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Solving the acoustic wave equation using the parabolic approximation is a popular

approach of many available underwater acoustic models. Here we develop and present a version

of the PE model developed at the University of Miami from 1989 to the present under the guidance

of Professor Fred Tappert. The model has aptly been named the UMPE model. Fundamentally a

research model, the numerical approaches used here may be compared to other PE models and,

subsequently, may begin a discussion on the diversity and validity of current PE methods.

This report is based on a collection of published articles by various authors and a compila-

tion of unpublished lecture notes given by Fred Tappert. The motivation here is an attempt to

address the fundamental properties of PE modeling and the implementation within the UMPE

model. The framework for the algorithms and a description of the source code implementation will

also be given. As upgrades to both the code and this text will occur inevitably, we are defining this

model as version 1.0. Users are encouraged to contact either author with questions or numerical

problems (i.e., bugs).

1. General theory of PE approximations

We begin by representing the time-harmonic acoustic field in a cylindrical coordinate sys-

tem by

P(r, z, p, wt) - p(r,z, (p) e-iW (1.1)

Substituting this into the wave equation in cylindrical coordinates leads to the Helmholtz equation,

10 , p laOp O2p 202(r

r-(r-r) + 2O +--+ ( p)p - -4xPob(I- IS) (1.2)

CO
where ko - CO is the reference wavenumber, n (r, z, 4p) - is the acoustic index of

refraction, co is the reference sound speed, and c (r, :, 4p) is the acoustic sound speed. It is within

c (r, :, qp) that all features of the environment are represented. The source function is that of a
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point source at coordinates (r - 0, : - :s) with reference source level Po defined as the pressure

amplitude at a reference distance of Ro - 1 m, and

6(.•) - •6(:--zS)6(r) (1.3)2xr

Primarily, acoustic energy propagates outward from acoustic sources in the ocean in the

horizontal direction. We therefore represent the pressure field by an outgoing Hankel function

slowly modulated by an envelope function,

p(r,z,qp) - V (r,:, qP)Ho( H (kor) (1.4)

In the far-field, the Hankel function can be approximated by

(12 1/2k
H ((kor) - ( )r e'° e (1.5)

thus an alternative relationship between the acoustic pressure, p (r, z, q)) , and the slowly modulat-

ing envelope function, VF (r, z, q4), is

p (r,rq) ,P0 -1 (rzqq))e r (1.6)

This is the standard definition of the so-called "PE field function" Vp scaled such that at r - R0 ,

lVI - I and Jp1 - Po. Substituting (1.6) into (1.2) and dropping the source contribution to the

far-field solution yields the defining equation for the evolution of the PE field function,

al ÷ -r 0- n 17)

Because this is a far-field approximation, we choose to neglect the two terms containing the I fac-
r"

tors. This will automatically invoke the uncoupled azimuth (UNCA) approximation by dropping

the a term. Note that this is strictly valid only for a 2 iV. Should the environmental condi-
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tions become such that V and is non-negligible with respect to r5-r then azimuthal

coupling should not be ignored. We will return to this topic near the end of this report.

At this point, the only approximations we have applied to the wave equation are a far-field

assumption and little or no azimuthal variations. Implicit in the far-field analysis is the small angle

approximation, evident from the expression for the uniform ocean Green's function

1 / ik° [r2 + (z -Zs) 2],/ (1.8)

[ + (Z- ZS) 2

Iz-zs•
where zs is the source depth. For small angles of propagation, 101 - -- 1, so

I iko[r+ (z- is)z "
Po-e 2r I M I.Ve . (1.9)

The corresponding form for V is found to satisfy a parabolic type equation. The general form of

the parabolic approximation to the wave equation simply follows then from the acknowledgment

that V is a slowly varying function in range and we may neglect the term a 2V Thus, Eq. (1.7)

takes the form
a . i a2V+iko 2_ l)V) 0

Or m2k0 - r2

Eq. (.1 0) was first introduced to the underwater acoustics community by Tappert (1974).

We have now reduced a second order differential equation to a first order one, thereby

allowing solutions via a non-iterative marching algorithm. Note that we may rewrite Eq. (.1 0) as

ikTao = Hop- - (Tor+U 0 P)V(1.11)

where the operators

1 )i 2 1 a2ro• --• •) 2 r . a11-
2k3oz



and

Uo, - u(,zr,) - -U(-21) (1.13)

This representation of the operators as kinetic and potential energy operators is especially insight-

ful when one wishes to form the ray equations which have Hamiltonian form (e.g., Smith et al.,

1992). In Eq. (1.11), the function V, is a vector (in z) in Hilbert space. The relationship between

the values of Vp at different ranges can now be expressed as

V (r + Ar) - (r) (r).14)

To propagate the solution out in range requires a representation of the propagator 0 (r).

There are three common methods of computing PE solutions: (I) the split-step Fourier (PE/

SSF) method (Hardin and Tappert, 1973), (2) the implicit finite difference (IFD-PE) method (e.g.,

Lee and Botseas, 1982), and (3) the finite element (FEPE) method (e.g., Collins, 1988). Since the

UMPE model uses the first technique, we shall isolate our discussion to the implementation of the

PE/SSF method. This is easily accomplished by approximating the propagator function by

q ( r) me-ik°B°. (r) Ar (!.15)

where

Hop(r)- + f ar ,H- (r') (1.16)

The validity of this approximation can be seen from the following argument. Suppose we divide

Eq. (1.11) by V to obtain

I ( nV) - -. kHo, (r) (1.17)

Integrating this yields
+ 4 Ard

imp (r + Ar) - inm(r) - ikOr ArdHo (r')

or

-ikof + dr'H., (r')
Vp(r+Ar) - e V (r) (1.18)
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This is exactly the equation we developed in (1.14), (1.15), and (. 16). It is not formally valid,

however, since Hop is an operator and we cannot divide (1.11) by V. In other words, it is only an

approximation because 0. The formal solution, using a Dyson time evolutionLar ' H

operator (Sakurai, 1985), would be

Vl(r + Ar) Te dH (r) (1.19)

where

Te-jko!'A'dr'H.,(r') 1 +k•÷Ard ,H (, 2 + Ardr, drN.p N ('TeI- ikf+IdrHp~r -~ r'dr Hop(r" )H r'

+ (higher order terms) (1.20)

Thus, from Eq. (1.20), we can evaluate the first order correction to Eq. (1.18).

Assuming (1.18) to be valid, we still must evaluate Hp defined in Eq. (1.16). Two com-

mon approximations are
Hop - Hop(r+ Ar) (1.21)

and simply

Hop - Hp (r) (1.22)

These are sometimes referred to as the "centered" and "end point" schemes, respectively. The

interpretation of these approximations is that, over the range step r tor + Ar, the operator (hence

the environment) is sampled at either the middle or the beginning of the range step. Presumably,

if Ar is small enough the differences between the solutions are negligible. The UMPE model

implements Eq. (1.22) and we shall isolate the remainder of our discussion accordingly.

The operator Uop is simply a multiplication operator in z-space and, hence, is a diagonal

matrix. The operator Top is not diagonal in z-space so different depth eigenfunctions are coupled.

In wavenumber space, however, the corresponding operator Top is diagonal. It is desirable, there-
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fore, to separate the application of each operator, one in :-space and one in k-space. Using the

Baker-Campbell-Hausdorff expansion (BelImL.i, 1964), we may write

eA+B - eAeBe[A,B] + [A, (ARB] + [B, [B,,A]])+... (1.23)

where A - -ik)ArTYo and B - -ikor Uop. Since both TP and Uop are sm.-i then we assume

their products are of second order and negligible. Finally then, we have

4D (r) - e.re (1.24)

Note that this separation of Hop into two components, each of which is diagonal in some represen-

tation and can be applied independently of the other, is presumed by application of the SSF

integration scheme. The various approximations used to separate the operator Hop are typically

used to distinguish one type of PE/SSF model from another.

Note from Eq. (1.24) that if there are no losses present (i.e. ImToP - lmUop - 0) then

11(r)II - 1 , (1.25)

and & (r) is a unitary operator. Therefore, the normalization condition is

Iii(r)II - fIV (rz)12d:" - constant . (1.26)

In other words, because of the formulation of the propagator, the PE/SSF scheme is conservative.

There are no intrinsic losses due to the numerical scheme.

The general algorithm behind the PE/SSF implementation is then as follows. The PE field

function Vp is specified at some range r in the z-domain. A transformation is made to the k-domain

followed by a multiplication of the k-space Ci,.'r' rator e-ikoArt*. The result is then transformed again

to the z-domain and is followed by a multiplication of the z-space operator e-ikOArU°'. (The actual

order is irrelevant since the commutation of these operators is considered insignificant but this is

the order imposed in UMPE.) The final result is the field function at r + Ar. The FFT subroutine

employed in the numerical code assumes the convention
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V(:) - FFT(iý (k)) (1.27)

and

i:(k) - [FFT (V* (:))] * (1.28)

Therefore, the PE/SSF implementation can be represented by

Vp (r + Ar, :) - e-ikOArU.,(rz) x FFT e-ikoArt,(rk) x [FFT (V* (r,z)) (1.29)

where, in k-space,

- k 2 (.0
op(k) I ( 10) (1.30)

Previously, we have assumed the opetators took the forms defined by Eqs. (1. 12) and

(1.13). These forms, which followed from the derivation of the parabolic equation (1.10), are com-

monly referred to as the "standard PE" or SPE forms and are only one set of a number of various

operator forms. To obtain other, higher order forms, we return to the original wave equation (1.2).

Still ignoring the source term and the azimuthal coupling term, we now define the pressure field as

p(r,z) - -u(r,z) (1.31)

The function u (r, z) is identical to the pressure field in two dimensions and the term I accounts

for azimuthal spreading. Substituting (1.31) into the Helmholtz equation in two dimensions yields

the far-field UNCA expression

a0,, oa,, 2- + -2+ Von (r, z) u - 0 (1.32)

We introduce the operators

P p . 1 ( 1 .3 3 )

and

12

QOP + ( ~'07 (1.34)

7~ a



Eq. (1.32) then becomes
( 22

OP + rop)U - 0 (1.35)

which can be factored as

(Pop + ikoQop) (P,,P-ik0oQo,) u + iko [Pop0 Qop] u . 0 (1.36)

The commutator [Pop, Qop] is assumed negligible and is, in fact, exactly zero in layered media.

Eq. (1.36) therefore represents the combination of incoming and outgoing waves. The outgoing

wave satisfies

PopU - ikoQopu (1.37)

or

I 8u
- "ikT . Q0pu (1.38)

Eq. (1.38) is observed to have a form similar to Eq. (1.11). The trick is now to develop an approx-

imation for Qop that separates into a z-space operator and a k-space operator.

The UMPE model allows the user to choose from five different Q,,P approximations which

we shall now derive. We begin by introducing the notation

n -(1 1.39)

and

I a2 (1.40)
k0

so

Qop" (gt+ +1) 1/2 (1.41)

The first approximation follows from the assumption that both e and IA are small compared to unity.

A binomial expansion then yields

I I
Q" -Q, " I ti + .E (1.42)
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Substitution of (1.39) and (1.40) shows that this is, within an additive constant, the standard PE

operator,

Ia 2  12
+ - 1, ) + 1 (1.43)Q,- QsPE" 2k oaz 2 -

00Interpreting ~ ~ k th=prtr Aa ~ sin20 indicates that the assumption t& (< I implies

sin2 - 2 (< 1, hence this is a small angle approximation. The condition E (( 1 is simply inter-

preted as assuming primarily stratified media as is typical of most ocean regions. In fact, since

S- (n 2 - 1) ( 1,wecan further approximate this by e-2(n- 1) to obtain

I: - ak~2 + (n- 1) + 1 (1.44)
-0

Both of these approximations were first recognized by Tappert (1977) in his original Springer-Ver-

lag article.

To obtain the customary formula for the PE field function V, we first give it the usual enve-

lope definition

u (r, z) - V (r, z) e (1.45)

Substituting this into (1.38) yields

r -ik°V + ik°Q°PV. (1.46)

Application of Qop - QSPE produces exactly Eq. (1.10). Comparing (1.46) with (1.11) indicates

the simple relationship

Qop - I-Hop - 1 - (Top + Uop) (1.47)

which easily allows a split-step Fourier implementation. Equivalently then, our goal is to develop

expressions for Top and Uop based on approximations of Qop.

A better approximation to Qop, also introduced by Tappert (1977), assumes that only the

sound speed variations are small, i.e. c (( 1. We may then write

9



Q3 - (I+ P) .+ (1.48)

The restriction on propagation angles has now been removed. In fact, for homogeneous media

(e - 1) , Eq. (1.48) is observed to be an exact representation of the original Helmholtz operator.

A higher order approximation introduced by Thomson and Chapman (1983) is actually a

combination of Eqs. (1.44) and (1.48). It is based on an operator splitting by Feit and Fleck (1978)

which is formally valid only when e and R. commute. Commonly referred to as the "wide-angle'"

approximation (WAPE), it has the form

Q4 - QWAPE - (I+ P) 1/2+[(I+e) .1 (1.49)

Invoking the operator identity

-(1.50)

and formulating Eq. (1.49) in terms of Top and U0,p as in Eq. (1.47) leads to

TWAPE - 0-( 2 + ) + 1 (1.51)

and

UWAPE -- (n - 1) (1.52)

In wavenumber space, we may express (1.51) as

TWApE(k) - ()- -(1 2) / +1 ] - l-F (!) (1.53)

Note that modes with k > ko are evanescent since

•.WAE~k~o) .l~i[ k__2 i/2

twAEk(k>ko) - I ,[( k 1 (1.53')

The final approximation we shall consider was introduced by Berman et al. (1989) and is

referred to as the "modified LOGPE" or simply LOGPE. It follows from assuming the potential

energy function U,,p has the form

10



ULOGPE - -ln(n) - (1.54)

Comparing the ray equations derived from the Helmholtz equation with the general formulation of

the ray equ•,mons in terms of TOP and Uop leads to the definition of the kinetic energy term consistent

with (!.. 4)

TLGE--nCos(--]. (1.55)

In the wavenumber domain, this becomes simply

k ko

We note that for small propagation angles k (( 1),

1 2
TLOGPE- P20;Z--•2 m sPE (1.56)

while for nearly uniform media (n - 1),

ULOG lE - (n -1) - USPE (.57)

Thus, LOGPE reduces to SPE in situations where the latter approximation is valid. Unfortunately,
kr

the operator hLOGPE (k) is undefined for k Z X. To avoid this, a sine-squared taper function is

1 7a r k a
applied over the outer • range of - to 2" For 0> , this function is set to zero.

816 2 Ic0  2'

Of the five PE approximations described so far, the last two are expected to yield the most

accurate results. The most common PE implementation currently is the WAPE, and this is the ver-

sion used in the Navy standard model (Holmes and Gainey, 1991). However, the WAPE and other

so-called "higher-order" models are still not exact and may occasionally produce results that are

worse than predicted by the SPE. The most famous example of this, sometimes referred to as the

Porter duct problem, was defined in Test Case 7 of the PE Workshop II (Chin-Bing et al., 1993).

In such instances, it is usually found that the error results from extra-sensitivity to the choice of

11



referenct: sound speed. In fact, the choice of c0 is the one ambigtious feature of all PE models, and

till now we have ignored this effect. Later in this report, a scheme for computing a default value

for co will be discussed. However, modelers are hereby forewarned that no method is foolproof.

The best approach is to vary co and look for fluctuations in the calculations. Currently, the UMPE

model only takes user input co values.

Because of the ever present ambiguity in the selection of Co, it is highly desirable to develop

a model that is co-insensitive such that significant changes in the choice of c0 will not affect the

final result. Tappert (1991b) developed a rigorous definition of such a PE model. Application of

the resulting code was found to eliminate the sensitivity in the Porter duct problem. However,

implementation was complicated and required a transformation of the function V, (:-) to a new

function uj (-) in a transformed space. In a range-dependent environment, such a transformation

would be required at each range step thereby greatly increasing the run time. Since one of the main

advantages of the PE/SSF code is the speed with which the acoustic field can be computed, a co-

insensitive version has not been implemented in the UMPE code. Again, the user is reminded to

beware of these highly sensitive (but uncommon) problems.

Two other ambiguous variables must also be introduced in the numerical implementation.

As in !!I models, a discietization of the environment is required and defined by the mesh size

(Ar, Az). Because the depth mesh influences the wavenumber increments Ak, we may define a

default value for Az, hence the transform size N, by considering a lower limit on allowable angles

of propagation. Since Nwavenumber values will be spread over the range +kmax to -k,,4, it follows

that

km-x - NAk 2ar (1.58)

f "ZT

where ZT is the total computational depth, so

Nx
ZT

12



Furthermore, the wavenumbers are related to the angles of propagation by

k - k0sinO . (1.60)

It follows that for a given maximum angle of propagation, the minimum transfbrm size required

must satisfy

kOZT
Nm a - sinOx (1.61)

To define an upper bound on the range step size, Armax, we consider the analogy of phys-

ical optics. In the vicinity of a focus, the signal will vary significantly over a horizontal range of

2f'
Ar - (1.62)

where f is the f-number of the focusing lens,

f - R (1.63)

R is the focal length and 2B is the effective aperture. In the underwater acoustics problem, the focal

length can be represented by the distance between convergence zones, CZ, and the effective aper-

ture is roughly the depth of the ucean or approximately ýZT (the factor of for the depth will be

explained later). Then (1.63) becomes

CZ If - -(1.64)
"T sin

where 0 is the angle of propagation. Combining (1.62) and (1.64) yields the upper limit on the

range step size
2

Armax max(1.65)

A similar analysis suggests that the maximum vertical mtsn size is given by

2f 2
Amaxz k kosinO max (1.66)

which can be shown to yield roughly the same order for the transform size as Eq. (1.61).

13



From the above analysis, it is obvious that if a particular problem is known to contain only

small angle propagation, the mesh size (Ar, A.) may be increased and, subsequently, the run-time

will be reduced. Conversely, for problems where very large angle propagation is expected to be

important a small mesh size may be required. If the user is unsure, zero values may be input for

the depth transform size and the range step size which will prompt the model to use the default val-

ues defined by Eqs. (1.61) and (1.65). A value for Oax is then defined by the input source angular

width or 300, whichever is greater.

We will now review the main results of this section. The UMPE model can solve five dif-

ferent PE type approximations to the wave equation. The general form of each equation is

av = -iko (Top + Uop) V
iar

and the acoustic pressure is then defined by

ikorAp. -O, r~r e

The numerical algorithm employed is the split-step Fourier, or SSF, such that the solution for V is

marched out in range according to

Vp (Z r + Ar) - e-ik°ArU0p(z, r) xFFT { e-ikoArtop(k, r) x[FFT(V*(r)

where, by definition,

V(z) - FFT (p,(k))

and

j,(k) - [FF(V,*(:))]*

The five typcs of PE approximations and their corresponding operators are

1) SPE:

k 2

TSPE(k) - 1k4
0

14



12

'SPE() [n (:) - 1]

2) Variant SPE:

tvspE(k) - 1( ) ,
0

UvsPE(z) - -[n(z) - 1]

3) Variant WAPE:

TVJWAPE(k) -M - -I]

12
UVWAPE(Z) = (Z) -

4) WAPE:

TWAPE (k) -o

UWApE(Z) = -[n(Z) - 1]

5) LOGPE:

TLOGPE(k) -ln[cos(jo)]

tJLOGPE(.) - -In[n(z)]

2. Boundary conditions

The only parameter introduced in the last section for any of the PE approximations was the

reference sound speed co. In a sense, this parameter is related to the accuracy of the "small angle"

approximation since it will serve to scale the relative wavenumber values k The best choice of

co should then produce the most accurate results for a given problem. However, in the numerical

15



implementation of the PE, additional parameters must be introduced to define the discretely sam-

pled environment in a way that also yields the best results. This is primarily a concern in regions

where boundaries exist. The representation of these boundaries in a PE/SSF implementation is the

subject of this section.

2.1 Water/bottom interface

The UMPE model treats the bottom as a fluid of contrasting sound speed and density from

that of water. In addition, the UMPE model allows for an additional bottom layer to exist on top

of the basement to allow for effects of sediment layers to be included. Within either bottom vol-

ume, the PE environmental potential function, Uop (z), is defined as before in terms of the local

acoustic index of refraction, n (z) - where c(:) now includes the sound speed within the

bottom volume. The effect of approximating the bottom as a fluid is the neglect of shear wave

propagation. When the true bottom does support shear waves, the conversion of compressional

energy incident on the interface into downward propagating shear energy is treated as a loss. In

this manner, the bottom properties are replaced by equivalent fluid properties that produce the cor-

rect reflection from the interface. The treatment of shear as a loss mechanism is discussed further

in a following section.

2.1.1 Sound speed discontinuity

We assume the interface between the bottom of the water column and the top of the base-

ment, or sediment, layer is characterized by a sharp contrast in sound speed. In a numerical code

with finite sampling and recurrent use of FFT's, it is desirable to use smoothly varying, continuous

functions to avoid artificial reflections, aliasing, and noise from entering into the calculation.

Therefore, we seek to find a smooth, continuous function of variable scale which can accurately
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reproduce the physical effects of a discontinuous jump in sound speed at the water/bottom inter-

face.

We write the interface condition for the sound speed as

c (z) C- + [cb (Z) - c,. (z) ] H (z -zb) (2.1)

where we shall assume that the sound speed above the interface at z - Zb has a constant value of

c. and below the interface has a value Cb. The Heaviside step function is defined by

0, <40

H(t) - I, t-0 (2.2)

1, t;>o

where Z m z - zb. From the theory of generalized functions (Lighthill, 1958), we may replace M)

by any smooth function within a class of generalized functions that produces the same overall

effect (i.e., has similar moments).

One such function satisfying the above criteria involves the hyperbolic tangent function,

Q(t) - +[ tanh ( -) (2.3)

or, equivfalently,
-I

Q() - (1 +e- ) (2.3')

This function has the properties

T ( 0) , 0 < ; (2.4a)

and

T M• - 1, o 0, 0 (2.4c)

Furthermore, the derivative of the Heaviside function is

f' M - b () (2.5)

where 6(t) is the Dirac-delta function and is characterized by
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00

f- (2.6)
-- 0

Similarly, the derivative of H(t) is

I sech (2.7)

and it is easy to show that

00

(- 1 (2.8)

is also satisfied. This mixing function T(I) is parameterized by a characteristic mixing length,

Lc. It is obvious from the above analysis that

lim R(t) - H(t) (2.9)

and

lim 5( ) - 6() M)2.9')

This limiting equality can be shown to hold for higher derivatives as well.

We have now introduced an additional parameter into our model, the sound speed mixing

length, L,. This can be adjusted by the user in an attempt to create the most realistic interface con-

dition for reflections from a sound speed discontinuity. -The UMPE code then employs Eq. (2.3')

to mix the sound speed profiles above and below the interface (or interfaces) at:Z - zb. Experience

has shown that the most accurate results are gained by defining Lc as a fraction of an acoustic wave-

length. Experience has also shown that the sampling in depth Az need not necessarily be less than

a wavelength in which case L, -~ V5 would result in a sharp jump from c. to cb over one mesh point.

Ironically, this is what we intended to avoid. The interpretation of this apparent contradiction is

that a discontinuous jump in sound speed, hence a jump in the PE potential function Uop(-), does

not introduce much error and, in fact, yields the best representation of the reflection condition. A
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Az
default minimum value for L, has therefore been set at L -0 Alternatively, and perhaps

more accurately, the index of refraction could be smoothed over the interface. Experience has

again shown that this produces little difference in the final result.

2.1.2 Density discontinuity

The effect of density on acoustic propagation has not yet been considered. In fact, the vari-

ation of density was ignored in the original form of the Helmholtz equation. In a fluid with a

variable density p, the correct form of the Helmholtz equation is

1 2'1
pV. (-Vp) + kr0Wp - 0 . (2.10)

We make the substitution

Op (2.11)

to obtain the equation defining the propagation of q,

V2q +kn'2 q - 0 (2.12)

where n' is the "effective" index of refraction given by

2k2
fl'2 . n 2 + I[lv2 P-3( IV P)] (2.13)

Therefore, we may solve for the pressure field p(rz), now defined by

- pR0  ikor

p(r,.) - P0 -or(r, z) , (2.14)

by marching the solution of the PE function V(rz) out in range with the definition

Uop (Z) - U1 (z) + U2 (z) (2.15)

where U1(:) is the same environmental potential function previously defined and U2(z) accounts

for the effect of the density discontinuity. For example, if the SPE approximation is employed, one

can easily show that
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U2 (I) 1 [ d2P 3 1 (p') (2.16)

U2 ) 4-ký,L- ;:2  2p a:J

where we have assumed p - p (z) only.

The reference density is defined as that of pure water, p0 . 1 gicm 3 , and inputs to the

model for density are given as ratios, i.e. ±-. The UMPE model assumes each volume (water, sed-

P0

iment, basement) is characterized by a constant density profile. For example, with a single water/

bottom interface,

p(z) - P.+ (Pb-PW) H(:-:b) (2.17)

where H(ý) is the Heaviside step function described previously. Obviously, the function U(,(-) is

non-zero only in the vicinity of the interface. As before, we wish to spread this discontinuity over

some finite region in terms of smooth generalized functions. This is a more critical problem than

before because U2(z) depends not on the density but on the derivatives of the density. In most cur-

rent versions of PE/SSF, use is made of Eq. (2.16) to define the density potential function and the

hyperbolic mixing function Eq. (2.3'), with its subsequent derivatives, to define the interface con-

dition. However, the choice of the density mixing length LP has always been somewhat ambiguous

in this definition. If is chosen too large or too small, regardless of how well the function is sam-

pled in space, the result will not be correct. Recently, Tappert (1991 a) has suggested that a better

form for this function is

S a2
U2(z W 420.-H(Z-b) (2.18)

where

I - (p /pIb) /2] (2.19)

LI +/

For small density contrasts, this is equivalent to neglecting the second term in Eq. (2.16). The main

argument used to justify this approximation is that because we are using generalized functions to
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represent the density discontinuity, the function U((:) must also be defined in terms of generalized

functions. However, the second term in (2.16) contains the square of a generalized function, spe-

-2
cifically 6 (:'), which is not a generalized function. A detailed analysis by Tappert (1991 d) which

attempted to remove as much singularity as possible from the solution in the vicinity of the density

discontinuity showed that Eq. (2.18) is the best expression to use in the SPE approximation. Fur-

thermore, this formulation inherently produces the best results when Lp is minimized, i.e. as

Lp -, 0. Note that Lp must still be large enough such that the finite depth mesh adequately samples

the function U2(:) (which is not a simple jump as U1 was). We shall assume (2.18) can be applied

for any of the PE approximations used. The main justification for this is the expectation that most

bottom interacting energy will be near grazing, hence small angle reflection dominates at long

ranges.

We now examine two forms of mixing function available in the UMPE model to compute

the density potential function U2(z):

a) The first approximation of the Heaviside step function is the same hyperbolic tangent

function used to mix the sound speeds across the interface, i.e.

-1

H() ( (l+e (2.20)

The first derivative is

e-'ILP

H'(-) -M L P 1 e-/LP (2.21)

and the second derivative is

Tm - -i' (I + 2 3 (2.22)Lp ( 1-e + P-•)

Substituting this into the density potential function (2.18) yields one of the formulas used in the

UMPE model to compute the effect of a density discontinuity.
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The main advantage of the hyperbolic smoothing function is that it is a C. smooth func-

tion, i.e. all derivatives are continuous everywhere. The main disadvantage of this type of

smoothing function is that it has "infinite" extent. Although it may quickly approach a negligible

value (even zero within computer precision) away from the interface, it may still extend into unde-

sirable regions.

One can easily show that the extrema of ' (t) occur at tm - LPln (2 ±t J,) , - 1.32LP.
0.096

At these values, 9' - -,------. Because it is presumed that U2(z) yields the most accurate
P

representation for small LT, for a given mesh size A: it follows that the optimum choice of mixing

A.:
length for the hyperbolic tangent function is approximately I.- _ This produces a function with

extrema exactly one depth mesh above and below the interface. For this to be properly sampled,

however, the interface must also lie exactly on a mesh point. To accommodate these restrictions,

A,:
a minimum value of Lp.I A.- is defined. When the user input mixing length is equal to or

less than this, the potential function U,(:.-) is centered on the mesh point nearest the true interface

depth. In this manner, a default condition is set if the user inputs Lp = 0. While this should produce

the most accurate representation of U,)(z), it may introduce an error in the depth of the interface by

as much as 1A-. This error can be minimized and convergence tested by decreasing A: (i.e.,

2 "

increasing the transform size).

Experience suggests that the most accurate results are achieved by requiring LP s X. Con-

sequently, this implies a depth mesh limit of &-ma, - 1.32k - X. This condition may be relaxed

when no density discontinuity exists. The user is encouraged to experiment with different mixing

lengths and compare results with other models.

b) The second form of mixing function used completely localizes the extent to within a

finite distance from the interface, but is no longer C. smooth. Since we must be able to compute



the second derivative, it is required to be at least C, smooth. Specifically, we choose a cubic spline

over the finite interval -Lp•s t, LP.

In designing a cubic spline approximation for H(t), we have used four sub-intervals of

length L/2. Requiring continuity of the function and its first and second derivatives, we define

0 , tLp

0( + -) 3 -sts- L
2 P 2

( = M + - s (2.23)
2 P L P ' 2' 2

2 t 3 Lp1 - 0 (1- Z•) , T st s L P

I , at LP

The first derivative of this function is then

0 , ýsLp

2 - 2 LL

2 ( - )21 L , L

S2 LP

0 , P

Note that b(---) L(-) LPp and 6(0) - 1 soit is obvious thatp Lp

f - 1 (2.25)

and, therefore,

lim 0() M 6- ( ) (2.26)
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as required.

Finally, the second derivative is

0 , sLP
Lp4 0, L t -L

Lp
LL LL

4 -L( S ' (2.27)

L 2 - _
Lpp0 t 2!L P

Combining (2.27) with (2.18) gives the formula for computing the density potential function by

employing a cubic spline polynomial smoothing function.

Lp
This function obviously has extrema at t . -, given by 6' (le) - ±. For the

same value of mixing length, the cubic spline polynomial mixing function is found to produce a

representation of 6' (z) which is narrower in depth and has a larger amplitude than the hyperbolic

tangent mixing function. Furthermore, one can easily show that by defining this mixing length in

such a way that the spacing of the extrema for each function agree, i.e.,~av~i -,~o~y) 0.287.3-,(Iah)

Lp~'y) . (2 x 1.32)L(uh) - 2.64LPthevaluesoftheextremaare6'e(poly) 0± - 36'

Thus, for the same width between extrema, the hyperbolic tangent mixing function produces a

6' (z) representation with smaller extrema than the cubic spline polynomial mixing function. This

is a consequence of the infinite extent of the former versus the finite extent of the latter coupled

with the normalization condition (2.8).

As before, we define a lower limit default of Lamin - 2A--, and when this limit is reached

the mixing function is centered on the mesh nearest the true interface depth. Applying the condi-
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tion L s X yields the condition Az.a - •. This is a stronger condition than before and suggests

that twice the former transform size is needed to utilize the polynomial mixing function. However,

because of the finite nature of this representation, this condition may be relaxed slightly. A good

rule of thumb for either mixing function is A:mx - X when density discontinuities are important

for computing the correct reflection from the interface.

Finally, let us return for a moment to the original expression for U2(z) given by (2.16). If

we ignore the -ingular nature of the second term and assume that the generalized functions intro-

duced are valid, we may attempt to investigate the validity of the approximate form (2.18) by

examining the relative magnitudes of the two terms in (2.16). When the hyperbolic tangent func-

tion is employed, the maximum value of the first term, up to a constant factor, has been shown to

(Pb - )
be approximately (0.096) . Up to the same factor, the second term has a maximum

p

3 (Pb- Pw)2
value of 16 (Pb + p.) Lp,. One can then easily show that the maximum value of the second term

is greater than the maximum value of the first term only when Pb > 3p,. For smaller density dis-

continuities, this analysis suggests the approximate form for U2(z) should be adequate. Similarly,

when the cubic spline polynomial is used, the first term has been shown to have a maximum of

(Pb- Pw 3 (Pb - P.) 2
2 while the second term has a maximum of - A similar analysis shows

(bP)2 (Pb + p,, L,,

that the second term exceeds the first term only for Pb > 5 pw" This implies a further improvement

in accuracy when the polynomial representation of the density discontinuity is selected instead of

the hyperbolic tangent.
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2.2 Surface interface

The UMPE model treats the surface as a perfect reflector due to a pressure release bound-

ary. This is a Dirichlet boundary condition defined by

,(Z - o) - 0 . (2.28)

A popular technique used in PEiSSF models to achieve this is the image ocean method developed

by Tappert (1977). With this method, we assume an identical image ocean overlays the real ocean

for negative values of depth and, furthermore, the acoustic field is exactly equal but of opposite

sign in the image ocean, i.e.

S(-Z) - -V (z) . (2.29)

The boundary condition (2.28) is then satisfied automatically.

In our numerical implementation, therefore, we must define our environmental and field

arrays to be twice as long (i.e. twice as deep) as necessary to describe the real environment and real

acoustic field. After each range step, the UMPE model assures this symmetry by simply imposing

condition (2.29) on the image field for: < 0. This formulation allows direct implementation of the

split-step Fourier algorithm given by Eq. (1.29) using the full FFT transformations from .-space to

k-space. It should be noted that some PE/SSF models (e.g., the Navy standard model) use condi-

tion (2.28) to simplify the implementation by using only sine transforms (rather than cosine

transforms since (2.29) requires the full fi..5!d have odd symmetry about: = 0). This has the effect

I
of reducing the necessary transform and array sizes by •. However, this simplification is only

valid when the surface is completely flat and at depth = 0. To compute the exact forward scatter

due to a rough surface interface, as will be discussed in a later section, the full description of the

field is required.
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3. Volume attenuation

Adding attenuation to the environment effectively introduces a complex component of the

sound speed or, alternatively, of the wavenumber. The simplest way to introduce this phenomenon

into the wave equation is to define the equivalent index of refraction

n'2 . n2 +ia . (3.1)

As before, this can be incorporated into our PE model by introducing a new potential function

,10.1.1 a(z)
ko- 2k°

where a' - is strictly valid only when the SPE approximation is invoked. We shall assume the

validity is more general, however, for attenuation values that are not exceptionally large. Based on

the formulation of the algorithm, this clearly has the effect of damping the solution in the space-

domain by the factor

-ikeArU, ., (z) -A&'(z) (33)

In terms of transmission loss, this reduces the field by

TLC M -20log (e"^ro') - 8.686Ara'dB . (3.4)

The UMPE model assumes values input for volume attenuation have units [dB/km/Hz]. Internally,

these values are rescaled to have units of inverse length, where the unit of length is specified by Ar,

and the field strength is reduced by the factor given in Eq. (3.3) every range step.

3.1 Water volume attenuation

There are currently many common forms of empirical formulae defining volume attenua-

tion in sea water as a function of frequency and depth. A popular form credited to Thorp (1967) is

given by
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aT (dB/kyd) - 0.003 + 0.1/ +40 + 2.75 x10(

T+_1 4100+/ - 35

wherefis the frequency in kHz. Transforming this to units of [dB/km/Hz] is accomplished by

SIky l.Ikft I
a'(z- 0) - a (dB/kyd) ( 0.)(O3 0 8 km) • - (3.6)

The dependence with depth is then given by

a' (z) - a' (z - 0) [ 1 - 6.46 x 10-5% (m)] (3.7)

In the UMPE model, a particular form for a' (:) is encoded and the environmental poten-

tial function propagator, e-ik ArU,,, is scaled by the factor e-Ardz at each range step. Currently, the

form of a' (z) is considered range-independent. In fact, as of the date of this report, no clear def-

inition of a' (z) has been agreed upon and the portion of the UMPE code computing a' (:) has

been commented out.

3.2 Bottom volume attenuation

The UMPE model allows the user to input a volume attenuation coefficient for each bottom

profile, i.e. a' may be range-dependent but is constant over the depth of the bottom layer. Because

the volume attenuation was introduced as part of a complex index of refraction, the discontinuities

between the attenuation values over an interface are smoothed in an identical manner to the sound

speed smoothing previously described. This is part of the creation of the array of volume attenua-

tion values as a function of depth, a' (z), for all depths. As described above, this is used to scale

the values of the environmental potential function propagator.

3.3 Effective attenuation due to shear

As was briefly mentioned in a previous section, the UMPE model treats the conversion pro-

cess of compressional to shear waves at the bottom interface as a loss. The physical justification
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is that shear waves travel more slowly and at steeper angles than the incident compressional waves

which generated them. Consequently, over a given range step, they attenuate more rapidly. It is

unlikely that the shear waves will exist long enough to be refracted or reflected back towards the

surface to transfer energy back into compressional modes. We therefore desire to compute the frac-

tion of incident energy which is converted to shear wave energy at some bottom interface, and then

simply remove that from the problem.

Tappert (1985) derived an analytical expression valid for low grazing angle reflection at the

interface of a lossy fluid and a lossless solid bottom. The solid was replaced by an equivalent fluid

bottom with an effective attenuation by matching the reflection coefficients of the lossless bottom

with and without shear. The effective attenuation was then a function of the bottom shear speed

and represented the simplest concept of loss due to shear conversion.

More recently, Tindle and Zhang (1992) developed a more rigorous approach for the inter-

face between a lossy fluid and a lossy solid bottom by attempting to match the parameters of an

equivalent lossy fluid bottom by comparing the total reflection coefficients for each case. This pro-

vides a good approximation to both the phase and amplitude of the reflection coefficient for all

angles. They showed that, in addition to an effective bottom attenuation, it is also necessary to

define an effective bottom density which is smaller than the true density. Specifically, a bottom

with compressional and shear speeds cb and c.¶, respectively, density Pb and compressional and

shear attenuations acb and ao, respectively, can be represented by an equivalent fluid bottom with

compressional speed cb, effective density

- (I 2A? (3.8)

where w - 2xf is the angular acoustic frequency, and effective attenuation

29



41 Cb k2c to )c to 39
-~ "C-2u 1/2 1/2

a a + 2 +-C k2--) (W-k2 (39

U4 (I-2? ;S
w 'l-_2kc;

The value to be used for the wavenumber k remains somewhat ambiguous. For Eq. (3.9),

the authors chose k - However, for Eq. (3.8) they claim for several cases investigated it was
Cw

found that k - -- was the best choice for when the interface compressional sound speed contrast
Cb

satisfied -- < 1.2. For ratios exceeding 1.2, they suggest averaging the values of effective density
Cw

obtained by defining k - and k - --. To avoid a discontinuous change in the value of Pb"
Cb Cw

and because a sound speed ratio of 1.2 is a large contrast in most ocean environments, we shall only

employ the former definition. These equations then simplify to

Pb Pb(1 - 2) (3.10)

and

3 2 2 2 1/2 2 i1/21

b b+ 2 2 21 t 2 j
Cb (CW _ 2c) CbCW

Note that Eq. (3.11) requires that c. C cw C Cb. These formulae are implemented in the UMPE

model at each interface with the understanding that the upper layer is treated as the fluid and the

lower layer is treated as the solid.
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4. Rough interface forward scatter

In this section, we shall consider how the UMPE model treats both rough bottom interfaces

and surface displacements. Because the UMPE model is a one-way PE model, only forward scat-

tering can be considered. Therefore, it is best suited for small slope specular reflection and forward

diffuse scatter. Backscatter from cliff-like structures can be computed with the addition of specific

pieces of code for individual problems but this is not within the general framework of the current

version.

For both the ocean surface and bottom interfaces, the roughness is assumed to be charac-

terized by a power law, or fractal, 2-D spectrum at high wavenumbers or small scales, i.e.

W2 (k ) I--) - cak- (4.1)

Lcorr

where L4,, is the correlation length of the roughness and 0 is the spectral exponent. (Note that our

use of wavenumber is now with respect to range scales of interface roughness.) To give the full

spectrum a realistically smooth structure, we assume the spectral form
IL

H,(k) - .0/1)/2 (4.2)
(1I + Lcorrk"

The normalization factor gt is defined in terms of the rms roughness a by requiring

23xf, 2 (k) kdk - . (4.3)
0

This leads to

It - 1)j2Lcorr (4.4)

For the purpose of computing the acoustic field in two dimensions (depth and range), we

need only the I-D roughness spectrum along the track of interest. Assuming the direction of prop-

agation is along the x-axis, we need
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W, (kx) f fW2)(JFkx2+k)d A. (4.5)_M

It follows immediately from Eq. (4.3) that

f W (k) dkx - . (4.6)

An alternative formula to (4.5) for computing W1(k) along any track may be derived by converting

to cylindrical coordinates giving

W, (k) - 2f KA....... W(K) dK .(4.7)

Substituting (4.2) and (4.4) into (4.5) yields

22 -2')

W,(k) - ya2co2 (1 +.( Lo2 2) (4.8)

with

2 dt(-l)r•
d " (P - 1)-)()( . - (4.9)

O(l+ r(

where r(x) is the gamma function.

Within the UMPE model, we avoid computing gamma functions by assuming the I-D spec-

trum has the form

p-)

Wl'(k) - (I +L 2o?,.kl) " (4.10)

In order to compute various stochastic realizations of roughness, we superimpose upon this a ran-

dom wavenumber amplitude and phase. Because the complex amplitude of each wavenumber

component, Ae i, should exhibit a normal distribution in the complex k-plane, the random phase

of each component can be obtained from 0 - 2xri where r, is a uniformly distributed random

variable in the interval (0, 1). The magnitude A, however, exhibits a Rayleigh distribution.
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Because we are creating a realization of the power spectrum, we consider the magnitude squared

which has a negative exponential distribution. The random amplitude of each component of the

power spectrum can then be obtained by A2  -In (r 2) where r, is another independent uniformly

distributed random variable in the interval (0, 1 ). This complex spectrum is then Fourier trans-

11(x)
formed to yield a roughness, 1q(x), which is normalized by the actual rms value, i.e.

(12 (x))

The result of this calculation is a single stochastic realization of an interface roughness with the

proper spectral shape given by (4.10) and an rms value normalized to unity. Multiplication by the

desired rms value, a, should give us exactly the rough interface defined by (4.8) and (4.9). Fur-

thermore, to avoid introducing interface displacements not found in actual bathymetric databases,

the spectrum for bottom roughness is high-pass filtered to remove wavelengths larger than or on

the order of the database resolution. (The cut-off for this filter is specified within the source code

and may be edited.) The UMPE model accepts as input the total number of realizations to compute.

If more than one realization is requested, the calculations of transmission loss for given depths are

averaged incoherently to yield a measure of the total rms field or average power.

4.1 Water/bottom interface

The treatment of the boundary condition at bottom or sediment interfaces has already been

discussed in detail in section 2. Since this treatment was independent of the actual depth of the

interface, no additional calculations are necessary once the bathymetry has been specified. One

should note, however, that with any type of range-dependent bathymetry, whether smooth sloping
bottoms or with small scale roughness, each range step of the calculation assumes a constant envi-

ronment. Recall that this follows from the approximation fr ) H(r') dr' - ArH(r) implicit

in the PE/SSF algorithm. This does not imply that the effects of slopes are neglected. If the envi-

ronment, hence the bathymetry, is sampled well enough and the changes occurring over one range
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step are relatively small (e.g. the change in bathymetry over one range step, or the slope, must be

less than a wavelength, 6,q (( %0) then diffusive effects will smear out these apparently discontin-

uous jumps. The combination of a number of such "jumps" over several range steps will be

observed to create the anticipated effects.

4.2 Surface interface

The calculation of rough surface forward scatter is more complicated because the treatment

of the surface boundary condition assumes that the surface is fixed at: =0. The UMPE model pro-

vides two methods of computing rough surface scatter. The first maintains the imposed symmetry

about z = 0 by invoking an approximation which replaces the interface displacement by a volume

effect. The second method is an exact technique derived from first principles when the surface

interface is not assumed to be flat.

4.2.1 Approximate surface forward scatter

We assume the surface interface is defined by

:-i-(r) - 0 (4.11)

where Yq(r) is the random surface displacement, increasing downward, and is defined as a zero-

mean Gaussian random function with

(q - 0 (4.12)

and

ii-(r') Re fW, (k)eak(rr)dk . (4.13)

This definition is consistent with the interface roughness previously described.

We begin with the Helmholtz equation for the acoustic pressure with a Dirichlet boundary

condition at the surface,
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v2p+ kn p - 0 (4.14)

and

p(q (r)) , 0 (4.15)

It can be shown that the boundary condition may formally be put into the volume as a singular

index of refraction. For small surface slopes, this is approximately

V2p+ko[n2 !"-r (:) )p.0 (4.16)

and now

p(O) - 0 . (4.17)

Invoking the usual approximations in the standard parabolic equation to Eq. (4.16) leads to

.al 1 a-
+ - ko [ U(r, z) r ] -0 (4.18)
ar 2koa..2

with

S(O) - 0, (4.19)

U(r;,) is the standard PE potential function (Eq. (1.13))

U(r,z) - - I)

and p(rz) is given explicitly by

tt -(r')" (z) (4.20)2k0o

The variat le z is now interpreted as the depth increasing downward from the mean sea level at z

0.

As before, we must replace the functional 6' (z) by some appropriate generalized function.

The first non-vanishing moment of 6" (z) is the second moment defined by

o0

f z 28" (z) dz - 2 . (4.21)
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Furthermore, the expectation value is given by

6 fw*6N(:)wdz f f6(:) [,*NV + V*V"+ 2 V*'V']dz = 21,-(0)F (4.22)

which follows from an integration by parts. Introducing g(:) as a generalized function, we require

agreement with the expectation value of (4.22), i.e.

OD:
(g (z) *g (:) dz - 2 f-W(0)~ . 4.23)

Since g(z) will have influence only near the surface, we expand the field in a Taylor series near: =

0,

V()- a- (0) + .. (4.24)

To lowest order

and the condition on g(z) reduces to matching the second moments such that

f 2g(z) d - 2. (4.26)

This can be accommodated by a Gaussian of the form

g(z) - Ae" 4/1L (4.27)

where the amplitude is defined by

A fz 2 e-i d: - 2 . (4.28)

From a standard table of integrals this reduces to

4
A 4 3 6(4.29)
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The approximate surface forward scatter is then carried out by imposing the usual odd sym-

metry at: = 0 and adding to the environmental potential the function gr,) defined by (4.20) with

the generalized function given by (4.27) and (4.29). The standard PE potential function was used

here for simplicity. However, the formulation of (4.20) is more general and can be added to what-

ever environmental potential form is desired.

It should also be mentioned at this point that for surface interface roughnmes the UMPE

model takes input values of wind speed which may be range-dependent. An accepted empirical

relationship (Neumann and Pierson, 1966) is used to determine the rms roughness

(wind speed )2  (4.30)

lOg

where g a acceleration of gravity. The roughness correlation length is then defined by

Lcorr = 20a . (4.31)

As before, the use of a generalized function is inherently ambiguous with respect to the

choice of mixing length L, in (4.27). Presumably, this function should not be much wider than a

wavelength and yet be large enough to allow adequate sampling by the given depth mesh. Cur-

rently, a minimum default value of Lsmin " A: has been defined. To verify some range of validity

for L4 requires a comparison with exact solutions of surface scatter. A method of computing such

solutions is the topic of the following section.

4.2.2 Exact surface forward scatter

We return to the standard parabolic equation and impose the surface boundary condition at

the true depth of the surface displacement, i.e.

2
+ I I2- koU(r,z) V - 0 (4.32)

'r+ 2 ko ;z2

with

S(:z - (r)) - 0 . (4.33)
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Similar to the previous treatment of extending the field in an image ocean with odd symmetry about

z = 0, we now extend the field with odd symmetry, and U(r;) with even symmetry, about: ='"(r).

The equations defining the field propagation in the real and image oceans are then (Tapp-rt and

Nghiem-Phu, 1985)

real ocean: 1 + 'koU(r,:) -0, (:>ij(r)) (4.34a)

ar+ az + 2k08 az2

It can be shown that

V (r,-z+2r1(r)) - -14(r,z) -. V (r,,q(r)) - 0,

satisfying our required boundary condition.

To implement this, let us define the total field extending over the real and image ocean as

j,(r, :). Then

V (r,z) , > (r)
V (r,z) - { 12koj(z -q) V<

e z (r,z) , Z)

•(r,:) ,(:>'q(r))

-e t2k°(z - )p(r, -:+2YI(r)), (z<q(r)) (4.35)

Using the FFT convention in the UMPE code,
. ,eikz

V (z) - FFT[ i (k)] - 1,kek, (4.36)

and employing the "frequency-shifting" theorem

" ,(z+ z') . -ek') ekz - FFT [i (k)ek (4.37)

Eq. (4.35) becomes

j (r, z) - {.kei (4.38)
_e 2koj (z- q) ke- e , (z (r))

38



where we have also used the identity

V(-z) - FFT [*(-k)]

Eq. (4.38) is implemented in the UMPE model to compute exact surface forward scatter.

To do so, an additional field array has been added to the calculation to accommodate the second

formula of Eq. (4.38). At each range step, before the solution is transformed from k-space to z-

space a copy of the field is made. Each formula in (4.38) is then applied to the two copies oftk

which produces two different fields in ,--space. These two fields are then recombined about the

position of the interface to produce the total field prior to the next range step.

Note that Eq. (4.38) is also independent of the type of PE approximation used since both

(4.34a) and (4.34b) could have been written in terms of a general Qop function without affecting

the influence of the surface displacement. Furthermore, this formulation requires a complete Fou-

rier transform as the symmetries involved cannot be accommodated by only a sine transform. A

drawback of this technique is the necessity of additional FFTs in the SSF algorithm, thereby

increasing the total run time. In this regard, the approximate forward surface scatter technique is

desirable. However, to this date no thorough investigation of the validity of the approximate tech-

nique, presumably by comparing results from the two methods, has been performed.

4.3 Effect of near-surface bubbles

The presence of bubbles in the ocean volume is characterized by the probability density

function of the number of bubbles per unit volume per unit radius, n (1, a). The total number of

bubbles per unit volume is then

N(X) A f •a) da (4.39)

0

and the void fraction, defined as the volume of bubbles per unit volume, is
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v(0) -.flxa n (Ia)da (4.40)
0

We shall assume the primary eff4ct of the presence of bubbles is to alter the acoustic index

of refraction which is now defined by

n(•n) -n(1) + nb( M (4.41)

n. (k) is the usual index of refraction of water, and nb (0) is the effective index of refraction due

to bubbles within the water volume defined by

nb (k) - const x VG(1) (4.42)

where the proportionality factor is some, as yet, undetermined constant. Presumably, the bubbles

are organized in such a way that the average void fraction is a function of depth only, i.e.

V(•) - V(z) + 6V(X) (4.43)

and we shall assume that the bubbles, hence nb () , are concentrated near the surface. We may

then expand

nb() nbo (x, y) 6 (z) +bI(Xy A W + nb2 (Xy) 6A (Z) +... (4.44)

When the PE/SSF algorithm is applied to this expansion, the odd terms vanish since n (11)

must be an even function about z = 0 (and the odd derivatives of the delta function are odd func-

tions). The first two even terms in (4.44) are defined by

nbo(x,y) - f nb(xy,z)dz - 2fnb(xI.,yz)d: (4.45)
-0 0

and

lb2 (X' A ~f Znb (x,y, :)dz - Z nb(xY, z)dz - const x f 2 V(xy, :)d. . (4.46)
-C 0 0

The first term, however, will also vanish since the delta function combined with the Dirichlet

boundary condition at z = 0 has no effect. The leading term in the correction for the presence of

bubbles is then nb2 (x,Iy) 6" (z).
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We now recall in our development of the approximate surface forward scatter there was

also a term proportional to 6" (:) defined by Eq. (4.20). It therefore seems plausible that we may

incorporate the effects of near surface bubbles into our forward scattering calculations by defining

an effective surface displacement,

Ne (x, y) - 71 (x,y) + const x koz 2 V (x, y, z) dz . (4.47)
0

Using this approach, we are then free to employ either forward surface scatter method.

There is presently no clear definition for the constant proportionality factor in Eq. (4.47).

Furthermore, there is no accepted empirical relationship between wind speed and bubble void frac-

tion. It is not clear how we should define these quantities in terms of the UMPE model input

parameters. Currently, the model allows the user to input simply an effective rms roughness and

correlation length characterizing the virtual surface displacement due to bubbles. With these val-

ues, a "bubble displacement" is computed using a spectrum of the same form as the rough surface

but with independent amplitude and phase realizations. The total surface roughness is then formed

by combining the surface and bubble displacements together.

Incidentally, it is also unclear whether each random interface realization should be indepen-

dent. Specifically, should surface waves and near-surface bubbles have similar spectral shapes and/

or phases? One may also consider the correlation between interfaces of a thin sediment layer and

the underlying basement. These possibilities are currently ignored.

5. Broadband travel time analysis

The calculation of the time domain arrival structure at a given range can be performed in a

straightforward manner using a PE code. Recall that we began this report by assuming a form for

the time-harmonic acoustic field defined by

P (r, z, wt) - p. (r, z) e-i
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The representation of the field in the time domain is then simply

F (r, z, 1) - FFT [p. (r, z)] - ;p. (r, :) e-im (5.2)

which follows by recognizing that (5.1) is a single (CW) component of the general time dependent

field (5.2). In other words, by choosing a particular frequency, w', we are computing

(r, Z, 1) 64 P(r, :)e'4 "'6 P(r, z,,w't) (5.3)

at time I = 0.

To compute the arrival time structure at some fixed range r = R, we need to compute the

complex field P%.R (z) for many frequencies and then Fourier transform to obtain 1) (:, t), the

set of complex pressure values in time/depth space. Because the FFT assumes inputs over the fre-

w BW
quency band fA - ! to fo + , where EW is the bandwidth of the acoustic source and fo is

the center frequency, it becomes computationally burdensome to consider high frequency calcula-

tions even if the frequency bandwidth of computed fields is small. Therefore, the UMPE model

heterodynes the signal, shifting the center frequency to d.c In other words, we compute

R (z, 1) - P.,R (z)e (5.4)

where wo - 2xfo. This allows us to place the complex pressure values p, R (z) into frequency

bins symmetrically about w - -o - 0. The inputs then extend over the band -IBW to +!BW.

This has no effect on the computed intensities which is evident by noting that I - P* P is inde-

pendent of w,.

In practice, we compute the FFT of I w R (z). Because this neglects the overall phase

iW R• R
factor eR- eIco, the time domain is heterodyned around the value to - - . Arrival times are

Co

then given as values of "reduced time" or (Q - to). For time domain analysis, the UMPE model
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requires the user to input a center frequency, a bandwidth, and the number of frequency bins to

compute (the frequency transform size). This obviously introduces some ambiguity into the abso-

lute travel time prediction via the choice of reference sound speed. It is expected that an

implementation of the co-insensitive model would remove this ambiguity.

To this point, we have assumed each frequaency component of the total field contributes

equally in amplitude. This is synonymous with assuming the frequency spectrum of the source is

flat over some frequency band, i.e. a "box-ca?' function. It is well known that the transform of such

a function will introduce side-lobes. Furthermore, since the transform size, hence the time-win-

dow, must be finite, wrap-around or aliasing may occur. To minimize these effects, the model

creates a sine-squared filter which is applied to the upper and lower 1/8 of the bandwidth. This

method of tapering greatly reduces the effect of side-lobes. (More about similar filters used in the

model will be discussed in a later section.)

The user should still be wary of wrap-around effects. These may arise if the time window

is not wide enough. To avoid this, the user should estimate the anticipated time spread of the signal

before generating a solution and input the proper parameters to allow for this amount. The total

length of the time window is given by

T N N (5.5)

where BW is the bandwidth of the source to be modeled and N is the number of frequencies for

which the model should compute solutions to the field, or the frequency FFT size. The frequency

resolution is obviously given by

BW IA .- W " (5.6)

Thus, the wider the time window needed, the finer the bandwidth must be resolved and the more

total runs at different frequencies must be performed. This can obviously lead to extremely long

computer run-time. Careful considerations should therefore be given before entering these param-

eters.
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It should be noted that while the model creates a rather simple tapered box-car function to

represent the frequency spectrum of the source, the code could easily be modified to accept a spe-

cific frequency spectrum defined by the user. Because the output is in dB units of transmission loss,

all that would be required is a source spectrum normalized to maximum values of unity and sam-

pled at the appropriate frequencies. This function would then serve as the filter function in the

frequency domain. Furthermore, the model is unable to treat multiple interface roughness broad-

band calculations. If one desires to compute an ensemble average of the travel times, numerous

broadband calculations for single stochastic realizations could be performed and the results com-

bined in a post-processing routine.

Finally, there is a built-in ambiguity in the computed levels of transmission loss, or TL (to

be defined later), in the time domain. This is due in part to variability with respect to the frequency/

time transform size, beamwidth of the source function, type of source function used, and several

other parameters. To ob•,in true TL levels, we can simply compute the travel time values out to

the reference range of R0 - I m. (More about this parameter in a later section.) The peak value

at this range should be TL = 0 dB re Irm. Subtracting the actual value obtained from subsequent

calculations should provide true TL levels. Note that this is only true when all source and broad-

band parameters remain the same.

6. Acoustic particle velocity

The ability to compute acoustic particle velocities from the pressure field has recently been

added as an option in the UMPE model. The motivation was simply a lack of available fully range-

dependent acoustic propagation models which can produce this result. The implementation is

straightforward but, as will become clear, adds a non-negligible amount of run-time to perform the

necessary calculations.

We begin by stating the general form of the parabolic equation,
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--oHopV, (6.1)

where V4 is related to the acoustic pressure by

P - P0. rve (6.2)

The operator Hpe can take any of the five forms defined in section 1. By conservation of linear

momentum, the acoustic particle velocity 0 - (v,. v,) is related to the pressure by

9- -- Vp, (6.3)
Wpo

assuming both 9 and p have the harmonic time dependence e"".- Separating the components of

v leads to the expressions

i ap_
r wp0 Or

P O  PR ko + e ik) W PO P0  •_O , e +_ V - Ho,4 ) (6.4)~0P 4L~4' 2r OrP oecp0 4pr '2kor

and

S- ap 4Po p rae (6.5)vz"wpof• "Copokor v To- Z -

In the r-direction, it is found that the application of the operator H,1 must be applied to the

field function V in order to perform the calculation. As previously noted, each of our PE options

separates the operator H0p into two parts,

Hp. - Top (A-) + U0p (n(r,z) . (6.6)

Additionally, the vertical component of acoustic particle velocity requires application of the oper-

ator on the V field. To perform these operations, we consider the wavenumber repesentation

of the field at some arbitrary depth z defined by
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y(: C- F~[(k)J - k' (6.7)

then

- JkQ,ke'~ FFT [ i4j(k)] (6.8)

and

a-T[k (() - - (6.9)

We now state explicitly the various formulas for acoustic particle velocity corresponding to

the type of PE approximation chosen:

l) SPE: T uo , (12 2 I

"copo 4 p [' 210, 2r+)'r'("")- -24(r" I ; (6.10)

2) VSPE: T,, - 2o02, Uop--(n-1),
2 A?,a2'

V, (r. ) " f--eo/V --k-•o +÷V(r, -FFT 0A?(r, ) .)
CON _P_ op22r ,1 2 1( k.)

3) VWAE: T.,.--2 (1 + _) + (n 2_

so

46



v,(r, :) -

P0  PRO ikor V ~(r, z) I
ce~ [ 2 (W2 + I) V(rz) -FFT I I - 1 (rk)); (6.12)

4) WAPE: Top- -12- 12 ÷1 ,UoP - -- ),

so

V,(r ) ~jP0  fp'Ro0ek0,. *4(r, Z) +nP(r~z)-FFT([ I - ]i(r, k))] (6.13)
copq por 2kor1

5) LOGPE: Top - -in cos((-;-o-)] Uop - -In(n),

so

vr (r,z) -

4o-oe (I 2kor + (l+In(n))V (rz) +FFT(In[cos ]i*(rk))] . (6.14)

For any of the above options, the z-component of acoustic particle velocity is computed from

P0  PRo ik ko
v, (r, z) - 4- e ~~e FFT [~-ý (rjk)j (6.15)

copo por k

It is obvious from these expressions that for every range step, additional FFT's must be computed

thereby increasing the overall run-time by a significant amount.
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7. Source functions

In this section we shall define the initial conditions for the PE field function, V (r - 0, z).

Previously, we have assumed the relationship between V, and the acoustic pressure, ignoring the

effect of density, is of the form

p Ro§4  e . (7.1)

We obviously cannot definep at range r = 0 from this explession. This is analogous to the unde-

fined amplitude of a point source Green's function at the source location. Therefore, we choose to

define the source amplitude relative to that at some small but finite distance from the source. Spe-

cifically, we choose

p(r- Ro) - Po • (7.2)

Consistent with reference values used in most sonar equations, we define the reference range

Ro- I 1m (7.3)

and the source level, SL, is related to Po by

SL - 20log (PO° dB re PrRo (7.4)

The dB units of SL are explicitly stated relative to a reference pressure value of Pr = I tPa at the

reference range A0.

We are still left with the task of determining a form for the source field V (r 0 0, z). We

begin by writing (7.1) as

V (rz)e ikor 0 iP(r,z) (7.5)

from which it follows that

V (r - 0, z) limoo p r(r,:) (7.6)
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In the vicinity of % point source, we know the pressure field takes the form of the spherical Gr.en's

function. Since V(rz) is only in two dimensions, we write
p a 40AO r2 2

P-e , R- + z2, a- PORO (7.7)

P0
where a is defined by requiring IpI - P- at R - R0. We represent the source at (0, zS) as a point

source by defining

V (r - 0, z) - cL8 (z - zs) (7.9)

Integrating both sides of(7.6) over all depths yields

ct = a lim 4  f I - T e do . (7.9)
r -* / /, o P-'R R

Fri -"0D_

Because we are ultimately interested in the solution in the far-field (r • z), we may approximate

R - 2r+ z- z z-ZS . (7.10)

Eq. (7.9) then reduces to

00 -2
ikor ikL- ikor 2xr

.,! 2, f r-O 2 iko

or

2zk- (7.11)

It is desirable to begin the calculation by specifying the source in the k-domain. Including

the influence of ti. mage source, a straightforward Fourier transform of(7.8) yields
00

lkzdi(r - 0, k) - a f [6 (z- -is) - 6 (z + zs) ] e7dz - -2ia sin (kzs) (7.12)

which indicates that the wavenumber representation of the starting field has a constant amplitude

modulated by a phase due to the interaction of the source and its image. This constant amplitude
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is consistent with the notion of an omnidirectional point source which puts equal energy into all

wavenumbers (i.e., all directions).

As an approximation to the delta function starting field, we shall consider a Gaussian func-

tion defined by

V (, O -(Z-ZS)2/w 2W e (7.13)

where the additional factor is required to give the correct normalization in the limit w -- 0. Includ-

ing the image field and transforming this to the k-domain yields

-2 -.2
S _Z -0 Z 

2

(0,k) f eW2eik(z+s)& f e w 2 ek(z -zs) - -2icze '4 sin(k-s) (7.14)
W r -00 -a

The first thing we notice about this expression is that the Gaussian normalization factor has been

removed and the remaining factor is identical to that of Eq. (7.12) including the phase modulation

due to the source/image interference. In this approximation, however, the constant amplitude of

(7.12) has been replaced by a Gaussian of width (2/w) and maximum value at k = 0 of unity. This

may be interpreted as placing the correct amount of energy at k = 0 (corresponding to horizontal or

0 = 0 propagation) and quickly tapering off the energy placed at higher absolute wavenumbers.

This is consistent with the small angle validity of the standard parabolic equation. Unfortunately,

for angles significantly removed from horizontal, this type of source function creates a poor repre-

sentation of an omnidirectional source.

For the wide angle PE approximations, it would seem reasonable to simply replace the

Gaussian function by unity for all wavenumbers thereby equally populating all directions of prop-

agation. However, even the wide angle approximations are assumed valid only up to angles of 400

or so. Additionally, the finite FFT size will restrict how large k/k 0 can be. Therefore, a smooth

taper is included at high absolute wavenumber values to limit the angular width of the source func-

tion and to reduce the influence of sidelobes. Thomson and Bohun (1988) have also shown that a

wide angle source needs to be modified by the factor
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F(k) - (I- k' , (IkI ck,) (7.15)
k ko')

to produce the correct solution in the far-field. Note that k - k0 corresponds to 0 - 90°, so

IkI > k0 represents imaginary angles of propagation (evanescent modes). It is required then that

the source function be tapered within the limits of k I 1.

Finally, we consider the starting field appropriate for a line array of sources. Assuming the

array can be approximated by a continuous line array of length L (the separation between adjacent

sources must be (( k0 ), it is easy to show the directivity of such a source is defined by

sin (kw) kD k koL 7.6"0D- k , -T(7.16)

As required from our previous comments, this has a maximum value of unity at k = 0 (horizontal).

However, the amplitude of this type of source function must be altered to account for the direc-

tional enhancement. In other words, the source amplitude should correspond to an equivalent point

source, so we must modify the source level by the directivity factor corresponding to a linear array,

DI - 10logQ (7.17)

where

Q -4JDf dQ. (7.18)

The source level of an equivalent point source is then SL' - SL + DI, so the amplitude factor of

the source function becomes

a' - aQ2 (7.19)

Assuming koL )) 1, Eq. (7.18) yields

2L koL (7.20)
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The three types of sources described above are available options for generating a starting

field in the JMPE model. Before continuing, we shall review these functions which shall now be

written in the general form

,ýo(k) - ctf(ko (7.21)

The subscript "0" on the k-domain starting field is meant to indicate that this formulation applies

only for a free-field source at depth zS - 0. We shall consider the effects of zS P 0 and the image

source shortly. Furthermore, we now demand that both a andflk / A@ are pure real quantities (such

that a w Ilal). This implies even symmetry, ijo (-k) - io (k). The three starting field options

can now be written explicitly as

1) Gaussian source:

f(x) - e-/W , (w a user input width),

:2R 1/2a ( -o/ (7.22)

2) wide angle source:

t I2o 1/2

- _ !- ;(7.23)

3) line array source:

sin (xw) koL
XW , 2W

ct Ak [2°1/2 "°"1/2

S- --LO I (--•-) (7.24)
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Note that an additional factor of Ak has been included in the normalization. This is needed for the

discrete Fourier transform which assumes both functions * (k) and V (z) are unitless.

We now consider the general form for the complete k-domain starting field. If we allow

"steering" of the starting field, such that the k-domain formulation is about some wavenumber

k - kc kosinc 6 0, then it is fairly straightforward to show that the k-domain starting field for

a source at depth: = ZS is given by

(k) =i (k- k,) -e ik o (k + k,) (7.25)

It is apparent from this formula that the complete k-domain field has odd symmetry,

i, (-k) - -iJ (k) , and therefore the z-domain field must also have odd symmetry about z = 0 as

required by the surface boundary condition. Eq. (7.25) together with Eqs. (7.21) through (7.24)

constitute the complete formulation of the available starting fields in the UMPE model.

One may note an apparent ambiguity in the prescribed implementation of a steered source

when the wide-angle source is used since k (k - k,) - iJ (k + k,) - I (neglecting the wide-

angle correction factor (7.15)). This ambiguity arises when we attempt to steer a source which rep-

resents an omnidirectional source. We have removed this ambiguity by allowing the source filter

function to be steered, thereby centering the filter about k = k,.

As a final note, we must address the issue of mesh point symmetry in the UMPE model.

The model assumes the usual mesh symmetry in the k-domain,
(i-1)Ak, IssN +I

k(i) - N (7.26)
- (N-i + ) Ak, +2sisVN .

However, in the z-domain the UMPE model employs what is sometimes referred to as the "half-

mesh" symmetry defined by

IN

:(i) -{(N-i+W)A:, (7.27)
1 5
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Another way to contrast these symmetries is by noting that 1, (k (i - 2)) - -j (k (i - N)),

j*(k(i- 3)) - -iý(k(i N- 1) ),etc. while inthe,-domain, V (.(i= 1))= -V (:(i=N)),

V (z (i - 2) ) - -V (z ( - N- I ) ), etc. To determine how this affects the source function, con-

sider the following. If we computed the source function according to (7.25), the transform of this

function would produce a :-space starting field V (:) with the same "whole-mesh" symmetry.

Instead of V, (z) , we wish to compute V (z + !A-,). Therefore, we need to make the replacement

AZ
j(k) "i€(/,)(k) -J (k)e (7.28)

Our final form for the k-domain starting field is then Eq. (7.25) corrected for the z.domain symme-

try by (7.28). Note that this is the only time such a "correction" needs to be made. Once this

symmetry is established, it remains throughout the calculation. Of course, to be consistent the z-

domain potential function, hence the environment and all other calculations in the z-domain, must

be computed using the half-mesh symmetry.

In addition to specifying one of the analytical formulas for the starting field listed above,

the user may also input a generic source function. The input format should be compared with the

source code's expected format. Also, the model will assume the correct half-mesh symmetry

already exists, and the source has been normalized to yield a unit source level at R0 . (The true

source level is already an input parameter.)

8. Filters and sponges

As has been mentioned briefly in previous sections, there are several places within the

UMPE model which require the use of a filter, or "sponge," to produce the necessary removal of

energy. The functicn used in the model is a sine-squared function which is smooth, has a contin-

uous derivative, and goes from zero to unity within a finite region. The most obvious need for a

filter we first recognize is the radiation condition Vp (z) --' 0 as z -0 :too. Because the computa-
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tional depth is finite, however, we must force the field amplitude to zero at the maximum depth.

Note this also serves to eliminate wrap-around between the real and image oceans. This must be

done in a smooth and relatively "slow" manner to avoid reflections from the filter function itself.

As is common practice in many PE/SSF models, the LMPE model applies the sine-squared filter

function to the bottom quarter of the computational depth of the real ocean. The user is responsible

for ensuring that this does not interfere with propagating energy that would affect down-range

results, i.e. the bottom depth should be well above the region of the filter. The net effect of this

bottom filter, or bottom sponge, is to remove energy which has penetrated deep within the bottom

layer before it reaches the maximum computational depth.

The bottom sponge is a necessary part of the calculation to match the radiation condition

and is, therefore, always computed. Occasionally, one may wish to focus attention on bottom and/

or sediment interface interactions. To isolate these phenomena from interfering surface reflected

energy, it is desirable to "remove" the surface. The UMPE model allows this option and accom-

plishes the effect by copying the bottom sponge, inverting it, and placing it at the surface interface.

The result is a sine-squared filter in the upper quarter of the real ocean depth. Again, the user is

responsible for ensuring that the region of interest lies between the surface and bottom sponge

regions. Once these sponges have been defined, they are included in the calculation of the z-space

propagator function, e-ikAr op(Z), as a multiplying factor.

In addition to requiring Vu, (:) -* 0 as z--' ,-tzm±x, we must also require * (k) --o 0 as

k -- -ka., The exact same filter used to create the bottom sponge is applied to the k-domain

propagator function, e-ikoArt° (k). This results in a sine-squared filtering of the upper quarter of

the positive k wavenumber spectrum. This filter is then inverted symmetrically about k = 0 and

applied again to produce filtering of the lower quarter of the negative k wavenumber spectrum. In

this way, wrap-around in k-space is avoided.

Finally, we shall consider the filter applied in the creation of the source function. In addi-

tion to the center angle and angular width, the input includes the angular tapering width of the
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source function. With these parameters, a filter function is computed which has a value of unity

over the wavenumber range corresponding to the given angular width and centered at the wave-

number corresponding to the center angle ofthe source. At each end of this unity function is placea

a sine-squared function of wavenumber width corresponding to the given angular tapering width.

This filter is applied to the final form of the source function as described in the previous section.

Note that this filter has little effect if a Gaussian source function is specified since the source ampli-

tude will already be reduced by e-! before the taper begins to apply. Similarly, an array source is

a narrow wavenumber source and is not significantly effected by this filter. The main role of the

source filter is to force iý (k) --o 0 as k .-- :tak for the wide angle source. It also allows the wide-

angle source to be steered, creating greater versatility for this source option.

9. Calculations of transmission loss

The calculation of transmission loss has previously been defined by

TL(r,z) - l ~log6 - lOlog LPRIlV(r, .)12 (9.1)

Since the PE/SSF algorithm generates i4(z) sampled every A:, the values for TL are also sampled

every Az at each range step separated by Ar. This grid of TL values can be output to allow the user

to view the entire TL field which corresponds to the total pressure field. This requires an external

plotting program be used.

In those situations where we desire to determine the transmission loss at a fixed depth (for

example, at a fixed receiver depth or at the sediment or bottom interface) we must somehow inter-

polate the gridded TL values to this depth. This is performed using a five-point polynomial

interpolation of the V(z) field. The UMPE model allows the user to request the TL values output

at either bottom interface and at up to ten arbitrary depths. Since a five-point interpolation is to be
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I I
used, it is required that all depths be deeper than 2 A--. Actually, depths as shallow as Az are

allowed but only a 3-point or 2-point interpolation is then used.

The UMPE model also allows the user to request the transmission loss to the surface. We

choose to define this TL value differently than Eq. (9.1) since obviously this is undefined at

V (z - 0) - 0. Its derivation is analogous to the calculation of rough surface scatter in section

4.2.1 where it was shown that the first non-vanishing moment of the field is given by

()- ko• (z zs) (9.2)

where we have included the scaling factor 1/k2 to produce a quantity with dimensions of *'. We

therefore define the surface transmission loss in terms of the dimensionless vertical derivative of

the field, i.e.

V (r) l (9.3)
szI-z(r)

This is effectively the measure of the field observed by a dipole receiver. Considering the wave-

number representation as in section 6, we see that (9.3) may be computed analytically by

-S (±'kei (9.4)

where the summation is over all of wavenumber space.

10. Future upgrades

In the preceding sections, the physics of the UMPE model has been derived and numerical

algorithms have been developed to produce solutions of the underwater acoustic pressure field.

The ultimate goal of any acoustics model is the ability to take only environmental and source

parameter inputs and return an accurate solution. However, as is typical of most numerical models,

several ambiguous variables have been introduced into the LMPE model. Default values have
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been defined for all but the reference sound speed which would hopefully lead to an efficient and

accurate result. A method of computing a default reference sound speed is described below which

would eliminate the need for a "best guess" by the user. The corresponding accuracy of the solu-

tion provided by this method is still unclear.

Other upgrades to consider might follow from the introduction of new physics (e.g., inter-

nal wave scattering, effects of currents, backscattering or reverberation). The ability to compute

the full 4-D field (3 spatial dimensions and time) is currently being investigated. To achieve this

requires the inclusion of azimuthal coupling in the UMPE model. A basic description of the for-

mulation of such a model is also given below.

Finally, one may consider various improvements in the numerical implementation that

increase the speed and efficiency of the calculations. The most obvious extension of the model is

a vectorized version of the source code allowing compilation on an array processor. This is also

currently being developed. A large increase in speed may eventually allow implementation of the

co-insensitive model mentioned in the first section of this report. However, the desire to compute

long-range, multiple realization, multiple frequency, multiple coupled-azimuth solutions which

would tend to absorb any increase in speed may outweigh the desire for what may be only slight

improvements in accuracy.

10.1 Automatic co selection

Recall that the choice of Co, hence k4, scales the wavenumbers or propagation angles

according to k - k0 sin0. It also serves to scale the acoustic index of refraction

Co
n (r, z) - 0r and, consequently, the environmental potential function U1 (r, z) Tappertc ( r, z)

(1991c) has suggested one way to define a default reference sound speed by requiring
Zb

ZbofUl (rz)dz - 0 (10.1)
2
0
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where zb is the maximum depth of the water column. From this expression it is obvious that the

reference sound speed may now be range-dependent. If, for example, we choose to employ the

standard PE definition

2

U1 (r,-) - -c (10.2)
k C2 (r,z))

then Eq. (10.1) leads to the defining equation for co given by

Zb dz 
(10.3),,°2 "b 9••,.

0 Z2

If instead we choose the wide-angle PE definition
Co

U!(r ) C( O (10.4)
c(rz)

the defining equation for co becomes

I IZb d
100 1 dz, (10.5)

CO Zbf C(r, Z)

Finally, employing the LOGPE definition for the environmental potential,

U(r, z) - CO (10.6)-(r, z)

leads to

Zb

In[co] - -frn[c(rz)]dz (10.7)

If the sound speed profile or the bottom bathymetry is range-dependent, these definitions

produce a range-dependent reference sound speed. Consequently, the reference wavenumber is

now also range-dependent and so is the phase space potential function ko, (io). Thus, this

approach requires the recalculation of the phase space propagator each time co is updated, increas-

ing the total run-time. Again, a trade-off between speed and accuracy may be required.
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10.2 Azimuthal coupling

To develop a model that incorporates azimuthal coupling, we begin by returning to the orig-

inal wave equation in cylindrical coordinates defined by Eq. (1.2) without a source term.

Substituting (1.3 1) for the pressure field and keeping all terms leads to

;2 + •02(,,z) + - 0 (10.2)

Or .: r q 4rJ
1

Previously, both terms with the factors were dropped in the far-field approximation and azi-

muthal coupling was considered insignificant. If azimuthal coupling is important, the

corresponding far-field expression is simply

2 a2-'u I2N 2'7j + ÷ '---•+ ko' (r,z)u - 0 (10.9)

As before, we introduce the operators

P op (10.10)ar

and

[+.o k~a,2 rOq-/J

so (10.9) can be written in the more general form

OP+ o OP - 0 . (10.12)

Factoring (10. 12) into incoming and outgoing waves produces the defining first order differential

equation for the outgoing energy

.-i Q1
ik-]S ' (10.13)

We again define

- , 2 _1 (10.14)

and
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I a2

I - 1 a2 (10.15)

and introduce

v- 2 (10.16)

such that

Q' - (IA+8+v+1)1 2  (10.17)

If we assume that the effect of azimuthal coupling is relatively small (since

a- c(r, z, qp) << 8 (r, , qp), in general) then we may expect v (I + e. Therefore, (10.17)may

be approximated by

Q -P (P + e+ 1) +21V I O +ýop l 2 - Qo+v2. (10.18)

We now define the PE field function aj (r, z, q4) according to Eq. (1.45) and obtain

a - 1 -+ (10.19)-T - iko (Qop + iv-l• -io(p+ Uop 2- r -iý) 2(1019

where the last step follows by replacing Qop by the kinetic and potential energy operators as in sec-

tion 1. These operators can now take any of the approximate forms previously defined.

The effect of including azimuthal coupling is to add a new operator to the propagation equa-

tion which we shall define as

Vop -2 (10.20)
OP 2ko'r 8t

Analogous to the operator Top in z-space, this operator is not diagonal in qr-space and is therefore

not a simple multiplication operator. Just as Top coupled vertical angles of propagation, V , pro-

duces a coupling of azimuthal angles. Following the same reasoning as before, we define a variable

s as the "wavenumber" analog to the azimuthal bearing q) according to

Vp (r, P) (r, z, kos) eikoj'rd(kos) - FFT [ j (r, z, k0s) . (10.21)
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The propator that couples azimuths is then e -V.('.) wht

(r )- 2 )'(10o.2)2e

As before, we assume the commutator cf Uop and Vp is negligible. Note, however, that the com-

mutator of T., and Vy is identically zero so the order of their operations is arbitrary.

We now must examine more closely the explicit calculation of the varitvble s. To do so, we

continue with the analogy to the vertical wavenumber variable k. The incremental values of verti-

cal wavenumber were defined by

k-~,N N (10.23)k - nAk, n - -(Cy - 1), _V(0.3

where N is the transform size of the FFT between --space and k-space, and with

2z zAk - - X (10.24)

:- H 1

where zT - 2H is the total computational depth. (The depth of the water column plus bottom lay-

ers is H and the total computational depth includes the real and image ocean or 2H.) Since

Az - it follows that

N2'

AkAz - N (10.25)

Therefore, if we define Mas the transform -iize between q)-space and s-space then

s - mAs, m -(M I),M (10.26)

with

k0As - 2x (10.27)

and TT is the total azimuthal interval in radians (e.g., 2x, •, etc.). The incremental values of azi-

muth are obviously given by
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q)TAq- T (10.28)

so the azimuthal analog to (10.25) is

2X
koAsAq& - R . (10.29)

To compute the 3-D propagation of a point source, we simply create identical starting fields

for each bearing at q) - mAqc. For 'PT < 2x, the entire z-space starting fields should be tapered

M
near the ends, or outermost bearings, near 4p - *-Aq). A 2-D FFr between Vp (r, z, 4p) and

i, (r, k, s) is then used in conjunction with a split-step algorithm analogous to Eq. (1.29) with the

operator substitutions

U,,, (r, z) -. U, (r, Z, () (10.30)

and

S-. P,(r,k) + P., (r,s) (10.31)

The above discussion outlines the basic formulation of a fully 3-D PFJSSF model. Natu-

rally, there are subtle issues that complicate the implementation of these equations. These are

currently being addressed and it is hoped that a successful source code will be available within the

next year.

11. Numerical implementation and organization

The source code for the UMPE model has been separated into various subroutines which

are tasked with the major components of the SSF algorithm. The names of the main program and

subroutines with brief descriptions are given below. Each has standard Fortran 77 form and can be

compiled on Sun workstations using the included "makefile" script.

pemp.f - This is the main program of the UMPE model. It handles the majority of the

input/output. It also forms the basic SSF algorithm and implements this over many range steps and
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for multiple frequencies and multiple rough interface realizations if required. The surface interface

boundary condition is also imposed within this program.

initk.f - The source function is created in the wavenumber domain. The various source

parameters required for this calculation are read by the main program and passed to this subroutine

through a common block.

phase 1. f - The k-domain propagator function is computed and passed to the main program.

The tapering filter applied over the outer 1/8 of the positive and negative wavenumbers, and the

real and image ocean depths, is created in this subroutine and used in the creation of the z-domain

propagator. Because this version of the UMPE model assumes constant range step sizes and a con-

stant reference sound speed co, this function does not change with range and can be computed prior

to entering the main range loop.

phase2. f - The z-domain propagator function is computed and passed to the main program.

Because this function contains all the information about the environment, the environmental data

is input exclusively to this subroutine. This reduces the need to pass data into the subroutine from

the main program. The depth interpolation of the sound speed profile as well as the range interpo-

lation of the environment is performed here. If shear is present in either bottom layer, equivalent

fluid properties are computed. The water column, sediment layer, and basement layer are then

combined to form the environmental potential function and, subsequently, the z-spac.- propagator.

ssi.f - Called by phase2.f, this subroutine performs the depth interpolation of the sound

speed profile using a simple 1-2-1 filter. This smoothing may be enhanced by increasing the num-

ber of iterations of application of the filter.

etagen.f - Called by phase2.fifstochastically rougrn interfaces are requested. For exact

surface scatter, the first derivative of the surface roughness is also computed.

ftime. f - When a broadband analysis is requested, the main program outputs to a single file

the complex field function V, (z) at the appropriate range for each frequency. This subroutine is

called by the main program after all frequencies have been computed to perform the necessary Fou-

rier analysis and output the travel time calculations.
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fft842.f - Performs all of the Fourier transforms required in the model. It computes only

a forward FFT. The maximum complex array size allowed is 4096 points as written but can be

upgraded to larger array sizes if one is careful to be consistent throughout the source code.

tloss.f - Determines values of TL at arbitrary depths by performing a five-point interpola-

tion of the field. The square modulus of the field function V (z) at any given depth is passed back

to the main program.

ave.f - Performs i ange averages of several output data options at the end of the main pro-

gram.

datime.f, qtime.f, qdate.f - Used for timing purposes, these subroutines allow the main pro-

gram to output a time and date stamp at the beginning and end of each run.

There are three input files for the UMPE model. The names of these files with brief descrip-

tions are given below. Sample listings can be found in the following section of examples. Only

the name of the first file must remain the same as it is assumed by the main program.

pefiles.dat - This file contains the names of the various I/O files and flags indicating which

data should be computed and output. The first two files named contain the various run parameters

for the model and the environmental data, respectively (these names may be changed). These will

be discussed in more detail below. The remaining filenames define the names of various output

files to be created by the main program (these names may also be changed). Each filename or set

of associated filenames is preceded by one or more integers. The first integer indicates whether the

following data file should be computed and output (O=no, l=yes). The second integer, if it exists,

specifies the frequency number (during broadband calculations) for which this calculation should

be made. The third and fourth integers, if either exists, specifies the roughness realization and

range step number, respectively, for which this calculation should be made. A set of filenames are

each associated with the same function but are defined to display different characteristics. In the

order that they appear in pefiles.dat, the output filenames and a brief description of their content

are as follows.

65



tlb.dat, tlbave.dat - TL to the bottom (basement) interface and its associated range

average. The output is a two column ascii file of range, TL values. The range units

are [km] while the TL units are [dB re Im].

tlbs.dat, tlbsave.dat - TL to the bottom sediment interface and its associated range

average. The output is a two column ascii file of range, TL values. The range units

are [kcm] while the TL units are [dB re lm].

tls.dat, tlsave.dat - TL to the surface interface and its associated range average

(as defined by Eqs. (9.1) and (9.4)). The output is a two column ascii file of range,

TL values. The range units are [kim] while the TL units are [dB re Im].

apvelr.dat - The real part of the range component of acoustic particle velocity.

The output is a three column ascii file of field variables range, depth, and acoustic

particle velocity. The range units are [Iam], the depth units are [m], and the

velocity units are [m/s].

apvelri.dat - The imaginary part of the range component of acoustic particle

velocity. The output is a three column ascii file of field variables range, depth, and

acoustic particle velocity. The range units are [km], the depth units are [m], and the

velocity units are [m/s].

apvelzr.dat - The real part of the depth component of acoustic particle velocity.

The output is a three column ascii file of field variables range, depth, and acoustic

particle velocity. The range units are [km], the depth units are [m], and the

velocity units are [m/s].

apvez.dat - The imaginary part of the depth component of acoustic particle

velocity. The output is a three column ascii file of field variables range, depth, and

acoustic particle velocity. The range units are [km], the depth units are [m], and the

velocity units are [mis].

prssrr.dat - The real part of the complex acoustic pressure. The output is a

three column ascii file of field variables range, depth, and acoustic pressure. The
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range units are [km], the depth units are [m], and the pressure units are [Pa].

prssri.dat - The imaginary part of the complex acoustic pressure. The output is a

three column ascii file of field variables range, depth, and acoustic pressure. The

range units are [kin], the depth units are [m], and the pressure units are [Pa].

phaselr.dat, phaseli.dat - The real and imaginary parts of the k-domain propagator

function. The output is a two column ascii file of wavenumber, function values.

The wavenumber units are [I/m]. (The propagator is unitless.)

phase2r.dat, phase2i.dat, ssp.dat, potent.dat - The real and imaginary parts of the

z-domain propagator, the total interpolated sound speed profile, and the total

potential function. Each output is a two column ascii file of depth, function values.

The depth units are [in], the sound speed units are [mis]. (The propagator and

potential are unitless.)

psikr.dat, psiki.dat, psizr.dat, psizi.dat, psizt.dat - The real, imaginary parts of the

k-domain field function i/ (k) and the real, imaginary, and total amplitude of the

z-domain field function V (z). Each output is a two column ascii file of either

wavenumber or depth, function values.

tlgmt.dat, botgmt.dat, sedgmt.dat, surfgmt.dat - The complete range-depth field

of TL data, the bottom (basement) interface depth, the sediment interface depth,

and the surface interface depth. The first file is a three column ascii file of field

variables range, depth and TL. The remaining files are two column ascii files

of range, interface depth values.

finfield.dat - A two column file specifying the real and imaginary parts of the

field function V (z) at the end of the calculation.

The first two files named in pefiles.dat contain all the input data for the UMPE model. As

examples, we shall refer to them here as perun.dat and peenv.dat. Brief descriptions of their con-

tents are as follows.
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perun.dat - Note that each line has a brief description included to remind the user what

each parameter defines. These descriptions should not be changed. The code assumes the data is

given in this order and follows the 33rd column of each line (a colon exists at the 33rd column).

Otherwise, the data is given in free format with the exception that integer inputs are assumed to be

given as integers. The parameters are:

Title - An ascii title to simply remind the user of the problem for which these

parameters were used.

Type of PE approx. (1-5) - The integer choice corresponds to the types of

approximations described in section 1 of this report.

Type of density smoothing (1,2) - The integer choice defines the type of density

mixing function to be employed, either a hyperbolic tangent (1) or a cubic spline

(2), as described in section 2.1.2.

Type of starting field - The integer choice defines the type of starting field to be

employed, either a Gaussian (I), a wide-angle (2), or a vertical array (3), as

described in section 7.

Type of input data units - The integer choice defines the type of input data units,

either standard MKS (1) (with ranges given in [kin] rather than [m]) or English

units (2) (with ranges given in [nm] rather than [ft]). Either set of units must be

used consistently throughout both input data files. All output files are given in

MKS units.

Apply surface filter? - The integer choice (0Ono, l=yes) determines whether a

surface filter will be applied to remove surface reflections as described in section 8.

Approx. or exact surf? - The integer choice (O=approx, I=exact) determines

whether the approximate or exact method of computing surface scatter should be

used as described in section 4.2.

# of roughness realizations - Integer number of stochastic interface roughness

realizations for which calculations should be made. Outputs of TL at single depths
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or at interfaces are then averaged incoherently to yield a measure of the mean

square pressure.

Range average TL curves? - The integer choice (0-no, l=yes) determines whether

the output of TL at single depths or at interfaces should be range averaged and

output to a separate file.

Range to average over - Real number defining the range interval to perform a

running range average if requested by preceding choice.

SL - Real source level in dB.

Source depth - Real depth of source.

Ref. sound speed - Real reference sound speed to be used in calculations.

Center frequency - Real center frequency of source.

Number of frequencies - Integer number of frequencies for broadband

calculations.

Frequency bandwidth - Real frequency bandwidth of source for broadband

calculations.

FFT transform size - Integer number defining the size of the arrays in the

PE/SSF algorithm (default = 0).

Range step size - Real size of range mesh for calculations (default = 0.0).

Maximum range - Real max range of calculation.

Max computational depth - Real max depth of calculation.

Central source angle - Real angle describing steering of source function.

Source array length - Real length of vertical array (used only when vertical

array source is chosen).

Rms source width - Real angle defining width of source function.

Source taper width - Real angle defining width of source function taper

Density mix length - Real number of depth meshes defining size of density

mixing function (default = 0.0).

69



Sspeed mix length - Real number of depth meshes defining size of sound speed

mixing function (default = 0.0).

Surf loss fctn width - Real number of depth meshes defining size of surface

loss function used for the approximate rough surface scatter (default = 0.0).

# TL depths, TL depths - Integer number of depths (<= 10), and real depths that

follow, for which calculations of TL should be computed and output.

# BB ranges, BB ranges - Integer number of ranges (<- 4), and real ranges that

follow, for which broadband calculations of time-domain TL field data should be

computed and output.

BB extraction depth - Real single depth of TL -vs- time data to be extracted

from each of the above BBTL ranges.

peenv.dat - The following environmental parameters are contained in this file.

ISEED - An integer seed for random number generators.

NSS - Integer number of different sound speed profiles to follow (must be at least

one). Each profile has the following format.

ZV, NSSDA - Real range of current profile (first profile must be at range

0.0) and integer number of sound speed values in depth given for current

profile which follow.

SSD, SS - Real depth of this sound speed value and real sound

speed value.

NB - Integer number of bottom profiles to follow (must be at least one). Each

profile has the following format.

ZB, BD, BV, BG, RDEN, BLKMI, SIGBOT, ALCBO, BSWS, BSWLKMI -

Range of this profile, depth, sound speed at top of this profile, sound speed

gradient for this profile, density ratio w.r.t. water, attenuation, rms roughness

of interface, correlation length of interface roughness, shear wave sound,
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speed, and shear wave attenuation. (All parameters are real.)

NBS - Integer number of sediment profiles to follow (may be zero). Each

profile has the following format.

ZBS, BSD, BSV, BSG, RDENS, BSLKMI, SIGBOTS, ALCBOS, BSSWS,

BSSWLKMI -

Range of this profile, sediment thickness, sound speed at top of this profile,

sound speed gradient for this profile, density ratio w.r.t. water, attenuation, rms

roughness of interface, correlation length of interface roughness, shear wave

sound speed, and shear wave attenuation. (All parameters are real.) Note

that sediment profiles are defined in terms of sediment thicknesses and not

true depth. The sediments are layered on top of the bottom profiles.

NS - Integer number of surface roughness profiles to follow (may be zero). Each

profile has the following format.

ZS, SIGSUR - Range of this profile, wind speed. (Internally, wind speed

is converted into an rms roughness and correlation length scale as described

in section 4.2)

NSB - Integer number of equivalent bubble surface roughness profiles to follow

(may be zero). Each profile has the following format.

ZSB, SIGSURB - Range and equivalent rms roughness of this profile.

12. Examples

In this section, we present several examples of input files and output solutions. The first

three were taken from problems defined in the PE Workshop II proceedings (ref?) and are designed

to exhibit the accuracy of the UMPE model when default values are selected. Each of these has

reference solutions with which we can compare the results of the model. The last three problems

were chosen to exhibit some of the versatile features of the model.
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Example 1: The first example taken from the PE Workshop 11 proceedings consists of a

simple fluid half-space. The solution displays a simple pattern due to the interference of the image

source and the real source. This problem is sometimes referred to as the Lloyd's mirror problem.

It is listed as Test Case 1 in the workshop proceedings. The output requested from the UMPE

model is the transmission loss at a single depth (defined in perun.dat) and the complete TL field

data (requested in pefiles.dat). Note that since the UMPE model assumes at least one bottom inter-

face, we simply define the bottom with fluid properties equivalent to the overlying fluid. In Fig. 1,

the TL field data is displayed and the expected interference pattern can easily be seen. The com-

parison of the TL reference solution with the model prediction is shown in Fig. 2. (All figures have

been created with the GMT plotting package (ret).)

Input files for Test Case I of PE Workshop I:

Vern. dat

TITLE :PEII test Iue 1
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) :2
TYPE OF INPUT DATA UNITS (1,2) :1
APPLY SURFACE FILTER? (0,1) :0
APPROX OR EXACT SURF? (0,1) :0
# OF ROUGHNESS REALIZATIONS : I
RANGE AVERAGE TL CURVES? (0,1) :0
RANGE TO AVERAGE OVER (kn) :1.0
SL(dB re uPa re imlyd) :20U.000
SOURCE DEPTH (mft) :350.000
REF. SOUND SPEED (m/sft/s) :1500.00
CENTER FREQUENCY (Hz) :40.000
NUMBER OF FREQUENCIES : 1
FREQUENCY BANDWIDTH (Hz) :32.0000
FFT TRANSFORM SIZE :0
RANGE STEP SIZE (kanm) :0.0
MAXIMUM RANGE (kinm) :10.000
MAX COMPUTATIONAL DEPTH (m, f) :6000.00
CENTRAL SOURCE ANGLE (DEG) :0.
SOURCE ARRAY LENGTH (m,fl) :20.0000
RMS SOURCE WIDTH (DEG) :80.0000
SOURCE TAPER WIDTH (DEG) :10.00000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DELD) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, TL DEPTHS (m,ft) :1 3990.000
# BB RANGES, BB RANGES (kinmm) :1 100.000
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BB EXTRACTION DEPTH (mtft) 1O000000

3000

0.02
0. 1500.00
10000.0 1500.
1

0.0 3990.0 1500.00 0.0 1.0 .000 00.0 200.0 0.0 .000
I

0.0 o. 150000 0.0 1.0 .000 00.0 200.0 0.0 .000
I

0.0 0.0
I

0.0 0.0

Example 2: This problem is listed as Test Case 2 in the workshop proceedings It is char-

acterized by a water column of varying depth overlying a denser fluid bottom. The interface forms

an upslope-downslope configuration. Only transmission loss at two depths is requested as output.

The results are compared with the reference solutions in Fig. 3.

Input files for Test Case 2 of PE Workshop II:

Kwndat
TITLE :PEII test co 2
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) :2
TYPE OF INPUT DATA UNITS (1,2) : I
APPLY SURFACE FILTER? (0,1) :0
APPROX OR EXACT SURF? (0,1) :0
# OF ROUGHNESS REALIZATIONS :1
RANGE AVERAGE TL CURVES? (0,1) :0
RANGE TO AVERAGE OVER (kn) : 1.0
SL(dB re uPa re lmlyd) :200.000
SOURCE DEPTH (mAf) :100.000
REF. SOUND SPEED (m/s,/ls) :1500.00
CENTER FREQUENCY (Hz) :25.000
NUMBER OF FREQUENCIES :I
FREQUENCY BANDWIDTH (Hz) :32.0000
FFT TRANSFORM SIZE :0
RANGE STEP SIZE (anran) :0.0
MAXIMUM RANGE (kmamn) :7.000
MAX COMPUTATIONAL DEPTH (mft) :800.00
CENTRAL SOURCE ANGLE (DEG) :0.
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SOURCE ARRAY LENGTH (mft) :20.0000
RMS SOURCE WIDTH (DEG) :60.0000
SOURCE TAPER WIDTH (DEG) :20.00000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DE•D) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, TL DEPTHS (rift) :2 20.000 150.000
# BB RANGES, BB RANGES Omnm) :1 100.000
BB EXTRACTION DEPTH (Wit) :1000.000

3000
1
0.02
0. 1500.00
10000.0 1500.
3

0.0 200.0 1700.00 0.0 1.5 .294 00.0 200.0 0.0 .000
3.5 25.0 1700.00 0.0 1.5 .294 00.0 200.0 0.0 .000
7.0 200.0 1700.00 0.0 1.5 .294 00.0 200.0 0.0 .000
I

0.0 0. 150.00 0.0 1.0 .000 00.0 20.0 0.0 .000
I

0.0 0.0
I

0.0 0.0

Example 3: The problem is listed as Test Case 7 in the workshop proceedings and is some-

times referred to as the "Porter's duct" problem. The environment consists of a typical deep ocean

sound speed channel with a shallow surface duct. The bottom is a simple fast fluid. The output

requested from the UMPE model is the transmission loss at a single depth and the complete TL field

data. Additionally, we requested as output the environmental propagator functions. This allows

us to plot the extrapolated sound speed profile used by the model. In Fig. 4, the TL field data is

displayed and the sound speed profile is shown in Fig. 5. The comparison of the TL reference solu-

tion with the model prediction is shown in Fig. 6 for two different values of reference sound speed.

For this particular problem, the solution is found to be highly sensitive to changes in co when the

wide angle approximation is chosen.

Input files for Test Case 7 of PE Workshop II:
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TITLE :PEII •d cow 7
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) :2
TYPE OF INPUT DATA UNITS (I,2) : I
APPLY SURFACE FILTER? (0,1) :0
APPROX OR EXACT SURF? (0,1) :0
# OF ROUGHNESS REALIZATIONS : I
RANGE AVERAGE TL CURVES? (0,1) :0
RANGE TO AVERAGE OVER (kmu) :1.0
SL(dB r uPa m Im, lyd) :200.000
SOURCE DEPTH (mfit) :23.000
REF. SOUND SPEED (misM/s) :1433.00
CENTER FREQUENCY (Hz) :90.000
NUMBER OF FREQUENCIES :1
FREQUENCY BANDWIDTH (Hz) :32.0000
FFT TRANSFORM SIZE :0
RANGE STEP SIZE (kinan) :0.0
MAXIMUM RANGE (mijim) :150.000
MAX COMPUTATIONAL DEPTH (mft) :6000.00
CENTRAL SOURCE ANGLE (DEG) :0.
SOURCE ARRAY LENGTH (,t) :20.0000
RMS SOURCE WIDTH (DEG) :60.0000
SOURCE TAPER WIDTH (DEG) :20.00000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DELD) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, TL DEPTHS (r, ft) :1 100.000
# BB RANGES, BB RANGES O(mkmn) :1 100.000
BB EXTRACTION DEPTH (m ft) :1000.000

3000

0.020
0. 1497.00
250. 1502.00
300. 1485.00
375. 1478.00
425. 1477.00
500. 1476.00
600. 1476.50
700. 1477.00
810. 1478.00
900. 1479.00
1000. 1480.00
1100. 1481.00
1180. 1482.00
1340. 1484.00
1600. 1487.00
1800. 1490.00
2500. 1498.70
3000. 1506.80
4000. 1523.90
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10000.0 1523.90
i
0.0 4000.0 1523.90 0.0 10 .066 00.0 200.0 0.0 .000
!

0.0 0. 1300.00 0.0 1.0 .000 00.0 200.0 0.0 .000
I

0.0 0.0
I

0.0 0.0

Example 4: This example is chosen to display the effects of rough bottom interfaces on

acoustic propagation. We have defined the environment as a typical deep ocean water column with

a thin sediment layer overlying a hard bottom. The average sediment depth is 10 m. The rms

roughness of the sediment interface is 5 m while the rms roughness of the bottom interface is 20

m. Both roughness spectra have been filtered from 10 km to 20 km to remove length scales longer

than 20 km (this number is set within the subroutine etagen.f). The TL field data has been output

and is plotted in Fig. 7. The transmission loss to each interface has been averaged over I km inter-

vals and these curves are displayed in Fig. 8.

Input files for Example 4:

TITLE :Roush boamn inteaces
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) .2
TYPE OF INPUT DATA UNITS (1,2) :1
APPLY SURFACE FILTER? (0,1) .0
APPROX OR EXACT SURF? (0,1) :0
# OF ROUGHNESS REALIZATIONS :1
RANGE AVERAGE TL CURVES? (0,1) : 1
RANGE TO AVERAGE OVER (kn) :1.0
SL(dB re uPa re m,Ilyd) :200.000
SOURCE DEPTH (mt) .250.000
REF. SOUND SPEED (m/sa//) :1500.00
CENTER FREQUENCY (Hz) :100.000
NUMBER OF FREQUENCIFS :1
FREQUENCY BANDWIDTH (Hz) :32.0000
FFT TRANSFORM SIZE :1024
RANGE STEP SIZE (krnnm) :0.01
MAXIMUM RANGE (kinm) :100.0
MAX COMPUTATIONAL DEPTH (mAf) .6000.00
CENTRAL SOURCE ANGLE (DEO) :0.
SOURCE ARRAY LENGTH (mft) :20.0000
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RMS SOURCE WIDTH (DEG) :60.0000
SOURCE TAPER WIDTH (DEG) :2000000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DELD) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, TL DEPTHS (mft) : I 100.000
# BB RANGES, BB RANGES (kninm) :1 100.000
BB EXTRACTION DEPTH (m,ft) :1000.000

3000
1
0.030
o.-OOO00E+00 1.52084)0E+03
I .OOOOOOE+01 I.526E+03
2.000÷00E+01 1.320290E+03
3.000000E+01 1.519330E+03
5.000000E+0I 1.312440E+03
7.500000E+01 1.505780E+03
1.O00000E+02 1.503170E+03
1.250000E+02 1.501060E+03
1.500000E+02 1.498310E+03
2.000)00E+02 1.491900E+03
2.500000E+02 1.489080E+03
3.OOOOOOE+02 1.486760E+03
4.OOOOOOE+02 1.482140E+03
5.OOOOOOE+02 1.479350E+03
6.OOOOOOE+02 1.478310E+03
7.000000E+02 1.47MS6.E+03
8.000000E+02 1.479040E+03
9.000000E+02 1.479640E+03
I .OOOOOOE+03 1.480270E+03
1.100000E+03 1.481050E+03
1.200000E+03 1.481M90E+03
1 .300000E+03 1.482820E+03
1.400000E+03 1.483740E+03
1.500000E+03 1.484660E+03
1.750000E+03 1.487460E+03

2.OOOOOOE+03 1.490590E+03
2.500000E+03 .497990E+03
3.OOOOOOE+03 1,506030E+03
3.500000E+03 1.514420E+03
1.000000E+04 1.514420E+03

0.0 3500.0 2000.00 0.0 3.0 .100 50.0 1000.0 0.0 .000
I

0.0 500.0 1700.00 0.0 1.5 .010 10.0 200.0 0.0 .000
0

0.0 0.0

0.0 0.0
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Example 5: In this example, we exhibit the model's ability to compute the exact surface

scatter from a large Gaussian displacement of the surface. (This displacement was defined analyt-

ically and included by specifically editing parts of the phase2.f subroutine. This is not available in

the generic version but does illustrate how one may easily modify the code to include various fea-

tures.) Note that this calculation could not be performed properly with the approximate method

since the small surface displacement approximation is invalid. The water column is treated as a

homogeneous half-space with the "bottom" having properties identical to the overlying fluid. In

Fig. 9 we display the TL field data, and the surface transmission loss, TL, as defined by Eqs. (9.1)

and (9.4), is shown in Fig. 10.

Input files for Example 5:

p~n~dat

TITLE :Gaussian surface displacement
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) :2
TYPE OF INPUT DATA UNITS (1,2) :1
APPLY SURFACE FILTER? (0,1) :0
APPROX OR EXACT SURF? (0,1) :1
# OF ROUGHNESS REALIZATIONS :I
RANGE AVERAGE TL CURVES? (0,1) :0
RANGE TO AVERAGE OVER (kin) ; 1.0
SL(dB re uPa re Im, lyd) :200.000
SOURCE DEPTH (m, ft) :75.000
REF. SOUND SPEED (m/sft/s) :1500.00
CENTER FREQUENCY (Hz) .250.000
NUMBER OF FREQUENCIES : I
FREQUENCY BANDWIDTH (Hz) :32.0000
FFT TRANSFORM SIZE :1024
RANGE STEP SIZE (kimnm) :0.01
MAXIMUM RANGE (kinrm) :5.000
MAX COMPUTATIONAL DEPTH (m,ft) :1500.00
CENTRAL SOURCE ANGLE (DEG) :0.
SOURCE ARRAY LENGTH (m,ft) :20.0000
RMS SOURCE WIDTH (DEG) :40.0000
SOURCE TAPER WIDTH (DEG) :20.00000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DELD) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, n DEPTHS (m,ft) :0 100.000
# BB RANGES, BB RANGES (kmmnm) :1 100.0w0
BB EXTRACTION DEPTH (mft) :1000.000
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RMV. lat

3000
1
0.02
0.0 1500.00
10000.0 1500.00
1

0.0 120.0 1500.00 0.0 1.0 .000 0.0 200.0 0.0 .000
I

0.0 0.0 l1500-0~~rr~,•.0 0.0 1.0 .000 0.0 200.0 0.0 .000

0
0.0 0.0
I

0.0 0.0

Example 6: In our final example, the broadband capabilities of the model are displayed.

The environment we have chosen consists of a typical deep ocean sound speed profile overlying a

hard, lossy bottom and is range-independent. As output we have selected the time domain TL field

and a slice at the sound channel axis at 600 m. The normalization of the TL levels was performed

after the calculation with the peak level after one range step. Because a range step is 10 m, the

values are rescaled by subtracting TLmin (r - 10 m) - 10log(r= 10 m). The number of fre-R0

quencies was chosen to yield a time window width of roughly 5 sec. A more narrow source

function was defined to avoid high angle propagation that would arrive significantly later than the

water-bourne energy. The time domain TL field, displayed in Fig. 11, exhibits the typical caustic

structure for deep sound channel propagation. The first figure shows the full time window and the

second expands the view to examine the earliest arrivals. Source angles beyond roughly 15* have

long enough path lengths to introduce relatively long travel times. Such arrivals can be seen to

arrive as much as 4 sec later than the horizontal axial arrival and are observed to create a wrap-

around effect in the calculation. This provides a clear example of the need for a sufficient time win-

dow width. The time arrival pattern observed at the axis of the sound channel is displayed in Fig.

12. Again, an expanded view of the earliest arrivals is provided. Significant side-lobe energy is

present due to the high ratio of bandwidth to center frequency.
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Input files for Example 6:

TITLE :Dow ocan. boadbaA
TYPE OF PE APPROX. (1-5) :4
TYPE DENSITY SMOOTHING (1,2) :2
TYPE OF STARTING FIELD (1-3) :2
TYPE OF INPUT DATA UNITS (1,2) :1
APPLY SURFACE FILTER? (0,1) :0
APPROX OR EXACT SURF? (0,1) :0
# OF ROUGHNESS REALIZATIONS :I
RANGE AVERAGE TIL CURVES? (0,1) :0
RANGE TO AVERAGE OVER (Wn) :1.0
SL(dB it uPare In% lyd) :200.000
SOURCE DEPTH (aft) :600.000
REF. SOUND SPEED (mlsfi/s) :1478.51
CENTER FREQUENCY (Hz) :50.000
NUMBER OF FREQUENCIES :256
FREQUENCY BANDWIDTH (Hz) :50.0000
FFT TRANSFORM SIZE :1024
RANGE STEP SIZE (kmnm) :0.01
MAXIMUM RANGE (kmnam) :100.000
MAX COMPUTATIONAL DEPTH (mft) :6500.00
CENTRAL SOURCE ANGLE (DEG) :0.
SOURCE ARRAY LENGTH (mf) :20.0000
RMS SOURCE WIDTH (DEG) :20.0000
SOURCE TAPER WIDTH (DEG) :10.00000
DENSITY MIX LENGTH (# DELD) :0.0
SSPEED MIX LENGTH (# DELD) :0.0
SURF LOSS FCTN WIDTH (# DELD) :0.0
# TL DEPTHS, TL DEPTHS (mf) :0 100.000
# BB RANGES, BB RANGES (kmj=n) :2 0.01 100.000
BB EXTRACTION DEPTH (m,ft) :600.000

Mny.dat

3000
1
0.032
0.O00000E+00 1.520840E+03
1.000000E+0I i.520660E+03
2.000000E+01I .520280E+03
3.OOOOOOE+01 1.519330E+03
5.000000E+01 1.512440E+03
7.500000E+01 1.505780E+03
1.000000E+02 i.503170E+03
i 250000E+02 1.501060E+03
1.500000E+02 I.498310E+03
2.000000E1+02 IA91900E+03
2.500000E+02 1.489080E+03
3.000000E+02 1.486760E+03
4.OOOOOOE+02 1.482140E+03
5.000000E+02 I.479350E+03
6.OOOOOOE+02 1.478510E+03
7.000000E+02 1.478650E+03
8.000000E+02 1.479040E+03
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9.000000E+02 1.479640E+03
1.000000E+03 1 A80270E+03
1.100000E+03 1.481050E+03
I 200000E+03 1.481890E+03
1.300000E+03 i .48280E+03
1.400000E+03 1.483740E+03
1.500000E+03 1.484660E+03
1.750000E+03 1.487460E+03
2.000000E+03 1.490590E+03
2.500000E+03 1.497990E+03
3.000000E+03 1.506030E+03
3.500000E+03 1.514420E+03
4.000000E+03 1.523210E+03
4.500000E+03 1.532230E+03
1.000000E+04 1.532230E+03
I

0.0 4500.0 1700.00 0.0 2.0 .200 00.0 200.0 0.0 .000
I

0.0 0. 1500.00 0.0 1.0 .000 00.0 200.0 0.0 .000
1

0.0 0.0
I

0.0 0.0
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Figure 7: Transmission loss field plot displaying effects of forward scatter
due to two rough bottom interfaces.
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Figure 8: Plots of transmission loss computed to each rough interface.
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Figure 9: Transmission loss field plot displaying effects of exact surface
scattering from a Gaussian surface displacement.
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Figure 10: Plot of TL, in presence of Gaussian surface displacement
as defined by Eqs. (9. 1) and (9.3) of the text.
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Figure 11: Transmission loss field plots an the time domain computed
fr'om a broadband UMPE model run in a typical deep ocean profile The
upper figure displays the total time window computed while the lower
figure shows an expanded view of the earliest arrivals.
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