
- S.. , '4 . ci '.7-.

N -

S

A
t.

'4

a
'4

1.

C

w

;a�.

0

S

5- - I.

* I Iorm ApprCWed

REPORT DOCUMENTATION PAGE o0'mBo CQ40,0 88

.,j;dVtI,0 'edg. ~ ~o~~ 42 4'..'C! -Alta:2 'ý4 IQ I he Clat "'4d A 2'Ce ýi Of

1. AGENCY USE ONLY (Leave b•an.) 2. ERPORT DATE 3, REPORT TYPE AND DATES COVERED
Jul 93 T HES I S/I r

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A Teaching Tool for Linear Programming

6. AUTHOR(S)

Wendy Cook

7, PERFORMING ORGANIZATION NA"4E(S) AND ADDRIESSýES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: Texas A&M Univ AFIT/CI/CIA- 93-134

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING

DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMB[;

AFIT/CI
2950 P STREET
WRIGHT-PATTERSON AFB OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. ODSTRIBUTION/AVAILAJL17T Y STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration _

13. ABSTRACT (Maximum 200 words,

14. SUBJECT TERMS 15. NUMBER OF PAGES
35

16. PRICE CODE

"17. SECURITY CLASSIFICATION -18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540,01-280-5500 S , ~ 8 '

1 TABLE OF CONTENTS

I Introduction ... 1.
U Systems of Equations ... 3

Bases and Extreme Points ... 8
Generation of bases .. 9
Generation of extreme points .. 11
Generation of extreme point given basis ... 12
Generation of basis given extreme point ... 123 Simplex Algorithm ... 14
Introduction to the simplex algorithm ... 14
Selection of entering variable .. 16
Selection of exiting variable ... 17

Sensitivity Analysis .. 19
Sensitivity analysis of the right-hand side .. 20
Sensitivity analysis of the cost coefficients 21
Sensitivity analysis on the variable bounds 24

SConclusion .. 27

i Appendix ... 28
Bibliography .. 35

! •Accesion For

NTIS CRA&I
TAB

ID
. .A....

D:;t S; ec.,);

I
I

I

1• Introduction

This paper discusses several main concepts in linear programming,

the purpose of which is to supplement the textbook teaching of these

concepts to further the students' understanding. These main concepts

include bases, extreme points, the simplex algorithm, and sensitivity

analysis. Before any of these concepts are discussed, a necessary review

of linear algebra is done. The ideas presented here should give the

proiessor additional knowledge about how to successfully teach the

students these concepts. Computer programs are developed in MOR/ML in

order to aid in these discussions. MOR/ML is a computer programming

language which has the syntax necessary to facilitate these concepts.

I MOR/ML is a "set" structured language which allows for the programming

of matrices and sets. This structure makes it possible to formulate the

programs dealing with linear programming. The coded programs in MOR/ML

and the output for these programs are in Appendix A. The students will be

able to understand these concepts ny learning and working with the

U proposed computer programs with the aid of the professor.

Four programs are developed to further the understanding of the

I concepts of bases and extreme points and how these concepts are related.

The emphasis of these programs is to reveal and show the importance of

their relationship. The first program listed in Appendix A.1 generates all

Il possible bases. The second program listed in Appendix A.2 generates all

possible extreme points. The third program listed in Appendix A.3

Il generates a feasible extreme point given a feasible basis, and the final

program listed in Appendix A.4 generates a feasible basis given a feasible

I extreme point. These four programs will help the students understand

what extreme points and bases are, how they relate to each other, and whyI'

U understanding of their relationship is crucial in linear programming.

3 The discussion of the simplex algorithm is based on a program

developed for the purpose of helping the students learn the algorithm. The

1 program is in Appendix A.5. This program and manipulation of it will

enable the students to learn the rules and steps of the algorithm. The

program will also help students understand how the simplex algorithm is

I driven by extreme points but uses basic feasible solutions. Students

typically have difficulty relating these two concepts. This program is

i altered in order to show how the students can manipulate the program in

order to select the entering and leaving variable. The altered program is

in Appendix A.6.

3 The final set of programs in Appendix A.7 are developed for

sensitivity analysis on the original linear program. For all of the

i programs, the students will find the range for which the change can occur

in order to maintain optimality and feasibility of the solution. The

i specific range is found by manipulating the part of the optimal

I transformed system which is affected.

The first of these programs performs a sensitivity analysis on the

i right-hand side (RHS). The second program performs a sensitivity

analysis on the basic and non-basic cost coefficients. The last program

does a sensitivity analysis on the variable bounds, which are generally

greater than or equal to zero.

These programs are developed to be used in parallel with the text in

I order to aid the students in the understanding of these concepts.

II

I
I Systems of Equations

3 Solving systems of linear equations is important when talking about

key linear programming concepts such as bases and extreme points. Three

U systems of linear equations are examined to introduce these two concepts.

The first set of linear equations is of the form Ax=b with the x

It variables unrestricted in sign (uis). For purposes of this discussion, a

I system of independent linear equations with the same number of equations

as unknowns produces a unique solution. An example of a system with two

I unknowns and two equations with a unique solution is:

301 + 4x2 =6

U 2x1 + x2 =4

Ii This system of equations gives the solution by simple substitution, xl = 2,

x2 = 0.

I Another system of the same form Ax=b, with the x variables

unrestricted in sign, is a system with more unknowns than equations.

Ii This particular system produces infinite solutions. An example of a

i system with only one equation with infinite solutions is a line. A line is

defined with two unknowns and one equation such as 5x1 + 2x2 = 1 8. In

I order to find the solution to this system, xl is solved for in terms of x2.

For example, xl = 18/5 - 2/5x2. This equation could have also been

I solved for x2 in terms of xl. Both of these solution spaces produce an

I infinite number of solutions. A graphical representation is shown in

Figure 1.

I

1 3

310
T5 xi = 18/5 - (215)x2

5-

2.5-

1 0 24

Figure 1.

The next system of linear equations of the form Ax <= b is

I represented as one equation in Figure 2. For the purpose of this

discussion, a system of linear equations is equivalent to a system of

constraints in linear programming. The use of one equation versus a

I system of equations or constraints is used for ease of graphical

understanding. This system consisting of one constraint can be

I transformed into an equality constraint, Ax + s = b. The extension of one

constraint to m constraints redefines the feasible solution space. These

I concepts as applied to one constraint apply to m constraints alike. A

II slack variable must be added because of the original inequality. The slack

variable must be s >=O because of the nature of the inequality. The

II concept of slack variables can be explained graphically. For ease of

II understanding, the following systems of equations each consist of one

constraint or line. Figure 3 represents a constraint with the slack

II variable equal to zero. Figure 4 represents two parallel constraints each

3 4

U representing a different system where b'<b. The slack variable associated

I with the system Ax = b' is s'=O, but the slack variable associated with

Ax <- b is s which is greater than zero. The value of s is equal to the

1 distance between b and b', so s = b - b'. This figure only represents one

value for the slack variable, s. The slack variable associated with the line

Ax + s = b in Figure 4 can therefore be thought of as the variable which

I takes on the value needed to make the original inequality constraint an

equality constraint. In order to solve a linear program, the original

I system of linear inequality constraints is transformed to equality

constraints. In order to do this, slack variables are introduced into the

inequality constraints.

II " xt"

S• 7.5- Ax <b

0 1

I 7 7• i

/ 71 37

* 2.5-.

* •7

,7, • Figure 2.

I

3 5

I
I

10

7.5 Ax+s=b

I 5-

1 2.5-

0 2 3

Figure 3.

I
1O0

U
7.5-

UAx < b
:s = b-b'

2.5,

Ax+s'-b' ""

0 1 3

Figure 4.

I
The final system of linear equations is of the form Ax <= b with

I both of the x and slack variables greater than or equal to zero. This

I system consists of one constraint for graphical purposes but is extended

3 6

to m constraints for general linear programs. The graphical

I representation for one constraint is shown in Figure 5.

1 10-

I 75

...... Ax5b

I

3I Figure 5.

I This particular system introduces the concept of extreme points which

I are simply the intersection of n independent constraints, where n is the
1 number of x variables. The graphical picture above is two dimensional

I with axes constraints, x >= 0, and one linear constraint, Ax=b. The

intersections of the constraints represent three extreme points. This3 linear algebra discussion will aid the students' understanding of the

I following section, bases and extreme points.

I
U
U
1 .

I

I Bases and Extreme Point-;

3 Bases and extren,- points come from a system of equations of a

general form, Ay = b where A E RmxRn, b E Rm, and x e Rn. A basis can be

I defined as ; set of m independent vectors of the system {xl Ax <= b},

which represents a solution space. An extreme point is the intersection

of n independent constraints, where n is the number of x variables

I excluding slack variables. The understanding of the relationship that

exists between extreme points and bases is necessary for the complete

I understanding of the simplex algorithm. For this reason more time should

be devoted to the discussion of this relationship.

The common method of introducing students to linear programming

I and its solution begins with a graphical representation showing all

extreme points and the feasible region. The students are them taught the

I Simplex Method which is an algorithm used to solve linear programs.

Hillier & Lieberman begin the discussion of the Simplex Method with a

graphical representation of the feasible region (H&L, Figure 4.1). Directly

I following this graphical representation, Hillier & Lieberman discuss

setting up the algorithm and the operations of the algorithm

I (H&L, Sections 4.2,3). By teaching the simplex algorithm directly

following the graphical representation, the students never really

understand how the simplex algorithm operates. The concept of traveling

I from one extreme point to the next until the optimal point is found is

discussed from the graphical representation of extreme points, the

I feasible region, and the gradient of the objective function. Students can

understand how the simplex algorithm finds the optimal point in a linear

I program, but they may not know that the simplex algorithm actually uses

I bases and not extreme points to get to the optimum. The one-to-one

5

relationship between extreme points and bases is what allows the

I explanation of the Simplex Method to be done by a graphical representation

of the feasible region. The purpose of this discussion is to fill the "gap"

which exists between the graphical representation of the feasible region

and the simplex algorithm.

The one-to-one relationship which exists between bases and

I extreme points depends on whether the solution is non-degenerate. A non-

degenerate solution gives a unique extreme point for each basis. On the

other hand, a degenerate solution is one in which two or more bases

i represent the same extreme point. The non-degenerate case is discussed.

When a non-degenerate solution exists, exactly n independent

constraints intersect at each extreme point and exactly one basis is

associated with this extreme point; therefore, a one-to-one relationship

I Iexists between bases and extreme points. In other words, each basis

corresponds to one and only one extreme point. In order to actually

understand how these two concepts are related, one must generate all

I possible bases and extreme points.

Generation of bases

The general system of linear equations used for this section is of

the form Ax + s = b with x,s >= 0. The possible bases are found by taking

the combination of n+m variables taken m at a time, where n is the number

I of x variables and m is the number of constraints or slack variables, s. A

point should be noted here. A variable represents a column, so when all

I possible basis are found, this is in essence the possible combination of

columns. The program in Appendix A.1 generates all possible bases. The

I program requires as input the A matrix which is m x (m+n), the b column

i vector which is m x I transposed in M1_ to a I x m row vector, the number

U 9

I

of x variables, and the number of slack variables, s. In order to understand

I and work with this program, a few MOR/ML commands are introduced.

I MOR/ML CONCEPTS

U [*] Comment statement

Vector (List)

U },{ }} Matrix (List of lists'

Range[a,b] Gives a list of whole numbers from a to b

I Subsets[a,b] Gives a list consisting of lists of length b.

These lists are the possible combinations of a

things taken b at a time

ICardinality[a] Gives the number of elements in a list

Extract[a,b] Extracts the bth element from the list, a

I GetColumn[a,b] Gives a list of b columns from the matrix a

Inverse[a] Gives the inverse of the matrix, a

Append[a,b] Gives a list with b added to the end of a

I Insert[a,b,c] Inserts into the list, a, the number, b, into the

cth position

I Drop[a,b] Gives a list with b elements subtracted from the

list, a

U Print[" "] Prints elements enclosed in

IAn exercise left for the students is to adjust the program to give only

I basic feasible solutions. A feasible basis gives only positive solutions

for all of the variables. In order to obtain only basic feasible solutions,

I eliminate any bases which give negative solutions for one or more

i variables.

I 10

Generation of extreme points

In order to understand the one-to-one relationship between extreme

points and bases, all possible extreme points need to be generated from

the same system of linear equations that generated all possible feasible

i bases. In order to generate all possible extreme points, the m+n

constraints including non-negativity constraints and the x variables

I excluding slack variables are required. The procedure is to find all

possible combinations of m+n constraints taken n at a time where m,--n is

I the total number of constraints including non-negativity, and n is the

number of x variables excluding the slack variables. The solution is then

found for each of the n independent constraints giving an extreme point,

I which is the intersection of these n independent constraints. An MOR/ML

computer program listed in Appendix A.2 is written to generate all

I possible extreme points. This program needs as input the A matrix which

is (m+n) x n, the b column vector which is (m+n) x 1 transposed to a 1 x

(m+n) row vector for use in ML, the number of x variables, and the number

I of constraints. An exercise left for the student is to change the program

in order to list only the feasible extreme points. An extreme point is

S infeasible if one or more constraints are violated by the extreme point.

In the case of non-degeneracy, an extreme point is associated with

IB one and only one basis. Once an extreme point is known, the respective

I basis is also known and vice versa. The constraints which represent an

extreme point are active and of the form Ax + s = b where the respective

I slack variables, s, corresponding to the active constraints are equal to

zero. The additional non-negativity constraints for two dimensions for

I example are xl >= 0 and x2 >= 0 have no slack variables associated with

i them. Therefore, the total number of constraints is m+n. When an

U 11

extreme point lies on an axis, say the xl axis, the respective intersecting

constraints in two dimensions contain x2 = 0 and one of the m constraints.

The basis associated with an extreme point does not contain the slack

variables associated with the respective intersecting constraints because

these are equal to zero. When an extreme point lies on an axis, say the xl

axis, the basis corresponding to this extreme point does not contain the

variable x2 because the constraint x2 >= 0 is tight. Two MOR/ML programs

are constructed to further the understanding of this one-to-one

relationship between bases and extreme points.

Generation of an extreme point given a basis

The program listed in Appendix A.3 generates an extreme point for a

given basis. This program requires several input quantities. These

include the A matrix which contains the slack variables so it has

dimensions m x (m+n), the b column vector which is m x 1 and is

transposed to a 1 x m row vector in MOR/ML, the given basis which is a

I x m row vector, the number of x variables excluding slack variables, and

the number of constraints which is the number of slack variables added.

The only additional MOR/ML command required for understanding of this

program which has not been introduced is the APPEND command.

APPEND[a,b] simply adds on to the list, a, the element b. This program

assumes the given basis is feasible and gives the basic feasible solution

along with the extreme point associated with the given basis.

Generation of a basis for a given extreme point

The program listed in Appendix A.4 generates a basis for a given

extreme point. The required input quantities are the matrix A which is m

12

I

I x (m+n), the b column vector which is m x land is transposed to a row

I vector for use in MOR/ML, the number of x variables excluding the slack

variables, the number of constraints, and the given extreme point which is

I i1 x n. This program assumes the given extreme point is feasible so the

i generated basis and basic feasible solution are also feasible. These two

programs will aid the students in understanding the relationship between

I a basis and an extreme point. For an exercise, the student will determine

the feasible bases and extreme points and use the MOR/ML programs to

I further the understanding of these concepts. The case of degeneracy

i exists when an extreme point is represented by two or more bases

resulting in one or more basic variables equaling zero. Therefore, the one-

U to-one relationship does not exist as in the case of non-degeneracy. The

MOR/ML programs will assist the students in understanding the concept of

I degeneracy. The students should first generate all possible bases and

extreme points and determine which are feasible. Next, the program in

Appendix A.3, generation of an extreme point given a feasible basis, should

L be run. This will give the extreme point associated with each basis. What

the students will observe is that the degenerate extreme point is

I generated by two or more bases.

1
I
I
I
I
I 13

I
Simplex Algorithm

The simplex algorithm is presented by a program developed to

further the students' understanding of the algorithm. This understanding

I will come by manipulation of the program in order to learn the simplex

I rules by observation of the results. The simplex algorithm can be thought

of as a function which calls three separate functions,

I getEnteringVariable, getLeavingVariable, and doPivot. This program is

listed in Appendix A.5. This discussion will be based extensively on the

I program itself. This program will allow the students to change a basis,

the collection of basic variables. The students can also select the

entering variable, which is the function call getEnteringVariable, and

I examine the resulting change in the objective function value. The

students should observe which of the possible entering variables give a

I better objective function value. Lastly, the students can also select a

leaving variable, which is the function call, getLeavingVariable,

arbitrarily and check for infeasibility. In order to understand how the

I leaving variable should be selected, the students should continue to select

a leaving variable until infeasibility occurs, assuming no unbounded

I solutions and a non-degenerate solution.

I Introduction to the simplex algorithm

5 The simplex algorithm is based on the standard system of linear

constraints, Ax + s = b, x,s > = 0. Where s is the collection of slack

I variables. This system of linear equations consists of rows and columns,

where the rows represent the constraints and the columns represent the

U variables. A representation of a standard linear program in vector and

I matrix notation is the following:

3 14

I

optimize Z = CB*XB + Cn*Xn

3 subject to B*XB + N*Xn = b

XB>= O, Xn >= 0

Where CB is a vector of basic variable cost coefficients. These

variables are the original variables--no slacks.

Cn is a vector of non-basic variable coefficients. These

variables are the slack variables.

XB is a vector of basic variables.

Xn is a vector of non-basic variables--slack variables.

* B is a matrix of constraint coefficients of the basic

variables.

* N is a matrix of constraint coefficients of the non-basic

variables.

I b is the right-hand side vector of the constraints.

I The simplex algorithm is an iterative algorithm in which the basis

I changes at each iteration. The algorithm is continued until an optimal

basis is found. Each constraint or row is representative of a basic

I variable. The basis is changed by simple row operations. Each iteration

I consists of the completion of three basic function calls from the main

function, simplexAlgorithm. The first function call, getEnteringVariable,

I selects which of the variables not in the current basis, also called non-

basic variables, should enter the basis. The second function call,

I getLeavingVariable, determines which of the variables currently in the

I basis, also called basic variables, should exit the basis and become non-

basic. The third function, doPivot, performs row operations to change the

I basis. Once the optimal basis is found the algorithm is terminated.

3 15

I When the algorithm begins, the linear program can be represented as

3 a transformed system in vector and matrix notation. This standard

notation also applies to the format of the system at optimality. The three

I function calls in the program listed in Appendix A.5 are required to

complete an iteration and each use selected portions of the transformed

I system. The transformed system is shown below:

optimize Z = (Cn - CBB' N)*Xn + CBB-1 b

subject to I*XB + B'lN*Xn = B-1b

XB >= 0, Xn >= 0

I Where (Cn - CBB- 1 N) is the vector of reduced costs.

CBB 1 b is the objective function value

B'1 b is the vector of the optimal right-hand side

I (RHS) values.
is the identity matrix

B-1IN is the matrix of non-basic variable

3 constraint coefficients.

I Selection of the entering variable

The portion of the transformed system considered in the selection of
the entering variable is (Cn- CBB'IN)*Xn, the reduced costs. The function

I call, getEnteringVariable, requires as input the vector of reduced costs

above and returns the pivot column number. This number corresponds to

I the position of the selected entering variable in the reduced costs vector.

I The function returns a zero if the optimal has been obtained. By selecting

which of the non-basic variables should enter the basis, the students

I should observe different changes in the objective function value. Once all

3 16

possible non-basic variables have been selected to enter the basis, the

rule for an entering variable should be apparent. A graphical

representation will also reveal which variable should enter based on the

gradient of the objective function and which extreme point is optimal.

The simplex program can be edited in order to select the entering variable

and examine the results.

Selection of the exiting variable

The portions of the transformed system considered in the selection

of the exiting variable include B"1 Ni, the ith column of the non-basic

entering variable and B'1 b. The function, getLeavingVariable, requires as

input these two vectors and returns the row position of the selected

leaving variable. If the problem is unbounded, the function returns a zero.

The students can select the leaving basic variable by editing the simplex

program. The leaving variable corresponds to a particular constraint.

Once the students select the variable to leave, a pivot is performed and

the students can observe the results. If the wrong leaving variable is

selected and one or more constraints are violated, the solution will be

infeasible, assuming non-degeneracy and bounded solutions. A graphical

representation will show which variable should leave given an entering

variable. The rule for selecting the leaving variable should become

apparent.

A graphical representation will reveal how a change of basis in the

simplex algorithm relates to moving from one extreme point to another. A

pivot is the movement from one extreme point to another. The function

call, doPivot, performs the necessary row operations in order to move

from one extreme point to another and update the current basis. The

17

changing of a basis involves inclusion of the selected entering variable

II into the basis and the elimination of the selected exiting variable from

the basis. The function, doPivot, requires as input the column position of

the entering variable, the row position of the exiting variable, and the ith

column of B-1N corresponding to the entering variable. The students

should observe that each change of basis moves from one extreme point to

another in the case of non-degeneracy. In order for the students to

observe that the simplex algorithm changes a basis at each extreme point,

the students are urged to graphically follow the algorithm at each

iteration. As the students perform this exercise, they should observe that

a unique basis is associated with each individual extreme point.

Therefore, thA concept that the simplex algorithm is driven by extreme

points but uses bases in order to travel from one extreme point to another

should be better understood. It should be clear to the students that the

graphical and tableau representation of the simplex algorithm are not the

same concept, but are directly related. In the process of this exercise the

students will also observe that in the case of a degenerate point, a change

of basis will remain at the same extreme point. This happens because

more than one bases represent the same extreme point.

18

Sensitivity Analysis

Sensitivity analysis is a vital tool in the analysis of any linear

program. MOR/ML programs are developed in order to help students

understand what sensitivity analysis is and how simple the concept is to

learn. When a large linear program is being solved and interpreted, one

may wish to know how much the original program can change without

changing the optimal basis or becoming infeasible. The purpose of

sensitivity analysis is to indicate how much a particular part of the

original program can change before the problem needs to be resolved.

Three sections of a linear program are discussed in this section and in the

programs.

The right-hand side can easily change once a problem is solved. If

the problem is very large it may take days and money to resolve the

slightly modified linear program. Instead a range is found on how much a

right-hand side element can change and still maintain the feasibility and

the current optimal basis. This is the purpose of sensitivity analysis.

Another part of a linear program which is discussed is that of the original

cost coefficients. A range can also be developed for basic and non-basic

cost coefficients. The last item discussed is that of the bounds of basic

and non-basic variables. Sensitivity analysis can only indicate a range for

which one element can change. When changes on two or more elements

occur, this becomes parametric analysis. A range can also be determined

for which the two or more elements can change, but once the range is

violated, one can only give an upper or lower bound on the objective

function value. When two or more elements are changed outside of the

optimal range, the problem may or may not remain optimal.

19

Additional MOR/ML commands

MaxList[a] Returns the maximum element in the list, a, and the

position in which the maximum occurs in the list

MinList[a] Returns the minimum element in the list, a, and the

position in which the maximum occurs in the list

Map[a,b] Applies the function, a, to the list, b

This discussion uses the same notation as discussed above for the general

linear program and transformed/optimal linear program.

Sensitivity analysis on the right-hand side

A range can be determined for which a particular element of the

original right-hand side can change to maintain feasibility and the current

optimal basis. In order for the current optimal basis to remain feasible,

the right-hand side (RHS) must be greater than or equal to zero after the

change occurs to a particular element. The current optimal RHS is B13b.

To ensure that the RHS will remain feasible after a change occurs, the

change must be in some range. In order to determine the range in which

the change can occur, the b vector becomes b + ad. a represents how

much the original element of the RHS changes, and d is a vector of O's and

Il a 1 in the position of the changing element. The current RHS then becomes

B'Ib + 0B 1 d which must be greater than or equal to zero. With some

algebra, the range on a becomes 6 >= -B-lb/B'ld. Two cases arise here.

1. B' 1 d is > 0. 6 > = -BIb/B-1 d the maximum of these

I inequalities is the lower bound for 6.a

can increase without bound.

* 20

.- .- .- _NNW

I

-2. B'ld is< 0. e < = -B lb/BIld the minimum of these

inequalities is the upper bound for 6. o

can decrease without bound.

It should be obvious that when B-ld is equal to zero, 0 can increase or

decrease without bound.

The program listed in Appendix A.7 performs a sensitivity analysis

on the RHS and requires as input the current B-1 , the current RHS, and the

I vector d indicating which element of the original RHS is to be changed.

3 The determination of the bounds on a are the same for a minimum or

maximum optimization problem.

I
Sensitivity analysis on the cost coefficients

I The determination ofo for the cost coefficients depends on whether

I the type of problem is a minimization or maximization problem. For both

types of problems, the part of the optimal system which will be affected
3 by the change is the reduced costs. These are (Cn - CBB. N)*Xn at

optimality. Non-basic and basic original cost coefficients can be changed.

I Changes made to any of the cost coefficients will not affect the

feasibility of the problem, only the optimality of the problem.
The changes to non-basic cost coefficients changes Cn to

3 Cn + 6 dn in the reduced costs, thus extending the reduced costs to

{(Cn+0dn)-CBB- 1 N }. The range of o depends on if the problem is a

I minimization or maximization problem.

I
3 2

MINIMUM/NON-BASIC COST COEFFICIENTS

For a minimization problem, the reduced costs are greater than or

equal to zero at optimality. A reduced cost can equal zero, in which case

the particular problem would have multiple optimal solutions. The

reduced costs must remain > = 0 in order to maintain optimality, thus,

{ (Cn + edn) - CBB 1 N I >= 0. With some algebra, 6 >= CB!8 1 N - Cn. In

other words, a can only decrease by the value of the variable's reduced

cost. a can increase without bound.

MAXIMUM/NON-BASIC COST COEFFICIENTS

For a maximization problem, the reduced costs are less than or equal

to zero at optimality. Thus, I (Cn + Odn) - CBB-1 N } <= 0 for optimality.

With some algebra, 6 <= CBB- 1 N - Cn. 6 can only increase by the value of

the variable's reduced cost. 0 can decrease without bound.

MINIMUM/BASIC COST COEFFICIENTS

The reduced costs are greater than or equal to zero at optimality.

The element of the reduced costs which changes is CB. Thus, the reduced

cost are extended to incorporate CB + t dB tot Cn - (CB + 6dB)B' 1 N I >= O.

With some algebra, this reduces to a<= (Cn - CBB- 1 N)/B- 1 N where B-1N is

a vector of the coefficients of the non-basic variables in the row of the

basic variable. Two cases are considered here.

1. B1 N> 0. a <= (Cn - CBB1 N)/B 1 N the minimum of these

inequalities is the upper bound for a. 6 can

decrease without bound.

I2

2. BIN < O. 0 >= (Cn - CBB 1 N)/B IN the maximum of these

I inequalities is the lower bound for o. o can

increase without bound.

It should be obvious that if B 1 N is equal to zero, 0 can increase or

decrease without bound.

MAXIMUM/BASIC COST COEFFICIENTS

The reduced costs are less than or equal to zero at optimality. The

element of the reduced costs which changes is CB. Thus, the reduced cost

are extended to incorporate CS + 9)dB to f Cn - (CB + adB)B1 N < = 0.

With some algebra, this reduces to a >= (Cn - CB B 1 N)/B 1 N where B-1 N

is a vector of the coefficients of the non-basic variables in the row of the

basic variable. Two cases are considered here.

1. B-IN < 0. 6 <= (Cn - CBB'IN)/B'IN the minimum of these

inequalities is the upper bound for e. 6 can

decrease without bound.
2. B-1 N > 0. a >= (Cn - CBB 1 N)/B 1 N the maximum of these

* inequalities is the lower bound for 6. 0 can

increase without bound.I
It should be obvious that if B-1 N is equal to zero, 6 can increase or

decrease without bound.

The MOR/ML program listed in Appendix A.7 performs a sensitivity

analysis on the non-basic and basic cost coefficients. The non-basic cost

I
* 23

I

I coefficient analysis requires as input the vector of reduced costs and the

I position in the reduced cost's vector of the variable of interest. The basic

cost coefficient analysis requires as input the vector of reduced costs and

I the vector of coefficients of non-basic variables from the row of the

I basic variable.

I Sensitivity Analysis on the variable bounds

A standard linear program requires that basic and non-basic

I variables be greater than or equal to zero. The range for which a variable

bound can change is independent on the type of optimization problem. A

sensitivity analysis can be performed in order to see how much a bound

SI can change on a variable before the problem is no longer optimal and

feasible.

BASIC VARIABLE BOUNDS

The part of the optimal program affected by changing the bound on a
basic variable is I*XB + B_1 N*Xn = B 1 b. The bounds on basic variables

are >= 0 for d linear program. The changing of the bounds from XB >= 0 to

I some bound other than 0 will affect the feasibility of the optimal

solution. The lower bound for a basic variable can decrease without bound.

E The only bound restricting the basic variable is the upper bound which

U specifies how high the basic variable can be restricted. In the optimal

system the non-basic variables are equal to zero so are unaffected by the

I bound of the basic variable. In order to see how high the bound on a basic

variable can be, the part of the affected optimal system can be reduced to
I *XB = B-1 b. In order to maintain feasibility and optimality, the upper

bound on XB cannot be greater than B-1b, the optimal value of the basic

*24

I variable, or the problem becomes infeasible.I
NON-BASIC VARIABLE BOUNDS

The part of the optimal system which is affected by the bound of the

non-basic variables is l*XB + B-1N*Xn = 8'1b and Xn >= 0. When the bound

changes on a non-basic variable, the value of the respective basic variable

must change accordingly in order to maintaiii feasibility. In order to find

the upper and lower bounds on a non-basic variable, the affected part of

the optimal system becomes Xn = (B-lb - XB)/B 1'N where B'1 N is the

column of the B-1 N matrix corresponding to the non-basic variable of
interest, and XB is the lower bound of the corresponding basic variable. In

order to maintain feasibility, (B 1 b - XB)/B' N must be greater than or

equal to zero. Therefore, the bound on Xr cannot exceed (B'1b - XN)/B-1N

because (B 1 b - XB)/B' N - Xn must be >= 0. The bound on the non-basic

variable can be decreased to a lower bound and increased to an upper

bound.

Upper Bound for a Non-Basic Variable

The upper bound for a non-basic variable cannot exceed the minimum

of the elements of (B' 1 b - XB)/B 1 N if the B'1 N elements are positive.

The positive coefficients of positive non-basic variables will drive the

3 corresponding basic variable to its lower bound. If the B1 N elements are

negative, then the bound on the non-basic variable can increase without

bound because the corresponding basic variable will only be forced to be

I more positive to maintain feasibility and optimality.

2
3 25I

I

Lower Bound for a Non-Basic Variable

The lower bound for a non-basic variable cannot get lower than the
maximum of the elements of (Blb - X1)/B'N if the B'N elements are

negative. The negative coefficients of negative non-basic variables will

drive the corresponding basic variable to its lower bound. If the B-1N

elements are positive, then the bound on the non-basic variable can

decrease without bound because the corresponding basic variable will only

be forced to be more positive to maintain feasibility and optimality.

The program listed in Appendix A.7 performs a sensitivity analysis

on the bounds of basic and non-basic variables. For analysis on a basic

variable bound, the program requires as input the current optimal RHS

vector and the position of the basic variable of interest in the RHS vector.

The analysis for a non-basic variable bound requires as input the current

optimal RHS, the B'1 N matrix of the optimal system, and the column of

the B- N matrix corresponding the non-basic variable of interest. The B"
1 N matrix is the constraint coefficients of the non-basic variables in the

optimal system.

26

I

.Conclusion

The concepts introduced in this paper are emphasized by respective

computer programs. These programs are built for the purpose of

I furthering the students' understanding of these concepts.

I
I
I
I
I
I
I

I
I

I
I
I
I
* 27

Appendix A.1

Generation of all possible bases

by

2Lt Wendy Cook

28

MOR/ML System 1.42 12/11/92

i File: b:\project2.doc Date: Thu Jun 10 10:02:25 1993

01: (* Generates all possible basis *]
02: (* A matrix contains slack variables, no non-negativity constraints *]
03:

004: A = {ii,2,1,0,0},{1,3,1,0,1,0),(-1,1,1,0,0,1));
05: b = (9,2,4);
06: n= 3; m= 3; totvar = n+m;

007: Ra = Range(l,totvar];
08: basis = Subsets(Ra,m);
09: For(i=l, i<=Cardinality[basis], i++,
10: set=Extract[basis,i];

011: Ab = GetColumn[A,set];
12: soln = Inverse[Ab].b;
13: If(soln == {, Print[set," is not an independent basis! "]];

014: Bfs = ();
15: For [j=l, j<= totvar, j++,
16: Bfs = Append[Bfs,0);
17: 1;
18: For [j=l, j<=m, j++,
19: pos = Extract[set,j);
20: posval = Extract[soln,j];

021: Bfs = Insert[Bfs,posval,pos];
22:];
23: Bfs = Drop[Bfs, -m];

024: Print["Basis ",i," = "-,set];
"25: Print["BFS ",i," - ",BfsJ;
26:];
27:
28:
29:
30:

031:
32:
33:

034:
35:
36:
37:
38:

339:
40:

0041:

--I . . . * • • • . il I I

MOR/ML Output

asis 1 = (1, 2, 3)
FS 1 = (0.00,-1.00,5.00, 0, 0, 0)
asis 2 1, 2, 4)
PS 2 = (-2.50,1.50, 0,10.00, 0, 0)

sis 3 1(, 2, 5)
FS 3 (2.50,6.50, 0, 0,-20.00, 0)

Basis 4 = 1 1, 2, 61
FS 4 {12.50,-3.50, 0, 0, 0,20.00)
asis 5 { 1, 3, 4)
FS 5 = (-1.00, 0,3.00,4.00, 0, 0)
asis 6 (1, 3, 5)
FS 6 (0.33, 0,4.33, 0,-2.67, 0)
asis 7 (1, 3, 6)

BFS 7 = (-5.00, 0,7.00, 0, 0,-8.00}
asis 8 = 1 1, 4, 5)
FS 8 (-4.00, 0, 0,13.00,6.00, 0)

Basis 9 = 1 1, 4, 6)
FS 9 = (2.00, 0, 0,7.00, 0,6.00)
asis 10 = (1, 5, 6)
FS 10 = (9.00, 0, 0, 0,-7.00,13.001
asis 11 = { 2, 3, 4)
FS 11 = (0,-1.00,5.00,0.00, 0, 0)
asis 12 = 2, 3, 5)

BFS 12 (0,-1.00,5.00, 0,0.00, 0)
asis 13 = 2, 3, 6)
FS 13 (0,-1.00,5.00, 0, 0,0.00)

Basis 14 (2, 4, 5)
FS 14 {{ 0,4.00, 0,5.00,-10.00, 0)
asis 15 {2, 4, 6)
FS 15 = { 0,0.67, 0,8.33, 0,3.33)
asis 16 = { 2, 5, 6)
FS 16 = 0,9.00, 0, 0,-25.00,-5.00}
asis 17 = (3, 4, 5)

BFS 17 = (0, 0,4.00,1.00,-2.00, 0)
asis 18 = { 3, 4, 6)
FS 18 { 0, 0,2.00,5.00, 0,2.00)

Basis 19 = { 3, 5, 6)
FS 19 = (0, 0,4.50, 0,-2.50,-0.50)
asis 20 { 4, 5, 6)
PFS 20 0 0, 0, 0,9.00,2.00,4.00)--
--

I
I
3 Appendix A.2

3Generation of all possible extreme points

by

2Lt Wendy Cook

I
I
I
I
I
I
I
I
I
I
I
I
I
5 29

MOR/ML System 1.42 12/11/92

File: b:\project.doc Date: Thu Jun 10 09:46:42 1993

01: [* Generate all possible extreme points *)
02: [* A matrix contains no slack variables but includes nonneg constraints *)
03:
04: A ={II,2),{i,3,1),{-iI,1),(i,0,0},(0,i,0),(0,0,1));
05: At = Transpose[A);
06: b = (9,2,4,0,0,0);
07: n=3;m=6;
08: R = Range[l,m);
09: cols = Subsets[R,n];
10: For [i=l, i<= Cardinality[cols), i++,
11: s= cols[[i]];
12: rows = GetColumn(At,s);
13: rowt = Transpose[rows];
14: bt = Extract[b,s];
15: Print["Constraints ",s," Extreme Point ",Inverse[rowt].bt]:
16:];

I
3 MOR/ML Output

-- nstraints (1, 2, 3- Extreme Point {0.00,-1.00,5.00)!onstraints (1, 2, 4) Extreme Point (0.00,-1.00,5.00)
onstraints (1, 2, 5) Extreme Point (-5.00,0.00,7.00)

Lonstraints { 1, 2, 61 Extreme Point {12.50,-3.50,0.00)
ifonstraints (1, 3, 4) Extreme Point (0.00,-1.00,5.00)
Yonstraints (1, 3, 5) Extreme Point (0.33,0.00,4.33)
ýConstraints (1, 3, 6) Extreme Point (2.50,6.50,0.00)
-onstraints (1, 4, 5) Extreme Point (0.00,0.00,4.50)

monstraints { 1, 4, 61 Extreme Point (0.00,9.00,0.00)
IConstraints (1, 5, 6) Extreme Point (9.00,0.00,0.00)
lionstraints (2, 3, 4) Extreme Point (0.00,-1.00,5.00)
q*onstraints (2, 3, 5) Extreme Point (-1.00,0.00,3.00)
'onstraints (2, 3, 6) Extreme Point (-2.50,1.50,0.00)ionstraints (2, 4, 5) Extreme Point (0.00,0.00,2.00)

onstraints (2, 4, 6) Extreme Point (0.00,0.67,0.00)
ionstraints (2, 5, 6) Extreme Point (2.00,0.00,0.00)
Constraints (3, 4, 5) Extreme Point (0.00,0.00,4.00)
onstraints { 3, 4, 6) Extreme Point (0.00,4.00,0.00)
onstraints (3, 5, 6) Extreme Point (-4.00,0.00,0.00)

Constraints (4, 5, 6) Extreme Point {0.00,0.00,0.00)

Imam

I_

Appendix A.3

3i Generation of an extreme point given a basis

by

2Lt Wendy Cook

f30

U
I

i

I'
In

!I

MOR/ML System 1.42 12/11/92

File: b:\extpoint.doc Date: Thu Jun 10 10:11:37 1993

01: [* Given a basic feasible solution, BFS, an extreme point is given *]
02: [* A matrix includes slack variables, no non-negativity constraints *]
03:
04: A = {(i,1,2,1,0,0},(1,3,1,0,1,0},(-1,1,1,0,0,I};
5: b={9,2,4};

06: Basis = {(,2,4);
07: Ab = GetColumn[A,Basis];
08: Soln = Inverse[Ab).b;
09: If[Soln == {},Print[Basis," is not an independent basis! "1];
10: n=3;m=3;
11: totvar= n+m;
12: BFS = ();
13: Forri=l,i<= totvar, i++,
14: BFS = Append[BFS,0];
15:];
16: For[i=l,i<=m,i++,
17: pos=Extract[Basis,i];
18: posval=Extract[Soln, i];
19: BFS=Insert[BFS,posval,pos);
20: 3;
21: BFS = Drop[BFS,-m];
22: Print["BFS= ",BFS];
23: Rn = Range[l,n];
24: Extpoint = Extract[BFS,Rn];
25: Print["Extreme point = ",Extpoint];
26:
27: [* Which constraints are tight *]
28:
29: For(i=n+l, i<= totvar, i++,
30: slackval = Extract[BFS,i];
31: If[slackval == 0, Print["Constraint ",i-n," is tight"]];
32:];
33:

i
MOR/ML Output

So= f-2.50,1.50, 0,10.00, 0, 0)

treme point = (-2.50,1.50, 0)
onstraint 2 is tight
onstraint 3 is tight

I

I

i

i

I

I
I

Appendix A.4

Generation of a basis for a given extreme point

by

2Lt Wendy Cook

31

MOR/ML System 1.42 12/11/92

U File: b:\basis.doc Date: Thu Jun 10 10:11:11 1993

ý0001: [* A basis is generated from a given feasible extreme point *]
02: [* The A matrix contains slack variables, no non-negativity constraints *]
'003:

0004: A = {{1,1,2,1,0,0),{1,3,1,0,1,0),(-1,1,1,0,0,1));
05: b = (9,2,4);
06: n=3; [* number of original variables -- no slacks *]
07: m=3;

0008: Rn = Range[l,n);
09: Extpoint = (-2.5,1.5,0);
10: For[i=l,i<=m,i++,

0011: Extpoint = Append[Extpoint,0);
121];
13: BFS = Extract[Extpoint,Rn];

0014: For[i=l,i<= Cardinality[A],i++,
15: const = Extract[A,i];
16: Rhs = Extract[b,i];
117: constval = const.Extpoint;

0018: slack = i + n;I19: slackval = Rhs - constval;
020: BFS = Append[BFS,slackval);
0021:];

22: Basis ={);
23: For[i=l,i<= Cardinality[Extpoint],i++,
124: If[Extract[BFS,i]!=0, Basis = Append[Basis,i] 3;25:];

26: Print["BFS =",BFS];
27: Print["Basis = ",Basis];

0028:
29:

l
I

I
3 MOR/ML Output

---- ---- - ----------- =----==---- - -- - -- - -

S (-2.50,1.50, 0,10.00,0.00,0.00)
sis = 1 1, 2, 4)

a-

Um

U

Appendix A.5

Simplex Algorithm in matrix form

by

Dr. Bryan L. Deuermeyer

32

MOR/ML System 1.42 12/11/92

File: b:\lp.d Date: Thu Jun 10 09:59:35 1993

01: [*---I-
02: The Simplex Algorithm in Matrix Form
03:4--*

004:
05: simplexAlgorithmfc,a,b] := Block[
06: {m,n,Binv,cB,basis,i,z,x,ok,optiznal,unbounded),
07: [* Assume each row has a slack variable *
08: ok = 0;
09: optimal =1;
10: unbounded 2;

011:
12: setupLP[] :=Block[(i),
13: m = Cardinalityfb];

014: n = Cardinalityfc);
15: Binv =IdentityMatrix~m];

16: basis =n + Range(m3;
17: a = JoinColumns[a,Binvl;
18: c = Joinfc,Table(0,{iM})1 1;
19: cB = Extractfc,basis];
20: 3

021:
22: getLeavingVariable(aa,bb]:= Block[{r,p),
23: pdiv~fden,num)] := If[den>0.0,num/den,Infinity];

024: (r,pl = MinList[Map[pdiv,Transpose[{aa,bb)],13 3
25: If~r<0.0, Return[0], Return[p] 1
26: 3
27:
028: doPivot~pr,pc,abar) := Block[{p,alfa,t),
i29: p = 1.0/abar[[pr)];
130: alfa =-p abar;
031: alfa[(pr]J = p
ý32: t = IdentityMatrix[m];
133: t[[pr)] = alfa;
034: Binv = Transpose~t].Binv; [* Binv = E.Binv *
135: basis[[pr]] = pc;
136: cB[(pr]] = cf [pcjl;
137: j
038:
139: getEnteringVariable~cbar] := Block[{maxZ ,pc},
ý40: (maxZ,pc) = MaxList(cbar];
041: 1f(maxZ <= 0.0, Return[0), Return[pc) 3
142: J
43:
44: simplexStep(w] := Block[(pc,pr,abar),
45: If(w!=ok, Break(w]];
46: pc = getEnteringVariable[cB.Binv.a - c];
47: 1f[pc == 0, Break(optimal]];
048: pr = getLeavingVariable[abar=-Binv.GetColumn(a,pc], Binv.b);
49: If[pr == 0, Break~unboundedj 3
50: doPivot(pr,pc,abar];
051: Return[ok];
52: 3

153:
0054: setupLP[J;

5: If[NestfsimplexStep,ok,100] == 2,
56: Return ["Unbounded"]

0057:);
8: bbar = Binv.b;

559: z = cB.bbar;
A0060: x = Table(O.O,(i,n+mf];
'&61: For[i=1,i<=m,i++,

62: x[[basis[[i]] = bbar[[i])
163: 3;
0064: Return[(x,z))

r65:];
666:
0067: [* ---
168: Now Solve a Problem

69: --
, 70: a= I i, ,{ , ,) -I ,I ;

S71: c= {1,1,-4);
72: b= (9,2,4);

0074: simplexAlgorithmn[c,a,b):

0077:
78:
79:

I:
I

I
I

U MOR/ML Output

U_74: ({O{.OO,0.00,2.00,5.00,0.00,2- 00 ,-.8-O0)

I
I
U
I
U
I
I
i
I
I
i
U
I
I
i
I'

Appendix A.6

Altered simplex algorithm in matrix form

by

Dr. Bryan L. Deuermeyer

altered by 2Lt Wendy Cook

The function calls getEnteringVariable and

getLeavingVariable are changed in order to allow the students to

select the variables.

33

MOR/ML System 1.42 12/11/92

File: b:\studlp.d Date: Thu Jun 10 10:00:09 1993

01:--

02: The Simplex Algorithm in Matrix Form
03: ----------------------------- ----------------------------*
04:
05: simplexAlgorithm[c,a,b] := Block(
06: {m,n,Binv,cB,basis,i,z,x,ok,optimal,unbouflded,pr,pc),
07: [* Assume each row has a slack variable *)
08: ok =0;
09: optimal = 1;
10: unbounded =2;

11:
12:
13: setupLP[j : Block[(i),
14: z = Cardinality~b];
15: n = Cardinality~c];
16: Binv =IdentityMatrix~m);

17: basis =n + Range[m);
18: a = JoinColumns[a,Binv];
19: c = Join[c,Table(0,{i,m)])
20: cB = Extract[c,basis];
21: J
22:
23: [~getLeavingVariable[aa,bb):= Bloclc[fr,p),
24: pdiv[(den,nuin)] := If[den>0.0,num/den,Infinity];
25: (r,p} = MinList[Map~pdiv,Transpose[{aa,bb)],l) 1
26: Iffr<0.O, Return[0], Returntp])
27:];*
28:
29: doPivot(pr,pc,abar] := Block[(p,alfa,tJ,
30: p = 1.0/abar([pr]];
31: alfa = -p abar;
32: alfa[Cpr]] = p;
33: t = IdentityMatrix~m];
034: t[[pr)] = alfa;
35: Binv = Transpose~t].Binv; [* Binv = E.Binv *
36: basis([pr]] = pc;
37: cB[[pr]) =cI[CpcJ];
38:]
39:
40: [*getEnteringVariable~cbar] := Block[{maxZ,pc),

041: fmaxZ~pc) = MaxList~cbar];
42: If[maxZ <= 0.0, Return[0), Return~pc] I
43:3;*

044:45: simplexStep[]:= Block[{pc,pr,abar),
46: [* If~wl=ok, Break(w] J;*]
47: pc = 1; (* getEnteringVariable~cB.Binv.a -]*

048: (* IQ(pc 0, Break~optimaJ.J J;*]
49: pr = 1; (*getLeavingVariable[abar=Binv.GetColumn[a,pc], Binv.b];*]
50: abar = Biriv.GetColumn~a,pc);

051: [*If[pr == 0, Break~unbounded]]*r52: doPivot[pr,pc,abar];

53: [*Return[ok]; *1
54:];
55:
56: setupLP[];
57: simplexStep[j;
58: [*If[Nest[simplexStep,ok,100) 2,*]
59: [*Return ["Unbounded"] *]
60: [*];*)
61: bbar = Binv.b;
62: z = cB.bbar;
63: x = Table[0.0,{i,n+m)];
64: For[i=l,i<=m,i++,
65: x[[basis[[i]]]] = bbar[[i]]
66:);
67: Return[{x,z)]
68:];
69:
70: [*---
71: Now Solve a Problem
72: +--*
73: a= ={ii,2),(i,3,1),(-1,1,i));
74: c = (1,1,-4);
75: b = (9,2,4);
76: simplexAlgorithm[c,a,b]:
77:

078:
79:
80:

081:
82:
83:
84:
85:
86:
87:

088:
89:
90:

091:
92:
93:
94:
95:
96:
97:

098:
99:
00:

101:
"02:
03:
04:
05:
06:
07:

108:
09:
10:
111:
12:

- MOR/ML Output

~76: { (9.00,O.00,O.00,0.O0,-7.00, 13.001,9.00)

I
I

II
I
I'
I
I
I
I
II
I

I

Appendix A.7

Sensitivity Analysis

by

2Lt Wendy Cook

iI

i

II

I. . . .

MOR/ML System 1.42 12/11/92

File: b:\test.doc Date: Fri Jun 11 08:07:49 1993

01:
02: [* Right-hand side *]
03:
004: LowBcun'd(Binv,bbar,d]:= Blcck[{n,p),
05: dbar = Binv.d;
06: rdiv((num,den)3:= If~den>0.0, - num/den, -Infinity);
07: (n,p) = MaxList[Map~rdiv,Transposet(bbar,dbar)3,1))
08: Return[n);
09:)
10:
011: UpperBound[Binv,bbar,d]:= Block[{n,p),
12: dbar = Binv.d;
13: rdiv[{num,denl]:= If(den<0.0, -num/den, Infinity);
14: (n,p) = MinList[Map[rdiv,Transpose[{bbar,dbar}),1J
15: Return(n];
16: J
17:

018: Binv = ((0.5, 0.2, -1), (-1, 1, 0.5), (5, -0.3, 2)1;
19: bbar =(2,3,1);
20: d = (1,0,0);
021: "This element of the RHS can be decreased by "1:LowBound[Binv,bbar,d]:
22: "This element of the RI-S can be increased by ':UpperBound[Binv,bbar,d]:
23:
24: [* Cost Coefficients *
25:
26: NonBasCoeff[RCosts,RedCostpos) := Blcck[{value),
27: value = Extk-ract[RCosts,RedCostpos];
28:. Return[value];
29:]
30:
31: LowBasCoeff[RCosts,BinvNRow) := Block[{r,p),
32: Low[{frow,srow)) := If[srow<0.0, frow/srow, -Infinity];
33: (r,p) = MaxList[Map[Low,Transpose[{RCosts,BinvNRow)],l] 1
34: Return~r];
35:)
36:
37: HighBasCoeff[RCosts, BinvNRow] := Block[{r,p),
38: High[(frow,srow)) := If~srow>0.Og frow/srow, Infinity);
39: (r,p) = MinList[Map(High,Transpose[(RCosts,BinvNRowf)l1])
40: Return~r];
41:]
42:
43: RCosts = t1, 2, 3);
44: BinvNRow = (-1, 1, 2);
45: RedCostpos = 1;
46: "This basic coefficient can be decreased by '1:

47: LowBasCoeff[RCosts,BinvNRow]:
48: "This basic coefficient can be increased by "
49: HighBasCoeff[RCosts,BinvNRowJ:
50: "This nonbasic coefficient can be decreased by "1:

51: NonBasCoeff(RCosts,RedCostpos):
52:

3: [* Bounds *

554:55: BasVar(bbar,BasicRow] := Block[(Bound),

56: Bound = Extract[bbar,BasicRowl;
57: Return(Bound];

59:
60: UpNonaasVar~bbar,BinvN,VarCol] := Block[(r,p,ncol),
061: ncol = GetColumn[BinvN,VarCol3;
62: Upper[(num,den)] := If[den>0.O, num/den, Infinity];
(63: (r,p) = MinList(Map[Upper,Transpose((bbar,ncol)],1] 3
064: Return(r];
65: 3
66:
67: LoNonBasVar~bbar,BinvN,VarCol) := Block({r,p,ncol),
68: ncol = GetColumn[Binvl4,VarCol];
69: Lower[(num,den)) := If(den<O.0, num/den, -Infinity];
,70: {r,p} = MaxList[Map[Lower,Transpose((bbar,ncol)I,1] 3
071: Return~r);
72: 3
73:

074: bbar = (10, 10);
75: BasicRow = 2;
76: BinvN =((-7, -5, -0.667), (0.8, 0.6, -0.0667));
77: VarCol =2;

78: "The lower bound on this basic variable can be increased by 11:
79: BasVar[bbar,BasicRow):
80: "The lower bound on this nonbasic variable can be increased by 11:

081: UpNonBasVar~bbar,BinvN,VarCol):
82: "iThe lower bound on this nonbasic variable can be decreased by 11:
83: LoNonBasVar[bbair,Binvr4,VarColJ:
084:

MOR/ML Output

21: This element of the RHS can be decreased by
21: -0.20
22: This element of the RHS can be increased by

022: 3
46: This basic coefficient can be decreased by
47: -i

048: This basic coefficient can be increased by
49: 1.50
50: This nonbasic coefficient can be decreased by
51: 1
78: The lower bound on this basic variable can be increased by
79: 10
80: The lower bound on this nonbasic variable can be increased by
081: 16.67
82: The lower bound on this nonbasic variable can be decreased by
83: -2.00

=---

U
I

Bibliography

U Anton, Howard. Elementary Linear Algebra. 5th ed. New York:

John Wiley & Sons, 1973.I
I Bazaraa, Mokhtar S., John J. Jarvis, and Hanif D. Sherali.

Linear Programming and Network Flows. 2nd ed. New York:

John Wiley & Sons, 1977.I
I Hill, Richard 0. Jr. Elementary Linear Algebra with

Applications. 2nd ed. San Diego: Harcourt Brace

Jovanovich, 1991.I
I Hillier, Frederick S. Pnd Gerald J. Lieberman. Introduction to

Operations Research. 5th ed. New York: McGraw-Hill, 1990.

I Micro OR/Math Language (MOR/ML). Computer Software. B.L.

Deuermeyer, G.L. Curry, and R.M. Feldman, 1991.

I
Curry, Guy L., Notes for Linear Programming.

I

1I 35

