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Abstract

In this paper we describe a self-adjusting algorithm for packet routing, in
which a reinforcement learning module is embedded into each node of a
switching network. Only local communication is used to keep accurate statis-
tics at each node on which routing policies lead to minimal delivery times.
In simple experiments involving a 36-node, irregularly connected network,
this learning approach proves superior to a nonadaptive algorithm based on
precomputed shortest paths.
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1 Introduction

We present an algorithm for routing packets efficiently in an irregularly-
connected communication network with unpredictable usage patterns. The
algorithm, related to certain “distributed” packet routing algorithms (4, 3],
must learn a routing policy which balances minimizing the number of “hops”
a packet will take with the possibility of congestion along popular routes.
It does this by experimenting with different routing policies and gathering
statistics about which policies minimize total delivery time.

Although in principle such an approach could be very expensive in terms
of learning time and storage space, the algorithm we describe here is a variant
of a reinforcement learning algorithm called @Q-learning [7] which adapts to
changes in network traffic and requires little more space than that needed
to represent a completec routing policy. The application of Q-learning here
differs from its traditional use in that the network is actually constructed
from a distributed collection of learners, each of which is responsible for
a portion of the problem. This approach appears to be very effective in
routing packets efficiently under high load.

The experiments in this paper were carried out using a discrete event
simulator to model the motion of packets through a local area network.
Packets are periodically introduced into the network at a random node with a
random destination. Multiple packets at a node are stored in an unbounded
FIFO queue; however, we set a limit on the total number of packets active
in the network at a time, generally 1000. In unit time, a node takes the
top packet in its queue, examines its destination, and chooses a neighboring
node to which to send the packet. A packet sent directly to its destination
node is removed from the network immediately.

2 Routing as a Reinforcement Learning Task

A packet routing policy answers the question: to which adjacent node should
the current node send its packet in order to get it as quickly as possible to
its eventual destination? Since the policy’s performance is measured by
the total time taken to deliver a packet, there is no “training signal” for
directly evaluating or improving the policy until a packet finally reaches its
destination. However, using an idea from the field of reinforcement learning,
we can update the policy more quickly and using only local information.
In our learning scheme, the policy is distributed throughout the network




as follows: each node keeps an estimate, for every neighbor/destination pair
(y,d), of how long it takes for a packet with destination d to arrive if first
sent to neighbor node y. When a node z is asked to route a packet, it sends
it to that neighbor § which z estimates will have the lowest total delivery
time. Instead of then waiting for the packet to reach d before updating the
policy, z queries § to find out how long § expects the given packet to take to
get to d. Since § is presumably closer to d, its estimate is considered more
accurate and thus can be used to update z's delivery time estimate.

More precisely, let Q.(#,d) be the time that node z estimates it takes to
deliver a packet P bound for node d by way of z’s neighbor node ¥, including
any time that P would have to spend in node z’s queue.! Upon sending P
to §, ¢ immediately gets back §’s estimate for the time remaining in the
trip, namely

Gzd)= _ min  Qy(xd)
If the packet spent ¢ units of time in z’s queue, then z can revise its estimate

as follows:
new estimate old estimate

rm— — p—a—
AQz(y,d) = 'I( Qﬁ(fv d) +q- Ql’(g’d) )

where 7 is a “learning rate” parameter (0.7 in our experiments).

In the field of reinforcement learning, the Q-function Q:(y,d) is often
approximated by a neural network (see e.g. [3, 6]); this can allow the learner
to incorporate diverse parameters of the system, such as local queue size and
time of day, into its distance estimation. For the implementation described
here, however, we represented Q as a table.

3 Results

We tested our routing algorithm on a variety of network topologies, including
the 7-hypercube, a 116-node LATA telephone network, and an irregular
6 % 6 grid. Varying the level of network traffic, we measured the average
delivery time for packets in the system after learning had settled on a routing
policy, and compared these delivery times with those given by a conventional
routing scheme based on shortest paths. The result was that in all cases,
the learning algorithm was able to sustain a higher level of network traffic
than the non-learning one.

!We denote the function by Q because it corresponds to the “Q-function” used in the
teinforcement learning technique of Q-learning [7].
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Figure 1: Network topology
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Here we present the results for the irregular grid network (pictured in
Figure 1). Under conditions of low load, the network learns fairly quickly to
route packets along shortest paths to their destination.? The performance
vs. time curve plotted in the left part of Figure 2 demonstrates that our
routing algorithm, using no prior knowledge of the network topology, learns
to route about as well as the shortest path router, which performs optimally
in low load.
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Figure 3: Policy summaries: shortest path and learned under high load

As network traffic increases, however, the shortest path routing scheme
is far from optimal: it ignores bottlenecks and soon floods the network
with packets. The right part of Figure 2 plots performance vs. time for
the two routing schemes under high load conditions: while shortest path is
unable to tolerate the packet load, our algorithm learns an efficient routing
policy. The reason for the learning algorithm’s success is apparent in the
“policy summary diagrams” in Figure 3. These diagrams indicate, for each
node under a given policy, how many of the 36 x 35 point-to-point routes
go through that node. In the left part of Figure 3, which summarizes the

In fact, it is interesting to mote that the Q-learning update rule is mathematically
very much like the well-known Bellman-Ford shortest paths algorithm [1, 2], except our
path relaxation steps are performed asynchronously.




shortest path routing policy, two nodes in the center of the network (labelled
570 and 573) are on many shortest paths and thus become congested when
network load is high. By contrast, the diagram on the right shows that
our algorithm, under conditions of high load, has learned a policy which
routes some traffic over a longer than necessary path (across the top of the
network) so as to avoid congesting the nodes in the center of the network.

Our basic result is captured in Figure 4, which compares the perfor-
mances of the shortest path policy and learned policy as the network load
increases. Each point represents the median over three trials of the mean
packet delivery time (after learning has settled). When the load is very low,
our learning algorithm routes nearly as efficiently as the shortest path pol-
icy. As load increases, the shortest path policy leads to exploding levels of
network congestion, whereas the learning algorithm continues to route effi-
ciently. Only after a further significant increase in load does the distributed
learning algorithm, too, result in congestion.
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Figure 4: Delivery time at various loads




4 Conclusion

In this paper, we have exhibited a learning algorithm which, without having
to know in advance the network topology and traffic patterns, and without
the need for any centralized routing control system, is able to discover an
efficient routing policy. Although the simulations described here are not
fully realistic from the standpoint of actual telecommunication networks,
we believe that reinforcement learning algorithms such as this one could be
effective for self-adapting routing and other practical tasks.
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