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CONTROL OF INTEGRATED VOICE/DATA MULTI-HOP RADIO NETWORKS

VIA REDUCED-LOAD APPROXIMATIONS

1. INTRODUCTION

In this report, we address one of the major issues in multi-media networks: the com-

bined (joint) admission control of voice calls and routing of data packets through the

network. These two problems have been traditionally dealt with separately [1]-[3]. How-

ever, with the advent of ISDN and multi-media services [3], it has become necessary to

design routing and call set up or scheduling schemes jointly, so that the network resources

(bandwidth of links, processors at nodes) are used efficiently and all user requirements

about the offered quality of services (QOS) of the different traffic types (e.g., data, voice,

and video) are met.

One of the major obstacles in the joint optimization of voice admission control (or

scheduling) and data routing schemes and, in general, of schemes which control admission,

access, and routing for multi-media traffic, is the difficulty in obtaining (or the complete

lack of) closed-form expressions for the performance measures characterizing QOS of the

different traffic types.

In many practical situations where such optimizations are required, simplistic ap-

proximations of low accuracy are used to evaluate the performance measures of interest.

These approximations neglect the interaction and interdependencies caused by the multi-

hop network operation and the sharing of the network resources by the different traffic

types. Consequently, the control schemes derived from the optimization of these coarsely

approximated performance measures are sub-optimal and the network resources may not

be utilized efficiently.

By contrast, the emphasis of this report lies in (i) the identification of appropriate

methods for approximating accurately the performance measures involved in the problems

of admission control of voice calls and of routing of data packets in integrated networks and

(ii) the derivation of optimal schemes for admission control and routing on the basis of these

approximations. In this context, some existing results on reduced-load approximations

for voice traffic [4]-[10] are used, their applicability is extended from wired networks to

wireless networks, and their accuracy is validated for a broader range of network and

traffic parameters; in addition, new results for data traffic are derived for the first time.

All approximations used are compared to each other and to confidence intervals of the

Mnuscrip approved June 23. IM. 1



actual performance measures derived via the Monte-Carlo summation method for a broad

range of parameters of the traffic types.

Although the approximations and performance measures used in this report pertain

to voice and data traffic and are used for the optimization of voice admission control and

data routing schemes, they are in principle applicable to other problems (e.g., scheduling

or set up of calls and data routing) and different traffic types (e.g., data, voice, and video).

Actually, regarding the latter issue, our results cover multi-rate scenarios, according to

which different 'raffic types may have different bandwidth requirements; thus, if voice

but not video traffic is involved, voice traffic of different bit rates (and thus quality) can

be accommodated. When video traffic is also present, our approach requires substantial

modification to accommodate the variable rate traffic of video sources; however, it can be

definitely extended to this case and thus it finds application to true multi-media scenarios.

Moreover, in our model of voice sources, we accommodate both periods of activity

and silence. If the silent periods can be sensed by the network nodes, then the data users

can, at least in theory, take advantage of this and utilize the released bandwidth, thus

increasing the efficiency of the protocols. In practice, this monitoring of silence periods

and talkspurts can be readily implemented only in certain situations and architectures and

at the expense of channel bandwidth and additional complication in the network protocols;

this issue is discussed further in Section 2.2.1.

Finally as elaborated in Section 12.4 the approximations of this report are also ap-

plicable (after suitable modification) to interesting problems of high-speed networks such

as (i) call set-up and admission control in Asynchronous Transfer Mode (ATM) and (ii)

multicasting of hierarchically encoded data.

The cost function that can be employed in the optimization of the voice admission

control and data routing schemes consists of the weighted sum of

(i) the average blocking probabilities along the paths of voice calls

and

(iil) the average probabilities of queuing of data along the links of the network or

(ii2) the average data delays along the links of the network

Closed-form expressions for the above quantities are either not available [as is the case for

(iil) and (ii2)], or, even when they are available [as is the case for the product form of

(i)], they are very difficult to compute for moderate to large size networks. This difficulty
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is actually amplified by the fact that in optimization problems such as joint voice and

data routing or voice admissioa control and data routing, the performance measures above

may have to be evaluated repeatedly for several differents paths or links. It is exactly this

difficulty that we attempt to circumvent in our work.

The approach followed in this report can then be summarized as follows. We use

existing approximations or develop new or. for the average probability of voice blocking,

the average probability of data queueing, and the average data-packet queueing data delay,

and employ those instead of the exact expressions to derive near-optimal admission con-

trol schemes based on thresholds for the voice traffic (see Table 20). We do not derive

optimal routing schemes for the data traffic in this report but since we approximate accu-

rately the data revenue (and voice revenue) sensitivities with respect to the link capacities,

the offered voice loads, and offered data loads, we can obtain near-optimal data routing

schemes by using standard routing algorithms [2] based on these derivatives (sensitivities).

For voice blocking probabilities, we consider approximation methods suggested

by Kelly [4]-[5] and the knapsack, Pascal, and Monte-Carlo summation approximation

methods employed by Ross [6]-[9]. Mitra's approximation method [10] is also critically

considered. All these approximations are known to be asymptotically correct (accurate)

under a limiting regime, according to which both the capacity of the links of the radio

network and the average input voice traffic (loads) increase to large values, while their

ratio remains constant.

These approximation techniques are based on several distinct concepts and have vary-

ing degrees of accuracy and convergence range. Kelly's approximation [4]-[5] is based

on an inter-link independence assumption for voice traffic. The knapsack approxima-

tion (used by Ross in [6] and [8]) is based on a stochastic knapsack concept. The Pascal

approximation (used by Ross in [6] and [9]) is based on a birth-death process for mod-

eling voice traffic that follows the Pascal distribution. The Monte-Carlo summation

method employs acceptance/rejection methods used primarily in simulation techniques

in order to evaluate multi-dimensional integrals under constraints [7]. This method gener-

ates confidence intervals for estimators of the actual performance measures of interest, and

thus can be used to provide reliable means of comparison among all other approximations

even when the exact expressions are not available or require prohibitive computational

effort. Mitra's approximation [10] uses a Taylor series expansion on the normalization

3



constant of the product form of the voice steady state probability distribution.

As part of our effort, the accuracy and convergence range of the knapsack and

Pascal approximations were verified by comparing the approximate results with thoe

obtained using the exact expressions (where feasible) or confidence intervals generated via

the Monte-Carlo summation method. The agreement was found to be very satisfactory,

not only for the average performance measures, i.e., the probabilities of voice blocking

and data queueing (or the data queueing delay) when averaged over the traffic of all

circuits or links, respectively, but also for similar performance measures corresponding to

the individual circuits or links of the network.

Consequently, we use the knapsack approximation for the optimization of the

thresholds for the admission control of voice calls. Besides the wired mrti-rate

loss networks of [61-[10], we also considered radio networks modeled as in [11]-[12] where

the transceivers at the nodes (rather than the link capacities) are the network resources.

The application of these approximations to radio networks is new, and different technical

problems than those of the multi-rate loss networks had to be addressed. However, the

results based on Mitra's approximation were rather disappointing and will not be used in

our optimization, despite the fact that we had extended the approach to general network

topologies and multi-rate networks. A brief discussion of Mitra's approach and our assess-

ment of its applicability to the problems considered in this report is presented in Section

4.4.

For the probabilities of queueing and the queueing delays of data, we use Klein-

rock's independence assumption for data traffic; according to this assumption, the

distribution of interarrival data packet times to the various internal nodes of the network

remains exponential, even after the data packets have been serviced at intermediate links.

Voice always maintains priority over data in our models. Due to the much longer average

duration of typical voice calls compared to that of data packets (whose arrival process is

characterized by a Poisson distribution), it is reasonable to assume that the voice state of

the network changes much slower than that of the data state.

We can thus evaluate the probability of queueing of data (and the queueing delay)

conditioned on the voice state (i.e., the number of active and inactive voice calls in the

network); then we average with respect to the steady-state probability distribution of the

voice state. Both M/M/c and M/D/c models for data queueing at the links have been

4



considered. We have performed the aforementioned averaging of the M/M/c or M/D/c

expressions (conditioned on the voice state) with respect to the voice state, according to

the knapsack and Pascal approximation methods. This is a novel approach first appearing

in this report. We limited attention to these data models because of constraints in the

preparation time and the length of this report; the applicability of our approach is not

restricted to these models, it can be applied (with proper modification) to any other data

models as long as the assumption holds that changes in the state of the network voice

traffic are much slower than those in the data traffic.

Finally, the sensitivities of suitably defined voice and data revenue measures

with respect to link capacities (or number of node transceivers), voice loads,

and data loads were evaluated via the knapsack approximation and shown to be very

close to the actual values (refer to Tables 21 and 22). Again, these approximate sensitivities

are much more computationally efficient than the cumbersome (and usually prohibitive)

exact expressions. Actually, as our results establish, there will be almost negligible loss

in revenue when voice-control schemes use these approximate sensitivities in place of the

exact ones.

With the help of the aforementioned revenue sensitivities, important practical prob-

lems of allocating additional network resources in response to increasing voice and/or

data network traffic demand can be easily handled with our approach, as well as problems

of data routing in which the derivatives of the data delay (or the probability of queueing)

are used by standard optimal routing algorithms. In this context near-optimal schemes for

the joint voice admission control and data routing can be derived for both single-

rate and multi-rate networks. This can also be accomplished for ner'r-optimal schemes for

joint call set-up and data routing. The rangc of applications of this methodology

actually includes single-rate and multi-rate networks, wired or wireless (radio) networks,

as well as high-speed networks.

It should be noted that, as summarized in Table 23, the computational effort required

for the knapsack and Pascal approximations and the Monte-Carlo summation method

compares very favorably with that necessary for the evaluation of the exact expressions.

The reduced complexity permits the use of the approximations of this report for on-line

optimization purposes.

1.1. Outline of the Report
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The report is organized as follows. In Section 2, the network models, the source

model for voice and data traffic, and the cost function together with the individual per-

formance measures for voice and data of interest are described in detail. In Section 3, the

steady state probability distribution of the voice state over the entire network is derived

and the evaluation of the probability of voice-call blocking and of data-packet queueing

is discussed. In Section 4, four approximation methods for evaluating the probability of

voice blocking are reviewed, namely, Kelly's, knapsack, Pascal, and Mitra's. In Section 5,

the knapsack approximation is extended and applied to the probability of data queueing.

Subsequently, in Section 6 the Pascal approximation is extended and applied to the prob-

ability of data queueing. Following is Section 7 with the application of the knapsack and

Pascal approximation techniques to the average data packet queueing delay. In Section 8,

the Monte-Carlo Summation method is desci-ibed in detail for the evaluation of the prob-

abilities of voice blocking and data queueing. In Section 9, the knapsack approximation

method is applied to voice admission control problems. In Section 10, the sensitivities of

suitably defined voice and data revenue functions with respect to the link capacities, voice

loads, and data loads are evaluated via the knapsack approximation. In Section 11, the

various approximations are compared to each other and to confidence intervals generated

via the Monte-Carlo summation method; the use of the approximations in obtaining near

optimal thresholds for admission control is also described. Finally, in Section 12 several

conclusions are drawn from this study.
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2. SYSTEM MODEL FOR THE JOINT VOICE ADMISSION CONTROL

AND DATA ROUTING PROBLEM

In this section we present the network and traffic models of interest in Ehis study. A

general purpose multi-hop multi-rate-voice/data network model and a voice/data multi-

hop radio model are described first, followed by detailed models for the voice and data

traffic, and by the definition of suitable performance measures.

2.1 Network Model

In both network models FDMA (frequency division multiple-access) is the multiplexing

technique used; thus frequency channels (rather than time slots) are used to carry the

packetized traffic (voice or data). Circuit-switching is the primary mode of communication

for the network (for voice traffic), whereas packet-switching is used for data traffic.

2.1.1 General Multi-Hop Multi-Rate Network Model

The network we consider can be defined by a triplet (A, C, c) where /" is a set of

nodes, C is the set of all possible directed links (each directed link 1 connects two nodes

in N/) and c = [ci, I E £]Ix.II is the (row) vector containing the capacity (number of

channels) cl for each link I E L, where I[I denotes the number of elements in set A. The

set of consecutive links directed from source node n to destination node m constitutes the

path p; we denote by P the set of all such paths; similarly P1 denotes the set of all paths

that use link 1; i.e.,

Pi={pEPjltp}, E'.C

and is used frequently in our analysis. The routes followed by the network traffic are

characterized by the ILI x [PI routing matrix A whose elements Alp = 1, if the p-th path

(p E P') uses link I (I E C), and Alp = 0 otherwise.

2.1.2 Multi-Hop Radio Network Model

The notation is basically the same as in the previous section. However, in this model

(motivated by the work of [11]), the number of transceivers at each node is the important

resource instead of the capacity of the links of the previous section. Let T," denote the

number of transceivers at node n (n E N). The vector of node transceivers _T = [T1,, n E

Al I gArj replaces c defined ab :ve. Moreover, instead of P1 defined above, the set Pn defined

as

Pn={pEPlnEp}, ntE/

and denoting the set of all paths p intersecting at node n appears frequently in our analysis.

7



2.2 Source Models

2.2.1 Multi-Hop Multi-Rate Network

We assume that the data packet and voice call arrival processes from outside the

network with originating node n and destination node m are Poisson distributed with

rates Fnm and Fn,,,, respectively. Moreover, Fd (F,) denotes the data (voice) flow in link

1, F,' (F;) denotes the data (voice) flow input from outside the p,'twork to path p, Ad is

the data service rate on the l-th link (I E £), and IA is the voice service rate on the p-th

path (p E P). The units of all these quantities (arrival and service rates) are packets per

sec.

Since the network we are considering is of middle-size or larger and the data traffic

loads are moderate to heavy, we may assume that Kleinrock's independence assumption

holds for data. According to this approximation, which has been verified through simu-

lations for networks with data-only traffic, the data-packet serial arrival process at each

link, which includes both arrivals from outside the network, as well as packets forwarded

by upstream nodes, can be accurately approximated with a Poisson process independent

of the interaction taking place inside the network among the various nodes (queueing and

servicing). For a multi-media network this assumption/approximation for the data traffic

has not been verified but we expect it is valid for moderate to large size networks. In

particular, we expect it to be valid for scenarios characterized by voice traffic that changes

much slower than the data traffic; because as elaborated in Section 2.3 below, in these cases

we can condition on the state of the voice traffic and work with conditional performance

measures for the data traffic.

Two models are considered for data traffic. In the first, the packet length is exponen-

tially distributed, resulting in an M/M/c queueing model, where c is the number of servers

(channels) available for data. * The mean packet length is denoted as 1/pn,. (in secs). In

the second, the packet length is a deterministic constant (1/Adj,), resulting in an M/D/c

model.

The length of voice calls is exponentially distributed with parameter p,,. Actually,

we assume that every call is composed of active and inactive (silent) periods which are

exponentially distributed with parameters a and # (in sec-'), respectively. The mean

* The number of channels available for data depends on the number of voice calls in

progress.
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duration of active periods is 1/a (secs) and the mean duration of inactive periods is 1/0.

The speaker "activity fraction" is defined as = - • and typically takes the value

0.4 for normal conversational speech (in half-duplex mode). In full-duplex mode, the value

40% is valid for the activity of each of the source and destination nodes, in the sense that

40% of the time each node talks and another 40% of the time it listens to the other side

talking. Therefore, the assigned circuit for the voice call remains occupied for 80% of the

time; an intermediate node will be in transmit mode 80% of the time, i.e., 40% of the

time transmitting in the "downstream" direction and 40% of the time transmitting in the
"upstream" direction. The quantity #/(a + #), and its complement with respect to 1,

i.e., the speaker silence fraction a/(a + P), enter in the key expressions for the probability

distribution of the state of voice calls in the network (see Section 3).

Under the model of the previous paragraph, the rate of active arriving calls is

F,•,,,/(a + 0) and the rate of inactive arriving calls is Fv.a/(a + 6) ; an active call

turns inactive with rate a and a silent call becomes active with rate fl.

We assume that the Dortion of the channel capacity (the time-varying number of

channels c in the M/M/c and M/D/c queueing models) left unused by voice calls is used

by data users. This represents a very desirable situation with the most efficient use of

channel resources but not necessarily an easy one to achieve. It is required that the status

of all voice conversations using a link is monitored and that this information is fed to the

data users that have access to that link so that they can use the channel; they must however

stop using the channel once the next talkspurt begins. If the silent period is less than a

packet length and thus the data message must be interrupted by the resumption of the

voice call, we may assume that the data message completes its packet transmission before

the voice call resumes; since the packet length is so much smaller than the typical length of

the voice conversation (or even the length of a talkspurt), the effect on the resumed voice

conversation is anticipated to be negligible.

In systems that can not take advantage of voice call silent periods, all calls are assumed

to be active throughout their duration. Under this model it is commonly accepted that the

probability of blocking remains relatively insensitive to the specific form for the probability

* Although it would be more reasonable to assume that all calls are active when they

arrive, the assumption that they may be in either the active or the silent mode simplifies

the mathematical model, while resulting in little impact on numerical results.
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distribution of the duration of voice calls [17] and it basically depends only on the mean

of call length 1/pgm. With this simpler model the entire analysis is also simplified and

can be obtained as a special case of the analysis for the two-state (active, inactive) voice

call model presented in the following sections. This translation requires that we set a = 0,

S= 1, that the number of inactive calls denoted by n; is set to 0 in all equations of the

subsequent sections which involve it, and that we use the conventions 0! = 1 and 0' = 1.

It is assumed that the bandwidth of each of the channels comprising the links of the

network is equal to the data rate (in bits per sec) of the data traffic and is obtained from

the data packet arrival rate (in packets per sec). Thus the capacity cl of any link I (I E £)

represents the number of channels and is an integer. For voice traffic we consider single-

rate and multiple-rate scenarios. In the single-rate case all voice calls have identical data

rate (denoted by r) and require the same bandwidth for transmission. In the multi-rate

case we assume that all voice sources using path p have data rate r. as in [6]. The values

of r and r. used in the following sections are normalized with respect to the bandwidth of

a single channel. These normalized r and rp are not necessarily integers.

At this point let us clarify that by using the multi-rate traffic model of the previous

paragraph we can model multi-class voice traffic. Thus, voice traffic of several different

quality specifications (such as fully compressed, partially compressed, or uncompressed

voice, secure voice etc.) and bandwidth requirements can be modeled. Indeed, all we need

to do is to characterize the paths p E P' not only by the collection of consecutive links

included in them, but, also by the (possibly) different data rates rp of voice traffic that

flow through them. In this way more than one element of P' may follow the same physical

path (route) inside the network but carry different amounts of information (have different

data rates). Finally, the multi-class traffic of the above model need not be limited to

voice only; traffic types requiring higher bandwidth than voice, such as video of different

bandwidth requirements and rate variabilities [such as video telephony (teleconferencing)

with medium high variable rate or full-motion video (television) with high variable rate]

can also t-e dealt with in the same manner.

Since voice calls can be blocked but can not tolerate delay whereas data can be delayed,

we assume that voice has priority over data. Data arrivals are routed in a packet-switching

manner so that the input data flow in each node is separated into several subflows and

each subflow takes a different path to its destination. Each voice call, after being admitted,
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is allocated a channel along a fixed multihop path to its destination in a virtual circuit

manner, that is, once the path is chosen, the call uses only this path to transmit until the

call is finished.

On the other hand, data messages (following a M/D/c• traffic model) can use only

the residual capacity cI, that is the portion of the link capacity cl that remains unused

after t*e active voice calls on paths employing link I have occupied the necessary number

of c' ,nnels. The appropriate expression for the data link capacity c' is provided in Section

2.4.1 below.

An alternative model that always guarantees that a portion of the capacity of each

link is allocated to data communications is also considered in this report [refer to equation

(7.17) of Section 7.3].

2.2.2 Single-Rate Multi-Hop Radio Network

The model for voice calls for the radio model of Section 2.1.2 is similar to the one

described above, except that we address only the case in which a single-rate model for all

calls is adopted, that is,

rp=r=l for all p E P.

Also data messages use the same data rate as voice calls.

For the data traffic we use an M/D/c• model where the number of data messages that

can be transmitted simultaneously over link I = (n, m) (connecting nodes n and m) is

limited by the residual capacity c' of the link; that is, the remaining number of channels

once the active voice calls have occupied the necessary transceivers at nodes n and m. The

appropriate expression for the residual capacity is given in Section 2.4.2. Data packets are

queued at buffers available at the nodes. The above M/D/c model assumption can not be

fully justified here as it was done for the general wired network of Section 2.2.1., because of

the need to coordinate the transceivers at the two nodes of each link. A radio network will

most probably use some more complicated access protocol for the data traffic, resulting in

arrivals to intermediate data links (or nodes) which are not Poisson. Therefore Kleinrock's

independence assumption is less likely to be valid in a radio environment. However, the

simple M/D/c model enables us to evaluate the accuracy of the approximations described

in this report without having to evaluate complicated protocols for the data traffic. For

different protocols than the M/D/c, certain conditional probabilities pertaining to data

behavior [which are conditioned on the number of ongoing (active) voice calls] will have
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to be used instead of the M/D/c formulas; except for this change the basic steps of our

approach are applicable to these cases as well. A more detailed discussion of this issue is

provided at the end of Section 2.4.2.

An alternative model that always guarantees that some transceivers (and thus some

link capacity) are dedicated to data traffic is also considered in Section 7.3. [refer to

equations (7.18)-(7.19)].

2.3 Cost Function / Performance Measures

The performance measures of interest to our study are:

(i) the probability of blocking of calls B, along each path p (p E P), as well as its

average over the voice arrival process at all paths, D,

(ii) the probability of queuing data Q, at each link I (1 E C), as well as its average

over the data arrival process at all links, Q,
(iii) and the average queueing delay of data W1 at each link 1 (1 E C), as well as its

average over the data arrival process at all links, W.
The first of these quantities B. is defined as the probability that an arriving call of

class p (i.e., destined to follow voice path p) finds all available channels busy at one or

more links on path p, and is therefore blocked. A precise mathematical definition of Bp is

provided by equation (3.12b) of Section 3 as the quotient of two normalization constants.

The quantity Qt is the probability that a data packet arriving at link I finds all channels of

that link busy and is queued, and W1 is the average delay at the queue of link I experienced

by a typical data packet. Since W1 provides only the average value of the delay and the

distribution -if the delay is very difficult to obtain, we also provide the probability of

queueing Q1 (which is easier to obtain) in order to supplement the information given by

W1 about queueir~g at link 1. Links are considered in isolation here because of Kleinrock's

independence assumption, which we assume is valid for the data traffic; this is discussed

in more detail below.

The aforementioned average quantities A, Q, and TV are defined by

B 12PEPP (2.1a)lEtP1-PP1

Flcc 10,21(2. 1b)
EIECP '
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and

respectively, where the utilization factors for voice and data traffic (p' and pr), are defined

in equations (2.7) and (2.8) later in this section.

The cost function C of interest to problems of joint admission control and data routing

(or joint voice and data routing) consists of weighted sums of P and Q or of B and 14.

that is,

C = KI, + K2Q (2.2a)

or

C' = KIB + K2W (2.2b)

where K 1 + K 2 = 1 and KI, K 2 > 0. Therefore, in order to perform any optimization

involving the above cost functions we need to have expressions (closed-form or accurate

approximations) available for the probability of voice blocking (B), the probability of data

queueing (Q), and the average queueing delay of data (IV). Since such computations are

typically invoked many times during optimization the evaluation of the exact expressions

(or the approximations) should be computationally efficient, otherwise optimization is not

computationally feasible.

Let us revisit now Bp, the performance measure for the voice calls. Since voice calls

have preemptive priority over data, the performance of voice calls is not affected by the

data; consequently, the well-knowv product-form solution of the probability of blocking

([3], [4]) is valid. The difficulty in evaluating Bp of course lies in the computational

complexity of the expression for the probability of blocking. Our approach here is to

consider approximations to the probability of blocking that are asymptotically accurate

under specific limiting regimes. Although Bp is of greatest interest in most applications,

two additional voice blocking probabilities are also used: Bip (epproximations to it are

denoted by Lip in Section 4), the probability that the capacity of link 1 along the path of

a voice call of class p (p E P) is not available [whose precise mathematical definition is

given in (3.12a) as the quotient of two nornaiia,0ion constants]; and BI, the probability

of blocking of voice calls due to unavailability of the capacity of link 1 (1 E C). Both Bp

and BI are approximated with the help of Bip; details are provided in Section 4.
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Next consider Q1 and WT1, the performance measures for data. Since the states of data

at different links are dependent-for example, for all links on the path of a voice call the

data states depend on the state of calls of the path and as such are mutually dependent-it

is not possible to consider Q, for link I without the coupling with the other links. To obtain

Qt (1 E £) we have to consider the state of all links at a particular time, which is very

difficult when the output data process of each link is not Poisson.

To facilitate the analysis of data we need an additional assumption (beyond Kleinrock's

independence assumption). Since the state of voice calls changes much slower than the data

states, we assume that data can reach steady-state during the sojourn time of calls within

a particular state. The validity of this assumption has not been verified via simulation; in

the future, we plan to check the accuracy of this approximation via simulation, at least

for small-size networks with voice and data traffic. However, a similar assumption has

been made in [14] for the analysis of Voice/Data (VD) Interleaved-Frame Fixed-Length

(IFFL) protocols in the context of movable-boundary channel-access schemes for integrated

voice/data networks. It was shown that this assumption is pessimistic at moderate to

high throughput levels. VD-IFFL protocols work with time-slotted networks, and use

reservations for the voice traffic and IFFL (which combines reservation with contention)

for the data traffic. Under the above assumption and the aforementioned Kleinrock's

assumption (discussed in detail in Section 2.2.1) we can examine each link in isolation and

consider M/M/c' or M/D/c' models for the data conditioned on the state of the voice

taking on a particular value.

2.4 Basic Notation

The notation introduced here is used in all subsequent sections. However, additional

notation is introduced in each section as necessary. In this section attaching an "a" or a

"b" to the number of an equation respectively signifies the single-rate or the multi-rate

general (not necessarily radio) network scenarios; attaching a "c" signifies a single-rate

radio network with transceivers at the nodes.

2.4.1 General Multi-Rate Multi-Hop Network

The system state is described by a triplet that contains global (networkwide) infor-

mation in the voice state, along with local information on the data state at one particular

link.

Denote the state as (NV, N, nd), where
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F_ = [n, : n. = number of calls taking path p in the system, p E P]Ix1 jl

N = = [n;: n; = number of calls in silent phase out of n; calls, p E 'P] x1 lp

n74 number of data messages at link 1

Thus the number of ongoing voice calls along the paths (circuits) and the number of

data messages along the links are the network states of interest to this report. System

performance must be evaluated for each of the C links in the network. Links can be

considered in isolation because of Kleinrock's interlink independence assumption (discussed

at the beginning of Section 2.2.1) and the additional assumption about the state of voice

varying much slower than that of data (cited at the end of Section 2.3) which decouples the

variations of data traffic from voice traffic and gives meaning to Kleinrock's assumption

for the conditional data traffic (conditioned on the voice state). We reiterate here that

it is not necessary for the validity of our approach to consider the data links in isolation;

we do it because it simplifies the computations (at least with respect to the data part)

and allows us to test our approximations for performance measures (for data traffic) which

are available in closed form (when conditioned on the voice state). Our approach can be

extended to apply to performance measures (for data) which reflect the interaction between

several data links; however, this requires additional computational complexity. This issue

is discussed further in Section 2.4.2.

Note that IPI denotes the number of the elements in set P, i.e., it is the number of

call types and thus the number of paths, N" and N." are IPI-dimensional vectors, and n4

is a scalar. Denote the set of all possible (INV,,N", nd) for the single-rate case as Q, where

= { N n,) o_10< n; < nv, < n" < cp/rpE EP;E < •c/r, 1EC}

where cp = mrin {cl, 1 E p} denotes the capacity of path p, and PI was defined in Section

2.1.1. The terms cp/r and cl/r in (2.3a) represent the actual numbers of voice channels in

cp and cl; recall that the link capacities cl are normalized to the data traffic rate and thus

represent the maximum number of data channels, and division by r (the voice data rate)

is required in order to provide the corresponding number of voice channels.

Actually, the intuitive constraint 0 < n' < cp/r for p E P, which guarantees that the

number of calls on path p does not exceed the (voice) capacity of path p defined as cp=
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min{ci, I E P), is satisfied whenever the more powerful constraint • n; < cl/r, I E C-

is met. Therefore, the necessary (with the minimum number of constraints) form of fl is

0 V,{(N sN ,n)0 n<; n`,pEP;'n<cj/r,, IE£ . (2.3a')

Note that in the multi-rate case Q? becomes

SE*Pi

The following additional notation is used in subsequent sections. In the single-rate

case

nr n; (2.5a)pEP•

pE'Pa

denote the total number of calls and "silent" calls, respectively, that use link 1; both n•'

and n7 are clearly integers and satisfy the inequalities

0 < nI <n <c l.

The corresponding definitions in the multi-rate case are

k Z E rpn P (2.4b)
PEPI

where k' and k' now denote the total number of channels occupied by all calls and by the

inactive (silent) calls, respectively, on link 1; clearly these must satisfy

0 < k4 < kl < ct.

Since, the voice data rates r. may not be integers, kV and kj* may assume non-integer

values as well.
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Moreover, ni (the number of data messages at link 1) follows an M/D/c• model with

residual data capacity

c1 = c - (n" - n') (2.6a)

for the model of (2.3a) or

c' = cl- (k7 - k,") (2.6b)

for the model of (2.3b).

Finally, since F and p appear in the form p = F/p in all the formulas derived hereafter,

we can simply use the variable

p' = F/," /p(2.7)

PI= F=11 (2.8)

pI = E P; (2.9)
PE'Pj

v d

p.m = F ,I/p.m (2.10)

P •m = /p (2.11)

and

Pm Z P;. (2.12)
pE'P,,m

2.4.2 Single-Rate Multi-Hop Radio Network

In this model, the link capacities cl (I E C) are replaced by the number of transceivers

at node n, T. (n E AO). The key sets of paths PI (I E £) are replaced by the sets Pn, n E NV.

Now the number of calls nv of class p (along path p, p E Pn) satisfies the constraints

nv < T,, n E A( (2.3c)
pE�P,

instead of (2.3a) or (2.3b), and the residual data capacity of link I = (n, m) connecting

nodes n and m is

c' = min {Tu Z(n-n Tn- n)} , l EC, n,mEN (2.6c)
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This formulation implicitly assumes that all transceivers at nodes n and m that are not

currently supporting active voice calls are available to support data traffic between nodes

n and m. Thus it neglects the possibility of data traffic between either of these nodes and

their other neighbors. Therefore, Eq. (2.6c) should be accepted with reservation and only

as representative of the simplest data model that we can handle with our approach.

In a more realistic scenario the performance measure for the data operating under

a particular protocol over link 1 = (n, m) (connecting nodes n and m) depends not only

the T. and T,. of these nodes and the total number of active voice calls .p, (n' - n,)

and (n" - n,) but also on the corresponding values of these quantities for all the

neighbors of the nodes n and m. Thus the residual capacity I = (n, m) depends on the

way in which the unused transceivers at nodes n and m are allocated to support data links

with their other neighbors as well.

To determine this residual capacity one must very carefully enumerate all possible

pairs of transceivers that are occupied by voice traffic for each voice state, and then use

a (not yet defined) protocol to determine how the unused transceivers are to be allocated

to support data traffic between the pairs of users. Typically, a transceiver may be paired

with several of its neighbors (one at a time) to form a link-activation schedule, in which

case the data-traffic queueing model will have to be revised to reflect the fact that the

server is not always available (as in a queueing system with vacations). As long as this

allocation depends only on the voice state (i.e., not on the data queue sizes at each node),

our formulation that addresses the data state at each link in isolation remains valid.

Once this allocation is made, the performance measure of interest can be thought as

a functional which depends on several terms of the form ZPEA(n - n;) where hi is an

immediate neighbor of n or m. If the number of neighbors of the nodes n and m is small

then we can use the approach of Section 9.2 (based on additional conditioning) to average

the performance measure for data with respect to the steady state distribution of the voice

state vector. If the number of neighbors of n and m is larger, we may use the approach of

Section 9.3 (based on fictitious links) to carry out this averaging.

In this report the M/D/c model of (2.6c) is sufficient for establishing the accuracy

and computational efficiency of the knapsack and Pascal approximation techniques for a

first application to integrated voice/data radio networks. In the future we will apply these

techniques to more complicated data protocols.
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3. STEADY-STATE DISTRIBUTION FOR THE SYSTEM STATE

In this section we provide the steady-state distribution of the state of the network,

that is of (E", ,N, nd), for the single-rate and multi-rate cases under the assumption that

the the state of voice calls changes much slower than the state of data.

Proposition 3.1. When the state of voice calls changes much slower than the data-packet

state, the steady state probability of (NV, N, nd) can be closely approximated by

P(NNmVn d) = P(NNO) P(nd NE, No) (3.1)

where

(a) the steady state probability of the voice is

P(NN') = •'I.,fi (p y); (3.2)
C No n;!(nv - n;)! (a +

and

G T(33)
N.",AN&)Efl" pEr P, /p +

for

{{(NyNa) 0• n;:5n'P P;0• n' cj, EL single - rate case

I- '-, NO 0_n;5_n",pE P;0•kv'_<ci, 1E} multi- rate case

(3.4)

(b) the conditional steady state probability of the data for an M/M/c model is

f (pd)fl c;d ~ 35
P0 ' d < Ci

where " d (3.6)
19 d

L.=O (pd ' (1-d)
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p; = Fl'/l;, pf = Ff/, and

C c - nT" + ni > 1 single - rate case (37)ct - kj- + ks _> I multi - rate case

Note that

P(nd = ooLN',N°) = 1 when c' = 0, or c' > 1 but Pd/ct > 1 (3.8)

i.e., the data-packet queue becomes infinite when there is no residual capacity for data or

when the offered data load of the link exceeds the residual link capacity.

(c) the conditional steady state probability of the data for an M/D/c model can not be

obtained in closed form but can be approximated with arbitrary accuracy using Tijms"

iterative algorithm (see [13]) on a M/D/c' system (recall c' = c - kw + kf); the procedure

is sketched in Appendix B.

Proof: The proof of the main result (a) is provided in Appendix A.

Comments:

1. Note that the expression for P(QL, N) in Eq. (3.2) is a modified version of the

traditional product form for the steady state probability of the voice state. In the more

frequently studied c-se, in which the occurrence of silent periods is not addressed, we have

(see for example [41 or [6])

P(N'P)=.•. P (3.9)
pEr P.

where

S P•(3.10)G=vI
NvEf)" pErP

is the normalization constant associated with the state space

Qv.={NvI O<nv;PEP;O<Z n<ci IE}. (3.11)

The reason that we need P(Nv,N') instead of the usual P(N') is that we assume that

silence periods of voice calls can be detected and the data traffic can use the released

bandwidth, thus increasing the overall efficiency of the resource allocation.
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2. Under the M/M/c data model and a single-rate network, (n4 N,N) correspond!

to an MIMIcl - n" + n• system when c' = cl - n"' + n* >_ 1 and p"I/c, < 1, whereas

Pr(nf = N°) = 1 when c' = 0 or c' > 1 but pd/cI > 1. The same is valid for

(n"LN", N') under an M/D/c, - n' + nr data model. For the multi-rate case we only need

to replace n' and n," by k' and k,' in the above comments.

3. The probability of voice blocking at link I of a call of class p (Bip) can be expressed

(41-[61) as the ratio of two normalization constants (also termed partition functions) G
defined in (3.10); specifically, the probability that such blocking does not occur is

1-Bi, = G(cic 2,...,c-,c- rpc,+, • --,c) (3.12a)] -Bi = G(cl,C2,-..sICi-lI I c ic+1 I...,5cc.)

where the normalization constants G of (3.10) are denoted as functions of the 1 x [£J
row vector of link capacities c. The right-hand side of (3.12a) represents the steady-

state probability of the vector of the number of voice calls over all paths of the network,

when a single (voice) channel is removed from link 1 (and thus its capacity decreases

to cl - rp). This is indeed the probability of no blocking because a new arriving call

(requiring bandwidth rp) can be accommodated by the link capacity. The evaluation of

Bip in (3.12a) requires the computation of the normalization constant G of (3.10). This

may be a very computationally demanding task even for moderate size networks, because

of the large number of points in the state space over which the summation is performed.

Therefore, accurate and computationally efficient approximations are necessary. Several

such approximations have been developed under different conditions (limiting regimes) (see

[4]-[10]). In Section 4 we review some of them and select to work with two: the knapsack

and the Pascal approximations, which we extend and modify (in Sections 5 and 6) so that

they apply to performance measures pertaining to the data such as the average probability

of queueing and the queueing delay of data at the links of the network.

Finally, BP, the blocking probability for a call of type p (2 E P, [4]-[6]), can be

evaluated from the expression

1-B =GC - rpAP) (3.12b)
G(c)

where c was defined above and AT is the transpose of the p-th column (a 1I1 x 1 vector)

routing matrix A defined at the beginning of Section 2. Equation (3.12b) is similar to that
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in (3.12a) with one major difference; in (3.12a) only the capacity of link I has been reduced

by rp (corresponding to availability of channel capacity along link I for an additional voice

call) in the argument of the normalization constant G in the numerator; in (3.12b) the

capacities of all links I used by path p (1 E p) have been reduced by r. (corresponding to

availability of channel capacity along all links I along path p for an additional voice call).

The expression in (3.12b) requires about the same level of computational complexity as

that of (3.12a); this becomes prohibitive for even moderate size networks. However, the

approximations obtained for Bi. in Section 4 can also be used (with proper modification)

for B. as well.

4. The probability of data queueing at link 1 is given by

Q= = Pr(data queued in link 1)

= Pr(c,- n" + n4 < 4d)

= 1 -Pr(ci - 'n + "4 > n, where (nT', n) # (ci, O))

r d~
=1- y I I[(n',r') 5 (ci,0)]P(ndiNvNs) P(NV N') (3.13)

for a single-rate system; for a multi-rate system we must only replace the nr' and n1

by k' and k' defined above, respectively, in the above equation; I denotes the indicator

function taking value 1 when its argument is true and 0 if it is false. Consequently,

Q1 can be evaluated directly from the conditional steady state probabilities of the data

P(ndI_",N) and the steady state probability of the voice P(Lv,Nf). However, the

computational complexity of the summation involved in the definition of P(Nv, N.) [see

(a) of Proposition 3.1] coupled with the additional summation necessary for obtaining Qi

becomes prohibitive for large IPI. This computation is carried out through computationally

efficient approximations in Sections 5 and 6.

5. The queueing delay of data at link 1 can also be evaluated (actually approximated)

using the basic results of this section. The details are provided in Section 7.

6. The results of this section were derived for a general multi-rate multi-hop wired network;

they are valid for the single-rate multi-hop radio network of Sections 2.1.2 and 2.2.2 after

we replace cl (1 E C) with T, (n E N/), Pt with *P, and set rp = 1 for all p E P.
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4. REDUCED-LOAD APPROXIMATIONS FOR THE VOICE BLOCKING

PROBABILITY

As discussed in the comments following Proposition 3.1 in Section 3, the evaluation of

closed form expressions for the probability of voice blocking at link I or along path p require

substantial computer resources and time. In particular, when these expressions must be

computed numerous times (i.e., for different control policies), as is the case in a variety of

optimization problems including admission control and routing, it becomes imperative that

computationally efficient approximations are developed that exhibit satisfactory accuracy

and allow the speedy evaluation of these quantities.

In this section we describe a number of approximations that can be used to evaluate

the probability of voice blocking with computational complexity considerably lower than

that of the brute force approach. These are termed "reduced-load" approximations, and

have been applied to multi-rate loss networks by a number of researchers [4]-[10] with

very encouraging results. The term reduced-load pertains to a reduced- (or thinned-) load

approximation of the traffic from all paths using a particular link, because of traffic blocked

at other links, and is discussed in detail in Section 4.2. The approximations are known

to be asymptotically correct in the limiting regime characterized by heavy offered traffic

loads and large link capacities. These approximations had not been applied to data traffic

analysis before our work in this report.

In the context of the advancement of this approximation theory and its applications

to practical multi-media network problems, our main contribution elaborated upon in this

report is fourfold. First, we establish that two of these approximation techniques (knapsack

and Pascal) exhibit satisfactory accuracy even when applied to situations different from

those of the limiting regime; we actually show that they maintain excellent accuracy over

the entire range of useful traffic scenarios and architectures. Second, we show how to use

these approximations to evaluate performance measures for data (such as the probability of

queueing for data and the average queueing delay for data) in networks with multi-media

traffic. Third, we extend the application of these approximations to radio network models

that are distinctly different from the multi-media networks of [4]-[10], which use optical

fiber or copper as the transmission medium. Fourth, we apply these techniques to systems

with admission control schemes and to the subsequent optimization of the thresholds or

other control parameters involved.

23



The purpose of reviewing these approximation techniques here is twofold. First, as

we show in Section 11 through comparisons with results based on the exact expressions

and the Monte-Carlo summation method, these techniques have satisfactory accuracy and

we can use them to approximate the average voice blocking probability of links or

paths (routes) for radio networks of interest to our project. Second, we need to introduce,

motivate, and describe the fundamental principles of these techniques before we extend

and modify them in order to approximate the average probabilities of queueing and

the average waiting delays of data at the links of the network. These extensions are

described in detail in Sections 5, 6, and 7, and enable us to approximate accurately and

with reasonable computational complexity important performance measures for the data

in multi-media networks.

In this section we describe the principle of four of these approximation techniques:

Kelly's, Knapsack, Pascal, and Mitra's approximations. We limited our consideration to

these four for two reasons. First, these four are the ones that have been applied most

successfully to a variety of networking problems with very satisfactory results. Second, we

were able to extend and modify two of those (the knapsack and Pascal approximations) to

accommodate performance measures for the data (such as average probability of queueing

and average queueing delay). Kelly's approximation ([41-[5]) was included in this review

because it is a useful starting point for introducing the notation and the principle of the

reduced load approximations. Mitra's approximation was included because we considered it

early during the course of this work, we extended its application to more general topologies

than the tree network of the original paper [10], and we extended and modified it so that it

applies also to the probability of queueing and the queueing delay of data. Unfortunately,

as we found out through comparisons with the exact expressions and the Monte-Carlo

summation method, this approximation is accurate (actually converges) only under rather

restrictive assumptions about the loads of the links and thus it is not presented in greater

detail in this work.

4.1 Kelly's Approximation

Consider a network supporting multi-rate traffic (say with data rate rp for path

p E 1'). Denote by LI the approximate probability that "all circuits are busy on the

link I", or equivalently the probability of blocking for link I (I E £). Under the assump-

tion ([4]-[5]) that these events occur independently from link to link, class p connections
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(voice calls using path p) arrive to link I according to a Poisson process with offered load

rpi' lfjE, ,t(1 - LI)r' and thus the total arriving traffic at link I (belonging to all classes

p E 7P) is also Poisson with aggregate load

E r,p; fi (1- L1 )rp. (4.1)
pE•Ita~~

where the expression l'tEM0( - Lt)r, represents the "thinning" or "reduced load" effect

associated with the blockage of calls of type p at the other links along the path. Hence,

under the link independence assumption, we must have

Lt=E cl;Z rPP , (1= EL)P] , I E 1 (4.2)

where

E[c;p PC/C! (4.3)Sp] ~= •,f0 Pn/n!

is the Erlang loss formula (see [1] or [4]). In the above notation we used L1 instead of BA to

distinguish between the exact value of the voice blocking probability and the reduced-load

approximation L1. If rp = r for all p E P', then (4.2) becomes the standard reduced load

approximation for single-rate loss networks.

Repeated substitutions axe often used for finding a solution (L 1, L 2, .. , IC) to the

fixed-point equation (4.2). Although oscillation can occur in (4.2), repeated substitutions

typically converge to a fixed point for networks of practical interest. One of the features

of this approximation scheme is that (4.2) has a unique fixed-point solution. The proof of

uniqueness relies on the monotonicity properties of the Erlang loss formula; unfortunately,

these properties are not possessed by the knapsack and Pascal approximation schemes

discussed below.

Once a fixed point is found, the probability Bp that a call is blocked along path p (or

equivalently a class-p connection is blocked as we saw in the discussion of Section 2.2) can

be approximated by

BP = 1 - JJ(1 - LI)rP, (4.4)
lEp

a formula that invokes again the link independence assumption.
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The above approximation is asymptotically accurate (correct) under the following

limiting regime: the ratio of offered load and of the number of channels in each link is held

fixed while the individual values of these two quantities become asymptotically large.

4.2 Knapsack Approximation

For this approximation scheme as well as the one of the following section we work first

with a single-link multi-rate system and then extend the result to multi-link networks.

This technique is termed the knapsack approximation because the single-link multi-

rate system corresponds to a atochkatic knapsack resembling the knapsack model in combi-

natorial optimization. The term stochastic knapsack is motivated by the fact that typically

the system modeled resembles a knapsack to which items (states) are added or from which

items are taken out according to a probability distribution. This approximation was suc-

cessfully applied to circuit-switching problems by Ross [6]-[9].

Consider a single-link system with link capacity cl, which supports classes p E Pi

(or equivalently several paths p use link 1) with data rates rp and offered loads pp. The

probability that a class-p connection is blocked (or a voice call along path p is blocked),

when arriving to the stochastic knapsack, is given by

Kip [c p", q E Pi] = 1- E -o w(n)
wee=o w(n)' p E •P• (4.5)

where

w(n) =" pw(, - r.), n = 1,2...,c, (4.6a)

with initial condition

w(O) = 1. (4.6b)

The intuitive explanation of (4.5) is that 1 - Kip represents the probability of no blocking,

i.e., the probability that up to cl - rp (1 E p) voice calls are in the system (inside the

stochastic knapsack) so that an arriving call (requiring rp channels) can be accommodated

by the capacity of link I without being blocked. In (4.5) w(n) provides the probability that

n voice calls are currently in the system, and the recursion (4.6a) for the update of w(n)

is typical of stochastic knapsack system models.

For a multi-rate loss network with multiple links, we denote by Lip the approximate

probability that "less than rp channels are available on link I" (probability of voice blocking
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on link 1 along path p); Lip is an approximation to the quantity Bip defined by (3.12a)

in Section 3. As in Kelly's approximation, we again assume here that these events occur

independently from link to link. This approximation decouples the blocking phenomena

on different links and enables the evaluation of an approximate expression for the amount

of unblocked traffic traveling through the network and finally for the desired blocking

probability. Under the interlink blocking independence assumption, class-q connections

arrive to link I according to a Poisson process with offered load

Pq I'1 (1 - Lj,). (4.7)

lEq,1ll

This load is termed thinned or reduced, because it is smaller than the corresponding load

p, (from circuit p) of the link 1 (for I E q), when considered in isolation, in a manner that

reflects the effect of blocking at the other links in the network through the approximate

probabilities Leq. This aspect of the approach gives the name reduced-load approxima-

tion to the knapsack approximation method (as well as the Pascal approximation method

described in Section 4.3). Consequently, under the link independence assumption, we have

Lip -= KI,[ci;p' '[ (1 - Leq), q E Pi], p E Pi, l E L. (4.8)
tEq,101

Equations (4.8) define a cointinuous mapping from the compact convex set

[0, 1]Irl 'IXIP21 X ... j'PI into itself; thus, by the Brouwer fixed-point theorem, there exists

a solution (Lip, p E Pi, I = 1,2,-.. , ILI) to (4.8). The method of successive approx-

imations (i.e., repeated substitutions) can be employed to find such a solution. Once a

solution to (4.8) has been obtained, the probability of blocking a class-p connection can

be approximated by
Bp = 1- (1 - Lip) (4.9)

lEp

and the probability of blocking any voice call on link I can be approximated by

BI = " j Lip. (4.10)
pEl'i

In contrast to the fixed-point equation (4.2) the solution to (4.8) of the knapsack ap-

proximation is not necessarily unique. This is because the knapsack equations (4.5)-(4.6)
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do not have the nice monotonicity properties of the Erlang formula (4.3). Multiple solu-
tions to the fixed-point equations of (4.8) can alert the designer of potential instabilities

in the network. Ross [6] provides an example where the network alternates between long

periods of carrying only narrowband connections and long periods of carrying only wide-

band connections. Kelly's approximation does not expose this instability, since it always

gives rise to a unique fixed point. But the knapsack approximation gives o0.. aolution with

almost 100% blocking of narrowband connections and another solution with almost 100%

blocking of wideband calls, which reflects the instability that actually exists in the system.

The knapsack approximation is shown in [6] and [8] to be asymptotically correct un-

der the same limiting regime as Kelly's approximation (see end of Section 4.1). However,

comparison of the accuracies of the two approximations, the exact expressions, and the

Monte-Carlo summation method indicate that the knapsack approximation maintains sat-

isfactory accuracy even far outside the limiting regime.

4.3 Pascal Approximation

The Pascal approximation technique is based on the use of a birth-death process with

Pascal distribution to model the voice state in the system. This was applied to circuit-

switched problems by Ross [6]-[9].

We again address first the case of a single link. Consider a birth-death process on

the state space 0,1,-. ,cl, which, when in state n, has a death rate of n and a birth

rate of el2 /a 2 + n(1 - e/o 2 ), where f and a2 are given positive numbers. Let q(n), for

n = 0, 1,--- , cj, be the equilibrium probability of being in state n, that is, q(n) satisfies

nq(n) = [e2/a 2 + (n - 1) - - f/a 2 )jq(n - 1), for n = 1,2,.- -, cg (4.11a)

where
Cg1: q(n) = .(4.12a)

n=O

Denote

PVc,; C; a 2)- = q(n)=1 q(n). (4.13a)

nRc--r,+- n=O

The right-hand side of (4.13a) represents the probability that the birth-death process n

is in a state > cl - rp. This corresponds to blocking since there is no room left in the

capacity of link I for accommodating any arriving voice call (which requires rp channels).
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When cj = oo, q(n) has the Pascal distribution, and the means and variance of the birth-

death process are given by e and a 2 , respectively (see [6]). The Pascal approximation uses

the same approach but for finite values of cl necessitating the solution of Eq. (4.11a), as

described below.

If instead of q(n) we use the normalized version

q'(n) = q(n)/q(O)

the recursion of (4.11a) becomes

q'(n) = 1[e2/a2 + (n - 1)(1 - e/Oa2 )]q'(n- 1), for n = 1,2,-,c, (4.1b)
n

with initial condition

q'(O) = 1. (4.12b)

This is easier to evaluate [it does not require knowledge of q(O)], and results in

Using this result to modify (4.13a) yields

PiP(ci; C; a2 ) -1- ' 0 q'(n) (4.13b)C1:•fi I,(n) "

Next consider the stochastic knapsack model, discussed in the previous subsection, for

the isolated link 1. When cl = oo, the mean and variance of the number of busy circuits

[under the knapsack approximation for the steady-state voice distribution] are obtained

after some manipulations by

el = 1: rq [1 0' nP(n ] = n) rp (4.14)

and
2 2 (n ,2p V22

orY P(n = n)] = 9 q q (4.15)
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respectively. Thus, the infinite-capacity stochastic knapsack gives the same mean and

variance for the number of busy circuits as the birth-death process with parameters e = el

and a 2 = a2. It is, therefore, natural to approximate the probability of blocking a class-

p connection arriving to the stochastic knapsack with finite capacity (i.e., cj < oo) by

ppC;el; a?]j.

For the multi-rate network with multiple links we use the same notation as in Section

4.2 and make again the link independence assumption, so that class-q connections arrive to

link I according to a Poisson process with the rate given by (4.7). By invoking the Pascal

approximation, we obtain the probability that the capacity of link 1 is not available for a

call of class p as

Lip Pip cl', rEpII( t) r,p, I- . (1- Ltq), q E Pi, 1 EC£

LqEP t tEq,1#i q6Vi lEq,t#J

(4.16)

where the function Pip( ... , ... , ... ) is given by (4.13) and we use Lip to denote the

approximation to the probability of blocking of voice path p on link I for the Pascal method;

the same quantity for the knapsack method was denoted by Lip. In general Lip # Lip;

however, in the important single-rate case (rp = 1 for all p E P), we show in Appendix F

that Lip = Lip (p E i, l E -C).

As with the knapsack approximation of Section 4.2, there exists a nonunique solution

to the fixed point equation (4.16). Once having found such a solution, Bp, the probability

of blocking a class-p connection (or a voice call along path p) is approximated by (4.9);

similarly, B1 , the probability of blocking any voice call on link 1 is approximated by (4.10).

The computational complexity and the accuracy of the Pascal approximation are very

comparable with those of the knapsack approximation. Moreover, the Pascal approxima-

tion technique was shown in [6] to be asymptotically accurate (correct) under the same

limiting regime as Kelly's and the knapsack approximations. Through our comparisons it

has also been established that the Pascal approximation is accurate over a broader range

of load parameters than Kelly's approximation.

4.4 Mitra's Approximation

The approximation technique suggested by Mitra [10] relies on a Taylor series expan-

sion of the normalization constant of (3.10). Although it has the advantage that we can

control its accuracy by increasing the number of terms in the Taylor series expansion, it
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has the disadvantage of converging only for a rather limited number of scenarios. Actually,

we were not initially aware of that disadvantage, since [101 remains silent about it.

In [10], the approximation technique was applied to a tree network. However, in that

paper there was not any stated constraint on the traffic loads and number of channels (of

the circuits), without which convergence was unattainable. We simulated Mitra's results

and found out that he only presented in his paper the scenarios for which convergence

was attained. By increasing the loads we found out that the convergence was no longer

guaranteed.

Consequently, although we were able to extend the applicability of Mitra's approxi-

mation method (a) to more general topologies than trees, (b) from single-rate networks to

multi-rate networks, and (c) to the probability of data queueing (besides the probability

of voice blocking), the severely limited range of convergence precludes the application of

this method in most cases. Since all our simulation results using this method showed poor

accuracy (except for the results presented in Mitra's paper about the tree network and for

only the traffic loads reported there), we opted not to present the mathematical details of

the application of this approximation method even for our novel work (i.e., the extensions

to general topologies and to multi-rate networks).

4.5 Knapsack and Pascal Approximations for the Radio Network Model of

Section 2.2

In Appendix G we show that for networks with single-rate traffic the knapsack and

Pascal methods provide identical approximations to the probabilities of voice blocking and

data queueing. Consequently for the radio model of Sections 2.1.2 and 2.2.2, which is

characterized by r. = 1 for all paths p E P, we use only the knapsack approximation in

deriving the numerical results for the voice blocking probability in Section 12.

The application of the knapsack approximation method to the evaluation of the prob-

ability of voice blocking for the radio model of Sections 2.1.2 and 2.2.2 is a straightforward

modification of the approach described in detail in Section 4.2. In particular, we replace I

(links) by n (nodes), L by .A, P1 (set of paths using link 1) by P,' (set of paths intersecting

at node n), cl (link capacities) by T. (number of transceivers at nodes), and rp = 1 (for

all p E P). We are then able to use the results of subsection 4.3 directly.
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5. KNAPSACK APPROXIMATION TO THE PROBABILITY OF DATA

QUEUEING

In this section we describe in detail the application of the knapsack approximation

to the probability of data queueing. This development appears for the first time in this

report. The approximation is first developed for general multi-rate networks in Section 5.1

and then modified in Section 5.2 to be suitable for the multi-hop radio network of Sections

2.1.2 and 2.2.2.

5.1 General Multi-Hop Multi-Rate Networks

The key idea behind the application of the knapsack approximation to the probability

of data queueing is to use the technique described in Section 4.2 to approximate the external

sum in (3.13), while treating the internal sum (the sum with respect to n4) as a single

entity for given values of (E' NV ) and use Proposition 3.1. This approach is described in

the following in detail.

As for the case of voice traffic (Section 4.2) in order to derive the knapsack approxi-

mation to the probability of data queueing in link 1, Q1, we first consider the probability of

queueing for a single-link multi-rate system. As we saw in the comments after Proposition

3.1 of Section 3, the probability of data queueing for link I can be expressed as in (3.13)

which we may modify as

Q =1- _, I[(nr',n4) j (ci, O)]P(ndiNv,N') P(N] ,N

I I

1- y I[(km) # (ci,O)]. P(n ) P(m)(5.1)

where

V 0 <)n= (N ,N,)0<<rnpn < ,ci, p E Pi; Erpn ; mrpn;k}
pE'P. pi

(5.2)

while

P(k,m) = , P N, ) (5.3)
(N,_)3(km)
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with
C1 k

Z- 1 P(k,m) = 1 (5.4)
k=0 m=O

and

c = c1 -k + m (5.5)

is the number of channels available for data, where c; is the total number of channels in the

link, k is the number of voice calls in progress, m of which are presently in silence mode,

and P(nN_,N__.) is the steady-itate probability of an M/M/c• or an M/D/c' system.

In (5.1) we simplified the notation for P(n'INv,N") to P(nIlc•) because it depends on

(N", NS) only through c•,

The parameters k and m in (5.1)-(5.5) represent the total bandwidth (channel ca-

pacity) occupied by the number of total ongoing voice calls and of voice calls in silent

mode, respectively, on which the expression for queueing probability under the M/D/c

data model is conditioned. The importance of this conditioning should not be under-

estimated; the fact that we can obtain efficient recursive expressions for the probability

distribution (mass function) of (k, m) (see Appendix C) enables us to perform the final

averaging with respect to k and m and evaluate the unconditional expressions for the

performance measures of interest.

Regarding the evaluation of

C1-1

P(c",Pd) = j P(nflcJ) (5.6)
n=0

which is a factor in Eq. (5.1), we proceed as follows depending on the model used for the

data traffic

(a) For an M/M/c' data model, P(cl, pd) is given by a well known formula [1] (also see

1 - IT,, in Appendix B.1), which can be put in the recursive form

1

p(C", =d 1 'P C,-i-Pd.P(C--1 P') (5.7a)
1 7+ •(1 _p).p(c-_,p")

P(O,pd) = 1 (5.7b)
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Consequently, P(cl, p4) can be evaluated iteratively.

(b) For an M/D/c• data model, rather than evaluating P(c•, pd) directly, we evaluate

P(nf4c') iteratively via a special-purpose overrelaxation method (see Tijms [13] and

Appendix B), and sum up the resulting P(n4Ic•) to obtain P(c',p').

The quantity in (5.6) represents the total probability that the residual data capacity c•

of the I-th link [given by (5.5), which depends on the number of active voice calls] is

not exceeded by the number of data messages using link 1. Thus, it corresponds to the

conditional probability of no queueing of data (or alternatively one minus the probability

of finding the system totally occupied) when conditioned on the voice state.

In order to evaluate P(k, m) we define

P'(k, m) = P(k, m)/P(O, 0) (5.8a)

as the normalized version of P(k, m). This results in

I Z P'(k, m) = P(0, 0). (5.8b)
k=o m=O

Then P'(k, m) can be obtained iteratively from Proposition 5.1 that follows, and the

probability of data queueing Q1 for link I (and a single-link network) can be approximated

by

Cl k

Qt(ci;p',p E 1t) -- 1 - • • I[(k,m) # (cI,O)]- P(c, pd)P(k,m)
P0

C---0 I----0 Cd

1 ='- =I(cl #O)" P(c•'pd) P'(km) (5.9)

Ek=O M=O P'(k, m)

In (5.9) we used the notation Qi(ct;p,p E PI) in order to emphasize the dependence

of the probability of data queueing on the voice loads (p;,p E P•). The importance of

this notation will become clear below when the approximation for a multi-link network is

obtained.
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Proposition 5.1

P'(k, m) satisfies

-- o-' p,' ,•rppvP'(k-rp,m -rp) , if rp _< m < k < cl

-I: -.-+97 EpE', rfp;P'(k - rp,m) , if 0 < m < r, < k _< 5

P'(k,m) = 1, ifk = 0,m = 0

0, if k or m are not positive integer
multiples of rp

(5.10a)

P'(O,O) = 1 (5.10b){m > k, or k < 0, or m < 0,P'(k, m) = 0 if/m k°k 0°m 0

0 or if (k, m) can not be represented as the linear combination of rp, p E P1'

(5.10c)

Proof: It is provided in Appendix C.

Final!y, to evaluate the probability of data queueing for a multi-link network we

proceed as follows. We use the thinned voice load (under the interlink independence

assumption)

[p;]' = p" 1' (1 - Lip) (5.11)
tEp,t01

offered to link 1 from voice path p in place of the original p" in the functional form of (5.9).

The resulting approximation to the probability of queueing at link 1 (and a multi-link

network) is

Q,(c,;lPlp •1(1- Lip),p E P (5.12)

where Lip is the probability of blocking voice calls taking path p at link t, which is obtained

via the knapsack approximation on the voice part (Section 4.2).

A comment is in order here regarding the theoretical accuracy of the approximation;

the practical accuracy is very satisfactory as demonstrated in Section 11 where the var-

ious approximations are compared with the results of accurate Monte-Carlo summation.

Assuming that the computation of the data portion P(c,, pd) of (5.1) is at. urate, we claim
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that the same limiting regime (i.e., when both voice load and number of channels in each

link are large but their ratio is held fixed) that yields the probability of voice blocking

BI asymptotically accurate also yields the probability of data queueing Q1 asymptotically

accurate. Our justification is at this point only a conjecture (it has not been proved

mathematically) and is based on the facts that (a) the same inter-link voice independence

assumption was used as in the voice blocking probability calculation, and (b) in the evalua-

tion of Q1, the knapsack approximation was applied to the voice portion (i.e., to determine

the expected residual data capacity) for which it has already been shown to be accurate.

We anticipate to be able to establish this claim rigorously in the future.

5.2 Radio Network Model of Sections 2.1.2, 2.2.2, and 2.4.2

As discussed in Sections 2.1.2 and 2.2.2 the radio network model considered in this

report assumes that the data traffic over link 1 = (n 1 , n2 ) E f connecting the network

nodes ni, n 2 E ." follows an M/D/c• system model independently from the other links of

the network. The residual capacity available for data is given by

C = minn n 1 E lE n',n 2 E (5.13)

where

Z nv<T, nE.A'.
pEP,,

It is assumed that the data are queued at buffers (of infinite capacity) available at the

node transceivers. The above equation for the data link capacity expresses the dependence

of the M/D/c data model on the current voice traffic at nodes n and m. However, it does

not address the way in which a node's unused transceivers are allocated to support data

links with each of its neighbors, as was discussed in Section 2.4.2.

To simplify the notation we consider the link I = (n1 , n 2 ) = (1,2) connecting the

network nodes 1, 2 E .N. The above data capacity can be written as

c =min{T,-k 1 +mi, T 2 -k 2 +rM2} (5.14)

where 0 _k,= nV < i = 1, 2 (5.15a)

pEPi
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0:5 •n n <k,, i-=1,0 < i- n IV, (5.15b)
pEp.

and APi is the set of paths containing node i, for i = 1, 2.

To employ the knapsack approximation in this case for a single-link network involves

defining

P(ki,mi,1 2,m L M 2 ) P(NrNE) (5.16)
(N•",_.N) Efl(k',mt ,k2,M2)

where

fl(kmk2,M2)= 0,-n;< n, p EP;E n k n m i=1,2

PE'Pi pEi

(5.17)

T1  ki T 2  k2E E E E P(ki,mi,,k2,m2)=

kj =0 mi =0 k2=0 m2=0

and writing

T1  ks T 2  k2

Q 1 -, iA(c 0). -P(c•,pP). P(ki, m,, k2 , m2 ) (5.18)
k-=O m=-O k2=O m?-'=0

where

C1 -1

.P(c', P) = P(nflIc')

is provided by the M/D/c data model (Appendix B).

After the appropriate normalization

P'(ki, mi, k2 , m 2 ) = P(k1 , mi, k2 , m2 )/P(O, O, O, O) (5.19)

and using the approach of Section 5.1, the above single-link approximation is put in the

form

Q i(T 1, T 2;p; P E 1'1U P 2 ) = 1f 1 = 0 = 0 =-°c- k2 -2--c ,,p , P (k- ,mi ,k 2 ,m 2 )

Z i=o >m1fO Zt=o k2 M2=0 P'(ki,mi, k2 , M2 )

(5.20)
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with

c' =min{T1 -kj +mj, T2 -1k 2 +m 2 ). (5.14)

First we consider the case P1 = P2 , which means that the same set of paths passes

through node 1 and node 2. In this case, k, - k2, Mr = M2 , and Q1 simplifies to

-t = 1 - ~o x" -,=o :A 0) P(c', pf) P'(k, m)
k=. in=o P'(k, m)

where

T = rin {T1, T2} (5.21b)

c, = mrin {T 1,T 2 } - k + m = T - k + m (5.21c)

The recursion for P'(k, m) is given by (5.10).

Next we consider the case V, • P2, in which case calls of one or more types are

supported by only one of the nodes of interest. The following Proposition holds

Proposition 5.2

P'(ki, mi, k2, M2 ) satisfies the recursion

P'(, mi, k2 , m 2) =

if l (_) DkjL - ,,m1 =O-_ k m_)l
if I<m=O ki T1, m2 = 0 k2 _T 2 ;

ppP'(k-,m 1 ; k2  P- 1,; M2- 1)]Sa if mi = 0:< k _ T1 , 15m2= 5 k2 :5 T 2

k1 -m 1 * +0

if m1 =0<kj 5T 1 ,M 2 =0<k2 :ST 2

1; if kl = 0, m 1 = 0, k2 = 0, m 2 = 0

0; otherwise

(5.22)
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where P2c denotes the complement of the set P 2 .

Proof: Refer to Appendix D where a more general proof involving constraints of the form

0:<k= Z r()nt < Zi, i = 1,2
pE'Pi

0-"M= ,('), n< ki, i =1,2

is provided. For the approximation described in this section we considered only the special

case

r(,) = r(2)1 P E PUP2

and

Zi=Ti, i=1,2

For the multi-link network, the knapsack approximation for node I = (nj, n2 ) is ob-

tained with the help of the thinned load method, thus we use the function of (5.20) (where

1 = n1 and 2 = n2 ) with voice loads pv I'Inep,#*.,,n,(1 - Lnp) instead of pp, to get

Q1 T.IT,; p up,,L , (1-L)p E P U P 2 )• = {nIn2} E f (5.23)

for a fixed value of p, and

cl = min {T,, - ki + mI,Tn2 - k2 + m 2 }.
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6. PASCAL APPROXIMATION TO THE PROBABILITY OF DATA

QUEUEING

In this section we describe in detail the application of the Pascal approximation to the

evaluation of the probability of data queueing, a development that appears in this report

for the first time. This approximation is first developed for general multi-rate networks in

Section 6.1; in Section 6.2, we describe how it can be modified to suit the multi-hop radio

network of Sections 2.1.2 and 2.2.2.

6.1 General Multi-Rate Networks

In Section 4.3 the Pascal approximation used a one dimensional birth-death process

whose equilibrium probability mass function is the Pascal distribution to approximate the

number of busy circuits (paths with ongoing voice calls). In order to approximate the

probability of data queueing given by (3.13), which involves conditioning on the total

number of voice calls and the on the number of silent (inactive) calls, we need to extend

the Pascal approximation to two dimensions.

In this context, we consider the two-dimensional birth-death process (k-rn, m) (where

k - m roughly represents the total rate used by all active calls and m the rate of all inactive

calls) on the state space {(k,m) 1 0 < k < c,0 :_ m < k} with the transition diagram of

Figure 1, where

Aj,,,= [i+i (1-.!) j = 1, 2, i =0, 1, 2,..., c (6.1)

and ej,, 2 , forj = 1,2, are given positive numbers. Let q(k- m, m) denote the equilibrium

probability of being in state (k-m, m). Furthermore, consider the associated process (k, m)

and denote by P(k, m) the equilibrium probability of being at state (k, m).

From the local balance equations for the birth-death process (k - m, m) we know that

q(k - m, m) must satisfy the conditions

(k - m) - q(k - m, m) - Ai,&.-.-m " q(k -1- m,m) (6.2)

and

m . q(k - m,m) = A2 ,m,-i " q(k - m,m -1). (6.3)

The resulting conditions for P(k, m) are

(k - m)). P(k,m) = A.,k-1-m " P(k - 1,m) (6.4)
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and

m . P(k, m) = A2 ,.-I.. P(k - 1,m- 1). (6.5)

Using the above equations we can evaluate P(k, m) from the following recursion

f m)= . (k - 1,0), M=O;1<_k<_c (6.7a)
P~km) •M P(k-1l,m-1), l_<m_<k;1_<k_<c

where
C k

Z: Z P(k, m) = 1. (6.8a)
k---O m--O

If instead of P(k, m) we use the normalized version

P'(k,m) = P(k,m)/P(O,0)

then the recursion (6.7a)-(6.8a) becomes

P'(k, m) = { -': "P'( - 1,0o), m = 0; 1 < k < c (6.7b)

A2.L. P'(k-I,m-1), 1<m<k;1 <k<c

with initial condition

P'(o,0) = 1 (6.8b)

which is easier to evaluate [it does not require knowledge of P(O, 0)] and results in

Z Z P'(k,m) = P(O, 0).
k=0 m=O

Proposition 6.1

When c = oo, P(k, m) is two-dimensional Pascal-distributed with the following pa-

rameters:

Elk - m] =,E, (6.9)

E[m] = E2 (6.10)

var(k - m) = a2 (6.11)
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var(m) = 2 (6.12)

cov(k - m, m) = O. (6.13)

Proof: It is provided in Appendix D.

The application of the Pascal distribution to the probability of data queueing involves

(as in the case of the knapsack approximation) considering first a single-link multi-rate

network, applying the Pascal approximation, and then obtaining the result for the multi-

link case using thinned voice loads in place of the initial voice loads. We start with the

following proposition

Proposition 6.2

For the singie-link multi-rate network, when the link capacity c = oo, denote by n.

the number of channels occupied by voice calls in the link and denote by n, the number

of channels occupied by silence voice calls in the link, then

E[n.] = E rp (6.14)
pEP

E[n.] .- . rsp (6.15)

pEIp

L• • Pp; (6.16)E[n. - n.] = j6 . :¥p,(.6
pEEP

var(n.) = 2 2pv (6.17)
PEP

,)a,(n.) = E r-- .2 ; (6.18)
pEP

- r p2 (6.19)
PEP

cov(n, - n.,,n.) = 0. (6.20)

Proof: It is provided in Appendix E.

From the above two propositions we observe that the infinite capacity single-link

multi-rate model employs the same means and variances for (n. - n.) and n. as the

two-dimensional birth-death process with parameters el = E[n. - n.], e2 = E[n.], al =
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var(n. - n.), and C4 = var(n.). Note that the cova-iances cov{fn. - n., n.} and cov{k -

m, m} are both zero. Therefore, as in the voice case, the probability of data queueing in

(3.13) for the finite-capacity single-link multi-rate model can approximated by

cj k

0, (ci;p,p E P,) = 1P- I[k,m) E (cF,0). 1PC,pd') -P(k,m)
k=O m=O

= k1 O -=O I[(k,m) 0 (cI,0)) . P(C', P') P'(k,m)
=~ ~ 1l -k.•~ Z , = (6 .21)

k=O XE,=o P'(k, m)

where P(c•, pd) is given by (5.7a)-(5.7b) for an M/M/c' data model and can be evaluated

from Appendix B for an M/D/c' data model, and P'(k, m) is the equilibrium probability

of the above birth-death process with parameters

el =, 0 E ,P; (6.22)
a+ 0 er

E = a r ,p (6.23)
PEVIE,8

2= _", 2v (6.24)

pE1Pa
C2= r2P (6.25)

+ PIEPi

which can be evaluated iteratively via (6.7b)-(6.8b). We used the notation

01t (ci; p;, p E ?i) in order to emphasize the functional dependence of the probability of

data queueing on the voice loads (p",p E PI). This is necessary for the extension to the

multi-link case that follows.

For the multi-link multi-rate network we use as the approximation to the probability

of data queueing at link 1 the expression

01(cl; p" (I - Lip)'pE Pi (6.26)

where Lip is the (approximate) probability of voice call taking path p being blocked at

link t, which is obtained via the Pascal approximation as in Section 4.3. As it was done in
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Section 5, we again used the interlink independence approximation for voice and thinned

the voice loads pv to pp IeE,1#l(l - Lt.) for p E PI in (6.26).

The same comments about the practical accuracy and the asymptotic accuracy of this

approximation with those made at the end of Section 5 are valid here.

6.2 Radio Network Model of Sections 2.1.2, 2.2.2, and 2.4.2

The general approach described in Section 6.1 above can be extended to derive a

four-dimensional Pascal approximation for the approximation of probability of queueing

data of the radio network model of Sections 2.1.2 and 2.2.2. The basic steps are similar

to those detailed in Section 5.2 for the knapsack approximation. The key step is again the

derivation of recursive expressions for the quantity P(k1i, mi, k2, Mi2 ) defined as in (5.15)

but evaluated via the Pascal method for the multi-rate case. We omit the details here which

are similar to those provided in Appendix D. For the single-rate case characterizing the

radio network model of this report the knapsack and Pascal approximations yield identical

results (see Appendix F) and thus there is no need for additional work.
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7. EXTENSION OF THE APPROXIMATIONS TO M/D/c DATA MOD-

ELS AND THE AVERAGE QUEUEING DELAY AS THE PERFORMANCE

MEASURE

As discussed in Section 2 the performance measures of interest for the data traffic are

QA- probability of data queued at link I (1 E C),

W1= average waiting time (not including service time) of data in queue at link I

(1 E ZI),

and their averages Q and W [refer to (2.1b)-(2.1c)] with respect to the data loads of the

links. In this section we first show (Section 7.1) that the approximations to the probability

of data queueing of Sections 5 and 6 are applicable not only to the M/M/c data model

but also to the M/D/c data model. By contrast, for the average data queueing delay these

approximations are shown (Section 7.2) to apply only to the M/D/c data model. Finally,

in Section 7.3 a modified network model that guarantees finite data delays by dedicating

a portion of the link capacity (or the number of node transceivers) to exclusive data use

is provided.

7.1 Approximations to the Probability of Data Queueing for M/D/c Data Mod-

els

Recall that for the M/M/c data model and a multi-rate system, the probability

of data queueing Q1 takes the form

Q1 = Pr(n d > cl - k0 + k') = 1-Pr Ic, - k + k > n4d where (kr, kf) # (c,0)]

-;1

= 1- ( , i. - P(nrIcl) P(NV,N_) (7.1)

where
kv = n, (7.2)

pE'Pt

ki = E rpn. (7.3)
pEra

and

c, = ci - k' + k. (7.4)
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P(N",NS) is the steady state probability of the voice calls evaluated in Section 3, and

P(nflc') is the steady state probability of the number of data packets in an M/M/ec

system. The application of the knapsack and Pascal methods for obtaining approximations

to the probability of data queueing Qj was described in Sections 5 and 6, respectively, for

an M/M/c data model.

The corresponding formula for the M/D/c data model is obtained by simply re-

placing the P(nv4c•) of an M/M/c' system by that of an M/D/c• system (see Appendix

B). Consequently, the application of the knapsack and Pascal approximation methods to

Q1 and an M/D/c data model is a straightforward extension of the results of Sections 5

and 6.

7.2 Approximations to the Average Queueing Delay of Data

The average data queueing delay W1 for the M/M/c data model and the

M/D/c data model takes (upon application of Little's formula) the form

W, = average number of data packets in the queue at link 1= • NQ (7.5)
average data rate to link I Fd

where

NI [ZEnPQ4 = c'+njc')] P(NW',Ns) (7.6)(LZN... )6fl. Ln0=0

Ff=p 1.p (7.7)

and P(nI'IcI) and P(NV, N_) are as described above for the two models. Therefore, W1 can

be evaluated by applying the various approximations on NQ and treating E'_0 nP(n' d

c' + n I c') in the same manner as •--n20 P(n4 I c•) was treated in the original performance

measure, i.e., in the probability of data queueing. Finally, FI=0 nP(n -= c, + n I c•) can

be evaluated in closed form (omitted here) for an M/M/c• system and via Tijms' algorithm

(see [13] and Appendix B) for an M/D/c' system.

The appliation of the approximation methods of Sections 5 and 6 to the queueing

delay for data W1 and a M/D/c model is described in more detail next.

7.2.1 Knapsack Approximation

As discussed above we apply the approximation methods directly to the evaluation

of the average number of data packets in the queue (N?) required for the evaluation of
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the average queueing delay W1 - NQ/F1 . As in Section 5 we start with a single-link

multiple-rate scenario and write for link I

C1 k 0
N,= E E I[(k,m) j- (c,,0)] • -P(n, = c; + n c) P(km) (7.8)

k=O m=0 +n=8

where

cl = c1 - k + m (7.9)

P(k, m)= P(N',N') (7.10)

and

fl(k,m) = M I, 0 10 ; < n< , 0 < r,-; ,; pE,,Z,-,=m;ZT,,,; = k.

I. p'Pj

(7.11)

Let

((cI, P,4) = -P( = c, + n j 4) (7.12)
va=O

which is the tverage number of data packets in the queue for an M/D/c• system, and

is isolated from other terms in N[Q and can thus be evaluated separately. The evalua-

tion of 2V(c', p4) is straightforward from Tijms' algorithm (see [13]) after the steady-state

probability for M/D/c' data has been obtained.

Then, following Section 5 we obtain an approximation to NIQ as

NQ (cl; pp [1 (1-Lip),lp E P (7.13)

where Lt. is the approximate voice blocking probability for liuk I across voice path p

evaluated in Section 4.2 (via the knapsack approximation) and NQ(c,; p,, p E PI) is a

function of cl and (p, p E PI) given by

[c ; E •'• [I(k,m) # (c,,0)] -N(c,4p) . P'(k,m)NIQ[ci; ppv, p E Pi] = C1kfi •-,.fi (7.14)

FIko 'M,=o P'(k,,m)
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and P'(k,m) is given by the same equations (5.10a)-(5.10c) of Section 5.

7.2.2 Pascal Approximation

For the Pascal approximation, we define N(c', pt) as in (7.12) and still use the ex-

pressions (7.8)-(7.11) as in the knapsack method above. However, for the average length

of data queue of link I (and a single-link network) we now use

*IQ[ci; p, p E Pj = Fk= - m=o0, (km) i4 (c,0)] p') (7.15)
Ek=Q =0 P'(k, m)

instead of (7.14), where P'(k, m) is now obtained from (6.7b) as described in Section 6.

Subsequently, the approximation to NfQ (for a multi-link netwcAL2 is obtained again as

*tQ (cl; p•., (- Lip),'p E Pi,# (7.16)

where Lip is the approximate voice blocking probability for link t across voice path p

evaluated in Section 4.3 (via the Pascal approximation). Finally, the desired performance

measure W1 is obtained as Wi =
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7.3 Network Model Modification for Guaranteeing Finite Data Delays

Since the link capacity available for data given by (7.4) can take the value 0 we can not

guarantee finite data delays unless we assume that a (small) fraction of the link capacity

is always reserved for data use.

For the multi-rate network model of Sections 2.1.1 and 2.2.1 the above requirement

implies that

c'= += C - r,; rn; (7.17)
PE'PI PEPi

where c4 and c' are the portions of the link capacity reserved for data and voice traffic

respectively; if c' is not used by the current voice traffic it can be used by the data traffic

as (7.17) indicates.

For the single-rate radio network model of Sections 2.1.2, 2.2.2, and 2.4.2 tho

above requirement implies that the capacity available for data at link 1 - (nh, n2 ) is

cl = min {Td,, T }+min{ TV,- E (n; - n;),T, - , (n;-n;)},IE , n,,n 2 EN

I pEPII pEP,, 2
(7.18)

where T4 represents the number of transceivers at node n that are dedicated to data and

T' represents the number of transceivers which are primarily used by voice; the portion of

T,n not occupied by voice call- can by used by data but voice maintains preemptive priority

over data over this portion. The total number of transceivers at node n is

T, = Td + T., nhE N. (7.19)

Similarly to the comment following eq. (5.13) and the discussion in Section 2.4.2, the

above equation (7.18) does not address the way in which a node's unused transceivers are

allocated to support data links with each of its neighbors.

Finally, note that, even if a portion of the link capacity (c4 or Tnd) is set aside for

exclusive data use, the data delay remains finite only for average data loads smaller than

4 (i.e., pd < cd); refer to the relevant comment (Comment 2) following Proposition 3.1 in

Section 3.
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8. EVALUATION OF PERFORMANCE MEASURES VIA THE MONTE-

CARLO SUMMATION METHOD

For the purpose of comparison and testing the accuracy of the the knapsack and Pascal

approximations to the performance measures of interest we also evaluate the probability

of voice blocking, the probability of data queueing, and the queuing data delay via the

Monte-Carlo summation method. In the next subsection this method is described in some

detail and then in the following subsections it is explained how it is applied to the various

performance measures.

The key difference between the approximation method described in this section and the

approximation methods of the previous sections (Sections 4, 5, 6, and 7) is that the Monte-

Carlo summation method can provide an estimate (approximation) to the performance

measure of interest within any desired confidence interval at the cost of an increase in the

number of calls to random number generators performed. In this sense the Monte-Carlo

summation method constitutes our baseline for the true values of the performance measures

of interest in this report, and, where exact values are not available, the accuracy of all other

approximations is compared to the values generated by the Monte-Carlo simulation of the

appropriate sums.

It should be emphasized that in contrast to the familiar Monte-Carlo simulation

method the Monte-Carlo summation approach does not involve a simulation of the dynamic

behavior of the system under study. As is explained in the following section, quantities re-

lated to system performance are evaluated by using known properties of their distributions

in conjunction with a random generation process.

8.1 The Monte-Carlo Summation Method

It is now generally accepted that, in the absence of a special structure, multi-

dimensional integration (or summation) is best performed by Monte Carlo methods [7],

[15]. This method has been shown to be efficient and accurate in several applications

involving expressions of the form

K

G = E 1 lk(nA) (8.1)
nEQ k=1

where S1 denotes the state space of an underlying K-dimensional vector stochastic process

n = (n.,... , nK) and qk(.), k = 1,... ,K, are known functions. For the cases of interest to
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our study, G represents the normalization constant of (3.10) for product-form stochastic

networks with voice traffic. However, as we have seen in Section 3 [eqs. (3.12a)-(3.12b) and

(3.13)] and Section 7 [eqs. (7.5)-(7.7)], the performance measures of interest can actually

be expressed as nonlinear functions of normalization constants. Therefore, expressions of

the form

It = ý_IEI n)q)(8.2)
XE_.A q(n)

where f(.) is a known function are even more necessary than expressions of the form (8.1)

in the evaluation procedure. The method for the evaluation of (8.1) is also applicable to

(8.2). Thus, here, we will first describe briefly the method for evaluating (8.1) and then,

at the end of this subsection we will describe the evaluation of (8.2).

The starting point is to let

K

q(_) = I(_ E 11) II qk(nk) (8.3)
k= 1

where I(-) is the indicator function and rewrite (8.1) as follows:

Nt N2  Nx
G- = E ... F, q(n) (8.4)

nl-=On 2 O nK=O

where Nk = max{nf : !n E 1}. Thus calculating G involves a multi-dimensional summa-

tion.

First, we let V' (V 1 ,'V,..., Vk), i = 1, 2,..., n, be a sequence of n i.i.d. random

vectors, where each V' takes values in A = {0,...,N 1 } x {0,...,N 2} x ... x {0,...,NKI.

Next, we define P1(_) = P(__C = n), for n_ E A, which is a sampling distribution that can

be specified in a way that optimizes the efficiency of the Monte Carlo method, and set

Zi (8.5)

Then the quantity
n

Z -n Zi• (8.6)
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provides an unbiased estimator for G (i.e., E['Z,1 - G). Moreover, the Central Limit

Theorem implies that, for large n,

P 17,- GI a5_.<c( Z -1- (8.7)

where c(q) is the critical value of the standard normal distribution N(z), that is, it satisfies

S N(z)d (8.8)

and u2(Z) is the sample variance of Z', for i = 1,..., n, i.e.,

( = -j Zi - )2 (8.9)
-i=1

Notice that, for any fixed n (simulation size), 7. is an estimate for G, whose accuracy

can be assessed for the confidence interval 100(1 - '7)% by

[,. )a(Z C(O)an(Z)"8.)

induced by (8.7). As the samples are being drawn, the sample variance can be calculated

and the confidence intervals can be given explicitly. Furthermore, if greater accuracy

is desired, more samples can be drawn, thereby decreasing the width of the confidence

interval. This method is particularly well suited for optimization, as only rough estimates

are needed for performance me ures and gradients when the current solution is not close to

optimal. Ross 17] actually shows that the gradients of the performance measures pertaining

to voice can be obtained with little additional effort.

From (8.7) it is clear that the effectiveness of the Monte Carlo summation method

depends on

1. the effort required to generate V' from the distribution P(n_), n E A;

2. the effort required to evaluate the ratio q(.)/P.(.) during the sampling procedure;

3. the size of a2, the variance of ZP.

To improve the efficiency of the method the following steps are usually

taken. First, if the random variables V1', V ,... ,V . are independent (i.e., F.(1) =
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P&(n1 )P2(ni)... PK(nK)), the VL_ can be generated in a total of O(K) time with the

alias algorithm (e.g., see [16]); this computational effort is independent of the number of

values the stochastic process (which in our example is link occupancy) can take on. This

means that the method can handle networks with large link capacities. Second, selecting

the appropriate sampling distribution P(n_), for n E A, can significantly reduce the vari-

ance a . In particular, it is desirable to sample more frequently the points n. at which

q(n) is important, which is typically done by considering functions P,(.) that are similar

to q(.). Ideally, one would like q(.)/P.(.) to be nearly constant; however, there exists a

tradeoff between this similarity and the effort required to sample from P.(-).

As we already mentioned, many performance measures of interest are given by non-

linear functions of normalization constants, and thus quantities of the form (8.2) must be

evaluated. A natural estimate for t based on an n sample simulation is

=1z' (8")

where

V = f(W)q(W )/P.(W) (8.12)

and

Zi = q(vi)/P.('). (8.13)

Although 4,, converges (almost surely) to 4' of (8.3), 4,, has the undesirable property

of being biased. Fortunately, this bias diminishes as n becomes large. It is also known [7]

that the ratio estimator ',, can be made free of bias to order 1/n with a modification that

requires an insignificant amount of additional CPU time. Moreover, the confidence interval

for 4• can again be constructed (see [7]) as the sampling proceeds (i.e., on line) as follows.

Let ., and au(Y) be the sample mean and variance associated with Yi, i = 1,...,n

[defined analogously to Zf, of (8.6) and ao(Z) of (8.9)]. Furthermore let

2,(y,Z) E(Yi -VOW)(Z -Z,,) (8.14)n -1
j=1

be the sample covariance associated with the two sets of random variables. Then the

(1 - il)100% confidence interval for 4', is

Vn~~~~ ~ .. 2a('Z-,F',---j201) a2 (y, Z) + )r

" ' -2 c- - -) z n - 2 . . . . (8.15)
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where c(77) is as defined above and r. is given by

_X - C2(- 2(,Z 7, - c2 (4.2(Z)J [F2,. - f-(2) ,2.(Y)] (8.16)

Note that the width of the confidence interval is O(1/v'W).

8.2 Monte-Carlo Summation for the Probability of Voice Blocking

The method described in Section 8.1 for the estimator (8.5)-(8.6) of (8.1) and the ratio

estimator (8.11)-(8.13) of (8.2) is directly applicable to the evaluation of the voice blocking

probabilities of (3.12a) and (3.12b). We need only set K = IPI, q(a) = P(NA") of (3.9),

k = p for p E P, Nk = cp/rp, and qk(n) = (p)I)n/n! and estimate first the normalization

constant G of (3.10). The key is of course the choice of the sampling function P(n_) = P,(n).

In [7] it is suggested that we select

'I

P -- = 7n (8.17)
pEP P,

where

G8 = II E ,(8.18)
PEIP m-0

The -yp for p E P> are the important sampling parameters. These can be set as -tp = P' or

they can be selected according to a more tedious procedure (see [7]), which yields narrower

confidence intervals. The estimator of (8.5)-(8.6) then takes the form

""n 1 q(V2)= G cZI(V' E nt) (8.19)

n= ,= P,() n=1

where G, is given by (8.18), 11V is defined by (3.11), and

01 `)VP(8.20)

Once 6 is obtained (as a function of the vector of link capacities c), the blocking probabil-

ities BI of (3.12a) and Bp of (3.12b) are obtained from those expressions where 6 is used

instead of G.
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Is is also possible to estimate B, directly using the estimator (8.11)-(8.13) as

PP= -n _ =] yi aEl(3__i E f) (8.21)=E,".. Z' E,"I a'I(V E O'D)

where fl0 is given by (3.11) and 0; is obtained from (3.11) by replacing the I x ItI vector of

link capacities c by the vector c- AT defined below (3.12b). The voice blocking probability

P1 of (3.12a) can be estimated directly in the same manner. We may use (8.21) again with

fl' instead of fl in the numerator; fl" is obtained from 0" of (3.11) by replacing cl by
cl - I.

8.3 Monte-Carlo Summation for the Probability of Data Queueing

We rewrite 1 - Q1, where Qj is the probability of data queued at link 1 (1 E L) as

follows,

1- Q = E(N'N&')EA f(bv[• qtN ) (8.22)E t.N'.-.N")IE q(N_.., N") (.2

where
q'W' ~I 2p" (1');";d ; [o < 1: rnv < c,,l I E -] (8.23)

q(-n = I (f ,).i.
pP (nv - n;)!n;! p~ 1 n•C~ ] (.3PE'P PPE71

f(NLN') = Z P(nflc)" l[( • rpn", rn;) # (c, 0)] (8.24)

n,=0 PEP, pEEP#

A ={(b_.7,N_')I05 < pn < cp,0 < n" < n",,p E P'}

and
VP a + P r, P," Pp (8.25)

Then 1 - Q1 can be estimated by the ratio estimator of (8.11) as

where

pf ')(v,,U) (8.26)
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Zi = P.(v',t') (8.27)

and (V',Q'),i - 1,..., n is a sequence of i.i.d. random vectors, where each (V',2 ) takes

values in A; P.(V',WJ) are importance sampling functions of the form

P,(_vi7P 72 _N, =_Ns) in; - ) E A (8.28)
PEP P PP

where

o fG l -- E JJ 7pY (8.29)
p e"P " )P "PP" p nP= n ; !

and the importance sampling parameters -yip and -Y2p are given by

"Iip = 6 1p , Vi2p=' Y a P. (8.30)

With the above definitions and the definitions of V., "Y, a2(y), a2(Z), and un(Y, Z)

of (8.6), (8.9), and (8.14), respectively, we obtain from (8.15) that the 1 - 7) confidence

interval for 1 - $. the estimate of 1 - Q1 is

1 y!'f G (Y, Z) + r. Fnn " - 1Ea2 (Y, Z) -r.
,1- n (8.31), - O(Z) -Z2

where c(iq) and r. are as defined in (8.8) and (8.16).

Notice that (V1', U'), (V2
1, U2), ... , (VI',l, U•,) are independent, i.e.,

P.(V' = " '=•)= N P.(V = n', Up'= n;) (8.32)
pEr

and

P, = - ;, U; = n;) = P.(Vp = n"). P,(UUp = niVP = n) (8.33)

where

")- ". , 0 < r"n < c (8.34)

l 5n;=O n6!
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and

~n w!

=p n(,IV,' = n;) 0 < n. - , o ., (8.35)

Therefore, P'PI of (V,, U) can be generated independently by first generating V, from

P,(V,') and then generating U,. from P.(U,'IV,'). The alias algorithm is used for both
generating processes of V, and U,.

In our numerical results we simulate for a 95% confidence interval with n = 300, 000
based on the importance sampling scenario -y = p, p E P.
8.4 Monte-Carlo Summation for the Average Queueing Data Delay

This is the same as for the probability of data queueing except for the different function
A(A ,N). The new function is given by (7.5)-(7.6) in Section 7.
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9. ADMISSION CONTROL VIA REDUCED-LOAD APPROXIMATIONS

Admission control strategies can play an important role in integrated voice/data net-

works because, by controlling in a coordinated manner the admission of new calls in all

network circuits, the overall probability of voice blocking can be reduced and so may the

probability of queueing data and the data packet delay. In this paper admission control

strategies based on (a) thresholds on the individual path traffic and (b) linear combina-

tions of voice traffic over selected sets of paths are considered. The justification for this

is two-fold: First, such admission control strategies have been shown in [111-(12] to work

well for voice-only multi-hop radio networks of small size. Second, this type of admission

control strategies enables the extension of the approximations of this report from prob-

lems without control to problems with control at the expense of only minimum additional

computational complexity. Therefore, since our approximations can handle mid-size and

even large-size multi-hop radio networks, near-optimal control strategies can be derived

for networks of any size based on the approximate performance measures evaluated below.

After describing the relevant models for admission control in Section 9.1, we present in

Sections 9.2 and 9.3 two distinct methods for incorporating admission control strategies into

the approximation methods outlined in Sections 4 (for the probability of voice blocking) and

in 5 and 6 (for the probability of data queueing). The development in these sections appears

for the first time in this report. Only the modification of the knapsack approximation is

described in detail. The Pascal approximation can be also modified in a similar way but

this is omitted from the report.

9.1 Models for Admission Control

The problem of admission control is formulated in the context of our e,-xposition in the

previous sections, as follows. Together with the resource (bandwidth) constraints

_rpn; < c, I E(9.1)
pEri

[where rp = 1 for all p E P and cj, P1, 1 E C, must be replaced by T,, P,, for n E A/ for the

radio network of Section 2.1] which have played an important role in the previous analysis,

we also consider the additional control constraints

"-(s)v _< Y., s E S. (9.2)

pET'8
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These control constraints result in the blocking of voice calls, even when network resources

are available to support them. We refer to a system without such control constraints (i.e.,

one in which only the resource constraints of Eq. (9.1) are applicable) as an "uncontrolled"

system. In Eq. (9.2) S is the set of all such constraints, Y. is the threshold for the

s-th constraint, and P. is the set of paths involved in the constraint. These control

constraints couple the voice traffic over selected sets of paths. Moreover, direct threshold

constraints of the form
nv < Xp, p E P (9.3)

can be considered as special cases of the more general constraint of (9.2). Also notice that

the quantities rW() for p E P'. involved in the s-th constraint need not be equal to (the data

rate) r. nor do they need to be equal to each other. Clearly, with this model any linear-

combination type of constraint on the number of calls of classes p E P can be considered.

The objective is to determine the set of constraints (which collectively constitute a control

policy) that results in optimal performance.

9.2 The Knapsack Approximation via Conditioning on Additional Constraints

We now show how to incorporate one additional control constraint into the knapsack

approximation, which is obtained under the standard resource constraint of (9.1). The
procedure can be extended to apply to two or more control constraints at the expense of

an increasing computational effort due to the dimensionality of the problem.

For this section we assume that S = {I} (a single-element set), that Y, is the control

threshold [it can actually be Y./r() for r. = r(s) (p E P.), when all rp are equal to each

other], and that cl is the capacity of the i-th link (1 E £). We rewrite the two constraints

(the resource constraint for link 1, and the control constraint with threshold Y,) as

0- E rn; =k5 c (9.4)
pE~i

0•< PE-P - = •2_ (9.5)
pEl'.

in terms of the quantities k, and k2 representing the sums in (9.4) and (9.5), respectively.
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9.2.1 Probability of Voice Blocking

Application of the knapsack approximation to the above formulation yields

C I- r" Y, -P(.")
Kip = I1- E E P(k,,,k2) (9.6)

k=•O k2=0

(for p E P1 f P,) as the voice blocking probability where

P(kk 2 ) = 1 P(Nm,_N) (9.7)
(.N.- N,)eQ(kj,,,)

fl(k1,,)= k,(N'N')IO<<n;"< ,p<EUP.; 0:5U O r. = k1P5< ci; 0 _<5 r(); = k2<Y
I.- pE' pE

(9.8)

and E',=o0 Y,= P(k1 , k2 ) = 1. After the normalization P'(k,, k2 ) = P(ki, k2 )/P(O, 0),

(9.6) becomes

P'(k 11 k2)- 6-" .0 _,- " if p E Pl nP,K ,,t = P-E , o ( kl'k2) (9.9)Kip Fkj=Oh2 0

{1X,:, ;0 P(k 1 ,k 2 ) if p E PinfP
1 0 Y JP(k,k 2 )' fp~f'

Proposition 9.1

P'(kl, k2 ) satisfies the recursion

if rp_5k,<c, _ < k2 < Y.

*'•-+ Ep,np: reppP'(k, -rf, k2 );
-c,"+7Lp~riP.- Pif rp <kj <cj, k2 =O0

P'(ki, k2) 1 t"JO-+ EpE.np r() ApP'(k 1,k 2 - r(s))

if kj=0,r4)_ <k 2 <Y,

1; if k1 =O, k2 =O

0; if k, is not an integer multiple of rp
or k2 is not an integer multiple of r)

(9.10)
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where rp < k1 <_ and °) <k2 _ T<.

Proof: It follows easily as a special case of of Appendix B; we only need to set r =r

r(2) = r,(P), Pi V-L,2= Ps, Z, = ci, Z 2= Y., and use only the constraints on k,; we

set m, = 0 for i = 1,2.

9.2.2 Probability of Data Queueing

The application of the knapsack approximation to the probability of queueing data

when conditions (9.1) and (9.2) are present requires an extension of the method of Section

5.2 to incorporate additional dimensions. In particular, instead of the k,, mi for 1,2

defined and used in Section 5.2 to represent the necessary integer entities for nodes nj = 1

and n2 = 2 (connected by link 1) and which reflect only the bandwidth (or transceiver)

conditions, we must introduce additional such entities to represent the threshold condition

of (9.2). Actually, we need a total of six integers (k 1,ml;k 2 ,m 2 ;k3 ,m 3 ) to represent all

necessary entities: (kj, ml) for the transceiver constraint on the set P, n P,, (k2 , n 2 ) for

the transceiver constraint on the set 2 n P,, and (k3 , M3 ) for the threshold constraint

on the set P.; compare with (9.4)-(9.5) and (5.15). This requires the definition of a six-

dimensional entity P(kl, ml; k2 , m 2 ; k3 , M 3 ) similar to that of (5.16) and the corresponding

recursion. The details are complicated but straightforward and are omitted. The rest of

the knapsack approximation for this case proceeds as in Section 5.2.

9.2.3 Extension to Multiple Control Constraints

The formulation, the knapsack approximations, and the recursions for the probabil-

ities of voice blocking and data queueing can be extended to include additional control

constraints of the form (9.2) for several distinct s E S. For a small cardinality number IS1

the computational effort, although increasing exponentially (as 2 1S1) with the total number

of control constraints, remains reasonable; however, for large ISI it becomes prohibitive.

This is the reason for our consideration in Section 9.3 of a different approach that requires

a substantially reduced computational effort.

9.3 The Knapsack Approximation via the Introduction of Fictitious Links

The second method for applying the knapsack approximation to integrated voice/data

networks with admission control is very straightforward and does not suffer from the

computational problems of the first. Actually, the required computational effort grows

only linearly with the number of control constraints. The key idea here is to introduce

fictitious links 1. with link capacity Y. that represent each of the control constraints (s E 5)
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of (9.2). On these fictitious links the paths carry information at a rate rp(') (which may

not be equal to r.). In this manner all voice calls transmitted over the paths (circuits)

which satisfy a particular control constraint (i.e., p E P.) use this fictitious link, that is

1. E p for all p E P.. This means that besides the natural links of the network (part of the

given architecture) new links are added which do not represent any physical connection

but rather they signify satisfaction of control constraints. After the set of links £ has been

expanded to include the new links, that is C' = C US, we apply the usual procedure for the

knapsack approximation to the new expanded set of links V'. For example for the voice

blocking probability we use the recursions

LIq = Ki', (cl,;p; (1 -L,) pE Pr, i' E' =C us)

for q E Pt,, where P1, = {p E P•P' E p, l' E V'} and finally Bq = 1 - 11,'E(1 - Le,.). In

computing K1, . [for example via (4.5)-(4.6)] we must be careful to use (cl, r,) for the real

links (when P' E C) and (Y., r,(")) for the fictitious links (when P' E S). The above approach

is also applicable to the approximation of the probability of data queueing and the average

data delay (Section 5) after the expansion of C to V' has taken place.
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10. REVENUE SENSITIVITY VIA REDUCED-LOAD APPROXIMATIONS

In several practical problems of performance evaluation and optimization in networks

such as optimal data routing and the allocation of additional resources in response to

increases in traffic demand, the rates of change or derivatives (termed sensitivities) of

certain performance measures (termed revenue) with respect to network resources (e.g., link

capacities) and traffic loads (e.g., average offered voice or data traffic) play an important

role. If accurate approximations to these sensitivities that require modest computational

effort for their evaluation can be derived, then they can .e used in a variety of optimization

problems to derive near-optimal control or allocation strategies. This is exactly what is

accomplished in this section.

Specifically, we first present certain popular measures of revenue and then derive their

(approximate) sensitivities with respect to link capacities, voice loads, and data loads.

This is first accomplished in Section 10.1 for the general multi-rate network model (of

Sections 2.1.1 and 2.2.1); in particular, Section 10.1.1 deals with suitable sensitivities for

voice revenue and Section 10.1.2 deals with suitable sensitivities for data revenue. Then

in Section 10.2 we outline how to modify and apply these results to the r .ilti-hop radio

network model of Sections 2.1.2 and 2.2.2.

10.1 Revenue Sensitivities for General Multi-Rate Networks

Suitable choices for the long-run average voice and data revenues for the multi-rate

network of Sections 2.1.1 and 2.2.1 are

W"Pp; = E-);p;(1 - Bp) (10.1)
pEV

W 7d~pvC ) 7= P1 - Qi), (10.2)

IEC

where -y (P E P) and -Yd (I E 4) is the revenue rate when a path-p call is accepted and

link-e data traffic is served, respectively. Thus (10.1) and (10.2) provide natural definitions

of the (long-term) average revenue generated when voice calls are accepted (not blocked)

and data packets are served (not queued), respectively. In the above notation pV and .pd

denote the vectors of voice and data loads (pp,p E P and pd, I E C) and c the vector of link

capacities (ce, 1 E L). In this section it is assumed that the probabilities of voice blocking

Bp and data queueing Qi are evaluated via the knapsack approximation.
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10.1.1 Sensitivity of Voice Revenue

The sensitivity of the voice revenue with respect to link capacities and voice loads is

evaluated in [6] (see also [7]) via the knapsack and Pascal approximation methods. Here

we repeat the results for the sake of completeness and to introduce the necessary notation.

For the voice revenue the following sensitivity measures are defined with respect to

link capacity and voice loads:

C4 • W" (p";- - r.-,) - WV(PW;-) (10.3)

dW" Bp) (1 -B "(;- E. cv-) (10.4)
dp• I 1

where 4 is an ILI x 1 vector with unit value at entries 1 E p and zero value at all others.

The quantities c"' in (10.3) have been called shadow prices in [6] and represent the

expected revenue lost (number of blocked voice calls) when we remove r. circuits from link

l (or accept a call of path p at link 1) for one unit of time. If we make the approximation

that class-q calls arrive at link l according to a Poisson process with offered load

i41p I (l-Liq)
Pq = pq Lq

lG¢,t#I

(termed thinned load, with Lf. as defined in Section 4.2), then the expected loss in revenue

from class-q connections being blocked at link l due to the removal of rp circuits for one

unit of time is . hiqp Yq, where

hiqp =Kiq (cl - p , Pq (1 -i iiq), q' E Pi Kiq [J, (1 Ltq.),q9' E P

(10.5)

where Kiq is given by (4.5)-(4.6). However, each class-q connection blocked on link I (if it

had been accepted), would have used rq circuits on each link t E q, f 1 . Thus the expected

gain in revenue from additional connections being accepted on links t E q, t - i due to a

class-q connection being blocked at link I for this one unit of time is K. hiqp - jEq j0i ctq.

Subtracting the gain from the loss and summing over q E P1 yields the following system

of linear equations:

c" - [PtKlq (C, - r., q q E Pi) - AvKIq (Cpqtq' E PI)I (yq -,teqt# c 9 )'
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- a [p" (1- Bq(c)) - p\ (1 - Bq (C- tq,t$ Cli" (10.6)

In deriving (10.6) we first use the results of Section 4.2 to show that the relationship

between the load p' and the thinned load P," on link I is

L;(19- ) =p;(l - By)

and from this it follows that

P;K,i (ci,, -q' E Pt) = L, = P- p,', (1 -B(_))

Finally, the right hand side term in (10.4) can be interpreted as follows. An additional

call offered to route p will be accepted with probability (1 - Bp); if accepted it will earn

7; revenue, but at a cost cl, for each link I E p.

10.1.2. Sensitivity of Data Revenue

In contrast to the previous section that reviewed the results of [6] for the sensitivi-

ties of the voice revenue, the derivation of sensitivities for the data revenue of integrated

voice/data multi-rate networks appears for the first time in this section. The following sen-

sitivity measures with respect to link capacities and data loads, respectively, are suggested

for the data revenue of (10.2)
d Wd(pv,pd; ý_) - Wd(pv_,pd; _ ) (10.7)

OW d ( I _~ d8pW- 1 (10.8)

where f is an [C] x 1 vector with unit value at the entry I (the link in question) and zero

value at all other entries.

Since link data behavior is assumed to be mutually independent (refer to Section

2.2.1), the term in (10.7) can be obtained in the form

c_ [p 1(1 - Qt(c)) - p'(1 - Qi(c- k))] 77 (10.9)

following similar reasoning to that which resulted in (10.6) above for the voice revenue

shadow prices. However, because of the inter-link independence assumption the approxi-

mation in (10.9) can not be fully trusted.
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The term in (10.8) again can be obtained intuitively by noting that additional data

offered to link I will not be queued with probability (1 - Qt); if accepted, it will earn -ye

revenue but at a cost c.

Instead of obtaining .Wd/apf from (10.8) for which (10.9) is necessary, an alternative

way of computing 8W"/8pd is used in this report, according to which

aWd ý dlQ).Yd d(1' - Q1)
ap -' '(1- - (10.10)

where A(1 - Ql)/Ap, denotes the ratio of finite differences for ApI = .001.

The evaluation of the data revenue sensitivity with respect to voice load is considerably

more complicated. The result is given by the following Proposition:

Proposition 10.1

The data revenue sensitivity with respect to voice loads takes the form
w_.d (1 - ,)t •Wd(c-r,,) -Wd()
-p = (I - '' Bp- pP

a.1*

n; (}V do d (

a+ -. f 1NaP E)~,~

a + G(_ - rp_.;) n.(n) - na)n

wd•y.,w,,()__ w, P(c_)~ ).Ic >) 1.2

1PEP

= Wd((1 _ ype, _ W(1- Q)

+ •. Pr,£) ( vV, N S )-w .d( d, pd, C6 (10.11)a + ,8 - _ -1

where G is given by (3.3), PJc}pd) is given by (5.6), the residual capacity for data is

c; c - EP,•, rp(n" - np;), and

= ~tp) ~}>0). (10.12)

IEZ

The terms in (10.11) and (10.12) can be approximated by applying the knapsack or Pascal

methods. In particular, the knapsack approximation is applied to the Q, terms in

wd(&_ -- rpap) -- d d/ i(1 -- Ql(c - rp_), (10.13)

wd(&-) d d p(1 _ QI(c)), (10.14)
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and to the term

C1-1

= P(,414) -1(4 > 0). (10.15)
IIE Q.N_,_N)efl(-r,•,) nl;=0

Proof: Provided in Appendix H

10.2. Revenue Sensitivities for the Multi-Hop Radio Network of Sections 2.1.2

and 2.2.2

Recall that for the multi-hop radio network of Section 2.1.2 and 2.2.2, the link capacity

vector c should be replaced by the node transceiver vector T and the rate of voice calls in

all circuits is r. = 1, p E P.

To obtain the sensitivities of the voice revenue we must replace g by !., cj by T., I E C

(links) by n E A/ (nodes), 'PI (set of all circuits or paths using link 1) by P, (set of all

paths passing by node n), and c - rp.p by T - .% (where . is an IA/l x 1 vector with unit

value at entries n E p and zero value at all others) in (10.3), (10.4), (10.6) and all other

expressions of Section 10.1.1.

To obtain the sensitivities of the data revenue we must carry out the same substitu-

tions in (10.10) and in (10.11)-(10.14) as we did for the-voice revenue sensitivities in the

previous paragraph. In (10.1l)-(10.14) the following additional substitution is necessary:

the residual (data) capacity

cI= l- ~jr,(nv - np)
pE P

of link 1 E Z connecting nodes ni,n 2 E .r [i.e., I = (n1 ,n 2 )] must be replaced by

cl = min{T., - E (np n;) , ,,-P(n ;)

P E', 1  PEV.2
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11. NUMERICAL RESULTS AND PERFORMANCE COMPARISONS

The presentation of the numerical results in this section is organized as follows. In

Section 11.1 the network paradigms used for general multi-rate wired networks and for a

radio multi-hop network are described in detail in terms of architectures, network param-

eters, and traffic parameters. In Section 11.2 comparisons of the approximations to and

the exact values of the performance measures of interest are carried out for the radio net-

work paradigm with no admission control. This is repeated in Section 11.3 for the general

multi-rate multi-hop wired network paradigm. Admission control schemes for voice traffic

(based on thresholds) in the radio network paradigm are described in Section 11.4. Section

11.5 presents the approximations to the voice and data revenue sensitivities for the radio

and wired network paradigms of Section 11.1. Finally, Section 11.6 discusses the required

computational effort for the various approximations.

11.1 Network and Traffic Models for the Paradigms Used

The two networks of interest are shown in Figures 2a-2b and 3a-3b. The network of

Figure 2a is the paradigm shown in [11]-[12]. It is a ten-node multi-hop radio network, in

which the main resource of interest is the number of transceivers at each of the network

nodes. In most of our examples involving this network, T (which denotes the vector of

transceivers at the ten network nodes) takes the value T = (8,8,8,8,8,8,8,8,8,8); we also

study . - (4,4,4,4,4,4,4,4,4,4) to demonstrate the quality of the approximations when

applied to a smaller system. In Figure 2b, the five circuits used by voice calls in the network

of Figure 2a are shown. The voice calls follow the model of Sections 2.2.1 and 2.2.2 and

have in all examples (unless specified otherwise) activity factor = .4 (half-duplex);

however; limited results are also presented for voice activity factors of 0.8 (full-duplex)

and 1.0 (corresponding to a voice model with no silence periods). The network data traffic

is transmitted over the same nine links, that are used by the aforementioned five voice

circuits. As discussed in Section 2.2.2, an M/D/c model is used for data traffic over the

above nine links, with capacities defined by Eq. 2.0. In this model, the data can only

use transceivers that are not occupied by voice calls. In the model of Section 7.3, some

transceivers at every node are a priori dedicated to data traffic and the data link capacity

is defined by (7.18); we will come back to this model when we show results for the average

data delay. The network of Figures 2a-2b is characterized by a single data rate, which

assumes a common value for both voice and data traffic.
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Figures 3a and 3b, show the multi-rate star network of [6], which is used in this

section as a paradigm of a general-purpose integrated voice/data multi-rate wired network.

The main network resource is the vector of link capacities c. Initially we reproduce the

example of [6] by setting K = (90,100,110,120) for the four links of the network; later we

demonstrate the accuracy of the approximations for smaller values of the link capacities

as well. There are twelve voice circuits in the network of Figure 3a; and Figure 3b lists the

links used and the transmission bandwidth required for each voice circuit. Data traffic is

assumed to always require unit transmission bandwidth. The voice model is described in

Section 2.2.1 and the activity factor for the voice calls is = = .4. An M/D/c model is

again used for data traffic with link capacity given by (3.7b). In this model, data traffic

is allowed to use only the capacity left unused in the four network links after the voice

call requests have been accommodated. In the model of Section 7.3, some portion of the

capacity of each link is a priori dedicated to data traffic and the data link capacity is given

by (7.17); we will come back to this model when we show results for the average data delay.

11.2 Comparisons of Approximations for the Radio Network of Figure 2 with-

out Admission Control

This group of numerical results pertains to the radio network model of Figure 2 in

the absence of admission control, i.e., a voice call is admitted if and only if a transceiver

is available at every node along the predetermined path.. Networks with eight transceivers

per node are evaluated in Section 11.2.1 and networks with four transceivers per node are

evaluated in Section 11.2.2. In these two subsections, the entire number of transceivers

at each node is available for use by the voice traffic; data traffic is served only if some

transceivers remain unoccupied. However, in Section 11.2.3 we also evaluate networks for

which one pair of transceivers is dedicated to data traffic for each of the nine data links in

the network of Figure 2.

11.2.1 Results for a Radio Network with Eight Transceivers per Node

We first consider the case of T = (8,8,8,8,8,8,8,8,8,8), i.e., each node has eight

transceivers. Figures 4 and 5 show the exact value, knapsack approximation, and Monte

Carlo summation (the midpoint of the confidence interval is shown) for the average prob-

abilities of voice blocking and data queueing, versus the offered voice and data loads,

respectively. The "exact value" solutions for the probability of voice blocking are based on

the product-form solution. Those for data packet queueing are based on the M/D/c model
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and Kleinrock's independence assumption, thus in the latter case the results are not truly

exact but rather they are based on closed-form approximations. In both figures, the prob-

abilities of voice blocking and data queueing represent the averages of such probabilities

over all voice circuits and data links in the radio network, respectively, that is,

and

In Figure 4, the value of the data load is irrelevant (since voice has priority over data)

and the offered voice load prp ranges from 0 to 15. In this case, we have a single-rate

network with r. = 1 for all paths, and p" takes the same value for all five paths (voice

circuits). Notice that the knapsack approximation, the Monte Carlo summation method,

and the exact expression for the probability of voice blocking yield results that, are very

close to each other for all values of the offered voice load. Recall that the knapsack and

Pascal approximations yield identical results for single-rate networks.

In deriving the approximation via the Monte Carlo summation method, we used

300,000 sample points (calls to the random number generator computer routines), which

resulted in a confidence interval of 95%. Importance -sampling scenarios according to

which -y = P' (p E ') for the probability of voice blocking (refer to Section 8.2) and

Iip = pi",/(a + 6), "72p = pcor/(a + 6) (p E P') for the probability of data queueing (refer

to Section 8.3) were used. Recall from the discussion in Section 8 [following equations

(8.7)-(8.10) and (8.14)-(8.15)] that the confidence interval parameter ,7 and the number

of samples (calls of the random number generator) n are related in a complicated man-

ner [e.g., see (8.10)], which involves the sample variance a.(Z); therefore, the appropriate

value of n that guarantees the desirable confidence interval is found through trial and error.

The number 300,000 given above represents the result of several such attempts to find a

number that is sufficiently large to work for most situations of interest (for all different

values of the sample variances for the numerical examples considered). The variation of

the 95% confidence interval did not exceed 2% of its mean value during this search.

Similar results are shown in Figure 5, in which the offered voice load is p~r, = 5.5

for all voice circuits, and the offered data load p, ranges from 0 to 4. The data loads of
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all nine links are assumed equal. Again, the knapsack approximation is very close to the

exact value of the probability of data queueing.

Tables 1-4 amplify the results of Figures 4 and 5 by providing detailed comparisons of

exact values, knapsack approximation, and Monte Carlo summation for the probabilities

of voice blocking and data queueing for a broad range of offered voice and data loads.

The column denoted "percent error" refers to the percent relative error generated via a

comparison of the results obtained using the knapsack approximation to the exact values

[ = 100 x (knapsack-exact)/(exact)]; the sign of the relative error has been maintained in

these calculations. The results are organized in a manner that first presents the results for

the average quantities (averaged over the traffic loads of all paths or links) and then the

individual results for each path or link. This organization plan is followed for basically all

the numerical results presented in tabular form in this report. Table 1 shows the average

probability of voice blocking B (over all paths) for different average voice loads A' defined

as

IPI EP

Then Table 2 shows the individual probabilities of voice blocking Bp for each of the paths

p (p E P) for three values of the path voice loads p,; recall that rp - 1 for the radio

network of Figure 2.

Similarly, Table 3 shows the average probability of data queueing Q (over all links)

for different average voice loads p", average data loads pd defined as

IEZ

and for the three voice activity factor values 0.4, 0.8, and 1.0.

Then Tables 4a, 4b, and 4c show the individual probabilities of data queueing Qi for

each of the links 1 (1 E C) for various data loads pt, for voice activity factors 0.4, 0.8, and

1.0, and for voice loads 0.1, 1.0, and 2.0, respectively.

In the case of the single-rate radio network of Figure 2, since rp = 1 for all p E 'P,

if the utilizations pI are equal for all paths, then gi = pt as well. Similarly, equal values

of p d for all data links imply that p3d = pd as well. Therefore, since in all tables of this

subsection the pP's are equal to each other for all voice paths and the p,'s are equal to
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each other for all data links, no distinction is made in the text between the values of p,

and Am or between the values of pA and 10. In any event the caption of each table contains

all necessary information about the voice and data loads.

In particular, in Table 1, the approximations and the exact value of average probability

of voice blocking are compared for different values of the average offered voice load (jV- =

Pp, p E P). It is observed that the agreement between the approximations and the exact

value is from excellent to very satisfactory over the entire range of values of the offered

voice load considered.

We take the opportunity here to quantify the terms excellent, very satisfactory, and

satisfactory (or fair) pertaining to approximation accuracy and used throughout this sec-

tion. By excellent accuracy we mean that relative error between the approximation and

the exact value is smaller than 1%; by very satisfactory we mean that the relative approx-

imation error is smaller than 5%; and by satisfactory (or fair) we mean that the relative

approximation error is most of the time smaller than 10% and occasionally between 10%

and 20%. In all of our examples, the exact value always falls within the confidence interval

provided by the Monte-Carlo summation method.

In Table 2, the results of Table 1 are shown in greater detail for the voice-blocking

probabilities of each of the five voice circuits of the radio network and for offered voice

loads equal to 1.0, 5.5, and 10.0 for all paths. Again, the approximations are very accurate

for all voice circuits, although a variation in accuracy is observed from circuit to circuit.

Similarly, in Table 3, the knapsack approximation and the exact value of the average

probability of data queueing are compared for different values of the offered voice and

data load. For each of these tables the results are shown for data loads (Ad - I p I E C)

of 0.5, 2.5, and 4.0 (corresponding roughly to situations of light, moderate, and heavy

data traffic) and for several values of the voice loads (pV _ p, p E 7). The accuracy

of the knapsack approximation remains very satisfactory over the entire range of traffic

parameters of interest.

Tables 4a - 4c show certain results of Table 3 in greater detail for the probabilities of

data queueing at each of the nine data links of the radio network of Figure 2. The results

are compared for the three voice activity factor values 0.4, 0.8, and 1.0 for voice loads

0.1 (Table 4a) and 1.0 (Table 4b) and data loads 0.5, 2.5, and 4.0. Results for percent

error are included only for queueing probabilities greater than 0.0005. Again, the knapsack
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maintains from excellent to satisfactory accuracy over the entire range of traffic parameters

of interest.

The results of Tables 2 and 3 (for probability of voice blocking) and Tables 3 and 4 (for

probability of data queueing) demonstrate that the knapsack approximation is accurate

not only when averages are taken over all circuits (paths) or links, but also when the

network is examined at a more detailed "microscopic" level.

11.2.2 Results for a Network with Fewer Transceivers per Node

In the next group of tables (Tables 5, 6, and 7), we repeat the above results for

the radio network of Figure 2 and a node transceiver vector T = (4,4,4,4,4,4,4,4,4,4),

that is, each node has four transceivers. The voice activity factor is 0/(a + f) = 0.4

for all results in this subsection. Table 5 shows the average probability of voice blocking

(knapsack approximation and exact value) for different voice loads. It is observed that

the accuracy of the knapsack approximation for this paradigm is inferior to that of the

the radio network with transceiver vector T = (8, 8, 8, 8, 8, 8, 8, 8, 8, 8) (Tables 1 to 4); that

is, there is a degradation in the accuracy of the approximation, as the number of the key

network resource (the node transceivers) decreases. However, the (relative) approximation

error still remains smaller than 5% of the exact value for offered voice load greater than

4.0.

Table 6 shows the knapsack approximation and the exact value of the average proba-

bility of data queueing for different voice and data loads. Similar trends to those observed

for the average voice-blocking probability are observed here as well. Table 7 shows in detail

certain results of Table 6 for the probabilities of data queueing of each of the nine data

links of the radio network and, in particular, for the values 0.2, 1.0, and 2.0 of offered

data load and the values 0.1 (in Table 7a), 1.0 (in Table 7b), 5.0 (in Table 7c), and 10.0

(in Table 7d) of the voice load. Again, the knapsack provides satisfactory performance,

although the agreement with the exact values is not as good as for the larger system of

Section 11.2.1.

11.2.3 Results for a System with Transceivers Reserved for Data

The last group of Tables in this subsection (Tables 8, 9, and 10) pertains to the

radio network model of Figure 2 modified according to requirements of Section 7.3 so that

finite data delays can be guaranteed. According to this model, a pair of transceivers for

each of the nine data links is dedicated to data traffic; that is, the data link capacity
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vector td = (1,1,1,1,1,1,1,1,) is guaranteed a priori. Thus, instead of the original node

transceiver vector " - (8,8,8,8,8,8,8,8,8,8), the five voice circuits of Figure 2b can

only use the transceiver vector IV = (5,7,7,7,4,7,4,7,7,7) that remains after the data

transceivers have been assigned. The voice activity factor is #/(a + •) = 0.4 for all results

in this subsection.

In Table 8, the Monte-Carlo summation and knapsack approximations are compared

to the exact value of the blocking probability for each of the five voice circuits and for

the average value for a voice load of 2.5. The accuracy of the approximations remains

satisfactory but it is inferior to that of the Tables 1 and 2 for which the voice transceiver

vector was T = (8,8,8,8,8,8,8,8,8,8); the smaller number of transceivers available for

voice traffic degrades somewhat the accuracy of the approximations. In Tables 9 and 10,

the average data delay

w >EC pd W

(measured in terms of packet duration prior to starting transmission) and the delays of each

of the nine data links W1 (1 E £), respectively, are shown in terms of the exact value and

the knapsack approximation for values 2.5 and 10.0 of the offered voice load and 0.7, 0.9,

and .999 of the offered data load. Again, as in the case of the probability of queueing data,

the "exact value" for the queueing delay is actually a closed-form approximation based

on the M/D/c model and Kleinrock's independence assumption. Satisfactory accuracy is

observed in all cases.

11.3 Comparisons of Approximations for the Multi-Rate Network of Figure 3

without Admission Control

Figures 6 and 7 and Tables 11 to 14 pertain to performance results and compar-

isons of approximations for the multi-rate network of Figure 3, in the absence of ad-

mission control. The twelve voice circuits of this network (see Figure 3b) have rates

L = (1,1,1,1,1,1,5,5,5,5,5,5) and the four data links have rates rd = (1,1,1,1). Fig-

ures 6 and 7 pertain to the multi-rate network of Figures 3a and 3b with the link capacity

vector g = (18,20,22,24). The voice activity factor is #/(a + 0) = 0.4 for all results in

this subsection.

In Figure 6, the average voice blocking probability is depicted versus the offered voice

load pvr, over the range 0 to 3. The load pvrp takes the same value for all twelve voice
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circuits. Whenever prp (p E P) assumes a particular value, e.g., 1.5, the corresponding

value of pp is obtained from 1.5/r, for each p E 'P, where rp takes values 1 or 5 according

to the vector of voice path (circuit) rates above.

For all tables in this subsection the offered loads (p•) of the first six voice paths with

r. = 1, p = 1, 2,..., 6 are equal to each other, and the offered loads of the remaining six

voice paths with r. = 5, p = 7,8,...,12 are also equal to each other and equal to one fifth

of the common value of the first six. This implies that the average voice load p" = = 5p;.

Once these relationships are established the specific values of the loads are only shown in

the caption of each table and they are not elaborated upon in the accompanying narrative.

As observed in Figure 6, the difference between the knapsack and Pascal approxi-

mations and the middle of the confidence interval of the Monte-Carlo summation is very

small for the entire range of values of the offered voice load. Similarly, in Figure 7, the

average probability of data queueing is illustrated as a function of the offered data load

pd. The data loads of all four links are assumed equal and the offered voice loads p'r

are all equal to 2.0. Again excellent agreement is observed between the three approxima-

tions. The exact values for the probabilities of voice blocking and of data queueing are

extremely time-consuming to compute for the multi-rate network in question, so they were

not generated. However, since the Monte-Carlo summation method provides a confidence

interval for the value of the performance measure of interest, we can judge the accuracy of

the approximations even without having their exact values.

In Table 11, the average voice blocking probability is shown for the multi-rate network

of Figure 2, different link capacity allocations, and different values of the offered voice loads.

The four link capacity allocations considered are c = (90,100,110,120), f = (18,20,22,24),

_c = (9,10,11,12), and c = (5,5,6,6) and they are termed allocations 1, 2, 3, and 4,

respectively. Allocation 1 is the example studied in [6]. The others are obtained by

reducing the link capacities proportionally (or nearly so). The offered voice loads depicted

in Table 11 have been selected so that they correspond to conditions of very 'ight traffic

(voice-blocking probability smaller than 0.1%), light to moderate traffic (voice-blocking

probability around 1.0%), and moderate to heavy traffic (voice-blocking probability larger

than 10.0%), for each of the four capacity allocation scenarios. Note that as the number

of channels per link decreases, the offered voice load that corresponds to any particular

blocking probability decreases at a much faster rate. For example, let us compare the
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results for capacity allocations 1 and 3. Although the link capacities are decreased by a

factor of 10, the traffic levels corresponding to a specific blocking probability are decreased

by a considerably larger iactor, especially at low blocking probabilities. Such a behavior

is expected; the availability of a large number of channels permits operation at higher

throughput levels, because we can take advantage of the law of large numbers.

The knapsack and Pascal approximations remain relatively close to (but generally

above) the upper edge of the confidence interval obtained via the Monte Carlo summation

method. However, they appear to move farther away from that upper edge (corresponding

to larger error) as the number of channels in the capacity allocation schemes decreases.

Although we cannot claim that the knapsack approximation is uniformly more accurate

than the Pascal approximation, it appears that the former ought to be trusted over a

broader range of traffic (offered voice loads) and network (link capacities) parameters than

the latter.

Tables 12a and 12b show in greater detail the voice-blocking probabilities of each of

the twelve voice circuits of the network of Figure 3. In particular, in Table 12a the detailed

results (knapsack, Pascal, and Monte Carlo approximations) are shown for offered voice

loads of 8.0, 10.0, and 15.0 and for capacity allocation 1. The loads of th,- individual voice

circuits are such that the average voice load takes the values 8.0, 10.0, or 15.0 once the

rates of the different circuits have been accounted for. Again, the knapsack approximation

appears to be superior to the Pascal approximation. Table 12b shows the probabilities of

blocking for all twelve voice circuits for capacity allocation 2 and for offered voice loads

0.3, 0.7, and 1.7. The knapsack approximation appears Lo be superior to the Pascal

approximation over a broad range of traffic and network parameters. The accuracy of

the approximations exhibits a slight degradation, as the number of link channels in the

capacity allocations decreases from that of capacity allocation 1 (90, 100, 110, 120) shown

in Table 12a to that of capacity allocation 2 (18, 20, 22, 24) shown in Table 12b.

Tables 13 and 14 parallel the results of Tables 11 and 12 for the probability of data

queueing. In particular, Table 13 shows the average probability of data queueing for the

four capacity allocations and the different voice and data loads. The specific values of

the offered voice and data loads have been selected so that they result in probabilities of

data queueing of the order of 0.1%, 1.0%, and 10.0%, respectively, corresponding to light,

moderate, and moderately heavy traffic. The knapsack and Pascal approximations appear
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to be either within or close to the edges of the confidence interval obtained via the Monte

Carlo summation method. Again, the knapsack approximation appears to be superior to

the Pascal approximation over a broad range of traffic and network parameters. Table 14

complements the results of Table 13 by showing the probabilities of data queueing at ?--ch

of the four data links of the network of Figure 3 for capacity allocation 2 and for different

voice and data loads. The voice loads, for which results are shown, are 0.3, 0.7, and 1.7;

the data loads are selected in the manner discussed in Table 13. Observations similar to

those made for Table 13 are valid here as well.

11.4 Threshold-Based Admission Control for the Radio Network of Figure 2

The group of Tables 15-20 presents a comparison of the voice blocking probabilities

and probabilities of data queueing for t ! radio network of Figure 2, when admission

control is used. ih, particular, three types of admission control are employed for deriving

the results of Table 15: (i) Equal thresholds Xp = 6 on the voice traffic of all five circuits

of Figure 2b, (ii) Optimal threshold-only policies such that Xp < 6 on the voice traffic of

all five circuits, and (iii) Optimal full admission control policies that consist of thresholds

X. on individual circuit traffic and thresholds Y. on linear combinations of circuit traffic

over selected sets of circuits. The threshold constraints on individual circuit traffic take

the form
nV.. Xp, p = 1, 2,3,4,5

The linear constraints on selected sets of voice circuits are

n' + n" < Y1 (control constraints from node 5)

n' + n' < Y2 (control constraints from node 7)

nv + n• < Y3  (control constraints from node 5)

n3' + n• < Y4  (control constraints from node 5)

• + t�n < Y 5  (control constraints from node 7)

These are identical to the admission control schemes considered in [111 and [12]. To the

above control constraints one should add the resource constraints of the form

Sn ; < T , n E
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where T. is the number of transceivers at node n and P. is the set of paths intersecting

at node n.

Together with the results of Table 15, one should also go back to Table 1, where

no admission control was used. In Table 15, the optimal thresholds obtained for con-

trol policies (ii) and (iii) are shown for different values of the voice load; in the former

case they are of the form (XI, X 2 ,X 3 ,X 4 , X 5 ), in the latter case they are of the form

(XI, X2 , X 3 , X 4 , X5, Y1 , Y 2 , Y3 , Y 4 , Y 5 ). In this table, the optimal thresholds are selected

on the basis of the exact average probability of voice blocking which is obtained from the

product-form solution (as in [11]). The Monte Carlo summation and knapsack approxi-

mations are also shown for these thresLolds, so that the accuracy of the approximations

is checked against the exact value when admission control is used. The comparisons are

favorable for both approximations, although the accuracy would be better if the number

of transceivers at each node were higher. However, the knapsack approximation does not

achieve its minimum value under the optimal thresholds of control policies (ii) and (iii);

these optimal thresholds were obtained by using the exact value of the blocking probability.

Consequently, we can not repeat the comparisons of [11] for the cferent control policies

based on the knapsack approximation. However, as established wit.- the results of Table

20 below, meaningful comparisons can be made for thresholds obtained from the knapsack

approximation.

Table 16 shows the exact value and the knapsack approximation of the voice blocking

probabilities for each of the five voice circuits of Figure 2b, ;oice loads p' = 2.5 for all

circuits, and several different thresholds of the admission control policy (ii). The knapsack

approximation shows satisfactory accuracy for all situations examined. Table 17 presents

similar results as Table 16, but for different thresholds of the full admission control policy

(iii). Again, the knapsack appruximation shows satisfactory accuracy for all situations

examined, but the accuracy is inferior to that observed in Table 16. In both tables, the

accuracy of the knapsack approximation can be improved at the expense of significant

computational complexity, if the method of Section 9.2 is used instead of that of Section

9.3, which was used to derive the numerical results presented.

Tables 18 and 19 complement Tables 15, 16, and 17 by presenting results for the

probabilities of data queueing in the presence of voice admission control. The voice activity

factor is #/(a + 8) = 0.4 for all results in this subsection. Table 18 shows the average
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probability of data queueing for a data load of 2.5, for all nine data links and for different

voice loads and admission control thresholds. The thresholds are the optimal thresholds for

control policy (ii) in Table 15. Again, the observed accuracy of the knapsack approximation

remains satisfactory, but inferior to that of networks without admission control (see Table

3). Similarly, Table 19 shows detailed results of the probabilities of data queueing at each

of the nine data links of the network in question for a data load of 2.5 and different voice

loads and admission control thresholds. Observations similar to those made for Table 18

are valid; moreover, the accuracy of the knapsack approximations appears to decrease as

the offered voice load increases.

Table 20 compares the exact value and the knapsack approximation for the average

voice blocking probability of the radio network of Figure 2 for different voice loads and

three admission control scenarios: (a) no control, (b) threshold control on individual voice

circuits based on thresholds selected by minimizing the knapsack-evaluated average block-

ing probability, and (c) threshold admission control based on optimal thresholds obtained

by minimizing the exact average voice blocking probability [controls of type (ii) in Table

151. The percentage improvement (decrease) of the exact blocking probability of the un-

controlled system when knapsack-based thresholds and optimal thresholds are used is also

shown in separate columns.

As shown in Table 20, the optimal thresholds derived under policies (b) and (c) dif-

fer in one or more voice circuits; however, the performance obtained using the knapsack-

optimized thresholds is almost as good as that obtained using the truly-optimal thresholds.

For example for an offered voice load of 5.5, the optimal knapsack-optimized thresholds

are (1,8,8,8,8) and incur an exact blocking probability of 0.453, whereas the truly optimal

thresholds are (1,8,8,8,2) and incur an exact blocking probability of 0.448; the correspond-

ing exact value for the uncontrolled system is 0.472. This corresponds to a 4% improvement

(decrease) of the voice blocking probability when the knapsack-optimized thresholds are

employed, versus the 5% decrease that can be achieved with the truly optimal thresholds.

This improvement resulting from admission control is more drastic for large offered voice

loads and for voice blocking probabilities. Up to a voice load of 6.5 the improvement

increases as the voice load increases; however, for higher voice loads the improvement

decreases with increasing offered voice load.

The results of Table 20 above together with those of Table 23 below (which estab-
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lish the significant computational advantage of the knapsack approximation over the exact

expressions) provide major motivation for applying the knapsack approximation to prob-

lems of control and optimization. Thus the knapsack approximation is useful not only for

performance evaluation (as shown in Tables 1 to 14), but for control and optimization as

well.

11.5 Voice and Data Revenue Sensitivities for Networks of Figures 2 and 3

The next group of tables (Tables 21a-21c and 22a-22c) pertains to the voice and data

revenue sensitivities of the multi-rate network of Figure 3 and to the radio network of Figure

2. These sensitivities were derived in Section 10 and find diverse applications to problems

of addition of network resources (e.g., additional transceivers), optimal data routing, joint

voice control and data routing etc. In evaluating the revenue sensitivities we need the

voice-revenue rates -yp for all voice circuits, and the data revenue rates -y1 for all data

links of the network. In Table 21, the revenue sensitivities are obtained for the network of

Figure 3, an average voice load of 10.0 with circuit loads (10,10,10,10,10,10,2,2,2,2,2,2) and

rates (1,1,1,1,1,1,5,5,5,5,5,5), and offered data loads of 50 for each of the data links in the

network. The capacity allocation is c = (90,100,110,120), the vector of voice revenue rates

is arbitrarily chosen to be (1.0,1.2,1.4,1.6,1.8,2.0,3.0,3.6,4.2,4.8,5.4,6.0), and the vector of

data revenue rates is (1.0,1.2,1.4,1.6). The voice activity factor is #/(a + fl) = 0.4 for all

results in this subsection.

Table 21a shows the Monte-Carlo summation, knapsack, and Pascal approximations

to the average voice revenue sensitivity with respect ..o the loads of all twelve voice circuits.

The two approximations are either within or relatively close to the edges of the confidence

interval obtained via the Monte Carlo summation method. Table 21b shows the average

data revenue sensitivity with respect to the loads of each of the voice circuits. Again,

the approximations and the confidence interval are in relatively satisfactory agreement

with each other. Table 21c shows the average data revenue sensitivity with respect to

the loads of the four data links of the network in question. Similar observations for the

approximations like those for Table 21b are valid. It is significant that in all these tables

the sign of the exact values of the sensitivities and of the approximate sensitivities is always

the same. This guarantees that the the use of the approximate sensitivities (instead of the

computationally inefficient exact expressions) in optimization routines will still move the

optimization algorithm (e.g., the gradient descent algorithm) to the right direction for
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optimizing the objective function (performance measure) of interest.

In Table 22, the voice and data revenue sensitivities for the radio network of Figure

2 are presented for a vector of voice revenue rates (1.0,1.2,1.4,1.6,1.8) and for a vector of

data revenue rates (1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6). In Table 22a, the exact value and the

knapsack approximation to the average voice revenue sensitivity with respect to the loads

of each of the five voice circuits are shown; the voice loads of all circuits are equal to 5.5.

There is satisfactory agreement between the knapsack approximation and the exact value;

the relative error remains below 10%, for most circuits. In Table 22b, the average data

revenue sensitivity with respect to the loads of all five voice circuits of the same network

are shown for a load of 5.5 for all voice circuits and for two different data load scenarios:

one for which the load of all nine data links is equal to 4.0 and another for which it is 2.0.

The accuracy of the knapsack approximation here is inferior to that observed in Table 22a,

or in Table 21b. This is because the radio network has fewer resources and the knapsack

approximation's accuracy decreases as the number of channels in each link decreases. In

Table 22c, the average data revenue sensitivity with respect to the loads of each of the nine

data links of the network in question is shown for a load of 5.5 on all five voice circuits and

the two data load scenarios of Table 22b. The knapsack approximation here appears to be

more accurate than that of Table 22b. Similar comments about the common sign of the

approximate sensitivities and the exact expressions as for Tables 21a-21b are valid here.

Overall, the accuracy of the knapsack approximation for the voice and data revenue

sensitivities appears reasonable and suggests that it can be used instead of the exact values

(whose evaluation is computationally prohibitive) in problems of data routing, addition of

resources, and so on. A detailed study of these issues will be addressed in the future.

11.6 Required Computational Effort for Various Approximations

Table 23 provides a comparison of the computational effort required for generating

the various approximations and exact values of the probabilities of voice blocking and data

queueing for the radio network of Figure 2 and the multi-rate network of Figure 3. In

the framework of this comparison, the radio network of Figure 2 is typical of a small-size

network and that of Figure 3 is typical of a medium- to large-size network. SUN SPARC

Station II workstations were employed for all necessary computations. The computer code

was written in C and was not optimized.

From the table we see that the computational advantage of the knapsack and Pascal
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approximations over the exact expression is tenfold and over the Monte Carlo summation

is thirtyfold for the small-size network of Figure 2. For the mid-size network of Figure 3,

the advantage in speed of the knapsack and Pascal approximations over the Monte Carlo

summation becomes six-hundred-fold, whereas the time necessary for the evaluation of the

exact value is prohibitive for most computers. With the latter statement we mean that the

required computation time is estimated to be of the order of 6 to 7 days for that paradigm

and thus useless for optimization (control or resource allocation) purposes.

The computation time for the probabilities of voice blocking and data queueing ap-

pears to be identical for both network paradigms, despite the fact that the probability of

data queueing is inherently more complicated (additional conditioning and averaging are

involved), for the following reason. We store the pre-computed (recursively) values of the

conditional M/D/c data queueing probability (conditioned on the voice state) and then

use them in the knapsack approximation (refer to Section 5 for the appropriate equations

indicating the conditioning and final averaging). Of course, the memory (storage) require-

ments for the evaluation of the probability of data queueing are considerably larger than

those of the probability of voice blocking.

Table 23 establishes the unquestionable computational advantage of the knapsack

and Pascal approximations over the exact expressions for the performance measures of

interest and for networks of any size. These two approximations appear to require a

computational effort that remains relatively insensitive'to the network size. The Monte

Carlo summation method is computationally efficient only for small- and mid-size networks.

These facts, together with the very satisfactory accuracy of the approximations over the

entire range of traffic and network parameters of interest, establish these approximations as

excellent candidates for the time-efficient and accurate performance evaluation of networks

of arbitrary size and resources (link capacities), as well as for the derivation of near-optimal

control schemes that optimize the above performance measures.

82



12. CONCLUSIONS

In this section we recapitulate the most important features of the approximations

developed in this report and draw conclusions about their applicability to problems of

network control and optimization, sensitivity analysis, and performance evaluation.

12.1 Accuracy and Computational Advantage of Approximations

In this report, we developed reduced-load approximations (based on the stochastic

knapsack and the Pascal distribution) and Monte-Carlo summation techniques, which en-

able the accurate and computationally efficient evaluation of the probability of blocking

of voice calls, the probability of data link queueing, and the average data link delay in

integrated multi-hop radio networks. Accurate and time-efficient approximations are nec-

essary, because the computational effort for the evaluation of the exact expressions for these

performance measures is prohibitive for networks of even moderate size. By contrast, the

approximations of this report (refer to Table 23) are very time-efficient.

12.2 Application of New Approximation Techniques to a Broad Range of Net-

work Architectures and Traffic Types

Although the knapsack, Pascal, and Monte-Carlo Summation methods had already

been applied to multi-rate voice-only circuit-switched networks, they had never been ap-

plied before either to the performance evaluation of multi-hop radio networks or to networks

with integrated voice and data traffic. And, even for multi-rate voice networks, they were

thought to be accurate only in the limiting regime characterized by large link capacities

and large offered voice loads while their ratio maintained a fixed value.

In this report, besides extending the applicability of the aforementioned approxima-

tions to radio networks (with transceivers at the nodes being the network resource rather

than the link capacities) and to integrated voice and data traffic, we showed that these

approximations exhibit excellent to very satisfactory accuracy, for the entire range of

network parameters (e.g., size, link capacities, number of transceivers at nodes) and

traffic parameters (e.g., voice and data loads, voice activity and silence periods) of inter-

est. Moreover, the accuracy of the approximations is very satisfactory not only for the

average performance measures (i.e., averaged over all circuits and links of the network)

but also for the performance measures characterizing individual circuits or links.
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These approximation methods are applicable to single-rate networks characterized

by a single bandwidth assignment for all voice circuits, as well as to multi-rate networks,

in which calls with different bandwidth requirements are accepted; in both cases, the data

may be transmitted at a lower rate than that of the voice traffic. Moreover, our methods

can handle voice models with periods of activity and silence, in which data is trans-

mitted during the silent periods of ongoing voice calls. Finally, our methods are applicable

to variable-rate traffic voice or video; in these situations the rate of the source can

assume a number of different values (from a fixed set) as time varies. Our preliminary

results actually show that our approach (based on the knapsack approximation) is appli-

cable to sophisticated Markov-Modulated Poisson Process (MMPP) models for the

variable-rate voice or video traffic with only a small increase of computational complex-

ity. In this context, besides variable-rate voice, video telephony as well as full-motion

video sources can be modeled and networks with such traffic can be analyzed.

12.3 Application to Control and Optimization Problems

Besides employing these approximation methods for the accurate and time-

efficient performance evaluation of integrated multi-hop radio networks (and of more

general multi-rate networks) we can use them for control and optimization purposes,

because of their computational efficiency. The recommended general methodology here is

to use an accurate and computationally time-efficient approximation (e.g., knapsack) to

evaluate the specific performance measure(s) (single measure or multiple measures in a

weighted sum) of interest and carry out the minimization (optimization in general) with

respect to the most promising classes of controls. The controls derived will be near-optimal

in the sense that their performance will be very close to those of the really optimal ones

that are derived from the optimization of the exact performance measures.

In particular, we have shown (refer to Table 20) that threshold policies for voice-

admission control that minimize the knapsack-evaluated probability of voice blocking

improve substantially the performance of the controlled network over that of the network

without admission control and actually come very close to the performance of the optimal

thresholds (which minimize the actual voice blocking probability). Without these compu-

tationally efficient accurate approximations to the performance measures of interest, the
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derivation of near-optimal control schemes is not feasible and one has to resort to ad-hoc

designs.

Moreover, the sensitivities of suitably defined voice and data revenue measures

with respect to link capacities (or number of node transceivers), voice loads,

and data loads were evaluated via the knapsack approximation and shown to be very close

to the actual values (refer to Tables 21 and 22). Again, these approximate sensitivities are

much more computationally efficient than the cumbersome (and usually prohibitive) exact

expressions. Actually, as our results establish, there will be almost negligible loss in revenue

when these approximate sensitivities are used in place of the exact ones. Consequently,

important practical problems of allocating additional network resources in response

to increasing voice and/or data network traffic demand can be easily handled with our

approach, as well as problems of data routing in which the derivatives of the data delay

(or the probability of queueing) are used by standard optimal routing algorithms.

12.4 Application to High-Speed Networks

The approximations to the probabilities of voice blocking, data queueing, and the

average data delay developed in this report can be also applied to important problems in

the area of high-speed networks, with proper modification. These include:

(i) algorithms for the set up of virtual paths for video, .voice, and high rate data sources

in asynchronous transfer mode (ATM) networks.

(ii) schemes for admission control of different classes of traffic in ATM networks, and

(iii) specific formulations of the problem of multicasting hierarchically encoded data to

destinations that can receive subsets of the transmitted signal according to their band-

width and access constraints.

In all such high-speed network applications, the approximations of this report are expected

(after suitable modification) to provide both accurate and time-efficient performance eval-

uations and to be used for deriving near-optimal control schemes and resource allocations.
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APPENDIX A

Proof of Part (a) of Proposition 3.1

(System Steady-State Distribution)

The starting point is the chain rule for the steady-state probability of the voice state

() namely

PCN_, s, n=) = N" A ._ P(n, AV). (A - 1)

Since voice has preemptive priority over data, the analysis of the voice component can

be isolated from that of the data component. Consider the voice state vector (NL,,NL);

denote

a•+, I -., ,;,,n; - 1,.n;+,,..., n",

(n: = , ... , _ , + L +,....-n;,I
(n,,= , .,. . " ._ n '+ 1n ,...npI

n.-, n; -n 1, n;+,,.., n•.p,).

The global balance equation for (NA,, _•,) is

P(A;,.A;).- ,[,;I+ (n; - ,)p + (,n;-,g)a + n;# + F;* + , o_ .1

pPEP[PA; As-Fv a, + P (N__.-, ,N..p). F..v

L ,,*) - (n; + 1)p + p(L,,A;,) • (n" - n + + 1)-2

+P(N_.•,P, N_•,).(n;,+ 1)pv,+ PCA +N,, N ,). (n ,- n;+ p (A - 2

for (L,,A,), (all, ,,) E RS.

The local balance equations for (A;, A;) are

" a + (A - 3)

(n' - n;)' = ,,8 (A - 4)
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-;) = P(N;,N_) (n; + 1), (A-5)
P(_•, n); = P(E_, b_•.)(.. - n; + 1)a (A -6)

P_, ) F;- = (n; + 1)A; (A- 7)

PN "Fv' PL",+ N (n , ;P
,__•)V. •+ =(•, ).n+ -)P, (A -8)

for all (NN),(- ,N.) E Ri..

It is straightforward to show that the P(b_;, N_.p) provided in Part (a) of Proposition

1 is a solution to the above local balance equations. Any solution to the local balance

equation must also be a solution to the global balance equation and, as P(NL,,NL,) in

Part (a) satisfies the balance equation, it is the steady state probability.
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APPENDIX B

M/M/c and M/D/c Data Models

This appendix reviews all important formulas of the M/M/c and M/D/c data models

and sketches the relaxation method proposed by Tijms [13] for the evaluation of the steady

state probabilities and other quantities of interest for the M/D/c model.

B.1 Useful Expressions for M/M/c Data Model

The steady-state probabilities satisfy the recursion

\Pi-• = min(j,c),unj, 1 = 1,2,...

and are given by the expressions

( (cp)_j--TW./P0, j--O0, 1,1...,¢C-l,
P= (cp,)'~

c!CJ-CP0,

where

o-1 (cp)k (cp)c

E=k! c!({ 1-p)

The probability of finding the system busy (blocking probability) Hl. = P{j Ž c} =

" p is given by

= (p~ jC-1 (COk (CPYc
c!(1-cp)c 1 Zk! + c!(l-p)f= Ti - ) Ik=0

The average number of customers in the queue E{Nq} = _A(J - c)pj is given by

C--1

(cp)cp (TQCp)k+ (Cpyc
E(Nq) = c(1-p)2  + c!(1-p)f

Finally, the probability distribution of queueing delay (i.e., waiting time, not including

service time) Wq is given by

00 j-C k

P {Wq > XI = =e-°.z 1! _nWe-C'(-5 ), X > 0.
j=c k=O
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and the average queucing delay is given by

E(W,) = E(N,) (cp) 2 C C(cp)" (cpY

Ik=-0

B.2 Useful Expressions for M/D/c Data Model

The steady-state probabilities satisfy the following equilibrium equations

C

M(t + D) = , pk(t)e-D

k=O

and

p,(t + D) =Zpk(t)e-AD + Pkte> 1
k=0 k----+l

where D is the service time.

From those we can derive the recursion

.A(D C C+j (A)k+c
A-D (,\D)J - AD ((AD)j-+-k+)'

Pj e .. Pk + pke-kZ+ c) = O, 1,...
k=O k=c+l

where
00

I-•pj =I
ji=-O

The average number of customers in the queue can be also derived as

EN =(cp)2- c(c- 1)+ Zj=0{c(c )-1) -j(j- 1)}pj
(q) = 2c(1 - p)

and its second moment as

(cp)3 - c(c - 1)(c - 2) + Z_-'{c(c - 1)(c - 2) - j(j - 1)(j - 2)}pj
E(Nq(Nq - 1))-= 3c(1 - p)

S(c - 1 - cP 2) E(N,.

1-p
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B.3 Relaxation Algorithm for Evaluating Steady State Probabilities of M/D/c

Data Model

The above recursion for the pj's can not be used directly to find the pj's of the

M/D/c system because it is equivalent to an infinite system of linear equations. Thus we

first truncate it to a finite system by using a sufficiently large integer L chosen so that

00 

"

Epj < EpXP _< 10-9
j-=L j=.L

where XP for j = 0, 1,... denote the steady state probabilities of the M/M/c system,

which are available in closed form (see Section B.1 above); the inequality reflects the

intuitive fact that the M/D/c queue involves less variability than the M/M/c queue.

It turns out (see [13]) that for light traffic it is preferable to use the truncation to L

terms described above. However, for non-light traffic, unacceptably large values of L may

be needed. In this case it is advantageous to use the theoretical fact [13] that

Pi-I r 7 for all sufficiently large j
p1

where

1+6/A

and 6 is determined as the unique positive solution to the equation

(e6D/c_ 1) = b

This asymptotic result is exploited in the following manner: for all j such that 0 N j <N

we use pj and try to determine their value from the system of linear equations; for all

j > N we use

p , TN-jPN for j > N

where N > c. It turns out (see [13]) that the necessary value of N is smaller than the

necessary value of L (of the previous paragraph). The procedure for obtaining the pj's is

sketched next (following [13]).
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After truncating the linear system of equations involving the pi's to an (N + 1) x (N + 1)

linear system and replacing the probabilities p, by PNTN-j, for j > N, we obtain the

following system of linear equations:

N

pj 'ajkpk, j = 0,1,...,N
h-0
k;ij

with
N rT=p " PN (16)

where

1-a minc) <_j _N N-1, O<k<min(c+j,N-1)

C-- +j rNka(j-k+c)
a,.N =• 1amnc , N-c<j•<i -1, k=N

1-a(min(jj-c)) 'N -- ---
aCinjj_,(j,-k+c)' .1j=N

0; otherwise

Here,

a(t) = eAD(AD)l/e!, for t > 0.

The above system of linear equations is solved via the modified successive overrelaxation

method of Tijms [13].

According to the standard successive overrelaxation method the operator B" associ-

ated with a relaxation factor w transforms each vector x = (xO, X1 ,..., XN) into the vector

B,,x, whose components (Bx)i are defined recursively by

i-1 N

(B,,x) = (1 -w)x + w [Zas(Bwx)i+ E ajx o,1..,N

Assuming that the integer N is sufficiently large-so that the reduced system of linear equa-

tions has a solution-then this solution is an eigenvector of B,, with associated eigenvalue
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1. Letting AI (w) be the eigenvalue having the largest absolute value among the eigenvalues

of B, unequal to 1, the standard successive overrelaxation method with a fixed relaxation

factor w converges only if IAI(w)I < 1. Moreover, the standard overrelaxation method has

the best convergence rate for that value of w for which IAI (w)I < 1 is smallest. It should be

noted that the optimal value of w may be rather sensitive to the parameters of the specific

problem considered and, in some cases, will be close to 1.

The problems of the standard overrelaxation method are avoided with Tijms' algo-

rithm [13]. In this algorithm w is always kept between 1 and 2. In case A,(w) is real,

the algorithm estimates Ai (w) after some iteration of the overrelaxation method (see the

parameter rh in the algorithm below). This estimate provides a method to formulate a

successive overrelaxation algorithm, in which the relaxation factor is dynamically adjusted

in order to search for that value of w, for whtr IA, (w)I < 1 is smallest. The steps of Tijms'

algorithm for the calculation of the state probabilities in the M/D/c queue are provided

below.

Special-Purpose Overrelaxation Method for the M/D/c Queue

Step 0. Choose N > c and x° > 0 with

N
x9 r(,r -1)-'x' =-1

i=0

Also, h 0 and w 1.20.

Step 1. w'ld := 0, A(Wold) := 1, fh ri := oo.

Step 2. h := h + 1. Compute the vectors

ih = BXh-1

-1

=N]

and the scalar

i=o
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If f < eN, with eN a prespecified accuracy number, then go to Step 4. Otherwise

rf'-

If rh > 1 or h > 10, then w is likely too large and decrease w, as w + 1(W

put X0 := xh and h := 0, and go to Step 1. If rh < 1 and rh has sufficiently converged,

according to I(rh - r"- 1 )/r' I < 0.025, then go to step 3; otherwise, return to Step 2.

Step 3. A(w) := r". Test for one of the following four possibilities: (a) w > weld and

A(w) > A(wod); (b) w > wl and A(w) <5 A(w*id); (c) an < Wod r ( jold); (cd)

w < weld and A(w) < A(wold). For the cases (a) and (d),

wold := W, A(Wold) :=(), w:= 1 + 0.85(w - 1)

whereas, for the cases (b) and (c),

wold := -w, A(wold) := A(w), w := 1 + 1.25(w - 1)

Next, x0 := xh, h 0, fh := r" := oo, and then go to Step 2.

Step 4. If

N jjjý iV 11 <1 o
t=0

and

i=O j=O

then the algorithm is stopped and the state probabilities pi are obtained from

pi= = for0<i<N andpi =-N-ixA fori>N.

The above stopping criteria use the fact that the probabilities sum to 1 and that the

average number of busy servers equals cp. Otherwise,

x? :=4x for0<i<N and x? := -xi-- forN <i <N+10
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N := N + 10, h := 0, and then go to Step 1.

B.4 Recursive Algorithm for Evaluating the Probability Distribution of Queue-

ing Delay under the M/D/c Data Model

To compute the probability distribution of the queueing delay W1,, that is P{W9 x ),

we first find an integer m and the remainder u (0 :< u < D) such that

X = mD + u.

Then we obtain the desired quantity from

P{W, < x} = brnc+c_,(u)

where the bi(u) satisfy the recursion

Pi = bj-k(U)e- -k! for j =0,1,...
i=0 k=0

with initial value

bo(u) = e"'pO.

Actually, for computational purposes the following recursion is preferred

.U j -1 (_Au)j-k,
bi~u) "- e" Lpi - b(u) ( k for j = 1,2,.bu= o ~~Zk~uo (j -k)! '"

i k=0

or equivalently

AU j-1 (-Au)-k AU )

b.(u)=eA pi-Zbk(u)(j k)! (:7k1), for j=1,2,...
k=0

The above recursion should be used in combination with the approximation

P{Wq > X} ;, ae-'r for x > D/Vrc.

In the above approximation 6 is again determined as the solution to the equation

A((e 6DIc - 1) =
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and a is given by

7Fr - 1)2 Tc
1
I

where

A

and

7 lIbn ripi i=p(T
j~oo ClT - AD
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APPENDIX C

Proof of Proposition 5.1

(knapsack Approximation)

From the proof of Proposition 3.1 we know that P(NVN_") satisfies several local

balance equations. But actually the first two of them are sufficient for solving P(NL, _.).

For the same reason, the following two local balance equations are sufficient for obtaining

P(k,m)

"+ p;P(N;-, ;) = (n" - n;)P(NL", NJ), n' > 1 (C - 2)

where we have dropped the subscript P in . , , and in the other vectors in order to

simplify the notation; as usual, pw = Fp/p". Summing both sides of equation (C-1) with

respect to (YVN) E Q(k, m), one can obtain

a V P(N-',NO-)= L nP(N., b.°) (C - 3)
.Ni ,(.N-,.NJ)EO(k,m)

where

0(k,m) n f>n", 1} =

{(N", N'11 < n" < n", rp <5 rpnv<c, 0:. . . ..n,0:5rn lqpEPi 4P

r rqn,+rp(n;--1)=m--r,, r nV+rp(n'-1)=k-rP}.
qEPt ,qOp qEPt,q*p

For the RHS of (C-3) we used the fact that, if n; = 0 then RHS =0 and if n= 0 then

n =0 and thus RHS =0. If we define

n- 1, p=q
hq n., p I, q

V - 1, p=q^iv nPV-
nq in nq, piA q
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and replace (n•,n,) by ( in the LHS of (C-3), then Q(k,m) fn {n,n; Ž 1) -

Ql(k - r., m - r.) with the new variables and we can rewrite the LHS of (C-3)

0, + '3pptP(k - r., m - r.).

Moreover, we can rewrite the RHS of (C-3) as

n, P(_..V,__N O) ,.,., "i , m ).
P" P(k,)m)

Note that

P(_(N-.,N '(km
P~jvNa E rqn; = m, TqTZ -n k) - 15(k,=) (Nv, N) E fl(k, m)

q9E, , q {0, otherwise

Denote

E[nIk',m]= n.; .P(Nv,NsI rqnq =m, 1: r =n" k).
(~jN)fl~~m)qE~'a qPi

Then the RES of (C-3) becomes

E[nP'k,mJ P(k,m)

Equating the modified LHS and RHS of (C-3) we have

a + 13p;P(k - r.,m - r,) = E[n;Ik, m]. P(k,m). (C -4)

Following similar arguments, we obtain

S" ppP(kJ - r.,m) = Efnv - n;Ik, m] P(k,m) (C - 5)

from equation (C-2). Multiplying equations (C-4) and (C-5) by rp, summing with respect

to p E PI, and using the facts that

{ rn;km =M
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and

E{ZTP,(n;-n;) k~vn}=k-m

we obtain

r ppp•P(k - r., m - rp) =m. P(k, m) , p <m < k < cl

and

Zr,op"P(k -r,,m)=(k -m) P(k, m), 0 m <r,, 5k <cg.
Q +

Finally, by defining

P'(k,m) = P(k, m)/P(O,0)

we derive (5.10a) and Proposition 5.1 follows.
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APPENDIX D

Four-Dimensional Knapsack Approximation

(Proofs of Propositions 5.2 and 9.1)

In this appendix we provide the recursion for the computation of the four-dimensional

knapsack approximation used for evaluating the probability of queueing of data and the

average queueing delay of data (Sections 5.2 and 7.2) and for the probability of voice

blocking with admission control (Section 9). We present the proof only for Proposition

5.2; Proposition 9.1 follows as a special case of 5.2.

Here we provide a recursion for P(kl, M1 , k2 , Mn2 ) defined as

P(k 1 , mi, k2 , M2 ) = E P(N a)
(N.',_.8)Ef(k,-m ,k2 ,m2 )

where Pi for i = 1, 2 are two arbitrary sets of paths, with P, i P2.

0 <_ ki =E r•(inp < Z., i =1,2

pETP.

0_ ri = -r(i) n; - k,, t = 1,2.
pE P

Notice that these inequalities can represent any constraint involving a linear combination

of the number of voice calls n" of all classes p E P',. The coefficients rp4) (i = 1, 2) may be

equal to the rates rp or may be arbitrary non-negative constants. For example, Z1 = cl

(1) (8)and rp = rp whereas Z2 = T, and rp) = r. corresponds to the scenario of Section 9.1.

Also the general case of unequal rates rA0 of path p under the two constraints i = 1, 2 (i.e.,
(1) r(2)) a u

rp i r, 2 ) can be handled by our analysis. Finally, f?(kl, ml, k2 , 2 ) is defined by

il(ki,mi,k2,m2)={(___NN)10_< ns < n,pE •=*PIUP2; Iyr(')- ki,,,.-

pEPi

EZr()ns= m,,I' = 1, 2
pE10 1
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Z, ki Z2  k2

kt=0 oai0 k2=0 m 2 =O

The starting point is to consider the first two of the local balance equations for P(N', N)

given in Appendix A, namely

"+(N"- ,N_;-) = ;P(Nv, N'),n .,, >_ 1)

and

6 +P;P(N"-,IV*) = (n" - ra)P(N ON), n > 1
a + 0 -'P1 '

where we have dropped the subscript P in N•,•, AO,., and in the other vectors in order

to simplify the notation; as usual, p,' = Fp/p'. After summing both members of these

equations with respect to all (L',,NO) in the set 11(k 1 , ml, k 2, M 2 ) defined above we obtain

V-- np. P(v (N-,N-= .;(NO,•)
(N",A')EIIfl( ,mi,k,m2,.)n {.;,.n,> l}(N".• ent• - t,,

(D-1)

and

•--- IP, ( N O-N )=X (n-;--;)P(Nv,N ')
(Nt',A*)En(ki,mi,k,•,M)nfn;,,.;_>1 (NAN')Ent(k,-j,k2,•,M)

(D-2)

where

f(k 1 ,mi,k 2 ,m 2 ) {n ,In >n 1

={(_,_p 0n, n;_ n'; q P , q E N'P;

_.,. + r')(n - I(p E Pi)) = - r.(,)I(pE P•,)

qeP ,q#p

Z _r('.,n'+r-'-(nv -I(pE 7)) = k-r,-,')I(PE P,,), i =,2

qEP ,q:1p
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The LHS of (D-2) becomes

V ~k -r~) (PE Pi, i- A" (P E 'Pi), k2 - r-(2) I(p E P2), M2 - r (2) I(P E P2))
o °BpPP l - rP~ P P>)m -r

Note that if m, = 0 then p ý P,, (since mi = 0 implies that n; = 0, Vp E j,). The RHS

of (D-2) can be written as

P(ki,m 1, k2, M2) .Ena P(Nv, Ns_)
SP(kmml,mk2, M2)

(_N.',N.')EQt(kj,mj,k2,-2)

where

P tN•N°• E -O-V-i' -i)-°=Mi, = 1,2
P((E7,') r,')nv= ki, P -

pE'Pi pC-ri

={N nI, 2 ,"; (Nv2) E Q(kl, ml, k 2,m2 )

0; otherwise

Since the RHS has thus taken effectively the form of the conditional expectation of n,

given (ki, ml, k2 , m 2 ), by combining the RHS and the LHS we conclude that

+rio; p k1 - rP,')I(p E 'Pi),m1 - r(l)I(p E P•1 ),k 2 - r(2) I(p E P 2 ),rM2 - r(2)I(p E P2)) =

= E[n";(kii,,, k 2 ,m 2 )]. P(ki,ml,k 2 ,m 2 ) (D - 3)

FRom equation (D-2) we can obtain in a similar way the equation

0 +p, VP (k, - r( I)I(PE "PI), ml, k2 - r (2)I(P E P2), M2)

=E[n' - nrl(ki,ml,k 2 ,m 2 )]. P(ki,mi,k 2 ,m 2 ) (D -4)

If we multiply equations (D-3) and (D-4) by ri and sum with respect to p p P, for

i = 1, 2, we obtain
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P(k1 , mi, k2 , m 2 ) =

(ul a+ ((1) (1(2
--- [F, ,,'.r' Pr(k\- r,ml-, ,kV2 m2) +EE6p1 r 2 ri 1 P(k r. m (1),k2- )ym2 - ]

if (1) < m, < ki <_ Z, r(2 ) < m 2 < k2 < Z2;

[P(k 1 -41) ,m1 - ) k 2 , M2 )]

if r < mi < ki < ZI,0- =M2 <7 k2 <: Z 2 ;

__ _ 2) (2)(2)k, 'm [••,,,• ,) •P( ki, ,mi; k2 - rIM2r - rj I]
E'riPC P p,

if 0 = mi <7 kl <: Z1 r( 2 ) < M 2 :5 k2 <: Z 2 ; (D - 5)

1 1)v(1) ()v(1)(2

;~*~ ~ ~ , 1; k2, m2)~,EplflV ý,pP(k1-rp ,ml;k2 -r~~..

if 0= ml <~ < k1 :5 Z 1 ,0M 2 < ((2) <k 2 <Z 2 ;

1; if k 1 =0,m1 =0, k2 =0,m2 =0

0; if kj, mI are not positive integer multiples of r1)

or k2 , m2 are not positive integer multiples of r2)

which provide the desirable recursions for evaluating P(kl,mi, k2 , M 2 ) for all

(ks, mi1 , k2, M 2) after performing the normalization

P'(k1 , mi, k2 , m 2 ) = P(k 1 , mi, k2 , m 2 )/P(O, 0, 0, 0).

104



APPENDIX E

Proof of Proposition 6.1

(Pascal Approximation)

When c = oo, we may rewrite equations (6.7) as

P(k, m)= • P(k -1,O0), m=O; l<_k<_oo

• •m-1..P(k-l,m-1), 1<re<k; l:5k<oo

where
00 k

EZ1 P(k, m) = 1.
k0 m-=0

To express P(k, m) as a function of P(0, 0), we write

M! P(o,0), Mr=0; 1 < k < oo

P(k, m)- I'[• 0m 2*.' - ".P(O,0), 1_<m_<k-1, 2<k<oo

M!A2i •P(0,0), m=k, 1 <k<oo

and equation

Z P(k,m)=1
k-O m=O

becomes
cc oo cc k-I

P(O,O) + EP(k,0)+E P(kk)+E E P(k,m)= 1
k=1 k=1 k=2 M=1

which results in

_____ i~1=o2 ' c fj A2,i IMO A.iAr, 1
1 + Ilk I E I( __- m P(O(rn))]

k---- k=1 k=2 m=1

Let
ej2

a j = -
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bi =-.Ej

for j = 1,2. Then by definition,

Aj,i = aj + i bj

for j = 1, 2. After certain manipulations, we have

___ (flk k-1 k-rn-i
k-• Aa~ l-L'oL2,i• 1 t2 , =o ^1,,

1+ !k! M. (k -rn)!(1+ colri_• + 00 fi r0'-1\2,i

= (1 - bi)- • (1 b2)-&2/62

Then

P(O,0) = (1 - b1)1/Ib. (1 -/•).,Ib2

Consider the moment generating function

00 oo k--I

E[TkSi] = P(O,O) + E [P(k,O)Tk + P(k, k)TkSkj + 6 Z P(k,m)TkSM

k=1 k=2 m=1

P(O,O). 1+ ni= ,i T) k+ -TS))

oo k-1 ]- l - -1(\~

+HT (A2 ,i T S) H'(i=o ( T)
F, E m! (k - m)! Jk--2 m=1

Note that

A1,, . T = a, " T + ib, - T

A 2,i • TS = a 2 • TS + ib2 - T. S.

Therefore,

E[TkSn] = (1-b.j-T1(1 -b 2TSy-*
0b, 1 --
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Then the first and second moments of k and m are

Elk - mlE[k] -E[m] = OETS1a
6 T=S=l IT=S=l

( a 2 b2+ia, ___ a

' 1-b)1

aa2
- b2 1

2

T= =S

+a2 
)

2) (I -b 2 ) 2

a2  _ 2

(1 -b 2 )2  ~2

var(k -m)- "'IFTS 02 E[ +var(m) + E[k] -(2Efm] - Elk])
o T=S=1- &a T=S=1

cov(k - m, m) = E[(k - m)m] - Elk - m] E[m]

= 2 E[T kSm] -E~k]Ejm] - var(m)

=0.
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APPENDIX F

Proof of Proposition 6.2

(Pascal Approximation)

For the single-link, multi-rate, infinite capacity scheme, the steady-state probability

of voice P(N", N ) in Section 3 is

P(_',_N') = G 1 ,n;!(; - n;)! (a + #) '

where
(,Pv)"; n";pn;-n,*

G P- -T; !'&+r) n

o<,,;_o= pEP -'"

O<n;<5n;,PE

and it is approximated by

G~ I z(,p;)ll; Ckn;#nf;-fl;
1,•'1 ,<,;<* !(n" - n',)! (a +6

Pro<.t;<.; P

which means that the voice states of the different paths are assumed mutually independent

in this single-link analysis. This is motivated by the same interlink blocking independence

assumption discussed in Sections 4.1 and 5.1. Therefore, we may define

P(Nv N,) =" P(";,-;)
pEP

where
(p;,).; n";#;-n;

P (a+#)-; 1

P ~n;!(n- n;)! C,

and
(pv)-; on; p.;-

Gp = z (Pr+'E< 8 n.(n - n;)!
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In the following we use P(N__,N) instead of P(•.',N) and P(N7) instead of P(Nr)

to distinguish the approximations from the exact values. Next we evaluate the first and

second moments of (N', N) as follows

E~nI= xi Zr~n;.-P(E~",I~) Njj Zr~n. P(F-
o< s_<a. PEV 0_<o;!S- pEE

o0n*.<n,,pE' PEr

where

p(Nt ~~~(P) = i i ;]p(n;)

and

p(n.) [(p;)n;l[(~
v) n;! v

P(Xv) is the approximate steady-state probability of state NV, where the state vector NV

represents the number of channels occupied by voice taking path p, for p E P. Combining

these results yields

E[nJ= r Zrn"lIp(n;)Zf r. n" p(n;)=Zr~pp
o<,•! 'a0 pEY pEP pEP 0<n;<oo pEP

pE.1'

and similarly

O<n;:S- pEP PEIP pEP 0 < n;: 0
O<n <n,p O-%:nt<'

Note that using the definition ," p(n', n;) above we can express n; p(n, np) as

n;- ~n, () P ()+#);;-ap
n;,.P(n;,,n,) = (n; - 1)!(n, - n;)! a+# G"
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and thus through summation obtain

Therefore,

E~n.I Z,;
PEP

Since n., depends on NV but not on N', we can use directly the result of [61 for voice-only

traffic (without silent periods):

var(n.) = (P'"
PEV

Moreover,

E[n2,] = n;Z_7 '

O<n <n",pEr

E ~ rpn;2  ~rp,*,rqn,) P(N', NS)
0n"W<0c pEP PEIP qErP

O<n;<nnJP' qiOp

11



Then, since

A

O<n;:n;

L.dp (n;.-.)!(n; 7 1 ;)! a +fG
p- ,

a PP n - p) p +-p

a 5's(n; - 1)!(n; - n,(n; - 1)!(n;- n;)! G

p p
Cf~ ~ ,- pp 

L +Ga + ~(n; - 2)(v- n) +, P

[- P_. P

a V . I + a Ap

and

O~~n;:5n; 0 on-<n; ..- :n

we obtain

E~n2,1 Zrp V+.... ak ±)2 +E :rprqioPtP C')
PEIP Cr + P ( +# pPEIPg~r p q C

= p p
p~r a+/3



From the above expressions for Efra.J and E[n,2] we can easily derive that

vaT(n.) = E[n2.J - (E[n.J)2  '2Er2,=

Similarly, we can write

Ef~n, - n,)]= rn n')

O<Ru:Sn

= 9:r2E(;- )2nn)

per~9 8: q,<6

+Z rr.Z (Ta-n;)p(7a;,n;) Z (n - ,)~` ;
PE PE E~~a 9 Pso

q*P O~;:5n;O<u;<Sn;

and since

E n.t -2 C, n)(t n1-1!+ PG

p P pE /

an decoclue that

var(n1 , - n.) = Ef(n1, - n 2- (E[nv , ] v) 2 2-

per
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Finally, we write

O<ne <fn;

- ,- p

PEP O< n" <cc per e : n;EP 0uoo ')(0u:
P n;O<na:Sni O<un'

and since we have that

p...<O 0SCm SG pc

O-Zn;<n;[Zn;PSn; +'

we derive that

E[n, .n.] r r f ~(P +p 2  Z 7 q a p~
pa+# pP E ? -+#

a r2pV + a v)(2

a+P 'pEP

and conclude that

cov[nv,,n.] = E[n,, n.] - E[nv] - Ejn.] = a V rp

Consequently, since

cov(n,, - n., n.) = E[(n. - n,,)n.] - E[n,, - n.] -Ejn.] cov(n~,,n.) - var(n.)

and as we established above coty(n,, n,) = var(n4), we also obtain that

COV(nt, - n., n.) = 0.
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APPENDIX G

The Knapsack and Pascal Approximations to

the Probabilities of Voice Blocking and Data Queueing

Are Identical for Networks with Single-Rate Traffic

In this appendix we prove the validity of the claim made in the title. We show that the

knapsack and Pascal methods provide identical approximations to the main performance

measures of this report: the probability of blocking voice (Section 4) and the probability

of queueing data (Sections 5 and 6). The same is true for the average queueing delay of

data (Section 7), as well as for the probability distribution of the data queueing delay, but

we omit the proof since it resembles the one for the probability of data queueing.

The single-rate case is characterized by

rp=l forallpEP

where 1 is the required data rate (bandwidth) of voice; the required bandwidth for data is

then 1/r (where r 1 1).

G.1 Probability of Voice Blocking for Single-Rate Traffic

Knapsack Approximation

In the single-rate case, the recursion of equations (4.6a)-(4.6b), which provides the

weights necessary for the knapsack approximation to the voice blocking probability of

(4.5), reduces to

w(n)=- w(n-1) for n=1.2,...,cl.
n PM PPl

Pascal Approximation

In the single-rate case, the recursion of equations (4.11b)-(4.12b), which provides the

weights necessary for the Pascal approximation to the voice blocking probability of (4.13b),

reduces to

q'(n) -- "q'(n - 1) for n = 1,2,...,ct
n
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where

a2

with

CEE f n}) Zrp;= p"
pE'Pa PEVI

and

012 =varfn,}= r.p= P;.
pE?, pEPj

Since e = o2, A,-\1 simplifies to

resulting in

q'(n) = - q'(n- 1).

Since as we know

W(O) = q'(O) = 1

comparison of the above simplified recursions for the knapsack and Pascal approximations

shows that they are identical, that is

w(n) = q'(n) for n = 0,1,...,cl.

Therefore, since the form of the approximations in (4.5) and (4.13b) is the same except

for the w(n) and q'(n), the two approximations coincide in the single-rate case.

G.2 Probability of Data Queueing for Single-Rate Traffic

Knapsack Approximation

In the single-rate case, the recursion providing the quantities P'(k, m) of (5.10a) in-

volved in the knapsack approximation to the probability of data queueing given by (5.9)

reduces to

f V(/()+o)]ZPE p P'(k-1,m-1) 1<m<k_<cPI ~)([a( +) _8) _ItP
P+') P'(k - 1,0) 0 = m <k <c,.
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Pascal Approximation

Similarly, the recursion providing the corresponding quantities P'(k, m) of (6.7b) in-

volved in the Pascal approximation to the probability of data queueing given by (6.21)

reduces in the single-rate case to

P-'(,m) = ( (A2 ,,-mI/m)P'(k- 1,m -1) 1 <m < k <c

t(A1 ,k-_1/k)P"(k - 1,0) m = 0

where
+2 ( 1) ( 24

A2,m--I -- 0+2 - --

2 2

with

e2=Efm)=Efn.} = Z p. v

pEPI PEPI

and

a 02 = = f 7, 2v _.

PIE1P, pEP,

Since e2 o'22, A2,m-1 simplifies to

A2,m-1 = E2 -
E + 'PErt

Similarly,

=,_ + (k -1) (( - 2)

and since

el = Ek~ -m} =f =n,} p

and

a vvarfkm}var{n.}. .. + r P p P P
PE11 PE6I
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imply that el = al, ,A1,k-I simplifies to

Al,k-=I - el
+ 6 pE'P

Using the above simplified expressions for Ai,k- 1 and A2 ,,,-I in the recursion for P(k, m)

results in an expression whose functional form is identical to that obtained for P'(k, m)

in the knapsack recursion earlier in this subsection after the simplifications. Since we also

have that

P'(0,0) = P(O,0) = 1

the knapsack and Pascal recursions are completely identical and thus

P'(k,m) = P'(k,m) for all 0 < m < k < cl.

Moreover, since the expressions providing the approximations to the probability of data

queueing in (5.9) and (6.21) have the same functional form for both the knapsack and

Pascal recursions, we deduce that the approximations in question are identical for the

single-rate case.
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APPENDIX H

Proof of Proposition 10.1

The starting point is the definition

C'-1

W ,4' P(Nj'IN&). E P(n' Ic') .I(c' > 0)

- Z P(N V IN a)wd(-yd, p',c)
(Nw&'1EO

from whichi we obtain

OW ad = I NP')rd4da)

Define

and G(g) as in (3.3); then from (3.2) we have

8 pp 5p;G(z 0)* EP gqE'Pq:P

Moreover,

O; n;!(n - n;)! P
'5IP P

- ~ ~P~)' ~ I(np>0
cfi(n.;- 1)!(n - n;)!

+ -1 (0+0)n;- - I(nv - n'> 0)
ak+#i ,z;(nv-n;-1)! P

and

01 fp
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Therefore

app" (N"v')fl(c pEV

ja (AT_

1~~~ -In >i ~ n1)~Uv 0)]

a+ N1,N'Efl(.EPIi qero(.;!(n;- - n;)!

+ )O~ E fqy P

= -G(c)]V 2  q (A); + O B) 1 f d

-1 ,__)E~ rEq~ a

The tbveexrmss(A) can be obtainted asimlrfr

app" (N ,&) E n U ...+ + Per
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In order to simplify (B), let us consider () f{nn; > n;}, which can be rewritten as

W(_I ,l') 10 :5 E r, n"_< c,,t I E.;0 < E n :5 < : r n",; I VP,
qEPi qEPt qE'PI

0_Zr : ,;< rn;, E p,••EC}

qE'Pa qE'P,

- {(N0N-)I0 - r ren 'c, 0 Tl E q p
qEV• 9EVP qE'P,

0: Z: ren+r,(n;-1)_<cu-rp,0_5 EZr.n;- E r.n,+r,(n;-1),IEP}.
qE'Piq p qEV• qE7'Pq~p

Therefore f(g) nf{n > n,} for vector (NV,N°) is identical to fl(c - rpl.) for vector

(N•-,N) where NL- = N' - Ip, and (B) can be represented as

(B) = G(K - f4).

From a similar argument as for obtaining (B) and from the fact that

C', = C1 - E rqTL + n qT
qErt• qErt

= (cl - rp)- r rn + rp(n - 1)] + 1: qfl, E P,E qP qp 9EV,

we can rewrite (D) as

(D) = G(r - rpp) - Wd(g - rp_.).

Also following similar arguments as in simplifying (A), we can obtain (C) as

(C) = Z II f,wdr_,ed,_C).
(_,1Ef(-r.-,-120) pEP
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Therefore

a w G c) = - r g , - f,'O ,C

+ (~ Ll +i? C.'.iO(d-,&,)E a+ -

G(c) , c- i Wdg-r .)

a~ 1 rrre Wdg
G)a + 6 G~r 4

=(I-Bp~l 0 W)EO-r,-,,e)-WpEg

+~

+ a+ L(C- r,eI) W~, EL) L 'yfolpfPopd, cD I(c, 0)1

where

-~(r N") +~r~z E fl(I - r1)

PEl'a per#
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(k+1 -m,-m

XIA~-m k+1 -m

m m+1

.IA-m-l k-rm

Figure 1. Two-Dimensional Birth-Death Process Used for

the Pascal Approximation
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Figure 2a. The ten-node multihop radio network of [4]

"-- • C1-----

CC I

L c3
c5 Cc 4  -

10 c5

3 6 8

Figure 2b. The five superimposed circuits on the radio network of Figure 2a
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C1 =90

C4 = 120 C2 = 100

C3 = 110

Figure 3a. The multi-rate star network of [3]

Figure 3b. The twelve voice circuits of the network of Figure 3a
and their bandwidth requirements

Voice Links Bandwidth
Circuit Used Required

1 1,2 1
2 1,3 1

3 1,4 1
4 2,3 1

5 2,4 1

6 3,4 1

7 1,2 5
8 1,3 5

9 1,4 5

10 2,3 5

11 2,4 5

12 3,4 5
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Table 1. Probability of Voice Blocking for Different Traffic Loads, Node Transceiver

Vector T = (8,8,8,8,8,8,8,8,8,8), Voice Activity Factor #/(a + 8) - 0.4,

and no Admission Control

Offered

Voice Load Exact Monte Carlo Knapsack Error

A Value Summation Approximation %

0.1 0.000000 (0.000000, 0.000000) 0.000000 -

0.5 0.000160 (0.000096, 0.000224) u.000174 8.75
1.0 0.008654 (0.008355, 0.009262) 0.009802 13.26
1.5 0.047401 (0.044829, 0.061187) 0.053400 12.66
2.0 0.112365 (0.107544, 0.121025) 0.122152 8.71
2.5 0.183607 (0.179594, 0.185808) 0.194000 5.66
3.5 0.307931 (0.302761, 0.316174) 0.317236 3.02
4.5 0.401453 (0.385203, 0.417037) 0.411132 2.41
5.5 0.472130 (0.434905, 0.514719) 0.483226 2.35
6.5 0.527213 (0.505836, 0.540619) 0.539849 2.39
7.5 0.571417 (0.546001, 0.603585) 0.585356 2.44

8.5 0.607742 (0.534647, 0.646869) 0.622658 2.45
10.0 0.651634 (0.616248, 0.705557) 0.667461 2.43
15.0 0.745317 (0.676021, 0.778351) 0.761318 2.15
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Table 2. Probability of Voice Blocking at Each Path for Different Traffic Loads,

Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8), and Voice Activity

Factor 61/( +/6) = 0.4

Voice Offered BP

Path Voice Load Exact Monte Carlo Knapsack Error

p ply, Value Summation Approximation %

1 1.0 0.014202 (0.011101, 0.018019) 0.016567 16.65

2 1.0 0.000730 (0.000000, 0.001098) 0.000837 14.66

3 1.0 0.007371 (0.005950, 0.011421) 0.007925 7.52

4 1.0 0.007371 (0.003915, 0.008254) 0.007925 7.52

5 1.0 0.013596 (0.010745, 0.017536) 0.015753 15.86

1 5.5 0.701485 (0.688131, 0.717825) 0.703886 0.34

2 5.5 0.209734 (0.174270, 0.210641) 0.247334 17.93

3 5.5 0.409218 (0.379417, 0.428384) 0.413480 1.04

4 5.5 0.409218 (0.384999, 0.433277) 0.413135 0.96

5 5.5 0.630995 (0.617493, 0.652789) 0.638292 1.16

1 10 0.885902 (0.858356, 0.887236) 0.869108 -1.89

2 10 0.421298 (0.361902, 0.432984) 0.475328 12.82

3 10 0.571870 (0.502697, 0.570099) 0.593330 3.75

4 10 0.571870 (0.542950, 0.607079) 0.592867 3.67

5 10 0.807232 (0.777385, 0.817837) 0.806672 0.07
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Table 3. 100x Probability of Queueing Data for Different Voice and Data Loads, Voice

Activity Factors, and Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8, 8)

0/f__ +/3) = 0.4 1(a+ 0)= 0.8 0__a_+_3 _ = 1.0
Voice Data 0 _ _ 0

Load Load Exact Knapsack Error Exact Knapsack 1 Error Exact Knapsack Error

A• ' p: Value Approx. % Value Approx. % Value Approx. %

0.1 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 2.5 0.561 0.563 0.36 0.729 0.730 0.14 C.827 0.827 0.00
0.1 4.0 6.319 6.321 0.03 7.313 7.315 0.03 7.852 7.852 0.00

1.0 0.5 0.016 0.023 43.75 0.719 0.743 3.34 2.202 2.250 2.18
1.0 2.5 3.658 3.710 1.42 14.022 14.077 0.39 22.102 22.102 0.00

1.0 4.0 18.994 19.096 0.53 41.084 41.051 -0.08 52.352 52.223 -0.25

2.0 0.5 0.169 0.184 8.88 5.934 5.875 -0.99 17.536 17.368 -0.25

2.0 2.5 9.704 9.579 -1.29 41.319 40.400 -2.24 59.504 58.066 -2.42
2.0 4.0 34.945 33.929 -2.91 73.337 72.121 -1.66 84.803 83.551 -1.48

3.5 0.5 0.430 0.412 -4.18 13.750 13.344 -2.95 39.469 38.276 -3.02
3.5 2.5 15.318 14.991 -2.13 62.819 61.211 -2.56 82.570 80.611 -2.37
3.5 4.0 46.638 45.838 -1.72 87.403 72.121 -1.46 95.741 94.775 -1.01

5.5 0.5 0.625 0.597 -4.48 19.891 19.298 -2.98 55.611 54.038 -2.38

5.5 2.5 18.868 18.491 -1.99 74.061 72.677 -1.87 91.884 90.556 -1.15
5.5 4.0 53.027 52.286 -1.40 94.322 93.527 -0.84 98.617 98.172 -0.45

10. 0.5 0.865 0.804 -7.05 26.723 25.830 -3.34 70.170 70.262 -2.64
10. 2.5 22.286 21.816 -2.11 83.032 81.898 -1.36 97.437 96.739 -0.72

10. 4.0 58.569 57.815 -1.28 97.608 97.203 -0.41 99.761 99.624 -0.14
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Table 4a. 10Ox Probability of Queueing Data, for Voice Loads p" = = 0., for

Different Data Loads and Voice Activity Factors, and Node Transceiver

Vector T = (8,8,8,8,8,8,8,8,8,8)

,61(a +,8) = 0.4 8/(a + =0.8 ____ _+'_ _ = 1.0

Data Data Q1 Q1 Q1

Link Load Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

I Value Approx. % Value Approx. % Value Approx. %

1 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

2 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

3 0.5 0.00 0.00 - 0.00 000 - 0.00 0.00 -

4 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

5 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

6 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

7 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

8 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

9 0.5 0.00 0.00 - 0.00 0.00 - 0.00 0.00 -

1 2.5 0.514 0.515 0.19 0.616 0.617 0.16 0.673 0.673 0.00

2 2.5 0.514 0.515 0.19 0.616 0.617 0.16 0.673 0.673 0.00

3 2.5 0.605 0.606 1.56 0.822 0.822 0.00 0.946 0.946 0.00

4 2.5 0.562 0.564 0.35 0.734 0.734 0.00 0.833 0.834 0.12

5 2.5 0.562 0.564 1.31 0.734 0.734 0.00 0.833 0.834 0.12

6 2.5 0.980 0.980 0.00 0.834 0.834 0.00 0.980 0.980 0.00

7 2.5 0.562 0.564 1.31 0.734 0.734 0.00 0.833 0.834 0.12

8 2.5 0.562 0.564 1.31 0.734 0.734 0.00 0.833 0.834 0.12

9 2.5 0.562 0.564 1.31 0.734 0.734 0.00 0.833 0.834 0.12

1 4.0 6.013 6.015 0.03 6.649 6.650 0.02 6.986 6.986 0.00

2 4.0 6.013 6.015 0.03 6.649 6.650 0.02 6.986 6.986 0.00

3 4.0 6.601 6.603 0.03 7.882 7.883 0.02 8.566 8.566 0.00

4 4.0 6.324 6.326 0.03 7.334 7.336 0.03 7.885 7.885 0.00

5 4.0 6.324 6.326 0.03 7.334 7.336 0.03 7.885 7.885 0.00

6 4.0 6.624 6.625 0.015 7.971 7.972 0.02 8.705 8.706 0.00

7 4.0 6.324 6.324 0.00 7.334 7.336 0.03 7.885 7.885 0.00

8 4.0 6.324 6.326 0.03 7.334 7.336 0.03 7.885 7.885 0.00

9 4.0 6.324 6.326 0.03 7.334 7.336 0.03 7.885 7.885 0.00
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Table 4b. lOOx Probability of Queueing Data, for Voice Loads p" = = 1.0, for

Different Data Loads and Voice Activity Factors, and Node Transceiver

Vector T = (8,8,8,8,8,8,8,8,8,8)

#/(a + fl) = 0.4 + /(0+8)=0.8 _ /(,__+ _ )_=_1.0

Data Data Q1 QI Q1

Link Load Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

I p• Value Approx. % Value Approx. % Value Approx. %

1 0.5 0.002 0.006 200 0.130 0.143 10.00 0.410 0.430 4.88
2 0.5 0.002 0.006 200 0.130 0.143 10.00 0.410 0.430 4.88

3 0.5 0.019 0.033 73.68 0.889 0.921 3.60 2.719 2.780 2.24

4 0.5 0.018 0.028 55.55 0.795 0.82, 3.65 2.446 2.511 2.66

5 0.5 0.018 0.028 55.55 0.795 0.824 3.65 2.446 2.511 2.66

6 0.5 0.031 0.018 41.94 1.348 1.395 2.13 4.052 4.052 0.00

7 0.5 0.018 0.028 55.55 0.824 1.359 64.93 2.446 2.551 4.29

8 0.5 0.018 0.028 55.55 0.795 0.824 3.65 2.446 2.551 4.29

9 0.5 0.018 0.028 55.55 0.795 0.795 0.00 2.446 2.551 4.29

1 2.5 2.073 2.115 2.03 6.659 6.730 1.07 10.486 10.581 0.91

2 2.5 2.073 2.115 2.03 6.659 6.730 1.07 10.486 10.581 0.91

3 2.5 4.479 4.549 1.56 17.166 17.217 0.29 26.923 26.862 -0.22

4 2.5 3.821 3.821 0.00 15.031 15.080 0.33 26.886 23.831 -11.36

5 2.5 3.821 3.871 1.31 15.031 15.080 0.33 23.886 23.831 -0.23

6 2.5 5.188 5.260 1.39 20.560 20.641 0.39 31.856 31.859 0.00

7 2.5 3.821 3.871 1.31 15.031 15.080 0.33 23.886 23.831 -11.36

8 2.5 3.821 3.871 1.31 15.031 15,081 0.33 23.886 23.831 -11.36

9 2.5 3.821 3.871 1.31 15.031 15.080 0.33 23.886 23.831 -11.36

1 4.0 13.490 13.606 0.86 26.953 26.988 0.13 34.960 34.904 -0.16

2 4.0 13.490 13.606 0.86 26.953 26.953 0.00 34.960 34.907 -0.15

3 4.0 22.250 22.353 0.46 48.131 48.131 0.00 60.682 60.524 -0.32

4 4.0 19.525 19.619 0.48 43.041 42.917 -0.29 55.032 54.856 -0.32

5 4.0 19.525 19.619 0.48 43.041 42.917 -0.29 55.032 54.856 -0.32

6 4.0 24.089 24.207 0.49 52.516 52.556 0.07 65.402 65.393 -0.01

7 4.0 19.525 19.619 0.48 43.041 42.917 -0.29 55.032 54.856 -0.32

8 4.0 19.525 19.619 0.48 43.041 42.917 -0.29 55.032 54.856 -0.32

9 4.0 19.525 19.619 0.48 43.041 42.917 -0.29 55.032 54.856 -0.32
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Table 4c. 100x Probability of Queueing Data, for Voice Loads g - = 2.0, for

Different Data Loads and Voice Activity Factors, and Node Transceiver

Vector T = (8,8,8,8,8,8,8,8,8,8)

/(a + P) = 0.4 /+ )0.8 Ma + 1.0
Data Data Q1 Q1 Q1
Link Load Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

1 pI Value Approx. % Value Approx. % Value Approx.

1 0.5 0.193 0.095 -50.78 1.688 1.727 2.31 5.085 5.253 3.30
2 0.5 0.191 0.095 -50.28 1.688 1.727 2.31 5.085 5.253 3.30
3 0.5 0.437 0.354 -18.99 7.510 7.392 -2.41 21.926 21.562 -1.06
4 0.5 0.360 0.279 -22.50 6.418 6.333 -1.32 19.231 18.958 -1.42
5 0.5 0.360 0.279 -22.50 6.418 6.333 -1.32 19.231 18.958 -1.42
6 0.5 0.560 0.495 -11.61 10.430 10.368 -0.59 29.570 29.461 -0.37
7 0.5 0.360 0.279 -22.50 6.418 6.333 -1.32 19.231 18.958 -1.42
8 0.5 0.360 0.279 -22.50 6.418 6.331 -1.35 19.231 18.952 -1.45
9 0.5 0.360 0.279 -22.50 6.418 6.333 -1.32 19.231 18.956 -1.43
1 2.5 6.950 6.836 -1.64 22.198 21.868 -1.49 34.654 33.990 -1.92
2 2.5 6.950 6.836 -1.64 22.198 21.868 -1.49 34.654 33.990 -1.92
3 2.5 15.750 14.820 -5.84 48.730 48.559 -2.35 69.777 68.087 -2.92
4 2.5 12.493 12.140 -2.82 44.225 42.972 -2.83 63.989 62.043 -3.04
5 2.5 12.493 12.140 -2.82 44.225 42.972 -2.83 63.989 62.043 -3.04
6 2.5 17.381 17.331 -0.29 56.619 56.462 -0.28 76.507 76.330 -0.23
7 2.5 12.493 12.140 -2.83 44.225 42.970 -2.92 63.989 62.041 -3.04
8 2.5 12.493 12.135 -2.87 44.225 42.965 -2.85 63.989 62.034 -3.04
9 2.5 12.493 12.140 -2.82 44.225 42.970 -2.92 63.989 62.041 -3.04
1 4.0 28.411 27.943 -1.65 53.795 52.836 -1.78 67.209 65.870 -1.98
2 4.0 28.411 27.943 -1.65 53.795 52.836 -1.78 67.209 65.879 -1.98
3 4.0 47.734 46.904 -1.74 82.588 81.412 -1.42 92.433 91.445 -1.07
4 4.0 41.161 40.244 -2.23 76.716 75.168 -2.02 88.363 86.855 -1.71
5 4.0 41.161 40.244 -2.23 76.716 75.168 -2.02 88.363 86.855 -1.71
6 4.0 51.141 51.031 -0.22 86.280 86.172 -0.13 94.567 94.487 -0.08
7 4.0 41.161 40.243 -2.23 76.716 75.166 -2.02 88.363 86.854 -1.71
8 4.0 41.161 40.234 -2.25 76.716 75.162 -2.02 88.363 86.850 -1.71
9 4.0 41.161 40.243 -2.23 76.716 75.166 -2.02 88.363 86.854 -1.71
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Table 5. Probability of Voice Blocking for Different Traffic Loads, Node Transceiver

Vector T = (4,4,4,4,4,4,4,4,4,4), Voice Activity Factor #/(a + •) = 0.4,

and No Admission Control

Offered B

Voice Load Exact Knapsack Error

_ -_ Value Approximation %

0.1 0.000292 0.000327 11.98
0.5 0.050059 0.058689 17.24

1.0 0.195044 0.215835 10.66
2.0 0.417121 0.442862 6.17

3.0 0.541520 0.569988 5.62
4.0 0.619669 0.649299 4.78
5.0 0.673842 0.703402 4.39

6.0 0.713922 0.742704 4.03

7.0 0.744934 0.772556 3.71
8.0 0.769724 0.796051 3.42

10.0 0.807006 0.830684 2.93
15.0 0.862375 0.880563 2.11
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Table 6. 100x Probability of Queueing Data for Various Voice and Data Loads,

Voice Activity Factor 6/(a +-6) = 0.4 and Node Transceiver Vector

T = (4,4,4,4,4,4,4,4,4,4)

Offered Offered
Voice Load Data Load Exact Knapsack Percent

_ _ p_ Value Approximation Error (%)

0.1 0.2 0.033 0.034 3.03
0.1 1.0 2.860 2.860 0.00
0.1 2.0 20.796 19.687 -5.33
1.0 0.2 1.636 1.585 -3.12
1.0 1.0 14.590 14.202 -2.66
1.0 2.0 45.702 44.874 -1.81

5.0 0.2 4.762 4.505 -5.40
5.0 1.0 27.737 26.754 -3.54

5.0 2.0 64.540 63.299 -1.92
10.0 0.2 5.773 5.411 -6.27
10.0 1.0 31.143 29.915 -3.94
10.0 2.0 68.419 67.173 -1.82
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Table 7a. 100x Probability of Queueing Data at Each Link for Voice Loads A' =

p" = 0.1, Different Data Loads, _ = (4,4,4,4,4,4,4,4,4,4), and Voice

Activity Factor 6/(a + 8) = 0.4

Data Offered OQ

Link Data Load Exact Knapsack Error
I pI Value Approximation %

1 0.2 0.020 0.021 5.00
2 0.2 0.020 0.021 5.00
3 0.2 0.042 0.043 2.38

4 0.2 0.033 0.034 3.03
5 0.2 0.033 0.034 3.03
6 0.2 0.046 0.047 2.17

7 0.2 0.033 0.034 3.03
8 0.2 0.033 0.034 3.03

9 0.2 0.033 0.034 3.03

1 1.0 2.527 2.528 0.04
2 1.0 2.527 2.528 0.04
3 1.0 3.154 3.155 0.03

4 1.0 2.867 2.867 0.00
5 1.0 2.867 2.867 0.00

6 1.0 3.194 3.194 0.00
7 1.0 2.867 2.867 0.00
8 1.0 2.867 2.867 0.00

9 1.0 2.867 2.867 0.00

1 2.0 18.538 18.540 0.01
2 2.0 18.538 18.540 0.01
3 2.0 20.747 20.749 0.01
4 2.0 19.703 19.705 0.01

5 2.0 19.703 19.705 0.01

6 2.0 20.825 20.827 0.05
7 2.0 19.703 19.705 0.01

8 2.0 19.703 19.705 0.01

9 2.0 19.703 19.705 0.01
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Table 7b. 100x Probability of Queueing Data at Each Link for Voice Loads •' =

pO = 1.0, Different Data Loads, T = (4,4,4,4,4,4,4,4,4,4), and Voice

Activity Factor #/(a + P) = 0.4

Data Offered QI
Link Data Load Exact Knapsack Error

1 pI Value Approximation %

1 0.2 0.820 0.796 -2.93
2 0.2 0.820 0.796 -2.93
3 0.2 2.219 2.130 -4.01
4 0.2 1.645 1.589 -3.40
5 0.2 1.645 1.589 -3.40
6 0.2 2.639 2.599 -1.52

7 0.2 1.645 1.589 -3.40
8 0.2 1.645 1.589 -3.40
9 0.2 1.645 1.589 -3.40
1 1.0 9.928 9.676 -2.54
2 1.0 9.928 9.676 -2.54
3 1.0 18.381 17.832 -2.99
4 1.0 14.670 14.226 -3.02
5 1.0 14.670 14.226 -3.02

6 1.0 19.721 19.524 -0.99
7 1.0 14.670 14.226 -3.02
8 1.0 14.670 14.203 -3.18
9 1.0 14.670 14.226 -3.02
1 2.0 37.127 36.479 -1.75

2 2.0 37.127 36.479 -1.75
3 2.0 53.274 52.282 -1.86
4 2.0 45.880 44.920 -2.09

5 2.0 45.880 44.920 -2.09

6 2.0 54.387 54.070 -0.58

7 2.0 45.880 44.920 -2.09

8 2.0 45.880 44.879 -2.18

9 2.0 45.880 44.920 -2.09
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Table 7c. 100x Probability of Queueing Data at Each Link for Voice Loads & =

pI = 5.0, Different Data Loads, T = (4,4,4,4,4,4,4,4,4,4), and Voice

Activity Factor #/(a + P) = 0.4

Data Offered Q_

Link Data Load Exact Knapsack Error
I pI Value Approximation %

1 0.2 3.560 3.202 -10.06
2 0.2 3.560 3.202 -10.06

3 0.2 7.074 6.263 -11.46
4 0.2 4.285 4.215 -1.63
5 0.2 4.285 4.216 -1.61
6 0.2 7.235 6.909 -4.50
7 0.2 4.285 4.213 -1.68
8 0.2 4.285 4.113 -4.01
9 0.2 4.285 4.213 -1.68
1 1.0 23.141 21.667 -6.37
2 1.0 23.141 21.667 -6.37

3 1.0 37.104 34.331 -7.47
4 1.0 25.917 25.615 -1.16
5 1.0 25.917 25.617 -1.16
6 1.0 36.666 35.430 -3.37
7 1.0 25.917 25.608 -1.19
8 1.0 25.917 25.238 -2.62

9 1.0 25.917 25.609 -1.19
1 2.0 58.607 56.549 -3.51
2 2.0 58.607 56.549 -3.51

3 2.0 76.910 73.960 -3.84
4 2.0 62.263 61.840 -0.68
5 2.0 62.263 61.840 -0.68
6 2.0 75.419 73.927 -1.98
7 2.0 62.263 61.832 -0.69
8 2.0 62.263 61.360 -1.45
9 2.0 62.263 61.832 -0.69
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Table 7d. 100x Probability of Queueing Data at Each Link for Voice Loads p' -

P= = 10.0, Different Data Loads, _ - (4,4,4,4,4,4,4,4,4,4), and Voice

Activity Factor 1/(o + f) = 0.4

Data Offered QI
Link Data Load Exact Knapsack Error

I pI Value Approximation %
1 0.2 4.684 4.193 -10.48
2 0.2 4.684 4.192 -10.50
3 0.2 8.786 7.567 -13.87
4 0.2 5.023 4.958 -1.29
5 0.2 5.023 4.958 -1.29
6 0.2 8.694 8.110 -6.72

7 0.2 5.022 4.956 -1.31
8 0.2 5.022 4.812 -4.18
9 0.2 5.022 4.956 -1.31
1 1.0 27.294 25.533 -6.45
2 1.0 27.294 25.529 -6.47
3 1.0 42.279 38.508 -9.39

4 1.0 28.449 28.223 -0.79
5 1.0 28.449 28.225 -0.79
6 1.0 41.173 39.049 -5.16

7 1.0 28.449 28.218 -0.81
8 1.0 28.449 27.731 -2.52

9 1.0 28.449 28.219 -3.40
1 2.0 63.910 61.736 -3.40
2 2.0 63.910 61.732 -3.41
3 2.0 81.697 78.150 -4.34
4 2.0 65.276 65.007 -0.41
5 2.0 65.276 65.009 -0.41
6 2.0 79.873 77.490 -2.98
7 2.0 65.276 65.002 -0.42
8 2.0 65.276 65.430 0.24

9 2.0 65.276 65.002 -0.42
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Table 8. Probability of Voice Blocking for Different Traffic Loads

Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)

Voice Transceiver Vector 72' = (5,7,7,7,4,7,4,7,7,7)

Data Link Capacity Vector c" = (1,1,1,1,1,1,1,1,1)

Voice Activity Factor f/(a + 0) = 0.4

Voice Offered BP

Path Voice Load Exact Monte Carlo Knapsack Error

p ply, Value Summation Approximation %

1 2.5 0.634 (0.673, 0.686) 0.705 11.19

2 2.5 0.144 (0.133, 0.150) 0.147 2.08

3 2.5 0.429 (0.416, 0.433) 0.416 -3.03

4 2.5 0.429 (0.416, 0.433) 0.416 -3.03

5 2.5 0.641 (0.627, 0.642) 0.658 2.65

Average 2.5 0.4605 (0.453, 0.69) 0.468 0.65
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Table 9. Average Data Delay for Different Voice and Data Loads

Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)

Voice Transceiver Vector r = (5,7,7,7,4,7,4,7,7,7)

Data Link Capacity Vector ? = (1, 1, 1, 1, 1, 1, 1, 1, 1)

Voice Activity Factor 6/(a + ,) = 0.4

Offered Offered W
Voice Load Data Load Exact Knapsack Error

___ Pd Value Approximation %

2.5 0.7 0.021 0.023 9.52
2.5 0.9 0.062 0.071 14.51
2.5 0.999 5.050 5.806 14.97
10. 0.7 0.034 0.036 5.88
10. 0.9 0.108 0.111 2.78
10. 0.999 9.324 9.599 2.95
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Table 10a. Average Data Delay at Each Link for Voice Loads A" = p = 2.5, Dif-

ferent Data Loads, _. = (8,8,8,8,8,8,8,8,8,8), r' = (5,7,7,7,4,7,4,7,7,7),

Sd (1,1,1, 1, 1,1, 1, 1,1), and Voice Activity Factor 1/(a + 6) = 0.4

Data Ofered _'W,

Link Data Load Exact Knapsack Error

__pI Value Approximation %
1 0.7 0.004 0.006 50.00
2 0.7 0.004 0.006 50.00

3 0.7 0.026 0.028 7.69
4 0.7 0.023 0.026 13.04
5 0.7 0.023 0.026 13.04
6 0.7 0.039 0.039 0.00

7 0.7 0.023 0.026 13.04
8 0.7 0.023 0.026 13.04

9 0.7 0.023 0.026 13.04

1 0.9 0.011 0.017 54.55
2 0.9 0.011 0.017 54.55

3 0.9 0.077 0.086 11.69

4 0.9 0.068 0.079 16.18
5 0.9 0.068 0.079 16.18
6 0.9 0.119 0.120 0.84

7 0.9 0.068 0.079 16.18
8 0.9 0.068 0.079 16.18

9 0.9 0.068 0.079 16.18

1 0.999 0.743 1.149 54.64
2 0.999 0.743 1.149 54.64

3 0.999 6.210 7.097 14.28
4 0.999 5.516 6.512 18.06
5 0.999 5.516 6.512 18.06
6 0.999 10.175 10.297 1.20

7 0.999 5.516 6.512 18.06
8 0.999 5.516 6.511 18.04

9 0.999 5.516 6.512 18.04

141



Table 10b. Average Data Delay at Each Link for Voice Loads p' = p= = 10.0, Dif-

ferent Data Loads, T = (8,8,8,8,8,8,8,8,8,8), r: = (5,7,7,7,4,7,4,7,7,7),

_= (I,1, 1, 1, 1, 1,1,1), and Voice Activity Factor #/(a + ,8) - 0.4

Datm Offered WT

Link Data Load Exact Knapsack Error

1 P Value Approximation %

1 0.7 0.013 0.013 0.00

2 0.7 0.013 0.013 0.00

3 0.7 0.046 0.046 0.00

4 0.7 0.035 0.037 5.71

5 0.7 0.035 0.037 5.71

6 0.7 0.063 0.063 0.00

7 0.7 0.035 0.037 5.71

8 0.7 0.035 0.037 5.71

9 0.7 0.035 0.037 5.71
1 0.9 0.039 0.039 0.00

2 0.9 0.039 0.039 0.00

3 0.9 0.143 0.142 -0.70

4 0.9 0.110 0.116 5.45

5 0.9 0.110 0.116 5.45

6 0.9 0.202 0.200 -0.99

7 0.9 0.110 0.116 5.45

8 0.9 0.110 0.115 4.45

9 0.9 0.110 0.116 5.45

1 0.999 3.032 3.029 -0.09

2 0.999 3.032 3.029 -0.09

3 0.999 12.390 12.350 -0.32

4 0.999 9.458 10.008 5.82

5 0.999 9.458 10.009 5.83

6 0.999 18.173 18.007 -0.91

7 0.999 9.458 10.006 5.79

8 0.999 9.458 9.949 5.19

9 0.999 9.458 10.006 5.79
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Table 11. Percentage of Voice Calls Blocked for Different Capacity Allocations

in the Multi-Rate Network of [6]

Capacity Allocation 1 c = (90,100,110,120)

Capacity Allocation 2 c = (18,20,22,24)

Capacity Allocation 3 c = (9,10,11,12)

Capacity Allocation 4 c = (5,5,6,6)

Vector of Voice Path Rates r_ (1, 1, 1, 1, 1,1,5,5,5,5,5,5)

Voice Activity Factor 1/(a + fl) = 0.4

Offered B
Capacity Voice Load Monte Carlo Knapsack Pascal

Allocation A Summation Approximation Approximation

1 8.0 (0.052, 0.058) 0.061 0.072
1 10.0 (0.669, 0.732) 0.741 0.756

1 15.0 (9.947, 10.275) 10.359 10.487

2 0.3 (0.042, 0.042) 0.042 0.109

2 0.7 (0.707, 0.785) 0.779 0.921

2 1.7 (9.466, 9.686) 10.137 9.758

3 0.004 (0.049, 0.070) 0.061 0.038
3 0.04 (0.630, 0.696) 0.681 0.437

3 0.4 (9.884, 10.096) 10.613 8.857

4 0.0002 (0.046, 0.046) 0.048 0.045

4 0.003 (0.629, 0.679) 0.714 0.677

4 0.05 (9.626, 9.864) 10.584 9.999
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Table 12a. Percentage of Voice Calls Blocked at Each Path for Average

Voice Loads P3 = 8.0, 10.0, and 15.0 Capacity Allocation 1, c =

(9 0,100,110,120),r= (1, 1, 1, 1, 1, 1,5,5,5,5,5,5), and Voice Activity Factor

f8/(a + 8) = 0.4
Voice Offered Bp

Path Voice Load Monte Carlo Knapsack Pascal

p _ I__ Summation Approximation Approximation

1 8.0 (0.008, 0.030) 0.028 0.034

2 8.0 (0.002, 0.034) 0.025 0.030

3 8.0 (0.002, 0.034) 0.025 0.029

4 8.0 (0.001, 0.001) 0.003 0.005

5 8.0 (0.001, 0.001) 0.003 0.004
6 8.0 (0.000, 0.004) 0.000 0.001

7 1.6 (0.194, 0.207) 0.213 0.247

8 1.6 (0.144, 0.217) 0.191 0.218

9 1.6 (0.157, 0.199) 0.189 0.214

10 1.6 (0.000, 0.048) 0.028 0.038

11 1.6 (0.000, 0.052) 0.025 0.034

12 1.6 (0.000, 0.022) 0.003 0.005

1 10.0 (0.34, 0.35) 0.36 0.36

2 10.0 (0.29, 0.30) 0.30 0.31

3 10.0 (0.28, 0.29) 0.29 0.30

4 10.0 (0.07, 0.07) 0.07 0.08

5 10.0 (0.06, 0.06) 0.06 0.07

6 10.0 (0.01, 0.01) 0.01 0.01

7 2.0 (2.29, 2.30) 2.35 2.38

8 2.0 (1.96, 1.98) 1.99 2.01

9 2.0 (1.90, 1.92) 1.92 1.93

10 2.0 (0.49, 0.50) 0.53 0.57

11 2.0 (0.43, 0.44) 0.46 0.49

12 1.6 (0.08, 0.08) 0.09 0.11
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Table 12a (com'd)

Voice Offered Bp

Path Voice Load Monte Carlo Knapsack Pascal

p p_ Summation Approximation Approximation

1 15.0 (5.70, 5.70) 5.70 5.70
2 15.0 (4.60, 4.60) 4.60 4.60

3 15.0 (4.10,4.20) 4.20 4.20

4 15.0 (2.40, 2.40) 2.50 2.50

5 15.0 (1.90, 1.90) 2.00 2.00

6 15.0 (0.80, 0.80) 0.90 0.90
7 3.0 (28.00, 28.10) 28.60 28.50

8 3.0 (23.30, 23.40) 23.80 23.70

9 3.0 (21.40, 21.40) 21.60 21.60
10 3.0 (13.20, 13.20) 13.80 13.70

11 3.0 (10.90, 11.00) 11.40 11.30
12 3.0 (4.80, 4.80) 5.40 5.40
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Table 12b. Percentage of Voice Calls Blocked at Each Path for Average Voice

Loads pv _ 0.3, 0.7, and 1.7, Capacity Allocation 2, K = (18,20,22,24),

r = (1, ,1, ,1,1,5,5,5,5,5) and Voice Activity Factor #/(a+) + 0.4

Voice Offered Bp

Path Voice Load Monte Carlo Knapsack Pascal

p p_ Summation Approximation Approximation

1 0.3 (0.003, 0.003) 0.006 0.025
2 0.3 (0.003, 0.003) 0.005 0.021

3 0.3 (0.003, 0.003) 0.004 0.019
4 0.3 (0.000, 0.000) 0.002 0.011

5 0.3 (0.000, 0.000) 0.002 0.009
6 0.3 (0.000, 0.000) 0.001 0.005
7 0.06 (0.134, 0.176) 0.148 0.339
8 0.06 (0.090, 0.130) 0.107 0.281
9 0.06 (0.078, 0.134) 0.102 0.256

10 0.06 (0.034, 0.086) 0.059 0.149
11 0.06 (0.056, 0.056) 0.054 0.123
12 0.06 (0.000, 0.023) 0.012 0.056

1 0.7 (0.166, 0.227) 0.202 0.243
2 0.7 (0.148, 0.209) 0.184 0.202

3 0.7 (0.143, 0.186) 0.167 0.182
4 0.7 (0.033, 0.085) 0.069 0.119
5 0.7 (0.030, 0.058) 0.052 0.099
6 0.7 (0.000, 0.059) 0.034 0.058
7 0.14 (2.214, 2.402) 2.410 2.708
8 0.14 (1.791, 1.966) 1.946 2.258

9 0.14 (1.616, 1.773) 1.737 2.033
10 0.14 (1.022, 1.149) 1.147 1.352
11 0.14 (0.836, 0.958) 0.937 1.125
12 0.14 (0.375, 0.464) 0.465 0.668
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Table 12b (Cont'd)

Voice Offered Bp

Path Voice Load Monte Carlo Knapsack Pascal

p p: Summation Approximation Approximation

1 1.7 (3.135, 3.368) 3.422 3.284
2 1.7 (2.574, 2.778) 2.836 2.780

3 1.7 (2.255, 2.459) 2.526 2.480
4 1.7 (1.826, 2.002) 2.012 1.935

5 1.7 (1.499, 1.665) 1.700 1.633

6 1.7 (0.916, 1.046) 1.103 1.120

7 0.34 (24.198, 24.763) 25.706 24.626

8 0.34 (21.002, 21.547) 22.265 21.311
9 0.34 (19.007, 19.601) 20.065 19.215

10 0.34 (14.912, 15.391) 16.246 15.670

11 0.34 (12.699, 13.148) 13.875 .3.423
12 0.34 (8.795, 9.179) 9.885 9.616
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Table 13. 100x Probability of Queueing Data for Different Capacity Allocations

in the Multi-Rate Network of [6]

Capacity Allocation 1 c = (90,100,110,120)

Capacity Allocation 2 c = (18,20,22,24)

Capacity Allocation 3 c = (9, 10, 11, 12)

Capacity Allocation 4 c = (5,5,6,6)

Vector of Voice Path Rates r = (1,,1,1, 1,1, 5,5,5,5,5,5)

Voice Activity Factor #/(a + •) = 0.4

Offered Offered
Capacity Voice Load Data Load Monte Carlo Knapsack Pascal

Allocation A pd Summation Approximation Approximation
1 8.0 39.0 (0.072, 0.078) 0.072 0.088
1 8.0 49.0 (0.933, 0.956) 0.945 0.988
1 8.0 62.0 (9.747, 9.824) 9.776 9.719
1 10.0 35.0 (0.092, 0.099) 0.094 0.107
1 10.0 43.0 (0.958, 0.982) 0.776 0.807
1 10.0 57.0 (9.643, 9.725) 9.679 9.611
1 15.0 30.0 (0.079, 0.088) 0.083 0.081
1 15.0 38.0 (0.931, 0.966) 0.948 0.931
1 15.0 50.0 (9.947, 10.275) 10.106 10.080
2 0.3 6.0 (0.069, 0.074) 0.071 0.123
2 0.3 9.0 (0.800, 0.817) 0.806 0.806
2 0.3 14.0 (13.693, 13.763) 13.724 13.584
2 0.7 4.0 (0.076, 1.083) 0.081 0.136
2 0.7 7.5 (0.985, 1.012) 1.006 1.062
2 0.7 12.0 (10.302, 10.387) 10.353 9.818
2 1.7 2.0 (0.089, 0.098) 0.091 0.102
2 1.7 5.0 (1.084, 1.116) 1.079 1.068
2 1.7 10.0 (12.222, 12.335) 12.144 11.693
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Table 13 (cont'd)

Offered Offered _

Capacity Voice Load Data Load Monte Carlo Knapsack Pascal
Allocation fv Pd Summation Approximation Approximation

3 0.004 2.0 (0.080, 0.084) 0.013 0.016

3 0.004 4.0 (1.676, 1.703) 0.901 0.888

3 0.004 6.5 (15.230, 15.290) 12.866 12.864

3 0.04 1.8 (0.091, 0.095) 0.051 0.073

3 0.04 3.6 (1.326, 1.353) 0.822 0.737

3 0.04 6.0 (11.691, 11.759) 9.621 9.536

3 0.4 0.3 (0.059, 0.067) 0.070 0.119

3 0.4 2.0 (1.071, 1.099) 1.053 1.007

3 0.4 5.0 (11.887, 11.996) 10.929 10.409

4 0.0002 0.8 (0.083, 0.086) 0.084 0.082

4 0.0002 1.4 (0.889, 0.893) 0.891 0.889

4 0.0002 2.8 (12.345, 12.348) 12.347 12.348

4 0.003 0.7 (0.104, 0.116) 0.106 0.069

4 0.003 1.4 (0.964, 0.978) 0.966 0.940

4 0.003 2.8 (12.460, 12.473) 12.463 12.475

4 0.05 0.01 (0.495, 0.525) 0.539 0.121

4 0.05 1.0 (1.248, 1.298) 1.343 0.795

4 0.05 2.6 (11.255, 11.304) 11.348 11.471
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Table 14. 100x Probability of Queueing Data at Each Link for Different Voice

and Data Loads, Capacity Allocation 2, t = (18,20,22,24), r -

(1, 1, 1, 1, 1, 1,5,5,5,5,5,5), and Voice Activity Factor #/(a +6) -0.4

Data Offered Offered Q_
Link Voice Load Data Load Monte Carlo Knapsack Pascal

I PV • _ Summation Approximation Approximation

1 0.3 6.0 (0.208, 0.226) 0.214 0.306
2 0.3 6.0 (0.049, 0.056) 0.054 0.119
3 0.3 6.0 (0.012, 0.017) 0.014 0.047
4 0.3 6.0 (0.003, 0.004) 0.003 0.019
1 0.3 9.0 (2.197, 2.247) 2.214 2.223
2 0.3 9.0 (0.719, 0.749) 0.736 0.805
3 0.3 9.0 (0.208, 0.221) 0.215 0.298
4 0.3 9.0 (0.058, 0.065) 0.060 0.114

1 0.3 14.0 (30.647, 30.793) 30.682 31.033
2 0.3 14.0 (15.219, 15.350) 15.284 14.515
3 0.3 14.0 (6.345, 6.419) 6.403 6.261
4 0.3 14.0 (2.503, 2.549) 2.527 2.528

1 0.7 4.0 (0.206, 0.226) 0.218 0.321

2 0.7 4.0 (0.068, 0.082) 0.075 0.138
3 0.7 4.0 (0.018, 0.024) 0.023 0.060
4 0.7 4.0 (0.004, 0.006) 0.007 0.026
1 0.7 7.5 (2.540, 2.616) 2.583 2.513
2 0.7 7.5 (0.957, 1.001) 0.981 1.075
3 0.7 7.5 (0.317, 0.340) 0.340 0.461
4 0.7 7.5 (0.106, 0.119) 0.119 0.199

1 0.7 12.0 (23.175, 23.380) 23.283 21.744
2 0.7 12.0 (10.997, 11.132) 11.039 10.540

3 0.7 12.0 (4.894, 4.985) 4.976 4.840
4 0.7 12.0 (2.069, 2.126) 2.113 2.147
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Table 14 (cont'd)

Data Offered Offered Q_
Link Voice Load Data Load Monte Carlo Knapsack Pascal

I d Summation Approximation Approximation

1 1.7 2.0 (0.212, 0.238) 0.218 0.229
2 1.7 2.0 (0.090, 0.107) 0.098 0.107

3 1.7 2.0 (0.031, 0.040) 0.036 0.049

4 1.7 2.0 (0.011, 0.018) 0.014 0.023

1 1.7 5.0 (2.541, 2.632) 2.521 2.351
2 1.7 5.0 (1.088, 0.107) 1.104 1.130

3 1.7 5.0 (0.481, 0.520) 0.488 0.537
4 1.7 5.0 (0.184, 0.207) 0.202 0.254

1 1.7 10.0 (24.714, 24.963) 24.514 23.500
2 1.7 10.0 (13.433, 13.621) 13.383 12.965

3 1.7 10.0 (7.186, 7.331) 7.169 6.830

4 1.7 10.0 (3.443, 3.539) 3.508 3.479
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Table 15. Probability of Voice Blocking for Different Traffic Loads, T-= (8,8,8,8,8,8,8,8,8,8)

Voice Activity Factor #/(a + ,) = 0.4, and Three Types of Admission

Control

(i) Equal Thresholds = 6 on Individual Voice Path Traffic

Offered __

Voice Load Exact Monte Carlo Knapsack Percent Thresholds

P Value Summation Approximation Error (%)

2.5 0.185545 (0.179594, 0.185808) 0.201855 8.79 (6,6,6,6,6)

3.5 0.312365 (0.302761, 0.316174) 0.331030 5.98 (6,6,6,6,6)

4.5 0.408949 (0.385203, 0.417037) 0.429108 4.93 (6,6,6,6,6)

5.5 0.482665 (0.434905, 0.514719) 0.503491 4.31 (6,6,6,6,6)

6.5 0.540419 (0.505836, 0.540619) 0.561224 3.85 (6,6,6,6,6)
7.5 0.586800 (0.546001, 0.603585) 0.607042 3.45 (6,6,6,6,6)

8.5 0.624825 (0.534647, 0.646869) 0.644257 3.11 (6,6,6,6,6)

10. 0.670493 (0.616248, 0.705557) 0.688468 2.68 (6,6,6,6,6)

15. 0.766014 (0.676021, 0.778351) 0.779502 1.76 (6,6,6,6,6)

(ii) Optimal Individual Thresholds < 6

Offered D_

Voice Load Exact Monte Carlo Knapsack Percent Thresholds

PW Value Summation Approximation Error (%)

2.5 0.185512 (0.183525, 0.186201) 0.202398 9.10 (5,6,6,6,6)

3.5 0.310001 (0.308286, 0.311606) 0.317236 2.33 (2,6,6,6,5)

4.5 0.400543 (0.398409, 0.402028) 0.431677 7.77 (2,6,6,6,3)

5.5 0.469876 (0.468602, 0.471287) 0.509798 8.49 (1,6,6,6,2)

6.5 0.524440 (0.523098, 0.526017) 0.562409 7.24 (1,6,6,6,2)

7.5 0.569865 (0.568632, 0.570945) 0.613359 7.63 (1,6,6,6,1)

8.5 0.607519 (0.606093, 0.608414) 0.647777 6.62 (1,6,6,6,1)

10. 0.654345 (0.653336, 0.655637) 0.689589 5.39 (1,6,6,6,1)

15. 0.755467 (0.754448, 0.756588) 0.778174 3.00 (1,6,6,6,1)
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Table 15 (cont'd)

(iii) Optimal Full Admission Controls for zx _ 6

Offered a
Voice Load Exact Monte Carlo Knapsack Percent Thresholds

AV Value Summation Approximation Error (%)
2.5 0.185511 (0.183525, 0.186201) 0.220061 18.62 (5,6,6,6,6,8,8,7,8,8)

3.5 0.309905 (0.308566, 0.312519) 0.355329 14.66 (3,6,6,6,5,8,8,5,8,8)

4.5 0.399708 (0.399676, 0.403976) 0.451758 13.02 (2,6,6,6,4,8,8,4,8,8)
5.5 0.468216 (0.469929, 0.474508) 0.524826 12.09 (2,6,6,6,3,8,8,3,8,8)
6.5 0.522607 (0.525087, 0.529143) 0.584340 11.81 (2,6,6,6,2,8,8,2,8,8)

7.5 0.567119 (0.571885, 0.576496) 0.625008 10.21 (2,6,6,6,2,8,8,2,8,8)
8.5 0.605317 (0.610714, 0.615877) 0.658781 8.83 (2,6,6,6,2,8,8,2,8,8)

10. 0.652700 (0.658680, 0.664670) 0.699545 7.18 (2,6,6,6,2,8,8,2,8,8)

15. 0.754687 (0.757665, 0.766253) 0.785185 4.04 (2,6,6,6,2,8,8,2,8,8)

155



Table 16. Comparison of Exact Value and Knapsack Approximation of the Probability

of Voice Blocking for Different Threshold Admission Controls, Voice Loads

, = = 2.5, #3/(a + /) = 0.4, and T=(8,8,8,8,8,8,8,8,8,8)

Thresholds=(6,6,6,6,6) Thresholds=(6,6,6,6,5) Thresholds=(6,6,6,6,4) Thresholds=(6,6,6,6,3)

Voice Bp B, B, B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.

p Value Approx. Value Approx. Value Approx. Value Approx.

1 0.289575 0.316342 0.288406 0.313684 0.282039 0.306347 0.263071 0.289559

2 0.047056 0.064568 0.047098 0.064794 0.047404 0.065425 0.048638 0.066899

3 0.160361 0.168923 0.159399 0.167262 0.154592 0.162693 0.141113 0.152319

4 0.160361 0.168906 0.159399 0.167265 0.154592 0.162744 0.141113 0.152452

5 0.270387 0.290538 0.274139 0.300755 0.295341 0.329219 0.363408 0.395891

Mean 0.185548 0.201855 0.185688 0.202752 0.186794 0.205286 0.191469 0.211425

Thresholds=(6,6,6,6,2) Thresholds=(6,6,6,6,1) Thresholds=(5,6,6,6,6) Thresholds= (5,6,6,6,5)

Voice Bp B_ By Bp

Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.

p Value Approx. Value Approx. Value Approx. Value Approx.

1 0.228059 0.258735 0.182889 0.214820 0.291666 0.324804 0.290500 0.322249

2 0.051652 0.069716 0.056587 0.074001 0.046530 0.063860 0.046571 0.064073

3 0.117384 0.133544 0.088578 0.107302 0.159831 0.167579 0.158866 0.165881

4 0.117384 0.133729 0.088578 0.107406 0.159831 0.167581 0.158866 0.165905

5 0.505113 0.525033 0.722943 0.729526 0.269719 0.288164 0.273474 0.298491

Mean 0.203918 0.224151 0.227915 0.246611 0.185515 0.202398 0.185655 0.203320

Thresholds=(5,6,6,6,4) Thresholds=(5,6,6,6,3) Thresholds= (5,6,6,6,2) Thresholds= (5,6,6,6,1)

Voice Bp B_ Bp BP

Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.

p Value Approx. Value Approx. Value Approx. Value Approx.

1 0.284161 0.315225 0.265329 0.299243 0.230826 0.270156 0.187319 0.229298

2 0.046869 0.064666 0.048063 0.066049 0.050938 0.068647 0.055425 0.072548

3 0.154044 0.161223 0.140500 0.150680 0.116583 0.131662 0.087227 0.105221

4 0.154044 0.161299 0.140506 0.140841 0.116583 0.131875 0.087227 0.103339

5 0.294691 0.327185 0.362802 0.394364 0.304595 0.523975 0.722627 0.729078

Mean 0.186762 0.205920 0.191440 0.210235 0.163905 0.225263 0.227965 0.247897
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Table 17. Comparison of Exact Value and Knapsack Approximation of the Probability of Voice

Blocking for Different Full Admission Controls, Voice Loads 1 = = 2.5,

T(8,8,8,8,8,8,8,8,8,8), and Voice Activity Factor #/(a +0) = 0.4

Th=(6,6,6,6,6,8,8,8,8,8) Th=(6,6,6,6,6,8,8,7,8,8) Th=(6,6,6,6,6,8,8,6,8,8) Th=(6,6,6,6,6,8,8,5,8,8)
Voice Bp Bp BB B1,
Path Exact Knaps. Exact Knaps. Exact Knape. Exact Knapl.

p Value Approx. Value Approx. Value Approx. Value Approx.
1 0.289575 0.331588 0.290114 0.341043 0.299332 0.358541 0.338108 0.394865
2 0.047056 0.063302 0.046979 0.062597 0.045832 0.061112 0.041908 0.058403

3 0.160361 0.192089 0.159809 0.188046 0.151728 0.179596 0.124889 0.164308
4 0.160361 0.192232 0.159808 0.188228 0.151728 0.179853 0.124889 0.164312

5 0.270387 0.309768 0.271007 0.319049 0.281622 0.338953 0.325117 0.377960

Mean 0.185548 0.217796 0.185543 0.219793 0.186048 0.223611 0.190982 0.231969

Th=(6,6,6,6,5,8,8,8,8,8) Th=(6,6,6,6,5,8,8,7,8,8) Th=(6,6,6,6,5,8,8,6,8,8) Th=(6,6,6,6,5,8,8,5,8,8)

Voice Bp Bp, Bp_ B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.

p Value Approx. Value Approx. Value Approx. Value Approx.
1 0.288406 0.329649 0.288937 0.338184 0.298430 0.356612 0.338108 0.393149

2 0.047098 0.063465 0.047019 0.062760 0.045855 0.061269 0.041908 0.058581

3 0.159399 0.190586 0.158921 0.186694 0.151316 0.178507 0.124889 0.163610

4 0.159399 0.190735 0.158921 0.186875 0.151316 0.178752 0.124889 0.163605
5 0.274139 0.318288 0.274612 0.327005 0.283788 0.345839 0.325117 0.383145

Mean 0.185688 0.218545 0.185682 0.220304 0.186141 0.224196 0.190982 0.232418

Th=(6,6,6,6,4,8,8,8,8,8) Th=(6,6,6,6,4,8,8,7,8,8) Th=(6,6,6,6,4,8,8,6,8,8) Th=(6,6,6,6,4,8,8,5,8,8)

Voice B B, B, B,
Path Exact Knaps. Exact Knaps. Exact Knaps. Exact Knaps.

p Value Approx. Value Approx. Value Approx. Value Approx.

1 0.282039 0.324108 0.282489 0.332499 0.291800 0.350841 0.333782 0.387673

2 0.047404 0.063930 0.047328 0.063232 0.046101 0.061737 0.041997 0.058941
3 0.154592 0.186303 0.154254 0.182783 0.148010 0.175258 0.123861 0.161392

4 0.154592 0.186474 0.154254 0.182972 0.148010 0.175487 0.123861 0.161365

5 0.295341 0.342958 0.295602 0.350382 0.301656 0.366705 0.333778 0.399807

Mean 0.186794 0.220755 0.186785 0.222374 0.191456 0.226006 0.187115 0.233836
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Table 18. 10Ox Probability of Queueing Data for Different Voice Loads and Thresh-

olds, Node Transceiver Vector T = (8, 8,8,8,8,8,8,8,8,8), Data Loads
Ad pf = 2.5, and Voice Activity Factor #/(a + f) = 0.4

Offered 0
Voice Load Path Exact Knapsack Percent

A, Thresholds Value Approximation Error (%)
2.5 (5,6,6,6,6) 12.073 11.611 -3.83
3.5 (5,6,6,6,5) 14.054 13.358 -4.95
4.5 (2,6,6,6,3) 16.012 14.794 -7.61
5.5 (1,6,6,6,2) 15.284 13.834 -9.49
6.5 (1,6,6,6,2) 16.778 15.104 -9.98
7.5 (1,6,6,6,1) 16.839 14.511 -13.82
8.5 (1,6,6,6,1) 17.897 15.357 -14.19
10. (1,6,6,6,1) 19.110 16.345 -14.47
15. (1,6,6,6,1) 21.397 18.474 -13.66
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Table 19. 100x Probability of Queueing Data at Each Link for Data Loads #d

p, = 2.5, Different Voice Loads and Control Thresholds, T= (8,8,8,8,8,8,8,8,8,8),

and Voice Activity Factor 8/(a + 0) = 0.4

Voice Load v = 2.5 Voice Load •=3.5 Voice Load v = 4.5
Thresholds=(5,6,6,6,6) Thresholds=(5,6,6,6,5) Thresholds=(2,6,6,6,3)

Data Q1 Q1 Q1

Link Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

I Value Approx. % Value Approx. % Value Approx. %

1 6.864 6.633 -3.37 7.814 7.443 -4.75 10.232 9.325 -8.86
2 6.864 6.633 -3.37 7.814 7.444 -4.74 10.232 9.325 -8.86

3 15.103 14.573 -3.51 17.818 16.854 -5.41 20.562 18.905 -8.06

4 12.490 11.998 -3.94 14.491 13.727 -5.27 16.014 14.81a -7.51

5 12.490 11.998 -3.94 14.491 13.726 -5.28 16.014 14.810 -7.52

6 17.376 17.123 -1.46 20.586 19.864 -3.51 23.009 21.579 -6.21

7 12.490 11.998 -3.94 14.491 13.730 -5.25 16.015 14.816 -7.49

8 12.490 11.994 -3.97 14.491 13.707 -5.41 16.015 14.760 -7.84

9 12 490 11.998 -3.94 14.491 13.730 -5.25 16.015 14.816 -7.49

Voice Load P = 5.5 Voice Load #' = 6.5 Voice Load ov = 7.5

Thresholds=(1,6,6,6,2) Thresholds=(1,6,6,6,2) Thresholds=(1,6,6,6,1)

Data Q_ Q_ Q_

Link Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

I Value Approx. % Value Approx. % Value Approx. %

1 9.280 9.127 -1.65 10.390 10.217 -1.66 11.626 11.214 -3.54

2 9.280 9.127 -1.65 10.390 10.217 -1.66 11.626 11.214 -3.54

3 19.603 17.888 -8.75 21.527 19.503 -9.40 21.915 19.077 -12.95

4 15.302 13.642 -10.85 16.753 14.843 -11.40 16.329 13.783 -15.59

5 15.302 13.642 -10.85 16.753 14.843 -11.40 16.329 13.783 -15.59

6 22.885 20.317 -11.22 24.930 21.992 -11.78 24.733 20.581 -16.79

7 15.301 13.646 -10.82 16.753 14.847 -11.38 16.330 13.786 -15.58

8 15.301 13.472 -11.95 16.753 14.623 -12.71 16.330 13.371 -18.12

9 15.301 13.646 -10.82 16.753 14.847 -11.38 16.330 13.786 -15.58
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Table 19 (cont'd)

Voice Load Ov = 8.5 Voice Load P" = 10.0 Voice Load g - 15.0

Thresholds=(1,6,6,6,1) Thresholds=(1,6,6,6,1) Thresholds=(1,6,6,6,1)

Data Q_ Q_ Qi
Link Exact Knapsack Error Exact Knapsack Error Exact Knapsack Error

1 Value Approx. % Value Approx. % Value Approx. %

1 12.389 11.962 -3.45 13.268 12.869 -3.00 14.932 14.793 -0.93

2 12.389 11.962 -3.45 13.268 12.870 -3.00 14.932 14.793 -0.93
3 23.239 20.114 -13.45 24.747 21.356 -13.70 27.569 23.974 -13.04

4 17.373 14.570 -16.13 18.572 15.520 -16.43 20.842 17.534 -15.87
5 17.373 14.570 -16.13 18.572 15.520 -16.43 20.842 17.535 -15.87

6 26.189 21.654 -17.32 27.844 22.936 -17.63 30.931 25.648 -17.08
7 17.373 14.577 -16.09 18.572 15.527 -16.39 20.842 17.551 -15.79
8 17.373 14.101 -18.83 18.572 14.981 -19.33 20.842 16.888 -18.97

9 17.373 14.577 -16.09 18.572 15.528 -16.39 20.842 17.552 -15.78
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Table 20. Comparison of Voice-Blocking Performance of Admission Control Policies

Whose Thresholds are Obtained by Optimizing the Knapsack Approximation

Node Transceiver Vector T = (8,8,8,8,8,8,8,8,8,8)

Voice Activity Factor #/(a + #) = 0.4

No Control Knapsack-Based Thresholds Optimal Thresholds
Voice B D __

Load Exact Knapsack Knapsack Path Exact Gain Exact Path Gain
SValue Approx Approx Thresh Value % Value Thresh %
3.5 0.307931 0.317236 0.318865 (3,8,8,8,8) 0.305456 0.80 0.304054 (2,8,8,8,6) 0.83
4.5 0.401453 0.411132 0.407689 (1,8,8,8,8) 0.386530 3.72 0.385776 (1,8,8,8,3) 3.91
5.5 0.472130 0.483226 0.477817 (1,8,8,8,8) 0.453197 4.01 0.448496 (1,8,8,8,2) 5.01
6.5 0.527213 0.539849 0.534412 (1,8,8,8,4) 0.507246 3.79 0.498001 (1,8,8,8,1) 5.53
7.5 0.571417 0.585356 0.580005 (1,8,8,8,3) 0.550631 3.64 0.541157 (1,8,8,8,1) 5.29
8.5 0.607742 0.622658 0.617512 (1,8,8,8,2) 0.584775 3.78 0.578903 (1,8,8,8,1) 4.74
10. 0.651634 0.667461 0.662817 (1,8,8,8,2) 0.632611 2.92 0.626443 (1,8,8,8,1) 3.86
15. 0.745317 0.761318 0.758245 (1,8,8,8,1) 0.730823 1.94 0.730823 (1,8,8,8,1) 1.94
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Table 21. Revenue Sensitivities for the Multi-Rate Network of [6]

Link Capacity Vector c = (90,100,110,120)

Vector of Voice Loads El = (10, 10, 10, i0, 10, 10, 2,2,2,2,2, )

Vector of Data Loads pd (50,50,50,50)

Vector of Voice Rates r= (1,1, 1,1,1, 1,5,5,5,5,5,5,)

Vector of Voice Revenue Rates -" = (1.0,1.2,1.4,1.6,1.8,2.0,3.0,3.6,4.2,4.8,5.4,6.0)

Vector of Data Revenue Rates -t - (1.0,1.2,1.4,1.6)

Voice Activity Factor #/(a + 0) = 0.4

Table 21a. Voice Revenue Sensitivity With Respect to Voice Loads

Voice Offered _W"/8p _ _

Path Voice Load Monte Carlo Knapsack Pascal
p p_ _ Summation Approximation Approximation

1 10.0 (0.88, 0.99) 0.90 0.90
2 10.0 (1.13, 1.24) 1.12 1.12
3 10.0 (1.27, 1.39) 1.33 1.33
4 10.0 (1.50, 1.61) 1.57 1.57
5 10.0 (1.61, 1.81) 1.77 1.77
6 10.0 (1.97, 2.09) 1.99 1.99
7 2.0 (2.19, 2.43) 2.35 2.37
8 2.0 (3.00, 3.24) 3.07 3.08
9 2.0 (3.54, 3.79) 3.69 3.70

10 2.0 (4.48, 4.73) 4.58 4.57
11 2.0 (5.19, 5.24) 5.21 5.21
12 2.0 (5.75, 6.02) 5.95 5.94
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Table 21b. Data Revenue Sensitivity With Respect to Voice Loads

Voice Offered aWa/apw_ _

Path Voice Load Monte Carlo Knapsack Pascal

p p_ Summation Approximation Approximation

1 10.0 (-0.413765, -0.391275) -0.395828 -0.385843

2 10.0 (-0.334608, -0.313041) -0.321129 -0.314085

3 10.0 (-0.321502, -0.300196) -0.307425 -0.299321

4 10.0 (-0.117725, -0.101117) -0.106280 -0.106447

5 10.0 (-0.104447, -0.088175) -0.092525 -0.091626

6 10.0 (-0.024743, -0.009671) -0.017448 -0.019493

7 2.0 (-2.552438, -2.500914) -2.501584 -2.444003

8 2.0 (-2.038939, -1.992859) -1.997447 -1.960893

9 2.0 (-1.937221, -1.892167) -1.892145 -1.852493

10 2.0 (-0.787522, -0.758234) -0.767471 -0.759875
11 2.0 (-0.682234, -0.654666) -0.659719 -0.648903

12 2.0 (-0.144140, -0.126442) -0.138872 -0.149429

Table 21c. Data Revenue Sensitivity With Respect to Data Loads

Data Offered IOW'/Op_ _

Link Data Load Monte Carlo Knapsack Pascal

1 pI Summation Approximation Approximation

1 50.0 (0.000519, 0.012731) 0.130102 0.148864
2 50.0 (0.927529, 0.934309) 0.940640 0.940621

3 50.0 (1.356462, 1.359009) 1.356561 1.352288

4 50.0 (1.595059, 1.595804) 1.595164 1.593700
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Table 22. Revenue Sensitivities for the Single-Rate Radio Network of [11]

Node Transceiver Vector T_ = (8,8,8,8,8,8,8,8,8,8)

Vector of Voice Revenue Rates yV = (1.0,1.2,1.4,1.6,1.8)

Vector of Data Revenue Rates 2 = (1.0, 1.2,1.4,1.6, 1.8,2.0,2.2,2.4,2.6)

Voice Activity Factor #/(a + P) = 0.4

Table 22a. Voice Revenue Sensitivity With Respect To Voice Loads

Voice Offered OWv/ap _

Path Voice Load Exact Knapsack Percent

p p; Value Approximation Error (%)

1 5.5 -0.276503 -0.221452 -19.91

2 5.5 0.628294 0.503593 -19.85

3 5.5 0.412164 0.373352 -9.42

4 5.5 0.455148 0.415531 -8.70

5 5.5 0.103284 0.114084 10.46

Table 22b. Data Revenue Sensitivity With Respect To Voice Loads

Vector of Data Loads pd = (4.0,4.0,4.0,4.0,4.0, 4.0,4.0,4.0,4.0)

Voice Offered aWd/p _ _

Path Voice Load Exact Knapsack Percent

p p_ Value Approximation Error (%)

1 5.5 -0.313773 -0.435772 38.88
2 5.5 -0.301060 -0.376670 25.11

3 5.5 -0.096402 -0.277122 187.46

4 5.5 -0.327656 -0.427354 30.43

5 5.5 -0.262378 -0.382214 45.67

Vector of Data Loads pd = (2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0)

Voice Offered _OW'/8p

Path Voice Load Exact Knapsack Percent

p pV Value Approximation Error (%)

1 5.5 -0.068434 -0.089658 31.01

2 5.5 -0.056307 -0.067183 19.31

3 5.5 -0.029062 -0.059503 104.76

4 5.5 -0.073209 -0.088104 20.35

5 5.5 -0.061949 -0.081633 31.77
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Table 22c. Data Revenue Sensitivity With Respect To Data Loads

Vector of Voice Loads p" = (5.5,5.5,5.5,5.5,5.5)

Data Offered 9OW/Op _

Link Data Load Exact Knapsack Percent

1 p• Value Approximation Error (%)
1 4.0 -0.204096 -0.189882 -6.96

2 4.0 -0.244915 -0.227802 -6.99
3 4.0 -0.499528 -0.496486 -0.61

4 4.0 -0.440876 -0.431286 -2.17

5 4.0 -0.495986 -0.485410 -2.13
6 4.0 -0.672845 -0.671192 -0.25

7 4.0 -0.606184 -0.593026 -2.17

8 4.0 -0.661292 -0.645434 -2.40
9 4.0 -0.716399 -0.718822 0.34

1 2.0 0.732983 0.742983 1.36
2 2.0 0.879579 0.891355 1.34

3 2.0 0.755747 0.774882 2.53

4 2.0 1.044098 1.052112 0.77

5 2.0 1.174610 1.183667 0.77

6 2.0 1.048758 1.052783 0.38

7 2.0 1.435631 1.446897 0.78

8 2.0 1.566143 1.580366 0.91

9 2.0 1.696655 2.079021 22.54
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Table 23. Computational Effort Required for the Different Approximations and

Network Models

Radio Network Multi-Rate Network

1= (8,8,8,8,8,8,8,8,8,8) g= (90,100,110,120)

Approximation r = (1, 1, I, 1, 1) 7 = (1, 1, 1, 1,1, 1, 5,5,5,5,5,5)

Method Probability of Probability of Probability of Probability of
Voice Blocking Data Queueing Voice Blocking Data Queueing

Exact 20 sec 20 sec prohibitive prohibitive

Monte Carlo 1 rin 1 min 25 min 25 min
Knapsack 2 sec 2 sec 2.5 see 2.5 sec

Pascal 2 sec 2 sec 2.5 sec 2.5 sec
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