidelines and rules outlined

above. Some of the guidelines and rules are required in that they must be adhered to

before the model is used. Some of the guidelines and rules are advisory, in that they can

be violated and the problem model would still be valid.

These model evaluation functions proved extremely useful during the development of

the domain model. Using these functions, many errors in the domain model were

uncovered and easily identified for correction. Originally, these evaluation functions were

envisioned solely for use during creation of the problem model. It became apparent that

these were as useful, if not more useful, to the developer of the initial domain model.

These functions can be used on any domain model in OAKS since they are totally domain-

independent.

The following are LISP functions that must run successfully before the model can be

used. A successful completion returns a null result.

1. unique-class-names 0

Ensures the class names within a model are unique.

2. model-att-class-check 0

Evaluates all the attributes to ensure any classes used in the a-set slot of an attribute

exist in-the model.

7-37

3. model-att-att-check ()

Evaluates all the attributes to ensure any attributes, external or internal, used in the a-

set slot exist.

4. model-serv-att-check ()

Evaluates all the services to ensure any classes, attributes or services used are valid.

5. model-wp-check 0

Examines all whole/part structures to ensure they are repeated in their respective

class.

6. model-rel-check 0

Examines all other relationships to ensure they are repeated in their respective class.

7. model-parent-check ()

Checks all parents to ensure they exist in the model.

8. model-input-set-names 0

Checks all input set names of services for validity.

9. model-relation-classes-different ()

Ensures that the two classes in relation and whole-part structures are different.

10. model-remove-repeated-relations ()

Removes any repeated relations in a class.

11. model-remove-repeated-messages 0

Removes any repeated messages in a class.

12. model-unique-att-names 0

Evaluates attribute names to ensure they are unique within a class and are not equal to

the names of valid attribute values.

13. model-unique-serv-names 0

Evaluates services names to ensure they are unique within a class.

7-38

These 13 mandatory requirements are evaluated as the model is changed. In some

cases the model is not allowed to be changed if one of these 13 are violated. For example,

an attribute that has the same name as an existing attribute cannot be added to a class. In

other cases, the change is allowed but an entry is added to a global list called *pending-

issues* that represents a problem that must be fixed before the model is complete. The

pending-.issues list must be null before the model is considered complete. An example

of a change that would cause entries in *pending-issues* would be the addition of a

relation where one class in the relation does not yet exist in the model. What type of

entries are allowed in *pending-issues* and when they can be removed are discussed later.

Some requirements are advisory in that they point to a possible, but not detinite,

problem in the model. For example, a class name normally should not end in "es" because

class names should be singular nouns. But a class name of "bus" would be legal. Until a

better parser is added to OAKS, this crude check of "s" at the end of a name can be

violated.

The following are the advisory guidelines and rules

1. unconnected-classes 0

Returns all classes that are unconnected to any other class in the model.

2. class-name-match 0

Determines if a class has a possible relation to another class in the model by

examining its name.

3. model-singular-noun-check 0

Returns all class names that end in "s".

4. model-class-depth 0

Returns a list of class names and their depth in the inheritance tree.

5. model-two-subclass-check 0

Returns all classes that are parents that only have one child.

7-39

6. model-similar-atts ()

Returns all classes that have similar attributes.

7. model-similar-servs 0

Returns all classes that have similar services.

8. model-one-attributep ()

Returns all classes that have one or zero attributes.

9. model-one-servicep ()

Returns all classes that have zero or one service.

10. model-share-att-serv 0

Returns classes that share 80 percent of their attributes and services.

These ten guidelines and rules are riot evaluated each time the model is changed, but

at the user's request or before the model is considered complete. Any violations of these

rules are brought to the user's attention, but the user is not required to adhere to any of

them. Any violations of these advisory guidelines and rules are " ptured in a list called

advisory-issues, which is discussed in more detail later.

This section defined new structure-based guidelines and rules and defined and

analyzed how these new guidelines and rules and the domain-independent guidelines and

rules defined in Chapter 6 were implemented in OAKS. These guidelines and rules are

used to define consistency and completeness in OAKS and therefore are used to flag the

user when the problem model becomes inconsistent or incomplete. The LISP functions

that implement these guidelines and rules are used to evaluate the inital domain model and

the evolving problem model. The results of the evaluation are shown to the analyst who

develops the initial domain model and to the user who develops the problem model.

These results are either shown as issues that must be resolved prior to the model being

considered complete or as advisory issues that may or may not need to be addressed.

7-40

Domain-Dependent Guidelines and Rules

Chapter 6 defined a set of domain-dependent guidelines and rules. This section

implements and analyzes this last set of guidelines and rules.

The domain-dependent information in OAKS is represented by the associative list

called *necessary-classes*. This list contains those classes and any of its attributes and

services that are necessary to the completed model and therefore cannot be deleted from

the model. However, the names and components of these classes, attributes and services

can change, allowing the user to adapt these structures to the problem being solved. The

classes in the model are the most likely not to change from one problem in the domain to

another, hence they are the most likely to be required in a domain. For example, if the

domain is an aircraft maintenance squadron, the "aircraft" class would be required in all

problems in the domain. There would also be an attribute that would represent some

identification of the aircraft, such as the tail number. The class and the attribute would be

required, even though the name, "tail-number" could change if that terminology is not

used in the problem.

Relationships are more likely to change than classes and therefore were not included

in the *necessary-classes*. Also, inheritance was not included, because classes that are

parents are not allowed to be deleted from the model. These restiictions could be added if

deemed necessary for a particular domain. For purposes of illustration of the concept of

domain-dependent guidelines and rules, the most likely constant structures were chosen

for implementation.

The list *necessary-classes* is in the form of a list of subuists. Each sublist contains

the class name, a possibly null list of attributes that cannot be deleted, and a possibly null

list of services that cannot be deleted. An example of the LISP construct is as follows:

7-41

(defparameter *necessary-c.lasses*

'((aircraft (tail-number) 0)

(aircrew 0 (get-sched))

(aircraft-part 0 0))

This shows that the classes of aircraft, aircrew and aircraft-part cannot be deleted. In

addition, the attribute tail-number of aircraft and the service get-sched of aircrew cannot

be deleted.

This section discussed the implementation of the last set of guidelines and rules. The

OAKS system now contains guidelines and rules based on general OORA principles and

methods, based on the OAKS domain model structure, and based on the domain itself.

These implemented guidelines and rules form the code for the model evaluation portion of

OAKS.

Problem Model Modifications

Overview. This section defines the allowed changes to the evolving problem model.

The LISP functions that implement these allowed changes use the code in the model

evaluation portion to determine if a change will cause the model to become inconsistent or

incomplete. If the model does become inconsistent or incomplete, the model modification

code must determine whether to allow the change and handle the problem using a pending

issues or an advisory issues, or to not allow the change. These issues and how they were

handled in the OAKS implementation are discussed in this section.

The problem model is created by changes to the domain model. Not all changes are

allowed, and a few changes must occur in a certain order. For example, a class that is a

parent cannot be deleted, and an attribute cannot be added unless the class it is part of is in

7-42

the model. However, most of the changes are not required to he accomplished in any

particular order. The changes to one class do not have to be complete before changing

another class, for example. Another example is adding a whole/part relation to an existing

class. A whole/part relation is a relation between two classes. The other class of the

relation does not have to exist in the model in order to add the whole/part relation to an

existing class. All that is required is that one class in the relation exist. This allows for

great flexibility in creating the problem model and allows the user to revisit any portion of

"the model as many times as desired.

The problem model is complete when all issues in the *pending-issues* list have been

satisfied, i.e., when the *pending-issues* list is empty. When a user first starts to create a

problem model, the *pending-issues* list starts with an entry indicating that all the classes

in the model have not been verified. This forces the user to at least examine the structure

of each class, attribute and service. This issue is discussed in detail later in this section.

As changes are made to the model, issues may be added or removed from the *pending-

issues* list.

The LISP functions that implement the model modification process use the evaluation

functions discussed in the previous section to determine if a change has violated any

guidelines and rules.

The following sections discuss the changes that can be made to each component --f

the model, the possible modifications to the *pending-issues* list based on the changes,

and the LISP functions used to implement the changes. When a LISP function calls

another LISP function, the functions that are called are shown indented under it.

Change the Name of a Class. Because all the class names must be unique, the new

name must first be checked to see if it is already the name of another class. If it is not,

then the class name can change. This involves changing the class itself, the name of the

7-43

class in the list-of-classes, wherever that class name is used in attributes and services, and

the name in inheritance and relation slots of the class itself and other classes.

If the old class name is used in any entries in *pending-issues*, it is changed to the

new name. Also, a new class name may resolve some entries in pending issues. For

example, if there is a class name used in the a-set slot of an attribute that was nonexistent,

there would be an entry in *pending-issues*. If the new class name is the same as the

nonexistent class, the entry would be removed. Also, when there is a relation created, one

of the classes in the relation may not exist at the time the relation is created. This would

add an entry in *pending- issues* on the class that is missing and the relation that must go

into the class. If the new class name matches this missing class name, the relation is added

and the entry in *pending- issues* is deleted.

The name of the class is also changed in *necessary-classes*, if the class is in that list.

Entries that can be removed from *pending-issues* are:

(1) (atts-classc class-name art-name)

The a-set slot of att-name contains the new class name

(2) (atts-attc class-name att-name)

The a-set slot of att-name contains the new class name

(3) (check-parameter class-name service-name input-set parameter)

The parameter contains the new class name

(4) (check-parameter class-name service-name output-set parameter)

The parameter contains the new class name

(5) (check-messages class-name service-name message)

The message contains the new class name

(6) (missing.class-and-relation class-name the-relation)

The class-name is the same as the new class name.

LISP functions used are:

7-44

change-class-name

change-class-name-slot

change-name-in-class

change-class-in-inheritance

change-class-in-relations

change-class-name-in-pending

new-class-pending

add-rel-to-new-class

change-name-in-class

change-name-in-atts

change-name-in-servs

change-class-name-in-pending

change-class-in-io-parameter

change-class-in-rel

Change the Description of a Class. Changing the description simply requires

replacing the old description with the new. There are no checks to be made, except that

the new description must be a string.

LISP functions used are:

change-class-desc

Change the Name of an Attribute. The attribute names must be unique within a

class, but they can be the same as an attribute name in another class. First, the attribute

name is checked to see if it is unique in the class and that it is not the same as the name of

one of the legal attribute sets. The legal attribute sets are enum, int, real, char, str, bool,

class, and attrib. The name cannot be the same as a legal attribute set because it would

cause confusion if it is used in the input set or output set of a service. The values of the

input or output parameters can be an attribute name of a local attribute, an attribute of

7-45

another class, or one of the legal set of attribute values. If it is a local attribute name.

OAKS checks to ensure the name is one of the attributes of the class. Therefore. the

attribute names cannot be one of the names of the legal set of attribute values.

If the attribute name passes these checks, the name is changed in the local slot and the

local services. The name must also change globally, in the attributes and services of other

classes. An attribute of another class may use this attribute as its value. If there are

classes or attributes of other classes with the same name as the changed attribute name,

these names are not modified. OAKS marks all attribute names so it is known what class

the attribute belongs to.

If the old attribute name is used in *pending-issues*, the old name must be changed to

the new name. Any entries in *pending-issues* resolved by changing the attribute name

are removed. For example, there may be an input parameter that references a nonexistent

attribute name that may be the new name of the attribute.

If the old name is used in *necessary-classes*, it is changed there.

Entries that can be removed from *pending-issues* are:

(1) (atts-attc class-name attribute-name)

The attribute-name is the same as the new attribute name and in the same class.

(2) (check-parameter class-name service-name input-set parameter)

The new attribute name is used in the parameter.

(3) (check-parameter class-name service-name output-set parameter)

The new attribute name is used in the parameter.

(4) (check-attr-val class-name service-name att-name)

The new attribute name is the same as att-name.

LISP functions used are:

change-att-name

proper-attr-setp

7-46

change-att-name-in-atts

change-au-name-in-servs

change-aut-name-in-pending

remove-missing-att-entries

change-att-name-in-atts

att-name-sub

change-att-name-in-servs

change-att-io-set

change-att-post

Change the Description of an Attribute. Changing the description simply requires

replacing the old description with the new. There are no checks to be made, except that

the new description must be a string.

LISP functions used are:

change-att-desc

Change the A-Set Slot of an Attribute. The new value consists of a base and

optional lower and upper values. If the base is a list, there are no lower or upper values.

In this case, the a-set value is a list of elements. Each element of the list is a sublist made

of a base and optional upper and lower values. The sublist represents the structure of each

element of the list.

The new value structure is checked to ensure it is proper. If the base value is not a

list, it must satisfy proper-attr-setp, i.e., it must be one of the legal set of attribute values.

If the base value is a list, the base values of each of the sublists must satisfy proper-attr-

setp. For any base value (whether the value structure is an atom or the value structure is a

list), if the value is "class" there must be a lower value. If the value is "attrib", there must

be a lower and upper value.

7-47

Itf the structure of the value is correct, the attribute a-set is changed in the local slot of

the attribute. The a-set value is not used outside the attribute, except through the attribute

name, so no replacements are made outside the attribute.

System-wide checks must be made based on the changes. First, the LISP function

atts-classc examines the attribute (not the name - the attribute CLOS class structure) and

ensures all classes used as a basis for attribute sets, either as classes or classes and

attributes, are members of the set of classes. A null result means all classes are members

of the set of classes. If the result is not null, that means there is a class used that is not a

member of the set of classes. In this case, a list consisting of (atts-classc class-name att-

name) is added to the list of *pending-issues*. This means the missing class must be

added before the model is complete. The class name may not have been added yet by the

user and may be added later. If atts-classc result is not null, atts-attc automatically fails

because if the class does not exist, the system cannot check to see if the attribute exists

within the class. If the result of atts-classc is null, atts-attc is run to check to see if any

attributes of other classes used as a basis for the attribute are attributes of that class. If the

result of atts-attc is not null, the list (atts-attc class-nanie att-name) is added to the list of

pending issues.

If either of the system-wide checks passes, the *pending- issues* list is checked to see

if any entry matches either (atts-classc class-name att-name) or (atts-attc class-name att-

name). If there is a match, the matching entry is removed because now the test has passed

successfully. It may be that the user has changed the structure to remove the problems.

A list is not added to pending issues if it is already on the list. For example, a class

may be used more than once as a basis for an attribute, but the test only needs to pass

once to prove the class now exists.

Entries that can be removed from *pending-issues* are:

7-48

(1) (atts-classc class-name attribute-name)

(2) (atts-attc class-name attribute-name)

If the old a-set slot contained classes and/or attributes that do not exist in the model, there

are entries in *pending- issues*. If the new a-set slot is valid, the entries are removed.

Entries that can be added to *pending-.issues* are:

(1) (atts-classc class-name attribute-name)

The class that is used in the new a-set slot does not exist.

(2) (atts-attc class-name attribute-name)

The class and/or attribute that is used in the new a-set slot does not exist.

LISP functions used are:

change-attr-a-set

create-attrs-structure

Change the Initial Value of an Attribute. An attribute can have an initial value that

the attribute takes on when a class containing that attribute is first created. The initial

value is set to the empty list unless an initial value i- e.xplicitly given. There are no entries

that are added or removed from *pending-.issues* when the initial value is changed

because the initial value is a free-form list.

LISP function used is:

change-initial-value

Delete an Attribute From a Class. An attribute can only be deleted from a class if

the class is not a parent of another class. This is so the effect of removing the attribute is

minimized within one class and does not cascade into child classes. Since the user of the

system is assumed not to be knowledgeable in OORA methods, deleting an attribute from

a class will have effects the user will not understand nor may not be able to resolve. Also,

keeping an attribute in a class does not cause problems with the model's ability to satisfy

the uset's requirements.

7-49

An attribute cannot be deleted if it is in the *necessary-classes* associative list. This

list contains those classes and any of its attributes and services that cannot be removed

from the model.

Any entries in *pending-.issues* associated with the deleted attribute are removed.

Entries are added to *pending- issues* for any attributes and services that reference the

deleted attribute.

Entries that can be removed from *pending-issues* are:

(1) (atts-classc class-name attribute-name)

The attribute-name is that of the attribute being deleted.

(2) (atts-attc class-name attribute-name)

The attribute-name is that of the attribute being deleted.

(3) (null-a-set class-name attribute-name)

The attribute-name is that of the attribute being deleted.

Entries that can be added to *pending-issues* are:

(1) (atts-attc class-name attribute-name)

The a-set slot of attribute name uses the deleted attribute.

(2) (check-parameter class-name service-name input-set input-parameter)

The values slot of the input parameter uses the deleted attribute.

(3) (check-parameter class-name service-name input-set output-parameter)

The values slot of the output parameter uses the deleted attribute.

(4) (check-attr-val class-name service-name att-name)

The class-name is the class of the deleted attribute and att-name is the name of the deleted

attribute.

LISP functions used are:

delete-attribute

attr-del-check

7-50

attr-del-check

atts-classc

atts-attc

check-parameter

check-attr-val

Add an Attribute to a Class. The input is the class name, the new attribute name, a

description for the new attribute, and the a-set slot value for the attribute. If the a-set

value is not a valid one, the a-set slot is set to null and an entry is added to *pending-

issues* indicating the a-set slot needs to be tlled in. Entries in *pending-issues* that are

resolved by the addition of the attribute are removed from the issues list.

Entries that can be removed from *pending-issues* are:

(1) (atts-attc class-name attribute-name)

The new attribute is used in the a-set of attribute-name.

(2) (check-parameter class-name service-name input-set parameter)

The new attribute is used in the values slot of an input parameter.

(3) (check-parameter class-name service-name output-set parameter)

The new attribute is used in the values slot of an output parameter.

(4) (check-attr-val class-name service-name att-name)

The new attribute is att-name, which is an attribute used in the postcondition as an

attribute that has changed as a result of execution of the service.

Entries that can be added to *pending-issues* are:

(1) (null-a-set class-name attribute-name)

The a-set slot of the new attribute is null.

LISP functions used are:

add-attribute

change-attr-a-set

7-51

remove-missing-art-entries

change-attr-a-set

atts-attc

check-parameter

check-attr-val

Change the Name of a Service. Changing a service name requires changing the name

in the local service name slot and in the message slot of the postconditions of other

classes. First, the new service name is checked to ensure it is not the name of an existing

service in that class. Service names within a class must be unique.

The name of the service must also be changed wherever it is used in *pending-

issues*. Any entries in *pending-issues* that are resolved due to the change of name are

removed.

If the name of the service is used in *necessary-classes*, it is changed there.

Entries that can be removed from *pending-issues* are:

(1) (check-messages class-name service-name message)

The message contains the new service name.

LISP functions used are:

change-service-name

change-ser-name-in-messages

change-ser-name-in-pending

remove-missing-serv-entries

Change the Description of Service. Changing the description simply requires

replacing the old description with the new. There are no checks to be made, except that

the new description must be a string.

LISP functions used are:

change-ser-desc

7-52

Change the Input Set of a Service. The input set consists of a parameter name and

its type, or legal set of values. The name of a parameter is arbitrary, but it may be used in

the precondition or postcondition of a service. The name also must be unique within the

input set of a service and must not be the name of an attribute or one of the legal attribute

types, such as "enum" and "int". The type of an input parameter must be any of the legal

attribute types, a local attribute name, an attribute of another class, a class, or a list

consisting of any legal elements.

There are three changes that can be made to one parameter of the input set. Only one

parameter of the input set is changed at a time. An existing parameter could be deleted, a

parameter could be added, or an existing parameter could be changed.

The input list to any one of these changes is the class name, class-name, the service

name, service-name, the existing name and type in a list, old-name-val-list, and the new

name and type in a list, new-name-val-list.

(1) Delete an existing parameter.

Since there is no new parameter, the new-name-val-list equals (*delete). The

old-name-val-list contains the old name and values, (old-name old-values). First, the input

parameter list is searched to ensure the parameter exists. The existing parameter is

removed, and then the *pending-issues* list is examined to see if there are any issues

relating to the value of the old name. For example, if the old name had a value that

contained the name of a class that did not exist, an entry would be added to the pending

issues list. Then the precondition and atts slots of the postcondition are examined to see if

the deleted parameter name is used. If it is, an entry is added to the *pending-issues* list

to indicate the name is no longer valid.

(2) Add a new parameter.

Since there is no old parameter, the old-val-name-list equals (*add). The new

val-name-list contains the new name and values, (new-name values). The new-val-name-

7-53

list is evaluated to ensure it contains two eicment.s, and the name is legal for an input

parameter name. The new parameter is then added to the input set- The values of the

new parameter are tested and if they are not legal, an entry is added to *pending-issues*.

Also, *pending- issues* is examined to see if any entries can be removed. If there is an

entry caused by a deleted input parameter name that was used in the precondition or the

postcondition, the name of that missing input parameter is examined. If it is the same as

the name of the new parameter, these entries in *pending-issues* can be removed.

(3) Change an existing parameter.

This would require name and values information in both the old-val-name-list and

the new-val-name-list. The input set is examined to ensure that the old-val-name-list

exists. the new-val-name-lis, is examined for proper structure and a legal name. There

are three possibilities: only the name of the parameter is changed, only the value of the

parameter is changed, or both are changed.

If the name is changed and if the old name was used in the precondition or

postcondition, the name is changed to the new one. Also, *pending-issues* is examined

to see if any entries can be removed. If there is an entry caused by a deleted input

parameter name that was used in the precondition or the postcondition, the name of that

missing input parameter is examined. If it is the same as the name of the new parameter

name, these entries in *pending-issues* can be removed.

If the value is changed, the values of the new parameter are tested and if they are

not legal, an entry is added to *pending- issues*. The *pending-issues* is checked to see if

there is an entry because of illegal values of the old-val-name-list. If there are, they are

removed because the old set of values has been repLced.

Entries that can be removed from *pending-issues* are:

(1) (check-parameter class-name service-name input-set parameter)

The values of a replaced or deleted parameter were not valid.

7-54

(2) (:service class-name service-name pre missing input-set para-name)

(3) (:service class-name service-name post missing input-set para-name)

The name of a new parameter matches a missing input parameter name.

Entrie, .nat can be added to *pend ing-issues* are:

(1) (:service class-name service-name pre missing input-set para-name)

(2) (:service class-name service-name post missing input-set para-name)

an input parameter is deleted or the name changed, and the name is used in the

precondition or postcondition, an entry is added stating the parameter name is no longer

valid.

(3) (check-parameter class-name service-name input-set parameter)

The values of a new or replaced parameter have invalid references.

LISP functions used are:

change-input-set

unique-para-name

add-to-io-set

in-para-list

replace-name-in-io-set

replace-value-in-io-set

remove-val

add-to-io-set

check-classes-and-att.s

'heck-io-name-pending

replace-value-in-io-set

check-classes-and-atts

unique-para-name

check-classes-and-atts

7-55

check-parameter

check-io-name-pending

in-nara-list

ctleck-pre-and-post

check-name-pending

Change the Output Set of a Service. The output set of a service consists of a set of

output parameters. The name of each the parameters is set to null, and the type or values

of an output parameter must be any of the legal attribute types, a local attribute name, an

attribute of another class, a class, or a list consisting of any legal element. The name is

null because there is no requirement to name the output parameters of a service, just to

state its legal values.

There are three changes that can be made to one parameter of the output set. Only

one parameter of the output set is changed at a time. An existing parameter could be

deleted, a parameter could be added, or an existing parameter could be changed. The

inputs required are the class name, the service name, the old values and the new values.

When a parameter is deleted or changed, any entries in pending-issues referring to the

old values being illegal are removed. When a parameter is added or changed, the new

values are checked to see if they are valid. If they are not, an entry is added to pending-

issues.

Entries that can be removed from *pending-issues* are:

(1) (check-parameter class-name service-name output-set parameter)

The values of a replaced or deleted parameter were not valid.

Entries that can be added to *pending-issues* are:

(1) (check-parameter class-name service-name output-set parameter)

The values of a new or replaced parameter have invalid references.

LISP functions used are:

7-56

change-output-set

add-to-io-set

remove-val

in-para-list

replace-value-in-io-set

add-to-io-set

check-classes-and-atts

check-io-name-pending

replace-value-in-io-set

check-classes-and-atts

Change the Precondition of a Service. The precondition is a free form list that

evaluates to true or false. The new precondition is a list that replaces the old

precondition. If the existing precondition is other than null, pending-issues is checked.

Any entries referring to an invalid parameter name in the old precondition are removed if

the new precondition does not use this parameter.

Entries that can be removed from *pending-issues* are:

(1) (:service class-name service-name pre missing input-set para-name)

The precondition had contained reference to the name of an input parameter that no

longer exists. If the precondition is changed and no longer contains reference to the

missing name, the entry in *pending-issues* is removed.

LISP functions used are:

change-serv-pre

Change the Atts Slot of the Postcondition of a Service. The atts slot contains a list

of attr-val structures that each contain an attribute name and the new attribute value. The

changes that can be made is an existing attr-val can be deleted, a new attr-val structure

7-57

could be added, or either the attribute name, the attribute value, or both, of an existing

attr-val structure can be replaced.

The inputs are the class name (class-name), the service name (service-name), the old

attr-val list (old-list), and the new attr-val list (new-list).

(1) A new attr-val structure is added.

The old-list is set to (*add) and the new-list consists of a new attribute and a

value in the list form (attribute-name value). The attribute name cannot be the name of

any attribute currently in the atts slot, because there should be only one value for an

attribute. The new attribute name is checked to see if it is the name of an attribute

currently in the class. If not, the new structure is added but an entry is added to *pending-

issues* indicating the attribute does not exist in the class. This allows the user to add the

attribute later.

(2) Ain old attr-val structure is deleted.

The new-list is set to (*delete) and the old-list consists of an existing attribute

and value in list form, (attribute-name value). The currents atts slot is examined to ensure

the old-list exists. If so, the old-list is removed from the atts slot. Any entries in pending-

issues referring to an invalid attribute name in the old structure are removed. Also, any

entries in *pending-issues* referring to the use of a non-existent input parameter name in

the value portion are removed if the name is not used in the value slot of any of the other

structures in atts.

(3) An old attr-val structure is changed.

Either the attribute name, the value, or both can be changed. When the name is

changed, the new name is checked to ensure it is not the name of an existing structure in

atts. If it isn't, the name is changed, and then checked to determine if it is the name of an

attribute in the class. If it is not, an entry is added to pending-issues indicating the

attribute-value structure refers to a non-existent attribute. When the value is changed, any

7-58

entries in *pending- issues* referring to the use of a non-existent input parameter name in

the old value are checked. These are removed if the name is not used in the new value or

used in any of the other value slots in atts.

Entries that can be removed from *pending-issues* are:

(1) (check-attr-val class-name service-name att-name)

An old attribute name, that is now replaced or deleted, was invalid.

(2) (:service class-name service-name post missing input-set para-nanie)

The value is changed or deleted, and there is an entry about an invalid input parameter,

and that invalid input parameter is not used in the new value.

Entries that can be added to *pending-.issues* are:

(1) (check-attr-val class-name service-name att-name)

The attribute name of a new attr-vzl (either new or replaced) is not the name of an

attribute in the class.

LISP functions used are:

change-serv-post-atts

unique-attr-atts

add-to-postf-atts

in-post-atts

remove-from-post-atts

replace-post-atts-attr

replace-post-atts-value

add-to-postf-atts

check-post-atts-attr

remove-from-post-atts

check-post-atts-attr

* check-post-atts-missing-input-para

7-59

replace-post-atts-attr

check-post-atts-attr

replace-post-atts-value

check-post-atts-missing-input-para

check-post-atts-attr

check-attr-val

Change the Messages Slot of the Postcondition of a Service. The messages slot

consists of a list of messages. Each message is a list consisting of a class name and a

service name. A message can be deleted, a message added, or a message replaced. The

input is the class name, the service name, the old message and the new message.

If a message is added or replaced, the new message is checked for the validity of the

class and service. If either is invalid, an entry is added to *pending-issues*. When an

existing message is deleted or replaced, entries in pending-issues on the invalidity of the

old messages class and/or service are removed. When a new message is added, it must not

be the same as an existing message.

Entries that can be deleted from *pending- issues* are:

(1) (check-messages class-name service-name message)

If a message with an entry is changed or deleted.

Entries that can be added to *pending-issues* are:

(1) (check-messages class-name service-name message)

A new message has invalid references.

LISP functions used are:

change-serv-post-mess

unique-message

add-to-post-messages

remove-from-post-messages

7-60

replace-post-message

add-to-post-messages

check-post-atts-mess

remove-from-post-messages

check-post-atts-mess

replace-post-message

check-post-atts-mess

Delete a Service. The service of a class that is a parent cannot be deleted for the same

reason as that for not deleting an attribute of a class that is a parent. If the service can be

deleted, all entries in *pending-issues* for that service are deleted. Deleting the service

may cause messages in other services to have invalid references, which causes entries to be

added to *pending-issues*.

A service cannot be deleted if it is in the *necessary-classes* list.

Entries that can be deleted from *pending-issues* are:

(1) (:service class-name service-name pre missing input-set parameter)

(2) (:service class-name service-name post missing input-set parameter)

(3) (check-parameter class-name service-name input-set parameter)

(4) (check-parameter class-name service-name output-set parameter)

(5) (check-attr-val class-name service-name att-name)

(6) (check-messages class-name service-name message)

All entries with service-name the same as the deleted service are removed.

Entries that can be added to *pending-issues* are:

(1) (check-messages class-name service-name message)

Messages that have invalid references due to the deletion of the service.

LISP functions used are:

Jelete-service

7-61

remove-serv-entries

serv-del-check

Add a Service, There are two methods for adding services. The first adds any generic

service without using a service template. The second uses one of four service templates

that are set up for services that either get or change the value of an attribute.

The method without using a template takes the class name, the new service name and

the description of the service and creates a service with the slots for input-set, output-set,

precondition and postcondition set to null. The function add-to-io-set would be used to

enter input and output parameters, change-serv-pre for the pre, change-serv-post-atts for

the atts portion of the postcondition, and change-serv-post-mess for the messages portion

of the postcondition. Any entries in *pending-issues* resolved by the addition of the

service are removed.

Adding a service based on a template requires input of the class name, a new service

name, a template name, an attribute name and an optional message list. The four

templates supported are changing the value of an attribute, returning the value of an

attribute, adding a value to an attribute that is a list of values, and removing a value from

an attribute that is a list of attributes. The service is then completely created from that

template, including input and output sets, the precondition and the postcondition. Any

entries in *pending- issues* resolved by the addition of the service are removed.

Entries that can be deleted from *pending-issues* are:

(1) (check-messages class-name service-name message)

The new service name is used in the message.

LISP functions used are:

add-service

remove-missing-serv-entries

7-62

add-template

remove-missing-serv-entries

Change the Whole/Part or Relation Structure of a Class. The whole/part and

relation slots in a class are made up of a list of individual relations. A single relation

structure that is part of the whole-pan and relation slots in a class can change in one of

five ways:

(1) The ranges in the relation can change. Two new ranges are used as a

replacement for the existing ranges. This requires that the relation exists in at least one

class and the two ranges are lists of two elements. It is possible that the other class of the

relation does not exist. This can occur when a relation is added or changed and one class

of the relation is not in the model. When this occurs, an entry is added to *pending-

issues* indicating there is a missing class and an associated relation. If the other class

exists, the ranges are changed in the other class as well. If the other class does not exist,

there must already be an entry in *pending-issues* on the nonexistence of that class and

the relation. Therefore, the relation in *pending-issues* is updated to reflect the new

range information.

(2) A relation is added. An existing class and a new relation is input. The new

relation is added to the class if it does not already exist in the class and the relation is of

proper form. The relation is of proper form if the two classes in the relation are different,

one of the classes in the relation is the existing class to which the relation is to be added,

and the ranges are lists of two elements. If the other class in the relation exists in the

model, the relation is added to that class. If the other class does not exist, an entry is

added to *pending-issues* with the class name and the added relation.

(3) A relation is deleted. The input is an existing class and the relation to be deleted.

The relation must be in the existing class. The relation is deleted in the existing class. If

the other class in the relation exists, the relation is deleted in that class as well. If the

7-63

other class does not exist, the entry in *pending-issues* for that class and relation is

deleted.

(4) The other class of a relation is changed. The input is an existing class, a relation

of that class, and a new class that replaces the current other class of the relation. The

relation must exist in the input parameter class. If the current other class of the relation

exists in the model, the relation is removed from that class. If it does not, the entry in

pending issues for the other class and the relation is deleted. The new class replaces the

existing other class in the relation. If the new class exists in the model, the relation is

added to it. If the new class does not exist, and entry is added to *pending-issues*.

(5) The name of the relation is changed. This can only occur in other general

relations, and not whole/part relations. The input is an existing class, a relation in that

class, and a new relation name. The relation name is changed in that class. If the other

class in the relation exists, the name is changed in that class as well. If it does not exist,

the entry in *pending-issues* on the class and relation is changed to reflect the new

relation name.

Entries that can be deleted from *pending-issues* are:

(1) (missing-class-and-relation class-name the-relation)

When a relation is deleted and the old relation had a missing class.

Entries that can be added to *pending-issues* are:

(1) (missing-class-and-relation class-name the-relation)

The other class in the relation does not exist in the model. Used when a relation is added

or modified.

LISP functions used are:

change-relation-name

remove-relation-class-missing

add-relation-class-missing

7-64

add-new-relation

"add-relation-class-missing

delete-relation

remove-relation-class-missing

change-relation-class

remove-relation-class-missing

add- relation-class -missing

change-relation-name

remove-relation-class-missing

add-relation-class-missing

remove-relation-class-missing

add-relation-class-missing

Change the Parents of a Class. There are three permissible changes to the parents of

a class. Changes in the parents of a class are changes made to the inheritance slot of a

class.

(1) Remove a parent of a class. This requires that the class must not be the parent of

another class. If the class is the parent of other classes, a change in the parent would

affect all classes that inherit from it. This is a far-reaching change that changes the basic

structure of the model. Since it is assumed the user is not familiar with object-oriented

techniques, this type of dramatic change is not permitted. If the user finds it necessary to

change the structure to this extent, the domain model should be redone to more accurately

reflect the domain. If the class is not a parent of another class, the desired parent is

removed. The attributes and services of the class are then checked to determine if there

are attributes used that are no longer valid because the attributes of the removed parent

are no longer available. If there are any attributes or services that are invalid, the

information is added to the *pending- issues* list.

7-65

(2) Add a parent to a class. This requires that the new parent exist in the model.

The parent is added, and the *pending-Issues* list examined for any issues about non-valid

attributes and services that can be removed.

(3) Change a parent of a class. This requires the removal of the old parent and the

addition of a new parent, so all the requirements of the removal and addition of a parent

apply.

Entries that can be deleted from *pending-issues* are:

(1) (atts-attc class-name att-name)

Used when a parent is removed which causes an attribute to become invalid.

(2) (check-parameter class-name service-name input-set parameter)

(check-parameter class-name service-name output-set parameter)

Used when a parent is removed which causes the value slot of an input or output

parameter to become invalid.

(3) (check-attr-val class-name service-name att-name)

Used when a parent is removed which causes the attribute to become invalid.

Entries that can be added to *pending-issues* are:

(1) (atts-attc class-name att-name)

Removed when a parent is added which causes an attribute to become valid.

(2) (check-parameter class-name service-name input-set parameter)

(3) (check-parameter class-name service-name output-set parameter)

Removed when a parent is added which causes the value slot of an input or output

parameter to become valid.

(4) (check-attr-val class-name service-name att-name)

Removed when a parent is added which causes the attribute to become valid.

LISP functions used are:

remove-parent

7-66

atts-attc

check-parameter

check-attr-val

add-parent

atts-attc

check-parameter

check-attr-val

change-parent

remove-parent

add-parent

Add a Clas. The inputs are the new class name and a class description. The

remainder of the class's slots are set to null. The attributes are added using add-attribute.

The services are added using either add-service or add-template. The parents are added

using add-parent, and the relations are added using add-new-relation.

Any entries in *pendins-issues* resolved by adding the class are removed. Also, if

there are relations for that class in *pending-issues*, they are added to the class and

removed from *pending-issues*.

Entries that can be deleted from *pending-issues* are:

(1) (atts-classc class-name att-name)

(2) (atts-attc class-name att-name)

An attribute contains the new class name in the a-set slot.

(1) (check-parameter class-name service-name input-set parameter)

(2) (check-parameter class-name service-name input-set parameter)

The values slot of an input or output parameter contains the new class.

(3) (check-messages class-name service-name message)

The message slot contains the new class.

7-67

LISP functions used are:

add-class

new-class-pending

add-rel-to-new-class

Delte aCass A class can only be deleted if it is not the parent of another class. This

follows the same reasoning as that for deleting an attribute or service of a parent class.

Also, a class cannot be deleted if it is in the *necessary-classes* list. Any relations in the

class are removed from the other class in the relation, if it exists in the model. Deleting a

class causes all entries in *pending-issues* for that class to be deleted, and entries in

pending-issues added for all attribute and service slots that now have invalid references

to the deleted class.

Entries that can be deleted from *pending-issues* are:

(1) (atts-classc class-name att-name)

(2) (atts-attc class-name att-name)

(3) (:service class-name service-name pre missing input-set para-name)

(4) (:service class-name service-name post missing input-set para-name)

(5) (check-parameter class-name service-name input-set parameter)

(6) (check-parameter class-name service-name input-set parameter)

(7) (check-attr-val class-name service-name att-name)

(8) (check-messages class-name service-name message)

(9) (null-a-set class-name attribute-name)

If the deleted class name equals class-name, the entries are removed.

(10) (missing-class-and-relation class-name the-relation)

If the deleted class name is the other class (not class-name) in the relation, the entry is

removed.

7-68

Entries that can be added to *pending-issues* are:

(1) (atts-classc class-name at-name)

The deleted class is used in the a-set slot of an attribute.

(2) (atts-attc class-name att-name)

The deleted class contained an attribute that is used in the a-set slot of an attribute.

(3) (check-parameter class-name service-name input-set parameter)

"The deleted class or one of its attributes is used in the values slot of the input set of a

service.

(4) (check-parameter class-name service-name output-set parameter)

The deleted class or one of its attributes is used in the values slot of the output set of a

service.

(5) (check-messages class-name service-name message)

A service of the deleted class is used in the messages slot of the postcondition of a service.

LISP functions used are:

delete-class

delete-relation

remove-a-class-pending

attr-del-check

serv-del-check

Verify a Class, The class verification is used to require the user to review all classes,

to include their attributes and services, that were part of the original model and kept in the

revised model. Each class, as well as each attribute and service, has a verify slot that is

initially set to "false", indicating the user has not verified the need for that class or

component yet. The user must set all verify slots to true before the problem model can be

considered complete. The verify slot of a class cannot be set to true until the verify slots

of all the attributes and services in that class are set to true.

7-69

When a new class, attribute or semice is created. the verify slot is initially set to true.

This is because the user has obviously determined there is a need for that component.

As stated above, the model is not considered complete until the verify slot of all

classes is set to true. Therefore, when the model is first created, there is already an entry

in *pending-issues* stating that all the classes have not been verified. This entry is

removed when all the classes have been verified.

Entry that can be deleted from *pending-issues*:

(1) (classes need verified)

This is deleted when all classes in the model have been verified.

b. LISP functions used:

(verify-class class-name)

Pending Issues, The list of pending issues is critical to the development of the

problem model. The requirement for resolution of entries on the list insures the problem

model is consistent and complete with respect to all guidelines and rules. The problem

model could be developed without the use of this list and still be kept consistent and

complete. However, this would require much more intellectual work on the part of the

user and it would be far more error prone. The user would have make changes in certain,

strict orders. For example, in order to delete a class without using a pending issues list, all

references to that class in other classes would have to be changed first, before the class is

deleted. The use of the pending issues list is much more in keeping with the practice of

good software engineering by providing as much support as possible for the process which

was most intuitive for the user.

The following are all possible entries in the *pending- issues* list, and when they are

added and removed from the list.

1. A class name is not valid in the a-set slot of an attribute.

(atts-classc class-name att-name)

7-70

a. Added when:

The a-set slot of an attribute is changed and a class in the a-set is not valid.

A class is deleted that is used in the a-set slot of an attribute.

b. Removed when:

The a-set slot of an attribute is changed, the old a-set had an entry in pending issues,

and the new a-set is valid.

The attribute whose a-set slot was invalid is deleted.

The missing class in the a-set slot is added.

The class of the attribute whose a-set slot was invalid is deleted.

2. An attribute name is not valid in the a-set slot of an attribute.

(atts-attc class-name att-name)

a. Added when:

The a-set slot of an attribute is changed and a class and/or attribute in the new a-set is

not valid.

When removing a parent from a class, an attribute used in the a-set slot of an attribute

becomes invalid.

A class is deleted which contains an attribute used in the a-set slot of an attribute.

An attribute is a class is deleted that is used in the a-set of other attributes.

b. Removed when:

The a-set slot of an attribute is changed, the old a-set had an entry in pending issues,

and the new a-set is valid.

The attribute which had an invalid a-set slot is deleted.

The missing attribute of the a-set slot is added.

"A parent is added to a class which contains the missing attribute for an a-set slot.

"A class is added which contains the missing attribute of the a-set slot.

"A class is deleted which contains the attribute with the invalid a-set slot.

7-71

3. An input-parameter name is used in the precondition no longer exists.

(:service class-name service-name pre missing input-set para-name)

a. Added when:

An input parameter is deleted that contains a name used in the precondition.

b. Removed when:

A parameter is added whose name is that of the missing input parameter.

The name of a parameter is changed and the new name matches the missing parameter

name.

The precondition is replaced with one that does not use the missing input parameter

name.

The service is deleted that contains the precondition.

A class is deleted that contains the service with the precondition.

4. An input parameter name used in the atts slot of the postcondition no longer exists.

(:service class-name service-name post missing input-set para-name)

a. Added when:

An input parameter is deleted that is used in the atts slot of a postcondition.

b. Removed when:

The name of a parameter is changed and the new name matches the missing parameter

name.

An attribute-value is deleted that contains the non-existent input parameter name.

The value part of an attribute-value is changed to remove the non-existent input

parameter name.

A service is deleted that contains the postcondition with the non-existent input

parameter name.

A class is deleted that contains the service with the postcondition with the non-

existent input parameter name.

7-72

5. A class and/or local or external attribute of the value slot of an input set is invalid.

(check-parameter class-name service-name input-set parameter)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

When removing a parent from a class, an attribute used in the values slot of an input

parameter of a service becomes invalid.

The value of a parameter is changed and the new value is invalid.

"A parameter is added whose value slot is invalid.

"A class is deleted that is used in the value slot of an input parameter.

b. Removed when:

An attribute is added that satisfies the value slot of an input parameter.

The invalid parameter is deleted.

The value slot of a parameter is changed to a valid value.

"A service is deleted which contains the input parameter with the invalid value slot.

"A parent is added to a class which contains the missing attribute needed to satisfy the

value slot of an input parameter.

"A class is added that satisfies the value slot of an input parameter.

"A class is deleted that contains a service with an invalid values slot for an input

parameter.

6. A class and/or local or external attribute of the value slot of the value slot of an output

set is invalid.

(check-parameter class-name service-name output-set parameter)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

When removing a parent from a class, an attribute used in the values slot of an output

parameter of a service becomes invalid.

7-73

The value slot is changed and the new value is invalid.

"A parameter is added whose value slot is invalid.

"A class is deleted that is used in the value slot of an output parameter.

b. Removed when:

An attribute is added that satisfies the value slot of an input parameter.

The invalid output parameter is deleted.

The value slot of a output parameter is changed to a valid value.

"A service is deleted which contains the output parameter with the invalid value slot.

"A parent is added to a class which contains the missing attribute needed to satisfy the

value slot of an output parameter.

"A class is added that satisfies the value slot of an output parameter.

"A class is deleted that contains a service with an invalid values slot for an output

parameter.

7. Invalid attribute name in the atts slot of the postcondition.

(check-attr-val class-name service-name att-name)

a. Added when:

An attribute is deleted that is used in the input parameter of a service.

An attribute-value is added containing an invalid attribute name.

The attribute name of an attribute-value is changed to an invalid attribute name.

When removing a parent from a class, an attribute used in the attr-val slot of the

postcondition slot becomes invalid.

b. Removed when:

An attribute-value is deleted that contains an invalid attribute name.

The attribute name of an attribute-value is changed from an invalid name to a valid

name.

A service is deleted that contains a postcondition with an invalid attribute name.

7-74

A parent is added to a class which contains the missing attribute that satisfies the

invalid attribute name.

A class is deleted which contains the service with the reference to the invalid attribute

name.

8. Invalid class name and/or service name in a message of the messages slot of the

postcondition.

(check -messages class-name service-name message)

a. Added when:

A message is added with an invalid class or service name.

A message is replaced with one with an invalid class or service name.

A service is deleted that is used in the messages of another service.

A class is deleted which contains services used in the messages of other services.

b. Removed when:

A message is deleted that contains reference to invalid classes or services.

A invalid message is replaced.

A service is deleted which contains invalid messages.

A service is added which satisfies the invalid messages in another service.

A class is added with services that satisfy the invalid messages.

A class is deleted which contains services with invalid messages.

9. A class in a relation (either whole/part or other relation) is not in the model.

(missing-class-and-relation class-name the-relation)

a. Added when:

A relation is added using a non-existent class.

The other class of a relation is changed to a non-existent class.

b. Removed when:

A relation is deleted which contains reference to a non-existent class.

7-75

The other class of a relation is changed from a non-existent class to an existing class.

A class is deleted that contains a relation with reference to a non-existent class.

The non-existent class in a relation is added.

10. The value of the a-set in an attribute is null.

(null-a-set class-name attribute-name)

a. Added when:

An attribute is added with a null a-set.

b. Removed when:

An attribute with a null a-set is deleted.

A class is deleted that contains an attribute with a null a-set.

11. All classes in the model have not been verified.

a. Added when:

The model is first created.

b. Removed when:

All classes in the model have been verified.

Advisory issues. These entries are created and shown to the user on the request of

the user. These are also used by the developer of the domain model to evaluate the

model. The list is recreated each time it is requested. These issues are advisory only, and

are not required to be resolved before the model is complete.

1. The class is not connected to any other class in the model.

(connectionp class-name)

2. The class is a parent and it has only one subclass.

(two-subclass-check class-name)

3. The class has zero or one attributes.

(one-attributep class-name)

7-76

4. The class has zero or one service.

(one-servicep class-name)

5. The class shares 80% of its attributes and services with another class.

(share-att-serv class-name)

6. The depth of a class in the inheritance structure is greater than 2.

(class-depth class-name)

This section discussed and analyzed the LISP functions used to modify the problem

model. The modification of the problem model is a complicated process that requires an

analysis of each change to evaluate any possible inconsistencies and incompleteness caused

by each change. These are handled in one of three ways. In some cases the change is not

allowed. In a majority of the cases, the change is allowed but the inconsistencies and

incompleteness are recorded in the pending issues list for later resolution. In some cases,

the system cannot determine if the problem is one that must be resolved, so the issues is

placed on the advisory issues list for possible resolution by the user. The use of a pending

issues list is an important one for the OAKS system. It allows many model changes to be

made without imposing any order on the changes, yet ensures that the model will be

consistent and complete when the pending issues are resolved.

The last section of this chapter discusses the user interface implemented for OAKS.

Baikglo9nd. The functions shown in the model modification portion can be used to

fully manipulate the model and create a new problem. However, this would force the user

of OAKS to type in LISP commands at the LISP prompt. Although the object of this

research is a proof-of-concept system rather than a production system, a more appropriate

interface for the expected user can better illustrate the concept of an automated system for

7-77

(X)RA. Hence, a window-based user interface (I.) was created using LISPView.

LISPView was chosen because it was a rackage available in the SUN Common LISP

environment that contained all the features required for a windowed user interface.

LISPView uses CLOS classes for each of its components. such as windows and menus.

Because OAKS is a proof-of-concept system. extensive user input checking was not

implemented. The OAKS system, for the most part, requires the user input to be in the

expected form. For example, if a list is expected, the OAKS system requires a list to be

input, the checking that is done is based on the desired structure of the changed model.

For example, a new class is not allowed to be created if it has the same name of an existing

class in the model.

The following is a guide to using the OAKS LISPView user interface. It also explains

the connection between the user interface and the OAKS domain model and model

modification functions.

Overview of the U1. Figure 7-2 is a drawing of the windows and menus available in

OAKS.

There are three main windows. The window labeled I displays either the entirL model

or the components of one class depending on which class has been selected by the user.

The window labeled 2 displays the component that is currently selected by the user. The

window labeled 3 always displays the entries in the *pending-issues* list. What is

displayed in each window is based on the selection the user makes through the use of the

menus that run across the top bar. These menus and th- actions generated by the

selections on the menus are described in the next sections.

To see what item is currently selected on the menu, the menu button is pressed using

the left mouse button. To select a different menu item. the right mouse button is used to

produce a pull-down list of menu items. In some cases, there are submenus to these pull-

down menus.

7-78

Cass ~ • ,eD ,Cornpomnents e Ce.ompone s1 7 D so . GD

2

1 Current Selected Component

Entire Model

or

One Class

3

Pending Issues

Figure 7-2. User Interface

The general process a user would go through in using OAKS is to first initiate a SUN

Common LISP environment containing the LISPView and CLOS packages. At the LISP

prompt, the user would type (load "oaks.lisp"). This file loads the files "oaksd.lisp". which

contains the domain model structure and the domain model, "oaksno.lisp" which contains

the model evaluation functions, "oaksmod.lisp" which contains the model modification

functions, "oaksave.lisp" which saves the changed model to a file, executes the function

"read-data", which reads from the file "userfil", and then loads "oaksui.lisp" which

contains the LISPView user interface. The file ",iserfil" contains the problem model. This

is the model the user modifies to create a model for the particular problem of interest.

When OAKS is first used, "userfil" contains the unmodified domain model. The user then

7-79

types (in-package 'oaks) at the LISP prompt. All the tiles are loaded into this package.

The next step is to select the component the user would like to view or modify using the

"Component" menu. and then use the "Action" menu to change that component. The

"Action" menu may bring up a pop-up box that gathers the user input. User feedback

comes in the form of another box that tells the user of the consequences of an action or

errors in entering information. As changes are made, the entries in window 3, pending

issues, are changed to reflect the effect of those changes. The model is not complete until

there are no longer any entries in pending issues. Appendix B walks through an example

OAKS session.

To create the tile "userfil" for the first session with OAKS requires that 'userfil"

contains the domain model with no changes. This is done by loading "oaksd.lisp",

"oaksno.lisp". "oaksmod.lisp" and "oaksave.lisp". Then the function "write-data" is run.

Because the only model loaded is the domain model, the domain model will be saved to

"userfil ".

Model/Class Menu, The "ModetlClass" menu selects either the entire model or one

class in the model. The pull-down menu produces a list with one menu selection of

"Entire Model" and the remaining menu selections are the names of the classes in the

model. The menu will change as the classes in the model are added, deleted, or the names

changed.

If "Entire Model" is selected, window 1 will show a list of every class in the model

with any parents of a class shown indented under the class. Window 2 will be blank. The

"Component" menu is inactive, which means it cannot be used. The "Attribute

Components" and "Service Components" menus are also inactive. The "Action" menu

consists of the action "Add a Class", which is the only action allowed on the entire model.

If one class is selected, a class and its components will be shown in window 1. The

components shown are the class name, description, a list of the attribute names but not the

7-80

attribute components, a list of the service names but not the service components. the

whole/part relations, the other relations, the parents of the class, and if the class is verified

or not. The "Component" menu is active. The "Attribute Components" and "Service

Components" menus are inactive. The "Action" menu consists of the actioi,.; "Delete the

Class", "Verify the Class", "Add an Attribute", "Add a Service", and "Add Service Using

Template". When a class is initially selected, no particular component of the class is

selected, but the entire class is selected. Therefore, window 2 is blank. Once a class is

selected, any component of the class can be selected using the "Component" menu. When

a component is selected, window 2 will show that component.

At any point in the development of the problem model, if a new class is selected using

the "Model/Class" menu, any components selected for the previous class are cleared and

the entire new class is selected, with window 2 blank, the "Component" menu active, and

the "Attribute Components" and "Service Components" menu inactive. The "Action"

menu once again consists of the actions "Delete the Class", "Verify the Class", "Add an

Attribute", "Add a Service", and "Add Service Using Template".

The Component Menu. The "Component" menu is active whenever a class is

selected, rather than the entire model. This menu is used to select a particular component

of a class. The menu consists of "Entire Class", "Class Name", "Class Description", "One

Attribute", "One Service", "Whole-Part", "Relations", and "Inheritance". The "One

Attribute" and "One Service" menu selections display submenus consisting of the attribute

and service names, respectively.

The "Entire Class" selection is the initial selection when a class is first chosen from

the "Model/Class" menu. Window 2 is blank and the "Action" menu consists of the

actions "Delete the Class", "Verify the Class", "Add an Attribute", "Add a Service", and

"Add Service Using Template".

7-81

If "Class Name" is selected, the class name is shown in window 2. The "Action"

menu consists of "Change Class Name".

If "Class Description" is selected, the class description is shown in window 2. The

"Action" menu consists of "Change Class Description".

If "One Attribute" is selected, a submenu is shown of all the attribute names. This

submenu changes when attributes are added, deleted, or the names are changed. Once an

attribute name is selected, the "Attribute Components" menu is activated. The attribute

components are shown in window 2. These components are the attribute name,

description, the legal values, and whether or not the attribute has been verified. When an

attribute is first selected, the entire attribute is selected. Therefore, the "Action" menu

contains "Delete the Attribute", and "Verify the Attribute". To select a particular attribute

component, the "Attribute Compontents" menu is used. The "Attribute Components"

menu is only active while an attribute is selected. Once any other component of a class is

selected, the "Attribute Components" menu is inactive.

If "One Service" is selected, a submenu is shown of all the service names. This

submenu changes when services are added, deleted, or the names are changed. Once a

service name is selected, the "Service Components" menu is activated. The service

components are shown in window 2. These components are the service name, description,

input set, output set, precondition, postcondition, attributes changed as a result of the

service, and messages. When a service is first selected, the entire service is selected.

Therefore, the "Action" menu contains "Delete the Service", and "Verify the Service". To

select a particular service component, the "Service Components" menu is used. The

"Service Components" menu is only active while a service is selected. Once any other

component of a class is selected, the "Service Components" menu is inactive.

7-82

If "Whole-Part" is selected, the whole-pan relations of the class are shown in window

2. The "Action" menu consists of "Add Whole/Part Relation", "Remove Existing

Whole/Part Relation", "Change Ranges", and "Change Other Class".

If "Relations" is selected, the other general relations of the class are shown in window

2. The "Action" menu consists of "Add an Other Relation", "Remove an Other Relation",

"Change Ranges", "Change Other Class", and Change Relation Name".

If "Inheritance" is selected, the parents of the class are shown in window 2. The

"Action" menu consists of "Add a Parent", "Remove a Parent", and "Change Existing

Parent".

The Attribute Components Menu. The "Attribute Components" menu is active

when an attribute of a class is selected. The menu consists of "Entire Attribute", "Name",

Description", "Initial Value" and "Legal Values".

When an attribute is first selected, the entire attribute is selected, which is the same as

selecting "Entire Attribute". The attribute components are shown in window 2. These

components are the attribute name, description, the legal values, and whether or not the

attribute has been verified. The "Action" menu contains "Delete the Attribute", and

"Verify the Attribute". Window 2 will not change based on the component of the attribute

selected. The window will always show all components of the attribute as long as the

attribute is selected. The selection of items on the attribute component menu will affect

the choices available on the "Action" menu.

If "Name" is selected, the "Action" menu consists of "Change Attribute Name".

If "Description" is selected, the "Action" menu consists of "Change Attribute

Description".

If "Initial Value" is selected, the "Action" menu consists of "Change Initial Value".

If "Legal Values" is selected, the "Action" menu consists of "Change Legal Values".

7-83

The Service Components Menu. The "Service Components" menu is active when a

service of a class is selected. The menu consists of "Entire Service", "Name",

"Description", "Input Set". "Output Set", "Precondition", "Postcondition Attributes", and

"Postcondition Messages".

When - ervice is first selected, the entire service is selected, which is the same as

selecting "Entire Service". The service components are shown in window 2. These

components are the service name, description, input set, output set, precondition,

postcondition, attributes changed as a result of the service, and messages. The "Action"

menu contains "Delete the Service", and "Verify the Service". Window 2 will not change

based on the component of the service selected. The window will always show all

components of the service as long as the service is selected. The selection of items on the

"Service Components" menu will affect the choices available on the "Action" menu.

If "Name" is selected, the "Action" menu consists of "Change Service Name".

If "Description" is selected, the "Action" menu consists of "Change Service

Description".

If "Input Set" is selected, the "Action" menu consists of "Add Input Parameter".

"Remove Existing Input Parameter", and "Change Existing Input Parameter".

If "Output Set" is selected, the "Action" menu consists of "Add Output Parameter".

"Remove Existing Output Parameter", and "Change Existing Output Parameter".

If "Precondition" is selected, the "Action" menu consists of "Change Precondition".

If "Postcondition Attributes" is selected, the "Action" menu consists of "Add an

Attribute/Value", "Remove Existing Attribute/Value", and "Change Existing

Attribute/Value".

If "Postcondition Messages" is selected, the "Action" menu consists of "Add Message

to Postcondition", "Remove Message From Postcondition", and "Change Existing

Message in Postcondition".

7-84

The Action Menu The "Action" menu is used to make all modification to the model.

The entries on the "Action" menu change to reflect the component that is currently

selected. The following will go through each possible entry in the "Action" menu and the

actions that are taken if that entry is selected. There are two pop-up boxes that are shown

as the result of selecting an action. One is a pop-up data collection box that collects user

input, if any is required. The user enters what is requested and when the user is done,

selects the "Done" button on the bottom of the box. The second is a pop-up message box

that tells the user any problems with the requested action, such as it could not be taken

because some input was invalid, or that there was a pending issue entry created as a result

of the change. The box contains a push pin in the upper left hand corner. When the push

pin is selected, it is "pulled out" and the message box disappears. After the action is

taken, all the windows are refreshed, and they will reflect any changes in the current

cemponents and the pending issues.

One peculiarity of the system is the ":", before the "c" or "a" used in values slot of the

input and output sets of services, to indicate it is an external class or attribute respectively,

is not shown when that component is shown in a window. The user must know it is

always there and also know to insert it when entering a new component. For example, if

the values slot of an input set is "(:c aircraft)", indicating the parameter is an object of the

class aircraft, the ":" will aot be shown in window 2 when the service is selected. It will

be shown as "(c aircraft)'. Also, if the user wants to change the input set values to

another class, such as "aircrew", the user would have to enter "(:c aircrew)". This

peculiarity is due to the way LISP handles names that are preceded by a colon. They are

treated as special keywords.

Each of the possible entries in the "Action" menu will gather any data necessary to

carry out that action using the data collection pop-up box. After any necessary data is

collected, a LISP function is called to carry out that action. This function is described in

7-85

the previous section that describes the OAKS model modificationi functions. Any message

to the user, such as "The class name is already the name of a class in the model", is shown

using the pop-up message box. The following summarizes the data collected for each

possible action in the "Action" menu item and the LISP function used to carry out that

action.

"Add a Class"

Information collected: Class name

Class description

LISP function called: add-class

"Delete a Class"

Information collected: None (use the currently selected class)

LISP function called: delete-class

"Change Class Name"

Information collected: New class name

LISP function called: change-class-name

"Change Class Description"

Information collected: New description

LISP Function called: change-class-desc

"Verify the Class"

Information collected: None (just set to verifiee)

LISP function called: None - set slot to true

7-86

"Add an Attribute"

Information collected: Name

Description

Base value

Lower value (optional)

Upper value (optional)

LISP function called: add-attribute

"Delete the Attribute"

Information collected: None (delete the selected attribute)

LISP function called: delete-attribute

"Change Attribute Name"

Information collected: New name

LISP function called: change-att-name

"Change Attribute Description"

Information collected: New description

LISP function called: change-att-desc

"Change Attribute Legal Value"

Information collected: Base value

Lower value (optional)

Upper value (optional)

LISP function called: change-attr-a-set

7-87

"Verify the Attribute"

Information collected: None

LISP function called: None (set slot to true)

"Add a Service"

Information collected: New service name

New service desc

LISP function called: add-service

"Add Service Using Template"

Information collected: Template name (change, return, add, remove)

Attribute name

Service name

LISP function called: add-template

"Delete the Service"

Information collected: None (delete current selected service)

LISP function called: delete-service

"Change Service Name"

Information collected: New name

LISP function called: change-service-name

"Change Service Description"

Information collected: New description

7-88

LISP function called: change-serv-dcsc

"Add Input Parameter"

Information collected: New parameter name

New parameter values

LISP function called: change-input-set

"Remove Existing Input Parameter"

Information collected: Parameter name

Parameter values

LISP function called: change-input-set

"Change Existing Input Parameter"

Information collected: Old parameter name

Old parameter value

New parameter name

New parameter value

LISP function called: change-input-set

"Add Output Parameter"

Information collected: New parameter value

LISP function called: change-output-set

"Remove Existing Output Parameter"

Information collected: Old parameter values

LISP function called: change-output-set

7-89

"Change Existing Output Parameter"

Information collected: Old parameter values

New parameter values

LISP function called: change-output-set

"Change Precondition"

Information collected: New precondition

LISP function called: change-serv-pre

"Add an Attribute/Value"

Information collected: New attribute name

New attribute value

LISP function called: change-serv-post-atts

"Remove an Existing Attribute/Value"

Information collected: Old attribute name

Old attribute value

LISP function called: change-serv-post-atts

"Change Existing Attribute/Value"

Information collected: Old attribute name

Old attribute value

New attribute name

New attribute value

LISP function called: change-serv-post-atts

7-90

"Add Message to Postcondition"

Information collected: Class name

Service name

LISP function called: change-serv-post-mess

"Remove Message From Postcondition"

Information collected: Class name

Service name

LISP function called: change-serv-post-mess

"Change Existing Message in Postcondition"

Information collected: Old class name

Old service name

New class name

New service name

LISP function called: change-serv-post-mess

"Verify the Service"

Information collected: None

LISP function called: None (set the slot to true)

"Add Whole/Part Relation"

Information collected: Class 1

Range I

Class2

7-91

Range2

LISP tunction called: add-new-relation

"Remove Existing Whole/Part Relation"

Information collected: Class 1

Range I

Class2

Range2

LISP function called: delete-relation

"Change Ranges"

Information collected: Old relation name

Class

Range I

Class2

Range2

New range I

New range2

LISP function called: change-relation-range

"Change Other Class"

Information collected: Relation name

Class 1

Rangel

Class2

Range2

7-92

New other class

LISP function called: change-relation-class

"Add an Other Relation"

Information collected: Relation name

Class I

Range 1

Class2

Range2

LISP function called: add-new-relation

"Remove an Other Relation"

Information collected: Relation name

Class I

Range I

Class2

Range2

LISP function called: delete-relation

"Change Relation Name"

Information collected: Relation name

Classl

Range 1

Class2

Range2

New relation name

7-93

LISP function called: change-relation-name

"Add a Parent"

Information collected: Parent to be added

LISP function called: add-parent

"Remove a Parent"

Information collected: Parent to be removed

LISP function called: remove-parent

"Change Existing Parent"

Information collected: Parent to be changed

LISP function called: change-parent

Advisory Issues Button. The "Advisory Issues" button puts a list of the advisory

issues in window 2 when it is pushed. The advisory issues are removed from window 2

whenever any component of the model is selected through one of the other menus.

Save Button. The "Save" button saves the current state of the problem model in a file

called "userfil". Each time OAKS is used the file "userfil" is used to create thte problem

model. The first time OAKS is used, the problem model is the same as the domain model.

When changes are made to the domain model, the "Save" button saves these changes in

"userfil" so they are present in any subsequent sessions.

This chapter described the development and analysis of the OAKS system. This

started with the structure of the domain model. Guidelines and rules based on the

structure of the domain model were developed and implemented. Next, th- guidelines and

rules defined in Chapter 6 were implemented. These guidelines and rules formed the

model evaluation portion of OAKS. This model evaluation code provided the basis from

7-94

which to determine if the evolving problem model was consistent and complete. These

evaluation functions were used by the model modification functions, which were the next

portion of OAKS to be developed and implemented. These model modification functions

made use of a pending issues list and an advisory issues list to keep the model consistent

and complete, with respect to the guidelines and rules, throughout the problem model

changes. Last, a windowed user interface was added to OAKS.

The OAKS system prototyped in this chapter has shown that a computer-based

system that aids in the conduct of the OORA process is feasible and valuable. The OAKS

system is based on an OORA mathematical model which embodies the basic principles of

the OORA process. This model was implemented in OAKS in a form closely resembling

the original mathematical model. All components and relationships in the model are

embodied in the OAKS model. The OAKS system also captures the essence of a class by

encapsulating the attributes and services in a class in a code structure that enforces that

encapsulation. The domain-independent and domain-dependent guidelines and rules were

implemented in such a way that they were usable as an evaluation tool on both the original

OAKS domain model and the evolving problem model. The domain model can be

checked using the LISP functions that implemented these guidelines and rules prior to the

domain model's being modified. This ensures that the user starts with a consistent and

complete model. It also provides a tool that can be used to check any OORA model

before it is used in design and code. The evaluation functions are also used by the

functions that implemented the model modification process to ensure that the changing

model remained valid. Using a pending issues list allowed changes to be made to the

model without adherence to any strict ordering of the changes, while ensuring that the

model remained consistent and complete. The OAKS prototype has the features required

to produce a sound model that represents an object-oriented specification of the system to

be developed.

7-95

VIII. Conclusions and Recommendations

The software development method of OORA is one that is still maturing with many

research questions still to be answered. This research has addressed an important gap in

the development of processes and associated tools in the assistance of conducting an

OORA. OAKS attacks the problem by developing a model that is truly object-oriented,

and not a hybrid of processes (chapter 4), and evaluating that model based on concrete

object-oriented criteria (chapters 5 and 6).

OAKS does not force formality in a process that is inherently informal. Informality

will always exist during the requirements analysis process because this process is primarily

cognitive, and deals with information that is uncertain and inconsistent. One way OAKS

supports informality is by imposing minimum constraints on the order in which the

components of the model must be acquired by the use of a list of issues that must be

resolved before the model is considered complete. This list allows the user to make a

majority of changes without regard to the order in which they are made, yet still maintain a

valid model. Forcing the user to make changes in a rigid order could run counter to the

developer's method of thinking (chapter 7).

Even though OAKS supports informality, the model developed is consistent and

complete with respect to a defined set of OORA structures, relationships, guidelines and

rules. The guidelines and rules consisted of those that were domain-independent based on

the desired OORA components and relationships (chapter 6), those that were domain-

dependent (chapter 6), and those that were based on the code structure of OAKS (chapter

7).

8-1

OAKS is not dependent on any particular domain for proper operation. It can bc

used in any domain where an (.)DA can be conducted. The results of an O()DA are a set

of object-oriented components and relationships. These components and relationships are

modeled in the OAKS domain model which is based on the OORA mathematical model

(chapter 4).

Specifically, the contributions of OAKS to the OORA process are the OORA math

model, the OAKS domain model developed in CLOS, the guidelines and rules used to

evaluate that model and the evolving problem model, the modification process used to

create the problem model, and the modularity of OAKS, allowing changes or additions to

the domain model or user interface without affecting the proper functioning of the system.

The OORA math model (chapter 4) provides a set of components and relationships

that are critical to the development of an object-oriented system. These components are

used in some form by a vast majority of the OORA processes and those that were required

for an analysis of any object-oriented system. This math model can be used as a basis for

the development of any OORA process; it was used as the basis for the OAKS domain and

problem model.

The OAKS domain model, represented in CLOS (chapter 7), proved to be a very

robust and flexible structure. The basic structure of the components in the generic domain

model was easily used in developing the specific domain model for the particular domain

chosen for the proof-of-concept in this research. The structure, though, is domain

independent. Any domain in which an OODA can be conducted can be translated into the

OAKS domain model. The generic domain model structure in OAKS contains all the

components and relationships defined in the OORA math model. The classes in the

generic domain model adhere to the object-oriented philosophies of a class and are

encapsulated entities, with all structures and relationships in to the OORA math model

contained in the classes. This is a significant change from the majority of other systems,

8-2

where oft" service information is treated differently than the remainder of the class

components. The domain model also proved to he one that is easily analyzed for the form

o0 Lhe components and their adherence to any guidelines and rules. Because the domain

structure is a separate file in the OAKS system, the domain information can be easily

replaced with no effect on the operation of OAKS.

The guidelines and rules that were applied to the domain and the evolving problem

model (chapters 6 and 7) proved to be extremely useful to both the problem model and the

domain model. It is envisioned that the initial domain model is developed by conducting

an OODA, the trs3ults of which have the form of Appendix A. This model is then

translated into CLOS and inserted into OAKS. Once the domain model is in OAKS, the

guidelines and rules would be extremely useful in identifying problems with the domain

model prior to use by a user in OAKS. By applying the guidelines and rules to the domain

model, violations are uncovered, thereby ensuring that the system starts with a consistent

and complete domain model. Even if the domain model were never modified, OAKS

could easily be used as a check to OORA results by entering those results into OAKS and

testing them against the guidelines and rules. The process of entering the OORA results

and the analysis of the guidelines and rules would provide an excellent check prior to

going to OOD. The guidelines and rules were also essential to maintaining a consistent

and complete model as the user modified the domain model to create a problem model.

The modification process in OAKS supports a relatively unstructured approach

(chapter 7). Minimal restrictions we-.- put on the order in which components of the model

could be added, deleted or modified. This lack of restrictions on order would normally

cause problems because the model would become inconsistent or incomplete if changes

were not made in a certain order. However, this problem was overcome by using a list of

pending issues. These pending issues are items that must be resolved before the model is

considered complete. Each time a change is made that causes the model to become

8-3

inconsistent or incomplete in accordance with its guidelines and rules, an entry is added to

pending issues. These entries are automatically removed when the problem was resolved.

The user is always aware of these issues and can see what is added when certain changes

are made. This form of system development is very supportive of the principles of good

software engineering, yet it does not place the severe constraints of strict formality on the

developer.

OAKS was coded using modules for the different code components so changes could

be made without invalidating the system (chapter 7). The code modules were the domain

model, the guidelines and rules, the modification procedures, and the user interface. The

specific domain coded in the domain model or the user interface can be easily changed to a

new domain or totally different user interface. Even changes in the guidelines and rules or

modification procedures would not require any major changes to the system.

Recommendations

Even though OAKS addresses some of the current problems in OORA systems, there

is much work left to be done. This work ranges from expanding the capabilities of OAKS

to further evaluation of the potential of the OAKS system.

Dynamic properties of an OORA system were not addressed in OAKS. Even though

a message trace through OAKS was pos&ý.',U, that was the extent of the analysis of any

dynamic properties of the system. The only information gathered on state change within a

class was data on which attributes may change as a result of the execution of a service.

The elicitation of the dynamic properties of a class would require a special tool because of

its nature. Research would have to be done on what form the information should take,

how the information could be elicited, and how it could be integrated into OAKS.

8-4

A natural language parser would be desirable as an addition to OAKS. This would

allow OAKS to more accurately identify possible relationships between classes in the

system by looking at names that have the same meaning and knowing whether a name is a

singular noun, or a verb, for example, according to the naming conventions of the model.

OAKS could incorporate learning, so that it learns from each problem model that is

developed in a domain. Over time, the OAKS domain model would have to be modified

to keep the model current. This modification would normally be done by an analyst in that

domain. A research question is whether OAKS could track the changes that are made to

the domain model to create the problem model and "learn" itself how the domain model is

changing over time. This might allow OAKS to make changes to the domain model itself

and keep itself current in the domain.

The user interface in OAKS, even though it is windows-based, is still not very

sophisticated or robust. A better user interface could easily be attached to the OAKS

system, replacing the current user interface. The current user interface simply uses LISP

functions to modify the OAKS problem model. Some features missing from the existing

user interface are the ability to select an item using the mouse without going through menu

selections, a better way of presenting the list of pending issues, perhaps by highlighting the

problem areas in the model, a better way of presenting the model itself using more

graphical techniques, and better methods for getting user input

Related to the user interface is the development of a user's guide for OAKS. The

information that would be placed in a user's guide on the changing of components and the

creation of new components in the OAKS model has been already been defined in this

research. This information should be supplemented with information on how to use the

user interface.

Another area for further research is how to transform the problem model produced in

OAKS into a formal specification or into a system for conducting OOD. This formal

8-5

specification could be used to go into the 001) phase or perhaps directly into code. The

OAKS model seems to be conducive to this type of transformation.

OAKS should be used in testing in one domain for a variety of problems and also in a

number of domain to evaluate its use across different domains.

Assistance could be built into OAKS for inserting the initial domain model. This

would require the development of a user interface and process specifically for this task.

Even though there remains much to be done in this area of research, OAKS has

created a solid foundation for future work. The basic structure of OAKS provides a

sound yet flexible platform for expanding its capabilities with only minor changes to the

existing OAKS structure. The concepts developed in OAKS and how those concepts are

used provide an important contribution to the research in object-oriented requirements

analysis.

8-6

Appendix A: Domain Model

The domain model chosen for this reserach was a system that manages the scheduling

of maintenance and flight for aircraft squadron.

A squadron consists of flights of aircraft, personnel, facilities and a flight range. The

personnel are the aircrew and the support personnel. The aircrew consist of pilots,

navigators, and electronic warfare officers (EWO). Each support person is assigned to

one shop. The facilities consist of maintenance hangars, spots on the flight line for parking

aircraft, and the shops.

Aircraft maintenance is performed by the following shops:

1. A-shop (avionics)

2. B-shop (avionics)

3. C-shop (avionics)

4. Fuel

5. Hydraulics

6. Electrical and environmental

7. Egress

8. Propulsion

9. Machine shop

10. Corrosion

11. Non-destructive inspection (NDI)

12. Weapons

13. PMEL

14. ECM pods

15. AIS (maintains line replaceable units (LRU))

16. Parachute

17. Flight line personnel (includes crew chiefs)

A-I

18. Automatic ground equipment (AGE)

The scheduling of flights is done by the Plans and Scheduling shop.

There are two type of maintenance: maintenance required when a part is not

operating correctly, and periodic inspection/maintenance.

Schedules must be kept on aircrew, aircraft flights, hangar use, flight line slot use,

runway use, and range use.

The events that must be handled by the system are:

1. A part of a particular aircraft breaks.

a. The repair is scheduled with the appropriate shop.

b. The shop adds the broken part as a write-up for the aircraft, which may

change the aircraft's status. The aircraft status can be fully mission capable, partly mission

capable, or not mission capable.

c. The shop determines the number of hours required for the repair and whether

a maintenance hangar is needed.

d. The shop schedules personnel to do the repair and a hangar, if necessary.

e. If a hangar is necessary, the shop must wait until the hangar is available to

start the repair.

2. A repair is complete.

a. If the plane is in a hangar, it is moved to a spot on the flight line.

b. The personnel that were assigned to the repair are released.

c. The aircraft write-ups are updated and the aircraft status changed as

necessary.

3. Schedule periodic maintenance.

a. The periodic maintenance/inspection is scheduled with the appropriate shop.

c. The shop determines the number of hours required for the repair and whether

a maintenance hangar is needed.

A-2

d. The shop schedules personnel to do the work and a hangar, if necessary.

e. If a hangar is necessary, the shop must wait until the hangar is available to

start the work.

4. The periodic maintenance/inspection is complete.

a. If the plane is in a hangar, it is moved to a spot on the flight line.

b. The personnel that were assigned to the work are released.

c. The aircraft maintenance log is updated.

5. Schedule a sortie.

a. The request for the sortie is given to the plans and scheduling shop. The

request includes the desired date, aircraft required, their configurations, the aircrew

required (by name or in general), the amount of time, and the part of the range required.

b. The sortie is scheduled and the information sent to the aircrew and the flight

line shop.

6. Sortie complete

a. Update the schedule to show actual sortie information.

b. Update the number of hours on each aircraft part. This may require the

scheduling of periodic maintenance.

c. Update the hours and types of missions for each aircrew.

7. Cancel a sortie.

The sortie is marked as cancelled.

The system must also handle the creation of a squadron. This will be done through

the implied create service of every class. For this model, the squadron will be created and

then used to create the remainder of the model.

This model is a very simplified one. It does not take into account such things as spare

parts, repair done at the depot, etc. It also looks at components at a very high level. In an

actual system, the aircraft components would be broken down into a smaller grouping of

A-3

components with each grouping containing information on how to repair. tools required,

skills required, facilities required, repair times, and others. The model could easily he

extended to the proper level.

The domain model is represented as a set of classes. The notation for the domain

model is as follows:

list-of name ;; This is a list of all whose elements are of name

dass ;; a class name

class-name.service ;; a service of that class

Class squadron

Superclass : none

Parts : flight, aircraft-parking, aircrew, support-person

Attributes

name : string

flights :list-of flight

parking : aircraft-parking

aircrew :list-of aircrew

personnel : list-of support-person

Services:

change-name (new-name: name) return)

pre : none

post :

(setf name new-name)

add-flight (new-flight : flight) return 0

pre: (not (member new-flight flights))

post :

(flight.create (new-flight))

A-4

(cons new-flight flights)

remove-flight (old-flight : flight) return 0

pre : (member old-flight flights)

post :

(flight.delete (old-flight))

(delete old-flight flights)

add-aircrew (new-person : aircrew) return (

pre : (not (member new-person aircrew))

post :

(aircrew.create (new-person))

(cons new-person aircrew)

remove-aircrew (old-person : aircrew) return 0

pre : (member old-person aircrew)

post :

(aircrew.delete (old-person))

(delete old-person aircrew)

add-support (new-person : support-person) return ()

pre : (not (member new-person personnel))

post :

(support-person.create (new-person))

(cons new-pei•on personnel)

remove-support (old-person : support-person) return)

pre : (member old-person personnel)

post :

(support-person.delete (old-person))

(delete old-person personnel)

A-5

Class flight

Part-of: Squadron

Parts aircraft

Attributesw

name: string

type-aircraft : string

the-aircraft: list-of aircraft

squadron squadron

Services*

change-name (new-name : name) return)

pre : none

post :

(serf name new-name)

change-type-aircraft (new-type : type-aircraft) return U

pre : none

post :

(setf type-aircraft new-type)

add-aircraft (new-ac : aircraft)

pre : (not (member new-ac the-aircraft))

post :

(aircraft.create (new-ac))

(cons new-ac the-aircraft)

remove-aircraft (old-ac : aircraft)

pre : (member old-ac the-aircraft)

post :

(aircraft.delete (old-ac))

A-6

There is one instance of the class aircraft for every aircraft in the squadron

Class aircraft

Part-of: flight

Related to : aircraft-schedule

Parts : aircraft-part

Attributes a

model-number: string

tail-number: integer

the-flight: flight

status : (fully-mission-capable, partly-mission-capable, not-mission-capable)

inop-parts : list-of aircraft-part

inop-parts is the current list of parts of the aircraft that are inoperative.

schedule : aircraft-schedule

configuration : list-of aircraft-part

-; all the parts that are on the aircraft

Services :

in-op-part (ap : aircraft-part) return ()

pre : (member ap configuration)

post :

(cons ap inop-parts)

(possibly change status)

op-part (ap : aircraft-part) return (

pre : (member ap inop-parts)

post :

(delete ap inop-parts)

(possibly change status)

A-7

get-tail-number () return integer

pre : none

post :

(tail-number)

get-flight 0 return flight

pre : none

post :

(the-flight)

get-status 0 return status

pre : none

post :

(status)

get-config 0 return configuration

pre : none

post :

(configuration)

add-part (new-part : aircraft-part) return 0

pre • (not (member new-part configuration))

post:

(aircraft-part.create (new-part))

(cons new-part configuration)

remove-part (old-part: aircraft-part) return 0

pre" (member old-part configuration)

post:

(aircraft-part.delete (old-part))

(delete old-part configuration)

A-8

get-sched () return aircraft-schedule

pre : none

post :

(schedule)

Class aircraft-part

Superclass : none

Part-of : aircraft

Related to : support-shop, repair-symptoms, maintenance-history, periodic-

maintenance

part-name : string

a-aircraft : aircraft

;; There is an object created for each part on each aircraft. Each object is uniquely

identifed by the aircraft it is part of.

number-of-fLight-hours : integer

;; The number of hours on the part

repair-shop: support-shop

current-symptoms : repair-symptoms.legal-symptoms-list

status : (operative, need-repair)

symtom-analysis: repair-symptoms

history : maintenance-history

periodic : periodic-maintenance

get-aircraft () return aircraft

pre : none

post:

A-9

(a-aircraft)

get-part-name 0 return string

pre: none

post :

(part-name)

get-sym-analysis 0 return repair-symptoms

pre : none

post :

(symptom-analysis)

inoperative (symptoms : repair-symptoms.legal-symptoms-list) return 0

pre : none

post :

;; If the current status is operative, then the repair of the part must be scheduled.

If not, the part is already scheduled for repair so add the new symptoms to the list. When

the part is being repaired, the technician will look at the current symptoms list.

(if (eql status 'operative))

(repair-shop.schedule-repair (aircraft-part))

(a-aircraft.in-op-part (aircraft-part)

(setf status 'need-repair))

(cons symptoms current-symptoms)

repaired (type : maintenance-history.type) return 0

pre : none

post :

(if (eql type 'fix)

(setf status 'operative)

(a-aircraft.op-part (aircraft-part)

A-IO

(setf current-symptoms '0)))

(history.add-maintenance (date, type))

update-flight-hours (new-hours : integer) return 0

pre : none

post :

(setf number-of-flight-hours (+ number-of-flight-hours new-hours))

(periodic.check-list (number-of-flight-hours))

current-symptoms-list 0 return repair-symptoms.legal-symptom-list

pre : none

post:

(current-symptoms)

shop-name 0 return support-shop

pre : none

post :

(repair-shop)

Class periodic-task

Superclass : none

Part-of : periodic-maintenance

Attributes

part-name: aircraft-part

hours : integer

;; number of hours on a part before the task is to be done.

hangar-required : boolean

task-name : string

hours-to-task 0 return hours

A-I1

pre : none

post :

(hours)

change-time-before-repair (new-hours : integer) return 0

pre : none

post :

((serf hours new-hours

hangar-needed () return boolean

pre: none

post :

(hangar-required)

Class periodic-maintenance

Superclass : none

Related to: aircraft-part

Parts : periodic-task

Attributes:

part : aircraft-part

task-list: list-of periodic-task

check-list (new-hours : integer) return 0

;; when a part has its number of hours updated, the periodic maintenance list is

checked. If maintenance needed, it is scheduled.

pre : none

post :

(let ((result '0)

(dolist (task task-list)

A-12

(if (< task.hours-to-task new-hours)

(cons task result)))

(if result

(let ((the-shop part.shop-name))

(dolist (one-task result)

(the-shop.schedule-periodic (part-name, one-task)

There is one object for each type of part, not for each aircraft.

Class repair-symptoms

Superclass none

Related to: aircraft-part

Attributes

part-name: aircraft-part

legal-symptoms-list : enumerated-list

Services:

determine-hangar-need (symptoms : legal-symptoms-list) return boolean

pre : none

post :

(return true or false based on the current symptoms)

"There is one for each part on each aircraft

Class maintenance-history

Superclass : none

Related to: aircraft-part

part: aircraft-part

type : support-shop.type

history-list : list-of (date : schedule-event.day, type : support-shop.type)

A-13

add-maintenance (date : schedule-event.day, a-type: support-shop.type) return 0

pre : none

post :

(cons '(date a-type) history-list)

Class people

Superclass : none

name : string

ssan : integer

squad : squadron

AFSC : string

Services :

change-squadron (new-squadron : squadron) return 0

pre : none

post :

(setf squad new-squadron)

Class support-person

Superclass : people

Part-of : squadron

shop : support-shop

type : support-shop.type

jobs-to-do : list-of (aircraft-part, support-shop.type)

job-list 0 return list-of-jobs

A-14

pre: none

post :

(jobs-to-do)

add-job (new-job : aircraft-part, the-type : type) return (

pre : none

post:

(cons '(aircraft-part type) jobs-to-do)

remove-job (job : aircraft-part; the-type : type) return 0

pre: none

post:

(delete '(job the-type) jobs-to-do)

Class support-shop

Superclass • none

Related to aircraft-part

Attributes

list-of-people: list-of support-person

shop-name : (a-shop, b-shop, c-shop, fuel-shop, hydraulics, electrical-and-

environmental, egress, propulsion, machine-shop, corrosion-control, non-destructive-

inspection, weapons, PMEL, LRU, parachute, flight-line-support, aircraft-ground-

equipment)

type: (fix, periodic-task)

jobs-pending: list-of (aircraft-part, type)

jobs-in-hangars : list-of (aircraft-part, hangar, type)

schedule-repair (ap : aircraft-part) return 0

pre : none

A-15

post:

(let ((sym ap.get-sym-analysis))

(if (sym.determine-hangar-need (ap.current-symptoms-list))

;; then

((aircraft-parking.schedule-hangar (support-shop, ap, fix))

(append jobs-pending '(ap fix)))

;; else

(let ((the-person (first list-of-people))

(dolist (a-person list-of-people)

(if (< (length a-person.job-list) (length the-person.job-list))

(setf the-person a-person)))

(the-person.add-job(ap fix)))))

hangar-available (ha.: : hangar; ap : aircraft-part; a-type : type) return 0

pre : (not (eqi jobs-pending '0))

post :

(let ((the-person (first list-of-people))

(dolist (a-person list-of-people)

(if (< (length a-person.job-list) (length the-person.job-list))

(setf the-person a-person)))

(the-person.add-job(ap a-type)))

(delete ap jobs-pending)

(cons (ap han) jobs-in-hangar)

schedule-periodic (ap : aircraft-part; pt : periodic-task) return 0

pre : none

post :

(if (pt.hangar-needed)

A-16

;; then

((aircraft-parking.schedule-hangar (support-shop, ap, pt))

(append jobs-pending '(ap pt)))

;; else

(let ((the-person (first list-of-people))

(dolist (a-person list-of-people)

(if (< (length a-person.job-list) (length the-person.job-list))

(setf the-person a-person)))

(the-person.add-job(ap pt)))))

repair-complete (ap : aircraft-part; the-type : type) return)

pre : none

post :

;; free up the person

(dolist (a-person list-of-people)

(dolist (a-job a-person.job-list)

(if (and (member ap a-job)

(member the-type a-job))

(a-person. remove-job (ap the-type))))

;; change status of part

(ap.repaired (the-type))

;; release hangar, if in hangar, and get a free flight line slot

(let ((hangar'())

(if (eql (first job-in-hangars) ap)

(setf hangar (second job))

(if hangar

(aircraft-parking.release-hangar (hangar))

A-17

(delete (ap the-type) jobs- in-hangars)

Class aircrew

Superclass : people

Part-of : squadron

Related to : aircrew-schedute

type : (pilot, navigator, EWO)

aircraft-checked-out-in : aircraft

hours : integer

schedule: aircrew-schedule

get-sched () return aircrew-schedule

pre : none

post:

(schedule)

update-hours (new-hours : hours) return ()

pre : none

post :

(setf hours (+ hours new-hours))

Class mission

Related to : plans-and-scheduling

Attributese

date : integer

mission-type : ('est, eval)

ac-info : list-of (aircraft, schedule-event.duration, aircraft.configuration)

;; these hours are those needed for each aircraft

A-18

aircrew-list : list-of (aircrew, aircraft)

time : (schedule-event.start-time, schedule-event.duration)

;; this is the time for the entire mission

range-info : (real, int)

status : (cancelled, complete)

Services:

get-aircraft 0 return list-of aircraft

pre : none

post :

(let ((ac-list '()))

(dolist (an-ac ac-info)

(cons (first an-ac) ac-list))

(ac-list))

get-duration () return time

pre : none

post :

(second time)

get-date () return date

pre : none

post:

(date)

get-config (ac : aircraft) return aircraft.configuration

pre : none

post :

(dolist (an-ac ac-info)

(if (eql (first an-ac ac))

A-19

(return (third an-ac)))

all-aircrew 0 return aircrew-list

pre : none

post:

(aircrew-list)

get-mission-type () return mission-type

pre : none

post :

(mission-type)

get-range-info () return range-info

pre : none

post :

(range-info)

get-aircrew () return list-of-aircrew

pre : none

post :

(let ((ac-list '()))

(dolist (one-crew aircrew-list)

(cons (first one-crew) ac-list))

(ac-list))

change-date (new-date : date) return (

pre : none

post :

(setf date new-date)

change-time (new-time : time) return 0

pre : none

A-20

post

(serf time new-time)

change-ac-info (new-ac-info: ac-info) retun ()

pre : none

post :

(setf ac-infc new-ac-info)

change-aircrew-hst (new-aircrew-list : aircrew-list) return 0

pre : none

post :

(setf aircrew-list new-aircrew-list)

change-status (new-status : status) return ()

pre : none

post :

(setf status new-status)

Class plans-and-scheduling

Related to: mission

Attributes

range: range-schedule

missions :list-of mission

mission-request (ac-list : (aircraft, aircraft.configuration), list-of-aircrew : list-of

aircrew, schedule-event.duration, mission.range-info) return)

pre : none

post :

;; schedule the mission based on all the existing schedules.

(aircrew.get-sched)

A-21

(aircraft.get-sched)

(range)

;; create the mission

(cons (mission.create (date, type, time, ac, aircrew, time, range) missions)

;; schedule aircraft

(dolist (ac-info ac)

((first ac-info).get-sched.add-mission (date, (first time), (second time),

(third ac-info)))

;; schedule aircrew

(dolist (arc aircrew)

((first arc).get-schedule. add-mission (date, (first time), (second time),

(:;econd arc), type)))

;; schedule range

(let ((acl '0))

(dolist (an-ac ac)

(cons (first an-ac) acl))

(range.add-mission (date, time, ac], range)))

mission-complete (the-mission : mission, hours : mission.ac-info, crew

mission.aircrew-list, date : integer, time : mission.time) return)

pre : (member nmission missions)

post:

;; update hours on aircraft parts and aircrew hours

(dolist (each-ac hours)

(dolist (each-part (first each-a,,).get-config)

(each-part.update-flight-hours (second.each-ac)))

(dolist (a-crew crew)

A-22

(if (member (first each-ac) a-crew)

(a-crew.update-hours (second each-ac)))))

;; update mission info

(the-mission.change-date (date))

(the-mission.change-time (time))

(the-mission.change-ac-info (hours))

(the-mission.change-aircrew-list (crew))

(the-mission.change-status (complete))

cancel-mission (the-mission :nmission) return)

pre: (member the-mission missions)

post :

(the-mission.change-status (cancelled)

;; cancel for an aircraft

(dolist (ac the-mission.get-aircraft)

((ac.get-sched).remove-mission (mission.get-date (first mission.get-

duration), (second mission.get-duration)v mission.get-config(ac))))

;; cancel for aircrew

(dolist (an-aircrew mission.all-aircrew)

((first (an-aircrew.get-sched)).remove-mission (mission.get-datew (first

mission.get-duration), (second mission.get-duration), (second an-aircrew), mission.get-

mission-type)))

;; cancel range

(range.remove-mission (mission.get-date, mission.get-duration. mission.get-

aircraft, mission. get-range-minfo)

Class schedule-event

Cla ribuies v

A-23

day : integer

start-time : real

duration : real

get-day 0 return integer

pre : none

post:

(day)

get-start 0 return real

pre : none

post :

(start-time)

get-duration 0 return real

pre : none

post :

(duration)

Class aircrew-schedule-event

Superclass : schedule-event

Part of : aircrew-schedule

type-of-mission : (test, eval)

the-aircraft : aircraft

Services :

get-type 0 return (test, eval)

pre : none

post:

A-24

(type-of-mission)

get-aircraft () return aircraft

pre : none

post :

(the-aircraft)

Class aircraft-schedule-event

Superclass : schedule-event

Part of : aircraft-schedule

Attributes"

configuration : aircraft.configuration

get-config 0 return config

pre : none

post :

(configuration)

Class range-schedule-event

Superclass : schedule-event

Part of: plans-and scheduling.range

Attributes :

ac : list-of aircraft

range-use : mission.range-into

get-aircraft 0 return list-of-aircraft

pre : none

post :

(ac)

A-25

get-range-info () return list-of (altitudes, airspace, facilities)

pre: none

post :

(range-use)

Class aircrew-schedule

Related to : aircrew

Parts : aircrew-schedule-event

Attibute

schedule: list-of aircrew-schedule-event

the-aircrew: aircrew

add-mission (day : aircrew-schedule-event.day, start-time : aircrew-schedule.

event.start-time, duration : aircrew-schedule-event.duration, an-aircraft : aircraft,

mission-type : aircrew-schedule-event.type-of-mission) return 0

pre : none

post :

(cons (aircrew-schedule-event.create(day, start-time, duration, an-aircraft,

mission-type)) schedule)

remove-mission (day : aircrew-schedule-event.day, start-time : aircrew-schedule-

event.start-time, duration : aircrew-schedule-event.duration, an-aircraft : aircraft,

mission-type : aircrew-schedule-event.type-of-mission) return)

pre : none

post :

(dolist (one-event schedule)

(if (and (eqi one-event.get-day day)

(eqI one-event.get-start start-time)

A-26

(eqi one-e vent. get-duration duration)

(eqi one-event.get-aircraft an-aircraft)

(eqi one-event.get-type mission-type))

((delete one-event schedule)

(aircrew-scheduie-event.delete (one-event))))

get-sched () return list-of aircrew-schedule-event

pre :none

post :

(schedule)

Class aircraft-schedule

Related to : aircraft

Part: aircraft-schedule-event

Attiutes

schedule : list-of aircraft-schedule-event

the-aircraft : aircraft

add-mission (day : aircraft-schedule-event.day, start-time :aircraft-schedule-

event~start-time, duration : aircraft-schedule-event.duration, config

aircraft.configuration) return0

pre : none

post :

(cons (aircraft-schedule-event.create(day, start-time, duration, config))

schedule)

remove-mission (day :aircraft-schedule-event.day. start-time :aircraft-schedule-

event.start-time, duration :aircraft-schedule-event.duration, config :aircraft-schedule-

event.configuration) return0

A-27

pre : none

post :

(dolist (one-event schedule)

(if (and (eql one-event.get-day day)

(eql one-event.get-start start-time)

(eql one-event.get-duration duration)

(eql one-event.get-config config))

((delete one-event schedule)

(aircraft-schedule-event.delete (one-event))))

get-sched 0 return list-of aircraft-schedule-event

pre : none

post :

(schedule)

Class range-schedule

Parts : range-schedule-event

Attributes :

schedule : list-of range-schedule-event

add-mission (day : range-schedule-event.day, time : mission.time, aircraft: range-

schedule-event.ac, range-info : range-schedule-event.range-use) return 0

pre : none

post :

(cons (range-schedule-event.create (day, (first time), (second time),

aircraft, range-info)) schedule)

remove-mission (day : range-schedule-event.day, time : mission.time, aircraft

range-'schedule-event.ac, range-info : range-schedule-event.range-use) return 0

A-28

pre : none

post :

(dolist (one-event schedule)

(if (and (eqi one-event.get-day day)

(eql (one-event.get-start one-event.get-duration) time)

(eqI one-event.get-aircraft aircraft)

(eqI one-event.get-range-info range-info))

((delete one-event schedule)

(range-schedule-event.delete (one-event))))

get-sched 0 return list-of range-schedule-event

pre : none

post :

(schedule)

Class aircraft-parking

Superclass : none

Part of : squadron

Parts : hangar, flight-line-spots

Attributes :

spots : list-of flight-line-spots

hangars.: list-of hangar

type: maintenance-history.type

requests-pending : list-of (support-shop, aircraft-part, maintenance-history.type)

Services:

add-hangar (new-hangar : hangar) return 0

pre : (not (member new-hangar hangars))

post:

A-29

(hangar.create (new-hangar))

(cons new-hangar hangars)

remove-hangar (old-hangar: hanger) return ()

pre: (member old-hangar hangars)

post :

(hangar.delete (old-hangar))

(delete old-hangar hangars)

release-hangar(the-hangar : hangar) return (flight-line-spots)

pre : none

post :

(the-hangar.release (the-aircraft))

(if requests-pending

(let ((fill (first requests-pending)))

((first fill).hangar-available (the-hangar, (second fill), (third till))

(the-hangar.new-aircraft ((second fill).get-aircraft))

(delete fill requests-pending)

(dolist (a-spot spots)

(if (not (a-spot.occupied))

(a-spot.fill (the-aircraft))

(return a-spot)))))

schedule-hangar (ss : support-shop, ap : aircraft-part, type : maintenance-

history.type) return 0

pre : none

post:

(let ((avail '0))

(dolist (h hangars)

A-30

(if h.available

(cons h avail)))

(if avail

;; then

(((first h).new-aircraft (ap.get-aircraft))

(ss.hangar-available ((first h) ap type))

release flight line spot

(let ((ac ap.get-aircraft))

(dolist (a-spot spots)

(if (eql a-spot.occupied ac)

(a-spot.empty)

(return))))

;;else

(append requests-pending '((ss ap type)))))

add-spot (new-spot : flight-line-spots) return 0

pre : (not (member new-spot spots))

post :

(cons (flight-line-spots.create (new-spot)) spots)

delete-spot (old-spot : flight-line-spots) return 0

pre : (member old-spot spots)

post :

(delete old-spot spots)

(flight-line-spots.delete (old-spot))

Class hangar

Superclass : none

Part of : aircraft-parking

A-31

Attribuks

occupied-by :aircraft

Services:

new-aircraft (ac : aircraft) return ()

pre : none

post :

(setf occupied-by aircraft)

available () return boolean

pre : none

post :

(if occupied-by

'0

t)

release () return aircraft

pre: none

post :

(let ((ac-in occupied-by))

(setf occupied-by 0)

(ac-in))

Class flight-line-spots

Superclass : none

Part-of : aircraft-parking

Attrib

the-aircraft : aircraft

Services:v

occupied () return aircraft

A-32

pre : none

post :

(the-aircraft)

fill (ac : aircraft) return ()

pre : (null the-aircraft)

post :

(setf the-aircraft ac)

empty () return aircraft

pre : none

post :

(let ((ac the-aircraft))

(setf the-aircraft 0)

(ac))

The following is a tracing of each of the major events discussed in the beginning of

the appendix. These traces show the use of the various classes and services in the model.

The format is "class-name.service-name". The leftmost class and service name calls the

class and service names indented beneath it.

Event A - Part Breaks

aircraft-part.inoperative (symptoms)

support-shop.schedule-repair (aircraft-part)

aircraft.in-op-part (aircraft-part)

support-shop.schedule-repair (aircraft-part)

aircraft-part.get-sym-analysis

repair-symptoms.determine-hangar-need (symptoms)

aircraft-part.current-symptoms-list

aircraft-parking.schedule-hangar (support-shop, aircraft-part, fix)

A-33

support- person~job- list

support- person.add-jo b (aircraft-part, fix)

aircraft-parking.schedule- hangar (support-shop, aircraft-part, fix)

hangar.available

hangar. new-aircraft (aircraft)

support-s hop. hangar-available (hangar, aircraft-parr. type)

aircraft-part.get-aircraft

flight-line-spots.occupied

tlight- Iine-spots.em pty

support-shop.hangar-available (hangar, aircraft-part, type)

support- person~job-Ilist

support- person. add-j ob

(aicrat-p rt.curent sy pto s_,Istaircraft-pa rt.ge rot-sympan msIis t

support-person.job-list support-person.add-job

Trace of Event

AL-34

Event B - Part Fixed

support-shop.repair-complete (aircraft-part, type)

support-person.job-list

support-person.remove-job (aircraft-part, type)

aircraft-part.repaired

aircraft-parking.release-hangar (hangar)

aircraft-part. repairt'd

aircraft.op-part(aircraft-part)

maintenance-history.add-maintenance (date, type, aircraft-part)

aircraft-parking.release-hangar (hangar)

hangar.release (aircraft)

support-shop.hangar-available (hangar, aircraft-part, type)

flight-line-spots.occupied

flight-line-spots. fill

hangar.new-aircraft (aircraft)

aircraft-part.get-aircraft

support-shop.hangar-available (hangar, aircraft-part, type)

support-person.job-list

support-person.add-job

A-35

hangarrelease rt.nrepairedai rcraft-parkght-Irelease -hanga

Trace~in of Event

Evencrtt C to- Sphdul Misinga~ee P

aircrew-prtget-scheadt

aircraftne-sget-scheded

mission-crete projbls Spotprnadjb

Even ratC- Schedule admission (ae tn uain ofg

aircrewge-scheduead-i son(aesadutoarcftty)

rasinge-chedle~admsin(ae ie icatlsrne

aircraft-schedule. add- mission (date, start, duration, config)

aircraft- schedu le-event.create (day, start-time, duration, config)

aircrew-schedule.add-mission (date, start, duration, aircraft, type)

aircrew-schedule-event.create (day, stant-time, duration, aircraft, mission-type)

A-36

range-schedule.add-m ission (date, time, aircraft- list, range)

range-schedule-event.create (day. (first time). (second time), ac, range-into)

aircrw-schciul~add-issins-ange-sche~dulin.-amisslon aircraft-shdl~d-is

aircrewge-schedul.-oventCcre te aircraf -gt-scheduevotcat

Trace of Event C

Event D - Mission Complete

plans-and-scheduling.mission-complete (mission, hours, crew, date, time)

aircraft.get-config

aircraft-part. update- flight- hours (hours)

aircrew.update- hours (hours)

miss ion.change-date (date)

mission.change-time (time)

mission.change-ac-mino (ac-into)

mission.change-aircrew-list (aircrew-list)

mission.change-status (status)

aircraft-part. update-flight-hours (hours)

periodic-m aintenance.check- list (hours)

periodic-maintenance.check-list (hours)

periodic- task.hours -to- task

A-37

aircraft-part.shop-name

support-shop.schedule-periodic (part, one-task)

support-shop.schedule-periodic (part, one-task)

periodic-task.hangar-needed

aircraft-parking.schedule-hangar (support-shop, part, periodic-task)

support-person.job-list

support-person.add-job (part, periodic-task)

aircraft-parking.schedule-hangar (support-shop, aircraft-part, periodic-task)

hangar.available

hangar.new-airc raft (aircraft)

support-shop.hangar-available (hangar, aircraft-part, type)

aircraft-part.get-aircraft

flight-line-spots.occupied

flight-line-spots.empty

support-shop.hangar-available (hangar, aircraft-part, type)

support-person.job-list

support-person. add-job

A-38

(arcewupat-h u potersajbsls cmstncag-cif

(m,,sion hanga~aaiabe) msincngd

C isoc hanga-irnew-fi) aircraft -pr fipat ight-hi.sotrs~ocp

surr f-p r~ h p-2rT -so)a g r- v ie l supp rts o -chaft-pa rt~ ~-irc r

(Plansd-tanskhedlngcarneedd-missionOso ;71~

Cupr-esnjb-itaircraft-schedulegreove-missio

missin. g t-daersnjbitspotp

mission. get-duration

A-39

mission. ge t-config (ac)

aircrew-schedule.remove- mission

mission.get-mission-type

range-schedule-remove-mission

mission.get-aircraft

mission.get-range-mifo

mission.change-status

aircraft.get-sched

mission. all-aircrew

aircrew.get-sched

aircraft-schedule.remove-mission

aircraft-schedule-event.get-day

aircraft-schedule-event, get-start

aircraft-schedule-event. get-duration

aircraft-schedule-event.get-config

aircraft-schedule-event.delete (one-event)

aircrew-schedule.remove-mission

aircrew-schedule-event.get-day

aircrew-schedule-event.get-start

aircrew-schedule-event.get-duration

aircrew-schedule-event.get-aircraft

aircrew-schedule-event.get-type

aircrew-schedule-event.delete (one-event)

range-schedule.remove-mission

range-schedule-event~get-day

range-schedule-event.get-start

A-40

range-schedule-event~get-duration

range -schedule -event. get-aircraft

range-schedule-event.get-range-info

range-schedule-event.delete (one-event)

A-41

p an rcraft- schedulen cance e-mission

msingtaircraftt-ceueeel~ -a airrat-chdue-ve t -get-shdurto

msinalaircraf-e dueeet e-tr amcf-ceueee isso get-config)

Traceofget-ventEinj

missio. get-Arab2

Appendix B: Example OAKS Session

This appendix contains the steps involved in an OAKS session where the user adds a

new class into the model. The class that is added is the class "maintenance-equipment",

which is the equipment used to maintain the aircraft in the squadron. The class

"maintenance-equipment" is a part of the class "squadron" and will contain the attribute of

"name" and the service "change-name".

In the appladix, the following conventions are used:

The selection of a menu item with the right mouse button is shown in italics, as in

Menu-Item.

Text output by the OAKS system is shown as underlined text, as in OAKS Text.

Text typed in by the user is shown in bold, as in User Input.

The session is started by initiating a SUN Common LISP environment containing the

LISPView and CLOS packages. At the LISP prompt, the user would type (load

"oaks.lisp"). This file loads the files "oaksd.lisp", which contains the domain model

structure and the domain model, "oaksno.lisp" which contains the model evaluation

procedures, "oaksmod.lisp" which contains the model modification procedures,

"oaksave.lisp" which saves the changed model to a file, executes the procedure "read-

data", which reads from the file "userfil", and then loads "oaksui.lisp" which contains the

LISPView user interface. The file "userfil" contains the problem model. This is the model

the user modifies to create a model for the particular problem of interest. When OAKS is

first used, "userfid" contains the unmodified domain model.

The user then types (in-package 'oaks) at the LISP prompt. All the files are loaded

into this package.

B-i

The user interface creates the LISPView OAKS window as described in Chapter 7

and shown in Figure 7-2. The three windows as shown in that figure will be referenced as

well as the menus.

When the LISPView OAKS window is first created, window 1 contains a list of all

classes in the model including the parents of the classes, window 2 is blank, and window 3

contains the pending issues. If this is the first time the user has used OAKS, the only entry

in pending issues will be (CLASSES NEED VERIFIED), which will remain in the pending

issues list until all classes in the model have been verified.

The user now will operate exclusively in the LISPView OAKS window.

The user wants to add a new class to the model called "maintenance-equipment"

which is a part of the class "squadron". The user can either first create the new class, or

first put the new whole/part structure in the "squadron" class and then create the new

class. The order of the operations will not make any difference to the final outcome. The

user decides to first place the new whole/part structure in the "squadron" class.

Model/Class

squadron

The user uses the Model/Class menu to select the "squadron" class. Window 1 now

contains the information on the class "squadron", which includes the class name,

description, the attribute names, the service names, the whole/part structure which

includes class names and ranges, the relation structure which includes the relation name,

class names and ranges, the parents of the class, and whether or not the class is verified.

Windows 2 and 3 are unchanged.

Component

Whole-Part

B-2

The component menu is used to select the whole-part component of the "squadron"

class. Windows 1 and 3 are unchanged, but window 2 now contains the whole/part

structures of the "squadron" class.

Action

Add Whole/Part Relation

The action menu is used to add a new whole/part relation to the "squadron" class. At

this point, a pop-up box appears to gather the information required from the user. The

user goes to the first piece of requested information by clicking on the line after "Class 1"

using the left mouse button. The user can move between fields in the pop-up box by using

the up and down arrow keys. The following are the fields requested and the user input.

Cls I squadron

Rani(e (n)

Class2 maintenance-equipment

Rang2 (1 1)

The user then presses the "Done" button using the left mouse button and the pop-up

box disappears and the changes are made to the model.

Windows I and 2 now show the new whole/part relation. Window 3 contains a new

pending issues entry:

(MISSING-CLASS-AND-RELATION MAINTENANCE-EQUIPMENT

#S(RELATION NAME WHOLE/PART CLASSI SQUADRON RANGE1 (I N)

CLASS2 MAINTENANCE-EQUIPMENT RANGE2 (1 1))

This indicates that one of the classes in the new relation, "maintenance-equipment",

does not currently exist in the model.

The next step is to add the new class.

Model/Class

Entire Model

B-3

The entire model must be selected in order to add a new class. This changes window

1 back to showing the classes in the model, window 2 is blank and window 3 is

unchanged.

Action

Add a Class

The pop-up box is filled out as follows.

Cs name maintenance-equipment

Class description Equipment required to repAir aircraft.

The "Done" button is pressed. Window 1 is changed to include the "maintenance-

equipment" class. Window 2 is still blank. hi window 3, the pending issue on the missing

class and relation is removed. The OAKS system automatically added the whole/part

relation to the new class. This can be seen by the user doing the following actions.

Model/Class

maintenance-equipment

Window I now contains the "maintenance-equipment" class, and the whole/part slot

will contain the relation with the "squadron" class.

The next step is to add the "name" attribute.

Action

Add an Attribute

The pop-up box is filled out as follows.

Nae name

D=sc The name of the equipment

Bsvau str

Lower value (op~t)

Up~r value (opt)

The information for lower and upper value is left blank and "Done" is selected.

B-4

Window I changes to show the new attribute name. To see the entire attribute

structure, the following is done.

Component

One Attribute

NAME

Windows I and 3 are unchanged, but window 2 now contains the attribute structure

containing the name, description, initial value, legal values to include the base, lower ind

upper values, and whether or not the attribute is verified. Since this attribute was created

by the user, it is automatically set as verified.

The last step is to add the service that changes the "name" attribute.

Component

Entire Class

Windows 1 and 3 are the same, but window 2 is now blank.

Action

Add Service Using Template

Since the service changes the value of an attribute, one of the four service templates

can be used. These templates save the user time and effort by filling out many of the slots

in the service automatically.

The pop-up box is filled out as follows:

Template (change. return. add. remove) change

Attribute name name

Seice name change-name

After "Done" is selected, the new service is created. Window 1 will now contain the

service name. To see the new service:

Component

One Service

B-5

CHANGE-NAME

Windows 1 and 3 are unchanged. Window 2 contains the service and its components.

The components of the service are its name, description, input parameters, output

parameters, preconditiua, postcondition changed attributes, postcondition messages and

whether or not the service is verified. The service template automatically filled in all the

information not supplied by the user, which was the description, input parameters, output

parameter, precondition and the postcondition. The service is shown as verified because it

was created by the user.

To save the changes made thus far, the user would select the "Save" menu item.

B-6

Appendix C: OAKS Code

Due to its size, Appendix C was not attached to this report. The appendix is distributed

separately as an Air Force Institute of Technology Technical Report, AFIT/EN/TR193-07.

C-I

Bi bfiography

[ARAN891 Arango, Guillermo, "Domain Analysis - From Art Form to Engineering
Discipline," SIGSOFT Engineering Notes, Vol 14(3), May 89, p. 152-159.

[ARIN89] Arinze, Bay, "A Natural Language Front End for Knowledge Acquisition,"
SIGARTNewsletter, No. 108, Apr 89, p. 106-114.

[BABB85I Babb, Robert B.; Kieburtz, R :hard; et al, "Workshop on Models and Languages
for Software Specification and [Tv. ign," Computer, Vol 18, No 3, Mar 85, p. 103-
108.

[BAIL89] Bailin, Sidney C., "An Object-Oriented Requirements Specification Method,"
Communications of the ACM, Vol 32, No 5, May 89, p. 608-623.

[BALZ78] Balzer, Robert; Goldman, Neil; Wile, David, "Informality in Program
Specifications," IEEE Transactions on Software Engineering, Vol. SE-4, No. 2,
Mar 78, p. 94-103.

[BALZ791 Balzer, Robert; Goldman, Neil, "Principles of Good Software 3pecification and
Their Implications for Specification Language," Proceedings of the Specifications
for Reliable Software Conference, Apr 79, p. 58-67.

[BALZ851 Balzer, Robert, "A 15 Year Perspective on Automatic Programming," IEEE
fransactions on Software Engineering, Vol. SE-11, No. 11, p. 1257-1267.

[BARS851 Barstow, David R., "Domain-Specific Automatic Programming," IEEE
Transactions on Software Engineering, Vol. SE-I 1, No. 11, Nov 85, p. 1321-
1336.

[BERA92aJ Berard, Ed, "Object-Oriented Requirements Analysis," Unpublished, Received
through E-mail Jan 92, Berard Software Engineering, Inc, (301)417-9884.

[BERA92b] Berard, Ed. "Object-Oriented Domain Analysis," Unpublished, Received through
E-mail Jan 92, Berard Software Engineering, Inc, (301)417-9884.

[BERZ891 Berzins, Valdis, "Object-Oriented Techniques Based on Specifications," SIGSOFT
Engineering Notes, Vol 14(3), May 89, p. 437-438.

[BOBB901 Bobbie, Patrick 0.; Urban, Joseph E., "A Knowledge-Driven Methodology for
Eliciting and Restructuring Software Requirements for Distributed Design,"

BIB-1

Proceedings of the Second International Conference on Tools for Artificial
Intelligence, Nov 90, p. 584-592.

[BOOC91] Booch, Grady, "Object-Oriented Design with Applications," c 1991,
Benjamin/Cummings Publishing Co.

[BULM91] Bulnan, David, "Refining Candidate Objects," Computer Language, Vol 8, No 1,
Jan 91, p. 30-37.

[CARV90] Carver, Doris L.; Cordes, David W., "An Object-Oriented Framework to Support
Architectural Design Development," Proceedings of the Twenty-Third Annual
Hawaii International Conference on System Sciences, Volume 2: Software Track,
Jan 90, p. 349-357.

[CHID91J Chidamber, Shyam; Kemerer, Chris, "Towards a Metric Suite for Object-Oriented
Design," OOPSLA '91, Nov 91, p. 197-211.

[CHIN89] Chin, David N.; Takea, Koji; Miyamoto, Isao, "Using Natural Language and
Stereotypical Knowledge for Acquisition of Software Models," IEEE
International Workshop on Tools for Artificial Intelligence: Architectures,
Languages, and Algorithms, 1989, p. 290-295.

[COLB89] Colbert, Edward, "The Object-Oriented Software Development Method: A
Practical Approach to Object-Oriented Development," Tri-Ada '89, Oct 89, p.
400-415.

[COLE92] Coleman, Derek; Hayes, Fiona; Bear, Stephan, "Introducing Objectcharts or How

to Use Statecharts in Object-Oriented Design," IEEE Transactions on Software
Engineering, Vol 18, No 1, Jan 92, p. 9-18.

[COYO911 Coad, Peter and Yourdan, Edward, Object-Oriented Analysis, c 1991, Prentice-
Hall, Inc.

[DAVI90] Davis, Alan M., Software Requirements Analysis and Specification, c1990,
Prentice-Hall, Inc.

[DOHE90] Doherty, B. S., "Elicitation and Verification of a functional Specification," ECAI
90, Proceedings of the 9th European Conference on Artificial Intelligence, p.
234-239.

[FICK88] Fickas, Stephan; Nagarajan, P., "Critiquing Software Specifications," IEEE
Software, Vol 5, No 6, Nov 88, p. 37-47.

BIB-2

[FIRE91I Firesmith, Donald, "Structured Analysis and Object-Oriented Development are not
Compatible," ACM Ada Letters, Vol XI, No 9, Nov/Dec 91, p. 56-65.

[HAYE911 Hayes, Fiona; Coleman, Derek, "Coherent Models tor Object-Oriented Analysis,"
OOPSLA '91, ACM/SIGPLAN, Vol 26, No 11, p. 171-183.

[HOLB901 Holbrook, Hilliard, "A Scenario-Based Methodology for Conducting
Requirements Elicitation," ACM SIGSOFT Software Engineering Notes, Vol 15,
No 1, p. 95-104.

[IPCH911 Ip, Saimond; Cheung, Louis C. Y.; Holden, Tony, "Complex Objects in
Knowledge-Based Requirements Engineering," 6th Annual Knowledge-Based
Software Engineering Conference, Sep 91, p. 1-11.

[JAWO90] Jaworski, Allan; LaVallee, David, "Principles for Defining an Object-Oriented
Design Decomposition in Ada," WADAS '90, Jun 90, p. 173-182.

[JALO891 Jalote, Pankaj, "Functional Refinement and Nested Objects for Object-Oriented
Design," IEEE Transactions on Software Engineering, Vol 15, No 3, Mar 89, p.
264-270.

[KORS90I Korsen, Tim; McGregor, John D., "Understanding Object-Oriented: A Unifying
Paradigm," Communications of the ACM, Vol 33, No 9, Sep 90, p. 40-60

[KUNG891 Kung, C. H., "Conceptual Modeling in the Context of Software Development,"
IEEE Transactions on Software Engineering, Vol 15, No 10, Oct 89, p. 1176-
1187.

[KURT90] Kurtz, Barry D.; Woodfield, Scott N.; Er.ably, David W., "Object-Oriented
Systems Analysis and Specification: A Model Driven Approach," COMPCON
Spring '90, 26 Feb - 2 Mar 90, p. 328-332.

[LADD90] Ladd, Scott Robert, "Right and Wrong (Picking Classes in Object-Oriented
Programming," Computer Language, Vol 7, No 4, Apr 90, p. 103-107.

[LADE89] Ladden, Richard M., "A Survey of Issues to be Considered in the Development of
an Object-Oriented Development System for Ada," ACM Ada Letters, Mar/Apr
89, Vol IX, No 2, p. 78-88.

[LOUC88] Loucopoulos, P.; Layzell, P. J.; Champion, R. E. M.; Gibson, M. D., "A
Knowledge-Based Requirements Engineering Environment," Proceedings of the
Conference on Knowledge-Based Software Assistance. Aug 88, p. 139-154.

BIB-3

[LOUC90) Loucopoulos, P.; Champion, R. E. M., "Concept Acquisition and Analysis for
Requirements Specification," Software Engineering Journal, Vol 5, No 2, Mar 90,
p. 116-124.

[LUBA861 Lubars, Mitchell D.; Harandi, Mehdi T.," Intelligent Support for Software
Specification and Design," IEEE Expert, Vol. 1, No. 4, Winter 86, p. 33-42.

[MEYE881 Meyer, Bertrand, "Object-Oriented Software Construction," Prentice-Hall, c 1988.

[MONA92] Monarchi, David E.; Puhr, Gretchen I., "A Research Topology for Object-
Oriented Analysis and Design," Communications of the ACM, Vol. 35, No. 9, Sep
92, p. 35-47.

[MRDA90] Mrdalj, Steven, "Stepwise Object-Oriented System Design," COMPEURO '90,
May 90, p. 520-521.

[NERS92] Nerson, Jean-Marc, "Applying Object-Oriented Analysis and Design,"
Communications of the ACM, Vol. 35, No. 9, Sep 92, p. 63-74.

[REUB91I Reubenstein, Howard B.; Waters, Richard C., "The Requirements Apprentice:
Automated Assistance for Requirements Acquisition," IEEE Transactions on
Software Engineering, Vol 17, No. 3, Mar 91, p. 226-240.

[ROSS90] Ross, Donald L., "Issues in Object-Oriented Requirements Analysis," WADAS '90,
Jun 90, p. 77-99.

[RUMB9 11 Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy, Frederick;
Lorensen, William, "Object-Oriented Modeling and Design," Prentice Hall, c 1991.

[RUBI90] Rubin, Kenneth S., "Reuse in Software Engineering: An Object-Oriented
Approach," IEEE COMPCON, Spring '90, p. 340-346.

[RUBI92I Rubin, Kenneth S.; Goldberg, Adele, "Object Behavior Analysis,"
Communications of the ACM, Vol. 35, No. 9, Sep 92, p. 48-62.

[SAEK891 Saeki, Motoshi; Horai, Hisayuki; Enomoto, Hajime, "Software Development
Process from Natural Language Specification," 11 th International Conference on
Software Engineering, May 89, p. 64-73.

[SCHA921 Schaschinger, Harald, "ESA - An Expert Supported OOA Method and Tool,"
ACM SIGSOFT Soft-are Engineering Notes, vol 17, no 2, Apr 92, p50-56.

BIB-4

[SCHO9Il Schoen, Eric, "Active Assistance for Domain Modeling," 6th Annual Knowledge-
Based Software Engineering Conference, Sep 91. p. 28-39.

[SHLA89] Shlaer, Sally; Mellor, Stephen J., "An Object-Oriented Approach to Domain
Analysis," ACM SIGSOFT Sofirware Engineering Notes, Jul 89, p. 66-77.

[SHLA881 Shlaer, Sally; Mellor, Stephen J., "Object-Oriented Systems Analysis: Modeling
the World in Data", c 1988, Prentice-Hall Inc.

[SIBL891 Sibley, Edgar H., ".kn Object-Oriented Requirements Specification Method,"
Communications of the ACM, May 89, Vol. 32, No. 5, p. 608-623.

[TSAI881 Tsai, Jeffrey J. P.; Ridge, Joel C., "Intelligent Support for Specification
Transformations," IEEE Software, Vol. 5, No. 6, Nov 88, p. 28-36.

[TSAI891 Tsai, Jeffrey J. P.; Tsai, Shun-Tzu; Liu, Alan, "A Frame and Rule Based System to
Support Software Development Using an Integrated Software Engineering
Paradigm," IEEE International Workshop on Tools for Artificial Intelligence:
Architectures, Languages and Algorithms, 1989, p. 282-289.

[TSAI91] Tsai, Jeffrey J. P.; Weigert, Thomas, "HCLIE: a Logic-Based Requirement
Language for New Software Engineering Paradigms," Software Engineering
Journal, Vol 6, No 4, Jul 91, p. 137-151.

[WALT781 Walters, Neal, "An Ada Object-Based Analysis and Design Approach," Ada
Letters, JulIAug 91, Vol XI, No 5, p. 62-78.

[WHIT891 Whitcomb, Mark J.; Clark, Boyd N., "Pragmatic Definition of an Object-Oriented
Development Process for Ada," Tri-Ada '89, Oct 89, p. 380-399.

[WHIT90] Whiting, Mark, "Workshop: Finding the Object," OOPSLA/ECOOP '90, Oct 90,
p. 99-107.

[WINB90] Winblad, Ann L.; Edwards, Samuel D.; King, David R., Object-Oriented
Software, c 1990, Addison-Wesley Publishing Co.

[WIRF90] Wirfs-Brok, Rebecca, "Surveying Current Research in Object-Oriented Design,"

Communications of the ACM, Vol. 33, No. 9, p. 104-123.

[WROB88] Wrobel, Stefan, "Design Goals for Sloppy Modeling Systems," International

Journal of Man-Machine Studies, Vol. 29, No. 4, Oct 88, p. 461-477.

BIB-5

IYAUL88] Yau, Stephen S.; Liu, Chung-Shyan, "An Approach to Software Requirement
Specification," IEEE COMPSAC '88, Feb 88, p. 83-88.

[ZERO91] Zeroual. K, "KBRAS: A Knowledge-Based Requirements Acquisition System,"
6th Annual Knowledge-Based Software Engineering Conference, Sep 91, p. 40-
52.

BIB-6

September 1993 Doctoral Dissertation

On the Automation of Object-Oriented Requirements Analysis

6. AUTHOR(S)

Nancy L. Crowley, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/DS/ENG/93-11

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING, MONITORING

!Software Technology for Adaptable Reliable Systems (STARS) AGENCY REPORT NUMBER

Suite 400
801 North Randolph Street
Arlington, VA 22203

"11. SUPPLEMENTARY NOES

12a DISTRIBUT:ON A , A,' 1'!L %A- : NT 12b. DISTRIBUTION COOE

Distribution Unlimited 1

13. ABSTRACT "

The research investigated the possibility that an object-oriented requirements
analysis (OORA) specification model can be represented in a computer system and used
as a basis for the elicitation of the information necessary for the development of an
object-oriented specification for a particular problem. The proof-of-concept system
developed is called the OORA Automated Knowledge System (OAKS). OAKS contains a
generic domain model that is modified to satisfy a particular problem in the domain.

IThe core of OAKS is a reusable domain model, which represents a domain of interest.
The domain model is used as a basis for user changes that are made to meet specific
requirements of a particular problem. The domain model was structured to allow it
to be ported to other domains of interest and inserted into the OAKS system.
Therefore, OAKS represents an OORA system that can be used in numerous domains to
develop an OORA specification for a particular problem.

14. SUBJECT TERMS 15. NUMBER OF PAGES

279

iObject-OrientedRequirementsRequirements Analysis 16. PRICE CODE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

I UNCLAMSIFIED UNCLASSIFIED UNCLASSIFIED UL

4SN 75,10-0 "-,30-550ta.a :-:--• 2 - 9;

