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Abstract

Recoverable virtual memory refers to regions of a virtual address space on
which transactioml guarantees are offered. This paper describes RVM, an
efficient, portable, and easily used implementation of recoverable virtual
memory for Unix environments. A unique characteristic of RVM is that it
allows independent control over the transactional properties of atomicity,
permanence, and serializability. This leads to considerable flexibility in the use
of RVM, potentially enlarging the range of applications than can benefit from
transactions. It also simplifies the layering of functionality such as nesting and
distribution. The paper shows that RVM performs well over its interided range
of usage even though it does not benefit from specialized operating system
suppo;t. It also demonstrates the importance of intra- and inter-transaction
optimizations.
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Lightweight Recoverable Virtual Memory

Abstract This combination of circumstances is most likely to be

Racowable virtual maenory refers to regions of a virtual found in situations involving the meta-data of storage

addres space on which transational guarantees me repositories. Thus RVM can benefit a wide range of
offered. This paper describes RVM, an efficiue, portable, applications from distributed file systems and databases, to
and easily used implementation of recoverable virtual object-oriented repositories, CAD tools, and CASE tools.
memory for Unix environments. A unique characteristic RVM can also provide runtime support for persistent
of RVM is that it allows independent control over the programming languages. Si9ce RVM allows independent
transactional properties of a•omiciry, permanence, und control over the basic transztional properties of atomicity,
serializability. Tis, leads to considerable flexibility in the permanence, and serializability, applications have
use of RVM, potentially enlarging the range of considerable flexibility in how they use transactions.
applications dun can benefit from transactions. It also
simpLifies the layering of functionality such as nesting and It may often be tempting, and sometimes unavoidable, to
distribution. The paper shows that RVM performs well use a niechanism that is richer in functionality or better
over its intended range of usage even though it does not integrated with the operating system. But our experience
benefit from specialized operating system support. It also has been that such sophistication comes at the cost of
demonstrata the importance of intra- and inter- portability, ease of use and more onerous programming
transaction optimizations- constraints. Thus RVM represents a balance between the

system-level concerns of fwuncionality and performance,
1. Introduction and the software engineering concerns of usability and
How simple can a transactional facility be, while remaining maintenance. Alternatively, one can view RVM as an
a potent tool for fault-tolerance? Our answer, as elaborated exercise in minimalism. Our design challenge lay not in
in this paper, is a user-level library with minimal conjuring up features to add, but in determining what could
programming constraints, implemented in about 10K lines be omitted without crippling RVM.
of mainline code and no more intrusive than a typical We begin this paper by describing our experience with
runtime library for input-output. This transactional facility, Camelot [101, a predecessor of RVM. This experience, and
called RVM, is implemented without specialized operating our understanding of the fault-tolerance requirements of
system support, and has been in use for over two years on a Coda [16.301 and Venari [24,37], were the dominant
wide range of hardware from laptops to servers, influences on our design. The description of RVM follows

RVM is intended for Unix applications with persistent data in three parts: rationale, architecture, and implementation.
structures that must be updated in a fault-tolerant manner. Wherever appropriate, we point out ways in which usage
The total size of those data structures should be a small experience influenced our design. We conclude with an
fraction of disk capacity, and their working set size must evaluation of RVM, a discussion of its use as a building
easily fit within main memory. block, and a summary of related work.
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thesis that general-purpose transactional support would ..........

simplify and encourage the construction of reliable
distributed systems [33]. It supports local and distributed
nested transactions, and provides considerable flexibility in
the choice of logging, synchronization, and transaction .s
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commitment strategies. Camelot relies heavily on the Camelot would be something of an overkill. Yet we
external page management and interprocess persisted, because it would give us first-hand experience in
communication facilities of the Mach operating system [2], the use of transactions, and because it would contribute
which is binary compatible with the 4.3BSD Unix towards the validation f the Camelot thesis.
operating system [201. Figure 1 shows the overall structure We placed data stxtures pertaining to Coda met-data in
of a Camelot node. Each module is implemented as a recoverable memory1 on servers. The meta-data included
Mach task and communication between modules is via Coda directories as well as persistent data for replica
Mach's interprocess commtnication facililty(IPC). control and internal housekeeping. The contents of each

Coda file was kept in a Unix file on a server's local file
S•°. A a isystem. Server recovery consisted of Camelot restoring

recoverable memory to the last committed state, followed
by a Coda salvager which ensured mutual consistency
between meta-data and data.

Proc....a.

2.3. Experience
The most valuable lesson we learned by using Ci.e!mot was

7=17 ,1 -- ithat recoverable virWal memory was indeed a convenient

I M. Control ca-,ot and practically useful programming abstraction for systems
o . like Coda. Crash recovery was simplified because data

structures were restored in situ by Camelot. Directory
operations were merely manipulations of in-memory data

Rach M"r.0 structures. The Coda salvager was simple because the
range of error states it had to handle was small. Overall,
the encapsulation of messy crash recovery details into

This figure shows the internal structure of Camelot as well as its

relationship to application code. Camelot is composed of several Camelot considerably simplified Coda server code.
Mach tasks: Master Control, Camelot, and Node Server, as well
as the Recovery, Transaction, and Disk Managers. Camelot Unfortunately, these benefits came at a high price. The
provides recoverabl virtual memory for Data Servers; that is, problems we encountered manifested themselves as poor
transactional operations ae supported on portions of the virtual scalability, programming constraints, and difficulty of
addres space of each Data Server. Application code can be split
between Data Server and Application tasks (as in this figure). or maintenance. In spite of considerable effort, we were not
may be entirely linked into a Data Server's address space. The able to circumvent these problems. Since they were direct
latter approach was used in Coda. Camelot facilities are accessed
via a Ubrary linked with application code. consequences of the design of Camelot, we elaborate on

Figure 1: Structure of a Camelot Node these problems in the following paragraphs.

A key design goal of Coda was to preserve the scalability
2.2. Usage of AFS. But a set of carefully controlled experiments
Our interest in Camelot arose in the context of the two- (described in an earlier paper [30]) showed that Coda was

phase optimistic replication protocol used by the Coda File less cricable than AFS. These experiments also showed

System. Although the protocol does not require a lessabethnAS Teeexrinsasohwd
Systrem. Almmthouh ithepr o doesn require aach servthat the primary contributor to loss of scalability was
distributed commit, it does require each server to ensure the increased server CPU utilization, and that Camelot was
atomicity and permanence of local updates to meta-data in responsible for over a third of this increase. Examination
the first phase. The simplest strategy for us would have of Coda servers in operation showed considerable paging
been to implement an ad hoc fault tolerance mechanism for and context switching overheads due to the fact that each
meta-data using some form of shadowing. But we were Camelot operation involved interactions between many of
curious to see what Camelot could do for us. the component processes shown in Figure 1. There was no

The aspect of Camelot that we found most useful is its obvious way to reduce this overhead, since it was inherent

support for recoverable virtual memory [9]. This unique in the implementation structure of Camelot-
feature of Camelot enables regions of a process' virtual
address space to be endowed with the transactional
properties of atomicity, isolation and permanence. Since
we did not find a need for features such as nested or
distributed transactions, we realized that our use of 'For brevity, we often omit "virtual from "recoverable virtual

meritory' in the rest of this paper.
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A second obstacle to using Camelot was the set of count on the clean failure semantics of RVM, while the
programming constraints it imposed. These constraints latter is only responsible for local, non-nested transactions.
came in a variety of guises. For example, Camelot required A second area where we have simplified RVM is
all processes using it to be descendants of the Disk concurrency control. Rather thaa having RVM insist on aManager rtnsy sonwrol. Rather thanhhavingnRVMhinsistronna
Manager task shown in Figure 1. T7his meant that starting specific technique, we decided to factor out concurrency
Coda servers required a rather convoluted procedure that control. This allows applications to use a policy of their
made our system administration scripts complicated and choice, and to perform synchronization at a granularity
fragile. It also made debugging more difficult because appropriate to the abstractions they are supporting. If
starting a Coda server under a debugger war complex. serializability is required, a layer above RVM has to
Another example of a programming constraint was that enforce it. That layer is also responsible for coping with
Camelot required us to use Mach kernel threads, even deadlocks, starvation and other unpleasant concurrency
though Coda was capable of using user-level threads. control problems.
Since kernel thread context switches were much more
expensive, we ended up paying a hefty peformance cost Internally, RVM is implemented to be multi-threaded and
with little to show for it. to function correctly in the presence of true parallelism.

But it does not depend on kernel thread support, and can beA third limitation of Camelot was that its code size, usd wt no cags n uerlvl hed
comleityan tghtdeenenc o rrel ued used with no changes on user-level thread

complexity and tight dependence on rarely used implementations. We have, in fact, used RVM with three
combinations of Mach features made maintenance and dfeettraigmcaim:Mc enltras[1

porting difficult. Since Coda was the sternest test case for corent Creads, an ine LWc [29].

recoverable memory, we were usually the first to expose

new bugs in Camelot. But it was often hard to decide Our final simplification was to factor out resiliency to
whether a particular problem lay in Camelot or Mach. media failure. Standard techniques such as mirroring can

be used to achieve such resiliency. Our expectation is thatAs the cumulative toll of these problems mounted, we ti ucoiywl otlkl eipeetdi h

looked for ways to preserve the virtues of Camelot while deiciof a more dik.

avoiding its drawbacks. Since recoverable virtual memory

was the only aspect of Camelot we relied on, we sought to RVM thus adopts a layered approach to transactional
distill the essence of this functionality into a realization that support, as shown in Figure 2. This approach is simple and
was cheap, easy-to-use and had few strings attached. That enhances flexibility: an application does not have to buy
quest led to RVM. into those aspects of the transactional concept that are

irrelevant to it.

3. Design Rationale
The central principle we adopted in designing RVM was to
value simplicity over generality. In building a tool that did Application Code
one thing well, we were heeding Lampson's sound advice
on interface design [19]. We were also being faithful to the

Netk' Diwibuton seriaizatWoty
long Unix tradition of keeping building blocks simple. The
change in focus from generality to simplicity allowed us to RVM
take radically different positions from Camelot in the areas
of functionality, operating system dependence, and
structure.

Operating System
Pmw:~ m.tediweaar

3.1. Functionality

Our first simplification was to eliminate support for nesting
and distribution. A cost-benefit analysis showed us that Figure 2: Layerng of Functionality in RVM
each could be better provided as an independent layer on
top of RVM 2. While a layered implementation may be less 3.2. Operating System Dependence
efficient than a monolithic one, it has the attractive To make RVM portable, we decided to rely only on a
property of keeping each layer simple. Upper layers can small, widely supported, Unix subset of the Mach system

call interface. A consequence of this decision was that we

could not count on tight coupling between RVM and the
2An implementation sketch is provided in Section S. VM subsystem. The Camelot Disk Manager module runs
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as an external pager [391 and takes full responsibility for 3.3. Structure
managing the backing store for recoverable regions of a The ability to communicate efficiently across address
process. The use of advisory VM calls (pin and unpin) spaces allows robustness to be enhanced without
in the Mach interface lets Camelot ensure that dirty sacrificing good performance. Camelot's modular
recoverable regions of a process' address space are not decomposition, shown earlier in Figure 1, is predicated on
paged out until transaction commit. This close alliance fast [PC. Although it has been shown that [PC can be
with Mach's VM subsystem allows Camelot to avoid fast [4], its performance in commercial Unix
double paging, and to support recoverable regions whose implementations lags far behind that of the best
size approaches backing store or addressing limits, experimental implementations. Even on Mach 2.5, the
Efficient handling of large recoverable regions is critical to measurements reported by Stout et al [341 indicate that IPC
Camelot's goals. is about 600 times more expensive than local procedure

call 3. To make matters worse, Ousterhout [26] reports thatOur goals in building RVM were more modest. We were thcoexswcinprfmaeofprangytmss

not trying to replace traditional forms of persistent storage, the context switching performance of operating systems is

such as file systems and databases. Rather, we saw RVM not improving linearly with raw hardware performance.

as a building block for meta-data in those systems, and in Given our desire to make RVM portable, we were not
higher-level compositions of them. Consequently, we willing to make its design critically dependent on fast IPC.
could assume that the recoverable memory requirements on Instead, we have structured RVM as a library that is linked
a machine would only be a small fraction of its total disk in with an application. No external communication of any
storage. This in turn meant that it was acceptable to waste kind is involved in the servicing of RVM calls. An
some disk space by duplicating the backing store for implication of this is, of course, that we have to trust
recoverable regions. Hence RVM's backing store for a applications not to damage RVM data structures and vice
recoverable region, called its external data segment, is versa.
completely independent of the region's VM swap space.crasplrecovery reindepesonlyeont hese of the esal dpat. A less obvious implication is that applications cannot shareCrash recovery relies only on the state of the external data asn l rt -h a o n ad d c t d d s .S c h rnsegmnt. Sine aVM age outdoe no moifythe a single write-ahead log on a dedicated disk. Such sharing
segment. Since a VM pageout does not modify the is common in transactional systems because disk head
external data segment, an uncommitted dirty page can bereclime bytheVM ubsytem witoutlos of movement is a strong determinant of performance, and

because the use of a separate disk per application is
correctness. Of course, good performance also require economically infeasible at present. In Camelot, for
that such pageouts be rare. example, the Disk Manager serves as the multiplexing

One way to characterize our strategy is to view it as a agent for the log. The inability to share one log is not a
complexity versus resource usage tradeoff. By being significant limitation for Coda, because we run only one
generous with memory and disk space, we have been able file server process on a machine. But it may be a
to keep RVM simple and portable. Our design supports the legitimate concern for other applications that wish to use
optional use of external pagers, but we have not RVM. Fortunately, there are two potential alleviating
implemented support for this feature yet. The most factors on the horizon.
apparent impact on Coda has been slower startup because a First, independent of transaction processing considerations,
process' recoverable memory must be read in en masse there is considerable interest in log-structured
rather than being paged in on demand. implementations of the Unix file system [28]. If one were

Insulating RVM from the VM subsystem also hinders the to place the RVM log for each application in a separate file
sharing of recoverable virtual memory across address on such a system, one would benefit from minimal disk
spaces. But this is not a serious limitation. After all, the head movement. No log multiplexor would be needed,
primary reason to use a separate address space is to because that role woald be played by the file system.
increase robustness by avoiding memory corruption. Second, there is a trend toward using disks of small form
Sharing recoverable memory across address spaces defeats facor, tly i vated by ingedisksnodismarray
this purpose. In fact, it is worse than sharing (volatile) factor, partly motivated by interest in disk array
virtual memory because damage may be persistent! Hence, technology [27]. It has been predicted that the large disk
our view is that processes willing to share recoverable capacity in the future will be achieved by using many small
memory already trust each other enough to run as threads
in a single address space.

3430 microseconds venus 0.7 microseconds for a null call on a typical
contemporary machine, the DECSation 5000/200
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disks. If this turns out to be true, there will be considerably startup latency, as mentioned in Section 3.2. In the future,
less economic incentive to avoiding a dedicated disk per we plan to provide an optional Mach external pager to copy
process. data on demand.

In summary, each process using RVM has a separate log. Restrictions on segment mapping are minimal. The most
The log can be placed in a Unix file or on a raw disk important restriction is that no region of a segment may be
partition. When the log is on a file, RVM uses the f sync mapped more than once by the same process. Also,
system call to synchronously flush modifications onto disk. mappings cannot overlap in virtual memory. These
RVM's permanence guarantees rely on the correct restrictions eliminate the need for RVM to cope with
implementation of this system call. For best performance, aliasing. Mapping must be done in multiples of page size,
the log should either be in a raw partition on a dedicated and regions must be page-aligned.
disk or in a file on a log-structured Unix file system. Regions can be unmapped at any time, as long as they have

no uncommitted transactions outstanding. RVM retains no
4. Architecture information about a segment's mappings after its regions
The design of RVM follows logically from the rationale are unmapped. A segment loader package, built on top of
presented earlier. In the description below, we first present RVM, allows the creation and maintenance of a load map
the major programn-visible abstractions, and then describe for recoverable storage and takes care of mapping a
the operations supported on them. segment into the same base address each time. This

4.1. Segments and Regions simplifies the use of absolute pointers in segments. A

Recoverable memory is managed in segments, which a recoverable memory allocator, also layered on RVM,

loosely analogous to Multics segments. RVM has been supports heap management of storage within a segment.

designed to accomodate segments up to 264 bytes long, 4.2. RVM Primitives
although current hardware and file system limitations The operations provided by RVM for initialization,
restrict segment length to 232 bytes. The number of termination and segment mapping are shown in Figure
segments on a machine is only limited by its storage 4(a). The log to be used by a process is specified at RVM
resources. The backing store for a segment may be a file or initialization via the options desc argument. The map
a raw disk partition. Since the distinction is invisible to operation is called once for each region to be mapped. The
programs, we use the term "external data segment" to external data segment and the range of virtual memory
refer to either. addresses for the mapping are identified in the first

m2.1 argument. The unmap operation can be invoked at any
time that a region is quiescent. Once unmapped, a region

can be remapped to some other part of the process' address
space.

After a region has been mapped, memory addresses within
Segment-i it may be used in the transactional operations shown in

Figure 4(b). The begintransaction operation
t . I- returns a transaction identifier, tid, that is used in all

Segment-2 further operations associated with that transaction. The

Each shaded area represents a region. The contents of a region set_range operation lets RVM know that a certain area
are physically copied from its external data segment to the virtual of a region is about to be modified. This allows RVM to
memory address range specified during mapping. record the current value of the area so that it can undo

Figure 3: Mapping Regions of Segments changes in case of an abort. The restoremode flag to

As shown in Figure 3, applications explicitly map regions begin transaction lets an application indicate that it

of segments into their virtual memory. RVM guarantees will never explicitly abort a transaction. Such a no-restore
that newly mapped data represents the committed image of transaction is more efficient, since RVM does not have to

the region. A region typically corresponds to a related copy data on a set-range. Read operations on mapped

collection of objects, and may be as large as the entire regions require no RVM intervention.

segment. In the current implementation, the copying of
data from external data segment to virtual memory occurs
when a region is mapped. The limitation of this method is
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initialize(version, options desc); begintransaction(tid, restoremode);

map(regiondesc, options desc); set_range(tid, baseaddr, nbytes);

unmap(region desc); endtransaction(tid, commitmode);

terminate(); abort transaction(tid);

(a) Initialization & Mapping Operations (b) Transactional Operations

query(options desc, regiondesc);

Iflusho;I set_options~options_desc);
truncate() create_log(options, log len, mode);

(c) Log Control Operations (d) Miscellaneous Operations

Figure 4: RVM Primitives

A transaction is committed by end transaction and 5. Implementation
aborted via aborttransaction. By default, a Since RVM draws upon well-known techniques for
successful commit guarantees permanence of changes building transactional systems, we restrict our discussion
made in a transaction. But an application can indicate its here to two important aspects of its implementation: log
willingness to accept a weaker permanence guarantee via management and optimization. The RVM manual [221
the commitmode parameter of endtransaction. offers many further details, and a comprehensive treatment
Such a no-flush or "lazy" transaction has reduced commit of transactional implementation techniques can be found in
latency since a log force is avoided. To ensure persistence Gray and Reuter's text (141.
of its no-flush transactions the application must explicitly
flush RVM's write-ahead log from time to time. When 5.1. Log Management

used in this manner, RVM provides bounded persistence, 5.1.1. Log Format
where the bound is the period between log flushes. Note RVM is able to use a no-undo/redo value logging
that atomicity is guaranteed independent of permanence. strategy [31 because it never reflects uncommitted changes

Figure 4(c) shows the two operations provided by RVM for to an external data segment. The implementation assumes

controlling the use of the write-ahead log. The first that adequate buffer space is available in virtual memory

operation, flush, blocks until all committed no-flush for the old-value records of uncommitted transactions.

transactions have been forced to disk. The second Consequently, only the new-value records of committed

operation, truncate, blocks until all committed changes transactions have to be written to the log. The format of a

in the write-ahead log have been reflected to external data typical log record is shown in Figure 5.

segments. Log truncation is usually performed The bounds and contents of old-value records are known to
transparently in the background by RVM. But since this is RVM from the set-range operations issued during a

a potentially long-running and resource-intensive transaction. Upon commit, old-value records are replaced
operation, we have provided a mechanism for applications by new-value records that reflect the current contents of the

to control its timing, corresponding ranges of memory. Note that each modified

The final set of primitives, shown in Figure 4(d), perform a range results in only one new-value record even if that

variety of functions. The query operation allows an range has been updated many times in a transaction. The

application to obtain information such as the number and final step of transaction commitment consists of forcing the

identity of uncommited transactions in a region. The new-value records to the log and writing out a commit

set options operation sets a variety of tuning knobs record.

such as the threshold for triggering log truncation and the No-restore and no-flush transactions are more efficient.

sizes of internal buffers. Using create log, an The former result in both time and space spacings since the
application can dynamically create a write-ahead log and contents of old-value records do not have to be copied or
then use it in an initialize operation. buffered. The latter result in considerably lower commit

latency, since new-value and commit records can be
spooled rather than forced to the log.
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Thu log record has three modificatim ranges. The bidirectional displacemnts records allow the log to be read cither way.

Figure 5: Format of a Typical Log Record

Tum OipDleaca

This figure shows the organization of a log during epoch trncation. The curret tail of the log is to the right of the area marked -current epoch".
The tog wraps around logically. and internal synchronization in RVM allows forward processing in the currnt epoch while truncation is in
progress. When tuncation is complete. the area marked tuncauion epoch" will be freed for new log records.

Figure 6: Epoch Truncation

5.1.2. Crash Recovery and Log Truncation undo/redo property of the log. pages that have been
Crash recovery consists of RVM first reading the log from modified by uncommitted transactions cannot be written
tail to head, then constructing an in-memory tree of the out to the recoverable data segment. RVM maintains
latest committed changes for each data segment internal locks to ensure that incremental truncation does
encountered in the log. The trees are then traversed, not violate this property. Certain situations, such as the
applying modifications in them to the corresponding presence of long-running transactions or sustained high
external data segment. Finally, the head and tail location concurrency, may result in incremental truncation being
information in the log status block is updated to reflect an blocked for so long that log space becomes critical. Under
empty log. The idempotency of recovery is achieved by those circumstances, RVM reverts to epoch truncation.
delaying this step until all other recovery actions are
complete. p VectS

Truncation is the process of reclaiming space allocated toR . I .',........ ....]
log entries by applying the changes contained in them to1 2P 4p

the recoverable data segment. Periodic truncation is h Pa. Oueue
necessary because log space is finite, and is triggered
whenever current log size exceeds a preset fraction of its . P1 P2 JP3 .P4

total size. In our experience, log truncation has proved to ...

be the hardest part of RVM to implement correctly. To--
minimize implementation effort, we initially chose to reuse R 3 R4 R5

crash recovery code for truncation. In this approach, Log Records
referred to as epoch truncation, the crash recovery This figure shows the key data structures involved in incremcntal

procedure described above is applied to an initial part of truncation. RI through R5 are log entries. The reserved bit in
page vector entries is used as an internal lock. Since page PI isthe log while concurrent forward processing occurs in the at the head of the page queue and has -n -,mcrmniittri reference

rest of the log. Figure 6 depicts the layout of a log while an count of zero, it is the first page to be written to the recoverable
data segment. The log head does not move, since P2 has theepoch truncation is in progress. same log offset as P1. P2 is written next, and the log head is
moved to P3's log offset. Incremental truncation is now blocked

Although exclusive reliance on epoch uruncation is a until P3's uncommited reference coun drops to zero.

logically correct strategy, it substantially increases log
traffic, degrades forward processing more than necessary,
and results in bursty system performance. Now that RVM Figure 7 shows the two data structures used in incremental
is stable and robust, we are implementing a mechanism for truncation. The first data structure is a page vector for each
incremental truncation during normal operation. This mapped region that maintains the modification status of
mechanism periodically renders the oldest log entries that region's pages. The page vector is loosely analogous
obsolete by writing out relevant pages directly from VM to to a VM page table: the entry for a page contains a dirty bit
the recoverable data segment. To preserve the no- and an uncommited reference count. A page is marked
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dirty when it has committed changes. The uncommitted 6. Status and Experience
reference count is incremented as set_ranges are RVM has been in daily use for over two years on hardware
executed, and decremented when the changes are platforms such as IBM RTs, DEC MIPS workstations, Sun
committed or aborted. On commit, the affected pages are Sparc workstations, and a variety of Intel 386/486-based
marked dirty. The second data structure is a FIFO queue of laptops and workstations. Memory capacity on these
page modification descriptors that specifies the order in machines ranges from 12MB to 64 MB, while disk
which dirty pages should be written out in order to move capacity ranges from 60MB to 2.5GB. Our personal
the log head. Each descriptor specifies the log offset of the experience with RVM has only been on Mach 2.5 and 3.0.
first record referencing that page. The queue contains no But RVM has been ported to SunOS and SGI IRIX at MIT,
duplicate page references: a page is mentioned only in the and we are confident that ports to other Unix platforms will
earliest descriptor in which it could appear. A step in be straightforward. Most applications using RVM have
incremental truncation consists of selecting the first been written in C or C++. but a few have been written in
descriptor in the queue, writing out the pages specified by Standard ML. A version of the system that uses
it, deleting the descriptor, and moving the log head to the incremental truncation is being debugged.
offset specified by the next descriptor. This step isrffsetspea ified unt the d esixedamount ofslogp Thas been i Our original intent was just to replace Camelot by RV M onrepeated until the desired am oun t of log space has been se v r ,i th ro e d c ib d n S ci n 2 . . B t p ii ereclaimed. servers, in the role described in Section 2.2. But positive

experience with RVM has encouraged us to expand its use.

5.2. Optimizations For example, transparent resolution of directory updates
Early experience with RVM indicated two distinct made to partitioned server replicas is done using a log-

opportunities for substantially reducing the volume of data based strategy [17]. The logs for resolution are maintained
written to the log. We refer to these as intra-transacuon in RVM. Clients also use RVM now, particularly for

and inter-transaction optimizations respectively, supporting disconnected operation [16]. The persistence of
changes made while disconnected is achieved by storingIntra-transaction optimizations arise when set -range replay logs in RYM, and user advice for long-term cache

calls specifying identical, overlapping, or adjacent memory mapa g s in a hoan d dataaase f n RVM.

addresses are issued within a single transaction. Such management is stored in a hoard database in RVM.

situations typically occur because of modularity and An unexpected use of RVM has been in debugging Coda
defensive programming in applications. Forgetting to issue servers and clients [31]. As Coda matured, we ran into

a set-range call is an insidious bug, while issuing a hard-to-reproduce bugs involving corrupted persistent data

duplicate call is harmless. Hence applications are often structures. We realized that the information in RVM's log
written to err on the side of caution. This is particularly offered excellent clues to the source of these corruptions.
common when one part of an application begins a All we had to do was to save a copy of the log before
transaction, and then invokes procedures elsewhere to truncation, and to build a post-mortem tool to search and
perform actions within that transaction. Each of those display the history of modifications recorded by the log.
procedures may perform set-range calls for the areas of The most common source of programming problems in
recoverable memory it modifies, even if the caller or some using RVM has been in forgetting to do a set-range
other procedure is supposed to have done so already. call prior to modifying an area of recoverable memory.
Optimization code in RVM causes duplicate set-range The result is disastrous, because RVM does not create a
calls to be ignored, and overlapping and adjacent log new-value record for this area upon transaction commit.
records to be coalesced. Hence the restored state after a crash or shutdown will not

Inter-transaction optimizations occur only in the context of reflect modifications by the transaction to thfit area of
no-flush transactions. Temporal locality of reference in memory. The current solution, as described in Section 5.2,
input requests to an application often translates into locality is to program defensively. A better solution would be
of modifications to recoverable memory. For example, the language-based, as discussed in Section 8.
command "cp dl /* d2" on a Coda client will cause as
many no-flush transactions updating the data structure in 7. Evaluation
RVM for d2 as there are children of dl. Only the last of A fair assessment of RVM must consider two distinct
these updates needs to be forced to the log on a future issues. From a software engineering perspective, we nccd
flush. The check for inter-transaction optimization is to ask whether RVM's code size and complexity are
performed at commit time. If the modifications being commensurate with its functionality. From a systems
committed subsume those from an earlier unflushed perspective, we need to know whether RVM's focus on
transaction, the older log records are discarded. simplicity has resulted in unacceptable loss of performance.
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To address the first issue, we compared the source code of paging performance occurs when accesses are sequenual.
RVM and Camelo. RVM's mainline code is The worst case occurs when accesses are uniformly
approximately IOK lines of C, while utilities, test programs distributed across all accounts. To represent the average
and other auxiliary code contribute a further IOK lines, case, the benchmark uses an access pattern that exhibits
Camelot has a mainline code size of a'jout 60K lines of C, considerable temporal locality. In this access pattern,
and auxiliary code of about 10K .,•es. These numbers do referred to as localized, 70% of the transactions update
not include code in Mach f. features like [PC and the accounts on 5% of the pages, 25% of the transactions
external pager that are critical to Camelot. update accounts on a different 15% of the pages, and the

remaining 5% of the transactions update accounts on the
Thus the toWa Aize of code that has to be undertoo~d, eann 0 ftepgs ihnec eacse r
debugged, :id tuned is considerably smaller for RVM. remaining 80% of the pages. Within each set, accesses are

This trw lates into a corresponding reduction of effort in uniformly distributed.

maintenance and porting. What is being given up in return 7.1.2 Results
is support for nesting and distribution, as well as flexibility Our primary goal in these experiments was to understand
in areas such as choice of logging strategies - a fair trade the throughput of RVM over its intended domain of use.

by our reckoning. This corresponds to situations where paging rates are low,
as discussed in Section 3.2. A secondary goal was to

To evaluate the performance of RVM we used controlled observe performance degradation relative to Camelot as
experimentation as well as measurements from Coda paging becomes more significant. We expected this to
servers and clients in actual use. The specific questions of shed light on the importance of RVM-VM integration.
interest to us were:

"* How serious is the lack of integration between To meet these goals, we conducted experiments for account
RVM and VM? arrays ranging from 32K entries to about 450K entries.

"This roughly corresponds to ratios of 10% to 175% of total
* What is RVM's impact on scalability? recoverable memory size to total physical memory size. At
"* How effective are intra- and inter-transaction each account array size, we performed the experiment for

optimizations? sequential, random, and localized account access patterns.

7.1. Lack of RVM-VM Integration Table 1 and Figure 8 present our results. Hardware and

As discussed in Section 3.2, the separation of RVM from other relevant experimental conditions are described in

the VM component of an operating system could hurt Table 1.

performance. To quantify this effect, we designed a variant For sequential account access, Figure 8(a) shows that RVM
of the industry-standard TPC-A benchmark [32] and used it and Camelot offer virtually identical throughput. This
in a series of carefully controlled experiments, throughput hardly changes as the size of recoverable

7.1.1. The Benchmark memory increases. The average time to perform a log

The TPC-A benchmark is stated in terms of a hypothetical force on the disks used in our experiments is about 17.4

bank with one or more branches, multiple tellers per milliseconds. This yields a theoretical maximum

branch, and many customer accounts per branch. A throughput of 57.4 transactions per second, which is within

transaction updates a randomly chosen account, updates 15% of the observed best-case throughputs for RVM and

branch and teller balances, and appends a history record to Camelot.

an audit trail. When account access is random, Figure 8(a) shows that

In our variant of this benchmark, we represent all the data RVM's throughput is initially close to its value for

structures accessed by a transaction in recoverable sequential access. As recoverable memory size increases,

memory. The number of accounts is a parameter of our the effects of paging become more significant, and

benchmark. The accounts and the audit trail are throughput drops. But the drop does not become serious

represented as arrays of 128-byte an" 64-byte records until recoverable memory size exceeds about 70% of

respectively. Each of these data structua ; occupies close physical memory size. The random access case is precisely

to half the total recoverable memory. The sizes of the data where one would expect Camelot's integration with Mach

structures for teller and branch balances are insignificant, to be most valuable. Indeed, the convexities of the curves
in Figure 8(a) show that Camelot's degradation is more

Access to the audit trail is always sequential, with wrap- graceful than RVM's. But even at the highest ratio of
around. The pattern of accesses to the account array is a recoverable to physical memory size, RVM's throughput is
second parameter of our benchmark. The best case for better than Camelot's.
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N. a t. REHM RVM StTra/Se) Camelot ('SranaeSen)

__ _ Ral = Random Locald Sequential Rnto

32168 12.5% 48.6(0.0) 47.9 (0.0) 47.5 (0.0) 48.1 (0.0) 41.6 (0.4) 44.5 (0.2)

65536 25.0% 48.5 (0.2) 1 46.4 (0.1) 46.6(0.0) 48.2(0o) 34.2 (0.3) 43.1 (0.6)
98304 37.5% 48.6(0.0) 45.5 (0.0) 46.2 (0.0) 48.9 (0o.) 30.1 (0.2) 41.2 (0.2)

131072 50.0% 48.2(0.0) 44.7 (0.2) 45.1 (0.0) 48.1 (0.0) 29.2 (0.0) 41.3 (O.1)
163Q40 62.5% 48.1 (0c0) 43.9(O.0) t 44.2(0.1) 48.1 (0.0) 27.1 (0.2) 40.3(02)
196608 75.0% 47.7(0.0) 43.2(0.0) 43.4 (0.0) 48.1 (OA) 25.8 (1.2) 39.5 (0.$)
229376 87.5% 47.2 (0.1) 42.5 (0.0) 43.8 (0.1) 48.2 (0.2) 23.9 (0.1) 37.9 (0.2)
262144 100.0% 46.9(O.O) 41.6 (0.0) 41.1 (0.0) 48.0(0.0) 21.7 (0.0) 35.9 (o2)
294912 112.5% 46.3(O.6) 40.8 (0.S) 39.0(0.6) 48.0(0.0) 20.8 (0.2) 35.2(0.1)
327680 125.0% 46.9(O.7) 39.7 (0.0) 39.0(0.5) 48.1 (0.1) 19.1 (0.0) 33.7 (0.0)
360448 137.5% 48.6 (O.0) 33.8 (0.9) 40.0 (0.0) 48.3 (O.0) 18.6 (0.0) 33.3 (O.1)
393216 150.0% 46.9(0.2) 33.3(1.4) 39.4(0.4) 48.9(0.0) 18.7 (0.1) 32.4 (0.2)
42.5984 162.5% 46.5 (0.4) 30.9(0.3) 38.7(0.2) 48.0(0.0) 18.2(0.0) 32.3 (02)
458752 175.0% 46.4 (0.4) 27.4 (0.2) 35.4 (1.0) 47.7 (0.0) 17.9 (0.1) 31.6(0.0)

This table presents the measured steady-state thmughp•t. in tnsaciaons per second, of RVM and Camelot on the benchmark described in Section
7. 1.1. The column labelled "Rme"iPmets gives the rato of covertable to physical memory size. Each data point gives the mean and standard
deviatio n(m parnthemi) o( the three trials with most consistent resutis. chosen from a set of five to eight. The expenmenLs were conducted on a
DEC 5000/200 with 64MB of main menory and separate disks for the log. external dais segment. aid paging file. Only one thread was used to
run the benchmmark. Only processes relevant to the benchmark ran on the machine during the experiments. Transactions were required to be fully
atomic and pennMen.L Inter- and intransaction optimization were enabled in the case of RVM, but not effective for this benchmark. This
version of RVM only supported epoch trmcation; we expect incremental truncation to improve performance significantly.

Table 1: Transactional Throughput
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(a) Best and Worst Cases (b) Average Case
T'hese plots illustrate the data in Table I. For clarity, the average case is presented separately fromi the best and wort-, cases.

Figure 8: Transactional Throughput

For localized account access, Figure 8(b) shows that data in Table 1 indicates that applications with good
RVM's throughput drops almost linearly with increasing locality can use up to 40% of physical memory for active
recoverable memory size. But the drop is relatively slow, recoverable data, while keeping throughput degradation to
and performance remains acceptable even when less than 10%. Applications with poor locality have to
recoverable memory size approaches physical memory restrict active recoverable data to less than 25% for similar
size. Camelot's throughput also drops linearly, and is performance. Inactive recoverable data can be much
consistently worse than RVM's throughput. larger, constrained only by startup latency and virtual

simplicity is not memory limits imposed by the operating system. The
These measurements confirm that RVM's its int comparison with Camelot is especially revealing. In spite
an impediment to good performance for its intended of the fact that RVM is not integrated with VM, it is able to
application domain. A conservative interpretation of the ouprrmC eltvrabodrngofwrods

outperform Camelot over a broad range of workloads.
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These piots depict the measured CPU usage of RVM and Camelot durng the experimets descrbed in Section 7.1.2. As in Figure 8, we have
epmaed the aveage cme from the best md wornt cases for visual clarity. To save spae, we have omited the table of data (similar to Table 1)

an which these p&s m bused.

Figure 9: Amortized CPU Cost per Transaction

Although we were gratified by these results, we were feasible because server hardware has changed
puzzled by Camelot's behavior. For low ratios of considerably. Instead of IBM RTs we now use the much
recoverable to physical memory we had expected both faster Decstation 500/200s. Repeating the original
Camelot's and RVM's throughputs to be independent of experiment on current hardware is also not possible,
the degree of locality in the access pattern. Tbe data shows because Coda servers now use RVM to the exclusion of
that this is indeed the case for RVM. But in Camelot's Camelot.
case, throughput is highly sensistive to locality even at the Consequently, our evaluation of RVM's scalability is based
lowest recoverable to physical memory ratio of 12.5%. At on the same set of experiments described in Section 7.1.
that ratio Camelot's throughput in transactions per second For each trial of that set of experiments, the total CPU
drops from 48.1 in the sequential case to 44.5 in the usage on the machine was recorded. Since no extraneous
localized case,andto41.6intherandomcase. activity was present on the machine, all CPU usage

Closer examination of the raw data indicates that the drop (whether in system or user mode) is attributable to the
in throughput is attributable to much higher levels of running of the benchmark. Dividing the total CPU usage
paging activity sustained by the Camelot Disk Manager. by the number of transactions gives the average CPU cost
We conjecture that this increased paging activity is induced per transaction, which is our metric of scalability. Note
by an overly aggressive log truncation strategy in the Disk that this metric amortizes the cost of sporadic activities like
Manager. During truncation, the Disk Manager writes out log truncation and page fault servicing ovcr all
all dirty pages referenced by entries in the affected portion transactions.
of the log. When truncation is frequent and account access Figure 9 compares the scalability of RVM and Camelot for
is random, many opportunities to amortize the cost of each of the three access patterns described in Section 7.1.1.
writing out a dirty page across multiple transactions are For sequential account access, RVM requires about half the
lost. Less frequent truncation or sequential account access CPU usage of Camelot. The actual values of CPU usage
result in fewer such lost opportunities. remain almost constant for both systems over all the

7.2. Scalability recoverable memory sizes we examined.
As discussed in Section 2.3, Camelot's heavy toll on the For random account access, Figure 9(a) shows that both
scalability of Coda servers was a key influence on the RVM and Camelot's CPU usage increase with recoverable
design of RVM. It is therefore appropriate to ask whether memory size. But it is astonishing that even at the limit of
RVM has yielded the anticipated gains in scalability. The our experimental range, RVM's CPU usage is less than
ideal way to answer this question would be to repeat the Camelot's. In other words, the inefficiency of page fault
experiment mentioned in Section 2.3, using RVM instead handling in RVM is more than compensated for by its
of Camelot. Unfortunately, such a direct comparison is not lower inherent overhead.
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Madm Mahinm Transactlms Bytes Written inta-Trasactionm Inter-Transataion Total
Nam type cominmitd to LAS Savtng Savings Savtng

ieg ve 267,224 299,215.032 20.7% 0.0% 20.7%
ayda server 483,978 661,612.324 21.5% 0.0% 21.5%

Wagner saver 248,169 264,557,372 20.9% 0.0% 20.9%
moar lieant 34,744 9,039,008 41.6% 26.7% 68.3%
Ayes client 21.013 6,842,648 31.2% 22.0% 53.2%
v" i ient 21,907 5,789,696 23.1% 20.9% 49.0%
bac client 26,209 10,78'7,736 25.8% 21.9% 47.7%
PureIl dim 76,491 12.24750 41.3% 36.2% 77.5%
berlioz chat 101,168 14,918,736 17.3% 64.3% 81.6%

Ts table pemms the observed reduaion in log traffic due to RVM opumizatiom. The column labelled "Bytes Writt to Log" shows the log
sin after both opmiouaios were applied. The columns labelled "Inra-Tnsmactiom Savinpg and "Inter-Tmnsaation Savings" indicate the
peI I age of the original log size that wu supmssed by each type of optimlizatn. This data was obtained over a 4-day per-od in March 1993
fmom Coda clients and serven.

Table 2: Savings Due to RVM Optimizations

For localized account access, Figure 9(b) shows that CPU those machines tend to be selected on the basis of size,
asage increase linearly with recoverable memory size for weight, and power consumption rather than performance.
both RVM and Camelot. For all sizes investigated, RVM's
CPU usage remains well be'ow that of Camelot's. 7.4. Broader Analysis

A fair criticism of the conclusions drawn in Sections 7.1
Overall, these measurements establish that RVM is and 7.2 is that they are based solely on comparison with a
considerably less of a CPU burden than Camelot. Over research prototype, Camelot. A favorable comparison with
most of the workloads investigated, RVM typically well-tuned commercial products would strengthen the
requires about half the CPU usage of Camelot. We claim that RVM's simplicity does not come at the cost of
anticipate that refinements to RYM such as incremental good performance. Unfortunately, such a comparison is
truncation will further improve its scalability. not currently possible because no widely used commercial

RVM's lower CPU usage follows directly from our product supports recoverable virtual memory. Henct; a

decision to structure it as a library rather than as a performance analysis of broader scope will have to await

collection of tasks communicating via IPC. As mentioned the future.

in Section 3.3, Mach IPC costs about 600 times as much as
a procedure call on the hardware we used for our 8. RVM as a Building Block
experiments. Further contributing to reduced CPU usage The simplicity of the abstraction offered by RVM makes it
are the substantially smaller path lengths in various RVM a versatile base on which to implement more complex
components due to their inherently simpler functionality, functionality. In principle, any abstraction that requires

persistent data structures with clean local failure semantics
7.3. Effectiveness of Optimizations can be built on top of RVM. In some cases, minor
To estimate the value of intra- and inter-transaction extensions of the RVM interface may be necessary.
optimizations, we instrumented RVM to keep track of the
total volume of log data eliminated by each technique. For example, nested transactions could be implemented
Table 2 presents the observed savings in log traffic for a using RVM as a substrate for bookkeeping state such as the

representative sample of Coda clients and servers in our undo logs of nested transactions. Only top-level begin,

environment, commit, and abort operations would be visible to RVM.
Recovery would be simple, since the restoration of

The data in Table 2 shows that both servers and clients committed state would be handled entirely by RVM. The
benefit significantly from intra-transaction optimization, feasibility of this approach has been confirmed by the
The savings in log traffic is typially between 20% and Venari project [37].
30%, though some machines exhibit substantially higher
savings. Inter-transaction optimizations typically reduce Support for distributed transactions could also be provided
log traffic on clients by another 20-30%. Servers do not by a library built on RVM. Such a library would provide
benefit from this type of optimization, because it is only coordinator and subordinate routines for each phase of a
applicable to no-flush transactions. RVM optimizations two-phase commit, as well as for operations such as
have proved to be especially valuable for good beginning a transaction and adding new sites to a
performance on portable Coda clients, because disks on transaction. Recovery after a coordinator crash would

involve RVM recovery, followed by approriate terminition
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of distributed transactions in progress at the time of the of techniques for achieving high performance in OLTP
crash. The communication mechanism could be left environments with very large data volumes and poor
unspecified until runtime by using upcalls from the library locality [121.
to perform communications. RVM would have to be in contrast to those efforts, RVM represents a "back to
extended to enable a subordinate to undo the effects of a basics" movement Rather than embellishing the
first-phase commit if the coordinator decides to abort. One transactional abstraction or its implementation. RVM seeks
way to do this wouldbeto extend end-transaction t to simplify both. It poses and answers the question "What
return a list of the old-value records generated by the is the simplest realization of essential transactional
transaction. These records could be preserved by te properties for the average application?" By doing so, it
library at each subordinate until the outcome of the two-phas comit s cear.On gloal ommi, ~makes transactions accessible to applications that have
phase commit is clear. On a global commit, the records hitherto balked at the baggage that comes withwould be discarded. On a global abort, the library at each soh ti ae trn ci nlfclte .
subordinate could use the saved records to construct a
compensating RVM transaction. The virtues of simplicity for small databases have been

extolled previously by Birrell et al [5). Their design is isRVM can also be used as the basis of runtime systems for
even simpler than RVM's, and is based upon new-valuelanguages that support persistence. Experience with logging and full-database checkpointing. Each transaction

Avalon [38], which was built on Camelot, confirms that is constrained to update only a single data item. There is

recoverable virtual memory is indeed an appropriate no s uppote f e l ansin at. Ute s are

abstraction for implementing language-based local
recorded in a log file on disk, then reflected in the in-

persistence. Language support would alleviate the problem memory database image. Periodically, the entire memory
mentioned in Section 6 of programmers forgetting to issue
set-range calls: compiler-generated code could issue image is checkpointed to disk, the log file deleted, and thenew checkpoint rile renamed to be the current version of
these calls transparently. An approximation to a language- the database. Log truncation occurs only during crash
based solution would be to use a post-compilation recovery, not during normal operation.
augmentation phase to test for accesses to mapped RVM
regions and to generate set-range calls. The reliance of Birrell et al's technique on full-database

Further evidence of the versatility of RVM is provided by checkpointing makes the technique practical only for

the recent work of O'Toole et al [25]. In this work, RVM applications which manage small amounts of recoverable
segments ar used as the stable to-space and from-space of data and which have moderate update rates. The absence
segments area useduaas thet stablerto-spancrand farobace oof support for multi-item updates and for explicit abort
the heap for a language that supports concurrent garbage further limits its domain of use. RVM is more versatile

collection of persistent data. While the authors suggest without being substantially more comvlex.

some improvements to RVM for this application, their

work establishes the suitability of RVM for a very different Transaction processing monitors (TPMs), such as
context from the one that motivated it. Encina [35, 40] and Tuxedo [1, 36], are important

commercial products. TPMs add distribution and support

9. Related Work services to OLTP back-ends, and integrate heterogeneous

The field of transaction processing is enormous. In the systems. Like centralized database managers, TPM back-

space available, it is impossible to fully attribute all the ends are usually monolithic in structure. They encapsulate

past work that has indirectly influenced RVM. We all three of the basic transactional properties and provide

therefore restrict our discussion here to placing RVM's data access via a query language interface. This is in

contribution in proper perspective, and to clarifying its contrast to RVM, which supports only atomicity and the

relationship to its closest relatives, process failure aspect of permanence, and which provides
access to recoverable data as mapped virtual memory.

Since the original identification of transactional properties

and techniques for their realization [13, 181, attention has A more modular approach is used in the Transarc TP

been focused on three areas. One area has been the toolkit, which is the back-end for the Encina TPM. The

enrichment of the transactional concept along dimensions functionality provided by RVM corresponds primarily to

such as distribution, nesting [231, and longevity [1 I]. A the recovery, logging, and physical storage modules of the

second area has been the incorporation of support for Transarc toolkit. RVM differs from the corresponding

transactions into languages [211, operating systems [151, Transarc toolkit components in two important ways. First,

and hardware [6]. A third area has been the development RVM is structured entirely as a library that is linked with
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