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Abstract. The evolution of three-dimensional disturbances in an incompressible three-
dimensional stagnation-point flow in an inviscid fluid is investigated. Since it is not possible to
apply classical normal mode analysis to the disturbance equations for the fully three-dimensional
stagnation-point flow to obtain solutions, an initial-value problem is solved instead. The evolutioti
of the disturbances provide the necessary information to determine stability and indeed the com-
plete transient as well. It is found that when considering the disturbance energy, the planar
stagnation-point flow, which is independent of one of the transverse coordinates, represents a neu-
trally stable flow whereas the fully three-dimensional flow is either stable or unstable, depending
on whether the flow is away from or towards the stagnation point in the transverse direction that is
neglected in the planar stagnation point.
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I. Introduction.

Previous analytical work investigating the stability of planar stagnation-point flows has con-

centrated on the mathematical simplification provided by classical mode analysis of streamwise dis-
turbances. Wilson and Gladwell (1978) have shown that incompressible planar stagnation flow is
always stable to three-dimensional normal mode self-similar disturbances that decay exponentially

outside of the viscous boundary layer. Lyell and Huerre (1985) re-examined the planar stagnation
flow problem by using the same class of disturbances and verified the results of Wilson and
Gladwell as well as characterized the other stable eigenvalue branches by showing that. after the
initial branch found by Wilson and Gladwell, the other branches come in pairs. In addition, by a
nonlinear analysis using a Galerkin method, these authors indicated that this same flow is unstable

for disturbances of sufficiently high amplitude. On the other hand, a numerical study by Spalart

(1989) found no such instability suggesting that this was not the case. Brattkus and Davis (1991)
showed that the normal mode self-similar disturbances were the least stable of the class of distur-
bances that have a power like behaviour in the downstream coordinate.

Lasseigne and Jackson (1992) allowed for density variations induced by a temperature
difference between the freestream and the plate and determined that the stagnation flow remained

stable to small streamwise disturbances regardless of the plate temperature. The effect of cooling
the plate was to decrease the decay rate (less stable) of the small wavelength disturbances while
increasing the decay rate (more stable) of the moderate wavelengths. Again, only three-dimensional
normal mode self-similar disturbances that decay exponentially outside of the viscous boundary
layer were considered. Studies dealing with the swept attachment line also concentrated on stream-
wise normal mode linear disturbances. Hall, Malik and Poll (1984) determined that a region of
instability (in frequency-wave number space) associated with increasing crossflow exists. In
independent investigations Kazakov (1991) and Lasseigne, Jackson and Hu (1992) determined the
effects of surface temperature variations on this region of instability; the latter investigation also
allowed for the effects of suction or blowing at the surface.

It is not possible to analyze the stability of the fully three-dimensional stagnation-point flow
using normal mode streamwise disturbances since the disturbance equations do not admit this class
of disturbances as an eigenvalue problem. Therefore, the approach taken in this investigation is
different than that of previous investigations. A more general initial value problem is solved using
the methodology developed in Criminale and Drazin (1990) and has its origins from the work of
Kelvin (1887) and Orr (1907a,b). The disturbances are taken to be initially bounded in all direc-
tions and the evolution of initial conditions is determined analytically and in closed form. By con-
centrating on the mean flow subject to disturbances in an inviscid fluid, the fully three-dimensional
stagnation-point flow can be solved with the planar stagnation-point flow as a special case.

The method ot analysis utilizes a moving coordinate transformation that allows for easy
integration (in time) of the individual vorticity componeuits. Then. the double Fourier transform in
the new transverse coordinates is used to reduce the mathematical problem to the solution of ordi-

nary differential equations in which time appears strictly as a parameter. Thus, a completely analyt-
ical solution is found to the initial value problem describing the evolution of three -mensional dis-

turbances in three-dimensional stagnation-point flow in an inviscid fluid. The time evolution of a
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single Fourier mode in which the disturbance is periodic in the transverse directions is investigated
in detail as well as the evolution of an initially localized disturbance. In both cases, the evolution

of the total energy of the disturbance is used to illustrate the importance of the transient. Kelvin
(1887) and Orr (1907a,b) have shown for different flow configurations that there can be growth in
the perturbation energy even when the classical mode analysis shows that the flow is stable for
long times.

Farrell (1989) applied this approach to two-dimensional disturbances within a two-

dimensional counterflow as a good approximation to the local flow in regions of confluence and
diffluence. It was determined that plane wave disturbances with dependence in the transverse coor-

dinate and independent of the other coordinate have energy that grows exponentially in time. Plane
wave disturbances with dependence in both coordinates experience an initial exponential growth,

but eventually decay as time progresses. Disturbances with finite wave trains that were not spatially
symmetric were shown to be stable but these disturbances also experienced an initial transient
growth in energy with the energy asymptotically approaching a constant amplitude. Symmetric
finite wave train disturbances were shown to not experience the initial transient growth and to have

energy constant in time. This was seen to occur in both regions of confluence and diffluence.

The governing equations for the three-dimensional stagnation-point flow, the moving coordi-
nate transformation and the linear disturbance equations are presented with the disturbance equa-

tions solved by the use of Fourier transforms in the transverse coordinates. Selected results for the
evolution of a single Fourier mode are given in Section 3 and, in Section 4, results pertaining to
the time evolution of a finite wave train described by an initially Gaussian profile are presented. In
Section 5, a constant pressure boundary condition is considered as an alternative to the zero normal
velocity condition. Section 6 contains a discussion on the effects of background rotation and parti-

cle paths. Conclusions are given in Section 7.

2. Problem Statement and Basic Equations.

The problem under investigation is that of linearized disturbances in a three-dimensional

stagnation-point flow. The basic flow is given nondimensionally by

U =x, V =-(I +X)y, W = Xz, (1)

where X is a measure of three-dimensionality. For X = 0 the flow is a two-dimensional stagnation-
point flow; for X = 1 the flow is axisymmetric; for - 0.4294 < X, < 0 the flow corresponds to two

symmetrically displaced protuberances (Davey, 1961) displayed in Figure 1. For X < 0, it is
important to observe that the flow is toward the stagnation point in the z-direction and away from
the stagnation point in the x-direction. In addition, Davey has shown that separation occurs at

X = -0.4294, reversed flow exists for - 1 : X < -0.4294, and no solutions are possible for
. < - I.

The nondimen-4Tmal linearized equations for small disturbances are written as

u -. -r w+ =0 (2a)
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u, + x u,,-( +),)y u, + xz u, + u -- -P" (2h)

vt +x v" -(I1+X)y Vy + xz v, -(1 +X) v =--py (2c)

wt + x w2 - (I+M)y wy + Xz wZ + w- = -p2  (2d)

where u, v,w and p are the velocity and pressure perturbations, respectively. The appropriate
boundary conditions require that all disturbance quantities vanish as y -+-- and the normal velo-
city v is zero on the wall. In addition, initial conditions consistent with the boundary conditions
must be supplied.

The above equations can be recast in terms of the vorticity components oy,Coy, wo in the
x, y, z directions and are

D =x D wy 1 D oZ =kmz (3)

Dt Dt Dt

where D IDt is the material derivative defined by

DO =()I + x ()x -(l+X)y + +xz ()z. (4)
Dt

In general, only two vorticity components can be specified at time t = 0; the third component is
found by appealing to the equation of conservation of vorticity, given by

+ Y~ + = 0. (5)
ax a0y az

In this study, the initial profiles for the vorticity components (oq and O0z are specified, and the
above equation is used to determine my. Once the vorticity has been determined from (3), the v
velocity component is found from the following relationship

V2 v = a -• ax (6)
ax az

where V2 is the three-dimensional Laplace operator. The other velocity components are determined
by appealing to the vorticity relations together with the continuity equation, yielding:

V 2u- amjy a-%V
az ax ay (7)

V2w ao)y a2v
ax ayaz (8)

where V2 is the two-dimensional Laplace operator in the x - z plane.
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By following Criminale and Drazin (1990), an analytical solution is readily obtained if a
change from an Eulerian to a moving coordinate system is made. The moving coordinate transfor-
mation

S=x e-', 11 y el+', = z e-, T = t (9)

is chosen so that the system of equations (3) have coefficients that are functions of time only and
the material derivative (4) becomes

Do 3 () (10)

Dt dT

The notable feature of this transformation is that the partial differential equations for the individual
vorticity components (3) can then be immediately integrated in time and the solutions are

0j T 0 -(I+X)T (Az=60 eXT(j). =meT Wy = mye(o;~ •=m~x !1

where the superscript 0 denotes the specified values at T = 0. Once the initial values .o° and w°
have been made, the initial value of o° is determined from the conservation of vorticity (equation
(5)). The equation for the v velocity component in the moving coordinates is

Av = e-(I-X)T 3w° e(I--X)T (12)

where A is the Laplace operator in the moving coordinates, namely

A = e 2T + + e 2 1+X)T (2 + e-2XT (13)
ah2  2 K2

It is noted that the time dependence in equation (12) appears as a parameter only and hence finding
a solution to (12) is essentially a spatial problem. The equations for the other two velocity com-
ponents in the moving coordinate system are

A2 u = e-(I+ 2 )X)T Y_ y e .T " (14)

A2 w = =e- 2+X)T -y eT (15)

at; ' 1

where

A =e-2T +e 2 X (16)

is the two-dimensional Laplace operator in the moving system.

It is now assumed that Fourier transforms may be taken in the • and • directions, which
implies that the disturbances are bounded in these directions. The double Fourier transform is
defined by
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a(ayT) u T) + d (17)

etc. for i, D, P, 0b with the inversion given by

u( ,q,,T) f= a a(a1y, T ),,T)e -(UE+.T;)d ady. (18)
(2,E) 2 _.

The transforms of the relevant equations are

e + ), 2 V = -i abe+ i yd). (19)

MY0 = ia ob + i Y6°., (20)

a !Iy [ cyO e-(1+ 2 k)T a e XT] (21)

Y J•-e 1 (22)'z L U1
with

2 = a2e 2  + ye 2 X- . (23)

The equation for i is a second order ordinary differential equation in TI with time dependent
coefficients, and since C2 is just the Fourier transform of A2, the velocity components a and VD are
determined directly from the algebraic relations provided by transforming equations (14) and (15).

The evolution of a single Fourier mode can be studied by choosing the initial conditions for

the vorticity components o,° and o°, to be

0.°z, o°) = ( U., ,I, ) e + 801 -Yo) (24)

since (x, y,z) = (,l, ,) at T = 0. In Fourier space,

(00, 6,z) = (Q., , Q, ) 8(-ato) 8(y-yo) 5 (il -yo). (25)

The initial value for the last vorticity component is found by transforming equation (19) and
integrating in the rl-direction:

6)y=(iail.x + iylz)8(a -oa)8(y-yo)[ H(il-yo)-1] (26)
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where H(r1) is the step function. The constant of integration has been chosen so that all ot the
velocity components vanish as ri -), -.

With the vorticity components known, the diflerential equation for ý is integrated, ande(I+XT I X)-X ) 7
= 2- i (x Q. e-•+ - i ylý' e-11+' 1 8(( - C0 6(," - 71)

x L e- 0 1 ' l-ý0 - e- l' ( ri1+ V o) - (27)

where 6 is as defined earlier. The solution decays as rq -+- and is zero at the wall. Once tile

transform is inverted, the velocity component is given by

v2(T1,,, T){ i oigj0: e- 2 - iy e- 2 X } -Oyor+Y,)
2 (2 g)2 &(

x [ e-% 1j 7ly~l_ e -•e -(' .X "(fn+Yo) (28)

where

2 2T 2 -X TS- e- + Y6.e (29)

The u and w components are determined directly from the earlier equations and, upon inverting
the transforms these components are found to be

=(• , T)= -YO ao Q. + yo e-(I+2X)T e [ H(r - yo) 1 j(21c)2NI I

- CEO t o2 oQe -3To_ 0.e- i+2k)T} e-i (CEO ý+ Yo02 (27C)2 2 oa on

x [ sign (I- -y-)e e X ri.-,il e- Me- e(l+XT( 1+y°]e (30)

and

w= (2I)2[to Q oQ ( e n(1 - yo) -

- YO f e (2-).xr -_ art'i(%kVo
2 (2nr)2 i o )T -f } e'-3'r

x I sign (f -yo)e &oe I n-yal - e. Ne(I (31)

3. Single Mode: Infinite Wave Train.

In this section we present selected results for the single mode solutions given above for u, v,
and w. We first note that the solutions are a linear combination of (0, and Q, Therefore, there
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exists two modes, defined as follows:

Mode I: .= O, l• =I

Mode I/: q= 1, uz= 0

The results for Mode 1 are shown in Figure 2 for three values of the wavenumber in the z -

direction ('y = 0, yo = 0. 1, and yo = 1.0) and a single value of the wavenumber in the x-direction
(Cto = 1.0). Plotted in this figure is the maximum amplitude of the velocity components I u I max,

I V I max, and I w I max as a function of time. The maximum in the u and w velocities are at the
wall, while the maximum in the v velocity is in the interior for all times since it is required that v
vanish at the wall. In each sub-figure, four values of the three-dimensionality constant were
chosen: a) axisymmetric flow, X = 1 (shown in the figures as a small-dashed curve), b) X = 0.5, c)
planar stagnation-point flow, X = 0 (shown in the figures as a large-dashed curve), and d)

= -0.2.

Included in these figures are the results for the special cases of two-dimensional disturbances
in a two-dimensional flow (yo = 0, X = 0), two-dimensional disturbances in a three-dimensional

flow (yo = 0, X * 0), and three-dimensional disturbances in a two-dimensional flow (yo * 0, X = 0).

As seen from the figures, all three components of the flow exhibit exponential decay in the
long time solution for the response of this mode. The results for the u velocity show that the decay
rate is independent of the variable X and of the wave number in the z direction. Since the analytic
solution for the velocities is known, this information can be found by determining the behaviour of
equation (30) as T -- -0 and is

u (ý,0, , T)= 1 e-T e-'i(Ot't°;) (32)(2 it)'

where the first term of (30) is dominant when X < 1, and there is a balance between the first and
second terms for the axisymmetric case X = 1 that does not, however, change the limit. For the
long time behaviour of the v component of the velocity the maximum must be determined. The

maximum is found to always occurs at Tj = Yo so that

(,yo,,T) -(3)T -i (C +70 ;) (33)

(2it) 2

with the axisymmetric case again being a special limit that does affect the amplitude in the above
equation but not the decay rate. The asymptotic behaviour for the w component of the velocity is
also determined analytically. From equation (31) it is found that

w (t,0, ,T)= (oYoYo e-(3+X) e- (CEO°t + (34)
(2 t)2 1 ,. e (34)

The dependence of the decay rate of the v and w components on the three-dimensionality parame-
ter X is clearly seen in Figure 2.



Although the above analytic tonns appear to be relatively simple. tile use of the tra.•stonned

variables ý, ý and tj tend to hide some rather significant changes in the spatial structure of the dis-
turbances. For X > 0 there is a stretching of the initial Fourier mode forn in both tile x -direction
and the :-direction. 'or the axisymmetric case, *his stretching occur- at an equal rate in both direc-
tions. For the planar stagnation-point flow X = (0 there is no stretching of the disturbance in the :
direction, and for X < 0 where the mean flow is towards the stagnation point in the : -direction,
there is an actual contraction of the initial Fourier mode form in the z-direction. In the v direction,
it is noted that although the maximum in v velocity is at a fixed value of TI, this implies aiat this
maximum approaches the wall exponentially fast when the problem is convened to the physical
spatial variables, that is the inverse of (9).

Although the long time behaviour of the disturbances is of course very important, equally
important is the transient evolution since it is possible for there to be signiticant initial growth (or
perhaps a long time persistence) of the disturbance quantities before the inevitable exponential
decay. By examining the results of Figure 2, it is seen that the initial response to a Mode I distur-
bance is typically a linear decay in time. The initial linear decay rate depends on the value of the
three-dimensionality parameter X with X < 0 decaying at the slowest rate. The X dependence of this
initial decay rate is strongest for smaller wave numbers ir the z-direction.

The results for the single mode response to a Mode I1 disturbance are shown in Figure 3. A
significant difference from the Mode I results is immediately noticeable. Analytically the long-time
limits are given by

u (ý,0, , T)- °Y°Y0 e -20+X)e e- i(a-o+ y, (35)
(2 n)2 To I

iYoYo -(+XT-i (•+7o 0 )
v(4, yo, e, T) = e-(1 +3.)T e , (36)

(2 7C)
2

and
I e~~'-i (a0•+y0 0)w (k,0,ý, T) e -XT•. e- , o+T (37)

(2 IC)
2

as T - I oo. It is seen from Figure 3 that the u and v components of velocity decay exponentially
for all X while the w component of velocity only decays when the three-dimensionality parameter
X is greater than zero. This value of X con "onds to a stretching of the original disturbance in the
- direction. However, for the planar stagnation-point flow where 0 = 0 the K, component
approaches a constant independent of the initial wave number in the x and Z directions. For the
case where there is mean flow towards the stagnation point along the z -direction (X < 0), the vi
component grows exponentially. It is seen that the initial behaviour of the u and v components
also reflect this differing behaviour for the planar stagnation-point flow and the X < 0 case. It is
also true that there is initially linear growth of these components. As in the Mode I case, the
dependence of the behaviour for early time on the three-dimensionality parameter is strongest at
smaller wave numbers in the z -direction
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The results presented in Figures 2 and 3 give the maximum values of the velocities, but con-
sidering the severe contraction of the disturbances in the v -direction as evidenced by the movement
of the maximum in the i' velocity toward the wall at an exponentially fast rate. it is perhaps more
useful to look at the growth or deca) of the energy of the disturbances. For the single Fouwer
mode results presented in this section, it is necessary to consider the energy per period in the ý and
' directions, or equivalently the energy per period in the x and : directions. Because of the
stretching in the x -direction and the stretching or contraction (depending on the sign of X) in the
:-direction, these results do not readily lend themselves to direct physical interpretation, however,
they do help point out the effect that the contraction has in the vertical direction v. Shown in Fig-
ure 4 is the quantity E as a function of time defined by

E(t)= I[ + IV,2+ I W ] dy (38)

where u. v. and w are given by (28), (30), and (31). Each graph was nrmalized by the value at
time t = 0. The amplitudes Q., and iz are equal in the mixed mode results. In each sub-figure,
four values of the three-dimensionality constant were chosen: a) axisymmetric flow. X = I (shown
in the figures as a small-dashed curve), b) planar stagnation-point flow, X = 0, c) X =- I/ 3
(shown in the figures as a large-dashed curve), and d) X = -0.4. From these figures, Mode II is
seen to represent disturbances that may grow in energy as it also represented disturbances with
growth in the maximum values of the velocities. However, it is noted that although the maximum
in the velocities can grow for any X. < 0, the energy per period grows only for X < - I / 3. This
phenomenon is directly related to the contraction in the y direction. Very little dependence on the
wave number in the z direction can be detected which is consistent with the results of Figures 2
and 3. The energy of Mode I is dominated by the u and v velocities which show little depen-
dence on Yo, and the Mode II energy is dominated by the w velocity which also shows little depen-
dence on yo.

4. Finite Wave Packet.

In the previous section, the results for an initial disturbance that consisted of a single Fourier
mode were presented. This disturbance has an infinite spatial profile in the x - z plane. Considering
the distortions in the x and z directions introduced by the transformed variables, there is consider-
able doubt as to the proper interpretation of the single mode results. To resolve this difficulty in
the anAlysis, an initial disturbance that is localized in space is chosen. The initial vorticity profile is
taken as a Gaussian. This disturbance is initially symmetric in the x -z plane and, since the invis-
cid problem is being investigated, a Gaussian profile in the y direction is also chosen and all boun-
dary conditions can still be satisfied.

The analysis proceeds by replacing (24) with

LI- , Q -(2 o 0 3o) z) 4  4 e (39)0 IOZ= (213c2P 4e 4 e 43(39)
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In Fourier space,
,2

(6',, ) 0) = 4"ta(11 'a:) (40)Z (2 7C3 a2 0)1/4

where the constant is chosen such that the integral of the square of the vorticity over the domain is

a constant for each choice of o and ,.

The above initial conditions can be substituted directly into equations (19) and (20) which
can then be solved for ý and 6)() or the previous results for a delta function initial condition in the
v direction can be integrated over the dummy variable yo. Either way, the transform of the vorti-
city (o4 and the v component of velocity are given by

b=-(i +iy 4) 4F( 2+y2 (41)
• . (2Q + 3 y23)1/ 4 eerfc (1

and

S(i cail e-(+X)T - i ylx e-(+ 3X)Tr) 4rcO O- 2 y

(2 ic3  "2P)1/4

X e 2(-e - e(I+X)T e&e-41)neT1rfc 1+ Ue-<l+X)T

e~ft(Iý)T T1 erf c L 2),) Txev oj + 2 e- e-(] )T 1 erf [.cetI0+ X) TsJj. (42)

The transforms of the u and w components are found directly from equations (21) and (22) and all
transforms can be inverted using the formula (18). The long time behaviour of v' at the wall for
Mode II is given by

t (0, T) = Y 4 7o - e_-(" +Y2 ) eT (43)
(2 r3 02 p )1/4

as T -- oc which shows that the transform grows exponentially for X negative consistent with the
results of the single mode.

In order to examine the true behaviour of the evolution to this initially localized disturbance,
the energy as a function of time is computed. The energy in terms of the unstretched variables is

E(T)= ± lu 2 [u++v2+w 21dxdz dy, (44)

which can also be given in terms of integrak over the Fourier transform quantities in the stretched
variables as

E()-et+X')T 00l

E(T) = T8r2 Q2( eT e XT, y e" +X)T,T)d~cdjdy, (45)
8 1C f



where

Q cw, y, ,T) = ý2+ V+,2. (46)

The normalized energy of the response to a Mode II gaussian profile with J = 1.0 and a = 0.5 is
shown in Figure 5 for eight values of the three-dimensionality parameter X ranging from X = I (the
axisymmetric case) to X = -. 4 (near separation). A number of interesting features are noticeable.

First, for the planar stagnation-point flow (X = 0), the energy approaches a constant value approxi-
mately three times the initial value. This is in agreement with the results tracking the maximum in
the velocities. The mean flow produces a contraction of the disturbance in the Y -direction, initially
increasing the magnitude of the w velocity at the wall and initially increasing the energy of the

disturbance. However, a balance develops between the continued contraction in the y-direction and
the relief provided to the flow in the x-direction thereby leading to the situation where the energy

approaches a constant. This behaviour of the disturbance energy for the two-dimensional planar
counter-flow was also seen by Farrell (1989). The purpose of this study is to determine the effects
of the three-dimensionality of the mean flow. When these three-dimensional effects are considered
(X * 0), it is seen that the rlanar stagnation point flow represents a special case. For X slightly
positive, there is again an initial transient growth in energy. The extra relief provided to the flow
in the z-direction means that the balance that developed for the planar stagnation-point flow does

not develop and the energy of the disturbance eventually decays to zero. For X sufficiently large

and positive there is no initial transient growth implying that the relief provided to the flow in the
:-direction is sufficient to prevent the the initial increase in disturbance energy. From Figure 5, it
is seen that for the special case of axisymmetric flow (X = 1), the energy undergoes an immediate

exponential decay. For X less than zero, an unstable situation develops, and the energy of the dis-

turbance continually increases at an exponential rate owing to the contraction in both the v and z

directions which is not balanced by the relief in the x direction.

It is also interesting to examine the behaviour of the vorticity components which are given by
equation (11) in the transformed coordinates. In the physical coordinates, the vorticity field is

undergoing a contraction in the v-direction, an expansion in the x-direction and an expansion (for
X•> 0) or a contraction (for X < 0) in the z -direction. The exponential time factors in equation (11)
indicate that for a Mode II disturbance vorticity is transferred from the y-component to the x-

component while the transfer of vorticity between the y and z components for a Mode I distur-
bance depends on the sign of X. By considering the response of a Mode II initial disturbance, it is

seen that in the neutrally stable case (X = 0) the decay rate of the Y -vorticity component is equal to
the growth rate of the x-vorticity component. For the stable case (), > 0). the decay rate of the v -
vorticity component is greater than the growth rate of the x-vorticity component; whereas, for the

unstable case (X < 0). the decay rate of the vy-vorticity component is less than the growth rate of
the x-vorticity component. For the Mode I disturbance, either both components are decaying

(X < 0), or the decay rate of the y -vorticity component is always greater than the growth rate of

the z-vorticity component. Perhaps this is an indication of why it is the Mode 11 disturbances that
experience unstable energy growth rather than those of Mode I.
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5. Constant Pressure Boundary Condition.

One problem of interest in geophysical fluid dynamics is the case where there is a constant

pressure surface in lieu of a condition on the velocity. Such a problem has been examined by Eady

(1949), for example, where plane Couette flow is mathematically equivalent when the constant

pressure surface is used. Consider p = 0 at y = 0 rather than the v velocity. Of course the surface

v = 0 can no longer be thought of as a solid wall. To derive an equation which governs the time

evolution of the pressure, the momentum equations (2b) and (2c) can be combined with the con-

tinuity equation (2a) in the (ý,rI, ý, T) coordinate system to get

A2P =2(X-l)e-Ta-+ -2XT a (e(13, (47)

where it is immediately seen that the axisymmetric case X = I is a special case. In keeping with

the previous analysis, the pressure equation is first transformed into Fourier space and then ai is

eliminated by using (21), yielding

_2y (X- 1)6)e-2(0'+X)T + e-(-Xr

- e-2 XT a -(e (I+!X)T (48--- ••-).(48)

If the initial conditions are considered to be given by equation (24) for this problem so that only a

single Fourier mode is investigated, then 6). is given by (26), while (19) can be integrated to find

•, yielding

=A 1 (T)e - -Occ0X)T I r-yol +A 2(T)e T (qy) (49)

where

A I(T) = ell+X)T { io. e- - i y[x e-(+I X)T}( - ao) 8(y - Yo) (50)

The determination of A 1(T) satisfies all of the conditions at q = Yo and it is left to impose the con-

dition on the pressure at 71 = 0 in order to determine the remaining unknown function A2(T).

Equation (48) provides the necessary information in determining A2, but it is convenient to work

with an alternate dependent variable defined by

+ 3 %- TyT-(1 ' r oVo e-, I +B (T)=_ e(I3.T (0, T) &e2T A Ieot o - A.e ". (51)

The equation for B (T) is then

dB 2 a"2 ( e-2)e-2 B =1) T 2 (52)

dT 62

where
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= (i o:2.Q + i yL2: )(5(a - 0& Y- Yo). (53)

It is helpful to find the long time solution in order to determine the effects of the three-
dime- onality parameter X. Since Mode 11 (ik, = 1.Q:. = 0) is the more interesting initial condi-
ti, the rest of the analysis is restricted to this case with X< 1. The long time solution for B is
determined directly from (52) or

B = B,,I" - -(y- ot B_) 2(1-Le (54)

as T -- where the the proportionality to 0 is explicitly given and the constant B_ can be found
numerically. The behaviour of A is determined directly from equation (50), and A, from equation
(51). These limits are

A1(T) = - /-YeXT 8(o - oe)y- ye). (55)
2 lyl

A2(T) = -(1" -B.),) e (o) -8 zo) _ (y- Y6)y (56)
ll2

as T - o. The long time behaviour of the velocities 12, V, ý. is found through equations (24).

(49) and (22) indicating

a (0,T) = (-X (y- caB*)e -rT 8(a _ ao)8(y- y0), (57)

V(0, T) I (y - aB.) e1T5 aU.) 8(y- _yo), (58)

vý (0, T) a o B .,eXT 8(ar _ ao)•Y 5( To), (59)
Y

as T - o,. It is seen that, for the boundary condition p = 0 on the surface y = 0, the velocity

components i and i of Mode II are exponentially growing when the three-dimensionality parame-
ter X is negative.

6. Effects of Background Rotation; Particle Paths.

The expression used for the basic velocity and given by (1) can be modified to include effects
due to backgrourd rotation (strain). Specifically, if 0, is the constant dimensional rate of rotation,

then

U =x + oZ, V =-(l+ X)y. W =Xz - o0 X. (60)

becomes the new non-dimensional representation. The process of shifting to a moving coordinate
system and solving for the perturbations as previously done can likewise be accomplished here but
with a noticeable increase in complexity. For example, the fundamental vorticity equations (3) used
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for solving the initial-value problem are no longer uncoupled and the net effect is a higher order
differential system. Thus, the dynamics is altered to some degree. In particular, temporal oscilla-

tions become possible but the overall stability conclusions remain. These points can be illustrated
be examining the paths of the material particles in the basic flow.

The Cartesian components for any particle in a Lagrangian frame can be written using (60) as

-=U =x + Q0z.(61a)
dT

dy = V =-( + X)y, (61b)
arT

d-- = w =.z - Qo x . (610)

dT

By assuming x = xo, y = y. and z = z, at time T = 0, the solutions for (61a,b,c) are

x =x0ecr (62a)

-= yo e (62b)

z=zoe X - "i°x 0 [ eaT - e •xT (62c)

with

CY +. Il+ 1_4 R, + 1 (63)
o- 2 (1 + X.)2 "

Oscillatory solutions are possible if 0, > - (I - X). In general, particles will move arbitrarily far
2

from any initial position.

Two interesting limits of (62a,b,c) are when Qo = 0 or X = 1; X can never be very negative

and therefore a change in the system behaviour using this parameter is not possible. In the first
instance, 0i0 = 0, then

x = xo eT, y = y. e- (I +X)T Z = Zo e XT (65)

The novel feature of (65) is that these results are identical to those of (11) for the vorticity where

x,y,z are replaced by (o, ,y, (oz. In short, this is a unique situation where, for a three-

dimensional flow, the particle paths are synonymous with vortex lines. Extending this argument to
the Q. * 0 case can be made by conjecture since the vorticity has not bferi determined under these

circumstances. There is little likelihood that the unstable aspects of the flow, however, can be
changed by a finite £Q,. When X = 1, the basic flow is axisymmetric and 3 = 1 + ij Q indicating
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that background rotation has caused the system to have inertia and therefore oscillations in time.

7. Conclusions.

We have investigated the evolution of three-dimensional disturbances in a fully three-
dimensional stagnation-point flow in an inviscid fluid. It has been shown that the planar

stagnation-point flow is a special case in which the disturbance energy approaches a constant for
long time. If the flow in the second transverse coordinate is away from the stagnation point then

the flow is provided enough relief such that the disturbance energy decays after an initial transient
growth. As the limiting case of axisymmetric flow is approached, the disturbance energy is found
to decay without an initial transient growth. For flow towards the stagnation point in the second
transverse direction, it is found that the disturbance energy may grow exponentially thus indicating
an unstable flow configuration. These results were found by determining a closed form solution to
the initial value problem even though a classical mode analysis was not possible for the fully
three-dimensional flow.

Because of the inviscid assumption, the results for the planar stagnation-point flow cannot be

compared directly with previous work but the method used here can be extended (with consider-
ably more mathematical complexity) to the study of the inviscid mean flow subject to viscous
linear disturbances. These results can be compared with some of the previous work. However, any
results for this problem can only be suggestive in view of the fact that the basic flow is derived
from an inviscid basis.

Background rotation or strain of the field can only alter the dynamics by forcing the system
to have temporal oscillations rather than prevent instabilities. Finally, more comprehensive material
particle path information cotild be obtained if one allows for the velocity field to include the pertur-
bations as well as the basic flow. Pursuit of this information will involve three-dimensional coupled
nonlinear, non-autonomous differential eauations.
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Figure 1. Schematic three-dimensional stagnation point flow.
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Figure 2. Maximum amplitude of the velocity components as a function of time for Mode I

disturbances for three values of the z-wavenumber. in each sub-figure, four values of the

three-dimensionality constant chosen are: a) axisymmetric flow, X = I (shown in the figures

as a small-dashed curve), b) X = 0.5, c) planar stagnation-point flow, X = 0 (shown in the

figures as a large-dashed curve), and d) X = -0.2.
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Figure 3. Maximum amplitude of the velocity components as a function of time for Mode If
disturbances for three values of the z-wavenumber. In each sub-figure., fur values of the
three-dimensionality constant chosen are: a) axisymnmetric flow, X = I (shown in the figures
as a small-dashed curve), b) X = 0.5, c) planar stagnation-point flow, X = 0 (shown in the

figures as a large-dashed curve), and d) K = -0.2.
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