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ABSTRACT

In this thesis, effort is made to incorporate the

computer program, Improved Many(Jammers)-on-Many(Radars)
(IMOM), into radar and electronic warfare curricula at the
Naval Postgraduate School. The IMOM program 1is used

operationally by the U.S. Air Force for electronic combat
mission planning. IMOM allows the user to evaluate electronic
combat effects through computer color graphics display of the
electronic order of battle including terrain effects.

Thisvsame program used in an academic role, provides
students in radar and electronic warfare a tool for
understanding radar principles, jamming principles, and the
physical interaction between the two. The objective is to
provide a visible link between radar range thecry presented in
coursework and the two-dimensional electronic combat scenarios
presented by IMOM. This is done by plotting the theoretical
results for radar signal return, jammer return, and the
jamming to signal ratio for both self protection and stand-off
jammers. A MATLAB program is used to generate plots of the
radar and jamming equations and to validate the IMOM algorithm
against the equations used at NPS. The effect of radar
parameter changes on the system is clearly displayed, both on
the graphical MATLAB output and the IMOM graphics display,
therefore enhancing the student's understanding of radar and
jamming principles.
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I. INTRODUCTION

A. PURPOSE

This thesis illustrates the use of computer program,
Improved Many(Jammers)-on-Many(Radars) (IMOM), as a teaching
tool for the Radar and Electronic Warfare (EW) curricula at
the Naval Postgraduate School (NPS). This program was
developed by the U.S. Air Force Electronic Warfare Center
(AFEWC) for electronic combat (EC) mission planning. Students
currently taking radar and EW courses are exposed to the basic
principles and supporting mathematical analysis. Numerical
computation of system performance is performed in coursework
and actual radar and EW system operational characteristics are
presented in laboratory work.

Due to limited course offering in radar and EW, students
are presented a wide array of material in a single academic
quarter time frame, with limited time to cover some important
aspects in detail. The objective of using IMOM is to provide
a physical display of the principles presented, thereby
allowing the student to see, by computer graphics, the radar
characteristics and jamming effectiveness. This is only one
aspect of IMOM. Additional IMOM benefits are covered later
when IMOM utilization is presented.

This thesis i1s structured to supplement and enhance the

radar and EW coursework at the Naval Postgraduate School.




Utilizing this thesis, a student can expect to gain
understanding of the required radar concepts that are the

basis to any further involvement in radar or EW systems.

B. STRUCTURE

The thesis is structured with six primary sections. These
sections are; Requirement: Curricula Enhancement, Radar
Theory: Radar Range Equation, 1IMOM Description, IMOM
Utilization, Radar Exercises, and Electronic Warfare
Exercises.

Chapter II, the Requirement section, describes the benefit
of IMOM as part of the radar and EW curricula. The features
that make IMOM applicable are briefly introduced here and
described in detail in the sections that follow.

The Radar Theory section, Chapter III, provides a review
of applicable radar range theory that is presented in all
entry level radar courses. This section is further subdivided
into radar maximum detection range, radar signal return and
jamming considerations. The goal of this chapter is to
strengthen the foundations of radar signal theory, and compare
theoretical results with the graphics display output of the
IMOM model. Validation of the IMOM computer graphics is also
achieved by analyzing the theoretical results. This will
enhance student knowledge required in coursework, since the
IMOM model is based on the same equations taught in the

coursework.




A description of IMOM in Chapter IV follows the radar
theory section, explaining the information it provides that
is applicable to NPS radar and EW curricula. 1In addition,
utilization of IMOM by the U.S Air Force for mission planning
is described.

Chapter V which follows suggests how IMOM can be used to
further enhance Radar and EW coursework at NPS. Direct
relationships between the radar theory presented earlier and
the two-dimensional display offered by IMOM is explored. The
interrelationship of radar characteristics, jamming
characteristics and the effectiveness of jamming on a radar is
explained. The jamming effectiveness is assessed utilizing
many real world situations in the IMOM model.

Samples of radar and jamming exercises are next presented
in Chapters VI and VII, the Radar Exercises and Electronic
Warfare Exercises sections. These sections show the utility

of IMOM in the NPS radar and EW curricula.




IXI. REQUIREMENT: CURRICULA ENHANCEMENT

This chapter demonstrates how the AFEWC IMOM program can

act as a tool in the teaching of radar and EW at NPS.

A. RADAR

The Naval Postgraduate School currently offers only one
entry level radar course to students. The course that 1is
taken depends upon each student's individual curriculum. The
current courses are as follows:

EC3760 Principles of Radar Systems

EC4610 Radar Systems (US)

EC4620 Radar Systems (International)

EO4760 Microwave Devices and Radar Systems
The course, EC3760, is structured for Avionics and Wweapons
curriculum students, EC4610 for U.S. ECE curriculum students,
E04760 for U.S. non-ECE students, and EC4620 for international
students. Although these are four separate courses, with
slightly different objectives, all basically present the
studc ~ts with the same radar theory required. Recently, NPS
did offer a follow-on radar course, EC4970, Radar Signal
Processing, during the Spring Quarter, 1992. The Radar Signal
Processing course is also scheduled for the NPS Fall academic
quarter during the FY93 school year.

Regardless of which course is taken, the basic radar
theory must be presented as just one small part 2f the course.
Time spent to understand these important concepts 1is at a

4




premium. A student's time is divided between course lecture,
homework calculations, 1laboratory assignments, and project
reports. An additional instructional tool such as IMOM would
enhance understanding of principles in the allotted time.
Graphical plots of theoretical data, generated by a MATLAB
program developed in this thesis, and IMOM displays, together
enhance the student's ability to comprehend radar theory and

related operating parameters.

B. ELECTRONIC WARFARE

NPS offers only one EW course to students. Like the radar
courses, a separate course 1is taken depending upon each
student's curriculum. The current EW courses are as follows:

EO3780 Electronic Warfare Computer Applications

EC4670 Electronic Warfare

EC4680 Electronic Warfare Techniques and Systems

EC4690 Principles of Electronic Warfare Systems

EO4780 Electronic Warfare Systems
With the exception of EO03780, the other four courses are quite
similar in that they present general principles of EW. The
course EO03780 1is structured for Avionics and Weapons
curriculum students, £74670 for U.S. non-ECE curriculum
students, EO4680 for U.S. ECE students, EC4690 for
international ECE students and EC4780 for U.S. non-ECE
students. Although these are five separate courses, all

present the students with the same basic EW theory required to

understand radar and jamming interaction.




The basic jamming equation theory is presented as just one
small part of each EW course. Time spent to understand these
important concepts is again at a premium. A student's time 1s
divided the same as for radar. An additional instructional
tool such as IMOM can increase understanding of Jjamming
principles.

As with the radar, graphical plots of theoretical data
generated by the MATLAB program, and IMOM displays, together
enhance the student's ability to comprehend Jjamming
effectiveness against a radar.

It is hoped that the material provided in this thesis will
increase the students ability to absorb the Radar and EW

concepts presented both in class and in the laboratory.




III. RADAR THEORY: RADAR RANGE EQUATION

The radar range equation is the fundamental basis for all
radar directed studies. The basic radar equations will not be
derived here since all are thoroughly covered in courses at
NPS and can be found in radar textbooks as well (see e.g.,
[(1]. The appropriate radar parameters and related equations
used in the IMOM model will, however, be summarized. The
equations are presented since IMOM utilizes the same equation
to determine the display characteristics of the radars in an

electronic order of battle (EOB).

A. RADAR

All radars can be characterized by their particular
operating parameters. This thesis will define the radar
parameters used in the radar range equation to calculate the
theoretical performance of any radar. Each parameter is
introduvced and a brief description of the function it performs
in the radar follows. After the parameters are summarized,
the specific radar performance equation is shown utilizing the
given parameters. The radar performance characteristics
calculated are the radar maximum detection range and the radar
signal return from an aircraft target.

1. Radar Parameters

The primary radar parameters utilized in the radar

range calculations are summarized in Table 1. Each of the




parameters listed is used in the corresponding radar equations

to follow.
TABLE 1

RADAR PARAMETERS
A Wavelength
B, Receiver or Doppler Filter bandwidth
E;. (n) Postdetection integration efficiency
F. Receiver Noise Figure
G, Receive antenna gain
G, Transmit antenna gain
X 1.38 x 102 J/°K (Boltzmann constant)
L. Receive line loss
L, Transmit line loss
P,, Average transmit power
P, Peak transmit power
PRF Fulse Repetition frequency
PRI Pulse Repetition Interval
u Pulse width
P, Transmit power at antenna terminal
R, range to target aircraft
S/N Signal to Noise Ratio
T Receiver temperature (°K)
I Integration Improvement Factor

Some of the basic mathematical relationships of the
radar parameters must first be discussed. The wavelength of
the transmitted radar energy is calculated from the radar

operating frequency:




>
fl

(1)

ST

The operating frrnuency of a radar is chosen depending on the
primary function of the radar. The types of radars associated
with IMOM are listed in Table 2. Typically, EW and HF types
of radars operate in the lower radar frequency bands (L, S,
and C) and are scanning types of radars. The TA, TT, and FC
radars typically operate at higher frequencies (C, X and K,
band), have small antenna beams, and provide single target
track. In addition, TT and FC radars generally have an
associated weapon system, such as an anti-aircraft artillery

gun (AAA) or surface-to-air missile (SAM) battery.

TABLE 2
IMOM RADAR TYPES
HF Height Finder
EW Early Warning
TA Target Acquisition
TT Target Tracker
FC Fire Control

Each radar is also characterized by its PRI, or its
PRF, and its pulse width. The pulse width can also be

approximated from the radar bandwidth by:




1
T=—
B (2)

The radar bandwidth is taken to be the receiver bandwidth or
more specifically the bandwidth of the receiver doppler filter
(expressed in Hz).

The unambiguous radar range is related to the radar

PRF by:

C
PRF=
3%, (3)

where c is the velocity of light.

Pulsewidth and PRF are also used to calculate the
average transmit power of the radar if the radar transmit
power is given as peak power. The relationship between peak

and average power is:

P,,=Pp X PRF (4)

Another key equation involved in using the radar
equation is determination of the radar receiver noise. The
noise in the receiver is important since the signal to noise
ratio (S/N) defines the minimum detectable signal required for
the radar to function properly. The noise is characterized by
the receiver bandwidth, temperature, and noise figure. The
noise figure is used as a figure of merit for a particular

receiver. The receiver noise can be determined by:
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N=KTB,F, (s)

If pulse integration is used in the radar for target
detection, then the radar range equation must be further
modified. The detection range of a radar is increased if
pulses are integrated. An integration improvement factor (I)
is added to the range equation when taking this into account.
The improvement factor is defined in terms of an integration
efficiency, S/N for one pulse, and S/N for multiple pulses

[1)]. The integration improvement factor (I) is defined as:
I=nE ,(n) (6)

where E;(n) = (S/N),/n(S/N),. To be used in the range equation
when pulse integration is utilized, the S/N for n pulses is
expressed in terms of I and S/N for one pulse. This is shown
below in the maximum detection range calculation.
2. Maximum Detection Range

The maximum radar detection range can now be defined
in terms of the given radar parameters. The maximum detection
range is a function of the radar transmit peak power, transmit
antenna gain, receive antenna gain, line and propagation
losses, receiver noise, target echo, and integration

improvement factor. The maximum detection range is:
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R - P.G.G,A%aT
- 7
(a7) 3(%) KTB,F,L.L, (7)
1

i

Line of sight (LOS) is another factor limiting radar
maximum detection range. The radar may be horizon limited in
its detection capability. The geometry of horizon limitation
depends upon the radar antenna height and the target aircraft
altitude. The horizon limited range assuming flat terrain is

given by:

R,(meters) = 2R 1 +/2h r, (8)

where the height of the radar antenna, h., and the altitude of
the target, h,, are given in meters. The radius of the earth,

r_, is given as 8.5 x 10°m.

e
3. Radar signal Return

Normally, the radar cross section (RCS) of a target
fluctuates as defined by one of Swerling Case models [1].
Here, radar cross section, o, is assumed to be from a constant
RCS target. The signal return is reguired in order to
calculate the jamming to signal ratio. The target signal
return can be calculated by:
_P.G.G,A%aI
i (am)3RiL,

S (9)
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B. JAMMER

All jammers can also be characterized by their particular
operating parameters., The Jjammer parameters used in the
jamming equations to calculate the theoretical performance of
a Jjammer is presented here. The reason for presenting the
jamming equations is that IMOM utilizes the same equations to
calculate S0OJ effectiveness against the given radars in an
EOB.

Self protection jamming (SPJ) and stand off jamming (SOJ)
equations are shown utilizing the given jammer parameters.
Three jammer performance characteristics are calculated: (1)
the jamming signal from a noise jammer (SPJ) on the target
aircraft, (2) deception jammer signal return (SPJ), and (3)
jamming to signal (J/S) ratios for SPJ and SOJ targets.

Two primary types of jamming exist; noise and deception.
The objective of noise Jjamming, or denial jamming, is to
completely obscure or deny any actual target return signal to
the hostile radar receiver. An advantage to ncise jamming is
that only a minimum of information needs to be known about the
victim radar for jamming to be effective. A disadvantage of
the noise jammer is that it requires a high effective radiated
power (ERP) since the bandwidth of the noise is usually wider
than the radar receiver bandwidth [2].

The objective of deception jamming is to mask the actual
target return or modify the target return in order to confuse

or prevent detection by a hostile radar. The advantage of
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deception jamming is that a lower ERP is required. A possible
disadvantage is that the jammer must be activated at an
optimum time, not always easily calculable, in order to
prevent detection as well as not enhancing detection by
becoming a beacon [2].

It is important to be able to distinguish between noise
and deception jamming when performing jammer effectiveness
analysis. This is because the jammer signal level at the
radar depends upor what type of jamming is being utilized,
noise or repeater, as well as what role the jammer is tasked
to fulfill, either SPJ or SOJ. A deception jammer can operate
in two distinct modes; constant power (CP) output or constant
gain (CG) output. An explanation of the difference between
the two is presented in the Deception Jammer Signal section.

. Jammer Parameters

The primary jammer parameters utilized in the jammer
signal calculations to be examined are summarized in Table 3.
Each of the parameters listed is used in the corresponding

jamming equations to follow.
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TABLE 3 ﬁ_
JAMMER PARAMETERS

B. Noise bandwidth

G, Transmit antenna gain

G.. Amplifier gain

G, Receive antenna gain

I S0J signal in radar backlobe

Jee Constant gain deception jamming
signal

Jep Constant power deception jamming
signal

Ty SOJ signal in radar mainlobe

F;: SOJ signal in radar sidelobe

L., Receive line loss

L., Transmit line loss

gj or Amplifier saturated power output

R, Range to SOJ Jammer aircraft

Swos Minimum detectable signal at
jammer

2. Jammer Minimum Detectable Signal

In order for the jammer to determine if jamming is
required, the jammer must detect the radar signal. A jammer
receiver usually has a specified minimum detectable signal
(MDS) which defines when the jammer can detect the radar
signal. IMOM calculates the radar signal at the jammer and
compares this value to the S, specified for the jammer
receiver. Jamming effectiveness is evaluated if the jammer
can detect the radar signal. The signal at the jammer,

labeled §,,; here, is calculated from:
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P.G.G, A?
- t~e ZZ (10)

mds
(4m) 2L, R?

3. 8elf Protection Jamming
Self protection jamming (SPJ) is so defined because
the jammer is located on the aircraft to be protected. This
is generally done to provide the optimum protection for the
aircraft against hostile weapon systems. Self protection
jammers use the ERP more efficiently against a hostile radar
since the jamming signal is injected into the radar main beam.
This is one reason SPJ utilizes deceptive jamming more

effectively [2].

a. Noise Jammer Signal
The SPJ noise jamming signal has the advantage
over the radar target echo in that it only has to travel in
one direction. Therefore, the space loss associated with the
jammer signal is related only to the square of the range. The
jammer signal level must also be adjusted by including a
bandwidth factor. The jamming power injected into a victim
radar depends upon the ratio of the radar receiver bandwidth
to the jammer transmitted noise bandwidth. The jamming
equation for the SPJ noise jamming signal received by the

victim radar is:

2
7= 2554 2[&) (11)
(am)*L,L; R\ By
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b. Deception Jammer S8ignal

The same propagation laws that applied to SPJ
noise jamming also apply to deception jamming. However, in
this case the jammer output ERP is not constant for all ranges
from the radar. In deception jamming, the radar signal is
received, amplified, modulated, and retransmitted to mask the
true target echo. The deception jammer operates in two
distinct transmit modes depending upon the range to the radar
and the operating parameters of both the radar and the jammer.
Namely constant gain and constant power output [3]. This is
in contrast to noise jamming which normally operates in
saturation, or at maximum output power.

The range at which the jammer switches from
constant gain to constant power is called the saturation
range. This is the point where the radar signal received at
the jammer is sufficient to drive the jammer output amplifier

to it maximum output level. The saturation range is given as:

2
z

P.G,G,,G,,A?

JjrYija
(4m) L

<
Pjnm\ Jjr

*sat

(12)

For radar to Jjammer range greater than the
saturation range (called "constant gain" region), the jammer
signal at the radar receiver is given by:

_ P.G,G,A%G,,G,,G,

jr-ja
4
(4m)*ReL L, L,

(13)

r~jr
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For radar to jammer range less than the saturation
range (called "constant power" region), the jammer signal at

the radar receiver is given by:

7o PJ-WMC;jG‘,A.2
cp- -2
(4m)“R{L

(14)
L

e
c. 8Self Protection Jamming to S8ignal Ratio

The jamming to signal ratio (J/S) for a jammer
versus a radar is generally the factor utilized to determine
jammer effectiveness. This J/S determines at what range a
radar can detect a target through a jamming signal. This
rancge is referred to as the "burnthrough" range for the radar.
The exact range where burnthrough occurs is a function of the
radar mode of ©operation and the Jjammer electronic
countermeasure (ECM) technique utilized. Therefore, it is not
an absolute number. Radar burnthrough range can be estimated
by defining a required J/S for the particular jammer technique
utilized.

The J/S ratio for noise SPJ on the target aircraft

versus range is given by:

2
J_ P;GAnR: ( B, (15)
s P.G.0IL,\ B,

The J/S ratio for deception SPJ on the target aircraft versus

range depends upon whether the target aircraft is less than or
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greater than the jammer saturation range. For range greater

than the saturation, the J/S ratio is given by:

2
Jos _ A°G;,G,,G; (16)
S 4nl; L; 01

For range less than saturation, the J/S ratio is
given by:

Jep_ P;GARRE

(17)
s PGl I

Important to note from equation 16 is that the J/S
ratio «calculated 1is constant for range greater than
saturation. This is due to the range relationship of the
jamming signal as shown in equations 13 and 14. The jamming
signal is proportional to l/R2 for range less than saturation
and 1/R‘ otherwise.

4. Stand-0off Jamming

Stand-off jamming (SOJ) refers to when the jammer is
carried on an aircraft other than the attacking aircraft.
Present U.S. tactics call for the SOJ aircraft generally to be
placed outside the lethal range of any hostile weapon systems.
The objective is to provide ECM to screen one or more
attacking aircraft. This geometry of a stand-off jammer
scenario requires the most efficient use of the jammer ERP in

order to affect all required victim radars. (2]
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The geometry of the SOJ relative to the radar can
basically be defined in terms of mainlobe, sidelobe, and
backlobe jamming. The difference between the jamming signal
in these three cases is the amount of jammer ERP required due
to the difference in the radar antenna gain between the
mainlobe, sidelobe, and backlobe.

a. Noise Jammer Signal

The noise jamming signal for SOJ is calculated the
same as for SPJ, using equation 11. The only difference for

the S0J is in the range, R, and the antenna gain, G The

.
range to the SOJ is assumed to be constant, or that the SOJ is
at a fixed range from the radar. This is the scenario
utilized by IMOM when modelling SOJ effectiveness. The value
of G, is dependent upon the SOJ-to-radar geometry. G, is
either the gain of the radar mainlobe, sidelobe, or backlobe.
The effect of the difference in gain will be apparent in the
SO0J J/S equations.
b. Deception Jammer Signal

Deception jamming is not usually provided by a
stand-off Jjammer (SOJ). 1If deception jamming is to be
provided by the S0J, the jamming signal would be calculated
the same as for SPJ deception jamming signal (see equations 13

and 14). The same range and radar antenna gain considerations

for noise jamming apply to the deception jamming equations.
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c. Stand-off Jamming to Signal Ratio

The J/S ratio for SOJ is defined exactly as that
for SPJ. Radar burnthrough is estimated by the range at which
a specific J/S occurs. The difference in J/S between SPJ and
SOJ is that the range used to calculate the jammer signal is
assumed to be fixed for SOJ. Therefore, the range is affected
by the range relationship Rf/Rf, where R; is constant and R,
varies as the target aircraft approaches the radar. The J/S
calculation also depends upon the ratio of the radar sidelobe
gain or backlobe gain to the mainlobe gain when the SOJ is not
located in the radar antenna mainlobe.

The SOJ J/S ratio for in the victim radar mainlobe

is given by:

4
_) (18)
R;

Jy: . P;GAm [B,)

5 P.G.oL.I\B,

The SOJ J/S ratio for jamming in the victim radar
sidelobe and backlobe are given 1in equations 19 and 20
respectively. The only difference is the radar antenna gain
factor that affects how much jamming power enters the radar.
This directly affects the required ERP of the SOJ if the same
J/S is applied to each of the three SOJ geometries, mainlobe,
sidelobe, and backlocbe.

Isy_ PsGan (B R') Gg (19)
5 P.GoL; I\ B; )| R>\ G
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oo . _PiG;4% (B, R Gy (20)
S P.G.0L, I\ B )\ R |\ G

The radar and jamming equations are presented in
this chapter to provide the fundamental principles used by
IMOM to create a display of radar detection capabilities. 1In
addition, the results calculated from the equations served to

validate the IMOM displayed radar capabilities.
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IVv. IMOM DESCRIPTION

This chapter describes IMOM in detail with respect to its
application to NPS radar and EW curricula. IMOM is a computer
program that displays radar coverage, including the effects of
terrain, jamming and associated weapon system envelopes, in
order to model an electronic order of battle [4]). The Air
Force utilizes IMOM as an operational electronic combat
mission planning system [4]. IMOM Unix versior 2.3 is
utilized in this thesis, operating on NPS Sun Microsystems
SPARC Workstation.

Many aspects of radar, jamming and other order of battle
environment characteristics can be modelled and displayed by
IMOM. These display characteristics are directly applicable
to enhancing NPS radar and EW coursework. For example,
displaying a radars detection envelope, with or without
terrain masking effects, can be used to illustrate the radars
operating characteristics. The detection characteristics can
be validated by the theory presented in Chapter II. In
addition, if the radar modelled is associated with a weapon
system, the radar display is modified according to the weapon
system envelope characteristics.

The radar envelope can also be displayed with the effects
of self protection jamming, stand-off jamming, or both. Thus,
the interaction of the 3jammers with the radars can be
illustrated. The burnthrough ranges of the radars versus
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jammers in the EOB can be compared to jammer eqguation
calculations covered. Self protection jamming is assumed to
be on the attack aircraft whose flight path is entered by the
user. Any number of stand-off jammers can be added to the
EOB, and are also positioned by the user. Thus, a student can
view in color graphics the effect of jamming on a radar, and
therefore determine an optimum SOJ position.

IMOM is not 1limited to just radar and jammers, but
includes many other aspects, some of which are shown in Table
4. IMOM is capable of modelling the electronic order of
battle for an entire geographical, or geopolitical, area

specified by the user from the available terrain database.

TABLE 4

SAMPLE OF ADDITIONAL IMOM FEATURES

S0OJ orbits

Threat airfields and combat radius of
aircraft stationed there.

Ground troop formations

Battlefield markers: targets, WFZ,
FLOT, ROZ

SEAD HARM weapon envelope
capabilities

MAP capabilities

Line of Site display characteristics
to individual ROUTE positions

Since the scope of IMOM attributes is so varied, only the
radar, SPJ and SOJ aspects of the program are exercised for

this thesis.
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A. U.8. AIR FORCE IMOM APPLICATIONS

IMOM plays a key role in numerous Air Force operational
exercises, including RED FLAG, GREEN FLAG, and BLUE FLAG for
example. It provides the Blue force commanders with near
real time display of the enemy order of battle as comprised by
intelligence sources [5).

Intelligence planners use IMOM to support aircrew mission
planning and threat assessment. IMOM displays the threat
presented to an aircraft throughout its flight path, and
creates point by point data files listing the threat analysis.
Training and targeting are other aspects where IMOM is
applied. (4]

The biggest asset of IMOM 1is the capability for the
operator to interface with the program and conduct "what if"
scenarios. This has great academic applications, since many
principles can be presented by conducting "what if" profiles
in IMOM and reviewing the results. Therefore any radar and
jammer parameters can be modified, as well as jammer
placement, and the results observed on the display. These
results can then be compared to theoretical calculations for
verification. Examples of these features are covered in the

next section.

B. INFORMATION PRESENTED BY IMOM
This section summarizes the IMOM display attributes that

are directly applicable to radar and EW directed studies.
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This is not a list of all information IMOM is capable of
displaying as shown in Table 4.
1. Radar

The IMOM "RINGS" feature allows the user to observe
the radar detection capabilities. RINGS displays color coded
radials emanating from the radar location, with the color
signifying the detection capability of the radar and the
length showing the detection range. For example, for EW, HF

and TA radars, blue radials mean 100% detection by the radar

is 1likely. These radials are red for a radar with an
associated weapor system. A RINGS display without terrain
masking or jamming is shown in Figure 1. The geographical

location is the U.S. Air Force Nellis Test Range, Nevada.
This will be the terrain database utilized for all work in
this thesis. The color coding for jamming effectiveness will
be discussed in sections 2 through 5 of this chapter.

The maximum detection range of each radar in an order
of battle is displayed when "RUN RINGS" is selected from the
RINGS main menu. The maximum detection range displayed by the
radials for a particular radar depends upon five criteria.
The maximum radial length is selected fror the minimum of the
following: calculated maximum detection range, R, :; horizon
limited line of sight (LOS) range, R,; maximum scope range;
unambiguous range; and weapon range from selected weapon

system. In the case of an associated
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weapon system, the maximum radial length is limited to the
maximum range of the weapon at the user specified target
altitude, rather than the capability of the radar. Figure 2
shows the same radar as that in Figure 1, with a weapon system
envelope displayed in red. The maximum length of the blue
radials in Figure 2 show what would normally be the detection
range of the radar, and the red radials in Ficure 2 show the
weapon envelope. In the case of a TT or FC radar, the blue
radials would not be displayed. Figure 2 shows the blue
radials for reference only.

IMOM allows the user to select a radar with an
associated weapon, or select the weapon directly to place in
the EOB. To place a radar, with or without a weapon, the user
selects "ELNOT" when adding a radar to the EOB. To place a
weapon directly, the user selects "WEAPON" from the IMOM menu

bar.
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2. B8PJ

The color of the radials also changes depending upon
the effectiveness of SPJ against the particular radar. As
defined in IMOM, SPJ affects the RINGS display weapon
envelopes for TT and FC radars. The color of the radials are
yellow if the SPJ is 30-70% effective in degrading the radars
lock~-on capability. The radials are gray if the jammer is 70-
100% effective in preventing radar lock-on. Red radials imply
no jamming effectiveness. Figure 3 shows three radars, each
with an associated weapon system, degraded by the SPJ as
listed above. The triangles represent the flignht path of the
SPJ aircraft produced by the IMOM "ROUTE" feature. ROUTE is
discussed in sub-section 10.

The SPJ effectiveness data accessed by IMOM is stored
in the file SPJ_880129.DAT in the HOME/imom/data/imom/spj)
directory, where HOME depends on how the computer system is
organized. A sample of how the data appears in the SPJ data

file is shown in Figure 4.
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(1) (2) (3) (4) (5)(6)(7)(8)
_A/C JAMMER  WEAPON ALT. YY YN NY NN

F50 ALQ210 FATB 490 2 3 2 2FFFFFFFFF
F50 ALQ210 GUNN 10 1 1 1 1FFFFFFFFF
F50 ALQ210 UNC1 330 2 2 1 1FFFFFFFFF
F50 AIQ210 UNC2 165 1 2 1 2FFFFFFFFF
F50 ALQ210 UNC3 900 3 3 2 2FFFFFFFFF
F50 ALQ210 UNC4 100 3 3 2 2FFFFFFFFF
F50 ALQ210 UNC5 130 2 3 1 2FFFFFFFFF
F18 AlQl26 GUNN 10 1 1 1 1FFFFFFFFF
F18 AIQ165 UNC3 900 3 2 1 1FFFFFFFFF
A-6 ALQ165 UNC1 330 2 1 1 1FFFFFFFFF
A-6 ALQ126 UNC3 900 3 2 1 1FFFFFFFFF
A-6 ALQ126 UNC3 900 3 3 1 1FFFFFFFFF
A-6 AlLQ1l65 UNC3 900 3 3 1 1FFFFFFFFF
A-6 ALQ165 UNC2 900 3 2 1 1FFFFFFFFF

Figure 4. Sample of SPJ data in SPJ_B880129.DAT file.

The data in Figure 4 is described by column as follows:
column (1), aircraft type:; column (2), jammer designation;
column (3), weapon system the SPJ is effective against; column
(4), altitude (in ft) to which the effectiveness applies;
columns (5 to 8), the jamming effectiveness. The characters
following the leading digit in column 8 are intelligence data
specifiers used in the determination of the SPJ effectiveness
against the specified weapon. The effectiveness against a
weapon system is set by the numbers located in columns 5
through 8 of the data file shown in Figure 4. Table 5 shows
the relation of SPJ effectiveness number to the users yes or
no answers to IMOM SPJ options when selecting SPJ for an EOB.

The two options are: (1) if chaff is used by the aircraft
carrying the SPJ; (2) if optical tracking methods are utilized

by the radar system. Table 5 shows the combination of chaff
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and optics that determine the column of data in Figure 4 IMOM
will read the SPJ effectiveness to be displayed. The
combination of YY, YN, NY, and NN in Table 5 correspond to

Figure 4 columns 5 through 8.

‘ SPJ OPTION SELECTIONS |

|
. n "
. u .
. | "

The SPJ jammer effectiveness is qualified as shown in
Table 6. The effectiveness of the SPJ against a particular
radar is currently not a value calculated by the IMOM model.
The effectiveness is a predetermined 1level obtained from
intelligence sources and qualified as either a 1, 2, or 3,

with the corresponding effectiveness as shown in Table 6.

II TABLE 6

“ SPJ EFFECTIVENESS

NUMBER | EFFECTIVENESS | RINGS COLOR
1 NONE RED
2 35-70% YELLOW
3 70-100% GRAY

For this thesis, the SPJ_880129.DAT SPJ data file was

edited using the Unix "vi" editor. Data was added in the
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exact format as existing lines of data in the file. A more
efficient mode of SPJ file modifications would be an
executable program that prompts the user for the required data
and updates the existing SPJ_880129.DAT file accordingly.
This program could be used to delete current SPJ daca, add new
SPJ data, and display all current SPJ data. The program could
be written in FORTRAN or C programming languages for the SUN
microsystems workstation and located in the same directory as
IMOM "run_infiles program". The program run_infiles is
executed by the user to enter IMOM radar and jammer
parameters. This program could be written as part of a future
IMOM thesis.

Another example of future IMOM thesis work could be to
develop a subroutine that would do the actual calculation of
SPJ effectiveness against a particular radar by utilizing both
the radar and jammer parameters entered in IMOM. In this way,
jamming effectiveness could truly be a function of jammer
parameters, SPJ aircraft range and aircraft heading as opposed
to simply a qualitative number. The calculated effectiveness
would still be based on the intelligence sources that define
the SPJ effectiveness.

3. 80J

The SOJ effectiveness is calculated by the IMOM model
utilizing radar and jammer parameters, unlike the SPJ where a
" qualitative number specifies SPJ effectiveness. The SO0J

effectiveness is calculated by the IMOM model for EW, HF, TA,
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TT, and FC radars in any given order of battle. Table 7 shows
the RINGS display color for effective jamming. IMOM calculates
S0J effectiveness on the basis of jammer position, heading,
antenna pointing direction, beamwidth and polarization
relative to the position of the radar mainlobe, sidelobes and
backlobes. SOJ effectiveness for these situations is
estimated from equations 18, 19, and 20 respectively. An
example of SOJ effectiveness versus a EW radar is shown in

Figure 5. The magenta triangle symbol is the SOJ aircraft.

TABLE 7
SOJ EFFECTIVENESS
RADAR EFFECTIVE COLOR
EW, HF, TA NO LIGHT BLUE
EW, HF, TA YES GREEN
TT, FC YES MAROON

The SOJ effectiveness is evaluated under three sets of
conditions: (1) SOJ in the mainlobe if the SOJ position is in
both the elevation and horizontal beamwidth of the victim
radar as defined by IMOM, (2) SOJ in the sidelobe if the SOJ
position is in the radar elevation beamwidth and one of the
sidelobe azimuth beamwidths, and (3) SOJ in the radar backlobe
when the SOJ position is not in the elevation beamwidth, or is
in the elevation beamwidth and one backlobe beamwidth. These
conditions determine which of equations 18, 19, or 20 are used

to calculate the S0OJ effectiveness.
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The EW, HF and TA radar reduced detection range due to
SOJ is displayed in green on the RINGS radials. Figure 5
showed the jamming effects of SOJ on an EW radar. If the SOJ
is in a position to affect all lobes of the radar, the RINGS
display clearly shows in green the where the ML, SL and BL
detection are reduced. IMOM assumes the HF radar main beam is
pointed at the SOJ aircraft when displaying the RINGS ML
effects of the SOJ. For SL and BL effectiveness, the SOJ is
assumed to be pointing at the radar for all remaining radials.
The affected weapon range reduction is displayed in magenta
for FC and TT radars.

The IMOM SOJ parameters and the data files where they
are stored are covered in the following paragraphs. The
general procedure for creating a jammer is also outlined.

Each jammer is given a jammer designation with a
maximum of six characters in the form AILQ??? (i.e., ALQ100).
The jammer file created is stored in the file ALQ???.JAM in
the HOME/imom/ data/imom/imom_imom directory. The jammer must
be assigned stations where the jammer oscillators will be
loaded. A maximum of 10 stations per jammer is possible. An
antenna direction and beamwidth is specified for each station.
In this way, an SOJ with any azimuthal coverage up to 360
degrees can be created.

In order for SOJ to affect radars, oscillators must be
'1oaded into specified jammer stations. A maximum of ¢4

oscillators per station is possible. The oscillators provide
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the RF frequency coverage of the jammer. Each oscillator
consists of a jamming technique, center frequency, and spot
width. In order for an oscillator to be added to a station,
and for IMOM to be fully programmed, a receive and transmit
band must exist with the desired jammer parameters. The
receive and transmit band data files contain the jammer
operating parameters.

The SOJ operating band parameters are stored in the
files RXBAND.DAT and TXBAND.DAT. RXBAND.DAT contains the
jammer receiver characteristics and TXBAND.DAT contains the
jammer transmitter characteristics. IMOM uses the data from
these files in the jamming equations. The jammer data is
entered following the menu prompts when "run_infiles" is typed
on the keyboard at the UNIX operating system prompt. Figure
6 shows an example of the RXBAND.DAT file and Figure 7 shows

an example of the TXBAND.DAT file.

MIN.  MAX.
BAND  FREQ. FREQ. L, Tros G,

BAND2 900. 3000. 3.0 -120.0 3
BAND3 2950. 6500. 3.0 -120.0 2
BAND4 6300. 12600. 2.0 -120.0 2
BANDS 11000. 18000. 3.0 -120.0 7
BANDS 2000. 13000. 3.0 =-90.0 10
BAND10 2000. 14000. 3.0 -60.0 10

Figure 6. Sample RXBAND.DAT file.
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MIN. MAX. ANTENNA
BAND FREQ. FREQ. ERP P; L;, G;, BW; POL.
BAND1 300. 1030. 1000.01000.0 2.0 2.0 360 SLR
BAND2 980. 3020. 3639.42000.0 1.8 4.4 75 SLL
BAND3 3010. 6500. 5277.42200.0 1.2 5.0 80 RHC
BAND4 6450. 12880. 4062.11900.0 1.3 4.6 70 LHC
BANDS 9000. 18000. 501.2 100.0 3.0 10.0 26 VER
BANDS 2000. 13000. 501.2 100.0 3.0 15.0 60 VER
BAND1O 2000. 14000. 15848.91000.0 3.0 15.0 60 VER

Figure 7. Sample TXBAND.DAT file.

Figure 8 shows the "run_infiles" display of a jammer.
This listing summarizes a jammer by displaying the stations
loaded (STN #), the corresponding receive and transmit bands
(BAND), frequency coverage of the bands (FREQ RANGE (MHz)),
jammer ERP (kW), station antenna beamwidth (BMW), station
antenna pointing direction relative to nose of aircraft (AZM),
station antenna polarization (POL), and number of oscillators
loaded per station. Each oscillator is specified by a jamming

technique, center frequency and spot width.

STN BAND FREQ. RANGE AVR ERP BMW AZM POL OSCL
# (MH2z) (kW) (DEG) (DEG) LOADED

1 BAND1 300.-1000. 1.0 360 0 VER
2 BAND1 2000.-12000. 2.2 30 0 HOR
3 BAND1 2000.~12000. 4.5 60 0 RHC

WN >

Figure 8. Jammer summary displayed by "run_infiles."

The use of jamming techniques in IMOM consist of

technique names and corresponding J/S ratios specified in the
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radar files. The effectiveness of a particular jamming

technique is defined by the J/S assigned to the technique in

each radar file. The jamming techniques are listed in the

file JAMMOD. DAT in the HOME/imom/data/imom/imom_imom

directory. Figure 9 shows a sample of a JAMMOD.DAT file.
Noise

T_ Time Dependent
| T— # of oscillators

TECHNIQUE | | T
NOISE YVY 4
CONFUSION Y N 4
DECEPTION N Y 1
RGS YVY 4

Figure 9. Sample of JAMMOD.DAT file.

The JAMMOD.DAT file includes the jamming technique
name, if it is a noise technique, if it is a time dependent
technique, and the number of oscillators per station that the
technique can use. This is the data file accessed by IMOM in
order to select the jamming technique associated with a
particular jammer oscillator. If multiple oscillators provide
the same technique, IMOM adds the jamming power accordingly.
In addition, in order for a jamming technique to be effective
against a particular radar, the technique and corresponding
J/S ratio must be entered in the radar ELNOT.RAD file. This
is how a particular jamming technique is determined effective
- against a radar. The radar burnthrough range is calculated

from the J/S for each technique. If multiple techniques are

40




effective against a radar, the minimum burnthrough range is
used by IMOM RINGS display.
4. Multiple 8OJ

Multiple SOJ aircraft can be modelled by IMOM. The
RINGS display for a radar will show the SOJ effectiveness
assuming the radar beam is pointed at each S0J. The RINGS
display for a radar affected by multiple SOJ aircraft will
have a mzinlobe reduction in detection range toward each SOJ.
Figure 10 shows the jamming effectiveness from two SOJ
aircraft against an EW radar, one to the north and one to the
east. The ML and SL jamming effectiveness from each SOJ can
be seen in the green portion of the radials.

5. SOJ and SPJ

Both SOJ and SPJ can be specified in an order of
battle. Selecting SPJ for an order of battle automatically
affects the RINGS display for all FC and TT radars when RUN
RINGS is selected. The RINGS radials are colored according to
the SPJ effectiveness specified for the associated weapon
systems described earlier. The SOJ effectiveness is evaluated
for each radar in the order of battle according to the
description given above. Figure 11 shows the effects of both

an SPJ and an SOJ on TA and TT radars in the EOB.
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6. Airborne Radars

An airborne radar can also be modelled by IMOM. The
RINGS display calculates the radar coverage the same as for a
ground based radar. The difference in the RINGS display
between ground and airborne radars is that the current IMOM
model does not evaluate any jammer effectiveness against an
airborne radar. Therefore, when airborne radars are entered
into the EOB, the radar coverage is for display purposes only.
Figure 12 shows an example of two fighter aircraft FC radars
and an AWACS EW radar aircraft.

This lack of jamming evaluation for airborne radars
presents a topic for a future IMOM thesis. Research and
analysis for airborne radars would produce a module addition
to the IMOM model that would give results simulating jamming
like that of the ground based radars. A student might add a
module to the existing IMOM model to perform jammer
effectiveness versus airborne radars in the EOB. The
effectiveness could be evaluated based on the radar and jammer
parameters, antenna pointing directions, and position of the
jammers relative to the radars. With the addition of full
airborne radar effectiveness, realistic air-to-air jamming
scenarios may be modelled.

7. Radar Beams Display
IMOM also has a "“BEAM DISPLAY" function, where a

particular radar beam, or multiple beams, is displayed
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Airborne ¥C and EW radars.

Figure 12.
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versus range and altitude. The altitude of a target aircraft,
or SOJ aircraft, is entered as well as the distance from the
radar. The BEAMS DISPLAY then shows a vertical slice along a
particular azimuth for this aircraft, relative the radars beam
or beans. Figure 13 shows an example of a radar beans
display.

8. Frequency Coverage

The total EOB frequency allocations for radars,
jammers, and both can be displayed. An example of the
frequency display is shown in Figure 14. The frequencies of
the radar beams are spikes and color coded for the type of
radar. Jammer frequencies, corresponding to jammer oscillator
loading, appear as half height spikes. The frequency scale is
listed along the bottom edge of the display window.

This screen provides a display of which radar
frequencies are affected by jamming. The unaffected radar
frequencies are clearly visible by the lack of a jamming cover
spike. By selecting only a single or certain radars, the
display will show a wide spike for the jamming signal, where
the width corresponds to the spot bandwidth of the jammer at

that frequency.
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Text files are also available summarizing the radars

and jammers and their associated operating frequencies.

These

are a text listing of the graphics frequency display mentioned

above. An example of the text listing for the radars is shown

in Figure 15 and for the jammers in Figure 16.

i
i

[T ETT I <1
b > - Pt
= o> 1kx
= >R =
™ E2 1 =11 Gl
x - = o
- w x x
0 —~IRO IR C
- L) =

-
>

[l

(3]

PREV MENU

” ;‘f

|

forsmmecemcnrnesaeasarsreracen

3040 1080 120 (1) 788 140 1100

FREQ (MHZ)

[
- |
-
-

FREQUENCY COYERAGE READY

1620 11300 1140

Figure 14. Frequency coverage display window.
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Figure 15.
[from Ref.
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9. JAMMING ON/OFF Toggle

The JAMMING ON/OFF toggle provides another tool to
view SOJ effectiveness. This toggle has the effect of turning
off the portion of a radars radials that are degraded by
jamming (green portion). This creates a clear area on the
screen where radar detection of any aircraft in this area has
been prevented. Figure 10 showed a radar RINGS display with
jamming on. The difference between Figure 10 and a display
with JAMMING OFF is that the green portion of the radar
radials in Figure 10 are turned off. This means that a zone
normally within the detection capability of a radar is now
clear because of jamming.

10. ROUTE

The ROUTE feature allows the student to view detection
capabilities of all radars in a geographical area, taking into
account the EOB for a specified aircraft flight path. This
helps the student understand the importance of radar placement
as it effects ingressing aircraft detection. Simple examples
of the IMOM ROUTE feature already appeared in Figures 3 and
11. The IMOM ROUTE feature provides a user the capability to
create a flight path for the SPJ aircraft in the EOB, view
which radars detect the aircraft, and the probability of the
radar harming the aircraft along the flight path. The user
enters the desired flight path with the computer mouse and

sets the position increments where IMOM will perform analysis.
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After the route is entered, the YRTE ANAL" feature is
selected.

IMOM produces triangle symbols along the flight path
at the specified position increments. The positions are
numbered sequentially from the start point to the end point.
Each position is color coded to match the most harmful radar
detection capability in the EOB. Table 8 lists the ROUTE
triangle color codes. A key point to note here is that the
ROUTE positions are color coded whether or not the RINGS
display is enabled. 1In this way the route can be viewed in an
uncluttered display. An example of a ROUTE display with RINGS
on is shown in Figure 17. The same ROUTE with rings off is
shown in Figure 18. Figure 19 is a zoomed view of ROUTE
positions 14-17 allowing the user to view radar detection at
a single position. For example, position 15 is within
detection range of 3 radars, represented by the in blue, red

and gray RINGS radials.
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TABLE

ROUTE TRIANGLE COLOR CODING ‘

]

=

LIGHT BLUE EW, TA or HF detection

GREEN Screened by SOJ against EW, TA
or HF

RED Within lethal envelope of TT or
FC

MAGENTA S0J preventing TT or FC lock-on

YELLOW SPJ degrading TT or FC lock-on

GRAY SPJ degrading TT or FC lock-on

WHITE Out of range of any radar

DARK BLUE Terrain masked from all threats

In addition, a sﬁmmary file 1is created for the route
containing radar detection at each position.
presented is helpful in planning SOJ placement in order to
counter high priority TT and FC radars that can detect the

aircraft. Figure 20 shows a sample from the route summary at

position 15.
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AIRCRAFT ROUTE POSITION NUMBER 15
AIRCRAFT TRUE COURSE 1S 281 DEGREES
AIRCRAFT ALTITUDE IS 5000 FEET AGL
AIRCRAFY POSITION IS LAT: 371413N LON: 1154341

THREAT NAME TYPE  CLOCK RANGE (NM) TERRAIN MASKING ALT.
ELNOT NATO NAME WEAPON POSITION FEET AGL FEET MSL
W222U DELAWARE UNC3 1T 1 6 0 0
AT 371655N 1155010m URADAR 2
10C=MM  BEWs= SITE NAME= /108/
B222u NEW JERSEY UNCY T 4 19 120 120
AT 3728438 1152759 URADAR 5
10C=MM  BEW= SITE NAME= /n08B/
RADO4 THESIS WF 9 16 57 57
AT 3458208 1154822w URADAR é
10C=ME BE#= SITE NAME= /E0B/

Figure 20. Sample at position 15 from ROUTE summary file.

To summarize, the relevant IMOM display features for
this thesis are related to the RINGS, FREQ COVRG, and BEAM
DISPLY features described in detail above. The RINGS, FREQ
COVRG, and BEAM DISPLY attributes of IMOM provide a means to
display radar detection and jammer effectiveness
characteristics. These characteristics can then be compared
to the theoretical data calculations. The ROUTE feature
displays detection characteristics at the specified position

increments from each of the radars in the EOB.
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V. IMOM UTILIZATION

IMOM will be utilized to display radar and jamming
principles presented in NPS coursework. Radar and jamming
equations are derived in class, and numerical calculations are
carried out in an effort to describe operational capabilities.
This thesis carries the material presented in radar and EW
courses and laboratories one step further. The equations are
used to plot radar and jammer characteristics for a given set
of radar and jammer parameters. These same parameters are
entered into IMOM and the results observed on the computer
generated graphics. The applicable IMOM color graphics
displays were presented in the information presented by IMOM

section in Chapter 1IV.

A. GRAPHICAL DISPLAY OF THEORY

Chapter III presents the radar and jammer equations
related to the IMOM model. Chapter IV presents the IMOM
display characteristics that show radar coverage and jamming
effectiveness relative to the user defined EOB. This chapter
presents the graphical display of the theoretical calculations
to be used to validate by the IMOM display of the EOB.

The computer program to display the radar and jammer
characteristics is written for a personal computer using
MATLAB. The program, rdrrng.m, source code listing is

included in Appendix A. The objective of the MATLAB program
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is to plot the radar and jamming data resulting from using the
equations. The calculated radar and jammer characteristics are
plotted versus range in order to provide a means to confirm
the values achieved by IMOM.

The radar and jamming characteristics calculated by the
equations presented in Chapter III are listed in Table 9.
Table 9 is important because it presents the characteristics
used by the IMOM model to generate the RINGS display showing
radar and jammer interaction. The range calculations provide
detection limitations for the radars and the J/S calculations
provide the basis for SOJ effectiveness evaluation.

The MATLAB program operates as follows. The user is
prompted to input radar data or recall an existing radar data
file. Figure 21 shows a radar data file created by the
rdrrng.m program. The name of the radar data file is given
the same name as the radar ELNOT entered in IMOM and is in the
form ELNOT.par. The radar data is also stored in MATLAB data
format in a ELNOT.mat for the radar recall feature of the
program.

After the radar file is entered, the user is prompted for
the jammer parameters. The user can recall or create a jammer
file. Figure 22 shows a jammer data file created by the
rdrrng.m program. The name of the jammer data file is given
the same name as the jammer designation entered in IMOM and is

in the form ALQ???.par. The jammer data is also stored in
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MATLAB data format in a file ALQ???.mat for the jammer recall

feature of the program.

Maximum detection range

Ry Horizon limited range

S Target signal return

J Noise SPJ signal return l
J/S Noise SOJ J/S ratio

Jee Deception constant gain

qq, Deception constant power

R.,, Jammer saturation range

J"/S Deception constant gain J/S
J../S Deception constant power J/S

Ty Noise SOJ radar mainlobe
Je Noise S0OJ radar sidelobe
I Noise SOJ radar backlobe

L Ju/S SOJ mainlobe J/S
Je /S SOJ sidelobe J/S
Ja /S SOJ backlobe J/S
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RADAR: RADO3

Ant. Ht. = 10 m 32.8084 ft
Ppk = 1600 kW

Gt = 30 dB

Gr = 30 AaB

f = 9,5 GHz

Br = 1000000 Hz

PW = le-06 s

Lr = 3 dB

Fn = 7 dB

I =20dB

S/N = 10 dB

Sidelobe dB down = 10 dB
Backlobe EL. dB down = 20 dB
Backlobe AZ. dB down = 20 dB
Ru = 400 Kkm 215.983 nmi
Scope Range = 200 km 107.991 nmi

PRF = 375 Hz
Pav = 600 W
RCS = 10 sg m

Alt. = 5000 ft

L]
Figure 21. Radar data file created by rdrrng.m
(RADO3.par) .

Jammer: ALQ800

Gjr = 10 dB
Ljr = 3 dB
Gja = 70 dB
Pj = 1000 W
Ljt = 3 dB
G} = 15 dB
Bj = 10 MHz

MDS = -60 dBm
Rsoj = 112 km 60.4752 nmi

L ]
Figure 22. Jammer data file created by rdrrng.m
(ALQ800.par).




The program then calculates the values listed in Table 9.
The radar signal, jammer signal, and J/S values are calculated
versus range from 0.1 to 1000 nmi. After all calculations are
complete, the rdrrng.m program generates three plots
displaying the data listed in Table 9. Figures 23-25 show the
plots generated for the data given in Figures 21 and 22. The
same data will be graphically displayed by IMOM in a two-

dimensional color graphics display.
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Figure 23. Radar signal return, noise SPJ and deception
SPJ plot output by rdrrng.m.
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Figure 24. Noise and deception SPJ J/S plot output by
rdrrng.m.

The data shown in the plots will be compared to the IMOM
RINGS display as follows. The IMOM radar ELNOT file contains
specific J/S values for the jamming techniques that are
defined to be effective against the radar. These J/S values
are the J/S levels required by the radar to obtain burnthrough
against the SO0J. Therefore, the radar burnthrough range for
each technique listed in the radar file, can be calculated
from the rdrrng.m generated J/S plots. How this is done is
described in the physical representation of theory section
below.

The maximum detection range, R, , horizon limited line of

sight range, R;, maximum scope range, and unambiguous range,
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Figure 25. S0J J/S plot output by rdrrng.m.

R,, can also be read from the plots in Figures 23 and 25.
These, along with terrain limited LOS, are used by IMOM to
determine the radar maximum detection range, or RINGS radial
length. Also shown in Figures 23 and 25 are the target RCS
and altitude used in the calculations. The R, and R, values
calculated match the IMOM display characteristics (R, = 114.3
nmi, and R, = 93.95). A specific example of these comparisons
is provided in the radar exercises in Chapter VI.

The SPJ deception jammer saturation range, R, = 12.15
nmi, is also listed in Figure 23. The saturation range can
also be read from Figures 23 and 24 at the point where the
slope of the SPJ deception plot changes. This 1is the

transition from constant gain to constant power output.
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The radar burnthrough range can be read from Figure 23 or
24. The crossover point of the noise SPJ signal and the radar
return signal is the radar burnthrough range assuming this
occurs when the radar signal equals the jammer signal. If the
radar had a specified J/S for SPJ noise jamming, the
burnthrough range is read from Figure 24. The range is read
from the graph at the given J/S.

The radar burnthrough range against SOJ noise jamming is
calculated from Figure 25. Given the required J/S for radar
burnthrough, the range can be read from the graph for SOJ
mainlobe, sidelobe and backlobe jamming. For example, if J/S
= 10 dB is given, burnthrough range in ML = 30 nmi, SL = 55

nmi, BL = 100 nmi.

B. PHYSICAL REPRESENTATION OF THEORY BY IMOM

Chapter IV described the IMOM display capabilities
relating to the radar and jamming equations. The sections
below describe the direct comparison of theoretical data plots
to the IMOM displays.

1. Radar Characteristics

As discussed previously, IMOM RINGS displays the

maximum radial length, or radar detection range, based on five
criteria. The maximum radial length is taken as the minimum
of one of the following:; R,,, R,, R,, radar scope range, or
‘terrain masking. For a weapon system, the target altitude is
set and then the maximum detection range is selected from the
THREATCAP.DAT file, in the HOME/imom/data/imom/elint
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directory. Figure 26 shows one example where the RINGS radial
maximum corresponds to the R, given in Figure 25. 1In this
case R, is 114 nmi, but R, is only 93.9 nmi. Terrain limited
radials for the same radar are shown in Figure 27.

Figure 3 shows three TT radars with associated air-to-air
missile weapon systems. The TT maximum radials are limited to
the weapon envelope for a target at 5000 ft. altitude, even
though the radar parameters match the parameters for the R,
radar radials displayed in Figure 1. A TA radar can be
colocated with the TT in order to display the radar coverage
provided by both radars (shown in Figure 2).

Figure 28 shows an example of airborne radars included in
an EOB with ground radars. The figure shows twc airborne
fighter aircraft (northwest quadrant of plot) with their
associated FC radars and an AWACS aircraft (located east of
ground radars) with its associated EW radar along with the
ground radars. The radials from these airborne radars are
displayed using the R, calculation for the given radar
parameters, including antenna beamwidth coverage. The limited
scan range of the fighter FC radars is clearly seen as well as
the 360 degree coverage of the AWACS radar. Jamming is not

evaluated for airborne radars as stated before.
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Terrain limited RINGS radials.
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Figure 28. EOB with ground radars, airborne radars, SPJ
and two SOJ aircraft.
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2. Jamming Characteristics

IMOM SPJ effectiveness is not evaluated as it is for
SOJ. The SPJ effectiveness is instead a qualitative value
stored in the data file SPJ_880129.DAT, which is read by IMOM
if SPJ is specified for a EOB. All TT and FC radars in the
EOB are displayed according to the effectiveness specified in
the SPJ_880129.DAT file. The rdrrgn.m generated SPJ signal
and J/S plots are intended to show the theoretical calculation
of SPJ jamming since they have no corresponding IMOM display
attribute.

The SOJ display capabilities of IMOM present a color
coded view of SOJ and rada interaction. SO0OJ effectiveness is
evaluated against all radars in a EOB, whereas the SPJ is
evaluated for only TT and FC radars. The IMOM RINGS display
for SOJ is directly comparab.e with the rdrrng.m SOJ J/S data
plots.

Comparison of the calculated S0OJ effectiveness and
RINGS display is described here. To read the calculated range
for a specific J/S, the J/S value is read on the vertical
axis. Refer to Figure 25 for an example of the SOJ J/S versus
range. The intersection of this J/S level with the ML, SL and
BL jamming signal 1lines are then projected down to the
horizontal range axis. The ranges read at these points are
the burnthrough ranges for the radar against ML, SL, and BL
SOJ. These ranges will correspond to the lengths of the IMOM

RINGS radials, where the color changes from blue to green. If
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an SOJ is effective against a TT or FC radar the same jamming
effectiveness can be read where the RINGS color changes from
red, yellow, or gray to magenta.

The placement of SOJ aircraft is up to the IMOM user.
The range from radar to SOJ will affect the SOJ effectiveness,
as will the antenna direction and polarization of the S0J.
IMOM allows the user to specify an antenna direction with each
station loaded in a jammer. This would physically require an
antenna for each station specified for the jammer. The effect
of changes in SOJ characteristics on an EOB can be observed.
Effects of SOJ changes such as, placing the SOJ out of the
radar beam coverage, antenna direction of certain stations,

and jammer transmitter parameters can be observed.

70




VI. RADAR EXERCISES

This chapter presents specific examples of theoretical
calculations and the corresponding IMOM program displays. The
result is a physical presentation of radar principles.

A typical sequence of events a student might be expected
to follow is outlined in Table 10. The student can perform
the theoretical calculations manually using a calculator and
plot the data with semilog paper, write a MATLAB program to
calculate and plot, or run the rdrrng.m MATLAB program
developed for this thesis. It would be up to the instructor
to decide which method, or if all, would be utilized to derive
the results.

The rdrrng.m MATLAB program was run to calculate the
theoretical capabilities of the radaf and jamming to be
compared to the IMOM displays to be Cf ed. The specific
radar parameters used in this example are shown in Figure 29,
where Figure 29 is the RADO4.par file created by running the
rdrrng.m program.

Appendix B shows all of the radar parameters entered into
the IMOM model. Each block shown in the appendix is displayed
in sequence when reviewing the radar parameters when

"ri'n_infiles" is executed.

1 d

.
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TABLE 10

RADAR ANALYSIS PROCEDURE

STEP DESCRIPTION
1 Given radar parameters. —
2 Write own or use rdrrng.m MATLAB

program to calculate and plot radar
signal return versus range.

3 Calculate R,,..
Calculate R,.

5 Calculate and plot noise SPJ signal
at radar versus range.

6 Calculate R_,, for deception jammer.

7 Calculate and plot deception SPJ
signal versus range.

8 Calculate and plot SOJ mainlobe
jamming versus range.

9 Calculate and plot SOJ sidelobe
jamming versus range.

10 Calculate and plot SOJ backlobe

‘jamming versus range.

11 Given J/S, find radar burnthrough
range for ML, SL and BL SO0OJ.

12 Given J/S, find radar burnthrough
range versus noise SPJ.

i3 Given J/S, find radar burnthrough
range versus Jeception SPJ.

The specific jammer parameters used in this example are
shown in Figure 30, where Figure 30 is the alg900.par file
created by rdrrng.m. Figures 31-33 show the plots created by

rdrrng.m utilizing the parameters from Figures 29 and 30.
| Table 11 presents a summary of the sequence of actions to

be followed, with important parameters used to create the
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RADAR: RADO4

Ant. Ht. = 10 m 32.8084 ft
Ppk = 250 kW

Gt = 30 dB

Gr = 30 dB

£ =9.5 GHz

Br = 1000000 Hz

PW = le-06 s

Lr = 3 dB
Fn = 7 dB
I = 20 4B

S/N = 10 dB

Sidelobe dB down = 10 4B

Backlobe EL. 4B down = 20 dB
Backlobe AZ. dB down = 20 4B

Ru = 400 knm 215.983 nmi

Scope Range = 400 km 215.983 nmi
PRF = 375 Hz

Pav 93.75 W

RCS = 10 sq m

Alt. = 5000 ft

Figure 29. Radar parameters (RADO04.par).
. ______________________________ |

Jammer: AlLQ900

Gjr = 10 dB
Lijr = 3 dB
Gja = 70 dB
Pj = 1000 W
Ljt = 3 aB
Gj = 15 4B
Bj = 10 MHz

MDS = -60 dBm
Rsoj = 112 km 60.4752 nmi

Figure 30. Jammer parameters (ALQ900.par).
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Figure 31. Radar return and SPJ signal.

radar file in the IMOM model. It should be noted however that
a radar does not need to be created every time IMOM is run.
IMOM stores all radars entered by run_infiles in the
HOME/imom/data/imom/imom_imom directory. All radars
addressable by IMOM are located in the HOME/imom/data/
imom/elint directory. For IMOM version 2.3 at the time of
this writing, any user created radar file must be copied to
the HOME/imom/data/imom/elint directory in order for the radar
to be displayed in the IMOM model ELNOT selection menu bar.
The Unix command to perform this action is: cp radarELNOT.RAD
../elint, where the current directory is assumed to be
HOME/imom/data/imom/imom_imom and radarELNOT is replaced by
the actual radar ELNOT.
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Figure 32. SPJ noise and deception J/S.

The jammer is entered into IMOM in the jammer exercises in
the next chapter. After the radar is stored in IMOM, the EOB
using the radar can be created.

Table 12 lists the sequence to create the EOB display.
The table entries in all capital letters are IMOM menu
selections that appear in the IMOM menu bar. The computer
mouse is to locate the arrow pointer and the left mouse button

is pressed to select.
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Figure 33. SOJ J/S for RADO4 and ALQ900.

TABLE 11

CREATE RADAR FILE IN IMOM

Execute "run infiles"

Follow screen prompts

Enter radar ELNOT as RADO4

Set noise J/S to 10 dB
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TABLE 12 1}
{  IMOM DISPLAY OF GIVEN PARAMETERS

IMOM
UNCLASS
NEW MAP or RECALL MAP

Select desired map
CHANGE OB
ADD SITE
ELNOT
Select radar RADO4

Press ENTER three times for:
BE NUMBER
SITE NAME

USE GRAPHIC INPUT CURSOR([Y]/N

Press left mouse button at desired
radar location

PREV MENU
RINGS
RUN RINGS

Figure 34 shows the resulting IMOM RINGS display of the
RADO4 radar. The IMOM displayed maximum radial length can
then be compared to the calculated R,,, 71.87 nmi, shown in
Figure 31 or 33. Table 13 outlines the method of measuring

the maximum radial length in IMOM.
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| TABLE 13
e
\ MEASURING DISTANCE IN IMOM

!
UTILITIES
BEARING/DIS

locate cursor at radar center,
press left mouse button

Locate cursor at radial max, I
press left mouse button

Read distance in text window at
screen bottom

The measured length of the radial maximum, R,,,, is 71.5
nmi from the RINGS in Figure 34 using the BEARING/DIS feature.
This is one way IMOM supports theory as well as clearly
displaying radar detection characteristics relative to the
radars geographical location.

All radars currently available in IMOM will appear in the
menu bar at the left of the IMOM window when "ADD SITE" and
"ELNOT" are selected to enter a radar. This process is
repeated for all radars required in a particular EOB. If an
additional weapon system is to be added to an existing radar
site, the "ADD SITE", "WEAPON" menu selections are made, and
the listing of available weapon systems will be displayed.
The weapon is then located near the desired radar.

The effects of changing any of the radar parameters can be
evaluated. Table 14 shows an example of some parameters that
vmight be modified and the expected result of the parameter

change.
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TABLE 14

RADAR PARAMETER CHANGE AND RESULT

16xP,, Double R, , 16x signal return

16xo Double R, ., 16x signal return
16xS,;, | Decrease R, by half

4xA, Double R, , 16x signal return |
l16xf Decrease R, by half ‘

2xL, 0.84x R, , half the signal return
8xF,_ 0.594x R,

10xI 1.77x R,,, 10x signal return

B/16 Double &LﬂL

All of the above radar parameter changes can be observed
by the IMOM RINGS displays. After making the necessary
changes to the radar parameters by executing "run_infiles,"
the new R, can be measured from the RINGS radials as listed
in Table 13.

All of the above procedures can be performed on airborne
radars as well. The airborne radars may not be affected by
terrain or horizon 10S depending upon the altitude of the

radar aircraft.
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VII. ELECTRONIC WARFARE EXERCISES

A. 80OJ

The process for viewing the effects of jamming is like
that for the radar. The related parameters for the jamming
theoretical calculations to be compared to the IMOM display
are listed in Table 3. The jammer parameters are also entered
into IMOM using the "run_infiles" program. Table 15
summarizes the important elements to create the SOJ jammer

file.

TABLE 15

CREATE RADAR AND JAMMER FILES IN IMOM

Execute "run infiles"

Verify jammer receiver bands

Verify jammer transmitter bands

Create ALQ900 jammer
Add a station

Load an oscillator

Noise, 9.5 GHz, not time
dependent, 10 MHz spot width

Table 16 summarizes the sequence of actions to update the
EOB display to include jamming of the RAD0O4 radar in Chapter
V by the ALQ900 SOJ jammer created in this chapter. The table
entries in all caps are IMOM menu selections, where the mouse

is used to locate the arrow pointer and the left mouse button

is pressed to make a selection.
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TABLE 16

ﬁ ADD ALQ900 JAMMER TO IMOM DISPLAY

Select PREV MENU until IMOM MAIN MENU
is displayed

RINGS
DEL RINGS
PREV MENU
Select NO SOJ to change it to SOJ
Enter # of SOJ's, press ENTER

Select jammer

Y for mouse placement

Press left mouse button at jammer
location

Set heading to face RADO4 radar
(0° is up)

Enter altitude and AGL/MSL
NO

The RINGS feature must then be run to create the display
with jammer effectiveness evaluated against radars in the EOB.
Table 17 outlines the sequence to rerun IMOM RINGS, evaluating
the effectiveness of the ALQ900 jammer against the RADO4 radar
based on the Jjammer parameters and the jammer placement.
Figure 35 shows the RINGS display for the RADO4 radar with the

ALQ900 SOJ effectiveness.
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Table 18 summarizes the actions to measure the RADO4 radar
burnthrough range against the ALQ900 SOJ in the ML, SL and BL
of the radar. The measurements from this process are made
from the display in Figure 36. The "x" symbol shows where the
“BEARING/DIS" cursor is located when the measurements are
made. Table 19 presents a comparison of the results

calculated from theory and the IMOM display.

| TABLE 17 “
w

IMOM DISPLAY OF SOJ JAMMER

EFFECTS i
#
RINGS
RUN RINGS

UTILITIES

ZOOM as necessary

BEARING/DIS
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—
ﬂ TABLE 18

MEASURING IMOM SOJ EFFECTIVENESS

Locate cursor at radar center,
press left mouse button

Locate cursor at color change in
H mainlobe, press left mouse
button

Read distance in text window at F
screen bottom

Compare distance to range at
J/S,=10 in Figure 33

Locate cursor at radar center,
press left mouse button

Locate cursor at color change in
sidelobe, press left mouse
button

Read "LAST LEG" distance in text
window at screen bottom

Compare distance to range at to
J/S,=10 in Figure 33

Locate cursor at radar center,
~press left mouse button

Locate cursor at color change in
sidelobe, press left mouse
button

Read "1LAST LEG" distance in text
window at screen bottonm

Compare distance to range at
J/Sg =10 in Figure 33
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TABLE 19

THEORY AND IMOM BURNTHROUGH
RANGE
RADO4 VS AILQSO00

(J/S = 10 dB, P, = 1000W)
DIR. THEORY IMOM DISPLAY
ML 19 nmi 19 nmi
SL 34 nmi 33.8 nmi
BL Il_60 nmi 60.1 nmi

The data calculated from Table 18, and the graphics shown
in Figures 34 and 35, show how IMOM can enhance understanding
of the radar and jamming interaction as it would occur in an
operational situation. This is because the calculated results
show numerically the radar and jammer characteristics and IMOM
displays the physical interaction representation of the radar
and jammer characteristics.

The SOJ process described in this section provides the
baseline for utilizing IMOM to view a SOJ scenario. The EOB
can be expanded to multiple SOJ aircraft following the same
sequence of events as described for the single SOJ case. As
the student becomes more familiar with IMOM, more complicated
scenarios can be created, up to a point where an actual EOB
can be created.

Summarizing the SOJ characteristics presented, the
‘theoretical calculation of SOJ signal level and J/S using

jamming equations can be done by calculator or MATLAB program.
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The student can then add each of the types of radars available
in IMOM, HF, EW, TA, TT, and FC, and view the jamming effects
by the RINGS display of the radar detection capabilities. The
IMOM graphics are then compared to plots of the J/S for the
given radar and jammer. This can be done for all radars and
jammers in an EOB. Multiple SOJ aircraft and jammer parameter
changes effects on the EOB can be observed.

One application of a laboratory assignment could be that
an EOB has already been created, and consists of EW, HF and TA
radars with TT and FC radars protecting the radar sites. The
student could then be tasked to create a jammer using
"run_infiles" that would be effective against the radars in
the EOB. Effectiveness could be defined as a specific radar
mainlobe burnthrough range, 10 nmi for example. Of course the
student would be given a guideline of realistic jammer
capabilities to follow when creating the jammer. Key to the
jammer being effective would be frequency of operation, spot
bandwidth, techniques loaded, antenna direction, antenna
polarization, SOJ aircraft heading and distance from the radar

sites.

B. 8PJ

The utilization of SPJ is much simpler than for the SOJ.
As described in detail in Chapter IV, any SPJ to be used must
- be resident in the SPJ_880129.DAT file. All effectiveness
characteristics are contained in this file. It also must be

remembered that SPJ effectiveness is only defined against TT
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and FC radars, where the associated weapon to be jammed is
contained in the SPJ file.

To understand the actual SPJ characteristics, the
calculation of SPJ noise and deception signals at the radar
should be done using the jamming equations. The J/S ratio can
then be interpreted to understand the concept of radar
burnthrough range and "“constant gain" and "“constant power"
output characteristics.

An important note with respect to SPJ in IMOM is that only
a single SPJ can be selected for any EOB. All TT and FC
radars in the EOB are evaluated using this SPJ. The SPJ in
this sense, can be assumed to be carried on the aircraft in

each ROUTE created in IMOM.

C. 8pPJ/80J

The RINGS effects can be observed when both SOJ and SPJ
are used in an EOB. There can also be multiple SOJ aircraft
in the EOB as well as the SPJ. This scenario would be a
combination of the SOJ and SPJ characteristics described in

sections A and B of this chapter.

D. ADVANCED APPLICATION

An advanced application of IMOM, utilizing IMOM as it was
designed, is electronic combat mission planning. In this case,
a feature that could be exercised includes ingress and egress
route planning for strike aircraft given a threat EOB.

Aircraft parameters include altitude, heading and turnpoints.
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Jamming capabilities include SOJ aircraft placement, SOJ
jammer selection, and SPJ jammer selection. Airborne fighter
FC and AWACS EW support aircraft could also be included.
creating EOB is simply an extension of the basic theoretical
and IMOM principles presented in this thesis. Figure 28 shows

an example EOB with the features listed above.
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VIII. 8UMMARY

Radar and electronic warfare principles are presented in
NPS lecture, coursework, and laboratories. This thesis
presents a way to use the AFEWC IMOM computer program as an
instructional asset to enhance student comprehension in the
radar and EW curricula.

Radar theory has been described first to form a basis for
comparison to IMOM. The radar and jamming equations were
presented to summarize the calculations performed by IMOM in
creating the color graphics display of radar and Jjammer
interaction. The radar and jamming equations validate the
performance of the IMOM program, as well as providing a review
for coursework.

A description of some of the most important display
characteristics of IMOM that enhance a students understanding
of radar and Jjamming principles were presented. These
principles included radar maximum detection range based on
radar operating parameters, and SPJ and SOJ Jjamming
effectiveness based on the radar to jammer geometry and jammer
operating parameters.

The radar and jamming equation calculations were carried
out by the MATLAB program rdrrng.m to produce graphical radar
-and jamming performance data. J/S ratios for SOJ are
calculated as a function of range and are further used to
determine radar burnthrough range. This graphical data was
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then compared to IMOM RINGS and ROUTE display features in
order to graphically observe the physical interaction of radar
and jammer.

An example of using the rdrrng.m ;rogram to calculate
theoretical performance of a given radar and jammer was
described. The procedure to create an IMOM display of the
radar and jammer interaction was outlined. The process of
analyzing a single radar and jammer formed the basis for

creating more complex IMOM EOB displays.
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IX. CONCLUSIONS

The teaching of Rader and EW will be enhanced by utilizing
the AFEWC IMOM computer program at NPS. By incorporating
IMOM, radar and jamming principles are clearly presented by
IMOM color graphics displays. The IMOM RINGS and ROUTE
features are the primary display characteristics providing a
clearer two dimensional display of the physical interaction of
radars and jammers. The addition of geopolitical boundaries
and terrain characteristics for the specified geographical
area enhance the capability of IMOM.

NPS coursework is enhanced by IMOM display capabilities.
Radar and EW principles presented in coursework and lecture
hours are supported by the IMOM displays because it is based
on the same radar range and jamming equations presented in
class. The output of the IMOM model as presented in the
display were validated in this thesis. This was done by
comparing the IMOM displayed radar detection capabilities, to
the estimated detection capabilities from the radar and
jamming equations.

Further evidence of the relevance of IMOM to NPS radar and
EW curricula is the fact that IMOM is used operationally by
the U.S. Air Force. IMOM is an active project still in
further development with the Advanced Modelling Division of
the U.S. Air Force Electronic Warfare Center, San Antonio,
Texas. In this capacity, enhancements to the IMOM computer
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program could be done by students at NPS as research prcjects
and thesis topics. Subroutines and modules could be developed
at NPS for incorporation into the IMOM model. This would
require NPS obtaining the IMOM source code from AFEWC, or at
least documented input and output requirements for any program

modules to be developed at NPS.
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APPENDIX A
rdrrng.m MATLAB Program

MATLAB rdrrng.m program for IBM PC and compatible computers running
MATLAB. Note: due to the length of some lines of ccde in the
program, the line is continued on the next line. This is not how
it appears in the actual MATLAB program. The semicolon designates
the true end of a line of code. Some DOS commands are used for
file operations. DOS commands need to be changed to UNIX commands
if the program is to be used with the UNIX operating system.

% RRRRRARRARRRRRRR AR ARRRARRRARRRRRARARR R AR AR AR AR Rk kA Rk kkdik
£ * This is a MATLAB program to plot the radar return, *
$ * jammer return, and J/S versus range, *
% * as calculated by the radar range and jamming equations. *
£ * The output is compared to the IMOM RINGS display output. »*
% AR R RRRRRARRRRRRRRR AR AR R A AR AR RARN AR AR AR AR kAR kAR AR ANk Ak k
$ * Last edited: 10 SEP 92 *
$ * Written by: Gregg A. Van Splinter *
$ * Naval Postgraduate School *
$ * Monterey, California *
T hhkkhkhkhhhkkhkhrhhkrhhkhhk bbbk hk kA hrhhhhhhhhhhhkhhhkhhhhhk
clg $CLEAR GRAPH WINDOW

echo off $TURN OFF SCREEN ECHO

% START MAIN PROGRAM LOOP

continue = 'y';

while continue == 'y!

clc: %CLEAR COMMAND WINDOW

% DISPLAY PROGRAM HEADER ON SCREEN

fprintf ('THIS PROGRAM PLOTS THE RADAR RANGE AND JAMMING\n'):
fprintf ('EQUATIONS AS FUNCTIONS OF RANGE TO TARGET.\n\n'}:
fprintf('The input radar and jammer parameters match the\n');
fprintf('parameters entered in IMOM. The radar ELNOT and\n');
fprintf('jammer designation shouid match those used in IMOM.'):;
fprintf ('\n\nTo compare results to the IMOM RINGS display:"'):
fprintf('\n * Compare Rmax with RINGS radial max. length');
fprintf('\n * For SOJ, read range at required J/S'):;
fprintf('\n Compare range to ML, SL or BL RINGS radial');
fprintf('\n\n\n');

radardata=input ('Recall or Create Radar Data (R/C) ','s'):
if radardata == 'c! $ CREATE .PAR FILE FOR INPUT DATA

radarnam=input ('Type ELNOT of radar ','s');
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% IF PREVIOUS FILE OF SAME NAME 1S NOT DELETED, ANY FURTHER

$ meta COMMANDS WILL APPEND THOSE FILES TO EXISTING FILE
delfiletext=['Delete previous ',radarnam, '.met graph file? (Y/N)'];
delfile=input(delfiletext,'s'):

if delfile == 'y!

eval(['!del ',radarnam,'.met')); %DOS DELETE FILE COMMAND

end

R T e e s I R s e e L
$ ASK FOR ALL RELATED RADAR PARAMETERS TO CREAT: RADAR FILE

$ DELETE PREVIOUS .PAR FILE OF SAME NAME TO AVOID APPENDING
$ NEW DATA TO OLD FILE
eval(['!del ', radarnam,'.par']):;

% CREATE .PAR FILE WITH INPUT RADAR NAME

eval(['diary ',radarnam,‘'.par'}):

clc; $ CLEAR COMMAND WINDOW

% WRITE FILE NAME (WHICH IS ALSO RADAR ELNOT) TO DATA FILE
radparfil=[' RADAR: ',radarnam);

disp(radparfil);

diary off:

& Khkkhkkkhhkkkhkkkhkhhkhhkhk Ak hkkhhh bk hkhkkkkhhkhkkkkkd

% FORMAT OF RADAR DATA FOR OUTPUT TO .PAR FILE
$ CREATE FILENAME FOR fprintf STATEMENT

fpname={"'''',radarnam, '.par'''];

$ FORMAT OF OUTPUT STRING FOR fprintf STATEMENT

% fpformat=[''' TEXT HERE = format UNIT LINEFEED'''];
¥ FORMAT OF fprint STATEMENT TO SEND DATA TO .PAR FILE
% eval(['fprintf(', fpname,',"',fpformat, ' ,xx)"']);

% [ 22 F X2 XSRS RE2X2R A2 X222 2222222222 22222 X}

% INPUT RADAR PARAMETERS AND OUTPUT EACH TO radarnam.PAR FILE

hant=input ('Enter Antenna Height (m) ');

fpformat=(''' Ant. Ht. = ¥g m ¥g ft\n'''};
hantft=hant/.3048;

eval(['fprintf(',6 fpname,',',fpformat, ' hant, hantft)'));

ptkw=input ('Enter Transmitter Peak Power (kW) '):;
fpformat=[''' Ppk = %g kW\n'''};
eval({'fprintf (', fpname,',', fpformat,',ptkw)']):
ptw=ptkw*1000; % CONVERT POWER TO WATTS

gtdb=input ('Enter Transmit Antenna Gain (dB) ');
gt=10~ (gtdb/10); $ CONVERT DB TO RATIO
fpformat=[''' Gt = %g dB\n'''];
eval(['fprintf(', fpname,',', fpformat,',gtdb)'])):
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grdb=input ('Enter Receive Antenna Gain (dB) '):;
gr=10~(grdb/10) ; % CONVERT DB TO RATIO
fpformat=[''' Gr = %g dB\n'''};
eval([‘'fprintf(', fpname,',', fpformat,',grdb)"']);

f=input ('Enter RF Frequency (GHz) '):

fpformat={*'*' £ = %g GHz\n''‘'];
eval(['fprintf (', fpname,',',fpformat,',£f)"']):

b=input ('Enter Receiver Bandwidth (Hz) ');
fpformat=[''' Br = $g Hz\n'''};
eval(['fprintf (', fpname,',',fpformat,*,b)]):

$ CALCULATE PULSEWIDTH

pw=1l/b;

fpformat=(''' PW = %g s\n'''};
eval(['fprintf (', fpname,', ', fpformat,’',pw)"']):

ldb=input ('Enter Receiver Losses (dB) '):

1=10~(1db/10); % CONVERT DB TO RATIO
fpformat={''' Lr = %g dB\n''']};
eval ([ 'fprintf(', fpname,',', fpformat,',1db)'])):

ndb=input ('Enter Receiver Noise Figure (dB) '):
n=10~(ndb/10) ; $ CONVERT DB TO RATIO
fpformat=[''' Fn = %9 GB\n'"'');

eval (['fprintf (', fpname,',',fpformat,*',ndb)']):

intdb=input('Enter Integration Gain (dB) '):

int=10~(intdb/10); % CONVERT DB TO RATIO
fpfoermat={''' I = %g dB\n''']};
eval(['fprintf (', fpname,',"', fpformat,',intdb)'));
sndb=input ('Enter Signal to Noise Ratio (dB) '):;
ston=10~(sndb/10) ; % CONVERT DB TO RATIO
fpformat=[''' S/N = %g dB\n'''};
eval(['fprintf (', fpname,',',fpformat, ',sndb) '}):

sltomldb=input ('Enter Sidelobe dB Down From Mainlobe (dB) '):
fpformat=[''' Sidelobe dB down = %g dB\n'''};
eval({'fprintf(',fpname,',',fpformat,',sltomldb)*});
sltoml=10~(-sltomldb/10); % CONVERT DB TO RATIO

bltomleldb=input ('Enter Backlobe EL. dB Down From Mainlobe (dB) ');
fpformat=['"'' Backlobe EL. dB down = %g dB\n''']};
eval(['fprintf(', fpname,',',fpformat,',bltomleldb)"'}):
bltomlel=10~(~-bltomleldb/10); $£ CONVERT DB TO RATIO

bltomlazdb=input ('Enter Backlobe AZ. dB Down From Mainlobe (dB) '):;
fpformat=[''"' Backlobe AZ. dB down = %g dB\n''']);
eval ([ 'fprintf (', fpname,',', fpformat,',bltomlazdb)'});
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bltomlaz=10"(-bltomlazdb/10): ¥ CONVERT DB TO RATIO
bltoml=(bltomlel+bltomlaz)/2: $CALCULATE BACKLOBE AVERAGE GAIN

runambkm=input ( 'Enter Unambiguous Range (km) ');
runambnmi=runambkm/1.852; % convert to nmi

fpformat=[''' Ru = $g km g nmi\n'''};

eval (['fprintf (', fpname,', ', fpformat, ', runambkm, runambnmi) ']);

scopekm=input ( 'Enter Radar Scope Range (km) '):
scopenmi=scopekm/1.852; % convert to nmi

fpformat=[''' Scope Range = %g km $g nmi\n''');

eval ([ 'fprintf (', fpname,',', fpformat,',scopekm,scopenmi) ']):;

$ Calculate PRF

prf=3E8/ (2*runambkm*1000) ;

fpformat=['*'' PRF = %g Hz\n'''):;
eval(['fprintf(',6 fpname,',"',fpformat,',prf)'}):

$ CALCULATE AVERAGE POWER

pavw=ptw*pw*prf;

fpformat=[''' Pav = %g WA\n'''j};

eval ([ 'fprintf (', fpname, ', ', fpformat,',pavw)']):;

t=input ('Enter Target RCS (square meters) ');
fpformat=(''' RCS = %9 sq m\n'''];
eval(['fprintf (', fpname,',',fpformat,',t)"']):

alt=input ('Enter Target Altitude (ft) ');
fpformat=["''' Alt. = %g ft\n'''];
eval({'fprintf(', fpname,',', fpformat,',alt)"']):

% SAVE RADAR PARAMETERS TO radarnam.MAT FILE

$ THIS IS THE FILE READ BY MATLAB WHEN recall file IS SELECTED
parlistl=({' radarnam hant ptw gt gr £ b pw 1 n int ston'];
parlist={parlistl,' sltoml bltoml scopenmi runambnmi prf pavw t
alt'];

eval(['save ', radarnam,parlist]);

clc; % CLEAR COMMAND WINDOW

savfildisp=['Radar parameters have been saved to file:
', radarnam, '.par'];

disp(savfildisp):

pause(3)

eval(['type ',radarnam,'.par'}):

fprintf ('\n\nPress ENTER to continue’)

pause

cle; $ CLEAR COMMAND WINDOW

elseif radardata == 'r' % RECALL EXISTING RADAR DATA FILE
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radarnam=input ( 'Type ELNOT of radar ','s');
eval(['lo2d4 ', ,radarnam, '.mat'}));

clc: $ CLEAR COMMAND WINDOW

£ DISPLAY RADAR PARAMETERS FROM radarnam.par FILE
eval(['type ', radarnam,'.par'});

fprintf ('\n\nPress ENTER to continue')

pause
clc; $ CLEAR COMMAND WINDOW
end $ END INPUT OF RADAR PARAMETERS

BRI 222N IEXE L2222 222222222222 222222 2222222222 2222 222222

£ INPU” JAMMER RELATED PARAMETERS
£ NOTL: JAMMER AMPLIFIER GAIN IS NOT A VARIABLE IN IMOM!!!!

jammerdata=input ('Recall or Create Jammer Data (R/C) ','s'):;
if jammerdata == ‘c' % CREATE JAMMER PARAMETER FILE
jammname=input ('Type Jammer Designation (i.e. AIQ100) ','s');
eval(['!del ',jammname,'.par'j):;

eval(['diary ',jammname,'.par']):;

cle; % CLEAR COMMAND WINDOW

jamparfil=(' Jammer: ', jammname]:;
disp(jamparfil);

diary off;

fpjname=('''',jammname, '.par''"'};

$ FORMAT OF JAMMER DATA FOR OUTPUT TO .PAR FILE
feval ({'fprintf (', fpjname,',',fpjformat, ', ,xx)"'])

gjrdb=input ('Enter Jammer Rx Antenna Gain (dB) ');
gjr=10~(gjrdb/10) ;

fpijformat=[{'''\n Gjr = %g dB\n''']);

eval (['fprintf(',fpiname,',',fpjformat,',gjrdb)'j)

ljrdb=input('Enter Jammer Rx Line Loss (dB) '):
13r=10~(1jrdb/10) ;

fpjformat=[''' Ljr = %g dB\n'''};
eval(['fprintf(',fpjname,',',fpjformat,',1jrdb)'])

gjadb=input ('Enter Jammer Amplifier Gain (dB) ');
gja=10~(gjadb/10);

fpjformat=[*'' Gja = g dB\n''!'];

eval ({'fprintf(',fpjname,',',fpjformat,’,gjadb)'])

piw=input ('Enter Jammer Amplifier Power (W) '):

fpjformat=(''' Pj = %g W\n''');
eval (['fprintf(',fpjname,',', fpjformat,',piw)"'}))
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ljtdb=input ('Enter Jammer Tx Line Loss (dB) ’'):
1jt=10~ (1jtdb/10) ;

fpjformat=[''' Ljt = %g dB\n''');
eval(['fprintf(',fpiname,',',fpjformat,’',1jtdb)"'])

gjdb=input ('Enter Jammer Tx Antenna Gain (dB) ');
gj=10~(gjdb/10);

fpiformat={''' Gj = %g dB\n'''};
eval(['fprintf(',fpjname,',',fpjformat,',gjdb)*})

bj=input ('Enter Jammer Spot Bandwidth (MHz) ');
fpjformat=[''' Bj = %g MHz\n''');

eval (['fprintf(',fpjname,',',fpjformat,',bj)"'])
bj=bj*1E6; % PUTS BW OF JAMMER INTO H2

jmdsdbm=input ('Enter Jammer Minimum Discernable Signal (dBm) '):
jmds= (10~ (jmdsdbm/10))/1000; % CONVERT FROM dBm to W
fpiformat={''' MDS = %g dBm\n'"'"']);

eval (['fprintf(',fpjname,',', fpjformat, ', jmdsdbm)'])

rsojkm=input ('Enter SOJ Range (km) [1.852km/nmi} ')
rsojnmi=rsojkm/1.852; % CONVERT FROM km TO nmi
fpjformat=[''' Rsoj = %g km £g nmi\n''‘'];
eval(['fprintf(',fpjname,',', fpjformat,',rsojkm,rsojnmi)'})

jamparlistl=[' jammname pjw gjdb gj gjrdb gjr gjadb gja']l:
jamparlist=[jamparlisti,' 1jtdb 1jt 1ljrdb 1jr bj jmds rsojnmi'];
eval ([ 'save ',jammname,jamparlist]):

cle; % CLEAR COMMAND WINDOW

savjfildisp=['Jammer parameters have been saved to file:
',jammname, '.par'j};

disp(savjfildisp):;

eval(['type ',jammname,'.par'j):

fprintf ('\n\nPress ENTER to continue')

pause

cle: $ CLEAR COMMAND WINDOW

elseif jammerdata == 'r' $ RECALL EXISTING jammname.par FILE

jammname=ingp at ('Type Jammer Designation (i.e. AIQ100) ','s');
eval(['load ‘',jammname,'.mat'));

cle; % CLEAR COMMAND WINDOW

eval(['type ',jammname,'.par'}):

fprintf ('\n\nPress ENTER to continue');

pause
clc; $ CLEAR COMMAND WINDOW
eﬁd $ END INPUT OF JAMMER PARAMETERS

wavelength=3E8/(f*1E9); % in meters
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% RRRRRR R R RN ARRR AR AR R AR RAERRRRRARNNRARR RN AR R A AR Ak ek kb k &k
§ CALCULATE RADAR MAXIMUM DETECTION RANGE IN nmi GIVEN S/N

% wavelength is m and t is sg m

k=1.38E-23; % BOLTZMANS CONSTANT, Joules/degrees K

temp=290; % degrees K

rmax=( (ptw*gt*gr*wavelength~2*t*int)/((4*pi)~3+*stontk*temp*b*n+*l)

)~ (1/4);
rmax=rmax/1852; % CONVERT FROM m TO nmi

L RRRRRRRRARARRRR AR R R R R RRARRRRRRR AR AR R R AN R AR A kAR R AR AR AR AR RN

% THERE WILL BE 50 POINTS BETWEEN .1 & 1000, r={.1 1 10 100 1000)
r=logspace{-1,3):

E RRRRRRRRRRRRRRRRRRRRR R AR R R R R AR AR AR AR A R AR AR Ak bk khk

£ CALCULATE TARGET SIGNAL RETURN VERSUS RANGE
signal=(ptw*gt*gr*wavelength~2*t*int/(1%1852~4*(4#*pi)~3))./r.~4;
% convert signal from watts to dBm

signaldbm = 10*logl0(signal.*1000):;

PSR E2 2RISR S 22222222 R 2222 2222 2222222222222 xR Rt

% CALCULATE SIGNAL POWER FROM NOISE JAMMER ON TARGET AIRCRAFT
j=(pjw*gj*gr*(wavelength”2/185272)*b)./(((4*pi)~2)*bj*1*1jt*(r.~2
)):

% convert signal from watts to dBm

jdbm = 10*1ogl0(j.*1000);

§ Rhkkkhkkkkhkhhkhhkkkkhhhhkhhkhhkdkhkhhkhhhhkhhkkhhhhkkhkhhkhkhhkhhkkhhhkhhkkk

% CALCULATE J/S versus RANGE
jtos = j./signal;

% convert signal dB

jtosdb = 10*1logl0(jtos):;

§ RhkhkhRhkRhRAhkR kAR AR ARAR IR R AR AR AR AR ARk A kA A Ak Rk Ak

% CALCULATE J/S FOR NOISE JAMMER ON STANDOFF AIRCRAFT

% ON LINE OF SIGHT WITH TARGET AIRCRAFT AT DIFFERENT RANGE
jsoj=(pjw*gj*4*pi*b*185242*r.~4) ./ (ptw*gt*bj*t*ljt*int*rsojnmi~2);
% convert signal dB

jsojdb = 10*loglO(jso)):

§ Rhkdkhkhhkkhkhkkhhhkhhhhhkhhhhkhhhhkhhkhhhhhhkhkhkhhkhkhkkhhhhhhhhhhhkhhd

% CALCULATE J/S FOR NOISE JAMMER ON STANDOFF AIRCRAFT

$ NOT ON LINE OF SIGHT WITE 1AI.GET AIRCRAFT AND

% AT DIFFERENT RANGE (SIDELOBE)
jsojsl=(pjw*gj*4*pi*b*185222*r.~4*sltoml) ./ (ptwrgt*bj*t*ljtrint+r
sojnmi~2);

$ convert signal dB

jsojsldb = 10*1ogl0(jsojsl);
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L RRRRRRARR AR R AR R A SRR AN AR R R AN AR AR RS NA R AR AR AN A ARk kk kR

% CALCULATE J/S FOR NO.SE JAMMER ON STANDOFF AIRCRAFT

$ IN BACKLOBE OF RADAR
jsojbl=(pjw*gij*4*pi*b*1852~2*r.~4*bltoml) ./ (ptwrgt*bj*t*ljt*xint+r
sojnmi~2);

§ convert signal dB

jsojbldb = 10*logl0(jsojbl):

L RRARRRRRRRRRRERARRR KRR R AR R R R AR RR R R RR AR RS A AR R AR A Ak kkk

$ CALCULATE RADAR SIGNAL AT JAMMER RECEIVER USING rsoj
rdet=(ptw*gt*wavelength~2*gjr)/(185222*(4*pi)~2*1jr*rsojnmi~2);
rdet=10*10gl0(rdet*1000); % CONVERT W TO dBm

$ RERRRRRRRRA AR A RRARR R AR R AR R A AR R AR AR RN ARA RN R AR R AN A NI AN A R

% CALCULATE JAMMER SATURATION RANGE
rsat=( (ptw*gt*wavelength~2*gjr*gja)/(pjw*(4*pi)~2+*1jxr))~(1/2);
rsat=rsat/1852; % nni

§ Rhhkkhkhkhkhkhhhhhhhhkhhhhhkhhhkrkrhhkdhhhdhkdhhhddrdbddhhrbhhhhid

% CALCULATE RETURN FROM CONSTANT GAIN JAMMER

x=rsat:10:1000;
cgsig=(ptw*gt*gr*wavelength~4*gjrxgja*gj/(185274* (4*pi)~4*1*x1jr*l
jt))./x.~4;

cgsigdbm=10*10g10(cgsig*1000); % CONVERT FROM W TO dBm

§ RkkhkhkkhkkhhhkkkhkkkhhkhhhhhkhhkRhkhkhkkhkhkhhkhkhhkhkhhhhkhhhhhkhhhhhkthk

$ CALCULATE RETURN FROM CONSTANT POWER JAMMER

y=.l:.l:rsat;
cpsig=(pjw*gj*gr*wavelength*2/(185242*% (4*pi) ~2%1*1jt))./y."2;
cpsigdbm=10*10gl0(cpsig*1000); % CONVERT FROM W TO dBm

ISR 2222222222 222222222222 2222222222232 2 2222222222232 22222

$CALCULATE J/S FOR DECEPTION JAMMER

% RANGE GREATER THAN SATURATION
jtoscg=((wavelength”2*gjr*gja*gj)/(4*pi*ljr*ljt*t*int)).*ones(cgs
ig);

jtoscgdb=10*loglO(jtoscqg);

$ RANGE LESS THAN SATURATION

jtoscp=((pjw*gj*1852~2#%4*pi)/ (ptwrgt*t*ljtrint)).*y.~2;
jtoscpdb=10*10gl10(jtoscp):;

§ Rk RRARRRARR AR A RRRAA A AR AR AR AR ARk ke h kb kb hhdd

$ CALCULATE HORIZON LIMITED LINE OF SIGHT FOR GIVEN

% RADAR ANTENNA HEIGHT AND TARGET ALTITUDE
rh=(2*hant#*8.5E6)~(1/2)+(2*alt*.3048*8.5E6)~(1/2); $RANGE IN m
rh=rh/1852; $CONVERT m TO nmi

§ RERRRRRRRRRRERRRRR R AR RAARR AR RN R A AR R AR R R AR AR AR AR AR A hhhh

% plot radar return, jamming signal versus range on a semilog plot
semilogx(r,signaldbm,'-',r,jdbm,'~-',x,cgsigdbm,'~-."',y,cpsigdbm, '
-.l):
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f AR AR R AR R AR RN AR R R AR AR AR AN R AR AR RN RN AR R R AR A AR AR R AR Ak kR
% ADD DISPLAY ATTRIBUTES TO SIGNALS PLOT

grid

title('Radar and SPJ Jammer Signals versus Range'):
xlabel ('Range (nmi)‘');

ylabel ('Radar, SPJ Jammer Signal (dBm)‘');
radarlabel=[' - Radar Signal (',radarnam,')']:

text (0.6,0.9,radarlabel, 'sc');

jammerlabel=["'-- Noise Jammer (', jammname,')']:;
text(0.6,0.85,jammerlabel, 'sc');

text(0.6,0.8,'-. Deception Jammer','sc'):

text (0.55,0.75, ' (Jammer on Target Aircraft)', 'sc');
rcslabel=['RCS = ',num2str(t),' sq m'});

sclabel=[ 'Radar Scope Max. = ', num2str(scopenmi),' nmi']);
altlabel=['TGT: alt. = ',num2str(alt),' ft'});
rhlabel=['Rh = ', num2str(rh),' nmi'j};

rulabel={'Ru = ', num2str(runambnmi),' nmi'});
altrcslabel=[altlabel,', ',rcslabel):;

rmaxlabel=['Radar Rmax = ', num2str(rmax),' nmi'j};
rdetlabel=['Jammer Smds = ', num2str(rdet),' dBm']:
rsatlabel=['Jammer Saturation = ',num2str(rsat),' nmi’');
rmaxrhrulabel=[rmaxlabel,', ',rhlabel,', ',rulabel}:

text (0.15,0.3,altrcslabel, 'sc');
text(0.15,0.25,rsatlabel, 'sc');
text (0.15,0.2,sclabel, 'sc');

text (0.15,0.15, rmaxrhrulabel, 'sc');

pause $STOP TO LOOK AT PLOT OF SIGNAL RETURNS

asktosave=['Save signal return graph to ',radarnam,'.met file?

(Y/N)']):

saveans=input (asktosave, 's');
if saveans == 'y'

eval({'meta ',radarnam,])

end

clc; % CLEAR COMMAND WINDOW

F AR RRAR AR R R R AR R R R AR R AR AR AR R AR R AR AR AR R R AR A ARk kA k

$ PLOT J/S VERSUS RANGE FOR JAMMER ON ATTACK AIRCRAFT
semilogx(r,jtosdb,'-',y,jtoscpdb, '--',x,jtoscgdb, '--") ;

§ hhhhhhhhhhhhhkhhhhhkkkkhhhhhhhhhhhkthhrhhhhhhhhhhrhhhhhhdk
% ADD DISPLAY ATTRIBUTES TO SPJ J/S PLOT

grid

title('J/S versus Range (jammer on target aircraft)'):
xlabel ('Range (nmi)');

ylabel('J/S (dB)‘'):

noiselabel=[' - J/S NOISE'];
text(0.55,0.9,noiselabel, 'sc');

deceplabel={'-- J/S DECEPTION'):
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text (0.55,0.85,deceplabel, 'sc');

gainlabel={'Jammer Amplifier Gain = ' num2str(gjadb),' dB'}:
text (0.35,0.2,gainlabel,'sc’');
tgain=gjrdb-ljrdb+gjadb~1jtdb+gjdb;

tgainlabel=('Total Jammer Gain = ', num2str(tgain),' dB']:
text(0.35,0.15,tgainlabel, 'sc');

pause $STOP TO LOOK AT PLOT OF SIGNAL RETURNS
asktosavetoo=(‘'Save SPJ J/S graph to ',radarnam,'.met file?
(Y/N)'];

saveanstoo=input (asktosavetoo, 's');

if saveanstoo == 'y!

eval ([ 'meta ',radarnam,])

end

cle; % CLEAR COMMAND WINDOW

E RRRARRR AR R AR R AR R R R RN R AR R R AR R R R AR R kR A ARk ARk ke kkkdd

% PLOT J/S VERSUS RANGE FOR SOJ AIRCRAFT
semilogx(r,jsojdb,'-',r,jsojsldb,'~-',r,jsojbldb,'-.");

$ AR AR AR R AR A AR R R R R R R R AR R R AR AR AR R R R AR R AR R AR AR R R Rk ARk ko ko hh
¥ ADD DISPLAY ATTRIBUTES TO SOJ J/S PLOT

grid

title('J/S versus Range (SOJ at fixed range)'):
xlabel ('Range (nmi)');

ylabel ('J/S (dB)'):

sojlabel=[' - SOJ in radar mainlobe']:
text(0.2,0.9,s0jlabel, 'sc');

sojsllabel=('~- SOJ in radar sidelobe'j;
text(0.2,0.85,s0jsllabel, 'sc');

sojbllabel=['~. SOJ in radar backlobe'];
text(0.2,0.8,so0jbllabel, 'sc');

rdrlabel=[ 'RADAR: ', radarnam];
jammlabel=['JAMMER: ', jammname];
scrulabel=[sclabel,', ',rulabel];
rmaxrhlabel=[{rmaxlabel,', ',rhlabel];
text(0.6,0.875,rdrlabel, 'sc');
text(0.6,0.825,jammlabel, 'sc');

text (0.35,0.25,altrcslabel, 'sc');

text (0.25,0.2,scrulabel, 'sc');

text (0.25,0.15, rmaxrhlabel, 'sc');
sojrng=['Range to SOJ = ',num2str(rsojnmi),' nmi'};
sojmds=[ 'Radar signal at SOJ = ', num2str(rdet),' dBm'];
text(0.5,0.35,s0jrng, 'sc');
text(0.4,0.3,s0jmds, 'sc');

pause $STOP TO LOOK AT PLOT OF SOJ J/S

fprintf('\nThe SO0J_JTOS.met file appends only the 8SOJ J/S
graphs\n');
fprintf('to one another.\n');




delsojmettext=['DELETE previous SOJ_JTOS.met file? (Y/N)']:;
delsojmet=input (delsojmettext,'s');

if delsojmet == 'y!'

!del SOJ_JTOS.met;

end

asktosavetre=['Save S0J J/S graph to !',radarnam,'.met file?
(Y/N)']):

saveanstre=input (asktosavetre, 's');

if saveanstre == 'y’
eval(['meta ',radarnam,])
end

asktosaveth=['Save SOJ J/S graph to SOJ_JTOS.met file? (Y/N)');
saveansth=input (asktosaveth, 's');

if saveansth == 'y!

meta SOJ_JTOS

end

continue=input ('Rerun program? (Y/N)','s');
% IF YES, GO BACK TO BEGINNING OF PROGRAM
clc; % CLEAR COMMAND WINDOW

end % END OVERALL WHILE LOOP
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APPENDIX B
Radar Parameters Summary from run_infiles

This appendix includes each of the display screens presented to the
user after all IMOM radar parameters have been set while executlng
"run_infiles." These screens are also displayed when individual
radar parameter changes are made. An example of the parameters
stored in an IMOM ELNOT.RAD file are listed in these display
screens.

( CLASSIFICATION ]

ELNOT RADAR FILE ' PAGE | OF
1 NATO NICKNAME OR DESIGNATON <HICKHAME/OESIG >
2 EMITTER FUNCTION <AA>
3 ANTENMNA HEIGHT (M) : <NN.NU>
4 PEAK POWER (AHTEHHA FEED PORT IN KWATTS) <NHNNM>
S BCAMWIDTH IN AZIMUTH (DEG) <H.HN>
6 DACKLODE LEVEL IN ELEVATIOHN (DB DOWH) <HH.NM>
7 BACKULOOE LEVEL IM AZIMUTH (DB DOWH) <NH.MN>
8 DW OF DOPPLER FILTER -OR- FINAL AMP (1t7) <NHEHHNM.HH >
9 IMTEGRATION GAIN (DD) <NM.NM>
10 RADAR RECEIVER LOSSES (OB) <H.MH>

CULASSITICATION
Cnr;ss RETURN TO CONTINUE WVITH PAGE ONE )

Firat 11alf of Page 1 Radar Paraineters

f CLASSIFICATION w
11 NOISE FIGURE FOR THE NADAR (DN) <H.HN>
12 S/N WITHOUT INTEGRATIOHN (DB) <HNMN.MH>

GIVEN: PRODABIUTY OF DETECTION X <0.HN >,
PROBABILITY OF FALSE ALAM <0O.NN>
13 MAXIMUM SCOPE UMIT (KM) <NNHL.HN>
14 MAXIMUM UNAMBIGUOUS RANGE (KM) <MHN.HH>
15 NUMBER OF BEAMS <M>
16 NUMBER OF SIDELODES <N>
17 MAX & MIN ELEVATION ANGLES (DEG) <HU.N> <HN.M>
18 WEAPON SYSTEM <WEAPON SYSTEM>
19 CULASSIFICATION <CLASSITICATION >
CILASSIFICATION

TO EDIT TYPE LINE NUMBER AND PRESS RETURN

TO EXIT TYPE 99 AND PRESS RETURN

@n NEXT SCREEN PRESS RETUNN .

Second Half of Page 1 Radar Paraimneters
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4 CUASSIFICATION
ELNOT RADAR FILE

BEAM NUMBER
1 MOST PROBABLE RF FREQUENCY (GHZ)
2 ANTENNA POLARIZATION
3 ELEVATION BORESIGHT ANGLE (DEGREES)
4 BEAMWIDTH IN ELEVATION (DEGREES)
S TRANSMITTER ANTENNA GAIN (DB)
8 RECEIVER ANTENNA GAIN (DB)

CULASSIFICATION

TO EXIT TYPE 99 AND PRESS RETURN

FOR NEXT SCREEN PRESS RETURN

TO EDIT TYPE THE BEAM NUMBER AND PRESS RETURN

PAGE 2 Oa

N N
<N.NN> <N.NN>
AAA AAA
<NN.NN> <NN.NN>
<N.NN> <N.NN>
<NN.NN> <NN.NN >

<NN.NN> <NN.NN>

.
Page 2 Radar Paramet
2 ) CLASSIFICATION ﬂ
ELNOT RADAR FILE PAGE3OF s
SIDELOBE N N
1 SIDELOBE POSITION (DEGREES) <N.NN> <N.NN>
2 SIDELOBE EXTENT (DEGREES) <N.NN> <N.NN>
3 SIDELOBE LEVEL (DB DOWN) <NN.NN> <NN.NN>
CLASSIFICATION
IrO EDIT TYPE SIDELOBE NUMBER AND PRESS RETURN
TO EXIT TYPE 99 AND PRESS RETURN
FOR NEXT SCREEN PRESS RETURN
1\ J
Page 3 Radar Parameters
[ : CLASSIFICATION )
ELNOT RADAR FILE PAGE4 OF 5
THE NUMBER OF JAMMING MODES N
1. J/S RATIO FOR <MODE> JAMMING IS N.NN DB
2. J/S RATIO FOR <MODE > JAMMING IS N.NN 0B
3. (ETC)
CLASSIFICATION
IrO EDIT TYPE LINE NUMBER AND PRESS RETURN
FO EXIT TYPE 99 AND PRESS RETURN
FOR NEXT SCREEN PRESS RETURN
— J

Page 4 Radar Parameters

107




( CUASSIFICATION
}.Lnor RADAR FILE

RADAR PARAMETRICS CURRENT AS OF <DO-MMM-YY>
COMMENTS LAST EDITED BY <NAME>
COMMENTS

FELP

CLASSIFICATION

TO EDIT NOTES TYPE Y AND PRESS RETURN
TO EXIT TYPE 99 AND PRESS RETURN
kTO GO TO PAGE ONE PRESS RETURN

~
PAGES OF §

Page 5 Radar Parameters
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