
AD-A270 616

Formalizing Properties of Agents

Richard Goodwin

May 1993DTIC_
DTICCMU-CS-93- 159

ELECTE
OCT 141993 1

AM
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

There is a wide gulf between the formal logics used by logicians to describe agents
and the informal vocabulary used by people who actually build robotic or software
agents. In an effort to help bridge the gap, this report applies techniques borrowed
from the field of formal software methods to develop a common vocabulary.
Terms useful for discussing agents are given formal definitions. A framework for
describing agents, tasks and environments is developed using the Z specification
language. The terms successful, capable, reactive, reflexive, perceptive, predictive,
interpretive, rational and sound are then defined in terms of this framework. In
addition, a hierarchy for characterizing tasks is given. The aim of this report is to
develop a precise vocabulary for discussing and comparing agents.

This research is supported in part by a Natural Sciences and Engineering Research Council of
Canada 1967 Science and Engineering Scholarship. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the Natural Sciences and Engineering Research Council of Canada.

IThi-"~ x!I•-•• -... n r•p,:v..ved
Stot tubLZ t-c;c::.: •cl s'•--.; its

93-23999
" --, j o 3 i lll~~lllllll Illlll," lIll',l

Keywords: agents, tasks, environments, robotics, formalisms, successful
capable, perceptive, reactive, reflexive, predictive, interpretive, rational, sound

Introduction

In the artificial intelligence community, it has become common to talk about
agents that perform tasks and to describe such agents in terms of characteristics
that would allow them to be successful. Common terms include: successful,
capable, perceptive and reactive. Each of these terms has an intuitive meaning that
allows for informal discussion of the suitability of an agent for a task. The problem
with these informal definitions is that they are often ambiguous and incomplete.
What is needed are more precise definitions that will help to establish a common,
uniform vocabulary for talking about agents, environments and tasks.

This paper formally defines some useful terms for discussing agents. First,
a general framework for describing agents, tasks and environments is developed
using the Z specification language [Spivey, 19891. This framework is useful
for analyzing agents and ;ommunicating ideas, but is not intended to suggest
representations or algorithms for implementing agents. Through developing the
framework, a number of key issues are identified. Agent properties are then defined
in terms of this general framework.

Overview

An agent is an entity created to perform some task or set of tasks. Any property
of an agent must therefore be defined in terms of the task and the environment
in which the task is to be performed. The most basic question that can be asked
is whether the agent achieves the task or not. Is the agent successful? Other
properties concern the suitability of various components of the agent and can be
defined in terms of success.

The operational problem is how to determine if an agent is successful. The
approach adopted here is to take the lead of the behavioural psychologists and make
observable behaviour the only criteria allowed for determining success fSkinner,
19741. Such an approach allows us to avoid having to make inferences about the
agent's beliefs, intentions or motives. Using a behaviourist approach does limit the
types of tasks that can be considered. Any task where success depends on inferring
or interpreting the agent's internal state are ruled out. Tasks of this type would
have to be modified so that any internal state of interest is manifested as external
behaviour. For example, suppose the task were to go outside and determine if it
is raining. Even if we observed the agent going outside and getting wet, there
is no way to know whether the agent believes that it is raining. To make the
task operational, it could be modified to have the agent open its umbrella, if it is

Mic QTA) A

raining. To determine whether the agent is successful, we only have t6 observe its
behaviour. If it opens the umbrella at the appropriate times, it is successful. We
don't have to ascribe any belief about rain to the agent.

Since success is the fundamental property for characterizing agents, some
appropriate scale is needed for determining success. The simplest scale that can be
used is binary: An agent is either successful or not. A binary scale for success leads
to binary definitions of other properties. For instance, an agent is either capable
or not and there is no way to compare relative capability of agents. The scale for
measuring success can be refined to give a numeric value to the quality of task
achievement. In economics, such a numeric measure of quality corresponds to a
utility function defined over the possible task completions [Raiffa, 19681. Further,
the likelihood of possible initial conditions and external influences can be taken
into account to give a measure of the expected success of the agent. Refining the
measure of success allows corresponding refinements in agent properties defined
in terms of success.

Although a behaviourist approach is being adopted for measuring success, it is
sometimes useful to consider the internal organization of the agent and the extent
to which that organization leads to behaviour that results in success. A particularly
interesting class of agents are those that maintain some internal model of the world
and reason about the results of their actions. Such deliberative agents attempt to
choose actions that are more likely to lead to success based on their world models.
Additional properties for a deliberative agent relate to how accurate the agent's
models are and whether the agent behaves consistently with its models.

Informal Definitions

The informal definitions given in Figures I and 2 are derived from the set of
characteristics that Mitchell believes are necessary for a successful agent IMitchell,
19901 . These informal definitions provide the intuitive meaning for the agent
properties that will be more precisely defined in the rest of this paper.

Issues

Before delving into the details of the definitions, we present a set of issues that any
specification in this area must address. Then, with these issues in mind, we will
present the approach that we have taken.

'Contains references to Reactive. perceptive and correct. Some additional terms were descrihcd
through personal communication.

Successful : An agent is successful to the extent that it accomplishes the
specified task in the given environment.

Capable : An agent is capable if it possesses the effectors needed to
accomplish the task.

Perceptive : An agent is perceptive if it can distinguish salient characteristics of
the world that would allow it to use its effectors to achieve the task.

Reactive : An agent is reactive if it is able to respond sufficiently
quickly to events in the world to allow it to be successful.

Reflexive : An agent is reflexive if it behaves in a stimulus-response fashion.

Figure 1: General Agent Properties

Predictive: An agent is predictive if its model of how the world works is

sufficiently accurate to allow it to correctly predict how it can
achieve the task.

Interpretive: An agent is interpretive if can correctly interpret its sensor

readings.

Rational: An agent is rational if it chooses to perform commands that it
predicts will achieve its goals.

Sound: An agent is sound if it is predictive, interpretive and rational.

Figure 2: Deliberative Agent Properties

Any formal definition of agent properties must include a framework for de-

scribing an agent, a task and an environment. To say that an agent is successful at

a particular task in a particular environment, some method is needed for specifying
the agent, the task and the environment. The framework for these descriptions
must be sufficiently detailed to allow the distinction between successful and un-

successful agents to be made. At the same time, the framework must be general

3

enough to permit a wide range of agents, tasks and environments to be specified.
In designing the framework, the range of possible tasks and environments needs
to be considered. The kinds of tasks can include tasks of achievement, tasks of
maintenance and tasks with deadlines. The environment can be static or dynamic,
can include other agents and can be non-deterministic. In addition, we also have
to consider how to represent the interaction of the agent with the environment over

time.
One aim of this specification is to be able to compare different agents per-

forming the same task in same environment. Clearly, to compare agents, we must
distinguish between the agent and the environment. For a physical agent, such as
a robot, the distinction between the agent and the environment is reasonably clear,
although, this is not always the case. What happens if a part of the robot breaks
off? Is this broken piece still part of the agent? Furthermore, is the resulting
robot the same "agent" as before? For software agents, the distinction between the
environment and the agent may be harder to make. Fortunately, this question is
mostly of academic interest. In general, where to draw the line between the agent
and the environment will be clear. The environment is everything present before
the agent was built and the agent is everything that was added.

Of more concern is whether and where to make distinctions within the agent,
since such distinctions impact the definitions of agent properties more directly.
One extreme possibility is to regard the agent as a black box. This is sufficient
for defining some properties of an agent, but not others. In particular, there is
no way of describing the suitability of the agent's effectors or sensors for a task
separately from the entire agent. The distinctions that should be made are those
that are useful for comparing and designing agents. Distinctions should also be
sufficiently abstract as to be able to apply to a wide range of agents.

Given distinctions between the environment and the agent, and between the
sub-parts of the agent, a method is needed to describe how these components
interact. The agent affects the environment through its actions and is affected by
changes in the environment. Sub-parts of the agent interact either physically or
by passing information. These interactions should be characterized to the level of
detail necessary to make useful comparisons between behaviour.

When performing a task, the interactions between the agent and the environ-
ment occur over a period of time. So, in addition to representing the form of the
interaction, the evolution of the interaction over time must also be represented.
Time can either be modeled as a continuous quantity or as discrete intervals. Of
course, as the size of each time interval shrinks, a discrete representation better
approximates the continuous quantity.

Finally, we need to consider whether our model of the environment will include

4

non-determinism. We could adopt the Newtonian view that the world is determin-
istic, if only we know its state in infinite detail. Any apparent non-determinism is
the result of our limited information about the current state and our limited ability
to compute future consequences.

Neglecting computational limits, the environment may still be non-deterministic
if we allow for other agents with free will. Either we can distinguish other agents
from the environment and model them as non-deterministic entities or leave them
as part of the environment and include non-determinism in the environment. If our
aim were to define properties of co-operating agents, then the distinction between
other agents and the environment is needed. Since this is not our current objective,
the distinction between other agents and the environment will not be made in order
to simplify the framework.

Framework

Environment
Agent

Controller

State
Mechanism

Sensors

Effectors

Figure 3: Agent System Overview

The general framework adopted is shown in figure 3. We make the necessary
distinction between the agent and the environment in which it is situated. The
environment will include non-determinism and time will be measured in discrete
intervals. Within the agent, we distinguish the mechanism from the controller. The
mechanism consists of the sensors and effectors that allow the agent to interact
with the environment. The controller is, conceptually at least, the component

5

that accepts input from the sensors and controls thz ?ffectors. The controller may
maintain some state (memory). The details of the nature of the environment,
the structure and implementation of the agent and the agent's control have been
abstracted away.

The model is intended to apply to systems as diverse as autonomous robots,
knowbots 2 and thermostats. The agent may have a physical presence or just exist
within the memory of a computer. The control component could be implemented in
software or hardware. By refining this abstract model, particular classes of agents
can be specified.

This formal specification first defines the basic data types: an environment, a
task and an agent. These components are then used to define the general agent
system and a deliberative agent system. Binary definitions of the agent properties
are given in terms of these agent systems. Following this, a utility function is
defined over possible task completions. This allows the agent properties to be
refined and stated as partial orders. When a probability distribution over the
possible initial states is added, expected performance of an agent can be defined.
Using expected performance, agent properties are further refined.

The formal aspects of our definitions are presented using the Z specification
language (Spivey, 19891. A short introduction to the language is given in appendix
A. The specification consists of a prose description and Z code. These two
components complement each other. The prose explains the specification in an
intuitive way and gives the intentional meaning of the Z code. The Z code
provides precise definitions in a language with well defined semantics. Developing
the specification is a process of creating and refining both the text and the Z code.
The Z code is created based on the written description. The process of writing
the Z code often identifies inconsistencies and omissions in the original text. In
addition, the Z code can be put through a syntax and type checker to identify more
subtle errors. Updating the prose to conform to the revised Z code often highlights
assumptions and implications that can be used to further refine the prose and the Z
code.

It is intended that the basic idea behind each definition presented in this report
should be understandable from the text alone, though not in full detail.

"2A knowbot is an agent that exists as a program running on a computer or computer network. It
performs tasks such as information retrieval from databases.

6

Primitive Data Types

In this section, the primitive data types used to describe agents, environments and
tasks are presented and discussed. These data types are used to describe the state
of each component and to describe interactions between components. In addition,
wve define the term Chronicle which is used to represent how components of the
agent and environment change over time.

External Descriptions

The externally observable state consists of the state of the environment and the
externally observable state of the agent. Each is described by a primitive data type.

[WORLD. CONFIGURA TION]

A WORLD is a complete, instantaneous description of the environment. It
includes the state of the environment as web the instantaneous rates of change of
that state. It is like a very detailed snapshot of the environment.

A CONFIGURATION refers both to the composition of the agent's "body" and
its current position. For instance, a CONFIGURATION specifies how many arms
the agent has and the position of each arm. Like a WORLD, a CONFIGURATION
is an instantaneous description that includes the instantaneous rates of change of
the state.

A complete description of the external state of a system requires both a WORLD
and a CONFIGURATION. An ExternalState is such a description. It is interesting
to note that not all combinations of WORLDs and CONFIGURATIONs may be
possible. The physical laws of the environment may restrict which pairs are legal.
For example, two things cannot be in the same place at the same time. Each
environment will determine which ExternalStates are possible.

l'xl•f r'-7altah

world : IIOILD
co),JjiIY. m tiPl ('0 F(I; I?". I 11O.

It is impossible to completely specify the external state of the system in exact
detail. From a practical standpoint, some of the details must necessarily be omitted.
It is also desirable to abstract away irrelevant details. An abstract description of
the external state can be represented by the set of ExternalStates that are consistent
with the partial description. A predicate such as On(A.B) is equivalent to the set of

7

ExternalStates where the predicate holds. An ExternalDescription is defined to be
a set of ExternalStates representing an abstract description of the external state.

Exte rnalDescription == P ExternalState

Internal State

The controller within the agent may maintain some information in its memory. A
STATE is defined to be a complete description of the internal state of the agent's
controller. It represents the contents of the agent's memory. Note that since it is a
primitive data type, nothing is said about the structure, capacity or organization of
this memory.

[STA TE]

Commands and Interactions

Interactions between the agent's controller and its effectors and between the agent's
effectors and the environment are mediated by COMMANDs and INTERAC-
TIONS, respectively.

[COMMAND. LVTER.4('TJON]

A COMMAND is a signal that the agent's control component can send to the
agent's mechanism. The results of sending a particular COMMAND signal will
depend on the CONFIGURATION of the Mechanism and WORLD in which it is
sent. A COMMAND used in this sense is not the same as what is meant by an
action in classical Artificial Intelligence planning. A COMMAND is not a high
level action like putOn(A,B). It is more like a setting of the switches that control
the agent. A single configuration of the switches may cause the robot to begin
moving forward and open its gripper.

To get a better idea of what aCOMMAND is, imagine yourself as the controller
inside the agent. In front of you is a control panel with some buttons. You
control the agent by pushing combinations of these buttons. Each COMMAND
corresponds to one combination of buttons you could push.

An INTERACTION is the influence the Mechanism exerts on the environment
as the result of acting on a particular COMMAND signal. The exact INTERAC-
TION depends on the Mechanism, the COMMAND signal and the CONFIGURA-
TION of the Mechanism.

The advantage of having separate COMMANDs and INTERACTIONS is that
it allows for the distinction between the signals sent to the mechanism and the

8

effects the mechanism has on the environment. A COMMAND that turns on the
arm lifting motor will produce a different INTERACTION depending whether the
motor fuse is burnt out or not. There can also be more than one way of achieving
the same INTERACTION. I can push a block with my right hand or my left hand.
The effect on the block is the same, as long as the force applied is the same.

Perception

An agent receives information about the state of the environment through its
sensors. A PERCEPT is a signal that the agent's sensors pass to the agent's control
component. It is the input counterpart to a COMMAND. The PERCEPT sent
can be influenced both by the WORLD and the CONFIGURATION of the agent's
mechanism. For instance, the output of a camera will depend on the state of the
world and the direction the camera is ruinted in. Again imagine yourself as the
controller inside the agent. The control panel has some lights on it indicating the.
current value of the sensor readings. These lights provide your only access to
the information about the outside world. Each of the possible patterns of lights
corresponds to a single PERCEPT.

[PERCEPT)

A PERCEPT encodes the output of all the sensors in a single value. When
designing a particular agent, it may be helpful to distinguish the output from each
sensor and to identify the possible values. A complete specification of sensor output
would then consist of the value of the output for each sensor. When considering
agents in the abstract, it is desirable to hide details about the number of sensors and
the values they can return. Combining the individual values into a single composite
value does not reduce the amount of information obtained from the sensors. The
reason for having a single composite value is to make definitions dealing with
sensor output simpler.

Time and Chronicles

In this specification, Time is measured in discrete intervals. For convenience, we
mapped each interval to an integer, to K,, p track of the sequencing. A discrete
time representation was chosen since it results in cleaner property definitions with
little loss in generality. This specification does not depend on the size of the
time interval. Nowhere is the time quanta specified. By making the time quanta
sufficiently short, continuous time can be approximated to any desired granularity.

9

Finu == Z

The evolution of an entity, either a component or an interaction, over an

interval of time, can be represented using a Chronicle [McDermott, 1982]. Ill
our representation, a Chronicle consists of a series of samples of the entity. Each

sample represents the value of the entity at the start of a time interval. Chronicles

are well suited for modeling entities that change only at discrete times. A good

example of such a entity would be the output of a controller implemented using a
micro-processor. The controller's outputs would only change synchronously with
the micro-processor's clock. For a continuously varying entity, a chronicle is only

an approximate representation in the same way that the samples on an audio CD

only approximate the original music. The critical factor in such an approximation
is the sampling rate. The entity must be sampled often enough to prevent any

required information from being lost.
Formally. a Chronicle is defined to be a partial function that maps times to cor-

responding values. All Chronicles have definite start times. In addition, we define

FiniteChronicles to have finite end times as well. The definitions of Chronicle and

FiniteChronicle are parameterized by the type of entity, Q. A particular kind of

Chronicle is defined by specifying the type of entity. For example, a Chronicle of
external states would be "Chronicle[Externa!State I".

('htr ,,I WIf [21 = = .C: "imlU -+-4 3to- l(i3 : dora, = /ti: lit / Ii :_ le}}

FirtitrChronicle[Q] == {c: Time -4- Q 3 t 1. Q2 : Tin, * domra- = / I .. 12}

Here we define six auxiliary functions for dealing with chronicles. They will be

used to make formulas involving chronicles more concise and readable. The name

of each function is meant to suggest its semantics. The timesOf function returns the

set of times covered by the chronicle, while the startOf function returns the earliest
time. For inductive definitions, it is convenient to be able to refer to the times
covered by the chronicle, after the initial state. The restTimesOf function returns

the times covered by the chronicle, minus the start time. It is also useful to be able
to refer to the range of values covered in the chronicle. The valuesOf function

returns the set of values for the quantity in the chronicle and the firstOf function

returns the initial value, Finally, the prefixesOf function returns all chronicles

which are prefixes of the gi ven chronicle.

I0

=[Q]
tinzesOf : Chronicle[Q] - P Time
startOf : Chi-onicle[Q] - Time

restTirnesOf : (7ironiclf[Q] - P Time
valuesOf : Chroniclc[Q] - P Q
firstOf : Chronticlf[Q] Q_ Q
prefixesOf : ('hnicle[Q] - P FiniteOhron icl/c[Q]

V c: Chronicle[Q] .
timesOf(c) = domc A
start Of(r) = min(dom c) A
rest Time sOf (r) = timesOf (r) \ { startOf(c) } A
valuesOf(c) = ran c A
first Of(c) = c(.startO)f(c)) A
prefiresOf(c) = {Pr(fid" : Finith,(7,'roniclf[Q] I

.hart Of (profix) = startOf (r) A p,' fix C c}

Environment

Every agent operates in an enN ironment. To describe an environment, we must
characterize the valid states and how they change over time. In general, the state
of an environment is dynamic, changing of its own accord and in response to
interaction with the agent. In a deterministic environment, knowing the exact
state, the interaction with the agent and the "laws of nature" allows the immediate
future to be predicted exactly. In a non-deterministic environment, the best that can
be done is to predict a set of possible future states. Any model of the environment
must be able to account for both deterministic and non-deterministic state changes.

In this framework, changes in the state of the environment will be represented
as a Chronicle of the external state. To characterize how the environment changes.
we need only he able to predict the next state given the current state and the current
interaction with the agent. This can be done if the Markov property holds. Such
is the case it' the state description of the environment captures all relevant the
features. For example, to predict the flight of a ball thrown into the air, the state
description needs to include the velocity of the ball as well as its position. The

definition of WORLD and CONFIGURATION include the state and instantaneous
rates of change of state so that the Markov property holds for an ExternalState.

Even with the Markov property, it is not possible to predict the next state for
a non-deterministic environment. The best that can be done is to predict the set

Ii

of possible next states and the probability of each one. When considering how to
model non-determinism, there are a couple of issues to keep in mind. For one, the
model should allow for a probability distribution over successor states. Secondly,
the model should also allow the performance of agents to be compared under the
same conditions.

The approach we will take is to model non-deterministic environments as
deterministic environments with hidden state variables. To get an idea of how this
works, imagine that at the beginning of time you ask an all knowing oracle to write

down the outcome of all future non-deterministic events. You then include this
information in the state of the environment. Of course, there can be no way that

an agent could perceive, this information. It must remain hidden until each non-
deterministic event takes place and the outcome is revealed. There are advantages
to modeling non-determinism in this way. It allows agents to be compared under
identical conditions. How does each agent do if the coin flip comes up heads?
Such an encoding also allows a single probability distribution over initial states to
account for the likelihood of each state and the probability of each non-deterministic
event. In practical terms, being able to determine the next state rather than a set of
possible next states simplifies the specification without loss of generality.

The environment is represented by a schema that embodies the "laws of Na-
ture." The schema includes a description of the valid combinations of WORLDs
and CONFIGURATIONs, a function for specifying how things change over time
and a partitioning of external states for hiding non-deterministic outcomes. As
described previously, not all combinations of WORLDs and CONFIGURATIONs
are compatible. The "consistent" set gives the set of legal pairs. The consequence
function maps the current ExternalState and the current INTERACTION with the

agent to the next ExternalState. The consequence function is defined for all IN-
TERACTIONs and all consistent ExternalStates. The resulting ExternalState is
always a consistent ExternalState.

It is not possible for an agent or an observer to determine the value of the
hidden state variables. If it were, then the environment would be deterministic. The

envirenment schema divides the set of world states up into sets of indistinguishable
states that differ only in the value of hidden state variables. This partitioning will
be used to enforce the restriction that hidden state remain hidden. An agent will

be restricted to be able to, at best, determine which set of indistinguishable states
it Is in. A task specification must also not depend on the hidden state, in the same
way that it cannot depend on the internal state of the agent.

12

Environment
consistent : ExternalDescription
consequence (ExternalState x INTERACTION) - ExtcrnalState
indistinguishable : P ExternalDescription

(ran consequence) C consistent

dom(dom consequence) C consistent

U indistinguishable = consistent

V a, b : indistinguishable # a nl b 5$ 0 ý* a = b

To assist in enforcing the restriction on indistinguishable states, we detine a
function that takes an environment and returns the set of pairs of indistinguishable
states. The returned set consists of all pairs of ExternalStates that differ only in
their hidden state.

sameExternalStates : Environment - P(ExternalStath x ExternalState

V env: Environment; e. e-- : ExternalState *
(e1 , f2) E sameExter-nalStates(env)

€ (3 ind : env.indistinguishable * el E ind A e2 E In1d)

External Chronicle

An ExternalChronicle is a Chronicle of the ExternalState. It describes the evolution
of the environment and the behaviour of the agent.

External('homnick- = = Finite ('hronicrl [Ext•t- rnual,tath]

In a particular environment, only some Chronicles are possible. To be valid,
the sequence of ExternalStates must be consistent and follow the "laws of nature,"
that is, they must result from repeated application of the consequence function.
The Chronicles function returns the valid ExternalChronicles for a particular envi-
ronment.

13

chronicks : Encironnrit - P EturtialChrmnicle

V (t,: Evimrnient *
chronicles(er,')
= { chronicle : Exctrnal('hrOniclu I

(valutisOf (chroniclt) C tn nvx.consistunt) A
(Vt: rest IimcsOf(,chronicle) * 3 intnction : I.VN'EI?-I I'TIOY10.

('nv. consequence(chi rmiicl (t - I). inht-raction) = chronich (I))) }

Two Chronicles are indistinguishable if they cover the same time period and

each of the external states in the Chronicle are indistinguishable. "saineChronicles"
is a function that takes an environment as input and returns the set of pairs of
indistinguishable Chronicles.

.S(Mit Oi(rorticles : En vitymintltit - P(Extc-rnal(hrnm ic/h \ f**'hi rial(7hrmitch

V e , c2 :Extrnal(r'hr•oniclh; fnt, : EntinY)e1lt *
(c. c1) E sanie('hrorticlus(to)

€ time.sOf (1) = tifInsOf ((-2) A

(V t : timesOf(c,) *
3 ind : cri. indistinguishablf * c, (.) E id A c2(t) AE md)

Task

A task is a description of what the agent is supposed to achieve in the dnvironment.
There are a wide variety of possible tasks. These include classic blocks world
problems as well as tasks with time constraints and tasks of maintenance. The
method of specifying tasks must be able to encode each of these types of tasks.
In addition, the task specification should allow for different types of performance

evaluation.
All task specifications require the environment, the set of possible initial con-

ditions and a method for evaluating performance. The task schema provides the
hisic structure used to define all types of tasks. The schema requires that the
initial ExternalDescription be consistent. The method of evaluation is given as a
parameter, "E" to allow the schema to be specialized for different types of task

evaluation functions. Throughout this specification, the "E" parameter will refer

to the method of task evaluation.

14

Task[E]
environment : .Environment
i'nitialConditions : ExternatlDescription

evaluation E

V w " initial('onditions . '1, E envionrnif t.con.si.tsnth

The simplest form of task evaluation is binary. Either the task is accomplished
or it is not. Such an evaluation can be encoded by listing all of the ways of accom-
plishing the task. An agent is successful if its behaviour, in response to conditions
in the environment, is one of the methods of accomplishing the task. Note that we
are not suggesting that any implementation would use such a representation. It is
only meant to serve as a useful conceptualization.

A BinaryEvaluation is defined to be the set of desired ExternalChronicles
that gives all the ways that the task can be accomplished. The BinaryEvaluation
schema is used as a parameter to the task schema to define a BinaryTask. The
BinaryTask schema imposes further restrictions on the desired Chronicles. The
desired Chronicles must be valid Chronicles for the environment. In addition, each
Chronicle must start in one of the given initial states. Finally, the task evaluation
is not allowed to differentiate between Chronicles that differ only in hidden state.

_Bi-naryEvaluatiol ,

desired : P ExternalChronicle

BinaryTask
Task[BinaryEvaluation]

eCvaluatit. ,d siryd C chronicles(npmnnmu(mtd)

V c : F 'ahtation..dsilrd * firstOf (r) E initial('onditioms A

(V c: ExJ.(rn (hC h I.)IIj(./(.
(c') E .ainU (7•C1W iU .I(PlIVI? n n M) t C r 1(1 1 juhio(.d(sin . 1)

The following examples illustrate the generality of the task representation.
The examples include tasks of achievement, tasks of maintenance and tasks of
information gathering.

Tasks of achievement require the agent to achieve some condition in the world.
Classic STRIPS tasks are tasks-of achievement where the conditions to be achieved
are stated as a prepositional goals IFikes and Nilsson, 19711. Such a task is

15

represented by the set of Chronicles where the goals are eventually achieved. The
desired set of Chronicles for the blocks world task On'A,B) would include all
Chronicles that started in one of the initial states and end with block A on block B.
Note that this type of task requires an infinite number of desired Chronicles since
no time limit is specified. Any Chronicle where the goal is eventually achieved
is allowed. Tasks that involve temporal constraints restrict the number of desired
Chronicles. The task On(AB) by 5:00 pm today restricts the desired Chronicles to
those that achieve the goal by the deadline.

A task of maintenance is a task where the agent must maintain some condition
in the environment. For example, a thermostat agent may have to maintain the
temperature of the room between 20 and 22 degrees Celsius. The task is represented
by mapping the initial state to the set of Chronicles where the temperature does not
vary outside of the allowed limits. It is also possible to add temporal contraints
such as "Don't let the temperature vary above 22 degrees for more than 3 minutes
at a time."

Tasks of observation require the agent to determine some information about
the state of the world and act on it. Since tasks are behavioural descriptions, tasks
must be specified in terms of behaviour; they cannot specify anything about the
mental state of the agent. For example, the task to "Go outside and see if it is
raining" is not operational. There is no way to determine if the agent "knows"
whether it is raining. We cannot infer that the agent would know if it was raining
even if we observed the agent going outside. Such a task can be made operational
by adding actions that depend on the observations. The example could be changed
to: "Go outside and open your umbrella if it is raining."

When defining a task, one must be careful when dealing with tasks that don't
have a deadline or other constraints that prevent infinite loops. Consider again
the blocks world. In most formula, ons of planning problems for this domain,
there is no time limit on how long the .- e it may take to complete the task. As
stated before, such a task results in an infinite set of des~red Chronicles. An agent
that does nothing will always be in a desired state, but will never achieve the
goal. Even if the agent were to act, determining whether it will ever achieve the
goal is an undecidable problem lChapman, 19871. An analogy can be made with
the difference between partial and total correctness for a computer program. A
program is partially correct if it never outputs a bad result and is totally correct
if it aever outputs a bad result, but always outputs a result and stops. Simi!Arly,
an agent is partially successful if it never does anything wrong, but is only totally
successful if it also eventually completes the task. In this specification, success
will mean total success.

16

Agent

An agent is any entity created to accomplish a task. We distinguish the agent
from the environment to enable us to substitute one agent for another in order
to compare their performance. Within the agent, we distinguish the mechanism
from the contr)ller, again to allow comparisons between different mechanisms and
controllers.

Mechanism

An agent's Mechanism determines how the agent can perceive and affect its envi-
ronment. It provides the agent's only means for interacting with the environment.
The mechanism's sensors provide information about the state of the WORLD and
the mechanism's effectors provide a means for changing the WORLD. The dis-
tinction between sensors and effectors has more to do with the flow of information
and influence rather than physical arrangement. A force sensor on the end of an
arm may be both the point of contact that affects the environment as well as the
supplier of information about the magnitude of the force.

A mechanism is represented by a pair of functions that model its sensors
and its effectors. The perceive function models sensors by mapping the current
ExternalState to a PERCEPT. The effects function represents the effectors as a
mapping from a COMMAND, issued by the agent's controller, and the agent's
current CONFIGURATION to an INTERACTION with the environment. The
perceive mapping allows for perceptual aliasing and sensor noise. Perceptual
aliasing results when more than one distinguishable ExternalState maps onto the
same PERCEPT. Sensor noise is the result of non-deterministic mapping of a single
world onto multiple PERCEPTs. Noise is modeled by using the hidden world state
to map indistinguishable ExternalStates to different PERCEPTs.

pf.rceive : E.x tcrnalS'at(--+- PER C(EP T

(ffcrts :(('OMAJAND x ('ONFIGi?.-ITION) -4- !.V'TEILI('TIO."

The following functions characterize the mechanism's interaction with the
controller. The mechPercepts function gives the range of PERCEPTs that the
mechanism's sensors can generate. Similarly, the mechCommands function gives
the range of COMMANDs that the mechanism can accept. These functions will
be used to simplify definitions involving the mechanism.

17

rnechPercepts : Mechanism -- P PERCEPT
inechCominands : Mechanism - P CO.1I.AND

V Mechanism .
mechPercepts(9 Mechanism) = ran perceive A
mechCommands(O,IIfchanisnz) = dom(dom cffects)

Controller

In the abstract, the internals of an agent can be modeled as a finite state controller
that consists of a control function and a memory. The control function is a mapping
from a PERCEPT and current STATE to a COMMAND and next STATE. The
exact nature of the control mapping and the information encoded in the state are
determined by the agent's architecture and implementation.

The controller schema defines a controller to be a generic partial function
where the type of the state is given as a parameter, "S". This allows controllers
with different memory organizations to be specified as specializations of a generic
controller. Throughout this specification, the ".S" parameter will refer to the
organization of the agent's memory. As a sanity constraint, the control function is
limited to never produce a state that it cannot accept as input.

[S]
Controller : P((PERCEPT x S) -4-- (COMMAN. D x S))

V ctr : Controller * (ran(ran cOr)) = (ran(dom ctr))

Below, a set of helper functions are defined to extract information about a
controller. The ctrStates of a Controller are the set of possible controller STATEs.
The ctrCommands of a controller are the set of commands the controller can issue.
Finally, the ctrPercepts of a controller are the PERCEPTs that the controller can
accept as input.

c[rStat] s : ('nroll r['] - PS

crP -rc(pts : ('ontroll r[S] - P PlElR('l1' f
ctrCommnands : Contwiler[S] - P ('OA11.V.IND

V ctr : Control r[S] 9
ctrStates(ctr) = ran(dom ctr) A
ctrPercepts(rtr) = dom(dom cOr) A
(tr('onnands(tr) = dom(ran O,'r)

18

A complete agent consists of a mechanism, a controller and an initial internal
state. The controller and the mechanism must be matched in terms of PERCEPTs
and COMMANDs; That is, the controller must be able to accept the PERCEPTs
generated by the mechanism and the mechanism must be able to handle the COM-
MANDs issued by the controller. The agent schema also includes an initial state for
the controller. This initial state encodes any explicit, a priori knowledge that the de-
signer has given the agent. Different types of agents are defined as specializations
of this general agent model.

Agent[S]
controller: Controller[S]
mechanism : Mechanism
initiallnternalState : S

ctrConinmands(controller) C_ mech ('oniands (richan ism)

rnechPercepts(mechanism) g_ ctrPe rcepts(controlh r)

initiallnternalState E ctrStates(controlle r)

Agent System

Putting the parts together, we get an agent system consisting of the agent and the
task that the agent is to perform. The agent is parameterized by the organization of
its internal state and the task is parameterized by the type of evaluation function.

_AgentSystem[S. E]
Agf nt[S]
Task[E]

Agent Chronicles

Now that the basic framework has been defined, we describe the machinery needed
to characterize how the agent and the environment interact and evolve over time.
The final result will be a function that takes an agent system and an initial state
and returns the chronicle of external state. This function will form the basis for
defining successful and in turn other agent properties.

The details of how the system changes with time are somewhat complex, but
the basic idea is simple. Given a complete description of the AgentSystem and its

19

state, the state at the next time interval can be determined. The future Chronicle of

the system state is generated by repeatedly determining the next state. The part of
the agent Chronicle that is of interest is the external state, since it is the observable

behaviour of the agent. The ExternalChronicle can be obtained by projecting the

external state out of the Chronicle of the system state.
The AgentSystemState schema is a complete, instantaneous description of the

agent system. It consists of the AgentSystem augmented by the current internal

and external states. In the schema, the internal and external states are restricted to

be legal values for the agent and the environment.

_AgentSysteniStatf [S. E]
AgentSystenm[S. E]

internalState S
•it rnal.S'tatie Erit rnalS'tatr

I i.lt ri rnalSItate E ctrO'tatcs(controlt r)

txternalStalt E (n, 'irnmflnit. consisteni

A subset of the AgentSystemStates are possible start states. An AgentSystem-

Start is an AgentSystemState with the initial internal state and one of the possible

initia! external states.

Agent, steqienStart[,[. E]F g.ntSystemState[S, E]

in . ternalSiatc = iniiialIlntcrnalStaft

t~t PrnaflS'tatf E initiaW onl(Ii1io.is

Each transition of the system state must be a valid step which depends on
the environments consequence function and the agent. The AgentSystemStep

transition schema defines a valid step. The agent's control function is used to

update the internal state and issue a command. The command is passed to the

agent's mechanism and interacts with the environment to produce the next external

state. The agent and the task remain unchanged.

20

AgentSystemStep[S, E]
A Age ntSyste tnState[S. El

3 cmd : COMMAND .
controller(mechanism .pcrceive (exte rnalStath). intcrnal•S'at(
= (cid, internalStatt') A

i tyrvnon ent.conseque nce(t xtitrnal.Stutc,

mechanism. effects(cmd, externalStath.configuratiotn))
= externalState'

OAgentSystem = OAgentSystem'

As time proceeds, the external state and the agent's internal state are updated
after every time interval. This is not to say, however, that the controller must
go through a decision cycle and generate a new COMMAND after each interval.

Likewise, it does not mean that the environment only changes when the controller
generates a new command. The controller may take any number of intervals to
process the sensor output and calculate the next command to issue. In the mean
time, the controller may continue to issue the same COMMAND (push the same
buttons) or issue a null command (not push any buttons). What happens will depend
on the implementation of the controller. The state of the controller is updated every

interval to reflect any progress made in doing computation. Likewise, the state of
the environment is updated to reflect any changes. The critical factor is the length
of the time interval. It must be short enough that no significant information about
the external state is lost.

An AgentChronicle is an infinite Chronicle of the evolution of the AgentSys-
temState. Each transition in the sequence is a valid step and the first state in the

Chronicle must be a valid start-state.

.. g nt('hroniclie[S. E] =={ faq nt(hronict (:h,-mniel [.Agq n/S!/.sl(,,,.SI(tt [5. [1]]1
3 .lq(ntS/ystctn.S'tlrt [S. 1] * 9. lg(It/ yst/ .ItSIart = irstOf(,t/f •t(7ir, 1 i,/) A
(V t : rest Tinu.sOf(aIt(n/Chnviclh)

(J 3 ..1Sg jt, ,I,.,tft, [5,. A]; .1(./ ,,t., ,/ ,.','tat, '[.1,'. ig
0.4Iqenttt. s/ n.SIhit4 = ill ('hunt, /ic (I - I) A
OAgentSys.tei.State' = agt-nt(/(ronicl((t) A

AqentSystel.S't/clS. El))}

As noted above, if the system starts in a particular start state, then the AgentChron-
icle is uniquely determined. The AgentChronicleOf function maps an AgentSystem
and an initial ExternalState to an AgentChronicle.

21

[S, E]
Age nt('tmvnicl Of " (.4g It.S'•tl ir[s . E] S < EltEt, rnal.S'tt) - Iqt ntiChrolil [. F

V .4gentSysttn[(S. El; Extf rnal.5tatt ; ag(nt('t omnicle " Ayt nt(ihronich [.(S'. L]
.4ge nt('hronicleOf (O.tgt ,nt.SsIst fi. 9 E"tt~rf~l.SILt(t)= age nt('hronich z

(3 ..tg~nt.S'gste ,n.'itart[.q. E) * 9 ..tge nt.Sq.•tU n.'itarti = Ii rst Of(agt nt('hnn,'h)

0..9'jcntSysturn = 0.-lyt-ntSyste'm! A
(fir'st Of ((1:11 nt("hroiiul-)).t 1'f ri l.StItI(= OE't/ rital.9a/'tt

When examining the behaviour of the agent, we are only interested in changes
in the external state. The chronicleProject function maps an AgentChronicle to a
chronicle of the ,-xternal state only. The chronicle project function is defined to be
the function composition of the original chronicle and a lambda expression. Re-
member that a chronicle is, itself a partial function from times to values. The lambda
expression is a function that projects the ExternalState from the AgentSystemState.
When the original chronicle is composed with the lambda expression, the resulting
partial function is an ExternalChronicle that maps times to ExternalStates.

[S. El
chronicle Project .4.qent(Chronicle[S. E] - Extr/rnal('hronicle

V a : ..lgt rntChronich [.S,. El; l/'(riial.S'/at(o
chronicl Prgjc1/(a) = a ; (A .tgntS/ystf nS'tatt [S. EL o 9 E.rth rn(,Ilat.)(

Finally, we create the chronicleFrom function that gives the behaviour of the
system when started in a particular initial state. This function is the cuimination of
the effort to define a framework for describing agents, tasks and environment. It
forms the basis for defining successful.

The chronicieFrom function is the functional composition of the AgentChron-
icleOf and the chronicleProject functions. The AgentChronicleOf function pro-
duces the complete agent chronicle and the chronicleProject function projects out
the chronicle of the external state.

chro)jich E] == [gSlit =t 'l,(, ficlh (Of[S.. E"] ; ,hyr,,,,ich IT',jtt[.. E]

General Agent Properties

This section defines five general agent properties: successful. capable, percep-
tive, reactive and reflexive. These properties are relevant for any type of agent

22

Figure 4: General Agent Properties

performing a task with a binary evaluation. The relationship between three of
these properties is show in Figure 4. An agent is capable if its effectors are able
to accomplish the task. A perceptive agent also possesses the sensors needed to
determine how to operate the effectors for achieving the task. A successful agent
is a perceptive agent with the right controller.

To assist in our definitions, we define the relation =Task that holds between two
agent systems when the task, and hence, the environment are the same.

[S. E]
- =Task - .l(IltS'j.'t A] - .4g n,.'t• r[5. 1]

V .tg ntS!qstf rnI[S. EL; .lgf r•1 s/, m2['. I-] .
0.19A nt."qstC1 1 =Task 0.4 g(tlS I/S/I'- - (0 DIT.k1 = 0 1'.42)

Successful Agents

A successful agent always achieves its task. Given the concept of an AgentChron-
icle and the chronicleFrom function defined in the previous section, it is easy to
define success for an agent performing a binary task. The chronicleFrom function
is used to generate the infinite chronicle of the agent system when started in a

23

particular state. The agent accomplishes the task from this state if some prefix of
the infinite chronicle is one of the desired chronicles. The agent is successful if it

accomplishes the task from all possible initial states.

- .$'uecce.s.uiqtlStq"stf 1z[S]
lge ntyste ro[tS. ~BinaryEcahuationj

V ii: initial()onditUis 0
prefixesOf(chroniclekFror(0(.4gent.S'ystcrn. w)) n f valuation.d(/sitvr(d #

Capable Agents

Capability reflects the ability of the agent's effectors to achieve a task. One way of

demonstrating capability is to show that there is some agent with the same effectors
that is successful, although it may not have the same perception or control function

as the given agent. Capability ignores the fact that the given agent may not be able
to perceive the relevant characteristics of the external state and may not choose the

correct COMMANDs.
A CapableAgentSystem is defined as to be AgentSystem for which there exists

a second AgentSystem with the same task, initial conditions and effectors (effects)
that is successful. That is, the given agent would be successful if only it had the
right controller and perception.

('apablf.-tgentSlistf r1115"1
.4ge ntSystern[., BinaryEraluation]

3 5"ucce.f.ili.-lgCnt.5'qst m'[.Y']
0. l.. tt'.qst•h In -Task 0.S"ui(C.,.'sfI..lfqt nt'iy.stc ' A
mIn'hnl.l M. ff(cts =i fha~i.m'.iJfs ' t. A
i~i tillIln t• riitiS'toe in mifia/in fe rntl/Sfi~t /•

Perceptive Agent

Perceptiveness measures the agent's ability to distinguish salient features of the
environment. What constitutes a salient feature is determined by the task and the

agent's mechanism. Different tasks require the agent to respond todifferent features
and events in the world. For example, if the task were to open an umbrelia when
it is raining, then rain is a salient feature that must be responded to. The agent's
mechanism is also important. Different mechanisms can achieve the same effect
through different INTERACTIONS. Since an agent's PERCEPTs help determine

24

its COMMANDs (and hence INTERACTIONs with the world), it is necessary
to know the mechanism in order to determine which PERCEPTs are salient. For
example, if the mechanism is a large tank and the task were to move from one
location to another, then sensing bushes and rocks would not be required. If instead
the mechanism were smaller and could get tangled in bushes, then sensing them
would be salient.

Alternatively, perceptive could be defined to depend only on the task and not
on the agent's effectors. An agent would be perceptive if its perceive function

supplied the information needed for some effectors to achieve the task. But, what
class of effectors should be considered? As illustrated by the tank example above,
the class of possible effectors will determine the class of perceptive agents.

A more practical argument for making perceptive depend both on the task and

the mechanism has to o,, with the way in which agents are generally constructed.
Agent design, especially in robotics, usually proceds from the design of the

effectors to the design of a perception system. The perception system is selected to
provide the information that is needed to control the effector to achieve a particular
task or set of tasks. Defining perceptive in terms of the agent's mechanism focuses

attention on the appropriateness of the perception system design for the selected
effectors.

An agent is perceptive if its sensors provide the information needed to select
COMMANDs that accomplish the task. Perceptiveness ignores the fact that the
ageni's controller may not actually select COMMANDs that achieve the task. The
definition of perceptive will again depend on the existence of a successful agent, this
time one with the same mechanism. A PerceptiveAgentSystem is an AgentSystem
which has the same sensors and effectors as a SuccessfulAgentSystem.

tPc rec pt i rc.l qgent S !y.t eni [5•]

'ii jiabh .g4(•S y'!st(in[.lI

B .S' ' .'.sful.. • t . m'[,S] *

S.1f I ."I I = Ta,k 1!/ / 'fl" A .•. , ' A
Pilm rhanlli.sml = /mcu11 1 '/sll i.nl /A

Reactive Agent

There has been wide disagreement on what the term reactive means when applied
to an agent. The American Heritage dictionary defines reactive to be "Tending to
he responsive or to react to a stimruls. "ldict, 19851 in AI, a common definition of

25

reactive is responding quickly and appropriately to changes in the environment.
When considering binary task achievement, to achieve the task the agent must

respond sufficiently quickly and appropriately to changes in the environment. An

agent that is successful is then by definition sufficiently reactive. The definition of
reactive will get more interesting when relative task achievement is considered.

Re'active AgentSystc il[";,] ==.,,,c .dA•,t'~.t [

Reflexive

A term that is often confused with reactive is reflexive. An agent is reflexive if it
responds only to immediate stimulus. Such agents are also called stimulus-response

agents.
Reflexive agents don't need to maintain any memory. The history of the agent

plays no part in determining its actions IChrisman et al., 1991 13.

To assist in the definition of reflexive, we define a function that determines the
minimum number of internal states needed for a behaviourly equivalent agent.

[S. E]
iin('trS.tates ((AgcntSystein[S. E]) - N

V Ag.gnLSyste4[S. E] l
mnin('Ir.Stats(0.-t9q nt.Sysl.it i)

= Mil n(: N
(3 -Igc ntS ystenz'[S, E] .

0 Task = 0 Task' A
mechanism = ,nchanistn' A

(V w, : initialConditiolls *
chrol ich lProm(9 .lgcitdy.st ti. ir)
= hronichl 'roin(.9,lg tntSyst.in'. ir•)) A

it = (#(,/p.S/at1t, s(cOn/trollcr'))))) 1)

A reflexive agent can be modeled as an agent system that never changes internal
state. In this framework, that corresponds to an agent with a single internal state
and hence no memory.

Rcflexivi'AgentSysti m[S. []..tfl1&tS'Yltrll[.,. E]

rnin('Irrqtatcs(0.9A nt .5 ?Js/(in)=I

Aygues that agents that require less menmory are more reactive

26

Deliberative Agent

Environment

Environment
Agent

Controller

State
Mechanism Model

Sensors
project)Sensors •interpret()

Effectors Task

Estimated External
State

Figure 5: Deliberative Agent System

The agent properties defined in the previous section apply to any type of agent. In
this section we introduce a type of agent of particular interest to the Al community
known as a deliberative agent. A deliberative agent has an internal model of the
world and uses its model to reason about the effects of COMMANDs in order
to select COMMANDs that it predicts will accomplish the task. Figure 5 shows
a conceptual model of the organization of a deliberative agent system. (The
conceptual model of a generic agent was shown in figure 3)

An agent's internal model of the environment must provide certain basic func-
tionality. In order to reason about the consequences of COMMANDs, the model
must predict how COMMANDs will affect the external state. The model must
also be able to derive information about the external state from sensor output. The
sensor model is also needed to predict which PERCEPTs to expect in predicted
future external states. !n addition to the model, the agent needs an estimate of the
current external state. It is from this estimated external state that the agent does
projections to infer the consequences of potential actions. The result of an agent's
deliberation process is a plan to accomplish the task. The agent needs to maintain a
representation of the plan to be able to issue the chosen COMMANDs at the correct

27

time. The representation of the plan also allows the agent to further elaborate and
revise the plan as new information is gathered and more computation is done.

The internal state of a deliberative agent has six components; an interpret
relation, a project relation, an estimatedExternalState, a plan, a task and some
workingMemorv. The interpret relation is a model of the agent's sensors and

indicates which PERCEPTs the agent believes can be generated from a given
external state. The project relation is a model of how the environment changes
in response to a given COMMAND. The estimatedExternalState is the agent's
current estimate of the external state. The plan is represented as a controller within
the controller. It embodies the agent's intended response to PERCEPTs and the
passage of timTe. The agent plans by extending and modifying this control function
[McDermott, 19921.

ProjectRelation == ErternalStatc / CUO.IIA.I.D - Ex•tritl'tatea

Inth rp'tReJlation == E'xternalState - PER('EPT

DelibStatef EJ
estimatedExternalState : EternalDescription

plan : (ontroller[STA TE]
intcrprc't : !nte)rpret Rlation
projert : ProjcItRc/ation
task: Task[E]
workingMemory : STATE

A DeliberativeAgentSystem is an AgentSystem where the agent has a delibera-
tive internal state. Reasoning about the state of the world and planning are modeled
as updates to the agent's internal state. The agent selects the next COMMAND for
execution by interpreting its plan. For consistency, the plan in the internal state
is restricted to only produce COMMANDs that the mechanism can accept and to
accept all PERCEPTs that the mechanism can gTenerate.

Df libeivyti''A1gge tdSyst il[l]
F .l9ntS.ystent[DrlibSitc E)[E],

V int(:rn(alState •tr'tates(controil r) *
ctV('ontm'ds (inlt• rnl,~.S'tate.plaf) C nuch(onin inunds(til chai.t isutit) A
nfle/h I• r('(pt. (ntu (/1(1 i.~,•n) C rtrPy� '�l pt.,(ijte rmIn lfItatt .P/an)

28

Since the agent's world model and task model are stored in its state (memory),
the agent can modify them. Learning, in a deliberative agent, is accomplished by
modifying its world and task models. However, since our purpose is to specify
agent properties in terms of these models, we will restrict our definitions to agents
that don't modify their models. This restriction greatly simplifies the definitions,
but will have to be relaxed if learning agents are to be defined.

Simple deliberative agents are agents that don't change their world model or
task model in the course of completing the task.

Simple DeliberativeAge ntSystem [E]
DeliberativeAgentSystem[E]

3 project : ProjectRelation; interpret : Interpret&elatioln

(V internalState : ctrStates(controller) e
internalState.project = project A
internalState.interpret = interpret A
internalState. task = 9 Task)

To make some of the definitions more readable, a SimpleAgentSystem is de-
fined to be a DeliverativeAgentSystem with a binary task evaluation function.

Simple Age rits.yste In
Simple Deliberative gen tSyste m[BinaryEvaluation]

Deliberative Properties

A deliberative agent depends on its model of the world to enable it to accomplish
its task. The properties defined for deliberative agents characterize the accuracy
and suitability of the model for the task and how well the agent uses its model.
Predictiveness characterizes the mczý.Vs ability to make predictions about the
environment. Likewise, interpretivenc-•,, .haracterizes the model's ability to infer
information about the state of the world from the agent's sensors. Independent of
the accuracy of the model, an agent is rational if it behaves in accordance with its
model of the world. A rational agent with a correct model is sound.

Predictive Agent

An agent is predictive if its model of the world allows it to predict the results of its
COMMANDs. A correct prediction relation must predict all the possible external

29

Predictive Rtoa

~Sound

Interpretive

Figure 6: Deliberative Agent Properties

states that could result, and not predict impossible states. In this ideal case, the
project function is the same as the mechanism's effects function composed with
the environment's consequence function.

Given an environment and a mechanism, we can determine the correct pro-
jection relation. The definition of this relation is complicated by the fact that
we don't want it to depend on hidden state. The projection relation is not re-

quired to be clairvoyant. The relation can be created by composing the effects
and consequence functions to determine which externalState will result from a
given initial externalState and command. The correct prediction relation predicts
that any state, indistinguishable from the initial state, can produce any state that is
indistinguishable from the final state.

30

cori'cctPr-ojcct (En virninctnt x .11bchanisin) -+-. Prw(j.fct Rf Ilation

V en~t e Enlvl)II~ /it- nun!;nuc/urn :s .11echani~srn *
Cri' Irc t PlyJt t(Cn II', 111cchanistnt)

= {ej~cf. :-2 (~ 11%COI2sistiIZII cind : C OMANAl.D
en e. onscqut it-(('(j I. inf (hull Is in.1 jff(ts(vrtInd,.(tI).cni (luunIt IiflW I I)) A

*i , C) E aanlxenl'It ts(#n i) A
ell C/ E .5l'Lfl'xt(rn(l51,Sltfs(f enit

e, r(~.ind), c4)

A predictive agent system is a SimpleDeliberativeAgentSystem that starts out
with a correct project relation.

Predicti I'T:ge nitSysteIn[[E]

F Si111iC lDelibe in tive ,.-lqe n t,SysIf rin [E

I -nitiallnt(I'nnl.Sie'tc.prYj(r =f (orrf ef I0Jrojci(1 t w nvtnti id tin ehatilsin)

It is also possible for the agent to have separate models of how the world works
and how the agent's mechanism works. These individual models would correspond
to the effects and consequence functions. Having separate models would allow
the agent to reason about what INTERACTIONs are required to produce a desired
result and then to reason about how to produce the INTERACTION. If I want to
move a block east, I can decide to apply a force on the west side. I can then think
about how I can control one of my hands to apply the correct force. For simplicity,
the two models were be composed into a single project relation.

Interpretive Agent

An agent is interpretive if its model of its sensors allows it to correctly interpret the
PERCEPTs it receives. The interpretation must he accurate. The relation should
include all the possible (External State,.PERCEPT) pairs, but not those that are not
possible.

As was done for the project function, we will define a function that gzenerates
the correct interpret relation. Again this definition is complicated by the fact that
it should not depend on hidden state.

31

correctInterpift (Environment x .1It-chanism) -L- Intc rprc t Relation

V ent : Environment; mechanism: .1fchanismn .
correctlnterpret(env. mechanism)
= {ei, c: evnp.consistent; pcrcept : PERCEPT I

t -, ti) E sameExfternalStatrs(cnv)
0 (C,, inechanism.perceive((l)e}

interpretiveAgentSystem[E]
Simple DeliberativeAgen tSystem [E]

initiallnternal.5tate.interpret = correctInterpret(enviininmneft. lil:han isim

Rational Agent

An agent is rational if it adopts plans that it predicts will succeed over plans
predicted not to succeed. A deliberative agent can predict the future by repeatedly
applying its project and interpret relations to its current estimate of the external
state. The agent can use this ability to predict the future to simulate the execution
of its current plan. If such a simulation leads to accomplishing the task, then the
plan is predicted to succeed.

To define a rational agent, we need to be able to determine the result of
having the agent simulate a plan. The PredictedChroniclesOf function takes a
DeliberativeAgentSystem, an initial external state and a plan returning the set of
predicted AgentChronicles. Note that the result is a set of Chronicles. There can
be multiple possible predicted steps for any given state because the agent's project
and interpret are relations and not functions.

The definition of predicted chronicles will parallel the definition of the AgentChron-
icles. First, a predicted step will be defined. A predicted Chronicle will consist
of a sequence of predicted steps. The PredictedChroniclesOf an agent are then
defined to be the set of predicted Chronicles that are consistent with the agent's
world model.

A predicted step is a single predicted transition in the external and internal
states.

32

PredzctedStep[E]
AAgentSystemState(DelibState(E]. El

3 cmd : COMMAND; state : DelibState[E] .
state = rnternalState A
state.plan(state.interpret(externailState), .,tate.uworking.he-nory)
= (cind. internalState'. workingMeinory) A
((externalState. cmd), externalState') E state.prqject

O AgentSystem = O9AgentSystemn'

A predicted future of the system is a sequence of AgentSystemStates where
each transition between states is a predicted step. In addition, the first AgentState
in the Chronicle must be a valid AgentStartState.

PredictedFuture [E]
== {agentChronicle : AgentChronicle[DelibState[E], E]I

3 AgentSystemStart[DelibState[E], E] *
OAgentSystemState = firstOf (agentChronicle) A
(V t : rest TirnesOf(agentChronicle) *

(3]..gentSystemState[DelibState[E], E]; AgentSystem.niate'[DelibState [E]. F]
OAgentSystenzState = agentChronicle(t - I) A
OAgentSysternState' agentChronicle(t) A
PredictedStep[E]))}

Given a particular deliberative agent system and an initial world state, it is
possible to generate the set of predicted agent Chronicles that are consistent with
the initial conditions and the agent's world model. The PredictedChroniclesOf
relation maps deliberative agent systems and initial world states to the set of
AgentChronicles.

33

Pr(dictd(dhroniclt.,iOf Df ItIx ratiif (tv :• yit.b'qSt¢f r[Ej : (',itiili r - lxt, r,,l.Sft it
-P Ig9 nt(h mnith [1Dt ibStatt [E]. E]

V Dell& ratire ..|g ntSyshin[El; plan :('on/mllt r; E-rt rnaA/f n//h
IPr~ di't d('h r icl s)f~ t D• lib,# rti�.�'nflg n tSl.,tt ti. plan. 0 F.itf riiLStat,

{f /tur(: trf (di, It 'llII, t , E] I
B .lje nitSystt InSart1 [l) libSa/vt [El. E l

O.91g-ntStysh n.tm5art 1 = Jir.stf(fnturv i
#AgentSystern = O.;g9nt.Sy4sttrin A
int rinal.Statl .phan = plan lA
(firnstf(futurf)).extl rn(alStatl = I:x.th rnaStat/ }

An agent predicts that it succeeds when started in a particular initial world state

if all the predicted chronicles from that initial state lead to success. The predicted

success function maps deliberative agent systems to the set of worlds where the

agent predicts it will succeed.

prf dictfdSucct s.s : Sifnp.I.-i • lt'stI t in x ('tontmtf f- r - !'.rt rnlnl/tscriptol

V aqe ntS i.tj : .iS ph-. :lg ri/.t'ls.,l fi; phala (ondroihf r 0
predi(t d.n r#,ss(af ,t l'.stc tit. p/tit)

{ age,(ytn.qstem). initialho(fditiont•1
(V ac : Pcedich d(hroniclf sOf(a9(nSystf/ in. plan. m')

(c : prcf.fixfsOf (chronich Pinjtct(r a)m))
C r a.g(ntS . mp it. iniialIntf rrtal.SItatt .task.(raltitlot). (/(.,i d (I

In the planning process, the agent revises its plan attempting to improve it.

Occasionally, the agent will adopt a revised plan. An agent is rational if the revised

plan it adopts is predicted to be at least as successful as the old plan. A plan is

predicted to be at least as successful as another plan if it is predicted to succeed

under a superset of conditions where the second plan is predicted to succeed.

This definition of ration is very restrictive. A preferable definition would allow
a rational agent to prefer plans where the predicted probability of success or the

expected utility is higher. This requires a probability distribution over possible

events, which will be defined later.

34

RationalAgentSystern

Simple Age ntSyst e in

V update : controller
(3 planBefore, playAfter : Contrl ler e

planBefore = (sfcond(first(update))).plan A
planAfter =(second(second(update))).plan A
predictedSuccess(OAge a tSyste mi, plan Beforn)
C predictedSuccess(OAgentSystem, planAfter))

Sound Agent

A sound agent is predictive, interpretive and rational. That is, its project and
interpret relations are valid and it selects plans that it predicts will succeed under
more conditions.

SoundAgentSystem
PredictiveAagentSystem[BinaryEvaluationj
InterpretiveAgentSystem[BinaryEvaluation]
RationalAgentSystern

A sound agent is not necessarily successful. The agent's mechanism may not
be capable or perceptive enough to accomplish the task. In such a case, there is
no plan that can achieve the task. Even if a successful plan exists, the agent may
not be able to generate it. Just because an agent could decide correctly whether
a plan will succeed or not, does not mean it can generate a successful plan. The
agent's plan generator may not be complete. It is also possible that it may take
the agent too long to generate the successful plan. A complete plan generator will
eventually generate a successful plan, if one exists, but by the time it has done so,
some deadline for the task may have passed.

Utility of Task Achievement

When we talk about tasks and task accomplishment, we recognize that some ways
of achieving a task are better than others. There are tradeoffs that must be made in
terms of efficiency, resource use and time. One method of taking these tradeoffs
into account is to define a utility function over possible task completions. Such
a utility function maps a chronicle to a number that indicates the quality of the
chronicle on a common scale.

35

This section refines the definition of a task to include a measure of utility. The
utility function is used as the task evaluation function. It is included in the task
definition since it is integral to what it means to accomplish a task. Using the
utility augmented task definition, agent properties are redefined as partial orders
on agent systems. It is then possible, for example, to say that one agent system is
more capable than another, for a specific task in a specific environment.

A utility function is a mapping from a chronicle to a utility value.

Utility == ExternalChronicle - Z

A UtilityAgentSystem is an agent where the task evaluation function is a utility
function.

UtilityAggentSystemF SirpleDd:liberativeAgentSystcttn[Utility]

Relative Agent Properties

Given a utility task, the agent properties defined above can be refined to give relative
measures of those properties. The definitions below give dominance relations for
each property. These relations are only partial. They indicate when one agent
system is clearly better than the other. They don't indicate any information in the
case where one is sometimes better than the other and sometimes worse.

Relative Success

One agent is at least as successful as another if it always achieves the task with
equal or higher utility from each possible initial state.

- - •>Successful-' ilt .t tt'y t n {/l y |9 t.,l.t

V .I ..s2 : U"ilijyAly ny'y.h I .
. sI Succ,',jul .,2 " .,' I =Task

(V ?I , . ix itti(Il('o idi tiosi. 0

s1 .L(cahtation(chronicl Frorn(s 1. ir))
> s I .(vahtatioti(chrorticlero'r-on(s2, i,)))

36

Relative Capability

An agent is at least as capable as another if its mechanism allows it to accomplish
the task with equal or higher utility in all possible circumstances. This is made
operational by saying that there exists an agent with the same effectors as that of
the first agent that is more successful than all of the agents with the same effectors
as the second agent.

- --Capable - : Utii1tyAgf ntSystf rz - Utility gfg ntSys.t m

V s 1, s2 : UtilityAgentSystem *
sl -Capable S2 •* s I =Task s2 A

(3 sl V UtilityAgentSystem * -;1' =Task .s1 A

s 1. mechanism. effects = sl'. mechan ism. tffects A

(V s2': UtilityAgentSystem * (s2' -Task s2 A
s2. mechanism .fjfrcts =.2'. F!chani.mn.(JJ 'ts)

s I I ->ŽSuccessful S 2'))

Relative Perceptiveness

An agent is at least as perceptive as another if its sensors provide information
that allows it to control its effectors to achieve the task with equal or higher utility.
Since the salient sensor information depends on the effectors, we will only compare
agents with the same effectors.

Relative perceptiveness is made operational by saying that there exists an agent
with the same mechanism as that of the first agent that is at least as successful as
all agents with the same mechanism as the second agent.

- >Perceptive -- [tiliy. ly I./sy.sti n•n I- ility.,lgq 111.S.jtl/ I

V I.i..2 Utility/..yl tI..1lysJI I *
s I Perceptive .' 2

.• 1 . nu(1(1 ,'h~n i. v. Ife ct.• .,2. nn ,'huu/.i., .€]~fi ,'t. ,

(] . ti' : h ii ij ..lqfiifiSij' I II in * .I Il . . J',

(V .s2' : ltilityAgo nt.iSyst in e (.s2 =Ta•k .2' A

s2.mechanism = s2'.=>'hanni.)
sl' >_Successfujl -2'))

37

Relative Reactivity

Using our definition of reactive, an agent is more reactive than another if it acts
appropriately and more quickly to accomplish the task. In the definition below, an
agent is at least as reactive as another if it is at least as successful and accumulates
utility at the same or faster rate.

- _Reactivel - " 'tilityAgFntSystem - ('ility-lgt nt•g.•tt1 in

V s 1. s2 : UtilityAgentSysteh .
81 >_Reactivel s2 * ((sI >_Successful S2) A

(V w' s 1.initialConditions *
(V ci : prefixesOf(chronictlFrorn(.s1. w));

c2 : prefixcsOf(chroniclEFrornt(s2. wI)) .

#cI = #c2 =ý
s I.caluation (c I) > .s I raluation(c2r))

Relative Reflexivity

An ngent is at least as reflexive as another if its behaviour matches that of a pure
stimulus response system to the same extent. The idea that will be used to define
relative reflexivity is that an agent that behaves in a way that requires less internal
state must have its actions dictated by a control function that is closer to a pure
stimulus-response system. Note that a more reflexive agent does not necessarily
have less internal state, it just behaves in a way that requires less state.

A system at least as reflexive as another if it behaves in a way that require less
memory. The function minCtrStates is used to determine the amount of memory
required for the behaviour of each agent.

- >Retlexive - "tilityAg(11t.5'I.St(in - I tilitY.:lg# I•Ii','l. M

I .s 1..s2 "1tilitAg(nWSi!.sh in *
". I ŽRellexive Q2 - ,;I =Task 2 A

(mi('tr.('Iat .s(. I) < nin(Irf.i'(Itr .(.s2)

Relative Predictiveness

An agent is at least as predictive as another if its prediction relation is more accurate.
Mistakes in the prediction relation can be of two types. The prediction function
can omit correct predictions and can include incorrect predictions. An agent is
more predictive than another if its correct predictions are a superset of the correct

38

predictions of the second agent and its omissions are a subset of the omissions of
the second agent. Only agents with the same environment and effectors can be
compared for predictiveness.

The definition of >Predictive makes use of the correctProject function. The
correctProject function is used to generate the valid projection relation, pr. The

correct projections made by each of the agent's project relations are their projection
relations intersected with the correct projection relation. The correct projections

of the first agent are required to be a superset of those of the second agent. The
project relation of each agent minus the correct projections, pr, gives the set of
incorrect predictions. The incorrect predictions of the first agent must be a subset

of those made by the second agent.

- ŽPredictive -- : UtilityAgentSystem - UtilityAgentSystem

V s 1, s2 : UtilityAgentSystem .

s>•>Predictive s2 ,* (sl =Task s2 A

sl.mechanism.effects = s2.nechanism.effects A

(3 pr : ProjectRelation 9
pr = correctProject(sI .encironment, sI. mechanism) A
(pr n s2. inititllnternalState.project)

C (pr n sl.initialInternalState.project) A
(si .initiallnternalState.project \ pr)

C (s2. initialInternalState.project \ pr)))

Relative Interpretiveness

An agent is at least as interpretive as another if its interpret relation makes the same

or fewer mistakes. That is, if the incorrect interpretations included in its interpret
relation are a subset of the incorrect interpretations of the other agent and its correct
interpretations are a superset of the other agent's correct interpretations.

- -Interpretive - (ility.4go nitSysgt In - (tilityAgcnt?.tSstr fi

V 1.. s2 : (iilqtlq1 nl.Sysl.h tn m

s- >Interpretive -s2 # (ITask .=A 2 A

s l.rnechanism.pe rceire = s2. mtchanism.perceive A
(.s2. initiallnternalState. interpret n s I. niechanisin.perceir) C

(s 1. initiallnternalState. interpret n s 1. nz&hanism.pcrcrci'e) A
(s !. initiallntcrnaiLStat• .interpret \ s . minchanisin.percc ivi) _

(s.,2. initialhftiernalState. inth rpirt \ s 1. i.mchanism.pc wr irc))

39

Utility based Rationality

With a utility based measure of success, we can refine the meaning of rational.
An agent is rational if it adopts plans with a higher utility over plans with a lower
utility. The problem with this definition is that plans typically have a range of
predicted utility. Each plan has a set of predicted outcomes and each outcome
has a different utility. When we define a probability distribution over predicted
outcomes, we can use expected utility for each plan to define rational. For now,
a utility based rational agent is one that prefers plans that have at lease as high a
minimum predicted utility in all possible starting conditions.

To assist with the definition of a UtilityRationalAgentSystem, we define a
function that takes an agent, a plan and an initial external state and returns the
minimum predicted utility.

predicted Utility : UtilityAgentSystem x Controller x ExternalState - Z

V UtilityAgentSystern; plan : Controller o
(V w : initialConditions o
predicted Utility(OAgentSystem, plan, iv) =

rain({ ac : PredictedC'hroniclesOf(OAgentSystem, plan. w) o
initialInternalState, task. evaluation(chronicle Pmject (ac)) }))

A UtilityRationalAgentSystem will only update its plan if the new plan has at
least the same minimum predicted utility in each possible starting condition.

_ tilityRationalAgentSystem
UtilityAgentSystem

V update : controller o
(3 planBefore, planA ftcr : ('ontrodler o

planBefore = (s(cond(first(update))).plan A
planifti'r = (.scCond(.(s(cond()ipdatc))).plhil A
(V it: inil Vfl.i'ondition; 0

l)I'((lietCrd (7tilitt(9 Af'nl.Sqsl . planBf fonv. v)
< ptdicchtdlItii/y(f9.1!1, fld.S'Js.h, Il)llfllfI(r. /I')))

Relative Soundness

An agent is at least as sound as another if it is at least as predictive and interpretive
and it is rational. That is, its project and interpret relations are as good or better
and it selects plans that are predicted to have a higher minimum utility.

40

- >SSound - litilityRationalAgentSystem - UtilityRationalAgentSystrnI

V sl, s2 : UtilityAgentSystem .

S1 >sound 62 <# (1 >Predictive s2 A

sl >Interpretive s2)

Expected Task Performance

The relations defined in the previous section for agent comparisons are generally
inadequate for common use. It is not the case that one agent will always dominate

another in terms of its performance. For most agents, there are tradeoffs that are
made that allow the agent to perform better in some cases, but not it others. When
evaluating performance, the distribution of situations must be taken into account
to give the expected performance of the agent.

To evaluate expected performance, a probability distribution over possible
initial states is needed. Using a probability distribution, it is possible to determine
the expected success. This is done by determining the performance in each possible
initial state and weighting this performance by the probability of the initial state.
Agent properties that are defined in terms of success can then be refined to take the

relative distribution of states into account.

Probability Schemas

For the purposes of this specification, a discrete probability distribution will be
represented as a "bag" of the appropriate items. The count ot each item in the bag
will be proportional to the frequency of that event in the probability distribution.

The probability of a particular item is the count of the item divided by the sum of
the counts of all the items in the bag.

[X]
Distribution P(bag.\)F~ C

The purpose of using a distribution is to weight possible outcomes by their
probability. The generic function probability takes an item and a distribution

and returns an ordered pair (n,m) representing the probability of the item in the
distribution as "n out of m". The generic weight function takes a probability
distribution and a function that maps an item to a number. The weight function

applies the function it is passed to each item in the Distribution and sums the
results, weighting each by the probability of the item in the distribution.

41

[X]
probability : (X x Distribution[.X') - (Z X Z)
weight :(X - Z) x Distribution[X] - Z

V x "X; d : Distribution[X] * probability(x,'d) = (count(d)(x). #d)

Vf X - Z; d : Distribution[X] *
weight(f. d) = 2X~d(probability(x, d) * f(X))4

Expected Performance Evaluation

An expected performance task evaluation function is an extension of the utility
task evaluation function. Expected performance evaluation depends on the utility
function and the initial distribution. The expected performance is calculated by
weighting the utility of the performance in each situation by the probability of that
situation.

ExpectedEvaluation
utility • Utility
2nitialDistribution : Distribution[ExternalStatel

An ExpectedAgentSystem is a SimpleDeliberativeAgentSystem with an ex-
pected evaluation function.

ExpectedAgentSystem
SimpleDelibe rativeAgentSystem[ExpectedEvaluation]

Expected Success

The expected success of an agent is just the performance of an agent for each
possible initial state weighted by the probability distribution of the initial state.

First we define a performance function that takes an ExpectedAgentSystem
and returns a function that maps ExternalStates to performance.

performance : ExpectedAgentSystem - (External.5tate - Z)

V ExpectedAgentSystem; ExternalState .
performance(OExpectedAgentSystem)(9 ExternalState) =

evaluation. utility(chronicle From (9 ExpectedAgentSyste m. i Exte rnaSt atle))

"4Not strictly Z code

42

Then we define an expected success function that takes an ExpectedAgentSys-
tern and returns the expected performance.

expectedSuccess : ExpectedAgentSyptem t- Z

V ExpectedAgentSystern
expectedSuccess(O ExpectedAgenitSyste in) =

uwezght(performance(OExpectedAgentSystem). e valuation. nitialDi. tribution

Expected Capability

Expected capability reflects the ability offdotulwt'bfieve the task.
It is defined to be the best expected performance that could be achieved with the
same set of effectors doing the same task. One mechanism is more capable than
another, in an expected value sense, if it has a higher expected capability.

expectedCapability : ExpectedAgentSystem - Z

V ExpectedAgentSystem.
expectedCapability(OExpectedAgentSystem)

max({ExpectedAgentSystem' ý

(OExpectedAgentSysten- =Task 9 ExpectedAgentSystemn') A

(nmechanism.effects = mechanism'. effects)
* expectedSuccess(9 ExpectedAgentSystem') })

Expected Perceptiveness

Expected perceptiveness reflects both the capability of the agents effectors and the
perceptiveness of the agents sensors. The expected perceptiveness of an agent is
the maximum expected success of any agent with the same mechanism. With this
definition of perceptiveness, the expected perceptiveness will always be less than
or equal to the expected capability.

(x1)ct~P~ir(1 til~l(S .rp(f*d~g((IlqtSysI(fin - Z

V ExpectedAgentSystemn
expectedPerceptiveness(9 Expectc.dAgentSystem)

max({ ExpectedAgentSystern' I
(OExpectedAgentSystern =Tak O Expectedl geni.Syste i') A

(mechanism = mechanism')
* expcctuS'icc.s.(9 ExpMCt('(Id gc ntqy.shm4) })

43

General Task Properties

Up to this point, we have considered properties of agents in relation to the task
and the environment. In this section, we consider tasks in relation to all possible
agents. This allows us to define properties of tasks and to categorize tasks as shown
in figure 7.

The categorization of tasks depends heavily on the set of agents that are consid-
ered possible. Clearly, the task of going to the moon and returning moon rocks is
achievable only if we allow autonomous rockets as possible agents. Changing the
set of possible agents, changes the set of tasks that are achievable. Similarly, the
set of tasks in other categories also changes as the set of possible agents changes.

Detailed explanations of each category of task follow.

Tasks

dependent

•@ inevitable

"--"------" inconsistent

Figure 7: Task Hierarchy Overview

Consistent Tasks

It is possible that a task can be internally inconsistent. There may be some
conditions under which there is no way of achieving the task. In this framework,
an inconsistent task corresponds to a binary task where there is no desired chronicle

44

that begins in one or more of the possible initial states. An inconsistent task cannot
be accomplished by any agent. A classic example of such a task is requiring the
agent to be in two places at the same time.

Consistent Task
Binary Task

V w : initialConditions 9
3 chronicle : evaluation.desired *

w = firstOf(chronicle)

Inconsistent tasks are the complement of consistent tasks.

Inconsistent Task - BinaryTask A - ConsistentTask

Achievable Tasks

It is possible that a task is consistent yet stW!1 cannot be achieved by any one agent.
Suppose the task were to recover the black box recorder from a crashed airplane.
The possible agents are walking robots and autonomous submarines. If the airplane
crashes on land, then the robot can recover the recorder. If it crashes in the ocean,
then the submarine can recover it. The problem is that the submarine cannot travel
on land and the robot cannot operate under water. The task is consistent since
there is always some way of achieving it. However, it is not achievable by a single
agent in the set of possible agents. If a walking submarine were added to the set of
possible agents, then the task would be achievable.

The tasks that can be achieved by a single agent are achievable tasks.

Achievable Task[S]
(Consistent Task

B,5'ucces.•fulAg~ntSyst nz,'[,S] .

0 Task = Task'

Independent Tasks

There are some tasks where the agent has no influence over whether the task is
achieved or not. The achievement of these tasks is independent of the actions
of any possible agent. For example, consider the task of getting a particular star
to go supernova at a particular time. The star either will go supernova or not,
independent of what the agent does.

45

We define an independent task to be a task where if one agent succeeds in a
given set of initial conditions, then all agents will succeed, given the same initial
conditions.

Independent Task[S]
Binary Task

V w : initialConditions e
(V Age ntSystem'[S, BinaryEvaluation] e

(0 Task = 9 Task'))
(prefixesOf(chronicleFrom (OAgentSyste m'. w)) n evaluation.desired = 0))

V (V AgentSystem'[S, BinaryEvaluation]
0 Task = 0 Task' *

(prefixesOf(chronicleFrom(OAgentSystem'. w)) n evaluation.desired $ 0))

Inevitably Achievable Tasks

A task will be achieved inevitably if, for all agents, all possible future states of the
world are in the set of desirable future states. In this type of situation, the agent can
do no wrong. Consider as an example, an agent that is given the task of getting the
sun to rise tomorrow morning. No matter what the agent does, the sun will rise.
(Although you may not be able to see it behind the clouds.)

An inevitable task is a task that is achievable and is independent of the particular
agent.

Inevitable Task[S] -• Independent Task[S] A Achievable Task[S]

Default Task Achievement

Some tasks are possible to achieve by doing nothing and cannot be achieved if the
agent does the wrong thing. These tasks are achieved by default. For example, if
we give the agent the task of watering the lawn, and it is raining, there is nothing
the agent has to do to complete the task. Note that this is not necessarily the same
as an inevitable task. The agent could hold a large umbrella over the lawn and
prevent it from getting wet. The agent can perform actions that will not accomplish
the task.

The problem that must be addressed in this definition is "What does it mean for
an agent to 'do nothing.' " Even when we are doing nothing, we are still breathing
and growing hair.

46

To get around this problem, we designate one of the COMMANDs for each
agent to be the "do nothing" or null command. When this COMMAND is sent to
the mechanism, the mechanism does its own version of nothing.

NullCommand: COMMA ND

A default task is a task that an agent can achieve by executing only NuliCom-
mands. To ensure that there are also ways to not achieve the task, default tasks are
restricted not to be independent and thus not inevitable.

DefaultAchievable Task[S]
Achievable Task[S]

SIndependent Task[S]

3 SuccessfulAgentSystem'[S] 0
0 Task = 9 Task' A
ctrCornmands(controller') = { NullCommand }

Future Work

The current, specification does not deal with learning. There is no definition of
learning. It is suggested that a deliberative agent could learn by becoming more
predictive, interpretive and rational. While this is probably correct, the issues in
learning have more to do with how well the learner generalizes. How performance
of one task can improve performance of related tasks. To do this, some method is
needed for talking about related tasks.

A second major direction for future work is to define the deliberative prop-
erties; predictive, interpretive and rational, in terms of the expected distribution
of external states. It is more important to make correct predictions in situations
that are more likely to occur. Such definitions would result in a finer scale for
measuring these properties. This would be useful when defining learning agents.
The problem in doing this is that the agent selects its actions based on its mod-
els. Changing the model could change the actions selected and thus change the
expected distribution of external states. Any definition must take this shifting of
external state distributions into account.

Another direction for future work would involve applying the framework de-
veloped in this specification to an actual agent system. This would involve tailoring
the representations of the agent, the task and the environment for the particular
system. Abstract definitions would have to be made operational. For instance.

47

the evaluation function for a binary task could not be represented as an infinite
set of infinitely detailed Chronicles. Extending this idea, multiple agents could be
formalized and compared.

Conclusions

This paper has presented formal definitions for some properties of agents that
perform tasks. For a general class of agents we have defined successful, capable,
perceptive reactive and reflexive. In addition, predictive, interpretive, rational and
sound were defined for deliberative agents. These definitions have been given in
terms of a framework for discussing agents, tasks and environments. Through
developing this framework, we have identified some important issues that any
work in this area should address. These issues include how to represent time,
non-determinism and interaction between the agent and the environment.

It is intended that the definitions and framework presented in this paper be
useful for analyzing and comparing agents. It is also hoped that this work will
help to foster discussion by providing a common and well defined vocabulary for
talking about environments, tasks and agents.

Acknowledgments

I wish to thank David Garlan and Reid Simmons who were instrumental in guiding
and encouraging the work reported in this paper. I would also like to thank Rich
Caruana, Scott Reilly, Lonnie Chrisman. Siegfried Bocionek and David Zabowski
for their comments.

48

A Z primer

This appendix contains a short introduction to the Z specification language. Its aim
is to provide sufficient detail about the language to allow someone familiar with
standard mathematical notation to be able to understand the specifications given in
this report. For a more complete introduction to Z see [Spivey, 19891.

In this explanation, a simple specification for a library will be used as an
example. The library will consist of a set of books and a card catalog. The
example is very simple, but uses most of the Z notation needed to understand the
agent properties specification.

Primitive Data Types

A primitive data type has no structure and no details are given about how the data
type might be implemented. For the library, the basic data types needed are:

[BOOK, CA.T.4 LOGNUMA, STRING]

Primitive data types are written in all capitals by convention.

Abbreviations

It is often useful to abbreviate type definitions. Below a Bundle is defined to be
an abbreviation for a set of books. The P before the BOOK is used to indicate the
power set of all BOOKs.

Bundle == P BOOK

Axiomatic Definitions

Functions and variables can be declared as axiomatic for the definition. The
function titleOf defined below is a function that maps BOOKs to STRINGs. It
is a function since each BOOK is mapped to a single STRING. In an axiomatic
definition, the functions and variables are declared above the horizontal line. Below
the line, any restrictions imposed on the definitions are given. In this case, the
restriction says that the number of elements in the domain of the function is greater
than or equal to the number of elements in the range of the function. In other words,
the number of BOOKs is greater than or equal to the number of titles. There can
be more than one book with the same title, but one book can't have two titles. In
the Z notation, ran and dom are short for range and domain respectively. The "#'

49

sign indicates a count of the number of items in a set. Functions are indicated with
"and partial functions are indicated with "--". Relations are indicated with

title Of: BOOK - STRLIG

#(dom titleOf) > #(ran titleOf)

The variable "childrensBooks" is declared as a globally defined bundle of
books.

I childrensBooks : Bundle

Schemas

Schemas are used to specify composite data types similar to records. The schema
name appears at the top of the schema box. As with axiomatic definitions, the type
declarations are separated from predicates that restrict them by a horizontal line.

The library schema is composed of a collection, a catalog and a numbering
of BOOKs. The collection is a Bundle, or set of books. The catalog is a partial
function that maps titles (STRINGs) to CATALOGNUMs. The numberOf partial
function assigns CATALOGNUMs to particular books.

Below the horizontal line a number of restrictions on the elements of the library
schema are specified. All BOOKs in the collection are included in the range of
the partial function numberOf. Also, the title of every BOOK in the collection
is in the catalog. Furthermore, for every CATALOGNUM in the catalog, there
is a BOOK in the collection. The "*" between the quantified variables and the
following expression is just a separator.

Ltibmry
collection : Bundle
catalog : STRING(; ('.-I T..I LOGNVII
numbeirOf : BOOK -4- (.1 TI LO(;.VI'.11

V b : collection *
(b E (dom num&brOf) A
titleOf(b) E (dom catalog))

V c: (ran catalog) .
(3 b : collection .

nuinbcrOf(b) = c)

50

Schemas can also be refined to produce specializations. Below a children's
library is defined to be a library where all the books in the collection are children's
books. All components of the library schema and the restrictions placed on them
are also part of the childrensLibrary schema.

ChildrensLibrrzry
Library

collection C childrensBooks

When schemas are used in quantified expressions, the 0 operator can be used to
refer to the entire schema. The definition of collectionSize below maps a library to a
number books in its collection. Within the scope of the V, the entire library schema
can be referred to using OLibmry. It is convenient to read this as "theLibrary". 0
can be used where ever the Library being referred to is obvious from the context.
Individual components, like collection can be referenced directly.

collectionSize : Library - Z

V Library * collectionSize(OLibrary) = #collfctiop

51

References

[Chapman, 19871 D. Chapman. Planning for conjunctive goals. Artificial Intelli-
gence, 32, 1987.

[Chrisman etal., 19911 Lonnie Chrisman, Rich Caruana, and Wayne Carnikr.
Intelligent agent design issues: Internal agent state and incomplete perception.
In Symposium on Sensory Aspects of Robotic Intelligence, AAA I Fall Symposium
Series. AAAI, Nov 1991.

[dict, 19851 The AMERICAN HERITAGE DICTIONARY of the English language.
Houghton-Mifflin, second college edition, 1985.

(Fikes and Nilsson, 19711 Richard E. Fikes and Nils Nilsson. Strips: A new
approach to the application of theorem proving to problem solving. Artificial
Intelligence, 5(2), 1971.

[McDermott, 19821 D. McDermott. A temporal logic for reasonig about processes
and plans. Cognitive Science, 6:101-155, 1982.

[McDermott, 19921 Drew McDermott. Transformational planning of reactive be-
havior. Technical Report YALEU/CSD/RR 941, Yale University, December
1992.

[Mitchell, 19901 Tom M. Mitchell. Becoming increasingly reactive. In Proceed-
ings, Eight National Conference on Artificial Intelligence, volume 2, pages
1051-1058. AAAI, The MIT Press, July 1990.

[Raiffa, 19681 Howard Raiffa. Decision Analysis: Introductorv Lectures on
Choices under Uncertainty. Addison-Wesley, Reading Mass., 1968.

[Skinner, 19741 B. F Skinner. About Behaviorism. Random House Inc, New York,
1974.

[Spivey, 19891 J. M. Spivey. The Z Notation, A Refrerence Manual. Prentice Hall
International Series in Computer Science. Prentice Hall, 66 Wood Lane End,
Hamel Hemstead, Hertfordshire HP2 4RG, Enuland, 1989.

52

