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1. INTRODUCTION 

Increasingly advanced expcrimcntal probing of molecular systems containing three or four atoms have 

contributed greatly to a detailed understanding of complex chemical behavior. Knowledge gleaned from 

these studies can be extrapolated to larger polyatomic systems to explain intricate chemical and physical 

processes which otherwise could not be unravelled due to the large number of reactions and degrees of 

freedom in bigger molecules. 

Simple molecular systems are amenable to investigation through a variety of experimental and 

theoretical techniques. In experiments, chemical processes can be observed and resolved because 

complications arising from the number of secondary reactions and products are limited. From a theoretical 

standpoint, more sophisticated methods, which might be impossible to apply to a larger polyatomic, can 

be used to treat systems with small numbers of electrons. We present an ub inirio MP4 study of the 

potential energy surface (PES) of such a small system, the hydrogen atom reaction with OCS. 

There are two distinct reaction channels for this system that are expected to show dramatically 

different dynamic behavior because of a large difference in reaction enthalpy. The two reaction channels 

are: 

H(2S) + OCS(‘C) ---> OH(21-I) + CS(‘C) AH’298 = 57.2 kcal/mol (1) 

H(2S) + OCS(‘C) ---> SH(211) + CO(‘C) AH’298 = -12.1 kcal/mol . (11) 

The earliest experimental studies of H + OCS concentrated on the kinetics of the sulphur abstraction 

reaction (II) (Tsunashima et al. 1975; Lee, Stief, and Timmons 1977). Absolute rate parameters for (II) 

were given in separate studies (Tsunashima et al. 1975; Lee, Stief, and Timmons 1977), but no 

mechanistic arguments were made. Reported activation energies (3.85 kcal/mol) were in good agreement, 

although the pre-exponential factors differed by a factor of 1.7. Both groups concluded that the small 

pm-exponential factor, when compared to other hydrogen abstraction reactions, suggests a low entropy of 

activation that can be explained by a tight activated complex. 

The results of new state-selective experiments by Bohmer et al. (to be published) and Nickolaisen 

et al. (to be published), as well as earlier work by Hausler et al. (1987), have led to speculation about the 

mechanisms of (I) and (II). Hausler et al. (1987) measured SD and OD product internal energy 

1 



distributions in studies of deuterium scattering at high collision energy (60 kcal/mol). Experiments were 

performed under both bulk gas phase and precursor-geometry-limited (PGL or complexed) conditions, with 

193~nm photolysis of DBr serving as the D atom source. These authors found that the SD distributions 

for (II) were colder than expected from statistical theory, while OD distributions for (I) were near 

statistical. Under bulk conditions, Nickolaisen et al. (to be published) studied reactive collisions of hot 

hydrogen atoms with OCS at energies up to 32 kcal/mol, which is lower than the threshold for formation 

of the products of (I). CO internal energy distributions were nonstatistically cold, with a particular bias 

against rotation. Most recently, Biihmer et al. (to be published) have reexamined OD and SD products 

from the D atom analogues of (I) and (II), SD and OD nascent distributions were again measured under 

bulk and complexed conditions, with DBr and DI as the hot atom sources. The SD distributions were 

essentially the same under bulk and complexed conditions, showed little dependence on collision energy 

(between 44 and 58 kcal/mol), and were consistently colder than statistical predictions. Partitioning in the 

OD product showed a similar lack of dependence on initial precursor orientation. All of these authors 

have suggested that formation of four-body intermediates might be important, but the details of the 

reaction mechanisms have been the subject of some debate. 

The current theoretical study sheds light on the mechanistic details of (I) and (II), and provides crucial 

information to augment the recent state selective studies. Important mechanistic questions raised and 

addressed in. this work are: (1) What are the primary reaction paths for (I) and (II)? (2) Does the 

hydrogen attack the OCS molecule end-on or broadside ? (3) Do stable four-body intermediates exist? 

(4) Does hydrogen migration play a role in the reactions? (5) What are the characteristics of the activated 

complexes of the reactions ? Besides addressing these questions, the details of the PES offer explanations 

for the experimentally observed product internal energy distributions of (I) and (II). 

2. METHODS 

Stationary points on the H + OCS ground state PES were located by restricted open-shell Hartree Fock 

(ROHF) calculations and by unrestricted Hartree Fock calculations with second-order Moller-Plesset 

correlation energy corrections (UMP2), both using the 6-31G** basis set (Franc1 et al. 1982). Harmonic 

vibrational frequencies were calculated for each stationary point on both ROHF and UMP2 surfaces, 

providing the zero point energy and characterization of each extremum. The ROHF optimized structures 

and subsequent fourth-order Moller-Plesset correlation energy corrections (ROMP4) were calculated using 

Version 5.0 of the CADPAC series of quantum chemistry codes (Amos and Rice 1992). The UMP2 
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optimized structures, and subsequent projected MP4 corrections (PUMP4), were calculated using the 

Gaussian 92 set of quantum chemistry codes (Frisch et al. 1992). 

Many useful theoretical studies of molecular structures have been published in the last 10 years using 

theory at or below the level used here. We refer the interested reader to a few such studies for stable 

structures (Gould and Kollman 1992; Lammertsma et al. 1989), with favorable comparison to experimental 

data, when available (Simandiras et al. 1989; Btidas and Street 1988; and Ewing 1989). and others 

showing good qualitative agreement between MP theory and complete active space MCSCF (Koch et al. 

1986, Tse 1990). In addition, similar informative studies published on energies and structures of transition 

states (Gould and Kollman 1992; Shi and Boyd 1990, 1991; Gordon and Truhlar 1986) show results 

consistent with experimental data when available (Tucker and Truhlar 1989; Sosa and. Schlegel 1989, 

1990). The MP2/6-31G** level of theory has been very successful in providing structural and mechanistic 

insight in these studies. UMP2 is known to be applicable to systems well represented by the UHF 

determinant (Simandiras et al. 1988). Using spin contamination as a metric (Table l), all but one of the 

points show unprojected UHF S2 values of 0.85 or less. (The cis- to trans-HOCS isomerization barrier 

[species t, Table l] has an unprojected S2 value of 0.90). This indicates that the UHF determinants are 

reasonable zeroth-order approximations to the wavefunctions. 

Table 1 provides the total energies and zero point energies of the stationary points at the different 

levels of theory. Figure 1 illustrates the geometries and relevant parameters of each point. Species 

notation used in Table 1 and Figure 1 will be maintained throughout the remainder of this report. 

Tables 2 and 3 give the energies of the stationary points relative to H + OCS and harmonic vibrational 

frequencies, respectively. Figure 2 shows a relative energy schematic of stationary points on the H + OCS 

surface. The energy values used in this figure are PUMP4 energies calculated at the UMP2/6-31G** 

optimized structures with no further geometry refinement. ROHF/6-31G** and UMP2/6-31G** intrinsic 

reaction coordinate (IRC) (Gonzalez and SchIegel 1989, 1990) calculations for one exit channel reaction 

were done with the Gaussian 92 set of codes (Frisch et al. 1992). 

3. RESULTS 

3.1. H + OCS ---> SH + CO. Five minima (species d-h) corresponding to four-body conformers were 

determined from both ROHF and UMP2 geometry optimizations. At all levels of theory, the HCOS 

conformer is the most stable, followed by the tram and cis-HSCO species, respectively. Although these 
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S 

Or) 

L2040(l$702~~~l,6349) 

174.7 (176.8) 

(4 

(0) 

(PI 

(s) 

(s) 

\;694 (1.6734) 

1.5651(;5735) 11;12.;$(9;;9;;9533) 

177.7 (178.2) 

H 

1.7346 (l.%83)~21 (1’1543) 
144.4 (146.5) 0 

1.2907 (L2S9m99 (1.5859) 

‘C(OCSH!=SO.7 (84.5) 

1.1754 (1.1480) \ &+h;;;j’i’.) 28.0 (129 0) 

1.9205 (1.8554) 

“15a;2,;l;& fi 87.2 (92.2) 

2.1690 (2.0689)’ 

w T(SCOH)=90.9 (9 1.2) 

(4 
TO.9697 (0.95 10) 

,.5361~l.~5Z~w~8 (‘Oaf’) 

Optimized structures and geometric parameters at the UMFW6-31G** level. The values of 
the geometric parameters of the optimized structure at the ROHF/6-31G** level are given in 
parentheses. Species (a)-(u) correspond to structures listed in Tables 1, 2, and 3. 
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Table 3. Vibrational Frequencies (cm-‘) 

II I # Species I ROHF/6-31G** I UMP2/6-3 lG** 1 EXPT.* 11 

a. H+OCS 567 503 520 
567 503 526 
890 902 859 

2,307 2,116 2,062 

b. SH 2,881 2,828 2,712 
co 2,440 2,124 2,170 

c. OH 4,070 3,844 3,738 
cs 1,426 1,314 1,285 

d. HCOS 447 383 
771 724 

1,041 949 - 

1,496 1,413 
1,976 1,759 
3,162 3,040 

e. rruwHSC0 395 388 
430 399 
681 632 - 

1,071 995 
2,123 1,865 
2,915 2,854 ._ . 

f. cis-HSCO 415 408 
445 412 
661 577 

1,016 936 - 

2,119 1,859 
2,867 2,781 

g. rruns-HOCS 488 460 
532 606 
980 1,023 - 

1,373 1,310 
1,548 1,501 
4,120 3,822 

h. cis-HOCS 483 467 
633 644 
983 981 - 

1,372 1,279 
J ,533 1,518 
4,032 3,671 

* Herzberg (1979); Huber and Herzberg (1979) 
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Table 3. Vibrational Frequencies (cm-‘) (continued) 

# Species ROHF/6-3 lG** UMP2/6-3 lG** EXFT.* 

i. OH --- CS 52 
59 

136 
- 457 - 

463 
1,345 
3,748 

i H+OCS --> HCOS 2,450i 1,489i 
605 576 
643 618 - 

785 716 
929 931 

2,194 2,021 

k. H + OCS --> tranr-HSCO 841i 756i 
477 442 
735 718 - 

1,010 920 
2,198 2,014 
2,599 2,112 

1. H + OCS --> cis-HSCO 3,855i 1,531i 
436 428 
536 512 - 

558 568 
873 868 

2,246 2,042 

m. H + OCS --> rruns-HOCS 807i 801i 
438 429 
794 820 - 

1,341 1,234 
1,709 1,725 
3,980 3,588 

n. H + OCS --> cis-HOCS 5,867i 3,327i 
436 466 
638 606 - 

921 952 
997 967 

2,020 2,006 

* Her&erg (1945); Huber and. Herzberg (1979) 
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Table 3. Vibrational Frequencies (cm-‘) (continued) 

# I Species I ROHF/6-31G** 1 UMP2/6-31G** 1 EXPT.* 

HCOS --> rruns-HSCO 2,578i 1,918i 
415 325 
512 476 
773 743 

1,890 1,869 
2,113 2,099 

HCOS --> truns-HOCS 

rrawHSC0 --> cis-HSCO 

2,807i 1,914i 
521 527 
525 531 
948 996 

1,589 1,572 
2,457 2,445 

3,841i 3421 
415 306 
631 541 
871 770 

2,126 1,975 
2.888 2,830 

frum-HSCO --> SH + CO 

cis-HSCO --> SH + CO 

6891’ 
284 
380 
878 

2,183 
2,916 

782i 383i 
228 150 
350 307 
741 641 

2,176 2,016 
2.879 2.821 

318i 
215 
307 
739 

2,047 
2,852 

fauns-HOCS --> cis-HOCS 

rruns-HOCS --> OH ---CS 

6781’ 855i 
506 507 

1,025 965 
1,141 1.113 
1,497 1,483 
4,114 3,837 

1,181i 321i 
276 169 
285 195 
936 668 

1,358 1,387 
4.116 3.867 

- 

- 

* Herzberg (1945); Huber and Herzberg (1979) 
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complexes are lower in energy than H + OCS, the barriers to formation are substantial. The lowest 

entrance channel barrier among these three (transition states j-l) at the highest level of theory leads to 

formation of cis-HSCO (transition state 1) and has a PUMP4 energy value of 12 kcal/mol. The energy 

barrier to formation of HCOS (transition state j) is the next higher at 13 kcal/mol. The barriers leading 

out of this minimum toward products (transition states o and p) are at least twice as large as the entrance 

channel barrier. This suggests that recrossing toward H + OCS is more likely to occur than isomerization 

to another four-body intermediate. The barriers to formation of SH + CO from the rrunr- and cis-HSCO 

minima (transition states r and s) are both approximately 2 kcal/mol. Based on energetics only, it seems 

most likely that formation of SH + CO will occur through direct formation of cis- or truer-HSCO by 

H atom attack on the S end of OCS. 

3.2 H + OCS ---> OH + CS. The cis- and rrans-HOCS minima are slightly higher in energy than 

separated H + OCS, and the entrance channel barriers are 29 and 27 kcal/mol, respectively. These are 

twice as large as those that lead to formation of the other stable intermediates. We were unable to find 

a transition state structure leading from the cis-HOCS well to OH + CS. The transition state (labeled u) 

leading from truer-HOCS has an energy that is almost as large as the enthalpy of (I). 

Initially, we had assumed that transition state u led directly to OH + CS since its ROHF energy was 

higher than the energy of the products. However, the ROMP4, PUMP2, and PUMP4 transition state 

energies are all lower than that of the products, indicating that this assumption is incorrect. The 

ROHF/6-31G** UHF/6-31G**, 9 and UMP2/6-31G** IRCs leading from transition state u were calculated, 

and are shown in Figure 3(a). The energy of each point along the reaction coordinate is relative to the 

energy of the optimized transition state structure at each level of theory. The UMP2 and UHF IRC’s stop 

upon reaching local minima at -5 and -10 kcal/mol relative to the transition state energy, respectively. 

The structure of the complex corresponding to this minimum is very nearly linear [Figure l(i)]. The OHC 

and HCS angles are less than 0.01 from linearity, with the hydrogen end of the OH moiety oriented 

toward the carbon side of the CS portion of the molecule. The normal mode analysis for this structure 

indicates that it is stable (5 zero frequencies and no imaginary frequencies [Table 31). There are two pairs 

of frequencies that are nearly degenerate (Table 3) as expected for a linear complex. 

The geometry changes of the HOCS species as it moves from transition state u to the linear complex 

labelled (i) in Figure 1 is most apparent in the change of the COH angle as a function of reaction - 

coordinate [shown in Figure 3(b)]. In the progression of the UMP2 and UHF IRC’s from transition state 
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u, the CO bond elongates and the COH bond angle decreases from 90” to 0’. This indicates that the O-H 

“flips” to form the linear structure shown in Figure l(i). This reorientation was not observed in the 

ROHF IRC. The C-O bond lengthens but the COH angle changes little from its value at the transition 

state. The energy at the end of the ROHF IRC is -16 kcal/mol relative to the energy of the transition 

state, which is the same as the energy of the products. 

Because this transition state [Figure l(u)] led to different types of minima at the different levels of 

theory, we thought it useful to examine the normal mode corresponding to the imaginary frequency for 

this transition state at the two levels of theory (Figure 4). The geometry is similar at both ROHF and 

UMP2 levels of theory, and surprisingly, the eigenvectors corresponding to this mode are strikingly 

similar, giving no indication of the different minima to which these transition states lead. Also, very small 

steps had to be taken for the ROHF walk. This was due to convergence problems at this level of theory. 

The convergence problems at the ROHF level of theory, as well as the appearance in the UHF and UMP2 

calculations of the slightly stable intermediate in the exit channel, suggest a low-lying excited electronic 

state in this spatial region. To investigate this further would be outside the scope of this study. 

4. DISCUSSION 

Temperature corrected MP4 enthalpies for T = 298 K of the asymptotic species have been calculated 

for comparison with experiment. For SH + CO, our best theoretical prediction of -10 kcal/mol is slightly 

higher than the experimental value of -12.1 + 1.2 kcal/mol (Chase et al. 1985). For OH + CS, theory 

predicts 60 kcal/mol while the experimental value is 57.2 + 6.0 kcal/mol (Chase 1985). Although the 

four-body species previously discussed have not been observed directly, experiments have provided criteria 

for them. It has been suggested that the activated complex for (II) is “tight” due to a low entropy of 

activation (i.e., small pm-exponential factor) (Tsunashima et al. 1975; Lee, Stief, and Timmons 1977). 

This proposal assumes a single linear activated complex, with degenerate HSC bending frequencies of 

400 cm-’ (Tsunashima 1975). In our calculations, the pair of lowest vibrational frequencies for the saddle 

point complex between H + OCS and cis-HSCO are 428 and 512 cm-‘, respectively. Though the 

calculated complex is not linear, (as assumed in the experimental analyses), the calculated vibrational’ 

frequencies support the conclusion of a “tight” activated complex for (II). 

At this level of theory, transition state energies are empirically observed to be overestimated (Gordon 

and Truhlar 1986; Tucker and Truhlar 1989; and Sosa and Schlegel 1987). In this study, the lowest 
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00 

Figure 4. Depiction of the normal mode associated with the imaginary frequency 
at transition state (u) at the (a) ROHF/6-3lG** level, (b) UMP2/6-31G** level. 
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energy entrance channel barrier calculated for (II) corresponds to formation of cis-HSCO (species f). The 

calculated entrance barrier to formation of tram-HSCO (species e) is 4 kcal/mol larger than the cis-HSCO 

barrier. If this energy separation is accurate, then most reactions would occur through formation of 

ck-HSCO, and the experimental activation energy for (II) should be associated with the cis- entrance 

channel barrier. Unfortunately, this level of theory is not sufficiently accurate to rule out the rruns- barrier 

as a competing pathway, since 4 kcal/mol is probably within the uncertainty of these calculations. Due 

to the possibility of competing pathways and the uncertainties in the saddle point energies, the barrier 

height for formation of cis-HSCO cannot be directly associated with the experimental activation energy 

(3.85 kcal/mol). Quantitative comparisons must await the results of more accurate calculations and are 

outside the goals of this study. 

Under gas phase, low-energy, single collision conditions, the SH and CO products most likely derive 

from direct S atom attack through side-on H atom approach trajectories (see Figures 1 and 2). As the 

collision energy increases, attack at the central carbon atom or the oxygen atom followed by H atom 

migration becomes feasible. At high energies, reactive approach geometries are less narrowly constrained 

since more of the PES is accessible. Changes in mechanism may be caused by other factors as well, so 

that in an extreme case, a “higher energy” channel might come to dominate the kinetics. Hauser, Rice, 

and Wittig (1987) and Bohmer, Mikhaylichenko, and Wittig (to be published) have both studied (II) under 

PGL conditions by complexing a D atom source with OCS. The structure of the DI-OCS van der Waals 

complex used in the latter study has not been resolved. However, recent high resolution spectroscopic 

measurements of the analogous HBr-OCS complex have revealed a quasi-linear structure with the H atom 

thought oriented toward the oxygen (Sharpe, private communication). Thus, it appears likely that photo- 

initiated SD production in DBr-OCS, and by analogy DI-OCS, involves D atom migration. It remains to 

be seen if there is a shift in the dominant mechanism due solely to limitations on the H atom approach, 

or if the presence of the halogen atom causes significant changes in the features of the PES. 

The features on our calculated PES provide a qualitative explanation of the observed product state 

distributions. For (II), Nickolaisen and Cartland (to be published) determined that the SH product could 

have an internal energy of as much as 49% of that available. Hausler, Rice, and Wittig (1987) and 

Biihmer, Mikhaylichenko, and Wittig (to be published) observed that the SD rotational distributions were 

substantially colder than predicted by statistical theory. Nickolaisen et aI. thus concluded that vibrational 
.,. 

excitation must account for a large fraction of the total SH internal energy. 
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The features of the current PUMP4 PES can explain qualitatively the observed nonstatistical behavior. 

To illustrate, we will consider the formation of the products via the path with the lowest transition state 

energy only, the cis-HSCO complex. A simplistic one-dimensional reaction model through this path is 

shown in Figure 5. The reaction path for the formation of the products via the zruns-HSCO complex is 

very similar to that of the cis-HSCO species. Therefore, for clarity, we will not include this path in our 

arguments. 

12 kcal/mol 
4-l 

10 I I 

I I 20 kcaVmo1 

I I 
I I 

I \ 
I I 

0 
I I 2 kcaYmo1 

H+OCS _ \ 
I 
I 

I 

-10 
CiS-HSCO \ 

\ 
6 kcal/mol 

-L 
SH+CO 

REACTION COORDINATE (II) 

Figure 5. Energy diagram for the reaction channel leading to formation of SH + CO via the cis-HSCO 
minimum at the PUMP4//UMP2/631G** level. Energies along with the ordinate are in 
kcal/mol. 

Upon formation of cis-HSCO, the molecule has at least 18 kcaI/mol of energy in excess of that needed 

to go on to products. Most of the energy of the nascent cis-HSCO complex is stored in the newly formed 

S-H stretching and HSC bending modes. As intramolecular vibrational relaxation (IVR) begins, energy 

leaks out of the hot vibrations into the other modes of the complex, including the S-C stretch, which is 
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the reaction coordinate. The S-C stretch, however, requires only 2 kcaI/mol to dissociate to products. 

Since this is only a small fraction of the available energy, the complex dissociates to SH+CO, leaving 

substantial energy in S-H vibration. Additional energy is released as the exit barrier is traversed and is 

partitioned among product degrees of freedom, according to the exit channel dynamics. 

Our picture is one of a short-lived intermediate with large S-H vibrational excitation upon its 

formation, and incomplete IVR as the complex crosses to products. This mechanism is consistent with 

the experimental observations of Nickolaisen and Cartland (to be published), who found non-statistically 

cold CO and inferred vibrationally hot SH for (II). The overaIl features of the potential energy surface 

for this reaction path are qualitatively correct; if the magnitudes of the two barriers leading into and out 

of the cis-HSCO well were comparable in energy, more complete IVR would be expected. Additionally, 

if the exit channel barrier was higher relative to the final product energy, one might again expect to see 

hotter CO. 

Converse arguments are consistent with the energy distributions observed by Hauser, Rice, and Wittig 

(1987) and Bohmer, Mikhaylichenko, and Wittig (to be published) for the deuterium analog of (I). These 

authors found nascent distributions that were statistical for OD, and suggested that this was due to a PES 

on which the energy of the DOCS intermediate was comparable to the energy of the hot D atom. Our 

surface shows that this is at least partially correct. The cis- and trans-HOCS minima are only slightly 

higher in energy than the H + OCS asymptote. In contrast, the entrance channel barriers to formation of 

these complexes are very large, and the exit channel barriers are even larger, approaching the 

endothetmicity of the reaction. Figure 6 shows formation of OH + CS via the nuns-HOCS complex. 

Proceeding as above, the O-H and HOC vibrations are highly excited upon HOCS formation. However, 

for reaction to go on to products, an amount of energy comparable to the reaction enthalpy must be 

coupled into the reaction coordinate, the C-O vibration. In this case, the collision complex either recrosses 

the entrance channel barrier back to reactants, or survives long enough to localize a large fraction of the 

available energy in the C-O reaction coordinate. For a longer-lived HOCS complex, IVR will be 

complete, or nearly so, and energy partitioning statistical, in agreement with experiment. These arguments 

break down for initial relative translational energies far in excess of the PES features, and product 

distributions become nonstatistical as previously described. 
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5. CONCLUSIONS 

We have calculated minima and saddle points on the H + OCS ground state PES. Structures and 

energies were determined from geometry optimizations using a 6-31G** basis set at the ROHF and UMP2 

levels of theory. Except for species (i), the geometric parameters of the optimized structures shown in 

Figure 1 differ very little between the two levels of theory. MP4 correlation corrections wete calculated 

for each structure at both levels of theory, and the reaction enthalpies are in reasonable agreement with 

known experimental values. Six stable four-body intermediates were found. The hydrogen atom can be 

bound to either end of the OCS molecule in a nonlinear structure [species (e)-(h)], and to the carbon atom 

[species (d)]. In addition, a stable linear complex [species (i)] exists in which the hydrogen atom is 

inserted between the carbon and oxygen atoms. 

The structures and high vibrational frequencies of the entrance channel transition states leading to 

formation of SH + CO support the conclusion that the activated complex for this reaction is “tight” 

(Tsunashima et al. 1975; Lee, Stief, and Timmons, 1977). Stable four-body cis- and rruns- intermediates 

were found for both (I) and (II) in support of the experimental hypotheses put forth by HPusler, Rice and 

Wittig (1987), Nickolaisen and Cartland (to be published) and Bohmer, Mikhaylichenko, and Wittig (to 

be published). The structures of the entrance channel transition states show the four-body intermediates 

are reached by a broadside approach of the hydrogen atom, which is consistent with the explanation of 

Bohmer, Mikhaylichenko, and Wittig (to be published) based on orbital occupancy. Finally, the features 

of the surface offer explanations for both the non-statistical product energy distributions of SH + CO, and 

the statistical product energy distributions for OH + CS, observed in state-selective reactive scattering 

experiments of H and D with OCS. 
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