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Block 13 continued:

In part II we use the affine invariant to derive new algebraic connections between perspective views. It
is shown that three perspective views of an object are connected by certain algebraic functions of image
coordinates alone (no structure or camera geometry needs to be involved). In the general case, three views
satisfy a trilinear function of image coordinates. In case where two of the views are orthographic and the
third is perspective the function reduces to a bilinear form. In case all three views are orthographic the
function reduces further to a linear form (the "linear combination of views" of (31]). These functions are
shown to be useful for recognition, among other applications.
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Abstract

Part I of this paper investigates the differences - conceptually and algorithmically -- between affine and
projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It
is shown that an afline invariant exists between any view and a fixed view chosen as a reference view.
This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for
visual recognition, projective invariants are not really necessary. The projective extension is then c2'rived,
showing that it is necessary only for tasks for which a reference view is not available - such as happens
when updating scene structure from a moving stereo rig. The geometric difference between the two proposed
invariants are that the affine invariant measures the relative deviation from a single reference plane, whereas
the projective invariant measures the relative deviation from two refere ice planes. The affine invariant can
be computed from three corresponding points and a fourth point for setting a scale: the projective invariant
can be computed from four corresponding points and a fifth point for s'tting a scale. Both the affine and
projective invariants are shown to be recovered by remarkably simple and linear methods.

In part II we use the affine invariant to derive new algebraic connections between perspective views. It
is shown that three perspective views of an object are connected by certain algebraic functions of image
coordinates alone (no structure or camera geometry needs to be involved). In the general case, three views
satisfy a trilinear function of image coordinates. In case where two of the views are orthographic and the
third is perspective the function reduces to a bilinear form. In case all three views are orthographic the
function reduces further to a linear form (the "linear combination of views" of [31]). These functions are
shown to be useful for recognition. among other applications.
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1 Introduction and expands upon the work of [26, 14, 4]f Section 4 oil
projective reconstruction, follows and refines the results

The geometric relation between objects (or scenes) in presented in [28, 29].
the world and their images. taken froii different viewing In Part II of this paper we use the results established
positions by a ptin-hole camera, has many subtleties and i Part 1 (specifically those in Section 3) to address cer-
nuances and has been the subject of research in computer tair algebraic aspects of the connections between niul-
vision since its early days. Two major areas in computer views the work of [31], we address
vision have been shown to benefit from an analytic treat- the problem of establishing a direct connection between
nient of the 3D to 2D geometry: visual recognition and views, expressed as functions of image coordinates alone
reconstruction from multiple views (as a result of having - which we call 'algebraic functions of views" - In addi-
motion sequences or from stereopsis). tion to linear functions of views. discovered by [31]. ap-

A recent approach with growing interest in the past plicable to orthographic views only. we show that three
few years is based on the idea that non-metric informa- perspective views are related by trilinear functions of
tion, although weaker than the information provided by their coordinates, and by biliear functions if two of the
depth maps and rigid camera geometries, is nonetheless three views are assumed orthographic --- a case that will
useful in the sense that the framework may provide sini- be argued is relevant for purposes of recognition without
pier algorithnis, camera calibration is not required, more constraining the generality of the recognition process.
freedom in picture-taking is allowed - such as taking Part It ends with a discurirn --f I ... 11tc aplications
pictur,- of pictures of objects, and thre is n,- -d",t to for algebraic functions. other than visual recognition.
make a distinction between orthographic and perspective
projections. The list of contributions to this framework 2 Mathematical Notations and
include (though not intended to be complete) [14. 26.
33. 34, 9, 20, 3, 4, 28, 29, 19, 31, 23, 5. 6. 18, 27, 13. 12] Preliminaries
- and relevant to this paper are the work described ill We consider object space to be the three-dimensional
[14, 4, 26. 28. 29]. projective space P'1, and image space to be the two-

This paper has two parts. In Part I we investi- dimensional projective space P2 . Within p 3 we will be
gate the intrinsic differences -- conceptually and algo- considering the projective group of transformations and
rithmically - between an affine tramework for recog- the affine group. Below we describe basic definitions and
nition/reconstruction and a projective framework. Al- formalism related to projective and affine geometries -
though the distinction between affine and projective more details can be found in [8, 24. 25].
spaces, and between affine and projective properties, is
perfectly clear from classic studies in projective and alge- 2.1 Affine and Projective Spaces
braic geometries, as can be found in [8, 24, 251. it is less Affine space over the field K is simply the vector space W
clear how these concepts relate to reconstruction from K". and is usually denoted as A". Projective space P1"
multiple views. In other words, given a set, of views, un- is the set of equivalence classes over the vector space
der what conditions can we expect to recover affine in- K"+i. A point in P'" is usually written as a homoge-
variants? what is the benefit from recovering projective neous vector (xO ... , x,), which is an ordered set of n + 1
invariants over affine? are there tasks, or methodologies, real or complex numbers, not all zero, whose ratios only
for which an affine framework is completely sufficient? are to be regarded as significant. Two points x and y
what are the relations between the set of views generated are equivalent, denoted by x • y, if x = Ay for some
by a pin-hole camera and the set of all possible projec- scalar A. Likewise, two points are distinct if there is no
tions ,3 -- P2 of a particular object? These are the such scalar.
kinds of questions for which the current literature does
not provide satisfactory answers. For example, there is a 2.2 Representations
tendency in some of the work listed above, following the The points in P" admit a class of coordinate represen-
influential work of [14]. to associate the affine framework tations R. such that if R 0 is any one allowable repre-
with reconstruction/recognition from orthographic views sentation, the whole class K consists of all those rep-
only. As will be shown later, the affine restriction need resentations that ran be obtained from R 0 by the ac-
not be coupled with the orthographic restriction on the tion of the group GL7 ,+1 of (n + 1) x (n + 1) non-
model of projection- provided we set one view fixed. In singular matrices. It follows, that any one coordinate
other words, an uncalibrated pin-hole camera undergo- representation is completely specified by its standard
ing general motion can indeed be modeled as an "affine simplex and its unit point. The standard simplex is
engine" provided we introduce a "reference view", i.e., the set, of n + 1 points which have the standard coor-
all other views are matched against the reference view dinates (1,0 ... , 0),(0, 1, ... , 0),..., (0.0 ... , 0.1) and the
for recovering invariants or for achieving recognition. unit point is the point whose coordinates are (1, 1..., 1).

In the course of addressing these issues we derive two It also follows that the coordinate transformation be-
new, extremely simple, schemes for recovering geometric tween any two representations is completely determined
invariants - one affine and the other projective - which from n + 1 corresponding points in the two representa-
can be used for recognition and for reconstruction. tions, which give rise to a linear system of (n + 1)2 - I

Some of the ideas presented in this part of the pa- or (n + 1)2 equations (depending on whether we set an
per follow the work of [14. 4. 26. 28, 29]. Section 3 on arbitrary element of the matrix transform, or set one of
affine reconstruction from two perspective views, follows the scale factors of the corresponding points).



2.3 Subspaces and Cross Ratios 2.6 Epipoles

A linear subspace A • pk C p" is a hyperplane if k Given two cameras with positions of their ('OP at
n - 1, is a line when k = 1. and otherwise is a k-platte. 0, 0' E P'P, resectively, the epipoles are at the intcrsec-. "there is a uniqut-e ;iM in t" through any two distinct tion of the line 00' with both itage plaies. Recovering
points. Any point z on a line can be described as a linear the epipoles from point correspondences across two views
(olthbilnatiolt of two fixed points X, y on tile line. i.e.. is remarkably simple but is notoriously sensitive to noise
z ýŽ-- X+ky. Let v • X + A'y be another point on t lit line in intage nteasurenents. For more details on recovering
spanned by x. y, then the cross ratio of the four points is epipoles see [4, 29. 2Z. 5]. and for comparative and error
sintply k/k' which is invariant in all representations analysis see [17. 22]. In Part I of this paper we assume
"%., By permtutig the four points on the line the 24 t lie epipoles are given: in Part 11. where we make furt her
possible cross ratios fall into six sets of four with values use of derivations made in Section 3. we show that for
o. I/o, I - W. (( - l)/ok .V/(k - 1) and 1/( 1 - (). purposes discussed there one can eliminate the epipoles

2.4 Projections ahoget her.

Let P"- C P" be some hyperplane. and a point 0 E 2.7 Inage Coordinates

'P" not lying on P'"-. If we like. we calt choose tle litag, space is -P2 . Since the iniage plan, is fitite. "t can
representation such that W'P- is given by x, = 0 atnd assign. without loss of generality. tile value I as the third
thc point 0 = (U. 0 .... 0, 1 ). We ('an define a itap homogeneous coordinate to every intage point. That is,

rT,, : 'P" - {0} - 'P"-' if (.r. y) are t lie observed image coordinates of sotie point
(wit h respect to some arbit rary origin say t lie geotlet -

by ric center of the image), then p (x' y, 1) deltotes the
AT, : I) - homogeneous coordinates of the image plane. Note that

that is. sending a point P E P" other than 0 to the point by this notatiun Wt- are not assuming that alt observed
of intersection of the line OP with the hyperplane VP . point in one image is always mapped onto alt observed
(r,, is the projection from the point 0 to the hyperplane (i.e., not at infinity) point in another view (that would
'P", and the point 0 is called the center of projection constitute alt afline plane) - all what we are relying
(('OP). In terms of coordinates x, this amounts to upon is that points at infinity are not observed anyway.

(7r : (X0 ..... x) - (Xr' .... 4nl). so we are allowed to assign the value I to all observed

As an example, the projection of 3D objects onto an points.

image plane is modeled by x. -- Tx. where T is a 3 x 2.8 General Notations
i matrix, often called the camera transformation. The

set ,s' of all views of an object (ignoring problems of Vectors are always column vectors, unless mentioned
self occlusion, i.e., assuming that all points are visible otherwise. The transpose notationi will te added only
from all viewpoints) is obtained by the group GL4 of when otherwise there is a chance for confusion. Vectors

4 x 4 non-singular matrices applied to some arbitrary will be in bold-face only in conjunction with a scalar. i.e.,

representation of P'3 . and then dropping the coordinate Ax stands for the scalar A scaling the vector x. Scalar
3. product will be noted by a center dot, i.e.. x • y. again

avoiding the transpose notation except when necessary.
2.5 The Affine Subgroup Cross product will be denoted as usual. i.-., x x y. The

Let 4,i C 'P" be the subset of points (x 0 ... , x,) with cross product, viewed as an operator, can be used be-

xi 0 0. Then the ratios rj = xj/.ri are well defined and tween a vector .r and a 3 x 3 matrix .4 as follows:

are called affine or Euclidean coordinates on the projec- [X 2aa-x 3a 2 1
tivt, space, and Ai is bijective to the affine space A". r x . = .X3a1 - xla 3

i.e. Ai • .A". The affine subgroup of GL,+j leaves x[ Ia2 - x.ai
the hyperplane xi = 0 invariant under all affine repre-
sentations. Any subgroup of GL,,+I that leaves some where ala 2 , a 3 are the row vectors of .4. and x =
hyperplane invariant is an affine subgroup, and the in- (xI, X2, x).
variant hyperplane is called the ideal hyperplane. As an
example, a subgroup of GL 4 that leaves some plane in- Part I
variant, is affine. It, could be any plane, but if it is the
plane at infinity (x2 = 0) then the mapping p 3 _ p2

is created by parallel projection, i.e., the COP is at in- 3 Affine Structure and Invariant From

finity. Since two lines are parallel if they meet on the Two Perspective Views
ideal hyperplane. then when the ideal hyperplane is at
infinity, affine geometry takes its "intuitive" form of pre- The key idea underlying the derivations in this section is
serving parallelism of lines and planes and preserving to place the two camera centers as part of the reference
ratios. The importance of the affine subgroups is that. frame (simplex and unit, point) of p 3 . Let P1 , P,2 , P3 be
ther, exist affine invariants that are not projective in- three object points projecting onto corresponding points

S variants. Parallelism, the concept of a midpoint, area of pj, p• j = 1,2,3, in the two views. We assign the coor-
triangles. classitication of conics are examples of affine dinates (1,0,0, 0), (0, 1, 0, 0), (0, 0, 1.0) to P1. P,2 , P3, re-
properties that are not projective. 2 spectively. For later reference, the plane passing through



Note that since only ratios of coordinates are significant
in r", k is deternmined up to a uniform scale, and any
point P, r, can he used to set a mutual scale for
all views by setting an appropriate scale for v', for
example. The value of k can easily be determined as
follows: we have

Multiply both sides by .4A, for which we get

pp' = Ap - kt', (1)

0'1 ,,,,_0 where A = A-. 1.. Notc that A E PGL3 is a
..0,0,0,) collineation between the two image planes. due to 7ri.

determined by p" 5 Api. j = 1, 2 3. and Ar = r' (there-
Figure 1: fore, can be recovered directly without going through

A. ,A 2 ). Since k is determined up to a uniform scale.
we need a fourth correspondence Po,.P'. and let A., or C,

P1 . P.-, P3 will be denoted by 7r,. Let 0 be the COP of be scaled such that p,, •- Apý - r'. Then k is a' affine
the first camera, and 0' the COP of the second camera. invariant, which we will refer to as "'affine depth". Fur-
We assign the coordinates (0, 0, 0, 1), (1, 1, 1, 1) to 0, 0', thermore, (x, y, 1, k) are the homogeneous coordinates
respectively (see Figure 1). This choice of representation representation of P. and the 3 x 4 matrix [A, -I'] is a
is always possible because the two cameras are part of camera transformation matrix between the two views.
p3. By construction, the point of intersection of the line Note that k is invariant when computed against a refer-
00' with 7rr has the coordinates (1, 1, 1,0) (note that r, ence view (the first view in this derivation), the camera
is the plane X3 = 0. therefore the linear combination of transformation matrix d -es not only depend on the cam-
0 and 0' with X3 0 must be a multiple of (1. 1,1,0)). era displacement but on.the choice of three points, and

Let, P be some object point projecting onto p, p'. The the camera is an "affine engine" if a reference view is
line OP intersects 7r, at the point (a, ý3, 1, 0). The coor- available. More details on theoretical aspects of this re-
dinates a, 3,1 can be recovered by projecting the image sult are provided in Section 3.2, but first we discuss its
plane onto 7rI, as follows. Let z?, r' be the location of both algorithmic aspect.
epipoles in the first and second view, respectively (see
Section 2.6). Given the epipoles v and v', we have by our 3.1 Two Algorithms: Re-projection and Affine
choice of coordinates that Pl, P2, p3 and v are projectively Reconstruction from Two Perspective
(in P 2 ) mapped onto e1 = ( 1, 0, 0), e, = (0, 1.0),e 3 - Views
(0, 0, 1) and C4 = (1, 1, 1), respectively. Therefore, there On the practical side, we have arrived to a remarkably
exists a unique element Ai E PGL3 (3 x 3 matrix defined simple algorithm for affine reconstruction from two per-
up to a scale) that satisfies AP, p •- ej, j = 1,2,3, and spective/orthographic views (with an uncalibrated cam-
A1 i, = e4 . Note that we have made a choice of scale by era), and an algorithm for generating novel views of a
setting AIt to e4 , this is simply for convenience as will scene (re-projection). For reconstruction we follow these
be clear later on. It follows that AIp = (a, 3, -). steps:

Similarly, the line O'P intersects 71" at (a',', '.0). 1. Compute epipoles v,v' (see Section 2.6).Let A2 E PGL3 be defined by A 2 p) ' ej, j = 1, 2, 3, andAo.42 = e4 . It follows that A.p' = (a',i3',•"). Since P 2. Compute the matrix A that satisfies Apj •- p;, j =

can be described as a linear combination of two points 1,2,3, and At, - v'. This requires a solution of a
along each of the lines OP, and 0OP, we have the fol- linear system of eight equations (see Appendices in
lowing equation: [19, 27, 28] for details).

3. Set the scale of v" by using a fourth corresponding
I \ 0 / a', +\ 1pair p.,p'0 such that pK 5Ap - v'.)31 ) 4. For every corresponding pair p, p' recover the affine

0 depth k that satisfies pf ý_- Ap - Wv. As a technical

0 1 0 1 note, k can be recovered in a least-squares fashion

from which it immediately follows that k = s. We have by using cross-products:

therefore, by the choice of putting both cameras on the (p' x v')(pý x Ap)
frame of reference, that the transformation in P3 is affine k - V,
(the plane ir, is preserved). If we leave the first camera
fixed and move the second camera to a new position Note that k is invariant as long as we use the first view
(must be a general position, i.e., 0' ý if), then the as a reference view, i.e., compute k between a reference
transformation in P 3 belongs to the same affine group. 3 view p and any other view. The invariance of k can be



used to "re-project" the object onto any third view p". P
as follows. We observe: 0

p" U- p - kr".

V for some (unique lip to a scale) matrix B and epipolp r". n-I
One can solve for B and t" by observing six correspond-
ing points between th, first and third view. Each pair of P 00

corresponding points p3 , p1" contributes two equations:

b Xr"+ b32 Y ~7k u~j<1 +

bI Ixj + bl 2 yJ + bi3 - kj r"11

b3 1xjy7' + b32 yjYjl-1 3/j j'3yI + Y7

b•_ix'j + bq_2 !y + b 23  - 4. i.. 0

where b33 = 1 (this for setting an arbitrary scale because
the system of equations is homogeneous - of course Figure 2:
this prevents the case where b33 = 0. but in practice
this is not a problem: also one can use principal compo-
nent analysis instead of setting the v:alue of somne cho- a fixed set of reference views of an object to perform
sc', , 1rment of B or v"). The values of k, are found recognition, then only affine machinery is really neces-
from the coriu.,-ondences pj., j. = 1. 6 (note that sary to perform re-projection. As will be shown in Sec-
k, = k2 = k3 = 0). Once B. r'" are recovered, we can tion 4. projective machinery requires more points and
find the location of p"' for any seventh point pi, by first slightly more computations (but see Section 9 for dis-
solving for ki from the equation p/ Api-kir". and then cussion about practical considerations).
substituting the result in the equation p"' - Bpi - kit,". The manner in which affine-depth was derived gives

rise to a refinement on the general result that four corre-
3.2 Results of Theoretical Nature sponding points and the epipoles are required for affine

Let t-, E S be some view from the set of all possible reconstruction from two perspective views [4. 29]. Our
views, and let Pl,P2.p3 E L,, be non-collinear points derivation shows that in addition to the epipoles. we
projected from some plane 7r. Also, let 5, C S be the need only three points to recover affine structure up to
subset of views for which the corresponding pairs of pj, a uniform scale, and therefore the fourth point is needed
j = 1,2.3. are non-collinear (A is full rank). Note that only for setting such a scale. To summarize.

,,. contains all views for which the COP is not on 7r. We
have the following result: In case where the location of epipoles are known, th•n

three corresponding points art sufficient for computing
There exists an affine invariant between a reference view the affine structure, up to a uniform but unknown scah.
c, and the set of views S,. for all other points in space projecting onto correspond-

ing points in both views.

The result implies that. within the framework of un- We have also.
calibrated cameras, there are certain tasks which are in- Affine shape can be described as the ratio of a point P
herently affine and. therefore, projective invariants are from a plane and the COP. normalized by the ratio of a
not necessary and instead affine invariants are sufficient fired point front the reference plane and thb COP.
(it is yet to be shown when exactly do we need to recover
projective invariants - this is the subject of Section 4).
Consider for example the task of recognition within the Therefore. affine-depth k depends only three points
context of alignment [30. 11]. In the alignment approach, (setting up a reference plane), the COP (of the reference
two or more reference views (also called model views), view) and a fourth point for setting a scale. This way
or a 3D model, are stored in memory - and referred to of describing structure relative to a reference plane is
as a "model" of the object. During the recognition pro- very similar to what [14] suggested for reconstruction
cess, a small number of corresponding points between from two orthographic views. The difference is that there
the reference views and the novel view are used for "re- the fourth point played the role of both the COP and
projecting" the object onto the novel viewing position for setting a scale. We will show next that. the affine-
(as for example using the method described in the previ- depth structure description derived here reduces exactly
ous section). Recognition is achieved if the re-projected to what [14] described in the orthographic case.
image is successfully matched against the input image. There are two ways to look at the orthographic case.
This entails a sequential search over all possible models First, when both views are orthographic, the collineation. until a match is found between the novel view and the A (in Equation 1) between the two images is an affine
re-projected view using a particular model. The impli- transformation in P 2 , i.e., third row of .4 is (0,0, 1).
cation of the result above is that since alignment uses 4 Therefore, A can be computed from only three corre-



spoeiding points, .- 1) , p, j 1,2.3. Because bot h 0 three e-quations). A third corresponding point call be
and 0' are at infinity. then the epipole r' is oil the plane used to determine tile reflection comnplonent (i.e.. uak-
'.,_ = 0, i.e.. I,' = 0. and as a result all epipolar lines ing sure the determinant of A is I rather than -1). Mort,

are parallel to each other. A fourth corresponding point details can be found in [27, 15]. Since in tile u ncalibrated
p', call he used to determine both tlihe direction of case .1 is uiot unique, let ., doiiote tlie fact that -I is

epipolar liles and to set the scale fbr tile atline depth of tile collineation induced by a plane -r*. and let k, denotv,
all other points as decribed in [l(l]. We see. therefore. tile fact that the atfinie-depth also depends oni tht, choict
that the orthographic case is siiiipiy a particular case of' of Tr. We see. therefore, that there exists a family of
Equation l. Alternatively. consider again the structure ,iolutions for the caniera transforumation matrix and tihe
decription eutailed by our derivation of atline depth. If aftine-deptIi as a function of 7r. Tlbis iniunediately inmplies
wet denote tihe point of intersection of tile line OP with t hat a naivv solut ion for . .k . given c'. from point corre-
Tr1 by P. we have (see Figure 2) spolidellces leads to a singular systei of equatiouis (e'ven

pP if minany points art, used for a least,-squares solution).
4. -o

"(;it-( i th e pipoh r'". th lin( ar sstetit of tquattonis Jot

Let 0 (the ('01 of the first canmera) go to infinuity. in for A uni 4- of th qua/ion

which case• alfine-depth approaches -ill = -A-J - kJ v'.

-P - P f++fnt point corr.spondt nc ts pj. p '+ .issingular. u nlt .. fur-

t,- P,' ithir constraints art introductd.
which is precisely the way shape was described iii [14]
(see also [26, 27]). In the second view, if it is or- We see that equation counting alone is not sufficient
thographic. then the two trapezoids P. P.p'. +-p and for obtaining a unique solution, and tIherefore tIhle knowl-
f',. Pt,. ps,..4p, are sintilar. and from similarity of t rape- edge that .4 is a homography of a plane is critical for t his
zoids we obtain task. For examplle. one can solve for .A and k' froni niany

S- jP t/ -- .correspondences ii a least-squares approach by first set-
/ -tiit kj = 0. j = 1.2, 3 and k4 = 1. otherwise tle solution

,, , P,, niay not be unique.
which. again, is ilie expression described in [14. 26]. Note Finally. consider the -price- we are paying for all in-
that affine-depth in the orthographic case (toes not de- calibrated. affine framework. We call view this in two
pend any more on 0. and therefore remnains fixed regard- ways. somewhat orthogonal. First, if the scene is un-
less of what pair of views we choose. namely, a reference dergoing transformations. all,! the camera is fixed. then
view is not necessar% any more. This leads to the fo1- t hose transfornmat ions are affine imi 3D. rather t han rigid.
lowing result: For purposes of achieving visual recognit ion t he price we

are paying is that we might confuse two different ob-
LOt S C S be the subset of reu's created byq menus of jects that are affinely related. Second. because of the
parallel pro be th subset plan( .e = 0 is prescorfd, non-uniqueness of the camera transforniation matrix it

appears that the set of views S, is a superset of the set
G(tirc four fivid rrferefnce points,. affine-dp1th on S is of views that could be created by a calibrated canmera

f c d dtwhereas afine-depth on taking pictures of the object. The natural question is
ref rence-rietv-independent, whether this superset can. nevertheless. be realized by

a calibrated camera. In other words, if we have a cal-
(Consider next the resulting camera transformation ibrated camera (or we know that the internal camera

matrix [A. -r']. The matrix A depends on the choice of parameters remain fixed for all views), then call we gen-
three points and therefore does not only depend oti the erate S,. and if so how" This question was addressed
caniera displacement. This additional degree of freedom first in [12] but assuming only orthographic views. A
is a direct result of our camera being uncalibrated, i.e.. more general result is expressed in the following propo-
we are free to choose the int.ernal camera parameters (fo- sition:
cal length, principal point, and image coordinates scale Proposition I Given an arbitrary rit" L'o E S, g•ncr-
factors) as we like. The matrix .4 is unique, i.e.. depends Proposition 1 Gznen at aritiar pito 0 E all
only ott camera displacement, if we know in advance that ated by a camera wth (OP at initial posbtion 0. tlu n all
the internal camera parameters remain fixed for all views other news , E S7 can be generated by a rfgod n. titOnS,7 . For examnple. assume the camera is calibratred in thle of the camera frame froml its initial position. if in addt-

,57,Forexaple asumethecamra s clibatrd i tie ton to taking pictures of th( object we allow any finite
usual manner, i.e.. focal length is 1. principle point is at tqn of pictures of the obectaken as well.
(0.0. 1) in Euclidean coordinates, and image scale factors sequence of pictures of pictures to be taken as nell.
are I (image plane is parallel to xy plane of Euclidean The proof has a trivial and a less trivial component.
coordinate system). In that case .4 is an orthogonal ma- The trivial part is to show that an affine motion of the
trix and can be recovered front two corresponding points camera frame can be decomposed into a rigid motion
and the epipoles - by imposing the constraint that vec- followed by some arbitrary collineation in TP. The less W
tor magnitudes remain unchanged (each point provides trivial component is to show that anly collineation in P2



4 fore, that the intersection of the line OP with 7r, is the
(0.0,0, ijpoint P,• = (o, 3, ,,. 0), and the intersection with 7r._, is

the point P,. = (3 - , 0. 3 - ,3). We call expressp and ) as a linear combination of those points:

P2

0...1 P ,. N h" 3 i

a ojec pintP,,(nt lin o n an fac ofteera-

01"1 01.. ) 1  0 ch

Y.-,.

(e0,030) :ross ratio eei t / of tcte four points

0, P,1. P,,.,, P. Note that K," = I independently of 1'.

( Pherefore the cross ratio is si)).p W. As it the affil-
z case. td is invariant up to a uniform scalel and any fifth

o object point P,R (not lying oii any face of the tetratio -
whr nyrgi oino ron Ph. Pec r, P3, P4) caan be assigned Ky = o bj coints-

ing tile appropriate scale for A, (or E, )_ This ha~s

Figure 3: the effect of mapping the fifth point P,, onto the CeOP
(P, f-- (1. 1. 1, 1)). \Ve have. therefore, that K" (normal-
ized) is a projective invariant. which we call "'projective

call be created by a finite sequence of views of a view depth". Relative shape is described as the ratio of a
where only rigid motion of the camera framne is allowed. point from two planes, defined by four object points,
The details can be found in Appendix A. along the line to a fifth point, which is also the center

The next section treats the projective case. It will of projection, that is set up such that its ratio from the
be shown that this involves looking for invariants that two planes is of unit value. Any transformation T E GL 4
remain fixed when any two views of S are chosen. The will leave the ratio K invariant. What remains is to show
section may be skipped if the reader wishes to get to how K can be computed given a second view.
Part If of the paper - only results of affine-depth are Let .4 be the collineation between the two image planes
used there. due to 71r1, i.e.. Apj 2 ' . j = 1.2,3, and .Ar = r'. where

v, i' are the epipoles. Similarly, let E be the collineation
4 Projective Structure and Invariant due to ir,, i.e., Epj p'. j = 1.3,4, and Er • r'. Note

From Two Perspective Views that three corresponding points and the corresponding
epipoles are qufficient for coninuting the collineation due

Affine depth required the construction of a single ret- to the plane projecting onto the three points in both
erence plane. and for that reason it was necessary to views this is clear from the derivation in Section :3.
require that one view remained fixed to serve as a ref- but also can be found in [28. 29. 23]. We have that the
erence view. To permit an invariant from any pair of projections of P,, and P,, onto the second image are
views of S. we should, by inference, design the construc- captured by Ap and Ep. respectively. Therefore. the
tion such that the invariant be defined relative to two cross ratio of 0. P.,. t•,. P is equal to the cross ratio of
planes. By analogy, we will call the invariant "projec- I". Ap. Ep, p', which is computed as fojiows:
tive depth" [29]. This is done as follows.

We assign the coordinates (1,0,0,0),(0, 1,0,0) and p'• Ap- sEp.
(0,0, 1,0) to P1, P2,9 P3, respectively. The coordinates r' " Ap - s'Ep,
(0,0,0, 1) are assigned to a fourth point P 4 , and the co-
ordinates (1, 1, 1. 1) to the COP of the first camera O then K = s/s'0 up to a uniform scale factor (which is set
(see Figure 3). The plane passing through P 1, P,ý, P3 is using a fifth point). Here we can also show that s' is a
denoted by 7r, (as before), and the plane passing through constant independent of p. There is more than one way

is denoted by 7r,. Note that the line OP4 in- to show that. a simple way is as follows: Let q be an
P1. P 7r,3  at 1, , nd thP4 e line OP, in- arbitrary point in the first, image. Then,tersects 7ri at. ( 1, 1. 1,0). and the line OP. intersects ~r9
at (1, 0, 1, 1). v' - Aq - sq Eq.

As before, let A 1 be the collineation from the im- Let H be a matrix defined by H = A - sqE. Then. r'
age plane to 7ri by satisf'ing Aipj 2 ej, j = 1._4, H
where ei = (1,0,0),e2 = (0,1,0),f3 = (0,0,1) and Hf' and v' = Hq. This could happen only if v' -i Hp.f4 = (1, 1, 1). Similarly, let E1 be the collineation from for all p, and s' = s' We have arrived to a very simple

the image plane to r._ by satisfying Elp, Pi 1, El P algorithm for recoverng a projective invariant from two
e4.EIp 3 • e2 and EIp 4  5 e3 . Note that if Alp = perspective (orthographic)views:
(a, 3,y), then E p =(3 - 3 --1,13). We have there- 6 p' 25 Ap- tcEp, (2)



where A and E are described above, and K is invariant where A is the collineation due to some plane ri. and
up to a uniform scale, which can be set by observing a E is the collineation due to sonme other plane ir' scaled
fifth correspondence p., PK,, i.e., set the scale of E' to sat- such that p.1,, = .4p, - Lk,, for some point pt..
isfy p'o 25 Ap. - Ep,. Unlike the affine case. K is invariant
for an,* two views from the set S of all possible views.
Note that K need not be normalized using a fifth point. Part II
if the first view remains fixed (we are back to the atfine
case). We have arrived to the following result, which is 6 Algebraic Functions of Views
a refinement on the general result made in [.4] that five
corresponding points and the corresponding epipoles are In this part of the paper we use the results established in
sufficient for reconstruction up to a collineation in P3 : Section 3 to derive results of a different nature: instead

of reconstruction of shape and invariants we would like to

In cast wherf the location of ppol; art known. establish a direct connection bet ween views expressed as
a functiois of intage coordinates alone which we will

thit four corrsponding points, coming froc four noi- call -'algebraic functions of views". WithI tihese function,-
coplanar points in spact, are suJficient for computing th oprop dctiv sir-ucturn up to a uniform but unknown scah, one can nianipulate views of anl object, such a., create
for till othr pot., ui spact rn 9 ointo nown sce. new views, without the need to recover shape or caniera

all rointstit ttg ontocospod- vgeometry as an intermediate step all what is needed
ing points~ in both rcieris. Afifth corn ~spon ding point. entr

( zn q fro m a poit n bo th n g. c rafth p o riti pon dw htn po f t, r is to appropriately co inbine the im age coordinates oftw o,conlong froin a point tit general position with the otb~r rfrneves
four points. can bu used to set thu scal(. reference views.

Algebraic functions of two views include thlie expression
We have also. T l* = (3)

Provtchrt shapt can be described as the ratio of a point P
from two faces of th t etrahedron, nornaliztd by the ra- where F is known as the "'Fundaniental" matrix (cf. [.1])

hto of a fixed point (the unit point of the refercnct frarni) (a projective version of tie well known "-'Essential- nia-

from those faces. trix of [16]). and the expression

(0tIX + 02.1/ + 03X + 114Y+ 05 = 0 (4)
The practical implication of this derivation is that a due to [10]. which is derived for orthographic views.

projective invariant, such as the one describcd here, is These functions express the epipolar geometry between
worthwhile computing for tasks for which we do not have the two views in the perspective and orthographic cases.
a fixed reference view available. Worthwhile because respectively. Algebraic functions of three views were iii-
projective depth requires an additional corresponding troduced in the past only for orthographic views [31. 21]. W
point, and requires slightly more computations (recover For example,
the matrix E in addition to A). Such a task, for ex-
aniple, is to update the reconstructed structure from a 2X + '2- + (31 + fl4V + (1, = (.
moving stereo rig. At each time instance we are given a These functions express a relationship between the itt-
pair of views front which projective depth can be com- age coordinates of one view as a function of image co-
puted (projective coordinates follow trivially), and since ordinates of two other views --- in the example above.
both cameras are changing their position from one time the x coordinate in the third view, x". is expressed as a
instant to the next. we cannot rely on an affine invariant, linear function of image coordinates in two other views,

similar expressions exist for y".
5 Summary of Part I We will use the affine-depth invariant result to de-

Given a view v, with image points p, there exists an rive algebraic functions of three perspective views. The

affine invariant k between 4 0 and ani other view v, with relationship between a perspective vi w and two other

corresponding image points p', satisfying the following perspective views is shown to be trilinear in image coor-

equation: dinates across the three views. The relationship is shown

pp' = Ap - kt', to be bilinear if two of the views are orthographic -- a

where A is the collineation between the two image planes special case useful for recognition tasks. We will start by

due to the projection of some plane 7ri projecting to both addressing the two-view case. We will use Equation I to
views, and r' is the epipole scaled such that oP"I = relate the entries of the camera transformation A and r'Ape - an for some point Po. The set of all views , for (of Equation 1) to the fundamental matrix by showing

which the camera's center is not on ri will satisfy the that F = v' x A. This also has an advantage of introduc-

equation above against Vi',. The view iv, is a reference ing an alternative way of deriving expressions 3 and 4. a
view, way that also puts them both under a single framework.

A projective invariant. K is defined between any two 6.1 Algebraic Functions of Two Views
views Vi' and g,j, again for the sake of not introducing Consider Equation 1, reproduced below,
new notations, projecting onto corresponding points p
and p', respectively. The invariant satisfies the following x/
equation: p = A x kr'.

pp' = Ap - xEp, 7 ( I) I( )



By simple nmanipulation of this equation we obtain: whert,e 1. .0_, 03 are the row vectors of A. Let fi, f.12 f3
be the row vectors of f. then it is eas, to verify that

-- fI + +f

where -.a:3 are tilte row vector, (f A and _Next , we call use tilt resulf t' -1 to show flow
(f 1-!,. 10 Alter equating tHe first two teri.u". wo:- tl ortiographic case, treated b+ [10], lits this relatiou_-

taiti: shipt. lit thle fraiuiework of' Iquat iou 1. we sa that1 withI

Ir' Vt a.,~1 o p) + Y'( 13 ~p- 0~ + ort hographiic vIe%%! we bav,' A1 beiiig afliiie lin P 2. Iv

- )(1:1 1. = 1. and t'~ = 0 Alter substitult loll ill Equationi It

i ~ ~ ~ ' 'a oI"aI,)=0.1

I . 2) We Obtai tihe eq4uation

Note that tilie tertis wit. l arenthse art' linear 1 io/ +t, i0,

noui~uak lin t ~j- with fixedl coelti(ietits ( it'.. dlepend (l ilvII' *

(wirt 1 atid I-. Also( iott, t hat we get tlt, f saaite expres- where the cefficients lily j j . .. 5 have t.t- fleollw ilA

siol when euating tle first atin third, or tilt, scowaill:. .il- e h[
liird teri.s of' Equation 5. '[his leads to tilit' following
resuilt:0 1'2'

I/it miat t ('Poi.dinaldt(t (tr.sy) and (..r'. ") of twno toin 0:1 =-I at
*poil d ' , r points across tiro ptr.spt tUt l ).4 w oa a t.ufy it

tniqu t quation (if tn follow i ing for in : 04nthIe.,a, -lnear a 12,

l 1. n +t 0 + 03) + Ao0t 0 4 X + 0 5.Y + Q(; ) + These coefficients are also t le iit ries (if t liet, finda ieint al
matrix. which cali also be dnerived froir fr = h' uA b%

0eu 7X +l 08 + (1 = 0.7

"(t. etting I 0 and a3 = (-O. I

11'h( U I&I ('offitJJ nis(v.4 1. .... 91. har c a fixn d ,'t - 'Thie algebraic function 7 call be used for re-project iou
lali to ihI caira Ira iisfo ( n almoi A an ( td I"' of L'qu t a- onto a third view. by simply noting that tle fuiction be-
11(11dll : lt.weeii view I and 3. and the function bet.ween view 2 and

q fr3. provide two equations for solving for (""). 'This
13(121.s propose(] in thet past. in various formis. by [20. 3. 191.I I t~i2 Sinice thle algebraic functioni expresses t he' elipolar geouli-

(43 r!(133 -'1i21 et rv bet ween thue two views, however, a solu tion ranl be
0.1 1,t' a I I - I a:5 1. found oily if the aOPs of the three caftierhs aru n oen -lCollinar (wcf. [28. 27]) -- whichi raoi lead to nutmierical
(15 1 (12 - VI~ (13-2 inst ability unless the COPs are far froiii collinear. 'Flit,
hik r; ah 13 -c1', . a 3 alternat1ive, as shown next, is to derive directi n alg-
o .7 = i~ ( 2 aeUa, 1.t braic functions of three views. in that case, the coor-

(itates (xtl. el) are. solved for separatel'. each froi a
-1 sigle equation. without prolblenis of singularities.

Oit = I-, a23 - r,2a13 -

Eqtation 7 can also be written as 1' Ep =0, where 6.2 Algebraic functions of Tep ree Views

tlie ent ries of t lie matrrix f' are t he coefficients aj . and C'onsider Equation I appliedl bet ween view I and 2. ati(h
thberefore, F = U'x A. We have, thus, obtained a new and between view I and 3:
simple relationship between the elements of telie tfuiida- . - kr,
mental" matrix IT an( the elements of the caniera trans-i e
formation .4 and I"'. It is worth noting that this result n i" Bap - k".
can be derived nuch easier, as follows. First, the rela- Here we make (i- of the result tfhat affine-depth k is
tionship p'Fp =0 canl be derived, as observed by [4]. invariant for any ,. w in reference to the first view. We
from the fact that I' is a correlation mapping points caln isolate AT again from Equation 9 and obtain:
pr onto their corresponding epipolar lines P in the sec-e
ondl image. and therefore p' P' 0. Second', since tl-l r/1 - 111,11

,i'e x APT we have f =' x A. Itn is known that. sinuari

.r -b----b,1(p3--b 3 .p-b'3

the rank of the fundamental matrix is 2; we can use this Itw vIt 1 an 2
relationship to show that as well: e2et _ (10)

r T1903 3 a2x 
I 

I- 
y b

ntal " where bmarib 3 are the row vectors of B arid r"a-

tiIT 1/,3 =", 0 an). Because of the invariance of k we can equate
from___th __ foi terms of Equation 5 with terms of Equation 10 and oh-

'This was; a comment made by Tuan Luong. tam trilinear functions of image coordinates across three



views, For exampiile, by equating the fil t twVo teriis ill recover sttructure (alfine dlepth), caniera transformation
each of t he equat lon.s. we obtaiu: ( iat ricc.. A B1 and epipoles t'. i" ) or epipolar geoniet rv

, 1(just thlie epipoles or the Fundamiiental niat rix) for tlie
j'"( ib:, + - I:at p) + i'""( i(A 1 -b tlb:t . p3 3 price of using inore than, the minniial numiber point., that t

J'tt lbl"! - '!a:•t-+J- ij'ltjl p , - 1 bI .ii 0. (11) are. required otherwis.e' (the{ nmiiiiiial is six bet ween the'

1ll1, lads, to tile tollowing re.•ult. two • d Intel %iew., and the nuocl third viewi.
Thie k("ne('tlion between the general result of trilinear

funili•in.us of view, to tile "'inear comiination of view,"
ltit imtqt i ordinaIt (I'. .j). (J". if' and (-" '." ') of result [31] for orthograplhic views, can easily be seen by
hit t cort sp)oitding potnts ai 'roI .. thr-f pt r-peitrI u rI( t' . se'tlling .1 and• jB to b,. aflinte in P-2 . and ,:.I r= L

Nfilsfy a tri-dhi at tquafion of tht followinge for-it- For exaimple, Equation 11 reduce's to:

J•"(,IJ' + ,.tiq+ ,:ti) + i'"'(t.,I -+, x,,o+, + o,' + r"- Ii+(,'a, +- ,b, /1 t//

I ̀ I''( t -_ r + ' i sj + w . + ti s , , x + t 1  I y + o 1 1 2 = 0. ( 1 2 ) w l ih i ch is o f th e f o r ii :

,hl r l ht I- Ii o j~li( i Ils oj . if . I . .... 12J. h arit a Ili t tsi t la-ho/ to Iht -fit ra ha o. r in i.,r n 6 . 1. tt it li tirl t ,' it t-I + tJ 2 I + ti3I ' + 0 t.13JX + to .0/ +

litd th( othe- hr1t, ilit tus. In Ili, t 'ase where all three views art orthlographic. thlen

I'" is expressed as a linear conibiialt ion of iiiiage coordi-
N ,It ethai the .,' coordinate ili lit th lhir(d %iew. I-". k o- nates of thel two other views as discovered b\ [3:1.

lailied as a solt ion of a single -quation iii coordinates of I lithe next sect ion we address another cas'e. interline-
lhe other twI) view.. Tie coethi'ienits oi, ('all bet' recovered diate between ti1e general trilinear and tle orthlograplhic

;Is a soluth ion of a linear systemi. direct ly ifl w., observe I I linear functions, which we find interesting for applica-
corresponding points across lhe tlree Views (more t han t lions of visual recognition.

I I points can be used for a least-squares solution), or 6.2.1 Recoginition of Perspective views Fr()li
withIi fewevr poinlts hv first re{coverinig tihe el•i'nenti,, of the I 6R tion Mfder
can liera tranisformns as- described in Section 3. Then. for aln OrthographicI Model
ai addi ioinal point ( .'. y) w hose correspondenice iii t (v o nsi bject a r, tor w h th o rwo r a, (u siie a
se(onid ilmage is known (x'., y'). we ('all recover the torre- views of an object art aaken orthograpiically using a
sponding ii coordinate, .r". iii tIl( third view by suibsti- t et lens would provide a reasonaiible approxinlat ion), bill

tlution iii equation 12. ('rilig recognition lll ay perspectivtc view of tile object is

In a sinilar fashion, after equating the first termn of allowed. It cai easily be shown that the three views are

Equation 5 with the second ternm of Equation 10. we then connect(ed via a bilinear fuinct ion (instead of Iriuin-

)btlain an equation for !/' as a function of tihe two other ear): A is affi ne in P'P2 and ••:, It. 1 herefort' Lquat lion I I
views•: reduces to:

.!/'( I I I + , + ':}) + i/" •",•..•x + .Y! + 'It;) + j + -

Jt
( X + • 1.- + .3! 9) + 3 10J' + -1 h +• 1 1-_, = 0. (13) + ( brt'U I -- ";hi p) t0.

"T'akt'ei together. Equations 5 and 10 lead to 9 algebraic which is of the following form:
functions of three views, six of which are separate for x"' '( t(kIX + 0.,Y + 03 ) + 0 4 X"'I" +
and !,". The other four functions are listed below: -'

.'/() + /'9'/ ( ') + !I'( ) + (-) = 0. (1i)

y"() + Y.y t(.) + Y'(-) + () O. (15) Similarly. Equation 13 reduces to

x'".') + i"'t t y(-) + x/(.) + y'(-) = o. (16) y"( ItX + 3`2_, + 3t) + 3•.Y".Jr +

Y" +(.) + . /(") + +.1/() + () = 0. (17) .I, -' + , ý"; + '17Y + ,& = 0. (20)

where () represent linear polynomials in x, q. The so- A bilinear function of three views has two advantages
lution for .x". y" is unique without constraints on the over tle general trilinear ftinction. First. only seven cor-
allowed camera transformations. If we choose Equa- responding points (instead of 11) across three views are
tions 12 and 13. then l'j and "', should not vanish si- required for solving for the coefficients (compared to tile
inultaneously. i.e.. r' + (0. 1.0) is a singular case. Also minimal six if we first recover A, B. t'. I"). Second. the
c (0. 1.0) and r" • (1.0.0) give rise to singular cases. lower the degree of the algebraic function. tihe less sen-
One can easily show that for each singular case there sitive the solution should be in the presence of errors in
are two other functions out of the nine available ones measuring correspondences. Ini other words, it is likely
tfat provide a unique solution for x", y". Note that the (though not necessary) that the higher order terms, such
singular cases are pointwise, i.e., only three epipolar di- as the term .r".r'.r in Equation 12. will have a higher con-
rections are excluded, compared to the much stronger tribution to the overall error sensitivity of the system.
singular case when the algebraic function of two views is Compared to the case when all views are assumed or-
used separately. as described in the previous section. thographic, this case is much less of an approxitmation. 1

Taken together, the process of generating a novel view Since the model views are taken only once. it is not un-
can be easily accomplished without the need to explicitly reasonable to require that they be taken in a special



, nan, ly. with a tele lens (assuniulg we are dealing into planes (it would have planes if the projection was
object recognition. rather than scene recognition). parallel, in general its not even planes) one can attempt

it requirement is satisfied. then tihe recognition task to divide the scene into objects, each carries the 22 pa-
teral since we allow any perspective view to be taken rameters describing its displacement onto the subsequent
ig be recognition proce'-s. Iramne.

Another area of application may be in computer
Applications graphics. Re-projection techniques provide a si. t-cut

for image rendering. Given two fully rendered views
bratic functions of views allow the manipulation of of some 3D object, other views (again ignoring self-
es of 31) objects without necessarily recovering 3D occlusions) (canr be rendered by simply "'conibining" the

oure or any fo~rii of camiera geometry (either full, or reference views. Again. the number of corresponding
Itli, epipol's) points is less of a concern here.

it application that was emphasized t hroughout te he
r i. visual recognition via alignnment. In this con- 8 Summary of Part 11
the geiieral result of a trilinear relationship between
,is niot encouraging. If we want to avoid implicating The derivation of anr affine invariant across perspective

- -iur, anid camlera geometry. we must have II corre- views iii Section 3 was used to derive algebraic fuic-
din,, point, across lite three views - compared to tions of image coordinates across two and three views.
Oint s. otherwis,'. li practice. however, we would These enable the generation of novel views, for purposes
Smore than tlihe iniiimal number of points in or- Jf visual recognition and for other applications, without

obtObtin a least square-; solution. The question is going through the process of recovering object structure
, hir th,. simnplicity of the method using trilinear func- (metric or n0on--netric) and camera geomnetrv.
t ranslates also to increased robustness in practice Between two views there exists a unique function

i iiany points are use( - this is all open question. whose coefficients are the elements of the Fundamental
ill i:n thc, context of recognition. the existence of hi- matrix and were shown to be related explicitly to the
r functions iii tie special case where thlie model is camera transformation .4, t':

. )graphici. but t hue' novel view is perspective, is more xJ(•0I X + 02Y + • V3) + y'( .41' + 05y + 06-) +
uraging. Here we have the result that only seven cor-
-i>ning points are required to obtain recognition of 071 + (AsY + (o9 0.

pective views (provided we call satisfy the require- The derivation was also useful in making tire connection
i that the model is orthographic) compared to six to a similar expression. due to [10]. made in the context

* t, wlien structure and caniera geometry are recov- of orthographic views.
. 'The additional corresponding pair of points may W'e have seen that trilinear functions of image coordi-

ideed worth the greater simplicity that comes with nates exist across three views, one of them shown below:
'. ug with algebraic functions.
imere imay exist other applications where simplicity J"(kI ' + .-2Y + 03) + X"J"((41' + 0o5y + (W,-) +

u major importance. whereas thlie number of points '((71' + oy + o 9 ) + o01J' + (+W IlY + 012 = t.
I - ss of a conicerni. ( onisidler for example. tlile appli-;' n of aoncl-ased conidpressioin. itmlthe trilinear In case two of the views are orthographic. a bilinear re-

M Ofmodl-baed omprssin. Wth he tiliear lationship across three views holds. For example. thre!,!tions we need 22 parameters to represent a view as trilinear function above reduces to:
iction of two reference views in full correspondence.
nine both the sender and the receiver have the two 1"' (f01' + T2.Y + (V3) + 0.t"'1"t +

I. ence views aii(d apply t lie same algorithm for obtain- " + (A 6
'"orrespoidences between the two views. To send
ird view (ignoring problems of sclf occlusions that In case all three views are orthographic. a linear rela-

... I b, dealt separately) the sender can solve for the tionship holds - as observed in [31]:
aranieters us:ng many points, but eventually send 0 1 n + 0•21• + U 3X + 4Y + f t 0.

M the 22 parameters. The receiver then simply cor-
I,, - the two reference views in a "trilinear way" given 9 General Discussion
ih- "eceived parameters. This is clearly a domain where

i h, iumber of points are not a major concern, whereas For purposes of visual recognition. by alignment, the
-t .licity. and probably robustness due to the short-cut transformations induced by changing viewing positions
Ile corimputations. is of great importance. is at most affine. In other words, a pin-hole uncalibrated

'hated to image coding is a recent approach of image cainera is no more than an "-affine engine' for tasks for
mnposition iito "layers" as proposed in [1, 2]. In this which a reference view ( a model) is available. One of
oach. a sequence of views is divided up into regions, the goals of this paper was to make this claim and make
;e nmotion of each is described approximately by a use of it in providing methods for affine reconstruction

"21) Bfile transformation. The sender sends tihe first im- and for recognition.
Followed only by tile six affine parameters for each An) affine reconstruction follows immediately from. r,. ,n for each subsequent frame. T[ihe use of algebraic Equation 1 and the realization that .4 is a collineation

I: tions of views cal potentially make this approach of some plane which is fixed for all views. The recon-
t,... powerful because instead of dividing up the scene 10 structed homogeneous coordinates are (x. y, 1, k) where



(x, y. 1) are the homogeneous coordinates of the image lation component (note that t v'), z: is the depth from
plane of the reference view, and k is an affine invariant, the first camera frame, and :' is the depth value seen
The invariance of k" can be used to generate novel views fromi the second camera frame. Divide both sides of the
of the object (which are all affinel, related to the refer- equation by z. assume that R is an arbitrary non-singular
ence view), and thus achieve recognition via alignment, matrix A, and it seents that we have arrived to Equa-
We can therefore distinguish between affine and non- tion 1. where 4." -1/:. In order to do it right, one
alfine transformations iii the context of recognition: if must start with an affine frame, map it aftinelv onto the
the object is fixed and the transformations are induced first camera, then map it atfinely onto the second cam-
by camera displacements. thent k must be invariant era, and then relate the two mappings together - it will
space of transformations is no more than affine. If. how- then become clear that k is an invariant measurement.
ever. the object is allowed to transform as well, then k This derivat ion, which we will call an "'afthie derivation"
would not remain fixed if the transformation is not affine, appears to have tihe advantage of not using project ive ge-
i.e. involves more than translation, rotation, scaling and oinetry. However, there are some critical pieces missing.
shearing. For example, we may apply a projective trans- First. and foremost. we have an equation but not a, al-
formation in P' to the object representation, i.e., map gorithin. We have seen that simple equation count ing
five points (in general positeion) to arbitrary locations in for solving for A and k, given t. from point correspomi-
space (which still remain in general position) and( map dences is not sufficient, because t lit, systemn of equations
all other points accordingly. This mapping allows more is singular for any number of corresponding poi.ts. Also
".distort ions" than affine transformations allow, and call equation counting does not reveal the fact that only four
be detected by the fact that k will not remain fixed. points are necessary: three for A and the fourth for set-

Another use of the affine derivations was expressed in ting a mutual scale. Therefore. the realization that .1 is
Part II of this paper. by showing the existence of alge- a lhonmography of some plane that is fixed along all views
braic functions of views. We have seen that any view a fact that is not revealed by the affine derivation -
can be expressed as a trilinear function with two refer- is crucial for obtaining an algorithm. Second. the uia-
ence views in the general case, or as a bilinear function ture of tilie invariant measurement k' is not coinpletely
when the reference views are created by means of paral- revealed: it is not (inverse) depth because A is nou nec-
lel projection. These functions provide alternative, much essarily orthogonal, and all the other results described
simpler, means for manipulating views of a scene. The in Section :3.2 do not clearly follow either.
camera geometries between one of the reference views ('onsider next t he question of whether, within the con-
and the other two views are folded into 22 coefficients. text of projective geometry, afline-depth could have been
The number 22 is perfectly expected because these cam- derived on geometric grounds without setting ill) coor-
era geometries can be represented by two camera trans- dinates, as we did. For example, although this was, not
formation niatrices, and we know that a camera trans- mentioned in Section 3. it is clear that the three points
formation matrix has 11 free parameters (3 x 4 matrix, ,'. Ap. i' are collinear - t his is well known and can be
determined up to a scale factor). However, the folding derived from purely geometric considerations iy observ-
of the camera transformations are (lone ii such a way ing t lhe optical hue Qp amd lie epipolar line' I ,'l'
that we have two independent sets of 11 coefficients each. are, projectively related in P' (cf. [28. 29. 22]). It is less
and each set contains foldings of elements of both cam- obvious, however, to show oil geometric grounds onlv
era transformation matrices (recall Equation 11). This that the ratio k is invariant independently of where thlie
enables us to recover the coefficients fronm point corre- second view is located, because ratios are' not generally
spondences alone, ignoring the 3D structure of the scene. preserved under projectivity (only cross-ratios are). Ili
Because of their simplicity, we believe that these alge- fact, as we saw, A' is invariant but tip to a uniform scale.
braic functions will find uses iii tasks other than visual therefore, for any particular optical line the ratio is not
recognitioni some of those are discussed in Section 7. preserved. It is for this reason that algebra was mitro-

This paper is also about projective invariants, mak- duced in Section 3 for the derivation of affine-depth.
ing the point of when do we need to recover a projective
invariant, what additional advantages should we expect, (onsider next the difference between the atfine and(l

and what price is involved (more computations, more the projective frameworks. We have seen that from a

points, etc.). Before we discuss those issues, it is worth theoretical standpoint, a projective invariant, such as

discussing a point or two related to the way affine-depth projective-depth ," in Equation 2. is really necessary

was derived. Results put aside, Equation 1 looks sus- when a reference view is not available. For examiple, as-

piciously similar, or trivially derivable fromn. the classic sume we have a sequence of n views tV,, .... C',, - of a

motion equation between two frames. Also, there is the scene and we wish to recover its 3D structure. All affline

question of whether it was really necessary to use the framework would result if we choose one of the views.

tools of projective geometry for a result that is essen- say t,, as a reference view. and compute the structure
tially affine. Finally, one may ask whether there are sini- as seen from that camera location given the correspon-

pier derivations of the same result. Consider the classic dences L-, =::> •ii with all the remaining views - this is a

motion equation for a calibrated caniera: common approach for recovering metric structure from
a sequence. Because affine-depth is invariant, we have

p Rp + t. n - 1 occurrences of the same measurement k for every

Here R is an orthogonal matrix accounting for the rota- point, which can be used as a source of information for
tional component of camera displacement, t is the trans- 11 a least-squares solttion for k (or naively. simply average



the n - I measurements). Now consider the projective We have:
framework. Projective-depth Kc is invariant for any two p' 5 Ap - kvt'
views t;, ii,, of the sequence. We have therefore n(it - 1). occurrences of K which is clearly a stronger source of
information for obtaining an over-determined ,solution. - [4.-t]
The conclusion from this example is that a projective k
framework has practical advantages over the affine. even
iii cases where an affine franiework is theoretically suffi-
cient. There are other practical considerations in favor [.4, Y'
of the projective framework. II the affine framework, the (
epipole I" plays a double role - first for computing the
collineation A, and then for computing the affine-depth[
of all points of interest. In the projective framework. the S yb +

epipoles are used only for computing the collineations .4 Zb
and E but, not used for computing K. This difference
has a practical value as one would probably like to have where tb =/(, " + y + 1 + k). Yb = y/(r + .i + 1 + k)
the epipoles play as little a role as possible because of and lb =/(x + y + I + k). Let H be a rotation matrix
the difficultv in recovering their location accurately in in 3D. i.e., R E GL3 . dat(R) = 1. and let B denote a
the presence of noise. In industrial applications, for ex- collineation in P2 . i.e.. B E (;L 3 . and let uIt be some
ample, one may be able to set up a frame of reference vector in 3D. Then, we must show that
of two planes with four coplanar points on each of the
planes. Then the collineations .4 and E can be com- ( + B
puted without the need for the epipoles, and thus the p = BR Yb + Bu.
entire algorithm, expressed in Equation 2. can proceed Zb
without recovering the epipoles at all. For every R. B and u,. there exists S and u that produce

the same image. simply be setting S = BR and u = BR'.
Acknowledgments We must also show that for every S and u there exists

A draft of this report was read by Eric Grimson. Tuan R, B and w that produce the same image: Since S is of
Luong and Nassir Navab; I am grateful to them for their full rank (becasue .4 is). then the claim is true by simply
comments which have been incorporated in the report. setting B = SRT and u, = B-'u, for any arbitrary

orthogonal matrix R. In conclusion, any view v' E ST
can be generated by some rigid motion RI. u starting

Appendix from a fixed intial position, followed by some collineat ion
B of the image plane. '

We need to show next that any collineation in T 2̀

A Pr'-of of Proposition can be expressed by a finite sequence of views takenby a rigidly moving camera, i.e., calibrated camera. It
Propositi -•n 1 Given an arbitrary 'iew u? E S gener- is worthwhile noting that the equivalence of projective
ated by a c -tera with COP at initial position 0. then all transformations (an algebraic concept) with a finite se-
other niews " E S.,, can be generated by a rigid motion quence of projections of the plane onto itself (a geometric
of the camei frame from its initial position, if in addi- concept) is fundamental in projective geometry. For ex-
lion to taking pictures of the object we allow any finite ample, it is known that any projective transformation of
sequence of pictures of pictures to be taken as well. the plane can be obtained as the resultant of a finite se-

quence of projections [32, Thm. 10, pp. 741. The ques-
Lemma 1 The set of rews S• can be generated by a tion, however, is whether the equivalence holds whenLemm I Te st ofries Scanbe gnerted y a rojections are restricted to what is generally allowed
rigid camera motion. starting from some fixed initial po- P
sition. followed by some collineation in p2. in a rigidly moving camera model. In other words, in

a sequence of projections of the plane. we are allowed
Proof: We have shown that any view u E S; can be to move the COP anywhere in P3 ý the image plane is
generated by satisfying Equation 1, reproduced below: allowed to rotate around the new location of the COP

and scale its distance from it along a distinguishable axis
I/' - .4p - kt". (scaling focal length along the optical axis). What is not

allowed, for example, is tilting the image plane with re-
Note that k = 0 for all P E 7r. First, we transform the spect to the optical axis (that has the effect of changing
coordinate system to a camera centered by sending 7r to the location of the principal point and the image scale
infinity: Let M E GL4 be defined as factors - all of which should remain constant in a cali-

brated camera). Without loss of generality, the cameraE1 0 0 0 is set such that. the optical axis is perpendicular to the
0 1 0 0 image plane, and therefore when the COP is an ideal* 0 0 1 0 point, the projecting rays are all perpendicular to the
1 1 1 1 12 plane, i.e., the case of orthographic projection.



The equivalence between a sequence of perspec- [3] E.B. Barrett, M.H. Brill. N.N. Haag. and P.M. Pay-
tive/orthographic views of a plane and projective trans- ton. Invariant linear methods in photogrammetry
formations of the plane is shown by first reducing the and mnodel-matching. In J.L. Mundy and A. Zisser-
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sequence of two perspective projections, and then using puter rision. MIT Press. 1992.
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orthographic case. The following two auxilary proposi- sions with an uncalibrated stereo rig'.' In Procttd-
tions are used: tngs of th( European Conferenc on C(omputer ia-

Lemnia 2 There is a unique project transform ation sion. pages 503-578. Santa Margherita Ligure, Italy.
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an ideal lint (has no image ,n /th rteal plane) and [5] O.D. Faugeras. Q.T. Luong, and S.J. Maybank.
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collinear points A'. B', (". In Proceedings of the European ('onftre nce on Corn-
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Lemlna 3 There is a scaled orthographic projection for tire. Italy, .lune 1992.

any giei aftin( transformation of the plane. [6 O.D. Faugeras and S. Maybank. Motion from point
matches: Multiplicity of solutions. International

Proof: follows directly fronm [30. 11] showing that any' Journal of C(omputer Vi•sion. -1:225-246. 1990.
given affine transformation of the plane can be obtained
by a unique (tip to a reflection) 3D similarity transform [7] D. (ans. Transformations and Getoietrie.
of the plane followed by an orthographic projection. [l Appleton-('entury-('rofts. New York. 1969.

Lemma 4 There is a finite sequence of perspectire and [s] J. Harris. .4Agebraic G(ometry. .4 First ('ourse.
scaled orthographic iewus of the plane. taken by a call- Springer-Verlag. Graduate Texts in Mathematics.,
brated came ra. for any given projectire transformation 1992.
of the plane. [9] R. Hartley, R. Gupta, and T. ('hang. Stereo from

Proof: The proof follows and modifies [7, pp. 179]. We uncalibrated cameras. In Proce(dings IEEE" ('onil
are given a plane a and a projective transformation T. on Cornputer Vision and Pattern Recognition. pages
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If 7' is not affine. then there exists a line u in a that [10] T.S. Huang and C.11. Lee. Motion and struc-
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three non-collinear points which are not on u. and let tions on Pattern Analysis and Machine Intelhgence, *
their image under T be .'. B'.C. Take a perspective PAMI-11:536-540, 1989.
view onto a plane n' such that u has no image in n' (the solid
plane (' is rotated around the new ('OP such that the [III D.P. Huttenlocher and S. Ulman. Recognizi mig

plane passing through the COP and u is parallel to a'). objects by alignment with an image. International
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