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1.0 INTRODUCTION

In multichannel identification problems the outputs of
multiple channels (or sensors) are available, and it is desired to
identify the parameters of an analytical model to represent the
phenomena being observed via the channel outputs. Similarly, in
multichannel detection problems the outputs of multiple channels
are available, and it is desired to determine the presence (or
absence) of a desired signal component in the channel data. In
the combined problem of multichannel identification and detection
a model is estimated for the phenomena being observed via the
channel outputs, and the identified model is used to facilitate
the detection of a desired signal in the channel output data.
Multichannel identification and detection is thus referred to also
as model-based multichannel detection. In all of these problems
the channel data is available simultaneously over many channels of
the same type, or over many distinct channels (each channel
corresponding to a different sensor type).

This report is a summary of the work carried cut in this
program. Specifically, the development of state space algorithms
for modeli-paseud multichannel decection in the context of
surveillance radar system applications 1is addressed. In
surveillance radar systems (radar arrays) the channels correspond
tc separate antenna apertures (or elements of a single aperture
array) . The desired signal may or may not e g.esent .n the
channel output data at any given time. The data in each channel
generally includes noise (broadband interference) as well as
"clutter" (narrowband interference), with low signal-to-clutter
ratio and, possibly, low signal-to-noise ratio also. Model-based
detection methods must discriminate between the condition of

target embedded in clutter and noise, and the condition of clutter
and noise only.




Figure 1-1 1illustrates a radar array system ccnsisting of
multiple subarrays or array elements. The output of each subarray

(or each individual array element}) 1is a complex-valued, scalar,
digital sequence, denoted as {x(n)}. The collection of the J scalar

sequences is arranged into a J-dimensional vector, {x(n)}, wnhich is

input to a multichannel processor (not shown in the figure).

Channel No. 1
{x,(n)}
D | Analog l A/D . Pre- ;
Receiver Converter Processor
Channel No. J
. {x;(n)}
D | Analog | A/D " Pre-
Receiver Converter Processor
Figure 1-1. . Radar array with J subarrays or individual elements.

In this study the multivariate (multiple input, multiple
output) state space model class was adopted to represent the
multichannel radar data, and advanced system identification
technigues were applied to estimate the model paraméters. The
modeling of the complex-valued pre-prccessed radar signals for
multichannel detection using the state space model class is cne »f
the contributions of this work. State space models have been used
in the context of target tracking (where the detected radar signal
is processed further to estimate a trajectory) and for the
determination of weights in antenna array sidelobe canceling and
related problems, but not for multichannel detection. Model-based

detection has been carried out using the more-restricted time




series models . .chels, 1991; Metford and Haykin, 1985), which are
included witnin the class of state space models and <can be

represeanted as such.

The methodology formulated in this study is based on a state
space identification algorithm developed by Desai et al. (1985%5),
which in turn is based on the stochastic realization concepts
formulated by Akaike (1974; 1975) and Faurre (1976). This
identification algorithm has several unique features. Foremost
among these, the algorithm identifies the model parameters in the
innovations representation. As a result, a steady-state Kalman
filter design 1is obtained as an inherent by-product ot the
algorithm, without having to solve a nonlinear Riccati equaticn.
Implementation of the algorithm is carried out using the singular

value decomposition (SVD), which is a stable numerical technique.

An important distinction in the context of radar system
applications is that the vector random processes which represent
the channel data are complex-valued processes in most cases. Most
time series techniques and models have been formulated for complex
as well as real processes. The same, however, cannot be said
about state-space technigues; state-space methods and result
available in the literature have been defined almost exclus.vely

for the case of real-valued processes, including the

stochasti

realization algorithms adopted herein. In this study =the
stochastic realization formulations and algorithms were

to the case of complex-valued processes, which is the formulaticn

presented in this report.

A computer simulation was generated as part of this program
to validate the methodology and the algorithms, and to carry out
limited simulation-based analyses. This software was exercised

with simulated multichannel data generated at RL, and the modeling




and identification results compare favorably with the results

obtained at RL using auto-regressive models.

In summary, the analytical and simulation results obtained in
this program indicate that the SSC algorithm and methodology for
model-based multichannel detection has the potential to result in

significant advances for radar system applications.
1.1 Notation

Vector variables are denoted by underscored lower-case
letters (including Greek letters). Matrices are denoted by upper-
case letters (including Greek letters). Some scalars (such as the
order of the state variable model) are denoted also by upper-case
letters. Vector spaces are denoted by upper-case script letters,
such as V. The expectation operator is denoted as E[*]; superscript
T and H are used to denote the matrix and vector transpose and the
Hermitian transpose cperators, respectively,;, and an asterisk (")
denctes the complex conjugate operator. lyy denotes an M-
dimensional "identity matrix, Opgy denotes an NxJ null (zero)
matrix, OM denotes an M-dimensional (square) null matrix, and QM
denotes an M-dimensional zero vector. |A| denotes the determinant
of matrix A; A denotes the inverse of matrix A; A’ denotes the
pseudoinverse of A; rank(A) denotes the rank of A: A(ij) and a; are
both used to denote the (i,j)th element of matrix A; and V1%,
denotes the orthogonal projection of 14 onto 1@. A caret (") over
a variable denotes an estimate of the variable, a bar (-) over a
variable is used to represent the mean of the variable, and 1n(a)
denotes the natural logarithm of a. The symbol 1 denotes "is
orthogonal to;" @ denotes the direct sum of vector spaces; V

denotes "for all;" and € denotes "is an element of."




Where possible, the symbols used herein to represent
variables match the symbols used by Michels (1991) to facilitate
enhancing the software available at Rome Laboratory (RL) with the
techniques developed in this program. This philosophy forces the
use of non-standard symbcls to represent the parameters of a state
variable model. Of course, notational convention should not be a
major issue provided all symbols are defined appropriately.
However, it 1is important to mention this point in order to avoid

possible confusion on the part of the reader.

1.2 Report Overview

An introduction to the model-based multichannel detecticn
problem is presented in Secticn 2.0. This section includes also
the definition of the state space model class and several related
concepts, including the backward model associated with a forward
model, and the innovations representation for a random process.
The parameter identification algorithm is presented in Section
3.0, using an approach which differs from the approach of Desai et
al. (1985). " This alternative approach given here is simple, and
enhances intuition. As mentioned earlier, this algorithm is the
backbone of the Scientific Studies Corporation (SSC) multichannel
detecticn methodology presented herein. Kalman filtering of the

channel data to generate the innovations sequence is discussed in

Section 4.0. The innovations sequence 1is fed to a likelihood
ratio detector which generates the detection decision, as
described in Section 5.0. A discussion of the software generated

in the program is presented in Section 6.0, along with several
simulation results which demonstrate the signal discrimination
capability of the algorithm. Section 7.0 includes the main

conclusions and recommendations borne out of this study.




The three appendices provide background material in a form
which is not readily available elsewhere. Appendix A presents a
methodology for generating the state space representation of three
conventional time series models (moving-average, auto-regressive,
and auto-regressive moving-average). Appendix B presents a
summary of relevant aspects of deterministic realization theory
and algorithms. The extension of canonical correlations to
complex-valued variables is presented in Appendix C. This is an
important result for Section 3.0.




2.0 MODEL-BASED MULTICHANNEL DETECTION

The model-~-based approach to multichannel detection involves
processing the channel data to identify the parameters of a model
for the multichannel system, and determination of a detection
decision utilizing the identified parameters to filter the channel
data. Model parameters can be identified on-line, as the channel
data 1is received and processed. Alternatively, the model
parameters can be identified off-line for various conditions and
stored in the processor memory to be accessed in real-time as
required.

There are two general classes of linear parametric models for
vector random processes: time series models and state space
models. Time series models include moving-average (MA) models,

auto-regressive (AR) models, and auto-regressive moving-average

(ARMA) models. State space models are more general than <time
series models; in fact, MA, AR, and ARMA mcdels can be represented
by state space models (Appendix A). In the state space

literature, .the determination of the model parameters based on
output data (and, sometimes, input data also) is referred to as a

stochastic identification or a stochastic realization problem.

Time series models have been applied to the multichannel
detection problem, and the performance results obtained provide
encouragement for further research (see, for example, Michels,
1891, and the references therein). The results obtained by
Michels (1991) assume that the multichannel output process can be
modeled as a vector AR process. Given the generality of state-
space models and the wealth of results available in the state-
space literature, the state space model class was selected in this
program to represent the multichannel signals in the model-based

multichannel detection problem for radar systems.




In the case of time series models, two types of model
parameter estimation algorithms have been established in the
literature: (a) algorithms which operate on channel output
correlation matrices, such as the extended Levinson algorithm
(Anderson and Moore, 1979), and (b) algorithms which operate on
the channel output data directly (without the need to compute
channel output correlation matrices), such as the Levinson-
Wiggins-Robinson algorithm (Wiggins and Robinson, 1965) and the
Strand-Nuttall algorithm (Strand, 1977; Nuttall, 1976).

The state-space parameter identification algorithm adopted
for this study operates on channel output correlation matrices.
The algorithm formulation is due to Desai et al. (1985), and is
based on the stochastic realization concepts developed by Akaike
(1974, 1975) and Faurre (1976). Implementation of the algorithm
is carried out via the singular value decomposition. This
algorithm has several attractive features, including direct
estimation of the parameters for a Kalman filter, without the

requirement to solve a nonlinear Riccati equation.

2.1 Multichanpnel Detection

Detection problems in the context of radar systems can be
postulated as hypothesis testing problems, where a choice has to
be made among two or more hypotheses. The detection problems

addressed in this report involve the following two hypotheses:

Hp: Desired signal is absent
H,: Desired signal is present
8




Hy is referred to as the pull hypothesis, and Hp is the alternative
hypothesis. The model-based approach to the multichannel
detection problem is couched on the assumption that the vector
random process at the output of the channels can be represented as
the output of a linear system (filter) under each of the two
hypotheses, and that a unique parametric model corresponds to each
hypothesis. Furthermore, the two parametric models (one for each
of the two hypotheses) must be sufficiently different to allow
selection of the correct hypothesis by the evaluation of measures

that are sensitive to those differences.

A particular measure that has procduced robust experimental
results in the model-based detection context (Metford and Haykin,
1985) is the log-likelihood ratio (LLR) test. This test 1is the
result of solving the hypothesis testing problem using the Neyman-
Pearson criterion. The LLR test in the context of model-based
detection is calculated using the innovations sequence at the
output of each of the two linear filters. This presents practical
and implementation advantages.

Figure 2-1 1illustrates the architecture of an on-line
‘nnovations-based multichannel detector. In the case of a radar
array system, each of J radar receiver channels collects the
electromagnetic energy arriving at 1its aperture, and processes it
to generate a discrete-time random sequence, denoted as ({xi(n)},
which contains the desired information. The J random sequences
{xi(n)} are represented in vector form as {x(n)}. Michels (1991) has
formulated the binary detection problem for multichannel systems.
Specifically, the null hypothesis, Hy, corresponds to the case of
clutter and noise present in the observation process {X(n)}, and the
alternative hypothesis, H;, corresponds to the case of signal,

clutter, and noise present in the observation process {X(n)}. That




is, the detection decision must be made between the following two

models,
(2-1a) Hy: x(n) = ¢(n) + w(n) n2ng
(2-1b) H,: x(n) = §(n) + ¢(n) + w(n) n2ng

where Ny denotes the initial observation time, {g(n)} denotes the
clutter process, {W(n)} denotes all the array channel noise

processes, and {§(n)} denotes the desired signal (target) process.

Innovations
Null Sequence
r—1 Hypothesis
Filter {e(n | HQ)}
{x(n)} Model Likelihood Detection
—t——  Parameter p——#{ Ratio g1 Decision 3@
ldentification Calculation Calculation
Innovations Threshold
Alternative Saquence
LM Hypothesis
Filter {e(n [Hy)}
Figure 2-1. Innovations-based multichannel detector with on-line

parameter identification.

In the model-based approach pursued herein, a distinct state
variable model is assoc!: 2d with each of the two hypotheses, and
a Kalman filter is designed for each model. Each Kalman filter
processes the observation sequence {x(n)}] to generate a vector

i0




innovations sequence: {gU1‘H0n denotes the innovations sequence at
the output of the null hypothesis filter, and ﬁxn|H1n denotes the

innovations sequence at the output of the alternative hypothesis
filter. These innovations sequences are used in a likelihood
ratio test with a pre-stored threshold to carry out the detection
decision.

As indicated in the detection configuration of Figure 2-1,
the two filters can be determined in real-time by processing the
observation sequence for a prescribed time interval. This
approach provides the most adaptability, but may present a large
computational burden for some applications. It also presents
conceptual challenges, such as real-time determination of model
order for each of the two filters. Alternatively, the filter
design can be carried out off-line for each of the two hypotheses,
and the resulting filter design implemented in the real-time
configuration. This alternative approach 1s less robust to
changes in the operational environment, but requires a simpler
processor architecture, which 1is important 1in many real-time
applications. Careful design of the filters off-line using
adequate simulated and real data can lead to acceptable
performance. Alsc, many pairs of fixed filters may be designed to
cover distinct operational conditions. The filter £for the
alternative hypothesis will be of higher order than the filter for
the null hypothesis because the observation process for the
alternative hypothesis has more information (the signal
component) .

Michels (1991) has developed a likelihood ratio calculation
and detection decision model which are compatible with the
formulation adopted herein. Both of these capabilities are
available at RL, and, where appropriate, the methodology presented
in this report is compatible with these capabilities.

11




2.2 State Space Model

The class of multiple-~input, multiple~-output state variable
models can represent effectively the channel output process for
radar applications. Consider a discrete-time, stationary,
complex-valued, zero-mean, Gaussian random process {X(n)} defined as
the output of the following state space model representation for
the system giving rise to the observed process:

(2-2a) y(n+1) = Fy(n) + Gu(n) n2ne
(2-2b) x(n) = HMy(n) + D"w(n) n2ng
(2-2c) Ely(no)] = Qn

(2-2d) Ely(no)y™(no)] = Po

Here N =Ny denotes the initial time (which can be adopted as 0
since the system is stationary). Also, ¥(n) is the N-dimensional
state of the system with ¥(ng) a Gaussian random vector; y(n) is the
J~dimensional, zero-mean, stationary, Gaussian, white input noise
process; and W(n) is the J-dimensional, zero-mean, stationary,
Gaussian, white measurement noise process. The output (or
measurement) process {X(n)} is also a J-dimensional vector process.
Matrix F is the NxN system matrix, G is NxJ input noise
distribution matrix, HH is the JxN output distribution matrix, pH
is the JxJ output noise distribution matrix, and Py is the
correlation matrix of the initial state. All these matrices are
time-invariant. Matrix Po is Hermitian (POH=P°, and all its

eigenvalues are real-valued) and positive definite (all 1its
eigenvalues are positive).

12




System (2-2) 1is assumed to be asymptotically stable, which
means that all the eigenvalues of matrix F are inside the unit
circle. Also, system (2-2) 1is assumed to be reachable and
observable, which implies that the dimension N of the state vectcr
(also the order of the system) is minimal (Anderson and Moore,
1979) . That is, there is no system of lesser order which has
identical input/output behaviour. Lastly, system (2-2) is assumed
to be minimum-phase (its zeros are also inside the unit circle).
This last assumption implies that the system is defined uniquely
by second-order statistics. The output distribution matrices are
defined with the conjugate operator in order t<- have nctation
consistent with that or the single-output system case, where both
H and D become vectors, and nominally vectors are defined as

column vectors.

The iInput noise process correlation matrix is given as (all

matrices defined hereafter have appropriate dimensions)

(2-3a) Eluku™(k)] = Ruw(0) = Q K2 ne

(2-3b) Efu(k)u"(k-n)] = Ruy(n) = [0] k2n and n#0
and the output noise process correlation matrix is given as
(2-4a) Elw(k)w(K)] = Rww(0) = C k2 no

(2-4Db) Elw(K)w(k-n)] = Ruw(n) = [0] k2n, and n#0

Notice that matrices Q and C are Hermitian. Matrix Q is at least
a positive semidefinite matrix since it 1s an auto-correlation

matrix (all the eigenvalues of a positive semidefinite matrix are
non-negative), and matrix C is assumed to be positive definite

{(this can be relaxed to positive semi-definite, Dbut positive

13




definiteness i< more realistic since in the radar problem w(n)
represents channel noise and other such noise processes which are
independent from channel to channel).

In the most general form for this model the input and output
noise processes are correlated, with a cross-correlation matrix
defined as

(2-5a) Eu(k)w'(k)] = Ruw(0) = S k>n,
(2-5b) E[u(k)wH(k-n)] = Ruw(n) = [0] | k2N, and N0
In general, matrix S is not Hermitian. Both the input and output

noise processes are uncorrelated with the present and past values
of the state process, and this 1s expressed in terms of cross-
correlation matrices as

(2-6a) Ely(k)u" (k-n)] = Ryy(n) = [0] k2n, and N20
(2-6b) Ely(kwH(k-n)] = Ryw(n) = [0] k2ne and n20
The correlation matrix of the state is defined as

(2-7) Ely(ny"(n)) = Ryy(n) = P(n) k2n, and n20

It follows from (2-~2a) and the above definitions that the state

correlation matrix satisfies the following recurrence relation,
(2-8) P(n+1) = FP(n)F" + GQGH n2ne

In general, matrix P(n) is Hermitian and positive definite. Since

system (2-2) 1s stationary and asymptotically stable, and since
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matrix Q is positive definite, then the following steady-state
(large N) value exists for the recursion (2-8):

(2-9) P(n+1) =P(n)=P

Under steady-state conditions Equation (2-8) becomes a Lyapunov

equation for the steady-state correlation matrix,

(2-10) P = FPFH + cQaH

The conditions for steady-state also insure that the solution to
Equation (2-10) exists, 1s unique (for the selected state space
basis), and 1is positive definite (Anderson and Moore, 1979).
Matrix P is unique for a given state space basis. However, if the
basis of the input noise vector and/or the basis of the state
vector are changed by a similarity and/or an input transformation,

then a different state correlation matrix results from Equation
(2-10) .

The correlation ma:rix sequence of the output process {x(n)} is

defined as
(2-11a)  E[x(K)x™(k-n)] = Re(n) = Aq Vk and n20

(2-11b)  Ryx(-n) = Ri&(n) vn

For system (2-2) the correlation matrix Ry(n) can be expressed in

factored form, with the system parameter matrices as factors:

(2-12a)  An=Ru(n) =HF™'T n>0

(2-120)  An = Re(n) = THF™'MH = THFH™ H n<O
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Here F"™' denotes F raised to the (n-1)th power, and I' denotes the

following cross-correlation matrix
(2-13) I = E[y(n)xH(n-1)] = Ryx(1) = FP(n)H + GSD vn>0

The correlation matrix sequence factorization in Equation (2-12)
is the key to most correlation-based stochastic realization
algorithms. The zero-lag (n=0) output correlation matrix is

(2-14) Rux(0) = HTP(n)H + DMCD = A,

and matrix Ry(0) is Hermitian and at least positive semidefinite.

In steady-state, P replaces P(n) in Equations (2-12) and (2-14).

As can be inferred £from the above relations, the system
parameters {F,G,H,D,Q,C, S P, T} completely define the second-order
statistics (the correlation matrix sequence {Rxx(N)}) of the ourput
process, and it is said that system (2-2) realizes rthe output
correlation matrix Sequence. Conversely, the second-order
statistics of the output process provide sufficient information to
identify the system parameters, although not uniquely. Since the

output process has mean equal to zero and is Gaussian-distributed,

the second-order statistics define the process completely.

From the system identification (stochastic realization) point
of view, the problem addressed herein can be stated as follows:
given the output data sequence {X(n)} of system (2-2), estimate a
set of system parameters {F,G,H,D, Q,C, S, P, T} which generates the
same output correlation matrix sSequence as system (2-2).
Furthermore, the identified parameter set must correspond to a
system realization of minimal order (with state vector Y of minimal
dimension). The solution to this problem is pursued herein via a

two-step approach: first an estimate of the output correlation
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matrix sequence is calculated, and then the estimated correlation

sequence is used to determine the system parameters.

It is well known (Anderson and Moore, 1979) that there can be
an infinity of systems (2-2) with the same output correlation
matrix sequence. The set of all systems that have the same output
correlation matrix sequence is an equivalence class, and any two
systems belonging to the set are said to be gorrelation eguivalept
(Candy, 18976). For example, the output correlaticn matrix
sequence remains invariant to a similarity transformation applied
to the state vector. Similarly, the output correlation matrix
sequence remains invariant also to a non-singular transformation
applied to the input noise and/or to the output noise. As shown
by Candy (1976), the equivalence class of correlation eguivalent
systems is defined including other operations besides a change of

basis.

As inferred from these comments, the solution to the system
identification problem is not unique. It is also true that most
of the possible system parameter solutions do not possess
desirable properties. There is, however, a solution which has
several features of importance. This solution is referred to as
the jinnpovations representation for system (2-2), and is discussed
in Section 2.3. The identification algorithm of Secticn 3.0
generates system parameter matrix estimates for the innovations

representation.

In general, the system matrix parameters resulting from the

identification algorithm will be represented in a different basis,
and should be dencted with a different symbol (say, F1 instead of

F, etc.):; nevertheless, the same symbol will be used in this

report in order to simplify notation.
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Several definitions and notation associated with the input

‘output behaviour of system (2-2) are important. Considexr first
the L-term (finite) controllability matrix of system (2-2), (.;

this matrix is defined as an NxJL partitioned matrix of the form

(2-15) G =|G FG ... F'G ]

As i1s well-known, for a minimal-order system matrix (| has rank N
for L2N. The controllability matrix maps the input space onto

the state space. Analogously, the L-term observabiliry matrix of

system (2-2) is the following JLxN partitioned matrix,

- LHAFSY

and for a minimal-order system the rank of matrix (O is equal zo N
for L2N. The observability matrix maps the state space onto the
output space. Classical realization theory for the deterministic
case (see Appendix B) 1s based on the fact that a deterministic

system block Hankel matrix can be represented as the product of
the observability and controllability matrices. Let Hg  denote

the JLxJL deterministic block Hankel matrix with the impulse
response matrix A(i+j-1) as its (i,j)th block element (a block Hankel

matrix is a matrix in which the (i,3j)th block element s a
function of i+3j). That 1is,
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A1) AR - AL ]

A(2 A(3 . AL+

21 Hy = GG - (2) (3) (L+1)
L A(L) A(L+1) ... A(2L-1) ]

The form of Equation (2-17) fcllows from the definition of the

impulse response matrix sequence {A(n)} for a deterministic system,
Hen-1
(2-18) An)=HF"'G n1

As shown in Appendix B, for L2N the rank of the deterministic
block Hankel matrix, I{LL, is equal to the system order, N. In

fact, it is true also that rank(Hpy,n.u) =N for k21, and that the
elements of the impulse response matrix sequence {A(n)} satisfy a
set of recursion relations (Equation (B-7)) of order equal to the

minimal polynomial of matrix F. The block columns (rows) of HiL

satisfy the same recursion relations due to the sequential
arrangement of the matrices {A(n)} as block elements of H| .

Notice that the representation (2-18) of the impulse response
matrix sequence is of the same form as the representation of the
correlation matrix sequence 1in Equation (2-12). Due to this

similarity the matrix elements of the correlation matrix sequence
{A,}] satisfy the same set of recursion relations as the matrix

elements of the impulse response matrix sequence {A(n)}, and the
above-discussed properties of the deterministic Hankel matrix are

alsc properties of the stochastic Hankel matrix.

Associated with system (2-2) is a backward time model which
is defined from the system model (2-2). Backward time models play
a role in the formulation of a large class of stochastic

realization algorithms. The backward time model for system (2-2)
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is defined as a discrete-time, stationary, complex-valued, zero-

mean, Gaussian random process with a state space representation of

the form (Faurre, 1976)
(2-19a)  §(n) = Fls(n+1) + v(n)
(2-190)  x(n) = T's(n) + v,(n)

where §(n) is the N-dimensional state vector, Vi{n) is the N-
dimensional input noise vector, and ¥,(N) is the J-dimensional
output noise vector. Both noise vectors are uncorrelated in time

(white), have mean equal to zero, and are Gaussian-distributed.
It is important to note that matrix [’ in Equation (2-19b) is the

same matrix which appears in the factorization of the output
correlation matrices in Equation (2-12), and 1is defined 1in

Equation (2-13).

The L-term observability matrix for the backward system (2-
19) is the following JLxN partitioned matrix,

- -

!
rHer

)

The backward system is completely observable also, which implies
that rank(D)=N. BAlso of interest is the conjugate transpose of

D, which is,

(2-21) pf=[r fm ... F“'r]
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Matrix Tf is a controllability mzcrix for the matrix pair (F,T),
and as such, it can be viewed as the controllability matrix for
the dual system corresponding to the backward model (if system B
is a dual for system A, then the input of system 3 is the output
of system A, and the output of system B is the input of system A;
that 1s, the roles of input and output are interchanged).
However, in this report it is preferable to refer to D_ as the

backward observability matrix.

In the context of stochastic realization theory, the
significance of the backward model follows from Equation (2-20)

and the Hankel matrix of output correlation matrices, as shown
next. Define a stochastic Hankel matrix | ; as the following

JLxdL block matrix,

A1 A2 AL

) A A i A
(2-22) H,o=| 2 3 L+t

L AL Al o Aoy

where the block elements {A,} are the elements of the output

correlation matrix seguence, Equation (2-12). It follows from

Equations (2-12), (2-16), (2-21), and (2~22) that
(2-23) M, = o}

This equation is fundamental to stochastic realization theory from
conceptual as well as algorithmic viewpoints. From a conceptual
viewpoint, Equation (2-23) is a factorization of the Hankel matrix
into the observability matrices of the forward and backward

systems, and thus hints at the wunderlying structure of the
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correlations between the past and future output vectors (as

discussed below and in Section 3.0).

From an algorithmic viewpoint, the similarities between the
deterministic and stochastic block Hankel matrices and their
respective factorizations implies that the properties which are
true for the deterministic case are true also for the stochastic

case. Specifically, the most important of these properties are:

i) rank(H ) =N for L2N,
ii) rank(Hy.Nek) =N for k21, and
iii) the block columns (rows) of 9ﬂ"L satisfy the same

recursion relations as the block columns (rows) of H .

Furthermore, the similarities between Equation (2-17) and
Equations (2-22) and (2-23) allow the application of classical
deterministic realization concepts, insight, and algorithms (see
Appendix B) to the stochastic realization problem formulated with
output correlation matrices.

Other important matrices in stochastic realization theory
include the JLxJL "future" and "past" block correlation matrices.

These matrices are the correlation matrices of future and past

output block vectors defined as

[ x(n-1)

n-2
(2-24)  Xp = x(n-2)

x

(n-1;n-L) =

L X(n-L) |
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xn ]

x(n+1)

(2-25) Xg = x(n;n+l-1) =

L X(n+L-1)

With respect to the time instant N, vector Xp represents the past
of the process {x(n)}, and vector Xg represents the future of the
process {X(n)}. Given these definitions, the following matrices can

be introduced:

-

Ay A, ALy

) Ay A, o AL

(2-26) Re.LL = E[Kpl:ﬂ = -1 -O . !-2
Ay Aoy Ao |
r T

AO A-1 A1 L

A A,

(2-27)  Rey, = Bl =| 2t
LAy Ao o Ag

where Rg, . and Rp., , are the JLxJL future and past block
correlation mailrices, respectively. Both of these matrices are
Hermitian (as =1l as block Hermitian), and they exhibit a block
Toeplitz structure (a block Toeplitz matrix is a matrix in which

the (i,3j)th block element is a function of i-j). It is important
to note that, in general, the conjugate transpose of ﬁ@iL is not

equal to Rp, |, even though these matrices are the block Hermitian

of each other; that is, matrices Rf,_ and Rp, | are not the

element-by-element Hermitian of each other.
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Another matrix of interest is the block cross-correlation

matrix between the future and the past, which is defined as

Ay Ay e A
Ay Ay o Ay

(2-28) ReLpL = E{x.:x:ﬂ = =H, = Oﬂ’r

LAL A o Agg

Equations (2-26)~-(2-28) are valid for all N because the process
{x(n)} is stationary. The stochastic realization approach of Akaike

(1974, 1975) is based on these block correlation matrices.

For L2 N, Equations (2-26)-(2~28) define the correlation
structure of system (2-2). As indicated in Equation (2-28), the
block cross-correlation matrix Rgpy 1s equal to the stochastic
block Hankel matrix, Equation (2-22). Thus, as hinted earlier,
the cross-correlation between the past and future outputs admits a
factorization in terms of the forward system and backward system
observability matrices.

2.3 Innovations Representation

The innovations representation is a very powerful concept in
the theory of linear stochastic systems due to its simplicity and
its characteristics. Several texts and papers discuss this
concept in detail. The discussion herein is adapted mostly £from
Anderson and Moore (1979), which provide a lucid presentation.

The innovations representation for a system (2-2) is a

discrete~time, stationary, complex-valued, system of the form

(2-29a)  a(n+1) = Fg(n) + Kg(n) n2ng
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(2-29b)  x(n) = Hg(n) + g(n) n2ng

(2-29¢)  a(ng) =0y

(2-29d)  E[g(no)a"(no)] = Fi(no) = o = (0]

(2-29e)  E[a(n)g(n)] = M(n) n>ng

(2-29f) Mn)=I1 as n—ooo

(2-29g)  Ryy(n) = Ry(n) vn

here ¢(n) is the N-dimensional state, x(n) is the J-dimensional
output, and the input process {g(n)} is the innovations process for

system (2-2). That is, {g(n)} is a J-dimensional, zero-mean, white

Gaussian process with correlation matrix structure given as

(2-30a) Q =" Elg(k)g™(k)] = Ru(0) - H'TIH = A, - HPIIH k2 ng

(2-30b)  Elg(ke"(k-n)] = (0] k2n, and n#0
The state correlation matrix II(n) has a steady-state value because

the system is asymptotically stable (stationary), and the steady-
state value, [lI, is obtained as the limiting solution to the

following recursion

(2-31a)  I(n+1) = FTI(N)F™ + [FTI(n)H - T} [Ao - HPTI(n)H] ! [FTI(n)H - 1P n2ne
(2-31b) [1(no) = [y = [0]

Matrix K in Equation (2-29%a) is given as

(2-32a)  K=[[-FIH] Q' = [ - FTTH] [A, - HPTIH]!
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(2-32b)  K=GSDQ'=GSD[A, - H'ITH)!

where the second relation follows from the definition of [ in
Equation (2-13) and of Q in Equation (2-30a). In the cases where

the inverse of the correlation matrix Q does not exist, its

pseudoinverse is used instead in Equations (2-31) and (2-32).

Matrices F, H, Ao, and I' are as defined for system (2-2).
That 1s, system (2-29) is related to system (2-2). In fact,
system (2-29) as defined above 1is the steady-state innovations

representation for system (2-2). This representation has the
following important features.

{(a) First and foremost, the correlation matrix sequence of
{x(n)} is equal to the correlation matrix sequence of
{x(n)}, .as indicated in Equation (2-29g9). That is, the
processes {x(n)} and {x(n)} are correlation equivalent.
This means that the innovations representation is a
valid solution to the system identification problem
defined herein.

(b) Of all the correlation equivalent representations for
a given output correlation sequence, the innovations

representation has the smallest state correlation
matrix, [l (smallest is meant in the sense of positive

definiteness; that is, [l is smaller than Il, if I, -
[l; is a positive definite matrix). This property of
the innovations model is significant because the state

correlation matrix is a measure of the uncertainty in
the state.
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(c)

(e)

(2-33)

The innovations representation is directly related to
the steady-state Kalman filter (in the one-step
predictor formulation) for system (2-2). In facr, the
steady-state Kalman filter for system (2-2) 1is
available immediately upon definition of the steady-
state innovations representation, and viceversa.
Specifically, matrix K of Equations (2-29a) and (2-
31) is the steady-state Kalman gain of the optimal
one-step predictor for system (2-2). This 1is true
provided that the eigenvalues of F-KH" are stable.
Thus, the innovations mcdel is defined as above for
all processes of the form (2-2), but the steady-state
Kalman filter is defined only if F-KH" is stable.

The process {g(n)} in Equations (2~29) and (2-30) is
correlation equivalent to the innovations sequence of
system (2-2). This is the reason for referring to
system (2-29) as the "innovations representation" for
system (2-2).

The innovations model (2-29) is causally invertible.

This means that the present and past of the process
{e(n)} can be constructed from the present and past

values of the output process {x(n)}. The converse
statement is true also; that is, any causally
invertible model 1s an innovations representaticn for
some system. Causal invertibility of system (2-29)

can be demonstrated easily. From Equation (2-2%b),
g(n) = - Hg(n) + (n)

Substituting this expression for g(n) into Equation (2-

29a) results in
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(2-34)

(f)

(h)

a(n+1) = [F - KHHg(n) + Kg(n)

These relations demonstrate the causal invertibility
of the innovations model (the input and output

variables have traded places).

Matrix F-KH" in the inverted innovaticns model is a
stable matrix. This follows from the .act that the
matrix pair (F,H) is observable, and implies that the

Kalman filter for system (2-2) is stable also.

The transfer funcrion of the innovations model (2-29)
is minimum phase. This 1is related to the fact that
the innovations model 1is correlation equivalent to
system (2-2), and second-order moment information (the
output correlation matrix sequence) does not contain

any phase information.

The innovations representation for a system of the
form (2-2) 1is unique. Given that the innovations
representation has the same output covariance sequence
as system (2-2), the fact that it is unique eliminates
searching for other representations for system (2-2)

with the properties listed herein.

The innovations model (2-29) can be computed from the
output correlation matrix sequence of system (2-2).
This fact simplifies the parameter identification
problem because the set of parameter matrices that

must be estimated from the data 1is reduced to just
five: (F, H, T, TI, Ay} (given these parameter

matrices, the innovations covariance, £, and the
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Kalman gain, K, are obtained using Equaticns (2-30a)

and (2-32a), respectively).

All the features listed above are of relevance to the
identification approach presented in Section 3.0 because the
selected parameter identification algorithm generates the
innovations representation for the given output correlation matrix

sequence, following feature (i).

The backward model has an associated backward innovations
model with parameter matrices F, [, and the backward Kalman gain.
Most of the features (a)-(i) that describe the forward innovations
model are valid also for the backward innovations model, with a
notable exception of feature (b), which needs to be replaced by
the following statement: For each valid correlation equivalent
representation for a given output correlation sequence, the state
correlation matrix 1s smaller than the inverse of the state

correlation matrix for the backward innovations model. More
specifically, let [, denote the state correlation matrix for the

backward innovations model in steady-state conditions, and let X
denocte the state correlation matrix for any valid correlation
equivalent representation of an output correlation sequence.
Then, H: - 2 is a positive definite matrix. This result provides
an upper bound for the state correlation matrix of a correlation
equivalent representation. Combining this with the lower bound of
property (b) cf the forward innovations model gives

(2-35) N<s< nt;’

As before, 1inequality between two matrices 1is intended in the

sense of positive semi-definiteness of the matrix difference.
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3.0 MULTICHANNEL SYSTEM IDENTIFICATION

Identification of the model parameter matrices (F, H, I, I, Ag}

for the innovations representation is carried out based on the
predictor space concept and the canonical correlations methodology
formulate« by Akaike (1974; 1975), and using the specific
algorithmic development ot Desai et al. (1985), extended te the
case of complex-valued data. Their results, in turn, are built
upon the correlation equivalence results obtained by Faurre
(1976), and the deterministic realization theory and algoritiim of
Ho (Kalman et al., 1969). The identification algorithm requires
the output correlation matrix sequence; since the true output
correlation sequence 1s not available, an estimate must be
obtained.

3.1 Covariance Seguence Estimation

The first step in the modeling/identification procedure 1is
the estimation of the output correlation matrix sequence {Ru(n)} =
{An} for n20_ (for notational simplicity, Ne=0 is assumed in this

section) given a finite-length realization of the output process,

{zxn)ln =0, 1,...,N;y-1}. There are two nominal estimators for
correlation matrices. The first estimator is of the form
—~ ~ N-r'1
(3-1) An = Rudn) = —1— 3 x(k)xH(kn) n<Np-1
NT. n k=n

Zstimator (3-1) provides an unbiased estimate of the output
correlation matrix sequence (that is, the expected value of (3-1)
is equal to the true correlation matrix sequence), but there have
been <cases where the use of this estimator has led =to
computational difficultiss. In particular, sometimes when

estimator (3-1) 1is used to form a Toeplitz block correlation
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matrix, the Toeplitz matrix is not positive definite (or at least
positive semi-definite) as it should be.

The second estimator is of the form

~ ~ Ny-1
(3-2) An = Ruln) = - Y x(k)xHik-n) N<Np-1
NT k=0
with zeros used in the place of missing data {x(-1), x(-2),...}.

Estimator (3-2) provides a biased estimate 3s a result of padding
the data record with leading zeros. However, division by NT in
(3-2) for all lags drives the correlation estimates to exhibit an
enhanced monotonically decreasing behaviour as a function of n
(the enhancement is with respect to the correlation estimates
resulting from Equation (3-1)). Such a feature 1s desirable
because the output correlation sequence of a stationary system
(with matrix F stable) is monotonically decreasing. This feature
of estimator (3-2) has provided improved performance (in relation
to estimator (3~-1)) in algorithms such as the scalar Yule-Walker
method for spectrum estimation by insuring that the Toeplitz
correlatiorn matrix which arises in that problem be at least
positive semidefinite. It 1s possible that this feature of
estimator (3-2) be of similar relevance with the Hankel matrix and

the Toeplitz matrices that arise in the stochastic realization
problem considered in Section 3.0. For large values cf NT and

small values of the maximum lag considered, Nmax, estimator (3-2)

approximates the behaviour of estimator (3-1), and any differences
become insignificant. However, for small values of Ny and/or for

values of Npax close to NT' each estimator may offer specific
advantages in the context of distinct problems. Which estimator

is preferable in the context of the problem of interest herein 1is

a topic for future investigation.
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3.2 Caneonical  Correlations Algoxithm

In comparison with other alternative stochastic realization
techniques, the canonical correlations algorithm used herein has
several advantages for multichannel detection applications, as

listed next (Desai et al., 1985).

* Identifies the parameters for a model in the state-space

class, which is more general than the time series class.

* An approximately balanced (in the stochastic sense)
state space realization is generated, thus providing a

built-in and robust mechanism for model order selection.

* Identifies the innovations representation of the system
and generates the state correlation matrix and the
Kalman gain directly. Thus, the Kalman filter 1is
obtained without having to solve a nonlinear discrete

matrix Riccati equation.

* Implementation of the algorithm invelves the singular
value decomposition (SVD), which is a stable numerical
method.

These features offer enhanced model-base. detection performance in
relation to algorithms such as those based on time series mecdels.
A discussion of the canonical correlations algorithm is provided
in the remainder of this section. This discussion complements and
extends the material presented in Appendices B and C, as it 1is

applied to the stochastic realization problem.

The canonical correlations identificatisn algorithm is based

on the concept of the correlation structure between the past and
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future of the output process {X(n)}, in the context of Hilbert

spaces of random variables (Akaike, 1974, 1975; Faurre, 1976).

Consider the stochastic process {X(n)} and define infinite-
dimensional block vectors X, and iy as

[ x(n-1) ]
x(n-2)
x(n-3)

(3-3) Xp

(3-4) -’&7=

These vectors represent the past and future of the process with
respect to time N, as in the case of the finite-length vectors in

Equations (2-24) and (2-25). Note that the time N can be any

instant of time because the process is stationary.

Vector X, indexed at time N (as defined in Equation (3-4))

spans a vector space denoted as X (n), which represents the set of
all possible linear combinations of the elements of Xp, and is

referred to as the "past" of the process {)x(n)}. Analogously, vector
Xgy indexed at time N spans a vector space denoted as X7 (n),

representing the set of all possible linear combinations of the
elements of xf, and is referred to as the "future" of the process

{x(n)}. The time index is relevant in the stochastic realization
problem considered in this section because the process {X(n)} is a
dynamic time series. In contrast, Appendix C presents the

canonical correlations formulation for the static multivariate

33




case. Now let A(n) be the space generated by the orthogonal
projection of X'(n) onto X (n); that is,

(3-5) A(n) = X*(n)] X (n)

A(n) is referred to as the state space of the process {x(n)} because

it is spanned by the state of the innovations representation
(Equations (2-29)). For a system of the form (2-2), A(n) is

finite-dimensional, with dimension equal to N. The space X'(n) can

be represented as the direct sum of two orthogonal subspaces,
(3-6) xXtin) = Xtn)| X"(n) & E(n) = A(n) & E(n)

where A(n) L E(n), and E(n) is the space spanned by the innovations
process, {g(n)}. Equation (3-6) defines the geometric structure of
the space X'(n). This structure is true for all n because the

process is stationary.

Since all the random variables involved are zero-mean and
Gaussian-distributed, an orthogonal projection in these vector

spaces is equivalent to conditional expectation (Faurre, 1976).
Specifically, A(n) is the space spanned by the elements of

(3-7) Ry = Hx,0% = Elx X (Expx) %, = HR) xp = 0D R x,

Here the caret (") denotes the conditional expectation (which 1is

also an optimal estimate given the underlying conditions); also,
H, O, D, and 1&, are the infinite-dimensional versions of

Equations (2-22), (2-16), (2-20), and (2-26), respectively. Now
the algebraic representation of the geometric expression (3-6) is
obtained as

(3-8) X5 = K5 + €0 = El X5l X5 + €q
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where g, is an infinite-dimensional block vector having the

innovations sequence as block elements,

[ g(n)
g(n+1)

(3-9) Enh =
" gn+2)

L -
Of particular interest is the output vector at time N, which is

the first block element of Equation (3-8),

(3-10a)  x(n) = X(nin-1) + g(n) = E[ x(n)| x4 + &n)

(3-10b)  x(n)

el x(n) 1 (E x, ] %, + n) = E x(n) ] R] x, + &)

where XUﬂnJ) denotes the minimum variance estimate of the output
process at time N based on output measurements up to time n-1.
This last expression is suggestive of the output equation of the
innovations representation. Indeed, it does correspond to

Equation (2-29b), as shown next.

Let @(n) denote the following N-dimensional vector (since
matrix 7' has N rows),

(3-11) aln) = DR %,

The elements of @(n) span the space A(n). This is true because the
elements of X¢= E[xylx,‘p] span A(n), and because the observability

matrix has full rank. In fact, @(n) is the state of the
innovations representation at time N. This provides the final

piece of information needed to complete the innovations
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representation output equation. Recall that matrix HM occupies
the first J rows of the observability matrix. Then, from Equations
(3-7)-(3-11), it follows that

(3-12) Xy = 0a(n) + g,
(3-13)  EHxmnxl] = v
3-14)  x(n) = HP D' R x, + g(n) = H(n) + g(n)

Equation (3-12) 1is an analytic representation or the statement
that the observability matrix maps the state space onto the output
space. And Equation (3-14) is the output equation for the

innovations representation.

The system identification (stochastic realization) problem
can be stated. -now as follows: determine the factors O and D of the

stochastic Hankel matrix,

(3-15) H= o

in the basis of the innovations representation. In that basis,
the state vector is defined as in Equatien (3-11), and its

correlation matrix is
3-16) T =Hama'n) = N GEx D= D' T

Canonical correlations constitute an effective approach for
carrying out the factorization of the block Hankel matrix H in the

basis of the innovations representation.

In practical applications, deta is available for finite time

and the formulation presented above 1s approximated using bhlock
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vectors of finite dimension (JL). With that constraint, the

canonical variables approach presented in Appendix C can be
applied directly. Consider the JL-dimensional vectors Xp and Xg of

Equations (2-24) and (2-25), with a sufficiently large number (L)
of block elements. With reference to Appendix C, let Xp replace £

and let Xg replace ¥ in the formulation. More specifically, the
JL-dimensional canonical variables W(n) and B(n) are defined by the

following transformations on the past and future vectors,
(3-17) un) = TpXp

(3-18) B(n) = Texe

Then, it is desired to determine the canonical variables W(n) and
B8(n), the canonical correlations {pj}, and the JLxJL transformation

matrices Tp and TF such that the following conditions are satisfied

(Appendix C) :~

(3-19)  E[pur(n)] = ToBl xp 1 T8 = ToRp, TH = 1y,

(3-20) E[B(n) B"()] = TeEL xpxf] TF = TeRey \TF = 1y

(3-21) E[B(n)uM(n)] =TFE{KF1|;]T§ TFHL,LT:: = Ry,

py O . 0]
(3-22a) Ry, = 0 P 9

L0 0 gy
(3-22b)  12p,2p,2...2p, 20
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Determination of the model order, N, is desired also as part of
the procedure. The canonical correlations approach is also well-

suited to the determination of model order because the model order
is equal to the rank of the block Hankel matrix 9Q¢. Model order

determination is discussed further in Section 3.3.

Following the development in Appendix C, the matrix square
root 1is determined for the past and future correlation matrices
using the SVD. This gives

H 172 H 2, H 12 12

(3-23) RepL = UpSpUp = (UpSp? Up HUp S L) = Re.LL Re.LL
2 2

(3-24) Rey = UrSeUR = (UeSPRUR)(USE?UE) = Rep | Rl |

Now transform the past and future vectors, Xp and Xg, into two JbL-

dimensional random vectors defined as

(3-25) 8= R;’fl_x_,, = UpSp2U5 %o

- -1 - H
(3-26) ¥ = R X = UpSiPUF x¢

Given these definitions, it is easy to show that

]

(3-27) El@e"] = 1,

(3-29) E[gQH]

_ 12 -112
Ry = .L.L}[L.L jg+>:|_,L

Notice that the random vectors § and Yy are correlation-normalized,

but their cross—correlation matrix, Rﬁ’ is not diagonal. Thus, 8
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and Y are not the desired canonical variables. However, the

correlation coefficient of any element 6; of § and any element ¥, of

Y is bounded between unity and zero because these variables are

correlation-normalized (Equations (3-27) and (3-28)). Therefore,
the diagonalization of the _ross-correlation matrix Fiﬁ must bDe

carried out using only unitary operations in order to maintain the

correlation-normalized property.

Diagonalization of matrix Flﬁ of Equation (3-29) 1is carried

out using the SVD, which results in

(3-30) Re = UgApVh

Here UR and VR are unitary JLxJL matrices, and Ag is a JLxJL

diagonal matrix with non-negative elements along the diagonal.
The diagonal elements of AR are bounded by unity and zero, and are
arranged in order of decreasing magnitude, with the largest at the
(1,1) location:

5 o -
0 & -
(3-31a) Ag=1 :
0 -«-8;.4 O
L0 0 - 0 Jy
(3-31b) 128, 28,2...28,20

The transformations which diagonalize the cross-correlation matrix
Rﬁ are identified by inspection of Equation (3-30),

(3-32)  URReVg = Ag
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Therefore, the desired canonical variables are defined by the

following transformations on the vectors @ and Yy (and on vectors Xp

and Xg, from Equations (3-25) and (3-26)),

(3-33) u(n) = VR = V{ K.l’f._lp VRUpS5'2Up %

(3-34) B(n) = URY = URRLZ, Xr = URUESE 2UF x;

and the desired canonical correlations are obtained from Equations

(3-31) and (3-32) as

(3-35a)  E[B(n}u(n)] = Ry, = URRe Vi = Ag

(3-35b) p, = & i=1,2,...,JL

Since matrices Ug and Vr are unitary, the norms of vectors W(n) and
B(n) are equal to the norms of vectors § and Yy, respectively, and

the auto-correlation matrix of each of the vectors u(n) and B(n) is
an identity matrix, as required. The transformation matrices Tp

and TF of Equations (3-17) and (3-18) are obtained from Equations

(3-33) and (3-34) as

(3-36) T = VRRZ, = VRUS"AUY

(3-37)  Tp = URREZ, = UpUeS;2uf

This completes the generation of the canonical correlations and

associated parameters.
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Consider Equation (3-21) now that all the matrices in that
equation are known. It is thus possible to solve for the block
Hankel matrix as

(3-38) Hy = T¢ Rm(Tg)'1 = Rps UaRg, VR ReL

This expression can be factored as follows:
172 12 12\ H p1/2
(3-39) }[L.L = qdf = ‘ ,L,LURR&;)(R&; VR RP.L.L)

from which the forward and backward innovations observability
matrices are determined by inspection. However, a more
representative expression for the forward and backward innovations
observability matrices is obtained by recognizing that for an Nth-
oraer system the last JL-N canonical correlations are equal to
zero. That is, the JLxJL canonical correlation matrix RBu is

partitioned as

o Rey (0] Rey (0]
(3-40) .= =
L0 Ryl | 1O [

with the NxN diagonal submatrix Rry as,

P81 o ... ()1
(3-41a)  Rg, = 0 5_2 O
_0 0 8N4

(3-41b) 129,

v

& 2...28y>0
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The unitary matrices Upg and Vi are partitioned also into

submatrices of dimensions corresponding to the partitions of
matrix R&r Specifically,

H
H VR1

(3“43) VR =
H

where Ug, is JLxN, Ug, is JLx(JL-N), Vg, is JLxN, and VRo is JLx(JL-
N). Given these partitions, the forward and backward innovations

observability matrices are obtained as

172 12 _ o2 1/2

(3-44) O = Rey (UrPRgy = Rey (UniRp,
L el H o172 12 H o112

(3-45) 'DE = Rg, Vo Rp L = By VmiRpp

This expression for D allows determination of the state of the

innovations representation via the finite-data approximation to
Equation (3-11). That is,

(3-46) aln) = o' Koy % = Res Ve Ko %o = Rep iy(n)

where W,(N) denotes the first N elements of Y(n). Similarly, the

innovations state correlation matrix is determined via the finite-

dimensional approximation to Equation (3-16), or directly from
Equation (3-~46),

(3-47) 1 = B g(n) af(n) = ﬁ' '1,L,L@L = Rp
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Thus, the NxN innovations state correlation matrix is diagonal,
with its diagonal elements equal to the non-zero canonical
correlations. As stated 1in Section 2.3, the state of the
innovations representation has the smallest correlation matrix (in
the sense of positive definiteness) of all the admissible

correlation-equivaleat representations for system (2-2).

The system parameter matrices can be identified wusing
Equation (3-39) and the procedure of Appendix B.3. However, an
approach based on Equation (3-21) and the procedure in Appendix
B.2 requires less computations, and is the approach preferred

herein. The key to the approach is to recognize that Equation (3-
21), with RBu as in Equations (3-40) and (3-41j), can be facrored

into the following two factors:

(3-49) ﬂfﬁ = [ R:a/f ON.JL-N]

Given this factorization, proceed as follows. First, operate on
the block Hankel matrix H; only on the left with matrix T, to
obtain
172 L1
r”2 |[r Fr ... F'r]

JL-NN

where Equation (3-48) has been applied. Now let Zp denote the NxdJ

upper-left-hand submatrix in Equation (3-50),

12
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Then matrix I’ is obtained as

-172
(3-52) =R 2

An analogous procedure is followed to obtain HH. That 1is, operate
on the block Hankel matrix H;; only on the right with the
Hermitian of matrix Ty to obtain

I e ON.JL-N]

s T - gfopry) | HF

LHFE
where Equation (3-49) has been applied. Now let Zy denote the JxN

upper-left-hand submatrix in Equation (3-53); that is,

(3-54) 2, = H'RIZ

- . H . .
Finally, matrix H is obtained as

(3-55) WY = R

To determine the system matrix, F, it is necessary to define first

a column-shifted (row-shifted) block Hankel matrix as

-
Ay Ay - AL,

- A e
(=560 F =] Te M0 M)l geg

LA Al o Ay
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The key to the determination of matrix F is the factorization of
the column-shifted Hankel matrix indicated in Equaticn (3-56). It
follows from Egquations (3-48), (3-49), and (3-56) that pre-
multiplication of ;i¢ by T2 and post-multiplication of 3{¢.by the

Hermitian of Ty results in the following:

— F,11/2 [F] Ruz 0 _
(3-57a) Tz”ﬂ.,LTH=(TzOL)F(®t'T:')= R1 [m N.JLN]

OjL.nN
12 1/2
- T.7% . TH= Ras F g Onan | =] & OnJLN
(3-57b) 27'4.'1.1'1 =
Ounn Qunun Ounn Ounun

In this equation the NxN matrix Zg is defined implicitly as
(3-58) Z = R FRy?

The NxN matrix F is obtained easily as

(3-59)  F = RIZZ RI?

This completes the factorization of the output correlation matrix
sequence, {An}.

Determination of the remaining matrix parameters for the
innovations model (2-29) 1is described next. The zero-lag output

correlation matrix is estimated directly from the output seguence

as
Ny -1
(3-60) Ao = - Y xk)xH(k)
NT k=0
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where NT is the total number of output data vectors (length of the

output sequence) used in the algorithm. Output correlation lag
estimation accuracy depends on this number; thus, NT should be

selected to be sufficiently large. The innovations correlation

matrix is cbtained as in Equation (2-30a),

(2-61) Q = A, - HIMH

and the one-step prediction filter (Kalman) gain follows frmom
Equation (2~-32a) as

(3-62) K =[I- FTIH] Q' = [T - FTIH) [Ao - H'TTH]"!

This completes the <canonical correlations model parameter

identification algorithm.

The canonical correlations approcach 1leads to several

alternative solutions to the system identification problem based
on the selection of the basis for the factorization of H, and each

alternative solution has distinct properties and features. of
interest herein is the solution that corresponds to the backward
innovations representation, because it provides additional insight
into the canonical correlations <formulation. The Dbackward
innovations representation solution 1is obtained in a manner

analogous to the development completed above.

Consider the orthogonal projection of X°(n) onto X*(n) (recall

that the preceding development 1s based on the orthogonal
projection of X¥(n) onto X(n)), and let B(n-1) denote the space

generated by the orthogonal projection of X (n) onto X'(n). That

is,
(3-63) B(n-1) = X"(n)| X (n)
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B(n-1) is the backward state space of the process {X(n)} because it

is spanned by the state of the backward innovations
representation. ‘B(n-1) is finite-dimensional, with dimension equal

to N. The space X (n) can be represented as the direct sum of two

orthogonal subspaces,

(3-64) X (n) = X ()| X(n) @ Mn-1) = B(n-1) & Mn-1)

where B(n-1) L W(n-1), and W(n-1) is the space spanned by the
backward innovations process, denoted herein as {@(n)}. As before,

the geometric structure of the space X (n) defined by Equation (3-

64) 1is valid for all n because the process is staticnary.

The space B(n-1) is spanned by the elements of the conditional

expectation of the past given the future,

(3-65)  Zp = Elxplx,] = Elpx(Elx ) 5y = #"R)x, = DO RYx,

which 1is alseo the minimum variance estimate of the past for the
case of a zero-mean, Gaussian-distributed process. This leads to

the algebraic representation of the geometric expression (3-64),

- < 1
(3-36) Xp = Xp + Qqq = ’Dd*i’cfxy + O
where O, 1s an infinite-dimensional block vector hraving the

backward innovations sequence as block elements; that is,

(3-67) Qn_1 =
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Now define an N-dimensional vector as
(3-68) o(n-1) = "R x,

The elements of ¢(n-1) span the space B(n-1), and ¢(n-1) is the state
of the backward innovations representation at time n-1. Using this

definition, Equation (3-66) is re-written as

(3-69) Xp = Do(n-1) + @ny

and this equation 1is an analytic representation of the statement
that the backward system observability matrix maps the backward

state space onto the output space. Of particular interest is the
first block row of Equation (3-69). Specifically (recall that rH

occupies the first J rows of the backward opservability matrix),
(3-70a) x(n-1) = THo(n-1) + w(n-1)

(3-70b) x(n) = THo(n) + w(n)

In Equation (3-70b), and in the remainder of this section, the
time argument N-1 is replaced by N for notational simplicity (this
is permissible because the system is time-invariant). Equation
{(3-70) 1is the output equation for the backward innovations
representation.

The finite-time approximation and the canonical correlations
approach to the parameter identification problem apply also to the
backward formulation, and lead to a solution analogous to the
forward case. In particular, the state vector is obtained from
Equations (3-34), (3-44), and (3-68) as
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(3-71) g(n) = qt‘x-;L,LlF = Rgfﬁ(n)

And the steady-state correlation matrix of the backward
innovations representation, Hb, follows simply as

(3-72) T, = Beme] = 'K}, = Rg,

Notice that the forward and backward innovations representation
state correlation matrices are equal to each other (Equations (3-
47) and (3-48)),

(3-73) M, = Ry, =M

A system representation in which the forward and backward state
correlation matrices are both diagonal and equal to each other is
said to be in palanced coordinates in the stochastic sense (Desai
et al., 19895). Balanced coordinates allow effective model order
selection and/or model order reduction (Moore, 1981).

3.3 Model Orxdex Determipnation

Model order determination is a necessary decision for any
identification algorithm in applications where the true order of
the system generating the channel output data is unknown, or where
the true process geanerating the data may not be a member of the
model class adopted to represent the data. In the second case the
model generated by the algorithm is a "representation model," as
opposed to a "physical model" (a model based on accurate analyses
of the underlying physical processes). Determination of the model
order 1is always a difficult problem, and the solution is rarely

clear-cut. The canonical correlations identification algorithm
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adopted herein does have several strong features that lead to
robust and straightforward criteria for model order estimation.
Principally, the algorithm identifies the model parameters of the
innovations representation for the multichannel process 1in

stochastic balanced coordinates.

Model order selection in the algorithm is based, in one form
or another, on the canonical correlations {pJ, which are the

diagonal wvalues of matrix Rau. Thus, it is important to recalil

that the canonical correlations are real-valued, non-negative,

bounded by unity and zero, and are arranged along the diagonal of
matrix Rﬂu in order of decreasing magnitude. Furthermore, the

steady-state correlation matrix of the state of th forward ([1)
and of the backward (Hb) innovations models 1in balanced

coordinates are diagonal, with the diagonal elements equal to the
canonical correlations. In a balanced re»resentation the position
of a state in the state vector is indicative of the importance of
the contribution of that state to the output correlation sequence
(the first state is equal in importance or more important than the
second state; etc.), and the magnitude of the corresponding
correlation matrix element is representative of the relative
contribution of that state (Moore, 1981). Thus, a simple model
order selection approach is to identify the negligible canonical
correlations, and select the model order equal to the number of

non-negligible canonical correlations.

In most situations involving a finite amount of data, all the
canonical correlations are different from zero. This is due to
the fact that the singular value decomposition of the Hankel
matrix is imperfect for finite data cases because the measurement
noise corrupts the estimation of the output correlation matrices.
In such cases, model order can be estimated by identifying jump

discontinuities in the magnitude of the canonical correlatioas,
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and/or by identifying the correlations at which diminishing
returns occur (when the criterion value changes by a negligible
amount after increasing the number of states by one).

In the absence of one or more jump discontinuities, external
information may be required, such as prior knowledge of the system
being modeled. Alternatively, a reasonable model order can be
selected, and various analyses can be carried out to reduce the
order of the model taking advantage of the features of a state

space realization in balanced coordinates.

Model order can be determined also by inspecting the
normalized running sum of the canonical correlations. The Jjith

canonical correlation normalized running sum is defined as

Notice that the JLth normalized running sum is equal to unity.
Notice also that the parameter NRS; is the fraction of the past-

to-future correlations covered by retaining the ith largest

canonical correlations.

Other criteria can be applied for model order determination.
Squaring the canonical correlations emphasizes discontinuities,

and thus provides a good criterion. The normalized running sum of
the squared canonical correlations, which is defined as
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ipf
(3-75) NRSS, = X=t i=1,2,...,JdL

JL
2 P2

is still another useful criterion. These last two criteria are
heuristic, since there is no significance to the square value of a
correlation coefficient, nor to its normalized running sum.
However, these two criteria generally perform better model order
determination than the canonical correlations and their running
sums.

The mutual information between the past and future vectors is
the basis for the definition of two other model order
determination criteria. Mutual information does have statistical
significance, and generally provides effective model order
determination. Consider first a set of variables {x} defined as

the following nonlinear function of the canonical correlations:
(3-76) Kié -"‘1*pﬁ i=1,2,...,dL
This set of variables, referred to herein as log parameters, are

part of the definition of mutual information, and can be used for

model order determination by detection of jump discontinuities or

other such behaviour in the sequence. Gelfand and Yaglom (1959)
have defined the mytual information between the past and future as
the following parameter, -
JL
(3-77) n = % Km
Mel
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Given this definition, the pnormalized mutual information parameter

for an ith-order model (with i<N) is then defined as

i i
% 21Km zq'cm
M= M= R
(3-78) 1 = = o= i=1,2,...,JL
n Z Km

M=t

The value of this parameter represents the fraction of the mutual
information in the past about the future that is retained by the
state in an ith-order model representation of the output process.

Table 3-1 1lists the model order determination criteria
presented herein. In an off-line model order determination mode,
the procedure to follow with each of the criteria is to examine
the sequence of criteria parameter values for discontinuities,
diminishing réturns, etc., and to select the model order for which
a maximum of information is retained. In an on-line mode, one
procedure to follow with each of the criteria is to select the
model order which corresponds to the criterion value that meets or
exceeds a pre-selected threshold. As an example consider the NRS
parameters. For this criterion, the model order which corresponds
to the parameter value which meets or exceeds a threshold such as
0.95 1is selected. Another procedure is to define a threshold
which is applied to the increase in value that occurs between two
consecutive values of the criterion parameter. A change of a few

percent is a reasonable threshold value in many cases.
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CRITERION DESCRIPTION SYMBOL

Canonical correlations {p;}
Normalized running sum of canonical correlations {NRSj}
Squared canonical correlations {pf}

Normalized running sum of squared canonical correlations {NRSS}

Log parameters (x)

Normalized mutual information parameters {n,}

Table 3-1. List of candidate model order determination criteria.

An important issue related to model order is the selection of
the number of block columns (rows) in the block Hankel matrix, L.

Based on the rank properties of the block Hankel matrix, the value
for L should be selected to satisfy

(3—79) JL > NE

where Ng is the expected (or true) model order. If such a value

is not available, the best guess at an upper bound for the true
model order should be used.

54




4.0 INNOVATIONS SEQUENCE GENERATION

In the approach pursued in this program, an unknown system of
the form (2-2) is modeled as an innovations representation (2-29).
Thus, once the innovations model parameters have been identified,
an optimal Kalman filter can be configured to generate the
innovations sequence, {g(n)}, for the likelihood ratio calculations.
The approach described in this section 1is applied to the
observation data under each of the two hypotheses.

Any one of several equivalent Kalman filter formulations can
be applied to generate the innovations sequence. However, the
one~step predictor formulation offers significant advantages 1in
the context of the intended application (Anderson and Moore,
1979). Specifically, the one-step predictor formulation generates
the innovations sequence and the filter state update with a simple
structure in the case where the input and output noises are
correlated (SEtkﬂ in Equation (2-5a)), and thus imposes less real-
time computational requirements than other formulations. Also,
the model identification algorithm generates the parameters for
the innovations model. Thus, the one-step predictor formulation
is adopted in this work. Strictly speaking, the terminology "one-
step predictor"™ should be used hereafter, but use of the term
"Kalman filter" 1is accepted universally. Both terms are used

herein.

The steady-state one-step predictor formulation Zor the
innovatdions model (2-29) 1is a linear, time-invariant system

described by the following equations:

(4-1a) a(n+1|n) = Fg(nin-1) + Ke(n) nne

(4-1b)  g(n) = x(n) - X(n|n-1) = x(n) - H"G(n|n-1) nzn,
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(4-1c) ﬁ(nolno'n = Q

Here Q(n+1|n) is the estimate of the innovations model state vector
at time n+1 based on observation data up to time n, X(njn-1) is the
estimate of the observation vector at time N based on observation
data up to time N-1, and g(N) is the innovations associated with the
observation x(n). Matrix K is the steady-state filter gain matrix.
The filter initial condition is set equal to zero because the
innovations model initial condition is zero, Equation (2-29c). A
block diagram of the Kalman filter is presented in Figure 4-1,
displaying the channel output vector as input, and the innovations

sequence vector as output.

X(n) ——n ()

%(njn-1) K

- a(n|n-1) a(n+1(n)
H” |- Delay

F

Figure 4-1. Kalman filter block diagram, emphasizing the
innovations sequence generation filter function.

The steady-state filter is an approximation to the optimal
time-varying filter. If the channel output process 1is in steady-
state, this approximation provides acceptable performance.
Additionally, the steady-state filter provides a significant
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reduction in the real-time computational requirements over the
time-varying filter. In the cases where the channel output
process 1is not in steady-state, flilter performance is suboptimal,
and the degree of loss of optimality needs to be ascertained.
Such a determination is a topic for future research. A related
issue involves filter initialization transient effects. Since the

steady-state filter gain 1is used, it may be necessary to neglect
the first N; filter outputs for each data batch. Determination of

the value N; can be carried out via analysis and simulation, and is

also a topic for future research.

Anderson and Moore (1979) show that the filter estimation

error for an innovations model is zero at all times. That is,

(4-2) g(n+1in) = g(n+1)

Correspondingly, the filter estimation error correlation matrix is
zero also. This can be inferred from the parallelism between the
innovations model (2-29) and the £filter representation (4-1).
Thus, knowledge of the filter implies knowledge of the innovations

model, and viceversa.
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5.0 LIKELIBOOD RATIO DETECTION

A detection methodology zfor complex-valued multichannel
Gaucsian processes has bpeen developed by Michels (1991) in the
context of innovations-based detection. This approach has been
generalized recently to include a class of non-Gaussian processes
known as spherically-invariant random processes (SIRPs) and using
linear estimators (Rangaswamy, Weiner, and Michels, 19983).
Michels' methodology can be applied directly to the innovations
sequence generated by the approach formulated herein. For

brevity, only the likelihood ratio equation is presented here.

As discussed in Section 4.0, a Kalman filter (one-step

predictor) is determined for each of the two hypotheses based on

processing the multichannel data. The model order for the
alternative hypothesis (Hy) filter is chosen to be larger than the
model order for the null hypothesis (Hy) filter. For each

hypothesis filter, denote the innovations sequence, Equation (4-
1b), as

(5-1) g(niHi)=§(n)-X(n(n-1;Hi)=5(n)-H“@(n|n-1;Hi) i=0,1

The steady-state correlation matrix of the innovations is denoted
as Q(H,), and is defined in Equaticn (3-60).

Let ©(Hy,Hy) denote the multichannel likelihood ratio as

defined by Michels (1991) for the Gaussian signal case. Then, the
log-likelihood ratio (LLR) can be expressed as follows,

Nr [ ]
(5-2) IfOHH)] = Y | m[_lg(,mJ + gM(njHg ) @' (Ho) e(nlHo)
Aol L)

- (i, ) Q' (Hy) e(nH, )]

58




The LLR is compared to a threshold, 7, which is calculated

adaptively to maintain a constant false alarm rate (CFAR),

[ > T select H,
(5-3) INOH H,)] = | < o
ect 0

A candidate CFAR approach with demonstrated good performance
calculates the median of a set of the LLR values from a number of
adjacent range cells (at the same azimuth) on both sides of the
cell in question, and scales the calculated median value by a
pre-determined constant to provide the desired false alarm rate
(Metford and Haykin, 19895).

The LLR expression has to be modified if optimal time-varying
filters are used instead of the steady-state filters. In such
cases the modification is straightforward, and involves replacing
the steady-state correlation matrices of the two innovations by

their time-varying values.

Alternative expressions for the log-likelihood ratio can be

generated based on factorization of the innovations correlation

matrix and spatial whitening of the innovations process. This
includes Cholesky factorization, LDU decomposition, and SVD. The
first twc techniques have been described by Michels (1991), and
lead to simplified LLR expressions. The SVD technigue is derived
here.

Consider the steady-state innovations correlation matrices
for each of the two hypotheses and carry out an SVD on each

correlation matrix. This results in the following decompositions:

(5-4) QH;) = V,5;VF i=0,1

59




where matrix V, is a JxJ unitary matrix, and X, is a diagonal matrix

with real-valued, positive elements arranged along the diagonal in
decreasing order of magnitude (it 1s assumed herein that the

correlation matrix of the innovations sequence has full rank).

That is,
2 ]

(5-5a) Z = 0 o:i22 i=0,1
L 0 0 oﬁ i

(5-5b) 62 2052...205>0 i=0,1

Since matrix V; is unitary, the determinant and inverse functions
of Q(H;) are obtained easily as

(5-6) QM) = v, 5V i=0, 1
(5=-7 [Q(Hi)l=r|10'ii =01
k=1

Now make a linear transformation on the innovations sequence using
the unitary matrix V,, to obtain

(5-8) v(niH;) = Vi g(niHy) i=0,1

The transformed innovations sequence, {v(n|H)}, is uncorrelated
spatially and temporally (recall that {g(n|H)} is uncorrelated
temporally), with correlation matrix ZX;,. Transformation of a J-
dimensional vector by a unitary matrix rotates the vector in the J-

dimensional space, but does not alter its magnitude. Thus, the
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spatial whitening transformation does not alter the variance of

the elements of the innovations vector.

Substituting Equaticns (5-4) through (5-8) into Eqguation (5-
2) results in the following LLR expression

2
|

(5-9) I©(Ho.H,y)] = § i('”{ Ooi } . |vi(nio ) [° v (niHy)

Nang ket o2, ogk o2,

where v, (n|H;) denotes the Kth element of y(n|H). This LLR is of the

same form as the LLR derived by Michels (1991) for spatial

whitening of the innovations using an LDU decomposition.
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6.0 SOFTWARE SIMULATION

The identification and filtering algorithms described in the
preceding sections have been programmed in FORTRAN 77 for Apple
Macintosh processors. Support software for the validation and
execution of the routines has been generated also. The support
software includes signal generation routines, auxiliary routines
for validation, and code for miscellaneous calculations. The
identification algorithm makes use of the SVD. An SVD subroutine
for complex-valued matrices was obtained from a version of the
LINPACK software package (Dongarra et al., 1979). Separate code
was written and exercised to validate the LINPACK routines before
incorporation into the main algorithm code. The signal generation
code uses a Gaussian random number generator obtained from the
text by Press et al. (1989). Sample realizations generated by

this code were tested for whiteness and gaussianity.
6.1 Softwaxe Validation

Code validation was carried out in two steps. First, all
subroutines and select segments of code were validated
individually. Second, the complete package was validated using
examples generated for that purpose. The examples ccnsisted of
system models with a simple stricture so that the computer output
could be predicted. Both real-valued and complex-valued examples
were generated. One particular example used is the second-order
system defined by the following matrix parameters (for a system
model of the form (2-2)):

b f2
byt
H*=G=D"=Q=C=1,
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This model was used to generate a random vector sequence to
validate various aspects of the software. For example, defining
matrix F with fyy=f;p=1=0 and f;y =1 generates an output vector
sequence that consists of white noise in each output channel, but
the two channels are correlated from one instant to the next (the
correlation is due to the coupling induced by the non-zero (2,1)
element of F). The output of the identification program should
indicate a first-order model, with the first diagonal element of
matrix RBu approximately equal to 0.7071, and low values for the
remaining diagonal elements. This was the result obtained.
Complex-valued test cases using this sample model were generated
by letting F be a diagonal matrix with the desired complex-valued

poles along the diagonal.

During validation and testing it was observed that system
poles along the real axis are more difficult to estimate than
poles with an imaginary component. This 1s common to most
identification algorithms. It was observed also that poles close
to the unit "axis (in the complex Z plane) are estimated more
accurately than poles close to the origin. This is due to the
fact that the closer that a pole is to the origin, the faster the

decay of its response to an excitation.
6.2 Apalyses and Simulation Results

The software has been exercised also with cases generated
using multichannel AR models provided by the program monitor at
RL, Dr. James H. Michels. These cases consist of signal only,
clutter only, signal + noise, clutter + noise, and signal +
clutter + noise. In all cases the signal, clutter, and noise

processes are statistically independent of each other.

63




Sigpnal AR Model

The signal model is a complex-valued, two-input, two-output

AR model of order 2 with the following matrix parameters,
H H
¥s(n) = - As(1)¥s(n-1) - Ag(2)ys(n-2) + Ws(n)

A“(1) = [ 1.6290 - j 1.4241x10°7 1.3733x10°° + j 3.8202x10°'3
S
1.3733x10° + | 3.8202x10°"3 1.6290 - j 1.4241x107

A2y < [ 0.80996 - j 1.4162x107  1.5259x10°S - | 9.0949x10"3}
H(2) =
1.5259x10°° -  9.0949x10°'®  0.80996 - j 1.4162x1077

The input to the signal AR recursion, {Us¢(n)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure
defined as

~[0.13038  0.12907

Q, = 0.12907 0.13038

This two-input, two-output AR model corresponds to a fourth-order
state space model in an innovations representation (as described

in Appendix A), with poles at the following locations in the
complex Z-plane:

True Signal Model Poles: -0.81451 + 3 0.38282
-0.81449 + 3 0.38281

+

This AR system was defined by Michels to have a very high channel-
to-channel correlation (~0.99), which indicates that a lower-order
model could represent the signal information. Specifically, a
second-order state space model <can represent the signal
information well. Notice that the pole locations are almost

repeated roots, which indicates that the two channels are almost
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repeated roots, which indicates that the two channels are alnaost
identical. Therefore, given a high-level of channel-to-channel

correlation, a reduced-order model should perform adequately.

The AR process {¥¢(n)} is corrupted by a zero-mean, unit-
variance white noise sequence {wW(n)} to give the noise-corrupted

channel output sequence as
X5(N) = ¥(n) + w(n)

For this noise model and the signal model given above, the signal-

to-noise ratio (SNR) is approximately 3 dB.

Consider the problem of representing the AR signal in
additive white noise with a state space model (see Appendix A).
The channel output noise, {W(n)}, alters the parameters of the state
space model designed for the AR signal {y¢(n)} only, but {X¢(n)} can be
represented as the output of a state space model. That is, {y¢(n)}
is represented as the output of an innovations model, but the
model for {Xs(n)}, which includes the additive noise {w(n)}, is not an
innovaticns model (there is an innovations model for {X¢(n)}, but it

is different from the innovations model for {¥¢(Nn)}). This is a

manifestation of the well-known fact that an AR process corrupted
by additive output white noise is no longer an AR process. In
contrast, the state space model remains a valid representation of
the signal even after the addition of a new noise source. The AR
model class is a subset of the state space model class; thus, the
state space model class can be expected to provide a better fit
than the AR model class for a wide range of systems and
applications where independent measurement noise 1is present.
Additionally, state space 1identification algorithms can be

expected to deliver comparable performance results using a lower
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equivalent model order than algorithms based on time series
models.

Clutter AR Model

The clutter model is a complex-valued, two-input, two-output

AR model of order 2 with the following matrix parameters,

¥e(n) = - A1)y (n-1) - A(2)yc(n-2) + uc(n)

M. [ -1.0430 0.0 ]
Ac(”‘[ 0.0 -1.0430

Mo [0.4900 0.0 ]
Ac@ =["00  0.4900

The input to the clutter AR recursion, {U.N)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure
defined as

Q. _[1-6502 0.0
c=| 0.0  1.5502]

This two-input, two-output AR model corresponds to a fourth-order
state space model in an innovations representation (see Appendix
A), with poles at the following locations in the complex Z-plane:

True Clutter Model 2oles: 0.5215 + j 0.4669
0.5215 £ j 0.4669

H+

The clutter AR coefficient wvalues, the noise covariance values,
and the diagonal structure of this AR system indicate that the two
channels are uncorrelated. Thus, a fourth-order state space model

can represent the clutter information well. Notice that the pole
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locations are repeated roots, which indicates that the two

channels are identical.

The clutter AR process ({¥.(n)} is corrupted by the zero-mean,
unit-variance white noise sequence {w(n)} to give the noise-

corrupted channel output sequence as
X(n) = y¢(n) + w(n)

For this noise model and clutter model the clutter-to-noise ratio

(CNR) 1is approximately 6 dB.

The identification and filtering software was exercised with
the signal plus noise sequence, {X¢(N)}. Calculated values of the
various model order criteria indicate that a second-order state
space model is a good approximation to this system, as expected.
Plots for two different criteria are presented in Figures 6-1 and
6-2 (all plots herein are for single-realizaticon cases).
Specifically, Figure 6-1 shows the canonical correlations, and
Figure 6-2 shows the log parameters of Equation (3-76). In both
figures the abscissa represents model order. Notice that the log
parameters provide an easier determination of model order than the
canonical correlations. This has been observed to be the case in
most examples considered thus far. The same assessment 1s true
also for the other two criteria that are related to these two
criteria (normalized running sum of canonical correlations and
normalized mutual information, respectively). The plot of the
squared canonical correlations criterion 1is very similar to the
plot ©of the log parameters, Figure 6-2. This alsc has been

observed in most examples considered thus far.
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Signal Plus Noise Case (SNR = 3 dB)
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Figure 6-1. Canonical correlations for the signal plus noise case
(SNR = 3 dB conditions).
Signal Plus Noise Case (SNR = 3 dB)
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Figure 6-2. Log parameters criterion for the signal plus noise
case (SNR = 3 dB).
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Based on the above discussions, model order 2 was selected
for the analyses and simulations involving the AR signal in white
noise. Figure ©6-3 is a plot of the real and imaginary parts of
the first element of a single realization of the innovations
vector process, {g(n)}, generated using a filter of order 2. The
filter parameters were identified using a total of 25 output
correlation matrix lags, 1including the zero-lag correlation
matrix. This corresponds to L=12 in the block Hankel matrix. The
output correlation matrix lags were estimated using a single
realization of the output process with a duration of Ny=2,500
output sequence vectors. Only the first 500 points are shown in
Figure 6-3 (representing one-fifth of the available results), but
these points are representative of the total innovaticns process.
The innovations sequence appears to be unbiased, with a calculated

sample mean of

s(n) = [ 0:0327 - 0.0081
& = 10.0063 + 0.0157

Notice also the high degree of "whiteness" exhibited by the

innovations.’ The second element of the innovations vector
sequence, {€(n)}, behaves similarly.

The zero-lag innovations correlation matrix identified by the

software using Equation (3-61) 1is

Q = 1.5328 0.5089 +j 0.0050|
~ 10.5089 - j 0.0050 1.5326
and agrees very well with the sample correlation values. Several

simulation runs were made using multiple sample realizations of
the same length and filter order two. In all cases the results

indicate clearly a white innovations process.

69




first element of innovations vector for case of signal plus noise
(order=2, SNR=3dB)

~r

real component of innovations
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time index, n
first element of innovations vector for case of signal plus noise
4 (order 2, SNR:SdB)
3 L . -
2

imaginary component of innovations

-3 " — . .
0 100 200 300 400 500
time index, n
Figure 6-3. Real and imaginary parts of the first element of

innovations sequence vector for the case of signal plus noise
(SNR = 3 dB conditions).
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Identification algorithm performance can be assessed by

examining the roots of the identified innovations mocdel system

matrix, F. The scatter plots in Figure 6-4, which correspond to

results obtained for ten distinct realizations, illustrate the

parameter identification capability of the algorithm. These

scatter plots show the ten identified root pairs, all in close
proximity to the true (recall that the true
-0.8145 * j 0.3828).

distance less than .1.5% of the true values,

roots roots are

located at All the identified roots are at a
and most are much

closer than that.

Root No. 1 Root No. 2
-0.35 0.41 l
. . 3 1 X
=
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Figure 6-4.

Scatter plot of real and imaginary parts of

identified model poles for ten distinct realizations of signal

plus noise sequence,

state~-space model,
sum of the canonical correlations

plus noise

The software was

Figure 6-5,

(SNR

3 dB conditions).

used also to model and analyze the clutter

{Xc(n)}.

concensus o©of the model order criteria

For this case at a CNR of 20 dB,

as expected.

the

indicate a fourth-order

A plot of the normalized running

(parameter NRS))

is presented in

and a plot of the normalized mutual information 1is

presented in Figure 6-6
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realization cases). Notice in Figure 6-6 that there is a
significant increase in mutual information as the model crder is
increased up to fourth-order, put for fifth-order and beyond the
increase in mutual information is small compared to the prior
increases, Such is not the case with the NRS;, criterion, as
evident in Figure 6-5. The plot for the normalized running sum of
the canonical correlations squared (parameter NRSS)) is very
similar to the plot of the normalized mutual information (Figure
6-6). As in the case of signal plus noise, criteria which involve
the canonical correlations in a linear manner are not as useful as
criteria based on nonlinear functions of the canonical
correlations. These results together with the knowledge of the

lack of channel correlation indicate that a fourth-order model 1is

O - NN M
N N NN N

Figure 6-5. ©Normalized running sum of canonical correlations
criterion for the clutter plus noise case (CNR = 20 dR).

a good approximation to this system.

Clutter Plus Noise Case (CNR = 2C dB)

Normalized running sum of
canonical correlations
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Clutter Plus Noise Case (CNR = 20 dB)

Normalized mutual
information

FNC')VU)(DI\QG’OFNC)VW(D'\QQO
Lo IR I o ol o o R o

Figure 6-6. Normalized mutual information criterion for the
clutter plus noise case (CNR = 20 dB).

Based on the above discussion, model order four was selected
for the state  space representation of the clutter AR process in
additive white noise. Plots of the real and imaginary parts of
the first element of the innovations vector process, {€(n)}, are
presented in-Figure 6.7. These results were generated using a
fourth-order filter and 6 dB CNR conditions. The other simulaticn
parameters are the same as in the signal plus noise case.
Specifically, a total of 25 output correlation matrix lags,
including the zero-lag correlation matrix, were used to identify
the filter parameters. This corresponds to L=12 in the block
Hankel matrix. Also, the output correlation matrix 1ags were

estimated using a single realization of the output process with a
duration of Ny=2,500 output sequence vectors. Only the first £00

J.-Lu

5

points are shown in Figure 6-7 (representing one-fifth of

cnhe
available innovations sequence in this run), but these points are
representative of the total innovations sequence. Both cocmponents

(real and imaginary) of the sequence {€4(n)} are unbiased, as

indicated by the sample mean,
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5(n) = | 0.0586 +j0.0321 °
& =1 .0.1025-j0.0271 |

An estimate of the real and imaginary parts of the sample auto-
correlation function of {g(n)} of Figure 6-7 is given in Figure 6-8.
The behaviour of the real part 1s representative of a white
innovations sequence: an impulse at lag n=0, and approximately
equal to zero everywhere else. The imaginary part exhibits low-
amplitude oscillations about zero, also as expected cf a white
innovations. Several distinct output sequence realizaticns were
generated and proce<sed using the same parameters, and the
performance was similar in all cases. The zero-lag innovations

correlation matrix estimated using Equation (3-61) is

Q = 3.2694 - 0.0888 - j 0.0073
~ | -0.0888 +;0.0073 3.1369

Element (1,1) of Q agrees within less than 1% with the samgle

correlation value of 3.290 + j 0.0 indicated in Figure ¢-8. The
behaviour of {€x(n)} is similar.

Figure 6-9 presents scatter plots of the roots of the fourth-
order system characteristic equation for ten realizations. The
roots are clustered about the values of the true repeated roots,
0.5215 * 3 0.4669, which are close to the center of the plots
shown. The largest root estimation error is approximately 12.7%,
This error is larger than the worst error in the signal plus noise

case, and 1is due to the greater difficulty in estimating faster

modes.

74




first element of innovations vector for case of clutter plus noise
(order 4, CNR=6dB)

real component of innnovations
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Figure 6-7. Real and imaginary parts of the first element cf the

innovations sequence vector for the case of clutter plus noise
(CNR = 6 dB conditions).
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first element of innovations covariance for null hypothesis data
using null hypothesis filter (order 4, CNR=6dB)
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first element of innovations covariance for null hypothesis data
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Figure 6-8. Real and imaginary parts of the auto-correlation
function of the first element of the innovations sequence vector
for the case of clutter plus noise (CNR = 6 dB).
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Figure 6-39. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of clutter
plus noise.
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Similar biased behaviour has Dbeen observed in other
estimation results (Michels, 1992b), as well as in detection
performance results (Michels, 1992a) obtained using time series
(AR) models. For the state-space approach pursued herein,

unbiased estimates with reduced variance can be cbtained by
averaging several individual estimates and/or by increasing the

duration of the output process realization.

Various simulations were carried out to obtain a first-order
assessment of the discrimination capability of the innovations-
based methodology using the canonical correlations algorithm. One
set of simulations involved designing a Kalman filter for each
nypothesis, processing data corresponding to each of the two
hypotheses using both filters, and analyzing the resulting four
filter output sequences (two filters, and each filter processes
data sets corresponding to each of the two hypotheses). These

results are presented next. As before, all plots correspond to
single-realization cases.

Consider first the case of processing data from each of the
two hypotheses using a null hypothesis £filter, corresponding to
clutter + noise only. For this case the filter order is four, as
mentioned earlier in the clutter plus noise model discussion.
Results are presented herein for two sets of conditions: (a) SNR =
3 dB and CNR = 6 dB; and (b) SNR = 3 dB and CNR = 20 dB. For each

set of conditions the procedure described next was follcwed.

* A realization of the clutter + noise process of duration
Nt = 2,500 was generated and 25 output correlation matrix
lags were estimated. These correlation lags were
processed to design a fourth-order Kalman filter. The

resulting filter is the filter for the null hypothesis

(signal not cresent).




* The null hypothesis filter was applied to a clutter =+
noise process sequence of duration Ny= 2,500, and the
sample correlation matrix sequence of the filter output
sequence was calculated. The real and imaginary parts
of the (1,1) element of the resulting sample correlation
matrix sequence are plotted in Figure 6-8 for CNR = 6 dB
conditions, and Figure 6-10 for CNR = 20 dB conditions.
Both sets of figures are representative of the auto-
correlation of a white innovations sequence, as expected
(both sets of figures show low-level energy content at

the higher lags).

* The null hypothesis filter was applied to a combined
signal + clutter + noise process sequence (alternative
hypothesis case) of duration Ny= 2,500, and the sample
correlation matrix sequence of the filter output
seqguence was calculated. In this case, however, the
sequence is not a true innovations segquence because the
filter is not optimal for this process. The real and
imaginary parts of the (1,1) element of the resulting
sample correlation matrix sequence are plotted in Figure
6-11 for CNR = 6 dB conditions, and Figure 6-12 for CNR
= 20 dB conditions. Both of these figqures show a marked
deviation from the expected auto-correlation for a white

innovations sequence.

In the discussions and results presented above the (2,2) element
of the sample correlation matrix is not referred to. This is due
to the fact that its behaviour is very similar to the behaviour of
the (1,1) element.
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In continuation of the first-order assessment of the
discrimination capability of the cancnical correlations approach,
consider now the case of processing data from each of the two
hypotheses using an alternative hypothesis filter, corresponding
to the combined process of signal + clutter + noise. Since the
signal and clutter are uncorrelated in this set of examples, a
sixth-order state space model 1is required for the combined
process. As before, results are presented for two sets of
conditions: (a) SNR = 3 dB and CNR = 6 dB; and (b) SNR = 3 dB and
CNR = 20 dB. For each set of conditions the procedure described

next was followed (all plots are for single-realization cases).

* A realization of the combined signal + clutter + noise
vector process of duration NT= 2,500 was generated, and
25 lags of the output correlation matrix sequence were
estimated. These lags were processed to design a sixth-
order Kalman filter. The resulting filter is the filter

for the alternative hypothesis (signal present).

* The alternative hypothesis filter was applied to a
combined process sequence of duration NT= 2,500, and the
sample correlation matrix sequence of the filter output
sequence was calculated. The real part of the (1,1)
element of the resulting sample correlation matrix
sequence 1s plotted in Figure 6-~13 for CNR = 6 dB
conditions, and Figure €-14 for CNR = 20 dB conditions.
Both figures present correlation sequences which
correspond to white innovations sequences, as expected
(both figures show low-level energy content at the
higher lags).

* The alternative hypothesis filter was applied o a

clutter + noise process sequence (null hypothesis case)
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of duration Ny= 2,500, and the sample correlation matrix
sequence of the filter output was calculated. In this
case, however, the sequence is not a true innovations
sequence because the filter is not optimal for this
process. The real part of the (1,1l) element of the
resulting sample correlation matrix sequence is plotted
in Figqure 6-15 for CNR = 6 dB conditions, and Figure 6-
16 for CNR = 20 dB conditions. The correlation sequence
in each of the figures corresponds to a colored process,
and not to a white innovations sequence. Such is the

expected result.

Figures 6-13 through 6-16 do not include the imaginary part of the
sample correlation sequence because it is similar to the imaginary
part of the sample correlation sequence presented in the preceding
figures. Also, in all cases the behaviour of the (2,2) element is
very similar to that of the (1,1) element of the sample

correlation matrix sequence, as before.

These results indicate that the innovations-based detection
methodology wusing the <canonical correlations identification
algorithm can discriminate between data corresponding to each of
the two hypotheses. That 1is, a filter designed €for the
alternative hypothesis (signal + clutter + noise) generates a true
innovations sequence given a signal + clutter + noise channel
process, and generates a colored output given a clutter + noise
channel process. Analogously, a filter designed for the null
hypothesis (clutter + noise) generates a true innovations sequence
given a clutter + noise channel process, and generates a colored

output given a signal + clutter + noise channel process.
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first element of innovations covariance for null hypothesis using
50 null hypothesis filter (order 4, CNR=20dB)
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Figure 6-10. Real and imaginary parts »f the auto-correlation
function of the (1,1) element of the innovations sequence vector
for the case of null hypothesis data using the null hypothesis
filter (CNR = 20 dB conditions).
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first element of innovations covariance for alternative hypothesis
data using null hypotnesis filter (order 4, CNR=6dB)
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Figure 6-11. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the filter output vector for the
case of alternative hypothesis data using the null hypothesis
filter (CNR = 6 dB conditions).




first element of innovations covariance for alternative hypothesis
data using nuil hypothesis filter (order 4, CNR=20dB)
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Figure 6-12. Real and imaginary parts of the auto-correlation
function of the (1,1) element of the filter output vector for the
case of alternative hypothesis data using the null hypothesis
filter (CNR = 20 dB conditions).
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first element of innovations covariance for alternative hypothesis
data using alternative hypothesis fiiter (order 6, CNR=6dB)
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Figure 6-13. Real part of the correlation function of the (1,1)
element of the innovations sequence vector for alternative
hypothesis data using alternative hypothesis filter (CNR = 6 dB).
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Figure 6-14. Real part of the correlation function of the (1,1)
element of the innovations sequence vector for alternative
hypothesis data using alternative hypothesis filter (CNR = 20 dB).
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first element of innovations covanance for null hypothesis data
using alternative hypothesis filter (order 6, CNR=6dB)
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Figure 6-15. Real part of the correlation function of the (1,1)
element of the filter output vector for null hypothesis data using
the alternative hypothesis filter (CNR = 6 dB conditions).
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Figure 6-16. Real part of the correlation function of the (1,1)
element of the filter output vector for null hypothesis data using
the alternative hypothesis filter (CNR = 20 dB conditions).
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7.0 CONCLUSIONS AND RECOMMENDATIONS

The work carried out 1in this program emphasized the
development and analysis of a state space methodology and
algorithm for the model-based multichannel de.ection problem in
the context of radar system applications. Application of state
space techniques for multichannel detection in radar systems 1is
one novel aspect of the work reported here. The state space model
class is richer than the time series model class that is used
often in radar sysrtem applications. And, as demonstrated in this
work, the state space model class can be used to represent
effectively multichannel radar signals.

Another novel aspect of the work is the utilization in the
detection methodology of the canonical correlations algorithm
developed by Desai et al. (198%), which in turn is based on the
work of Akaike (1974; 1975). This algorithm was adopted in the
program for the multichannel radar output modeling and parameter
identification functions. In the process, the algorithm was
extended to the case of complex-valued radar system data, and an
alternative derivation of the algorithm was developed which 1is
based on the SVD technique. The SVD is a robust and stable
numerical technique. Thus, the algorithm offers numerical and

performance advantages over other techniques.

A computer simulation was developed to validate the algorithm
and methodology, and to serve as a testbed for evaluation of the
algorithm in radar system applications. The simulation can Dbe
exercised with internally-generated sample multichannel output
data, or with externally-provided data. Extensive tests were

carried out to validate the code.
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Simulation-based analyses carried cut to date demonstrate the
feasibility of the SSC state space apprcach for multichannel
identification and detection in radar system applications. The
algorithm has demonstrated the capability to discriminate Dpetween
signal plus clutter plus noise and clutter plus noise 1in an
innovations-based detection algorithm formulation for the
multichannel detection problem. Several cases have been analyzed
at various SNR and CNR levels, and in all cases simulated thus far

discrimination has been demonstrated.

In the process of completing the work reported here several
areas have been identified for further research and development :In

future programs. These areas are summarized below.
. Definiti

Determination of the true potential of the SSC approach for
radar system applications requires the establishment of a detailed
set of requirements for various radar problems such as space/time
processing in a radar array system and the fusion of data from

multiple distinct radar systems.

it | Apalys ’ led Al thm F LAt

The analyses listed below are required to generate a detailed
algorithm definition for the requirements, and to provide a
precise assessment of the SSC approach in the context of radar

system applications requirements.

* The innovations model matrix parameters F, I', and H can

be estimated using different equations. These
alternative approaches need to be evaluated and traded

with respect to computational efficiency and accuracy.
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e Model order selection criteria for on-line and off-line
decisions need to be evaluated and traded further.

This includes the ones discussed in Section 3.3.

¢ The steady-state Kalman filter was used in this program
to generate the innovations sequence. Alternatively,
the time-varying Kalman filter can be used. The loss
in performance, if any, incurred by using the steady-
state approximation needs to be evaluated. A related
issue 1is the duration of the transient effect in the
case of the steady-state filter.

* Key implementation parameters for radar system
applications need to be established. This includes the
minimum required channel output sequence duration, and

the block dimension of the block Hankel matrix.

* Identification and detection performance should be
compared with that of other methods. This includes
methods based on time series models.

Once these technical issues are addressed, a detailed architecture
design can be defined.

A real-time implementation architecture for the algorithm

should be developed, and a candidate hardware implementation

identified. Specifically, the following issues should be
addressed.
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* Generation of an architecture design that best meets
the features of the detailed algorithm design and the
established processor requirements. The result may be
an architecture with features different from those in
existing processors, and which is likely to consist of
various fundamental architectures (systolic; vector;
parallel arrays; etc.).

¢ Analysis of state-of-the-art processors to determine
which contemporary and next-generation VLSI components
best match the optimized architecture design and the
requirements.

In addressing these issues the emphasis should be on the most

computation~intensive tasks of the algorithm.
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APPENDIX A. STATE SPACE REPRESENTATION OF TIME SERIES
MODELS

Consider a discrete-time, time-invariant, complex-valued,
zero-mean, random process {X(n)} defined as the output of the

following state space system model
(A-la) y(n+1) = Fy(n) + Gu(n)
(A-1b) x(n) = H(n) + D"w(n)

Vector recursive processes such as moving~average (MA), auto-
regressive (AR), and auto-regressive moving-average (ARMA)
processes can be modeled with state variable models (SVMs) of the
form (A-1). The discussion herein is limited to the particular
case where the matrix coefficients of the recursion are sqguare
matrices, and the number of output coefficients is equal to the
number of input coefficients. The generation of a minimal-order
SVM for a vector recursive process 1involves the properties of

polynomial matrix pairs and canonical forms for multiple input,
multiple output SVMs.

In contrast, minimal-order SVMs for scalar recursive
processes (MA, AR, ARMA) can be generated in a straightforward
manner given the recursion coefficients. The SVM generic form
appropriate for modeling scalar recursive processes is
(A-2a) ¥(n+1) = Fy(n) + gu(n)

(A-2b) x(n) = bMy(n) + d"w(n)

This SVM is a single-input, single-output system.
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A.l1 Scalar MA Process Model

A scalar MA process of order M is defined as

M
x(n) = ¥, bu(n-k)
k=Q

x(n) = byu(n) + byu(n-1) + bau(n-2) + . . . + byu(n-M)

where {u(n)}] is a zero-mean white noise sequence. This recursion
can be modeled with a state-space system of the form (A-2) with
input sequence {u(n)}, and state vector with elements that are

determined by the input sequence,

y(n) u(n-1)
yn) = Yar(M |~ | u(n-M+1)
ym(n) u(n-M)

The output noise sequence is also equal to the input noise
sequence,

w(n) = u(n) vn

which means that the input and output noise sequences in the state
space model are completely correlated. Model parameters (F, @, h,
d) are defined as

[0 0 00
10.e....0 0
01 Do !

Fa| i G ={ o }
0 0 IM-1 QM-1
00...... 100

100 010 ]
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with pH denoting a 1xM vector defined by M of the MA recursion

coefficients,
H - * »
eh={b) 6y ... byl

The special form of matrix F is one of the possible four
variations of the so-called companion matrix form. Also, the
system parameters, the quadruple (F, @, h, d), is a variation of
the so-called controllable canonical form. These forms have the
minimal number of non-zero elements (whereby the name "canonical")

of all possible SVMs that model the scalar MA process.

Note that the definition of the state vector ¥{(n) in terms of
the sequence {u(n)} inherently defines the initial condition vector,
¥(0). Once the initial condition vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined model proceeds as follows.
The form of matrix F provides for continued "scrolling" of the
input noise sequence as elements of y¥(n), for all n. Validation of
the model follows from (A-2b) and the definition of h, w(n), and
y(n). That is,




x(n) = Ay(n) + d'w(n) = bMy(n) + byu(n)

Expanding the term nHy(n), and substitution of the definition of ¥(n)
in terms of the sequence {U(n)} results in

x(n) = bgu(n) + byu(n-1) + bou(n-2) + .. . + byu(n-M)

which is the MA process definition. Model validation can be
carried out also using the transfer function concept, as
summarized next.

Consider first the derivation of the transfer function from
the MA process definition. Since the MA process is a discrete-

time process, the appropriate tool for the determination of the
transfer function is the Z-transform. Application of the 2Z-

transform to the definition of the MA model results in the

expression

M
X(z) = Y, bz*U(z)
- k=0

where Zz denotes the transform variable, and X(2) and U(z) are the z-
transforms of the sequences {x(n)} and {u(n)}, respectively. The

transfer function for this linear system is then defined as

_X@ ¥
T(z) = Ve _go b,z

This corresponds to the transfer function of an all-zero system,
as is well known.

The transfer function for a single-input, single-output state
variable model (A-2) is of the form
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T(z) ="zl - FI'g +d

The particular characteristics of matrix F and vector @ lead to a

very simple expression for the product [z|-F]'g; namely,

-Flg = -1
fz2t-Fl'g = e 9(z)

where Y(2) is the system characteristic polynomial (the determinant
of matrix [2I-F),

yz)=zM

and §(2) is vector with elements of the form ei(z)=z“; that is,

QT(Z)=[2M‘1 .. 22 2 1 ]

Substitution of these expressions and of b_H and d in the equation

for the transfer function leads to the following result

Ty = 18R +d¥2) _ p%() + b2

o L = 2 Mk + (o)

M
T@) =bo+ b1z +b322+ ... +byzM =) b z¥
k=0

This result is identical to the transfer function expression

derived from the definition of the MA process.

A.2 gScalaxr AR Process Model

A scalar AR process of order M is defined as
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M
x(n) =- Y, ayx(n-k) + u(n)
km1

x(n) = - ayx(n-1) - ax(n-2) - ... - ayx(n-M) + u(n)

where {u(n)} is a zero-mean white noise sequence. This recursion
can be modeled with a state-space system of the form (A-2) with
input sequence {u(n)}, and state vector with elements that are

determined by the output sequence,

y4(n) x(n-1)

y(n) = v n

yM_i(n) = x(n-l\:/l+1)
ym(n) x(n-M)

The output noise sequence is equal to the input noise sequence,
w(n).= u(n) vn

This implies complete correlation between the input and output

noise sequences in the SVM (as in the case of the MA model).
Model parameters (F, g,

h, d) are defined as




- N ™ - ]
-8, & “ayy  Cay
1 0 0 0
0 1
F=
0 0
0 0 1 0 0
0 0 0 1 0
-aH
F=
It Qm-1
1
g = 11 =
Op-1
E4=_aH
d. =1

with aH denoting a vector with elements equal to the AR recursion

coefficients,
H- » * *
di=la) & ... g

The system parameters quadruple (F, g, h, d), is in controllable

canonical form, as in the MA model case.
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Note that the definition of the state vector ¥(n) in terms of
the sequence {x(n)} inherently defines the initial condition vector,
¥(0). Once the initial cordi:ion vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined mcdel proceeds as follows.
From (A-2a) and the definition of F, y(n), y(n+1), and g, it follows
that

yu(n+1) = - ayy,(n) - ayy,(n) - ... - ayyu(n +u(n)
ymin+1) = - a™y(n) + u(n)

Also, it follows from (A-2b) and the definition of h, w(n), and ¥(n)
that

x(n) = hMy(n) + w(n) = - a"y(n) + u(n)
which indicates that x(n)=yp,(n+1). Then, expanding the term -aﬁxﬂﬂ
and substitution of the definition of ¥(n) in terms of the sequence
{x(n)} results in

x(n) = - ayx(n-1) - ax(n-2) - ... - ayx(n-M) + u(n)

which is the AR process definiticn.

The transfer function approach can be used also tc validate
this SVM for scalar AR processes. Application of the Z-transform

to the definition of the AR model results in the expression




M
Y alz*X(z) = U(z)
k=0

where 3,=1 is introduced for notational simplicity, and X(Z) and

U(z) are the 2z-transforms of the sequences {x(n)} and {u(n)},

respectively. The transfer function for this linear system 1is
then defined as

_X(2) _ 1
T@ =g~ ﬁ otk
k=0 X

This corresponds to the transfer function of an all-pole system,
as is well known.

Consider now the transfer function for the state variable

model (A-2). In the present AR process case, the system
characteristic polynomial is

- " - "
Nz)=zM+ajzM' 4+ ..+ a2+ a,

and the particular characteristics of matrix F and vector @ lead

the same simple expression for the product [LI-FT4g; namely,

[21-F'g = 735 8(2)

where §(2z) is as defined previously. Notice that +-he

characteristic polynomial can be expressed as
H
n2) =zM+ 3"0(2)

Substitution of these expressions and of QH and d in the equation

for the transfer function leads to the following result
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Tz D@ +dvD) _ -ae@) ¢ vz) oM
1z) ¥(z) nz)

1 1
T(2) = ZMyz) i ok
K

k=0

This is identical to the transfer function expression derived from
the definition of the AR process.

A.3 Scalax ARMA Process Model

A scalar ARMA process of order M is defined as

M M
x(n) = - 3. a;x(n-k) + 3. byu(n-k)
k=1 k=0

x(n) = - a;x(n-1) - ... - ay, x(n-M+1) - ayx(n-M) + bou(n) + byu(n-1) +
+bou(n-2) + . .. + byu(n-M)

where {u(n)} is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (2) with
input sequence {U(n)}, and output noise sequence equal to the input

sequence,
w(n) = u(n) ¥n
This implies complete correlation between the input and output

noise sequences in the SVM (as in the case of the MA and the AR
models). Model parameters (F, g, h, d) are defined as
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TEEE

.a; .a; eee . . -3;4 ~a;
1 0 0 0
0 1
F=
0 0
0 0 1 0 0
0 0 0 1 0
- _aH
F=
L Qe
1
g=i1=
Q-1

Here, as 1in the AR case, vector aH has elements equal to the AR
recursion coefficients,

d=la & ... 4]

and vector D" has elements defined by M of the MA recursion
coefficients,
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e¥=lby B .. by

The system parameters quadruple (F, @, h, d), is in controllable

canonical form, as in the MA and AR model cases.

State vector initial conditions, ¥(0), for this case are
related to the input and output sequences in a more complex
manner, and have to be selected appropriately. Once the initial
condition vector is defined, the state propagation, Equation (A-

2a), provides for continued generation of the output process.

The simplest approach to validate this model is wvia the
transfer function approach. Application of the Z-transform to the

definition of the ARMA model results in the expression

Mo Mo
Y, az*X(z) = Y, bz*U(z)
k=0 k=0

where, as before, X(z) and U(z) are the zZ-transforms of the
sequences {x(n)} and {u(n)}, respectively, and a@;=1 is introduced for

notational simplicity. The transfer function for this linear
system is then defined as

M » M - .
2, bz Y b

X(z) ka0 k=0
T(2) = = =
Uiz) & . X A . M-k
> .z Z .z
- k=0 k=0

where the two polynomial ratio expressions (corresponding to
inverse powers of Z or direct powers of Z) are equivalent, as
indicated. This is a transfer function with both poles and zeros,
as expected for an ARMA process.
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Consider now the transfer function for the state variable

model (A-2). For an ARMA process the system characteristic
polynomial 1is

W2) =M+ a2 + .+ a2 +a),

which is equal to that for an AR process SVM model. As in the
other two cases,

-FI'g =
(z1-F]'g = ey 8(z)

given the particular features of matrix F and vector @ (8(2) is as

defined previously). Notice also that, as in the AR process case,

the characteristic polynomial can be expressed as
A2)=2M + a"8(2)

Substitution of these expressions and of nH and d' in the equation

for the transfer function leads to the following result

T(2) = n"8(z) +d’ y(z) - (0" - bea") o(z) + by¥(z) _ M bHa(2)
Yz) Y2) e

It is easy to verify that this result is identical to the transfer
function expression derived from the definition of the ARMA
process. That is,

M
. b, zMk
Ty = Do+ 0l00) _ o
@ "m
PIEN
k=0
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where 3,=1, as before.
A.4 Mcodels foxr Vectox Recursive Processes

Vector recursive processes of the MA, AR, and ARMA type can
be represented with SVMs of the type given herein. For vector
recursive pr cesses the appropriate notation 1is:

MA x(n) = BXu(n) + B"u(n-1) + BYu(n-2) + ... + BHu(n-M)
AR x(n) =- Allx(n-1) - Allx(n-2) - ... - Allx(n-M) + u(n)
~ aRMA x(n) =- ATx(n-1) - ... - Al x(n-M+1) - Allx(n-M) + BYu(n) + BYu(n-1) +

+BYu(n-2) + ... +Bhu(n-M)
where each of the coefficient matrices is dimensioned JxJ. Also

analogous to the scalar case, the corresponding transfer function
matrices can be defined using the Z-transform; which leads to

Tualz) = B(2)
Tar(2) =A"(2)

Tapma(@) = AJ(Z) B(z)

where A(2) and B(z) are the following matrix polynomials in 2,

M
AR =D Alz ™
k=0

M
B(z)= Y, BRz X
k=0




with Ay the JxJ identity matrix. The matrix pair {A(z), B(z)}
(including the cases with either A(2)=! or B{z)=1) corresponding to
a linear discrete-time system 1is referred to as a matrix

polynomial representation or a matrix fraction description (MFD)
for the system.

Departing from the time-domain definition for the vector
recursive processes, the SVM for each of the three processes is of
the same form as the corresponding scalar case SVM, with the

following changes: a JxJ coefficient matrix in place of the
corresponding coefficient scalar, a JxJ identity matrix (lj) in

place of each unit scalar, and a JxJ null matrix (OJ) in place of

each zero-valued scalar. Specifically, the SVM for the ARMA
vector process is:

O | I I
Iy o 0, 0,
O, r
F=
o o
Ov OJ IJ OJ OJ
L OJ OJ OJ |J OJ__]
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The SVM for the other vector processes (MA; AR) 1s obtained by

substituting the correct values for the vector process
coefficients in the above system parameters (that is, A;j=0y for an

MA process; and Bgp=I; and B;=0,, i21 for an AR process). In all

cases, the transfer function matrix is obtained from the SVM
representation as

T(z)=H"z21- FI'G + DM

A transfer function calculated according to this relation is
equivalent to the transfer function calculated from the
appropriate polynomial matrices.

The order (dimension of the state vector) of the resulting
SVM for each of the three vector processes is N=MJ, since for
each process the system matrix F consists of M block rows and M
block columns, where each biock in each row and column is a JxJ
matrix. SVM order is important for practical and computational
considerations. An SVM representation i1s of minimal order if no
other SVM representation of lower order leads to the same transfer
function matrix. In terms of the system parameters (F, G, H, D),
the order of the SVM representation is determined by the rank of
the controllability matrix or the rank of the cbservability

matrix, whichever is smaller. Given the form of the ratrix pair
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(F,G) for all three cases, it 1is easy to verify cthat the
controllability matrix has full rank for all three cases.
However, the observability matrix has a simple form only for the
MA SVM. The special form of the observability matrix for the MA
case considered herein (with By a square matrix) indicates by

inspection that the rank of the observability matrix is equal to
MJ if and only if matrix By has full rank. Such a simple result
is not available for the AR and the ARMA SVMs. Determination of
the conditions on the coefficients of the polynomial matrices A(z)
and B{z) for AR and ARMA vector processes that lead to an SVM
representation of minimal order is a difficult problem. This is
due to the fact that both AR and the ARMA vector processes lead to

a transfer function matrix with elements which are, in general, a
ratio of polynomials in Z.

Model order and related issues for matrix polynomial
representations have been discussed by several researchers. The
results summarized next are available in the text by Rosenbrock
(1970) . Consider the matrix polynomial representation of a
system, and assume that the determinant of A(2Z) is different from
zero to eliminate pathological cases. For an AR vector process,
the order of the system is given by the degree of the determinant
of A(z). Thus, the SVM representation presented herein for vector

AR processes is of minimal order if the determinant of A(Z) (with
Ag =1;) has degree equal to MJ.

Several definitions need to be introduced prior to stating
the relevant results regarding minimal order for ARMA vector
processes. A square polynomial matrix 1is said to be regular when
the matrix coefficient of the highest power of Z is non-singular.
The determinant o©of a regqular polynomial matrix has maximum

possible degree. A square polynomial matrix 1s said to be
unimodular if its determinant is a non-zero constant. Unimodular
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polynomial matrices have an inverse which is also a polynomial
matrix. As an example, the polynomial matrix

-1 -1
Q(Z)=QO+Q1Z'1=[ 1+2 3+2 }

24+2! 44+7"!

is unimodular because the determinant of Q(Z) is equal to -2.

Notice that the inverse of Q(Z) is aiso a polynomial matrix,

- -1
Qe L] 4*2 -(3+z )}
@ -2 {-(24-2") 1+2!

as expected. Notice also that Q(z) is not a regular matrix since
Qy is singular.

Two polynomial matrices A(zZ) and B(2) are said to have a common
left divisor S(z) if

A(2) = S(z)Pa(2)
B(z) = S(z)Pg(2)

where S(Z), Pa(z), and Pg(z) are polynomial matrices. Finally, if
all the common (left) divisors of two polynomial matrices A(z) and
B(z) are wunimodular, then the two matrices are said to be
relatively (left) prime. That is, if A(z) and B(2) are relatively
(left) prime, then the determinant of the polynomial matrix S(z) in
the above factorizations 1is a constant. This implies that the
degree of the determinant of Pj(z) is equal to the degree of the
determinant of A(Z), and the degree of the determinant of Pg(2) is
equal to the degree of the determinant of B(z). Furthermore, the
determinant of Pj(Z) has no polynomial factors in common with the
determinant of Pg(z). A matrix polynomial pair (A(z), B(z)) with A(2)
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and B(zZ) relatively (left) prime is an jirreducible matrix

polynomial representation for the system.

The relevant results for ARMA vector processes can be stated
now. As in the AR case, for an ARMA vector process the
determinant of A(Z) (with Ag=1l;) must have degree equal to MJ for
the SVM representation presented herein to be of minimal order.

However, two additional conditions must be satisfied. Namely,
matrix By must have full rank, and the polynomial matrices A(2) and

B(2) must be relatively (left) prime. Full rank for matrix By
implies that B(2) is a regular polynomial matrix. If A(Z) and B(2)
are not relatively prime, then the order of the system is reduced
by the degree of the determinant of the greatest common (left)
divisor of A(z) and B(z). This is related to the so-called

pole/zero cancelations.
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APPENDIX B. DETERMINISTIC REALIZATION ALGORITHMS

Deterministic realization algorithms are of relevance in this
work because they provide insight into similar algebraic issues
associated with stochastic realization problems due to the
similarities in the factorization of the deterministic and
stochastic Hankel matrices. Also, deterministic realization
algorithms can be applied to obtain the matrix triple (F, I, H) of
the innovations representation. However, stochastic realization
algorithms (such as the canonical correlations algorithm of

Section 3.0) are preferred because the state correlation matrix,
[1, is identified also.

Two specific realization algorithms are presented below: Ho's
algorithm and an algorithm using the singular value decomposition
(SVD) . Both algorithms are based on algebraic and factorization
properties of the deterministic Hankel matrix for a discrete-time,

time-invariant, linear system, as summarized next.
B.1 [ inisti Hapkel Matri P T

Consider a discrete~time, time-invariant, Nth-order system of
the form (2-2) where the state, input, and output vectors are

deterministic and DH=[0],

(B-1la) y(n+1) = Fy(n) + Gu(n) n2n,

(B~1b) x(n) = H'y(n) n2ng
(B~1c) No=0

As in the rest of this report, the input and output vectors are J-

dimensional (in the general case the dimension of the input vector
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can be different from the dimension of the output vector). System
(B-1l) 1is assumed to be completely reachable and completely
observable, and thus has minimal-order. Complete reachability and
observability also imply that the NxJL controllability matrix

(B-2) G =[G FG ... F''g] L=N
and the JLxN observability matrix
FHH'

H
HF L2N

HHFL-1
both have rank equal to the system order, N.

The JLxJL deterministic block Hankel matrix for system (B-1)
consists of JxJ block elements, with impulse response matrices

{A(n)} assigned as the JxJ block elements according to the rule
(B-4) H, | (block i, block j) = A(i+j-1) Lj=1,2,...,L

for L2N. 1In expanded form, matrix H, is

A A@) - AL) ]

A(2)  A@B) ... AL+

aes My | 0 AR A
L A(L)  A(L+1) ... A(2L-1) |

Block Hankel matrices are block symmetric, but not element-by-
element symmetric, in general. The impulse response sequence {A(n)}
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for system (B-1) is given in terms of the system parameter
matrices as

(B-6) A(n) = H'FY'G n>1

Using the Cayley-Hamilton theorem it 1is easy to show that the
impulse response sequence satisfies a set of recursion relations
of the form (Kalman et al., 1969),

(B~7) A(N+K) = - @i A(N+k-1) - ... - @ A(k+1) - 3y A(k) k21

-
where {@} are the coefficients of the Nth-order characteristic

equation of matrix F. Some systems have a minimal polynomial of
degree r<N. For those systems an rth-order set of recursion

relations of the form (B-7) are valid. However, for those systems
the set of recursion relations (B-7) based on the characteristic
polynomial are valid also.

Inspection of Equations (B-2)-(B-6) indicates that matrix }HL

admits a factorization of the form

Given this factorization and the fact that for L2N matrices (

and O both have full rank equal to N, it follows from Sylvester's

inequality for the rank of the product of two rectangular matrices
(Gantmacher, 1960) that the rank of matrix I{LL is equal to N.

In fact, Equation (B-8) also implies that

(B‘g) fank(HN*k'N_’h'} = N k21
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for a system (B-1) of order N. Equation (B-7) and the block

Hankel structure (the sequential arrangement of the matrices {A(n)}
as block elements of }{LL) imply that the block columns (rows) of

I{LL also satisfy a recursion of the form (B-7).

A column-shifted deterministic block Hankel matrix, denoted
as I{LL' is defined by deleting the first block column of }{LL and

inserting a new block column in a manner such as to preserve the
Hankel structure (the same result is obtained by deleting the
first block row and adding a new block row); that is,

A2)  A@B) - AL+1) ]
- A(3 A(4) .. A(L+2

ST - W e A T
| A(L+1) A(L+2) .- A(L)

The significance of the shifted block Hankel matrix is the form of
its factorization, as indicated in Equation (B-10). The
factorizations in Equations (B-8) and (B-10) are the basis for the

realization algorithms presented herein, as well as others.

B.2 Heo's Realization Algoxithm

Consider the block Hankel matrix H, | of Egquation (B-5).

Apply a sequence of elementary right and left matrix operations
(transformations) to the Hankel matrix Pﬁl in order to drive it to

diagonal form, with unity elements along the diagonal. That is,
H In On.uLn
OJL-N.N OJL-N. JL-N
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Here T1 and T2 are non-singular matricz2s which represent the

product of all the c¢olumn operations and row operations,
respectively, required to transform P{LL into diagonal form (B-11).

It is always possible to carry out such elementary transformations
because matrix H;, has r..x N. It follows from Equations (B-8)

and (B-11) that

[y Onuin ]
(B-12) TLH T = (T,0)(qT}) = In N ONJLN

OJL-N.N

The explicit factorization of the diagonal matrix in Egquation (B-
12) indicates that T2 transforms the observability matrix into a

matrix with unity elements along the main diagonal and zeros
elsewhere. Likewise, T, transforms the controllability matrix into

a matrix with unity elements along the main diagonal and zeros

elsewhere.

Given the factorizations in Equation (B-12), matrix G is
obtained as the NxJ upper-left-hand submatrix of ToH

Iy 101G FG ... F“'G ]
(8-13a)  T,H, =(T,0)q =

Oj-nN

G FG ... F''a

JU-N JL

Similarly, matrix HH is obtained as the JxN upper-~left-hand

. H
submatrix of }{LLT1'




T Wt 10t Owngin )
(B-14a) H,_'LT? = q(qTT) = H?F
L KA
- -
(B-1d4b)  H T; = H',*F STIRY
L HHF! i

Finally, it follows from Equations (B-10) and (B-12) that matrix F

is obtained as the NxN upper-left-hand submatrix of TaHL,LT:-‘r

Iy JIFI{ 1y Onuin]

JL-NN

(B-15a) Tgi'-iL‘l_T:i = (TzoL)(F)(CLT:') =

- F O
OJL-NN OJL-N. JL-N

This completes Ho's algorithm for the determination of a matrix
triple (F, G, H) which realizes an impulse response matrix
sequence {A(n)}.

In the above discussion it is assumed implicitly that the
given impulse response matrix sequence corresponds to an Nth-order
system of the form (B-1l), and that the sequence is available
without distortions due to noise or other such effects. If either
of these two conditions is not satisfied, then the diagonalized
block Hankel matrix (Equation (B-11l)) will have non-zero elements

beyond the Nth diagonal location. In such cases, model order is

estimated by determination of the diagonal location beyond which
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the diagonal elements represent zero or represent the contribution
of noise. This requires appropriate selection of the block
dimension of the Hankel matrix (L must be sufficiently large).
One mechanism for verifying the cut-off diagonal element is to
examine the norm of the transformation matrices. But this implies
a large computational load. Otner alternative model order
selection criteria have difficulties also. These difficulties
arise because the Hankel matrix is transformed to an identity, and
because no constraints are imposed on the norm of the columns of

the transformation matrices.
B.3 SV¥D-Based Realization Algorithm

An alternative implementation of Ho's algorithm has been
proposed by Zeiger and McEwen (1974). Instead of carrying out
elementary row and column operations on the Hankel matrix
(Equation (B-11)), Zeiger and McEwen (1974) propose a singular
value decomposition of the Hankel matrix. This offers two
important advantages: first, the SVD is numerically robust even
for matrices of large dimensions; second, the SVD provides an
inherent mechanism for the determination of the modcl order, or
determination of the best model fit for a selected model order
(herein best is intended in the sense of minimizing the Frobenius
norm of the difference between the given Hankel matrix and the
Hankel matrix that corresponds to the selected model order).
Golub (1969) provides a good summary of the SVD, its properties,
and its applications.

Consider the block Hankel matrix }{LL of Equation (B-5). The

singular value decomposition (SVD} of I{LL is a factorization of

the form




where TA and TB are unitary matrices, and Ay is a diagonal matrix

with non-negative, real-valued diagonal elements arranged in order
of descending magnitude. That is, matrix Ay, is of the form

Ay Onun |
(B-~17a) AM.=
Ounn  Ounuin]
r81 0 ... 0
0 8, - 0
(B-17b) Ay =] I .
0 0 -3y, O
L0 0 .- 0 By

The factorization in Equation (B-16) is a generalization of the
concept of the eigenvector/eigenvalue decomposition of a matrix,
with the property that it 1is applicable also to non-square

matrices. This decomposition is unique (except possibly for sign
changes to the columns of the unitary matrices TA and TB). The

diagonal elements of Ay, are referred to as the gingular values of
I{LL' and the rank of matrix I{LL is equal to the number of non-zero
singular values. ‘ The columns of TB are the left singular vectors,
and the columns of T, are the right singular vectors of H . For
an Nth-order system in noise-free conditions, there are N non-zero

singular values, and JL-N zero-valued singular values.

In the case where the matrix to be decomposed is Hermitian

(not just block Hermitian), the SVD 1is an eigendecomposition.
That is, for a Hermitian matrix, Tp=Tg=T, the columns of T
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(singular vectors) are the eigenvectors, and the singular values

are the 2igenvalues.

Another important property of the SVD 1is that it provides a
means for determining a JLxJL matrix M of specified rank k (with k

< N) which best approximates the Hankel matrix in the sense of

minimizing the Frobenius norm of the difference between the Hankel
matrix and. the desired matrix M. The desired optimal matrix

approximation is of the form (B-16), with the modification that
only the first K diagonal elements of submatrix Ay (Equation (B-17)

are retained, and the diagonal elements beyond the Kth one are set

to zero.

Equation (B-16) can be factorized further by taking the
matrix square root of A, to obtain (since A, is diagonal, its

matrix square root is trivial)

(B-18) Hy | = Tgay TR = (TBABGHA’J/E T:) = O Gy

Given the explicit factorization in Equation (B-18), it follows
from Equation (B-2) that matrix G is given by the NxJ upper-left-
hand submatrix of A&ET?; similarly, from Equations (B-3) and (B~
18), it follows that matrix HY is given by the JxN upper-left-hand

, 12
submatrix of TBAUL‘

Matrix F is obtained using Equations (B-10) and (B-16)-(B-

18) . Specifically,

-1/2 NI oA
(B—19) F=[AN ON'JL.N]TBHL,LTA Ay 1

Osnn J
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This completes the SVD-based algorithm for the determination of a
matrix triple (F, G, H) which realizes an impulse response matrix
sequence {A(n)}.

As before, the above development assumed that the available
impulse response matrix sequence corresponds to an Nth-order
system of the form (B-1l), and that the sequence 1is available
without distortions due to noise or other such effects. If either
of these two conditions is not satisfied, then there will be more
than N non-zero singular' values for the block Hankel matrix
(Equations (B-16) and (B-17)). In such cases, model order is
estimated by determination of the diagonal location beyond which
the singular values represent zero or represent the contribution

of noise. This requires appropriate selection of the block
dimension of the Hankel matrix (L must be sufficiently large).

In the SVD-based algérithm, the columns of matrices T, and TB
have unity norm (such is not the case for Ho's algorithm). That
is, the magnitude of each singular value is representative of the
importance of the contribution (in the sense of the Frobenius
norm) of the singular value to the numerical representation of the

operator }{LL' Thus, model order determination using the singular

values has a firm numerical and algebraic foundation, and can be
carried out once the SVD is computed.
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APPENDIX C. COMPLEX-~VALUED CANONICAL CORRELATIONS

Hotelling (1936) introduced the concept of canonical
variables and canonical correlations to establish a canonical
relationship between two sets of random variables (or between two
random vectors). In linear algebra, the term "canonical"™ is used
to denote the element of an equivalence class which is represented
with the minimum number of non-zero independent parameters. For
example, the Jordan form is a canonical form for the equivalence
class of square matrices under a similarity transformation. As
defined by Hotelling (1936), the canonical variables embody the
essence of the correlation structure among the random variables of

the two given sets.

The canonical variables formulation is presented herein for
the special case where the dimension of the two random vectors
(the number of variables in each set) is the same because that is
the case in the context of the multichannel detection application.

Extension to the general case where the two vectors have different

dimensions is straightforward.

Consider two complex-valued, zero-mean, L-dimensional random

vectors Z and ¥ with auto- and cross-correlation matrices defined

as

(C-1) R, = E[zzH]
(C~2) R, = E[vvH]
(C-3) Ry = E[zvH]
(C-4) R,z = ElvzH]
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The canonical variables for Z and ¥V are two complex-valued, zero-

mean, L-dimensional random vectors
T
(C-5) u=ln, Wyl

(C=6) B=[B, B,...8]

such that the following conditions are satisfied:

i) =T.2
1i) ﬁ =T2!
iii) sy and B, have wunit variance and are maximally

correlated, with correlation coefficient p,.

iv) for i<L, WY and B, have unit variance and are maximally
correlated, with correlation coefficient Pii
furthermore, J; is uncorrelated with Wi,, Hi,, ¢ Hqr
and B; is uncorrelated with B8;,, B,, . . . , B,.

V) 1T2p,2p,2...2p.20

The two linear transformations T, and T, introduced in conditions
(i) and (ii) are complex-valued, full-rank, LxL matrices.

Condition (v) 1implies =that the positive-valued correlation
coefficients are selected (the sign of the rows of matrices T1 and

T2 can be selected in all cases such that the correlation

coefficient of two random variables W; and Bi is positive-valued).

The correlation coefficients {p} are the canonical correlations for
Z and ¥. Since the canonical variables {y} and {B} are covariance-

normalized, their correlation coefficients are less than or equal
to unity, as indicated in condition (v).
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Conditions (iii)-(v) can be expressed in compact form using

Conditions (i) and (ii) and Equations (C-1)-(C-4),

(C~7) ElwuH] = |y = TR, T!
(C-8) EIBBH) = |, = T,R,TS
(C-9) E{Bu"] = Ry, = TR, T}

" p, O 0 ]
(c-10a) Ry =| ° ‘?2 0

L 0 6 S TN
(C~10b) 12p,2p,2...2p 20

Equations (C-7)-(C-10) constitute an analytic formulation of the
canonical correlations problem. Golub (1969) has shown that the
solution for this problem in the case of real-valued variables can
be obtained using the singular value decomposition (SVD). The
extension to the <case of complex-valued variables 1is
straightforward, as carried out herein.

The first step in the development is to determine the matrix
square root of each of the correlation matrices R, and R,,. A&
matrix square root for a correlation matrix can be calculated
using any one of several methods, and all methods 1lead ¢to
equivalent results in the context of the problem at hand.
Alternative methods include the Cholesky decomposition and the
SVD. Of the alternative methods, the SVD method is preferred

herein because of its robust numerical properties, and because the
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inverse of the square root matrix is determined easily given the
SVD of the matrix. Additionally, the SVD 1is used for another

purpose in the realization algorithm. Thus, the matrix square
roots of correlations matrices R,, and R,, are obtained using the

SVD as
(c-11) Ry = US,U7 = (U,87%07)(U,8720]) = RZR7?
(c-12) Ry = USU = (U,8720)(U,8V70)) = RZ R/

Now transform the random vectors Z and ¥ to define two correlation-

normalized random vectors as

(C-13) 8 = Ry2z = US;UY 2
(C-14) Y= R’J,,’zx = U\,S§,"2U'\",l v

Given these definitions, it is easy to show that

(C-15) E08"] = |

(C-16) ElyyH] = |,

(C-17) E[y8"]

Rﬁ = sz sz FTz‘z/2

Equations (C-15)-(C-17) are similar to Equations (C-7)-(C-%), but
it is incorrect to assume that Equations (C-13) and (C-14) define
the desired canonical transformations, and that @ and y are the

desired canonical variables. Variables @ and Y are not the

canonical variables because their correlation matrix, RW' is not
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in diagonal form. However, the variables @ and Yy constitute an

important intermediate transformation.

Consider now the cross-correlation matrix Rﬁ of Equation (C-

17), and carry out an SVD on it to obtain

(C-18) Re = UgApVR

Ur and VR are unitary LxL matrices, and Ag is an LxL diagonal

matrix with non-negative elements along the diagonal. The
diagonal elements of AR are bounded by unity and zero, and are

arranged in order of decreasing magnitude, with the largest at the
(1,1) location:

r T

& 0 ... 0 o

10 8 .- 0
(c-19a)  Ag=| i 1 .1

o 0 ... 8L1 0

L 0 &
(C-19b) 12812522...28,_20
Given the decomposition in Equations (C-18) and (C~19), and the
given the relations in Equations (C-13)-(C-17), the desired

canonical variables and canonical correlations are obtained as

(C-20) b=Vhg = VR Rl z

(C~21) 38

URy = UR Ry

(C-22a) RB‘* = AR
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(C-22Db) pi=6' i=1,2,...,L

1

Since matrices Ug and Vg are unitary, the norms of vectors J and B

are equal to the norms of vectors @ and Yy, respectively. From

relations (C-20) and (C-21) the transformation matrices are

determined in a straightforward manner to be

(c-23) Ty = VRR?
(C-24) T, = Up B2
Direct substitution verifies that Equations (C-7)-(C-10) are

satisfied by this choice of transformation matrices.

An important relation can be inferred from Equations (C-17)
and (C-18),

(c-25) Ry = RWZ Rg RYZ = RZUgARVR R2
This relation is useful in the validation of Equation (C~9) using

the transformation matrices in Equations (C-23) and (C-24). It 1is

useful alsc in the system identification (stochastic realization)
algorithm of Section 3.0.
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