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DEVELOPMENT OF PARALLEL ARCHITECTURES FOR SENSOR ARRAY
PROCESSING

The high resolution direction-of-arrival (DOA) estimation is important in many sensor
systems. It is based on the processing of the received signal and extracting the desired parameters of
the DOA of plane waves. Many approaches have been used for the purpose of implementing the
function required for the DOA estimation [1-7]. The Multiple Signal Classification (MUSIC) [1] and
the Estimation of Signal Parameters by Rotational Invariance techniques (ESPRIT) [2] algorithms
are two novel approaches used recently to provide asymptotically unbiased and efficient estimates of
the DOA. They are believed to be promising and appropriate for hardware implementation for real
time applications. They estimate the so called signal subspace from the array measurements. The
parameters of interest (i.e. determining of the DOA) are then estimated from the intersection between

the array manifold and the estimated subspace.

Although MUSIC is a high resolution algorithm, it has several drawbacks including the fact
that complete knowledge of the array manifold is required, and that is computationally very expensive
as it requires a lot of computations to find the intersection between the array manifold and the signal
subspace. The drawback of high computational requirements can be overcome with the use of highly

parallel systems which will perform computation in real time.

Design of special purpose hardware for the implementation of various real time
algorithms is possible due to advances in VLSI technology. The customized hardware has two

main advantages as listed below:

1) The given algorithm is executed at a high speed.

2) Cost and size of the hardware will be lower than the cost of a general purpose computer.




Pipeline, parallel and distributed processing approaches can be exploited to achieve high
throughput rates. In order to develop a real time parallel architecture for a given algorithm,

following steps need to be performed.

1. An algorithm should be first converted into a computationally efficient algorithm.

2. The selected algorithm is divided into parallel modules.

3. If a particular module of the algorithm can not be executed in parallel due to data dependency it
should be pipelined.

4. After parallelizing the algorithm, it should be mapped on a suitable architecture.

There are many architectures such as systolic arrays, Single Instructions Multiple Data
(SIMD) systems and Multiple Instructions Multiple Data (MIMD) systems which can be used for
parallel implementation [8-11]). There are cordic processors available in the literature which can
also be exploited. An appropriate structure which can exploit maximum parallelization to reduce

the computation time will be selected for real time implementation for the particular application.

This approach of designing special purpose hardware has been applied to the high
resolution direction -of -arrival (DOA ) estimation for narrowband and wideband cases. The DOA
estimation algorithms are based on the processing of the received signal and extracting the desired
parameters of the DOA of plane waves. Many approaches have been used for the purpose of
implementing the function required for the DOA estimation and are available in the literature [1-
7]. After combing the literature thoroughly, MUSIC algorithm was selected to develop special

purpose hardware for real time computation. Summary of the MUSIC algorithm is as follows:
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1) Estimate the data covariance matrix.
2) Perform the eigendecomposition.

3) Estimate the number of sources.

4) Evaluate Power function.

5) Find the d largest peaks of power to obtain estimates of the parameters.

First of all MUSIC algorithm has been modified with efficient computational modules. The
algorithm has been parallelized. Four modules are implemented using pipeline and parallel
processing schemes. First module will compute the covariance matrix. The second and third
modules will compute eigenvalues and eigenvectors which will be used by the fourth module. This

module computes the power function giving the desired DOA.

The sampled data obtained from the sensors is used to obtain the data covariance matrix.
Since the covariance matrix is Hermetian, the computation of lower triangular matrix of covariance
matrix is sufficient to get complete information of the full matrix. It is well known that the symmetric
eigendecomposition problem is one of the fundamental problems in signal processing as it arises in
many applications such as DOAs estimation and spectral estimation. Most methods reduce the
problem to the generalized eigendecomposition problem by computing the data covariance matrix.
Householders method is a technique used for reducing the bandwidth of the data covariance matrix
by transforming it to a tridiagonal one under congruent transformations without affecting the values

of the eigenvalues [12].

In order to transform the m x m data covariance matrix to a tridiagonal matrix, m-2
Householder transformations are performed. Each transformation is determined to eliminate a
whole row and column above and below the subdiagonals without disturbing any previously
zeroed rows and columns. QR method is used to convert the tridiagonal matrix to a diagonal

matrix which gives the eigenvalues and eigenvectors. The Eigenvalues are used to find the




number of sources and finally using the eigenvectors in Power method we find the angle of arrival.
Details for developing hardware for the MUSIC Algorithm are given in [13-14]. The Hardware
block diagram for ESPRIT algorithm is given in [13-14]. It is similar to the MUSIC algorithm
but instead of power method of MUSIC some more computations are performed to evaluate the

angle of armval in case of ESPRIT.

For the wideband case, there are many algorithms which are available in the literature.
Some of them are extensions of the narrowband cases and others are developed for wideband
cases. After reviewing the current literature two wideband approaches namely Broad-Band
Signal-Subspace Spatial-Spectrum (BASS-ALE) Estimation algorithm [6] proposed by Buckley
& Griffiths and bilinear transformation algorithm [7] proposed by Shaw & Kumaresan have been
selected for hardware implementation. These algorithms were simplified, pipelined and
parallelized. The BASS-ALE algorithm, its modifications, hardware implementation and
generalized algorithms both for narrowband and wideband have been described in Volume 2 of
this report. The bilinear transformation algorithm, its modifications, hardware implementation
and VLSI implementation of generalized covariance processor have been described in Volume 3

of this report.

The goal of this work was to design an architecture which will be suitable both for
narrowband and wideband cases. It has been discovered that the narrowband MUSIC algorithm
and the wideband algorithms BASS-ALE and bilinear transformation requires similar
computational modules such as the computation of the covariance matrix, eigenvalues and
eigenvector computation using the Householder transformation and QR method and power
method [13-14]. Since the required modules are identical, they have been generalized into one
algorithm and generalized hardware is developed. The generalized hardware will be suitable for

both applications.




In these DOA applications first the data has to be collected by the sensors to compute the
covariance matrix. In this study eight sensors and eight delay elements have been assumed and
hardware is designed accordingly. Eight sensors in the narrowband case will result in a 8*8
covariance matrix. Therefore all computations for DOA estimation will require manipulation of
8*8 matrices. If eight PEs are used in the architecture it would be easier to map the algorithm on
these eight PEs. Therefore four modules each using eight PEs can be utilized for this purpose.

They will operate in parallel and pipeline fashion.

For the case of the wideband, the BASS-ALE algorithm also requires eight delays in the
sensor array. Using eight sensors and eight delays will result in a data vector of size 64. Therefor
the computation of the covariance matrix will involve 64*64 matrix. Moreover the Householder
transformation, QR method and power method will all operate on 64*64 matrices. It is desired to
use eight PEs in each module as that will be sufficient and will also satisfy the real time
requirement. Use of 64 PEs will simply result in an efficient use of the PEs. Use of eight PEs in
the manipulation of 64*64 matrices will require proper mapping of the algorithms on these arrays.
It is proposed that the covariance matrix computation, Householder transformation , QR method
and power method all use modules with eight PEs.  Architectures of various modules are

described in detail in previous semi annual reports, and Volumes 2 and 3 of this report.




WORK PERFORMED

1. A literature survey has been performed and investigated for various algorithms

available for narrow band and wide band cases.

2. In the area of narrow band, MUSIC and ESPRIT algorithms were selected and further
studied. These algorithm were converted into computationally efficient algorithms and
subsequently parallelized. Three different architectures namely Systolic architecture, Cordic

processors and SIMD were considered as reported in [13].

3. These algorithms required eigenvalues decomposition. Householder transformation was
used to convert covariance matrix into tridiagonal matrix. The QR method was used to finally
obtain eigenvalues and eigenvectors. The detailed parallel architecture has been developed for

parallelized Householder transformations and QR method and has been reported in [13-14].

4. An architecture for a generalized processing element suitable for sensor array
processing elements has been developed. Its custom instruction set has been developed and is

given in Volume 2.

5. Single instruction multiple data (SIMD) type of architecture lend themselves for the
implementation of narrow band DOA estimation. The computation of covariance matrix,
Householders transformation and QR method can be easily computed using SIMD machine. The

work on SIMD machine has been performed and is given in Volume 2.

6. In the case of wideband DOA estimations, various algorithms available in the literature
were studied. It was found that wideband DOA estimation is more computationally intensive than

narrow band case. An algorithm proposed by Shaw has been selected for further study. This




algorithm again has been modified and substituted with computationally efficient operations An

architecture for the computation of this algorithm is developed and is described in Volume 3.

7. DOA estimation for wide band sources using “"Broad-Band Signal- Subspace Spatial
Spectral (BASS-ALE) estimation algorithm has been studied, simplified, parallelized and its

architecture has also been developed and is reported in Volume 2.

8. To venify the validity of this work, following simulation programs are written.
(a) Data generation of narrowband and wideband sources for eight sensor arrays has been
computed.
(b) Simulation of MUSIC algorithm and DOA estimation is completed.
(c) Simulation of BASS-ALE algorithm for wideband sources is almost complete.
(d) Simulation of DOA estimation using bilinear transformation approach.

(e) Simulation program to study quantization effects.

9. A simulation has been performed at architecture level using VHDL software to check
computational complexity of the combined covariance matrix processor. Logical level and circuit
level design was done using Viewlogic's computer aided design (CAD) toul Powerview. This
circuit level design was used to layout a Very Large Scale Integration (VLSI) chip for combined

covariance matrix processor using Mentor Graphics GDT tools.

10. As the entire architecture cannot be accommodated on a single chip, multiple
modules are used. This involved study of inter-chip communication, /O bus architecture for

each chip, bus arbitrator etc.




11. A single Generalized Processor (GP) has been developed which minimizes cost and
design time. It uses micro coded architecture and has specialized logarithm unit The details of

this generalized processor are given in Volume 2.

12. A study has been performed to estimate real time requirements for the computations
of DOA. Based on this study, real time architectures for the computation of narrowband MUSIC
and two wideband algorithm architectures have been developed. They all use parallel modules and
each module will have eight processing elements. This arrangement will meet real time

computation requirement for estimating upto seven sources in sonar environment.

13. Parallel architecture for BASS-ALE algorithm for wide band sources has been

developed and is given in Volume 2.

14. Parallel architecture for bilinear transformation algorithm for wide band sources, has

also been designed and is given in Volume 3.

15. Copies of various papers that resulted from this work and presented at various

conferences are given in the appendix.
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A Parallel Architecture for MUSIC Algorithm
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ABSTRACT

The high resolution direction- of-
arrival(DOA) estimation is important in
many sensor systems like radar, sonar
and seismic exploration. Multiple signal
Classification  algorithm for DOA
estimation has been studied to develop a
parallel architecture for its real time
implementadon. The algorithm has been
substituted with efficient arithmetic
modules, converted into  parallel
algorithm and finally a parallel
architecture has been developed.

I. INTRODUCTION

The high resolution direction-of-arrival
(DOA) estimation is important in many
sensor systems. It is based on the
processing of the received signal and
extracting the desired parameters of the
DOA of plane waves. Many approaches
have been used for the purpose of
implementing the function required for
the DOA estimation and are availabie in
the literature mainly in the various
conference proceedings of acoustic
speech and signal processing and [EEE
Transaction of signal processing [1-6].
The Multiple Signal Classification
(MUSIC) and the Estimation of Signal
Parameters by Rotational Invariance

This research is partly
supported by ONR Grant #
N00014-91-J-1011

techniques (ESPRIT) algorithms are
widely  studied and provide
asymptotically unbiased and efficient
estimates of the DOA (1-2]. They
estimate the so called signal subspace
from the array measurements. The
parameters of interest (i.e. determining of
the DOA) are then estimated from the
intersection between the array manifold
and the estimated subspace.

An important aspect of the design of a
signal processing system for the DOA is
the computation of the spectral
decomposition. In recent years, the
search for useful algorithms and their
associated architecture using special
purpose processors has been a challenging
task [7]. Such high performance
processors are often required to be used
in real time application; thus, it is felt
that they should rely on efficient
implementation of the algorithms by
exploiting pipeline and parallel processing
to achieve a high throughput rate. With
the advances in the area of VLSI it is
now possible to design special purpose
hardware for the implementation of
various real time algorithms. The
customized hardware has two main
advantages as listed below.

1) The given algorithm is executed at a

high speed.

2) Cost and size of the hardware will be
lower than the cost of a general purpose
computer.

These advantages have led
many researchers to probe into the




possibility of designing special purpose
hardware. The development of special
purpose hardware will need to explott
pipeline, parailel and distributed
processing approaches to achieve high
throughput rates. There are many
architectures such as systolic array,
SIMD Cordic Processors and MIMD
which can be wused for parallel
implementation [7]. An appropriate
structure which can exploit maximum
parallelization to reduce the computation
time will be selected for real time
implementation for the particular
applicaton.

Although MUSIC is a high resolution
algorithm, it has several drawbacks
including the fact that complete
knowledge of the array manifold is
required, and that is computationaly very
expensive as it requires a lot of
computations to find the intersection
between the array manifold and the signal
subspace. This drawback can be
overcome by using high speed parallel
architecture for the computation of DOA.
In the following sections first of all
MUSIC algorithin is briefly described
followed by its parallelization and
development of its paralle! architecture.

II. MUSIC ALGORITHM

It is assumed that there are m sensors
and d narrowband sources. In the
discussion of this algorithm an array of
eight sensors (m=38) is further assumed.
The data vector x(t) is a linear
combinadon of the d steering column
vectors of the direction matrix and is
therefore constrained to the d-dimensional
subspace of Cm termed the signal
subspace, that is spanned by the 4
columns vectors of the direction matrix.
In this case the signal subspace intersects
the array manifold at the d steering
vectors.

However, when the data is
corrupted by noise, the signal subspace
has to be estimated and consequently it is
expected that the signal subspace will not
intersect the array manifold, so the

W

steering vectors closest to the signal
subspace will be chosen instead [3].In [1-
3], it is shown that one set of d
independent vectors that span the signal
subspace is given by the d eigenvectors
corresponding to the d largest eigenvalues
of the data covariance matrix. The data
covariance matrix is assumed to be
positive definite and Hermedan.

Thus the eigenvalues of the data
covariance matrix are the d largest
eigenvalues of the spadal covarance
matrix augmented by noise. Also the
(m-d) smallest eigenvalues are all equal
to noise.

Thus first d eigen vectors span the
same subspace as spanned by the column
vectors of direction matrix. In most
situations, the covariance matrices are not
known exactly but need to be esumated.
Therefore, one can expect that there is no
intersection between the array manifold
and the signal subspace.  However,
elements of the array manifold closest to
the signal subspace should be considered
as potential solution. After determining
the number of sources [4], Schmith [1]
proposed an appropriate function as one
possible measure of closeness of an
element of the array manifold to the
signal subspace. The dominant d peaks
are the desired estimates of the directions
of arrival.

For the particular case where the array
consists of m sensors uniformly spaced,
and if the reference point is taken at the
first element of the array, Power is
obtained by first calculating the DFT of
the vectors spanning the null space of
eigenvectors. Angles which corresponds
to peaks of the power function will be
the the angle of arrivals. Summary of the
MUSIC algorithm is as follows:

1) Estimate the data covariance matrix R.
2) Perform the eigendecomposition of R.
3) Estimate the number of sources.

4) Evaluate Power function.

5) Find the d largest peaks. of Power to

obtain esimates of the parameters.




A. Parallelizing the MUSIC
Algorithm

In order to develop a real time
parallel architecture for a, given
algorithm following steps need to be
performed. An algonthm should be
first converted into a computationally
efficient algorithm. In comparing the
various methods for solving the
eigendecomposition problem, there are
numerous factors that one must consider.
Perhaps, the primary factor is that of the
relative efficiency of the method under
consideration. One criterion commonly
used in the eigendecomposition problem
for determining the efficiency of a
particular method is the time required to
solve this problem, and hence one might
rely on special purpose hardware and
exploit pipeline and parallel processing to
achieve high throughput rates.

The algorithm is divided into
parallel modules. If a particular
module of the algorithm can not be
executed in parallel due to data
dependency it should be pipelined.
Degree of parallelizing will also
depend on the throughput rate of the
system and available time for the
computation. Using these guidelines
MUSIC algorithm is implemented.

It is clear from the above discussion
that the implementation of the MUSIC
algorithms requires formation of data
covariance matrix and the computation of
the eigenvalues. As explained earlier QR
algorithm is very promising for the
computation of the eigenvalues and the
eigenvectors. Since QR algorithm when
applied to a dense matrix in this case
covariance matrix is very time
consuming. One approach to alleviate this
problem is first utilize the well known
Householder transformation to convert
dense matrix into a tridiagonal matrix.
Then QR algorithm can be applied to
convert tridiagonal matrix into a diagonal
matrix giving eigenvalues.

The hardware block diagram for the
MUSIC Algorithm is shown in Figure 1.

As seen In this figure, the data collected
from the sensors is utilized to form the
covariance matrix. The
eigendecomposition is performed using
Householders transformadon and QR
method. The eigenvalues are used to find
the number of sources and finally using
the eigenvectors in Power method to find
the angle of arrival.

Various papers pertaining to
parailelization of Householders and QR
algorithms were reviewed. C.F.T. Tang
et al [6] and K.J.R. Liu (8] proposed
architecture for complex Householder
transformations for triangularizaton of
the matrix. In their architecture they
used single column with the number of
processors equal to the number of
columns of the matrix. Each processor
performs operation on each column.
After each iteration the values of each
column are fed back to the same
processors.  But their architecture is
proposed to perform triangularization of
the given matrix whereas we are
interested in tridiagonalization of the
covariance matrix.

QR method for the tridiagonal matrix
is also implemented by W. Phillips [9].
In his architecture, rectangular systolic
array is used in which each processor
performs single iteration. When the first
iteration is performed on the m th row by
the k th processor, the second iteration is
performed on the (m-1) th row by the
(k-1) th processor and so on. But the
disadvantage in this approach is that the
number of processors is dependent on the
number of iterations, i.e., if 5 iterations
are required then 5 processors are
required.  But the exact number of
iterations is not known which leads to the
uncertainty of the required number of
processors.

K.J.R.Liu [10] has proposed another
kind of approach in which a systolic array
arranged in a matrix form is used. The
number of processors is equal to the
number of elements of the matrix. During
first step, the matrix Q is found. Then
new values of matrix A are then




calculated using Q. Convergence for all
the elements of the matrix other than the
diagonal elements is checked. If all the
elements of the matrix other than the
diagonal elements are not equal to zero
then the same systolic array is used for
the next iteration. These iterative
computations are used untl all the
elements of the matrix except the
diagonal elements converge to zero. The
obvious advantage is that the same set of
processors can be used for all the
iterations. But the drawback is that this
architecture is proposed for the evaluation
of eigenvalues on the dense matrix.

III. ARCHITECTURE
A. Data Covariance Matrix

Once the data has been collected by
the sensors the data covariance matrix can
be computed. The sampled data obtained
from the sensors is used to obtain the data
covariance matrix. Since the covariance
matrix is Hermetian, the computation of
lower triangular matrix of covariance
matrix is sufficient to get complete
information of the full matrix.

The parallel computation of the data
covariance matrix is performed using
systolic architecture. Since there are 36
elements in the lower triangular 8*8
matrix, systolic architecture will have 36
processors. Here a triangular
arrangement of the systolic array with
global routing is considered as shown in
Figure 2. Each processor is numbered as
Pmn where m is the row number and n is
the column number. The sampled data
from the ith sensor is sent to the ith row
and the ith column simultaneously. For
example the sampled data from the 3rd
sensor is sent to all the processors in the
third row and the third column. Each
processor performs multiplication and
addition of two sampled data in parallel
in all the processors for every clock cycle

Since there are 36 processors, 36
multiplications and 36 additions are
performed simultaneously. Each
processor has a memory to store the
product of muitiplication which is added

to the product obtained during the next
data cycle. Once the operatons of
multiplication and addition for all the
sampled data in all the processors is
performed, the stored data in each
processor is then divided by the number
of samples in all the processors in
parallel. The resulting output are used to
form the data covariance matrix.

B. Householder Method

Householders method is a
technique used for reducing the
bandwidth of the data covariance matrix
by transforming it to a tridiagonal one
under congruent transformations without
affecting the values of the eigenvalues

(51.

In order to transform the m*m data
covariance matrix to a tridiagonal
matrix, T, m-2 Householder's
transformations are determined. Each
transformation is determined to eliminate
a whole row and column above and
below the subdiagonals without disturbing
any previously zeroed rows and columns.
The Householder transformation
algorithm has been parallelized and
details of the derivation of this algorithm
can be found in {11]. A flowchart of this
parallel algorithm is given in Figure 3.

As shown in Figure 3, the
determination of all the d's and the new
elements of the columns of the matrix can
be computed in parallel. Thus this
algorithm can be mapped on a hardware
architecture with the number of
processors equal to m+1, where m is the
order of the matrix. The architecture is
as shown in Figure 4. The columns of the
matrix are sent to each processor in a
pipelined fashion in reverse order such
that the last element of each column
becomes the first element. The Processor
PE1 is used to find the w and c required
by other processors to find the d.
Processors PE2, PE3... PES are used to
find d using the value of w and ¢ found
in the first processor. At the same time
the first processor is used for the



evaluation of b. The first element of the
first column and b are the output of the
first iteration which are used as input for
evaluation of eigenvalues using QR
method. All the d's are evaluated in
parallel and are sent to the processor
PES. The processor PE9 is exclusively
used for the determination of v using d
and w. The v are then routed back to all
the processors. The processors PE2,
PE3... PE8 use w, d and v to find the
new values of the elements of the
columns in parallel. The counter is used
to set the number of iterations to m-2,
For m-2 times, the intermedia‘’e results
are used in feedback loop and the same
set of processors are used repeatedly. The
feedback loop has a FIFO memory to
temporally store all the elements of the
column until operatons on previous
iteration are completed. For the first
iteration, operations on 8*8 matrix are
performed hence all the processors are
utilized. For the second iteration,
operation on 7*7 matrix are performed.
Now the first column of the matrix is
already computed; therefore new
elements of the second column from PE2
are fed back to PE. Thus for the second
iteration, PE2 does not have any column
to work on and is thus disabled. All other
processors perform same operation as in
the first iteration, but the elements of
each column are reduced by one element.
Thus for every new iteration the columns
and the elements of the columns keeps on
reducing.

C. QR Method

Given the tridiagonal matrix T and
matrix U which are obtained from
Householders transformation, the QR
algorithm may be used to compute
eigenvalues and eigenvectors. This is
achieved by producing a sequence of
transformations based on orthogonal
matrices. After k iterations T will be
approximately a diagonal matrix whose
diagonal elements approximate the
eigenvalues of the original matrix, and
the appropriate eigenvectors are given by
the columns of the U matnx. The

orthogonal matrices in the QR algorithm
are the product of m-1 rotatons in the
(1,i+1) planes respectively. Each
rotation is defined as a matrix which is
an identity matrix except for the entries
G1,i), @G,1+1), (i+1,0), and (i+1, i+1)
which together form a 2*2 matrix. Each
subdiagonal element can be eliminated by
a plane rotation.

After parallelizing this algorithm
whose details are given in [9,11], a
parallel architecture has been developed.
The architecture uses m+1 processors
where 'm’' is the number of rows or
columns of the tridiagonal matnx.
Architecture for 8*8 matrix is shown in
Figure 5. Two kinds of processors are
used. The processor PEl is used to
compute the eigenvalues and the other
eight processors are used to find the
eigenvectors of the tridiagonal matrix.
The diagonal and subdiagonal elements of
the tridiagonal from the Householder's
transformation is pipelined into the
processor PE1 which performs the first
iteration. The new values of rotation are
computed and are sent in pipelined
fashion to all processors in that column.
These processors PEll, PE21....PE8l1
find the eigenvector of the tridiagonal
matrix. The processor PE1 also performs
the test for convergence. If the sum of
squares of the subdiagonal elements is not
nearly equal to zero, PE1 performs the
next iteration to find the eigenvalue. This
process is repeated until matrix converges
to a diagonal matrix. Thus the diagonal
elements are the eigenvalues and the
every other processor gives the rows of
the eigenvector.

D. DOA Estimation

Once the ecigenvectors have been
computed, the values of the eigenvectors
are utilized to calculate the power
method. The details of this algorithm can
be found in [1,11]. The evaluation of
power method first requires squaring of
the product of rowvector of the array
manifold and the eigenvector matrix. The
process of computing the product is
repeated for different arrival angies and




they are squared. The squared values are
accumulated for all the values in the array
manifold. The hardware design to
compute the power function or method is
shown in Figure 6. It consists of a set of
8 processors. Each processor finds' the
product of rowvector and the column of
eignevectors matrix in parallel. The
product obtained is then summed using
adders. This sum is squared and added.
The power function is thus calculated for
different values of the array manifoid.
This computed value is different for
different  angle. The angles
corresponding to d minimum values
(sharp valleys or peaks if the function is
inversed) are the angles of arrival.

IV. CONCLUSIONS

First of all MUSIC algorithm has been
modified with efficient computational
modules. The algorithm has been
parallelized. Four modules  are
implemented using pipeline and parallel
processing schemes. The architecture is
developed assuming eight sensors and is
capable of computing DOA in real time.
The architecture is scalable and can
incorporate any number of sensors. Real
time requirement should be considered at
the time of scaling. The architecture
utilizes identical processing elements and
efforts are directed to develop generelized
processing element.
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ABSTRACT

In this paper, we propose a paralielpipelined
algorithun and its architecture o solve the symmetric
cigenvalue problem. This algorithm is based on
Given’s rotations, and it is associated with the inidal
reduction of the dense matrix t0 a tridiagonal one
using Householder’s transformations. The
performance of this algorithm is described and
compared to the performance of the sequential one. [t
can be shown that the cost of the eigendecomposition
falls from O(mxn) to O(m+n) , where m and n
denote the matrix order and the number of iteratons
respectively. This algorithm is mapped on m
processors to compute the eigenvalues and
eigenvectors simultaneously.

INTRODUCTION

An important aspect of the design of many modem
signal processing systems is the computation of the
spectral decomposition. In recent years, the search for
useful aigorithms and their associated architecture
using special purpose processors has beea a
challenging task. Such high performance processors
are often required to be used in real time application;
thus, it is felt that they should rely on efficient
implementation of the algorithms by exploiting
pipelining and parallel processing to achieve high
throughput rate. The QR algorithm is one of the
most promising Suitable for the spectral
decomposition problem due to its stability,
convergence rate propertges, and suitability for VLSI
implementation {1]. A useful property of the QR
transformations is that shifts can be used to increase
the rate of convergence to locate the eigenvalues (2],
[3]). This may be very useful for some systems
applications where the computations of the
cigenvalues are sufficient, such as matrix rank
determination and system identification [1). However,
in other applications, (¢.g.. direction of arrival
estimation, spectral estimation, and antenna
beamformation), the computation of both the
cigenvectors and cigenvalues is crucial (1], and one
might use the QR algorithm without shifts to obtain
these parameters in parallel. In such case, this
algorithm may require a sufficiently large aumber of
iterations to converge. Keeping & low aumber of

This research is partly supported by NAVY gram
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iterations may yield to inferior results such as in
MUSIC and ESPRIT aigorithms, where an accurate
computation of the eigenvaiues and eigeavectors will
aiso determine the accuracy of the direction of arrival
(DOA's) [6] . Also, one drawback of the QR
algorithm is that when applied t0 a dense mamix, it
may bevery time-consuming and may pose difficulties
for parailel implementation due to communication
and timing among different modules of the systolic
array {1]. Hence, it is generaily not feasibie to carry
out the QR transformations on a dense matrix.
Instead, if the dense is first reduced to a tridiagonal
matrix T, using Houscholder's transformations, the
cost of the eigendecomposition falls substantially
from O(m>) to O(m) [2], where m denotes the matrix
order. Furthermore, in [4] a sequential aigorithm was
proposed for solving the symmetric tridiagonal
eigenvalue problem. Although this algorithm reduces
the processing time st some extent by avoiding the
computation of the product RQ in the QR algorithm
[2] at every iteration, and also the storage of the
matrix R, but still every iteration in the algorithm
requites m steps. For n iterations mxn steps are
required to perform the eigendecomposition of the
tridiagonal matrix.

In this paper, we present a paraliel/pipelined
algorithm for the tridiagonal symmetricai
eigendecomposition problem. This algorithm is
capabie of generating the eigeavalues and eigenvectors
sunultaneously by plpelxmng the successive
iterations rwdily

THE SYMME‘I’RIC EIGENDECOMPOSFHON
PROBLEM

It is well known that the symmetric
eigendecomposition of the data covariance matrix is
one of the most fundamental problem in signal
processing as it arises in many applications such as
DOA’'s estimation and spectral estimation.
Householder’s method is a technique used for reducing
the bandwidth of the data covariance matrix by
transforming it to a tridiagonsl one under congruent
transformations without the values of the
cigeavalues, and thus reducing subtancially the cost
of the eigendecomposition [2], {5]. In order (o
transform the mxm data covariance matrix Ryx t0 2
tridiagousi one, (m-2) Householder’ s transformations
are determined such that
Presented at Asilomar Conference on
Signals, Systems & Computers
October 26-28, 1992 Pacific Grove, CA
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NH Rll N = T (1)
where
N=NiN; .Nm_2 @

Each transformation is determined to eliminate a
whole row and column above and below the
subdiagonals without disturbing any previously
zeroed rows and columns. Given the tridiagonal
matix T and the Householder’s transformation matrix
N, the QR algorithm may be used to compute the
eigenvalues and the eigenvectors simultaneously.
This is achieved by producing a sequence of
transformations based on orthogonal matrices and
illustrated by the following aigorithm.

T1=T )]
U;=NH @
begin
fori=l, n
R, =Q T
i=Q i T o))
Tie1 = RiﬂQl ©
Uis1= Q i Y; M
endfor
z =Tlﬂ-l ®
X =un-ivl ®)

After k iterations T will be approximately a diagonal
matrix £ whose diagonal elements approximate the
ecigenvalues of the original matrix, and the appropriate
eigenvectors are given by the rows of the matrix X .
The orthogonal matrices Q; in the QR algorithm
are the product of m-1 rotations Q. .,; j=l,...,m-1,
in the (j,j+1) planes respectively. Each rotation
QH ad is defined as a matrix which is an identity
matrix except for the entries (j,j), (jj+1), (+1.j)
and (j+1, j+1) which together form a 2 x 2 matrix
given by

H L ]
Qi [° s ] 10)
-3 c

The factorization producing Ry and Q, from the
original matrix T is explained as [oilows, we
simply eliminate ecach subdiagonal eclement by a
plane rotation, the first one is
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H
R
ey, R

3 .
1 exp(®)]| 11
[ﬂm,e) ¢ ] . an

The (2,1) entry in this product should be cqual to
ze10

t11exp (j6) +t27 = 0 12
exp (j6) = 123 1)) = rexpGe) (13)

where = [t21 /t11 | and ¢= arg(t21) - arg (t11)
To have a unitary matrix , the matix QHy 4y

is chosen as
1 r exp(-jé)
V 1+ ¢ Y 1+ 14 14)
-r exp(id) 1

Vieréd V141t
For a Hermetian tridiagonal matrix, we have

L, ' s
vV i+ 2 sqriCty? +itayd

Lexp(e) 2 a9
VierZ  sqri( t& mz,ﬁ

Let the entries of the diagonal and lower subdisgonal
of the tridiagonal matrix T be a(j,i) and b(j.i)
respectively where j is the owarcolumn number and i .
is the iteration number, c(j,i+1) and sG,i+1) be the
clements of the rotations used in rotating rows j and
(j+1) at the (i+1)th iteration, and x(j, i+l) the
diagonal element of T after rotation of rows j and j+1
at the (i+1)th iteration. Also, let the entries of the
eigenvectors be u(j,l,i), where j and 1 are the row and
column number, then a pseudecode of an updated
version of the sequential algorithm given in [4] to
compute the cigeavalues and eigenvectors is as
follows :

b(l, . )=0; a(m+1, . )=0; b(m+l, . )=0; c(0,.)=1;
$(0, . ) = 0; c(m+1, . )=1; s(m+1,.)=0;

fori=1,n

x(0, i+1)=a(l, i);




forj=l,m
if (x(j-1. i+1) >0
resqri{p(+1, D2 +x(-1, i+1)2 }
c(j, i+1) = x(§-1, i+l)r
$((j, i+1) 3 b(j+l, i+1l)r
else
¢, i+l) =l
s, i+1) =20
end i£
wac(j, i+1).x(j-1, i+1)+s'(j. i+1).b(+1, i)
vac(j-1, i+1).c(j, i+1).b°G+1, i)
+8°(j, i+1). a(j+l, i)
b(j, i+1)=s(j-1, i+1) . w
afj, i+1)=e(-1, i+1).c(, i+l)w + 5, i+1)v
x(j, i+1)=c(j, i+l) a(+l, i)
(-1, i+1) s(j, i+1) b(j+L, D)

forl=1,m
u(j, 1, i+1)=c(j, i+1).u@, 1, i)
+5°(j, i+1)uG+1, 1, i)
u(+1, [, i+1)=-5(, i+1).u(, |, 1)
+¢(j, i+1)u(+L, L 1)
end for

end for

end for

PARALLEL ALGORITHM FOR THE TRIDIAGONAL QR

' ALGORITHM
!

An attempt is made here to paralielize the
previous sequential algorithm to reduce the number of
steps from mxn to 2n+m-2 steps. A parallel/
pipelined algorithm has been developed and is
described in terms of a simple program given below.
The program consists of odd and even steps; during
an odd step, the odd terms (a(i,.), b(i,.), i=1,3,..m-1,
of the matrix T are updated in parallel. Likewise,
during an even step, the even terms a(i,.), b(i,.).
i=2,4...,m, are updated in a similar fashion.

b(l, . )=0; a(m+1, . )=0; b(m+1, . )=0; ¢(0, . )=1;
s(0, . )=0; c(m+1, . )=1; s(m+1, . )=0;
n = number of iterations
for k= 1,n+(m-2)/2
Odd Steps

for j=i,m-12

i=k-(j+1)2

Parallel
if (1.ge.0. and ile. (n-1)) then

x(0, i+1)=a(l, i)
if (x(j-1, i+1).eq. Q) then
c(, i+l)=l
s(j, i+1)=0
else
resqre(bG+1, if2ex(j-1, i+1)2)
€(.iv1)mx(j-1, i+lyr
8(j,i+1)mb(j+1, iYr

endif
wac(j, i+1).x(j-1, i+l)
+8°(j, i*1) . G+, i)
vac(-1, i+l) . o, i+1) . b° (L. )
+3° (, i*l) . a(+1, i)
b(j, i+1)=s(j-1, iel) . w
a(j, i+1)mc(j-1, i+1).c(j, i+1).w
+3(, i+l)v
x(j, i+l)=c(j, ieD)a(j+1, i)
<(-1, i+1)s( j. i+1) b+L1.i)

forlsl, m

u@j, 1, ) = ¢, i*l)uG, L )
+s°(j, i+1) . u(+1, 1, )
u(+l, 1, ) = -s(j, i+l)ug, 1, )
+c(j, i+l) . u(+l L )
end for
endif
Ead parallel
endfor

Even steps
for j=2,m,2

i=k - j/2
Parallel

Same as above

End paralle!
endfor
endfor
An example of this algorithm applied to a matrix of
order 8, and for 11 iterations is shown in Table. 1,
where the pairs (i ,j ) were defined eadier.
This algorithm is also suitable for VLSI
implementation, using an array of m/2 processors
Pry, Pr2,.... Prgmnand (m+2) cells ct g, cl i....,
¢l m+1 consisting a local memory, as shown in
Figure 1. Each processor in the array performs certain
computations such as floating point operations and
square roots.
If the pairs ( a(j,), b(..)) , j=1.2,...m . are stored
respectively in ¢l 4,..., Clg., (€(0,.), 80, .)) are
stored in ¢l g, and ( a(m+1,.) , b(m+l,.) ) are
stored in ¢l .1, then during an odd step , each
processor Pr;, respectively
1) accepts
a) c(2j-2, i+1), s(2j-2, i+1 ), and x (2j-2, i+1)
from cell cl 5.2,
b) a(2j,i), b(2j,i) from cell ciy;,
2) compute x(2j-1,i+1), ¢(2j-1,i+1), and s(2j-1,i+1),
3) updates a(2j-1,i) and b(2j-1.i) to become
a(2j-1, i+1) and b(2j-1, i+1) respectively,
4) store x(2j-1,i+1), ¢(2j-1,i+1), s(2j-1.i+1),
8(2j-1,i+1), and b(2j-1, i+1) in cell el 2.1,




Stiep  Compuations performed in parailel

1 )

2 1)

3 (1.2) (3.1)

4 2.2) (4.1)

5 1.3) (3.2 (5.1)

6 23) (4.2) (6.1)

7 (1.4) (33) (5.2 .1

8 29 (4.3) 62) 8.1)
9 1.5 (3.4 (5.3) .2

10 2.5) (4.9 (63) (82
11 (1.6) 35) (5.9 a.3)

12 (2.6) 4.5 (6,9) 83)
13 an (3.6 (5.5 .49

14 @D (4.6) (6.5) (8.4)
15 1.8 BN (5.6 (.5

16 2.8) (CN) 66)_ 85
17 (1,9) (3.8) s .6)

18 (2.9) (4.8) 6.7 (8,6)
19 1,100 3.9 (5.8) an

20 210 @9 (68 (8D
21 (1L,11)  (3,10)  (5.9) .8)

2 Q11) 4,100  (69) (8.8)
3 (3.11) (5100 (7.9)

24 (4.11)  (6,10) (8,9)
25 G.11)y  (7.10)

26 6,11) (8,10
27 (7.11)

28 (8,11)

Table 1 . Example of the parallel/pipelined
algorithm for updating the entries a's and b's of a
iridiagonal matrix (matrix order = 8,number of
iteration = 11)

and during an even step , each processor Prj,
respectively
1) accepts
a) c(2j-1, i+1 ), s(2j-1, i+1 ), and x (2j-1, i+1)
from cell cl .,
b) a2j+1,0), b(2j+1,i) from cell el 35,1,
2) compute x(2j,i+1), ¢(2j,i+1), and s(2j,i+1),
3) updates a(2j,i) and b(2j,i) to become a(2j, i+1)
and b(2j, i+1) respectively,
4) store x(2j,i+1), c(2j.i+1), s(2j.i+1), a(2j,i+1),
and b(2j, i+1) in cell ¢l 2j

The previous array , shown in Fig. 1, can be
extended to include another m/2 processors P,
P2,.....Pm/s2 » as shown in Fig. 2 10 update the
matrix of the eigenvectors. Given the matrix Uy =
NH, obuined from Householder's transformations,
and the matrix Q=Q Q32 ...Qa, where n is the
number of iterations. The product of QH by Uy, to
obtain the matrix of eigenvectors of the original
problem, may be computed also in (2n+m-2) steps.
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1@Lis1)
Fig.1. Updating the cigenvalues,
(a)odd steps, (b)even steps

If each column of the matrix U; = NH is stored in an
array of m elements consisting of a FIFO as depicted
in Fig.2, then during an odd step, the vaiues stored at
the top of the independent pairs of arrays (1,2),
(3,4),..., (m-1, m) are transfered in paraliel to the
processors P1,P2, ....Pm;2 respectively. The
rotation parameters generated during this particular
step are also sent to the corresponding processors.
that is , the rotation parameters generated by Pry are
sent to Py, and the rotation parameters generated by
Pry are sent 1o P2, and so on. Once the top elements
are updated , they are transferred 1o the buttom of the
corresponding arrays The procedure continues until
all the elements stored in the array are updated. This
is depicted in Figure 2 (2). Likewise, during an even,
updating the entries of the independent column pairs
2.3), (4,5)..., (m-2, m-1) is shown in Figure 2 (b).
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Fig 2 (a) Updating the eigenvectors during

an odd step
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CONCLUSION

The pipelined/paraliel algorithm proposed in this
paper can be used efficiently to solve the
symmetrical eigenvalue problem for both real and
complex cases. However, this algorithm is associated
with the initial reduction of the dense matrix to a
tridiagonal one using Householder's transformations.
The performance of this algorithm was described and
compared to the performance of the sequential one. [t
was shown that this algorithm outperforms the
sequential one as only 2n+m-2 sieps are neecded to
perform the eigendecomposition of a tridiagonal
matrix. as compared to mxn steps using the
sequential one, where m and n denote the matrix order
and the number of iteraton respectively. This
algorithm was aiso mapped on a parallel architecture
suitable for array processing clememts.
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Fig 2 (b). Lpdating the eigenvectors during
an even step.
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ABSTRACT

To achieve computauonal cfficiency. Householders iransformation 1s known 10 be one of the best
onhogonal factorizations techmique for the mainces. Ii s also known that Householders iransformauon
outperforms the Givens rotation 10 numencal stabihity under finite-precision implementanion. and that it
requures fewer anihmetic operaitons than modified Gram-Schimigt does. Hence in thus paper 3 hypercube
archuecture {or diagonalization of sy ic mainx using Househoider's method is proposed. The
purpose s 10 speed up the reduction of dense matnx o a indiagonal mainx by performing vanous
terations in parallel and by using broadcasting featurc of the hypercube architecture.

Key words: Hypercube. Householders aigonthm. Parallel processing. broadcasiing.

L. INTRODUCTION

With recent advances in the area of VLSI it 1s possibic 10 design special purpose hardware in real ume
sighal processing for the compuiaiion of high resolution dirccuion-of-arvtval (DOA). The aigonthms of
recent uniesest in computation of lgh resolulion direcion-of-arnval (DOA) esumation are Mulupie Signal
Classificauon (MUSIC) by Schimdi {1} and Estimanon of Signal Parameter via Rowanonal [nvanance
Techmque (ESPRIT) by Roy {2]. Many other researchers have also shown inesess in improvising MUSIC
and ESPRIT [3].{4]. All these algonihms use eigcnvalucs and eigenveciors for the computanon of DOA.
Hence fast and accurate evaluation of cigenvalues and cagenveciorns are very imporant for the real ime
hardware impicmentation of ihese algorhms, One method 15 10 use QR algonthm 10 reduce the manx 10
diagonal mawnx and the elements of the diagonal. are the cigenvalues of that manx. However when QR
method s performed on the dense Mainx. ihe Process beCOmMES very MG CONSuMing. requiring a large

ber of comp In order 10 circumven: this drawback. the mainx is vansformed first to
nndagonal one using Househoiders transformauon. Chen (5], Dongama (6] and Pilips(7] discussed the
reduction of 3 symmewncal mainx 10 2 indagonal MaiNx using Houscholders iransiomaiion [8). Hence
QR decomposition using Householders iransior 1S very p g for VLSI implementation of real-
ume high throughput modern signal processing.

In section [ maihematical aspect of Householder's method are presented. then the number of irerations
which can be performed in paraliel 1s inspecied. In seenion (11 pseudocode is wnnen 10 indicate how ths
algonihm performs on the hypercube. Compuier simulation of the algonihm is done 10 counser check the

validuy of the parallet aigonthm. [n section IV comparison beiwecn speed up for Mypercube architecture
ang [or sysiolic archutectyre s done.

This research 1s partlv supported by NAVY grant NO0O14 - 91 - | - 1011 and s part of M. §.
thesis requirement ot Mr. R. B. Sheefvant.
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A Generalized Architecture for DOA Estimation for Wideband/Narrowband Sources
R Tabar, M.M. Jamali, S.C. Kwatra, A. H. Djouadi

Deparunent of Electncal Engineering
The University of Toledo
Toledo, OH 43606
419-537-2580

ABSTRACT

The high-resolution Direction-Of Arrival (DOA) estimation algorithms are studied to develop architecture for real
time applications. Methods for DOA estimation for wideband sources proposed by Buckley and Gnffiths' and MUSIC -
algorithm for narrowband sources proposed by Schmidt? have been selected for hardware implementation. These algonithms
have been simplified and generalized into one common programmable algorithm. It is then parallelized and is executed in a
pipelined fashion. A parallel architecture have been designed for this generalized algorithm.

1. INTRODUCTION

Design of special purpose hardware for the impiementation of various real time algorithms are possible due to
advances in VLSI technology. Pipeline, parallel and distributed processing approaches can be exploited to achieve hugh
throughput rates. In order to develop a real time parailel architecture for a given algorithm following steps need to be
performed.

1. An algorithm should be first converted into a computationally efficient algorithm.

2. The selected algorithm is divided into parallel modules.

3. If a particular module of the algorithm can not be executed in parallel due to data dependency it should be pipelined.
4. After parallelizing the algorithm, it should be mapped on a suitable architecture.

This approach of designing special purpose hardware has been applied to the high resolution direction -of -armivai
(DOA ) estimation for narrowband and wideband cases. The DOA estimation algorithms are based or: the processing of the
received signal and extracting the desired parameters of the DOA of plane waves. Many approaches have been used for the
purpose of implementing the function required for the DOA estimation and are available in the literature’. The Muitiple
Signal Classification (MUSIC) is widely studied and provide asymptotically unbiased and efficient estimates of the DOA'2.
They estimate the so called signal subspace from the array measurements. The parameters of interest (i.e. determining of
the DOA) are then estimated from the intersection between the array manifold and the estimated subspace.
Summary of the MUSIC algorithm is as follows:

1) Estimate the data covariance matrix.

2) Perform the eigendecomposition.

3) Estimate the number of sources.

4) Evaluate Power function.

5) Find the d largest peaks. of Power to obtain estimates of the parameters.

This research is partly supported by ONR grant N00014-91-J-1011
Presented at SPIE's International Symposium on Opti-al Engineering and Photonics in Aerospace and Remote Sensing
April 1993,




First of all MUSIC algonithm has been modified with efficient computational modules. The algorithm has been
parallelized. Four modules are implemented using pipeline and parallel processing schemes. First module will compute the
covanance matrix. The second and third modules will compute cigenvalues and cigenvectors which will be used by the
fourth module. This module computes the power function giving the desired DOA.

For the wideband case, there are many algorithms which are available in the literature. Some of them are
extensions of the narrowband cases and others are developed for wideband cases. After reviewing the current literature a
wideband approach namely Broad-Band Signal-Subspace Spatial-Spectrum (BASS-ALE) Estimation algonthm proposed by
Buckley and Griffiths' has been selected for hardware implementation. This algorithm was simplified, pipelined and
parallelized. The structure of the algorithm is shown in Figure 1. First, the covariance matrix of the collected data has 1o be
estimated. Then the eigenvalues are computed using the Householder and QR methods’™ 2. From the estimated eigenvalues,
an estimation of the signal-subspace dimension D can be calculated according to the steps outlined above. Once the
dimension of the system is known, the signal and noise-only eigenvectors can be constructed. The power method is used to
find the desired locations 8 using the location vector-based estumator.

Form Covarianc
2. GENERALIZED ALGORITHM AND matrix estimat

ARCHITECTURE .

R

The goal of this work is to design an
architecture which will be suitable both for narrowband L
and wideband cases. It can be seen from -earlier
discussion that the narrowband MUSIC algorithm and

Compute the

the wideband algorithm BASS-ALE requires the similar eignevalues
computational modules such as the computation of the g
covariance matrix, eigenvalue and eigenvector i
computation using the Householder transformation and
QR method and power method. Since the required NL
modules are identical, they can be generalized into one

Estimate the

algonthm and generalized hardware can be deveioped.
The generalized hardware will be suitable for both
applications.

signal-subspace
dimension D

First the data has to be collected by the sensors

N

to compute the covariance matrix. In this study cight

sensors and eight delay elements have been assumed and Form the
hardware is designed accordingly. Eight sensors in the sigenvecto
narrowband case will result in a 8*8 covariance matrix. r matrices
Therefor: all computations for DOA estimation will - -
require manipulation of 8*8 matrices. If eight PEs are Enand &

used in the architecture it would be easier to map the
algorithm on these eight PEs. Therefore four modules
each using cight PEs can be utilized for this purpose.
They will operate in parallel and pipeline fashion.

For the case of the wideband, the BASS-ALE Nf ;
algorithm also requires eight delays in the sensor array. P(8) =3
Using eight sensors and eight delays will result in a data =1 2

vector of size 64. Therefor the computation of the
covariance matrix will involve 64*64 matrix. Moreover
the Householder transformation, QR method and power
method will all operate on 64*64 matrices. It is desired
to use eight PEs in each module as that will be sufficient

A

Use power method
location vector estimator

awj

En

Figure | Hardware Units of BASS-ALE Estimation Algonthm.
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and will also satisfy the real time requirement. Use of 64 PEs will simply result in an efficient use of the PEs. Use of eight
PEs in the manipulation of 64*64 matrices will require proper mapping of the algonthms on these arrays. It is proposed
that the covariance matrix computation, Householder transformation , QR method and power method all use modules with
eight PEs. In the following subsections, architectures of various modules are described in detail.

3. TION OF Vv MATRIX

First of all the data need to be collected by the sensors to compute the covariance matrix . The data output from
cight sensors is converted to the digital domain and fed to a pure propagation delay array in a parallel and pipelined fashioa
as shown in Figure 2. The delay array is implemented using RAM for each sensor output below. The data gathered in the
delay array is collected once every eight cycles. In other words, the data is collected every time the array is filled with new
vectors. The gathered data is stacked to construct a 64-clement data vector required for the computation of the covarniance
matrix. Computation of the covariance matrix involves a multiplication of 64 element vector with its 64 element complex
conjugate transposc (64 clement row) producing a 64x64 matrix for cach set of data. Since the covanance matrix is
symmetric, one way to reduce the required number of computations is to compute only the lower tnangular matrix.

Data from Sensors
A new approach'? of computing 64x64 covariance
matrix using eight processing elements is presented. The ? ? ? ’ ? ? ’ ?
elements of the delay array are stacked to create the 64- [—‘ [—]
element data vector. To get more insight about the tf 'IJ I':f] [Afl IT] LNf] Ef—' &E—l

multiplication process of that vector with its conjugate

transpose, a different representation of the data is adopted. |py;]| |piz] [p13] |pis] |pis] [pis] |Di7l [Dis)
Eight sub vectors, cight elements each, are stacked together

to form a 64-element vector. The computation of the En_zl t'.’t!] [%] l%l

covariance matrix requires that this 64-element data vector (a
column) be multiplied with its counterpart, the 64-clement
conjugate transpose data vector. The multiplication process l'_”_‘] Lbﬁl [M LQ};‘.I MJ @ @J LQL‘J
creates a Hermitian matrix. On account of creating a lower
triangular matrix, 36 sub vector multiplications are required. |D4 | |D42| |D43| lmsl |D46| |D47| loasl
Each of these sub vector multiplication produces an 8x8 sub

matrix. To simplify the computation of the covariance [bsd] [oss] [ss] [os7] [oss)

matrix, all the sub vectors will be computed in full including
those that are on the diagonal. As a result, more data is
generated than is desired, especially the oncs above the 2l 1Ds3 Desl Dee) De7] [Dsé

diagonal. The addition of those extra elements to the matrix

establishes a uniform algorithm where all the sub vectors can @ @ ‘E‘J 'ﬂ’-l w [917-] lﬂj
be muitiplied in exactly the same manner without exceptions.
In other words, one architecture can be used to compute the @I [Dﬁ] [D_t!J [ml Im]

8x8 sub matrices one at a time.

-

An armay of eight PEs are needed to perform the *+* *
task. The hardware unit computes one of the sub matricesat | ; 3 64
a time. The broadcast data is stored in the registers and the

second operand vector is stored in the PEs. An algorithm to Figure 2 Input data modules

compute the needed 36 sub vector multiplications is provided

in the flowchart illustrated in Figure 3. Three counters are needed:

Counter J : Indexes the columns (A column refers to the different sub vectors ).
Counter [ : Indexes the rows (A row refers to the different sub vectors ).
Counter K : Indexes the rows within a sub matrix muitiplication process.




repeat 600 times

L Set counter J = 7 )|

I}

| Set counter | = counter J |€—

Y

Set counter
K=0

Distribute vector addressed
by J from DFRs toPEs

T T|IT T

Distribute vector addr
by | from DPRs to REG €

-

el B2 --- [
¥
Broadcast one element
<+

Compute a row of
the 8x8 submatrix

4

|  Add to previous row resuits

&_ ‘

r

Increment K

I

|

Decrement |

l_‘

|

Decrement J

ed

|

Figure 3  Flowchart illustrating the use of 3 counters to multiply 36 sub matrices forming
a lower triangular matrix.




The process proceeds as follows:
Set counter J = 7
Set Counter [ =] =7
All PEs compute in parailel
(a) One operand vector is stored in PEs and is specified by counter J
(b) Second operand vector is broadcasted (specified by K) from a register file and is specified by 1.
(c) Perform multiplication of one row in parallel
(d) Products are added to previously stored values.
Decrement the counter I until it reaches 0
Decrement the counter J and set [ = J until counter J reaches 0
Repeat for 600 iterations.

Figure 4 shows the needed architecture to perform the operations explained above. Data output from eight sensors
are fed and written into eight dual-port RAMs. At any one time, one level of DPRs will be in write mode storing newly read
data from the sensors’ output while the second level of DPRs will be in read mode where previously stored information is
now being used to compute one vector product with its conjugate transpose. Addresses needed by the DPRs are provided by

counter I, counter J and a 3-bit counter which is controlled by a 9-bit counter. Two multiplexors, controlled by S (or S),
direct the needed address to the DPRs. If the DPRs are in write mode, the 3-bit address is selected, otherwise, address I and
address J are selected. In read mode, the data addressed by counter I is supplied from each DPR to the respective register,
while simultaneously the data addressed by counter J is supplied from each of the same DPRs to the respective processing
element. Counter K is initialized to the value of zero and then is used to broadcast the output of one of the registers, one at a
time, to all of the eight processing elements. Each PE then multiplies that register output data with the value already stored
in its internal register (an element of vector J). The multiplication resuit is added to previously computed values that are
stored in memory at an address pointed to by counters I, J and K. Counter K loops through its range (0—7) to construct an
8x8 sub matrix. Counters [ and J loop through their range (7 0) to compute the 36 sub matrices. At the end of three loops
(1, J, K), the assignment of the two levels of DPRs are switched and the operations performed by the PEs are repeated for
the newly available data. The process is repeated 600 times to build the required matrix. The covariance matrix is formed by
collecting the matrix and dividing its elements by 600.

This architecture can also be used for the computation of the covariance matrix by initializing the counters
accordingly. The computations will be very simple and fast as 8 PEs are used for an 8*8 matrix.
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4, HOUSEHOLDER HARDWARE, UNIT

The Houscholder algorithm is chosen to convert the dense covariance matrix, already computed by the previous
unit, to a tridiagonal matrix so as to speed up the computations of the eigenvalues/eigenvectors problem. An SIMD
architecture is proposed where eight specially designed processing elements are used.

Previous work on the Householder algorithm '2 led to the following simple scheme. Figure 5 shows a flowchart of
the steps needed to compute the tridiagonal matrix and it is summarized in the following:

* Compute the scalar value

« Compute the one dimensional vector w

« Compute the scalar ¢

+ Compute the one dimensional vector d

* Compute the one dimensional vector v

» Modify the Covariance matrix using the above computations

The flowchart portrays the fact that the architecture is not dependent on the dimension (order) of the matrix. The
variable NLoops (number of loops) is used to determine the number of loops the system has to undergo repeating the same
operations should the order of the matrix be larger than the number of PEs. If NLoops is greater than one, the system wili
store partial results in the register file of each PE. For example in the narrowband case, the NLoops variable will be set to 1.
However in the wideband case, the same variable will be set to a2 maximum of 8.

Figure 6 shows the proposed SIMD structure for the Householder hardware unit. There are eight processing elements
connected through an alignment network to eight blocks of memory (M). Moreover, the PEs have the capability of
intercommunications with one another. The type of communication used in this design is a simple link connecting one PE
and its neighboring PE. There is one central control unit (CU) with a CU memory core. The alignment network provides
the following unique relationship between the PEs and the memory blocks:

* PE, «—» M,

* PEivy «—» Myq

* M, —» all PEs

[ CU memory l
Note that any CU (Controt Unit) - Sons fnee

mingo elementm(Pa!;:lg
memory  block (My. I ﬁlr j T T r T
Subsequently, the lnkage [T [ [ [0 (0 ] ] ]
of PE?" is imposed upon I I I I I
M. ; hence, the system I I I
:nnﬁ gl:la;: o:xght chﬁennt i Alignment Network _|
migmon wm T 1 1 1 1 1 1 1
;onﬁgman:;de;;emx O] OO o O] CE:] o 3
memory block M, can be I L I I l l 1 Lzro.::‘.
connected to all the stage
processing  elements  to Figure 6 SIMD Architacture for the Houssholder Unit
allow sharing of the same
information.




For a matrix of order 64, each block of memory should have the capacity to store a littie more than % K (600) of

system words. Each of the covariance matrix's columns, is spread across the memory biocks. When the matrix's order is
greater than the number of memory blocks, the remainder of the column is allocated across the memones in a similar
pattern. For example, each column of a covanance matnx of order 64 is sectioned into eight subvectors. Each subvector
consists of eight elements. Element 0 (ro,) through clement 7 (r;)) of the first subvector are stored in memory blocks M,
through M,. Element 8 (rg;) through element 15 (r,5;) are stored in the succeeding memory cells of the memory blocks M,
through M,. The rest of the ciements of the column are stored in the memory blocks in the same fashion. Succeeding each
column, a row of zeros is allotted for reasons that will become apparent in the following.

The scalar value B can be computed by taking the square root of the length of the vector r:
BZ’HHW’fﬁfl
where
n= r§, + r§| ..+ r:. (where n is the order of the matrix)
The processing elements PE, - PE, start by reading the first eight values of the vector r,. The PEs square those
elements while reading the next cluster of data. The results of the squared clements are stored concurrently in the register
file of each PE. These operations proceed until all of the elements of the r, vector are squared and stored in the register file.
It is possible that the number of elements in the r; vector are not divisible by the number of processing elements, hence,
during the last cycle of squaning those clements, some of the PEs will be reading invalid data. To compensate for this kind
of difficulty, a row of zeros is inserted between every column of the covariance matrix. Those PEs will be squaring the value
zero and, therefore, will have no effect on the calculations. At this instant, the PEs start adding contents of the register file
with those of the ALU register. The following illustrates the operations performed by the PEs on a column of 63 entries.
Eight steps of reading, squaring and storing data in the register file are required by each PE. At the ninth step, the PEs start
adding the previously computed square values stored in the register file to current content of the accumulator (ALU resuit)
register. When all of the registers have been added, the ALU register of each PE holds partial results needed to compute .
Partial products are scattered in eight PEs. In order to add them, a shift and add scheme has been proposed. Each PE
transmits this information to its neighboring PE on the left through the communication register. An addition operation is
performed, (PE, , PE; ,PE, , PEs ) hold valid data while the data held by (PE, , PE, ,PEs , PE, ) are neglected. The new
results are shifted left twice and another addition operation is performed. Now, PE, and PE, hold valid data. The last step of
the procedure is to shift those resuits four times to the left and add. The desired value  is now in PE, . A simple square
root operation is performed to obtain the value p.

After the computation of p, determining the vector w is almost trivial. The formula governing the vector w is:
w=r +fe
Since all that needs to be done is add the value P to the first element of the vector r,, a copy of the r, vector is
transferred to the allocated space in the memory blocks. The vector w is ready to be utilized upon addition of B to vector r,.

The computation of the scalar value ¢ does not cause any complications with the usage of the memory blocks since
it does not have to be added to any memory cell. The value ¢ is however, broadcasted to all the PEs via the dump area of the
memory blocks; a two step procedure.

The vector d is the resuit of premultiplying the vector w with the covariance matrix R,
d=Rw

The vector w of order 63 is premultiplied with the 63th-order minor of the matrix R The resuit of the
multiplication is a vector d of order 63. Every element d; in the new vector d is the scalar product of the ith row of R and
the vector w. In other words, there are 63 multiplications and 62 additions involved to compose each element d;. Since there
are only eight PEs in the architecture, it wouldn't be possible to complete the computations involved for each d; element in
one cycle In fact, each d; element need the following calculations,
Each PE performs eight r;;.w; muitiplications and stores the results in the register file.
Each PE adds the resuits stored in the register file,
The PEs use the shift left and add scheme discussed earlier to add all the partial results obtained by the
individual PEs.
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A towal of twenty two cycles are required to compute one d; element. Then, there is the probiem of storing one
clement from one PE into one memory cell in the memory blocks while ignoring the other PEs.

Another approach to this problem would be to compute eight of the d vector elements at the same time. It is
possibie to obtain partial results by dnving the PEs to read a partial column J from the minor of the matrix R. One element
w; is then distributed to all the PEs and a multiplication operation is performed. At this instant, eight partial results are
obtained that can be immediately added to the respective memory locations of the vector d. The procedure entails a vanable
that determines the iteration level of the Householder procedure. Another variable (NLoops) is used to determine the
number of loops. If the dimension of the rows of the minor of the matrix R is greater than eight, then NLoops is bigger than
one and the operations have to be repeated NLoops times. The variable (i) is needed to count those repetitions NLoops
times. The value w; is broadcasted (o all the PEs and elements 1, through r,,; are read by the PEs. Each PE muitiplies its
r.w values and adds the resuits to the respective memory location of an clement d;. These operations are repeated unul all
the d vector has been calculated. [n the narrowband case, where eight is the order of the matrix R, there are only eight
multiplication and seven addition operations involved per element d;. Therefore, the available PEs can finish the task in
exactly fifteen cycles.

w and d are the two coastituent vectors of the vector v and the formula governing that equation is,
d whd
veEeTw (Zcz)
H
The inner product %gd (= f) yields . scalar value and can be readily calculated by all the PEs. The partial products

in all PEs are shifted and added. The final value f is stored in PE,. This value f is broadcasted to all the PEs through the
dump area in the memory blocks. Assuming that the scalar value c has already been broadcasted to all the PEs, the elements
v; are formed by the following simple formula,

vi=%-w-,‘f

The last phase of the householder cycle is to use the new vectors w and v to update the elements of the matrix R
Elements of the matrix R that are below or above the subdiagonals are altered to zero and as a result, the matrix R
transforms into a tridiagonal matrix. The equation for the transformation is,

Rz = RI - WVH - VWH

The vector muitiplication wv¥ and vw! each produce a square matrix of order N-1 or less depending on the
iteration level (N is the order of the covariance matrix R). As complex matrices, wvi and vwH are the conjugate transposes
of each other, where "

('VH) = VWH

The computations of the these complex matrices can be cut in half if the above relationship is taken into
consideration. Each PE performs one muitiplication w;v; and updates two memory locations of the space reserved for the
matrix R. When the product w;v; represents diagonal elements, the PE updates the same memory location twice with the
same value. Sometimes, it is possible that the two elements that need to be updated belong to the same memory block, e.g.
I and ry;. This does not constitute a problem because the update will take place in two cycles. In other words after the
completion of the multiplication w;v;, one memory location addressed by row i and column j is updated, an interchange of
the addresses i and j follows and the other memory location is updated.

In the same manner that each PE has a different row address index in the first cycle, that PE should also have a
different row address index in the second cycle. To achieve this requirement, the plan is to alter the i index in an ascending
order (i:=1; i+8; i<=N-1) while altering the j index in a descending order (j:=i+7; j~; j>=i). This scheme is guaranteed not
to cause a conflict because no two PEs share a common row or column index.

R HARDW UNIT

The QR Hardware Unit is needed to transform the tridiagonal matrix obtained from the Householder Unit into a
diagonal matrix. Since this is an iterative method, the resuiting matrix is only an estimate of the eigenvalues. Through
simuilation results and quantization, it is determined that eleven iterations would give reasonable results. Normalily, the QR
method would take O(m?) operations, but for a matrix that is already in the tridiagonal form it would require O(m)




operations. If the number of iterations n is more than one, then the number of operations becomes of the order of O(mxn),
where m is the order of the matrix and n is the number of iterations. The algorithm is based on Given's Rotations (o
compute the cigenvalues and the eigenvectors and is illustrated by the following,

T=T {T tridiagonal matrix obtained from Householder }
U, =N" (U represents the eigenvectors matrix }
Fori:= 1w aDo
Begin
R, =Q/'T,
Tw1 =R, Q;
U = Q:‘ U;
end; {end For loop}
I= Tn..|
X= Um.|

After n iterations, the tridiagonal matrix T undergoes a series of transformations and it approximates a diagonal
matrix _ whose diagonal elements approach the real eigenvalues of the system. The rows of the matrix X aiso approach the
cigenvectors. Originally, the QR algorithm is a sequential algorithm. Robertson and Phillips™'! as well as many others
investigated the possibility of modifying the procedure to make it suitabie for a parallel environment.

An SIMD architecture with eleven PEs and six memory blocks has been proposed for QR method and is shown in
Figure 7 . One PE is dedicated to one iteration, since eleven iterations are assumed, therefore eleven iterations will be
executed . The architecture is independent of the size of the matrix and hence can be used both for narrowband and
wideband cases. The architecture uses an interconnection network which is able to completely connect six PEs to six
memory blocks at any one time.

A coser [pe ] [Pe] [PE] [PE.] [pe.] [re] [ee,] [e] [e.] [pe]

-l D A A A A O A A A A

following interconnection Network
characteristics,

[ A A A A |

’2‘ [ Mo ] M ] (M| M ] [M] [ M
to
-1 Figure 7 SIMD Architecture for the QR Unit with 32 PEs and 6 Memory Blocks
M
ultipiexors needed to switch between processing elements (PE,, PE,, PE,, PE,, PE,, PE;) and (PE,, PE,,
PEq, PE,, PEyq) -

> Six 3-to-8 Multiplexors to connect the selected PEs to Memory Blocks M, through M;.

L 1-bit to control the first six MUXs.

> 18-bit control lines to connect the PEs to Ms.

It should also be stressed that at any one time, any six PEs can be completely connected, however, the procedure
followed will generate addresses that would require each PE to be connected to a different memory block. In other words,
the program is responsible to guarantee a non-blocking situation. One way to remedy the data conflict probiem is to write
two programs with guaranteed non-conflict cycles. This can be easily accomplished by introducing a delay where some
processors will be lagging the others by exactly one cycle. A No-Operation (NOP) instruction will do the trick.

Two PEs share the same pathways to the memory blocks through the interconnection network. One-bit control line
is needed to switch between processor PE; and PE..;. All the buses are assumed to be a byte wide. Should wider buses be
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needed, the appropriate size muitiplexors must be used. The cight-bit wide output of the 2-to-1 MUX is directed to the 3-to-
8 MUXGs. Three-bit control lines are shared by these MUXSs 10 connect one PE to one Bus. Note that the output O, of each 3-
to-8 MUX is tied to BUS;. The difference of this kind of an interconnection network and a completely connected network 1s
the fact that the former requires 19 control bits while the latter requires 33 control bits.

6. CONCLUSION

A generalized architectures has been developed for the computation of DOA estimation both for narrowband and
wideband sources. A MUSIC algorithm was used for the narrowband and BASS-ALE algorithm was selected for the
wideband case. First of all an array of 8 Processing Elements (PE) has been used for the computation of covariance matnx
and is programmable. Parallel algorithms and parailel architectures for the computaton of the eigenvalues and the
eigenvectors have been developed and they are also suitable both for narrowband and wideband sources.

7. REFERENCES

1. K. M. Buckley, L.J. Griffiths, "Broad-band signal-subspace spatial-spectrum (BASS-ALE) estimation”, [EEE Trans. on
Acoustics, Speech, and Signal Processing, Vol. 36, July 1988.

2. RO. Schmith, "Multiple emitter location and signal parameter estimation,” [EEE Trans. on Antennas and Propagation,
Vol AP-34, No.3, PP. 276-280, Mar. 1986.

T

3. R. Roy and T. Kailath, "ESPRIT-Estimation of signal parameters via rotational invariance techniques," IEEE Trans.
Acoustic, Speech and Signal Processing, Vol. 37, No. 7, PP 984-995, July 1989.

4. D. Spielman, A. Paulraj, "Performance analysis of the MUSIC algorithm,” in ICASSP 1986., PP. 1909-1912.

5.T. J. Shan and A. Pauiraj, "On smoothed rank profile tests in eigenstructure approach to direction-of-arrival estimation,"
ICASSP 1986, PP 1905-1908.

6.C.Y.Chen and J. A. Abraham, "Fault-tolerant systems for computations of eigenvalues and singular value” SPIE Vol. 696,
Advance Algorithm and architecture for signal processing, pp 228-237, 1986.

7. CF.T. Tang, KJR Liu, S.A. Tretter, "On systolic array for recursive complex Householder transformations with
applications to array processing,” ICASSP 1991, PP 1033-1036.

8. S.Y. Kung, "VLSI Signal Processors,” Prentice Hall 1987.

9. KJR. Liu, SF. Heieh, K. Yao, "Two level pipelined impiementation of systolic block Householder transformation.”
ICASSP 1990, PP. 1631-1634.

10. W. Phiilips and W. Robertson, "Systolic architecture for symmetric tridiagonal eigenvalue problem,” [EEE International
Conference on systolic arrays, PP. 145-150, 1988.

11. K.JR. Liu, K. Yao, "Multiphase systolic architecture for spectral decomposition,” 1990 International conference on
parallel processing, PP 1-123-1-126.

12. M. M. Jamali, S.C. Kwatra, "Development of parallel architectures for sensor array processing algorithms. "Report No.
DSPH-2, University of Toledo, 1992.

11




o0

RO

Sk
&

Biops fNa- SN

[MAY.24-28,

-

.




CH3306~8/93/0000-0054 $1.00 ® 1993 [IEEE

Design of Special Purpose Parallel Hardware for Real Time
Applications

M.M. Jamali, S.C. Kwatra
Department of Electrical Enginesring
The University of Toledo
Toledo, OH 43606
419-537-2580

Abstract—A methodology for developing
special purpose hardware for real time signal
processing applications has been described.
The developed methodology is used to
explain previously developed architectures for
two different applications. First applicadon is
for the DOA estimation of sonar signals using
the MUSIC algorithm. The second
application is for separating large number of
channels for on-board satellite communication
applications.

I. INTRODUCTION

The growing capabilities in developing
very large scale integrated circuits have made
possible to design special purpose hardware
for the implementation of various algorithms
for real time applications [1]. The customized
hardware has many advantages which have
generated interest among engineers to design
application specific special purpose hardware.
The design of special purpose hardware will
need to exploit pipeline, parallel and
distributed processing approaches to achieve
high throughput rates. There are many
commercially  available  high  speed
mi and digital signal processors
which can be utilized in a multiprocessor
environment. Another approach will be a
dedicated circuits may be designed using off
the shelf Field Prgrammable Gate Arrays
(FPGA). A third approach will be to design a
full custom circuit. An appropriate design
scheme should be selected for special purpose

This research is partly
supported by ONR grant number
N00014-91-J-1011 and NASA
grant number NAG3-799.
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hardware. The selected approach should be
able to exploit maximum parallelization to
reduce the computation time.

1. DESIGN METHODOLOGY

In order to develop a real ume
parallel architecture for a given algorithm
following steps need to be performed.

1. Review the current literature and
select an algorithm which requires smail
amount of computation.

2. The algorithm should be simplified
into simple arithmetic operations.

‘3. The algorithm should be converted
into a computationally efficient algorithm or
substituted with computationally efficient
modules.

4. An estimate should be obtained
about the available time for completion of the

5. The available time should be used
as guide line to select what kind of hardware
should be designed and how much parallelism
needs to be introduced.

6. An application which requires more
multiplications and is compute intensive, an
obvious choice should be that a digital signal
: may be selected as they have on
chip multipliers and on chip memories. The
traditional commercially available
microprocessors do not have on chip
multipliers.




7. Execution time of the algorithm
should be estimated based on the selected
processor and available processing speed. If
the algorithm can not be executed within the

ified ame dictated by the application then
parallel processing should be considered.

8. The algorithm should be divided into
parallel modules. If a particular module of the
algorithm can not be executed in el due
to data dependency it should be pipelined.
Degree of parallelizing will also depend on
the throughput rate of the system and
available time for the computation.

9. After parallelizing the algorithm, it
should be mapped on a suitable architecture.
The architecture can utlize multiple
processors, multiple memories and /O unats.
An appropriate architecture should be
conceived at this stage. The following
guidelines can be used in conceiving an
architecture.

(@) If the algorithm consists of repeated
simple arithmetic operations, requires very
simple programming capabilities and does not
have any decision requirements then the
architecture should be full custom dedicated
architecture. The architecture wouid consists
of group of arithmetic units, memories and
required control circuitry.

(o) If the algorithm requires many different
operations, elaborate gramming, needs
decision and conditi statements then the
architecture should have a processing element
with some memory and other control

10. The architecture should then be
simulated using a high level language to
check the validity of the algorithm and to
study the finite precision effects. This
exercise will ensure that the algorithm is right
and it will also help to identify the required
word length.

11. If the algorithm requires muitiple
processors operating in parallel, then a study
shouid be performed about partitioning of the
computing task, synchronization of the data
and the mechanism for communication with
different processors. It would be wise to
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consider the amount of data need to
transferred from one processor to another. An
atempt shouid be directed that the amount
data which need to be transferred should be
optmized.

12. The complete structure should be
simulated using
Very High Speed Integrated Circuit Hardware
Development Language (VHDL) to verify the
operation of the all the computational
module. It will also be helpful to duplicate
the results which were earlier obtained using
the high level language.

13. If multiple processors are being used
then they should be laid out. Their off chip
memory requirement should be minimized.
Efforts should be directed to use on chip
memory. This approach will help to reduce
the execution and communication time. This
will also reduce the synchronizaton
requirements.

Design of Special Purpose Hardware for DOA
Estimation for Sonar Applications

The high resolution direction-of-
arrival (DOA) estimation is important in
many sensor t.:;ystems. It is based on th;
processing of the received signal an
extracting the desired parameters of the DOA
of plane waves. Many approaches have been
used for the purpose of implementing the
function required for the DOA estimation
and are available in the literature. The
Multiple Signal Classification (MUSIC) and
the Estimation of Signal Parameters by
Rotational Invariance techniques (ESPRIT)
algorithms are widely studied and provide
asymptotically unbiased and efficient
estimates of the DOA [2-3]. They estimate
the so called signal subspace from the array
measurements. The eters of interest
(i.e. determining of the DOA) are then
estimated from the intersection between the
array manifold and the estimated subspace.

There are many algorithms available in
the literature which are variations of the
MUSIC and ESPRIT algorithms. These
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algorithms are derived by varying certain
parameters or modifying others at the expense
of high computatonal cost yielding benter
accuracy etc. In this study MUSIC algorithm
has been selected to develop special purpose
hardware for real time applicatons.
Although MUSIC is a high resoluton
algonthm, it has several drawbacks including
the fact that complete knowledge of the array
manifold is required, and that is
computationaly very expensive as it requires a
lot of computations to find the intersection
between the array manifold and the signal
subspace. This drawback can be overcome by
using high speed parallel architecture for the
computation of DOA.

It was decided that special purpose
hardware can be developed which can be used
for real time computation of the DOA
estimation. First of all computation
requirement of this algorithm were
investigated [4]. Following is list of
operations which need to be performed.

1) Estimate the data covariance matrix.

2) Perform the eigendecomposition.

3) Estimate the number of sources.

4) Evaluate Power function.

5) Find the largest peaks of Power and
estimate direction of arrival.

In order to develop a real time
parallel architecture for a given algorithm
following steps need to be performed.

a) [Estimate the computation
requirement of the algorithm.  This is
dependent on the number of sensors used in
the algorithm. After reviewing the literature it
was decided that eight sensors shouid be
sufficient for this application. This was also
discussed with one of the experts in the area
at one of the conference. It was confirmed
that use of eight sensors was a  reasonable

assumption.

b) The second task was what would be
considered as the real time for this
application. Again a search was conducted in
the literature about the frequency range of the
sonar signais. It was found that frequency of

56

27 KHz is a reasonable number for this
application.

¢) The third task was how much dag
need w0 be collected which will give
reasonable accurate results. It was found that
collecion of 4800 samples will give
reasonable results.

d) The number of samples to be
collected (4800) and the signal coming at
upto 27 KHz. will give the available time for
completing the task and giving the available
time. A sampling frequency which should be
twice the signal need to be used. Therzfore a
sampling frequency of 100 KHz and 4800
samples used as a guideline which will give
allowed computation time of 48 m secs.

e) An algorithm should be first converted
into a computationally efficient algorithm.
It is clear from the above discussion that the
implementadon of the MUSIC algornithms
requires formation of data covariance matrix
and the computation of the eigenvalues. It
was found that QR algorithm is very

riate  for the computation of the
eigenvalues and the eigenvectors. To make
this algorithm more efficient it was decided to
use the Householder method to convert the
covariance matrix into tridiagonal one before
performing QR decomposition. This approach
of reducing the symmetrical covariance
matrix into tridiagonal matrix make QR
algorithm more efficient. The eigenvalues are
used to find the number of sources. Finally
using the eigenvectors in Power method the
directions of arrival are computed.

Using the above time limit of 48 m
secs and eight sources, it was found that four
major computation intensive operations need
to be performed. These algorithms also
require multiplication, division, square root,
logarithm, sine & cosine and square
operations. It can be seen that the
computation requirements are extreme and
many complex operations need to performed
as opposed to simple addition/ subtraction
operation. Therefore use of powerful digital
signal processor will be appropriate. Since
many operations need to performed in parallel
requiring multiple rs, therefore eight

processors should be connected in parallel.
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Since the  algorithm  requires
computaton of four major computational
tasks, therefore four computatonal units each
with eight processor can be used. These
computational units will operate in parallel.
The data will be passed from one wiit to
another in a pipeline fashion. Therefore four
compuaational module will execute this
algonthm in parallel and pipeline fashion.
The MUSIC algorithm has been simulated
using the FORTRAN language and
appropriate results have been obtained. This
was done to validate the modifications which
were made in this algorithm ({4]. The
simulation assumed infinite precision. Efforts
are being directed to simulate this architecture
using the assembly language of the Motorola
DSP 56000 digital signal processor.

Special Purpose Hardware Developmens for Satellite
Applications

Due to the growth and extreme
demand in the area of mobile communicagon,
it may be necessary that the future satellite
communicaion systems should provide
service to large number of small capacity,
multi service users. For these systems the
conventional transmission methods of
Frequency Division Multiple Access (FDMA)
or Time Division Multiple Access (TDMA)
are not efficient. One approach to offer these
services at a low cost tc the user is to use
Single Channel Per Carrier (SCPC)/FDMA
on the uplink and Time Division Multiplexing
(TDM) on the downlink [5-6). This approach
will result in low cost and less complex earth
terminals, enabling an  increase in
communication via satellites. The problem
with this type of communication is that it
transfers the burden of computation on-board
the satellite, where power and area
requirements are critical. It can thus be seen
that hardware that is efficient in terms of
speed, power consumption and components
needs to be developed for performing the
computations on-board the satellite.

One of the major components in the
FDMA/TDM conversion is the
ransmultiplexer which is required to separate
the FDMA signal into individual channels.
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Using today's technology special purpose full
custom VLSI digital circuit can be designed
for the wtansmultiplexer.The Digital
transmultiplexer will provide flexibility in
processing any number of channels with
different bandwidths and access formats.
Moreover the transmultiplexer may be
programmable and programming instructions
may be send from the ground for the desired
processing.

There are two goals for the digiral
implementation of the transmultipiexer. First
of all it should consume small amount of
power and the second one that it should meet
the real time processing requirement of the
system. In this work a case study of
the design of a programmable TMUX is
presented. It was determined that the TMUX
should be capable of demultplexing 800
channels at 64 Kb/s each. The design can
later on be extended to accommodate varying
number of channels with varying bit rate.

It has been shown earlier that the most
efficient type of TMUX for demultiplexing
channels of uniform bandwidth 1is the
polyphase FFT method (7]. It performs both
sampling rate reduction (decimation) and
channel separation together. The decimation
is implemented using the commutator and a
set of filters. The input samples are fed to the
polyphase filters by the commutator. The
outputs of the DFT operation are multiplied
by another constant (-1)m (where m is the
decimated sample number) to obtain the

ted channels samples at baseband. In
this approach polyphase filters are derived
from a prototype filter. The polyphase filter
coefficients are obtained from the poiyphase
decomposition of the low pass prototype
filter. In this case the decimation is
performed before the filtering, therefore the
filtering is performed at the lower rate. The
detailed derivation of the polyphase FFT
principles is given in [7-9].

The FDMA signal is complex sampled
at F MHz. For a sampling rate of F MHz the
system clock period will be less than T secs
(1/F Hz). Two A/D converters are needed,
one for the real part and one for the
imaginary part. The samples are fed into the




polyphase network at the rate of one complex
sample per channel every T secs.

For real time demultplexing of
800 channels each having a bandwidth of 45
KHz, the polyphase fiitering and the FFT
operatons should be completed int = 1/45 K
Hz secs or 22.22 micro seconds. This is
because the sample interval after decimation
is t secs. Performing both these operations
(filtering and FFT) in t secs will require very
high speed hardware and may not be
practical. This problem is solved by
performing a data analysis and realizing that
the two operations are data independent and
can therefore be })erformed by two modules
in a pipelined fashion, thus giving each
module t secs to perform its operations. This
method of pipelining the two operations
allows the data to come in continuously and
facilitates the separation of channels in real
time. It also avoids buffering and
accommodates other necessary operations
such as multiplication by a constant factor for
phase shifting operations. The two operations
are implemented as two modules, namely, the
polyphase filter module and the FFT module.
The two modules are explained in the
following sections.

A bank of polyphase filters is required
for performing the weighting operation. Each
filter in the polyphase network is derived
from the prototype lowpass filter {8-9]. In
this case the prototype filter has 7200 taps
and there are 800 channels to be
demultiplexed, the 800 polyphase filters
would have 9 taps each. The polyphase
filters are implemented as FIR filters [8-9].

The individual 9 tap FIR filters can be
implemented in a variety of ways. For
filtering the 800 channels, each 9
tap filter will have 22.22 micro secs to
compute its resuit. This can be achieved with
today's technology, but implementing 800
filters and assuming that each filter has only
one multiplier, the total power requirements
will be very high.

It can be visualized that filtering
operation consists of repeated muitiplication
and addition operations. The filtering
operation also require very little
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programming capabilities. Therefore a full
custom dedicated architecture would be more
appropriate for this application. The dedicated
architecture would give better speed/power

ormance as compared t0 commercially
available digital signal processors.

A structure of 9 tap filter which will
be shared amongst the 800 filters is proposed.
This is accomplished by designing the
hardware structure for one 9 tap filter and
passing the appropriate coefficients that
define a desired filter. The coefficients are
stored in a high speed memory. Using this
approach any desired filter can be configured
by accessing the appropriate filter coefficients
from memory. Thus in this architecture the
structure for one filter is ime shared amongst
the 800 filters giving an approximately 800:1
savings in hardware and power consumption
over directly implementing the polyphase
structure.

The architecture of the shared
polyphase filter bank for the case of 800 (9
tap) filters is shown in Figure 2. In this
structure each high RAM corresponds
to one of the registers in the 9 tap filter. In
essence the RAMs used in the current
structure act as muitiple registers connected to
multipliers. An address generator generates
the read and write addresses by counting
from 1 to 800. For 800 polyphase filters the
counter will count tll 800. The read and
write addresses are the same through one
cycle of reading and writing.

Outputs of the filter bank are
passed through a DFT to compensate for the
phase shifts due to the polyphase filters. It
can be seen that 800 samples will be available
for DFT computation every 22.22 micro secs.
The FFT algorithm is used for fast
computation of the DFT. For efficient FFT
implementation, an N point FFT (closest
power of 2 above X) is computed instead of
an X point FFT. Normally zeroes are added
to the data points to get N points. For
example, demultiplexing 800 channels with a
45 KHz bandwidth each would require a 1024
point FFT to be completed in 22.22 usecs
(1/45 KHz). As there are no DSPs that can
perform the FFT at the high speeds required
with reasonable power consumpton,
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dedicated hardware must be designed to
perform the FFT operaton efficiendy.
Moreover FFT algorithm consists of regular
structure with repetiive multiplication and
addition operations and requires very little
programming capabilities, therefore a
dedicated architecture consisting arithmetic
units  specially designed for butterfly
operations, memories to store intermediate
data would be more appropriate.

One method for implementing_ the
FFT processor is the pipelined FFT [10-11].
In this architecture there will be log2N stages
in the pipeline. Each stage in the pipeline
will consist of a Arithmetc Element(AE), a
memory that will store the twiddle factors, a
RAM for storing its output and an address
generator. Since the FFT algorithm requires
multiplication of data with different twiddle
factors at different stages, this would
necessitates simultaneous reading and writing
of two intermediate results. Therefor it would
be appropriate to use two memories which
would facilitate simultaneous reading and
writing. The RAM that stores the output of
each stage is divided into two sections.
Section 1 ranges from O to 1K and section 2
varies from 1 to 2K. The memory is clearly
partiioned into two parts to enable
simultaneous reading out of and writing into
different sections of the same memory. The
nth RAM stores the result of the (n-1)th
stage of the FFT.

Each stage of the FFT requires 512
butterflies. Each butterfly requires a pair of
inputs and one twiddle factor. All the
butterfly operations required in each stage of
the FFT pipeline are performed sequenuaily.
Each stage of the FFT has a different set of
input data addresses than the other stage. The
512 twiddle factors needed for a 1024 point
FFT are stored in an 512 word by 16 bit (8
bits each for the real and imagi
ROM called a Coefficient ROM (CR).

An arithmetic element has been
designed to compute the butterfly operations.
Each stage will have one arithmetic element.

IV; . CONCLUSIONS

A methodology for designing special
purpose hardware for real ume applicatons

have been presented. The developed
methodology has been applied to two
different applications. First application is the
DOA estimation using the MUSIC algorithm.
The MUSIC algorithm has been modified
with efficient computational modules. The
algorithm has been parallelized. Four
modules are implemented using pipeline and
parallel processing schemes. The architecture
1s developed assuming eight sensors and is
capable of computing DOA in real time. The
architecture utilizes identical processing
elements.

The second application discussed was
the development of efficient architecture for
demultdplexing a varying number of
uniformly spaced channels is given. The
design 1s divided into two parts, the
polyphase filter bank implementation and the
FFT implementation. The polyphase filter
bank is implemented by means of a parallel,
pipelined and muitiplexed shared filter
module. In this shared filter bank module the
hardware structure for one filter is shared
amongst the 800 different polyphase filters
giving rise to an 800 to 1 savings over
directly implementing the N polyphase filters.
For FFT computation, a parallel and
pipelined implementation is used.
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Abstracs - The high-rmolution Directios-Of-Arrival (DOA)
estimation is importast ia many seasory systems Gike radars,
sonars and seismic exploratioa. With the advances in the area

of VLSI it is sow possible t» dasign a special purpese
bardware for DOA estimation which will be suitable for real-

Griffiths (4] has beea selectad for hardware
This BASS-ALE algorithm has been simplified, unw
and is mapped oa an architecture suitable for real time

processiog.
I. INTRODUCTION

With the advancement of very large scale integration,
more circuitry can be compacted on a single integrated
circuit and oow more and more Application Specific
Integrated Circuits (ASIC) are being developed. One area
where ASIC approach can be spplied is the Direction of
Arrival (DOA) estimation for sonar applications, Special
purpose hardware can be designed for complex algorithms
exploiting parailel processing approaches in the form of
ASICs for real time applications.

The problem of multiple source location is of interest to
us and has been investigated in the literature. Many of the
common methods of source location are based on narrow-
band assumptions on the signals. There are many broad-
band DOA estimation algorithms available in the
literature{1..6]. Some of them are extensions of narrow-
band cases and others are transformed to specific broad-
band algorithms. One of the broad-band methods proposed
by Buckley and Griffiths [4] uses a focused covariance
matrix as a temporal/spatial focused observation for broad-
band source representstion. BASS-ALE estimators employ
the eigenstructure of broad-band data covariance matrix and
broad-band models. BASS-ALE aigorithm has been
selected for the design of special purpose hardware. It has
been simplified and perallelized [12]. Eight sensors and
eight delays are assumed in this work for the computation

Thus research is partly supported by ONR grant aumber
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Accepted for presentation at Oceans '93

of DOA. The algorithm will be executed in s pipeline
fashion. First of all the covariance matrix will be
computsd from the collectad data followed by
eigeavalue/eigenvector computations. The eigeavalues and
eigeavectors will bs computed using Householder method
followed by QR mathod. Dimeasion of the span of the
signal-subspacs spatisl-spectrum will be evaluated.
Finally, a power method will be used to compute DOA.

0. ARCHITECTURE FOR BASS-ALE AL~ “RITHM

First of all the data need to be collected by the sensors o
compute the covariance matrix. The data output from eight
seasors is converted to the digital domain and fed to a pure
propagation delay array in a parailel and pipelined fashion.
The delay array is imp’ smentsd using RAM for each seasor
output.

A. The Covariance Marrix Hardware Unit

The data gathered in the delay armay is collected once
every eight cycles. In other words, the data is collected
every time the array is filled with new vectors. The
gathered data is stacked to construct a Gd-element data
vector required for the computation of the covariance
matrix. Computation of the covariance matrix involves a
multiplication of 64 eclement vector with its 64 element
complex conjugate transpose (64 element row) producing a
64x64 matrix for each set of data. Since the covariance
mstrix is symmetric, one way 0 reduce the required
sumber of computations is to computs oaly the lower

An spproach of computing 64x64 covariance matrix is
preseated and uses eight processing eolements. The
computatioa of the covariance matrix requires that the 64-
clement data vector (s column) be multiplied with its
couaterpart, the G4-clement coojugats transpose data
vector. The multiplication process creates s Hermitian
matrix. On account of creating a lower triangular matnix,
36 sub vector multiplicatioas are required. Each of these
sub vector multiplication produces an 8x8 sub matrix. To
simplify the computation of the covariance matrix, ail the
sub vectors will be computed in full including those that




are on the disgonal. As a result, more data is generated
than is desired, especially the ones above the diasgoaal.

The addition of thoss extra elements to the matrix
establishes 2 uniform algorithm where all the sub vectors
can be muitiplied in exactly the same manner without
exceptions. [n other words, one architecture can be used to
compute the 8x8 sub matrices one at a time. The hardware
unit computes one of the sub matrices at a time. The
broadcast data is stored in the registers and the secoad
operand vector is stored in the PEs. Three counters are
needed:

Counter J : Indexes the colunns (A column refers to the

different sub vectors)

Counter [ : Indexes the rows (A row refers to the

differeat sub vectors)

Counter K : Indexes the rows within a sub matrix

muitiplication process.
Fig. 1. shows the needed architecture to perform the
operations explained above. Data output from eight
sensors are fed and writtea into eight dual-port RAMSs
(DPR). At any one time, one level of DPRs will be in
write mode storing newly read data from the seasors’
output while the second level of DPRs will be in read mode
where previously stored information is now being used to
compute one vector product with its conjugate transpose.
Addresses needed by the DPRs are provided by counter I,
counter J and a 3-bit counter which is controlled by a 9-bit
counter. Two multiplexors coatrolled by S (or S), direct
the needed address to the DPRs. If the DPRs are in write
mode, the 3-bit address is selected, otherwise, address I
and address J are selected. In read mode, the data
addressed by counter I is supplied from esch DPR to the
respective register, while simulitanecusly the data addressed
by counter J is supplied from each of the same DPRs to the
respective processing elemeat. Counter K is initialized to

the value of zev0 and thea is used to broadcast the output of
one of the registers, one at a time, to all of the eight
processing elemeats. Each PE then multiplies that register
output data with the value already stored in its internal
register (an element of vector J). The multiplication resuit
is added to previously computed values that are stored in
memory at an address pointed to by counters [, J and K.
Counter K loops through its range (0—7) t0 coastruct an
8x8 sub matrix. Counters [ and J loop through their range
(7-0) o compute the 36 sub matrices. At the end of thres
loops (1, J, K), the assignment of the two levels of DPRs
aro switched and the operations performed by the PEs are
repeated for the newly available data The process is
repeated 600 times to build the required matrix. The
covanance matnix is formed by collecting me matrix and
dividing its elemeats by 600.

B. Householder Hardware Unit

The Householder algorithm is chosen to convert the
dense covariance matrix, already computed by the previous
unit, to a tridiagonal matrix so as to speed up the
computations of the eigeavalues/eigenvectors problem. An
SIMD architecture is proposed where ecight specially
designed processing elements are used.

Previous work on the Householder algorithm {11] led to
the following simple scheme:

¢ Compute the scalar value B

¢ Compute the one dimensional

vector w
¢ Compute the scalar c
* Compute the one dimensional
vector d
* Compute the one dimensional
vector ¥
e Modify the covariance matrix

frequency divider

| ‘ using the above computations

e !

The architecture is not depeadent
[ on the dimension (order) of the
matrix. Fig. 2. shows the proposed

SIMD structure for the Househoider
hardware unit. There are eight
41 processing elements connected
through an alignment nexwork to
eight blocks of memory M).
Moreover, the PEs have the

K capability of intercommuaications

g ADO-AD2

with one another. The type of
communication used in this design
is a simple link coanecting one PE

Enasble R output |

Fig.1. The Covariance matrix architecture,

and its neighboring PE. There is
one central control unit (CU) wvith a
CU memory core. The alignment

\\\
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Each block of memory is sectioned
to allocate space for the covariance
matrix, a dump area, reserved spacs,
part of the w vector, part of the d
vector and part of the v vector. Each
sub vector coasists of eight elements.
Element 0 (r0,;) through elemeat 7
o (nﬁormﬁmﬂbwmm

gt
rﬂn

&1 in memory blocks Mg through M7.

Sroedcast mode ) P,g P,Q pe7 Elemeat 8 (rg ;) through element 15
1 control bit - (r15,j) are stored in the succeeding
memory cells of the memory blocks
Bus . n ] Mg through M7. The rest of the
| T zii o = elements of the column are stored in
: : i the memory blocks in the same
; l fashion.
Dtatrbuted o C. QR Hardware Unit
3 control bits Memory 01234307

ETT!

The QR bardware unit is needed to
transforra the tridiagonal matrix
obtained from the Househoider unit
into a diagonal matrix. Since this is an

L.

iterative method, the resulting matnx

Fig. 2. Householder uait architecture.

network provides the following unique relationship
between the PEs and the memory blocks:

*PE;, o M,
*PEi, «—» M,
* M, —» all PEs

Note that any processing element (PE;) can be connected
to any memory block (My). Subsequently, the linkage of
PE;,, is imposed upon M, ; hence, the system can have
eight different configuration setups. Another possible
configuration is the broadcast mode where the memory
block M, can be connected to all the processing elements to
allow sharing of the same information. One coatrol-bit is
used to put the system in the broadcast mode or in normal-
oper-+ion mode. This is achieved through the use of a 2-to-
1 m...apiexor (MUX) per PE to connect to either busg or
busi. When the system is in aormal-operation mode, a2 3-
to-8 decoder channeis the flow of data on the buses to the
PEs using transmission gates (TG). These TGs are
aumbered 1 to 8 for each PE. Nots that TG, of each PE
coanects PE; to bus, TG, connects PE; to bus,,, and so
on. This scheme conforms with the requirement that if PE;
is connected to M,, thea it follows that PE;,, should be
Comek,l.

is only an estimate of the eigeavalues.
Through simulation results and a study
of the margin of error it is determined
that eleven iterations would give
reasouable results. Normally, the QR method wouid take
O(x®) operations, but for a matrix *hat is aiready in the
tridiagonal form it would require O(m) operations. If the
oumber of iterations o is more than one, thea the number of
operations becomes of the order of O(mxz), where m is the
order of the matrix and n is the number of iterations. The
algorithm is based on Given's rotations to compute the
eigenvalues and the eigeuvectors and is illustrated by the

following,
Ti=T {T tridiagonal matrix from Housebolder)}
U1 -NH {U represeats the eigenvectors matrix}
Fori:= 1ton Do
! H
Ri=Q,'Ti
Ti+1 =R Qi
H

Ui+1 = Q, VUi

end; {end For loop}

Z=Ta+l
X’Un+1 (1)

After n iterations, the tridiagonal matrix T undergoes a
series of transformations and it approximates a diagonal

\l}




matrix ¥ whose diagonsl elements approach the real
cigenvalues of the system. The rows of the matrix X also
approsch the eigenvectors.

Parallel QR algorithm

Originally, the QR algorithm is & sequential algorithm.

Robertson and Phillips (9] as well as many others
investigated the possibility of modifying the procedure to
make it suitabie for a parailel eavironment. The
described by Robertson and Phillips {9] is adopted in this
work.
Let a(j,i) and b(j,i) be the eatries of the diagonal and the
subdiagonal of the matrix T, respectively, where j is the
row/column number and i is the iteration number.
Moreover, carefully observing the operations involved in
the sequential algorithm, it becomes apparent that. in the
same iteration level, each computation of an a(j+1,i) or
b(j +1,i) entry depends oa its preceding entries. However,
the computation of any entry a(j,i+1) or b(j,i+1) depends
also oa the resuits obtained from the calculations of the
eatries a(j,i) and a(j-1,i) or b(j,i) and b(j-1,i).

In this instance, each column comprises of computations
of all the elements a(j,i) or (b(j,i) (For j:= 1 to 64) in the
same iteration level. Since an element of the
succeeding iteration level (j,i+1) depends
on the previous two elemeats from the
previous level, (j,i) and (j-1,i), the

79737331111

will generats addreases that would require each PE to be
connected o a different memory biock. [n other words, the
program is respousible to gusrantes 2 nom-biocking
situation. Oune way to remedy the data coaflict problem 1s
to writs two programs with guaranteed non-coaflict cycles.
This can be eamly accomplished by introducing s delay
where some processors will be lagging the others by
exactly one cycle. A No-Operation (NOP) instruction will
do the trick.

D. Dimension of the span of the signal-subspace spatial-
specrrum

In the previous architectural units, tasks are to collect the
data constituted of the sample signal in white noise
surroundings, to produce the covariance matrix, and ©
perform an eigenvalue/cigenvector analysis. The
cigenvalues A; are sorted in a2 mognotonically decreasing
order. [t is however desired to detect the dimeasion of the
space that spans the signal space and the dimension that
spans the noise space. The Akaike information criterion
esumate (AICE) is an approach used to determine the
number of signal-subspace parameters d needed in such an
estimation problem. It is required to choose the number d

computations of the eatries (j,i+1) for (For
j:= 1 to 64) can start at a two steps delay.
In this configuration, each PE is assigned
the computations of all the entries that fall in
the same iteration level. The total sumber
of steps a PE is active depends on the order
of the matrix, heace, in the above example, 9-bit
64 is the number of active steps. Bearing in

Interconnection Network
PEoPEPEPEPEPEs PE2PEIPELPE PE

mind that the number of iterations is eleven,
the number of PEs needed is depeadent on

the aumber of iterations. The total number
of steps required for the compietion of the
algorithm in the same example of the matrix
of order 64 is also 84. It was verified from
the simuiation that 11 iterations will be
noeded, therefore in our architecture 11 PEs
are suggested.

It can be shown that six memory blocks
will suffice to complete the architecture.
Fig. 3. shows an architecrure using an
interconnection network as the exchange

g ligilidi

Ms Mo Ms

v Me v M
Mg Mo MM MM M;, e

M,M, MM

-. MUX1 -- MUX2

data environment.
It should aiso be stressed that at any one
time, any six PEs can be completely

& o o

& o

connected, however, the procedure followed

Fig. 3. QR unit architecture.

\




-

which minimizes the function AICE(d) defined by [4] is
described:

maximum of the likelihood function
of the observation obtained

by changing the d fres parameters
in the prespecified model

AICE(d) = -2 log

+2d

The AICE condition as applied to the BASS-ALE
algorithm yields the following Equations,
AICE(d) = (Jz-J, +1).N.(ML - d).LN G:-) + d(2ML - d)

(2a)
where

(2b)
M'L l“#l

1
a-(HxiF" (29
jmd+1 )

Ji, Jasuch that 0 S J; <J; S J-1 and

J = KI, M-dimensional snapshot vectors and K equals

the aumber of contiguous blocks of vectors.

As is, the above equation might create some difficulties
in the computations due to summation and multiplication in
2, and g,. A new scheme is proposed [12] that takes
advaatage of the recursive nature of this equation. A count
down loop structure will start the summation process so
that at every iteration, only one eigeavalue A will be added
to previously summed eigenvalues. This technique
dmmm:epanngthemcomptmmammdum
thus saving on computation time and makes it efficient for
real-time processing.

E. The Power Method

After computing the eigeavalues and eigeavectors, the
signai-subspace order estimation as described in (4] is
accomplished in the SSD module. Using the sigoal
wbw&mm.mmummbeundto
computs the following function,

Ne

ag(o) = V;_‘(.iml.a, . .W.Q]T )

and tj 9 = (i-1)x9, @ = (4/c)sind

0 is the azimuth angie measured reiative (o array broad side

A is the seasor spacing

¢ is propagation velocity

9 is the propagation delay from the array origin to the ith

sensor for the sourcn location 0.

then ag(®) becomes

ag(0) = :]ll—_ (1,690Td  ojoL-)T4T g
Fe1071S, L, edoMET ©)

The seasor spacing is 1/2 the propagation waveleagth (% =

%) and the sampling interval is one (Td = 1). The above

approach is known as a basis vector-based estimator where
broad-band source representation subspacs basis vectors are
projected and combined.

The umit comsists of eight specialized processors
connected in an SIMD structure with linear and bi-
directional links between one processor and its neighboring
processors. Each of the processors has a bi-directional data
bus with a RAM unit that stores the varisbles needed in the
computations of the power method. Fig. 4. shows the
power method architecture.

F. Generalized Processing Element (GPE) Suitable for
DOA Problems

In previous sections, several SIMD structures were
proposed with simple inter processor communications.
Every processor should have the capability to communicate
with its neighboring processors; the one on the right and
the one on the left. A generalized processing elemeat
(GPE) has been designed and its block diagram is shown in
Fig. 5.

Z 1
j-1|e@y) &
where Eq are the eigenvectors. a(wj) is the
location vector modeled as
26(®) = :71- [1,090Td,  gjo(L-DT4T g

P@©) = €))

Countes®

- —
a8(0) @ (e

where




The GPE has the following features,

1. Muitipie Buses

2. AU capable of: addition, subtraction, multiplication,
division, magnitude comparisons and performs
complex functions: Sia, Cos and Logy,.

Eight general purpose File Registers

East/West [nterconnections.

Micro Code Coatrols.

Address Generation and Selection.
Conditional/Unconditional Jumps.

Loops.

™ NO kW

M. CONCLUSION

BASS-ALE algorithm has beea simplified and converted
into parallel/pipelined algorithm. An efficieat architecture
has been proposed for the covariance matrix that uses oaly
eight PEs with minimal hardware requirements. The
Householder unit uses mathematical shortcuts to enhance
the algorithm and speedup the operations. It too uses an
architecture of eight processors. And to add uniformity
throughout the system, the QR architecture uses also eight
processors. With minimal computation cycles required for
the determination of the signal subspace dimeasion, a one
processor setup is recommended. Similarly, an eight
processor architecture is designed for the power method.
The GPE offers the potential to perform multiple
instructions simuitaneously. Muitiple buses, advanced AU
operations and concurrent instructions all add to the
composition of a faster processing power.
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SUMMARY!

The estimation of the direction of arrival (DOA) in sensor systems has been one of the
frequently considered problems in digital signal processing. The algorithms used to compute
the DOA are based on the processing of the received signal and extracting the desired
parameters to estimate the direction of arrival. The Multiple Signal Classification (MUSIC) [1]
is a high resolution algorithm and has been widely used for computation of the DOA parameters.
The approaches to this problem have been separated into the narrowband case which assumes
that the signals can be considered to have only one frequency component and the broadband or
wideband case in which the signal is considered to consist of a band of frequency components.

The goal of this work was to design an architecture which will be suitable for the
narrowband and the wideband cases. It has been discovered that the narrowband MUSIC
algorithm and the wideband algorithms BASS-ALE [2] and bilinear transformation [3] require
similar computational modules such as the computation of the covariance matrix, eigenvalues and
eigenvector computation using the Householder transformation and QR method and power
method [4-5]. Since the required modules are identical, they can be generalized into one
algorithm and generalized hardware can be developed. The generalized hardware will be suitable
for both applications.

In the DOA applications, the data has to be collected by the sensors to compute the
covariance matrix. In this study eight sensors and eight delay elements have been assumed and the
hardware is designed accordingly. Eight sensors in the narrowband case will result in a 8*8
covariance matrix. Therefore all computations for DOA estimation will require manipulation of
8*8 matrices. It would be easier to map the algorithm on an archtitecture which has eight
processing elements (PEs).

The first step in the estimation of DOA is the computation of the covariance matrix
from the incoming signals. From the VLSI implementation point of view it is very appealing
to design a combined covariance matrix processor which will be programmable and can be
used for both narrowband and broadband algorithms. Such a combined processor has the
advantage of being very cost effective and opens avenues to design a configurable system.

! This research is partly supported by ONR grant number N00014-91-J-1011




In this work three such algorithms which are very appropriate for the development of a
dedicated system are considered and a combined covarniance matrix processor is developed for
them. The algorithms are the narrowband MUSIC algorithm [1] and the broadband BASS-ALE
[2] and bilinear transformation algorithm(3]. The processor is designed to be compatible with
an eight sensors and eight processor system which are placed on a processing board with each
processor having its dedicated memory as shown in Figure 1. In this work the design and
implementation of an ASIC chip for the processor is carried out. The processing board can be
completed by using commercially available components for the memories.

PROCESSOR ARCHITECTURE

A block diagram of the combined covariance matrix processor [6] is shown in Figure 2.
The architecture basically consists of the input loading stage, the arithmetic unit and the
control units.The input loading stage consists of eight input latches for the Y vector and one
for the X scalar and a load control unit which latches on the data at the appropriate clock
pulse. The unit has two three bit counters and two 3 to 8 decoders. The latch counter is used to
count the clock pulses and the decoder selects the appropriate latch according to the clock.
One counter is used to latch the input data and is driven by the load clock. As shown in the
flowcharts the load clock is received when the loading operation takes place. Once the data for
one particular cycle is latched in, the load clock is disabled and the input clock which
synchronizes the arithmetic operations is enabled. The input clock is used to drive the enable
counter and the enable decoder which enables the appropriate buffer. The data from the latch
is then placed on the internal data bus which is connected to the multipliers. As all the latches
are connected to the same internal bus, a tristate buffer is used after the latch to prevent data
corruption. The arithmetic unit has four multipliers, an adder, a subtractor and two
accumulators. The control unit has three separate control modules for the three algonthms.

VLSI IMPLEMENTATION

The VLSI implementation of the processor described above involves a detailed design
of the individual modules and transistor level optimization to provide a chip which can
perform the required operations in the specified time frame. During the VLSI design various
considerations such as the selection of multiplier and adder architectures and number
representation were taken into account, and the chip design was carried out accordingly.

The VLSI simulation and implementation was carried out using two different software
tools. First the behavioral simulation of the architecture was done on Powerview, the CAD
package from Viewlogic Inc [7]). To perform a behavioral simulation of the proposed
architecture, VHDL code was written for all the basic modules The processor was then
constructed and it was sucessfully simulated. Secondly Mentor Graphics Generator
Development Tools 5.3 [8] were used to perform the transistor and logic level simulation on
the chip and conduct a timing analysis. The layout of the chip was generated and verified using
the AutoCells feature in GDT.

A Led schematic of the combined covariance processor is shown in Figure 3. The
results of the simulations are shown in the Figure 4. The inputs to the multipliers are mitina,




mitinb, mitinc and mltind. Two of these are the imaginary and real parts of the X input while
the other two are the elements of the Y vector. The outputs of the complex multiplication are
add and sub, while accl and acc2 give the values after accumulation. The input to the two
accumulators from the memory are given by meml and mem2. The processor was simulated
over two cycles and the muitiplication and accumulation operations were verified.

The netlist was generated and an Lsim simulation was run on the netlist. The netlist for
the processor was generated from the Led schematic. Then AutoCells was used to generate the
layout of the processor. The layout was verified by simulating the netlist for the whole
processor. The terminals were placed so that the routing to the pins can be done very easily.
The data input terminals and the input control signals are placed at the top. The data bits (
memory and processor out ) are placed at the sides and the address bits are placed at the
bottom. The total chip area is approximately 2200 x 5800 um2. The chip will fit in a 120 pin
frame available through MOSIS. The layout of the processor is shown in Figure 5. The data
pins are connected to the memory as shown in Figure 6. The address bits are supplied from the
processor and a global reset pin is supplied so that the memory chip can be reset after one
cycle of computations.

REFERENCES

(1] R.O. Schmith, "Multiple emitter location and signal parameter estimation,” IEEE Trans on
Antennas and Propagation, Vol AP-34, No.3, PP. 276-280, Mar. 1986.

[2] Kevin M. Buckley and Lloyd J. Griffiths, "Broad-band signal- subspace spatial-
spectrum(BASE-ALE) estimation”, [EEE Trans. on Acoustics, Speech, and Signal Processing,
VOL.36, No. 7, July 1988.

[3] Amab K. Shaw and Ramdas Kumaresan, "Estimation of angles of arrivals of broadband
signals", Proceedings of the Interantional Conference on Acoustic, Speech and Signal
Processing , pp.2296-2299, 1987.

[4] M. M Jamali, S.C. Kwatra, "Development of parallel architectures for sensor array
processing algorithms. "Report No. DSPH-1, University of Toledo, 1991.

(S} M. M. Jamali, S.T. Kwatra, "Development of parallel architectures for sensor array
processing algorithms. "Report No. DSPH-2, University of Toledo, 1992.

[6] R. Surya,"A Parallel and Pipelined Architecture for Estimation of Direction of Arrival using a
Bilinear Transformation Method", M. S. Thesis, Department of Electrical Engineering, The
University of Toledo, in progress.

[7] Powerview Viewlogic Reference Manuals, Viewlogic Inc. 1991.

[8] GDT, Mentor Graphics Corp. Software Manuals Version 5.3.1, 1992.




Broadcast Bus

| ) | 1 | § B A } |
i 3 e X 3 H } Y
Processor Precessor Procenser Precesser Precessar Processer Precmosr Procamer
1 1 3 L} s . 1 s
! 1 3 ) SN A I A | | 1 4
Memery Viemory Maemery Memery Memaory Mamery Memery Maessory

Figure | Procescing board for the computation of covarian~e matrix.

Y LATCHES Input loading Unit X LATCH
v ¥

1 ) 4. R U L IR N i S

ji Lo

LOAD ==
CONTRO

%
Hf
h—:&ﬂ

veaseheccnccacse cvencasa hevvonae proccesacaa drccnces S eccsesecan P TS veccedeaccanananensa|{Clock

MULTIPLIER (1 MULTIPLIER (2) MULTIPLIER (3) MULTIPLIZR ()

| PresuisT | [_ereswirt | [ emeswiFT | {  rmesmrr |

|

SUBTRACTOR ADDER T

ARITHMETIC v
UNIT From memory

MULTIPLEXOR

ACCUMULATOR ACCUMULATOR

----------------------

Mode" Y = =" == = T et o LT " Mede X7

LATClH

ADDRESS
ADDRESS
LATCH
i

~ ADDRESS
LATCH

~ rrame Counter
063

GLOBAL
RESET

Bilinear Trnnsfgr_manon Narrowband MUSIC BASS-ALE
Congoi Unit Coneot Unut Contol Unit

Figure 2: Generalized covariance matrix processing algorithm.




?l

S —
el eyl
i 50— g& . ‘e Yrrr—
= =il gz & 2% H—
25 ol 22 3. saman
au v T e
‘ ‘ i - & :.‘ ‘
T
i
-— e :
F‘1-75ﬁ;r-—-—|ulnt
<t RERD
Memory
adaress
- Buses

Processo
Tut

Processor ‘mu——————~
Out Memory
Data

Buses

o Bl M

fProbe Display Hindow 1: timescale = 2.00nS

7 { lrc Cni

i?d_{ i : : : . ' 378 ~o7c {3ce .

0s5 {3c3 : 3c1 05 362 | 3%7 537} F318 037
eosstwca 76ct NM{C’ZZF ooaa}ctaap 13 JZJFD{/&S «i3 fcaze jo 17¢52.003a

7fed TF2l- \ e :'~ V0289 2010 0075
i ) v,), : ;‘ JIO-CO/D.{

at !

Figure 4. Lsim simulation results of the covariance matrix processor.

mitina
mitind
mitinc
mitind
meni
men2

acchig_i0.GR




2: Point: (@,8) processor L

il

KCE_SIEENID
Pt

cgeegce
(A

“El'bﬂ

J

Seecgree

€

C|

C
I

Uge 01600 BLU SU04 (03101 Bi0H# 0070000 L0 R0 LoD UNDED AL GG DI UTONE a1 81 OEILLG]

2

&

Q1KY 0 § Vg UEID QB0 U8 LOD 24 ) U D b0 PuadGUI0) LOLUIGILITHEIC 088t 0100 LLELIEDOUN

=%

e o et ¥, W 1 el X B ] e i (e iy, = D) ® O T et ¥ FE = e ZaV ]
CROIh0IDELUS G THed £ 6 PLC0ICaiE L I 001INCn BOdH 0 601N OH: 0. 0gU D0 U Q206 A). bok o  6I00

C-CIC

- T T - i i - a i PR i inplinigy ¥ Y T is - '_'7'-" - ____A_u ; A
EhORGAGINADU B'gED) 10 SOIDIBIBED 040 DI OG0 (F(EI0N 0509 1CiH6) st GTa Do 010Xkaaigi!
.-.—--:' '" cou Tyl X4 TN R = R Sy gl R R T WoITNRT. . prp e
B XU oM S 0o .£04 L0 o0 C010D: LoD tioi0ik a3 st 0bic 00CID000 0 ok 0CogDIoIN = U azoX

- Fadg) - e w ureaT T () b o SR WA Iy T RN e RS W& -
REgII E IO 30cg GGG 0IUS LR 000 AN UG X Gt iL 53008 TTE 7 ea 2 08 g

{DIE = I00i0=0=00:0=0X0:0=0==(013=0———O=Or————e—0 == 000==—=rn=2_
-5’&%%“533_%’}58%; 88 gg?ﬁ@townd 00C03c0) L00; 0rop3c0 0 oolicd0o: Bitn Bnteni0 (Olnog 00 0. (0'g
LIGHUNUNC A L)) 0] Uupluume et UC OIUlie.0 10 Ur.igh DO

lmnunmuuo;#,l-m_a_uﬁrgbﬁ;-gqu__ﬁ‘;gmﬂ}cseg
OBiCdR 0 BE013:000i0kE b N00G L FETICa0iCATIa TG Io) dG3I01010 [aF Q0L 00  Bing§+E006 2 §:00L: AY'g

EyS00)BILUI0]% D0 it DIUILCO 6L O AU DuURBLU R IUICK RELUI U 0 S 00U w0 AU reu su UG o

r : podEx =) ~ : . Pyatuli V] . L e o ‘
%01 1p0)i0:0 (01000 Cis 0o ai2aat lJ_C_Oqul_ECQ'0.0.’;":‘J!’I TROCO; pilr0; (o108 GO o DND GO OO0 0 g
K uﬁi‘:’ﬂ}i Eiuq EJLU‘L“&UA% {15_ qjgfz_' Lfs’u 'u.ifEM-unuua U O g Uaead LA LD U Uy Aot TS Uit B tedu DIty U U U

s, _ T - ot P g A Y T s e e S g isapatt £
05030100 GETE0 DCoI0EI I 0.0 a0 010 D40 a0DIL & 0007 H00KG 0 clA0CH ) SOmoBiBl ol i 0CLo) g
E‘:‘-‘Em]"u:ﬁ'g%&f L[i?tyllay Lu?umeu-w_u_g-,u mauadufiug.zu_tyg()zubt HERCL OB citOURT DUk beguailuo
1510090 EgU0INEDI 100" 0:0000N 0:0E0 (00 (0)c0g UL R ZCaI00L Ui aCCoaX0N SONoIC O LitIED0X e DI 10!

s iy (gl 1 4_‘I-'_..-»-. --‘u-‘ 1 f" _.u‘, ..‘!_.-_ e W "f':uqﬁua—‘"'_ﬁifu"‘n‘&['-“'“-.‘ﬁ‘"::‘.('fg""'l_;u".}’L‘C;G_l_
e e e S e b
o O RO OA00 - &) 004 S0 o0l 06t 00U U AL 00X NGt D0 (R0 03100 -0 DLu1: 0 01105 B EoW 03w 010
Lheu0iD ¢010 $040L0E0I0 100000 HgI0I0YL0) 0 LR O 0UHE0IR0D041L L0 01013131 0 0:00101 010 DN PO'R- D10

31070/ I0I5E0. D 1000 O UM EoN I 00 XU OIOLL DIuD G cUi tL=o U X UL0009] DOIUIDIEDLEG 0L (O1d,
x1it0 310 6! pIOIOKID0 CEGly 20! I8Nt 5 s DIJE £ AIDMIEA TR0 QId0IHOSEOUAD 1O G O0Ed LG Ui U

(CococoLcolcotc

O:iEBTG! 54 L L 00 W 500U I Ol R LRI COM LR IER BTN oI QLaust gt D1LORUIT O MinCul i used
R4 0FI0 W0 G0l D6 a0 D IGIA160L 0Xa3 B0 IOELIT0i00 %00 Lt Ol Dano: sk 0 DU ALK, DIFRIT0)
5 LR HUILLSE U] LU o S LREO )1t 0403 GELL OGNt Cun 00N Qe L DR L suiuuea Do S B iy

[

|
'3'
SLEE
S

18 ELID OO ] SOOI LIUUL BN INUI LY 0 SYLEU D] 0l D4 e (LSt G ) AU Bdiua Gus s gno 06:)

Ql
far
el
[
e

&

!
it

=l
o
;— .

-

{3

Q1 COecnIcca.cco

f!

Figure 5: Layout generated using AutoCells for the covariance matrix processor.
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Abstract:
A generalized covariance matrix computation processor has been designed. The processor is suitable
for DOA estimation using MUSIC algorithm for narrowband signal and BASS-ALE & bilinear
transformation algorithms for wideband signals. The processor has been-implemented using 0.8
micron CMOS technology and is suitable for real time processing.

Key Words: Sensor array processing, DOA estimation, Covariance matrix processor

I. INTRODUCTION

The estimation of the direction of arrival (DOA) in sensor systems has been one of the
frequently considered problems in digital signal processing. The algorithms used to compute
the DOA are based on the processing of the received signal and extracting the desired
parameters to estimate the direction of arrival. The Multiple Signal Classification (MUSIC) [1]
is a high resolution algorithm and has been widely used for computation of DOA estimation. The
approaches to this problem have been separated into the narrowband case which assumes that
the signals can be considered to have only one frequency component and the broadband or

wideband case in which the signal is considered to consist of a band of frequency components

[2-12).

The goal of this work was to design an architecture which is suitable both for narrowband
and wideband cases. It has been determined that the narrowband MUSIC algorithm and the

wideband algorithms BASS-ALE and bilinear transformation require similar computational
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modules such as the computation of the covariance matrix, eigenvalues and eigenvector
computation using the Householder transformation and QR method and power method [13-15]
Since the required modules are identical, they can be generalized into one algorithm and
generalized hardware can be developed. The generalized hardware will be suitable for both

applications.

In the DOA applications, the data has to be collected by the sensors to compute the
covariance matrix. In this study eight sensors and eight delay elements have been assumed and
hardware is designed accordingly. Eight sensors in the narrowband case will result in a 8*8
covariance matrix. Therefore all computations for DOA estimation will require manipulation of
8*8 matrices. If eight Processing Elements (PEs) are used in the architecture it would be easier to

map the algorithm on these eight PEs.

The first step in the estimation of DOA is the computation of the covariance matrix
from the incoming signals. This is a preprocessing step which generates a correlation function
from the data that is collected at the sensors. From the VLSI implementation point of view it is
very appealing to design a combined covariance matrix processor which will be programmable
and can be used for both narrowband and broadband algorithms. Such a combined processor
has the advantage of being very cost effective and opens avenues to design a configurable

system.

The design of a combined covariance processor is possible because the basic
computations required in this stage are complex multiplications, accumulations and averaging,
which are common to all three methods considered in this work. The main difference is in the
control 6f the algorithms as they have different matrix sizes, number of matrices and the
number of data samples. The processor is designed to be compatible with an eight sensors and

eight processor system which are placed on a processing board with each processor having its




dedicated memory as shown in Figure 1. In this work [14-15] the design and implementation
of an ASIC chip [16] for the processor is carried out. The processing board can be completed
by using eight ASICs and commercially available memory ICs. The procedure involved in
generating the covariance matrices is explained for the three algorithms in the following

section.
II. THE COVARIANCE MATRICES

The sampled data obtained from the sensors is used to obtain the data covariance matrix.
Since the covariance matrix is Hermetian, the computation of lower triangular matrix of
covariance matrix is sufficient to get complete information of the full matrix. A generalized
algorithm for the computation of covariance matrices for three algorithms have been designed and
is suitable for mapping it on an eitght processor system. The C-like parallei algorithm for the
computation of covariance matrix is given in Figure 2. The algorithm has three sections one for
each of the three approaches and one common function which is called by every section. Three
sections provide basic control sequence for the computation of the common function. Arithmetic
computations are performed in the function and are common to all three approaches. This
combined algortihm has been mapped on an architecture as shown in Figure 1. The architecture of
the processing element is shown in Figure 3. Following sections describes execution sequence

of three DOA approaches.
A. The Narrowband MUSIC algorithm

In the case of the narrowband MUSIC algorithm the covariance matrix generation is the
the computation of 8 X 8 lower triangular matrix. For each computation of the DOA a total
of 4096 such vector samples (frames) are collected. The covariance matrix is computed for

each vector and the final matrix is obtained after taking the the average of 4096 computations.




First of all the whole system is reset using a global reset signal which clears all
memory arrays and latches and initializes them to zero. The MUSIC algorithm is selected if
the mode control is set to 00. The next step is to enable the frame counter (k ) which counts
the number of frames. A function is called to compute the matrix which is achieved by first

loading the vector and performing computation in parallel.

To form one matrix a vector of 8 elements is needed from the sensors which are
sampled simultaneously. Each processor will compute one column of the matrix by
multiplying the 8 element signal vector by a scalar which is the element in the vector
corresponding to that particular processor. For example the sixth processor in the array will
multiply the vector by its sixth element. All eight processors will compute their respective
columns in parallel. The computation of each matrix requires loading of the vectors and
parallel computation. For each new frame the PE needs to load the incoming sampled data.
The complete vector is broadcast to all the processors. The scalar element corresponding to
each processor is individually routed to it. The control of the loading operation is handled by
an external load counter (/) which synchronizes the loading of the data in all the processors.
The loading operation is done over eight cycles during which one element is loaded for every
cycle. In the first cycle the first element is loaded into the Y(1) latch of all processors and the
X latch of the first processor. The latches in the processors are enabled by a decoder which is
addressed by the 3 bit load counter. Once the loading is complete the arithmetic operations are

started.

The next operation is of parallel computations which is controlled by the element
counter. To complete the arithmetic operation and to generate the covariance matrix for
complex numbers, it is necessary to perform four multiplications, an addition and a subtraction
for each element. Apart from this there is an accumulation operation which is used to average
all values over 4096 frames. Once the element counter is started, the appropriate data latch is

enabled sending the output to the muitiplier stage. The real and the imaginary parts of the




output are generated in parallel by performing four real number multiplications. This is done
by the four eight bit multipliers in the arithmetic unit. A memory read operation is performed
in parallel which will read the previously computed result and is added to the newly computed
element. Once the accumulation is complete the address latch is enabled again and the result is
written back to the memory. Then the frame counter is incremented and the operations are
performed 4096 times. As explained above, overall 4096 such frames are accumulated. The
sensor output is quantized into 8 bit real and imaginary parts and hence the word size becomes
16 bits after the multiplier stage. After the final accumulation the data becomes 28 (16+12)
bits. This increases the chip area, data bus width and the memory requirements. To alleviate

this problem the result is pre-shifted before accumulation by 6 bits.

B. Broadband BASS-ALE Algorithm

The BASS-ALE method is a broadband algorithm which uses the eigenstructure of a
temporal covariance matrix and broadband source models to estimate the DOA. Similar to the
MUSIC algorithm, the input vectors to the covariance stage are samples in the time domain.
However for the BASS-ALE method operating with a system of eight sensors the input vector
is a time delayed set of 64 samples. Eight samples are obtained from each sensor taken after a
specific time delay. They are then stored in a delay array before the covariance processor
stage, which gives a 64 element vector. The multiplication of a 64 element with its Hermetian
yields a 64x64 matrix. A parallel and pipelined architecture for this procedure will consist of
an array of 64 processors with each one computing one column of the resultant matrix. A new
scheme has been proposed which allows the computation of the covariance matrix using an
array of eight processors. An eight processor architecture is adopted as it is similar to the one

proposed for the narrowband MUSIC and bilinear transformétion algorithms.

The BASS-ALE algorithm can be selected by setting the mode signal to Ol. The

arithmetic operations are similar to the ones explained above. The major difference lies in the




controlling of the number of loops and the loading of the input latches. The control unit
performs three nested loops for the BASS-ALE algorithm. The 64X64 matrix is split into 8
sub matrices each of which is 64 X 8 in dimension with the ith processor computing the ith
submatrix. For example the 4th processor will compute the 4th submatrix which consists of the
columns 25-32 in the covariance matrix. To simplify the control unit these submatrices are
split up into eight 8 X 8 micromatrices. For each new column of the micromatrix the data has
to be loaded into the PE. As before this is handled by an external load counter. The (8 +i) th
component of the vector is loaded to all the Y latches and the (8i+j)th scalar for that particular
submatrix is loaded in the X latch. The arithmetic operations are the same as before with four
multiplications, an addition and a subtraction. Simultaneously, the word is read in from the
memory using kji of the counters as the address. The accumulating operation is then carried
out and the result written back to the memory. Once the 8 elements of the column are
calculated the processor computes the rest of the micromatrix and then each segment to finish
one iteration of computations. The matrix is then accumulated over 512 loops and finally
averaged, the global reset signal is enabled and the matrix is passed on for the computation of
eigenvectors. The calculation of the covariance matrix for the BASS-ALE algorithms involves
64 times the number of computational operations when compared to the previous case. Hence
to complete one full iteration the processor takes more time and to match the processor speed

with the sensor speed a delay buffer before the processor stage is suggested.
C. The Broadband Bilinear Transformation Algorithm

This algorithm estimates the DOA of broadband sensor signals by using a simple
bilinear transformation matrix. In the algorithm an approximation resulting from a dense and
equally spaced array structure is used to combine the individual narrowband frequency
matrices for coherent processing. This algorithm is non-iterative and does not require any
initial estimates of the angles of arrival. Unlike the previous algorithms the input to the

covariance matrix stage in this case is a result of an FFT operation. The input vector consists




of 8 elements in each frequency bin. The system uses data which are spread over 33 spectral
bins so the covariance matrix processor needs to compute 33 covarniance matrices. One
covariance matrix is generated at each frequency bin and then averaged over 64 frames. The
arithmetic operations are simlilar to previously described operations, but in this case as the
averaging is done over only 64 frames the initial preshift by 6 bits is enough, and the shifting

out after accumulation is not required.
III. PROCESSOR ARCHITECTURE

A block diagram of the combined covariance matrix processor [16] is shown in Figure
3. The architecture basically consists of the input loading stage, the arithmetic unit and the
control units. The input loading stage consists of eight input latches for the Y vector and one
for the X scalar and a load control unit which latches the data at the appropriate clock pulse.
The load control unit has two three bit counters (latch and enable) and two 3 to 8 decoders.
The latch counter is used to count the clock pulses and the decoder selects the appropriate
latch according to the clock. The latch counter is used to latch the input data and is driven by
the load clock. Once the data for one particular cycle is latched in, the load clock is disabled
and the input clock which synchronizes the arithmetic operations is enabled. The input clock is
used to drive the enable counter and the enable decoder which enables the appropriate buffer.
The data from the latch is then placed on the internal data bus which is connected to the
multipliers. As all the latches are connected to the same internal bus, a tristate buffer is used
after the latch to prevent data corruption. The arithmetic unit has four multipliers, an adder, a
subtractor and two accumulators. The control unit has three separate control modules for three

algorithms.

IV. SIMULATION OF THE ARCHITECTURE

The behavioral simulation of the architecture was done on Powerview, the CAD

package from Viewlogic Inc [17). To perform a behavioral simulation of the proposed




architecture, VHDL code was written for all the basic modules The processor was then
constructed from them. The Viewdraw schematic of the complete processor is shown in Figure
4. The data from the input latches is fed into the arithmetic unit which computes the complex
number multiplication and gives the result to the accumulator. The other input of the
accumulator is from the RAM. The memory result of the previous accumulation is read in
using the address supplied from the add.ess bus. Once the complete cycle of operations are
performed the control unit generates the global reset signal which is used to place the output
of the accumulator on the processor out pins. The Viewsim results of the processor simulation

are shown in Figure §S.
V. VLSI IMPLEMENTATION

The VLSI implementation of the processor described above involves a detailed design
of the individual modules and transistor level optimization to provide a chip which can
perform the required operations in the specified time frame. During the VLSI design, various
considerations such as the selection of multiplier and adder architectures and number

representation were taken into account, and the chip design was carried out accordingly.

The VLSI simulation and implementation was carried out using Mentor Graphics
Generator Development Tools 5.3 [18]. The GDT tools were used to perform the transistor
and logic level simulation on the chip and conduct a timing analysis. The layout of the chip
was generated and verified using the AutoCells feature in GDT. Following sections describes

various stages of the processor.
A. The input loading stage.

The input stage consists of 9 sixteen bit latches and a load control unit. Eight of the
input latches are used to hold the Y vector and the ninth one is loaded with the X scalar. The

sixteen bit latch contains 8 bits for the real part and 8 bits for the imaginary part. The load




control provides 2 control signals. One is the latch control signal which dictates which latch is
to be loaded at the particular time from the external broadcast bus. The other is the enable

control which provides the signal to place the latch contents onto the processor data bus.
B. The arithmetic unit.

The arithmetic unit has the basic function of performing a complex multiplication and
accumulation. It consists of four multiplier units, an zdder, a subtractor and two accumulators.
The multiplier [19] designed for the chip is a signed binary multiplier with a 7 X 7 array of
full adders to compute the partial products. The final stage is a ripple adder which sums up the
partial products. The sign bit is computed by a XOR gate which is fed by the sign bits of the

two operands.

After the multiplying stage, there are four such products which are the result of the first
stage of a complex number multiplication operation. These are the inputs to the adder and the
subtractor. Ordinarily the subtraction of two of these operands will give the real part of the
result, but in the generation of a covariance matrix, a vector is multiplied by its Hermetian,
which is basically the transpose of its complex conjugates. Hence the operations are reversed
and an addition is performed to obtain the real part of the result. The imaginary part can
similarly be obtained by subtracting the two appropriate operands. The next stage is a 9 bit
adder/subtractor followed by the accumulator. The accumulator consists of a 16 bit adder and
a demultiplexing unit. One operand of the accumulator is the output from the previous
adder/subtractor stage. The other is the previously stored result in the memory to which the
newly computed value needs to be added. The output is connected to a demultiplexing stage
which places the data either on the memory bus, writing the result back to the memory or on
the processor out bus which signifies the completion of the processing of one frame of data.

The demultiplexor is controlled by the global reset signal.




A major block which has been included in the schematic is the random access memory
which is used to store the intermediate results of the operations. The required memory has
been placed outside the chip so that a commercially available component can be used in
conjunction with the processor ASIC to generate a reliable system. The memory is interfaced
to the processor by a multiplexor as shown in the schematic of the processor. The data in and
data out buses are connected to the multiplexor which is connected to the memory bus. The
multiplexor is controlled by the input clock. The input clock has a duty cycle of 50% and
hence can be used as a read/write signal. When the clock is high the processor reads from the
memory and when the clock goes low the processor writes the output back to the memory. The
size of the memory required for the operation is primarily dictated by the operations in the
BASS-ALE algorithm which stores upto 2° elements during the computation of one covariance
matrix. These elements are 32 bits wide including the real and imaginary components and
hence require a RAM 16K bits in size. The RAM has a READ/WRITE signal, an enable and a
reset signal which initializes all arrays to zero. For simulation purposes M model code was

written for the RAM and the Lsim simulations were carried out in the multi-level mode.
C. The control units

The function of the control units is to generate the correct address for the retrieval of
data from the memory during the accumulation stage. The control unit should also generate the
global reset pulse once the processor finishes its cycle of operations. As most of the required
control operation is to count the number of loops that the system has executed, the control

unit consists mainly of counters.

The control unit for the narrowband MUSIC algorithm consists of two counters one of
which is a 3 bit counter which upcounts to 7. This three bit counter is used to generate the
address bits for the storage of the 8 different elements that are computed. The outputs of the 3

bit counter are fed to a 3 input AND gate which generates the clock pulse for the 12 bit frame

10




counter. The frame counter counts the 4096 loops that need to be executed during the

accumulation process.

The control unit for the BASS-ALE algorithm has four counters, three of which are
used to generate the address bits. The first counts the number of elements in the column, the
second counts the column number in the micromatrix while the third keeps track of the
micromatrix number in the submatrix. The 9 bit counter controls the numbers of frames which

the processor needs to accumulate which in this case is 512.

The control unit for the bilinear transformation algorithm has a 3 bit element counter to
count the element number in the column. The next one a 6 bit up counter, is used to count the
33 frequencies. Once it reaches 32, the logic circuitry (which is a NOR gate with an inverted
MSB) resets it to zero and clocks the 6 bit frame counter. The frame counter counts the 64

frames that need to be accumulated.

All the modules were individually simulated. The individual modules were called
instances and were placed into the top level processor cell in Led. The netlist was generated
and an Lsim simulation was run on the netlist. The netlist for the processor was generated
from the Led schematic. Then AutoCells was used to generate the layout of the processor. The
layout was verified by simulating the netlist for the whole processor. The terminal were placed
so that the routing to the pins can be done very easily. The data input terminals and the input
control signals are placed at the top. The data bits ( memory and processor out ) are placed at
the sides and the address bits are placed at the bottom. The total chip area is approximately
2200 x 5800 um2. The chip will fit in a 120 pin frame available through MOSIS. The layout

of the processor is shown in Figure 6.
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VI. CONCLUSIONS

A combined covriance matrix processor has been developed for three DOA algorithms,
namely the narrowband MUSIC algorithm, the broadband BASS-ALE method and the bilinear
transformation method. The processor has been simulated at the VHDL level using Powerview
and then at the transistor level using GDT Lsim. The construction of the processor was done

using the Lxcells utillity in GDT. Finally the processor was laid out using GDT Autocells.
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Figure 1 : Processing board for the computation of covariance matrix




/* generalized covarinace matrix processing algorithm */
main ()
{
initialize all arrays and counters;
switch (val) {
case 1:
enable narrowband control unit;
while (frame_counter_k < =4095) {
void compute_matrix-operations
+ + frame_counter_ k; }
break;
case 2:
enable BASS-ALE control unit;
while(frame_counter n< =511)
{
while(micromatrix_counter k< =7) {
while (column_counter_j< =7) {
void compute_matrix-operations
+ +column_counter_j; }
+ +micromatrix_counter_k; }
+ +frame_counter_n;
}
break;
case 3:
enable bilinear transformation control unit;
while(frame_counter_k < =63) {
while(frequency_counter_j < =32) {
void compute_matrix-operations;
+ +frequeacy_counter_j; }
+ +frame_counter_k; }
break;
}
}
void compute_matrix-operations;
{
while ( load_counter_i <=7) {
par load i ' component in Y latch;
parloadscalarinXlatchoftheid’processor:
+ +load_counter_i; }
while (element_counter_i <=7) {
par complex multiplications;
par shift right 6 bits;
par accumulate;
+ + element_counter_i; }

}

Figure 2: Generalized covarinace matrix processing algorithm
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