
AD-A270 597 (

Set Based Analysis of ML Programs
(Exended Abstract)

NEViN HEJr7

July 1993DTIC CMU-CS-93-193
•• ELECTE

OUT 12 1993

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also appears as Fox Memorandum CMU-CS-FOX-93-03

Abstract
Reasoning about a program by treating program variables as sets of "values" leads to a simple,
accurate and intuitively appealing notion of program approximation. This paper presents such

an approach for the compile-time analysis of ML programs. To develop the core ideas of the
analysis, we consider a simple untyped call-by-value functional language. Starting with an
operational semantics for the language, we develop an approximate "set based" operational
semantics which formalizes the intuition of treating program variables as sets. The key result of
the paper is an 0(n 3) algorithm for computing the set based approximation of a program. We
then show how the analysis can be extended in a natural way to deal with arrays, arithmetic,

exceptions and continuations. We also briefly describe results from an implementation of this
analysis for ML programs.

93 13 8

"Ibis work was sponsored by the AdvancedResearch Projects Agency, CSTO, under the title "he Fox Project. Ad-
vanced Development of Systems Software", ARPA Order No. 8313, issued by ESD/AVS under Contract No. F 19628-
91-C-0168.

The views and conclusions contained in this document am those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government.

This document bcs been approved
for public teleo.se and se 93-23949
distribution is unIi=iteiii i

Keywords: program analysis, ML. set based analysis, set constraints, type thewry, subtypes,
binding time analysis, control flow analysis.

1 Introduction

The motivationof this paper is the development of acompile-time analysis of functional programs
that combines the following properties:

"* It provides relatively accurate information about a program, with particular emphasis on
the program's data structures.

"* The underlying notion of approximation has a simple uniform definition, and the results
of the analysis are intuitive and predictable.

"* It is flexible and easily modified to incorporate arithmetic and operations such as assign-
ment, callcc and exception handling.

"• It is practical.

Tl this end, we consider an approach to program analysis based solely on the idea of ignoring
Inter-variable dependencies. To illustrate what Is rieant by inter-variable dependencies, consider
the following two ML programs.

let fun append(x :: xs, y) = x:: append(xs, y)
let fun mkiist (u, v) = [u, v] I append(nil, y') = y'
in fun rev(z :: zs) = append(rev zs, [zD)

mkJist(1,2); I rev nil = nil
mkJist(3,4) In rev (1,2,3,41

end end
Program Program 2

During the execution of Program 1, the body of the function mkiist is executed in two envi-
ronments: [u -+ 1, v " 2] and [u '-- 3, v - 41. Inter-variable dependencies arise here in the
sense that the variable u takes the value I exactly when v takes 2, and u takes 3 when v takes
4. In general, we say that inter-variable dependencies arise whenever the set of environments
encountered at some program point is such that fixing a value for one or more variables restricts
the possible values of the other variables.

Such dependencies may be ignored by treating the program variables as denoting sets of
values Instead of individual values. In Program 1, the sets for u and v are (1, 31 and {2, 4}
respectively. If program variables are treated as sets, then the result of Program I is approxi.iated
by the set of values {[1,2], [1,4], [3,21, [3,4]), in contrast to its actual result which is the single
value [3,41.

In Program 2, dependencies arise between the variables x, xs and y in the function append,
and between z and zs in the function rev. If the values of variables are collected into sets, then
we obtain the set {1,2,3,4} for both x and z. Using this information, a set based interpretation
of the program can be developed as follows. Consider the definition of append. From the first
clause, we see that the values returned by append include values 1 :: 1, 2 :: 1, 3:: 1 and 4 Co.2CeS

J: or

1I

I where I is some list returned by append. From the second clause, the values returned by
append include any value of y, and noting the call append(rev zs, [z]) in the definition of rev,
these values include the singleton lists [1], [2], [3] and [4]. Combining these two observations, it
is easy to see that the set based interpretation of Program 2 yields the set of all lists constructed
from 1,2, 3 and 4.

The notion of set based approximation can be extended in a variety of ways. For example,
consider programs Involving arrays. In keeping with the methodology of ignoring dependencies,
we shall Ignore the dependencies between subscripts and array values. In essence, we treat an
array as a set of values. When the array is updated, a new value is added to this set. When
the array is subscripted, the whole set is returned. For example, the set based approximation
of Program 3 yields the set of all values obtained by summing any number of 3's and 4's i.e.
{3n+4m:m>0,nŽ>0,m+nŽ n }.

let fan cum (arr : int array) =
let imf nO-arrsubO

I fi=(arrsubQ+f(i-1) fun map f (x :: l)=(fx):: (mapfl)
II map f nil = nil

I ((length alT) - 1)
end val t =[1,2,3]
val arr = array(10, 3) val d = dynamic

In val u =rmap (fn x =* (x, d)) I
update(arr, 6, 4); val v = map (fn (x, y) * x) u
cum arr val w= map (fn (x, y) y) u

end
Program 3 Program 4

Set based approximation can also be extended to deal with non-standard values. For example,
to perform a binding time analysis [5, 13, 17], a non-standard value dynamic is introduced to
represent a value that will not be known until "run-time". To illustrate this, consider Program
4. The set based approximation of this program yields the following information' about the
variables u, v and w: u is a list of pairs whose first element is either 1, 2 or 3 and whose second
argument is dynamic; v is a list of 1 's, 2's and 3's, and w is a list of dynamic's.

Tb summarize, the analysis developed here is based on the notion of ignoring inter-variable
dependencies by treating variables as sets. In other words, the environments encountered at each
point in a program are collapsed into a single set environment (mapping from variables into sets).
Strictly speaking, there are three kinds of dependencies that are ignored in set based analysis.
Frst, dependencies between different variables are ignored - this was illustrated by Program
1. Second, dependencies between different occurrences of the same variable are ignored. For
example the approximation of Program 5 yields {[1, 1], [1,2], [2,1], [2,2]} and not {[1 ,1], [2,2]}.
Third, dependencies between the domain and codomain of functions are ignored. For example
the approximation of Program 6 yields {2,3} and not {3}.

"We note that this infornation is in f(a obtained only if the analysis of map is "polyvariant" (that is, provided there can be
different "veisions of map). We refer to thi" isue latr in the paper.

2

We fun g 1-2
litfuafx [x,x] I g2=3
in in

fl; g 1;
f 2; g 2;

"eId end
Plowram s Progm 6

In this paper we do two things. First, we develop the underlying ideas of set based analysis.
We give a simple and natural formalization of the notion of set based approximation, and
then present an algorithm (based on constructed and solving set constraints) for computing this
approximation. 'This is carried out In the context of a small untyped call-by-value functional
language that oIntended to be suggestiveof a number of aspects of ML [151. Second, we describe
an implementation for the set based analysis of ML programs, which extends the basic notions
of set based analysis to arithmetic, arrays, continuations and exceptions. This implementation is
built on the LAMBDA intermediate representation of the SMIENJ compiler [3]. Typical execution
times are from less than a second for small programs, to a couple of seconds for moderate sized
programs of the order of 1000 lines2. The implementation subsumes and generalizes aspects of
type analysis, safety analysis, control flow analysis, structure sharing and usage analysis, interval
analysis, and binding time analysis. Applications of the implementation include Improved code
generation (the information obtained can be used to guide data-structure representation and
in-lining, and remove redundant tests such as array bounds checking), partial evaluation and
checking static program properties (for example, better checking of non-exhaustive pattern
matching).

Related Literature

The idea of defining program approximation by treating program variables as set of values has
been used previously in the analysis of logic programs and imperative programs by Jaffar and
the present author [7, 8, 9]. In the context of functional programs, work on type inference by
Mishra and Reddy [16] is similar in spirit, although in [16] substantial restrictions are placed on
types (for example, they must be "tuple-distributive").

More closely related is work by Aiken and Wimmers [2], who extract type constraints from
a program and provide a normalization procedure for solving these constraints over the domain
of downward closed sets of finite elements (essentially the "ideal" model of types). However,
the constraints used and their simplification algorithm are very different from those used in
the present paper. Constraints have also been used in binding time analysis [11] and safety
analysis [18]. In the former, the program approximation that arises is different from set based
approximation (and in fact less accurate), but can be computed In almost-linear time. In the latter
(which is based on closure analysis), the constraint are solved over subsets of a finite domain of
"closures". In contrast, our constraints are solved over an Infinite domain.

2ht as rums &ll of the example given im thi sedtion.

3

Perhaps the most closely related work is by Jones [12], where a grammar approach is
presented to the analysis of lazy higher-order functional programs. The main aspect of our
work that sets it apart from other works is that we start with a simple, intuitive definition of
approximate semantics based on an operational semantics, and only then present algorithms
(using constraints) that correspond exactly with this approximation. Moreover, we extend this
analysis to deal with side effects and continuations In a uniform and intuitive manner.

2 Set Based Approximation

Consider a simple cail-by-value functional language whose terms e are defined by

e ::= x Ie ,..e,,) IAx.e Iee e2 I case(el, C(X ,- ,X..,) =:, e2, y => e3) I fix X.e

where x and y range over program variables and c ranges over a given set of (varying arity,
"first-order") constants. It is convenient to adopt the usual convention that each bound variable
is distinct. The operator case is essentially a very restricted form of the ML case expression and
provides a mechanism for branching on the result of a computation as well as "deconstructing"
values. The operatorfix serves to express recursion 3.

The operational semantics for the evaluation of the closed terms of this language is given in
Figure 1. The variables E and v range over environments and values respectively, and these are
defined mutually recursively as follows. An environment E is a finite mapping from program
variables into binding values. A binding value is either a value or an expression of the form
fix z.e. A value v is of the form c(v 1,..., v,v) where the vi are values, or a closure of the form
(E, Ax.e) where E is an environment. If E is an environment then we write dom(E) to denote the
(finite) set of variables on which E is defined. The notation E[zP-.exp] denotes the environment
which maps z into exp and all other variables x' into E(x'). We write l- e --+ v if E F- e --+ v
when E is the empty environment.

We now modify the operational semantics so that dependencies between variables are ig-
nored. This is achieved by treating program variables as sets of values. To formalize this, first
define that a set environment E is a finite mapping from variables into sets of binding values.
We write E E C to denote that E(z) E E(z) for all x E dom(E). The set based operational
semantics, presented in Figure 2, is essentially obtained by replacing environments E in the
rules of Figure 1 by set environments4 E'. This replacement necessitates two kinds of changes
to the rules. First, the two variable rules VAR- 1 and vAR-2 are modified to accommodate the fact
that C(x) is a set. Second. the rules that involve variable binding (APP, CASE-I, CASE-2 and FIX)

are modified so that the binding information is dropped.

Observe that this second group of rules will, in general, lead to an unsound approximation.
3 In fiL .e, the expression e shall typically be an abstraction.
4We remark that one reason for the explicit use of environments in the operional semantics in Figure I is precisely to enhance

this intuition. However. the notion of set based approximation is not limited to this style of semantics. Analogous definitiou cam
be made starting from &a operational semantics that uses substitution.

4

E Fx --+ E(x) (E(z) #fix y-e) (VAR-i)

E Ffit x ue v (E(z) =fix y-e) (VAR-2)
E F- z-..

E F- el (E', Az.e) E F- e2 -. V' E'[zi.-vl F- e-(A"
E F e1 e2-V(A)

E F- el --+ vi, i = i..n CNT
E F- c(eI,.. ,en) --*C(vI,---i,..Vn) (os

E F- Ax.e --+ (E, Ax.e) (ABS)

E F el --+c(vl,..., v.) E[X1.-*Vi9...vXni-+Vn] F- e2 -+ V (CASE-i)
E F case(ei, C(ZI,... 9T)=,,)e2 , y* e3)-+ V

E Fel -, e'(vi..... ,v,) E[y,-e'(vi,... ,v,1) F- e3 --+ V (cj c') (cAsE-2)
E F caae(ei, C(--1,. ,Xn) =* e2, y :P e3) - V

Elxb-+qiz .el F- e --+v(FX
E F- fixxxe-frv

Figure 1: Operational Semantics for the Simple Language.

5

E F- z-.*v (v E(), v0•fi••y.e) (VAR-i)

f i- fy.e,- v (flzveEC(x)) (VAR-2)
C I- z--,ev

S- el-. (E , A x.e) C t e 2-. V• e -e , + v(A P
C. F- el e2 -,-+

£ I el '. V•, i 1..n
"C e . - . (CONST)

SF- A•z.e-,* (E, Az.e) (E E C) (ABS)

£ I- el -,-c(vl,...,v,) C I- e2 --- V (CASE-i)

C I- Se(ej, c(zl,...,z,,) =e2, y =: e3)- v

C F- el-. CF'(v1,...,v,) " I- e3 -,,.+

C I- case(el, c(zl,... ,xy) *= ez, y e3) ", Vv

C I- e-,-av (FIx)

C F fiz z.e-,-e

(I

Figure 2: Set Based Operational Semantics.

6

That is, certain set environments C will be such that for some closed terms eo, I- eo -- v but
C V/eo -* v. We shall however always ensure that whenever one of these rules is applied, C is
"sufficiently large" that it contains all bindings to variables. For rule APP, the required condition
on C is v' E 6(z). Similar conditions can be given for the other Lules involving binding. Note
that it is not appropriate to just add these conditions as side conditions to the respective rules,
since this would have the effect of reducing the number of derivations. Instead, we require that
whenever one of the potentially unsafe rules is applied, the extra conditions are always met. To
formalize this, define that C is safe with respect to a closed term eo if, for every derivation ending
in C F- eo + v, the following four conditions are met (we follow the notation established in
Figure 2):

1. Every application of the rule APP is such that v' E C(x).

2. Every application of the rule CASE-I is such that vi E C(zi), i = l..n.

3. Every application of the rule CASE-2 is such that c'(v 1,... , vn) E 6(y).

4. Every application of the rule FIX is such thatfiz x.e E C(z).

Importantly, safety implies soundness in the following sense:

Theorem 1 (Soundness) If C is safe wrt a closed term eo, then F- eo --+ v implies C F- eo -+, v.

Proof: The proof follows by structural induction on the subderivations of the derivation F- e --

v. The induction hypothesis must be strengthened slightly to include a simple property about
the closures that may be encountered. [0

In essence, this proves that if we guess C so that it is safe, then the set based operational
semantics providti a sound approximation of th, ex>cution of a term. However, given a term
eo, there are many correct choices for C, and these give rise to different approximations of eo.
The following proposition implies that, given eo, there is a canonical choice for C, and that this
choice gives rise to the most accurate approximation of eo. First, define that the intersection

of set environments C1 and E2, denoted £ fl C2 , is given by: (£1 n 62)(x) d-f C (x) n C2(x),
provided £E(z) and C2(z) are both defined. Then:

Proposition 1 (Minimality) If £E and C2 are safe wrt a closed term eo, then so is £1 n £2.
Moreover, C£ fC 2 F eo -.* v implies C1 F- eo -,+ v and E2 F eo ",. v.

Proof: The proof here is straightforward and follows from the observation that any derivation
C£ l £2 F2 eo -- + v can be replayed to give isomorphic derivations C£ F- eo -", v and
C2 F- eo v. [0

Tibs motivates the following definition5 .

Sit is possible to give a direct definition of set based approximalion, which avoids the minimizaaion over C. However such a
definition is substatially more complex.

7

Deflition 1 (Set Bmd Approximation) Let eo be a closed term. Let &,,,, be the least set
environment that is safe wrt co The set based apprommation of e0 denoted sba(eo), is defined
by:

sba(co) I{,, :.,. I,- to'- v} 0

lb summarize, the set based operational semantics approximates the execution of a term by
collapsing all environments into one single set environment. No other form of approximation is
employed. In particular, no use Is made of abstract domains (such as those commonly employed
in abstract-interpretation styles of program analysis [6]). We remark that the results of the
analysis are typically infinite sets of values, and that we make no a priori requirement that these
sets be finitely presentable.

3 Main Result

We now present the main result of the paper, which is an algorithm for computing sba(eo)
for any closed term co. The structure of the algorithm Is as follows. First, we construct set
constraints corresponding to the input term eo. In essence, these constraints express relationships
between sets of values In such a way that a model of the constraints corresponds to the set based
execution of eo In some safe set environment C. Importantly, the least model of these constraints
corresponds to execution in the smallest safe set environment, and hence to sba(eo). The
second part of the algorithm is a simplification procedure for set constraints. In essence, this
algorithm constructs an explicit representation of the least model of the input set constraints.
This representation is in the form of a regular tree grammar. Note that no assumptions have
been made about the adequacy of regular tree grammars. The fact that the least model of the set
constraints (and hence sba(eo)) can be represented using regular tree grammars is a by-product
of the correctness proof of the algorithm.

Before describing the form of the set constraints employed by the algorithm, we first note
that the environment part of closures in sba(eo) is essentially redundant. In particular, If C is
the least set environment that Is safe with respect to a closed term eo, and if sba(eo) contains
a closure (E, Ax.e), then sba(eo) must in fact contain all closures of the form (E', Az.e) such
that E' E C. This Is because the set based operational semantics collapses all environments
into the single set environment C, and moreover, the only closures generated during the set
based execution are via the (ABs) rule. In the computation of sba(eo), It is convenient to drop
the redundant environment Information In closures 6. More formally, define an operator llvl on
values v, which forgets the environment part of closures, as follows:

C if v is the constant c
IvII = lVIll IIIV211 lfvlsvI v2

Az.e if v is (E, Ax.e)

6We Mote that thi cm be recovenad if seeded, alWdub it is ot completely Wvi to do so em vad &W ov mms at
-utty deeAdei

8

The algurnthm presented In this section computes a representation (using regular tree grammars)
of the Set JJaba(eo)II = f{I~tiII V E aba(eo)}.

Set Constraints

The use of set constraints for analysis of programs dates back to the early works by Reynolds
[191, and Jones and Muchnick [141, which employ constraints involving projection. The calculus
of set constraints was first defined and studied in a general setting by Jaffar and the present
author [9]. [9] also contained a decision procedure for a class of set constraints involving
projection and intersection. Later works have provided algorithms for different classes of set
constraints (Ailken and Murphy [1] have dealt with complementation and projection; Jaffar and
the present author have dealt with set constraint operators that are designed for analy7ing logic
programs and imperative programs [7, 81, and combinations of set constraint techniques and
abstract interpretation techniques [101), as well as providing alternative proofs of previous results
(Bachmalr. Ganzinger and Waldmann [41 establish a connection between certain kinds of set
constraints and a fragment of logic shown decidable by Ldwenheim, and in the process provide
alternative proofs of the earlier results in [I] and [91).

We extend the basic set constraint calculus of [91 by adding operations to model function
application and case statements. The form and meaning of these constraints is defined in the
context of some given closed term eo. We assume a fixed infinite class of set variables; set
variables shall be denoted W, X, Y, Z. We distinguish two special disjoint subclasses of set
variables. First, for each program variable z in eo, there is a distinct set variable X. which shall
be used to capture all of the values for the program variable z. Second, for each abstraction
Az.e appearing In eo, there is a distinct set variable ran(Az.e), the "range" of Ax.e, which shall
be used to capture all of the values returned by applications of Ax.e during execution. Now,
in the context of the given term eo, we define that a set expression (se) is either a set variable,
an abstraction Az.e that appears In eo, or of one of the forms c(sel,..., se2), apply(sej, se2),

caae(sel,c(X1,,..., X') *= se2, Y =o se3) or ifnonempty(sei, se2) (which shall be used later).
The first form is used to model execution of expressions c(el,... ,e,n), the second form models
application, the third is for case statements, and the last is used to reason about emptiness. A set
constraint is an expression of the form X D se, and a conjunction C of set constraints is a finite
collection of set constraints.

We now define the meaning of the set constraints. In essence, set expressions shall be
Interpreted as sets c 'Nalues with the environment component of closures removed. Specifically,
a set constraint value (sc-value) is either an abstraction Ax.e that appears In eo, or of the form

v,,) where each vi Is an sc-value. An interpretahion is a mapping from each set variable
into a set of sc-values. Such an Interpretation is extended to map set expressions to sets of
sc-values as follows:

1. Z(c(ael .. ,e.)) = {c(v,... ,v): E (se,),i = ..n};

2. Z(Az.e) = {Ax.e};

9

3. T(ifnonempty(sel,se2)) = Tl(sei) = {) then {) else I(sez);

4. T(apply(se,,se2)) = {v Az.e E I(se1) A 1(3e2) 4 {) A V E 1(ran(Axxe)) }
provided Az.e E 1(3e,) ImpliesZ(se 2) _ 2I(X,)

5. :(c-ae(sei,c(Xi,... ,X,)se 2,Y =: se 3)) = Si U S2.
where (i) Si = {v: v E T(Me2) A 3c(v 1,...,vn) E I(,ei)}

(ii) S2 (v v E I(se3) A 3c'(vl,...,vn) E X(sel) s.t. c' 6 c}
(iii) c(vi,... ,v,,) E "(se1) Impliesvi E I(X,), i = l..n
(iv) c'(vl,...,v,) E I(sel)where c' 6 c implies c'(v 1,...,Vn) E 1(Y)

Note that the above interpretation of set expressions is somewhat unusual, because in parts 4 and
5 of the definition, the set expressions themselves impose restrictions on ". If these conditions
are not met. then the Interpretation of the expression is undefined. An interpretation I is a model
of a conjunction of constraints C If, for each constraint X D se, it is the case that l(se) is defined
and T(X) ; I (se). It is easy to verify a model intersection property for the set constraints used
in this paper, and it follows that a conjunction C of constraints possesses a least model. denoted
lm(C), where models are ordered as follows: 2" ;? 12 if 1i(X) ; 12(X), for all set variables
X.

Constructing Set Constraints

The construction of set constraints from a term is described in Figure 3. (Strictly speaking, this
is a somewhat simplified version - the complete version appears in Appendix I.) In the rules
(APP), (CONST), (ABS) and (CASE), the variable Y is intended to be a new set variable that is not
used In any other part of the derivation. Using these rules, we define

Definition 2 Let eo be a closed term, then SC(eo) is the pair (X, C) such :hat t> eo : (X, C).0

Tl illustrate the construction of the constraints, consider the term eo = e l e2 where el is
Af.c(f a, f b), e2 is Ax.z and a, b and c are constants7. For this term, we derive I> eo : (XI , C)
where C consists of the constraints

X1 2 apply(Xz, X3) X 2 apply(Xfa) ran(el) 2 c(X4,Xs)
X2z 2 e1X Xs ; apply(X1 ,b) ran(e2) _ X,X¥3 _e2

In lm(C), Xi = ran(ei) - {c(a,b),c(b,a),c(a,a),c(b,b)}, X 2 = {e,}, X 3 - {e2}, X4 =
Xs = ran(e 2) = X. = {a, b}

7Wa W wrMn aas am a~beviatiom of a•(.

10

tz: (X: , {) (VAR)

t> el : (A, C) t> e2 : (Xz, C2) (APP)

tC l e2 :(Y,{Y -? apply(XI,X 2)1UC, UC)

C> ei: (Xi,Ci), i = I n
t> C(el,... ,en) :(Y,(_Y ;C(XI,.. - , X,)} J Cl Uo... UC,.)

> e. (X, C) (as

t> Az.e: (Y, {Y ;? A\.e, Mn(Az.e) 2 X} u C)

t> el : (Zi, CO t> e2 : (Z2, C2) t> e3 :(Z 3, C3)
t> case(e1, c(xh....,zn) => e2, Y =p- e 3) :(Y,C UC UC UC3) (CASE)

whereC = {Y ;? case(ZI,c(X ,...,) , Z2, X = Z3)}

t> e : (X, C)

> fix .e : (X,{x X (F•X)

Figure 3: Construction of Set Constraints (simplified version)

For presentational simplicity. the constraint construction given in Figure 3 is not in com-
plete correspondence with sba(eo). To see this, consider the term eo = el e2 where el is
Af.((Au.f a)(A\w.f b)) and e2 Is Az.z. The least E that is safe with respect to eo maps f into
{.x.z), u into {Aw.f b) and z into {a}, and sba(eo) is {a). However. the set constraint con-
struction procedure traverses all subexpression of eo. Hence SC(eo) contains the set expressions
apply(Xf, a) and apply(Xf, b). As a result, A' must contain both a and b, and so the execution
of eo is approximated by {a, b}. The problem is that the term Aw.f b is never "executed" under
the set based semantics, but Is traversed by the set constraint construction process. To rectify this
situation, the constraint construction must be such that if Ax.e appears in eo, then the constraints
constructed for e are vacuously satisfied whenever A' (the set of values for x) is empty. The
complete constraint construction procedure appears in Appendix 1. The correspondence between
sba(eo) and SC(eo) is given by the following Lemma8:

Lemma 1 Let eo be a closed term, let SC(eo) be (X,C) and let rn = lm(C). Then Z,(,) =
ilsba(eo)lI.

Proof Sketch: The proof Is fairly lengthly and consists of two main parts. The first part involves
modifying the definition of E I- e --* v so that environments are removed from closures. Call
this new system W-'. The proof for this part involves showing a correspondence between i- and
I-'. The second part then relates I-' with SC(eo) by showing two relationships: (a) if E is the
least set environment that Is safe wrt eo (in I-'), then r can be used to define a model I7 of C such
that F-' e --* v iff v E I(X); and (b) ifl is a model of C then we can define an E that is safe wrt
eo such that ifg IFe' e -.+ v then v E T(X). In essence, part (a) shows that 1,m(X) C 11sba(eo)fl,
and part (b) shows thatlm(X) -2 11aba(eo)II. 0

$We sote &at Lmmna I holds using die couiuraint construedon procen desaibed ia Figure 3 if the following coadition is
saisfied: dhe leat set envii•aanent• that as safe wit ec is such that C (z) # {) for all x.

11

Input a collection C of set constraints;
repeat

If X 2D apply(Xi, ,X2) and Xj ;2 Ax.e both appear In C then
add X _ mn(Ax.e) to C;
addX. ;2 X to C;

If X 2? case(Yi,c(W1,. ..,W.) =i Y2,W =1 Y3)
andY ;? c(Zi,..., Z.) both appear in C
and lm(ezplicit(C))(Zi) 0 {}, i = 1..n, then

add X D Y 2 to C;
add Wi Zi to C, i = l..n;

If X 2_ cae(YI,c(Wi,..., W,) = Y2, W * Y3)
and Y1 D ,... ,Z,)both appear in C, where c,
and Lm(ezplscit(C))(Z,) $ {}, i = L..n, then

add X 2_ Y3 to C;
add W '(z,...,Z,) to C;

If X 2 ifnonempty(Y , Y2) appears InC and Lm(ezpiicit(C))(Yi) 0 {} then
add X D Y2 to C;

IfX D X' and X' D ae both appear InC,
where ae Is atomic and not a set variable, then

addX D ae toC;
until no stop changes C;
output ezplicit(C);

Figure 4: Set Constraint Simplification Algorithm

Set Constraint Algorithm

We first address the issue of the output format of the algorithm. What we desire is an explicit
representation of the least model of the set constraints, and specifically, of sba(eo). Since these
sets are typically Infinite, we must deal with finite representations of Infinite sets. What is
needed Is a representation from which simple questions such as membership, emptiness and
containment can be directly determined. The representation we use is based on a restricted form
of set constraints. Specifically, define that a set expression is atomic If it is either an abstraction
Az.e that appears In eo, aset variable, or of the form c(aei,... ,ae.) where each aei is atomic.
A constraint is in explicit form If It has the form AX D ae where ae is an atomic set expression
that is not a set variable (ae may of course contain set variables). A collection of constraints is in
explicit form if each constraint therein Is in explicit form. If C is a collection of constraints, then
ezplicit(C) denotes the explicit form constraints of C. We note that explicit form constraints can
be regarded as regular tree grammars by treating set variables as non-terminals and regarding a
constraint X _ ae as a production X =* ae.

The simplification algorithm accepts as input a collection of constraints (such as those
constructed for a closed term eo) and outputs an explicit form collection of constraints that
has the same least model as the input collection. The main part of the algorithm involves
exhaustively applying a series of simplification steps, and this serves to add new explicit form

12

constraints so that information about lm(C) is incrementally transferred into the explicit part of
C. The algorithm terminates exactly when all information about lm(C) is present in explicit(C).
The details of the algorithm appear In Figure 4. The phrase "add X _D se to C" is used
to mean "add the constraint _D se If it does not already appear". An expression of the
form lm(explicit(C))(Y) # {} indicates a test which can be performed as follows: construct
explicit(C), and (using standard algorithms), check to see if Y is empty in the least model of
explicit(C) (analogous procedures can be found in [7. 9]).

We note that the correctness of the algorithm relies on the fact that there are no "nested"
set expressions. In other words, if an expression of the form apply(se1, se2) appears in the
constraints, then sel and 9e2 are both set variables, and similarly for expressions involving
ifnonempty and case. It is easy to see that SC(eo) satisfies this property, and it Is trivial to verify
that the algorithm preserves this property. The next lemma establishes the correctness of the
simplification algorithm, and, combined with Lemma 1, proves Theorem 2.

Lemma 2 (Correctness of Algorithm) The algorithm terminates on input C and outputs ex-
plicit form constraints C' such that lm(C') = lm(C).

Proof Sketch: Termination is straightforward to verify since the algorithm adds only constraints
of the form AX D ae where both ,X and ae are expressions that already appear in the constraints.
The main part of the proof is to establish that the transformation steps are complete in the sense
that when no further transformation steps can be applied, then lm(C) = lm(explicit(C)). This
is achieved by showing that when no further transformation can be applied, the interpretation
lm(explicit(C)) is in fact a model of C. [
Theorem 2 Given a closed term eo, there is an O(n 3) algorithm to compute an explicit repre-
sentation (which is equivalent to a regular tree grammar) of Ilsba(eo) 11.

Proof: Let SC(eo) be (X,C). By Lemma 1, lm(C) maps X into Ilsba(eo)II. By Lemma 2,
the set constraint simplification algorithm produces collection of constraints C' in explicit form
when input withC. Moreover, lm(C') = lm(C). Hence lm(C')(X) = lm(C)(X) = I1sba(eo)II,
and so C' provides an explicit representation of Ilsba(eo)II. The 0(n 3) bound can be established
as follows. First, the construction of constraints is linear in the size of eo. Second, at most n2

new constraints can be added by the simplification algorithm, and the cost of "adding" each new
constraint (i.e. determining what other new constraints need to be added, given this constraint
is added) can be bounded by 0(n). [

In addition, the algorithm trivially has an O(n 2) space bound. We remark that this algorithm
not only provides a way to compute sba(eo), but it also computes the least set environment that
is safe wrt eo.

4 Arrays, Continuations, Exceptions and Arithmetic

Thus far we have presented a formal development of the core ideas of set based analysis. We
now informally outline the extensions we have employed for dealing with arrays, exceptions

13

and continuations. As outlined in the introduction, the set based treatment of arrays ignores
dependencies between subscripts and values. That Is, an array is treated as a set of values such that
when the array is updated the new value(s) are added to this set, and when the array is accessed
the set of values is returned. More concretely, for each place in the program where an array
can be generated, we introduce a special distinct constant ar with two associated set variables
length(ar) and contents(ar). We also introduce two new set expressions, contentsof(se)
and update(sel, se2). In essence, the first denotes the union of the sets contents(ar) such
that ar is an element of se. The second Is either (i) the empty set if either sel and se 2 is

empty, (ii) the singleton set containing the unit value provided sel and se2 are non-empty and
contents(ar) ;. se2 for all ar in sel, or (iII) is undefined otherwise. The following rules are
suggestive9 of how constraints are constructed for programs involving arrays. In the first rule,
ar is a new constant.

>. el : (XA, C) > C2 : (X2, C2)
r> array(el, e2) : (Y, {Y 2 at, contents(ar) ; see, length(at) ;_ se2} U C(U C2) (ARY)

t" el : (XM, C1) t> e2 : (X2, C2)
C> el sub e2 M (Y, {; _ contentsof (XI) } U C1 U C2) (SUBSCRIPT)

D. ei : (Xi, C,), i = 1..3
I> update(el, e2 , e3) : (Y, {Y ; update(XI, X 2)) U C1 U C2)

Continuations are also modeled by introducing a new constant cont for each callcc appearing
in a program. Each new constant has an associated set variable contents(cont). In essence, this
records the values that are thrown to the continuation. In effect, the constant cont passes into
the term e a reference to the program point at which the callcc occurred (in fact it passes down
the set variable corresponding to this point). The set expression throw(sel, se2) is either (i) the
empty set provided that contents(cont) 2 se2 for each cont in sel, or (ii) undefined otherwise.

X e (C), C)
t> callccz.e : (Y, {f 2.; X,Y 2 contents(cont),X. ; cont U)C)

- D e I" (Xl, cl) C> e2 " (X2, C2)(TRW

t> throw(el, e2) : (, {Y throw(X, X 2)) UC. U C2)

Exceptions are modeled by introducing a distinct new set variable CXC to capture all of
the exceptions that are raised during program execution. We note exceptions could be more
accurately treated by introducing a new exception variable for each expression. This would
provide better "separation" of the exceptions raised by different parts of a program, but at the
cost of introducing more constraints. We are currently investigating this tradeoff.

9In particular, they are a simplification of the actual riles in the sense thst Figure 3 simplifies Figure 5.

14

e (X, C)
t rai e : (Y, {tXC D X} u C)

t el : (A, CO t> e2 : (X2 , C2)
> el handk (Ax.e2) : (Y,(Y 2? X,,Y ;? X2,X, ;? CXC} U C1 U C2)

We conclude by considering arithmetic. In essence, we shall treat arithmetic operations like
data constructors. For example, the analysis of the power program given below left yields the
explicit form constraints given below right (where X is the set variable corresponding to the
result of the program, and only solved form constraints relevant to X are shown).

let fun power(O. n) - 1
I power(m, n)= n x power(m-1, n) X D 4 x X

power(3, 4) X D 1

end

In other words, what Is obtained is a description of how the value(s) in question were computed.
The result for this program should be read as: the value computed by the program is either I or
the result of multiplying I by 4 an arbitrary number of times. We omit further details for space
reasons.

5 Implementation

An implementation of set based analysis for ML has been developed over the last two years.
The system Is build on top of the SML-NJ compiler. Starting with the LAMBDA intermediate
representation of a program, our system incrementally builds and solves corresponding set
ronstraints. Many of the set constraints that are generated are trivial, and so an important part of
the effort to make the analyzer efficient was directed at ensuring that such constraints are solved
"on-the-fly", and are never explicitly generated.

Space does not permit us to describe the treatment of arithmetic, and in particular, the
treatment of if statements involving arithmetic expressions and comparisons. However, we note
that early results suggest that the current implementation deals adequately with these constructs,
and can be usefully employed to address issues such as the removal of unnecessary array bounds
checking.

An important aspect of the Implementation Is "poly-varlance" (the analysis analogue of
polymorphism). That Is, the implemeiation provides a mechanism to construct different "ver-
sions" of functions. In essence this is done by constraint duplication. However, for efficiency
reasons, we wish to avoid multiple passes over the input LAMBDA expression, and instead we

I5

first convert the LAMBDA expression into a compact internal format, from which multiple copies
of constraints can be rapidly generated. A key aspect if polyvariance is how to control the
generation of different versions of functions. One approach is to use the type information of a
program (e.g. if a function is polymorphic, then it is likely to be useful to treat it as a poly-variant
function). However, a goal of our Implementation was to provide a generic analysis tool for
functional programs, and so we did not want to commit to a typed language. Instead we chose
a scheme in which the program is analyzed twice - the first pass is a "mono-variant" analysis,
and the second pass uses information from the first to control a poly-variant analysis.

The following table presents some preliminary empirics for the implementation. We use
three programs. The first program Is the intmap structure from the SML-NJ compiler, which
Implements a mapping from integers to integers. The second models the game life, and is
written in an applicative (rather than imperative) style. The third is the lexer generator from
the ml-lex/ml-yacc collection. All times are in seconds on an PMAX 5000/200 with 64M and
running Mach. The second column of the table gives the number of "equations" generated1 °
(this excludes constraints that are solved on-the-fly). The third column is a crude estimate of the
space used to store and manipulate the constraints. Phase I is the mono-variant analysis. Phase
U is the poly-variant analysis (which uses information from phase I).

I program time(secs) equations space(MB)

L intmnap phase I 0.35 1360 0.08
(105 lines) phase II 0.37 1580 0.35

life phase 1 0.86 1925 0.18
(150 lines) phase U 3.0 13769 1.7

lexgen phase I 3.4 6504 1.6
o 170 lines) phase lU 3.7 9181 1.3

We expect substantial improvement in the running time and space of poly-variant analysis
as the control of constraint duplication in further developed. Note that the space requirements
of the poly-variant analysis are sometimes less than those for the mono-variant analysis. This
is because the mono-varioit analysis effectively folds different uses of a function together, and
although this results in fewer set variables, it may substantially increase the number of constraints
per variable (in the final explicit form constraints).

6 Conclusion

Starting with the simple intuition of treating program variables as sets, we have developed a
powerful, general and flexible analysis for higher-order call-by-value functional languages. The
contributions of the paper lie in two areas. First, in the very direct and appealing connection
between a program's set based apprt,_,,` .' i (which is what our algorithm computes), and its

leth implementatioemoneds al constraints with the same left-hand-side variable together. and the reaulting object is effectively

and equatio.

16

underlying operational semantics. Second. in the presentation of an algorithm (and implemen-
tation thereof) which combines (a) an accurate treatment of data-structures, (b) modeling of
side-effecting operations and (c) practicality.

Acknowledgments

Thanks to Olivier Danvy, Bob Harper, Peter Lee, Karoline Malmkjaer and David Tarditi for
many useful discussions and comments at various stages of this work.

17

References

1I A. Aiken and E. Wimmers, "Solving Systems of Set Constraints", Proc. 71, IEEE Srnp.
on Logic in Computer Science, Santa Cruz, pp. 329-340, June 1992.

[2] A. Aiken and E. Wimmers, "Type Inclusion and Type Inference", draft manuscript,
January 1993.

[31 A. Appel, "Compiling with Continuations", Cambridge University Press, 1992.

(41 L. Bachmair, H. Ganzinger and U. Waldmann, "Set Constraints are the Monadic Class",
Technical Report MPI-I-92-240, Max-Planck-Institute for Computer Science, December
1992.

[51 C. Consel and 0. Danvy, "Tutorial Notes on Partial Evaluation", Proc. 20Lh ACM Symp.
on Principles of Programming Languages. Charleston, pp. 493-501, January 1993.

[6] P. Cousot and R. Cousot, "Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints", Proc. 4"` ACM
Symp. on Principles of Programming Languages, Los Angeles, pp. 238-252, January
1977.

[71 N. Heintze, "Set Based Program Analysis", Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, October 1992.

[8] N. Heintze and J. Jaffar, "A Finite Presentation Theorem for Approximating Logic Pro-
grams", Proc. 171h ACM Symp. on Principles of Programming Languages, San Francisco,
pp. 197-209, January 1990. (A full version of this paper appears as IBM Technical Report
RC 16089 (# 71415), 66 pp., August 1990.)

[9] N. Helntze and J. Jaffar, "A Decision Procedure for a Class of Herbrand Set Constraints",

Proc. 51h IEEE Symp. on Logic in Computer Science, Philadelphia, pp. 42-51, June 1990.

(A full version of this paper appears as Carnegie Mellon University Technical Report
CMU-CS-91-110, 42 pp., February 1991.)

[101 N. Heintze and J. Jaffar, "An Engine for Logic Program Analysis", Proc. 7th IEEE Symp.
on Logic in Computer Science, Santa Cruz, pp. 318-328, June 1992.

[11] F. Henglein, "Efficient Type Inference for Higher-Order Binding-Tlme Analysis", Pro-
ceedings 5 th ACM-FPCA, Cambridge MA, LNCS 523, pp. 448-472, August 1991.

[121 N. Jones, "Flow Analysis of Lazy Higher-Order Functional Programs", in Abstract Inter-
pretation of Declarative Languages, S. Abramsky and C. Hankin (Eds.), Ellis Horwood,
1987.

(131 N. Jones, C. Gomard and P. Sestoft, "Partial Evaluation and Automatic Program Genera-
tion", "Prentice-Hall International", 1993.

[14] N. Jones and S. Muchnick, "Flow Analysis and Optimization of LISP-like Structures",
Proc. 6th ACM Symp. on Principles of Programming Languages, San Antonio, pp. 244-
256, January 1979.

18

[15] R. Milner M. lbfte and R. Harper, "The Definition of Standard MLV, MIT Press, 1990.

[161 P. Mishra and U. Reddy, "Declaration-free 'Ty'pe Checking". Proc. 12 th ACM Symp. on
Principles of Programming Languages, New Orleans, pp. 7-2 1, January 1985.

[17] F. Nielson and H. Nielson, "Two-Level Functional Languages", Cambridge University
Press, Vol 34, Cambridge TYacts In Theoretical Computer Science, 1992.

[18] J. Palsberg and M. Schwartzbach, "Safety Analysis versus Type Inference for Partial
Types" Information Processing Letters, Vol 43, pp. 175-180, North-Holland, September
1992.

[19] J. Reynolds, "Automatic Computation of Data Set Definitions", Information Processing
68, pp. 456-461, North-Holland, 1969.

19

Appendix 1 : Construction of Set Constraints

z > z :((X, {) (VA)

Z t. ei : (Xi, Ci) Z t ez2:(Xz, C2)
Z t> ei e2 M (Y, {Y? apply(Y', X 2), Y' ? ifnonempty(Z, XA)} U C U C2) (

z t> ei : (X, ,Ci), i = n..n

Z t> c(ei,..., e.) : (Y, {y c(XI,..., X)) U C1 U... U Cn)

X• t e (X, C)
Z t> ,iz.e : (y, {Y 2? Az.e, ran(Az.e) D M) U C) (ABS)

Z t2 el : (XI, CI) Z t> e2 : (Xz, C2) Z t> e3 :(A 3 , C3)
z > cae(e,,c(zz,..., X) *e 2, Y e3): (Y, CuC1 UC2 UC 3)

where C =lY 2case(Y',(~,., X..) Z2, Xy =, Z3), Y ;? ifnonempty(Z, X1)}

2 be:(X, C)
Z t> fix x.e I(M', { D' 2 ifnonempty(Z, X)} U C)

Figure 5: Construction of Set Constraints (complete version)

Figure 5 presents the complete details of the constructions of set constraints for a term. The
main difference between Figure 5 and Figure 3 Is that the relation Z t> e : (se,C) recursively
passes down a set variable which is empty if the expression under consideration is never called,
and is non-empty otherwise. The key property of the relation Z t> e : (se, C) Is that if Z is
empty then C Is vacuously true, and if Z is nonempty, then se and C are equivalent to those
constructed using the simpler deductive system in Figure 3. We now define SC(eo) as follows:
if Z is a new set variable and Z t> e : (X, C), then SC(eo) is the pair (X, {fZ D e) U C) where
e is some arbitrary sc-value. Note that all sc-values are set expressions and that the choice of
e is arbitrary - its only purpose is to force the variable Z to be nonempty, since otherwise the
constraints C would be vacuously true.

20

