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ABSTRACT

We use methods and definitions from fuzzy set theory to generalize

results concerning hypergraphs and intersection graphs. For each fuzzy

structure defined, we use cut-level sets to define an associated sequence

of crisp structures. The primary goal is then to determine what properties

of the sequence of crisp structures characterize a given property of the

fuzzy structure.

In Chapter 2 we pay particular attention to the family of fuzzy

transversals of a fuzzy hypergraph. We give an algorithmic method to

construct fuzzy transversals. We also generalize the vertex coloring lemma

of Berge, providing a characterization of the family of all minimal fuzzy

transversals of a fuzzy hypergraph. In Chapter 3 we use similar methods to

define and characterize the family of vertex colorings of a fuzzy

hypergraph.

In Chapter 4 we use the max and min operators to define the fuzzy

intersection graph of a family of fuzzy sets. We show that every fuzzy

graph without loops is the intersection graph of some family of fuzzy sets.

We show that the Gilmore and Hoffman characterization of interval graphs

extends naturally to fuzzy interval graphs, but the Fulkerson and Gross

characterization does not. We conclude with a number of alternate edge

strength functions that are related to recent developments in crisp

intersection graph theory.
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CHAPTER 1. General Concepts

This chapter introduces fuzzy hypergraphs and investigates some of

their basic properties. In general we follow the hypergraph definitions

and notation given by Berge [1]. Our primary references for fuzzy set

theory are Dubois and Prade [4), Klir and Folger [7], and Zimmermann [51.

For this paper each vertex set X and each edge set E or 9 is required to be

finite.

Section 1. Fuzzy Hypergraphs

A hypergraph is a pair H = (X,E) where X is a finite set and E is a

finite family of nonempty subsets of X whose union is X. Equivalently, the

edge set E may be defined by a finite set of characteristic functions

XA :X-- {0,I} where XA (x) = 1 if and only if (iff) x e A. A hypergraph is

simple if there are no repeated edges and no edge properly contains another.

Hypergraphs are often defined by an incidence matrix with columns indexed by

the edge set and rows indexed by the vertex set; the x,A entry being XA x).

Given only an edge set E, the vertex set is understood to be

X = U{AIA E E}. Therefore one can use the edge set E or pair H = (X,E)

interchangeably to define a hypergraph. Sometimes to avoid confusion we

use V(H) and E(H) to denote the vertex set and edge set of H, respectively.

A fuzzy set on a set X is a mapping .:X - [0,1]. We define the

support of p by supp p = {x E XIW(x) 01} and say p is nontrivial if supp p

is nonempty. The height of p is h(p) max {p(x)tx e X). We say p is

normal if h(p) = I. If p and v are fuzzy sets on X we use the max and min

operators to define new fuzzy sets on X by p v v = max {p,v} and

P A v = min {p,}. The fuzzy sets p v v and A A v are common definitions

of fuzzy union and fuzzy intersection, respectively. We write p ! v (fuzzy

subset) if W(x) s P(x) for each x c X. If g : v and p(x) < O(x) for some x

e X we say v properly contains p and write p < v. We will use 9 or C to
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denote a family of fuzzy sets and 9(X) to denote the family of all fuzzy

subsets of X.

For emphasis we often refer to traditional sets as crisp sets.

Clearly the characteristic function of a crisp set defines a fuzzy set. As

is common in fuzzy set theory we identify a crisp set with its

characteristic function; when the context is clear we use the two concepts

interchangeably. The reader may verify that the fuzzy definitions given

throughout this paper agree with the usual crisp set definitions when

applied to characteristic functions of crisp sets.

DEFINITION 1.1. Let X be a finite set and let 6 be a finite family of

nontrivial fuzzy sets on X such that X = U . supp g. Then the pair

S= (X,1) is a fuzzy hypergraph on X; 9 is the family of fuzzy edges of H

and X is the (crisp) vertex set of :. We let h(C) denote the height of H;

that is, h(M ) = max{h(g)lp E 1}. The order of R (number of vertices) is

denoted by IXI and the number of edges is denoted by 1C1. The rank is the

maximal column sum of the incidence matrix and the antirank is the minimal

column sum. We say f = (X,CJ is a uniform fuzzy hypergraph if and only if

rank(H) = antirank(H).

DEFINITION 1.2. Let a- be a fuzzy subset of X and 9 a collection of fuzzy

subsets of X such that for each p e 9 and x E X, p(x) :s a(x). Then the

pair (o,g) is a fuzzy hypergraph on the fuzzy set a,.

The fuzzy hypergraph (a,C) is also a fuzzy hypergraph on X = supp 0-;

the fuzzy set a defines a condition for membership in the edge set e. This

condition can be stated separately, so without loss of generality (WOLOG)

we restrict attention to fuzzy hypergraphs on crisp vertex sets.

EXAMPLE 1.3. Radio coverage network. Let X be a finite set of radio

receivers (vertices); perhaps a set of representative locations at the

centroid of a geographic region. For each of m radio transmitters we
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define the fuzzy set "listening area of station J" where p# x) represents

the "quality of reception of station j at location x." Membership values

near 1 could signify "very clear reception on a very poor radio" while

values near 0 could signify "very poor reception on even a very sensitive

radio."

Since igraphy affects signal strength, each "listening area" is a

fuzzy set. Also, for a fixed radio the reception will vary between

different stations. This model thus utilizes the full definition of a

fuzzy hypergraph. The model could be used to determine station programming

or marketing strategies (who is my significant competition?) or in

establishing an emergency broadcast network (is there a minimal subset of

stations that reaches every radio with at least strength c?). Further

variables could relate signal strength to changes in time of day, weather

and other conditions.

DEFINITION 1.4. A fuzzy set p:X-- [0,11 is an elementary fuzzy set if p

is single valued on supp p; or equivalently, if there is a nonzero constant

c such that p = c.XE where E = supp p. We can thus use c.E to specify an

elementary fuzzy set ji with h(p) = c and supp p = E. An elementary fuzzy

hypergraph R = (X,C) is a fuzzy hypergraph whose fuzzy edges are all

elementary.

EXAMPLE 1.5. We explore the sense in which a fuzzy graph is a fuzzy

hypergraph. A fuzzy graph on a set X is a pair 9 = (X,W) where p is a

symmetric fuzzy subset of XxX. That is, p:XXX-- [0,1] and for each x and

y in X we have L(x,y) = g(y,x). A fuzzy graph on a fuzzy subset 0 E X is a

pair 9' (a,w) where the symmetric mapping p:XxX---* 10,1] satisfies

A(x,y) s min 4r(x),or(y)}. Since p is well defined, a fuzzy graph has no

multiple edges. An edge is nontrivial if p(x,y) * 0. A loop at x is

represented by p(xx) * 0.
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Alternately, a nontrivial edge (or loop) represents an elementary

fuzzy subset of X with two (or one) element support. That there are no

multiple edges is equivalent to the property that each pair of edges have

distinct supports. A fuzzy graph without loops is defined by an anti-

reflexive relation; or equivalently, by not allowing fuzzy subsets with

single element support. Therefore a fuzzy graph (fuzzy graph with loops)

is an elementary fuzzy hypergraph for which edges have distinct two vertex

(or one element) supports.

Directed fuzzy graphs (fuzzy digraphs) on a set X or a fuzzy subset a

of X are similarly defined in terms of a mapping 6:XxX- [0,11 where

6(x,y) 5 min {Ja(x),a(y)}. Since 6 is well-defined, a fuzzy digraph has at

most two edges (which must have opposite orientation) between any two

,ertices. Therefore fuzzy graphs and fuzzy digraphs are special cases of

fuzzy hypergraphs.

A fuzzy multigraph is a multivalued symmetric mapping At:XxX----> 10,1].

A fuzzy multigraphs can be considered to be the "disjoint union" or

"disjoint sum" of a collection of simple fuzzy graphs, as is done with

crisp multigraphs. The same holds for multidigraphs. Therefore these

structures can be considered as "disjoint unions" or "disjoint sums" of

fuzzy hypergraphs.

The preceding discussion motivates the following definitions.

DEFINITION 1.6. A fuzzy hypergraph R = (X,E) is simple if p,v E 0 and

p 5 imply p = v. In particular, a (crisp) hypergraph H = (X,E) is simple

if A,B e E and A 9 B imply that A = B.

DEFINITION 1.7. A fuzzy hypergraph H = (X,C) is support simple if i,v e 6,

supp p = supp v, and p s v imply that p = v.

DEFINITION 1.8. A fuzzy hypergraph R = (X,g) is strongly support simple if

.,v E 0 and supp p = supp v e C imply that p = v.
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OBSERVATION 1.9. These definitions all reduce to familiar definitions in

the special case where Y is a crisp hypergraph. The fuzzy definition of

simple is identical to the crisp definition of simple. A crisp hypergraph

is support simple and strongly support simple if and only if it has no

multiple edges.

For fuzzy hypergraphs all three concepts imply no multiple edges.

Simple fuzzy hypergraphs are support simple and strongly support simple

fuzzy hypergraphs are support simple. Simple and strongly support simple

are independent concepts.

EXAMPLE 1.10. A fuzzy hypergraph N = (X,C) is a fuzzy graph (with loops)

if and only if R is elementary, support simple and each edge has two (or

one) element support.

EXAMPLE 1.11. Let H = (X,E) be a crisp hypergraph on X. Since E is a

subset of P(X) one could define the edge set c of a fuzzy hypergraph on X

as a fuzzy subset of P(X), that is, c:P(X)-- [0,1]. However by a simple

transformation this structure satisfies the definition of an elementary

fuzzy hypergraph given above, with

0 = IgAIA, e P(X) where e~x) - (A), if x E A

PA(X) 0 ifxEA

Since c is well-defined, no two edges have the same support. Thus a fuzzy

subset of P(X) corresponds to an elementary, strongly support simple fuzzy

hypergraph on X.

LEMMA 1.12. Let R = (X,g) be an elementary fuzzy hypergraph. Then R is

support simple if and only if N is strongly support simple.

Proof. Suppose that Y is elementary, support simple and that

supp p = supp v. We assume WOLOG that h(p) : h(v). Since J( is elementary

it follows that p I v, and since Y is support simple that p = v. Therefore

X is strongly support simple.
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Conversely, by Observat on 1.9 it follows that If M is strongly

support simple then H is support simple. o

The complexity of a fuzzy hypergraph depends in part on how many

edges it has. The natural question arises: is there an upper bound on the

number of edges of a fuzzy hypergraph of order n?

OBSERVATION 1.13. Let R = (X,19) be a simple fuzzy hypergraph of order n.

Then there is no upper bound on 19i.

Proof. Let X = ix,y}, and define 6.= {pII = 1,2,..,N }

1 _____

where i (x)= I+1 and A (Y)=l-
1 1+1 1 +1

Then YN = (XM N) is a simple fuzzy hypergraph with N edges. o

OBSERVATION 1.14. Let X = (X,C) be a support simple fuzzy hypergraph of

order n. Then there is no upper bound on 191.

Proof. The class of support simple fuzzy hypergraphs contains the class of

simple fuzzy hypergraphs, thus the result follows from Observation 1.13. o

OBSERVATION 1.15. Let H = (X,&) be a strongly support simple fuzzy

hypergraph of order n. Then 11g, 2n-l, with equality if and only if

{supp pLp e 6} = T(X)\o.

Proof. Each nontrivial A 9 X can be the support of at most one W E & so

19I s 2n-1. The second statement is clear. o

OBSERVATION 1.16. Let H = (X,C) be an elementary, simple fuzzy

hypergraph of order n. Then 191 5 2n-1, with equality if and only if

{supp pLp E g, A * 0} = P(X)\o.

Proof. Since Y is elementary and simple, each nontrivial A S X can be the

support of at most one g e 9. Therefore 191 s 2n_-l. To show there exists

an elementary, simple H with 1 = 2n_-l, let 6 = {pA A S X} be the set of

functions defined by

I-k if x e A
A. A x) = T0 otherwise
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Then each one element set has height 1, each two element set has height .5

and so on. M is elementary and simple, and JCJ = 2n-I. a

Section 2. The Fundamental Sequence of a Fuzzy Hypergraph

The concept of cut-level sets has played a crucial role in fuzzy set

theory. Essentially we construct a sequence of crisp sets that helps us

visualize how a fuzzy set's structure changes at various "strengths"

between zero and one. Of particular interest are relationships between

properties of the cut-level sets and properties of the associated fuzzy

set.

DEFINITION 2.1. Given c E [0,11 and a fuzzy set p, we define the c

cut-level set of p to be the crisp set PC = {x e supp jilp(x) ? c}.

Conversely, a fuzzy set is often defined by specifying a family of cut-

level sets, and letting p(x) = sup {c = (O,1]jx e pc}. If 9 is a family of

fuzzy sets we let 9C denote the family of nonempty crisp sets

9c = Egclp e Y and PC * 0}.

Therefore if H = (X,M ) is a fuzzy hypergraph the c level hypergraph of R is

well-defined as RC = (Xcc') where

cc = fc P I ge, PC * o} and XC = U A PC.

To formalize the association of a fuzzy hypergraph with a sequence of

(crisp) hypergraphs we require the following notation and definitions. If

A and 2 are families of crisp (fuzzy) sets we write . { 3 in case for each

A e 4, there exists a B e B such that A 5 B (A 5 B). If A j B and d * 2,

we write A { 1.

OBSERVATION 2.2. While the relation { is reflexive and transitive it is

not in general antisymmetric. Therefore j induces a preorder rather than a

partial order. In fact it is possible for A { 3 and 3 { A with A * 3. If,

however, j is applied to a collection of simple families of sets the

relation is antisymmetric and { induces a partial ordering on the family.



OBSERVATION 2.3. If s ý t and p is a fuzzy set, then p, 9 p't Thus for

cut-level hypergraphs of Y, A. j Ot. Distinct edges of 9 could produce the

same c cut, and so the c level hypergraph R, could be considered

multiedged. However we do not take this approach; we %ill assume that Yc

is without repeated edges.

For any fuzzy hypergraph Y = (X,O) we associate a finite sequence of

real numbers called the fundamental sequence of X. This sequence is well-

defined since both X and C are finite.

DEFINITION 2.4. Let I = (XC) be a fuzzy hypergraph and for each

c E (0.1] let )c = (XCC,} be the c level hypergraph of Y. The

sequence of real numbers rl,r 2 ,--.,r,, with 1 t r, > r 2 >-..> rn > 0

and having the properties:

(i) If It s > r, then 6. = 0

(ii) If r i s > r then 9. = Cr, (let r,+ 1 = 0)

(iii) Crii { rt+1

is called the fundamental sequence of Y and is denoted by fs(R). The

corresponding sequence of r level hypergraphs Hrl{ Hr2{ "'" { Hrn is

called the X induced fundamental sequence and is denoted by I(M). The rn

level is called the support level of R and the hypergraph Hr. is called the

support hypergraph of H.

EXAMPLE 2.5. Let R be given by the incidence matrix of Figure 1.

a a b a.b

M = b .8 .7 .6 . = 6
c 0 .6 0 .

d 0 0 .
.6d 00c R

Figure 1. The Y induced fundamental sequence of Example 2.5

By examining the cut-level hypergraphs of Y we see R., = R.7 and so

fs(R) = {.8,.6}. Notice that A(a) = .7 is not an element of fs(H).
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Further, A.8 * P. 7 shows that while the edge sets remain constant between

fundamental sequence cut-levels, a particular edge's cut-levels may vary.

This example illustrates the "repeat edges" of Observation 2.3.

DEFINITION 2.6. Let Y be a fuzzy hypergraph with fs(f) = {rl,.-*,rn} and

let r,+÷ = 0. Then H is sectionally elementary if for each edge T E 6,

each i • {E,-,n}, and each c e (rj+1 ,rj], we have Tc = Tr.

Clearly Y is sectionally elementary if and only if u(x) E fs(H) for

each p e C and each x E X.

DEFINITION 2.7. Given Y = CX,e) and C' ( 0 we call W = (X' ,W'), where

X' = U {supp pip E 0'Y, the partial fuzzy hypergraph generated by 9'. If

H, is a partial fuzzy hypergraph of 1 2 we write If S H2; we write H, < )2

if )1 : I2 and Hi * H2 (that is f1 C R2). Of course the definition applies

to the special case when H 1 and Y2 are crisp hypergraphs.

OBSERVATION 2.8. The relation "partial fuzzy hypergraph of" is a partial

ordering on the collection of all fuzzy hypergraphs. The proof is a

straight-forward application of the fact that 9 is a partial order on the

(crisp) families of edges. If H' is a partial fuzzy hypergraph of H, then

H' ( H. The terms of a M induced fundamental sequence may not be partial

hypergraphs of Hrn.

DEFINITION 2.9. A sequence of hypergraphs H, = (X )1 : i : n, is said

to be ordered if the sequence of hypergraphs is linearly ordered by the

relation "partial hypergraph," that is, if H < H < -.. < H . The1 2 n

sequence is simply ordered if it is ordered and if whenever E e f9

then E $ X (3 x e E a x E X ).

DEFINITION 2.10. A fuzzy hypergraph H is ordered if the :H induced

fundamental sequence of hypergraphs is ordered. The fuzzy hypergraph Y is

simply ordered if the H induced fundamental sequence of hypergraphs is

simply ordered.
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OBSERVATION 2.11. If H = (X,1) is an elementary fuzzy hypergraph, then

is ordered. Also, if ) = (X,C) is an ordered fuzzy hypergraph with simple

support hypergraph, then H is elementary.

Section 3. Further Extensions of Hypergraph Definitions

DEFINITION 3.1. The dual of a fuzzy hypergraph I = (X,C) is a fuzzy

hypergraph HD = (,X D) whose vertex set is the edge set of H and with edges
D gD . 0

x -: -- [0,1] by x D(1D) = A(X). R is a fuzzy hypergraph whose incidence

matrix is the transpose of the incidence matrix of H, thus HDD = Y.

EXAMPLE 3.2. The dual of the fuzzy hypergraph of Example 2.5 and Figure 1

is shown in Figure 2. Notice that fs(R) * fs(HD) and while Y had no repeat

edges, YD has the repeat edge aD = b0 . Also Y is simple and support simple

while RD is neither.

a b c d

MT 7 .7 .6 • 0 V
.6 .6 0 .6

0.7  = O---0-"° 6

Figure 2. The dual of the fuzzy hypergraph of Example 2.5

DEFINITION 3.3. Let = MX,) and H' = CX' ,') be fuzzy hypergraphs. Then

H' = (X'W,') is a sub-fuzzy hypergraph of H if there exists a fuzzy set

v c 5(X) where X' = U A supp (V A p) and 6' = IV A Alp E 9, V A A * 0}.

The fuzzy hypergraph H' = (X',C') is called the sub fuzzy hypergraph

induced by the fuzzy vertex set v.

OBSERVATION 3.4. A sub-fuzzy hypergraph can be interpreted as a method of

defining a fuzzy hypergraph on a fuzzy set v. The min operator then

represents the condition that the edge strength at a vertex x is no greater

than the vertex strength v(x). When defining H by an incidence matrix one

can specify v in an additional column of the matrix.
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LEMMA 3.5. The relation "sub-fuzzy hypergraph of" is a partial ordering on

the collection of all fuzzy hypergraphs.

Proof. Let v(x) = 1 for all x E X. Then R (X,= ) is a sub-fuzzy

hypergraph of Y (X,C) and the relation is reflexive. Suppose that

0'' = { A' A p' I A' E C', V' A •' O} and

f' VL A ;I A E V.L A M1 0).

Then V' A A' = V' A (V A 11) = (W A V) A p and the relation is transitive.

We prove anti-symmetry by contradiction. Let

C' = {v A •I• E C, V A A * 0}

and G = {W' A A'1;1' E C', V' A 4' * 0}.

Suppose that C * '; so WOLOG there exists a a' E 6' with a' 4 C. Then

a' = V A a for some a E C. By definition of the min operator, a'(x) S a(x)

for all x e X. By hypothesis a' * a, so there exists a y E X with

a'(y) < a(y). Thus a'(y) = v(y) which implies that each W' E 9' satisfies

W'(y) :s v(y) < a(y). However, this contradicts o = V' A A' for a g' E C'

Specifically p'(y) < a(y) for each p' E C'. o

If v(0 ) is a sub-fuzzy hypergraph of R, then v(R) I R. The terms

of a Y induced fundamental sequence may not be sub-hypergraphs of Hrn.

DEFINITION 3.6. For x E X, let the star M(x) with center x to be the

partial fuzzy hypergraph formed by the edges with nonzero membership value

for x. Let the c star with center x to be the set of all p E C such that

A(x) a c. Define the degree of x in R as deg(x) = Z p(x) (incidence

matrix row sum) and the maximum degree of R as A(R) = max deg(x). AxEX

fuzzy hypergraph in which all vertices have the same degree is said to be

regular.

As a straight generalization of a hypergraph theorem [11] we have

A(M ) = rank(fD) and the dual of a regular fuzzy hypergraph is uniform.
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CHAPTER 2. Fuzzy Transversals of Fuzzy Hypergraphs

Transversals of crisp hypergraphs are used in coloring problems and a

variety of other applications. Of particular interest is the set of all

minimal transversals and the hypergraph formed with minimal transversals as

the edge set. This chapter defines and studies the basic properties of

fuzzy transversals and the fuzzy hypergraph formed with minimal fuzzy

transversals as the edge set.

Section 1. Definition of Fuzzy Transversal

For a crisp hypergraph H = (X,E) a transversal of H is any subset T of

X with the property that for each A e E, T n A * o. A transversal T of H

is a minimal transversal of H if no proper subset of T is a transversal

of H. Clearly a transversal always contains a minimal transversal. The

collection of minimal transversals of H can be considered the edge set of a

hypergraph where the vertex set is a (perhaps proper) subset of X. Both

the set of all minimal transversals of H and the hypergraph defined by this

set will be denoted by Tr(H).

Let Y = (X,G) be a fuzzy hypergraph on X, and T be a fuzzy subset of

X such that TA ^ * p 0 for each pE C . Then T/2 # A i 0 for each W E & as

well. Thus a strict analog of a crisp transversal is of little use, for we

cannot define a minimal transversal. However, if for each c level cut of a

transversal of X is a transversal for the c level hypergraph R,, we obtain

a suitable definition.

DEFINITION 1.1. Let Y = (X,C) be a fuzzy hypergraph and recall the height

of p is h(p) = max {p(x)fx E X}. A fuzzy transversal of H is a fuzzy set

T E 9(X) such that Th(,) n A,(,) * 0 for each A E 6. A minimal fuzzy

transversal of It is a fuzzy transversal T of H for wh'ch p < T implies p is

not a fuzzy transversal of H. The set of all minimal fuzzy transversals of

Jf (and the fuzzy hypergraph formed by this set) will be denoted Tr(N).
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OBSERVATION 1.2. Let H = (X,C) be a fuzzy hypergraph. An immediate

consequence of Definition 1.1 is that the following statements are

equivalent.

(i) T is a fuzzy transversal of Y

(ii) For each g e g and each c with 0 < c s h(p), T, n PC * o

(iii) For each c with 0 < c ! rI, TC is a transversal of HC

We show in Lemma 1.10 that each fuzzy transversal contains a minimal

fuzzy transversal.

EXAMPLE 1.3. Although T may be a minimal fuzzy transversal of Y, T C may

not be a minimal transversal of H for each c. Also, the set of minimal
C

fuzzy transversals of H may not form a hypergraph on X. Define Y by the

incidence matrix of Figure 3. The remainder of Section 1 will justify the

claim that H has only two minimal fuzzy transversals. Both have zero

strength for a and d while neither has a .4 cut that is minimal in H.

AP V P T1 T 2

a .5 0 0 0 a 0 0
b .5 .8 0 0 b .8 .8 A

c .4 0 0 .7 Tr(R) c .7 0 i 4
d 0 .4 .7 0 d 0 0
e 0 0 0 .7 e 0 .7 e0

f 0 0 .8 .4 f .8.8 p.

Figure 3. Minimal fuzzy transversals that are not locally minimal

We saw in Example 1.3 that a cut-level set of a minimal fuzzy

transversal need not be a minimal transversal of the cut-level hypergraph.

Fuzzy transversals that have this property are of interest and so we

provide the following definition.

DEFINITION 1.4. If T is a fuzzy set with the property that Tc is a minimal

transversal of Hc for each c e (0,1], then T is called a locally minimal

fuzzy transversal of Y. The set of all locally minimal fuzzy transversals

on R is denoted by Tr (H).
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We now provide some basic properties of fuzzy transversals that

justify the claim of Example 1.3. In Section 2 we provide a

characterization of Tr(R). Then in Section 3 we explore conditions under

which TrC(R) is nonempty and under which Tr*(R) = Tr(R).

LEMMA 1.5. Let H = (X,C) be a fuzzy hypergraph with fs(f) = 4rl,--.,rn}.

If T is a fuzzy transversal of R, then h(T) a h(p) for each p e C. If T is

minimal, then h(T) = max h(})lp 4 9) = r,.

Proof. Trivial consequence of the definitions. u

LEMMA 1.6. For each T E Tr(R) and for each x C X, T(x) E fs(R). Therefore

the fundamental sequence of Tr(H) is a (possibly proper) subset of fs(R).

Proof. Let T E Trot) and T(x) E (r 1 +4 ,r1]. Define p by

V(y) = fri if y = x

IT (y) otherwise

By definition of V, Vri = Tri. By definition of fs(R), Rc = Rr3 for each

c E (r 1 ÷1 ,rrI. Therefore Pri is a transversal of H. for each c - (r 1 +1 ,

rrj ]. Since T is a fuzzy transversal and (p = T. for each c o (ri+1 , rr ],

( is a fuzzy transversal as well. Now p :5 T and the minimality of T

implies ( = T; hence T(x) = qp(x) = r,. It follows that for each T e Tr(R)

and for each x e X we have T(x) e fs(R). Therefore fs(Tr(R)) 9 fs(R). a

LEMMA 1.7. Tr(R) is sectionally elementary (see Definition 1.2.6).

Proof. Let fs(Tr(M)) = {rl,...,rn}. Assume there exists some T e Tr(R)

and some c E (r. 14 ,r 1 ] such that T ri is properly contained in T,. Since

Tr(R)r! = Tr(Rr), there exists some V E Tr(R) such that Vr c = .c" Then

Cri C (0ri implies the fuzzy set a defined by

a(x) = fc if x e fri\Tri

19C) otherwise

is a fuzzy transversal of R. Now a < ( contradicts the minimality of (P. o

LEMMA 1.8. For each T E Tr(0) the top cut of T, t r 1 , is a minimal

transversal of Rrl.
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Proof. If not, there exists a minimal transversal T of Hr{ such that

T c Tr1 . Define the fuzzy set T where

fp(x) = •r2 if x E Tr \T

IT(XW otherwise

By Observation 1.2 W is a fuzzy transversal of X, contradicting the

minimality of T. a

Studies of crisp hypergraphs have shown that finding Tr(H) is a NP

complete problem. However for hypergraphs with few vertices there are

methods that are sufficiently effective [1, p 53]. We show that

determining Tr(R) for fuzzy hypergraphs is only slightly more difficult.

Construction 1.9 gives an algorithm for finding Tr(R).

CONSTRUCTION 1.9. Let I = (X,C) be a fuzzy hypergraph with

I(Y) = {rr2 , .. 'Mrn }. We construct a minimal fuzzy transversal T of Y

by a recursive process:

(i) Find a (crisp) minimal transversal T, of 'rl.

(ii) Find a transversal T2 of Rr2 that is minimal with respect to

the property that T1 C T2 . Equivalently, construct a new hypergraph H2

with edge set Er. augmented by a loop at each x E TI; that is,

E(H 2 ) = Er 2 U{ {x}tx e T,}. Let T2 be any minimal transversal of H2 .

(iii) Continue recursively, letting T, be a transversal of Rrj that

is minimal with respect to the property T]_, 9 Ti.

(iv) For 1 s j s n, let T, be the elementary fuzzy set with support

Tj and height r,. Then T = V{fT¶ S j s n} is a minimal fuzzy transversal

of R.

To see why this algorithm is valid first note that Observation 1.2

implies T is a fuzzy transversal of M. If 7 < T there exists an x e X such

that T(x) < T(x). But then x is not an element of the T(x) level cut of 7,

so 7 T W (x)x) = TTW ; therefore 7T W is not a transversal of )T(x).

• • x,) T• x) i IxI
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Thus T is a minimal fuzzy transversal of X. The construction clearly shows

whether T is also a member of Tr*(Y).

Finding T-(Hf) involves determining all possible branchings at each

step in the algorithm. Suppose Tr(R ) has m members. Then at the r 2

level one must compute Tr(H2 ) for as many as m distinct hypergraphs.

Continuing recursively we develop m trees; each rooted with a minimal

transversal of Rr, and with branching at each level corresponding to the

number of choices available when applying step (ii) of Construction 1.9.

The same algorithm can be used to construct Tr(R*). However we have

seen that for s > t there may be no way to extend a minimal transversal of

H. to a minimal transversal of Xt. This "top down" construction may

therefore be less efficient than a "bottom up" algorithm when finding

Tr*(R).

LEMKA 1.10. Let a be a fuzzy transversal of a fuzzy hypergraph R. Then

there exists a minimal fuzzy transversal T of It such that T : a.

Proof. A slight modification of Construction 1.9 provides the proof. By

Lemma 1.8, ar, is a minimal transversal of Nr1 . Recursively define T as a

transversal of RrI that is minimal with respect to the property that

Tj_1 9 Tj 9 arj" Let Tj be the elementary fuzzy set with support TJ and

height r,. Then T = V{itll s j s n} is a minimal fuzzy transversal of :N

with T 5 a.

Section 2. The Vertex-Coloring Lemma and Tr(Y)

While the set of minimal transversals of H forms the edge set of a

hypergraph (which we also denote by Tr(H)), the vertex set may not be all

of X. The same holds true for fuzzy transversals. We will obtain a

characterization of when x is a vertex of Tr(H) and construct a partial

hypergraph of If that aids in the computation of Tr(H). Repeating the

process for fuzzy hypergraphs we obtain a simple, elementary fuzzy
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hypergraph Y* for which Tr(R) = Tr(R*). We also generalize the "vertex-

colori ý lemma" of Berge [1].

THEOREM 2.1. Let H = (X,E) be a crisp hypergraph and let x e X be a vertex

of H. Then x is an element of some minimal transversal of H if and only if

x is an element of some edge that does not properly contain another edge.

In particular, if H is a simple hypergraph then Tr(H) is a hypergraph on X.

Proof. WOLOG assume H has no repeated edges. Suppose that A is an edge

that does not properly contain another edge of H. For each edge B e E\A

there exists an element xB E B\A. Let T' 9 {xBIB * A and B E E} be a

minimal transversal for the edge set E\A. Then x T' and T' n A = o

implies that T = T' U {x} is a minimal transversal of H.

Conversely, suppose that x is a vertex of H that belongs only to

edges which properly contain another edge. Then for each edge A with

x E A, there exists an edge B c A\kx}. Any minimal transversal T of H must

contain a vertex y * x of B c A. The minimality of T E Tr(H) then implies

that x 9 T. o

OBSERVATION 2.2. By purging the edge set E of H of all edges that properly

contain another edge, the remaining set E* forms the edge set of a simple

partial hypergraph called the transversal core of H denoted by H* = (X*,E*)

and satisfying

(i) Tr H* = Tr(H)

(ii) U Tr(H) = X*

(iii) X\X* is exactly the set of vertices of H that belong to no

member of Tr(H).

LEMMA 2.3 (Vertex Coloring Lemma of Berge [1, p4 41). Let H = (X,E) be a

hypergraph and H' = (X',E') be a simple hypergraph with X' 9 X. Then

H' = Tr(H) if and only each partition (Y,Z) of X satisfies exactly one of

the following conditions:
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(M) there exists A e E such that A ! Y.

(ii) there exists B e E' such that B 5 Z.

COROLLARY 2.4 [1, p45]. If H is simple then Tr(Tr(H)) = (H).

COROLLARY 2.5. Any hypergraph H satisfies Tr(Tr(H)) 9 (H).

Proof. By Observation 2.2 there exists a partial hypergraph H* of H that

is simple and for which Tr H* = Tr(H). Corollary 2.4 then implies

Tr(Tr(H)) = Tr(Tr H*) = H (H). o

We now proceed with a characterization of Tr(1) for fuzzy

hypergraphs. We first provide fuzzy analogs of Theorem 2.1 and the Vertex

Coloring Lemma. We then construct the fuzzy transversal core.

LEMKA 2.6. Let H = (X,1) be a fuzzy hypergraph and suppose T e Tr(H). If

X E supp T then there exists a fuzzy edge p of 0 for which

(i) p(x) = h(p) = T(x) 0
(ii) Th (,) nh (,{) W.X}

Proof. Suppose that T(x) > 0 and let A be the set of all fuzzy edges of X

where for each a e A, a(x) a T(x)}. Since T is a transversal of XT~x) T(x)

and x E ,T(X)' this set is nonempty. Further, each a E A satisfies

h(a) a a(x) - T(x). If (2.6.i) is false then for each a E A we have

h(a) > T(x) and there exists x. * x with x e aho, n h (definition of

transversal). Define the new fuzzy set T by

((y) = fT(y) if y * x
) max {h{Wi!(p) < T(x) if y = x

Clearly V is a fuzzy transversal of H and f < T. This contradicts the

minimality of T, so some g E 0 satisfies (2.6.i).

Now suppose each a E A satisfies (2.6.i) and also contains an x * x

with x e (,) n Th(00" Repeating the argument of (2.6.i) provides a

contradiction and completes the proof. a
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THEOREM 2.7. Suppose that Y = (X,C) is a fuzzy hypergraph and x - X. Then

there exists T e Tr(i) with x E supp T, if and only if there exists a A E 19

satisfying

i) ju(x) = h(A)

(ii) for each v E 9 such that h(0) > h(p), the h(v) level cut of v

is not a subset of the h(A) level cut of p.

(iii) the h(A) level cut of A does not properly contain any other

edge of h(JI)

Under the conditions above, t may be chosen so that T(x) = h(A) = i(x).

Proof. Suppose that T e Tr(H) and T(x) > 0. Condition (2.7.i) follows

from Lemma 2.6. For (2.7.ii), assume for each p satisfying (2.7.i), there

exists v e & such that h(v) > h(A) and Vh(V) g AMP)" Then there exists

y * x with y E vh(V) n Th(U) 5 Ah(A) n Th(A), contradicting Lemma 2.6.

For (2.7.iii), suppose that for each A satisfying (2.7.i) and (2.7.ii)

there exists v e 6 such that 0 c v ) c 1 h(P). Since vh(A) * o and by

(2.7. ii), we have h(v) = h(p) = p(x). If v(x) = h(u) our hypothesis

provides v'e & such that o c P'h(A) C Vh(A) C h(A). Continuing

recursively the chain must end in finitely many steps so WOLOG assume

v(x) < hMv). However this implies there exists y * x such that

y EVh(P) n Th() Ph(,,) f nTh(, contradicting Lemma 2.6. Therefore

there exists some p E 6 that satisfies (2.7.i), (2.7.ii) and (2.7.iii).

Sufficiency of the conditions is shown using Construction 1.9. Let

the pair (x,g) satisfy conditions (2.7.i), (2.7.ii) and (2.7.iii). By

condition (2.7.i), h(p) = r, for some member of the fundamental sequence.

By conditions (2.7.ii) and (2.7.iii) there exists y V Eh(U)\ h(P) for each

v e 6 such that v * p and h(v) a h(p). Let A be the set of all such

vertices, so A n Ph(,) = 0. Construct the initial sequence of transversals

so that Tj ý A for each 1 s j e i, and T 1 A U W. Clearly this is
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possible and for each 1, x e T . Continuation of Construction 1.9 will

produce a suitable minimal fuzzy transversal T with T(X) = (x) = h(p). 0

THEOREM 2.8. Fuzzy analog of the Vertex Coloring Lemma. Let Y = (X,C) and

I' = (X' ,') be fuzzy hypergraphs. Then R' = Tr(Y) if and only if 3C' is

simple, X' ý X, h(a) = h(M) for each a E C', and for each fuzzy set

SE 9(X) exactly one of the following conditions is satisfied:

(i) there exists a E 0' such that a :s 3 or

(ii) there exist p E C and c e (0,h(p)] such that A ,- c = o; that

is, 1 is not a fuzzy transversal of Y.

Proof. Let W' = Tr(R). By definition Tr(H) is a simple fuzzy hypergraph

on X' 9 X. By Lemma 1.5, each edge of Tr(R) has height h(M). Let

ft e(X). If P is a fuzzy transversal of X, then by Lemma 1.10 there

exists a minimal fuzzy transversal contained in R. Thus condition (2.8.1)

holds and condition (2.8.ii) does not.

If R is not a fuzzy transversal of X, then there exists p E & such

that gh(A) n" h(l) = 0. Clearly a s 0 implies ah(A) n Uh(A) = o as well,

so condition (2.8.ii) is satisfied and condition (2.8.i) is not.

Conversely, let 0' have the properties above and let a c 6'. By

setting a = R we have a s a and a violates condition (2.8.ii). Thus a is a

fuzzy transversal of R. If T s a and T is a fuzzy transversal of R, T

violates condition (2.8.ii) and there exists ) E C' with S ! T t c'.

However R' simple implies 0 = T = a; hence 9' 9 Tr(I). Similarly T e Tr(I)

violates condition (2.8.ii) and there exists a E 6' with a : T. But a is a

fuzzy transversal of If so the minimality of T implies a = T. Therefore

9' = Tr(H) as required. a

OBSERVATION 2.9. Theorem 2.8 was stated in a simplified form. By

Lemma 1.5 any fuzzy transversal T satisfies h(T) ý h(R). By Lemma 1.6 and

Lemma 1.7 the fuzzy hypergraph Tr(R) is sectionally elementary with
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fs(Tr(R)) 9 fs(o). Using these properties as additional hypothesis the set

of 13's (test fuzzy sets) could be reduced to those 0 e Y(X) such that

h(13) = h(f) and for each x E X, O(x) E fs(o). An obvious advantage to

using this collection of fuzzy sets is that the cardinality is finite.

LEKKA 2.10. Let H be a fuzzy hypergraph with fs(R) = lrl,--.,rnl and

rI*-ri be the elementary fuzzy hypergraph where v is an edge of rl1r, if

and only if h(v) = r 1 and supp v is an edge of Mr.* Then Tr(Tr(X)) is a

partial fuzzy hypergraph of ri.3rj.

Proof. By Lemma 1.8 and Construction 1.9, the r, level hypergraph of Tr(H)
is Tr(Hrl); that is, (TrM))r = Tr(3rj). Let a E Tr(Tr(R)). By

Theorem 2.7, a(x) > 0 implies there exists T E Tr(H) with a(x) = h(r). By

Lemma 1.5, h(T) = r, for each minimal transversal T. Therefore a is

elementary with height rl. Since supp ( = arl, Lemma 1.8 implies supp a is

a minimal transversal of (Tr(l))r and hence supp a E Tr(Tr(RrC)). By

Corollary 2.5 supp a is an edge of Hrl, so a is an edge of r,. Hr1. 0

COROLLARY 2.11. If R is a fuzzy hypergraph with Rr, simple, then

Tr(Tr(R)) = r 1 -)r, where r1 .r, is defined as in Lemma 2.10.

Proof. By Lemma 2.10 Tr(Tr(H)) s rl-Hrl. Let a be elementary with

h(a) = r, and supp a E Hr1. As in the proof of Lemma 2.10 supp a is a

minimal transversal of Tr(Hrl) and hence supp a is a minimal transversal of

(Tr(M))rj. Since each minimal transversal of Tr(H) is elementary,

Construction 1.9 terminates at the r, level and a E Tr(Tr(R)). Therefore

r,-Hrj : Tr(Tr(M)) and 1r. = Tr(Tr(f)). o

It is evident from Lemma 2.6 and from Theorem 2.7 that the set of all

minimal fuzzy transversals of X is completely determined by the top cut-

level sets of those edges of H that satisfy the three conditions of

Theorem 2.7. We proceed to generalize Observation 2.2 by the following two

constructions.
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CONSTRUCTION 2.12. We obtain a subsequence of fs(R) denoted fs*(H) and a

set of partial hypergraphs from J(t) denoted J(f) as follows:

(i) Obtain the partial hypergraph Yr2 of Hr, by eliminating all

edges that properly contain another edge of Hrl. By Observation 2.2

Tr(frl) = Tr(frl).

(ii) Obtain the partial hypergraph Hr2 of Hr2 by eliminating all

edges that either properly contain another edge of Yr 2 (property 2.7.iii)

or contain (properly or improperly) an edge of Hr, (property 2.7.ii). By

Theorem 2.7, k2 is nonempty if and only there exists a T e TrHY) and an

x E Xr2 such that T(x) = r2.

(iii) Continue recursively obtaining Hr, from Hrj by eliminating all

edges that either properly contain another edge of Rri or contain an edge

of Ir or Xr2 or o0o tr _1. By Theorem 2.7, Hr. is nonempty if and only

there exists T E Tr(H) and an x E Xrj such that T(x) = ri.

Collecting those nonempty partial hypergraphs and corresponding cut-

levels rI = rI > r 2 >ooo>rm we define
fs*(If) = {r1,ooo,r:} and YI) = {Irofo, Irn}

OBSERVATION 2.13. By construction, the fundamental sequence of Tr(H) is

fs*(I). Further, T is an edge of kj. if and only if T is the top cut of an

edge of If with height r*, satisfying the last two conditions of

Theorem 2.7.

We have now identified the fundamental attributes of Tr(R). Using

these attributes we construct an elementary (thus ordered) fuzzy hypergraph

called the fuzzy transversal core of H.

CONSTRUCTION 2.14. Let It be a fuzzy hypergraph where fs{ (Y) and I(M) are

defined as in Construction 2.12. Define the fuzzy transversal core of If as

the elementary fuzzy hypergraph Ht = (X*,C*) in which

Mi) fs*(I) is the fundamental sequence of MI
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(ii) M* e U* has height r* e fs*(X) iff supp(p*) is an edge of M)j

OBSERVATION 2.15. The following statements are trivial consequences of

previous definitions and results. The height of each edge in C* is a

member of fs*(R) and fs(R*) = fs*(M) = fs(Tr(M)). Further, Y* is

elementary (thus ordered) and is support simple. The sequence
C C

I(U*) = {Mr•,OoQ, Mr,} is obtained recursively from I(M) by letting
U 1 m

c= ii Gr1 where rj is minimal with respect to rj z c. The vertex set

of M' is exactly the vertex set of Tr(R)

THEOREM 2.16. For every fuzzy hypergraph M, Tr(M) = Tr(CM).

Proof. Let T c Tr(M) and p* E C*. By definition of M* we have h(PO) =ro

for some rI E fs*(M) and p is an edge of rri" However XrM is a partial

hypergraph of MrT and Tri is a transversal of Xro, so A,- fl :9 0.

Therefore T is a (possibly nonminimal) fuzzy transversal of If.

Let T•e Tr(M.) and p e C. By definition of the fundamental sequence

of M, AMP) E rj for some rj e fs(R), where r, z h(p). By definition of

the sequence I(M), there is some edge T of Mr: where T 5 AMA) and

rk 2 rj a h(p). Let p* be the edge of 9* with support T and height r: so

T prk ; P QU)" Since T* e Tr(H*) there exists a y E p•rk n T:k" Then

y C= ' Ph(A) n Th(p) and T is a transversal of M.

For minimality, recall T E Tr(M) implies T is a transversal of )f.

Then there exists T e Tr(Ml) such that T* 5 T. However T is a

transversal of M so minimality of T (in R) implies r = T. Therefore

Tr(M) 9 Tr(MC). A similar argument shows Tr(M*) 9 Tr(M) and completes the

proof. a

Section 3. Locally Minimal Fuzzy Transversals

In Example 1.3 we saw that each cut-level of a minimal fuzzy

transversal may not be a minimal transversal of the corresponding cut-level

hypergraph. We thus gave Definition 1.4 naming locally minimal fuzzy
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transversals and Tr*()). Conversely, a transversal of a cut-level

hypergraph need not be the cut-level set of any fuzzy transversal. In this

section we explore some of these issues. Of particular interest will be

conditions for which Tr*(H) is nonempty and for which Tr*(R) = Tr(M).

In Construction 2.14 we defined H* (the transversal core of R) and in

Theorem 2.16 we showed that Tr(R) = Tr(R*). In this section we show that

Tr*(H) - Tr*(R*) 9 Tr()*) = Tr(R) and that the inclusions may be proper.

We also give a condition which implies equality. We begin with a crisp

result.

LEMMA 3.1. Suppose H = (Y,F) is a (crisp) partial hypergraph of a (crisp)

hypergraph H = (X,E). Then

(i) If T is a minimal transversal of H, then there exists a minimal

transversal T of H such that T 9 T.

(ii) Let H and H be simply ordered and T be a minimal transversal of

H. Then there exists a minimal transversal T of H such that T 9 T.

Proof. Let T be any minimal transversal of H. Since each edge of H is an

edge of H, T n Y is a transversal of H. The T required for part (i) then

clearly exists. For part (ii) let G = {A e EtA V F} and let T be a minimal

transversal of H. If G is empty we are done. Otherwise, since H and H are

simply ordered, for each A E G there exists xA E A\Y. Then T U {xAIA e G1

is a transversal of H that contains a minimal transversal T of H. Clearly

T is contained in T. o

EXAMPLE 3.2. Consider the ordered hypergraphs H and H defined by Figure 4.

a a
bb

0

H = H =

d d

Figure 4. Extending a minimal transversal of a partial hypergraph



25

Notice that T = {a,b} is a minimal transversal of H and that no extension

of T is a minimal transversal of H. Therefore Lemma 3.1.ii requires a

stronger condition than ordered.

THEOREM 3.3. Suppose that Y is an ordered fuzzy hypergraph with

fs(R) = {r,.-.,rd}. If Tj is a minimal transversal of 3rf then there

exists T E Tr(H) such that Trj = T, and for all i < j, Tri is a minimal

transversal of Hri. In particular, if Tn is a minimal transversal of Yr.

then there exists a locally minimal fuzzy transversal T such that Trn = Tn

Therefore if R is ordered then Tr*(M) is nonempty.

Proof. Let T, be a minimal transversal of r" Since Y is ordered, R,,if

is a partial hypergraph of Rrf. By Lemma 3.1.i, there exists a minimal

transversal Tj_. of XJ_1 with Tj_1 9 Tj. Continuing recursively we obtain

a sequence Ti 5 T2 g.-.. Tj where each T, is a minimal transversal of the

corresponding Rri.

Following the method of Construction 1.9 we obtain minimal extensions

T 1 1 Tj+1 9-... Tn to transversals of Rrj < RrjI l <'.< Y r.. Let T, be the

elementary fuzzy set with height r, and support T,. Then defining

T(x) = max{fi(x)I1 : i : n} produces the required minimal fuzzy transversal

of 0. Clearly if j = n, T is a locally minimal fuzzy transversal and

Tr*(R) is nonempty. a

A consequence of Theorem 3.3 is that for ordered fuzzy hypergraphs,

each minimal transversal T of a cut-level hypergraph is a cut-level set of

some minimal fuzzy transversal T. However by Example 3.2 T may not be a

locally minimal fuzzy transversal and Tr*(f) may be properly contained in

Tr(H). For simply ordered fuzzy hypergraphs we get a slightly stronger

result.

THEOREM 3.4. Suppose that Y is a simply ordered fuzzy hypergraph with

fs(Y) = {r 1 ,-o-,rn}. If Tj is a minimal transversal of Rrj, then there
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exists T e Tr*(H) such that Trj = Tj

Proof. Suppose that Y is simply ordered and 1-t T, be a minimal

transversal of Hr,. By Lemma 3.1.i and 3.l.ii there exists a sequence

TI 9 T2 9-..- T .- Tn

where each T, is a minimal transversal of Rr1. Let T, be the elementary

fuzzy set with height r, and support Ti. Then T = max{Tx1 l s i s n0 is a

locally minimal fuzzy transversal of Y with Tr. = T 0.

We now provide notation and definitions that will aid in considering

the question of when Tr(H) = Tr*(H).

DEFINITION 3.5. An ordered pair (H,K) of crisp hypergraphs is T-related if

the conditions PK is a transversal of K, TH is a minimal transversal of H,

and TH 9 PK' imply Lhat there exists a minimal transversal TK of K such

that TH 9 TK " PK.

DEFINITION 3.6. Let R be a fuzzy hypergraph H with fs(R) = irl,...,rn}

Then I is T-related if as 1 s i 5 n-l, each successive ordered pair

(Hr ,Hr +l) is T-related. If the fundamental sequence of Y is a singleton,

R is considered (vacuously) to be T-related.

THEOREM 3.7. Let Y be a T-related fuzzy hypergraph. Then Tr*(Y) = Tr(y).

Proof. Since all fuzzy hypergraphs satisfy Tr*(R) 9 Tr(R) we need only

show Tr(Y) 9 Tr* (R). Let T e Tr(Y) and suppose there exists rj E fS( )

where Trj is a nonminimal transversal of Rrj. We assume WOLOG that r, is

the greatest such value and note that by Lemma 1.8 r, > r,. By the

definition of T-related there exists a minimal transversal T of Rrj such

that Tr-1 c T c Trj. (the inclusions are proper). We now define the fuzzy

set a where

fT(x) if T(x) r and x e T

ax(x) =•rj+I if T(x) a rj and x e T r \T

T(x) if T(x) < rj
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However by Observation 1.2, a is a fuzzy transversal of Y{ and by definition

a is properly contained in T. This contradicts the assumption that T is a

minimal fuzzy transversal and hence T e Tr()f). o

EXAMPLE 3.8. The fuzzy hypergraph of Figure 5 provides an example where

the converse of Theorem 3.7 is false. The set {d,e0 is a minimal

transversal of Y.8 and the set {d} is a minimal transversal of Y.4. Thus

no minimal transversal of RA. can contain {d,e} and the pair (R.R,•{ 4 ) is

not T-related.

a[1 1 0 a 1 10
b 1 0 1 b 1 0 1

= c 0 1 1 Tr(Y) = Tr*(0) = 10 1 1
d .8 . .4 d 0 0 0
e .4 .4. e 0 0 0

Figure 5. Tr*(R) = Tr(X) with Y not T-related

We now show there is a partial converse of Theorem 3.7 that applies

to a large class of fuzzy hypergraphs.

THEOREM 3.9. Let Y be an ordered fuzzy hypergraph. Then R is T-related if

and only if Tr*(Y{) = Tr(R).

Proof. The forward implication is Theorem 3.7. Conversely, suppose that 0

is ordered and that Tr (R) = Tr(R). Let Tj e Tr({rj) and let T be a fuzzy

transversal of )rj+l with T, c T. Each edge of Rr, is also an edge of

Yr]+l, hence if T is a transversal of Rrj+l then T, is necessarily minimal

and we are done. Otherwise there exists T,+÷ where T 1 C Tj+1 9 T and T j

is a minimal extension of T to a transversal of H,+÷. As in the proof of

Theorem 3.3 there then exists T e Tr(M) with Tr = Tj aund Trj+l = T1,,. We

assumed Tr(H) = Tr*(R) so T is locally minimal and Tj+1 is a minlmal

transversal of Xrj÷l as required. a
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COROLLARY 3.10. We note the following relationships between a fuzzy

hypergraph X and the corresponding transversal core X*:

(i) Tr(R) = Tr*() if and only if N* is T-related

(ii) Tr(H) = Tr'(R*) if and only if N* is T-related

Proof. By Observation 2.15 I* is ordered. Apply Theorems 2.16 and 3.9. 0

THEOREM 3.11. For each fuzzy hypergraph X, Tr (H) 9 Tr*(R*). The

inclusion may be proper.

Proof. We use the notation of Construction 2.12 through Theorem 2.16

extensively. Let I be a fuzzy hypergraph and T E Tr*(R) a locally minimal

fuzzy transvarsal of R. By Observation 2.15

fs(Tr(R)) = fs()f') = fs*(€) = {r7,..,r}

By definition of locally minimal, Tr* is a minimal transversal of fr' for

each r*. Then by Construction 2.12 and Observation 2.13 Trj is a minimal

transversal of 3 * for each rj. Therefore T e Tr*(R*) as required.

For the second statement recall by Example 1.3 Tr*(R) may be empty.

However H' is ordered hence Tr*(UC) is nonempty by Theorem 3.3. o

We summarize a number of results in the following corollary. The

proof of each statement follows immediately from previous theorems.

THEOREM 3.12. Let H be a fuzzy hypergraph then

(i) Tr*(R) 9 Tr*(X*) 9 Tr(H ) = Tr(H); inclusions may be proper.

(ii) If H is T-related, then TrC(H) = Tr*(Hf=) = TH) = Tr(H).

(iii) Tr*(R*) = Tr(l') = Tr(H) if and only if If* is T-related.

(iv) If Tr*(H) = Tr(H), then H' is T-related.

(v) If H is T-related, then H* is T-related as well.

Proof. Clearly the set of locally minimal fuzzy transversals is contained

in the set of all fuzzy transversals. The other inclusions of (3.12.1)

follow from Theorems 2.16 and 3.11. Part (3.12.ii) follows immediately

from Theorems 3.7 and 3.12.1. By Observation 2.15, N" is ordered;
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therefore (3.12. iii) follows from Theorem 3.9. For (3.12.iv) we show the

contrapositive. If i is not T-related then Theorem 3.12.iii implies

Tr*(I*) * Tr()f). Then Theorem 3.12.i implies Tr*(R) * Tr(N). Part

(3.12.v) follows from Theorem 3.7; if R Is T-related then Tr*(3) = Tr(R).

Then Theorem 3.12.iv completes the proof. a

The reader may verify that Example 3.8 provides a fuzzy hypergraph

for which R* is T-related and R is not. Therefore the converse of

Theorem 3.12.v fails. The converse of Theorem 3.12.iv also fails by the

next example.

EXAMPLE 3.13. Let M be defined by the incidence matrix in Figure 6. The

only minimal transversal of the 1 cut-level of R is the set {a,b}, which is

also a (nonminimal) transversal of R.S- Therefore the edge set of R*

consists of the characteristic functions of the sets {a} and {b}; Tr(H)

consists of the characteristic function of the set {a,b}. The .5 level

hypergraph has minimal transversals {a}, {b} and {c}. Therefore Tr*(R) is

empty. Since Tr*(R*) = Tr(R*), R* is T-related by Theorem 3.12. iii.

A V T

= b 0 1 .5 Tr(R) = b 1
c i5 0 .5 c 0

Figure 6. R" is T-related while Tr*(M) * Tr(H)
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CHAPTER 3. Vertex Colorings

This chapter introduces the notion of a vertex coloring of a fuzzy

hypergraph. We first provide some basic results and then define a (crisp)

hypergraph that simplifies the calculation of the chromatic number. We

also provide a fuzzy hypergraph that serves the same purpose. In the

second section we pay particular attention to the class of ordered fuzzy

hypergraphs.

Section 1. Vertex Coloring of a Fuzzy Hypergraph

Let H = (X,E) be a crisp hypergraph and let k z 2 be an integer. A

k-coloring of the vertex set is a function A:X--{l,2,--.,k} such that for

each nonloop edge A e E, A is nonconstant on A. The function A induces a

partition of X into the color classes {Sl,S 2 ,**.,Sk} where S, = A-(i). A

vertex coloring may be equivalently defined by this partition of X where

each nonloop edge has nonempty intersection with at least two distinct

color classes.

An edge is said to be monochromatic if it is contained in a single

color class. The chromatic number of H, denoted x(H), is the minimal

integer k for which there exists a k-coloring of H.

In a vertex coloring of H the only monochromatic edges are loops.

Conversely, loops need not be considered when constructing vertex

colorings.

OBSERVATION 1.1. In Observation 2.2.2 we defined the transversal core of a

hypergraph H = (X,E). We now define a similar color core of H to be the

simple partial hypergraph H = (X,E) where E is formed by purging from E all

loops and all edges that properly contain another nonloop edge. Formally

we let

E = {A E El IAI 2 2 and (A' E E, A' 9 A, A' * A) 4 IA' I = ).

and X = U A -E
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Any coloring of H may be extended to a coloring of H by assigning an

arbitrary coloring to the vertices of X\X. Thus H completely determines

the possible colorings of H and X(H) = x(H).

Recall that the existence of a loop at vertex x requires x E T for

any transversal T. However loops have no effect on vertex colorings.

Therefore the color core and transversal core are not in general equal.

CONSTRUCTION 1.2. Minimal transversals of a hypergraph H may be used to

define a coloring of H by the following construction:

(i) WOLOG assume H has no loops. Find a minimal transversal T, of

H. Clearly no edge of H is contained in X\T1 .

(ii) Let H2 be the partial hypergraph of H induced by those

(nonloop) edges of H that are contained in TV. If H2 is empty, the

partition (X\T1 ) U T, is a two coloring of H. If not, let T2 be a minimal

transversal of H2 . Clearly no edge of H is contained in T,\T2 .

(iii) Continue recursively where if Hk is empty, then

(X\T1 ) U (Tk\T2 ) U -.- U (Tk_,\Tk)

is a k + 1 coloring of H. Since for any minimal transversal T of a

hypergraph (without loops) H, [TI < IXJ, the process must stop in at most

k = IXI - 1 steps.

EXAMPLE 1.3. Construction 1.2 will not always produce a minimal coloring

of H, even if we pick minimal transversals with minimal cardinality at each

step. The partition {a,b,c,e} U {d,f,g} is a 2-coloring of the graph G in

Figure 7. By choosing the minimal transversal T1 = {d,e}, Construction 1.2

produces the 3-coloring {a,b,c,f,g} U {d} U {e.

af

G = b 
<d e

c g

Figure 7. Construction 1.2 may induce a nonminimal vertex coloring
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Given a fuzzy hypergraph H = (X,M), we are interested in when vertex

colorings are also colorings for the cut-level hypergraphs of H. We show

by example that a coloring at one cut-level may not be consistent with a

coloring at either a higher or lower value in fs(M). Even if there exist

consistent colorings, a minimal coloring at one level may not induce a

minimal coloring at a higher or lower level.

EXAMPLE 1.4. Consider the fuzzy hypergraph Y defined by the sequence of

cut-level hypergraphs given in Figure S. Since Hr1 and Hr 2 have the same

vertex set with X(Hr1 ) < x(Hr2 ), no minimal coloring of Hr, can be extended

to a coloring of Hr2. Also, X(Hr2 ) > X(Hr3 ), so no minimal coloring of Hr3

can induce a coloring of Hr2. Finally, although X(Hrl) = =(Hr3 2, no

2-coloring of Hr, is compatible with a 2 coloring of Hr 3.

a b a V b a V b

Hr,1  X H qV Hr =
r2 XX

Figure 8. A coloring of a cut-level hypergraph may not induce a coloring

of another level

OBSERVATION 1.5. Clearly a coloring A of Hrj÷1 is a coloring of Hr, if and

only if no Ar, is contained in a single color class of A. Similarly, a

coloring A1 of Hrl is extendible to a coloring A,+, of Hr,1 1 if and only if

no Arg+1 is contained in a single color class of A,. In particular, if X

is simply ordered, then for all r, E fs(?) and for all colorings A, of Hri,

there exists an extension A,+, of A, to a coloring of H,+,.

DEFINITION 1.6. Let R = (X,g) be a fuzzy hypergraph and let k be an

Integer a 2. A k-coloring of the vertex set is a function A:X---{,2,-.-k}

such that for each c e fs(3f) and for each nonloop edge p, e E,, A is

nonconstant on lic. The chromatic number of X, denoted X(Y), is the minimal

integer k for which there exists a k-coloring of M.
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As in the crisp case a k-coloring may be defined equivalently as a

partition of X into k color classes where each nonloop cut-level edge 11

has nonempty intersection with two or more color classes. Since the vertex

set XC may be properly contained in X we allow Xc n S to be empty for a

color class S.

Finding a coloring of a fuzzy hypergraph may be reduced to finding a

coloring of a crisp hypergraph with the following construction.

DEFINITION 1.7. Let R = (X,@) be a fuzzy hypergraph with fundamental

sequence fs(R). The (crisp) color core of R denoted C(M) = (Y,EJ is

defined as follows. Let {(clg e 6 and c e fs(R)} be the family of all sets

that are an edge in some cut-level hypergraph of R. The edge set E of C(M)

is formed from this family by deleting all loops and all sets that properly

contain another nonloop set of the family. Formally, we let E be the

family of sets where A e E if and only if A satisfies the two conditions:

(i) There exist p e 0 and c e (0,11 with A = pr and 1A.1 a 2

(ii) e E , vt r •lc, and vt * A, implyy IVtI = 1.

The vertex set Y of COf) is formed from the union of its edges. Clearly

Y 9 X.

LEMMA 1.8. A is a k-coloring of R if and only if A is an (extended)

k-coloring of C(M). Therefore, x(3) = X(CM.

Proof. Suppose that A is a k-coloring of R and A is an edge of C0)0. By

definition of C(M), A = gc is not a loop for some p e 0 and c e fs(H).

Since A is a k-coloring of X, A is nonconstant on pc = A as required.

Suppose that A is a coloring of C{M) which has been extended to X by

an arbitrary coloring the vertices of X\Y. Let pc be an arbitrary nonloop

edge of an arbitrary cut-level of X. By definition of C(M), there exists

A e C(M) such that A 9 Ac. Since A is nonconstant on A, A is nonconstant

on Mc as well. o
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OBSERVATION 1.9. It follows immediately from the definitions that each

fuzzy hypergraph satisfies the relation X(0) k max {f(Hr)Ic e fs(R)}. By

the example defined in Figure 9 the inequality may be strict.

a b a b a V b

Hr, Hr2 = C(H)=

c c c

Figure 9. The chromatic number of X may exceed that of any cut-level

Section 2. Fuzzy Vertex Colorings

The notion of studying cut-levels of a hypergraph is vital because it

allows one a measure of how significant an edge is in the hypergraph, and

of how significant a vertex is in a particular edge. However edge

strengths are not considered in vertex colorings. The color core of

Definition 1.7 thus retains very little of the structure of the original

fuzzy hypergraph. In applications using colorings, it may be useful to

have a measure of how significant a color class is, or of the significance

of a vertex in a color class.

For example, fundamental sequence values may represent how "likely"

an event is. Given a particular coloring, it may be the case that a color

class need not be considered unless some "improbable" event occurs.

Therefore a nonminimal coloring with few nonempty color classes at "fairly

certain" levels may be preferable to a second coloring that has fewer total

color classes but many classes at "fairly certain" levels.

In other applications one may want an "almost even" distribution of

vertices between color classes. Again, considering higher level sets "more

important" than lower level sets can induce preferences between colorings.

We reintroduce some of the original fuzzy hypergraph structure by defining

a fuzzy coloring of the vertex set.
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DEFINITION 2.1. Let R = (X,C) be a fuzzy hypergraph and Y = (a-,--'ok be

a family of nontrivial fuzzy sets on X. Then 9 partitions X into k fuzzy

color classes (or Y, is a fuzzy k-coloring) if 9 satisfies the conditions

(i) ai A a' = 0 for i *j

(ii) for each c e (0,11, Xc = U=k(ai),

(iii) for each c E (0,11 and each nonloop pc e Cc, p, has nonempty

intersection with two or more color classes (oi),.

OBSERVATION 2.2. There exists a correspondence between the family of

(crisp) vertex colorings of H and the family of fuzzy vertex colorings of

H. Given a partition of X into the color classes {AI,.-.Ak}, let a, be the

fuzzy set defined by a1 (x) = h,-XA1(x) where

hx = max{c e (0,1] there exists p e C such that x e L¢}

Clearly the family {o1,-,1-,=} satisfies the conditions of Definition 2.1.

Also this family is the only fuzzy coloring where supp oi = A, for each i.

For a fuzzy hypergraph H we now define a simple, elementary fuzzy

hypergraph that has the same set of fuzzy vertex colorings as R.

DEFINITION 2.3. Let Y = (X,C) be a fuzzy hypergraph and let C(M) = (Y,E)

be the color core of I in Definition 1.7. For each A e E, let h.A be the

elementary fuzzy set with support A and height h, where h is the largest

member of fs(K) such that there exists p e C with Ph = A. Define the fuzzy

color core of X to be the elementary fuzzy hypergraph I(K) = (Y,ý) where

S= {h-AjA e E}.

OBSERVATION 2.4. It is a trivial consequence of Observation 2.2 and

Lemma 1.8 that a family of fuzzy sets 9 is a fuzzy k-coloring of Y if and

only if it is an extended fuzzy k coloring of 1(K). As in the crisp case,

the vertices of R which are not vertices of ý(H) are essentially colored

arbitrarily.
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Section 3. Vertex Colorings of Ordered Fuzzy Hypergraphs

Chromatic number theory of crisp hypergraphs is well developed. By

Lemma 1.8 the chromatic number of a fuzzy hypergraph is completely

determined by its (crisp) color core. Therefore we largely refer the

reader to the literature; Berge (1, Chapter 4] is an excellent reference.

There are some interesting results concerning relationships between

chromatic numbers of cut-level hypergraphs. Clearly any coloring of the

vertex set that produces a coloring for each cut-level hypergraph will

provide a coloring for both the hypergraph 1rl and the support hypergraph

Mrn. In turn we explore conditions under which every coloring of Yr, or

every coloring of 3rn will induce a coloring on X.

OBSERVATION 3.1. Let 3f = (X,C) be a fuzzy hypergraph with fundamental

sequence fs(o) = {r 1 ,r 2 ,-- , rn}. Then a coloring A of Yrj may be extended

to a coloring of Hr,+1 If and only if no (nonloop) edge of 3r|+1 is

contained in a single color class of ,. In particular, if R is simply

ordered, then every coloring of H1r may be extended to a coloring of X.

LEMMA 3.2. Let X = (X,) be a fuzzy hypergraph with fundamental sequence

fs(0) = {rl,r 2 ,...,rn}, and let Hrn be the color core of 1rn. Then every

k-coloring of Xrn is a k-coloring of 3 if and only if for each c e fs(R),

and for each p e 0 for which p, is not a loop, there exists A E Hrn such

that A 9 p,.

Proof. The implication is shown by contrapositive. Suppose that there

exists c e fs(R) and p e 9, such that jcLj ? 2 and for each A e Hrn,

A $ g,. Let the vertices of Wc define a color class. Construct a new

hypergraph K that is the sub-hypergraph of Y formed by deleting gc from the

vertex set of Hrn. Thus the edge set of K is {A\kcIA e Hr }. Since each

nonloop yrn E Rrn (including Irn) contains some A E Hr., each nonloop Urn

has nonempty intersection with the vertex set of K. Let {S 2 ,S 3 ,-..,Sk} be
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a coloring of K. Then {f#,S 2 ,S 3 ,--..Sk} is a coloring of MR,, with pc

monochrome. Therefore there exists a coloring of Mrn that is not a

coloring of H.

Conversely suppose that for each c e fs(M) and each p E C where

l 2, there exists A e Hr such that A S pc. Let c and p be arbitrary

but fixed, and A a coloring of Mrn. Since A is nonconstant on A, A is

nonconstant on gc, Therefore A is a coloring of M. a

COROLLARY 3.3. Let M be ordered. Then every k-coloring of Mrn is a k-

coloring of M and X(Hri) 5 ... 5 X(Hrl).

Proof. Any edge of Mc is by definition an edge of Mr . 0

COROLLARY 3.4. There is a partial converse to Corollary 3.3. If each k-

coloring of Mrn is a k-coloring of M and if Mrn is simple, then M is

ordered.

Proof. If M is not ordered there exists p e & and c e fs(M) such that

tic t Ern Since pc is properly contained in ,rn and Mr, is simple, no edge

of Mrn is contained in M,. Apply Lemma 3.2. u
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CHAPTER 4. Fuzzy Intersection Graphs

Intersection graphs and, In particular, interval graphs have been

used extensively in mathematical modeling. Roberts (81 cites applications

in archaeology, developmteital psychology, mathematical sociology,

organization theory, and ecological modeling. These disciplines all have

components that are ambiguously defined, require subjective evaluation, or

are satisfied to differing degrees; thus these areas can benefit from an

application of fuzzy methods. In fact Klir 171 cites these disciplines as

among the most active areas of application of fuzzy methods.

In this paper we define the fuzzy intersection graph of a family of

fuzzy sets and explore the extent to which crisp characterizations can be

generalized to fuzzy graphs. We provide a fuzzy analog of Marczewski's

Theorem by showing that every fuzzy graph without loops is the intersection

graph of some family of fuzzy sets. We also show that the natural

generalization of the Fulkerson and Grcss characterization of interval

graphs fails. We then provide a natural generalization of the Gilmore and

Hoffman characterization. We conclude by defining a variety of edge

strength functions that are related to recent developments in intersection

graph theory.

Although essentially all of the definitions and theorems of the paper

can be extended to infinite sets, we will restrict our attention to graphs

with finite vertex sets.

Section 1. Fuzzy Intersection Graphs

A fuzzy set a on a set X is a mapping a:X --4 [0,1]. We let the

support of a be supp a = lx E Xjc(x) 0 O} and say that a is nontrivial if

supp a * 0. The height of a is h(a) = max {a(x)Ix e X}; a is normal if

h(a) = 1. If p and v are fuzzy sets on X we use the max and min operators

to define new fuzzy sets on X by g v v = max {l,vl and A A v = min {p,v}.
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The fuzzy sets p v v and A A v are the most common definitions of fuzzy

union and fuzzy intersection, respectively. We write a ! 0 (fuzzy subset)

if a(x) : f3(x) for each x c X and write a < R if a i 0 and a(x) < O(x) for

some x E X. 9(X) will denote the family of all fuzzy subsets of X.

As is common in fuzzy set theory, we identify a crisp set with its

corresponding characteristic function; when the context is clear we use the

two concepts interchangeably. The reader may verify that the fuzzy

definitions, when restricted to characteristic functions of crisp sets,

coincide with the usual crisp definitions. For example, crisp graphs and

digraphs are special cases of fuzzy graphs and digraphs, respectively.

A (crisp) graph G = (X,E) consists of a finite set of vertices X and

a set of edges E. The set E is a symmetric subset of the Cartesian product

XxX. We identify (x,y) e E with (y,x) e E and emphasize this symmetry with

the notation {x,yj e E. A directed graph D = (X,A) is an ordered pair

where A is an arbitrary subset of XxX. The set A is called the arc set of

D in order to emphasize the fact that symmetry is not required.

A graph H = (K,F) is complete if ix,y} E F for each x,y e K. A

clique of G = (X,E) is a maximal (with respect to set inclusion) complete

subgraph of G. Clearly a complete graph is determined by its vertex set,

so we adopt the convention of naming a clique by its vertex set.

A fuzzy graph on a finite set X is a pair 1 = (X,M) where p is a

symmetric fuzzy subset of XxX; that is, p:XxX---4 [0,1] and ju(x,y) = p(y,x)

for all x and y in X. A fuzzy graph on a fuzzy subset a- of X is a pair

S= (cp) where o:X--- [0,1] and p:XxX---• [0,1] is a symmetric mapping such

that A(x,y) s min {4o(x),o-(y)}. The fuzzy set (r is called the fuzzy vertex

set of 9. We refer to the pair (x,cr(x)) as a fuzzy vertex of 9 or say the

vertex x has vertex strength r(x). The fuzzy set g is called the fuzzy

edge set of 9. By a fuzzy edge of 9 we mean the two pairs ((x,y),P(x,y))
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and ((y,x),pi(xy)); we also say the edge Ix,y) has edge strength p(x,y).

When p(x,y) = 0, we say {x,y> is a trivial edge of !.

A fuzzy digraph on a finite set X is a pair V = (X,6) where

6:XxX-- [0,1] is an arbitrary mapping. A fuzzy digraph on a fuzzy subset

r of X is a pair 2) = (a,6) where a-:X-)[0,i], 6:XxX-- [0,1], and

6(x,y) : min (iax),o(y)}. We call the pairs t(x,y),6(x,y)) fuzzy arcs to

emphasize symmetry is not required. When convenient we refer to a fuzzy

arc as the arc (x,y) with arc strength 6(x,y).

Often a fuzzy graph (or fuzzy digraph) is defined by an adjacency

matrix where the rows and columns are indexed by the vertex set X and the

x,y entry is p(x,y) (or 6(xy)). A column may t" added to indicate vertex

strength with the xo entry being e(x).

A fuzzy graph 9' = (t,v) is called a partial fuzzy subgraph of

S= (o,A) if for all x,y E X, T(x) s or(x) and v(x,y) s #A(x,y). For any

fuzzy subset T of r, the fuzzy subgraph of (o,,p) induced by T is the fuzzy

graph (T,v) where v(x,y) = min{T(x),T(y),g(x,y)}. The complement of the

fuzzy graph ! = (X,g) is the fuzzy graph 9c = (X,gc) where

Ac(xy) = 1 - P(x,y).

Given c e [0,1] and a fuzzy set a, we define the c cut-level set of a

to be the crisp set x, = Ix E supp tla(x) a c}. The c-level graph of 9 is

defined as the (crisp) graph 9c = (ao,pc). For a family 9 of fuzzy sets we

let the c-level family of 9 be the family of crisp sets J, = iac:a e 9ý-

Conversely a fuzzy set a is often defined by specifying a family of level

sets and then defining o(x) = sup {c E [0,l]Ix e Mr).

The intersection graph of a family (perhaps with repeated members) of

crisp sets F is the graph G = (F,E) where for each A, and AJ in F,

(A1 , AJ) e E if and only if A1 fl AJ is nonempty. Generally loops are

suppressed; that is, I * J is required when forming the intersections. If
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the family F is the edge set of a hypergraph H, then the intersection graph

of F is called the line graph of H.

Given a finite family of fuzzy sets U, McAllister [2] defines two

structures which together are called a fuzzy intersection graph. The first

is essentially a fuzzy hypergraph with edge set consisting of all nonempty

intersections of two distinct members of G. The second is a fuzzy graph

with a crisp vertex set (essentially 6) where the edge strength of a pair

(a,1) given by a "measure of fuzzyness of a A 1". Both structures are

represented by incidence matrices with the a.0 entry being the membership

furction a A P or the edge strength of {a,ft, respectively. McAllister's

main concern was to explore when linear algebra methods could be used to

study eigenvalues, stability, or other properties of these matrices. We

note that neither of McAllister's structures agree with the usual

definition of intersection graphs when applied to families of crisp sets.

We take a different approach in defining the fuzzy intersection graph

of a finite family of fuzzy sets. Our structure is a fuzzy graph where the

fuzzy vertex and fuzzy edge sets are based on the max and min operators.

DEFINITION 1.1. Let 9 = {a 1 ,-..,an} be a finite family of fuzzy sets on a

set X and consider 9 as a crisp vertex set. The fuzzy intersection graph

of 9 is the fuzzy graph Int(g) = (a-,p) where

-:9--40,11 by o(a,) = h(ai) and

p: xg----[0,1] is defined by (iU~,aj) = (ai A a,) if i j J

0 if i= j

An edge {a,a X } has zero strength if and only if a, A Qj is the zero

function (empty intersection) or i j (no loops).

OBSERVATION 1.2. If Y = 1 ,...,r.•} is a family of fuzzy sets and if

c e [0,11, then Int(Y-C) = (Int(51))C. The graph Int(9C) has one vertex for

each a, e 9 such that (aj)c * o or equivalently such that h(a,) a c. The
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pair {( (oj)c, (' )} is an edge of Int(g c) if and only if (iff) i • j and

(0c, n (j)c, * 0; equivalently iff h(cj A aj) t C. Similarly, the graph

(Int(g))c has one vertex for each a, e 9 such that h(a,) t c. The pair

ý'%,•j) is an edge of Int(9c) iff i * j and p(a=,,j) h(Ai A cJ) t c. As

graphs, the two structures are equivalent.

In particular, if 5 is a family of characteristic functions of crisp

subsets of X, the fuzzy intersection graph and crisp intersection graph

definitions coincide.

THEOREM 1.3. Let 9 = (a,p) be a fuzzy graph without loops. Then there

exists a family of fuzzy sets 9 where 9 = Int(g).

Proof. The proof is a generalization of Marczewski's [8] crisp result [8].

Let G = (o-,ju) be a fuzzy graph with fuzzy vertex set a:X--[0,1] and

symmetric edge membership function p:XxX--[O,i]. We must find a family of

fuzzy sets 9 = {ýcjx e X) where

(i) for each x e X, hMax) = a(x)

(ii) for each x * y E X, h(a, A My) = A(x,y).

For each x E X define the symmetric fuzzy set oc:XxX--[0,1] by

I 0(x) if y = x and z x

x(y,z) =P(xz) if y = x and z • x
A(yx) if y * x and z x

0 if y * x and z * x

We show that 9 - {ia, x E Xj is the desired family of fuzzy sets. Fix

x e X and let y E X and z E X be arbitrary. By the definition of a fuzzy

graph, o-(x) t p(x,y) t 0 for each y e X. Therefore aix) t axfy,z).

Computing ax(x,x) = o(x) we have h(ax) = a(x) as required.

Let x * y be fixed elements of X, z and w be arbitrary elements of X

and consider the value of (ax A Y)(z,w) = 0x(z,w) A a..(z,w). if x * z and

x * w, then a,(z,w) = 0. Similarly y * z and y * w implies xY(z,w) = 0.

Therefore a nonzero value is possible only if x = z and y = w (or y z and
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x = w). By definition

(Qx, A y)(X,y) = OLa(x,y) A Oy(x,y) = A(x,y).

Thus h(x A = Q (x,y) as required. a

Section 2. Fuzzy Interval Graphs

The families of sets most often considered in connection with

intersection graphs are families of intervals of a linearly ordered set.

This class of interval graphs is central to applications in many areas of

graph theory. In this section we define a fuzzy interval and examine some

of their basic properties.

In developing terminology and giving examples we sometimes refer to

two characterizations of (crisp) interval graphs. Theorem 3.3 gives the

Fulkerson and Gross characterization and Theorem 4.11 provides the Gilmore

and Hoffman characterization.

DEFINITION 2.1. Let X be a linearly ordered set. A fuzzy interval Y on X

is a normal, convex fuzzy subset of X. That is, there exists an x e X such

that 9(x) = 1 and for all w : y s z in X, 9(y) Z 9(w) A Y(z). We call X

the host interval of I and call elements of X the points of X. A fuzzy

interval graph is the fuzzy intersection graph of a finite family of fuzzy

intervals. A fuzzy number is a real fuzzy interval.

OBSERVATION 2.2. In both the crisp and fuzzy cases, two distinct families

of sets can have the same intersection graph. For example, the

intersection properties of a finite family of real intervals can be defined

in terms of the ordering of the finite set of Interval endpoints.

Conversely, any finite interval can be considered a real interval by linear

extension.

Similarly, the intersection properties of a finite family of fuzzy

numbers can be fully represented by a family of fuzzy sets with finite

support (essentially the set of all endpoints of all fundamental sequence
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cut-level intervals). Conversely a fuzzy set with finite linearly ordered

support can be used to define a fuzzy number.

Therefore we can with complete generality restrict our attention to

host intervals with finitely many points. We take this approach in order

to explore the relationship between the points of the host interval and the

cliques of the corresponding interval graph.

OBSERVATION 2.3. If 9 is a fuzzy interval graph, then the vertex set of 9

is crisp. This follows since by definition h(o) = I for each fuzzy

interval in the family, and therefore r(a) = 1 for each vertex of 9. o

THEOREM 2.4. Let 9 = Int(31) be a fuzzy interval graph. Then for each

c e (0,1], 9c is an interval graph.

Proof. Let 9 = {cX1 ,."*, C} be a family of fuzzy intervals and let

9 = Int(C). Since each a, e 9 is convex, it follows that for each

c E (0,1], XIc C Ec is a crisp interval. By Observation 1.2.,

9c = (Int(g))c = Int(•c)-

Therefore 9C is an interval graph. a

a b c d a .9 b a b

A = b .9 0 .8 0= .68
c .4 .8 0 G'6 =

d .6 0 .8 0 c d c

Figure 10. A fuzzy graph that is not a fuzzy interval graph

EXAMPLE 2.5. Let 9 be the fuzzy graph with vertex set {a,b,c,d} defined by

the adjacency matrix A in Figure 10. Then 9 is not a fuzzy interval graph,

since 9.6 is a cycle of length 4 which by the crisp result (Theorem 4.11)

given below is not an interval graph.

EXAMPLE 2.6. The converse of Theorem 2.4 is false. We provide a fuzzy

graph 9 where for each c E (0,1], 9C is an interval graph, but 1 is not a

fuzzy interval graph. Let 9 be defined by adjacency matrix A in Figure 11.



45

Figure 11 also shows the fundamental sequence of cut-level graphs of ! and

an interval representation for each cut-level graph.

a b c d e f
• a

a 0 r 2 r r, r r,r a ( [1,5]
b r 2 0 r 2 r 3 r 2 r 3  f 0 b b - (01

c r, r 2 0 rl 0 0 c [ [1,2]

d rl r 3 r, 0 0 0 d [ 1]
e r, r 2 0 0 0 r, e c e [ 14,5]
f r, r 3 0 0 ri 0 f 1 [5]d

aa ý- [1,51 a a-- [1,5]

f b b [ (2,41 b b [ 11,51

-r2 c ( (1,21 c - 11,2]
=d [11 •r3 =d [1]

c e [4,5] c e [ (4,5]
'f [5] f f 5]

d d

Figure 11. A fuzzy graph that is not a fuzzy interval graph but each cut
level graph is an interval graph

We show 9 is not a fuzzy intersection graph by contradiction.

Suppose that 51 is a family of fuzzy intervals defined on an interval I and

assume 1 = Int(g). Let the vertex x of 9 correspond to the fuzzy interval

x of 9. Since h(c A e) = 0, we can assume WOLOG that supp(c) lies strictly

to the left of supp(e). Note that {a,c,d} defines a clique of 9rj. By a

well-known interval graph theorem, there exists an x, such that

x a, 4 l c,1 nr c dr" Therefore a(x1 ) A c(xj) A d(x1 ) ? rl. Similarly,

the set {a,e,f} forms a clique of 9r, and so there exists an x5 such that

a(x 5 ) A e(x 5 ) A f(x 5 ) ? r,. Note that h(b A d) = r 3 with d(x,) 2 r,,

implies b(xj) 5 r 3 and that h(b A f) = r 3 with f(x 5 ) a r, implies

b(xs) 5 r 3 .

Similarly, h(b A C) = r 2 and h(b A e) = r 2 implies there exist x 2 and

x4 with b(x 2 ) a r 2 and b(x 4 ) ? r 2 . By the normality of b there exists x3

such that b(x 3 ) = 1. By the convexity of the fuzzy intervals and the
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assumption that supp(c) and supp(e) are disjoint, the ordering of these

points must be x, < x 2 s x 3 s < x 4 < x 5 , with x 2 < x 4 .

Since a is also a normal, convex fuzzy set and x, S x 3 S x5 , it

follows that a(x 3 ) ý r,. However b(x 3 ) = 1 implies h(a A b) a rl,

contradicting h(a A b) = r 2 . o

Section 3. The Fulkerson and Gross Characterization

The Fulkerson and Gross characterization exploits a correspondence

between the set of points in a host interval and the set of cliques in an

interval graph. We show that for fuzzy graphs this relationship holds only

in one direction.

Recall a clique of G = (X,E) is a maximal (with respect to set

inclusion) complete subgraph of G and we adopt the convention of naming a

clique by its vertex set. Clearly if K defines a clique of G and z 9 K is

a vertex of G, then there exists an x e K such that {x,z} 4 E.

DEFINITION 3.1. Let 9 = (r,p) be a fuzzy graph. We say that a fuzzy set X

defines a fuzzy clique of 9 if for each c e (0,11, X, induces a clique of

9C. We associate with 9 a vertex clique incidence matrix where the rows

are indexed by the domain of o, the columns are indexed by the family of

all fuzzy cliques of 9, and the x,X entry is 3(x).

OBSERVATION 3.2. Suppose that 9 is a fuzzy graph with fs(g) = fr l ,.-.,rn}

and let X be a fuzzy clique of 9. The cut-level sets of X define a

sequence rl r . . . rM where each Xr, is a clique of 9r,. Conversely,

any sequence K1 9 ... r Km where each K, is a clique of 1ri defines a fuzzy

clique. Therefore K is a clique of the c-level graph Gc if and only if

K = XC for some fuzzy clique X.

THEOREM 3.3 (Fulkerson and Gross (12]). A (crisp) graph G is an interval

graph if and only if there exists a linear ordering of the cliques of G

such that the vertex clique incidence matrix has convex rows.
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The condition that the matrix have convex rows is also referred to in

the literature as the consecutive ones property or by the equivalent

condition that the clique ordering be consecutive.

Sketch of proof. An interval graph theorem states that any set of

intervals that defines a complete subgraph will have a point in common. If

one such point is associated with each clique, the linear ordering of these

points induces a linear ordering on the set of cliques of G. The resulting

vertex clique incidence matrix has convex rows.

Conversely each convex row of such a matrix naturally defines the

characteristic function of a subinterval of the linearly ordered set of

cliques. The graph G is clearly the intersection graph of the family of

these intervals.

THEOREM 3.4 (Fuzzy Analog of Fulkerson and Gross). Let 9 = (X,A) be a

fuzzy graph. Then the rows of the vertex clique incidence matrix of !

define a family of fuzzy sets 9 for which 9 = Int(9f). Further, if there

exists an ordering of the fuzzy cliques of 9 such that each row of the

vertex clique incidence matrix is convex, then 9 is a fuzzy interval graph.

Proof. Let I = {)<,* , p} be the ordered family of fuzzy cliques of V and

let M be the vertex clique incidence matrix where the columns are given

this ordering. For each x E X define the fuzzy set Yx:I-40[O,1] by

•x{Xj) = XI(x) and let = {xlX E X}. We must show that •a '- ?X is normal

and that if x,y e X and x * y, then h(3x A LY ) = p(x,y). Clearly if we

also assume each row is convex, then each 5x is a fuzzy interval and 9 is a

fuzzy interval graph.

L x e X. Since x has vertex strength 1, x is a vertex of some

clique K of the 1-level graph of 9. By Observation 3.2, K is the i-level

cut of some fuzzy clique X, in I. Therefore Jx(RI) = R1(x) = I and 3x is

normal.
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Suppose x,y e X and x 0 y. By definition

h(.x A .y) = max I(xA ^ 3y)(XI)I') E I)e

max {(x(]}) A y((Xi)IXI e I} =max { 1I(x) A XI(y)IXI e I} =

max {c E [0,1]lthere exists X( e I with {x,y} 9 (xi)c}-

For each c > p(x,y), {x,y} is not an edge of Vc and no (0I)c contains

{x,y}. Therefore h(MX A ¾ ) S g(x,y). If c = p(x,y), then {x,y) is an

edge of 9, and some clique ({X)c contains {x,y}. Thus h(YX A y) Y A(x,y).

It follows that h(Yx A 
3 y) = p(x,y) as required. o

a b c d e f X1X2 X3 X4 A5

a 0 .8 .5 .5 .8 0 a 0 1 1 .5 .5
b .8 0 1 .5 0 0 b 0 0 .8 1 .5

A c .5 1 0 .8 .2 0 c 0 .2 .5 1 .8
d .5 .5 .8 0 .2 .2 d .2 .2 .5 .5 1
e .5 0 .2 .2 0 1 e 1 .8 0 0 0
f 0 0 0 .2 1 0 f 1 0 0 0 0

.8

.52

b .5 d .2 f

Figure 12. A vertex clique incidence matrix with convex rows induces a

fuzzy interval representation

EXAMPLE 3.5. Figure 12 shows a fuzzy graph 9, a linear ordering of the

fuzzy cliques of 9 and the corresponding interval representation derived by

this method. We emphasize that the x,X entry represents both X(x) (the

strength of vertex x in clique R) and 9x(X) (the strength of point X in the

fuzzy interval associated with vertex x). Given distinct vertices x and y,

the edge strength of {x,y} exceeds a value c if and only if there exists a

fuzzy clique R, with min {R1 Cx),R(y)} > c.

EXAMPLE 3.6. The converse of Theorem 3.4 is false. Let 9 be the fuzzy

graph defined by the adjacency matrix A in Figure 13. To see that 9 is a
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fuzzy interval graph, let 9 be the family of fuzzy subsets of 11,2,3,41

defined by the rows of the matrix F of Figure 13. Routine verification

shows that 9 = Int(9). Figure 13 also shows the cut-level graphs of 9 and

a vertex clique incidence matrix M for 9.

a b c d XI X2 X3 X4 1 2 3 4

A = b .5 0 .0 . b .5 1 .5 1Ib .5 .5 .c 1 .5 01 1 .5 1 .5F Ic I 1 .5

d 0 .5 1 0d 0 0 1 .5 ' 0 0 1 .

a b a b

d c d c

Figure 13. A fuzzy interval graph whose vertex clique incidence matrix

always has a row that is not convex

To show that no ordering of the fuzzy cliques will induce convex

rows, note that the X, and X2 columns must be adjacent by convexity of row

a. However ordering X3 left of the ordered pair XI,32 violates the

convexity of row d and ordering X3 right of X1,X2 violates convexity of row

b. Similarly no ordering of X3 is consistent with the ordering ,2,'3.

Therefore no ordering of the fuzzy cliques produces a vertex clique

incidence matrix with convex rows. a

Section 4. The Gilmore and Hoffman Characterization.

We begin by generalizing several graph theory properties that are

used in the Gilmore and Hoffman characterization of interval graphs. We

then show that this characterization generalizes in an obvious way for

fuzzy interval graphs.

A path (simple path) P of length n in a fuzzy graph is a sequence of

vertices (distinct vertices) x 0 ,-*.,xn where for each 0 s i : n,

p(xi_1,x,) > 0. The strength of P is min,2 1 P(x, 1 , x1 ); the minimal weight
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of the edges contained in P. For paths of length 0 we define the path

strength to be the vertex strength o-(x). A cycle of length n, denoted Zn,

is a path with n a 3, xo = xn, and all other vertices distinct.

A (crisp) graph G is chordal if every cycle of length greater than

three has a chord. Formally, if Zn = xo,-',xn is a cycle in G there exist

integers j and k such that 0 s j < k - 1 < n - i, either j * 0 or

k * n - 1, and {xjxk} e E(G). Some authors refer to chordal graphs as

triangulated graphs.

DEFINITION 4.1. A fuzzy graph 9 = (o-,p) is chordal if for each cycle

P = xo,-.-,x, with n a 4, there exist integers j and k such that

0 s j < k - 1 < n - 1, either j * 0 or k * n - 1, and

L(XJXk) t ^_=,A(x,_,,)

THEOREM 4.2. A fuzzy graph 1 = (a',p) is chordal if and only if for each

c E (0,1], the c-level graph of 9 is chordal.

Proof. 4 Suppose that 9 is chordal, c e (0,1] and P = xo,-,-,x, defines a

cycle in 9c. Then P defines a cycle in !q and there exist integers j and k

such that 0 s j < k - 1 s n - 1, that j * 0 or k * n - 1, and that

I(XJ,Xk) ? A,=1 (x_.1 ,X,) - c. Thus {xjXk} e 9, as required.

4 Suppose that for each c e (0,1], Vc is chordal and P = XoXn

defines a cycle in V. Set C = A np(x 1 .nx,). Then P defines a cycle in

9. and there exist 0 S j < k - 1 s n - 1 such that j t 0 or k * n - 1 and

{Xj,Xk} e E(U9). Thus a:(xxk) c c as required. c

COROLLARY 4.3. If 9 is a fuzzy interval graph, then 9 is chordal.

Proof. By Theorem 2.4, for each c E (0,1], 9C is an interval graph. By

the crisp results we include as Theorem 4.11 and Observation 4.13 each

interval graph is chordal. The result then follows from Theorem 4.2. o

Recall that the edge set E of a graph G = (X,E) is a symmetric

relation on X. An orientation A of G is a maximal anti-symmetric subset of
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E; that is, A is a relation on X such that for all x * y with {x,y} e E

either (x,y) e A or (y,x) E A but not both. Clearly (X,A) defines a

directed graph without cycles of length two that has G as its underlying

graph. A complete oriented graph is called a tournament.

A graph G is transitively orientable if there exists an orientation A

of G which is transitive; that is, (u,v) e A and (v,w) e A implies

(u,w) e A. A transitively orientable graph is often called a comparability

graph.

Since the cut-level graphs of a fuzzy graph are of primary importance,

we define an orientation of the vertex set that applies to both the fuzzy

graph and the corresponding fundamental sequence of cut-level graphs.

DEFINITION 4.4. Let A be a tournament on a set X; that is, A is a complete

anti-reflexive, anti-symmetric relation on X. For each fuzzy graph

S= (ap) where supp a = X, define the orientation of 9 by A to be the

fuzzy digraph 9A = ((,MA) where pA(X,y) fii(xy) if (x,y) e A

10 if (x,y) 9 A

OBSERVATION 4.5. For each c e (0,1], (A)c = (gc)A. The c-level graph of

9A has arc set {(x,y)IAA(X,y) t c}. This is also the arc set of the

orientation of 9C by A. A tournament on X therefore induces an orientation

on both a fuzzy graph and each member of its fundamental sequence of cut-

level graphs.

DEFINITION 4.6. A fuzzy graph 9 = (c,p) is transitively orientable if

there exists a tournament A on X = supp (r for which 9A is transitive.

Formally, if x,z e X and x * z, then for each y E X it follows that

PA(x,y) A PA(y,z) L AA(X,Z).

LEMMA 4.7. A fuzzy graph ; = (ut) is transitively orientable if and only

if there exists a tournament A on X such that for each c e (0,1], A induces

a transitive orientation of 9C.



52

Proof. * Let 9 be transitively orientated by A and let c e (0, 1]. By

Definition 4.6, A induces an orientation of 9c. Assume (x,y) and (y,z) are

arcs of (gc)A" Then AA(Xy) z C and PA(Y,Z) a c, which by the transitivity

of AA implies AA(xz) t c. Therefore (x,z) is an arc of {gc)a as required.

4 Let A be an orientation of X that induces a transitive orientation

of 9c for each c e (0,1]. Suppose that x,y,z e X, that x * z, and let

c = PA(Xy) A ̂A(Yz). If c = 0 the result is trivial, so WOLOG assume

c > 0. Then (x,y) and (y,z) are arcs of (Vc)A and transitivity implies

(xz) is an arc of (VC)A. Therefore AA(XZ) t c as required. o

EXAMPLE 4.8. Consider the sequence of transitively orientable subgraphs

G1 r G2 r G3 given in Figure 14. The transitive orientation of G2 shown

does not induce a transitive orientation of G,, and the transitive

orientation of G2 cannot be extended to a transitive orientation of G3 .

a a a

G, b G2 = b G3 b d

c c c

Figure 14. Cut-level orientations for Example 4.8

LEMMA 4.9. Suppose that 9 = Int(5) is a fuzzy interval graph. Then there

cexists an orientation A of 9 that induces a transitive orientation of .

Proof. Assume {a,3} is a nontrivial edge of Vc. Then h(C A R) < r, = 1

and or, and nr, are disjoint. For such pairs let (x,13) e A if and only if

ar, lies strictly to the left of Rrl. Complete the definition of A by an

arbitrary assignment of orientation to those a,g E 31 for which

h(a A 1) = 1(c,1) = 1. Clearly A is well defined, anti-reflexive, anti-

symmetric and induces a transitive orientation of .

EXAMPLE 4.10. The fuzzy graph of Example 2.6 and Figure 11 is not an

cinterval graph because there is no transitive orientation of !q

cFigure 15 shows the cut-level graphs of 9. Suppose that (d,e) e A

and consider the r 3 level graph of 9. Transitivity requires (d,f) E A,
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(c,f) e A, and (c,e) e A. Transitivity at the r 2 level then requires

(d,b) e A and (b,f) e A. However, both (a,b) e A and (b,a) e A contradict

transitivity at the ri level. Supposing that (e,d) e A produces a similar

contradiction. Therefore no transitive orientation of 1c exists.

a a a
00

f b f b f b
N 0

c c c

e 1e  c e c

d d d

Figure 15. A fuzzy graph that is not transitively orientable

We next give a crisp result which states the compliment of an interval

graph is transitively orientable. Example 4.10 therefore contains a fuzzy

graph 9c where each cut-level graph of 1c is transitively orientable while

9c itself is not.

THEOREM 4.11. (Gilmore and Hoffman (111) A graph G is an interval graph

if and only if it satisfies the two conditions

(i) Each subgraph of G induced by four vertices is chordal

(ii) Gc is transitively orientable

Sketch of proof. Further detail and examples can be found in Roberts [8].

Let G be an interval graph. Condition (i) is a trivial consequence of the

definitions of a chordless four cycle and of an interval graph. For

condition (ii) orient {a,b} e Gc by (a,b) E A if and only if the interval

corresponding to a lies strictly to the left of the interval corresponding

to b.

Methods used in proving the converse of Theorem 4.11 are used

extensively in proving the fuzzy analog of this theorem. In the interest

of completeness we provide a detailed proof in Construction 4.12.
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CONSTRUCTION 4.12. Suppose that G = (X,E) is a chordal graph and A is a

transitive orientation of Gc. We define the relation < on the set of all

cliques of G as follows. Let K * L be cliques of G. Then there exists an

x e K with x 4 L; in turn there exists a y e L such that ix,y} 9 E

(otherwise {x} U L induces a complete subgraph of G properly containing L).

We define the relation < on the cliques of G by setting K < L if and only

if (x,y) E A. To conclude < induces a well ordering of the cliques of G we

need only verify that < is well defined and transitive.

We show < is well defined by contradiction. Suppose that there exist

x e K and y e L with {x,y} e Ec and (x,y) e A, and that there also exist

x' e K and y' e L with {x',y'} e Ec and (y',x') e A. As K and L are

cliques of G, {x,x'} and {y,y'} are edges of G. Since {x,y',y,x'} (Figure

16) is a 4 cycle, by condition (I) we assume WOLOG that {x,y' I . Ec. Now

consider the orientation of {x,y'} by A. If (x,y') E A, transitivity of A

implies (x,x') e Ec, a contradiction. Similarly (y',x) e A implies

{y',y} e Ec, a contradiction. Therefore < is well defined.

yp y yh y

GG =

X ' 0 X X 1. X

Figure 16. The clique ordering of Construction 4.12 is well defined

Transitivity of < is inherited from the transitive orientation A.

Let K < L and L < M. Then there exist x e K and y e L such that {x,y} g G

and (x,y) e A. If y e M we have K < M as required. If y V M there exists

z E M such that {y,z} E E. Then L < M implies (y,z) e A. Transitivity of

A gives (x,z) e A; therefore K < M as required.

A well-known theorem of graph theory states that any complete

transitive relation on a s't defines a linear ordering of the set.

Therefore < linearly orders the cliques of G.
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A routine verification shows that the vertex clique incidence matrix

with the columns ordered by < has convex rows. Let K and L be cliques and

x be a vertex with K ' L, x e K, and x * L. Then there exists a vertex

y e L such that {x,y} 9 E and (x,y) e A. Since < is well defined and

(y,x) f A, it follows that for each clique M such that L < M we have x 9 M.

As in Theorem 3.3 the rows of the matrix define a family of intervals which

have G as its intersection graph. o

OBSERVATION 4.13. In the language of the original paper the term subgraph

always refers to an induced subgraph, and a cycle is defined as a closed

path with no chords. Condition Mi) states that G does not contain a cycle

of length 4. In the interest of clarity we make condition (i) slightly

more explicit.

A simple induction argument shows that no interval graph has an

induced cycle (without chords) of length n ? 4. Certainly chordal graphs

satisfy the weaker condition that each 4-cycle has a chord. Therefore

condition i) can be replaced with the condition that G is chordal.

THEOREM 4.14. (Fuzzy analog of the Gilmore and Hoffman characterization).

A fuzzy graph 9 = (-,p) is a fuzzy interval graph if and only if the

following conditions hold

Mi) for all x e supp (r, o(x) = 1 (q is a crisp set)

(ii) each subgraph of V induced by four vertices is chordal

(iii) Vc is transitively orientable

Proof. o If 9 is a fuzzy interval graph, the three conditions follow from

Observation 2.3, Corollary 4.3, and Lemma 4.9, respectively.

o Because of its length, we divide the proof into a number of lemmas

and constructions. Several definitions and examples are also given it, the

body of the proof. The discussion prior to Construction 4.15 outlines the

proof; Construction 4.15 through Lemma 4.23 provide the details.



Suppose that 9 = (X,Mp) is a chordal fuzzy graph with crisp vertex set

X and that A is a transitive orientation of c. For notational convenience

we let Aj denote the rj cut-level set of the fuzzy set X<.

We first define a linear ordering < of the fuzzy cliques of 1. We

then order the columns of the vertex clique incidence matrix of 9 by <. By

Theorem 3.4 the rows of the vertex clique incidence matrix of 9 define a

family of fuzzy sets that has 9 as its fuzzy intersection graph. If the

ordering < has a property called cut-level consistent, the rows will be

convex and the result follows immediately trom Theorem 3.4.

If < is not cut-level consistent, then the rows are not convex. In

this case we must modify the vertex clique incidence matrix so that the new

rows are convex yet still generate 9 as its fuzzy intersection graph. This

is done in a "bottom up" construction using the notion of cut-level

consistent to determine which columns are retained unchanged and which

columns are modified or deleted from the vertex clique incidence matrix.

Lemmas 4.22 and 4.23 complete the proof by showing that in the modified

matrix each row is normal and convex and that 9 is the fuzzy intersection

graph of the family of fuzzy intervals defined by the rows.

We begin by defining a linear ordering of the fuzzy cliques of 9.

CONSTRUCTION 4.15. Let 9 be a fuzzy graph with a crisp vertex set.
2

Suppose that 1 has no chordless four cycles and that A is a transitive

orientation of c. By Theorem 4.2 and Lemma 4.7, for each c E (0,1] the

cut-level graph 9C satisfies the conditions of Construction 4.12.

Therefore each 1C is an interval graph and Construction 4.12 defines a

linear ordering <C on the family of all cliques of 19c

Define the relation < on the family of all fuzzy cliques of 9 as

follows. For each X * Y, let X < Y if and only if Kc <C L, where c E fs(0

Is the smallest real number such that K. * LC. Essentially, < is a



lexicographic ordering and is clearly well defined, complete and

transitive. Therefore < defines a linear ordering on the family of all

fuzzy cliques of 1.

We now define a relation which is used extensively in the discussion

below.

DEFINITION 4.16. Let 9 be a fuzzy graph satisfying the conditions of

Theorem 4.14 and let < be the relation defined in Construction 4.15.

Suppose that c e fs(g) and that X and Y be fuzzy cliques of 9. We say X

and Y are consistently ordered by < at level c provided X, <4 Yc if and

only if X < Y. We say the linear ordering < is cut-level consistent if for

each pair of fuzzy cliques of 1 and for each c E fs(C) the pair is

consistently ordered by < at level c.

OBSERVATION 4.17. If the linear ordering < is cut-level consistent, we

claim that each row of the vertex clique incidence matrix is convex. That

9 is a fuzzy interval graph then follows immediately from Theorem 3.4. We

proceed by contrapositive, assuming there exists a row that is not convex.

Suppose that there exist a vertex x E X and a sequence of fuzzy cliques

X < 2 < At such that Y(x) < min {X(x),At(x)} a c. Then x E Xc, x 4 4C and

x e AtC. As in Construction 4.12 there exists y E 4. such that {x,y} 9 Cc.

If (x,y) E A (the transitive orientation of 9c) then &c <C 4C with 2 < At.

If (yx) e A, then 4C <C YC with X < 2. In either case the ordering < is

not cut-level consistent. a

By Example 3.6 there exist fuzzy interval graphs where no ordering of

the fuzzy cliques is cut-level consistent. Therefore in general the

construction becomes considerably more complicated. We use Example 4.18 to

illustrate an ordering that is not cut-level consistent, and to introduce

our method of modifying the vertex clique incidence matrix to correct for

rows that are not convex.



EXAMPLE 4.18. Let 9 be the fuzzy graph defined by the adjacency matrix B

and the cut-level graphs given in Figure 17. To avoid confusion between

subscripts indicating cut-levels and subscripts indicating a linear

ordering, we let fs(!) = {s,t} = {1,.5}. The cliques of 1s are {a}, {b,e},

{c,e} and {d}. Since {a,b0 is oriented (a,b), Construction 4.15 defines

{a} <8 {b,el. Continuing, we see that the ordering of cliques at the s = I

level is {a} <, {b,e} <, {c,e} <s {d}. Similarly the transitive

orientation of 9c given defines the t = .5 level clique ordering as

{a,b,e} <t {a,d,e} <t fc,d,e}.

a bc d e e ea [0 .5 0 .5 .5 a a . b

B b 5 0 0 0 1 a b
c 0 0 0 .5 1 9s =

d 5 0 .5 0 .5I.. 0
e 1 .5 0 d c d c

a 1 .5 1 .5 0 0 a b a b
b .5 1 0 0 0 0 Z c

M c 0 001.5
d 0 0 .5 1 .51
e .5 1 .5 .51.5 1 d c d c

Figure 17. A fuzzy interval graph and fuzzy clique ordering that is not
cut-level consistent

The vertex fuzzy clique incidence matrix M in Figure 17 has columns

ordered by the relation <. By definition, the xXj entry of M is XJ(x),

and each column represents a particular fuzzy clique. We also consider the

fuzzy cliques R, through X6 as points of an interval I. The row

corresponding to a vertex x then represents a fuzzy subset of 1, say Ix,

where Ix(•]) = XJ(x).

The ordering < is not cut-level consistent. By definition X2 < X31

However the s = 1 level cut of 32 is {b,e}, the s = I level cut of X3 is

{a}, and {a} <) {b,e}.
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By Theorem 3.4 the rows of M define a family of fuzzy sets {I2jx e X1

which have 9 as its fuzzy intersection graph. However the rows headed by

a, d and e are not convex, so M fails to provide an interval representation

for 9.

The set of fuzzy cliques = K1,3 2,s5,X6 is cut-level consistent and

the family of s level cuts R. contains each clique of V.. However the

family of t level cuts Rt does not include the clique {ad,e}. Including

X3 or X4 in X violates cut-level consistency. We thus modify the

"inconsistent" fuzzy cliques X3 and X4 at the s = 1 cut-level.

Each row of the matrix M would define a fuzzy interval if the "a

value in the R3 column" and "the d value in the X4 column" were reduced to

.5 while "the e value in the X3 and X4 columns" were raised to 1. The two

"modified" columns would then be equal and one could be deleted. The

resulting "modified" matrix would be a fuzzy set-interval point incidence

matrix in which the rows do define a family 5 of fuzzy intervals for which

S= Int(g).

Our goal is now to formalize this process by identifying

"inconsistent" fuzzy cliques which are then deleted or modified. We first

give a technical lemma which serves two purposes. First its proof

illuminates the "local" structure of orderings on fuzzy interval graphs

that are not cut-level consistent. The lemma is also used to show that

Construction 4.20 is well defined.

LEMKA 4.19. Let 9 be a fuzzy graph which satisfies the conditions of

Construction 4.15 and let s > t. Suppose that K. and Ls are cliques of 9.

that Kt and Lt are cliques of 9t and that Ks 9 Kt, L 9 Lt, L <s Ks and

Kt <t Lt. Then there exists a clique M of 9t such that either

(1) Ls M and M <t Lt or

(2) Ks M and Kt <t Mt.



60

Proof. We essentially prove the claim by exhaustion; checking all possible

edge configurations. Recall the edge set of the graph 9. is denoted by 0,.

In the figures connected with this proof solid lines denote required edges

and dotted lines denote an edge resulting from an assumption which leads to

a contradiction. An arrow indicates the orientation of an arc. Those

edges that are not shown in a graph or its complement are not essential to

the argument.

Each case shares the general conditions shown in Figure 18. By

definition of <t, there exist x e Kt and y e Lt, with {x,y} E 6t and

(x,y) E A. Similarly, there exist x' e K. and y' E L., with fx' ,y' } CS

and (y' ,x') e A. Clearly either x • x' or y * y'. Then s > t implies

{x,y} 4 C0, {xx'} ) e.t (or x = x') and {y,y'} e Ot (or y = y'). As <t is

well defined, {x',y'} e Ot and either {x,x'} f 6. or {y,y'} it

y y yt y

0 0

y n y y 0 y

c

t= t=

Figure 18. Basic conditions for inconsistent cut-level orderings

Case 1 (Figure 19). Suppose that {x',yi e Ot. In this case we allow

x = x' or x * x'. By transitivity at the t level, (,y) e A. Then s > t

Implies fx',y} 9 9. and transitivity at the s level implies fy,y'} * Or.,

We show that f{x'} U L. is a complete subgraph of 9t; then since (x' ,y) E A,

statement (1) is satisfied. If Ls = fy'} we are done so let w be an

arbitrary vertex of Ls. If Bw,x'y 4 et, transitivity at the t level

implies (x',w) e A. However s > t implies {w,x')} 4 C and transitivity at
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the s level then requires ly',w} e G. This contradicts lw,y'l} . Ls.

Therefore {x'} U LS is a complete subgraph of 9t and is contained in a

clique M of 1t. Since (x',y) E A, we have M <t Lt and statement (1) is

satisfied.

yY y

s= w = y W

0 A.

=w 
9t

x x

Figure 19. Case I of Lemma 4.19

Case 2 (Figure 20). Suppose that {x,y'} V Ot. In this case we allow

y = y' or y * y'. By transitivity at the t level, (x,y') e A. Then s > t

implies {x,y'l} e 9 and transitivity at the s level implies lx,x'l} V 0.

We show that {y' } U K. is a clique in 9t; then since {x,y') e A, statement

(2) is satisfied.

y y

gt =x' z t=• z

0

Y X

y c E-. z

x x

Figure 20. Case 2 of Lemma 4.19

If Ks = {x'} we are done, so let z be an arbitrary vertex of K.. If

{z,y'} i •t, transitivity at the t level implies (z,y') E A. However then
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{z,y'} E 6s and transitivity at the s level then requires fz~x } E C3 ,

contradicting (z,x' } a K.. Therefore {y'} U K. is a complete subgraph of

Vt and is contained in a clique M of Vt. Then (x,y') e A implies Kt <t M

and statement (2) is satisfied.

Case 3 (Figure 21). Suppose that {x,y'I e Ot and {x',y) e't. Then

x, x', y and y' are distinct. We show that K. U Ls is a complete subgraph

of 9t. Recall that {x',y'} ) et, and so if {x'} = K. and {y' } = L, we are

done. Let z E K. and w E L. be arbitrary. We must show that {z,w} e Ot,

{z,y' 19 tt and {x' ,w} E t.

OY y

y w y, w

x z z

0 x X

y y

xxo

x x

Figure 21. Case 3 of Lemma 4.19

Clearly {z,w} E Ot, for if not L. <, K, requires (w,z) e A and

Kt <t Lt requires (z,w) E A; contradicting the antisymmetry of A. Now if

z = x' or w = y' the result follows immediately. Therefore assume that all

six vertices are distinct. We show fz,y'} E Ot by contradiction. Suppose

that {z,y' } i Ot. Then L, <s Ks implies (y' ,z) e A. Also {z,y} e Ot;

otherwise (z,y) e A and {y',y} e Ot contradict transitivity at the t level.

However then (z,x,y',y} induces a 4-cycle which has no chords, a

contradiction. Similarly, Jx',w} 0 Et and {x,wl 4 9. contradict
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x,x'} Ie Kt; while {x',w} 9 9t and {xw} e 9t induces a 4-cycle fx,x',y,w}

with no chords. Thus iz,y'} e Ct and {x',w} e 9t as required.

Therefore K. U L. induces a complete subgraph of !t and is contained

in some clique M of 1t. If M <t Kt <t Lt, statement (1) is satisfied. If

Kt <t M statement (2) is satisfied. These three cases completely exhaust

all possibilities. o

We now define a directed graph F which in turn defines a linearly

ordered family of fuzzy sets that represents our host interval. Some of

these fuzzy sets will be fuzzy cliques of 9, while others will be lower

truncations of fuzzy cliques. The graph theory analogy of a forest with

trees ailows a good visualization of "vertically growing" cut-level sets

which define the required fuzzy sets.

CONSTRUCTION 4.20. Let 9 = (X,p) be a chordal fuzzy graph with c

transitively oriented by A. For each c e fs(g) = {r 1 ,r 2 ,...',rn let the

cliques of 9c be linearly ordered by <C as defined in Construction 4.15.

We recursively construct a forest F whose vertex set is the set of all cut-

level cliques of 9 and which has one tree for each clique of grn.

Level rn: Linearly order the set of all cliques of Vrn by the

relation <rn. Each of these cliques of Vrn (vertices of F) represent the

root of a tree in the forest.

We recursively build the forest by "vertically" adding cut-level

cliques as vertices of F and defining a set of arcs between cut-levels. In

the recursion let i range from 1 to n - 1.

Level rn- 1 : Let s = rn_. and t =rn-+1; so s > t. Linearly order

the set of all cliques of 9. by the relation <1. Let E. be any set of arcs

that satisfy the conditions:

(1) each clique K. of 9S is a vertex of exactly one arc of E$

(ii) if (Kt,K,) e Es then Kt is a clique of 9t, K. is a clique of
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V., and KS S Kt. Thus an arc joins two cuts level sets of (some) fuzzy

clique.

(iiI) For each pair of arcs (KtKs) E E. and (Lt,L,) e E, we have

KS <s L. or K. = Ls if and only if Kt <t Lt or Kt = Lt. Thus when viewed

as cut-levels of a family of fuzzy cliques, the s level ordering is cut-

level consistent with all "lower" levels.

We show in Observation 4.25 that there can be a number of arc sets

that satisfy these conditions. We now use Lemma 4.19 to demonstrate the

existence of at least one such forest. Let Ks be the minimal (with respect

to <,) clique of •. Clearly there exists a minimal (with respect to <t)

clique Kt of 9t where K. 9 Kt. Let (Kt,K 9 ) e Es.

Next let Ls be the successor of K. (with respect to <s) and let Lt be

minimal (with respect to <t) such that L, 9 Lt and Kt <t Lt or Kt = Lt.

Clearly Lt exists, for if not let L be maximal (with respect to <t) with

Ls 9 L. Now Ks <S L. and L <t Kt are the conditions of Lemma 4.19.

However statement (1) contradicts the minimality of Kt and statement (2)

contradicts the maximality of L. Therefore let (Lt,L.) E Es,

Continuing recursively we add one arc for each clique of 9.. By

construction this family of arcs satisfies the three conditions. It may be

that for some clique Mt of Vt, there is no arc from Mt. We shall call such

a clique a dead branch and require no arc of F originate at Mt.

{a} {b,e} {c,e} {d}

{a,b,el {a,d,e} {c,d,e}

Figure 22. An ordered forest with a dead branch

Figure 22 shows the forest F associated with the fuzzy graph of

Example 4.18. In this example F is unique, the only possible arc to {b,e}

is from {a,b,e}, which is not consistent with the arc ({a,d,e},{a}). Thus
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there must be an arc from {a,b,e} to {a}. Similarly F must contain

({c,d,e},ic,e}) and ({c,d,e},id}) and cannot contain ({ad.e},{d}). The

clique {a,d,e) is a dead branch.

The result of recursively constructing the arc set Frn-i for each

n-i
i I {l,.-.,n-1} Is a forest F with arc set Uj= 1 Frn-l. We use the arcs of

F to define a linearly ordered family of fuzzy sets, one for each path from

a root to a dead branch or a r, level clique. The set of paths of length n

define a cut-level consistent family of fuzzy cliques of 9. The paths to

dead branche- represent "inconsistent" fuzzy cliques that must be modified.

CONSTRUCTION 4.21. Let 9 be a fuzzy graph satisfying the conditions of

Theorem 4.14 and F be a forest for 9 as defined in Construction 4.20. Let

P be a simple path In F which begins at a root of F (clique of grn ) and

ends at a clique of 9r, or at a dead branch. We allow trivial paths (a

root is also a dead branch). Associated with P define the fuzzy set P on

the vertex set of 9 by

P(x) = max {s e fs(;)Ix is an element of the s level clique of P}.

Clearly for a path of length n, the associated fuzzy set is a fuzzy clique

of 9. For a path ending at a dead branch, the fuzzy set is the lower

truncation of one or more fuzzy cliques of 9.

Let I be the set of all such fuzzy sets. As in Construction 4.15 the

family of cut-level orderings lexicographically defines a linearly ordering

of I. We now construct the vertex forest matrix of 9 where the rows are

indexed by the vertex set of 9, the columns by the (ordered) fuzzy sets of

I and the x,P, entry is P,(x). By Observation 4.17 the sub-matrix formed

using the columns that define fuzzy cliques has convex rows.

Figure 23 shows the vertex forest matrix C corresponding to

Example 4.18. The columns P1, T2, P4 , and Ps represent the fuzzy cliques

X1, X2, X., and X 6 of Figure 17, respectively. The column P3 corresponds
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to the dead branch {a,d,e) of Figure 22 and the "inconsistent" fuzzy

cliques K3 and X4 of Figure 17.

9D1 •2 93 P4 P5 PI P 2 P3 P 4 P5

a [1.5 .5 00 a [i .5 .50 0

C = b .5 1 0 00 D = b .5 1 0 00
c 0 0 0 1 .5 c 0 0 1 .5
d 0 0 .5 .51 d 0 0.5 .51
e .5 1 .5 1.5 e .5 1 1 1.5

Figure 23. A vertex forest matrix and a vertex interval matrix

A routine verification shows the rows of C define a family of fuzzy

sets that has 9 as its fuzzy intersection graph. However this matrix does

not have convex rows since the dead branch of column 3 produces too low a

value for P3 (e).

We may create convex rows by increasing vertex values in those

columns associated with dead branches. We thus define the vertex interval

matrix of 9 by increasing values in columns associated with dead branches

just enough to create convex rows.

More formally, for each fuzzy set 9D define a corresponding fuzzy set

pj as follows. Let x be a vertex of V and Pj a fuzzy set defining a column

of the vertex forest matrix. If there is no pair of columns 9D and Pk with

i < j < k and 9PJ(x) < PI(x) A ?k(X)}, then we define pj(x) = 9D1(x). If

there is such a pair, we define

p1 (x) = max {IN(x) A 'k(X)ji < j < k and J < T1 (x) A 9k(X)}.

Rephrasing in terms of cliques, if 9D is a fuzzy clique then p, = PJ,

If P J is not a fuzzy clique, there is a cut-level t where PJt is a dead

branch. For s s t let P,. = PJ.. For s > t, let Pis= Pi. n ' k where i

is the largest index with I < j and P,, a clique of •s and k is the

smallest index with j < k and Pk. a clique of 9,. The fuzzy set pj is then

defined in the usual way by the cut-level sets.
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In Figure 23 matrix D is the vertex interval matrix for Example 4.18.

Notice that for s = I we have p3s = 9D2s n ,4s = {e}.

Let J denote the family of fuzzy sets defined by the columns and 9

denote the family of fuzzy sets defined by the rows of the vertex interval

matrix. We now complete the proof of Theorem 4.14 by showing that each

member of J is normal and convex (a fuzzy interval) and that ! = Int(9).

LEMKA 4.22. We assume the conditions and notation above. For each vertex

x of ! define X:J-- J-[0,1] by YX(pi) = p,(x); that is, Yx is defined by the

row associated with x in the vertex interval matrix. Then YX is a fuzzy

interval.

Proof. Let x be a vertex of 1. Then x is a vertex in some clique of gr'l

say K. By Constructions 4.20 and 4.21 K is the r, = 1 level cut of some

fuzzy set p in J. Therefore Yx(p) = p(x) = 1 and Ix is normal.

To show each 3X is convex, we must show that i < j < k implies

min 4Yx(pt),Yx(pk)) I .x(Pk); or equivalently that p 1 (X) A Pk(X) S pj(x).

However, Construction 4.21 clearly provides these conditions. If pl, pj

and Pk are all fuzzy cliques, the result follows immediately from

Observation 4.17. Otherwise, the result follows by definition of the fuzzy

sets p1 , Pj and Pk- 0

LEKMA 4.23. Given the definitions and conditions of Theorem 4.14 through

Lemma 4.22, 9 = Int(g).

Proof. There is a clear correspondence between the crisp vertex set X and

the family of fuzzy intervals Y. Let x * y be elements of X. We must show

A(x,y) = MIXA I ¾y). By definition

h(YX A y = max {4x(pj) A gy(pj) pj E J}
max {pj(x) A PJ(y)lpJ E J}

=max {s E fs(Y)f{x,y} g pjg}.

Suppose that (x,y} 9 pj,, the s level cut of p,. By construction,

p,, is either a clique of Vs or is contained in one. In either case {x,y}
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is an edge of 1, and p(x,y) t s. Therefore p(x,y) & h(Y. A Y y

Conver.ly, ixy} is clearly an edge of the p(x,y) = t cut-level graph of

9. Therefore {x,y} is contained in some clique K of Gt. By Constructions

4.20 and 4.21 K = Pjt for some pi e J. Therefore p(x,y) : h(MY. Yy). o

We have now completed the proof of Theorem 4.14.

The reader may verify that this construction produces the interval

representations of Example 3.6 and Example 4.18. We now give a complete

example of Theorem 4.14.

EXAMPLE 4.24. Consider the fuzzy graph 9 defined by the incidence matrix B

in Figure 24 where fs(9) = {s,tq} = 1,.8.5}. Figure 24 also shows the

cut-level graphs of 9 and a transitive orientation A of 9c.

a b c d e X1 X2 X3 34 K5 X6
a 0 .8 .5 .8.]

a 8. 8.5 a 8 1 .5 1 .5 .5

B =b .8 0 .5 0 b 0 0 0 .8 1
c 5 .5 0 .5 .8 c 5 .5 1 .5 .5
d .8 0 .5 0 . d 1 8 .5 0 0
e 5 1 .8 .5 0e 5 5 .8 .5 1

b b

e0 e

c
•s= o c =

e d

b b

a a
c

e
•t= c C t=c

d d

bb

aab
0I

cq = 9q C

d d

Figure 24. A chordal fuzzy graph with transitive orientation of 9c
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Applying Construction 4.15 we obtain the linear orderings of the

families of cut-level cliques:

s = 1 {d} <, {a) <, {e,b) <, {c}

t = .8 {d,a) <t {ab} <t {e,b} <t (e,cl

q = .5 {d,ae,c} <q ia,e,b,c}

By Observation 3.2 there are six fuzzy cliques of 9; subscripts indicate

the order induced by Construction 4.15. The matrix M of Figure 24 is the

associated vertex clique incidence matrix for 9. The rows indexed by a, c

and e are not convex; therefore the orientation A induces a fuzzy clique

ordering that is not cut-level consistent.

Following Construction 4.20 gives the forest F of Figure 25. The

only dead branch in F is The t = .8 level cut of P3 which is the clique

{a,b}. The paths P1, P2, P4 and P5 correspond to the fuzzy cliques X,, X2,

X 5 and X6, respectively. The path P3 which terminates at the dead branch

{a,b} corresponds to a lower truncation of the fuzzy clique X4. The fuzzy

clique X3 is deleted all together.

The vertex forest matrix C of Figure 25 has convex rows and so C is

also the vertex Interval matrix of 1. In terms of cut-level clique

orderings, P2s n 41 = o and P3 need not be modified. Therefore the matrix

C provides a fuzzy interval representation for V.

Wd} {a} {e,b} {c} 10 2 9D 3 94 P5

ta 8 [ .8 .5 .5'
{d,a} {a,b} {e,b} {ec} b  0 0 8 .5

id,a e,c) fa,ecd .8 0 00

e .5 .5 .5 1 .

Figure 25. A fuzzy interval representation for Example 4.24

OBSERVATION 4.25. The interval representation of a fuzzy graph 9 is not in

general unique. The construction depends heavily on the transitive



orientation of 9c and so different orientations can produce different

vertex interval matrices.

In addition, slight modifications of Construction 4.20 can also

produce different vertex interval matrices. We favored a "left to right

construction of arcs while building the forest F. We could have instead

specified a "right to left" construction. Figure 26 gives a forest F 2 ai

associated matrix C2 which defines a second interval representation for

fuzzy graph of Example 4.24.

{d} {a} {e,b l {c} 1 P2 P3  P4  SIi ta .8 1.8 .5 .5
d2 = ,a} {ab} {e,b} {ec C2  c .5 .5 .5 .5 1

NýýT,, d 10 0 00

{d,ae,c} {a,e,b,c} e 5 .5 .5 1 .8

{ d } { a W { a } { e , b ý { c } 9 D I 92 P3 P4 P5

ta .8 1 1.5 .5
= {d a} {a b} {eb} {e,c} C3 =b 0 0.8 1 .5

c .5 5.5 .5 1

",ý ý 1-1;1d 1 .8 00 0
{d,a',e,c} {ae,b,c} e .5 .5 .5 1 .8

Figure 26. Alternate fuzzy interval representations for Example 4.

Construction 4.20 also specified each cut-level clique be the

terminal node of only one arc. We could allow a cut-level clique to be

terminal node of a number of arcs, as long as cut-level consistency is

maintained. Figure 26 gives a forest F 3 with two copies of the clique

at the s = I level. Clearly F 3 has no dead branches. The associated

vertex interval matrix C3 provides a third interval representation for

fuzzy graph of Example 4.24.



Section 5. Alternate Edge Strength Functions

Depending on the application, one may wish to use alternate measure

of vertex strength or of edge strength. The following provide some

examples of alternate edge strength functions. It is important to note,

that none of these examples reduce to crisp intersection graphs in the ca

of crisp families of sets.

EXAMPLE 5.1. McAllister suggests in [21 that m(i,j) be a "measure of

fuzzyness" of Pi A Aj. However since any crisp set has "measure of

fuzzyness" equal to zero (see [31, [4] and [5] for definitions and

examples), the fuzzy intersection graph is empty for crisp families of

sets.

EXAMPLE 5.2. Let m(i,j) = JI! A AjI/II.L V Aj1 where loc = Ex(x) is the

cardinality of the fuzzy set a. Note that if pi = A,, then m(i,j) = 1 an

if li A j = 0, then m(i,j) = 0. As a fuzzy relation on E, m is symmetri

and reflexive, but is in general not transitive (see [6]). For crisp

families of sets, this relation induces a weighted graph that models A n

as a percentage of A U B.

EXAMPLE 5.3. Let m(i,j) = 1 - I V jL,/I/Ii A AJ where V is the

symmetric difference relation of [4], lal denotes absolute value and

Al V gi(x) = ig 1 (x) - ij(x)I. If pi = g,, then m(i,j) = 1 and if

Ai A Pj = 0, then m(ij) = 0. As a fuzzy relation on C, m is symmetric

reflexive, but in general is not transitive. For crisp families of sets

this relation induces a weighted graph that models A n B as a percentage

A U B.

For crisp sets A n B = (A U B)\(A\B U B\A), therefore Examples 5.2

and 5.3 produce the same membership function. With fuzzy sets however,

there is no simple relation between intersection and symmetric differen(

and the membership functions ,f Examples 5.2 and 5.3 are distinct.



EXAMPLE 5.4. Let m(i,j) = I - }• e pj/jpjj where e is the bounded

difference relation of [4] defined by p, e .j(x) = max{O,pI(x) - pj(x)}.

Note that if p, - p,, then m(i,j) = 1 and if Al A Aj = 0, then m(i,j) = 0.

As a fuzzy relation on 0, m is reflexive, but is in general not symmetric

or transitive; m induces a fuzzy directed graph.

EXAMPLE 5.5. Let mp(i,j) 1 if lJI A MAj z p and I * j

0 if ]IA A PjI < p or i = j

A crisp graph is induced by this relation which is symmetric, anti-

reflexive, and in general not transitive. This relation induces a p-

intersection graph which was recently introduced for crisp families of se

by Jacobson, McMorris and Scheinerman (91.

EXAMPLE 5.6. Let m(i,j) = jAj A Pjj for i * j. The resulting graph can

have edge weights greater than 1, and so m defines a fuzzy multigraph. A

variety of recent papers discuss properties of crisp intersection

multigraphs [10]. The relation m is symmetric, anti-reflexive, but in

general is not transitive.



(1] C. Berge (1989), Hypergraphs, Combinatorics of Finite Sets. North-
Holland, Amsterdam.

[2] M.L. McAllister (1988). Fuzzy Intersection Graphs. Comput. Math.
Applic. 15 (10), 871-886.

[31 A. De Luca and S. Termini (1972), A Definition of a non-probabilistic
entropy in the setting of fuzzy sets theory. Inf Control 20, 301-312.

[4] D. Dubois and H. Prade (1980), Fuzzy Sets and Systems, Theory and
Applications. Academic Press, New York.

[5] H.J. Zimmermann (1985), Fuzzy Set Theory and its Applications.
Kluwer-Nijhoff Publishing, Boston.

[6] A. Rosenfeld (1975), Fuzzy Graphs. In: L.A. Zadeh, K.S. Fu, M.
Shimura, Eds., Fuzzy Sets and their Applications. Academic Press, New
York.

[7] G.J. Klir and T.A. Folger (1988), Fuzzy Sets, Uncertainty, and
Information. Prentice Hall, New Jersey.

[81 F. Roberts (1976), Discrete Mathematical Models. Prentice Hall, New
Jersey.

[9] M.S. Jacobson, F.R. McMorris and E.R. Scheinerman (1991), General
Results on Tolerance Intersection Graphs. Journal of Graph Theory 15 (6),
573-577.

[10] T.A. McKee (1991), Foundations of Intersection Graph Theory.
Utilitas Mathematica 40, 77-86.

[11] P.C. Gilmore and A.J. Hoffman (1964), A Characterization of
Comparability Graphs and of Interval Graphs. Canadian Journal of
Mathematics 16, 539-548.

[12] P.C. Fishburn (1985), Interval Orders and Interval Graphs. John
Wiley & Sons, New York.


