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Preface

This report is an expanded version of the article of the same title published in IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 2 (March 1992), pp. 204-211.
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1. Introduction

Superfluid 4He is a unique fluid for ultrasonics. Of all known fluids, it has the lowest ultrasonic
aitenuation and, because it has a low speed of sound, possibly the lowest power density for the on-
set of nonlinear effects. This low attenuation makes superfluid helium the most suitable coupling
fluid for high-resolution acoustic microscopy. Because acoustic microscopes are generally diffrac-
tion limited, a shorter wavelength corresponds to a higher resolution. Thus the low sound speed is
an added advantage, since a wave of given frequency has a shorter wavelength in superfluid helium
than in other fluids. The low power density for the onset of nonlinearity is a disadvantage for
acoustic microscopy, since it limits the received signal; however, it does present a unique opportu-
nity to study ultrasonic wave propagation that is highly nonlinear.

The first successful cryogenic acoustic microscope [1] operated at a frequency of 4.2 GHz and had
a resolution of about 40 nm. Later, its operating frequency was irr'ased to 8 GHz with a corre-
spondingly better resolution of 20 nm [2]. To eliminate the acoustic attenuation in the coupling flu-
id, both of these instruments used unpressurized superfluid helium at temperatures in the 100-inK
range as a coupling fluid for the ultrasonic waves. A cumbersome and expensive 3He-4He dilution
refrigerator is required to achieve and maintain temperatures in this low range. It is possible, how-
ever, to achieve negligible losses in the helium coupling fluid at temperatures as high as 0.9 K by
pressurizing the liquid helium to 20 bar. At this temperature, a much simpler to operate and less
expensive 3He cryostat is sufficient. The instrument reported here is the first high-resolution acous-
tic microscope to operate in pressurized superfluid helium. It operates at a frequency of 15.3 GHz
and has a resolution of 15 nm. Another research group has also operated an acoustic microscope
in pressurized superfluid helium [3], but at the much lower frequency of 380 MHz. At this frequen-
cy their instrument had a resolution of 0.6 gm, comparable to that of acoustic microscopes that use
water as the coupling fluid.

Operating at high resolution in pressurized superfluid helium has enabled us to observe a new non-
linear ultrasonic effect. We have observed nearly complete pump depletion at certain input power
levels and a startling reconversion to the pump frequency at higher power levels. Many other in-
vestigators have observed pump depletion [4,5], but none has ever observed reconversion to the
pump freqliency at higher power levels. Furthermore, this phenomenon has never been theoretical-
ly predicted. Below, we review previous theoretical work as well as propose extensions to this
work that should explain the observed effect.
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2. Experimental Apparatus

The heart of the acoustic microscope is a c-axis-oriented sapphire rod having an acoustic transducer
on one end and an acoustic lens on the other (see Fig. 1). The acoustic lens element is a polished
spherical depression ground on one end of the sapphire rod. A 40-nm-thick layer of molybdenum
and an 80-nm-thick layer of amorphous carbon are both evaporated on the lens surface, serving as
matching layers to reduce the large acoustic-impedance mismatch between sapphire and liquid he-
hium. The acoustic transducer is a multilayer ZnO piezoelectric thin film [6]. Each layer is 170 nm
thick, and the crystal orientation of alternate layers is varied to attain periodic coefficients of piezo-
electric coupling. This type of multilayer transducer presents a higher impedance to the incoming
microwave pulses, resulting in a better match and a higher conversion efficiency than would be pos-
sible at 15.3 GHz with the single-layer transducers used on lower-frequency microscopes [2]. The
measured one-way conversion loss of the multilayer transducer at 77 K is 15 dB.

MATCHING Au ELECTRODE
RMULTILAYER Zn" PIEZOELECTRIC

TRANSDUCER

Au ELECTRODE

SAPPHIRE ROD

LENS AND OBJECT ARE IMMERSED IN

SUPERFLUID HELIUM AT 0.5 K AND
1.2 cm 120 ATM PRESSURE

S... SPHERICAL LENS (radius 200 rin)

OBJECT
150 AM

f.I.

Fig. 1. Cross-sectional view of the 15.3-GHz acoustic lens.

The block diagram of the system is shown in Fig. 2. This reflection-type acoustic microscope uses
700-ns-wide pulses, and a superheterodyne receiver with amplitude detection. The pulses are re-
peated at a rate consistent with both the computer-controlled data-acquisition system and a mechan-
ical raster scan of the lens across the object. The raster scan is accomplished by means of two
piezoflex stages [7] stacked at right angles. Each piezoflex stage is a multiple lever-arm arrange-
ment that multiplies the motion of a piezoelectric stack (see Fig. 3). Each piezoelectric stack moves
1 gm at liquid helium temperatures, and the output member of its piezoflex stage moves 15 Am.
The piezoelectric stack is inserted loosely into the piezoflex stage at room temperature, and the pi-
ezoflex stage, being made of stainless steel, contracts more than the piezoelectric stack on cooling,
putting a compressive load on the stack.
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Fig. 2. Block diagram of the 15.3-GHz cryogenic acoustic microscope.

Fig. 3. Piezoflex scanning stages. The piezoelectric actuat-
ing elements are located in the dark rectangular re-
gion.
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The object is brought into focus by means of a stepper motor coupled to a harmonic-drive gear [81
whose rotary motion is converted to linear motion by a screw. The stepper motor is a commercial
motor rewound with superconducting wire, and has been mechanically modified for cryogenic use
as previously described (9]. The harmonic-drive gear is a compact, pancake-type gear, with a
bronze separator between the ball bearings replacing the usual plastic separator. The bronze sepa-
rator provides a better match in thermal contraction to the other materials used (e.g. steel) than plas-
tic, so there is less tendency to bind. To reduce vibration, the screw is kept under tension by means
of a flat spring that has a higher resonant frequency in the horizontal plane than in the vertical, or
focusing, direction (see Fig. 4). All the bearings and other sliding surfaces are lubricated with mo-
lybdenum disulfide. A gold-covered alumina substrate is attached to the sample stage to serve as
a capacitor plate, with the opposite capacitor plate attached to the lens; both plates are in a plane
perpendicular to the optical axis of the microscope. The focusing motion is then sensed by mea-
suring the change in capacitance between the two plates by means of an ac capacitance bridge.
Coarse positioning of the sample is achieved by mounting the sample on a magnet and pulsing su-
perconducting coils situated under a smooth substrate on which the magnet sits (see Fig. 5).

A crucial consideration in the design of this acoustic microscope was the thermal loading on the
3He cryostat. The 3He cryostat is less expensive and simpler to operate than a dilution refrigerator,
but its refrigeration capability is lower, especially because it cannot refrigerate continuously but
only operates in a single-shot mode. Hence the heat capacity of the sample cell must be kept to a
minimum. The heat capacity of the sample cell between the pumped 4He temperature of 1.3 K and
the 3He temperature of 0.5 K is dominated by the 4He liquid. Hence the volume in the sample cell
occupied by the 4He must be kept to a minimum, that is, the positioning hardware must be tightly
packed with very little free volume. Our sample cell contains about 50 cm3 of liquid 4He.

Fig. 4. An early version of the rigid sample stage. Note the
flat spring ("spider") that allows the coarse focusing
movement. Also shown is one of the capacitor plates
used in the vertical position sensor.
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Fig. 5. Cross-sectional view of the sample stage and coarse positioning sys-
tem. It provides the coarse-focusing motion in 0.1 -Pm increments
and coarse x-y sample positioning.

Another consideration is the heat dissipation of the positioning system. The superccnducting step-
per motor dissipates about 2 mW in operation, and all other positioning hardware dissipates less
than I mW in operation. The thermal conductivity of the large number of electrical leads required
to operate the sample positioning and focusing mechanisms must be considered also. To minimize
the heat conducted to the sample cell, all wiring from the sample cell is composed of 0.076-mm-
thick niobium-titanium (Nb-Ti) alloy clad with a 0.025-amm-thick layer of copper and insulated
with Formvar [10]. This wiring is thermally anchored at 1 K, from which it connects to standard
34 SWG copper wire that continues to connectors at the top of the cryostat. The copper cladding
allows for room-temperature testing of the positioning hardware without imposing too great a heat
load on the cryostat.

A stainless-steel capillary (having a 0.55-mm outer diameter and a 0.13-mm wall thickness) is
used to supply He4 to the microscope. This capillary is thermally anchored at 1 K. Since the cap-
illary is small and stainless steel is a poor thermal conductor, the resulting heat load on the sample
cell is small.

Another possible thermal leakage path to the sample cell is the c,.axial cable that carries the micro-
wave signal between the directional coupler (at 4 K) and the acoustic lens. To minimize thermal
conductivity, superconducting cable having a 2.16-amm-diameter lead (Pb) outer conductor and a
Nb center conductor is used [ 11]. SMA-type connectors cannot be used on this cable, because they
do not have a captivated center pin; repeated thermal cycling in the cryostat causes the center pin
to creep into the cable and detach itself from its mating connector. To overcome this problem, a
Wiltron K-connector having a captivated center pin was used [1 2].

A high-resolution microscope such as this one must be designed to minimize mechanical vibrations
of the sample and lens that could blur the images. Vibration amplitudes can be minimized by in-
creasing the rigidity of the support structure and decreasing its mass, to increase the resonant fre-
quencies of any mechanical modes. This is effective because most of the energy in building and
machine vibrations is in the frequency range from 10 to 100 Hz. In addition, the whole cryostat is
suspended from an optical table. The single required high-pumping-rate hose is fed through a vi-
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bration-isolated ballast, while the other pumping lines are coupled to the cryostat through ficxible
small-diameter tubing.

I11



3. Results

The received signal at constant input power is shown as a function of temperature in Fig. 6. This
demonstrates that cooling the microscope substantially below 0.9 K does not increase the signal.
In view of this, we operate the microscope between 0.3 and 0.5 K, where no temperature depen-
dence of the signal is seen. However, the signal decreases dramatically as the temperature is in-
creased above 0.9 K, unquestionably because the attenuation in the superfluid 4He increases.
Because the dominant excitations present in the fluid above 0.9 K are rotons [13], phonon-roton
scattering is probably responsible for the increased attenuation in this temperature range.

50 •

45

40
35 .

Atteuation, 
I*-I

dB/mm 25
20

15 1

10
5

0
0.7 0.8 0.9 1

Temperaiwc K

Fig. 6. Temperature dependence o:f the received signal. The input
power was -17.5 dWm at the transducer and the pressure in
the superfluid helium was 21.5 bar.

The theoretical curve in Fig. 6 comes from assuming that the attenuation is proportional to the prod-
uct of the density of rotons (derived from the Landau model [13]) and their scattering cross section,
taken to be 4.4 x 10-8 cm2. To plot the experimental data it was necessary to use an arbitrary mul-
tiplicative constant, chosen to fit the theoretical expectation that the attenuation should be low when
it is nearly independent of temperature. Even with these arbitrary constants, the agreement between
theory and measurement is poor, indicating that processes other than simple scattering from rotons
may be occurring.

As mentioned above, the received signal as a function of input power displays an oscillatory behav-
ior, as shown in Fig. 7. These data were taken with the sample-to-lens distance held constant as the
input power was increased. The oscillations in the received signal versus input power indicate the
presence of a coherent energy-exchange process (e.g. a coupled harmonic oscillator that can ex-
change its energy between two modes), rather than an incoherent, dissipative process. In other flu-
ids (e.g. water) this coherent process may also be present, but it is probably dominated by
dissipation that increases as the square of the frequency. In unpressurized superfluid helium below
a temperature of about 100 inK, the dissipation is low, and the three-phonon process of spontaneous
decay is the mechanism for pump depletion [5). The oscillatory behavior of the received signal ver-
sus input power that we observe has not been se, -n in unpressurized superfluid helium, so apparently
spontaneous decay is not the process responsible for this behavior. In pressurized superfluid heli-
um, spontaneous decay and all other three-phonon processes are forbidden. Hence the observed
behavior must be the result of either a four-phonon process or harmonic generation. Harmonic gen-
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eration is a strong process that can be reversible in the non-phase-matched case. Below we inves-
tigate the possibility that harmonic generation is occurring.

If the distance between the lens and the sample is not fixed, but rather is adjusted at each input pow-
er level for maximum received signal, and if received signal is again plotted against input power, a
different curve results (Fig. 8). A comparison of Fig. 7 with Fig. 8 illustrates that the position of
best focus varies with input power, a result that is not predicted by classical optics. If the focus
position were not a function of input power, the two curves would be identical.

At low input power, where the ultrasonic propagation in the liquid helium is linear, the images we
obtained have a diffraction-limited resolution of 15 nm. This is exactly what is predicted by the use

10
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Fig. 7. Plot of the received signal vs. transducer input power. Peri-
odic depletion and reconversion to the fundamental are evi-
dent above a transducer input power of-20 dBm. The lens-to-
sample distance was held constant for this measurement.
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Fig. 8. Plot of the received signal vs. transducer input power. The lens-
to-sample distance was varied to maximize the received signal
for each power step.
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A B

Fig. 9(a,b). Acoustic (a) and SEM (b) images of similar areas of a two-dimensional
array of I-pm diameter holes in a thin chrome film on glass.

of classical optics [spot size s = (F / d)A. where F is the focal length of the lens, d is lens diameter,
and X is the wavelength of the ultrasonic waves]. An example of this type of image is shown in
Fig. 9(a). The object shown is a two-dimensional array of 1-gm holes in a chrome thin film depos-
ited on a glass substrate. For comparison, a SEM (scanning electron microscope) image of a similar
area on the same object is shown in Fig. 9(b). Note the fine surface details visible in the acoustic
image that are not visible in the SEM image. The superiority of the cryogenic acoustic microscope
at disclosing surface details is evident. Even though the SEM has superior theoretical resolution.
it is not a good choice for imaging the relatively flat surfaces and thin films that occur commonly
on modem electronic devices. Resolution alone is not a sufficient criterion for choosing a high-
resolution technique. The ability of the imaging instrument to produce contrast between different
areas of interest on the object is just as important. The cryogenic acoustic microscope yields high-
contrast images because it has a shallow depth of focus (30 nm), which serves to convert height
variations in this range to gray levels ranging from black to white. It is also sensitive to the angle
of the object's surface relative to the optical axis.

On the other hand, at high input power levels, where propagation through the coupling fluid is non-
linear, classical optics cannot be used to predict the resolution. Other investigators have observed
higher than the classically predicted resolution in acoustic microscopes that used water, liquid ar-
gon, or liquid nitrogen as the coupling fluid. In these experiments the power density was high
enough near the focus to cause the converging acoustic beam to be converted to the second harmon-
ic, which has a smaller spot size [4]. Similar resolution enhancement has never been reported for
a cryogenic acoustic microscope that uses superfluid helium as the transmission medium. In our
acoustic microscope we have observed image degradation in the range where the received signal is
not proportional to the input power. The images taken in the oscillatory region of the signal-vs.-
input-power curve exhibit degraded resolution compared to those taken in the linear region, as il-
lustrated by comparing Fig. 9(c) with Fig. 9(a). The area imaged in Fig. 9(c) is the same as that
imaged in Fig. 9(a), except that the input power was increased so that the received signal was at one
of the peaks in the oscillatory region of the curve shown in Fig. 7. The resolution has obviously
been degraded.
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Fig. 9(c). Acoustic image of the same object shown in Fig. 9(a);
the input power to the transducer was at one of the
peaks in the oscillatory region of the curve shown in
Fig. 7.
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4. Theoretical Modeling

The adequate modeling of nonlinear effects in focused sound beams began only as recently as the
1950s, with the advent of computers that were capable of handling the numerical solution of the
necessary partial differential equations. The earliest models used converging spherical waves but
were inadequate in the focal region, since they did not account for diffraction effects [141. The
next step involved the decoupling of nonlinear and diffraction effects, limiting them to the prefocal
and focal regions, respectively [151. However, this failed to account for the complicated behavior
of the harmonic components in the focal region, since these two effects indeed interact. Improve-
ment in modeling occurred with quasilinear theory, which covered the combined effects of diffrac-
tion and weak nonlinearity and was based on the Fresnel or parabolic approxi nations [16,17]. With
the development of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) paratolic equation [18,191,
which accounts for nonlinearity, diffraction, and absorption beyond the usual quasi-linear theory,
came a whole set of models for various special cases. For example, Bakhvalov et al. [20] modeled
the weak diffraction and low-focusing-gain regime; the lossless case was dealt with by Zabo-
lotskaya and Khokhlov [211; moderately focused beams were addressed by Baker et al.[22]; and
because of their amenability to mathematical analysis, focused Gaussian beams were investigated
by others [23].

Our attempt to model the experimentally observed nonlinear phenomenon will be based on the
works of several investigators. (1) Tjotta and Tj0tta [24] and Aanonsen, Barkve, Tjctta. and Tjotta
[25] modeled the propagation and interaction of finite-amplitude (nonfocused) sound waves in a
thermoviscous liquid by means of the KZK equation. (2) Hart and Hamilton [261 employed a con-
vergent coordinate system that improves the efficiency of the numerical solution of the KZK equa-
tion for focused beams. (3) Lucas and Muir [27] developed an equivalency relationship, useful in
the initial condition formulation for the KZK equation, between a concave spherical source and a
planar source. (4) Berntsen and Vefring [28] made detailed evaluations of the numerical algorithms
needed to accomplish a spectral solution of the KZK equation. The problem we address, unlike
those already studied, is that the following conditions apply simultaneously: (1) There is large fo-
cusing gain, (2) the aperture angle is relatively large (so that the so-called Fresnel approximation
is invalid), and (3) there is significant pump depletion of the first harmonic of the input acoustic
power.

Figure 1 portrays schematically the salient features of the 15.3-GHz acoustic lens that is at the heart
of the acoustic microscope. The input signal entering the matching network is taken to be at one
frequency, with the amount of power adjustable ";.e propagating waves in the sapphire rod are
assumed to be planar, and are focused onto the object by a simple spherical refracting surface.
These focused waves are reflected back up into the lens assembly and the fundamental of the re-
turned signal is detected and its power measured. The focused and reflected waves propagate
through superfluid helium at an ambient temperature of e. = 0.5 K and p.essure of Pe = 20 bar.
The measured output fundamental power versus the input fundamental power is shown in Fig. 7
and has already1 been discussed above. It is this behavior that we wish to model mathematically.

Assuming theve is little interaction between the incoming waves and the reflected one., we can
think of the former as passing through the focal region and impinging on an imagiray receiver on
the other side of the object. This leads to a geometric model (depicted in Fig. 10) that is axially
symmetric about the z-axis. Here r represents a positive radial coordinate, making the overall co-
ordinate system essentially cylindrical. The corresponding di.-ss scaled coordinates a and
u, defined as
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(ii)Tangent to the source in (i) is an equivalent planar source of radius a located at z = -d. The par-
ticulars of this transformation will be detailed below.

(uii) The images of the two sources just described are reflected through the focus (z = 0); the images
are located at z = +d, and represent the receiver portion of our model. Of course, we assume here
that the superfluid helium extends from z = -d to +d, where the waves propagate.

As a first attempt at modeling the observed behavior mathematically, we employ the well-known
KZK equation, which is derived from the standard Navier-Stokes (N-S) hydrodynamics equations
(viz. [25] and [26]). This is justified by the ability of the KZK equation to take into account mod-
erate nonlinearities, diffraction, and absorption in sound beams of significant amplitude, as in our
case, where the usual quasi-linear approaches are rendered inapplicable. We begin with a dimen-
sionless form of the KZK equation found in [27) and apply it to our axially symmetric context,
namely,

(_L _ -) =E _ 2 _ _0 (3)
drdar 4G r2d2

where the following hold:

(i) u and a are the dimensionless transverse and axial coordinates, respectively, defined in Eq. (1),
while

T:= COL)-C( 4 a 4)

is a dimensionless retarded time, where

f. (4b)

2zr

is the source frequency (15.3 GHz) and co is the ambient sound speed (336 m/s).

(ii) P is the dimensionless normalized deviation of the acoustic pressure p from its equilibrium val-
ue and is given by

P(a, U,t) := p(a, U, T)- p, (5)
PO

where p, is the ambient acoustic pressure (20 bar) and po is the pressure amplitude at the lens.

(iii) V2 is the transverse portion of the usual Laplacian operator in cylindrical coordinates, assum-
ing axisymmetry (that is, there is no dependence on the polar angle fp). Hence
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. (6)

(iv) A is the dimensionless absorption given by

A = ad (7a)

where

= 2-"- (7b)
2co'

is the thermoviscous attenuation coefficient, and

is the sound diffusivity, where yo, KO, and K0 are the ambient values of the coefficients of shear
viscosity, bulk viscosity, and thermal conductivity, respectively; pj is the ambient mass density;
and y is the ratio of specific heat at constant pressure cp to the specific heat at constant volume cv.
In our case D is very small, since po and ro are much smaller than Po (0.18 gm/cm 3) and yis nearly
unity with K0 approximately equal to 10-2 W/cm-K. For now, we will be taking A to be a constant
with a value between 0.01 to 0.1.

(v) B is the dimensionless source amplitude given by

B =± (8a)
IP

where

I 3 = POCO, (8b)

is the plane-wave shock formation distance (-10-4 m at the source and -10 nm at the focal plane),
and

'01+ dc' (80)
co ,dp)o

20



is the coefficient of nonlinearity, where c is the isentropic speed of sound whose ambient value is
c0 . We will vary the value of B over the range 0.1 to 1,000, reflecting the variation of the input
signal's power.

(vi) G is the linear focusing gain given by

G =a (9a)

d

where

0RI7-O = wac2 (9b)

is the Rayleigh distance of the unfocused source. In our case, G is approximately 1.27 x 1i0, a
much larger value than the one used in [27].

The assumptions under which the KZK equation is derived from the N-S hydrodynamic equations
are summarized and discussed in our context below:

Assumption 1. The shear (Ji) and bulk (K) viscosities are very small and essentially spatially con-
stant. This is true, from experimental measurement, for liquids, and for liquid He in particular.

AHs.umi.ni2. The fluid is homogeneous and irrotational in its flow, the latter meaning that for all
space and time,

Vxv-O (10)

where v = v(o,ur) is the velocity field of the flow. This is justified by the purity of the liquid He
and because no agitation is occurring in our experimental setup.

Assumption 3. Viscosity terms have been linearized in the N-S force equation, while viscosity,
heat-conduction, and relaxation terms have been linearized in the N-S heat-exchange equation.
Terms of cubic or higher order in the acoustic variables are ignored. These approximations are ad-
equate for our situation, since even the linear terms are small, and the higher-order terms will be
smaller.

Assumion 4. The temperature is essentially constant in space and time, so that

0(oY,u,,%) a 80 = 0. 5 K (1

This assumption holds well for liquid He, which experimentally satisfies the isothermal condition

2K0 >> 51 (12)

C0 p0 C, f
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In fact, in our case the left-hand quantity in Eq. (12) is about 1.32 x 10-4 cm, whereas X. = 2.20 x
10-6 cm.

Assumption 5. The parabolic approximation, a standard one used in optics, holds. In our context,
this means that the second partial derivative along the axis of propagation, that is, along the positive
z direction, is neglected. Equivalently, this means that the amplitude of the pressure wave does not
change very much along its direction of propagation within a distance of one wavelength. Again,
we tentatively assume the validity of this approximation, although it may not be valid in the focal
region.

In order to facilitate the numerical solution of Eq. (3), we make the transformation introduced in
[27], following the convergent geometry of the focused beam:

T,,) : = ( _+)P( ,Ur) = P =

U (13)

I ---Gu 2
": :=' x- • =u 2 t T + G(cy ± 8)u2

(Y±+8)

where 8 is a small positive quantity that governs the rate at which the transformed geometry con-
verges (8 = 0.01 for our case), and the plus (or minus) sign in front of 8 holds for the postfocal (or
prefocal) region, that is, fora > 0 (or < 0). Observe from the second relation in Eq. (13) that for 8
<< 1, the axial length scale at the focal plane (a = 0) is 8 times smaller than at the source (a = -1).
Applying Eq. (13) to Eq. (3) readily leads to

( 15+)2 d2 _IV1 •_(a ±S)2A P= 6( B d2+-5) (14a)

T d-a _4G 0r?3  J 2 d-T'

where

P = P(',,) (14b)

and

V 2 =_+I{ J (14c)

is the transverse component of the Laplacian operator for an axisynunetric sound field in the new
coordinate system.

Now we solve Eq. (14a) by applying the spectral method. Assume that P in Eq. (14b) can be ex-
panded into a complex Fourier series in E with a basic period 2=:
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•(cr•,T = £ ,(c,•')•'•(15)

(PksO)

where j5 is the complex Fourier component of P at the frequency w. = n e Z \ 10) that satisfies

5, (a, U') -m- P.(a, ')Vn r= N (16)

since P is real. We leave out the zero frequency in Eq. (15), using Eq. (5) and the fact that p os-
cillates about Pe. If we write

5(,W) =:15,(o,W) + j p,(a, U),n e N (17)

where p,, and p)i are real-valued functions of a and W , Eq. (15) can be reexpressed as

P( ,a•, W )=2X [pi., (arW) cosnT -pm (a, W) sin nT] (18)
n=1

Substituting Eq. (18) into Eq. (14) and limiting the number of harmonics to a finite number (which
is seen as an approximation of F by a finite real Fourier series), we arrive at the following coupled
system of 2N second-order quasi-linear parabolic partial differential equations:

P. n 'nA 1,+ 8I L5
- 4nG(a+8)2  2(a ± 8)

.- I (19a)

where~+|

n = 1 .... N

Oki = -n2 A Ppi - 8)2 5,,0 2+ nB
a - 4nG(o±y ) 2(C± I

U ,- I SU- )Y Ij5_, ( nN (19b)

n N

where

PTI, = Tj,( o.R). •, = j•,(aW.)'1 = 1,...,.N 0190
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and

1 ifn = I(N) (19d)S := (~0 if n *I(N) (91

is a Kronecker delta function in the variable n - l(n - N).

In order to solve Eq. (19), we need to specify the initial conditions for the source and to provide the
necessary boundary conditions. For the first task, we use the technique discussed in Appendix A
of [28] to replace the actual concave source with an equivalent planar circular one so that the same
radiation field is produced. The planar source will be a piston of radius a that is phase modulated
in a perfectly compliant baffle. This is a good approximation, provided that

ka= W >> 1 (20)
Co

which holds very well in our case, since ka = 3.86x 104 . Proceeding in a manner similar to that of
[28], performing the necessary set of coordinate transformations [that is, Eqs. (1), (4a), (5), and
(13)], assuming that the linear impedance relation

Po = PoCoVo (21)

holds, using the fact that

kd = 5.81 x 104 >> 1 (22)

is satisfied in our case, and then making the appropriate Fourier series expansion, we straightfor-
wardly arrive at the following initial conditions for 15, and 15, at a Y -1 (the position of the equiv-
alent plane source), n = 1, ... , N:

PI(a = -1, W) = +•(W) Cosn v(W) I for 0• Us I< (23a)

r(Cr -li') fi0, (= -1,f) 0, for W >.- (23b)

S-1,1) * 0,•(a= --1,) -- 0,n = 2.....N for W _0 (23c)

where
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(24a)

W(W):=(24b)

and

i~): a l (14fy)2 (24c)W(U') -:= 2 1 + (d1) (4)

y =1 + 8 (24d)

For the boundary conditions, we limit the region in g" as in [27] to

0! <_.' w. u-(25a)

where for high focusing gain (as we have here)

,:= 1 >1 .(25b)

and impose for n = 1,.... N, and all ; Z! -1 the following mixed conditions:

(' )0 'r'k ) = 0' an( = 0) = 0' -(a'W=0) 0  (26)
dii dff

The latter two Neumann-type constraints are a result of the axisymmetry in our model, while the
former two Dirichlet-type requirements are seen to be continuous with the initial conditions in Eq.
(23) at o = -1, 1i in view of Eq. (25b).

Once we have obtained ,(oii) and P(Ojai) from Eq. (19) with the conditions in Eqs. (23)
and (26) (see discussion below), we calculate p5(a,U) by means of Eq. (17) and then p,(Gi),
the corresponding complex Fourier coefficient of P(a,ujc) that we need for our power calculations,
using the easily demonstrated relation

expL-jn Gu (

k;±8 (a Iau±

and the usual symmetry relation

p,( cr, u) a p',(a, u), n .....N (27b)
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We seek the relationship between the first-harmonic input radiated power PI from the spherical cap
source and the first-harmonic received power pl at the spherical cap receiver (see Fig. 10). Observe
that this relationship is qualitatively identical to the one between

Q po): P2" pI (a, U)42 (28a)

and

QI (po) p2La" Pi(a, U)SI(28b)

using Eq. (5) and noting that the square of the perturbation of the acoustic pressure from its equi-
librium value is related to the perturbation intensity, which, when integrated, corresponds to the ra-
diated power measured. From the nature of our source and its equivalent, Q1 (p0 ) will vary linearly
with p2 (which is used to make our power sweep of the input signal). On the other hand, the abso-
lutely squared quantity in Q1 (p0 ) will be a function of po through the source amplitude B in Eq.
(19) that produces p,(a,u) [see Eq. (8)]. Using Eq. (27) and the geometry provided in Fig. 10, we
can straightforwardly elaborate Eq. (28b) to the desired state of

80 --jd0jlr COS r7(0) + ii sm (0) sin,,Q'(P) 12 o[ 0 A 3+coso ) (9a
Q'•(po)47r p d 8(A•idoPc°STI(--)-ArsminI(0) cosO-_.2 (9a

0 , +coso

where

Gd2 sin 2  + od cos0 (29b)
(3 + cos O)a CO

and

_ ( dsin0 Psi _i. ( d sine (29c)
a(8+cos0) a(b + Cos'0)

In view of what was said about Q1(po) above, it follows that a plot of Q1,(p 0 ) vs. po2 would be
our model for the observed power phenomena.

Our progress towards the modeling of the harmonic power exchange in the cryogenic acoustic mi-
croscope is at a stage where we are about to solve numerically the partial differential equation sys-
tem Eq. (19) under the conditions of Eqs. (23) and (26). Note that we must solve the complete set
of equations because of the coupling between harmonics, even though we only need Plr and P,
in Eq. (29). Employing [26] as a guide, we choose the number of harmonics to retain in Eq. (18)
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to be N = 10 and note that this should not lead to too much truncation error, since our Gol'dberg
number Fis given by

F:= (alp)-' - 10- 100 (30)

and hence is not too large. We propose to do our numerical solution with the CRAY Mathlib rou-
tine RKFPDE, which uses the method of lines (as opposed to the implicit methods studied in [29],
which were not readily available in software form). In our context, this technique approximates the
Laplacian operator in Eq. (19) by differences, and the resulting larger system of ordinary differen-
tial equations is integrated using the standard RKF routine (with a thought of as a time variable).
Our future goals include carrying out the aforementioned procedure, using the results in the numer-
ical integration in Eq. (29), or possibly its equivalent involving the planar image receiver at o = +1
instead, and then comparing the plot of Q I(p0 ) vs. p02 with the experimentally derived plot (that
is, Fig. 7). Depending upon the accuracy of our model, we may then have to proceed with the ap-
propriate modifications and refinements. Our findings will be reported later.
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