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Abstract

We develop our previous work on hyperdistributions into a formally well-defined

transform which may be applied to images, the hyperdistribution transform (ITI)T).

The HDT has many properties in common with conventional orthogonal transforms of

signals, such as the Fast Fourier Transform, which suggests the possiblity of develop-

ing a fast algorithm for the IIDT. Presently, we have formulated the IIDT in matrix

language, which permits a reasonably efficient computational approach to calculating

the HDT of an image. We then apply the HDT to image compression by representing

the image as a truncated HDT expansion and reconstructing the image from the trun-

cated HDT expansion. The compression ratio is measured in terms of the number of

bits in the truncated HDT expansion compared to the number of bits in the original

image. Test cases involving both synthetic and natural images are considered. Good

quality reconstructions of natural images are obtained with compression ratios of 4:1

and recognizable images are obtained with compression ratios of 16:1. It was not nec-

essary to segment the images into sub-images. Substantial further improvements in the

performance of HDT compression may be obtained by employing image segmentation

and other standard techniques for transform-based image compression algorithms.
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1 Introduction

Even modest-sized images involve large amounts of data. A 512 x 512 image in which each

pixel may take on 256 gray scale values will require 1/4 Mbyte of computer memory for

storage. (1 Mbyte = 1,048,576 = 220 bytes) Accordingly, storage of large numbers of images

places large demands on computer memories. Transmission of images puts correspondingly
large demands on channel bandwidth and/or time required for transmission of images. For

these reasons, among others, ther are considerable economic and practical pressures to de-

velop representations of images which require smaller numbers of bits.

Fundamentally, compression algorithms exploit the redundancy (in an information theo-

retic sense) of the pixel intensities in an image. This redundancy is reflected, for example,

in the statistical dependence of these pixel values. A compressed image will require fewer

bits than the original image. Generally speaking, image compression techniques fall into

two categories', those which depend on coding techniques, such as Huffman coding, and

those which depend on transform techniques, such as the discrete cosine transform (DCT)

and the hyperdistribution-based methods which we have developed as the subject of this

proposed research program. We shall concentrate attention on the class of transform-based

compression algorithms.

Exact reconstruction of an image may be obtained by lossless algorithms, usually at

some cost in the compression ratio achievable (typically - 10). Applications which can
tolerate approximate reconstructions of images may utilize lossy algorithms for compres-

sion/decompression. These lossy algorithms may be particularly appropriate when the least

significant bits (LSB's) of an image are corrupted by noise and thus do not represent de-

sirable data. Lossy compression/decompression algorithms can achieve higher compression

ratios (40 or more).

A number of techniques have been developed for image compression/decompression, such
as the DCT and techniques based on affine transformations and fractals. Such techniques are

computationally intensive and, particularly for the case of the DCT, may require implemen-

tation on special hardware to achieve compression/decompression of images in reasonable

times. We note that the marketplace for commercial applications in image compression is,
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in fact, moving in the direction of special purpose chips for rapid execution of particular

algorithms.

A compression/decompression algorithm which may be used in conjunction with other

image processing algorithms, such as spatial filtering, edge-enhancement, or deconvolution

techniques may have special advantages. In our Phase I research we have develued suclh an

approach based on newly developed mathematical called hyperdistributions. Hyperdistribu-

tions are theoretically attractive because they are an algebraic field in which convolutions

are the multiplicative operation. Thus, problems for which the calculation of the convolu-

tion inverse (deconvolution) is not well-posed by conventional Fourier transform techniques,

may be solved uniquely with hyperdistribution techniques. This property also is reflected

in the comparative computational stability and efficiency of deconvolution computations by

hyperdistribution techniques.

On the basis of connections with the problem of moments and formal analogies with

moment expansions, we believed that hyperdistribution expansion techniques would have a

significant utility for problems in image compression. In practice, this would mean that an

image would be represented in a two-dimensional hyperdistribution expansion which would

be truncated at a finite number of terms. The image could then be reconstructed to some

level of precision from its hyperdistribution expansion, in a fashion analogous to that we have

demonstrated for using hyperdistributions for computing global approximations of functions.

We expected that for many images, the number of bits required for the hyperdistribution

expansion would be significantly smaller than the number of bits in the original image, i.e.

that the hyperdistribution representation of an image is a valid compressed representation

of the image.

Our Phase I research effort developed the mathematical structure required for effectively

carrying out these algorithms, and then conclusively demonstrated the validity of this point

of view. We include in this proposal some of the first demonstrations of image compres-

sion/decompression using hyperdistributions. We are able to achieve compression ratios of

16:1 routinely even with algorithms at the present crude stage of development. We believe

that by fine-tuning these algorithms and combining them with other conventional image pro-

cessing algorithms, that higher compression ratios and improved fidelity of the reconstructed
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image is possible. Our proposed Phase II effort will lead to hyperdistribution algorithms for

image compression/decompression competitive with other entries in the commercial arena.

We establish an explicit method for image compression and reconstruction using hyper-

distribution theory. The point function approximation for the hyperdistribution expansion,

the Rodriguez hyperdistribution expansion, is used to formulate a hyperdistribution trans-

form (HDT). The transform includes an adjustable parameter which is used to vary the

shapes of the reconstructing wave and optimize the reconstruction performance. A matrix

representation of the transform similar to other methods is derived. This establishes algo-

rithms for carrying out HDT's analogous to those for conventional orthogonal transforms

such as the FFT. This method is tested on three images demonstrating various compression

ratios currently attainable.

2 Derivation of Hyperdistribution Transforms

The hyperdistribution expansion is formulated as a transform which is similar to other

orthogonal transform methods with the addition of an adjustable parameter which controls

the shapes of the basis functions. Begin with the truncated Rodriguez hyperdistribution

expansion in two dimensions as derived previously. The expansion for the approximation to

a function f(x,y) is defined as

k-I k-1 r e1/A I [- 2)/H2y /A21

with coefficients

a - f!! Ho0n(x)HA(y)f(X,7 y) dz dy. (2)

Substitute the definition for scaled Hermite polynomials, Hn(x) = II,(z/A)/An, to get the

expansion

k-I k- n [(1)'Hn(xIA) e-x",2/A [AImI~ 1y/A (3) 2

)= E 77,T (3)
n---- m=0
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with coefficients

k (_-1)n+m,\n+m /+0 +o_

anm= 2+-+n! ! 1 _ H,(x/A)H,(y/A)f(x, y) dx dy. (4)

Insert equation (4) into (3); cancel (- 1)n+r•1Ai+m, separate 1/(2 n+m n!m!) into square roots,

and combine 1/A with each differential. Then separate the equation again to get the expan-

sion

n = O m=O +m n! m!

with coefficients

a N= +00 p+- Hn(X/A)Hn(3 1/A)f 'Ydz dy()
an,, = JF 1- 2"n"' n! rn. A

Now substitute for the function f(z, y)

= X (7)

to get the expansion

•n(,( •)H m(y/A) e-(__ _)/_ _ 
(8)

with coefficients

aA = +[00 f+-0 Hn(x/A). Hm( y /A) eX - yl)/;z W •,+) dy,2 +

nm i 9(X Y)(9)

The parameter a has been introduced into the formulation which is used to vary the shape

of the wavelets that are used to determine the approximate function (i.e. reconstruct the

image). The shape of the wavelets will affect the rate and type of convergence of the expan-

sion series. In previous Hyperdistribution formulation, ca can be considered equal to one. In

the case were a is equal to two, the wavelets form orthonormal bases. This case is explored

in the following work

Notice that 1/A appears with x and y every where except in the function. The variable

substitution
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S= Au (10)y--=-Av

dz = A du

dy = Adv

produces the hyperdistribution parametric wavelet transforms with the expansion

k-1 h-I H H,,-(v) He-(2 +V2+u) '/

h(u v ,,,,,,m(U (12)
ft=O M--V-- I 7

with coefficients
S f 4

0 +_o+_H.(u) Hm(v)[Fe-iu2 +t•2)1 -(1/°)

a = H g(Au, Av)du dv. (13)

3 Discrete Formulation of Transforms

The equations (12) and (13) deal with the expansion for a continous function, but we are

interested in discretely sampled functions. An actual image is given as a matrix of values
which can be considered discrete samples of a function. Consider a p x p sampled image

where ij, are integers and s,,si, define a symmetric coordinate system for the image. define

U Si p (14)
V = 1 p

and the function t in terms of these integer values

tij = g(Au, Av) g(x,y). (15)

From equations (12) and (13) with a = 2 the expansion for approximation to t using or-

thonormal wavelets is

with-o [Hf(f)iensj) (e". = 1/2 1 (16)

with coefficients r,,, = anm using the discrete version of equation (13)
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_=1 ( )= \1/

We move da to make equations (16) and (17) symmetric and get the expansion

k-1 9-1 , _1/21__ 1/

7'"m f ,1=0m=0 enm L 2Hn! j)½ e-'f d. (18)

with coefficients

j'2,n l\(,q)) (1-'•2mm (19)
i--1F tj [rý!l/- m

4 Matrix Formulation of Transforms

The discretized formulation can be represented in more conventional form by using a matrix

representation similar to other orthogonal transforms. Equations (18) and (19) suggest using

matrix operations for doing the calculations.

Consider the image p x p matrix

t 1l t 12  tiP
121 t 22  t2p (20)

41 tp2 ippn

If we define a k x p Hermite matrix

HO (a 2 \ /1/2(

a -2 1/2 112 1/

2€'d" /,-• ' < 21 \-- /2-

H, ' 2 -- ) 2,1, 2'11 (21)

2 1/2 H (82) (-)1/2 *d) 112

I 2d ( a i
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The 11D coefficients, rTn,, can now be calculated by viewing equation (19) as the following

operation

A = H-I. [H]T (22)

which creates a k x k IlD coefficient matrix

/ 0 lb o I ... 'TO(k1l)

710 TlI ... ro(-i ) (23)
qk-1)O T(k-lt .- rqk-.)(k-~1)/

We can reconstruct the image by viewing equation (1i) as the following operation

I=[HIT.A.H (24)

which creates a p x p reconstructed image matrix

ill 1 12  1ip

t p l  tp2  t- p

5 Implementation Scheme

An algorithm for implementing the previous formulas to images is developed in this oection.

The image is given as a p x p matrix of one byte integers.

A coordinate system is determined for the image through the definitions

s- -L + (i- 1)di (26)

2L (27)p- 1

where we consider

I(si, sj) (28)
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The remaining variables to be determined are the length of the coordinate space of the

image, (2 x L), and the dimensions of the IID coefficient matrix, (k x k). This gives us the

parameters L and k to adjust.

We predict that the optimal value for L for reconstruction will be approximately equal

to the zero closest to infinity of the highest order wavelet used in the reconstruction. This

criterion insures that all the wavelets completely fit inside the coordinate space of the image

and that wavelets can have sign variations at the edge of the coordinate space of the image.

This establishes L as a function of k. Results of reconstruction with various values for L

substantiate this function as good preliminary criterion.

The zeros of the nth wavelet are equivalent to the zeros of the nth order Ilermite poly-
nomial, since this is the only pa:t of the equation for the wavelet that can change sign. For

a particular choice of k we determine L by finding the first zero from infirity of the (k - 1)th

order Hermite polynomial.

The compression ratio is defined
CR = number of bits in the image matrix = p x p (8bits) p2

number of bits in 1ID coefficient matrix k x k (32bits) 4k(29)

The mean squared error is defined

P PMSE Y, • It t) (30)

pxp p =-

6 Results of Compression/Decompressions
The first image analyzed is a 64 x 64 artificial terrain called "Island". This image was created

by combining three gaussian functions of various widths and strengths. Gaussian signals are

a natural test case for reconstruction. The original image is shown by surface and contour

plots in figure (1). The image reconstructed from a 32 x 32 1)D coefficient matrix is shown in

figure (2). The image reconstructed from a 16 x 16 11D coefficient matrix is shown in figure

(3).
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The second image analyzed is a 256 x 256 image called "Gordon". The original image is

shown in figure (4). The reconstructed images representing compression ratios of 1, 4, and

16 are shown in figures (5), (6), and (7).

To demonstrate the effects of the parameter L we analyze the reconstruction of "Gor-

don" with higher and lower then predicted values for L. The compression ratio for each

reconstruction is 4. The predicted value for L was used in figure(6). Figure (8) shows a

reconstruction with L one half the predicted value. Figure (9) shows a reconstruction with

L one and a half the predicted value.

The third image analyzed is a 512 x 512 image called "Liberty". The original image is

shown in figure (10). The reconstructed images representing compression ratios of 1, 4, and

16 are shown in figures (11) and (12).

The results obtained from these three images should be considered in the nature of an

existence proof. We have demonstrated that compressions of image data can be achieved

with HDT's and recognizable results obtained for the reconstructed images. It is particularly

remarkable that these results have been obtained for unsegmented images. Additional work

to be undertaken during the Phase II research effort will improve the compression ratio and

the fidelity of reconstruction. For example, conventional techniques such as image segmenta-

tion and image processing, combined with optimization of the HID wavelet parameters, can

be confidently predicted to yield continued improvements in the performance of the ttDT

compression algorithm.

Figure Captions

"* Figure I Original Image "Island" of 64 x 64 pixels; (a) surface plot (b) contour plot.

"* Figure 2 Reconstructed Image "Island" from 32 x 32 I1) coefficient matrix with CR

= 1 and MSE = 0.00451 . (a) surface plot (b) contour plot.

"• Figure 3 Reconstructed Image "Island" from 16 x 16 lID coefficient matrix with CR

= 4 and MSE = 0.232 . (a) surface plot (b) contour plot.
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"* Figure 4 Original Image "Gordon" of 256 x 256 pixels.

"* Figure 5 Reconstructed Image "Gordon" with CR = 1 and MSE 13.6

"* Figure 6 Reconstructed Image "Gordon" with CR = 4 and MSE 25.7

"* Figure 7 Reconstructed Image "Gordon" with CR = 16 and MSE = 59.7

"* Figure 8 Reconstructed Image "Gordon" using low L with CR = 4 and MSE 61.8 .

"* Figure 9 Reconstructed Image "Gordon" using high L with CR = 4 and MSE - 1104

"* Figure 10 Original Image "Liberty" of 512 x 512 pixels.

"• Figure 11 Reconstructed Image "Liberty" with CR 4 and MSE = 227

"* Figure 12 Reconstructed Image "Liberty" with CR 16 and MSE = 476
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Figure 1 Original Image "Island" of 64 x 64 pixels; (a) surface plot (b) contour plot.

Figure la



Figure lb
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Figure 21 ItconstirIIcta Iue 1 igA"s mad mu 32 x 32 III) ti'tltNCKIt ItLIIix with (2At I mid NI 51K

-0.00451 .(a) surface plot (b) contour plot.

Figure 2a
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Figure 2b
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Figure 3 11.ccostruictd Imiage "Isl~uid" fromt 16 x 16 111 ) covilijjivilt in-Lari x wi 1.1 CRI u' NIMS 1

0.232. (a) surface plot (b) contour plot.

Figure 3a

........................................

.................

18



Figure 3b
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7 Conclusions

We have established a transform description of the hyperdistribution approach to image

processing, the hyperdistribution transform (IHDT). The properties of the HIDT have been

outlined in a fashion analogous to more conventional transforms, such as the Fast Fourier

Transform. We have demonstrated compression of both synthetic and natural images using

a truncated IIDT expansion. For unsegmented natural images, compression ratios of 4:1 and

16:1 were demonstrated. Standard techniques used for conventional image compression al-

gorithms should allow further improvements in the performance of IlDT image compression.
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A Computer Code

The computer program used to perform the analysis is included here. The language used is

standard ANSI C. The utility routine used are from Numerical Recipes Press el. al. and

are not included in this report.

/**********************************************************************

"* This program is used to calculate the Hyperdisdribution transfrom *

"* of an image and to reconctruct the approximate to the image from *

"* the Hyperdistribution transfrom. *

* by Thomas W. Drueding date 3/9/91 *

Aero-Mech Dept. *

* Boston University *

* (617) 353-5260 *

#include"malloc.h"

#include"nrutil. h"

#include<stdio.h>

#include<math.h>

#define PI 3.1415926F359

void image-reado(),image_.riteo(),init.grido ,make-hdimgo(),make-rlimgo;

30



main(argc,argv)

int argc;
char *argv[];
{

float **image,**recon,**hdimg,**trans,limit;

int p,k;

/* Inititialize paramters */

if (argc < 3) f

printf("Usage: hd (p) (k) (limit) \n");

exit (;

I
sscanf(argv[l],"%d",&p); /* x/y size of real image (assume square image) */

sscanf(argv[2],"Y,d",&k); /* x/y size of HD image (assume square image) */

sscanf(argv[31,"%f",)limit); /* edge of coordinate system on the image */

/* Allocate dynamic memory for matrices */

image = matrix(ip,1,p); /* image : original image

recon = matrix(ip,I,p); /* recon : reconstructed image

hdimg = matrix(O,k-1,Ok-1); /* hdimg : HD image (HD transform of image) *1

trans = matrix(O,k-1,1,p); /* trans : HD transformation matrix */

/* PROCESS */

image-read(image,p,"image.b"); /* read original image from file

initgrid(trans,k,p,limit); /* setup HD Transformation matrix */

makehdimg(image,hdimgtrans,k,p); /* calculate HD transform of image */

makerlimg(recon,hdimg,trans,k,p); /* calculate image from HD transfrom */

image.-rite(reconp,"recon.b"); /* write reconstructed image to file */
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/* Read BINARY image from file *
void

image-.read(image, size, filename)

float **imnage;

int size;
char *filename;

FILE *4p;
iut i'j;

if ((4p = fopen(filename, "lrb")) ==NULL){

printf("Cannot open file %9\n", filename);

exit(O);

I
print! ("\nReading %s... \n", filename);
for (i1l; i<=size; ++i)

for Qj=1; j<=size; ++j)
image[i][j] = ((float) getc(fp)) - 127.0;

fclose(fp);

printf(Il .. .done\n");
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/* Write BINARY image to file */

void

image.write(image, size, filename)

float **image;

int size;

char *filename;

FILE *fp;

int i,j;

float val;

if ((fp = fopen(filename, "wb")) == NULL){
printf("Cannot open file ,s\n", filename);

exit(0);

I
printf("\nWriting %s...\n", filename);

for (i=1; i<=size; ++i)

for (j=l; j<=size; ++j){

val = image [i] j ] + 127.0;
if (val < 0.0) val = 0.0; /* check bounds */
else if (val > 255.0) val = 255.0;
putc( (char) val , fp); /* convert to binary and write */

I

fclose(fp);

printf("...done\n");

3
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/* setup HD Transformation matrix *
void init..grid(trans,k,p,limit)

float **tra~ns, limit;

int k~p;

mnt n,i;
float s,ds,ConstTn2,Tn1,Tn0;

printf('\nlnitializing grid ... n)

do = 2.0 * limit /(p-1.0);
Corist = qrt( do sqrt(PI) )

for (i=1; i<=p; i++){

s ", -limit + (i-1) *do;

Tnl = 0.0;

trans(Of~lu = Trio =exp(-s s/.2) * Const;

for (n-1; n<=k-1; n++ )
Tn2 -TnI;

Th TriO;

trans~nl [ii = Trio = s * sqrt((:float)2/n)* Tn - sqrtC(float)(n-l)/n) *Tn2;

printf(".. .done\n"l);
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/* calculate HD transform of image *
void make-.hdimg(rlimg,hdimg,trans ,kp)

float **rlimg. **hdimg, **trans;

int k,p;

int i,j,n~m;

printf(\r.nMakihlg HD image...n)

for (n=-O; n<=k-1; n+-*)

for (m0-; m<=k-i; m++)

for (i1i; i<=p; i++)

for (j1; j<=p; j++)

hdimg (n] (m] +=rlimg CiI [j]I*trans (n] [iI *trans (m] [ji

printf("I .. .done\n");

/* calculate image from RD transf rom

void make...rlimg(rlimg,hdimg,trans k,p)

float **rlimg, **hdimg, **trans;

int k,p;

int i,j,n,m;

printfQ'\ni~aking RL image ... n)

for (i=i; i<=p; i++)

for (j1i; j<=p; j++)

for (n=O; n<=k-1; n++)

for (m0O; m<=k-1; m++)

rlinmg(i] (jJ4=hdimgrnI1 [znl*trans [n] [i] *trans~m] [j];

printf("I .. .done~n");
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Iti this appendix we attach two preprints of publications submitted under this contract.
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Hyperdistributions I: One Dimensional
Analysis

\Ve develop in this paper and the following paper a new technique for the

calculation of convolution products and their inverses. This is accomplished
by constructing a class of singular "functions", hvperdistribution, that form
a closed algebraic field with the convolution product as the multiplicative

operation. In this paper we consider functions of a single variable. This

one-dimensional algebra can be applied to signal processing. Furthermore,
in this paper we use the construction of hyperdistributions to obtain a novel
parametric approximation method. We demonstrate the use of our approxi-

mation method with simple examples.



Introduction

in the sequel. we develop a novel tool for the calculation of convolution

products and their inverses: hyperdistributions which give simple applica
tions to the two related areas of signal analysis ard image processing.

Hyperdistributions are singular "functions". defined and constructed be-

low, that we find to form a algebraic ahelian field with the convolution prod-
uct, as the multiplicative operation.

Signal analysis is a natural application of hyperdistribution in one (one

dimensional) variable. Image ,rocessing is a corresponding application for

hVperdistributions in a two dimensional variable. Tomography corresponds
to three dimensional variable and the budding field of space-time processing
corresponds to four dimensions.

The outline of the paper is as follows. In section 1 we introduce hy-

perdist ributions heuristically, we discuss the convolution group and derive
a remainder theorem. In section I1 we construct rigorously hyperdistribu-
lions by a modified riermite polynomial expansion and we use the tools of
the Christoffel-Darboux theory to obtain sufficient conditions for V9 conver-

gence. In section III we show that Gauss' multipole expansion is obtained
explicitly as a simple application of the hyperdistribution inverse. Finally, in
section IN" we expand a gaussian function in terms of derivatives of a different

gaussian to demonstrate the use of our new parametric expansion and the
concurrent minimization of error. The logical interconnection of the sections

is shown in Fig 1.
We note that, in effect we introduce a method for establishing and ap-

proximating solutions of integral equalt'ns of convolution form based on the
use of this new class of singular functions. We demonstrat.e with examples
that there are cases for which our method is applicable, but Fourier trans-

form methods fail. Our method requires the calh ulation of the mnoTdents of

the given functions and of the kernel rather than calculation of their Fourier
coefficients. This property motivates consideration of examples for Which our

method is clearly preferable to Fourier transform techniques. Applications
are given with emphasis oii image deconvolution and the analysis of turbulent
flows.
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1 Heuristic definition of Hyperdistribution.

We introduce a general approximation whose integral properties are the focus
of interest. Our approximation displays in configuration space the properties
of the classical moment generating expansion for the Fourier transform of

the probability distribution. Moments. and even shapes, are shown to be

captured well by our expansion. In addition, our expansion allows consider-

ation of "functions" which are more singular than temperate ( i.e. Fourier-
analyzable) distributions. but that can he represented by infinite sequences of
distributions. We call these "functions" generalised distributions. We show
that generaliscd distributions form the appropriate framework for carrying
out the process of deconvolution. in fact. we give a straightforward algorithm,
the "Bochner-Martin algebra", to compute explicitly the convolution inverse
of any generalised distribution. Applications of the method to simple opti-
cal deconvolutions are shown to be straightforward. These applications have

been motivated originally by our studies of optics and turbulent flows. WC
have since become aware of the much wider applicability of our methods.

1.1 Taylor and moment expansions

The theory of generalised distributions is built on ideas related to l)irac's
delta function., Lich is technically a "generalised function". The D)irac delta
function. 6(x.-). has the properties

and

f (x) / t(x - x') f(x') dr' (2)

for any suitablv sTn-ooth function, f( x. We term equation(2), "Dirac's iden-
tity".

The T)irac delta function is symmetric in its argument, i e. A(x" x')
A (x' r) arid, since the Dirac delta function is a generalised function . we
may laYlor expand 6(3.' x) about .',

eS(.' x) A (x') -,r'(x') ! x 2 ,"(X') ... W"(.) (3)

3



Here 6'(X) 7-- db(x)/d2. 6"(x) - d2h(r)/d. 2. etc. rTis expression and similar
ones below are a.ssllmed In hold under integration. Equaliomi (3) allows ont"

to compute a "local" approximation to f(x), since if we substitule this ex-

pailsion into D)irac 's identity, we recover the usual Taylor expansion of f(x)

about X -0

f()f) - p)) xf'(O) 4 2.12!f"(0) i.. ... .. 4)

This approximation is local in the sense that it requires derivatives of f(i)

at a single point. x•" 0. and in general has a limited radius of convergence.

On the other hand, if we expand 6(x - -') about 2. we have

b( x- 7')= 6•( ) - 4'6'(T) 4 -I22!b"(.) ý ... (5)

When this series is substituted into Dirac 's identity, we obtain

f(x) = Al.(x) -A'-'() 4 M.-2/2(x) 4 Rix) (6)

The coefficients AP, defined by

AV -- f j "f( x)dx (7)

are simply the moments of the function f(x). Therefore equation (6) is an

approximation of f( x) involving global information about f('), that is. the

moments of the function.

This then may be taken as a motivation for our definition of a generalised

distribution as a function which may be written in the form,

fX) - )_• a,.,V(zr) (f8)

n-n

The a,? values are coefficients given by

(,, - ( 1)A" /In! (9)

Note that equation (8) is equivalent to the familiar moment generating ex-

pansion of probability theory (see equation (6)).

!I



1.2 The Convolution Group

If we have two generalised distributions f, and f2, their linear combination

Aft 4 t'f2 is also a generalised distribul iOn (where A and 11 are real coef-

ficients). The pth derivative of a generalised distribution, d•f(x)/dr" --'
V7f(x), is a generalised distribution. Also. the convolution of two gener-

alised distribution f, * f2 is a generalised distribution. These may all he
thought of as "closure properties- of generalised distributions.

Generalised distributions allow us to make an effective computation of
the convolution inverse. Given a generalised distribution f, the desired con-
volution inverse JnIf] satifies

f*ln~fI-: I()

Here b represents l)irac 's delta function, which is the identity of the convolu-
tion operation. W\e shall show by our construction that Injlf is a generalised
distribution. Writing the convolution explicitly,

f * )nif! - 2-') -:- 65(-) (11)

It is now necessary to compute the product of the sums and match coefli-
cients. Taking, f(T) _` Ea. V" ('), and 1n•f(.)j = EZb, VN" b(x), we see
that the computation of the convolution inverse is effectively the determina-

tion of a collection of b, values, given a set of a, values. Substituting into

equation (II),

I'• d'(> • 'r N(,'))(Z hq z7 (x - a')) -h(x) (12)
p-- 0  

q - 0

Noting that V •. '- 7V and that VPb(X)*.VqS(• ")- 7"6(2'), equation

(12) may finally be reduced to

L(a,>j bq V"'q ý(')) -- h(x) (13)
P q

or equivalently with r- p i q

0- Or 9

L p, P V, !(' !(



Matching coefficients on the left hand and right hand sides implies that only
the r - 0 term survives. The result is a linear system of equations for the b
values in terms of the a values. It is easiest to see the behavior by writing
the first few eqi,ations in this linear system.

aoho -: 1

a0b, -I albo - 0

ao0 2 4-a l b, 4 a2bo 0
oob3 4- olh2 ± a2hb - a3bo 0  (1(5)

and so forth. Thus. we can see that, b0 -- 1/a0 . bi - -aa u 2 - a2,,_

a 2 /a~. etc. This completes the computation of the terms of the convolution
inverse.

1.3 Fourier Transforms and simple examples

Lastly, we shall want to consider the Fourier transform of a generalised distri-
bution. Again taking f(7-) -- E,, a,, V7 h(r), we can immediately evaluate
the Fourier transform as:

• in f dy r(- a., ei0 " v 6(x)d.T
n-Oc -- r

E j a,(1Y/ 7 er6 2 )dx

00* a(i=" (16)
'r=O

where for the last step we have used V'Air ink. The Fourier transform of
a generalised distribution may he seen to be a power series.

The Fourier transform of a function is the "moment generating function"
because of equation (9). Thus the basic requirement for the validity of writing
a function as a generalised distribution is thai its moments be finite, or more
stringently, that its Fourier transform be real analytic.

Generalisation of this discussion to a two-dimensional generalised distri-
bution, as would be required for most, types of imaging data, is relatively
straightforward. This generalisation retains the mathematical properties,

6



particularly for convolutions and Fourier transforms. that make generalised
distributions attractive for signal processing.

Simple explicit examples of convolution inverses are obtained from the
standard Green 's functions. 'FiTe one-dimensional llelmholtz equation, for
example, can be treated equally easily with generalised distributions and with
Fourier transforms to obtain both the Green s functions and its convolution
inverse. Thus. we have

(d 2 /d. -4 1/4)e-171/2 -b(.) (17)

Application of equation (15) shows that only b0 and b2 contribute to the
convolution inverse and, in fact, writing i = InifI!

Invive- :1121 11/26(x) (18)

This result is easily reproduced by using Fourier transforms and is easily
verified using equation (10).

In contrast, the convolution inverse of the Ga,'ssian function cannot be
obtained a. a Fourier transform, but it is easvIy obtained using generalised
distributions. It may be verified that for a Gaussian function of width ta, the
convolution inverse is readily obtained from equation (15), while calculation
using Fourier transforms leads to a divergent result. Calculation of moments
and use of equation (15) yields

a2n --

b - 1 )-(0,/f_,2)n/n! (9

7
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2 Rigorous Construction of Hyperdistribu-
tions

In this section we first modify the classical expansion in the Tlermite polymi-
als. This expansion is "superior" to a power series expansion in that the terms
are orthogonal, making the error orthogonal to the approximation. Our mod-
ification maintains this advantage. Furthurmore. the standard Christoffel-
Darboux analysis gives a very useful sufficient condition for convergence that
our expansion inherits from the Ilermite polymial expansion. Since our ex-
pansion utilises the Rodriguez formula for the Itermite polymials, we call it
the "Rodriguez expansion".

2.1 Modified Hermite Expansion: Rodriguez expan-
sion

In effect, we discuss here a systematic pointwise approximation of generalised
distributions. This approximation method is analogous to the method de-
veloped by Temple to approximate distributions by smooth functions. The
Temple method has become widely known through Lighthill 's monograph:
Fourier Series and Generalised Functions.

Generalised distributions are approximate by a modification of the clas-
sical expansion in Hermite polymials (hereafter called the "Hermite expan-
sion") which is suggested by the Rodriguez formula:

()e (20)

where V denotes the derivative. For simplicity, we consider here the one-
dimensional problem. so that Vy is the ordinary derivative with respect to the
variable x. To see how the Hermite expansion can be transformed into an
approximation for generalised distributions, consider a function f(X) which
we want to represent as a generalised distribution. Multipy f(x) by

~ ~.7/~2(21)

then expand the resulting expression in terms of the "scaled Tlermite polymi-
als

n,•(-- A "H,(./A) (22)



whose definition is justified by the formula (25) below. We obtain the ex-
pression

f -- - (,,X, ( ) (23)

Multiply both sides of the equation by the normalised Gaussian introduced
by Temple, i.e.

And, observe that by rescaling the Rodriguez formula (20) we can write

(-n)t()••=V•• (25)

The final result is

f(X) C. VC 6,\(X) (26)
n-0

where we have introduced the coefficients

AA 4
1 --- f(x)HA(x)dx (27)n, 2 nnr! _

When we let A tend to zero, we have a representation of f(z) as a generalised
distribution. We call the expansion (26) the "Rodriguez expansion for f(X)
with width ,V'. The width parameter is a novel feature of the Rodriguez
expansion when compared to standard expansions in complete sets of basis
functions. The standard expansions do not contain a free parameter. The
advantages of the Rodriguez expansion will be demonstrated below in the
context of the theory of generalised distributions and of convolution inverses.

We consider as an example a function familiar from the analysis of tur-

bulence spectra, the "Ognlra" function

f(7,) = Ne" (28)

With N determined by the normalisation condition,

f f()dx - 1 (29)

9



we have
N (1/2)1.(/4) L,8129 (30)

A number of graphs are now used to illustrate the three main advantages of
the Rodriguez expansion.

1. The Rodriguez expansion converges pointwise. (See Fig 3.) The Her-

mite expansion also converges pointwise, lit the convergence is slow
for large values of the argument. In addition, the liermite expansion
exhibits " whipping tails" for large values of the argument.(See Fig 6.)

2. The pointwise convergence of the Rodriguez expansion is independent
of A, but the rate of convergence can be optimised by a proper choice
of A. (See Fig 3)

3. In addition to pointwise (i.e. local) convergence, the Rodriguez expan-
sion exihibits a global convergence manifested by accurate represen-
tation of moments of the function being approximated. To illustrate
this global convergence, since the function we are considering here is
symmetric in X, we have found it convenient t~o consider "one-sided
moment" plots to exihibit the convergence of our generalised distri-
bution approximations. These are integrals over positive r only, i.e.

!p,,(-) = .fo(x')"f(.,')dx'. The one-sided moments of order n are given
with excellent accuracy by numerical integration of the approximation

with n + I terms. (See Figs .1 and 5.) Again in sharl, contrast, the
Hermite expansion gives divergent moments. (See Fig 7) Note that the

horizontal axis in the one-sided moment plots is the argument T.

To summarise, the Hermite expansion exhibits pointwise convergence, albeit
with "whipping tails". By contrast, the Rodriguez expansion exhibits point-

wise convergence without "whipping tails". As a consequence, the Rodriguez
expansion also yields a global approximation by accurately representing the
moments. Furthurmore, the Rodriguez approximations has an adjustable

parameter which may be selected to optimise the rate of convergence. The
Christoffel-Darboux theory gives the necessary condition for convergence in
appropriate L'. For the Ilermite expansion we have

e-2' dx < o-o (31)

10
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Inserting the transformation that leads to the Rodriguez expansion, we find

JC4' f2dx < c (32)

for the corresponding 1' definition for the Rodriguez series.

2.2 Definition of Hyperdistributions

In order to describe the process of antidiffusion, we have introduced a class
of highly singular "functions", that are precisely defined in this section. Our
process for defining hyperdistributions parallels the Temple definition ( gen-

eralised function) as a good sequence of good functions. Good functions are
smooth and tapered. More precisely, they are tolal point functions that are
differentiable to all orders (C-), and decay at +-0 faster than any power.
Good functions play the role of "testing" a sequence of good functions for
weak convergence. In fact, a sequence of good functions is a distribution if

4 oc

Jim f (x)f,(x)dx < cc (33)

for all good functions ý.
Since we conceive of hyperdistribut ions as "generahied" distributions, we

are in fact implementing a second order generalisation of functions. Con-
sequently. we need a double test as a convergence criterion. We implement
this criterion by introducing very qood functions GA(7) with the following
properties:

1. GA(7) is smooth, that is. differentiable to all orders, ('.

2. GA(Z) is essentially compact., i.e. it, has a gaussian decay at +00
GA(7T) - Ne-

We will assume for convenience that GA is normalised to unity:

We define the width of GA^ by

f x )-2 ,^(Y)d (35)

!1



A primary example of very good functions is the gaussian, which we denote
by •,(x):

b 
6 :.(36)

We now introduce a sequence of very good functions defined by

n

1(•) Z ••ak vkA(x) (37)
k-0

The sequence {'f,}A,,. where A is a nonnegative real and n is a natural
number, is a good sequence if, for all good functions 0 and for all very good
functions GA- there exists a Ao such that, for all A > A0,

4-oc

lim j (X)(i' ,*GA)(x)dx < oo (38)
A -. 0 -

We note that e ±tV2 b(x) are hyperdistributions. The sum (hyperdistribution)

Y ak v, b(X) (39)

can thus be viewed either as a sequence of "good" distributions as A -- 0:

E- ( (40)
k--0

or, as n -, oc, as sequence of good functions:

k6O

The latter representation is a Rodriguez expansion. The Rodriquez formula.
for the Ilermite polymials can be used to show the derivatives of a gaussian
form a complete set of orthogonal polynomials in an L2 space. And thus
the Rodriguez expansion yields a very useful point function approximation
to any hyperdistribution:

a(- 1 An 6(x (r) (12)

k "-0

where 1,I(x) denotes the Ilermite Polynomial in r of order n.

12
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3 The Multipole Expansion

We start. with the familiar Poisson equation of potential theory.

V 2 0 - P (43)

This equation is rewritten with the help of the (infinite domain) Green 's

function
G~x). ..... V• ti(44)

4irr

We can then rewrte the "potential", 0, in terms of the "charge distribution",
p, as

*: p: (.15•)

Introduce Q with the property

Q * p - b (46)

Convolving both sides of eq(45) with Q and using the commutative and

associative properties of the * product, we find

Q*qO = Q*(G*p)

= (Q*p)*G

-= G (47)

Solve eq(413) for 0 in terms of the given G by computing the convolution

inverse,
0o

O(r,) E A• VG(x) (48)
k-0

which is Gauss' multipole series with coefficients

A k =::(T Xo . "(x)d (49)

where ® denotes tensor product and 7 ®lk is the tensor power of the 3-vector

X.
Substituting (49) into (18) we find a familiar expression

O W( ( y®kp(y)d'y) ® vk (50)
hO ' 11/

k--O k!47

which is a standard result in potential theory.

13



We can interpret the Rodriguez expansion as a generalised multipole ex-
pansion that includes a size or radius parameter. A. Thus our monopole
generates the point source, which is a Dirac delta-function as a gaussian of
width A. We recover the standard multipoles when A -) 0. Our expansion
has the form

f(X) = ao'bx(x-) - a' V k(x)- a\• 2 )(X)-+ ... (51)

The ingredients of the expansion are the basis functions

b'\', V v~ b .... (52)

and the coefficients
a00 (11 a2 , ... (53)

all of which depend on the size parameter A. The basis functions are, explic-
itly

(54)

V ý, (:). . .. 2.r -. . .. (55)

)e T-2/,\2
v2 tbA(X) (4z. -/A- 2/A' ) (56)

These functions are plotted in Figs 8,9 and 10 for 3 values of A which show
how the basis functions tend, as A -4 0, to a monopole, a dipole and a
quadrupole respectively. The corresponding expansion coefficients are given
by

a.o -4fM f (x)dx-(7

This coefficient represents the total area, or alternatively, the total mass or
charge of the source function. Also

a2 f K. xf(x)dx (58)

which represents the net dipole of the source. In mechanical terms a' defines
the center of mass of the source function. Finally

a 2 X/• +r 2 f(x)dx (59)
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which represents the quadrupole of the source distributions. In mechanical
terms this is the moment of inertia of the mass distribution. Ifigher order
basis function and coefficients have analogous interpretations.

15



4 Expansion of a Function in Rodriguez Se-
ries and its Optimization.

Our expansion preserves the classical properties that are derivable for orthog-
onal polynomial exapnsions (as opposed to power series). hut also adds an
important new feature: the size or radius parameter that generates the Gaus-
sian picture of point monopole, dipole, quadrupole. etc, to a scenario in which
we can allow for extended sources. We find from the convergence condition
derived from the Christoffel-Darboux thoerv in section II that convergence
holds generally on a semi-infinite range of A. This remarkable freedom is ex-
ploited in this section to optimise the rate of convergence of the expansion.

This optimisation results in determining the value of A for which a minimum
number of terms is determin" i in order to obtain a given tolerance. We mea-
sure the tolerance, as usual, by the least square fit integrated over the entire
function. We define the error

+ 0C N

c(N, A) ] dx(f(x-) - E a,, \Y,(3))2 (60)

We apply the formula to a standard gaussian, i.e. we lake

we then find, after some calculations

A i -I ( 1)k2k -2-(2n -- 2k 1)!!
- k!(2n -- 2k)! (- 2

where the double factorial conLains only odd terms. We can now express the
standard gaussian in the Rodriguez form:

T /2 m A 6,\(X) (63)

A proof based on useful linear operator relations is as follows. We can check
by differentiation in t and a- that

M- 2/41

C (X) (6.1)
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We now let
41- A' (65)

As a consequence. we can write

r ý` 2. . •, ' h4, ( r ) - 7 h.x( . ) ( 6 6 )

We now consider the identity

e

4 -" 7  4

!- 4 • )( ) (67)

expanding the R.IL.S.

( (68)

The method of proof will be used later. Furthurmore, it provides a welcome
check on the rather difficult calculations of coefficients. We see by ispection
that A =- I is optimal. Fig 1, shows the trend of the error function obtained
numerically. Fig 12 shows the error function on an expanded scale. The
behavior is smooth and gradient searches promise to be straightforward. We
also consider the function

f(x) - co.,(Kx) (69)

The overall behaviour is shown in Fig 13 and an enlargement in Fig 14. The
function exhibits rapid variation. Fig 7 shows the choice of parameters K rr 4
and A2 = 3. Fig 16 shows the behaviour of the error and the corresponding
optimisation. In Fig 17 and 19 we show the result of deconvoluting the letter
T with hyperdistribution algebra after it was "smeared" with a ganussian
filter. In Fig 19, we simulate the crossberg-Todorcrich neural network for
the cornsweet effect with hyperdistributions.
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5 Conclusions

We have seen that generalised disiribultion Provide a method for solving

Fredholm integral equations of thie convoin tion .ype which is competitive

with the current methods that employ! Fourier transforms. We have also seen

that generalised distributions can be approximated numerically by sequences
of smooth functions. This procedure is analogous to that of approximating

Dirac b functions by sequences of narrowing Gaussian functions. In this

introductory paper we have used one-dimensional examples for illustrative

purposes. We will discuss applications in higher dimensions and extensions

of the theory of generalised distributions in following papers.

I II



6 Appendix: Remainder Theorem for Hy-
perdistributions

In this appendix we give the remainder theorem for hI% perdisiributions. The
remainder formula is of great use in calculating I agrange and ('aurhy es-

timates for the terms neglected. This feature Of our expansion. like the
presence of the adjustable "radius" parameter. is unique to our expansion
and it is not shared by other orthogonal functions expansion.

The general form of the Taylor expansion for two distinct points Y and z
is:

F'(Y) = F(z) 4 (y-- z)v F(z) 4 .. , " (70)

n" =[ dt(y ...- " "" r ti• (71)

The formula for the remainder is in fact an identity which is proven by
recursion integrating by parts.

We now give the appropriate remainder for the two dual expansions dis-
cussed in section 1.

6.1 Taylor (local) expansion
\euse

- 6(X, X')

(72)

We have

,(a,' 7) - b(,') T , b('") . f dt(x' 3, 1 V 6(t)/n! (73)

Then we have, using Dirac 's identity

f W) / 6 (.r x') f(x') dx'

f(0) XV P f(0) ! .. I 1?" 1 (74)
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with the remarkable relation

n4 1 d 3,'f((x') dt(x' - 23 - t)n •7"l' 6(t)/n!

- -t(: t0" - "' f(t)/ln! (75)

6.2 Moment (global) expansion

We set

F(X) h ,•T(- X')

S-T, (76)

We then have

b(x - x') = 6(x,)- -x'b(,) i ...- dt(x - x' -1)' (t)/n! (77)

Using Dirac identity we conclude

f(x) - [' f(x')t(x-- x')dx'

- •(J') f(x ,')dx' - v ,b( ,) T.f (.T'),r' + ..4 R n"

flv" j dx.'f((x') di(x - x'--- t)"v""' 6(t)/n!

- / dx'f(x')] ( -l)-(y V') vf' 6(x .j)dy/,! (7I)

This remainder formula allows us to estimate correctly the errors when the
hyperdistribution expansion is truncated.

We observe that the Rodriguez expansion for a (Caussian, given in section
4 is also a Taylor expansion i.e. (settingy -- x 4 A, z -- J)

n0!

20J



Multiplying both sides by a good (test) function 4k(r). and integrating , we

obtain

fbi x L A,)q(x)dx A"__&Tq(~d~.

-(r )j (x) Vi" q)(x)dxln•! (80)
n7.0

Taking the limit A --, 0 of both sides we conclude for the Taylor expansion
of the test, function i.e.

00

r1=0

Therefore the test function must be real analytic to conclude that

6(.T 4- A) - 'Z~6(x) = E An~ vT' 6X)/n! (8)
n--o

To show that ca'ition musat be exercised in treating hyperdistributions as

ordinary distributions we point out an example of a function which is smooth

but not real-analytic.

O(x) (8-(z'4/') (83)

The function 0 is infinitely differentiable (Cm) and tapers exponentially at
infinity. Nevertheless it has zero derivatives at the origin and it is therefore

not real-analytic. As a consequence, the familiar Taylor expansion of the 6
function is, strictly speaking, a hyperdistribution.
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7 Figure Captions

"* Fig I Schematic relation among the sections of the paper.

"* Fig 2 The Ogura function (solid line) is plotted together with the 5

terms (dashed line) and 9 terms (dot-dashed line) Rodriguez expan-

sion to the Ogura function. Note improved convergence to the Ogura

function is seen in the 9 term expansion. In both expansions, the pa-

rameter A is chosen to be 1.0.

" Fig 3 The Ogura function and 5 term and 9 term Rodriguez expansions

as in Fig 1, except with A - 0.75. Note that compared to the A =
1.0 case, deviations between the Ogura function and the Rodriguez

expansions are significantly larger.

" Fig 4 One-sided moment plots of i,, = fo(a')"f(x')dx' for the Ogura

function (solid line) and its 5 term Rodtriguez expansion (dashed line)

with A = 1.0. Note that the pi, 's for the Ogura function and the

Rotriguez expansion coverage as x increases for n-0,2, and 4 while

;it(x) for the 5 term Rodriguez expansion differs from the Ogura func-

tion plot of pt6(2)

" Fig 5 One-sided moment plots, as in Fig 3, for the 5 term Rodriguez

expansion of the Ogura function with A - 0.75. Note that the one-sided

moments exhibit larger variations before converging to their larger x
val uies.

" Fig 6 Five term llermite expansion (dashed line) to the Ogura function

(solid line). While convergence to the Ogura function is good over the

domain in which the Ogura function exhibits significant values, outside
this domain rapid oscillations ("whipping tails") are exhibited.

" Fig 7 One-sided moment expansions of the 5 term tiermite approxi-
mation (dashed line) to the Ogura function (solid line). Note that all

of the it,, 's computed for the tHermite expansion deviate from the I,,
's computed for the Ogura function as x increases, indicating the fail-

ure of the Ilermite expansion as a global approximation to the Ogura
function.
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"* Fig 8 The extended monopole shown with three values of the radius
parameter A. The graph shows that as A -4 0, we obtain a point source.

"* Fig 9 The extended dipole

"* Fig 10 The extended quadrupole

"* Fig I I Least square error for the Rodriguez expansion of a gaussian

"* Fig 12 least square error og Fig 11 in expanded scale

"* Fig 13 the rapidly varying function f(x) - cosKne with K

10, A = 3

"* Fig 14 Expanded scale corresponding to Fig 13

"* Fig 15 The rapidly varying function with K = 4, A = 3

"* Fig 16 The least square error for Fig 15

"* Fig 17 Reconstruction of a T smeared with a gaussian filter.

"* Fig 18 Reconstruction as in Fig 17 with double smearing.

"* Fig 19 Simulation of the Grossherg-Todororic neural network with hy-
perdist ributions.
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Hyperdistribution II: Two Dimensional
Analysis

We continue in this paper the development of a new techniqiie for the cal-

culation of convolidion products and their inverses. We focus in this paper

on two- dimensional problems. This is accomplished by consiructing a class
of singular "functions" of two variables . hyperdistrilutions of two variables,

that. form a closed Olgcbraic field withi the (onvolution prodirt as the mul-

tiplicative operation. In this paper we consider functions of two variables.

This "two dimensional- algebra can be applied to image processing. Further-

more, in this paper we use the construction of hyperdistribulions to obtain a
novel parametric approximation method which is the two-dimensional ana-
logue of the one- dimensional expansion developed in our previous paper. We

demonstrate the use of our approximation method with simple examples.



Introduction

\We continue to develop a novel tool for the calculation of convolution
products and their iný. rses. We denote these new mathematical objects by
"hyperdistributions" or "generalised functions" . These are singular "func-
tions", which we construct to form an algebraic abelian field with the con-
volution product as the muliiplicative operation.

Signal processing and analysis are natural applications of hyperdistribu-
tions in one (one dimensional) variable. Image processing is a corresponding
application for hyperdistributions in a two dimensional variable. Tomogra-

phy corresponds to a three dimensional variable and the budding field of
space-time processing corresponds to four dimensions.

The outline of the present paper parallels the previous paper is as follows:
in section 1 we introduce hyperdistributions in two dimensions heuristically;
we discuss the convolution group and derive a remainder theorem. In section
II we construct rigorously hVperdistributions by a modified !lermite poly-

nomial expansion in two dimensions and we use the tools of the Christoffel-
Darboux theory to obtain sufficient conditions for L' convergence. In section
III we show that Gauss' multipole expansion in two dimensions is obtained
explicitly as a simple application of the hyperdistribution inverse. Finally, in
section IV we expand a two dimensional gaussian function in terms of deriva-
tives of a different gaussian to demonstrate the use of our new parametric

expansion and the concutrrent minimization of error.
We note that. in effect we achieve a method for establishing and approx-

imating solutions of integral equations of convolution form in two variables.

We demonstrate with examples that there are cases for which our method
is applicable, but Fourier transform methods fail. Comparing hyperdistri-
butions with Fourier transforms, our method requires the calculation of the
moments of the given functions and of the kernel rat her than calculation of

their Fourier coefficients. This property motivates consideration of examples
for which our method is preferable to Fourier transform techniques. The
applications given are mnotivated by image deconvolillion and by the analysis

of turbulent. flows.
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1 Heuristic definition of Hlyperdistribution

WVe introduce a general approxinmat ion whlose integral properties arc the feciis

of ite crest. ()ur approximnation displavs in configuiralie n space the I)proerIirs

of the classical moment generatling expansion for the Fourier transform of
fhe probability distrib)ution. Mloients, and even shap)es. are shown to bie

capt ured well b)y otur expansion. lIT addit ion, ou1r expansion al]o, s cousider
ation of "functions" which are more sinigular than temperate (i.e. FOurier

analVable) distribultions, bit that can be represented hy infinite sequences of

distribtiions. \We call there "frinctionis" generalised distribtutions. We show
that generalbsed distributlions form the appropriatfe frameworl< for carrying
out t lie process of deconvolut ion, in fact, we give a Straight forward algo-

rithm r the "Ilochner Martitl algebra". to conmpite ccxplicitly the con'vol ittionl

in verse of any generali.sed dist ribhition. Applirations of the methhod to Simple

optical deconvolutions are Shown tIo be straightforward. These applicati"ios

have been motivated originally iw oIur studie-s of optics and I rIrlentd flOws.
We have since become aware of the much wider a pplicability (If our methods.

1.1 Taylor and nmament expansions

The theory of generalised distributions is built on ideas related to Irac's

delta functio)n, which is technically a "generalised fUnd ion". The lirac delta

function, 6(.-), has the properties

(/ f b(,)dxd)2 -- (b)

an (

,(x',/) dr'dty'f( x', ')y ( .(",.r X') (21

for any siili aid rll smoot h fr)ctint, J(x)) We term ('qua lion (2), "1)irae 's

ident't,".
"I'he Dirac delta fu -ction i sYrmmnetric iii its argeimtirt. it.,(.r .i, - Y 7}

A.( r' T ,.y' y) andrl, sincef t1)e I )irac dell a fIt1 ninI ij a geirt ralised f Int 1(itor.,

we Irnav IavIOr crxparifd H( ' x', . ) abort t .V'' .

A(-' X, .i .) H( ',,') .'. ( -', ') ', y Y' (3)

3
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"flhs expression and similar one- hrblow are assumied t,, hold Under integration.

Equation (3) allows one to coli pe a 'local approximation to J( . ), since
if we su hstitile this expanslion into D)ira c's identit v, we recover the usual
Taylor expansion (if f(x,y) about (,ry) (I).0).

.(,y) f(O0,) I xV•.f(f),O) I yV.f(0l,1) .. ',"4)

This approximation is local in the sense Ihat it requires derivalives of f(•-)

at a single point .r - 0, and in general 11;1 a liited radius of convergence.

On the other hand. if we expand b(f x', y v) about x, we have

h( * x',. Y.') - 6(X..Y) x'V-' (-.Y) Y'V' ,(x.Y) R . ?"' (5)

When this series is substituted into D)irac's identity, we obtain

f(x,Y) =-T A"(x)6(y) M'V'5(~r)f(y)4,.. A /b I?'f (6)

The coefficients Al", defined by

t1° f (x, y )dx'dy

Atl -- f(x,/y)ddxdy

All --- ,ff(-,y)dxdi (7)

are simply the moments of the funCtion f(T,y). 'lTherefore, equation (6) is
an approximation of f(., y) involving global information about f(x,y). that
is, the moments of the function.

This then may be taken as a motivation for our definition of a generalised

distribution as a function which may be written in the form.

no 00f~x~j)-

a0 1 V' 1 0 aV I"V

The a,, values are coefficients given hy

a,, ( I )" I I " .,119

Note that eqIiationt (8) is eq iiivalen, to the famili ar moment generating ex

pansion of prohahility tivheo'rv (see equpalion 6).

i1



1.2 The Convolution Group

If we have two generalised distribIutions f, and f2, their linear comhinaltin
Al1 I (ff2 is also a generalised distribulion (where A and p are real cbefhi

cients). The pitl derivative of a generalised (listrihution,VPf(,, y). is a gen.
eralised distrihution. Also . the convolution of two genrralised dist rihution
f, * f2 is a generalised ditribtution. rhese may all he thought of as "clotsure
properties" of generalised distrithltions.

Generalised distribitions allow us to make effective computation of the
convolution inverse. (iven a generalised distribution f, tile desired convolu-
tion inverse In~f) satifies

f * Inlf! 7- 6 (xy) (I)

Hfere 4.(-,y) represents Dirac's delta function, which is the identity of the
convolution operation. We shall show by our construction that lnjli is a
generalised distribution. Writing the convolution explicitly,

f - In fJ dr'dy'f(.r')mnf I( Y', y (1y)

It is now necessary to compute the product of the sums and match coef-
ficients. Taking f(xy) YZ,- ,a,, V "h(.r)h(y),and g(xy) -- Z]oob,, ®
V"b(X)b•(y), we see that the computation of the convolution inverse is effec-

tively the determination of a collection of bn values, given a set of a, values.
Substituting into equation (11),

~ ~m (x~y - V 4 ~~(~y)(12)

This gives

1' 9

or equivalently with r p ý q

p 0' (1

Matching coeffinellits on the left an(l right hand sid-es implies that oldl v the
r -) term surviv-,es. 'Ihe re-t|lt is a linear svstcmn of equations for the b

5



values in terms of the a values. It i. easier to .,s, tihe behavior b.y writing the

first equations in this linear svstem.

{lo l I f ob•I - (p

Qoobhn) no,(boo 0 (5

and so forth. Thus, we can see the computation of the term.s of the convolu-

tion inverse.

1.3 Fourier Transforms and Simple Examples

Lastly, we shall want to consider the Fourier transform of a generalised dis-

tribhution. Again taking f(,,y) - we can inmmediately

evaluate the Fourier transform as:

1.1 dxi~f~x.vh~""~ ~ j o,, ( ik)" 16
n--n

where for the last step we have used -"'kI'. .... (ik)". The Fourier

transform of a generalised distribution may seen to be a power series.

The Fourier transform of a function is the "moment generating function"
because of equation (9). Thus the basic requirement for the validity of writing

a function as a generalised distribution is that tis moments be finite, or more

stringently, that its Fourier transform be rea! analytic.
Simple explicit examples of convolution inverses are obtained from the

standard (;teen's functions. The two-dimensional Hlelmholtz equation, for

example, can he treated equally easily with generalised distributions and wit l
Fourier transforms to obtain both the Green's function and its convolution

inverse. Thus , we have

Application of equation (15) shows that oily bn atid h2 Contribilte to tihe

con volut ion inverse

I,ý4 IV'

*11 h(x. y;)/2 h'(x,.y) (

6



T'his result is easily reprod iced bY using Fouricr t ra usfortns. a id is casil v

verified ulsing equatiion (0).

In contraiO, the convolution inverse, of Oi (Gaussian fu nctioji cannot be
)b1hai,,e(I a, a Fourier tran t'frtn, but it is ea.ily " vobtain• d using gelneralised

distributions. It may be verified that for a (aussian i finctiorl of widih r, . the

convolution inverse is readily obtained froTm1 equation (15), whil(, calculation

using Fourier transform-s leads to a divergent result. Calculation of monuets

and use equation (15) yields

7



2 Rigorous Construction of Hyperdistribu-
tions

In this sectiion we first modify lhe classical expansion in the llermni e ptlyn,,
toials. This expansion is "superior" to a power series expansion in that the
terms are orthogonal, making the error orthogonal to the approximalion. Our

tnodification maintains this advantage. Furthuremore. thle standard Christof-
fel -Darbonx analysis gives a very useful sufficient. condition for convergence
that our expansion inherits from the Flermite polynomial expansion. Since
our expansion utilises the Rodriguez formula. for the Ilermite polynomials.
we call it the " Rodriguezx ".

2.1 Modified Hermite Expansion: Rodriguez expan-
sion

In effect, we discuss here a systematic pointwise approximation of generalised

distributions. This approximation met hod is analogous to the melhod de-
veloped by Temple to approximate dist rihut ions by srI-oot h functions. The
Temple method has become widely known through Lighthill's monograph:
Fourier Series and Generalised Functions.

Generalised dlstributions are approximate b va modificalion of fihe classi-

cal expansion in ltermite polynomials (hereafter called the "liermite expan-
sion") which is suggested by the Rodriguez formula:

(, , (.r) . +-2) T" - - (.T 2 -V2(20)

To see how the ilermite expansion can be transformed into an approximation
for generalised distributions, consider a function f(x,y) which we want to
represent as a generalised distribution. Multiply f(x,y) by

2(217 A ?-irA (2!)

then expand the resulting expression in terHns of tile "scaled 'ermite pOly-

nomials"

ItA(i) A "T1 ,(tX/A) (22)



whose defirnliion is justified bY tihe frTmuIla (25) below. We obtai in the ex-

p) ressi on

f (X,,Y) ,, (x ,,(23)
O\n2 0 

7A2

Multiply both sides of the equation hy the normalised Gaussian introduced
by Temple, i.e.

4.2 •.•tz

Y) - (24)

And, observe that by rescaling the R(odriguez formula (20) we can write

(- 1) ' HI(X)lrAn(Y)b'(zX,)- 'Y(~) (25)

The final result is

f~x~y) - bj. .m k(X,.Y) (26)
nn 0 "14-sO

where we have introduced the coefficients

n' 1) "" n
A2"r 2•n f 4 '0

"n"M 2T,,-!,n!. n . f(XY)J,(X.)I,(.)1/,)dxd (27)

When we let A tend to zero, we have a representation of '(x) as a generalised
distribution. We call the expansion (26) the "Rodriguez expansion for f(x)
with width A". The width parameter is a novel feature of the Rodriguez
expansion when compared to standard expansions in complete sets of basis
functions. The standard expansions do not, contain a free parameter. The
advantages of the RodrigIIez expansion will be demonstrated below in the
context of the theory of generalised distributions and of convolution inverses.

We consider as an example a function familiar from the analysis of tur-
bulence spectra, the "O(gura" function

f(x, y) -N (-.2N4) (28)

With N determined by the normalisation condition,

/f 4 (,,,V)d.rsd. (2q)

9



we have
N (1/4)r2(1/4) = (1.8128)2 (30)

The Hermite expansion exhibits pointwise convergence, albeit with "whip-
ping tails". By contrast, the Rodriguez expansion exhibits pointwise conver-

gence without "wvhipping tails". As a consequence, the Rodriguez expansion
also yields a global approximation by accurately representing the moments.
Furthurmore, the Rodriguez approximations has an adjustable parameter
which may be selected to optimise the rate of convergence. The Christoffel-
Darboux theory gives the necessary condition for convergence in appropriate
L2. For the Hermite expansion, we have

J 0 e- ei. 2 +y 2 )f,(X, y)d2!dy < 00 (31)

Inserting the transformation that leads to the Rodriguez expansion, we find

J 0 em e22+1 2 f2 (Z'y)dxdy <00o (32)

for the corresponding V definition for the Rodriguez series.

2.2 Definition of Hyperdistributions

In order to describe the process of antidiffusion, we have introduced a class
of highly singular "functions", that are precisely defined in this section. Our
process for defining hyperdistributions parallels the Temple defiiC,'ion (gen-
eralised function) as a good sequence of good functions. Good functions are
smooth and tapered. More precisely, they are total point functions that are

differentiable to all orders (C-°), and decay at ±oo faster that any power.
Good functions play the role of "testing" a sequence of good functions for
weak convergence. In fact, a sequence of good functions is a distribution if

lim ]J_ 4(X,Y)f,(XY)dxdy < oo (33)

for all good functions q0.
Since we conceive of hyperdistributions as "generalised" distributions, we

are in fact implementing a second order generalisation of functions. Con-
sequently, we need a double test as a convergence criterion. We implement

10
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this criterion by introducing very good functions GA(X,Y) with the following
properties:

1. GA(X,Y) is smooth, that is, differentiable to all orders, C00 .

2. GA(XY) is essentially compact, i.e. it has a gaussian decay at +oo
GA(Z,Y) - Ne-(2+Y 2 ).

We will assume for convenience that GA is normalised to unity:

Jf GA(X,y)dxdy =1(34)

We define the width of GA by

A 2 /4= f'( - r) 2 (y - 9)2GA(zY)dxdy (35)

A primary example of very good function is the gaussian, which we denote
by h (z, y):

=e6, (, ) A2  (36)

We now introduce a sequence of very good functions defined by

1t•(§, f) = • -411 ® V1 l(§, f) (37)

The sequence {?f•},\, where lambda is a nonnegative real and n is a natural
number, is a good sequence if, for all good functions 0 and for all very good
functions GA, there exits a A0 such that, for all A > Ao,

l ]_ O(9,y)(fl\ * G-) § t < 00 (38)nZM f foo

We note that etV 2•(x, y) are hyperdistributions. The sum (hyperdistribu-
tion)

E ak® V'r(ZY) (39)
k=O

11



Can I hits be viewed eitfher as a seq•,p'l,( -i f "good- (list rib1 tid n' as A it:

or. as n c r, as sequence of good functions:

k-0

The latter representation is a Rodriqurz czpanvsion. The Rodriguez formula
for the Ilermite polynomials can be used to show the derivatives of a gaussian
form a complete set of orthlogonal polynomials in an L2 space. And thus the
Rodriguez expansion yields a very useful point function approximation to
any hyperdistribution:

00

> a ki I )k lIk(x/A)II(y/A)bA(xy)/A"f (42)
k-0

where l,•(.r) denotes the Ilermite Polynomial in T of order n.

12



3 The Multipole Expansion

\\e start wit ih the familiar Poisson vqiia io of plential theory.,

This equalion is rewri tci with the help of ilihe (infinite domain) G reen's

fuinclioll

7.2 T 2 Y 2

We can then rewrite tle "potential', q, in terms of the "charged dist ribu-

lion", p as
C•=t• p (,15)

Introduce 0 with the property

Convolving both sides of eq(45) with Q and using the commutative an(d
associative properties of the * product, we find

Q*-0 Q*(G*p)

(Q*p)*C
-G (17)

Solve eq(13) for 0 in terms of the given G by computing the convolution
iniverse,

ill ~Y) -jA'~ 0 V"G(x, y) (49)

which is Gauss' multipole series with coefficients

where ® denotes tensor product. and xr'ý" is the tensor power of the 3-vector

X.

13



SIhstil li i It (119 ) itit' ( IS) we lim I a fariiiliar expressi On

,/,(.,..Mx 11yry )ý V(' •

11 0 • • -,-2,T

which is a standard result in pote('tiIial hlheor,.
We can interpret the RodriglICe exPa tF5iSi1 a- a genIeralised nitl tiRTohe ex-

patlsl 1ll that include•S a Si 7e oIr radius paraniter. A. Thus our monopole
generates the point source, which is a D)irac delta-flunction as a gaussian of
wid thl A. \We recover the standard nulT tilpOls whien A ý 0 ()ur expansion

has the form

fx.Y) - ,•V,,),(xy) - ... (51)

Thlie ingredients or I lie expansion are the basis functions

(52)

and the coefficients
0 a I•'a14 (.53)

all of which depend on the size parameter A. The basis functions are, explic-

• ( ,• .. . Ar .. (5.1)

12(xy (56)

T'he corresponding expansion coefficients are given by

•. // f(x ,,)dxdy,, (A , o) (5•7)

This coefficient. represents the total area, or alternatively, the tota~l mass or
charge of the source function. Also

2x - (5)

7r,

2 +V2)I
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which rc-pr se ii t ~s •he tict di 1),h'~ Id li h S( Ii rr ' Ivi riiccli ilcal t I 'rm s n~l d 'fi r '.*

the cciii, er of mass of I he soi, rye, fii iciion., Fin lnt!,

/ A 2f(,r.y)drdy. (A 0) (59)

which represents the quadrupole of the source distrihutions. It mechanical

terms this is the miotlent of inertia of the ma~s distribltion, tligher order

basis fmnction and coefficienlts have analogons Interpretations.

IS



4 Expansion of a Function in Rodriguez Se-
ries and its Optimization

Our expansion preserves tihe classical properties that are derivable for or-

ihogonal polynomial expansions (as opposed to power series). bit also adds
an importanit new featrite: tlhe size or radius parameier that generales the
( anssiani picture of point nmonopole. diple. q iadru pole, etc.. to a scenario

in which we can allow for extended somnrces. We find from the contvergence

cOVditimn derived from the ('hrist offel ).r holux theory in section 11 that con-
vergence holds generally on a semi-infinite range of A. This remarkable free-
doM is exploited in tlis section to op1inize h'Ie rate of con verge ice of the

expansiotn. This optimization results in determining the value of A for which
a I imum nuthber of terms is determined in order to obtain a given toler-
ance, \Ve rieasure the tolerance, as usual . by the least. square fit integrated

over the enlire function. WVe define the error

t(N. A) //j fdxdi(f(x~ii) Nz (CO)
k 0

\Xe apply the formula to a standard gaussian, i.e. we take

f(X ,) ) - ( - X- 2  /,• (61)

we then find, after some calculations

"A - (.- I )'2 2 "(2n -- 2 1)!"S......... .......--. 4( l)"2 2 , ! (62)

"k-0 k !(2n- 2k)!

where the double factorial contains only odd terms. WVe can now express tile

standard gaussian in the Rodriguez form:

-C* NZ (1 32 )) V 2  (. y),(3

n -

A proof based oi useful linear operatIor relations is as follows. We can check

Iy (differentiation in t and X that

(,1 .

16



W~e niow let

I I A

2 A"

We T'oVw 'onsidier he i (hIe'nltit

exp>andingfle ]• I.IS

AI 2

The m111 1 "d (f pr,,1F \ill Ile ,1'(e laier. Furtihmrmore, it provider, a welc'mie
iheck on the rat her difficitlt caldlations of coefficint s. W<e see 1) inspeclion

ihat A I is optiminal. W'e al so consider the hiinctioi

f I. ,,.--
f(.r,Y) -- Osq(k'x)cOs(k?1)6 ()

17



5 Conclusions

W~e Ilax seell tha Fvii e~rallsed distrdnil -i~t pruviddv a imet Yod fir .(dlving

Fredlioli iintegral eqpiai lns o)f t Ile cwl vol lit MtorIY lpce I - sc '1iie Jmil Ietitiv

Wit 11hV I I Ti rent l`tI II I 'd -, I IiiRat ('TU pho % .o Fmrr tra TI~fOTTIIS ,\ Ii ave 12 X it ;I eeou-II

th at gener-al ised dist ri tit lions c-an lie a I)Troxiia t ed TMI'if-i eral lv bY ,eqpience';

of Smloothl fuinlctiouis. This ;)rocedvire is arralogmirs to Ilhat ofaprimtn

D i ra c d(1f 0 fimr tions bY sequren ces of n1arrowliiig ;i.isi ani furwI ici m, l it this

Se~ron d pa per we hrave uised t WO di inensi-Onal1 eXam MIeICS for ill list rat I e pur-po-se

W \e will discluss a pplicatitonls in higher (iiinensiouis arid extercisinums of I lie

It roY of geuieraIis c ( d ist ri bi It Iit)is se p)a ratdey.



6 Appendix: Remnainder Theorem for Hly-
perd istri but ions

ITT I t his a p)j)T p(I di N e gi ve t he rem a I nder I lioein fo-tt r IvY per (I it r Ib tit ion s. 'I hie

remn'aindler for~mula is of great itse ill calciilatiitg, Lagrange and (Calch 'v es
tittiates, for tit( teryws neglected. 'Ill Iis fca t itire of ouitr C XpIa 11';Ion.TI, i ke the
presenice of 1hle a 1j iisi able "radlius pa ra met er. is imi iii q I oi OT VX pa IlSPI Il

an it Iit i s ot (0shItared bY of her ort hogonalI f ititcI 'o it,; expantsi onl.

'I'lhe general forTm of thle Ta ~ br expansion for two distimct po"Its Vi/and

I?7, di O t V I 7 (71)

ThV form TIlIa for the remn~ai ud r is iii fact a ii ident it w hich is lproxei b.\
recursion integration bY parts.

NWe n1ow give tilie approprI)iate' remnainiider for fthe t wo duial cx pa nsnml dits
cuissed ill sec(tioin .

6.1 Taylor (local) expansion

We Ilse

(72)

NVI 11a ve

he'3' (aXF V(' di dr*' F I')" 5ý V A i)( /i! (73)

Theni we havye, using D i rar's id(kilt it

f(F) /bt. x" ) f(;r")dr'

,f 0) i . Vf0 ) i... 1 fel(71
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with the remarkable" relation

6.2 Moment (global) expansion

We Set

:" .1 (Tfi)

We lhen bave

( X') , ) x -V{(i) ,... / di(± I. ' .'"7i);,,! (77)

U'sing D)irac ident ity we concuide

This renaitider formula allows us to estihmate correc•lv the errors when the

hyperdhisfrihbtiicm expaiisioln is truncated.
We observe that the Rlodrigiie7 eXpansion for a Gaussian. given in section

-1 is also a Taylor expansion i.e. (setting y - x A, -)

A A) > A , V"•(z),,! (79)
n-- 0

Muiltiplying both sides by a good (test) function O(x). and integrating, we

obt aiiu

[,o I. A)Xl(•)di' Z A• ' X)" [,/ ,(.F)V°¢<)di/n (so)

Taking tle limit A (0 of hotI sides we conclude for the Taylor expatlsion
of the test functiot i.e.

''0
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I hcrcf')Tff t ht c 't fci y I It 1 f ;It a TIa vII K~ I(4 1 1tI(h, 11 ;1

~oshmv I h at cafinriotri mic he eXeCTiSed II I rcatitip I~l vprdli1 rilull mnuIS 11

ottiTlarY (lj'ihljflti('fl wet Imili t mit 111 exampleI4 -f a fim m~i'4ml \'IcIsti~51441

1)11 TmIl real arial.\ iIc,

T lie fiun1cti ion (h i" i n fiIIi iel *v d iffVeetI Mab)l1e 1U" 1 )ad t apers c xpOTI 'It c ai I I It; Y;

i n i ni t . N everilicless. it lmr as iri 4 denr va t i yes a thev oni)gi ii ai uI d i iIs I h crcf ,wV

Dot real ainal yl ic. Aq a cowseqiience, I lie fa mila r Va~lor expa nsion o~f I he', 6

fmc lion is. st ri ctly speaking. a li~perdisI rilumh lo.
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