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Abstract

We develop our previous work on hyperdistributions into a formally well-defined
transform which may be applied to images, the hyperdistribution transform (IIDT).
The HDT has many properties in common with conventional orthogonal transforms of
signals, such as the Fast Fourier Transform, which suggests the possiblity of develop-
ing a fast algorithm for the HDT. Presently, we have formulated the HDT in matrix
language, which permits a reasonably efficient computational approach to calculating
the HDT of an image. We then apply the HDT to image compression by representing
the image as a truncated HDT expansion and reconstructing the image {rom the trun-
cated HDT expansion. The compression ratio is measured in terms of the number of
bits in the truncated HDT expansion compared to the number of bits in the original
image. Test cases involving both synthetic and natural images are considered. Good
quality reconstructions of natural images are obtained with compression ratios of 4:1
and recognizable images are obtained with compression ratios of 16:1. It was not nec-
essary to segment the images into sub-images. Substantial further improvements in the
performance of HDT compression may be obtained by employing image segmentation

and other standard techniques for transform-based image compression algorithms.
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1 Introduction

Even modest-sized images involve large amounts of data. A 512 x 512 image in which each
pixel may take on 256 gray scale values will require 1/4 Mbyte of computer memory for
storage. (1 Mbyte = 1,048,576 = 22° bytes) Accordingly, storage of large numbers of images
places large demands on computer memories. Transmission of images puts correspondingly
large demands on channel bandwidth and/or time required for transmission of images. For
these reasons, among others, ther are considerable economic and practical pressures to de-
velop representations of images which require smaller numbers of bits.

Fundamentally, compression algorithms exploit the redundancy (in an information theo-
retic sense) of the pixel intensities in an image. This redundancy is reflected, for example,
in the statistical dependence of these pixel values. A compressed image will require fewer
bits than the original image. Generally speaking, image compression techniques fall into
two categories!, those which depend on coding techniques, such as Huffman coding, and
those which depend on transform techniques, such as the discrete cosine transform (DCT)
and the hyperdistribution-based methods which we have developed as the subject of this
proposed research program. We shall concentrate attention on the class of transform-based
compression algorithms.

Exact reconstruction of an image may be obtained by lossless algorithms, usually at
some cost in the compression ratio achievable (typically ~ 10). Applications which can
tolerate approximate reconstructions of images may utilize lossy algorithms for compres-
sion/decompression. These lossy algorithms may be patticularly appropriate when the least
significant bits (LSB’s) of an image are corrupted by noise and thus do not represent de-
sirable data. Lossy compression/decompression algorithms can achieve higher compression
ratios (40 or more).

A number of techniques have been developed for image compression/decompression, such
as the DCT and techniques based on affine transformations and fractals. Such techniques are
computationally intensive and, particularly for the case of the DCT, may require implemen-
tation on special hardware to achieve compression/decompression of images in reasonable

times. We note that the marketplace for commercial applications in image compression is,




in fact, moving in the direction of special purpose chips for rapid execution of particular
algorithms.

A compression/decompression algorithm which may be used in conjunction with other
image processing algorithms, such as spatial filtering, edge-enhancement, or deconvolution
techniques may have special advantages. In our Phase I research we have develuped such an
approach based on newly developed mathematical called hyperdistributions. Hyperdistribu-
tions are theoretically attractive because they are an algebraic field in which convolutions
are the multiplicative operation. Thus, problems for which the calculation of the convolu-
tion inverse (deconvolution) is not well-posed by conventional Fourier transform techniques,
may be solved uniquely with hyperdistribution techniques. This property also is reflected
in the comparative computational stability and efficiency of deconvolution computations by
hyperdistribution techniques.

On the basis of connections with the problem of moments and formal analogies with
moment expansions, we believed that hyperdistribution expansion techniques would have a
significant utility for problems in image compression. In practice, this would mean that an
image would be represented in a two-dimensional hyperdistribution expansion which would
be truncated at a finite number of terms. The image could then be reconstructed to some
level of precision from its hyperdistribution expansion, in a fashion analogous to that we have
demonstrated for using hyperdistributions for computing global approximations of functions.
We expected that for many images, the number of bits required for the hyperdistribution
expansion would be significantly smaller than the number of bits in the original image, i.c.
that the hyperdistribution representation of an image is a valid compressed representation
of the image.

Our Phase I research effort developed the mathematical structure required for effectively
carrying out these algorithms, and then conclusively demonstrated the validity of this point
of view. We include in this proposal some of the first demonstrations of image compres-
sion/decompression using hyperdistributions. We are able to achieve compression ratios of
16:1 routinely even with algorithms at the present crude stage of development. We believe
that by fine-tuning these algorithms and combining them with other conventional image pro-

cessing algorithms, that higher compression ratios and improved fidelity of the reconstructed




image is possible. Our proposed Phase II effort will lead to hyperdistribution algorithms for
image compression/decompression competitive with other entries in the commercial arena.

We establish an explicit method for image compression and reconstruction using hyper-
distribution theory. The point function approximation for the hyperdistribution expansion,
the Rodriguez hyperdistribution expansion, is used to formulate a hyperdistribution trans-
form (HDT). The transform includes an adjustable parameter which is used to vary the
shapes of the reconstructing wave and optimize the reconstruction performance. A matrix
representation of the transform similar to other methods is derived. This establishes algo-
rithms for carrying out HDT’s analogous to those for conventional orthogonal transforms

such as the FFT. This method is tested on three images demonstrating various compression
ratios currently attainable.

2 Derivation of Hyperdistribution Transforms

The hyperdistribution expansion is formulated as a transform which is similar to other
orthogonal transform methods with the addition of an adjustable parameter which controls
the shapes of the basis functions. Begin with the truncated Rodriguez hyperdistribution

expansion in two dimensions as derived previously. The expansion for the approximation to
a function f(z,y) is defined as
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Substitute the definition for scaled Hermite polynomials, H)(z) = H,(z/A)/A", to get the
expansion
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Now substitute for the function f(z,y)
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The parameter a has been introduced into the formulation which is used to vary the shape
of the wavelets that are used to determine the approximate function (i.e. reconstruct the
image). The shape of the wavelets will affect the rate and type of convergence of the expan-
sion series. In previous Hyperdistribution formulation, o can be considered equal to one. In
the case were « is equal to two, the wavelets form orthonormal bases. This case is explored

in the following work

Notice that 1/) appears with z and y every where except in the function. The variable
substitution




= A

v = Ao (10)
dz = Ad

dy — M\dv (1)

produces the hyperdistribution parametric wavelet transforms with the expansion
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3 Discrete Formulation of Transforms

The equations (12) and (13) deal with the expansion for a continous function, but we are
interested in discretely sampled functions. An actual image is given as a matrix of values
which can be considered discrete samples of a function. Consider a p x p sampled image

where 1,7, are integers and s;,3;, define a symmetric coordinate system for the image. define

u
v

1l

=1...
. B4 (14)
and the function t in terms of these integer values

t;; = g(Au, dv) = g(z,y)- (15)

From equations (12) and (13) with a = 2 the expansion for approximation to t using or-
thonormal wavelets is
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We move ds to make equations (16) and (17) symmetric and get the expansion
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4 Matrix Formulation of Transforms

The discretized formulation can be represented in more conventional form by using a matrix
representation similar to other orthogonal transforms. Equations (18) and (19) suggest using
matrix operations for doing the calculations.

Consider the image p x p matrix

iu 512 glp
{ taz -
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The HD coefficients, T, can now be calculated by viewing equation (19) as the following

operation
A=H.1.-[HT (22)
which creates a k x k HD coeflicient matrix
Too Tor v To{k—1)
710 11 ce To{k~1)
A= : A . (23)
T(k:1)0 T(kll)l cee T(k«li(k-x)
We can reconstruct the image by viewing equation (18) as the following operation
i=HT A H (24)
which creates a p x p reconstructed image matrix
t:n t:12 e glp
- t ¢ AR /
o | b (29
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5 Implementation Scheme

An algorithm for implementing the previous formulas to images is developed in this section.
The image is given as a p x p matrix of one byte integers.

A coordinate system is determined for the image through the definitions

si=-L+(1—-1)ds (26)

ds = ;2:1—;{ (27)

where we consider
I;j = I(s;,sj) (28)
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The remaining variables to be determined are the length of the coordinate space of the
image, (2 x L), and the dimensions of the HD coefficient matrix, (k x k). This gives us the
paramcters L and k to adjust.

We predict that the optimal value for L for reconstruction will be approximately equal
to the zero closest to infinity of the highest order wavelet used in the reconstruction. This
criterion insures that all the wavelets completely fit inside the coordinate space of the image
and that wavelets can have sign variations at the edge of the coordinate space of the image.
This establishes L as a function of k. Results of reconstruction with various values for L
substantiate this function as good preliminary criterion.

The zeros of the nth wavelet are equivalent to the zeros of the nth order Hermite poly-
nomial, since this is the only pazt of the equation for the wavelet that can change sign. For
a particular choice of k we determine L by finding the first zero from infirity of the (k— 1)th
order Hermite polynomial.

The compression ratio is defined

number of bits in the image matrix ~ p x p(8bits)  p?

R = = =
C number of bits in HD coefficient matrix  k x k(32bits)  4k?

(29)

The mean squared error is defined

: > i (I — 1)’ (30)

MSE =

6 Results of Compression/Decompressions

The first image analyzed is a 64 x 64 artificial terrain called “Island”. This image was created
by combining three gaussian functions of various widths and strengths. Gaussian signals are
a natural test case for reconstruction. The original image is shown by surface and contour
plots in figure (1). The image reconstructed from a 32 x 32 HD coefficient matrix is shown in

figure (2). The image reconstructed from a 16 x 16 HD coeflicient matrix is shown in figure

(3).

11




The second image analyzed is a 256 x 256 image called “Gordon”. The original image is
shown in figure (4). The reconstructed images representing compression ratios of 1, 4, and
16 are shown in figures (5), (6), and (7).

To demonstrate the effects of the parameter L we analyze the reconstruction of “Gor-
don” with higher and lower then predicted values for L. The compression ratio for each
reconstruction is 4. The predicted value for L was used in figure(6). Figure (8) shows a
reconstruction with L one half the predicted value. Figure (9) shows a reconstruction with
L one and a half the predicted value.

The third image analyzed is a 512 x 512 image called “Liberty”. The original image is
shown in figure (10). The reconstructed images representing compression ratios of 1, 4, and
16 are shown in figures (11) and (12).

The results obtained from these three images should be considered in the nature of an
existence proof. We have demonstrated that compressions of image data can be achieved
with HDT’s and recognizable results obtained for the reconstructed images. It is particularly
remarkable that these results have been obtained for unsegmented images. Additional work
to be undertaken during the Phase 1l research effort will improve the compression ratio and
the fidelity of reconstruction. For example, conventional techniques such as image scgmenta-
tion and image processing, combined with optimization of the HD wavelet parameters, can
be confidently predicted to yield continued improvements in the performance of the HDT

compression algorithm.

Figure Captions

e Figure 1 Original Image “Island” of 64 x 64 pixels; (a) surface plot (b) contour plot.

e Figure 2 Reconstructed Image “Island” from 32 x 32 HD) coeflicient matrix with CR
= 1 and MSE = 0.00451 . (a) surface plot {b) contour plot.

e Figure 8 Reconstructed Image “Island” from 16 x 16 HD coeflicient matrix with CR
= 4 and MSE = 0.232 . (a) surface plot (b) contour plot.
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Figure 4 Original Image “Gordon” of 256 x 256 pixels.

Figure 5 Reconstructed Image “Gordon” with CR = 1 and MSE = 13.6 .

Figure 8 Reconstructed Image “Gordon” with CR = 4 and MSE = 25.7 .

Figure 7 Reconstructed Image “Gordon” with CR = 16 and MSE = 59.7 .

Figure 8 Reconstructed Image “Gordon” using low L with CR = 4 and MSE = 61.8 .

Figure 9 Reconstructed Image “Gordon” using high I with CR = 4 and MSE == 1104

Figure 10 Original Image “Liberty” of 512 x 512 pixels.
Figure 11 Reconstructed Image “Liberty” with CR = 4 and MSE = 227 .

Figure 12 Reconstructed Image “Liberty” with CR = 16 and MSE = 476 .
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(a) surface plot (b} contour plot.
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Figure 1 Original Image “Island” of 64 x 64 pixels
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Figure 2 Reconstructed lmage shnd” from 32 x 32 HD cocllicient matrix witl CR

= 0.00451 . (a) surface plot (b) contour plot.

Figure 2a

16

Foand MSE




Figure 2b
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Figure 3 Reconstructed Timage “Island” frotm 16 x 16 1D cocllicient matrix with CR- 4 and

= 0.232 . (a) surface plot (b} contour plot.

Figure 3a
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Figure 3b

19




Ficure 4










risure o
















7 Conclusions

We have established a transform description of the hyperdistribution approach to image
processing, the hyperdistribution transform (HDT). The properties of the HDT have been
outlined in a fashion analogous to more conventional transforms, such as the Fast Fourier
Transform. We have demonstrated compression of both synthetic and natural images using
a truncated HDT expansion. For unsegmented natural images, compression ratios of 4:1 and
16:1 were demonstrated. Standard techniques used for conventional image compression al-

gorithms should allow further improvements in the performance of HDT image compression.
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A Computer Code

The computer program used to perform the analysis is included here. The language used is
standard ANSI C. The utility routine used are from Numerical Recipes Press et. al. and
are not included in this report.

/*******************************#*#**************#*#*#***#****#*t*****

* This program is used to calculate the Hyperdisdribution transfrom =

* of an image and to reconstruct the approximate to the image from =*

* the Hyperdistribution transfrom. *
LT *
* by Thomas W. Drueding date : 3/9/91 *
* Aero-Mech Dept. *
* Boston University *
* (617) 353-5260 *

T e T T L e L T T T T TP e T Ty
#include"malloc.h"

#include"nrutil.h"

#finclude<stdio.h>

#include<math.h>

#define PI 3.14159265359

void image_read(),image_write(),init_grid(),make_hdimg(),make_rlimg();
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main(argec,argv)

int argc;

char *argv[];

{
float x**image,**recon,*+*hdimg,**trans,limit;
int p,k;
/* Inititialize paramters */
if (arge < 3) {

printf("Usage: hd (p) (k) (limit) \n");
exit();

}
sscanf (argv[1],"%d",&p); /* x/y size of real image (assume square image) */
sscanf (argv(2],"%d",&k); /* x/y size of HD image (assume square image) */
sscanf (argv(3],"%f",&1limit); /% edge of coordinate system on the image =/
/* Allocate dynamic memory for matrices */
image = matrix(i,p,1,p); /* image : original image */
recon = matrix(1,p,1,p); /* recon : reconstructed image */
hdimg = matrix(0,k-1,0,k-1); /* hdimg : HD image (HD transform of image) */
trans = matrix(0,k-1,1,p); /* trans : HD transformation matrix x/
/* PROCESS #*/
image_read(image,p,"image.b"); /* read original image from file */
init_grid(trans,k,p,limit); /* setup HD Transformation matrix */
make_hdimg(image,hdimg,trans,k,p); /* calculate HD transform of image */
make_rlimg(recon,hdimg,trans,k,p); /* calculate image from HD transfrom »/
image_write(recon,p,'recon.b"); /* write reconstructed image to file */

}

31




/* Read BINARY image from file #*/
void

image_read(image. size, filename)
float **image;
int size;

char *filename;

{
FILE *fp;
int i,j;
if ((fp = fopen(filename, "rb")) == NULL){
printf("Cannot open file %s\n", filename);
exit (0);
}
Printf("\nReading ¥%s...\n", filename);
for (i=1; i<=size; ++i)
for (j=1; j<=size; ++j)
image[i][j] = ((float) getc(fp)) - 127.0;
fclose(fp);
printf("...done\n");
}
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/* Write BINARY image to file */
void

image_write(image, size, filename)
float **image;
int size;
char *filename;
{

FILE *fp;

int i,j;

float val;

if ((fp = fopen(filename, "wb")) == NULL){
Printf("Cannot open file %s\n", filename);
exit (0);
}
printf("\nWriting %s...\n", filename);
for (i=1; i<=size; ++i)
for (j=1; j<=size; ++j){
val = image[i] [j] + 127.0;
if (val < 0.0) val = 0.0; /* check bounds */
else if (val > 255.0) val = 255.0;
putc( (char) val , £p); /* convert to binary and write */
}
fclose(fp);
printf("...done\n");
}
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/* setup HD Transformation matrix x/
void init_grid(trans,k,p,limit)
float **trans,limit;
int k,p;
{
int n,i;

float s,ds,Const,Tn2,Tn1,Tn0;

printf("\nInitializing grid ...\n");
ds = 2.0 * limit / (p-1.0);
Const = aqrt( ds / sqrt(PI) );
for (i=1; i<=p; i++){
8 = -limit + (i~1) * ds;
Tni = 0.0;
trans{0]{i] = TnO = exp(-s * 8/2) * Const;
for (n=1; n<=k-1; n++ ){
Tn2 = Tnti;
Tnl = TnO;

trans[n] [i] = TnO = s * sqrt((float)2/n)* Tni - sqrt((float)(n-1)/n) * Tn2;

}
printf("...done\n");
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/* calculate HD transform of image */
void make_hdimg(rlimg, hdimg,trans,k,p)
float **rlimg,**hdimg,**trans;
int k,p;
{
int i,j,n,m;
printf ("\nMaking HD image...\n");
for (n=0; n<=k-1; n++)
for (m=0; m<=k-1; m++)
for (i=1; i<=p; i++)
for (j=1; j<=p; j++)
hdimg[n] (m] +=rlimg[i] [j]1*trans(n] [i]*trans(m] [j];
printf("...done\n");
}

/* calculate image from HD transfrom */
void make_rlimg(rlimg,hdimg,trans, k,p)
float **rlimg,**hdimg,**trans;
int k,p;
{
int i,j,n,m;
printf("\nMaking RL image...\n");
for (i=1; i<=p; i++)
for (j=1; j<=p; j++)
for (n=0; n<=k-1; n++)
for (m=0; m<=k-1; m++)
rlimg(i] {j1+=hdimg[n] {m]*trans[n] [i]*trans[m] [j];
printf("...done\n");
}
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Hyperdistributions 1: One Dimensional
Analysis

We develop in this paper and the following paper a new technique for the
calculation of convolution products and their inverses. This is accomplished
by constructing a class of singular “functions”, hyperdistribution, that form
a closed algebraic field with the convolution product as the multiplicative
operation. In this paper we consider functions of a single variable. This
one-dimensional algebra can be applied to signal processing. Furthermore,
in this paper we use the construction of hyperdistributions to obtain a novel
parametric approximation method. We demonstrate the use of our approxi-
mation method with simple examples.
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Introduction

In the sequel. we develop a novel tool for the calculation of convolution
products and their inverses: hyperdistributions which give simple applica
tions to the two related areas of signal analysis and 1mage processing.

Hyperdistributions are singular “functions”. defined and constructed be-
low, that we find to form a algebraic abelian field with the convolution prod-
uct as the inultiplicative operation.

Signal analysis is a natural application of hyperdistribution in one (one
dimensional) variable. Image nrocessing is a corresponding application for
hyperdistributions in a two dimensional variable. Tomography corresponds
to three dimensional variable and the budding field of space-time processing
corresponds to four dimensions.

The outline of the paper is as follows. In section 1 we introduce hy-
perdisiributions heuristically. we discuss the convolution group and derive
a remainder theorem. In section 1T we construct rigorously hyperdistribu-
tions bv a modificd Hermite polynomial expansion and we use the tools of
the Christoffel-Darboux theory to obtain sufficient conditions for L2 conver-
gence. In section 111 we show that Gauss’ multipole expansion is obtained
explicitly as a simple application of the hyperdistribution inverse. Finally,in
section IV we expand a gaussian function in terms of derivatives of a different
gaussian to demonstrate the use of our new parametric expansion and the
concurrent minimization of error. The logical interconnection of the sections
is shown in Fig 1.

We note that, in eflect we introduce a method for establishing and ap-
proximating solutions of integral equat ons of convolution form based on the
use of this new class of singular functions. We demonstrate with examples
that there are cases for which our method is applicable, but Fourier trans-
form methods fail. Our method requires the calculation of the morments of
the given functions and of the kernel rather than calculation of their Fonrier
coefficients. This property motivates consideration of examples for which our
method is clearly preferable to Fourier transform techniques. Applications
are given with emphasis on image deconvolution and the analysis of turbulent
flows.
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1 Heuristic definition of Hyperdistribution.

We introduce a general approximation whose integral properties are the focus
of interest. Our approximation displavs in configurafion space the properties
of the classical moment generating expansion for the Fourier transform of
the probability distribution. Maments. and even shapes, are shown to be
captured well by our expansion. In addition, our expansion allows consider-
ation of “functions™ which are more singular than temperate ( i.e. Fourier-
analvzable) distributions. but that can he represented by infinite sequences of
distributions. We call these “functions™ generalised distributions. We show
that generaliscd distributions form the appropriate framework for carrying
ont the process of deconvolution, in fact. we give a straightforward algorithm,
the “Bochner-Martin algebra™, to compute explicitly the convolntion inverse
of any generalised distribution. Applications of the method to simple opti-
cal deconvolutions are shown to be straightforward. These applications have
been motivated originally by our studies of optics and turbulent flows. We
have since become aware of the much wider applicability of our methods.

1.1 Taylor and moment expansions

The theory of generalised distributions is built on ideas related to Dirac’s
delta function, wiich is technically a “generalised function™. The Dirac delta
function, é(r). has the properties

/MCﬁ(m)d:r* j (1)

AR o]

and
S B R VIET (2)

for any suitably smooth function, f(z). We term equation(2), “Dirac’s iden-
tity ™.

The Dirac delta function is symmetric in its argument,.ie. §(a ')
&(x’ ) and, since the Dirac delta function is a generalised function | we
may Taylor expand &(a' -~ r) about 2’

b(r' —x) -~ 8(2"y wb () 222"y 4 R(7) (3




Here §'(z) = dé(z)/dx. §"(x) - d*6(r)/d=?. etc. This expression and similar
ones below are assumed to hold under integration. Equation (3} allows one
to compute a “local”™ approximation to f(z), since if we substitute this ex-

pansion into Dirac s identity. we recover the usual Tavlor expansion of f(r)
abont ¢ - 0.

flz) - (O} + af/(0) 4 2272 f"(0) 4 ... (1)

This approximation is local in the sense that it requires derivatives of f(r)
at a single point. # = 0, and in general has a limited radius of convergence.
On the other hand, if we expand §(x — ') about z. we have

8z — ') = 8(z) - 2’6 (x) + 2?/218 (=) + ... (5)
When this series is substituted into Dirac 's identity, we obtain
f(z) = M°8(z) - M () + M?/2'6"(z) + ... + R"(z) (6)

The coefficients M, defined by
| T f(e)dr (1)

are simply the moments of the function f(z). Therefore equation (6) is an
approximation of f(r) involving global information about f(x). that is, the
moments of the function.

This then may be taken as a motivation for our definition of a generalised
distribution as a function which may be written in the form,

f(z) = ) anb7(x) (R)

n-0

The a,, values are coefficients given by
a, - (- 1)"M*/n! (9

Note that equation (R) is equivalent to the familiar moment generating ex-
pansion of probability theory (see equation (6)).




1.2 The Convolution Group

If we have two generalised distributiens f; and f,. their linear combination
Afy + pufy is also a generalised distribution (where A and u are real coef-
ficients). The pth derivative of a generalised distribution, d”f(r)/ds" -
VP f(z). is a generalised distribution. Also. the convolution of two gener-
alised distribution f; » f; is a generalised distribution. These may all be
thougnt of as “closure properties™ of generalised distributions.

Generalised distributions allow us to make an eflective computation of
the convolution inverse. Given a generalised distribution f, the desired con-
volution inverse In|f] satifies

foInlf) =6 (10)

Here 8 represents Dirac ‘s delta function, which is the identity of the convolu-
tion operation. We shall show by our construction that I'n|flis a generalised
distribution. Writing the convolution explicitly,

feamifi= [ st e nlf)ie - o) = 6(e) (1)

It is now necessary to compute the product of the sums and match coefh-
cients. Taking, f(r) = 3, a, " (¢), and In{f(z)] = 3, b, " é(z), we see
that the computation of the convolution inverse is effectively the determina-

tion of a collection of b, values. given a set of a, values. Substituting into
equation (111,

[ a3y 0y T 8N by b ) = ) (12)
o PO -0

Noting that </, ,» — 7, and that \y78(2)«y%(z - #') = "' 98(2), equation
(12) may finally be reduced to

d(ap ) by V7 8(2)) = b(x) (13)

r

or equivalently withr :- p i ¢

Z:Xﬂpb» p V7 B(7) - 8(7) (11)

2 }




Matching coefficients on the left hand and right hand sides implies that only
the 7 - 0 term survives. The result is a linear system of equations for the b
values in terms of the a values. It is easiest to see the behavior by writing
the first few equations in this linear system,

apghy — 1
aphy + ayhy = 0
aghy + ayby 4 ashy = 0
aohs + a1by 4 azby 4 azhy — 0 (15)

and so forth. Thus, we can see that, by = 1/ag. by = —ay/a2b, ~ ai/a} -
az/a}. etc. This completes the computation of the terms of the convolution
inverse.

1.3 Fourier Transforms and simple examples

Lastly, we shall want to consider the Fourier transform of a generalised distri-
bution. Again taking f(z) — 3%, e, V" 6(7), we can immediately evaluate
the Fourier transform as:

[ erp@de = Y an [ et gn b(a)de
’ n-.0 "o

in fty
= Yan(-1y /j(v"e"h)s(r)dx
=S (i) (16)
n=90

where for the last step we have used 7"¢*** = i"k. The Fourier transform of
a generalised distribution may be scen to be a power series.

The Fourier transform of a function is the “moment generating function™
because of equation (9). Thus the basic requirement for the validity of writing
a function as a generalised distribution is that its moments be finite, or more
stringently, that its Fourier transform be real analytic.

Generalisation of this discussion to a two-dimensional generalised distri-
bution. as would be required for most types of imaging data, is relativeiy
straightforward. This generalisation retains the mathematical properties,
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particularly for convolutions and Fourier transforms. that make generalised
distributions attractive for signal processing.

Simple explicit examples of convolution inverses are obtained from the
standard Green s functions. The one-dimensional Helmholtz equation, for
example, can be treated equally easily with generalised distributions and with
Fourier transforms to obtain both the Green 's functions and its convolution
inverse. Thus. we have

(d2/d1,2 + ]/4)9-111/2 TE (17)

Application of equation (15) shows that only by and b; contribute to the
convolution inverse and, in fact, writing f = Inv{f],

Invie "2 = 1/26(z) - 6" () (18)

This result is easily reproduced by using Fourier transforms and is easily
verified using equation (10).

In contrast, the convolution inverse of the Gassian function cannot be
obtained a: a Fourier transform, but it is easily obtained using generalised
distributions. It may be verified that for a Gaussian function of width o, the
convolution inverse is readily obtained from equation (15), while calculation
using Fourier transforms leads to a divergent result. Calculation of moments
and use of equation (15) yields

am = (o/V2)"/n!
b = (-1)(0/V2)"/n! (19)




2 Rigorous Construction of Hyperdistribu-
tions

In this section we first modify the classical expansion in the Hermite polvmi-
als. This expansion is “superior” to a power series expansion in that the terms
are orthogonal, making the error orthogonal to the approximation. Our mod-
ification maintains this advantage. Furthurmore, the standard Christoffel-
Darboux analysis gives a very useful sufficient condition for convergence that
our expansion inherits from the Hermite polymial expansion. Since our ex-
pansion utilises the Rodriguez formula for the Hermite polymials, we call it
the “Rodriguez expansion”.

2.1 Modified Hermite Expansion: Rodriguez expan-
sion

In effect. we discuss here a systematic pointwise approximation of generalised
distributions. This approximation method is analogous to the method de-
veloped by Temple to approximate distributions by smooth functions. The
Temple method has become widely known through Lighthill s monograph:
Fourier Series and Generalised Functions.

Generalised distributions are approximate by a modification of the clas-
sical expansion in Hermite polymials (hereafter called the “Hermite expan-
sion”) which is suggested by the Rodriguez formula:

n . 3'7 n - 77
(-1)"H,(z)e 7 =y e (20)
where 57 denotes the derivative. For simplicity. we consider here the one-
dimensional problem. so that \7 is the ordinary derivative with respect to the
variable z. To see how the Hermite expansion can be transformed into an
approximation for generalised distributions, consider a function f(z) which
we want to represent as a generalised distribution. Multipy f(z) by
e’ 27 /A2
e’ 21
= (21)
then expand the resulting expression in terms of the "scaled Hermite polymi-
als

HX(2) - X "Ho(z/)) (22)




whose definition is justified by the formula (25) below. We obtain the cx-
pression

7 /a2

: o) H (23)
(IR

Multiply both sides of the equation by the normalised Gaussian introduced
by Temple, i.e.
—2?/A?
€

br(z) = N3\ (24)

And, observe that by rescaling the Rodriguez formula (20) we can write

(- 1P HA(2)85(2) = T™6r(x) (25)

The final result is -
1) = Y. G " 6x(a) (26)

n—0

where we have introduced the coeflicients

Cp o= (-1)e
Az‘n +4 oo

a) = f(z)H) (2)dx (27)
2"11! -~ 00

When we let A tend to zero, we have a representation of f(z) as a generalised
distribution. We call the expansion (26) the "Rodriguez expansion for f(zr)
with width A". The width parameter is a novel feature of the Rodriguez
expansion when compared to standard expansions in complete sets of basis
functions. The standard expansions do not contain a free parameter. The
advantages of the Rodriguez expansion will be demonstrated below in the
context of the theory of generalised distributions and of convolution inverses.

We consider as an example a function familiar from the analysis of tur-
bulence spectra, the “Ogura” function

f(z) = Ne ™' (28)

With N determined by the normalisation condition,

f'wf(a»)dm 1 (29)

- 00




we have

N = (1/2)F(1/4) ~ 1.8128 (30)

A number of graphs are now used to illustrate the three main advantages of
the Rodriguez expansion.

1.

The Rodriguez expansion converges pointwise. (See Fig 3.) The Her-
mite expansion also converges pointwise, but the convergence is slow
for large values of the argument. In addition, the Hermite expansion
exhibits ™ whipping tails™ for large values of the argument.(See Fig 6.)

The pointwise convergence of the Rodriguez expansion is independent

of A, but the rate of convergence can be optimised by a proper choice
of A. (See Fig 3)

. In addition to pointwise (i.e. local) convergence, the Rodriguez expan-

sion exihibits a global convergence manifested by accurate represen-
tation of moments of the function being approximated. To illustrate
this global convergence, since the function we are cousidering here is
symmetric in r, we have found it convenient to consider "one-sided
moment” plots to exihibit the convergence of our generalised distn-
bution approximations. These are integrals over positive r only, i.e.
pn(®) = [ (") f(z')d2’. The one-sided moments of order n are given
with excellent accuracy by numerical integration of the approximation
with n + 1 terms. (See Figs 4 and 5.) Again in shary contrast, the
Hermite expansion gives divergent moments. (See Fig 7) Note that the
horizontal axis in the one-sided moment plots is the argument r.

To summarise, the Hermite expansion exhibits pointwise convergence, albeit
with “whipping tails”. By contrast, the Rodriguez expansion exhibits point-
wise convergence without “whipping tails”. As a consequence, the Rodriguez

expansion also yields a global approximation by accurately representing the

moments. Furthurmore, the Rodrignez approximations has an adjustable
parameter which may be selected to optimise the rate of convergence. The
Christoflel-Darboux theory gives the necessary condition for convergence in
appropriate L2. For the Hermite expansion we have

+ 00
/ e”’f""dr(\oo (31)
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Inserting the transformation that leads to the Rodriguez expansion, we find

/ '™ ffdr < oo (32)

for the corresponding L? definition for the Rodriguez series.

2.2 Definition of Hyperdistributions

In order to describe the process of antidiffusion, we have introduced a class
of highly singular “functions”, that are precisely defined in this section. Our
process for defining hyperdistributions parallels the Temple definition ( gen-
eralised function) as a good sequence of good functions. Good functions are
smooth and tapered. More precisely, they are totz! point functions that are
differentiable to all orders (C*), and decay at +oo faster than any power.
Good functions play the role of “testing” a sequence of good functions for
weak convergence. In fact, a sequence of good functions is a distribution if

4 oo

lim d(r)fo(e)dr < oo (33)

NN e

for all good functions ¢.

Since we conceive of hyperdistributions as “generalised™ distributions, we
are in fact implementing a second order generalisation of functions. Con-
sequently, we need a double test as a convergence criterion. We implement

this criterion by introducing very good functions G, (r) with the following
properties:

1. Ga(z) is smooth, that is, differentiable to all orders, ™.

2. G(z) is essentially compact, i.e. it has a gaussian decay at +oo :

GA(.’!‘.) ~ NP_ZZ/AZ.

We will assume for convenience that G, is normalised to unity:

/m(:,‘(m)dr . (31)

We define the width of G, by

A%ja = /“’C(:r )Gy (2)dr (35)

2%}

H




A primary example of very good functions is the gaussian, which we denote

b_v 5,\(3!):

& < 3
S — 6
'\(T) \/WA ( )
We now introduce a sequence of very good functions defined by
Hi(z) = 3. ax 7 6x(7) (37)

k=0

The sequence {H}},,. where A is a nonnegative real and n is a natural
number, is a good sequence if, for all good functions ¢ and for all very good
functions G, . there exists a Ag such that, for all A > Ag,

4 oo
lim (z)(H) * Gy Y (z)dr < o0 (38)
A -0 Biiad

We note that e*'V’§(z) are hyperdistributions. The sum (hyperdistribution)

> ey V" 6(x) (39)
k=0

can thus be viewed either as a sequence of “good” distributions as A — 0:
Zﬂ'k v* é(z) (40)
k=0

or, as n -» 00, as sequence of good functions:
Za’f Y/k INED (41)
k=0

The latter representation is a Rodriguez erpansion. The Rodriquez formula
for the Hermite polymials can be used to show the derivatives of a gaussian
form a complete set of orthogonal polynomials in an L? space. And thus
the Rodriguez expansion yields a very useful point function approximation
to any hyperdistribution:

i o 1)" I{T*(;\;/{)'SA(T) .
k=0

where H,(r) denotes the Hermite Polynomial in r of order n.

12




3 The Multipole Expansion

We start with the familiar Poisson equation of potential theory.

Vid=p (43)

This equation is rewritten with the help of the (infinite domain) Green ’s

function |
G(z) = —, vi=é (44)

4nr
We can then rewrte the “potential”, ¢, in terms of the “charge distribation”,
p, as

Introduce @ with the property
Qxp=14 (16)

Convolving hoth sides of eq(45) with @ and using the commutative and
associative properties of the * product, we find

Qx*¢ Q * (G « p)
= (Q@*p)*G
= G (47)

il

Solve eq(43) for ¢ in terms of the given G by computing the convolution
inverse,

Ba) = 3 M 7 G(#) (48)
k=0
which is Gauss’ multipole series with coefficients
1k
A = (__’;1.‘1— /z”"p(m)d% (19)

where @ denotes tensor product and 7®* is the tensor power of the 3-vector
T.

Substituting (49) into (48) we find a familiar expression

oo k _
o)== 3 L ([ e ot (50)

which is a standard result in potential theory.

13




We can interpret the Rodriguez expansion as a generalised multipole ex-
pansion Lhat includes a size or radius parameter, A. Thus our monopole
generates the point source, which is a Dirac delta-function as a gaussian of
width A. We recover the standard multipoles when A - 0. Our expansion
has the form

f(z) = azba(z) a;\ \WWEANEIE a.’; iR NEI T (51)
The ingredients of the expansion are the basis functions
6,\3 V6A9 vZéa\ﬁ ree (52)
and the coeflicients
A A A
ay, ay, as, ... (53)

all of which depend on the size parameter A\. The basis functions are, explic-
itly

c___a_.?/A'z
ae) = © o (51)
e~z’/)’
v{‘,\(ﬂ‘) = -2x- - (55)

_:Q/AJ

NP
These functions are plotted in Figs 8,9 and 10 for 3 values of A which show
how the basis functions tend, as A — 0, to a monopole, a dipole and a
quadrupole respectively. The corresponding expansion coefficients are given

by

€

P 6a(x) = (427/A% — 2/A%) (56)

3 [ 7 fla)i (57)

This coeflicient represents the total area, or alternatively, the total mass or
charge of the source function. Also

~a [T f(a) (58)

-0

which represents the net dipole of the source. In mechanical terms a} defines
the center of mass of the source function. Finally

+oc
ad Ay / o f(x)ds (59)
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which represents the quadrupole of the source distributions. In mechanical
terms this is the moment of inertia of the mass distribution. Higher order
basis function and coefficients have analogous interpretations.




ety

4 Expansion of a Function in Rodriguez Se-
ries and its Optimization.

Our expansion preserves the classical propertics that are derivable for orthog-
onal polynomial exapnsions (as opposed to power series). but also adds an
important new feature: the size or radius parameter that generates the Gaus-
sian picture of point monopole, dipole, quadrupole. etc, to a scenario in which
we can allow for extended sources. We find from the convergence condition
derived from the Christoffel-Darboux thoery in section Il that convergence
holds generally on a semi-infinite range of A. This remarkable freedom is ex-
ploited in this section to optimise the rate of convergence of the expansion.
This optimisation results in determining the value of A for which a minimum
number of terms is determin- 1 in order to obtain a given tolerance. We mea-
sure the tolerance, as usual, by the least square fit integrated over the entire
function. We define the error

(N, ) = [‘”

oc

N
de(f(z) - Y ap V" 6x(2))’ (60)
n—0
We apply the formula to a standard gaussian, 1.e. we take

fzy=e" /v (61)

we then find, after some calculations

n-} kok-9-n "

y S )Rkt (2n - 2k - 1) o
A ! 62

?:0 k'(2n — 2k)! (-1)"2 " /n (62)

where the double factorial contains only odd terms. We can now express the

standard gaussian in the Rodriguez form:

2 2 (1 - M)y,
= 3 A o) ()
n=0 '

A proof based on useful linear operator relations is as follows. We can check
by differentiation in f and z that

-x? /44

e = ' 8(x) (64)

Vart
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We now let

4t - A (65)
As a consequence. we can write
C__:Z/XQ
= () < ba(r) (66)
NZD)
We now consider the identity
eV 6(r) = Pl-”%?v’ek’v’/'i&(z,)
. A Tr)
52
— ) (67)
expanding the R.H.S.
eV ME(2) - e T NG L ;_'}i)n 72" 6\(x) (68)
o 2! VooalE

The method of proof will be used later. Furthurmore, it provides a welcone
check on the rather difficult calculations of coefficients. We see by irspection
that A = 1 1s optimal. Fig 1! shows the trend of the error function obtained
numerically. Fig 12 shows the error function on an expanded scale. The
behavior is smooth and gradient searches promise to be straightforward. We
also consider the function

R ?/A2

f(z) = cos( K:r) \'/_/\' (69)
The overall behaviour is shown in Fig 13 and an enlargement in Fig 14. The
function exhibits rapid variation. Fig 7 shows the choice of parameters K = 4
and A% = 3. Fig 16 shows the behaviour of the error and the corresponding
optimisation. In Fig 17 and 18 we show the result of deconvoluting the letter
T with hyperdistribution algebra after it was “smeared” with a gaussian
filter. In Fig 19, we simulate the crossherg-Todorcrich neural network for
the cornsweet effect with hyperdistributions.

17
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5 Conclusions

We have seen that generalised distribution provide a method for solving
Fredholm integral equations of the convolution type which is competitive
with the current methods that employ Fourier transforms. We have also seen
that generalised distributions can be approximated numerically by sequences
of smooth functions. This procedure is analogous to that of approximating
Dirac & functions by sequences of narrowing Gaussian functions. In this
introductory paper we have used one-dimensional examples for llustrative
purposes. We will discuss applications in higher dimensions and extensions
of the theory of generalised distributions in following papers.
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6 Appendix: Remainder Theorem for Hy-
perdistributions

In this appendix we give the remainder theorem for hyperdistributions. The
remainder formula is of great use in calculating I agrange and Canchy es-
timates for the terms neglected. This feature of nur expansion, like the
presence of the adjustable "radius™ parameter. is unique to our expansion
and it is not shared by other orthogonal functions expansion.

The general form of the Tavlor expansion for two distinct points y and z
is:

Fly)= F(2)4 (y- 2)v F(2)+ ... - ™Y (70)
R = ./:ydl(y St F()/n! (71)

The formula for the remainder is in fact an identity which is proven by
recursion integrating by parts.

We now give the appropriate remainder for the two dual expansions dis-
cussed in section 1.

6.1 Taylor (local) expansion

We nse
Fa) = Mo o)
- &' - 7)
y - 7 7
z - 7 (72)
We have

§(r' ) = &(z') rA(a) 4 . / Tde o U E()/nt (73)

Then we have, using Dirac 's identity

1) - [ Tar e
= J(0) s f{0) 1 R (74)
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with the remarkable relation

R - /’“’dm'f(y')/,’"’d:(r' Sr )T (1) /!
= [Tatt o or gt gy (75)

6.2 Moment (global) expansion
We set

F(z) = 8=z - 2)

y = ¢-12
z

= (76)

We then have
§(z - 2') = (z) - 2'8(x) + ... + / dt(x — =’ — ) 7 8(t)/n!  (77)

Using Dirac identity we conclude

e N B (CO TCp Y A

- o0

- 6(3',)/7:e f(z")dz' — vé(r)[_:o z'f(r')dz" + ...+ R™!
Rl — /4\ dm'f(y')/’"”' di(z — 2’ — )" o™ 8(1)/n!
- /_m dm'f(x')/’( )y - ) U E(r — y)dy/n! (TR)

oc 0
This remainder formula allows us to estimate correctly the errors when the
hyperdistribution expansion is truncated.
We ohserve that the Rodriguez expansion for a Gaussian, given in section
4 is also a Taylor expansion i.e. (settingy — = 4+ A,z = 1)

oc

fx(z b A) = Y AT YT Si(r)/n! (79)

n-0
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Multiplying both sides by a good (test) function ¢(r). and integrating , we
obtain

/maA(T WP A"V/+wv"6g(:r)q5(z)d:r/n!
e n=0 — oo

- Z("'A)"/'m@(l‘)V"¢(a~)d:r/n! (80)

n=0 i

Taking the limit A —» 0 of both sides we conclude for the Taylor expansion
of the test function i.e.

o0

o(~A) =Y (-A) 7" 8(0)/n! (81)

n=0

Therefore the test function must be real analytic to conclude that

b(r + A) - eVE(z) - Z A" 7" 8(x)/n! (82)
n-0
To show that caution musat be exercised in treating hyperdistributions as

ordinary distributions we point out an example of a function which is smooth
but not real-analytic.

Q"(T) — e—(:’il/r’) (83)

The function ¢ is infinitely differentiable (C*) and tapers exponentially at
infinity. Nevertheless it has zero derivatives at the origin and it is therefore
not real-analvtic. As a consequence, the familiar Taylor expansion of the é
function is, strictly speaking, a hyperdistribution.
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Figure Captions

Fig 1 Schematic relation among the sections of the paper.

Fig 2 The Ogura function (solid line) is plotted together with the 5
terms (dashed line) and 9 terms (dot-dashed line) Rodriguez expan-
sion to the Ogura function. Note improved convergence to the Ogura
function is seen in the 9 term expansion. In both expansions, the pa-
rameter A is chosen to be 1.0.

Fig 3 The Ogura function and 5 term and 9 term Rodriguez expansions
as in Fig 1, except with A = 0.75. Note that compared to the A =
1.0 case, deviations between the Ogura function and the Rodriguez
expansions are significantly larger.

Fig 4 One-sided moment plots of jy1,, = fg(z')*f(2')dz’ for the Ogura
function (solid line) and its 5 term Rodtriguez expansion (dashed line)
with A = 1.0. Note that the p, 's for the Ogura function and the
Rotriguez expansion coverage as x increases for n=0,2, and 4 while
pe(z) for the 5 term Rodriguez expansion differs from the Ogura func-
tion plot of ug(z)

Fig 5 One-sided moment plots, as in Fig 3, for the 5 term Rodriguez
expansion of the Ogura funclion with A = 0.75. Note that the one-sided
moments exhibit larger variations hefore converging to their larger x
values.

Fig 6 Five term Hermite expansion {dashed line) to the Ogura function
(solid line). While convergence to the Ogura function is good over the
domain in which the Ogura function exhibits significant values, outside
this domain rapid oscillations ("whipping tails”) are exhibited.

Fig 7 One-sided moment expansions of the 5 term Hermite approxi-
mation (dashed line) to the Ogura function (solid line). Note that all
of the y, ’s computed for the Hermite expansion deviate from the n,
’s computed for the Ogura function as x increases, indicating the fail-
ure of the Hermite expansion as a global approximation to the Ogura
function.
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Fig 8 The extended monopole shown with three values of the radius
parameter A. The graph shows that as A — 0, we obtain a point source.

Fig 9 The extended dipole
Fig 10 The extended quadrupole
Fig 11 Least square error for the Rodriguez expansion of a gaussian

Fig 12 least square error og Fig 11 in expanded scale

Fig 13 the rapidly varying function f(z) = cost%ﬁ with K =
10,) = 3

Fig 14 Expanded scale corresponding to Fig 13

Fig 15 The rapidly varying function with K = 4,1 =3

Fig 16 The least square error for Fig 15

Fig 17 Reconstruction of a T smeared with a gaussian filter.
Fig 18 Reconstruction as in Fig 17 with double smearing.

Fig 19 Simulation of the Grossberg-Todororic neural network with hy-
perdistributions.
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Hyperdistribution II: Two Dimensional
Analysis

We continue in this paper the development of a new technique for the cal-
culation of convolution products and their inverses. We focus in this paper
on two- dimensional problems. This is accomplished by consiructing a class
of singular “functions” of two variables . hyperdistributions of two variables,
that form a closed #lgchraic field with the convolution product as the mul-
tiplicative operation. In this paper we consider functions of twn variables.
This “4 wo dimensional™ algebra can be applied {0 image processing. Further-
more, in this paper we use the construction of hyperdistributions to obtain a
novel parametric approximation method which is the {wo-dimensional ana-
logue of the one- dimensional expansion developed in our previous paper. We
demonstrate the use of our approximation method with simple examples.




Introduction

We continue to develop a novel tool for the calculation of convolution
produncts and their invirses. We denote these new mathematical objects by
“hyperdistributions” or “generalised functions” . Thesc are singular “func-
tions”, which we construct to form an algebraic abelian field with the con-
volution product as the muitiplicative operation.

Signal processing and analysis are natural applications of hyperdistribu-
tions in one (one dimensional) variable. Image processing is a corresponding
application for hyperdistributions in a two dimensional variable. Tomogra-
phy corresponds to a three dimensional variable and the budding field of
space-time processing corresponds to four dimensions.

The outline of the present paper parallels the previous paper is as follows:
in section 1 we introduce hyperdistributions in two dimensions heuristically;
we discuss the convolution group and derive a remainder thearem. In section
I1 we construct rigorously hyvperdistributions by a modified Hermite poly-
nomial expansion in two dimensions and we use the tools of the Christoffel-
Darboux theory to obtain sufficient conditions for L? convergence. In section
111 we show that Gauss’ multipole expansion in two dimensions is obtained
explicitly as a simple application of the hyperdistribution inverse. Finally, in
section IV we expand a two dimensional gaussian function in terms of deriva-
tives of a different gaussian to demonstrate the use of our new parametric
expansion and the concurrent minimization of error.

We note that. in effect we achieve a method for establishing and approx-
imating solutions of integral equations of convolution form in two variables.
We demonstrate with examples that there are cases for which our method
is applicable, but Fourier transform methods fail. Comparing hyperdistri-
butions with Fourier transforms, our method requires the caleulation of the
moments of the given functions and of the kernel rather than calculation of
their Fourier coefficients. This property motivates consideration of examples
for which our method is preferable to Fourier transform techniques. The

applications given are motivated by image deconvolution and hy the analysis
of turbulent flows.




1 Heuristic definition of Hyperdistribution

We introduce a general approximation whose integral properties arc the foens
of interest. Our approximation displavs in configuration space the properties
of the classical moment generating expansion for the Fourier transform of
the probability distribution. Moments, and even shapes. are shown to he
captured well by our expansion. In addition, eur expansion allows consider
ation of “functions™ which are more singular than temperate (i.e. Fourier
analyzable) distributions, but that can be represented by infinite sequences of
distributions. We call these “functions”™ generalised distributions. We show
that generalised distributions form the appropriate framework for carrving
ont the process of deconvolution. in fact, we give a straightforward algo.
rithm . the “Bochner Martin algebra™. to compute explicitly the canvolution
inverse of any generalised distribution. Applications of the method to simple
opiical deconvolutions are shown to he straightforward. These applications
have been motivated originally by our sindies of optics and turbulent flows.
We have since become aware of the much wider applicability of our methaods.

1.1 Taylor and mioment expansions

The theory of generalised distributions is built on ideas related to Dirac's
deita function, which is technically a “generalised function™. The Dirac delta
function, é(x), has the properties

//: Hay)drdy - // 5(z)by)drdy

TN (1)
and
(r.3) /] dr'dy' [ (= Py ) (2)

for any suitably smooth function, f(2). We term equation (2), “Dirac '«
identity™.

The Dirac delta function is svmmetrnicin its argument .1.e.8(r 2.y )
Ma'  r.y' y)and, sinee the Dirac delia function is a generalised function,
we may Tavlor expand 82" 7.y y) about (2" y').
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This expression and similar ones helow are assumed to hold under integration.
Eqnation (3} allows one to compnte a “local”™ approximation to f(r.y). since
if we substitute this expansion into Dirac’s identity, we recover the usual
Taylor expansion of f(r.y) about (r.y) (0.0).

flaoy) - f0.0) 4 25, f(0,0) v S 0 (0,0) v ...+ R3S {1

This approximation is local in the sense that it requires derivatives of f(r)
at a single point # — 0, and in general has a imited radius of convergence.
On the other hand. if we expand #{c 7',y y') about r, we have

blr 2y y) = 8ay) - VLE(ry) YV E(ry) 4o et (5)
When this series is substituted into Dirac’s identity, we obtain
J(xyy) = MP6(x)é(y) -~ M'T8(x)8y) + .t R3S (6)
The coefficients M7, defined by

MY — f/;mf(r,y)drdy
M- /[: 2 f(z,y)drdy
My = [ [ Tt dndy (7)

are simply the moments of the function f(r,y). Therefore. equation (6) is
an approximation of f(z,y) involving global information about f(z,y), that
15, the moments of the function.

This then 1nay be taken as a motivation for our definition of a generalised
distribution as a function which may be written in the form,

fey) = 3 an e E()y)

n~0
0
g ORY - an
ay Tro- "I:rvr 4 "?x/‘—!/
as =) ‘-‘2 (12“.‘-3 | 202,!“7,\_’!} ¥ Ozyy‘—s (R)

The a,, values are coefficients given hy
a, ~{ IY"M/a! (9

Note that equation (8) is equivalent 1o the familiar moment generating ex.
pansion of prohahility theory (see equation 6).




1.2 The Convolution Group

If we have two generalised distributions fy and f,. their Linear combination
Afi 1 pfa is also a generalised distribution {where A and p are real coefli.
cients). The pth derivative of a generalised distribution, VP f(x,y), is a gen.
eralised distribution. Alsa | the convolution of two zeneralised distribution
i * f2 is a generalised distribution. These may all be thought of as “closure
properties” of generalised distributions.

Generalised distributions allow us to make effective computation of the
convolution inverse. Given a generalised distribution f, the desired convoln-
tion inverse In|f] satifies

[~ Inlf] ~ 6(z,y) (10)

Here (., y) represents Dirac’s delta function, which is the identity of the
convolution operation. We shall show by our construction that In{f{is a
generalised distribution. Writing the convolution explicitly,

[*Inifl = / /:e dz'dy' f(', ¥V nlfi(= 2",y - ¥') = 8(2)8(y) (11)

It is now necessary to compute the product of the sums and match coef-
ficients. Taking f(r.y) =~ X ga, © V"8(2)8(y).and g(z.y) - Y240, O
Vné(z)é(y), we see that the compntation of the convolution inverse is effec-
tively the determination of a collection of b, values, given a set of a,, values.

Substituting into equation {11),

Urh(r.y) « V(e y) - V(2L y) (12)

This gives
3 (0, Y b, (L y)) - B y) (13)
q

r

or equivalently withr - p i g
Xz:n,,h, T8 ry) My (11)
p Dr O

Matching coeflicients on the left and right hand sides implies that onlv the

r - 0 term survives. The result is a linear system of equations for the b

M




values in terms of the a values. It is easier to see the behavior by writing the
first equations in this linear system.

ﬂnu"nn ’ 1
agobio ¥ @b 0
aoohor + agihoy 0 {15)

and so forth. Thus, we can see the computation of the terms of the convolu-
tion inverse.

1.3 Fourier Transforms and Simple Examples

Lastly, we shall want to consider the Fourier transform of a generalised dis-

tribution. Again taking f(r,y) —~ 3% ,0,.V"8(x,y). we can immmediately
evaluate the Fourier transform as:

[ [T drdysiz gyt ion 3 a0 ( iy (16)
Toone n-0
where for the last step we have used Vnetkivtioy o (iky" The Fourier

transform of a generalised distribution may seen to he a power series.

The Fourier transform of a function is the “moment generating function™
because of equation (9). Thus the basic requirement for the validity of writing
a function as a generalised distribution is thaf tis momeuts be finite, or more
stringently, that its Fourter transform he rea! analytic.

Simple explicit examples of convolution inverses are obtained from the
standard Green's functions. The two-dimensional Helmholtz equation, for
example, can be treated equally easily with generalised distributions and with
Fourier transforms to obtain both the Green’s function and its convolution
inverse. Thus | we have

I2) 4 1u!

(Y2 /e T sy (17)

Application of equation (15) shows that only by and by contribute to the
convolution inverse

Irtd fy!

Inle 737 8a.y)/2 b (x.y) (18)

6




This result is easily reproduced by using Fourier transforms and is easily
verified using equation (10).

In contrast, the convolution inverse of the Ganssian fupction cannot be
obtained as a Fourier transform. but it is easily obtained nsing generalised
distribntions. It may be verified that for a Gaussian function of width a . the
convolution inverse is readily obtained from equation (15), while calculation
using Fourier transforms leads 1o a divergent result. Calculation of momnets
and use equation {15) vields

KL (a/V2)/n!
bon = (- (a/V2) 0! (19)




2 Rigorous Construction of Hyperdistribu-
tions

In this section we first modify the classical expansion in the Hermite polyno.
mials. This expansion is “superior” to a power series expansion in that the
terms are orthogonal, making the error orthogonal to the approximation. Our
modification maintains this advantage, Furthuremore, the standard Christof-
fel -Darbonx analysis gives a very useful sufficient condition for convergence
that our expansion inherits from the Hermite polynomial expansion. Since
our expansion ulilises the Rodriguez formula for the Hermite polynomials,
we call it the “ Rodriguez expansion™.

2.1 Modified Hermite Expansion: Rodriguez expan-
sion

In effect, we discuss here a systematic paintwise approximation of generalised
distributions. This approximation method is analogous to the method de-
veloped by Temple to approximate distributions by smooth functions. The
Temple method has become widely known through Lighthill's -nonograph:
Fourier Series and Generalised Functions.

Generalised distributions are approximate by a modification of the classi-
cal expansion in Hermite polynomials (hereafter called the “Hermite expan-
sion”) which is suggested by the Rodriguez formula:

( ])n*mlln(r)nm(’y)f’—(m2+y’) — V:v;ne_h-?ey;) (20)

To see how the Hermite expansion can be transformed into an approximation
for generalised distributions, consider a function f(r,y) which we want to
represent as a generalised distribution. Multiply f(=,y) by
R
e iz

e (21

then expand the resulting expression in terms of the “scaled Hermite poly-
nomials”

H ) X "Ho(x/\) (22)

n




whose definition is justified by the fromula (25) below. We obtain the ex-
pression

tQ_l_y? X r7_4‘y7
¢ it ¢
I(=.y) a2 2_;’ }Tn)"i,nlllﬂ(f)[’i(y)’ 37 (23)

Multiply both sides of the equation by the normalised Gaussian introduced
by Temple, i.e.

2 2

P
oz y) - o :
Mz.y) A2 (24)
And, observe that by rescaling the Rodriguez formula (20) we can write
(- " HY (@) H o ()b, y) = VI 6A(z,y) (25)
The final result is
fay) =3 3 VTV 6(e,y) (26)
n-0m=0

where we have introduced the coeflicients

(i,m = ( 1 )n" ™ ()v};,m
A?nl'Zm 400
Qo = soimi [ [ H@ ) Ha(ydzdy (21)
' 2ntmplim!, -

When we let A tend to zero, we have a representation of f(#) as a generalised
distribution. We call the expansion (26) the “Rodriguez expansion for f(r)
with width A", The width parameter is a novel feature of the Rodriguez
expansion when compared to standard expansions in complete sets of basis
functions. The standard expansions do not contain a free parameter. The
advantages of the Rodrignez expansion will he demonstrated below in the
context of the theory of generalised distributions and of convolution inverses.

We consider as an example a function familiar from the analysis of tur-
bulence spectra, the “Ogura” function

flr,y) - Ne e (28)

With N determined by the normalisation condition,

/ / :x [, y)drdy | (29)




we have
N = (1/4)T%(1/4) = (1.8128)° (30)

The Hermite expansion exhibits pointwise convergence, albeit with “whip-
ping tails”. By contrast, the Rodriguez expansion exhibits pointwise conver-
gence without “whipping tails”. As a consequence, the Rodriguez expansion
also yields a global approximation by accurately representing the moments.
Furthurmore, the Rodriguez approximations has an adjustable paramecter
which may be selected to optimise the rate of convergence. The Christoffel-

Darboux theory gives the necessary condition for convergence in appropriate
L?. For the Hermite expansion, we have

+oo 3
/ j e~ f2(2 y)dzdy < oo (31)

Inserting the transformation that leads to the Rodriguez expansion, we find

//:: e v F(z,y)dzdy < oo (32)

for the corresponding L? definition for the Rodriguez series.

2.2 Definition of Hyperdistributions

In order to describe the process of antidiffusion, we have introduced a class
of highly singular “functions”, that are precisely defined in this section. Our
process for defining hyperdistributions parallels the Temple defin tion (gen-
eralised function) as a good sequence of good functions. Good functions are
smooth and tapered. More precisely, they are total point functions that are
differentiable to all orders (C*°), and decay at ‘oo faster that any power.
Good functions play the role of “testing” a sequence of good functions for
weak convergence. In fact, a sequence of good functions is a distribution if

tim [ [ :" 8(2,3)ful, y)dzdy < oo (33)

n-—o00

for all good functions ¢.

Since we conceive of hyperdistributions as “generalised” distributions, we
are in fact implementing a second order generalisation of functions. Con-
sequently, we need a double test as a convergence criterion. We implement

10




this criterion by introducing very good functions G (z,y) with the following
properties:

1. Ga(z,y) is smooth, that is, differentiable to all orders, C*°.

2. Gi(z,y) is essentially compact, i.e. it has a gaussian decay at +oo :
Ga(z,y) = Ne~ (& +7),

We will assume for convenience that G, is normalised to unity:

/[:o Gi(z,y)dzdy = 1 (34)

We define the width of G, by

rja= | :"(z — 5)(y — §)*Ca(z, y)dedy (35)

A primary example of very good function is the gaussian, which we denote
by 8x(z,y): ..
e g

oz, y) = —5— (36)

We now introduce a sequence of very good functions defined by

A
HY(§, 1) =) 4 ® VI6N(§, 1) (37)
=

The sequence {#}}5,, where lambda is a nonnegative real and n is a natural
number, is a good sequence if, for all good functions ¢ and for all very good
functions G,, there exits a Ag such that, for all A > A,,

tim [ 77 (2, 0)(9 + G811 < oo (38)

A0

We note that e*t¥’§(z,y) are hyperdistributions. The sum (hyperdistribu-
tion)

i a5 ® V"S(z,y) (39)

k=0

11




can thus be viewed either as a sequence of “good™ distributions as A » ¢:

}_: ar & Cre(r,y) (10)

ko

or.as n oo, as sequence of good functions:

oc

anQV"&(r.y) (1])

k=0

The latter representation is a Rodriquez erpansion. The Rodriguez formula
for the Hermite polynomials can be used to show the derivatives of a gaussian
form a complete set of orthogonal polynomials in an L? space. And thus the

Rodriguez expansion yields a very useful point function approximation to
any hyperdistribution:

S aw(- 1) Hale /A Hi( g/ )ia(x, 3) 24! (12)

k-0

where /1,(7) denotes the Hermite Polynomial in z of order n.




3 The Multipole Expansion
We start with the familiar Poisson equnation of potential theory,
Tl g (13)

This cquation is rewritten with the help of the (infinite domain) Green's
function

Glr,y) - In(#)/2/7
VG #(r.y)

1'2 3'2 by

(41)

We can then rewrite the “potential”™, ¢, in terms of the “charged distribu-
tion™, p as

¢ G+p (45)

Introduce @@ with the property
Q+p 8 (16)

Convolving hoth sides of eq(45) with @ and using the commutative and
associative properties of the * product, we find

R+¢ = Q*(Gxp)
= (@xp)+C
- @G (47)

Solve eq(43) for ¢ in terms of the given G by computing the convolution
inverse,

Pz, y) = i,\k(-)vk(l(r.y) (48)

k=0

which is Gauss’ multipole series with coefficients

kil

where ® denotes tensor product and 8% is the tensor power of the 3-vector
T

13




Substituting (19) into (18) we find a familiar expression

x k - :
Br.y) L " (/ / v e yydrdy) R V"I,‘l-(,) (5M1)
= M s 27
which is a standard result in potential theory.

We can interpret the Rodriguez expansion as a generalised multipole ex-
pansion that includes a size or radius paramter. A. Thus our monopole
generates the point source. which is a Dirac delta-function as a gaussian of
width A, We recover the standard multipoles when A > 0 . Our expansion
has the form

froy) = agbala.y) + (a7,V0 4 a},V)oa(z,y) 1 ... (51)
The ingredients of the expansion are the basis functions
8y, V.85, Vyba, .. (52)

and the coefficients
Y Y Y
aq, ay,- LIS (53}

all of which depend on the size parameter A. The basis functions are, explic-
itly

e ( t?i}y?
i)~ (51)
. (.E_’f?’?_)
Veba(r,y) = - 27 ST (55)
C“({’;t,v’)
Viba(z,y) = -2y T (56)

The corresponding expansion coeflicients are given by

ad ~ / ‘/f: f(z.y)dzdy, (A >0 (57)

This coefficient represents the fotal area. or alternatively, the total mass or
charge of the source function. Also

@)~ / / :’ 2 f(z,y)dzdy. (A > 0) (58)
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which represents the net dipole of the sonree. In mechanical terms aj, defines

the center of mass of the source function. Finally

s [ [ a0 (59)

which represents the quadrupole of the source distributions. In mechanical
terms this is the moment of inertia of the mass distribution. Higher order
basis function and cocflicients have analogous interpretations.




4 Expansion of a Function in Rodriguez Se-
ries and its Optimization

Our expansion preserves the classical properties that are derivable for or-
thogonal polynomial expansions (as opposed to power series). but also adds
an important new feature: the size or radius parameter that generates the
Gaussian picture of point monopole. dipole. quadrupole, ete.. to a scenario
in which we can allow for extended sources. We find from the convergence
condition derived from the Christoffel Dishoux theory in section 1 that con-
vergence holds generally on a semi-infinite range of A. This remarkable free-
dom is exploited in this section to optimize the rate of convergeace of the
expansion. This optimization results in determining the value of X for which
ai 1mum number of terms is determined in order to obtain a given toler
ance. We measure the tolerance. as usual . by the least square fit integrated
over the entire function. We define the error

+ o N‘
e(N.A) - // . drdy(f(z,y) Lﬂi@vkﬂz (60)

k-0

We apply the formula fo a standard gaussian, i.e. we take

fla,y) = e ) (61)

we then find, after some calculations

n-| kok-2n ‘ "
N (- )RR (20 - 2 1M e 2y .
a3 L e N 0 D P Ay £ (62}
o kY2n - 2k)!
where the double factorial contains only odd terms. We can now express the
standard gaussian in the Rodriguez form:

(.A(JJ%_u?) 0 (1 /“'2)

D DGR T N (63)

‘Aén H
T o 2énn!

A proof based o useful linear operator relations is as follows. We can check

by differentiation in f and = that

(=7 197)
s 4t 2
it "V sry) (61)
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We naw let
1"\

As a consequence, we can write

¢ [EL !/"})\1’

< ('\V?""(‘(m.y) Mlroy)
TA®

We now consider the identity

N
.l.

Ry T s )

expanding the RS,

Ey) - O

fﬁ.’)}

(66)

(68)

The method of proof will he used later. Furthurmore, it provides a welcome
check on the rather difficult calculations of coeflicients. We sce by inspection

that A 1 is optimal. We also consider the function

T “_y’
A?
\2

TA?

flr y) — cos(kr yeos(ky) ‘

(69)




5 Conclusions

We have seen that generalised distribution provide a method for colving
Fredholm integral equations of the convelntion type which is competitive
with the enrrent methods that emplov Fourier transforms. We have also seen
that generalised distributions can he approximated numerically by sequences
of smooth functions. This procednre is analogons to that of approximating
Dirac delfa functions by sequences of narrowing Ganssian functions, lu this
second paper we have used two dimensional examples for illustrative pnrposes

We will discuss applications in higher dimensions and extensions of the

theory of generalised distributions separately,

IR




6 Appendix: Remainder Theorem for Hy-
perdistributions

In this appendix we give the remainder theorem for hvperdistributions. The
remainder formula is of great use in calculating Lagrange and Canchy es
timates for the terms neglected. This feature of onr expansion. like the
presence of the adjustable “rading” parameter. is unigue ta onr expansion
and it is not shared by other orthogonal functions expansion.

The general form of the Tavlor expansion for two distinet points i and =

F(fy - F(H 1 (y 5) - SFE) 0w (70)
Bt /_yn’i(y' DN AN ATA (71)

The formula for the remainder is in fact an identity which is proven by
recursion integration by parts.

We now give the appropriate remainder for the two dual expansions dis-
cussed in section 1,

6.1 Taylor (local) expansion

We nse
F(#) i o)
o' 7)
y rF
z ! (72)
We have

B F) - B () / Tdtls i @S/ (73)

Then we have, using Dirac’s identity

G -/n"ﬁ('; #) [(x")dr’
0y F 5 f0y rpt! (71)
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with the remarkable relation

it / diiy 1y = ) ! (77
J40

6.2 Moment (global) expansion

We sed
110 At
n oot
S (76)

We then have
7 ) (F) 2 NHF L / di{s 2 )2 Ut (TT)
Using Dirac identity we conclnde

flr) ”"f(a-")d".r' b (7R)

This remainder formula allows us to estimate correctly the errors when the
hyperdisiribution expansion is truncated.

We observe that the Rodrignez expansion for a Gaussian, given in section
: P

4 is also a Taylor expansion i.e. (settingy ~r | A,z - =)
E(F 1 A) - Y AN TA(F)/n! (79)
n: 0

Multiplving both sides by a good (test) function ¢(z). and integrating, we
obtain

o>

/nné,\(f P AV - 3 :\)"63/Rnﬁ,\(i“)V"é(i“)di‘/n! (&0)

n-0
Taking the limit A » 0 of hoth sides we conclude for the Tayvlor expansion
of the test function i.e.

o

o ) 3 AR TH6)/n! (]1)

n 0
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Therefore the test funetion must he real analvtic to conclude that
. . S
Ma s A 3T N e TR ! (%2)
e
n
To show that cantion mnst he exercised in freating hvperdistributions as
ordinary distributions we point ont an example of a function which is smonth
buf not real analyviic,
o
Towut s 2) .
Mgy e (83)
The function & is infinitely differentiable () and tapers exponentially af
infinity. Nevertheless, it has zero derivatives at the origin and it i< therefore

not real-analvtic. As a consequence, the familar Tavlor expansion of the 6
function is. strictly speaking. a hyperdistribution.
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