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ABSTRACT

A method for segmenting synthetic aperture radar (SAR) images has been

developed to operate primarily in the frequency domain. It is based on and was tested

against a similar method which involves isolating information of the frequency-domain

image that defines unique textural features within a class. The comparison involved

classifying four simple vegetation SAR scenes with both segmentation methods. A

statistical test was then performed against the null hypothesis that the new textural

segmentation method is as accurate or more accurate than the original method based on

random pixel classification results. All tests concluded that the texture extraction methods

are not statistically different. Both methods were implemented on a mainframe computer

and are computationally intensive, but the new method may be implemented optically more

easily.
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1.0 INTRODUCTION

Significant research has centered on texture and its value in scene classification of

visiP-le and multispectral imagery. Less research has been accomplished in scene

classification of synthetic aperture radar (SAR) imagery. Primarily as a result of

technology advances in SAR and in mainframe computer capability, it is only recently that

SAR imagery has been studied as extensively as have other forms of imagery.

Since the late 1970's, many studies have been conducted of scene classification of

SAR imagery. Some attempted to use traditional texture-based features in the classification

process while a smaller number attempted to use frequency-based features. William

Stromberg and Tom Farr (1986) developed a frequency-based method in which annuli are

used as bandpass filters to isolate dominant textures. After the bandpass filter, the

absolute value operator and lowpass filter are used in succession to obtain an image of

those frequencies. This requires two pairs of Fourier transforms; the method is effective

yet cumbersome. The study that introduced this method (hereafter referred to as the

Stromberg method) was primarily theoretical, however it has been used to classify both

computer-generated and real SAR imagery.

Based on the work of Stromberg and Farr, Roger Easton and Jim Warnick

developed a texture extraction method that also involves frequency isolation. This method

(hereinafter called the Easton method) windows the transformed image to isolate the same

modulating frequencies that the Stromberg method isolates. However in some cases,

Easton's technique requires only one transform into and out of the frequency domain which

can lead to easier implementation Rather than compute the absolute value followed by a

lowpass filter to isolate the modulating frequencies as Stromberg does, this procedure

accomplishes the same thing by segmenting windows within the annulus that Stromberg
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used. The window is then centered and inverse transformed where the magnitude or

squared magnitude is computed. If more than one window is necessary to isolate the

desired frequencies, each is processed individually and the results summed to create the

segmented image. Although this procedure can be more intensive than the Stromberg

procedure if many segments are used, it has potential optical implementation because it

requires only linear processing, unlike the Stromberg method.

The goal of this study is to implement and compare these two algorithms using

SAR imagery obtained from the Lincoln Laboratories of Massachusetts Institute of

Technology (MIT). Since this research breaks new ground, the objectives are basic. Both

methods for texture extraction were used to classify four simple SAR scenes containing

basic textural regions. Little effort was expended to understand or eliminate image noise.

The accuracy of classification was calculated in both cases based on common training areas

and common independent polygons. A final random-pixel classification accuracy analysis

was performed to statistically compare the effectiveness of each method for classifying the

images. A statistical test of hypothesis was performed to test whether Stromberg's method

is better than Easton's method. An implementation comparison is made as well as a general

assessment of the optical application of the Easton method.
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2.0 BACKGROUND

2.1 Digital Imagery

Throughout this work, the word image implies a digital image. Formally, a digital

image can be defined as "a numerical representation of an object (which may itself be an

image)" (Castleman, 1979) It is made up of a set of picture elements, called pixels, which

are the smallest spatial unit of an image. Each pixel has an assigned gray level which is

typically an integer in the range from zero to some maximum (e.g. 31,63, or 255)

depending on the number of bits available. Zero is usually defined as black and the

maximum integer is usually white. These pixels are normally arranged in rectangular

raster. The original images used in this research have 512 x 512 = 262,144 pixels, where

each is assigned a gray level in the range 0 - 255. The image can be processed for

enhancement, information gathering, or classification. The resolution of the image is based

on the distance on the ground that each pixel covers. The images used in this study have a

resolution of 0.3 meters (1 foot) in both directions. For a large area to be imaged by a

system with this resolution, many pixels are required. "In remote sensing the number of

pixels per image is quite large, on the order of tens of millions, and consequently affects

every aspect of image acquisition, processing, display and storage. Only the continuing

improvements in digital electronics and computer hardware and software have made

possible the routine processing of such large amounts of data." (Schowengerdt, 1983)
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2.2 Image Classification

Classification is the process of separating an image into basic parts, or classes.

Some typical classes are water, urban, forest, and grass. In this study, each pixel is

assigned a class based on statistics computed as a result of supervised training. Since an

image can contain a variety of classes, the classes identified within a scene are unique. The

available classes in an image can also be dependent on the imaging platform, since one

scanner may differentiate classes better than another. Unlike image enhancement in which

the image is manipulated te be more visually acceptable for an analyst, classification

separates the different classes and "assigns the decision-making process to the computer."

(Schowengerdt, 1983) This can add clear advantages in speed and consistency to functions

such as mapping large areas.
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2.3.1 General Definition

Synthetic Aperture Radar (SAR) is an active imaging system which can produce

high-resolution imagery. SAR systems are airborne or spacebome. Like conventional

radar, it is active because it must generate the energy used to produce the imagery.

2.3.2 Radar

Radar is an acronym for radio detection and ranging. It is a system that emits

microwave energy that reflects from objects and is recorded upon its return. The strength

of the return can help determine size, orientation, and material of the object. By measuring

the total transmit time, the distance from the object can be calculated. Therefore, one can

determine whether an object is within the field of view of the radar antenna (detection) and

its precise distance (ranging). Radar systems have many uses and sizes. Some are not

used for imaging, such as Doppler radar, but rather are used for determining velocities of

automobiles or baseballs. Another kind is called planned position indicator radar (PPI). It

is commonly used for weather and aircraft location in a large area (Lillesand,1987). The

resolution of radar is determined by the size of the antenna. The larger the antenna, the

better the resolution. The resolution R is governed by the relationship:

R - D (2-1)

Here, X refers to the wavelength of the radar system and D refers to its antenna diameter.
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2.3.3 Synthetic Aperture

Based on these radar principles, airborne and spaceborne systems would require an

extremely large antenna in order to achieve high resolution. SAR systems make high

resolution practical by using a synthetic aperture. A small radar antenna is carried on the

aircraft or spacecraft that is moving at a known velocity with respect to the ground. The

antenna "illuminates" a large area on the ground. As the platform moves, the radar "sees"

the reflectors from different perspectives. The imaging area is to the side, typically at an

azimuth of 30 degrees or more. The SAR system continually sends and receives signals as

the platform moves. These continuous returns from points along the flight path are

integrated to create an image. The size of the synthetic aperture is equal to the distance

travelled while an object is "illuminated" by the transmitted signal. For example, an aircraft

travelling at 150 miles per hour (ground speed) covers 220 feet per second. An extremely

short image acquisition time of one second provides the equivalent antenna size of 220 feet.

Clearly a 220 ft. antenna is unreasonable to fly on board an aircraft or a satellite. As a

result, high resolutions (such as 0.3 meters in this study) can only be achieved from a SAR

system.

However, a SAR system is much more complicated than traditional imaging

systems. The range and azimuth data must be received and recorded continuously while

the system is imaging. Then it is usually processed on a mainframe computer to generate

the imagery. Because of advances in computing, the large quantity of data may be

processed more easily than in the past and thus SAR images can be produced and studied

more readily. However, the imagery is different than the aerial photographs we are

accustomed to seeing.
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2.3.4 SAR Imagery

SAR imagery is produced by deriving accurate range and angle (or azimuth)

information from the microwaves that are transmitted and received. Not only does this

provide for a complex system, the imagery is unique in many ways. (Toomay, 1982)

For instance:

- Since Doppler shifts are often used to measure azimuth, a moving object will

be displaced from its true location on an image.

- Regardless of the angle at which the imagery is acquired, the image appears to

have been "taken" directly from overhead or nearly so.

- Because of the nature of radar, SAR images can be acquired at any time of day

in almost any weather.

- Brightness does not necessarily relate to a bright object as viewed by the

human eye, but can be due to the material of the object or its orientation

relative to the antenna.

Because electromagnetic radiation may reflect specularly or diffusely from different

objects on the ground depending on material and orientation, the brightness of the object in

the SAR image will vary with azimuth angle.(Lillesand and Kiefer, 1987) A stronger

return will generate a brighter area on an image. Figure 2-1 shows the influence of different

types of reflectors on the image. Because orientation of the object relative to the antenna is

important, a low grazing angle may yield very little return from a diffuse reflector, while a

high grazing angle to a spectral reflector may return a very high signal.
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SPECTRAL DIFFUSE , CORNER
REFLECTOR REFLECTOR REFLECTOR

Figure 2-1 Radar Reflection from Different Surfaces

Lillesand and Kiefer (1987) state that high returns can result from objects with

slopes facing the antenna, objects with high moisture content, metal objects, or urban areas

with buildings that resemble comer reflectors Variation in texture in an area will often

resemble the diffuse reflector. Little or no return is received from flat areas such as calm

water or pavement.

2.3.5 Polarization

SAR imagery are also affected by the polarization of the transmitted and received

modulation. Polarization refers to the orientation of the waves as they are sent and received

by the radar antenna. Typically the signals are oriented either horizontally (H) or vertically

(V). As a result, there are four possible send/receive combinations; HH, HV, VH, and

VV, where the letters refer to wave orientation when transmitted and received, respectively.

Different orientations will reflect radar signals better from different objects (Lillesand and

Kiefer, 1987). Since this research uses an equal combination of all polarizations, an

explanation of the distinctive properties is unnecessary.
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2.4 TEXTURE

2.4.1 General Definition

The Random House College Dictionary defines te.xtre as "the characteristic

physical structure given to a material by the size, shape, density, arrangement, and

proportions of its elementary parts." (Stein, 1980) In image processing circles, texture is

defined as "some local property of an image, i.e. a measure of the relationship between the

pixels in a neighborhood." (Schowengerdt, 1983) It is this definition of texture that is

commonly used in image classification.

Haralick et al.(1973) refers to three basic features of color or multispectral imagery:

spectral, textural, and contextual. Spectral features are the tonal variations between

different spectral bands of an image. Spectral features have been successfully used with

textural features for image classification in many studies. However, because this study

uses only SAR imagery at one wavelength, spectral features are not relevant. Contextual

features are based on the surroundings of the area under study. One example of a

contextual feature in an aerial image is that a school is usually surrounded by grass and

usually has a playing field contained within a running track near bleachers. These features

are usually large (covering many pixels in an image), however, and they are often difficult

to quantify for computer analysis. The textural features of an image contain information

about spectral tone variation and spatial arrangement which can be quantified and have been

widely studied for image classification. Haralick et al. (1973) refers to texture as being

"extremely refractory to precise definition and to analysis by digital computers." Textures

therefore can contain useful information to discriminate between different areas of an

image.
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2.4.2 Texture Characterization

In her study of classification using textural features, Rosenblum (1990) ceviews the

common ways to characterize texture. The study actually used four methods:

1. Co-occurence statistics - These count the number of equally valued pixels that are

located in specific orientations from one another in a quantized image. The number of

different co-occurence features depends on window size.

2. First-order statistics - The texture is described by the mean(g±) and standard

deviation (a) of the brightness values within the window of the measurement.

3. Run-length statistics - This is the measure of the number of pixels of a given gray

level that are oriented in a certain direction. For example, when analyzing a corn field

one would find more of the same brightness levels along the direction of the rows than

across the rows.

4. Edgeness measure - This is a filter which detects differences in brightness. A

Roberts gradient or any derivative operator will perform this function. A window

containing a consistent smooth texture such as water would yield little or no gray value

while an urban area or rough texture would result in a large number.

The four categories of texture characterizations account for 46 of the 49 features

used in the feature optimization software that Rosenblum helped develop. A list of all 49

can be found in Appendix A. The last three are spectral bands which do not apply to the

SAR imagery.
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2.4.3 Image Classification Using Textural Features

Haralick et al.(1973) used textural features to classify three different kinds of

imagery. He achieved classification accuracy of 89% in photomicrographs of different

sandstone categories, 82% in aerial photographs, and 83% in satellite imagery. While he

used spectral bands to classify images where applicable, he found that the highest accuracy

was obtained by including the textural features. Specifically, the angular second moment,

the entropy, the sum entropy, the difference entropy, the information measure of

correlation, and the maximal-correlation features proved to be the most suitable for further

study.

Haralick's study was among the first of many that used texture to better classify

imagery by computerized methods. Later in the 1970's and 1980's, SAR imagery was

increasingly used to study the value of textural features in classification. For example,

Ulaby et al. (1986) studied texture in SAR images by using first-order and second-order

statistics as features to classify rural Seasat and SIR-A (Shuttle Imaging Radar) SAR

images. Maximum likelihood classification was used for five classes: water, forest,

pasture, urban, and cultivated. Up to 72% accuracy was obtained with the first-order

statistics and 88% with the second-order statistics on the Seasat images. The accuracy

went up to 75% and 93% when applying the same techniques to forested regions with five

classes of forest types. The resolutions of the images in Ulaby's study varied and image

noise was treated as statistically independent of the textural variations of the target classes.

Frequency-based features began to emerge as an addition to traditional textural

features in the 1980's. Different textures often have different frequency-space

characteristics. As a result, different textures are distinguishable and can be used for image

classification. As in this study, the Fast Fourier transform (FF1) is often used to convert

11



an image from the spatial domain to the frequency domain. Summaries of past research

efforts in this area are presented in the next section. These studies provide much of the

background for this work which evaluates two of the newer frequency-based feature

extraction methods.

12



2.5 CLASSIFICATION OF SAR IMAGES USING FREOUENCY-BASED

TEXTURAL FEATURES

Many groups studied texture in synthetic aperture radar (SAR) imagery as it became

more available. Some problems exist due to the difference in interpreting SAR imagery

relative to visible images, the large amount of image noise often existing in the images, and

the lack of images because there are few collection systems. Most work with SAR imagery

has been carried out in the last decade.

Burl et al. (1989) studied texture discrimination of high-resolution SAR imagery

(0.3m x 0.3m) to distinguish between man-made objects and ground clutter. The three

features used include: fractal dimension, log standard deviation, and ranked fill ratio.

These features were found to "show promise" for the intended discrimination. Only the

HH polarization was used and it was manipulated to the single-polarimetric-channel

IHHV2, the squared modulus. Nothing was done to reduce image noise and while the

results of the feature calculations were tabulated, the discrimination was subjective.

Bums and Lyzenga (1984) found that texture was useful for classifying sea ice

imagery. They did not correct for speckle noise and yet found a variety of textural features

to be valuable for classifying SAR images. These include: digital Fourier transforms,

spatial gray-level co-occurrence probabilities, statistics of local properties, and

autoregressive models. The authors were optimistic about using these features for scene

classification, however no quantitative results were reported nor were the features

compared. They stated that "little work has been done to determine the optimum technique

for a given application."

Holecz et al. applied four different textural features to SAR images of terrestrial

regions. Although this study involved geocoding the images and speckle investigation, the

13



images were classified with and without manipulation. The four textural features applied

are: the Spatial Gray Level Dependence Method (SGLDM), the Gray Level Run-Length

Method (GLRLM), the Gray Level Difference Method (GLDM), and the power spectrum

method (PSM). Of interest here are the results comparing PSM, a frequency-based feature

similar to a Fourier transform, and the three spatial domain features. This study showed

the dominance of SGLDM in classifying the images of countryside in Switzerland. PSM

ranked lowest because the window size used was 7 x 7, the writers postulated. They

suggested the window should be larger when using the digital Fourier transform (DFT)

thinking that a larger window size would provide more useful information.

All of these methods classified SAR images with some success. Few new

approaches were taken that have not been attempted on other types of imagery. However,

a body of knowledge was built which allows others to better understand and classify SAR

imagery and potentially other types as well. In addition to these studies, one other

promising technique that has not been rigorously tested on actual SAR imagery is explained

in the next section.
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2.6 STROMBERG METHOD

William Stromberg and Tom Farr (1986) proposed a procedure for extracting

textural features which they applied to SAR images. For ease of reference, it has been

called the Stromberg method. The method filters the Fourier transform with annular rings

to isolate frequencies that correspond to a given texture within an image. That texture can

be used to distinguish from other classes which have different textures. This method was

validated by using different synthetic images and SIR-A images of Belize (Central

America), a tropical and heavily vegetated area.

Stromberg's method of classification involves isolating a modulation function

which will be used to characterize the texture of interest. The modulation function is the

dominant texture (or frequencies) in the class of interest. One assumption is that different

classes of an image contain different textures and therefore contain different frequency

characteristics (modulation functions). To isolate the modulation function of a texture,

Stromberg proposes a method with eight steps performed in succession. They are:

1. Compute the Fourier transform of the image,
2. bandpass filter the result using an annulus in the frequency domain,

3. compute the inverse Fourier transform,

4. compute the absolute value,

5. Compute the Fourier transform,

6. lowpass filter the result,

7. compute the inverse Fourier transform (frequency to spatial domain)

8. Apply a box filter to the result. (averaging operation used to eliminate noise

and rough edges)

This procedure will isolate a unique modulation function and its neighboring

frequencies for the window of interest. These isolated functions are processed and the

resulting frequency band images are then used together to sepa'atc the textures in the

15



classification process because each texture contains unique contributions from each of the

frequency band images. Stromberg's examples will be used to explain the steps, first in

one dimension.

First, co(x) is the space-domain representation of a "key" Fourier component of the

texture at frequency 03o with period To= 2c/too. Since Fourier components are complex

valued, co(x) is defined as an equivalent real-valued function generated from the sum of

two Fourier components at equal positive and negative frequencies. In this example, co(x)

= cos ((oox). Subsequently, the Fourier transform, of this cosine is the sum of delta

functions at ± +

Co(Oo) = ] [8((o - Coo) + 8(0o + (0o)] (2-2)

Since it is the key component of the Fourier transform, its amplitude varies

throughout the image via the modulation function m(x). This is the function isolated in the

procedure.

Id(x) = m(x) co(o) = m(x) cos(WO0x) (2-3)

Multiplication in the spatial domain is equivalent to convolution in the frequency

domain. As a result, the Fourier transform of d(x), D((O), is in the equation 2-4, where

M(co) denotes the Fourier transform of the modulation function m(x) and "*" denotes

convolution.

D(0)) = M(c)) * • [8()- COo) + 8(0) + (00)] (2-4)
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From the sifting property of a delta function under convolution, D((O) consists of

M(o) replicated at ± wo. Figure 2-2(c) and (d) shows an example of d(x) and D(o).

D(o) = M(co - (0o) + M(Q) + co) (2-5)

Once again, the goal of this method is to isolate the modulation function m(x) which

will be used tk, distinguish textures. Stromberg separates m(x) from d(x) by first

computing the inverse Fourier transform. He then computes the absolute value of d(x) in

the space domain and lowpass filters the result in the frequency domain. Computation of

the absolute value of d(x) replicates the modulation transform M(0O) at odd multiples of (00.

To extract m(x), only the component at the origin of the frequency domain need be isolated.

This is accomplished by an ideal lowpass filter which passes all information at (0! 10 )03 and

rejects all else. Figure 2-2 shows the one-dimensional method that Stromberg uses to base

his method of texture extraction for SAR image classification.

Figure 2-2(a) shows a raised cosine wave which might be a modulation function.

Figure 2-2(b) shows the Fourier transform of (a), a delta function at the origin. Figure 2-

2(c) shows a cosine wave multiplied by (or modulated by) the modulation function of Fig.

2-2(a). Like the equation above, the higher-frequency cosine takes the form of co(x) =

cos (o0x). In the Figure 2-2, "w" is the same as "oO". Figure 2-2(d) is D(03), the Fourier

transform of d(x) = m(x) co(x) = m(x)cos(o30x). This function would be bandpass filtered

to isolate desired modulations in step 2 (above). In this idealized case, the one-dimensional

bandpass filter operates is a pair of rectangle functions, while the corresponding function in

two dimensions is an annulus. To isolate the modulation function, Stromberg applies the

absolute value operator to the function of Figure 2-2(c) which results in Figure 2-2(e). The

Fourier transform of Figure 2-2(e) yields Figure 2-2(f) which shows in the one-
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dimensional case the modulation function replicated at odd multiples of (). This can be

filtered to isolate only the central region of the result by lowpass filtering (step 6) to get

Figure 2-2(g), still in the frequency domain. It is transformed back to the space domain via

the inverse Fourier transform and a function which resembles the original modulation

function is the result, Figure 2-2(h).

The theory is then extended to two dimensions and eventually to real imagery. To

do so, some assumptions are made. Unlike the example shown above, texture is seldom

characterized by discrete non-overlapping peaks in the frequency domain. Therefore, the

assumption is made that the effect of one frequency component on another decreases as the

separation between the two increases. Additionally, the effect of one textural component

on another becomes insignificant beyond a narrow range of spatial frequency. Based on

experience, Stromberg defines the "narrow range" as 6% of the Nyquist frequency. He

uses the central peak of a sinc function as a weighting function to separate potential

modulation functions.

18



0 0
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(g) Lowpass Filter of (f) above (h) Reproduction of m(x) from
inverse FFT of (g)

Figure 2-2 One dimensional demonstration of Stromberg et al. (1986) textural feature
extraction procedure.
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Directional dependence is also a consideration. In one dimension, a sinusoid reacts

differently than in two dimensions. A textural feature image formed from a Fourier texture

metric will not respond identically when the space-domain image is rotated as compared to

the result if it is not rotated because the frequency-domain changes as well. The two-

dimensional Fourier transform result is rotated if a textural orientation is rotated in the space

domain. This can result from an airborne platform simply flying a different heading over

the same land. Since imagery may have all variations of directionality with respect to land

textures, directional independence is desirable for an image classification procedure. As a

result, Stromberg introduces the textural component that lies in a ring centered at the origin

of the Fourier transform, commonly called an annulus. Eventually, he applies more than

one annulus to a Fourier representation depending on the number of textural components

that exist. Figure 2-3 illustrates an example which has 4 annuli.

"11

Figure 2-3 Four Annuli of a Two-Dimensional Fourier Transform.
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Stromberg then applied his method to synthetic imagery. This was performed to

verify three assumptions:

1) a two-dimensional key component bears the appearance of a single

frequency;

2) the modulation of a key component is predictable, exhibiting variation

which corresponds to the relative contribution of the key component to the

local texture;

3) the modulation function is recoverable through absolute value and lowpass

filtering operations.

Each annulus used to bandpass filter the image produces its own feature image. Together,

these textural feature images are used to classify the original image. In addition, two other

products are used: a classification map and a set of textural signatures.

These two products are cited as examples of uses for textural features. The

classification map is a means to qualitatively discriminate regions of unique texture by

viewing each of the images in the process. The original image, the intermediate filter band

images, and resultant classification images are all displayed in order to visually inspect the

process and the results. The textural signatures can be used to quantitatively assess each

textural class. Figure 2-4 is E e-Kanple of a signature from one of the textures Stromberg

tested.
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Figure 2-4 Example of a textural signature obtained from textural feature bands.

A class is described by a signature which is derived from the mean value of each

textural feature band (corresponding to a single annulus) as a percentage of the average

contribution over all classes. Each textural signature represents the unique set of

contributions from the entire set of pass bands to that class. Figure 2-4 shows an example

of five bands contributing to one class. Another class will yield different contributions

from the same five bands, and still another class will yield a third combination. Stromberg

computes the percentage (on the Y-axis) such that one band averages 100% over all of the

classes. In addition, all five bands may not average 100% for one class as is the case in

Figure 2-4 and is the case for most classes. For example, one class may have a very low

contribution from all of the bands while another may have very high contributions from all

five bands. Each combination of contributions is unique.

Because of the practical results of the Fourier transform, an adaptive normalization

was used to maintain dynamic range. Stromberg needed to boost the high-frequency bands

so that those contributions could compare to the more powerful low-frequency bands.
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To discriminate between regions of uniform texture, Stromberg uses a general

purpose unsupervised clustering algorithm designed for some other applications not

specified. Class statistics are computed for each image sample of a given class using first-

order and second-order statistics. The Euclidean distance of each N-dimensional image

sample from the existing texture is compared to a threshold distance d. If the distance is

smaller than d to any texture class, the sample is assigned to that class. If not within a

distance d of a cluster, it is assigned as a new cluster. Stromberg adjusted d until only five

classes remained after performing this technique. Then he passed the statistics to a Bayes

classifier for image sample classification.

When applied to synthetic imagery, Stromberg achieved 97.6% classification

accuracy with this method. The 2.4% of samples which were misclassified appear on the

borders between classes.

Stromberg then generated synthetic imagery modelled from transforms of geologic

imagery. He added Gaussian noise from a random noise generator in the frequency

domain which had the effect of adding artificial texture to the imagery in the spatial domain.

The annuli used for this imagery had the same mean frequency, but half the width. He

used an unsupervised classifier and increasing the threshold distance d until five classes

were distinguishable. The same Bayes classifier was used to discriminate at the pixel level.

As expected, the classification accuracy decreased to 89.9%. The errors were primarily in

the fifth class which corresponds to the highest frequencies. As before, the majority of the

errors were near class boundaries.

In its final test, Stromberg applied the method to real SAR imagery. The images

were obtained from the Shuttle Imaging Radar-A (SIR-A). The area was a heavily

vegetated region of Belize, a Central American country on the Caribbean Sea which borders

Mexico and Guatemala. The images were used to investigate the slope and topographic
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information of SAR imagery of a jungle area. Here, the slope and topography are used as

the texture to be discriminated in Stromberg's classification method. No quantitative

results were given for this test. However, it is noted that the classification image bears

"close resemblance" to the actual geologic map of the area.

Figure 2-5 shows another example of the Stromberg Method in one dimension.

Unlike the first example in Figure 2-2, this example shows the different frequencies

overlapping in the frequency domain representation (b). The isolated square wave is in the

center of the other two (a). Some of the same characteristics exist in this example as in the

first. The process finally locates the position of the original selected square wave, but it is

not precise. In this case, the "blurry" affect is a result of using a very narrow bandpass

filter H[4] in (c). If one uses a wider filter, the location in the output (g) will be more

pronounced, or less "blurred".

Figure 2-6 shows the result of Stromberg's method when applied to a 64 x 64

synthetic image. Note that a frequency may be present in more than one quadrant of the

image. In this case, the annulus isolates the frequencies that are present in three of the

quadrants (none is present in the lower right quadrant). The output image was obtained

from a single annulus and could be used as one input into the ERDAS classification routine

along with other annulus images and the original magnitude image.
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Figure 2-5: I-D Example of Stromberg's Method
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Figure 2-6 TEXTURE ANALYSIS USING STROMBERG'S METHOD

26



2.7 EASTON METHOD

Although the Stromberg method has been tested on synthetic images and on real

SAR images on a limited basis, it is computationally intensive. Four Fourier transforms

must be computed to isolate the modulation function that is used to find a texture within the

image. An effort was made to simplify the Stromberg method and decrease the number of

computations.

Dr. Roger Easton has created a method for feature extraction in the frequency

domain that is similar to the Stromberg method. For ease of reference this has been called

the Easton method. The main difference between the two methods is that the Easton

method requires fewer Fourier transforms and it avoids the nonlinear absolute value

operator.

To review, the Stromberg method isolates a frequency component by using the

bandpass filter, the absolute value operator, and the lowpass filter to isolate unique

modulating frequencies that will distinguish one textural region from others. More

specifically, the Stromberg method involves applying an annulus (2) to bandpass filter the

Fourier transformed image (1). It is inverse transformed (3) and the absolute value

operator (4) is applied so that the modulation function can be more easily isolated by

lowpass filtering (6) the transformed (5) image. The inverse transform (7) shows the area

of the original image where the isolated frequency existed. This is the desired result for

image classification. The box filter (8) is applied to remove some of the undesirable noise

that remains through the entire process.

The Easton method does not require the second and third Fourier transforms (steps

3 and 5) because it isolates the modulation function differently in the frequency domain

after the first Fourier transform. Instead of applying a complete annulus, a window is used
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to isolate frequencies that lie within the annulus. A number of windows may be used

within a given annulus, depending on the dominant frequencies identified. The effect of

Stromberg's absoiute value and lowpass filter is accomplished by translating windows of

the annulus to the center of the image and inverse transforming, one by one. The

magnitudes of the outputs for each window are summed after each frequency window is

inverse transformed. The magnitude is computed separately from other windows so that

phase information is not cancelled during the summation. In this manner, the positional

information is preserved which locates the isolated frequencies in the spatial domain. The

summation of these images produced from windowed frequencies is very similar to the

annulus image created in step 7 of Stromberg's method.

The total area of the windows will not exceed and often will be much less than the

total annular area since useless areas are not added. It is expected that some parts of a

given annulus are more useful than others for achieving the desired classification results.

This can be determined based on the gray levels within the annulus and is not investigated

in this study. Each window of a given annulus should be roughly the same size,

depending on the frequencies isolated. Higher-frequency annuli will require larger

windows because a larger area is needed to isolate a given frequency return at higher

frequencies. The total number of steps for this new texture extraction method is determined

by the number of windows chosen since each is treated individually. The Easton method

does not require the use of annuli to distinguish or to isolate strong frequency returns.

However, since it is essential to this study for comparison to the Stromberg method, it is

incorporated in the original theory. The steps for the Easton method are:
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1. Compute the Fourier transform of an image,

2. isolate a window at a location in the frequency domain with a bright return,

3. translate the window to the center of the frequency domain,

4. compute the inverse Fourier transform,

5. calculate the magnitude of the resulting space-domain image,

6. add to other space-domain images derived from that annular region.

7. Choose another window if necessary. (go to step 2)

8. Box filter the resulting annular image if necessary.

The Easton method has been tested on synthetic images. Figure 2-6 shows an

example. The box filter was not applied since it is more applicable to noisy images. This

illustrates the simplest result of a single window used to isolate one frequency. Notice that

a window is isolated and then is used as the cente of the new frequency image.

Unless the entire annulus is windowed, this method does not offer the directional

independence that is a characteristic of the Stromberg method. Howevei, effective window

selection could overcome that shortfall if the imagery has some directional dependence.

Both the Easton method and the Stromberg method were tested on SAR imagery by

comparing classification results. Both methods were modified slightly in order to facilitate

implementation and to keep the comparison fair.
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3.0 APPROACH

3.1 Image Background

The SAR images were obtained by RITs DIRS laboratory from MITs Lincoln

Labs. The imaging platform was developed under a Defense Advanced Research Projects

Agency (DARPA) sponsored Advanced Detection Technology (ADT) program. ADT uses

a high resolution (0.3m by 0.3m), fully polarimetric, synthetic aperture radar (SAR) that

operates at a center frequency of 33.56 GHz. It was built by Loral Systems and was flown

in a Gulfstream G-1 aircraft for acquisition of the images used in this study. The images

were acquired on the morning of 25 May 1989 over Stockbridge, New York.

3.2 Image Preparation

Once the SAR image data was copied to VAX disc, each image was converted from

its compressed 884 format (explained in Appendix E) to complex format. Each scene

consists of four polarizations: WH, HV, VH, and VV. An image was created for each one

by computing the magnitude of the complex data at each pixel. The equation for the HH

polarization follows where i and j are row and column values:

Mag(HH)i] = j REAL(HH)1 j + IMAGINARY(HH)i. (3-1)

The different polarizations for each image were then combined to form a single 512 x 2048

image. In this case, the magnitude images were combined by using the geometric mean in

order to minimize noise as simply as possible. The equation follows:
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i22 2 2..jMag(HH)j Mag(HV)ii + Mag(VH)i, + Mag(VV)1 1

MagiJ = 4 (3-2)

The images were then converted to 8-bit digital data for display and ease of

computer time and space.

The 512 x 512 images were extracted from these 512 x 2048 images by visually

inspecting the equalized image to find a region of sufficient clarity and definition. Since the

objective of this research involves performing initial classification tests on these SAR

images, the clearest areas of simple context were chosen. The images contain classes of

grassy areas, forested areas, shadows from the trees, and some small roads.

The images chosen for this study will be referenced based on the nomenclature used

by Lincoln Labs. Of 16 scenes, four are from Mission 85 Pass 5 (Frames 27, 28, 29, and

30) and twelve are from Mission 90 Pass 5 (Frames 0 - 11). For ease of reference, the

names of all images are based on the frame numbers listed above. Unless otherwise stated,

the name also refers to the 512 x 512 image cut from the original 512 x 2048 image. The

four selected are images 4, 9, 28, and 29. The equalized images are shown in Figures 3-1

to 3-4. The images (after equalizing the histograms) are shown because they are more

visually pleasing than the original combined magnitude images.

Images 4 and 28 were chosen because they are the most basic. Each has three

obvious classes to distinguish: grass, trees, and shadows. Images 9 and 29 also contain

roads along with the other three classes in order to further test the robustness of the

Stromberg and Easton methods.
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3.3 Image Peparation with the Strombera Method

The procedure used to create the annular images using the Stromberg method

followed closely that outlined in section 2.6 with only minor deviations. Because of the

amount of noise in the imagery, selection of annuli was difficult. The original intent was to

select annuli based on dominant frequencies which would be used to classify the image.

However, the FFT outputs of the images looked very uniform and the magnitudes

decreased with increased radial distance from image center as expected. Since no dominant

frequencies were distinguishable, ten annular rings were chosen which covered the entire

frequency domain image (512 x 512). Not all were used to classify the images. Section

3.5 explains the procedure for selecting annuli. The annular ring dimensions are shown in

Table 3-1 and in Figure 3-5.

These radii were chosen to equalize the power within the annuli. As a result, the

annular width steadily increases toward higher frequencies. The inner radius of Annulus 1

is 5 pixels in order to eliminate the lowest frequencies, including the DC, which were

thought to be meaningless in this study of texture. The tenth annulus ten was added to

analyze the frequencies from the comers of the transformed image.
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Figure 3-5 Illustration of Annular Ring Dimensions

Table 3-1 Annular Ring Dimensions

ANNULUS # WIDThi RADIAL BOUNDARIES FREQUENCIES (4)
(pixels) (pixels) (cycles/pixel)

1 5 5-10 .01-.02
2 10 10-20 .02-.04

3 15 20-35 .04-.07
4 20 35-55 .07-. 11
5 25 55-80 .11-.16
6 30 80-110 .16-.21
7 35 110-145 .21-.28
8 50 145-195 .28-.38
9 60 195-255 .38-.50
10 105 255-360 .50,.70
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Rather than use a binary lowpass filter, which would cause "ringing" (small

oscillations near edges) in the space-domain image, a Butterworth lowpass filter was used.

Similarly, a Butterworth bandpass filter was used instead of the binary annulus. The

equation for the magnitude of the N" order Butterworth lowpass filter is:

=(ý 1 (3-3)

where 4co is the nominal cutoff frequency at which the amplitude drops to 11-T2-. Also, the

fall off of the function increases as the order N increases (Oppenheim, 1975) as Figure 3-6

illustrates.

1.0-

I H (4) I

0.5

N==4

0.0
0 C

Figure 3.6 Dependence of Butterworth Lowpass Filter Magnitude on the Order N.

37



Testing was performed on a uniformly gray image to select the order for both of the

Butterworth filters. The filter shape resembles a Gaussian in its slope and it does not

extend far beyond the annular ring cutoff. The cutoff frequency used for each lowpass

filter was the outermost frequency of that annulus, listed in Table 3-1. Order N = 5 was

chosen for the lowpass filter because it is sufficiently steep at the highest frequencies

needed for the high-frequency annular images, yet it did not fail during computation. In the

case of annulus 9, the lowpass filter encompassed nearly the entire frequency-based image

in order to capture the modulation function created by the annular ring.

Similar testing was performed for the Butterworth bandpass filter. Order N--4

was chosen because it was the highest order that could be used to calculate all of the annuli.

The two-dimensional bandpass filter is created by computing the difference of two lowpass

filters with different cutoff frequencies. The Butterworth bandpass filter extends slightly

farther outside the annulus than inside, just as is the case for a difference of Gaussian

filters.

Because both filters in the frequency domain were Butterworth functions, it was

decided that the box filter was not necessary. The slow fall off in the frequency domain

was considered to be equivalent to space domain averaging. The result was that time was

saved by eliminating a step.

The Stromberg procedure used in this study consisted of the following steps:

1. Compute the Fourier transform of the image,
2. apply the bandpass filter in the frequency domain using the Butterworth

annulus,
3. compute the inverse Fourier transform (return to the space domain),
4. compute the absolute value,
5. compute the Fourie. transform (now in the frequency domain),
6. apply the lowpass filter,
7. compute the inverse Fourier transform of the result. (frequency to spatial

domain)
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3.4 Image Preparation with the Easton Method

Two deviations were made from the original theory in implementing the Easton

method of texture extraction from section 2.7: the summation of the windows in the

frequency domain and the selection and shape of the filters used.

Since the information is duplicated every 180" in the frequency domain, only half of

an annulus is useful. And because the frequency representation of the SAR images are

quite uniform, it is apparent that all segments of a half-annulus should be incorporated into

the procedure for this initial study. Rather than dividing a given annulus into its component

squares, it was advantageous to partition the Butterworth-filtered annulus used in the

Stromberg method into six pie-shaped sections. In this manner, the Gaussian shape on

two of the four sides would minimize some of the potential ringing and a given pixel in the

frequency domain would not be included in more than one window. Figure 3-6 shows the

windows used. After isolating each annulus, the window was centered and inverse

transformed. The magnitudes of each of the six images were then summed in the space

domain to create the feature band image corresponding to that annulus. Figure 3-7 shows

window #1 of the frequency domain just before the inverse transform.

Figure 3-6 Example of Annulus Windows used in the Easton Method
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Figure 3-7 Example of a Centered Window of an Annulus

Since the same Butterworth function is used in both methods, there is no need to

apply the box filter to average the images. The procedure used in this study consists of

these steps:

1. Compute the Fourier transform of the image,
2. bandpass filter in the frequency domain using the Butterworth filter function

to create an annulus,

3. isolate one of the six slices of the half annulus,

4. center that window in a new image,

5. compute the inverse Fourier Transform,

6. compute the magnitude of the image,
7. add to the other images from that annulus in the space domain,

8. go to step 3 until all segments have been used.
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3.5 Analysis of the Texture Extraction Methods

The focus of this research is a comparison of the Stromberg and Easton texture

extraction procedures on the SAR images.

3.5.1 Annulus Selection

In section 3.3, the rationale for selecting the set of annuli was discussed. Table 3-1

and Figure 3-5 show the specific dimensions for each of the ten annuli. However,the

number of bands which may be used by the classification software is limited. As a result,

only five of the ten annuli were chosen as input bands, along with the original 512 x 512

SAR image, to make a total of six bands. The same frequency bands were used to classify

the images using both texture extraction methods.

To assist in selection of annuli, the correlation matrices for all bands were calculated

using the principle component function in the ERDAS package software to derive

variance/covariance matrices. Correlation coefficients were then calculated for the origini'

image and the first nine annular feature images by the equation:

COV[xRy] (- 1.0 1.0) (3-4)
Pxy VAR[x] VARGy] - y I 3-

when x and y represent any two of the ten image bands.

The correlation coefficients for the annuli of both texture extraction methods for the

four images in this study are included in Appendix D. The goal was to select a set of annuli

with a reasonable variation of frequencies and that minimized correlation coefficients. The

latter restriction ensures that the maximum information content is available for the
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classification process. If two bands are very highly correlated (p - ±1.0) , then the second

band adds little new information to the process.

Not surprisingly, analysis of the correlation matrices shows that the highest

correlation for a given annulus exists in neighboring annuli. With this in consideration,

annuli 1,3,5,7,and 9 were chosen to test the classification accuracy of the Stromberg and

Easton texture extraction methods.

3.5.2 Image Classification

The four images in this study were classified using the Gaussian Maximum

Likelihood (GML) classifier in the ERDAS software package. Basic classes were

identified as grass, trees, and shadows on all four images. Two images (numbers 4 and

29) also contain a road, which is the fourth class. To perform the supervised training of

each image, dependent polygons were chosen which accurately represent the texture within

a class. In all cases, at least two polygons of significant size (350 pixels to 2000+ pixels)

were chosen for each class. Class statistics were then calculated in ERDAS to allow pixel-

by-pixel classification. Results within a class were then merged to create final class maps.

3.5.3 Classification Accuracy using Independent Polygons

After creating the class statistics and class maps for the entire image, new

"independent" polygons were chosen from each image to test the classification maps.

Consistent with the use of the dependent polygons, the same set of independent polygons

was used for both the Easton and Stromberg feature extraction methods for a given image.

These independent polygons were chosen in similar fashion to the dependent polygons, but
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no pixels were in common between the two sets in order to accurately test the classifier.

All polygons were chosen from the equalized images (shown in Figures 3-1 to 3-4).

Overall classification accuracy was calculated by weighing the individual class accuracies

by the class area within the image. This was obtained during the creation of the class map.

3.5.4 Classification Accuracy using Random Pixels

Classification tests with independent polygon only determine the classification

success within the polygons. A more rigorous test was performed by choosing pixels at

random for classification. This test used the RANDCAT function within ERDAS and is

performed by the operator who makes a visual decision of the class to which each pixel

belongs. The ERDAS software weights the number of pixels in each class based on the

class map, in similar fashion to the weighting of overall independent polygon classification

accuracy for each image. While this random pixel method is more tedious than other tests

of classification accuracy, it does measure the success of the classification over the entire

image. However, it is sometimes difficult for the operator to classify a pixel. In such

cases, the pixel was not used. Fewer than 10% of the pixels in a given test did not belong

to a distinguishable class.

3.5.5 Statistical Comparison

To accurately compare the two texture extraction methods, the random pixel

classification results were used in a statistical test. A test of proportions (Dougherty, 1990)

was used to test the null hypothesis that the Easton method of texture extraction is as good

as (or better than) the Stromberg method. The test of this hypothesis is set up as follows:
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H0 : PE- PS -Ž 0 (Easton's method is as good or better than the Stromberg's)

Hi : PE - Ps < 0 (Easton's method is not as good as Stromberg's)

a = 0.05

Zcrit = ZO-0.05 = -1.645
A A

test statistic: Z PE- Ps

(A ) (1+ +

HO: the null hypothesis

HI " the alternative hypothesis

a : alpha risk - the probability of concluding HI when H0 is true
A (05

PE: Easton method classification accuracy (0• PE < 1.0)
A 0:

Ps: Stromberg method classification accuracy ( 0 <P 1.0)
Ap • pooled estimate of p is the weighted average of the individual estimators

A A

A n , ns
•=EPE nPS A=1-

nE +ns q

nE : number of samples in the test to obtain A

ns : number of samples in the test to obtain Ps

In this case, the proportions are the classification accuracies. A proportion is

described as the number of pixels correctly classified divided by the total number of pixels

classified. Since not all pixels are sampled in the test, p. and PS are considered estimates of

the population proportions PE and ps (the true classification accuracies of the two methods

over the entire image). This test is valid only if the sample size is "large" enough to assume

normality so that the Central Limit Theorem may apply. Opinions about the appropriate

sample size vary. In these tests, the samples (nE and ns) contain 100 pixels which is

sufficient to assume normality.
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3.5.6 Implementation Comparisoa

Since all of this research used computer systems and software packages, a general

comparison of the implementation of both the Easton and the Stromberg texture extraction

methods has been performed based on the software and hardware used. In addition, an

assessment was made of possible optical implementations.
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4.0 RESULTS

4.1 Overview of the Stromberg and Easton Methods

Visual analysis of intermediate steps of each texture extraction procedure, leads to

results which differ from predictions, possibly because of image noise. Theoretically, a

region (class) will produce brighter returns in some annular images than in others because

classes are comprised of a unique variety of frequencies. The brightness will be greater if

some of the frequencies are prevalent in the annulus of interest. Conversely, the pixels will

be darker in that region of the space-domain bandpass-filtered image where few or none of

the frequencies that make up a class have been isolated in the annulus. Addition of textural

classes containing different frequencies provides for many different combinations of

brightnesses when considering the entire set of annular feature images. The GML classifier

can accurately segment the image based on those consistent variations.

Because of the presence of image noise, this theory of texture extraction as

explained was not demonstrated for visual inspection. Figures 4-1, 4-2, and 4-3 show

images obtained after most steps of both the Stromberg and Easton methods. Each shows

image formation for annulus #7 (Table 3-1) which includes the band of frequencies (ý) in

the range of 0.21 to 0.28 cycles per pixel. One can see that the greatest brightness in each

image occurs in the tree regions and the least brightness in the shadow regions, much like

the original image. Figures 4-4 and 4-5 show each image used to classify Image 9 by both

methods. Although the dynamic range of these images was maximized for display

purposes, the relative brightnesses of each class are very similar from one annulus image to

the next. This will result if the image noise also varies with brightness.
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(a)

(b) (c)

Figure 4-1 Initial Steps in the Formation of an Annulus Image (from Image 9)
by the Stromberg and Easton Methods

(a). Original Image 9 (equalized)
(b). FFT of Original Image (c). Annulus 7 of FFT
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(d) (e)

Figure 4-2 Final Steps in the Formation of an Annulus Image (from Image 9)
by the Stromberg Method

(d) Magnitude of Inverse FFT of Annulus 7
(e) FFT of (d)
(f) Low-pass Filter of (e)
(g) Inverse FFT of (f) - Final Annulus 7 Image
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(d) (e)

S(f) (g)

Figure 4-3 Final Steps in the Formation of an Annulus Image (from Image 9)
by the Easton Method

(d). Window of Annulus 7 (e). Centered Window of Annulus 7
(f). Magnitude Inverse FFT of (e) (g). Summation of Window Images (f)

(Final Annulus 7 Image)
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(a) (b)

(c) (d)

(e) (

Fi. re 4-4 Final Annulus Images Created from Image 9 using the Stromberg Method
--------------------------------------------------------------------

(a) Original Image 9 (b) Annulus 1 Image
(c) Annulus 3 Image (d) Annulus 5 Image
(e) Annulus 7 Image (f) Annulus 9 Image
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(a) (b)

IrQ

(c) (d)

(e) (1)

Figure 4-5 Final Annulus Images Created from Image 9 using the Easton Method

(a) Original Image 9 (b) Annulus 1 Image
(c) Annulus 3 Image (d) Annulus 5 Image
(e) Annulus 7 Image (f) Annulus 9 Image
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The frequency representation of Image 9 shows that noise is present at all

frequencies. It is difficult to pick out bright features at any frequency [Figure 4-1 (b)]. In

addition, the noise appears to be directly correlated with brightness. In this manner, the

brightest region (the trees), contains more amplitudes of all frequencies and is therefore

brighter in each annular image, shown in Figures 4-4 and 4-5.

Analysis of different regions of one of the images backed the observation that the

noise is multiplicative. Class regions were isolated to test this observation. The space

domain region of trees had a higher mean and higher standard deviation than did grass or

shadow. FFTs of each region were also analyzed. They showed that the tree area had the

highest mean pixel level (after ignoring the DC value) meaning more of all frequencies

present. Predictably, grass was next highest and shadows were last.

While this seems to dominate the display of the images, it does not necessarily

dominate the classification. The noise may not totally overwhelm image information at the

frequencies that should be isolated by each annulus. It is possible that the frequencies

dominant in each texture class bias the noise frequency characteristics enough that the

classification process can continue to detect differences. For instance, while the trees are

brighter than other classes in two annulus images, they may be comparatively brighter in

one because many underlying frequencies present in the trees were isolated in that annulus

and not the other. While these changes may not be visibly detectable, the GML

classification process should distinguish the differences. The results of the classification

indicate reasonable success after considering the amount of noise present in the imagery.
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4.2 Independent Polygon Classification Results

Independent polygon classification was explained in section 3.5.3. Table 4-1

shows the summary of those tests. Appendix B shows a more complete summary of the

same results. The overall accuracy (in bold) is the most common result used for

comparison. Overall accuracy is an estimate of the classification accuracy for that method

over the entire image. Though often computed by averaging the individual class

accuracies, the overall accuracy in this study is computed by weighting class accuracies by

the individual class proportions of the entire image. While class weights are derived from

the imprecise classification routine, the results are clearly better in this case than would be

obtained by simply averaging weights of classes which do not contain approximately equal

areas.

Figure 4-6 shows the classification maps of Image 9 and the original Image 9. In

the classification maps, the classes are portrayed as different gray levels. From these

results both methods classified Image 9 generally well. However, the accuracies listed in

Table 4-1 are quite high and can be misleading without more information about how the

numbers were derived. These classification accuracies significantly depend on the location

of the independent polygons. Though chosen in similar fashion to the dependent polygons

used for the training set, the overall accuracy can nevertheless vary for different texture

extraction methods even though the same polygons are used for both methods. If the

polygons were chosen in areas that were classified well by that method, the accuracy will

be higher than if not.

Figure 4-7 displays the Image 4 class maps and the original Image 4 for

comparison. The accuracy of both methods decreases with the addition of the road class

(Images 4 and 29). The results for both the class maps and the numeric results reinforce
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that conclusion. It is clear from Figure 4-7 that the Stromberg method classifies better with

the addition of the road class. However a firm statistical conclusion cannot be made from

the independent polygon statistics. In this study, only the random pixel classification will

be used for the final statistical judgement

Table 4-1

Summary of Independent Polygon Classification Results (percentages)

IMAGE METHOD GRASS TREE SHADOW ROAD OVERALL

4 Stromberg 99.9 100.0 96.1 24.5 86.1

4 Easton 86.6 100.0 81.4 37.1 79.9

9 Stromberg 99.7 100.0 99.8 ---- 99.8

9 Easton 100.0 100.0 100.0 .... 100.0

28 Stromberg 93.2 97.7 99.1 ---- 96.1

28 Easton 100.0 100.0 100.0 ---- 100.0

29 Stromberg 99.0 97.9 73.9 63.5 87.6

29 Easton 93.6 99.4 55.5 39.2 78.1

* PERCENTAGE CLASSIFICATION AREA OF IMAGE (used for ovcrall accuracy)

4 56 19 7 18

9 58 25 17 --

28 42 35 23 --

29 37 25 23 15

* based on average of areas from the class maps of each method for an image
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(a)

(b) (c)

Figure 4-6 Classification Maps of Image 9 Compared to Original Image 9

-......................................................--------------------------.......

(a) Original Image 9
(b) Stromberg Method Class Map (c) Easton Method Class Map
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(a)

(b) (C)

Figure 4-7 Classification Maps of Image 4 Compared to Original Image 4

(a) Original Image 4

(b) Stromberg Method Class Map (c) Easton Method Class Map
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4.3 Random Pixel Classification Results

The process of random pixel classification was explained in Section 3.5.4. Table

4-2 outlines the results and a complete tabulation is given in Appendix C.

As explained above, random pixel classification is a better test of overall accuracy

for a classification technique because it does not exclude areas of the image from testing,

while the independent classification accuracy includes only thosez pixels inside the chosen

polygon. The ERDAS software selects pixels randomly from throughout in the image and

allows the human operator to determine the true class for each pixel if possible. The human

selection process may result in some error, but random pixel classification is a very

unbiased method to estimate overall classification accuracy and therefore useful for a

statistical hypothesis test.

The results show somewhat less success than the independent polygon results,

mainly because of the pixel sampling previously explained. Again, the images with road

present performs worse than those without. While the individual class success is

reasonable for roads in image Image 4 and 29, it is based on fewer pixels and does not

directly affect the overall accuracy as do the other classes because of its weight. However,

the indirect affect that roads have on classification success is more significant. The

classification accuracy of grass decreases considerably with the addition of the road class.

Success of the classification of grass ranges from 65.3% to 78.1% with roads and 84.2%

to 100.0% without roads in the image.

The overall accuracies were then used in a statistical test of proportions. They

clearly show that the Stromberg method is not better than the Easton method of feature

extraction. Table 4-3 shows the specific test and the results for each of the four images in

this test.
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Table 4-2
Summary of Random Pixel Classification Results

(percentages)

IMAGE METHOD GRASS TREE SHADOW ROAD OVERALL
4 Stromberg 78.1 66.7 47.6 66.7 71.0
4 Easton 76.1 75.0 25.0 80.0 66.0

9 Stromberg 100.0 79.2 38.2 ---- 74.0

9 Easton 93.2 48.0 64.5 ---- 73.0

28 Stromberg 84.2 87.5 65.8 ---- 78.0

28 Easton 86.7 86.2 61.0 .... 76.0

29 Stromberg 69.6 82.6 46.2 80.0 67.0
29 Easton 65.3 77.3 78.6 100.0 72.0

* PERCENTAGE TOTAL CLASSIFICATION MAP (used for overall accuracy weights)

4 Stromberg 73 3 21 3 100.0
4 Easton 67 8 20 5 100.0

9 Stromberg 42 24 34 -- 100.0

9 Easton 44 25 31 -- 100.0

28 Stromberg 38 24 38 -- 100.0

28 Easton 30 29 41 -- 100.0

29 Stromberg 46 23 26 5 100.0

29 Easton 49 22 28 1 100.0

* based on computer generated weights used in pixel selection
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4.4 Statistical Test Results from the Random Pixel Classification

Table 4-3

Hypothesis Test of Proportions on Random Pixel Classification Results

H0 : PE - PS > 0 (Easton's method is as good or better than Stromberg's)

Hi: PE - PS < 0 (Easton's method is not as good as Stromberg's)

a = 0.05

Zcrit = Za;__.05 = -1-645
A A

test statistic: Z - PE- PS

(P-) (4 +1

PE: Easton method classification accuracy (0PE -< 1.0)

A A
Ps: S.romberg method classification accuracy ( P0 < 1.0)
A
p pooled estimate of p is the weighted average of the individual estimatorsA A

An EPE+nSP PS A -Ap n E + ns q
n=m sA

n = 100 number of samples in the test to obtain PE
ns= 100 number of samples in the test to obtain P

S.....................................................................................................

IMAGE Ps PE Z DECISION *

4 0.71 0.66 -0.76 1o Not Reject the Null Hypothesis (H0 )

9 0.74 0.73 -0.16 Do Not Reject the Null Hypothesis (H0 )

28 0.78 0.76 -0.34 Do Not Reject the Null Hypothesis (H0 )

29 0.67 0.72 +0.65 Do Not Reject the Null Hypothesis (H0 )

* Decision based on comparison of Z statistic to the critical Z value (Zcrit) = -1.645

Reject H 0 if and only if Z!5 -1.645.
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4.5 Digital Implementation Comparison

Both the Stromberg and Easton texture extraction methods were implemented and

tested on the VAX 4000 computer system. Both methods are computationally intensive

primarily because of the FFT of 512 x 512 images. Since they are so similar, the only way

to compare the computation of the two methods is by time required.

The Stromberg method requires four FFT operations and two Butterworth

operations per annulus image. The total for five annulus images is 20 FFT operations and

10 Butterworth filter operations.

The Easton procedure originally involved fewer steps than its later versions.

Additional time was required when combining selected frequency windows was found to

be advantageous in the space domain, after computing the magnitude. This was to avoid

the possibility that phase information could be lost when frequency windows are translated

and summed or when space domain images are summed before the magnitude is computed.

As a result, one forward transform, one Butterworth filter, and six inverse FFTs are

required to produce images from six segments of one annulus. The total for producing 5

annulus images is 35 FF17 operations and 5 Butterworth filter operations, although a

smaller FFT operation could be used depending on segment (window) size.

While the Easton method involves 5 fewer Butterworth filter operations, it is more

time consuming as a result of 15 more FF17 operations if done on full frames. Both

procedures required similar computation times of about 15 seconds. Therefore the totals

can be pooled to conclude that the Easton method requires 10 more filter/transform

operations to produce 5 annulus images than the Stromberg method requires. Based on

unscientific testing during this research, that translates to 2 minutes and 30 seconds total

time or roughly 30 seconds per annulus image advantage for the Stromberg method.
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5.0 CONCLUSIONS

A procedure for Fourier-based textural feature extraction has been introduced and

implemented in this study. It has been tested against the older Stromberg method. Both

methods rely on the theory that regions of an image can be segmented based on texture

differences and that these differences can be revealed by isolating the underlying frequency

components of each texture. Both procedures isolate these frequencies by bandpass

filtering in the Fourier domain. The Stromberg method uses the absolute value operator in

the space domain followed by a lowpass filter in the frequency domain to produce an

annulus image. The set of bandpass-filtered images is used for classification. The Easton

method avoids the second transform into the frequency domain by isolating windows

within the annulus (pass band). Each window is centered, inverse transformed, and the

magnitude is computed. The images from each segment are summed to create the

bandpass-filtered images.

The two methods were implemented and tested on the same four simple synthetic

aperture radar (SAR) images. Two contain only grass, trees, and shadow classes while the

other two add a road class. The goal of the research was to demonstrate both techniques on

basic SAR images and to test if the Stromberg method is better than the Easton method

based on those tests.

Based on the statistical results, it is clear that both texture extraction methods

performed reasonably well. Both methods yielded accuracies from 66% to 72% on the

images that contain road classes, and 73% to 78% on the images without road classes. All

four statistical hypothesis tests concluded that the Stromberg method cannot be considered

better than the Easton method with alpha risk equal to 0.05 based on a random sample size

of 100 from each image.
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This study was developed to show that classification of SAR imagery with the

Stromberg and Easton methods can be implemented on digital computers with a reasonable

processing time. Little effort was made to filter the image noise prevalent in the SAR

imagery. The two methods were tested against each other statistically and an assessment

was made on each concerning their computer implementations. Recommendations on any

potential optical implementations are included in section 6.0.
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6.0 RECOMMENDATIONS

This study had very general objectives since it was intended to test a new concept

that has not been tested on real SAR imagery. As a result, it leaves unanswered questions

which can be topics of further study.

The affects of image noise were ignored in this study, but might be the limiting

factor to significant improvement of either the Stromberg or Easton texture extraction

methods in classifying SAR imagery. It is difficult to determine the extent to which noise

affected the testing even though analysis showed the noise to be multiplicative. However,

it is reasonable to conclude that classification accuracy was decreased significantly because

of noise. Since noise seems to be so prevalent in SAR imagery, more research should

address the general problem. A relatively noise-free panchromatic image was classified

using both methods implemented in this study. Results from the training data show equally

good success compared to the SAR imagery, although the image scale differed.

A different method for selection of pass bands could be used. If image noise is

treated similarly to its treatment in this study, more testing could lead to conclusions about

the relative importance of different annuli. Individual annuli can be examined more closely

for underlying frequency changes within the noise.

Window selection in the Easton method is also an area for possible improvement.

In this study, each half annulus was segmented into six windows. Any reduction in the

number of windows eliminates one inverse transform, one magnitude calculation, and one

summation. Obviously, there is a time incentive to minimize the required number of

segments in a passband to accurately isolate the desired frequencies. It would be

interesting to examine the image obtained from each segment for differences. One could

then analyze different summations of the six segments. There are only 15 combinations of

segment pairs, 20 combinations of three, and another 15 additional sets of four.
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It would be very interesting to create 512 x 512 synthetic SAR images to test these

methods. Noise could be added if needed to test a theory but could be more easily

eliminated if so desired. In this way, threshold testing could lead to an automated method

of annulus selection that could be implemented on the real imagery.

Some of these same synthetic images, and eventually real SAR images, could also

be segmented optically using the theories implemented digitally. The Stromberg textural

feature extraction method is difficult to implement optically because of the absolute value

operation. This is a nonlinear process that can only be simulated in an optical system by

square law detection with a detector array or photographic film.

The Easton textural feature extraction method can be performed optically much

more simply because it requires only three optical processes and no intermediate square law

detection. The system requires a Fourier transform, an amplitude filter, and an inverse

Fourier transform. The filter can be implemented optically by using either a binary

transparency or a liquid crystal light valve. The size of the system is roughly four focal

lengths. The output image is inverted because of the nature of the Fourier optics. The

feature images thus generated could be produced much more quickly than the computer

processed imagery. The output may be digitized, stored, and digitally combined.

In addition, the digital implementation could eliminate the centering of the window.

Since the magnitude is used in the space domain (like intensity in the optical

implementation), the window centering is unnecessary in the Easton method. Appendix F

shows an example. The result is the same as that shown in Figure 2-7. This would save

time and it would more accurately simulate the optical implementation.
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APPENDIX A.

FEATURES LIST
(Rosenblum, 1990)

Feature # Feature.Name
Co-occurrence Features
1 1. Angular second moment average

2. Angular second moment range
2 3. Contrast average

4. Contrast range
3 5. Correlation average

6. Correlation range

4 7. Variance average
8. Variance range

5 9. Inverse difference moments average
10. Inverse difference moments range

6 11. Sum average average
12. Sum average range

7 13. Sum variance average
14. Sum variance range

8 15. Sum entropy average
16. Sum entropy range

9 17. Entropy average

18. Entropy range
10 19. Difference entropy average

20. Difference entropy range
11 21. Information measure of correlation A average

22. Information measure of correlation A range
23. Information measure of correlation B average
24. Information measure of correlation B range

12 25. Difference variance average
26. Difference variance range

13 27. Maximum probability average
28. Maximum probability range
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Group Fetr # etr A

First-Order Statistics Features

14 29. Gradient

15 30. Mean Brightness

31. Variance

32. Brightness

Run Length Statistics Features

16 33. Short run emphasis average

34. Short run emphasis range

35. Long run emphasis average

36. Long run emphasis range

37. Gray level non-uniformity average

38. Gray level non-uniformity range
39. Run length non-uniformity average

40. Run length non-uniformity range
41. Fraction of image in runs average

42. Fraction of image in runs range

Gray Level Difference Statistics Features

17 43. Contrast

44. Angular second moment

45. Entropy

46. Mean

Spectral Information (not used in this study)

18 47. Red Spectral Film Band

48. Green Spectral Film Band
49. Blue Spectral Film Band
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APPENDIX B.

INDEPENDENT POLYGON CLASSIFICATION

IMAGE 4 - STROMBERG METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOMA ROAD

GRASS 4919 99.9% 0 0.0% 16 0.9% 785 68.7%

TREE 0 0.0%/a 1618 100.0% 2 0.1% 10 0.9%

SHADOW 3 0.1% 0 0.0% 1661 96.1% 67 5.9%

ROAD 0 0.0% 0 0.0%0 50t 2.9% 280 24.5%

TOTAL 4922 1618 1729 1142

OVERALL ACCURACY 86.1%

IMAGE 4 - EASTON METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADO" ROAD

GRASS 4261 86.6% 0 0.0% 154 8.9% 683 59.8%

TREE 0 0.0% 1618 100.0% 26 1.5% 0 0.0%

SHADOW 0 0.0% 0 0.0% 1407 81.4% 35 3.1%

ROAD 661 13.4% 0 0.0% 142 8.2% 424 37.1%

TOTAL 4922 1618 1729 1142

OVERALL ACCURACY 79.9%

NOTE: ACCURACY BASED ON WEIGHTS DERIVED FROM THE AVERAGE OF
CLASS MAP AREAS FOR EACH CLASS FROM BOTH EASTON AND
STROMBERG METHODS. THEY ARE:

I GRASS I TREE ISHADOWl ROAD
0.56 1 0.19 1 0.07 1 0.18
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INDEPENDENT POLYGON CLASSIFICATION

IMAGE 9- STROMBERG METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW

GRASS 2771 99.7%0 0 0.0% 6 0.2%

TREE 0 0.0% 1131 100.0% 0 0.0%

SHADOW 9 0.3% 0 0.0% 2410 99.8%

TOTAL 2780 1131 2416

OVERALL ACCURACY 99.8%

IMAGE 9- EASTON METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW

GRASS 2780 100.0% 0 0.0% 0 0.0%/0

TREE 0 0.0% 1131 100.0% 0 0.0%

SHADOW 0 0.0% 0 0.0% 2416 100.0%

TOTAL 2780 1131 2416

OVERALL ACCURACY 100.0%

NOTE: ACCURACY BASED ON WEIGHTS DERIVED FROM THE AVERAGE OF
CLASS MAP AREAS FOR EACH CLASS FROM BOTH EASTON AND
STROMBERG METHODS. THEY ARE:

IGRASSI TREE ISHADOWI
o0.58 0.25 1 0.17
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INDEPENNDENT POLYGON CLASSIFICATION

IMAGE 28 - STROMBERG METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW

GRASS 4296 93.2% 53 2.3% 43 0.8%

TREE 307 6.70/6 2236 97.7% 7 0.1%

SHADOW 8 0.2% 0 0.0% 5219 99.1%

TOTAL 4611 2289 5269

OVERALL ACCURACY 96.1%

IMAGE 28 - EASTON METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW

GRASS 4611 100.0% 0 0.0%/0 0 0.0%

TREE 0 0.0% 2289 100.0% 0 0.0%

SHADOW 0 0.0% 0 0.0% 5269 100.0%

TOTAL 4611 2289 5269

OVERALL ACCURACY 100.0%

NOTE: ACCURACY BASED ON WEIGHTS DERIVED FROM THE AVERAGE OF
CLASS MAP AREAS FOR EACH CLASS FROM BOTH EASTON AND
STROMBERG METHODS. THEY ARE:

GRASS TREE SHADOW
0.42 0.35 0.23
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INDEPENDENT pOLYGON CLASSIFICATION

IMAGE 29 - STROMBERG METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW ROAD

GRASS 4473 99.0% 39 2.(0/o 214 9.3% 350 36.2%

TREE 0 0.0% 1898 97.9% 376 16.4% 2 0.20/

SHADOW 1 0.0%0 0 0.0% 1695 73.9% 1 0.1%

ROAD 46 1.0% 1 0.1% 8 0.4% 614 63.5%

TOTAL 4520 1938 2293 967

OVERALL ACCURACY 87.6%

IMAGE 29 - EASTON METHOD

CLASSIFIED TRUTH
AS: GRASS TREE SHADOW ROAD

GRASS 4231 93.6% 0 0.0% 985 43.0% 588 60.8%

TREE 0 0.0% 1927 99.4% 0 0.0% 0 0.0%

SHADOW 40 0.9% 11 0.6% 1273 55.5% 0 0.0%

ROAD 249 5.5% 0 0.0% 35 1.5% 379 39.2%

TOTAL 4520 1938 2293 967

OVERALL ACCURACY 78.1%

NOTE: ACCURACY BASED ON WEIGHTS DERIVED FROM THE AVERAGE OF
CLASS MAP AREAS FOR EACH CLASS FROM BOTH EASTON AND
STROMBERG METHODS. THEY ARE:

I GRASS I TREE 1SHADOWI OA
0.37 j0.25 0.23 0.15
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APPENDIX C.

RANDOM PIXEL CLASSIFICATION

IMAGE 4 - STROMBERG METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW ROAD

GRASS 57 78.1% 1 33.3% 2 9.5% 1 33.3%

TREE 4 5.5% 2 66.7% 6 28.6% 0 0.0%

SHADOW 0 0.0% 0 0.0% 1 0 47.6% 0 0.0%

ROAD 12 16.4% 0 0.0% 3 14.3% 2 66.7%

TOTAL 73 3 21 3

OVERALL ACCURACY 71.0%

IMAGE 4 - EASTON METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW ROAD

GRASS 51 76.1% 0 0.0% 4 20.0% 1 20.0%

TREE 6 9.0% 6 75.0% 1 0 50.0% 0 0.0%

SHADOW 0 0.0% 0 0.0% 5 25.0% 0 0.0%

ROAD 1 0 14.9% 2 25.0% 1 5.0% 4 80.0%

TOTAL 67 8 20 5

OVERALL ACCURACY 66.0%
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RANDOM PIXEL CLASSIFICATION

IMAGE 9 - STROMBERG METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW

GRASS 42 100.0% 5 20.8% 5 14.7%

TREE 0 0.0% 19 79.2% 16 47.1%

SHADOW 0 0.0% 0 0.0% 1 3 38.2%

TOTAL 42 24 34

OVERALL ACCURACY 74.0%

IMAGE 9 - EASTON METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW

GRASS 4 1 93.2% 11 44.0% 1 0 32.3%

TREE 3 6.8% 12 48.0% 1 3.2%

SHADOW 0 0.0% 2 8.0% 20 64.5%

TOTAL 44 25 31

OVERALL ACCURACY 73.0%
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RANDOM PIXEL CLASSIFICATION

IMAGE 28 - STROMBERG METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW

GRASS 32 84.2% 3 12.5% 8 21.1%

TREE 6 15.8% 21 87.5% 5 13.2%

SHADOW 0 0.0% 0 0.0% 25 65.8%

TOTAL 38 24 38

OVERALL ACCURACY 78.0%

IMAGE 28 - EASTON METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW
GRASS 26 86.7%/* 4 1 '.8% 9 22.0%

TREE 4 13.3% 25 86.2% 7 17.1%

SHADOW 0 0.0% 0 0.0% 25 61.0%

TOTAL 30 29 41

OVERALL ACCURACY 7 6.0%
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RANDOM PIXEL CLASSIFICATION

IMAGE 29 - STROMBERG METHOD

CLASSIFIED TRUTH
DATA GRASS TREE SHADOW ROAD

GRASS 32 69.6% 3 13.0% 5 19.2% 1 20.0%

TREE 5 10.9% 19 82.6% 6 23.1% 0 0.0%

SHADOW 3 6.5% 0 0.0% 1 2 46.2% 0 0.0%

ROAD 6 13.0% 1 4.3% 3 11.5% 4 80.0%

TOTAL 46 23 26 5

OVERALL ACCURACY 67.0%

IMAGE 29 - EASTON METHOD

CLASSIFIED .TRUTH
DATA GRASS TREE SHADOW ROAD

GRASS 32 65.3% 1 4.5% 4 14.3% 0 0.0%

TREE 2 4.1% 1 7 77.3% 1 3.6% 0 0.0%

SHADOW 5 10.2% 3 13.6% 22 78.6% 0 0.0%

ROAD 10 20.4% 1 4.5% 1 3.6% 1 100.0%

TOTAL 49 22 28 1

OVERALL ACCURACY 72.0%
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APPENDIX D.

CORRELATION COEFFICIENT MATRICES

IMAGE 4 - STROMBERG METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.72
3 0.52 0.64
4 0.45 0.49 0.55
5 0.38 0.43 0.46 0.56
6 0.31 0.39 0.42 0.50 0.55
7 0.29 0.35 0.39 0.46 0.51 0.54
8 0.27 0.33 0.36 0.43 0.48 0.50 0.52
9 0.22 0.28 0.29 0.35 0.39 0.40 0.41 0.44
10 0.23 0.30 0.33 0.42 0.49 0.54 0.57 0.59 0.49

IMAGE 4 - EASTON METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.84
3 0.70 0.83
4 0.57 0.68 0.74
5 0.44 0.58 0.65 0.77
6 0.34 0.48 0.57 0.70 0.78
7 0.31 0.44 0.51 0.66 0.75 0.78
8 0.28 0.42 0.49 0.64 0.73 0.78 0.79
9 0.27 0.41 0.47 0.62 0.69 0.73 0.77 0.81
10 0.14 0.24 0.30 0.44 0.52 0.58 0.62 0.66 0.65

BAND DESCRIPTION
1 annulus 1 radius = 5- 10 pixels from center of FFT
2 annulus 2 radius = 10- 20 pixels from center of FFT
3 annulus 3 radius = 20- 35 pixels from center of FFT
4 annulus 4 radius = 35- 55 pixels from center of FFT
5 annulus 5 radius = 55- 80 pixels from center of FFT
6 annulus 6 radius = 80-110 pixels from center of FFT
7 annulus 7 radius = 110-145 pixels from center of FFT
8 annulus 8 radius = 145-195 pixels from center of FFT
9 annulus 9 radius = 195-255 pixels from center of FFT
10 original image 4
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CORRELATION COEFFICIENT MATRICES

IMAGE 9 - STROMBERG METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.51
3 0.39 0.62
4 0.36 0.52 0.60
5 0.31 0.46 0.53 0.60
6 0.29 0.43 0.49 0.55 0.60
7 0.27 0.40 0.46 0.54 0.57 0.61
8 0.25 0.36 0.42 0.51 0.54 0.55 0.58
9 0.21 0.30 0.34 0.41 0.44 0.45 0.46 0.49
10 0.19 0.29 0.35 0.46 0.52 0.57 0.60 0.62 0.53

IMAGE 9 - EASTON METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.62
3 0.54 0.80
4 0.47 0.71 0.80
5 0.41 0.63 0.70 0.79
6 0.36 0.55 0.65 0.75 0.81
7 0.32 0.51 0.60 0.72 0.79 0.83
8 0.29 0.45 0.55 0.68 0.76 0.80 0.82
9 0.28 0.43 0.52 0.64 0.73 0.78 0.79 0.83
10 0.13 0.22 0.30 0.41 0.51 0.57 0.60 0.65 0.65

BAND DESCRIPTION
1 annulus 1 radius = 5- 10 pixels from center of FFT
2 annulus 2 radius 10- 20 pixels from center of FFT
3 annulus 3 radius 20- 35 pixels from center of FFT
4 annulus 4 radius = 35- 55 pixels from center of FFT
5 annulus 5 radius = 55- 80 pixels from center of FFT
6 annulus 6 radius = 80-110 pixels from center of FFT
7 annulus 7 radius = 110-145 pixels from center of FFT
8 annulus 8 radius = 145-195 pixels from center of FFT
9 annulus 9 radius = 195-255 pixels from center of FFT
10 original image 9
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CORRELATION COEFFICIENT MATRICES

IMAGE 28 - STROMBERG METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.44
3 0.37 0.57
4 0.30 0.49 0.56
5 0.24 0.42 0.51 0.58
6 0.22 0.40 0.49 0.56 0.58
7 0.22 0.39 0.49 0.55 0.56 0.59
8 0.19 0.35 0.45 0.51 0.53 0.54 0.55
9 0.16 0.30 0.38 0.42 0.43 0.43 0.43 0.44
10 0.19 0.35 0.45 0.52 0.55 0.58 0.59 0.60 0.49

IMAGE 28 - EASTON METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.62
3 0.53 0.78
4 0.43 0.67 0.77
5 0.36 0.59 0.72 0.82
6 0.32 0.54 0.67 0.78 0.82
7 0.31 0.52 0.67 0.78 0.80 0.84
8 0.28 0.49 0.64 0.75 0.79 0.81 0.82
9 0.28 0.49 0.63 0.73 0.77 0.78 0.79 0.81
10 0.20 0.36 0.47 0.57 0.61 0.64 0.65 0.67 0.67

BAND DESCRIPTION
1 annulus 1 radius = 5- 10 pixels from center of FFT
2 annulus 2 radius = 10- 20 pixels from center of FFT
3 annulus 3 radius = 20- 35 pixels from center of FFT
4 annulus 4 radius = 35- 55 pixels from center of FFT
5 annulus 5 radius = 55- 80 pixels from center of FFT
6 annulus 6 radius = 80-110 pixels from center of FFT
7 annulus 7 radius = 110-145 pixels from center of FFT
8 annulus 8 radius = 145-195 pixels from center of FFT
9 annulus 9 radius = 195-255 pixels from center of FFT
1 0 original image 28
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CORRELATION COEFFIRCIENT MATRICES

IMAGE 29 - STROMBERG METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.47
3 0.33 0.39
4 0.27 0.33 0.42
5 0.28 0.34 0.41 0.45
6 0.26 0.30 0.38 0.43 0.50
7 0.25 0.29 0.36 0.42 0.46 0.49
8 0.23 0.27 0.34 0.37 0.43 0.45 0.45
9 0.19 0.22 0.25 0.28 0.32 0.33 0.34 0.35
10 0.23 0.26 0.31 0.39 0.45 0.49 0.51 0.52 0.41

IMAGE 29 - EASTON METHOD

BAND 1 2 3 4 5 6 7 8 9 10
1
2 0.72
3 0.59 0.60
4 0.43 0.49 0.69
5 0.43 0.50 0.64 0.71
6 0.40 0.47 0.62 0.68 0.77
7 0.37 0.44 0.59 0.66 0.73 0.75
8 0.36 0.44 0.56 0.63 0.71 0.74 0.75
9 0.34 0.42 0.53 0.60 0.66 0.69 0.71 0.73
10 0.21 0.25 0.34 0.41 0.47 0.50 0.51 0.55 0.50

BAND DESCRIPTION
1 annulus 1 radius = 5- 10 pixels from center of FFT
2 annulus 2 radius = 10- 20 pixels from center of FFT
3 annulus 3 radius = 20- 35 pixels from center of FFT
4 annulus 4 radius = 35- 55 pixels from center of FFT
5 annulus 5 radius = 55- 80 pixels from center of FFT
6 annulus 6 radius = 80-110 pixels from center of FFT
7 annulus 7 radius = 110-145 pixels from center of FFT
8 annulus 8 radius = 145-195 pixels from center of FFT
9 annulus 9 radius = 195-255 pixels from center of FFT
1 0 original image 29
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APPENDIX E

8-8-4 SAR DATA FORMAT

This appendix contains "Data Conversion Between ADT Image Formation Processor and

VAX Computer", ADT Project Memorandum No. 47PM-ADT-0053, 10 November 1986

by T. J. Morin.(Bessette etal., 1991)
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This document will describe the compressed data format that the Advanced
Detection Technology (ADT) project has adopted as a standard for the turntable
database and the subroutines that perform the conversion between the com-
pressed format and the VAX format. The format, referred to as. "8-8-4", allows
a complex number to be represented with an 8-bit in-phase mantissa, an 8-bit
quadrature mantissa and a common 4-bit exponent.

The decision to adopt the 8-8-4 format as the ADT standard was made for
several reasons: The ADT Image Formation Processor (IFP) operates on data in
this format, and compatibility between the turntable database data format and
IFP images is desired. This format also provides for an efficient method for
storing large amounts of calibrated radar data. The amount of space needed to
store the data in 8-8-4 format (3 bytes per complex sample) is only 37% of the
amount needed if it were stored in VAX format (COt4PLEX*8).

A VAX complex number is represented as two normalized single precision
floating point numbers whose bit layout is shown in figure 1. Each 4 byte
number has an 8 bit excess 128 exponent in bits 7 to 14. Bit 15 is a sign
bit, and bits 0 to 6 and 16 to 31 represent a normalized 24 bit fraction.
Because a normalized number always has its most significant bit set, this is
redundant and is therefore not represented. (See the VAX Architecture Hand-
book, chapter on Data Representation.)

The 8-8-4 format consists of two signed 8 bit I'& Q mantissa fields and a
common 4 bit exponent. The mantissa fields may or may not be normalized, so
there is no implied most significant bit as in the VAX format. The bit layout
of an 8-8-4 number is shown in Figure 1. The 8-8-4 I and Q values can be
represented by the following equation:

V = (1/32) (M/128) " (2 E)

where -128 5 MS 127
0 : Es 15

The 8-8-4 format is intended to be used to store calibrated radar signal
in meters (sqrt(RCS)). Because the bulk of the data values will fall between
-10 meters and +10 meters (RCS of 0 - 100 sq. meters), we want to have as
little loss of precision as possible for small data values. For this reason
the additional 1/32 factor was added, ensuring acceptable granularity in the
desired range and allowing a dynamic range of -1000 meters to +1000 meters.
The 1/128 factor is inherent and results from representing the mantissas as
8-bit signed fractions. The lowest value that can be represented with full
precision (a non-zero most significant bit) is 0.0156 meters, or -36.1 dBsm.
Since the mantissas do not have to be normalized, however, representation of
values down to -72 dBsm is possible. Table 1 shows the range of values that
the 8-8-4 format is able to represent, and Figure 2 shows their distribution.

The algorithm which converts VAX to 8-8-4 format employs a lookup table.
The low order 16 bits of a VAX word are mapped to a 4-bit exponent and 8-bit
mantissa, and is done for both the I and Q words. The two exponents are com-
pared and, if unequal, the mantissa with the smaller exponent is shifted right
by the difference between the exponents. The exponent, I and Q mantissas are
then packed into a three byte array element. The conversion is performed in
place, with the 8-8-4 data replacing the VAX data in the array. Figure 3
details the format of the VAX and 8-8-4 data buffers.
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( The conversion from 8-8-4 to VAX format also makes use of a lookup table.
For each of the I & Q values the 4 bit exponent is placed into a register and
shifted 8 bits left to make room for the mantissa. The mantissa is placed in
the low eight bits of the register and the resultant 12-bit value is used as
an offset into a table of floating point values. The process starts at the
end of the complex array and works backwards in order to facilitate an "in
place" conversion, so the output VAX data replaces the input 8-8-4 data in the
buffer. The macro source for both conversion routines is included in the
appendix.

The VAX to 8-8-4 lookup table contains 2**16 values. Although there are
only 4096 distinct values, this allows for fast translation of a floating
point number to a packed value by using the low order 16 bits of the number as
an offset into the table. The table is constructed by taking all combinations
of 16 bits and treating them as the low order bits of a floating point number.
The most significant bits are extracted, the implied bit is set, the excess
(128) is removed from the exponent and the new bias (1/32) is inserted, and
the sign bit is set if necessary. The original 16 bit number is then used as
the address in the table.

The 8-8-4 to VAX table is similarly constructed, using all combinations
of 12 bit values (i.e., 4096 values). Source code for both table construction
routines is appended.

A timing analysis was done in batch mode for four cases of access modes
and one case to determine the overhead involved in executing a batch job. The
five cases, denoted as cases A - E, all consisted of 15 separate batch jobs.
In cases A - D, complex samples were either read from magnetic disk or written
to magnetic disk. Each experiment inv4lved approximately one Pillion complex
samples. Case E consisted simply of the batch execution of a "no-op" Job to
determine what overhead (CPU and elapsed time) is involved in executing in the
batch mode. All jobs ran on an unloaded machine. The five cases are de-
scribed below:

Case A: VAX complex samples are converted to "8-8-4" format and
"written to magnetic disk.

Case B: The same complex samples generated in Case A are

read from magnetic disk and converted to VAX complex*8.

Case C: VAX complex samples are written to magnetic disk.

Case D: The same samples generated in Case C are read from
magnetic disk.

Case E: Overhead case. A job which does nothing is submitted in
batch mode.

Table 2 summarizes the timing results in units of CPU and elapsed seconds
per sample in terms of how long it takes to read/write complex data. The
table indicates that, although more CPU time is needed to convert the data to
and from 8-8-4 format, the elapsed time involved in accessing the 8-8-4 data
is less than the time involved in accessing VAX complex floating point data.
For example, a typical operation reading 8-8-4 data from a disk runs 23%
faster, consumes 63% less space and takes only 5 microseconds more CPU time
per sample.
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VAX Single Precision Floating Point Bit Layout

bit 31 bit 0
LSB's SB EXP ?SB

0000000000000000 0 00000000 0000000

8-8-4 Complex Format

bit 23 bit 0
11(5 IQNB0 SB

VC X SB SB
0000 0000 00.000000 00000000

There: LSB -. Least Signifigant Bit
MSB - Host Signifigant Bit
SB - Sign Bit
EXP.- Exponent
V - Valid data bit
C - Control bit (0-data vord,l-header vord)
X Not used

E-4



APPENDIX F

(a) ftx~y] (b) IFI[Jll

(c) A,[f.il] (d) IF~tn] A,[Eqll

(e)1,"{F ]- [Gr]I

TEXTURE ANALYSIS USING EASTON'S METHOD WITHOUT CENTERING
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