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1.0 INTRODUCTION

In multichannel identification problems the outputs of

multiple channels (or sensors) are available, and it is desired to

identify the parameters of an analytical model to represent the

phenomena being observed via the channel outputs. Similarly, in.

multichannel detection problems the outputs of multiple channels

are available, and it is desired to determine the presence (or

absence) of a desired signal component in the channel data. In

the combined problem of multichannel identification and detection

a model is estimated for the phenomena being observed via the

channel outputs, and the identified model is used to facilitate

the detection of a desired signal in the channel output data.

Multichannel identification and detection is thus referred to also

as model-based multichannel detection. In all of these problems

the channel data is available simultaneously over many channels of

the same type, or over many distinct channels (each channel

corresponding to a different sensor type).

This report is a summary of the work carried out in this

program. Specifically, the development of state space algorithms

for moael-baseu multichannel deae.;:ion in the context of

surveillance radar system applications is addressed. In

surveillance radar systems (radar arrays) the channels correspond

tc separate antenna apertures (or elements of a single aperture

array) . The desired signal may or may not be _en in the

channel output data at any given time. The data in each channel

generally includes noise (broadband interference) as well as

"clutter" (narrowband interference), with low signal-to-clutter

ratio and, possibly, low signal-to-noise ratio also. Model-based

detection methods must discriminate between the condition of

target embedded in clutter and noise, and the condition of clutter

and noise only.



Figure 1-1 illustrates a radar array system consisting of

multiple subarrays or array elements. The output of each subarray

(or each individual array element) is a complex-valued, scalar,
digital sequence, denoted as {xi(n)}. The collection of the J scalar

sequences is arranged into a J-dimensional vector, {1(n)), which is

input to a multichannel processor (not shown in the figure).

Channel No. 1
• Analog • A/D Pre- ! x~)-

Receiver Converter Processor "

Channel No. J

Receiver, Converter Processor

Figure I-1.. Radar array with J subarrays or individual elements.

In this study the multivariate (multiple input, multiple

output) state space model class was adopted to represent the

multichannel radar data, and advanced system identification

techniques were applied to estimate the model parameters. The

modeling of the complex-valued pre-processed radar signals for

multichannel detection using the state space model class is cne of

the contributions of this work. State space models have been used

in the context of target tracking (where the detected radar signal

is processed further to estimate a trajectory) and for the

determination of weights in antenna array sidelobe canceling and

related problems, but not for multichannel detection. Model-based

detection has been carried out usina the more-restricted time

2



series models k chels, 1991; Metford and Haykin, 1985) , which are

included witnin the class of state space models and tan be

represented as such.

The methodology formulated in this study is based on a state

space identification algorithm developed by Desai et al. (1985),

which in turn is based on the stochastic realization concepts

formulated by Akaike (1974; 1975) and Faurre (1976) . This

identification algorithm has several unique features. Foremost

among these, the algorithm identifies the model parameters 4n the

innovations representation. As a result, a steady-state Kalman

filter design is obtained as an inherent by-product or the

algorithm, without having to solve a nonlinear Riccati equation.

Implementation of the algorithm is carried out using the singular

value decomposition (SVD), which is a stable numerical technique.

An important distinction in the context of radar system

applications is that the vector random processes which represent

the channel data are complex-valued processes in most cases. Most

time series techniques and models have been formulated for complex

as well as real processes. The same, however, cannot be said

about state-space techniques; state-space methods and results

available in the literature have been defined almost exclusively

for the case of real-valued processes, including the stochastic

realization algorithms adopted herein. In this study the

stochastic realization formulations and algorithms were extended

to the case of complex-valued processes, which is the formulation

presented in this report.

A computer simulation was generated as part of this program

to validate the methodology and the algorithms, and to carry out

limited simulation-based analyses. This software was exercised

with simulated multichannel data generated at RL, and the modeling
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and identification results compare favorably with the results

obtained at RL using auto-regressive models.

In summary, the analytical and simulation results obtained in

this program indicate that the SSC algorithm and methodology for

model-based multichannel detection has the potential to result in

significant advances for radar system applications.

1. 1 Notation

Vector variables are denoted by underscored lower-case

letters (including Greek letters). Matrices are denoted by upper-

case letters (including Greek letters). Some scalars (such as the

order of the state variable model) are denoted also by upper-case

letters. Vector spaces are denoted by upper-case script letters,

such as V. The expectation operator is denoted as E[-]; superscript

T and H are used to denote the matrix and vector transpose and the

Hermitian transpose operators, respectively; and an asterisk (*)

denotes the complex conjugate operator. IM denotes an M-

dimensional identity matrix, ON,J denotes an NxJ null (zero)

matrix, OM denotes an M-dimensional (square) null matrix, and Q

denotes an M-dimensional zero vector. IAI denotes the determinant

of matrix A; A-' denotes the inverse of matrix A; A' denotes the

pseudoinverse of A; rank(A) denotes the rank of A; A(ij) and aij are

both used to denote the (ij)th element of matrix A; and V'1V2

denotes the orthogonal projection of V, onto V2. A caret (^) over

a variable denotes an estimate of the variable, a bar (-) over a

variable is used to represent the mean of the variable, and ln(a)

denotes the natural logarithm of a. The symbol I denotes "is

orthogonal to;" ( denotes the direct sum of vector spaces; V

denotes "for all;" and e denotes "is an element of."
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Where possible, the symbols used herein to represent

variables match the symbols used by Michels (1991) to facilitate

enhancing the software available at Rome Laboratory (RL) with the

techniques developed in this program. This philosophy forces the

use of non-standard symbols to represent the parameters of a state

variable model. Of course, notational convention should not be a

major issue provided all symbols are defined appropriately.

However, it is important to mention this poinL in order to avoid

possible confusion on the part of the reader.

1.2 Rgport Overview

An introduction to the model-based multichannel detection

problem is presented in Section 2.0. This section includes also

the definition of the state space model class and several related

concepts, including the backward model associated with a forward

model, and the innovations representation for a random process.

The parameter identification algorithm is presented in Section

3.0, using an approach which differs from the approach of Desai et

al. (1985) . This alternative approach given here is simple, and

enhances intuition. As mentioned earlier, this algorithm is the

backbone of the Scientific Studies Corporation (SSC) multichannel

detecticn methodology presented herein. Kalman filtering of the

channel data to generate the innovations sequence is discussed in

Section 4.0. The innovations sequence is fed to a likelihood

ratio detector which generates the detection decision, as

described in Section 5.0. A discussion of the software generated

in the program is presented in Section 6.0, along with several

simulation results which demonstrate the signal discrimination

capability of the algorithm. Section 7.0 includes the main

conclusions and recommendations borne out of this study.
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The three appendices provide background material in a form

which is not readily available elsewhere. Appendix A presents a

methodology for generating the state space representation of three

conventional time series models (moving-average, auto-regressive,

and auto-regressive moving-average). Appendix B presents a

summary of relevant aspects of deterministic realization theory

and algorithms. The extension of canonical correlations to

complex-valued variables is presented in Appendix C. This is an

important result for Section 3.0.
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2.0 MODEL-BASED MULTICHANNEL DETECTION

The model-based approach to multichannel detection involves

processing the channel data to identify the parameters of a model

for the multichannel system, and determination of a detection

decision utilizing the identified parameters to filter the channel

data. Model parameters can be identified on-line, as the channel

data is received and processed. Alternatively, the model

parameters can be identified off-line for various conditions and

stored in the processor memory to be accessed in real-time as

required.

There are two general classes of linear parametric models for

vector random processes: time series models and state space

models. Time series models include moving-average (MA) models,

auto-regressive (AR) models, and auto-regressive moving-average

(ARMA) models. State space models are more general than time

series models; in fact, MA, AR, and ARMA models can be represented

by state space models (Appendix A) . In the state space

literature, the determination of the model parameters based on

output data (and, sometimes, input data also) is referred to as a

stochastic identification or a stochastic realization problem.

Time series models have been applied to the multichannel

detection problem, and the performance results obtained provide

encouragement for further research (see, for example, Michels,

1991, and the references therein). The results obtained by

Michels (1991) assume that the multichannel output process can be

modeled as a vector AR process. Given the generality of state-

space models and the wealth of results available in the state-

space literature, the state space model class was selected in this

program to represent the multichannel signals in the model-based

multichannel detection problem for radar systems.
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In the case of time series models, two types of model

parameter estimation algorithms have been established in the

literature: (a) algorithms which operate on channel output

correlation matrices, such as the extended Levinson algorithm

(Anderson and Moore, 19%9), and (b) algorithms which operate on

the channel output data directly (without the need to compute

channel output correlation matrices), such as the Levinson-

Wiggins-Robinson algorithm (Wiggins and Robinson, 1965) and the

Strand-Nuttall algorithm (Strand, 1977; Nuttall, 1976).

The state-space parameter identification algorithm adopted

for this study operates on channel output correlation matrices.

The algorithm formulation is due to Desai et al. (1985), and is

based on the stochastic realization concepts developed by Akaike

(1974, 1975) and Faurre (1976). Implementation of the algorithm

is carried out via the singular value decomposition. This

algorithm has several attractive features, including direct

estimation of the parameters for a Kalman filter, without the

requirement to solve a nonlinear Riccati equation.

2.1 Multichannel Detection

Detection problems in the context of radar systems can be

postulated as hypothesis testing problems, where a choice has tc

be made among two or more hypotheses. The detection problems

addressed in this report involve the following two hypotheses:

HO: Desired signal is absent

Hj: Desired signal is present

8



H0 is referred to as the null hypothesis, and H0 is the alternative

hypothesis. The model-based approach to the multichannel

detection problem is couched on the assumption that the vector

random process at the output of the channels can be represented as

the output of a linear system (filter) under each of the two

hypotheses, and that a unique parametric model corresponds to each

hypothesis. Furthermore, the two parametric models (one for each

of the two hypotheses) must be sufficiently different to allow

selection of the correct hypothesis by the evaluation of measures

that are sensitive to those differences.

A particular measure that has produced robust experimental

results in the model-based detection context (Metford and Haykin,

1985) is the log-likelihood ratio (LLR) test. This test is the

result of solving the hypothesis testing problem using the Neyman-

Pearson criterion. The LLR test in the context of model-based

detection is calculated using the innovations sequence at the

output of each of the two linear filters. This presents practical

and implementation advantages.

Figure 2-1 illustrates the architecture of an on-line
-nnovations-based multichannel detector. In the case of a radar

azray system, each of J radar receiver channels collects the

electromagnetic energy arriving at its aperture, and processes it

to generate a discrete-time random sequence, denoted as {xi(n)},

which contains the desired information. The J random sequences

{xi(n)} are represented in vector form as {i(n)}. Michels (1991) has

formulated the binary detection problem for multichannel systems.

Specifically, the null hypothesis, H0 , corresponds to the case of

clutter and noise present in the observation process {x(n)), and the

alternative hypothesis, H1, corresponds to the case of signal,

clutter, and noise present in the observation process {•(n)}. That

9



is, the detection decision must be made between the following two

mode 1 s,

(2-1a) HO: 1(n) =!q(n) + w(n) n a> no

(2-1b) H": 1(n) = s) + Q(n) + w(n)_ no

where no denotes the initial observation time, {c(n)) denotes the

clutter process, (wM(n)) denotes all the array channel noise

processes, and {&(n)} denotes the desired signal (target) process.

Innovations

Filter {F.(n I HO))

{x(n)} Model Likelihood Detection
- Parameter Ratio Decision
Identification Calculation Calculation

Innovations Threshold
Altrnaive Se.quence

Figure 2-1. Innovations-based multichannel detector with on-line
parameter identification.

In the model-based approach pursued herein, a distinct state

variable model is assoc:i% .d with each of the two hypotheses, and

a Kalman filter is designed for each model. Each Kalman filter

processes the observation sequence {X(n)} to generate a vector

10



innovations sequence: {((nIHo)H denotes the innovations sequence at

the output of the null hypothesis filter, and {r(nIHj)) denotes the

innovations sequence at the output of the alternative hypothesis

filter. These innovations sequences are used in a likelihood

ratio test with a pre-stored threshold to carry out the detection

decision.

As indicated in the detection configuration of Figure 2-1,

the two filters can be determined in real-time by processing the

observation sequence for a prescribed time interval. This

approach provides the most adaptability, but may present a large

computational burden for some applications. It also presents

conceptual challenges, such as real-time determination of model

order for each of the two filters. Alternatively, the filter

design can be carried out off-line for each of the two hypotheses,

and the resulting filter design implemented in the real-time

configuration. This alternative approach is less robust to

changes in the operational environment, but requires a simpler

processor architecture, which is important in many real-time

applications' Careful design of the filters off-line using

adequate simulated and real data can lead to acceptable

performance. Also, many pairs of fixed filters may be designed to

cover distinct operational conditions. The filter for the

alternative hypothesis will be of higher order than the filter for

the null hypothesis because the observation process for the

alternative hypothesis has more information (the sianal

component).

Michels (1991) has developed a likelihood ratio calculation

and detection decision model which are compatible with the

formulation adopted herein. Both of these capabilities are

available at RL, and, where appropriate, the methodology presented

in this report is compatible with these capabilities.
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2.2 Stat. Snace Model

The class of multiple-input, multiple-output state variable

models can represent effectively the channel output process for

radar applications. Consider a discrete-time, stationary,

complex-valued, zero-mean, Gaussian random process {1(n)} defined as

the output of the following state space model representation for

the system giving rise to the observed process:

(2-2a) y(n+1) = Fy(n) + Gu(n) n Ž_ no

(2-2b) x(n) = HHW(n) + DHw(n) n > no

(2-2c) E[Y(no)] =QN

(2-2d) E[,(no)y.H(no)] = Po

Here n = no denotes the initial time (which can be adopted as 0

since the system is stationary). Also, y(n) is the N-dimensional

state of the system with y(no) a Gaussian random vector; uL(n) is the

J-dimensional, zero-mean, stationary, Gaussian, white input noise

process; and w(n) is the J-dimensional, zero-mean, stationary,

Gaussian, white measurement noise process. The output (or

measurement) process {X(n)} is also a J-dimensional vector process.

Matrix F is the NxN system matrix, G is NxJ input noise

distribution matrix, HH is the JxN output distribution matrix, DH

is the JxJ output noise distribution matrix, and Po is the

correlation matrix of the initial state. All these matrices are

time-invariant. Matrix Po is Hermitian (PoH = Po, and all its

eigenvalues are real-valued) and positive definite (all its

eigenvalues are positive).

12



System (2-2) is assumed to be asymptotically stable, which

means that all the eigenvalues of matrix F are inside the unit

circle. Also, system (2-2) is assumed to be reachable and

observable, which implies that the dimension N of the state vector

(also the order of the system) is minimal (Anderson and Moore,

1979). That is, there is no system of lesser order which has

identical input/output behaviour. Lastly, system (2-2) is assumed

to be minimum-phase (its zeros are also inside the unit circle).

This last assumption implies that the system is defined uniquely

by second-order statistics. The output distribution matrices are

defined with the conjugate operator in order tz have nctation

consistent with that of the single-output system case, where both

H and D become vectors, and nominally vectors are defined as

column vectors.

-he input noise process correlation matrix is given as (all

matrices defined hereafter have appropriate dimensions)

(2-3a) E(u(k)uH(k)] = Ruu(O) = Q k - no

(2-3b) E•u(k)IUH(k-n)] = Ruu(n) = (0] k:?no and n#O

and the output noise process correlation matrix is given as

(2-4a) E[y(k)wH(k)] = Rww(O) - C k Ž no

(2-4b) E[w(k)AH(k-n)] = Rww(n) = [0] k Ž no and n * 0

Notice that matrices Q and C are Hermitian. Matrix Q is at least

a positive semidefinite matrix since it is an auto-correlation

matrix (all the eigenvalues of a positive semidefinite matrix are

non-negative), and matrix C is assumed to be positive definite

(this can be relaxed to positive semi-definite, but positive

13



definiteness -q more realistic since in the radar problem w(n)
represents channel noise and other such noise processes which are

independent from channel to channel).

In the most general form for this model the input and output

noise processes are correlated, with a cross-correlation matrix

defined as

(2-5a) E[,.j(k). (k)] = Ruw(O)= S k 2! no

(2-5b) E[U.(k)w(k-n)] = Ruw(n) = [0] kfno and n*O

In general, matrix S is not Hermitian. Both the input and output

noise processes are uncorrelated with the present and past values

of the state process, and this is expressed in terms of cross-

correlation matrices as

(2-6a) E[,(k)uH(k-n)] = Ryu(n) = [0] k>_no and n_0

(2-6b) EI.(k)wH(k-n)] = Ryw(n) = [0] knro and nt_0

The correlation matrix of the state is defined as

(2-7) E[X(n)yH(n)] = Ryy(n) = P(n) k2no and n>0

It follows from (2-2a) and the above definitions that the state

correlation matrix satisfies the following recurrence relation,

(2-8) P(n+l) = FP(n)FH + GQGH n _> no

In general, matrix P(n) is Hermitian and positive definite. Since

system (2-2) is stationary and asymptotically stable, and since

14



matrix 0 is positive definite, then the following steady-state

(large n) value exists for the recursion (2-8):

(2-9) P(n+1) = P(n) = P

Under steady-state conditions Equation (2-8) becomes a Lyapunov

equation for the steady-state correlation matrix,

(2-10) P = FPFH + GQGH

The conditions for steady-state also insure that the solution to

Equation (2-10) exists, is unique (for the selected state space

basis) , and is positive definite (Anderson and Moore, 1979).

Matrix P is unique for a given state space basis. However, if the

basis of the input noise vector and/or the basis of the state

vector are changed by a similarity and/or an input transformation,

then a different state correlation matrix results from Equation

(2-10).

The correlation ma'-rix sequence of the output process {x(n)} is

defined as

(2-11a) E[x(k)xH(k-n)] = Rxx(n) = An V k and n:2: 0

(2-11b) Rxx(-n) = RH_(n) V n

For system (2-2) the correlation matrix Rxx(n) can be expressed in

factored form, with the system parameter matrices as factors:

(2-12a) An = Rxx(n) = HHFn'II- n > 0

(2-12b) An = Rxx(n) = FH[Fn'IIHH = ["[FH]n-'H n < 0
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Here F'-' denotes F raised to the (n-1)th power, and F denotes the

following cross-correlation matrix

(2-13) F= E(X(n)AH(n-1)] = Ryx(1) = FP(n)H + GSD V n > 0

The correlation matrix sequence factorization in Equation (2-12)

is the key to most correlation-based stochastic realization

algorithms. The zero-lag (n=0) output correlation matrix is

(2-14) Rxx(O) = HHp(n)H + D HCD = A,

and matrix Rxx(O) is Hermitian and at least positive semidefinite.

In steady-state, P replaces P(n) in Equations (2-13) and (2-14).

As can be inferred from the above relations, the system

parameters {F,G,H,D, Q,C,S,P,r} completely define the second-order

statistics (the correlation matrix sequence {Rxx(n)}) of the output

process, and it is said that system (2-2) realizes the output

correlation matrix sequence. Conversely, the second-order

statistics of the output process provide sufficient information to

identify the system parameters, although not uniquely. Since the

output process has mean equal to zero and is Gaussian-distributed,

the second-order statistics define the process completely.

From the system identification (stochastic realization) point

of view, the problem addressed herein can be stated as follows:

given the output data sequence {J(n)} of system (2-2), estimate a

set of system parameters {F, G, H, D, Q, C, S, P, r} which aenerates the

same output correlation matrix sequence as system (2-2).

Furthermore, the identified parameter set must correspond to a

system realization of minimal order (with state vector y of minimal

dimension). The solution to this problem is pursued herein via a

two-step approach: first an estimate of the output correlation

16



matrix sequence is calculated, and then the estimated correlation

sequence is used to determine the system parameters.

It is well known (Anderson and Moore, 1979) that there can be

an infinity of systems (2-2) with the same output correlation

matrix sequence. The set of all systems that have the same output

correlation matrix sequence is an equivalence class, and any two

systems belonging to the set are said to be correlation equivalent

(Candy, 1976). For example, the output correlation matrix

sequence remains invariant to a similarity transformation applied

to the state vector. Similarly, the output correlation matrix

sequence remains invariant also to a non-singular transformation

applied to the input noise and/or to the output noise. As shown

by Candy (1976), the equivalence class of correlation equivalent

systems is defined including other operations besides a change of

basis.

As inferred from these comments, the solution to the system

identification problem is not unique. It is also true that most

of the possible system parameter solutions do not possess

desirable properties. There is, however, a solution which has

several features of importance. This solution is referred to as

the innovations representation for system (2-2), and is discussed

4n Section 2.3. The identification algorithm of Section 3.0

generates system parameter matrix estimates for the innovations

representation.

In general, the system matrix parameters resulting from the

identification algorithm will be represented in a different basis,

and should be denoted with a different symbol (say, F, instead of

F, etc.); nevertheless, the same symbol will be used in this

report in order to simplify notation.
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Several definitions and notation associated with tte input

'output behaviour of system (2-2) are important. Consider first
the L-term (finite) controllability matrix of system (2-2), CL;

this matrix is defined as an NxJL partitioned matrix of the form

(2-15) CL = [G FG ... FL"'G

As is well-known, for a minimal-order system matrix CL has rank N

for LŽ!N. The controllability matrix maps the input space onto

the state space. Analogously, the L-term observability matrix of

system (2-2) is the following JLxN partitioned matrix,

F HH
HF

(2-16) OL HF

HHFL-1

and for a minimal-order system the rank of matrix OL is equal to N

for LŽ:N. The observability matrix maps the state space onto the

output space. Classical realization theory for the deterministic

case (see Appendix B) is based on the fact that a deterministic

system block Hankel matrix can be represented as the product of

the observability and controllability matrices. Let HLL denote

the JLxJL deterministic block Hankel matrix with the impulse

response matrix A(i+j-1) as its (i,j)th block element (a block Hankel

matrix is a matrix in which the (i,j)th block element Is a

function of i+j) . That is,
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A(1) A(2) ... A(L)

A(2) A(3) ... A(L+1)
(2-17) HLL = q. =

L A(L) A(L+I) ... A(2L-1)

The form of Equation (2-17) fcllows from the definition of the

impulse response matrix sequence {A(n)} for a deterministic system,

(2-18) A(n) = HH F nG n >_1

As shown in Appendix B, for LŽ N the rank of the deterministic

block Hankel matrix, HLL, is equal to the system order, N. in

fact, it is true also that rank(HN+k,N.k)= N for k> I, and that the

elements of the impulse response matrix sequence {A(n)} satisfy a

set of recursion relations (Equation (B-7)) of order equal to the
minimal polynomial of matrix F. The block columns (rows) of HL,L

satisfy the same recursion relations due to the sequential
arrangement of the matrices {A(n)} as block elements of HLL.

Notice that the representation (2-18) of the impulse response

matrix sequence is of the same form as the representation of the

correlation matrix sequence in Equation (2-12) . Due to this

similarity the matrix elements of the correlation matrix sequence
{An} satisfy the same set of recursion relations as the matrix

elements of the impulse response matrix sequence {A(n)}, and the

above-discussed properties of the deterministic Hankel matrix are

also properties of the stochastic Hankel matrix.

Associated with system (2-2) is a backward time model which

is defined from the system model (2-2). Backward time models play

a role in the formulation of a large class of stochastic

realization algorithms. The backward time model for system (2-2)
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is defined as a discrete-time, stationary, complex-valued, zero-

mean, Gaussian random process with a state space representation of

the form (Faurre, 1976)

(2-19a) 1(n) = F H •(n+I) + v-(n)

(2-19b) 2x(n) = "H1(n) + vo(n)

where §(n) is the N-dimensional state vector, v.(n) is the N-

dimensional input noise vector, and vo(n) is the J-dimensional

output noise vector. Both noise vectors are uncorrelated in time

(white), have mean equal to zero, and are Gaussian-distributed.

It is important to note that matrix F in Equation (2-19b) is the

same matrix which appears in the factorization of the output

correlation matrices in Equation (2-12), and is defined in

Equation (2-13)

The L-term observability matrix for the backward system (2-

19) is the following JLxN partitioned matrix,

(2-20) D L =FH

L MFH)L-l

The backward system is completely observable also, which implies

that rank(DL) =N. Also of interest is the conjugate transpose of

DL, which is,

(2-21) [r F .. FL
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Matrix TO is a controllability m-crix for the matrix pair (F, F),

and as such, it can be viewed as the controllability matrix for

the dual system corresponding to the backward model (if system B

is a dual for system A, then the input of system 3 is the output

of system A, and the output of system B is the input of system A;

that is, the roles of input and output are interchanged).

However, in this report it is preferable to refer to DL as the

backward observability matrix.

In the context of stochastic realization theory, the

significance of the backward model follows from Equation (2-20)

and the Hankel matrix of output correlation matrices, as shown

next. Define a stochastic Hankel matrix !1-.L as the following

JLxJL block matrix,

A1  A2 ... AL
(2-22) A2L. = AL+

)LL,L

AL AL+I A2L-1

where the block elements {A,) are the elements of the output

correlation matrix sequence, Equation (2-12) . It follows from

Equations (2-12), (2-16), (2-21), and (2-22) that

(2-23) -_L =

This equation is fundamental to stochastic realization theory from

conceptual as well as algorithmic viewpoints. From a conceptual

viewpoint, Equation (2-23) is a factorization of the Hankel matrix

into the observability matrices of the forward and backward

systems, and thus hints at the underlying structure of the
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correlations between the past and future output vectors (as

discussed below and in Section 3.0).

From an algorithmic viewpoint, the similarities between the

deterministic and stochastic block Hankel matrices and their

respective factorizations implies that the properties which are

true for the deterministic case are true also for the stochastic

case. Specifically, the most important of these properties are:

i) rank(jL) =N for L N,

ii) rank(-4+kN+k) = N for k :1, and

iii) the block columns (rows) of HL satisfy the same

recursion relations as the block columns (rows) of HLL.

Furthermore, the. similarities between Equation (2-17) and

Equations (2-22) and (2-23) allow the application of classical

deterministic realization concepts, insight, and algorithms (see

Appendix B) to the stochastic realization problem formulated with

output correlation matrices.

Other important matrices in stochastic realization theory

include the JLxJL "future" and "past" block correlation matrices.

These matrices are the correlation matrices of future and past

output block vectors defined as

x n-1)

(2-24) 2 = X(n-1;n-L) - -2)

2(n-L)

22



x(n)

(2-25) 2.F = x(n;n+L-1) =

x(n+L-1)

With respect to the time instant n, vector 4 represents the past
of the process {x(n)), and vector 4 represents the future of the

process {x,(n)). Given these definitions, the following matrices can

be introduced:

A0  Al .. AL.1

(2-26) AP:L.L - - 1 = A0  AL-2

Al -L A 2 -L "'" A0

A0 A_1  Al -L

(2-27) :LL - = A1  A2-L

AL-1 AL-2  ... Ao

where WF:L.L and -kP:L.L are the JL-JL future and past block

correlation mat.i-ices, respectively. Both of these matrices are
Hermitian (as --ll as block Hermitian), and they exhibit a block
Toeplitz structure (a block Toeplitz matrix is a matrix in which
the (i,j)th block element is a function of i-j) . It is important
to note that, in general, the conjugate transpose of 4F:L.L is not
equal to 4P:L,L, even though these matrices are the block Hermitian
of each other; that is, matrices PF:L,L and -ZP:LL are not the

element-by-element Hermitian of each other.
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Another matrix of interest is the block cross-correlation

matrix between the future and the past, which is defined as

A( A 2 ... AL

:22 )P2 A3  A.. L+l ,

AL AL+I ... A2L.1

Equations (2-26)-(2-28) are valid for all n because the process

{X(n)} is stationary. The stochastic realization approach of Akaike

(1974, 1975) is based on these block correlation matrices.

For L[•N, Equations (2-26)-(2-28) define the correlation

structure of system (2-2). As indicated in Equation (2-28), the

block cross-correlation matrix 4F:LP:L is equal to the stochastic

block Hankel matrix, Equation (2-22). Thus, as hinted earlier,

the cross-correlation between the past and future outputs admits a

factorization in terms of the forward system and backward -ystem

observability matrices.

2.3 Innovations Representation

The innovations representation is a very powerful concept in

the theory of linear stochastic systems due to its simplicity and

its characteristics. Several texts and papers discuss this

concept in detail. The discussion herein is adapted mostly from

Anderson and Moore (1979), which provide a lucid presentation.

The innovations representation for a system (2-2) is a

discrete-time, stationary, complex-valued, system of the form

(2-29a) g(n+l) = Fq(n) + Kg(n) n Ž no
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(2-29b) ,(n) = HHoQ(n) + F.(n) n : no

(2-29c) Q(no) = QN

(2-29d) E[Q(no)QH(no)] = 11(no) = Flo = [0]

(2-29e) E[U(n)QH(n)] = 11(n) n > no

(2-29f) H(n)=H as n-*m

(2-29g) Rxx(n) = Rxx(n) V'n

here g(n) is the N-dimensional state, X(n) is the J-dimensional

output, and the input process {•(n)} is the innovations process for

system (2-2). That is, {[(&)} is a J-dimensional, zero-mean, white

Gaussian process with correlation matrix structure given as

(2-30a) Q = E[(k)EH(k)] = Rxx(O)- HHHH = Ao- HHFIH k > no

(2-30b) E[g(k) H(k-n)] = [0] k>_no and nr•O

The state correlation matrix [I(n) has a steady-state value because

the system is asymptotically stable (stationary), and the steady-

state value, H, is obtained as the limiting solution to the

following recursion

(2-31a) H(n+l) = FH(n)FH + [FHl(n)H - 1 [Ao - HHH(n)H]"1 [FH(n)H - IIH n >_ no

(2-31b) [-(no) = ro = [0]

Matrix K in Equation (2-29a) is given as

(2-32a) K = (I -F-H] -1 = [F- FFH] A, - HHI[HH"1
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(2-32b) K =GSDQ` = GSD[A0 - HHnH]1

where the second relation follows from the definition of r in

Equation (2-13) and of Q in Equation (2-30a). In the cases where

the inverse of the correlation matrix Q does not exist, its

pseudoinverse is used instead in Equations (2-31) and (2-32).

Matrices F, H, A0 , and [ are as defined for system (2-2)

That is, system (2-29) is related to system (2-2). In fact,

system (2-29) as defined above is the steady-state innovations

representation for system (2-2) . This representation has the

following important features.

(a) First and foremost, the correlation matrix sequence of

{,(n)) is equal to the correlation matrix sequence of

{x(n)},.as indicated in Equation (2-29g) . That is, the

processes {X(n)} and {[.(n)} are correlation equivalent.

This means that the innovations representation is a

valid solution to the system identification problem

defined herein.

(b) Of all the correlation equivalent representations for

a given output correlation sequence, the innovations

representation has the smallest state correlation
matrix, [I (smallest is meant in the sense of positive

definiteness; that is, [, is smaller than r2 if 12 -

FI is a positive definite matrix) This property of

the innovations model is significant because the state

correlation matrix is a measure of the uncertainty in

the state.
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(c) The innovations representation is directly related to

the steady-state Kalman filter (in the one-step

predictor formulation) for system (2-2). In fact, the

steady-state Kalman filter for system (2-2) is

available immediately upon definition of the steady-

state innovations representation, and viceversa.

Specifically, matrix K of Equations (2-29a) and (2-

31) is the steady-state Kalman gain of the optimal

one-step predictor for system (2-2). This is true

provided that the eigenvalues of F-KHH are stable.

Thus, the innovations model is defined as above for

all processes of the form (2-2), but the steady-state

Kalman filter is defined only if F-KHH is stable.

(d) The process {E(n)} in Equations (2-29) and (2-30) is

correlation equivalent to the innovations sequence of

system (2-2). This is the reason for referring to

system (2-29) as the "innovations representation" for

system (2-2).

(e) The innovations model (2-29) is causally invertible.

This means that the present and past of the process

{((n)} can be constructed from the present and past

values of the output process {X(n)}. The converse

statement is true also; that is, any causally

invertible model :s an innovations representation for

some system. Causal invertibility of system (2-29)

can be demonstrated easily. From Equation (2-29b),

(2-33) F(n) =- HHg(n) + X(n)

Substituting this expression for E(n) into Equation (2-

29a) results in

27



(2-34) Q(n+l) = [F - KHH](n) + KX(n)

These relations demonstrate the causal invertibility

of the innovations model (the input and output

variables have traded places).

(f) Matrix F-KHH in the inverted innovaticns model is a

stable matrix. This follows from the -act that the

matrix pair (F, H) is observable, and implies that the

Kalman filter for system (2-2) is stable also.

(g) The transfer function of the innovations model (2-29)

is minimum phase. This is related to the fact that

the innovations model is correlation equivalent to

system (2-2), and second-order moment information (the

output correlation matrix sequence) does not contain

any phase information.

(h) The innovations representation for a system of the

form (2-2) is unique. Given that the innovations

representation has the same output covariance sequence

as system (2-2), the fact that it is unique eliminates

searching for other representations for system (2-2)

with the properties listed herein.

(i) The innovations model (2-29) can be computed from the

output correlation matrix sequence of system (2-2).

This fact simplifies the parameter identification

problem because the set of parameter matrices that

must be estimated from the data is reduced to just

five: {F, H, r, 17, A.} (given these parameter

matrices, the innovations covariance, 0, and the
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Kalman gain, K, are obtained using Equations (2-30a)

and (2-32a), respectively).

All the features listed above are of relevance to the

identification approach presented in Section 3.0 because the

selected parameter identification algorithm generates the

innovations representation for the given output correlation matrix

sequence, following feature (i).

The backward model has an associated backward innovations

model with parameter matrices F, F, and the backward Kalman gain.

Most of the features (a)-(i) that describe the forward innovations

model are valid also for the backward innovations model, with a

notable exception of feature (b), which needs to be replaced by

the following statement: For each valid correlation equivalent

representation for a given output correlation sequence, the state

correlation matrix is smaller than the inverse of the state

correlation matrix for the backward innovations model. More

specifically, let Hb denote the state correlation matrix for the

backward innovations model in steady-state conditions, and let I

denote the state correlation matrix for any valid correlation

equivalent representation of an output correlation sequence.

Then, TV - Z is a positive definite matrix. This result provides
b

an upper bound for the state correlation matrix of a correlation

equivalent representation. Combining this with the lower bound of

property (b) of the forward innovations model gives

(2-35) H • Y • 1

b

As before, inequality between two matrices is intended in the

sense of positive semi-definiteness of the matrix difference.
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3.0 MULTICHANNEL SYSTEM IDENTIFICATION

Identification of the model parameter matrices {F, H, r, H, Ao}

for the innovations representation is carried out based on the

predictor space concept and the canonical correlations methodology

formulated by Akaike (1974; 1975), and using the specific

algorithmic development ot Decai et al. (1985), extended to the

case of complex-valued data. Their results, in turn, are built

upon the correlation equivalence results obtained by Faurre

(1976), and the deterministic realization theory and algorithim of

Ho (Kalman et al., 1969). The identification algorithm requires

the output correlation matrix sequence; since the true output

correlation sequence is not available, an estimate must be

obtained.

3.1 Covarianc. Seauence Estimation

The first step in the modeling/identification procedure is

the estimation of the output correlation matrix sequence {Rxx(n)} =

{An} for n:?0 (for notational simplicity, n0 =0 is assumed in this

section) given a finite-length realization of the output process,
{1(n) I n = 0, 1, . . . NT -1}. There are two nominal estimators for

correlation matrices. The first estimator is of the form

-- 1 N,- 1

(3-1) = R (n) = (k-n) n NT- 1
NT-nkn

Estimator (3-1) provides an unbiased estimate of the output

correlation matrix sequence (that is, the expected value of (3-1)

is equal to the true correlation matrix sequence), but there have

been cases where the use of this estimator has led to

computational difficulties. In particular, sometimes when

estimator (3-1) is used to form a ToeplitZ block correlation
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matrix, the Toepiitz matrix is not positive definite (or at least

positive semi-definite) as it should be.

The second estimator is of the form

NT-i1

(3-2) An = Rxx(n)= Y- , (k)2'(k-n) n!5 NT-i
NT k-0

with zeros used in the place of missing data {•(-1), •(-2).

Estimator (3-2) provides a biased estimate as a resul.t of padding
the data record with leading zeros. However, division by NT in

(3-2) for all lags drives the correlation estimates to exhibit an

enhanced monotonically decreasing behaviour as a function of n

(the enhancement is with respect to the correlation estimates

resulting from Equation (3-1) ) . Such a feature is desirable

because the output correlation sequence of a stationary system

(with matrix F stable) is monotonically decreasing. This feature

of estimator (3-2) has provided improved performance (in relation

to estimator (3-1)) in algorithms such as the scalar Yule-Walker

method for spectrum estimation by insuring that the Toeplitz

correlation matrix which arises in that problem be at least

positive semidefinite. It is possible that this feature of

estimator (3-2) be of similar relevance with the Hankel matrix and

the Toeplitz matrices that arise in the stochastic realization
problem considered in Section 3.0. For large values of NT and

small values of the maximum lag considered, Nmax, estimator (3-2)

approximates the behaviour of estimator (3-1), and any differences

become insignificant. However, for small values of NT and/or for

values of Nmax close to NT, each estimator may offer specific

advantages in the context of distinct problems. Which estimator

is preferable in the context of the problem of interest herein is

a topic for future investigation.
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3.2 Canonical Correlationn Alaorithm

In comparison with other alternative stochastic realization

techniques, the canonical correlations algorithm used herein has

several advantages for multichannel detection applications, as

listed next (Desai et al., 1985).

" Identifies the parameters for a model in the state-space

class, which is more general than the time series class.

"• An approximately balanced (in the stochastic sense)

state space realization is generated, thus providing a

built-in and robust mechanism for model order selection.

"* Identifies the innovations representation of the system

and generates the state correlation matrix and the

Kalman gain directly. Thus, the Kalman filter is

obtained without having to solve a nonlinear discrete

matrix Riccati equation.

"* Implementation of the algorithm involves the singular

value decomposition (SVD), which is a stable numerical

method.

These features offer enhanced model-baseJ detection performance in

relation to alqorithms such as those based on time series models.

A discussion of the canonical correlations algorithm is provided

in the remainder of this section. This discussion complements and

extends the material presented in Appendices B and C, as it is

applied to the stochastic realization problem.

The canonical correlations identificati-n algorithm is based

on the concept of the correlation structure between the past and
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future of the output process {J(n)}, in the context of Hilbert

spaces of random variables (Akaike, 1974, 1975; Faurre, 1976).

Consider the stochastic process {1(n)) and define infinite-

dimensional block vectors and as

x(n-1)

x(n-2)(3 - 3 ) =X i n 3x( n-3)

XCn)
x(n+1)

(3-4) X

These vectors represent the past and future of the process with

respect to time n, as in the case of the finite-length vectors in

Equations (2-24) and (2-25). Note that the time n can be any

instant of time because the process is stationary.

Vector x. indexed at time n (as defined in Equation (3-4))

spans a vector space denoted as X-(n), which represents the set of
all possible linear combinations of the elements of Xp, and is

referred to as the "past" of the process {x(n)}. Analogously, vector

indexed at time n spans a vector space denoted as 27(n),

representing the set of all possible linear combinations of the
elements of XF, and is referred to as the "future" of the process

{X(n)}. The time index is relevant in the stochastic realization

problem considered in this section because the process {X(n)} is a

dynamic time series. In contrast, Appendix C presents the

canonical correlations formulation for the static multivariate
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case. Now let A(n) be the space generated by the orthogonal

projection of X+(n) onto X-(n); that is,

(3-5) A(n) = X*(n)IXl(n)

A(n) is referred to as the state space of the process {x(n)} because

it is spanned by the state of the innovations representation

(Equations (2-29)) . For a system of the form (2-2), A(n) is

finite-dimensional, with dimension equal to N. The space X'(n) can

be represented as the direct sum of two orthogonal subspaces,

(3-6) X*(n) = X(n) I X(n) S E(n) = A(n) ( •E(n)

where A(n) _ •E(n), and Vn) is the space spanned by the innovations

process, {F(n)). Equation (3-6) defines the geometric structure of

the space X+(n). This structure is true for all n because the

process is stationary.

Since all the random variables involved are zero-mean and

Gaussian-distributed, an orthogonal projection in these vector

spaces is equivalent to conditional expectation (Faurre, 1976)

Specifically, A(n) is the space spanned by the elements of

(3-7) _= = r = ,(E[x " Yx 0

Here the caret (") denotes the conditional expectation (which is

also an optimal estimate given the underlying conditions); also,
H, 0, D, and R are the infinite-dimensional versions of

Equations (2-22), (2-16), (2-20), and (2-26), respectively. Now

the algebraic representation of the geometric expression (3-6) is

obtained as

(3-8) xF-= IF + En = E: = IF + Fo

34



where En is an infinite-dimensional block vector having the

innovations sequence as block elements,

f.(n)

f(n+l)
(3-9) ,n = ,(n+2)

Of particular interest is the output vector at time n, which is

the first block element of Equation (3-8),

(3-10a) x(n) = A_(nfn-1) + F(n) = E[&(n)tx + f.(n)

(3-10b) x(n) = Ex(n)_•]( •x4)" ' + f(n) = Ex(n)4R] • + :(n)

where i(nln-1) denotes the minimum variance estimate of the output

process at time n based on output measurements up to time n-1.

This last expression is suggestive of the output equation of the

innovations representation. Indeed, it does correspond to

Equation (2-29b), as shown next.

Let LL(n) denote the following N-dimensional vector (since

matrix e has N rows),

(3-11) a(n) =e 1

The elements of Q(n) span the space A(n). This is true because the

elements of AF-= EXIxý span A(n), and because the observability

matrix has full rank. In fact, g(n) is the state of the

innovations representation at time n. This provides the final

piece of information needed to complete the innovations
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representation output equation. Recall that matrix HH occupies

the first J rows of the observability matrix. Then, from Equations

(3-7)-(3-11), it follows that

(3-12) XF = O.(n) +

(3-13) E X(n) HHI

(3-14) X(n) = HH!I/:7H ,y, + C(n) = H Q(n) + f(n)

Equation (3-12) is an analytic representation ot the statement

that the observability matrix maps the state space onto the output

space. And Equation (3-14) is the output equation for the

innovations representation.

The system identification (stochastic realization) problem

can be stated now as follows: determine the factors 0 and D of the

stochastic Hankel matrix,

(3-15) H = oDH

in the basis of the innovations representation. In that basis,

the state vector is defined as in Equation (3-11), and its

correlation matrix is

(3-16) Fl. =gE _(n).H(n)] _PE[4hV D t~K

Canonical correlations constitute an effective approach for

carrying out the factorization of the block Hankel matrix H in the

basis of the innovations representation.

In practical applications, deta is available for finite time

and the formulation presented above is approximated using block
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vectors of finite dimension (JL) . With that constraint, the

canonical variables approach presented in Appendix C can be

applied directly. Consider the JL-dimensional vectors 4 and I of

Equations (2-24) and (2-25), with a sufficiently large number (L)

of block elements. With reference to Appendix C, let 4 replace Z

and let 4 replace V in the formulation. More specifically, the

JL-dimensional canonical variables g(n) and 11(n) are defined by the

following transformations on the past and future vectors,

(3-17) U(n) = Tp

(3-18) fl(n) = TF4

Then, it is desired to determine the canonical variables a(n) and

f(n), the canonical correlations {p1}, and the JLxJL transformation

matrices Tp and TF such that the following conditions are satisfied

(Appendix C):

(3-19) E[U(n)UH(n)] =Tp H TP:LLTH

lip p p. T 'JL

(3-20) E[ j1(n)fH(R)] =TFE1XAFXH]TF = TF.FL,LTF =JL

(3-21) E[E1(n)UH(n)] =TFE[FxH]T = TFLTpH R,,

p1  0 ... 0

(3-22a) R= P2 .

0 0 ... PJL

(3-22b) 1 t P 1  - P2  - > PJL - 0
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Determination of the model order, N, is desired also as part of

the procedure. The canonical correlations approach is also well-

suited to the determination of model order because the model order
is equal to the rank of the block Hankel matrix "kL. Model order

determination is discussed further in Section 3.3.

Following the development in Appendix C, the matrix square

root is determined for the past and future correlation matrices

using the SVD. This gives

(3-23) H U=SU (up 12 uH /2 u H) 1/2 1/2= PP PS =) P P 9ý: L, L 9ý: L, L

(3-24) S/2L.L = H = U H) 1/2 1/2
P1.F = FF)U F P.LL L.L,L

Now transform the past and future vectors, Xp and 2F, into two JL-

dimensional random vectors defined as

(3-25) 0/= -p:L.L UpSF;1 /2 H
Rý:LL-P = P-S L P AP

(3-26) -1/2 =.12U H3-2 G> -_ : L,LXF = uFsF:•u xF

Given these definitions, it is easy to show that

(3-28) E[0H] = IJL

(3-29) E[y"/H ] = R.j L LP:L

( 3- 29) E[ y.9H ] R,ý ,-1/2 "fq -1/2

Notice that the random vectors Q and y are correlation-normalized,

but their cross-correlation matrix, RO, is not diagonal. Thus, Q
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and y are not the desired canonical variables. However, the

correlation coefficient of any element 0i of Q and any element y, of

yis bounded between unity and zero because these variables are

correlation-normalized (Equations (3-27) and (3-28)) . Therefore,
the diagonalization of the .ross-czrrelation matrix R, must be

carried out using only unitary operations in order to maintain the

correlation-normalized property.

Diagonalization of matrix R.e of Equation (3-29) is carried

out using the SVD, which results in

(3-30) = H

RP=URARVR

Here UR and VR are unitary JLxJL matrices, and AR is a JLxJL

diagonal matrix with non-negative elements along the diagonal.

The diagonal elements of AR are bounded by unity and zero, and are

arranged in order of decreasing magnitude, with the largest at the

(1,1) location:

81 0 ... 0 0

0 52. 0 0

(3-31a) AR= 00

0 0 ... 5JL-1 0

L0 0 ... 0 8jL

(3-31b) 1 > 81 82 > . 8JL 2t 0

The transformations which diagonalize the cross-correlation matrix

R, are identified by inspection of Equation (3-30),

(3-32) H H

URRIVR ALR
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Therefore, the desired canonical variables are defined by the

following transformations on the vectors Q and 7 (and on vectors Ap

and XF, from Equations (3-25) and (3-26)),

(3-33) 11(n) = H H .1 /2 -~p H - 1/2 11

Vý 4P:L,L0-P = VýRUpS Up X.p

(3-34) B(n) =uH UH "'1/2 H U.1/2 HR R_-q(.L,LXF = UR pF UF AF

and the desired canonical correlations are obtained from Equations

(3-31) and (3-32) as

(3-35a) E[.I(n)UlH(n)] = R•. = UoRP-eVR = AR

(3-35b) Pi = i=1,2,..., JL

Since matrices UR and VR are unitary, the norms of vectors I(n) and

.f(n) are equal to the norms of vectors Q and y, respectively, and

the auto-correlation matrix of each of the vectors IL(n) and fl(n) is

an identity matrix, as required. The transformation matrices Tp

and TF of Equations (3-17) and (3-18) are obtained from Equations

(3-33) and (3-34) as

(3-36) H '1/2 H 1/2 H

(3-3=) Tp O:L,L = VRUPS. UP

(3-37) TF UH 1/2 IIH U '1/21 H

!= K.L,L = R FS-F UF

This completes the generation of the canonical correlations and

associated parameters.
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Consider Equation (3-21) now that all the matrices in that

equation are known. It is thus possible to solve for the block

Hankel matrix as

(3-38) "L,L = T.L, LUR Rr* VH 4.L.L

This expression can be factored as follows:

3112 UR2) (R1/2 H/2(3-39) "L,L :O'•=(R•.L,L LR r* .)(Rf 4L •. LL)

from which the forward and backward innovations observability

matrices are determined by inspection. However, a more

representative expression for the forward and backward innovations

observability matrices is obtained by recognizing that for an Nth-

oraer system the last JL-N canonical correlations are equal to
zero. That is, the JLxJL canonical correlation matrix a8, is

partitioned as

[aRm [0]1 [aal [0]1
(3-40) R• = 1

* [01 R,2 [01 [01

with the NxN diagonal submatrix RR1 as,

0 ... 0
(3-41a} RRI 0 . 0

0 0 . --

(3-41b) 1 > 81 _2 2 2SN > 0
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The unitary matrices UR and VR are partitioned also into

submatrices of dimensions corresponding to the partitions of
matrix R*. Specifically,

(3-42) UR =[URI UR2]

(3-43) vR =

where URI is JLxN, UR2 is JLx(JL-N), VRl is JLxN, and VR2 is JLx(JL-

N). Given these partitions, the forward and bacKward innovations

observability matrices are obtained as
"" 44 •. 1/ , R1/2 •1/2 ,, ,1/2

(3-44) = fL, LUR R8r = 9.LLUR1RRI

R 1/2 \H 1/2 1/2 H 1/

(3-45) =L - "V8•R .L =RV RI/2

This expression for DL allows determination of the state of the

innovations representation via the finite-data approximation to

Equation (3-11). That is,

(3-46) )1=/ 2 VH , 1/2  1/2

.QR= R ' ~j L.LLIp RR L, L P = RRl I 1 (n)

where al(n) denotes the first N elements of U(n). Similarly, the

innovations state correlation matrix is determined via the finite-

dimensional approximation to Equation (3-16), or directly from

Equation (3-46),

(3-47) l= E= o•(n)2 qH(n)] =.I RR-

4ýL.L DL

42



Thus, the NxN innovations state correlation matrix is diagonal,
with its diagonal elements equal to the non-zero canonical
correlations. As stated in Section 2.3, the state of the
innovations representation has the smallest correlation matrix (in
the sense of positive definiteness) of all the admissible
correlation-equivaleat representations for system (2-2).

The system parameter matrices can be identified using

Equation (3-39) and the procedure of Appendix B.3. However, an
approach based on Equation (3-21) and the procedure in Appendix

B.2 requires less computations, and is the approach preferred
herein. The key to the approach is to recognize that Equation (3-
21), with as, as in Equations (3-40) and (3-41), can be factored

into the following two factors:

R1/2

(3-48) T)OL = R

(3-49) 0DT ~ o
L-'1 L [ N.JL.-N

Given this factorization, proceed as follows. First, operate on
the block Hankel matrix {L.L only on the left with matrix T2 to

obtain

(3-50) T2 -1k, L (T2 OL)L RR/= 2 [r Fr ... FL1rF]

OJL-fjN I

where Equation (3-48) has been applied. Now let Zr denote the NxJ

upper-left-hand submatrix in Equation (3-50),

(3-51) Z, = RI1 F

43



Then matrix r is obtained as

(3-52) r = Rt1Z2
RI Zr

An analogous procedure is followed to obtain HH. That is, operate

on the block Hankel matrix HL{L only on the right with the

Hermitian of matrix T, to obtain

(3541/2

Finally, matrix H is obtained as

(3-55) HH - .-.-R 2

To determine the system matrix, F, it is necessary to define first

a column-shifted (row-shifted) block Hankel matrix as

A2  A3  ... AL+1
(3-56) A37 =H H- RL+ 2. =/FL2j

AL+I AL+2 • .. A2 L
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The key to the determination of matrix F is the factorization of

the column-shifted Hankel matrix indicated in Equation (3-56). it

follows from Equations (3-48), (3-49), and (3-56) that pre-

multiplication of .L by T2 and post-multiplication of HL by the

Hprm~tian of T, results in the following:

I1' [IF] [ R1 12

(3-57a) T2 .. LT H (T2 OL) F(D."T-) RR' 111 F [Ri 
0 N.JL-N]

1OJL-N.N

(3-57b) T H ' FR1 ON,JL-N = ZF ONL&JN

LOLN OJL-,JL-N JL-NN 0 N. N J

In this equation the NxN matrix ZF is defined implicitly as

1/2 iR1/2
(3-58) ZF = RR1 FR1

The NxN matrix F is obtained easily as

(3-59) F = R1 ZF R1/2

This completes the factorization of the output correlation matrix

sequence, {An}.

Determination of the remaining matrix parameters for the

innovations model (2-29) is described next. The zero-lag output

correlation matrix is estimated directly from the output sequence

as

NT'I

(3-60) A. = x
NT k.O
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where NT is the total number of output data vectors (length of the

output sequence) used in the algorithm. Output correlation lag

estimation accuracy depends on this number; thus, NT should be

selected to be sufficiently large. The innovations correlation

matrix is obtained as in Equation (2-30a),

(1-61) Q = A0 -HHnH

and the one-step prediction filter (Kalman) gain follows fro)m

Equation (2-32a) as

(3-62) K = [F- FflH] al = [r- FHH] [A.- HHHH]F1

This completes the canonical correlations model parameter

identification algorithm.

The canonical correlations approach leads to several

alternative solutions to the system identification problem based

on the selection of the basis for the factorization of 9H, and each

alternative solution has distinct properties and features. Of

interest herein is the solution that corresponds to the backward

innovations representation, because it provides additional insight

into the canonical correlations formulation. The backward

innovations representation solution is obtained in a manner

analogous to the development completed above.

Consider the orthogonal projection of X-(n) onto X(n) (recall

that the preceding development is based on the orthogonal

projection of X+(n) onto X-(n)), and let B(n-1) denote the space

generated by the orthogonal projection of X-(n) onto X+(n). That

is,

(3-63) B(n-1) = A"(n) X+(n)
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B(n-1) is the backward state space of the process {x(n)) because it

is spanned by the state of the backward innovations
representation. B(n-1) is finite-dimensional, with dimension equal

to N. The space X-(n) can be represented as the direct sum of two

orthogonal subspaces,

(3-64) X-(n) = X-(n))lX, (n) (D '4n-1) = B(n-1) B 'WAn-1)

where B(n-1) I W(n-1), and W(n-1) is the space spanned by the

backward innovations process, denoted herein as {(0(n)}. As before,

the geometric structure of the space X-(n) defined by Equation (3-

64) is valid for all n because the process is stationary.

The space B(n-1) is spanined by the elements of the conditional

expectation of the past given the future,

(3-65) Ej1,,= ExýI, = E H,2j(EE['X~yI F= gHHx -IX D(3o

which is also the minimum variance estimate of the past for the

case of a zero-mean, Gaussian-distributed process. This leads to

the algebraic representation of the geometric expression (3-64),

(3-66) = 4 + Dn.i =DO 1
=P = 'P Cn- X 2F + (On-1

where CO is an infinite-di4mensional block vector having the

backward innovations sequence as block elements; that is,[ o(n-1)1

_Q(n-2)
(3 - 6 7 ) wn--=

L(n-3) 4
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Now define an N-dimensional vector as

(3-68) t(n-1) = d' x-

The elements of ý(n-1) span the space B(n-1), and q(n-1) is the state

of the backward innovations representation at time n-1. Using this

definition, Equation (3-66) is re-written as

(3-69) = VD(n-1) + Wn-1

and this equation is an analytic representation of the statement

that the backward system observability matrix maps the backward

state space onto the output space. Of particular interest is the

first block row of Equation (3-69). Specifically (recall that rH

occupies the first J rows of the backward observability matrix),

(3-70a) x(f-1) = rH_(n-l1) + (o(n-l)

(3-70b) X(n) = r"V0(n) + _(n)

In Equation (3-70b) , and in the remainder of this section, the

time argument n-i is replaced by n for notational simplicity (this

is permissible because the system is time-invariant) . Equation

(3-70) is the output equation for the backward innovations

representation.

The finite-time approximation and the canonical correlations

approach to the parameter identification problem apply also to the

backward formulation, and lead to a solution analogous to the

forward case. In particular, the state vector is obtained from

Equations (3-34), (3-44), and (3-68) as
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(3-71) -(n) -q;&L.L!F R1

And the steady-state correlation matrix of the backward
innovations representation, rib' follows simply as

(3-72) r,, = 4(n)IH (n)] = 4 ' = Rl= = 4.L.L OL RR1

Notice that the forward and backward innovations representation

state correlation matrices are equal to each other (Equations (3-

47) and (3-48)),

(3-73) ý= RR1 = n

A system representation in which the forward and backward state

correlation matrices are both diagonal and equal to each other is

said to be in balanced coordinates in the stochastic sense (Desai

et al., 1985). Balanced coordinates allow effective model order

selection and/or model order reduction (Moore, 1981).

3.3 Model Order Determination

Model order determination is a necessary decision for any

identification algorithm in applications where the true order of

the system generating the channel output data is unknown, or where

the true process generating the data may not be a member of the

model class adopted to represent the data. In the second case the

model generated by the algorithm is a "representation model," as

opposed to a "physical model" (a model based on accurate analyses

of the underlying physical processes). Determination of the model

order is always a difficult problem, and the solution is rarely

clear-cut. The canonical correlations identification algorithm
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adopted herein does have several strong features that lead to

robust and straightforward criteria for model order estimation.

Principally, the algorithm identifies the model parameters of the

innovations representation for the multichannel process in

stochastic balanced coordinates.

Model order selection in the algorithm is based, in one form
or another, on the canonical correlations (pi), which are the

diagonal values of matrix R8a. Thus, it is important to recall

that the canonical correlations are real-valued, non-negative,

bounded by unity and zero, and are arranged along the diagonal of
matrix Ra. in order of decreasing magnitude. Furthermore, the

steady-state correlation matrix of the state of th forward (H)

and of the backward J1 innovations models in balanced

coordinates are diagonal, with the diagonal elements equal to the

canonical correlations. In a balanced reresentation the position

of a state in the state vector is indicative of the importance of

the contribution of that state to the output correlation sequence

(the first state is equal in importance or more important than the

second state; etc.), and the magnitude of the corresponding

correlation matrix element is representative of the relative

contribution of that state (Moore, 1981) . Thus, a simple model

order selection approach is to identify the negligible canonical

correlations, and select the model order equal to the number of

non-negligible canonical correlations.

In most situations involving a finite amount of data, all the

canonical correlations are different from zero. This is due to

the fact that the singular value decomposition of the Hankel

matrix is imperfect for finite data cases because the measurement

noise corrupts the estimation of the output correlation matrices.

In such cases, model order can be estimated by identifying jump

discontinuities in the magnitude of the canonical correlatio.is,
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and/or by identifying the correlations at which diminishing

returns occur (when the criterion value changes by a negligible

amount after increasing the number of states by one).

In the absence of one or more jump discontinuities, external

information may be required, such as prior knowledge of the system

being modeled. Alternatively, a reasonable model order can be

selected, and various analyses can be carried out to reduce the

order of the model taking advantage of the features of a state

space realization in balanced coordinates.

Model order can be determined also by inspecting the

normalized running sum of the canonical correlations. The J

canonical correlation normalized running sum is defined as

SP,

(3-74) NRSi = '-' i = 1, 2,.. .,JL
JLI P,

Notice that the JLth normalized running sum is equal to unity.

Notice also that the parameter NRSi is the fraction of the past-

to-future correlations covered by retaining the ith largest

canonical correlations.

Other criteria can be applied for model order determination.

Squaring the canonical correlations emphasizes discontinuities,

and thus provides a good criterion. The normalized running sum of

the sauared canonical correlations, which is defined as
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(3-75) NRSSi = k.= 1, ,2,... JLJL

k-1

is still another useful criterion. These last two criteria are

heuristic, since there is no significance to the square value of a

correlation coefficient, nor to its normalized running sum.

However, these two criteria generally perform better model order

determination than the canonical correlations and their running

sums.

The mutual information between the past and future vectors is

the basis for the definition of two other model order

determination criteria. Mutual information does have statistical

significanze, and generally provides effective model order
determination. Consider first a set of variables {Ki} defined as

the following nonlinear function of the canonical correlations:

(3-76) Ki -nl-p2) =1,2,.. .. JL

This set of variables, referred to herein as loa parameters, are

part of the definition of mutual information, and can be used for

model order determination by detection of jump discontinuities or

other such behaviour in the sequence. Gelfand and Yaglom (1959)

have defined the mutual information between the past and future as

the following parameter,

JL

(3-77) TI =
2 '*KM

m-i
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Given this definition, the normalized mutual information parameter

for an ith-order model (with i<N) is then defined as

(3-78) M- = r-i - rn- i=1,2, JLJL. . .

m-1

The value of this parameter represents the fraction of the mutual

information in the past about the future that is retained by the

state in an ith-order model representation of the output process.

Table 3-1 lists the model order determination criteria

presented herein. In an off-line model order determination mode,

the procedure to follow with each of the criteria is to examine

the sequence of criteria parameter values for discontinuities,

diminishing returns, etc., and to select the model order for which

a maximum of information is retained. In an on-line mode, one

procedure to follow with each of the criteria is to select the
model order which corresponds to the criterion value that meets or

exceeds a pre-selected threshold. As an example consider the NRS

parameters. For this criterion, the model order which corresponds

to the parameter value which meets or exceeds a threshold such as

0.95 is selected. Another procedure is to define a threshold

which is applied to the increase in value that occurs between two

consecutive values of the criterion parameter. A change of a few

percent is a reasonable threshold value in many cases.
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CRITERION DESCRIPTION SYMBOL

Canonical correlations {pi)

Normalized running sum of canonical correlations {NRSj)

Squared canonical correlations {p2 }

Normalized running sum of squared canonical correlations {NRSSI}

Log parameters N.

Normalized mutual information parameters ({ldI

Table 3-1. List of candidate model order determination criteria.

An important issue related to model order is the selection of

the number of block columns (rows) in the block Hankel matrix, L.

Based on the rank properties of the block Hankel matrix, the value
for L should be selected to satisfy

(3-79) JL > NE

where NE is the expected (or true) model order. If such a value

is not available, the best guess at an upper bound for the true

model order should be used.
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4.0 INNOVATIONS SEQUENCE GENERATION

In the approach pursued in this program, an unknown system of

the form (2-2) is modeled as an innovations representation (2-29).

Thus, once the innovations model parameters have been identified,

an optimal Kalman filter can be configured to generate the

innovations sequence, {f(n)}, for the likelihood ratio calculations.

The approach described in this section is applied to the

observation data under each of the two hypotheses.

Any one of several equivalent Kalman filter formulations can

be applied to generate the innovations sequence. However, the

one-step predictor formulation offers significant advantages in

the context of the intended application (Anderson and Moore,

1979). Specifically, the one-step predictor formulation generates

the innovations sequence and the filter state update with a simple

structure in the case where the input and output noises are

correlated (S #[0] in Equation (2-5a)), and thus imposes less real-

time computational requirements than other formulations. Also,

the model identification algorithm generates the parameters for

the innovations model. Thus, the one-step predictor formulation

is adopted in this work. Strictly speaking, the terminology "one-

step predictor" should be used hereafter, but use of the term

"Kalman filter" is accepted universally. Both terms are used

herein.

The steady-state one-step predictor formulation for the

innovations model (2-29) is a linear, time-invariant system

described by the following equations:

(4-1a) I(n+lIn) = F-(nin-1) + Kg(n) n Ž no

(4-1b) g(n) =i(n) - _X(nln-1) = 1(n) - H (nln-1) n no
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(4-1c) -(nolno-1) =Q

Here a(n+1ln) is the estimate of the innovations model state vector

at time n+1 based on observation data up to time n, j(njn-1) is the

estimate of the observation vector at time n based on observation

data up to time n-1, and E(n)is the innovations associated with the

observation x(n). Matrix K is the steady-state filter gain matrix.

The filter initial condition is set equal to zero because the

innovations model initial condition is zero, Equation (2-29c) . A

block diagram of the Kalman filter is presented in Figure 4-1,

displaying the channel output vector as input, and the innovations

sequence vector as output.

A(n) E (n)

A(nln-1) K

Figure 4-1. Kalman filter block diagram, emphasizing the
innovations sequence generation filter function.

The steady-state filter is an approximation to the optimal

time-varying filter. If the channel output process is in steady-

state, this approximation provides acceptable performance.

Additionally, the steady-state filter provides a significant
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reduction in the real-time computational requirements over the

time-varying filter. In the cases where the channel output

process is not in steady-state, filter performance is suboptimal,

and the degree of loss of optimality needs to be ascertained.

Such a determination is a topic for future research. A related

issue involves filter initialization transient effects. Since the

steady-state filter gain is used, it may be necessary to neglect

the first Ni filter outputs for each data batch. Determination of

the value Ni can be carried out via analysis and simulation, and is

also a topic for future research.

Anderson and Moore (1979) show that the filter estimation

error for an innovations model is zero at all times. That is,

(4-2) -(n+lin) =,U(n+l)

Correspondingly, the filter estimation error correlation matrix is

zero also. This can be inferred from the parallelism between the

innovations model (2-29) and the filter representation (4-1).

Thus, knowledge of the filter implies knowledge of the innovations

model, and viceversa.
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5.0 LIKELIHOOD RATIO DETECTION

A detection metnhoology for complex-valued multichannel

Gaucsian processes has been developed by Michels (1991) in the

context of innovations-based detection. This approach has been

generalized recently to include a class of non-Gaussian processes

known as spherically-invariant random processes (SIRPs) and using

linear estimators (Rangaswamy, Weiner, and Michels, 1993).

Michels' methodology can be applied directly to the innovations

sequence generated by the approach formulated herein. For

brevity, only the likelihood ratio equation is presented here.

As discussed in Section 4.0, a Kalman filter (one-step

predictor) is determined for each of the two hypotheses based on

processing the multichannel data. The model order for the

alternative hypothesis (H1 ) filter is chosen to be larger than the

model order for the null hypothesis (H 0 ) filter. For each

hypothesis filter, denote the innovations sequence, Equation (4-

1b), as

(5-1) i(nlHi)= (n)- •(nin-1;Hi)=: (n)- HH•(njn-1;Hj) i=0, 1

The steady-state correlation matrix of the innovations is denoted

as Q(Hi), and is defined in Equation (3-60).

Let O(H 0 ,HI) denote the multichannel likelihood ratio as

defined by Michels (1991) for the Gaussian signal case. Then, the

log-likelihood ratio (LL.) can be expressed as follows,

(5-2) In[e(HoH 1 )] = [ n (H) + •H(niHo) Q_'(H 0 ) (njH 0 )

n-Oo"L I (H,)l

F {H(nljH ) K2Ž1(H 1) F(njH1 )j
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The LLR is compared to a threshold, T, which is calculated

adaptively to maintain a constant false alarm rate (CFAR),

(53 1@H, {ý select H,
S< T select H,

A candidate CFAR approach with demonstrated good performance

calculates the median of a set of the LLR values from a number of

adjacent range cells (at the same azimuth) on both sides of the

cell in question, and scales the calculated median value by a

pre-determined constant to provide the desired false alarm rate

(Metford and Haykin, 1985).

The LLR expression has to be modified if optimal time-varying

filters are used instead of the steady-state filters. In such

cases the modification is straightforward, and involves replacing

the steady-state correlation matrices of the two innovations by

their time-varying values.

Alternative expressions for the log-likelihood ratio can be

generated based on factorization of the innovations correlation

matrix and spatial whitening of the innovations process. This

includes Cholesky factorization, LDU decomposition, and SVD. The

first two techniques have been described by Michels (1991), and

lead to simplified LLR expressions. The SVD technique is derived

here.

Consider the steady-state innovations correlation matrices

for each of the two hypotheses and carry out an SVD on each

correlation matrix. This results in the following decompositions:

(5-4) Q(Hi) = V XV.' 0=0, 1
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where matrix Vi is a JxJ unitary matrix, and I, is a diagonal matrix

with real-valued, positive elements arranged along the diagonal in

decreasing order of magnitude (it is assumed herein that the

correlation matrix of the innovations sequence has full rank)

That is,

a2  0 ... 0ii
0 •2_ ... o

(5-5a) 2 =0, 1

00... 0

(5-5b) (2 >(2 > > O(32 =0
(5-5b) Oil >- i2 -. ... .- U > 0 0

Since matrix Vi is unitary, the determinant and inverse functions

of Q (Hi) are obtained easily as

(5-6) '(H ( ) = ViE.Vi i =0, 1

(5-7) I2(Hj) CI 2 iJ =0, 1
k-1

Now make a linear transformation on the innovations sequence using

the unitary matrix Vi, to obtain

(5-8) v(nltH) = VH. (nItH) i =0, 1

The transformed innovations sequence, {_(nIHt)}, is uncorrelated

spatially and temporally (recall that {((nIHi)} is uncorrelated

temporally), with correlation matrix Tj. Transformation of a J-

dimensional vector by a unitary matrix rotates the vector in the J-

dimensional space, but does not alter its magnitude. Thus, the
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spatial whitening transformation does not alter the variance of

the elements of the innovations vector.

Substituting Equations (5-4) through (5-8) into Equation (5-

2) results in the following LLR expression

"NJF F2 Gk 1 (Vk(fltHO )12 1 Vk(fltHl1 )12
(5-9) Ie(,H) XX InL + 2 - 2 1

fflk1L 12 kdOk 1 k ]

where vk(nlIHi) denotes the kth element of Mv(nlli). This LLR is of the

same form as the LLR derived by Michels (1991) for spatial

whitening of the innovations using an LDU decomposition.
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6.0 SOFTWARE SIMULATION

The identification and filtering algorithms described in the

preceding sections have been programmed in FORTRAN 77 for Apple

Macintosh processors. Support software for the validation and

execution of the routines has been generated also. The support

software includes signal generation routines, auxiliary routines

for validation, and code for miscellaneous calculations. The

identification algorithm makes use of the SVD. An SVD subroutine

for complex-valued matrices was obtained from a version of the

LINPACK software package (Dongarra et al., 1979). Separate code

was written and exercised to validate the LINPACK routines before

incorporation into the main algorithm code. The signal generation

code uses a Gaussian random number generator obtained from the

text by Press et al. (1989) . Sample realizations generated by

this code were tested for whiteness and gaussianity.

6.1 Software Validation

Code validation was carried out in two steps. First, all

subroutines and select segments of code were validated

individually. Second, the complete package was validated using

examples generated for that purpose. The examples consisted of

system models with a simple stricture so that the computer output

could be predicted. Both real-valued and complex-valued examples

were generated. One particular example used is the second-order

system defined by the following matrix parameters (for a system

model of the form (2-2)):

f21  f22

HH=G=DH=Q=C=1 2

62



This model was used to generate a random vector sequence to

validate various aspects of the software. For example, defining

matrix F with f1 1 =f 12 =f 22 = 0 and f2 1 = I generates an output vector

sequence that consists of white noise in each output channel, but

the two channels are correlated from one instant to the next (the

correlation is due to the coupling induced by the non-zero (2,1)

element of F) . The output of the identification program should

indicate a first-order model, with the first diagonal element of

matrix RBa approximately equal to 0.7071, and low values for the

remaining diagonal elements. This was the result obtained.

Complex-valued test cases using this sample model were generated

by letting F be a diagonal matrix with the desired complex-valued

poles along the diagonal.

During validation and testing it was observed that system

poles along the real axis are more difficult to estimate than

poles with an imaginary component. This is common to most

identification algorithms. It was observed also that poles close

to the unit axis (in the complex Z plane) are estimated more

accurately than poles close to the origin. This is due to the

fact that the closer that a pole is to the origin, the faster the

decay of its response to an excitation.

6.2 Analyses and Simulation Results

The software has been exercised also with cases generated

using multichannel AR models provided by the program monitor at

RL, Dr. James H. Michels. These cases consist of signal only,

clutter only, signal + noise, clutter + noise, and signal +

clutter + noise. In all cases the signal, clutter, and noise

processes are statistically independent of each other.
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Signal AR Model

The signal model is a complex-valued, two-input, two-output

AR model of order 2 with the following matrix parameters,

=.s(n) - A, (1)ys(n-1) - As (2)y..(n-2) + .us(n)

AH(1) 1.6290 - j 1.4241x10 7  1.3733x10-5 + j 3.8202x10-' 3 1
A 1.3733x 10"5 +j 3.8202x1 0 1 3  1.6290 - j 1.4241 x10 7

Hs (2)= 0.80996 - j 1.4162x1 0-7 1.5259x10s - j 9.0949x10o13

L1.5259x10 5 - j 9.0949x10"13  0.80996 - j 1.4162x10, 7

The input to the signal AR recursion, {(s(n)}, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure

defined as

0 [12907 0.13038

This two-inpuit, two-output AR model corresponds to a fourth-order

state space model in an innovations representation (as described

in Appendix A), with poles at the following locations in the

complex Z-plane:

True Signal Model Poles: -0.81451 ± j 0.38282

-0.81449 ± j 0.38281

This AR system was defined by Michels to have a very high channel-

to-channel correlation (-0.99), which indicates that a lower-order

model could represent the signal information. Specifically, a

second-order state space model can represent the signal

information well. Notice that the pole locations are almost

repeated roots, which indicates that the two channels are almost
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repeated roots, which indicates that the two channels are alaost

identical. Therefore, given a high-level of channel-to-channel

correlation, a reduced-order model should perform adequately.

The AR process {(y(n)) is corrupted by a zero-mean, unit-

variance white noise sequence iW.(n)} to give the noise-corrupted

channel output sequence as

4(n) = y.s(n) + _(n)

For this noise model and the signal model given above, the signal-

to-noise ratio (SNR) is approximately 3 dB.

Consider the problem of representing the AR signal in

additive white noise with a state space model (see Appendix A) .

The channel output noise, {W(n)}, alters the parameters of the state

space model designed for the AR signal {yX(n)) only, but {4(n)) can be

represented as the output of a state space model. That is, {ys(n)}

is represented as the output of an innovations model, but the

model for {xs(n)}, which includes the additive noise {W(n)}, is not an

innovations model (there is an innovations model for ({(n)}, but it

is different from the innovations model for {ys(nn)} . This is a

manifestation of the well-known fact that an AR process corrupted

by additive output white noise is no longer an AR process. In

contrast, the state space model remains a valid representation of

the signal even after the addition of a new noise source. The AR

model class is a subset of the state space model class; thus, the

state space model class can be expected to provide a better fit

than the AR model class for a wide range of systems and

applications where independent measurement noise is present.

Additionally, state space identification algorithms can be

expected to deliver comparable performance results using a lower
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equivalent model order than algorithms based on time series

models.

Clutter AR Model

The clutter model is a complex-valued, two-input, two-output

AR model of order 2 with the following matrix parameters,

H Hy.<(n) =-Ac(1)y.c(n-1)- Aý(2)y~c(n-2) + .I<=(n)

HA'(1) = -1.0430 0.0[CO 0.0 -1.0430

SA' (2) = [o. oo o~oIAc() 0.0 0.49001

The input to the clutter AR recursion, {U.(n)1, is a zero-mean, unit

variance white noise sequence with a spatial correlation structure

defined as

Q [1.5502 0.0 1
ac 10.0 1.55021

This two-input, two-output AR model corresponds to a fourth-order

state space model in an innovations representation (see Appendix

A), with poles at the following locations in the complex Z-plane:

True Clutter Model Poles: 0.5215 ± j 0.4669

0.5215 ± j 0.4669

The clutter AR coefficient values, the noise covariance values,

and the diagonal structure of this AR system indicate that the two

channels are uncorrelated. Thus, a fourth-order state space model

can represent the clutter information well. Notice that the pole
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locations are repeated roots, which indicates that the two

channels are identical.

The clutter AR process {Jy(n)} is corrupted by the zero-mean,

unit-variance white noise sequence {w.(n)) to give the noise-

corrupted channel output sequence as

_C) (n) + w n)

For this noise model and clutter model the clutter-to-noise ratio

(CNR) is approximately 6 dB.

Selected Simulation Results

The identification and filtering software was exercised with

the signal plus noise sequence, {x(n)}. Calculated values of the

various model order criteria indicate that a second-order state

space model is a good approximation to this system, as expected.

Plots for two different criteria are presented in Figures 6-1 and

6-2 (all plots herein are for single-realization cases).

Specifically, Figure 6-1 shows the canonical correlations, and

Figure 6-2 shows the log parameters of Equation (3-76) . In both

figures the abscissa represents model order. Notice that the log

parameters provide an easier determination of model order than the

canonical correlations. This has been observed to be the case in

most examples considered thus far. The same assessment is true

also for the other two criteria that are related to these two

criteria (normalized running sum of canonical correlations and

normalized mutual information, respectively) . The plot of the

squared canonical correlations criterion is very similar to the

plot of the log parameters, Figure 6-2. This also has been

observed in most examples considered thus far.
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Signal Plus Noise Case (SNR = 3 dB)
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Figure 6-1. Canonical correlations for the signal plus noise case

(SNR = 3 dB conditions).

Signal Plus Noise Case (SNR = 3 dB)
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Figure 6-2. Log parameters criterion for the signal plus noise

case (SNR = 3 dB).
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Based on the above discussions, model order 2 was selected

for the analyses and simulations involving the AR signal in white

noise. Figure 6-3 is a plot of the real and imaginary parts of

the first element of a single realization of the innovations
vector process, {£e(n)}, generated using a filter of order 2. The

filter parameters were identified using a total of 25 output

correlation matrix lags, including the zero-lag correlation

matrix. This corresponds to L= 12 in the block Hankel matrix. The

output correlation matrix lags were estimated using a single
realization of the output process with a duration of NT=2,500

output sequence vectors. Only the first 500 points are shown in

Figure 6-3 (representing one-fifth of the available results), but

these points are representative of the total innovations process.

The innovations sequence appears to be unbiased, with a calculated

sample mean of

( 0.0327 - 0.0081 1
(=0.0063 + j 0.0157

Notice also the high degree of "whiteness" exhibited by the

innovations. The second element of the innovations vector

sequence, {E2(n)}, behaves similarly.

The zero-lag innovations correlation matrix identified by the

software using Equation (3-61) is

- 1.5328 0.5089 + j 0.00501

S0.5089-j 0.0050 1.5326 1

and agrees very well with the sample correlation values. Several

simulation runs were made using multiple sample realizations of

the same length and filter order two. In all cases the results

indicate clearly a white innovations process.
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first element of innovations vector for case of signal plus noise
(order=2, SNR=3dB)U, 3
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first element of innovations vector for case of signal plus noise
S (order 2, SNR=3dB)

> 3 -
0
C 2S 2

C

E

ot -1

E 0 100 200 300 400 500

time index, n

Figure 6-3. Real and imaginary parts of the first element of
innovations sequence vector for the case of signal plus noise

(SNR = 3 dB conditions).
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Identification algorithm performance can be assessed by

examining the roots of the identified innovations model system

matrix, F. The scatter plots in Figure 6-4, which correspond to

results obtained for ten distinct realizations, illustrate the

parameter identification capability of the algorithm. These

scatter plots show the ten identified root pairs, all in close

proximity to the true roots (recall that the true roots are

located at -0.8145 j i 0.3828). All the identified roots are at a

distance less than 1.5% of the true values, and most are much

closer than that.

Root No. 1 Root No. 2

-0.35- 0.1_

X
X

a CU X X
. -0.37- [AQ- 0.39-

?XxX x xX
CO K

V -0.39- " a 0.37-,
.E E

-0.41 • .. . .... .. .. 0.35 • - . -', • •
-0.84 -0.82 -0.8 -0.78 -0.84 -0.82 -0.8 -0.78

real part real part

Figure 6-4. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of signal

plus noise (SNR = 3 dB conditions).

The software was used also to model and analyze the clutter

plus noise sequence, {x_(n)}. For this case at a CNR of 20 dB, the

concensus of the model order criteria indicate a fourth-order

state-space model, as expected. A plot of the normalized running

sum of the canonical correlations (parameter NRSi) is presented in

Figure 6-5, and a plot of the normalized mutual information is

presented in Figure 6-6 (both of these figures present single-
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realization cases) . Notice in Figure 6-6 that there is a

significant increase in mutual information as the model order is

increased up to fourth-order, but for fifth-order and beyond the

increase in mutual information is small compared to the prior

increases. Such is not the case with the NRSi criterion, as

evident in Figure 6-5. The plot for the normalized running sum of

the canonical correlations squared (parameter NRSSi) is very

similar to the plot of the normalized mutual information (Figure

6-6). As in the case of signal plus noise, criteria which involve

the canonical correlations in a linear manner are not as useful as

criteria based on nonlinear functions of the canonical

correlations. These results together with the knowledge of the

lack of channel correlation indicate that a fourth-order model is

a good approximation to this system.

Clutter Plus Noise Case (CNR = 20 dB)

E
2. 0.8

E E0.6

0
o.2 '

as 0. -
M Or 0.2. - , (JN

Figure 6-5. Normalized running sum of canonical correlations
criterion for the clutter plus noise case (CNR = 20 dB).
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Clutter Plus Noise Case (CNR = 20 dB)

' 0.8
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Z 0.2-
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Figure 6-6. Normalized mutual information criterion for the
clutter plus noise case (CNR = 20 dB).

Based on the above discussion, model order four was selected

for the state space representation of the clutter AR process in

additive white noise. Plots of the real and imaginary parts of

the first element of the innovations vector process, {£E(n)}, are

presented in-Figure 6.7. These results were generated using a

fourth-order filter and 6 dB CNR conditions. The other simulation

parameters are the same as in the signal plus noise case.

Specifically, a total of 25 output correlation matrix lags,

including the zero-lag correlation matrix, were used to identify

the filter parameters. This corresponds to L = 12 in t"e block

Hankel matrix. Also, the output correlation matrix laas were

estimated using a single realization of the output process with a

duration of NT=2,500 output sequence vectors. Only the first 500

points are shown in Figure 6-7 (representing one-fifth of the

available innovations sequence in this run), but these points are

representative of the total innovations sequence. Both components

(real and imaginary) of the sequence {c 1(n)} are unbiased, as

indicated by the sample mean,
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E(n) 0.0586 + j 0.0321
-0.1025-j 0.0271

An estimate of the real and imaginary parts of the sample auto-

correlation function of {El(n)} of Figure 6-7 is given in Figure 6-8.

The behaviour of the real part is representative of a white

innovations sequence: an impulse at lag n=0, and approximately

equal to zero everywhere else. The imaginary part exhibits low-

amplitude oscillations about zero, also as expected of a white

innovations. Several distinct output sequence realizations were

generated and processed using the same parameters, and the

performance was similar in all cases. The zero-lag innovations

correlation matrix estimated using Equation (3-61) is

3.2694 - 0.0888 - j 0.0073
= [-0.0888 + 0.0073 3.1369

Element (1,1) of Q agrees within less than 1% with the sample

correlation value of 3.290 + j 0.0 indicated in Figure 6-8. The

behaviour of {E2 (n)} is similar.

Figure 6-9 presents scatter plots of the roots of the fourth-

order system characteristic equation for ten realizations. The

roots are clustered about the values of the true repeated roots,

0.5215 ± j 0.4669, which are close to the center of the plots

shown. The largest root estimation error is approximately 12.7%.

This error is larger than the worst error in the signal plus noise

case, and is due to the greater difficulty in estimating faster

modes.
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first element of innovaiions vector for case of clutter plus noise
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first element of innovations covariance for null hypothesis data
using null hypothesis filter (order 4, CNR=6dB)
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first element of innovations covariance for null hypothesis data
4 using null hypothesis filter (order 4, CNR=6dB)
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Figure 6-8. Real and imaginary parts of the auto-correlation
function of the first element of the innovations sequence vector

for the case of clutter plus noise (CNR = 6 dB).
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Figure 6-9. Scatter plot of real and imaginary parts of
identified model poles for ten distinct realizations of clutter

plus noise.
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Similar biased behaviour has been observed in other

estimation results (Michels, 1992b), as well as in detection

performance results (Michels, !992a) obtained using time series

(AR) models. For the state-space approach pursued herein,

unbiased estimates with reduced variance can be obtained by

averaging several individual estimates and/or by increasing the

duration of the output process realization.

Various simulations were carried out to obtain a first-order

assessment of the discrimination capability of the innovations-

based methodology using the canonical correlations algorithm. One

set of simulations involved designing a Kalman filter for each

hypothesis, processing data corresponding to each of the two

hypotheses using both filters, and analyzing the resulting four

filter output sequences (two filters, and each filter processes

data sets corresponding to each of the two hypotheses) . These

results are presented next. As before, all plots correspond to

single-realization cases.

Consider first the case of processing data from each of the

two hypotheses using a null hypothesis filter, corresponding to

clutter + noise only. For this case the filter order is four, as

mentioned earlier in the clutter plus noise model discussion.

Results are presented herein for two sets of conditions: (a) SNR =

3 dB and CNR = 6 dB; and (b) SNR = 3 dB and CNR = 20 dB. For each

set of conditions the procedure described next was followed.

A realization of the clutter + noise process of duration

NT= 2,500 was generated and 25 output correlation matrix

lags were estimated. These correlation lags were

processed to design a fourth-order Kalman filter. The

resulting filter is the filter for the null hypothesis

(signal not cresent).
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* The null hypothesis filter was applied to a clutter -

noise process sequence of duration NT= 2,500, and the

sample correlation matrix sequence of the filter output

sequence was calculated. The real and imaginary parts

of the (1,1) element of the resulting sample correlation

matrix sequence are plotted in Figure 6-8 for CNR = 6 dB

conditions, and Figure 6-10 for CNR = 20 dB conditions.

Both sets of figures are representative of the auto-

correlation of a white innovations sequence, as expected

(both sets of figures show low-level energy content at

the higher lags).

* The null hypothesis filter was applied to a combined

signal + clutter + noise process sequence (alternative

hypothesis case) of duration NT= 2,500, and the sample

correlation matrix sequence of the filter output

sequence was calculated. In this case, however, the

sequence is not a true innovations sequence because the

filter .is not optimal for this process. The real and

imaginary parts of the (1,1) element of the resultirn.g

sample correlation matrix sequence are plotted in Figure

6-11 for CNR = 6 dB conditions, and Figure 6-12 for CNR

= 20 dB conditions. Both of these figures show a marked

deviation from the expected auto-correlation for a white

innovations sequence.

n the discussions and results presented above the (2,2) element

of the sample correlation matrix is not referred to. This is due

to the fact that its behaviour is very similar to the behaviour of

the (1,1) element.
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In continuation of the first-order assessment of the

discrimination capability of the canonical correlations approach,

consider now the case of processing data from each of the two

hypotheses using an alternative hypothesis filter, corresponding

to the combined process of signal + clutter + noise. Since the

signal and clutter are uncorrelated in this set of examples, a

sixth-order state space model is required for the combined

process. As before, results are presented for two sets of

conditions: (a) SNR = 3 dB and CNR = 6 dB; and (b) SNR= 3 dB and

CNR = 20 dB. For each set of conditions the procedure described

next was followed (all plots are for single-realization cases).

" A realization of the combined signal + clutter + noise
vector process of duration NT= 2,500 was generated, and

25 lags of the output correlation matrix sequence were

estimated. These lags were processed to design a sixth-

order Kalman filter. The resulting filter is the filter

for the alternative hypothesis (signal present).

"* The alternative hypothesis filter was applied to a

combined process sequence of duration Nr= 2,500, and the

sample correlation matrix sequence of the filter output

sequence was calculated. The real part of the (1,1)

element of the resulting sample correlation matrix

sequence is plotted in Figure 6-13 for CNR = 6 dB

conditions, and Figure 6-14 for CNR = 20 dB conditions.

Both figures present correlation sequences which

correspond to white innovations sequences, as expected

(both figures show low-level energy content at the

higher lags).

"* The alternative hypothesis filter was anplied to a

clutter + noise process sequence (null hypothesis case)
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of duration NT= 2,500, and the sample correlation matrix

sequence of the filter output was calculated. Tn this

case, however, the sequence is not a true innovations

sequence because the filter is not optimal for this

process. The real part of the (1,1) element of the

resulting sample correlation matrix sequence is plotted

in Figure 6-15 for CNR = 6 dB conditions, and Figure 6-

16 for CNR = 20 dB conditions. The correlation sequence

in each of the figures corresponds to a colored process,

and not to a white innovations sequence. Such is the

expected result.

Figures 6-13 through 6-16 do not include the imaginary part of the

sample correlation sequence because it is similar to the imaginary

part of the sample correlation sequence presented in the preceding

figures. Also, in all cases the behaviour of the (2,2) element is

very similar to that of the (1,I) element of the sample

correlation matrix sequence, as before.

These results indicate that the innovations-based detection

methodology using the canonical correlations identification

algorithm can discriminate between data corresponding to each of

the two hypotheses. That is, a filter designed for the

alternative hypothesis (signal + clutter + noise) generates a true

innovations sequence given a signal + clutter + noise channel

process, and generates a colored output given a clutter - noise

channel process. Analogously, a filter designed for the null

hypothesis (clutter + noise) generates a true innovations sequence

given a clutter + noise channel process, and generates a colored

output given a signal + clutter + noise channel process.
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first element of innovations covariance for null hypothesis using
S50 null hypothesis filter (order 4, CNR=20dB)
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Figure 6-10. Real and imaginary parts -f the auto-correlation
function of the (1,1) element of the innovations sequence vector
for the case of null hypothesis data using the null hypothesis

filter (CNR = 20 dB conditions).
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first element of innovations covanance for alternative hypothesis
data using null hypotnesis filter (order 4, CNR=6dB)
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Figure 6-11. Real and imaginary parts of the auto-correlation
function of the (1,I) element of the filter output vector for the

case of alternative hypothesis data using the null hypothesis
filter (CNR = 6 dB conditions).
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first element of innovations covanance for alternative hypothesis
data using null hypothesis filter (order 4, CNR=20dB)o®601
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Figure 6-12. Real. and imaginary parts of the auto-correlation
function of the (1,1) element of the filter output vector for the

case of alternative hypothesis data using the null hypothesis
filter (CNR = 20 dB conditions).
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first element of innovations covariance for alternative hypothesis
data using alternative hypothesis filter (order 6, CNR=6dB)
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Figure 6-13. Real part of the correlation function of the (1,1)
element of the innovations sequence vector for alternative

hypothesis data using alternative hypothesis filter (CNR = 6 dB).

first element of innovations covariance for alternative hypothesis

501 data using alternative hypothesis filter (order 6, CNR=20dB)
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Figure 6-14. Real part of the correlation function of the (1,l)
element of the innovations sequence vector for alternative

hypothesis data using alternative hypothesis filter (CNR = 20 dB) .
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first element of innovations covanance for null hypothesis data
using alternative hypothesis filter (order 6, CNR--6dB)
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Figure 6-15. Real part of the correlation function of the (!,I)
element of the filter output vector for null hypothesis data using

the alternative hypothesis filter (CNR = 6 dB conditions).

first element of innovations covarance for null hypothesis data
using alternative hypothesis filter (order 6, CNR=20dB)
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Figue 616. ealpart of the correlation function of the (1,1)
element of the filter output vector for null hypothesis data using

the alternative hypothesis filter (CNR =20 dBl conditions).

86

CL ml0- mim mmmmmmn i m



7. 0 CONCLUSIONS AND RECOMMENDATIONS

The work carried out in this program emphasized the

development and analysis of a state space methodology and

algorithm for the model-based multichannel d•=ection problem in

the context of radar system applications. Application of state

space techniques for multichannel detection in radar systems is

one novel aspect of the work reported here. The state space model

class is richer than the time series model class that is used

often in radar system applications. And, as demonstrated in this

work, the state space model class can be used to represent

effectively multichannel radar signals.

Another novel aspect of the work is the utilization in the

detection methodology of the canonical correlations algorithm

developed by Desai et al. (1985), which in turn is based on the

work of Akaike (1974; 1975). This algorithm was adopted in the

program for the multichannel radar output modeling and parameter

identification functions. In the process, the algorithm was

extended to the case of complex-valued radar system data, and an

alternative derivation of the algorithm was developed which is

based on the SVD technique. The SVD is a robust and stable

numerical technique. Thus, the algorithm offers numerical and

performance advantages over other techniques.

A computer simulation was developed to validate the algorithm

and methodology, and to serve as a testbed for evaluation of the

algorithm in radar system applications. The simulation can be

exercised with internally-generated sample multichannel output

data, or with externally-provided data. Extensive tests were

carried out to validate the code.
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Simulation-based analyses carried out to date demonstrate the

feasibility of the SSC state space approach for multichannel

identification and detection in radar system applications. The

algorithm has demonstrated the capability to discriminate oetween

signal plus clutter plus noise and clutter plus noise in an

innovations-based detection algorithm formulation for the

multichannel detection problem. Several cases have been analyzed

at various SNR and CNR levels, and in all cases simulated thus far

discrimination has been demonstrated.

In the process of completing the work reported here several

areas have been identified for further research and development in

future programs. These areas are summarized below.

Processor Requirements Definition

Determination of the true potential of the SSC approach for

radar system applications requires the establishment of a detailed

set of requirements for various radar problems such as space/time

processing in a radar array system and the fusion of data from

multiple distinct radar systems.

Additional Analyses and Detailed Algorithm Formulation

The analyses listed below are required to generate a detailed

algorithm definition for the requirements, and to provide a

precise assessment of the SSC approach in the context of radar

system applications requirements.

The innovations model matrix parameters F, r, and H can

be estimated using different equations. These

alternative approaches need to be evaluated and traded

with respect to computational efficiency and accuracy.
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"* Model order selection criteria for on-line and off-line

decisions need to be evaluated and traded further.

This includes the ones discussed in Section 3.3.

"* The steady-state Kalman filter was used in this program

to generate the innovations sequence. Alternatively,

the time-varying Kalman filter can be used. The loss

in performance, if any, incurred by using the steady-

state approximation needs to be evaluated. A related

issue is the duration of the transient effect in the

case of the steady-state filter.

" Key implementation parameters for radar system

applications need to be established. This includes the

minimum required channel output sequence duration, and

the block dimension of the block Hankel matrix.

"* Identification and detection performance should be

compared with that of other methods. This includes

methods based on time series models.

Once these technical issues are addressed, a detailed architecture

design can be defined.

Real-Time Processor Architecture Design

A real-time implementation architecture for the algorithm

should be developed, and a candidate hardware implementation

identified. Specifically, the following issues should be

addressed.
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"* Generation of an architecture design that best meets

the features of the detailed algorithm design and the

established processor requirements. The result may be

an architecture with features different from those in

existing processors, and which is likely to consist of

various fundamental architectures (systolic; vector;

parallel arrays; etc.).

"* Analysis of state-of-the-art processors to determine

which contemporary and next-generation VLSI components

best match the optimized architecture design and the

requirements.

In addressing these issues the emphasis should be on the most

computation-intensive tasks of the algorithm.
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APPENDIX A. STATE SPACE REPRESENTATION OF TIME SERIES

MODELS

Consider a discrete-time, time-invariant, complex-valued,

zero-mean, random process {L(n)} defined as the output of the

following state space system model

(A-la) y(n+l) = Fy(n) + GIL(n)

(A-ib) X(n) = HHy(n) + DHW(n)

Vector recursive processes such as moving-average (MA), auto-

regressive (AR), and auto-regressive moving-average (ARMA)

processes can be modeled with state variable models (SVMs) of the

form (A-1) . The discussion herein is limited to the particular

case where the matrix coefficients of the recursion are square

matrices, and the number of output coefficients is equal to the

number of input coefficients. The generation of a minimal-order

SVM for a vector recursive process involves the properties of

polynomial matrix pairs and canonical forms for multiple input,

multiple output SVMs.

In contrast, minimal-order SVMs for scalar recursive

processes (MA, AR, ARMA) can be generated in a straightforward

manner given the recursion coefficients. The SVM generic form

appropriate for modeling scalar recursive processes is

(A-2a) y.(n+l) = Fy(n) + gu(n)

(A-2b) x(n) = hHy(n) + d*w(n)

This SVM is a single-input, single-output system.
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A. 1 Scalar MA ProCess Model

A scalar MA process of order M is defined as

M
x(n) = • bkU(n-k)

k-0

x(n) = b*,u(n) + blU(n-1) + b;u(n-2) + ••. + bMu(n-M)

where {u(n)) is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (A-2) with

input sequence {u(n)}, and state vector with elements that are

determined by the input sequence,

yl(n) u(n-1)

YM-1.(n ) = u(n-M+l) V n
ym(n) u(n-M)

The output noise sequence is also equal to the input noise

sequence,

w(n) = u(n) V n

which means that the input and output noise sequences in the state

space model are completely correlated. Model parameters (F, !a, h

d) are defined as

0 0 ......... 0 0
1 0 ......... 00F=I

" 0 0 IM-1 -QM-1
0 0...... 1 00
O 0 ...... 0 10
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117

.H =bH

with tH denoting a lxM vector defined by M of the MA recursion

coefficients,

1 =I b;1 1ý ... i

The special form of matrix F is one of the possible four

variations of the so-called companion matrix form. Also, the

system parameters, the quadruple (F, Q, h, d), is a variation of

the so-called controllable canonical form. These forms have the

minimal number of non-zero elements (whereby the name "canonical")

of all possible SVMs that model the scalar MA process.

Note that the definition of the state vector y(n) in terms of

the sequence {u(n)} inherently defines the initial condition vector,

y(O). Once the initial condition vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined model proceeds as follows.

The form of matrix F provides for continued "scrolling" of the

input noise sequence as elements of y(n), for all n. Validation of

the model follows from (A-2b) and the definition of h1, w(n), and

y(n). That is,
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x(n) =hHy(n) + d'w(n) = bHy(n) + bou(n)

Expanding the term bHy(n), and substitution of the definition of y(n)

in terms of the sequence {u(n)} results in

x(n) = bou(n) + bku(n-1) + b~u(n-2) + ... + buu(n-M)

which is the MA process definition. Model validation can be

carried out also using the transfer function concept, as

summarized next.

Consider first the derivation of the transfer function from

the MA process definition. Since the MA process is a discrete-

time process, the appropriate tool for the determination of the

transfer function is the Z-transform. Application of the Z-

transform to the definition of the MA model results in the

expression

M
X(Z) = I bZ'kU(Z)

k-0

where Z denotes the transform variable, and X(Z) and U(Z) are the Z-

transforms of the sequences {x(n)} and {u(n)}, respectively. The

transfer function for this linear system is then defined as

T(z)- X(z) = bzk
U(Z) k.0

This corresponds to the transfer function of an all-zero system,

as is well known.

The transfer function for a single-input, single-output state

variable model (A-2) is of the form
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T(z) = tLH[zl - F'lg + d*

The particular characteristics of matrix F and vector Q lead to a

very simple expression for the product [zI- --F ; namely,

[zI - FLg =J-- (z)
0z)

where y(Z) is the system characteristic polynomial (the determinant

of matrix [zI- F),

Y(z) = zM

and Q(Z) is vector with elements of the form Oj(z)=Z that is,

Q T (Z) = M ... Z2 Z ]

Substitution of these expressions and of hH and in the equation

for the transfer function leads to the following result

H Z HQ(
h~z = .(z)-d y+ z d ~) +b0z = M~= (z) zM +Zj

M
T~z)bO~1 z + b2z 2+ ... + bMZM = ,bkZ-

k-O

This result is identical to the transfer function expression

derived from the definition of the MA process.

A.2 Scalar AR Process Model

A scalar AR process of order M is defined as
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M
x(n) = - I akx(n-k) + u(n)

k-I

x(n) = - adx(n-1) - ax(n-2) - ..- a;x(n-M) + u(n)

where (u(n)} is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (A-2) with

input sequence {u(n)}, and state vector with elements that are

determined by the output sequence,

y1(n) x(n-1)

y(n) = (n) x(n-M+1) V n

y J(n) x(n-M)

The output noise sequence is equal to the input noise sequence,

w(n)= u(n) V n

This implies complete correlation between the input and output

noise sequences in the SVM (as in the case of the MA model)

Model parameters (F, g, h1, d) are defined as
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-a* -a; -a.. -a

0 0 0

F o oi

• 0 0

0 0 1 0 0

0 0 0 1 0

F =[ I_-'H

-I• Q-I

hjH =- aH

td=1

with aH denoting a vector with elements equal to the AR recursion

coefficients,

a7 [a .

The system parameters quadruple (F, g, h, d), is in controllable

canonical form, as in the MA model case.
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Note that the definition of the state vector y(n) in terms of

the sequence {x(n)) inherently defines the initial condition vector,

y.(O). Once the initial cordi-ion vector is defined, the state

propagation, Equation (A-2a), provides for continued generation of

the output process.

Verification of the above-defined Tncdel proceeds as follows.

From (A-2a) and the definition of F, y(n), y(n+1), and Q, it follows

that

YM(n+ 1 ) =- azyj(n)- a2Y2(n) - ... - aMym(n) + u(n)

YM(n+l) =- (n) + u(n)

Also, it follows from (A-2b) and the definition of h, w(n), and y(n)

that

x(n) = hHey(n) + w(n)- aHy(n) + u(n)

which indicates that X(n) = yM(n+1). Then, expanding the term -.aHy(n)

and substitution of the definition of y(n) in terms of the sequence

{x(n)1 results in

x(n) = - alx(n-1) - a2x(n-2) - - ax(n-M) + u(n)

which is the AR process definiticn.

The transfer function approach can be used also to validate

this SVM for scalar AR processes. Application of the Z-transform

to the definition of the AR model results in the expression
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Ia z-kX(z) = U(z)
k-O

where a 0 = 1 is introduced for notational simplicity, and X(z) and

U(z) are the Z-transforms of the sequences {x(n)} and {u(n)},
respectively. The transfer function for this linear system is

then defined as

X(z) = 1
U(z) M

k-O

This corresponds to the transfer function of an all-pole system,

as is well known.

Consider now the transfer function for the state variable

model (A-2) . In the present AR process case, the system

characteristic polynomial is

Y(Z) = zM + alZMI +... + a* z + am

and the particular characteristics of matrix F and vector Q lead

the same simple expression for the product [L-F]'-g; namely,

S_(Z)
[zI-F]• = y(z)

where Q(Z) is as defined previously. Notice that :he

characteristic polynomial can be expressed as

Y(Z) = ZM + aHQ(z)

Substitution of these expressions and of hH and d* in the equation

for the transfer function leads to the following result
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h_= (z) + d y(z) - eHf(z) + y(z) = zM
TYz =YZ)7 y(z) y(z) y•z)

1 1
T(z) = - =z" M-YZ) M az~k

k-O

This is identical to the transfer function expression derived from

the definition of the AR process.

A. 3 Scalar ARMA Process Model

A scalar ARMA process of order M is defined as

M M
x(n) = - , akx(n-k) + Y, b~u(n-k)

k-i k.O

x(n) =- alx(n-1) - .. .- ax(n-M+1) - aux(n-M) + bou(n) + btu(n-1) +

+ b2u(n-2) + ... + bMu(n-M)

where {u(n)} is a zero-mean white noise sequence. This recursion

can be modeled with a state-space system of the form (2) with
input sequence {u(n)}, and output noise sequence equal to the input

sequence,

w(n) = u(n) Vn

This implies complete correlation between the input and output

noise sequences in the SVM (as in the case of the MA and the AR

models). Model parameters (F, Q, 11, d) are defined as
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-a, -a; -.. -aa

1 0 0 0

0 0

0 0 1 0 0

0 0 0 1 0

F=i=[ 1 .M,. I

hH = H b ).H

d = tbo

Here, as in the AR case, vector aH has elements equal to the AR

recursion coefficients,

Hda:2 ... am

and vector bH has elements defined by M of the MA recursion

coefficients,
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The system parameters quadruple (F, d, d), is in controllable

canonical form, as in the MA and AR model cases.

State vector initial conditions, y(O), for this case are

related to the input and output sequences in a more complex

manner, and have to be selected appropriately. Once the initial

condition vector is defined, the state propagation, Equation (A-

2a), provides for continued generation of the output process.

The simplest approach to validate this model is via the

transfer function approach. Application of the Z-transform to the

definition of the ARMA model results in the expression

M M
Y, a z*X(z)= Y, bkZ"U(Z)
k-0 k-0

where, as before, X(z) and U(z) are the Z-transforms of the

sequences {x(n)) and {u(n)1, respectively, and a0 = 1 is introduced for

notational simplicity. The transfer function for this linear

system is then defined as

M M
I bzvk YbZ-

T(z) =~z k= ___ k-0

U(z) M azk M Mk

k-O k-0

where the two polynomial ratio expressions (corresponding to

inverse powers of Z or direct powers of Z) are equivalent, as

indicated. This is a transfer function with both poles and zeros,

as expected for an ARMA process.
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Consider now the transfer function for the state variable

model (A-2) . For an ARMA process the system characteristic

polynomial is

•z) =zM + azM'l +. a*,jZ + a*M

which is equal to that for an AR process SVM model. As in the

other two case3,

[zi- F]'1g = Q(z)

given the particular features of matrix F and vector QL (Q(Z) is as

defined previously). Notice also that, as in the AR process case,

the characteristic polynomial can be expressed as

"YZ) = ZM + arHiZ(z)

Substitution of these expressions and of hH and d* in the equation

for the transfer function leads to the following result

T(z) = hH'(z) + d* (z)= (.H- b*H) .(Z) + bHyz) = bozM + bH•(Z)

bo(z) y(z) +(z)

It is easy to verify that this result is identical to the transfer

function expression derived from the definition of the ARMA

process. That is,

M

I bbzMk

T(z) = + QH (z) = k-O
Y(z) M

kO
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where a0 -=1, as before.

A. 4 Modils for Ve.or Recursive Processes

Vector recursive processes of the MA, AR, and ARMA type can

be represented with SVMs of the type given herein. For vector

recursive p, -esses the appropriate notation is:

H H H HMA x(n) = Bu(n) + B1 u(n-1) + B2u(n-2) + ... + BI.(n-M)

= H H HSx(n) =- A x(n-1) - A22(n-2) - ...- A",(n-M) + u(n)

ARA-H H H- H H
ARMA•. x(n) =- Ax(n-1)- ...- AM-jl(n-M+1) - AM,(n-M) + BoIu(n) + B1 u(n-1) +

H H+ B2u(n-2) + ... + BW,(n-M)

where each of the coefficient matrices is dimensioned JXJ. Also

analogous to the scalar case, the corresponding transfer function

matrices can be defined using the Z-transform; which leads to

TMA-(z) = B(z)

TAR(Z) = A-' (z)

TARMA(Z) = A'"(z) B(z)

where A(z) and B(z) are the following matrix polynomials in Z,

M
A(z) = 1 z A k

k-O

M
B(z)= : BHz-k

k.O
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with A0 the JxJ identity matrix. The matrix pair {A(z), B(z)}

(including the cases with either A(z)=I or B(z)=h) corresponding to

a linear discrete-time system is referred to as a matrix

polynomial representation or a matrix fraction description (MFD)

for the system.

Departing from the time-domain definition for the vector

recursive processes, the SVM for each of the three processes is of

the same form as the corresponding scalar case SVM, with the

following changes: a JxJ coefficient matrix in place of the

corresponding coefficient scalar, a JxJ identity matrix (Ij) in

place of each unit scalar, and a JxJ null matrix (Oj) in place of

each zero-valued scalar. Specifically, the SVM for the ARMA

vector- process is:

A H - ... ... ... . H

Ij Oj ... ... ... Oj OJ

Oj Ij

• .Oj Oj

O Oj Ij Oj Oj

Oj Oj Oj IJ OJ
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G= oj

HHH [ B! H B H_ AAHBH ... B H A H BH]

DH H HD=0

The SVM for the other vector processes (MA; AR) is obtained by

substituting the correct values for the vector process

coefficients in the above system parameters (that is, Ai=OJ for an

MA process; and Bo=Ij and Bi=Oj, i>1 for an AR process). In all

cases, the transfer function matrix is obtained from the SVM

representation as

T(z)= HH[zl- F'-]G + DH

A transfer function calculated according to this relation is

equivalent -to the transfer function calculated from the

appropriate polynomial matrices.

The order (dimension of the state vector) of the resulting

SVfA for each of the three vector processes is N = MJ, since for

each process the system matrix F consists of M block rows and M

block columns, where each biocA in each row and column is a JxJ
matrix. SVM order is important for practical and computational

considerations. An SVM representation _s of minimal order if no

other SVM representation of lower order leads to the same transfer

function matrix. In terms of the system parameters (F, G, H, D),
the order of the SVM representation is determined by the rank of

the controllability matrix or the rank of the cbservability

matrix, whichever is smaller. Given the form of the matrix pair
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(F,G) for all three cases, it is easy to verify that the

controllability matrix has full rank for all three cases.

However, the observability matrix has a simple form only for the

MA SVM. The special form of the observability matrix for the MA

case considered herein (with BM a square matrix) indicates by

inspection that the rank of the observability matrix is equal to

MJ if and only if matrix BM has full rank. Such a simple result

is not available for the AR and the ARMA SVMs. Determination of

the conditions on the coefficients of the polynomial matrices A(z)

and B(z) for AR and ARMA vector processes that lead to an SVM

representation of minimal order is a difficult problem. This is

due to the fact that both AR and the ARMA vector processes lead to

a transfer function matrix with elements which are, in general, a

ratio of polynomials in Z.

Model order and related issues for matrix polynomial

representations have been discussed by several researchers. The

results summarized next are available in the text by Rosenbrock

(1970). Consider the matrix polynomial representation of a

system, and assume that the determinant of A(z) is different from

zero to eliminate pathological cases. For an AR vector process,

the order of the system is given by the degree of the determinant

of A(z). Thus, the SVM representation presented herein for vector

AR processes is of minimal order if the determinant of A(z) (with

A0 =Ij) has degree equal to MJ.

Several definitions need to be introduced prior to stating

the relevant results regarding minimal order for ARMA vector

processes. A square polynomial matrix is said to be r when

the matrix coefficient of the highest power of Z is non-singular.

The determinant of a regular polynomial matrix has maximum

possible degree. A square polynomial matrix is said to be

u if its determinant is a non-zero constant. Unimodular

107



polynomial matrices have an inverse which is also a polynomial

matrix. As an example, the polynomial matrix

SQ(z) °+Z= =E+z+2r+1z"1 3 + ]

is unimodular because the determinant of Q(z) is equal to -2.

Notice that the inverse of 0(z) is a.so a polynomial matrix,

Q-I(z) 1 4+z +z-']
--- -(2 + z") 1+ z"1I

as expected. Notice also that Q(z) is not a regular matrix since

01 is singular.

Two polynomial matrices A(z) and B(z) are said to have a common

left divisor S(z) if

A(z) = S(z)PA(z)

B(z) = S(z)PB(z)

where S(Z), PA(Z), and Ps(z) are polynomial matrices. Finally, if

all the common (left) divisors of two polynomial matrices A(z) and

B(z) are unimodular, then the two matrices are said to be

relatively (left) prime. That is, if A(z) and B(z) are relatively

(left) prime, then the determinant of the polynomial matrix S(z) in

the above factorizations is a constant. This implies that the

degree of the determinant of PA(Z) is equal to the degree of the

determinant of A(Z), and the degree of the determinant of PB(z) is

equal to the degree of the determinant of B(z). Furthermore, the

determinant of PA(Z) has no polynomial factors in common with the

determinant of PB(Z). A matrix polynomial pair (A(z), B(z)) with A(z)
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and B(Z) relatively (left) prime is an irreducib!e matrix

polynomial representation for the system.

The relevant results for ARMA vector processes can be stated

now. As in the AR case, for an ARMA vector process the

determinant of A(z) (with A0 =Ij) must have degree equal to MJ for

the SVM representation presented herein to be of minimal order.

However, two additional conditions must be satisfied. Namely,
matrix BM must have full rank, and the polynomial matrices A(z) and

B(Z) must be relatively (left) prime. Full rank for matrix BM

implies that B(z) is a regular polynomial matrix. If A(z) and B(z)

are not relatively prime, then the order of the system is reduced

by the degree of the determinant of the greatest common (left)

divisor of A(z) and B(z). This is related to the so-called

pole/zero cancelations.
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APPENDIX B. DETERMINISTIC REALIZATION ALGORITHMS

Deterministic realization algorithms are of relevance in this

work because they provide insight into similar algebraic issues

associated with stochastic realization problems due to the

similarities in the factorization of the deterministic and

stochastic Hankel matrices. Also, deterministic realization

algorithms can be applied to obtain the matrix triple (F, r, H) of

the innovations representation. However, stochastic realization

algorithms (such as the canonical correlations algorithm of

Section 3.0) are preferred because the state correlation matrix,
n, is identified also.

Two specific realization algorithms are presented below: Ho's

algorithm and an algorithm using the singular value decomposition

(SVD) . Both algorithms are based on algebraic and factorization

properties of the deterministic Hankel matrix for a discrete-time,

time-invariant, linear system, as summarized next.

B.1 Deterministic- ankel Matrix Projertij

Consider a discrete-time, time-invariant, Nth-order system of

the form (2-2) where the state, input, and output vectors are

deterministic and DH=[0],

(B-la) y(n+1) = Fy(n) + GU(n) n Ž no

(B-Ib) x(n) = HHy(n) n 2 no

(B-ic) no = 0

As in the rest of this report, the input and output vectors are J-

dimensional (in the general case the dimension of the input vector

110



can be different from the dimension of the output vector). System

(B-1) is assumed to be completely reachable and completely

observable, and thus has minimal-order. Complete reachability and

observability also imply that the NxJL controllability matrix

(B-2) C, = [G FG ... F"G I L>N

and the JLxN observability matrix

HH

HH

(B-3) O HF LŽN

H L-iH F

both have rank equal to the system order, N.

The JLxJL deterministic block Hankel matrix for system (B-1)

consists of JxJ block elements, with impulse response matrices

(A(n)} assigned as the JxJ block elements according to the rule

(B-4) Ht,1 (block i, block j) = A(i+j-1) i, j = 1, 2, L L

for L>ŽN. In expanded form, matrix HLL is

A(1) A(2) .- AkL)

A(2) A(3) ... A(L+I)
(B-5) HLL =

A(L) A(L+1) ... A(2L-1)

Block Hankel matrices are block symmetric, but not element-by-

element symmetric, in general. The impulse response sequence {A(n)}
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for system (B-I) is given in terms of the system parameter

matrices as

(B-6) A(n) = HHFn'IG n 2 1

Using the Cayley-Hamilton theorem it is easy to show that the

impulse response sequence satisfies a set of recursion relations

of the form (Kalman et al., 1969),

(B-7) A(N+k) = - aA(N+k-1) -.. . - a*1 A(k+1) - aNA(k) k 1

where {a1 } are the coefficients of the Nth-order characteristic

equation of matrix F. Some systems have a minimal polynomial of

degree r < N. For those systems an rth-order set of recursion

relations of the form (B-7) are valid. However, for those systems

the set of recursion relations (B-7) based on the characteristic

polynomial are valid also.

Inspection of Equations (B-2)-(B-6) indicates that matrix HLL

admits a factorization of the form

(B-8) HLL = OLCL

Given this factorization and the fact that for L Ž N matrices CL

and OL both have full rank equal to N, it follows from Sylvester's

inequality for the rank of the product of two rectangular matrices

(Gantmacher, 1960) that the rank of matrix HLL is equal to N.

In fact, Equation (B-8) also implies that

(B-9) rank(HN+kN+k) = N kl 1

112



for a system (B-i) of order N. Equation (B-7) and the block

Hankel structure (the sequential arrangement of the matrices {A(n)}

as block elements of HL.L) imply that the block columns (rows) of

HLL also satisfy a recursion of the form (B-7).

A column-shifted deterministic block Hankel matrix, denoted

as HLL, is defined by deleting the first block column of HLL and

inserting a new block column in a manner such as to preserve the

Hankel structure (the same result is obtained by deleting the

first block row and adding a new block row); that is,

A(2) A(3) ... A(L+I)

(B-L,)= A(3) A(4) -. A(L+2)
(B-10) HL = OLF CL

A(L+I) A(L+2) ... A(2L)

The significance of the shifted block Hankel matrix is the form of

its factorization, as indicated in Equation (B-10) . The

factorizations in Equations (B-8) and (B-10) are the basis for the

realization algorithms presented herein, as well as others.

B.2 Ho's Realization Algorithm

Consider the block Hankel matrix HLL of Equation (B-5).

Apply a sequence of elementary right and left matrix operations

(transformations) to the Hankel matrix HLL in corder to drive it to

diagonal form, with unity elements along the diagonal. That is,

(B 11 T THIN ONJ-N

(B-il) T2 HLLT• = [
OjL-N OjL-1JL-N1
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Here T1 and T2 are non-singular matricas which represent the

product of all the column operations and row operations,

respectively, required to transform HLL into diagonal form (B-1i).

It is always possible to carry out such elementary transformations

because matrix HLL has r-.... N. It follows from Equations (B-8)

and (B-il) that

(B-12) T2 HLLT2 = (T20L) CT = I OR IN IN'JL-N ]

The explicit factorization of the diagonal matrix in Equation (B-
12) indicates that T2 transforms the observability matrix into a

matrix with unity elements along the main diagonal and zeros

elsewhere. Likewise, TI transforms the controllability matrix into

a matrix with unity elements along the main diagonal and zeros

elsewhere.

Given the factorizations in Equation (B-12), matrix G is

obtained as the NxJ upper-left-hand submatrix of T2HLL,

(B-13a) T2 HLL = (T2 OL) CL = OJL-N.N G FG FL'G

(B-13b) T2 HLL = G FG "'" FL-'G

Similarly, matrix HH is obtained as the JxN upper-left-hand

Hsubmatrix of HLLT,
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HH [ 'N ONJL-N ]

(B-14a) HITH ( HcLTH)=[H.F

HHL-i

HH
HH

(B-14b) HLLTH = OJL,JL-N

H HFLi

Finally, it follows from Equations (B-10) and (B-12) that matrix F
- H

is obtained as the NxN upper-left-hand submatrix of T2 HL.LT,

(B-15a) T2 HLLT,= (T2 OL)(F)(CLTH)= [ IN ][F] [IN ON,JL.N]

(B-15b) TLH = F NJL-N]( B - 5 b) T2 LL T i O jL-NN O jL-NJL-N

This completes Ho's algorithm for the determination of a matrix

triple (F, G, H) which realizes an impulse response matrix

sequence {A(n)}.

In the above discussion it is assumed implicitly that the

given impulse response matrix sequence corresponds to an Nth-order

system of the form (B-i) , and that the sequence is available

without distortions due to noise or other such effects. If either

of these two conditions is not satisfied, then the diagonalized

block Hankel matrix (Equation (B-il)) will have non-zero elements

beyond the Nth diagonal location. In such cases, model order is

estimated by determination of the diagonal location beyond which
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the diagonal elements represent zero or represent the contribution

of noise. This requires appropriate selection of the block

dimension of the Hankel matrix (L must be sufficiently large).

One mechanism for verifying the cut-off diagonal element is to

examine the norm of the transformation matrices. But this implies

a large computational load. Other alternative model order

selection criteria have difficulties also. These difficulties

arise because the Hankel matrix is transformed to an identity, and

because no constraints are imposed on the norm of the columns of

the transformation matrices.

B.3 SVD-Based Realization Algorithm

An alternative implementation of Ho's algorithm has been

proposed by Zeiger and McEwen (1974). Instead of carrying out

elementary row and column operations on the Hankel matrix

(Equation (B-Il)), Zeiger and McEwen (1974) propose a singular

value decomposition of the Hankel matrix. This offers two

important advantages: first, the SVD is numerically robust even

for matrices of large dimensions; second, the SVD provides an

inherent mechanism for the determination of the model order, or

determination of the best model fit for a selected model order

(herein best is intended in the sense of minimizing the Frobenius

norm of the difference between the given Hankel matrix and the

Hankel matrix that corresponds to the selected model order).

Golub (1969) provides a good summary of the SVD, its properties,

and its applications.

Consider the block Hankel matrix HL.L of Equation (B-5). The

singular value decomposition (SVD) of HLL is a factorization of

the form

(B-16) HLL = TB4JLT2
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where TA and TS are unitary matrices, and AJL is a diagonal matrix

with non-negative, real-valued diagonal elements arranged in order
of descending magnitude. That is, matrix AJL is of the form

(B-17a) AJL = NJ-
OJL-AN OJL-RJL-N-

-6 0 ... 0 0

0 82.- 0 0

(B-17b) AN =

0 0 ... 8 N-1 0

0 0 ... 0 SN

(B-17c) 8 182> . N. t 8N >0

The factorization in Equation (B-16) is a generalization of the

concept of the eigenvector/eigenvalue decomposition of a matrix,

with the property that it is applicable also to non-square

matrices. This decomposition is unique (except possibly for sign

changes to the columns of the unitary matrices TA and TB) . The

diagonal elements of AJL are referred to as the singular values of

HL.L, and the rank of matrix HLL is equal to the number of non-zero

singular values. The columns of TB are the left singular vectors,

and the columns of TA are the right singular vectors of HL.L. For

an Nth-order system in noise-free conditions, there are N non-zero

singular valuez, and JL-N zero-valued singular values.

In the case where the matrix to be decomposed is Hermitian

(not just block Hermitian), the SVD is an eigendecomposition.
That is, for a Hermitian matrix, TA T, the columns of T
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(singular vectors) are the eigenvectors, and the singular values

are thE Aigenvalues.

Another important property of the SVD is that it provides a

means for determining a JLxJL matrix M of specified rank k (with k

< N) which best approximates the Hankel matrix in the sense of

minimizing the Frobenius norm of the difference between the Hankel

matrix and the desired matrix M. The desired optimal matrix

approximation is of the form (B-16), with the modification that
only the first k diagonal elements of submatrix AN (Equation (B-17)

are retained, and the diagonal elements beyond the kth one are set

to zero.

Equation (B-16) can be factorized further by taking the
matrix square root of AJL to obtain (since AJL is diagonal, its

matrix square root is trivial)

TB (TB 1/ ) A2TH
(B-18) HLL =TAJLTA ' =L (By) A')= OLCL

Given the explicit factorization in Equation (B-18), it follows

from Equation (B-2) that matrix G is given by the NxJ upper-left-

hand submatrix of 1/2T H similarly, from Equations (B-3) and (B-

18), it follows that matrix HH is given by the JxN upper-left-hand
1/2

submatrix of TBAJL.

Matrix F is obtained using Equations (B-10) and (B-16)-(B-

18) . Specifically,

(B-19) F = [A-' 2 -NJLNIT HPT~ A-1/ 2 1
OJL-NN
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This completes the SVD-based algorithm for the determination of a

matrix triple (F, G, H) which realizes an impulse response matrix

sequence {A(n)}.

As before, the above development assumed that the available

impulse response matrix sequence corresponds to an Nth-order

system of the form (B-l), and that the sequence is available

without distortions due to noise or other such effects. If either

of these two conditions is not satisfied, then there will be more

than N non-zero singular values for the block Hankel matrix

(Equations (B-16) and (B-17)). In such cases, model order is

estimated by determination of the diagonal location beyond which

the singular values represent zero or represent the contribution

of noise. This requires appropriate selection of the block

dimension of the Hankel matrix (L must be sufficiently large).

In the SVD-based algorithm, the columns of matrices TA and T8

have unity norm (such is not the case for Ho's algorithm). That

is, the magnitude of each singular value is representative of the

importance of the contribution (in the sense of the Frobenius

norm) of the singular value to the numerical representation of the

operator HLL. Thus, model order determination using the singular

values has a firm numerical and algebraic foundation, and can be

carried out once the SVD is computed.
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APPENDIX C. COMPLEX-VALUED CANONICAL CORRELATIONS

Hotelling (1936) introduced the concept of canonical

variables and canonical correlations to establish a canonical

relationship between two sets of random variables (or between two

random vectors). In linear algebra, the term "canonical" is used

to denote the element of an equivalence class which is represented

with the minimum number of non-zero independent parameters. For

example, the Jordan form is a canonical form for the equivalence

class of square matrices under a similarity transformation. As

defined by Hotelling (1936), the canonical variables embody the

essence of the correlation structure among the random variablis of

the two given sets.

The canonical variables formulation is presented herein for

the special case where the dimension of the two random vectors

(the number of variables in each set) is the same because that is

the case in the context of the multichannel detection application.

Extension to the general case where the two vectors have different

dimensions is straightforward.

Consider two complex-valued, zero-mean, L-dimensional random

vectors 7 and y with auto- and cross-correlation matrices defined

as

(C-1) R= E=7H

(C-2) Rw = E(yH1]

(C-3) a• = E[zyH

(C-4) R. = Ee
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The c•nonical variabe1s for . and y are two complex-valued, zero-

mean, L-dimensional random vectors

(C-5) UL=± 191 112 ... 4 .]T

(C-6) a=(V 1 B B2 - BILT

such that the following conditions are satisfied:

S~i)

ii)T2

iii) I 1 and 3, have unit variance and are maximally

correlated, with correlation coefficient pl.

iv) for i< L, 9i and (i have unit variance and are maximally

correlated, with correlation coefficient P i ;

furthermore, gi is uncorrelated with 4iI, •i-2, . . .

and (i is uncorrelated with Bi-., 3i.2, , aB.

v) 1 Ž_ P1 > P2 >. . • • PL -> 0

The two linear transformations T, and T2 introduced in conditions

(i) and (ii) are complex-valued, full-rank, LxL matrices.

Condition (v) implies c-hat the positive-valued correlation
coefficients are selected (the sign of the rows of matrices TI and

T2 can be selected in all cases such that the correlation

coefficient of two random variables •i and Bi is positive-valued).

The correlation coefficients {pi} are the canonical correlations for

I and M. Since the canonical variables {Ii} and {Ji} are covariance-

normalized, their correlation coefficients are less than or equal

to unity, as indicated in condition (v).
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Conditions (iii)-(v) can be expressed in compact form using

Conditions (i) and (ii) and Equations (C-I)-(C-4),

(C-7) E[u aH] = Ii = TnRzJ

(C-8) E[D BH] = I = T2RwTH

(C-9) E(2H] = RHRzTH

P1  0 ... 0

(C-10a) R P 0

0 0 ... PL

(C-10b) 1 Ž.Pi c P2 Ž ...• • PL 2 0

Equations (C-7)-(C-I0) constitute an analytic formulation of the

canonical correlations problem. Golub (1969) has shown that the

solution for this problem in the case of real-valued variables can

be obtained using the singular value decomposition (SVD) . The

extension to the case of complex-valued variables is

straightforward, as carried out herein.

The first step in the development is to determine the matrix

square root of each of the correlation matrices azz and avv. A

matrix square root for a correlation matrix can be calculated

using any one of several methods, and all methods lead to

equivalent results in the context of the problem at hand.

Alternative methods include the Cholesky decomposition and the

SVD. Of the alternative methods, the SVD method is preferred

herein because of its robust numerical properties, and because the
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inverse of the square root matrix is determined easily given the

SVD of the matrix. Additionally, the SVD is used for another

purpose in the realization algorithm. Thus, the matrix square

roots of correlations matrices azz and R. are obtained using the

SVD as

(C-li) =H = (UzS1 2 U )(U S/ Uz) = q1 Rq,

(C-12) Rz H z V W RV

Now transform the random vectors Z and y to define two correlation-

normalized random vectors as

(C-13) 1/21 / H

=zZ = -z z z

IFf"1/2 IIY'/1I(C-14) 2 12 V = V

Given these definitions, it is easy to show that

(C-15) EL.0_HI = Ii

(C-16) E[yyH] = I

9H- = 1:::11/2 a z 1:"/

(C-17) E[ yH] R = "Rw 1/2

Equations (C--15)-(C-17) are similar to Equations (C-7)-(C-9), but

it is incorrect to assume that Equations (C-13) and (C-14) define

the desired canonical transformations, and that Q and y are the

desired canonical variables. Variables Q and 'y are not the

canonical variables because their correlation matrix, RaM, is not
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in diagonal form. However, the variables Q and y constitute an

important intermediate transformation.

Consider now the cross-correlation matrix R0 of Equation (C-

17), and carry out an SVD on it to obtain

(C-18) RA0 = H

R*=URARX

UR and VR are unitary LxL matrices, and AR is an LxL diagonal

matrix with non-negative elements along the diagonal. The

diagonal elements of AR are bounded by unity and zero, and are

arranged in order of decreasing magnitude, with the largest at the

(1,1) location:

-6 0 ... 0 0

o 82o.. 0 0

(C-19a) AR .

0 0 ... 8L.1 0

0 0 ... 0 SL_

(C-19b) 1 > 81 > 82 > . . Ž > SL > 0

Given the decomposition in Equations (C-18) and (C-19), and the

given the relations in Equations (C-13)-(C-17) , the desired

canonical variables and canonical correlations are obtained as

(C-20) H H -1/2

(C-21) • H = U H 1/2

flUR =RRWý

(C-22a) R., = AR
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(C-22b) Pi = i =1,2. L

Since matrices UR and VR are unitary, the norms of vectors J and

are equal to the norms of vectors 0- and y, respectively. From

relations (C-20) and (C-21) the transformation matrices are

determined in a straightforward manner to be

= H 71/2(C-23) T,= VH rR"2

(C-24) = UH 12"

Direct substitution verifies that Equations (C-7)-(C-10) are

satisfied by this choice of transformation matrices.

An important relation can be inferred from Equations (C-17)

and (C-18),

(C-25) R= W~~ RieZZ UR ARVý RZ

This relation is useful in the validation of Equation (C-9) using

the transformation matrices in Equations (C-23) and (C-24) . It is

useful also in the system identification (stochastic realization)

algorithm of Section 3.0.
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