
| AD-A270 137

Final Report

Volume 3

I

I A Parallel and Pipelined Architecture for Estimation of
Direction of Arrival using a Bilinear Transformation Method.

IDTIC
ELFCT Submitted to:

I : w;T 041993`
Grant No. N00014-91-J-1011

Department ot the NavyI Office of the Chief of the Naval'Research
Arlington, VA 22217-5000I

* Submitted by:

M. M. Jamali Principal Investigator
S. C. Kwatra Co-Investigator

Ravindranath Suria Research Assistant

Department of Electrical Engineering
ShTCollege of Engineering[Th-' 13d-"cuaant bas hoeer G~ppzove! The University of Toledo

d 1for public teless •nd 3.lel its Toledo, Ohio 43606I distri)ution is uniL-nted

Report No. DSPH-3
93-23065 August 1993

1 93-239 lo
I I1llilI~IIIjjI~jI'j~9 101 .0 5

I
I
I

Final Report

I Volume 3

I DTIC QTAjj~y

U A Parallel and Pipelined Architecture for Estimation of
Direction of Arrival using a Bilinear Transformation Method.

Acce,ýion r

Submitted to: IS

Grant No. N00014-91-J-1011 U-,.

Department of the Navy
Office of the Chief of the Naval Research BY as- 367 0

Arlington, VA 22217-5000

III Submitted by:

M. M. Jamali Principal Investigator -,

S. C. Kwatra Co-Investigator
Ravindranath Suria Research Assistant

I
Department of Electrical Engineering

College of Engineering
The University of Toledo

3 Toledo, Ohio 43606

I
Report No. DSPH-3

I August 1993

I
I

This report contains part of the work performed under ONR grant N00014-
91-J-1011 during the period October 1990 to July 1993. The research was
performed as part of the Masters thesis requirement of Mr. Ravindranath
Suria.I

M. M. Jamali

P
3 Principal Investigator

I
I
I
I
I
U
I
I

I
II
I

n
U
m Abstract

High resolution direction-of-arrival (DOA) estimation is important in

many sensor systems. It is based on the processing of the received signal and

3 extracting the desired parameters of the DOA of plane waves. The estimation of

angle of arrivals of multiple broadband sources has been carried out in a variety

3 of ways over the past few years. In this research an algorithm for broadband DOA

estimation using a simple bilinear transformation matrix is investigated and a

parallel and pipelined architecture is developed. When compared to other

coherent approaches, this algorithm has the advantages of being non-iterative

and does not require any initial estimates of the angles of arrival and all angles

are computed from a single step of coherent subspace calculations. Hence it is a

very suitable algorithm for computation of DOA using dedicated hardware. The

advances in the area of Very Large Scale Integration (VLSI) have made it

possible to design special purpose hardware which has the advantage of very

high speed and overall lower system cost when compared to a system which

runs off a general purpose computer.

The algorithm is first analyzed and modified to exploit the maximum

parallelism in the computations. Each part is simplified and made suitable for

execution with special purpose hardware. The design considered the tradeoffs

between the timing requirements and the number of processors in each stage.

5 The final part of the research is the design and implementation of a generalized

covariance matrix processor for several DOA algorithms, namely the bilinear

transformation method, the BASS-ALE method and the narrowband MUSIC

algorithnt. A VHDL simulation of the processor was done with PowerView, the

Sun workstation based CAD tool from ViewLogic. The processor was simulated

and layed out using GDT the IC design package from Mentor Graphics.

1

CONTENTS

3 1 Introduction

1.1 Array Signal Processing 1

1.2 A Broadband DOA algorithm

3 2 The Bilinear Tranformation Algorithm

2.1 Introduction

2.2 Problem Formulation 5

I 2.3 Problem Solution

3 Parallelization and Modification

1 3.1 Introduction 11

I 3.2 Computation of the Transformation matrices 17

3.3 Computation of the G matrix 19

1 2.4 Cholesky Decomposition 19

1 4 Hardware Implementation

4.1 Introduction 23

i 4.2 The Covariance Matrix Processors 27

1 4.3 Processors for computation of G matrix 32

4.4 Computation of Gn 37

S4.5 Forward Substitution 37

S4.6 Cholesky Decomposition 39

4.7 Processor wordsize verification 42

I 5 A Combined Covariance Matrix Processor 44

5.1 Introduction 44

I

5.2 Covariance matrix computation for narrowband MUSIC

algorithm 45

5.3 Covariance matrix compuatation for broadband BASS-ALE 3
algorithm 49

5.4 Covariance matrix compuatation for Bilinear Transformation I
algorithm _;3

5.5 Processor Architecture 56

5.5.1 powerview 5.1 60 1
5.5.2 Behavioral simulation of the architecture 3

6. VLSI Implementation 74

6.1 Introduction 74 1
6.2 Generator Development Tools 74 g

6.2.1 GDT Lxcells - generation of basic gates 75

6.2.2 GDT Led - Schematic creation 75 3
6.2.3 GDT Lsim - Simulations 75

6.2.4 GDT Autocells - layout generation and routing 76

6.3 Processor Implementation 74 U
6.3.1 The input loading stage 77

6.3.2 The arithmetic unit 83 1
6.3.3 The control units 98 5

5. Conclusions U
Appendices 3
Bibliography

23

I

5.5.1 The input loading stage

I5.5.2 The arithmetic unit

I 5.5.3 The control units

I
!
I
I
I
I
I
I
I
I
I
I
1
I
I

List of Figures

3.1 Mathematical Transformations in the algorithm 14

3.2 Flowchart of modified Bilinear Transformation Algorithm 15

3.3 Flowchart for the computation of Cholesky Decomposition 21

4.1 Overall system block diagram of the algorithm 26

4.2 Architecture for computation of covariance matrix 28

4.3 Flowchart for computation of covariance matrix 29

4.4 Block diagram of covariance matrix processor 30

4.5 Flowchart for computation of G matrix 34

4.6 Processing element for computation of G matrix 35

4.7 Architecture for the Forward Substitution operation 38

4.8 Processing Element for Forward Substitution operation 39

4.9 Architecture for Cholesky Decomposition 40

4.10 Processing Element for Cholesky Decomposition 41

4.11 Direction of arrival estimation using quantized and

unquantized data 43

5.1 Processing board for computation of covariance matrices 45

5.2 Flowchart for the computation of covariance matrix for Narrowband

MUSIC algorithm 48

5.3 Flowchart for the computation of covariance matrix for wideband

BASS-ALE algorithm 52

5.4 Flowchart for the computation of covariance matrix for wideband

Bilinear Transformation algorithm 55

5.5 Flowchart for the combined covariance matrix processor 58

5.6 Block diagram of the combined covariance matrix processor 58

5.7 Schematic of mode decode unit 61

I
U

5.8 Schematic of load control unit 61

5.9 Viewdraw Schematic of the input loading block 63

5.10 Viewdraw Schematic of the narrowband MUSIC control unit 64 1
5.11 Viewsim results of narrowband MUSIC control unit 65

5.12 Viewdraw Schematic of the BASS-ALE control unit 67 5
5.13 Viewsim results for simulation of BASS-ALE control unit 68

5.14 Viewdraw Schematic of the bilinear transformation control unit 69 1
5.15 Viewsim results of bilinear transformation control unit 70 3
5.16 Viewdraw Schematic of the covariance matrix processor 72

5.17 Viewsim results of the covariance matrix processor 73 3
6.1 Led Schematic of combined covariance matrix processor 78

6.2 Led Schematic of input loading stage 79

6.3 Led Schematic of 16 bit input latch 80 3
6.4 Led Schematic of load control unit 81

6.5 Led Schematic of decoder used in the input latch circuitry 82

6.6 Schematic of systolic array signed binary multiplier 84

6.7 Led Schematic of multiplying stage 86 3
6.8 Lsim simulation results of multiplying stage 87 3
6.9 Led Schematic of full adder used in the adder and accumulator 88

6.10 Led Schematic of 9 bit ripple carry adder 89 3
6.11 Lsim simulation results of 9 bit ripple carry adder 91

6.12 Led Schematic of basic full subtractor 92 I
6.13 Led Schematic of 9 bit subtractor 93 3
6.14 Lsim simulation results of 9 bit subtractor 94

6.15 Led Schematic of accumulator 95 3
6.16 Lsim simulation results of accumulator 97

6.17 Led Schematic of Master Slave Flip Flop used in the counters 99 1
I

6.18 Led Schematic of 6 bit counter used in the control circuitry 100

6.19 Led Schematic of control unit for Narrowband MUSIC algorithm 101

6.20 Led Schematic of control unit for BASS-ALE algorithm 103

6.21 Led Schematic of control unit for bilinear transformation

algorithm 104

6.22 Lsim simulation of the covariance matrix processor 105

6.23 Layout of the combined covariance matrix processor IO

6.24 Pin diagram of the combined covariance matrix processor 110

6.25 I/O diagram of combined covariance matrix processor 111

CHAPTER 1

Introduction

1.1 ARRAY SIGNAL PROCESSING

The estimation of the direction of arrival (DOA) in sensor systems has

been one of the frequently considered problems in digital signal processing.

The algorithms used to compute the DOA are based on the processing of the

received signal and extracting the desired parameters to estimate the direction

of arrival.

Traditionally the approaches to this problem have been separated into

the narrowband case which assumes that the signals can be considered to

have only one frequency component and tie broadband or wideband case in

which the signal is considered to consist of a band of frequency components.

So far the narrowband case has engendered the maximum interest and a lot

of algorithms have been used to achieve the results.

Most narrowband approaches use the so called maximum likelihood

(ML) and the maximum entropy (ME) methods [1-3). The most popular

methods for narrowband estimation are the Multiple Signal Classification

(MUSIC) and the Estimation of Signal Parameters by Rotational Invariance

Techniques (ESPRIT) algorithms [4,51. Computationally they are the most

efficient and hence are considered the most promising candidates to perform

the required functions.

The estimation of angle of arrivals of multiple broadband sources has

Ieen carried out in a variety of ways over the past few year-. The

U
U

conventional approach is to form a generalized correlator [6] to estimate the

Time Difference Of Arrival (TDOA) of the signal at the sensors. Some

methods are similar to the narrowband case. The so called maximum

likelihood based methods [7-91 require knowledge of the source and noise

spectra and are computationally expensive. The parameter estimation based

methods [10-12] , assume Auto-Regressive Moving Average (ARMA) models

for the received signals and the estimated ARMA parameters are utilized for I
the TDOA calculations. Such model based methods have computational 3
complexity and their effectiveness depends upon the accuracy of the model

chosen to represent the unknown broadband signals. Another way is use a 1
eigendecomposition approach for the estimation. This approach involves the

incoherent combination of the eigenvectors of the estimated spectral density I
matrices at each frequency bin to calculate the TDOAs. One wav [13,141 is to 3
use the initial estimates of the angles of arrival to transform the eigenspaces

at different frequency bins and generate a single coherent subspace which is 3
eigendecomposed to give more accurate estimates. Well separated angles can

be estimated by focusing at different angles at each time and iterating to obtain I
the accurate results. Most of these methods use algorithms that principally 3
operate in the time domain and have the disadvantage of either needing

initial estimates of the angles of arrival or having to perform several

iterations before arriving at the result. I
1.2 A BROADBAND DOA ALGORITHM I

Shaw and Kumaresan [151, proposed an algorithm for broadband DOA

estimation using a simple bilinear transformation matrix. An approximation 3
resulting from a dense and equally spaced array structure is used to combine

the ;ndividual narrowband frecquency matrices for coherent processing. I
21

When compared to other coherent approaches, this algorithn, has the

advantages of being non-iterative and does not require anv initial estimates of

the angles of arrival and all angles are computed from a single step of

coherent subspace calculations. Hence it was found to be a suitable algorithm

for computation of DOA using dedicated hardware.

The first objective of this research is to modify and parallelize this

algorithm so that maximum computational effectiveness can be exploited

The algorithm is broken up into computational units and various

architectures from systolic arrays to MIMD machines are considered for each

module. The most appropriate one is presented and a complete system is

developed for the whole algorithm.

3 The next part of the thesis deals with the implementation of a

combined covariance matrix processor. The computation of the covariance

3 matrix is a common step in all DOA algorithms. Along with the bilinear

transformation algorithm, the narrowband MUSIC [16] algorithm and the

I broadband BASS-ALE method [17] are considered and and a processor is

developed which is capable of computing the covariance matrix for any of

the three algorithms. The processor is simulated at the architectural level

using VHDL.

The VLSI implementation of the processor is considered next and an

ASIC chip is proposed which would contain covariance matrix processor. The

detailed design of the processor is performed and the processor is simulated at

the gate level using GDT[21-241.

Chapter 2 explains the adapted version of the broadband bilinear

transformation algorithm proposed by Shaw and Kumaresan. The authors

I
I

present a generalized algorithm which has been adapted for using in a system

with eight sensors. Chapter 3 explains the modifications to the algorithm I
which will make it more computationallv efficient This includes the 3
introduction of the Choleskv Decomposition, the modularization and the

parallelization of the algorithm so that it can be easily implemented with a 3
parallel architecture. Chapter 4 deals with the design of the system

architecture. The proposed architectures for the various modules are shown I
and the processing elements at each stage are described. Chapter 5 describes 3
the design of a combined covariance matrix processor which has been

explained above. The behavioral simulation of the processor is also described 3
and the results are shown. Chapter 6 deals with the VLSI implementation of

the processor and the gate leevel simulations that were done. The results and I
conclusions are presented in Chapter 7. The appendices contain the Fortran I
code for the algorithm simulation and the VHDL code for the behavioral

simulation of the various modules. 3

4

I
I
I
I
I
I
!1

3 CHAPTER 2

3 The Bilinear Transformation Algorithm

3 2.1 INTRODUCTION

The thesis is broadly based upon a novel DOA estimation approach

proposed by Shaw and Kumaresan[15]. This algorithm estimates the DOA of

3 broadband sensor signals by using a simple bilinear transformation matrix. In

this algorithm approximation resulting from a dense and equally spaced array

3 structure is used to combine the individual narrowband frequency matrices

for coherent processing. This algorithm is non-iterative and does not require

any initial estimates of the angles of arrival. This algorithm has been adapted

3 for use in an eight sensor system. The basic concept of the algorithm and the

mathematical transformations it involves is presented in this chapter.

The system that is considered consists of a linear array of 8 sensors

3 which are spaced at equal intervals. They therefore receive signals that are

slighty different from each other. The spatial difference in the position of the

I sensors is reflected by a proportional phase shift in the observed signals at the

3 different sensors. The noise at the sensors is also considered and an additive

component is chosen to represent the effects of all small sources. They can be

3 combined and modelled as a Gaussian and stationary process by using the

central limit theorem.

2.2 PROBLEM FORMULATION

Consider a linear array with 8 sensors which are spaced at equal

distances. The incoming signal is assumed to be composed of d plane waves

5

I
i

emitted from d sources (d < 8), with an overlapping bandwidth of B Hz. The

signal from the kth sensor is expressed as

rk W d - + lk (t) (2.1)

Xsi<t (k 1 !k <_8n

where si(.) is the signal radiated by the ith source, A is the separation between

the sensors, c is the propagation velocity of the signal wavefront, 1i is the

angle that the ith wavefront makes with the line of array and nk is the 3
additive noise at the ith sensor.

Performing the FFT and representing the two sides by their Fourier

coeffficents I
d

Rk (WZV) = e-iw (k- 1) -sinO, Si (wI) + Nk (w') (2.2)

27c

with wV = 1-/, I = 11, .,+nf, where ZVI, and wl,. ,, are the frequencies which

span the bandwidth B. I

Writing in the matrix notation i

R(w,) = A(w,) S(w,) + N(w,) (2-3) 3
where these matrices are composed of the column vectors 3

R(wj) = [rl(wl) ... rs(w,)]T (2.4a)

N(wz) = [nl(wl) ... n8(wl)IT (2.4b)

61

I

S(ZLJ) = [s(w)... s,(zv) (2.4c)

and the matrix A(w1) is a 8 x d direction finding matrix

I ... I-,

A(w,) = [. (2.4d)

= - sin ej (2.4e)

t, being the TDOA of the ith source. Assuming that the observation time is

large enough when compared to the correlation time of the processes, the

covariance matrix of the Fourier coefficient vector r(wj) will approach the

spectral density matrix

K(w,) = A(w71)P(w)A"(w,) + a,` P(wj) (2.5)

where K(7(1), P,(wV1) and P(w,) are the spectral density matrices of the

processes ri(.) Sk(.), ni(.) respectively. The noise process is assumed to be

independent of the sources and the noise spectral density matrix except for a

multiplicative constant (Y,,.

The problem now reduces to the estimation of the r,' s from the

covariance matrices K(7v1) and the noise representations. Then the angles of

arrival can be computed from the Equation (2.4e).

2.3 PROBLEM SOLUTION

This particular approach utilizes a bilinear transformation and dense

array approximation to form the transformation matrices. The bilinear

transformation matrix that is used can be synthesised from the coefficients of

7

I

the polynomials pk(z) = (l+z)"k (O-z)kI, where k =1, 2, ... M-1. M here

indicates the number of sensors that the svstem is using, which in this case is

equal to 8. Hence the transformation matrix in this case is an 8x8 matrix, the

synthesis of which is shown in the next section. I
E(wt) denotes a diagonal matrix given by

[(+ e~it'ý r;)711

E(wL) = .(+e. (2.6)

Premultiplying A(wt) by the transformation matrix B and simplifying the

product gives I
" 1 ... i

jtan 2 ... itan 7 -

BA(wi) j.E(ztL) (2.7)

L (j tan-T-)7 (;ta-' I
Assuming that the sensor to sensor separation A is small when compared to

Wl~rl

the wavelengths of the incoming signals, tan --- can be approximated by
Wrin

Now consider an 8M8 diagonal matrix D(E) whose (kk) th term is given by I
d =(2w)k-1 (2.8)dkk 1w1 !z~

where w, =21tfc and fc is the midband frequency of the signals.

It can be approximated as

81

I

I

I~ ~ (Wtrr)7 .. (cdr

I There is a new matrix A(wc), whose columns are the transformed direction

frequency vectors which are dependent upon wc, rather than wkt. The

columns of the matrix are linearly independent as long as r, *rk for i *k

3 A new transformation matrix is defined as

T()=D(--)B (2.10)

This does not depend upon the arrival angles and can hence be computed

independently of the angles. Using these transformation matrices for each

individual narrowband frequency, all the spectral estimates can now be

combined at the midband frequency in the following manner;
I /1 +nf

G= IXT (wi) K (wo) TH(w,) (2.11)

/!+nf

and Gn= I T (w,) Pn(w1) T"(W/) (2.12)
14/

3 Then the coherent signal subspace theorem for the matrix pencil (G,G,,)

is used to estimate all the angles of arrivals by computing the maximas of the

measure given by

J(O)1=
(2.13)

ae (we) ek (W)I 2

k=d + I

I 9

I
I

where ek (w6) denotes the generalized eigenvectors of the matrixi

pencil (G,G,,), which correspond to the 8 - d eigenvalues, and a0 (we)

represents the new direction frequency matrix.

I
I

I
I
I
I
I
I
I
i
I(

CHAPTER 3

Algorithm Parallelization and Modification

3.1 INTRODUCTION

The first objective in the implementation of signal processing

algorithms such as the one outlined in the previous chapter, is to modify

them in such a way so that the maximum possible parallelism and pipelining

can be achieved which would enable the real time implementation of the

algorithm. The modification of the algorithm outlined in the previous

chapter takes into consideration the various tradeoffs involved in the

ultimate realization of the hardware like the timing and cost considerations

which would make the project viable.

Figure 3.1 shows the mathematical transformations that the algorithm

involves. The algorithm has been modified into discrete blocks so that the

system design can be done in a modular fashion. The sequence of steps

involved are as follow:-

1. Collection of sensor samples.

2. Computation of FFT of the samples.

3. Formation and averaging of covariance matrices.

4. Computation of the G and G,, matrices.

5. Perfoming the Cholesky Decomposition.

6. Performing the eigendecomposition.

7. Obtain eigenvalues and eigenvectors

8. Estimate number of sources and angles of arrival.

II

I
I
I The main modification introduced in the algorithm involves steps 5-8

outlined above. The actual calculalation of the angles of arrival is done by the

I power method which estimates the number of sources and the DOA. To

obtain the matrix in a form which is suitable for the power method it is

necessary to decompose it and to obtain the eigenvalues. The Householder

j transformation and the QR method are used to perform the

eigendecomposition. Another important modification is the use of the

I Cholesky decomposition to convert the G and G,, matrices into the standard

form for eigendecomposition.

It is important from the implementation point of view to parallelize

the algorithm so that the algorithm can be made suitable for real time

processing. The algorithm was studied and all the modules which can be

computed offline were identified. A flow chart of the modified and

I parallelized algorithm is shown in Figure 3.2.

I In this case we consider a linear array of 8 sensors A segment of 64

samples is considered, which forms the single step input to the next stage of

I the FFT processors. As shown in Figure 3.2 a single estimation of the angles of

arrival involves the processing of 64 such segments of 64 samples each. After

1 64 samples are collected, the next step involves the transformation of these

I signals from the time domain to the frequency domain by performing a 64

point FFT. The output is a symmetrical vector in the frequency domain. one

I side of the vector is discarded leaving a 33 element vector which is

representative of the input signal at that sensor.

S12

Collect X .(t)
f!

i=1 .. 8;n= 1 .. NI'
Compute FFT for every X.(t)

SX. ((coL) L =L ... L
ni I l+nf

Compute X n*(oL) X" (wL)nk

j=l..m k=j,..m L=L ... L
1 l+nI

Compute Average for
N

I 1 X . (o)L) X (oL)
N n=l j n

Form
A N H

K(wl)= I X (oL) X (coL)
N n n

I=L,L+I ... L
1 1 -+nf

Compute
S^ HSLl+nfAH

G = X T(coL) KwoL) T(wL)

L=L1I and

Ll+nf H

I= T(oL)P (wL) T(coL)
L=L

1

(Perform Cholesky Decomposition)

Convert GX = X G X
to the standard eigenvalue

HY = .Y

Perform eigendecom position
-position of (G, 1)

Conti nued...13

Continued...-I
Obtain

x ... ?,
1 m

Ie, e. em

estimate d number of sources

estimate angle of arrival

1
P(O)

1 d11ae (o

where

C2(ot) 2

rn-1

Figure 3.1 Mathematical transformations in the algorithm

14

Sensors

(Sampling and buffering)

PRECOMPUTATION

Estimation of
noise spectral I

density matrices
Pa wI I

a~ P(wA

:64 Loops

Formation of Formation and
aomto and

Transformation ! averaging ofa a

matrices covariance matrices
I I

Computati Computation of
(wt G"a 1

a S

t Householders
and QR

transformations

Power meihod

Estimation of

angles of arrival

Figure 3.2: Flowchart of modified bilinear transformation algorithm

S.'5

The next block is the calculation of the covariance matrix at each

frequency bin. Essentially the covariance matrix consi-•l , of the product of the

frequency vector and its Hermetiarn which is obtained from the corresponding

elements in the FFT output vectors. Hence for the 33 different narrowband

frequencies there are 33 different covariance matrices independant of each

other. These matrices are averaged over the 64 segments before being passed

on to the next step in the algorithm which is the projection of the covariance

matrices K(w,) onto the single midband frequency in the spectrum to

compute the G matrix.

The computation of the G matrix requires the transformation matrices

T(wl) which are precomputed as shown in the diagram. As seen from

Equation(2 3) in tl1 ! previous chapter the computation of the matrix involves

the knowledge of the narrowband frequencies in the bandwidth. Given a

specific problem such an estimation of the frequency bins is made by splitting

the bandwidth into 32 equal parts and taking the frequencies at the boundary.

With this initial assumption of the narrowband frequencies in the spectrum

of the incoming signals the transformation matrices can be computed offline.

This is possible beca,,se the matrices are unique for a set of frequencies and

are independant oý the angles of arrival of the incoming signal. Hence these

invariant matrices can be stored in a ROM for a dedicated architecture and can

be called up whenever they are required during the processing. However an

architectural model has been developed to compute the transformation

matrices on line which would enable the svstem to be more general purpose

and allow it to run scans over different frequency ranges witho.-t the initial

knowledge of their frequency components. The computation of the actual

m m w16

I
I

transformation matrices is outlined below following the principles explaned

I in the previou'S chapter.

1 3.2 COMPUITATION OF TRANSFORMATION MATRICES

The transformation matrix is derived as follows:

Let B be a matrix constructed from the coefficients of the polynomial

pk(Z) = (l+z)k (1-z)8"k, where k =1, 2, ... 7. K denotes the number of the row of

I the 8 x 8 matrix which is formed. In this case the nonsingular matrix has been

computed and is shown below

1 7 21 35 35 21 7 1

1 5 9 5 -5 -9 -5 -1
1 3 1 -5 -5 1 3 1

B = 1 1 -3 -3 3 3 1 -1 (3.1)
1 -1 -3 3 3 -3 -I 1

1 -3 1 5 -5 -1 3 -1
1 -5 9 -5 -5 9 -5 1
1 -7 21 -35 35-21 7 -1

IL

From this B matrix the transformation matrix can be computed

according to Equation (2.10). For the matrix D(i•,-c) , the (k,k) th term is

given by

2w.)k-I

dkk =(Jw--

Let p denote the constant term such that

2 Wc

The transformation matrix can now be written as shown in Equation (3.2)

I '"7

I
I

3 The matrix T can thus be computed and is stored in a ROM and is

retrieved bv each processor. The next precomputation block is the calculation

U of the G, matrix which is the estimate of the noise spectral density that is

expected to be present in the signal. The algorithm requires a previous

knowledge of the noise in the system which is expressed in terms of the P,

matrices at each frequency bin. The procedure for calculating the G,, matrix

involves two matrix multiplications and is similar to the computation of the

I G matrix from the covariance matrices. The calculations are performed 33

times, once for each frequency component and are then averaged at the

midband frequency.

p 7p 2 21p3 35p 4 35p5 21p 6 7p7 p

2 3 4 5 6 7 8

IP 5p2 9p3 5p -5p5 "9p6 -5p7 _p8

p 3p2 p3 _5p4 .5p5 p 6 3p7 p7

I2 3 _P4 bP 7

p p -3p3 _3 p 3p 5 3 p -.p' -.p
t2 3 4 8 3.2)Ip -p 2-3p 3 3p 3p5 -3p 6 -p7 p8

p -3p 2 p 3 5 p4 _5p 5 -p 6 3p7 -p8

p -5p2 9 p3 .5p 5p5 9p 6 -5p 7 p8

I p -7p2 21p3 -35p4 35 p -21p 6 7p7 8

The equation governing this transformation is shown below.

1 +nf
G,= '•T (wi) Pn (wI) T"(wl) (3.3)

1=11

The matrix G,, is then stored in the ROM and accessed at the time of the

Cholesky decomposition.

I l8

I
I

3.3 COMPUTATION OF G MATRIX

The G matrix which is the combination at the midband frequency of all

the individual covariance matrices of different narrowband components

I requires the projection of these matrices by the transformation matrices and

involves two matrix multiplications as shown in the equation below.

1 +nfIG= T (wli) K (wn) T"(wi) (3-4)

The process goes through 33 iterations as shown in the flowchart. Each

loop involves two matrix multiplications which are done sequentially,

I because the input to the second operation is the output from the first.

However parallelism has been achieved inside each operation as it is

performed in one cycle. The computation of the G matrix gives the matrix

pencil (G, G,,) of which G,, has been precomputed.

234 CHOLESKY DECOMPOSITION

The further processing of the signal requires that it be organised into a

standard form so that certain standard operations of matrix algebra like the

eigendecomposition can be performed. The algebraic manipulations which

are performed to achieve the objective are described below.I
G, and G are two matrices which need to be put in the standard form

* such that

GX = XG,,X (3.5)

where X = the eigenvalues of G

1 9

X = the eigenvector matrix of G,, and G

Decomposing Gil into

5G,, = L LT (3.6)

and substituting G,, in the equation and multiplying both sides by L- 1 gives

L1 G LT. LT X = . L-1 L LT XI
Defining Ll G L-T = H and LT X = Y (3.7)

The standard form required for eigen decomposition can be written as

HY= XY (3.8)

The decomposition Gi = L LT is obtained by doing the Cholesky

decomposition which is the next step in the algorithm as shown in the

I flowchart.

The flowchart of the Cholesky decomposition is shown in Figure 3.3.

The objective of reducing to a lower triangular matrix is achieved by

computing the elements below the diagonal according to the equation

i-I
aki - yaiiaki

aki = (3.9)aii

The diagonal elements are however computed by the formula

20

START

Ik a1 i (aki'yX a..a k a

I j i - 2J k

1 =1+i

I~~

~~ 1j

I
I
I akkz akk - Xaki- (3.10)

Once the lower triangular matrix L has been computed the transpose LT

can be obtained.. The next step is to obtain the two matrices H and Y. This

part needs the calculation of the inverse of the lower triangular matrix L as is

I seen from Equation(3.7). This computation is both time consuming and

complex especially for real time applications. The ultimate objective. is not to

5 calculate the inverse and to circumvent this requirement, a simple algebraic

manipulation is described below:

Assuming a matrix W such that

LW=G (3.11)

3 we have

3 W= L.IG

3 Taking the transpose and premultiplying both sides of Equation (3.11) by L-1

gives

SL-1 W =L- (L-1 G) T

I = L. 1 GT (L-)T

= L-1 G (L-1)T (as G is Hermitian)

Hence

LH = WT (3.12)

2*

Considering the two Equations (3.11) and (3.12) it can be seen that the

problem of computing the inverse is now reduced to the computation of the

H matrix bv two forward substitution operations. First the matrix W is

computed from the Equation (3.11) as the other two matrices are known.

Then it is transposed, which is a simple routing exercise in the architecture

I and the result in Equation (3.12) is used to compute the H matrix.The

computation of Y also follows the same procedure.

-- The resultant matrices are now in one particular frequency and can be

treated as a narrowband case. The two most common methods that can be

applied are the MUSIC and ESPRIT algorithms. In this case the MUSIC

I algorithm is applied. First the Householders and QR transformations are

performed to reduce the dense matrix into a diagonal one and then the power

method is used to compute the angles of arrival.

2I
I

I2

"CHAPTER 4

System Architecture and Design

4.1 INTRODUCTION

In the hardware implementation of the proposed algorithm it is

necessary to consider the tradeoffs between the timing requirements and the

number of processors in each stage. Though parallelization and pipelining of

most tasks in the process is possible this would require a large number of

processing elements which are not really necessary as far as the timing

requirements are concerned. Since the processing speed is going to be

determined by the sampling rate at the sensors which is not very high, the

basic system is configured for a system with 8 sensors. Therefore the

architecture is designed such that each stage has 8 blocks of processors with

the processing done in such a manner that the flow of data between

processors is minimized. The system can thus be configured for a different

number of sensors with minimal alteration at the architectural level.

The overall block diagram of the architecture is shown in Figure 4.1.

The first part shows the sensors and the buffering stage. To obtain one

segment of data for further computations each of the sensors sample 64 time

delayed elements. The input to the FFT processors is therefore a 64 element

vector and a buffering stage is provided to store and accumulate the data. The

buffer has a control mechanism to coordinate data flow from the FFT

processors. The data is transferred to all the processors simultaneously a

sample at a time. A sample consists of a complex element with data being

represented in signed 8 bit numbers for the real and imaginary parts.

24

I
J--- -- E E-- -- -- E-- Sensor

* , I ,, 6 Array

,*,* 1,,

56000 56000 56000 56000 56000 56000 56000 poesr

Control I

T -IT V I I II TIII I ..

Dedicated RAM

PEI I I P;48Computation

orG

RAM G
matrix 3

I
Figure 4. 1: Overall system architecture till computation of G

I

PZ1 P31 P94 ls PS$ 337 111

13 11 133 pass 214 33 3 as, 936 Forward3 From Cholesky Substitution

1 Decomposition I.. P41 P43 P4 4 P3 4 13

1131 P341 Pass PE64 Pa48 1344 364?

1371 P971 P373 1974 6?9 PI7* 377 378

L* PL&I P383 P993 PK44 ass Pas# 387 38

FIFO Buffers

Computation of
Eigenvalues

and Eigenvectors

Power method for

DOA

I

Figure 4. 1: Overall system architecture for the bilinear transformation algorithm

26

U
I

The next stage consists of the FFT processors. In this algorithm the

computation of the angles of arrival is done in the frequency domain so the i

first operation that is performed on the incoming data is the Fourier I
transform. The DSP 56000 [161 chip is proposed for the calculation of the FFT

for the data from each sensor. From the specifications of the chip it has been I
calculated that it can perform the 64 point FFT in about 120 .is, which is

acceptable for this algorithm. The output from the FFT processors is a 64 1
element vector in the frequency domain. But the components of the vector

are symmetrical and hence for computation purposes only one side of the

spectral elements is considered. The data reduces to a vector of 33 elements 3
which is used to compute the covariance matrices. The architecture for the

covariance matrix attempts to keep the symmetry of using 8 processors for I
each stage. A set of FIFO buffers is used between each set of processors to store 3
the results from the FFT operation. A clock signal as shown in the figure is

used to retrieve the data from the buffers in a synchronous mode which is 3
necessary for the input to the covariance matrix processors.

4.2 THE COVARIANCE MATRIX PROCESSORS I
The computation of the covariance matrix at each frequency bin

essentially involves the multiplication of two 8 element vectors. These 3
correspond to the frequency component at each of the sensors and are

indicative of the change in the observed signal between the sensors. Figure 4.2 U
shows a more detailed diagram of the architecture for the computation of the 3
covariance matrix. As shown in Figure 4.2 this stage consists of 8 processors

each of which is used to compute one column of the covariance matrix. The 3
flowchart in Figure 4.3 shows the various steps involved in the calculation of I

27 3

I
I
I the 33 matrices. Figure 4.4 shows a more detailed diagram of the processors in

the covariance stage.

I Basically the computation of the covariance matrix involves the

multiplication of a vector with its transpose resulting in a square matrix

whose

Broadcast bus

I X I Y X2 X3 X4 ,, X Y X6 .7 Y X

1 ~Computation ot G

I
Figure 4.2: Architecture for the computation of covariance mairces

I dimensions are the size of the vector. In this case the number of elements in

j the vector is 8, which gives a 8x8 covariance matrix. This also permits the

mapping of the computation process upon an array of 8 processors, each of

I which calculates one column of the resultant matrix. Each column is formed

I by the product of that particular element with the whole vector. For example

the .third column (which is computed by the third PE), is formed by the

I product of the third element with the entire column. Hence the inputs to the

third processor will be the third element (X) and the vector (Y1 " Y8).

I

PE 28 E E4 P5 P6 E E

I
Initialize all

arrays

64 segaients

Load new segment

in FIFO buffer I
33 Loops

Load the X input Load the Y input

(ith element) (Whole vector) ' I
¼I

Perform
multiplication

Z =XxY

Add to any

previously computed
corresponding column

Clock in nextI

frequency vector

S~I

Average allU
matrices I

IPass on for
computation ofG I

£
Figure 4.3 - Flowchart for computation of covariance matrices

2 9 I

These elements are obtained from the FIFO buffers in which the output from

the FFT processors are stored. The loading of these elements can be achieved

in parallel with a multiplexed bus which will route the data from a buffer to a

single PE (A input) and a broadcast bus which will put the data to all the

processors (Y1 - Ys inputs).

Control
NILT MLT ILT MLT ILT LT ILT ILTUnit

SSEGMENT
COUNTER

lo t I ItINIET

DATA LATCHES

RAM I ..

Figure 4.4 Processing Elemrnrt for covariance matrix stage

As seen from Figure 4.4, once the data is latched in to the buffers inside

the PE, it is passed on to a multiplier. In the block diagram each MLT is of a

complex number multiplying unit consisting of four multipliers, one adder

and a subtractor. The two multiplier inputs are the X value and the

ii llll l 3 ()

U
U

corresponding Y value. Once the product is computed, it is passed on to an

accumulator, which adds the incoming value to one that has been computed

from the previous segment. This previous value is stored in a local or off the 3
chip RAM as shown in Figure 4.4 and can be retrieved as follows. I

The control unit inside the PE basically has the function of supplying

the various signals which would enable the correct data to be retrieved from 3
the local RAM during the arithmetic operations. An address counter which

runs from 0 to 32 will generate the address which is needed to retrieve the i
proper vector from the RAM. The decoder takes the signal from the counter i

and enables a particular row which contains the vector corresponding to that

frequency. The particular vector is put on the data latches from where it goes 3
to the adder. This completes the read cycle from the memory. Once the

addition is done, the data is now written back into the latch overwriting the

data which had been previously stored. A write cycle is executed and the

acccumulated result is written back into the same memory cells. The address

is held valid till the write operation is completed. The counter is now 3
incremented which takes the whole operation into the next cycle. Once the

counter completes 33 cycles it is reset and a pulse is sent to the segment

counter which is incremented. The begment counter is set to run from 0 to 63

and is used to indicate the end of a frame.

The memory is organized into an array of 8 x 33 cells. Each cell is i
capable of storing one element of the vector. The word length is such that 8 3
elements can be accessed in one cycle on parallel data buses. The addresses

run from 0 - 32 for the 33 vectors that are stored. Once the computations have i

been performed for one frame they are averaged, and passed on for the

ccomputation of G.

I

3 4.3 PROCESSOR FOR THE COMPUTATION OF G MATRIX

I The computation of the G matrix reduces the 33 frequency matrices

into one single matrix. An important aspect to note is that this computation

I is required to be done only once every frame, i.e. every 64 segments. The

architecture is very similar to the one used for the covariance matrix

computation except that the operations are now matrix based instead, of being

I vector based. This calls for a slight change in the memory requirements and

the operations in the computation. As shown in Figure 4.1 the architecture

3 consists of an array of 8 processors. Each processor is used to compute one

column of the resultant matrix.

The formation of the G matrix involves two matrix multiplications,

I which are used to project the 33 frequency matrices into a single combined

* matrix at the central frequency according to the following equation

G = T(wl) K(wl) TH(wl)

As the matrices are 8x8, the operations are mapped in an 8 processor

I array as shown in Figure 4.1. Each processor computes one column of the

resultant matrix. The data routing is a bit more complex this time because the

operands are matrices which need to be loaded into each processor. To

3 simplify this problem the architecture is configured in such a way that only

one column needs to be unique to each processsor. In this case it would be the

Sith column of the TH(w,) matrix going to the ith processing element. The rest

of the data (i.e. the T(wI) and the K(wI) matrices are broadcast

simultaneously to all the processors during the computation. The T(wj) and

I the TH(wj) matrices can be precomputed, as they are independent of the

I 32

I
I

angles of arrival and are dependent only on the frequency spectrum, which is

known a priori. Hence they can be stored in an external ROM and retrieved

whenever required. The computation of a column of G at each processor can 5
be done by two consecutive multiplications of an 8x8 matrix with an 8x1

vector each of which results in an 8x1 column vector. The first operation is I
multiplying the covariance matrix K(w 1) to the ith column of the TH(wm i w I

matrix, which gives the ith column of the K(zvl) TH(Zwi) matrix. Next the

T(wl) matrix is multiplied to the previous result which gives the ith column I
of the G matrix at the ith processor.

A flowchart of the process of computation of the G matrix is shown in

Figure 4.5. The algorithm has been parallelized so that the processor can 5
execute nonsequential operations at the same time. The first operation is the

loading of the two input vectors, which are done simultaneously. The next I
set of operations involve the parallel multiplication of the vector elements. 3
At the same time the next row of the K(zvl) matrix can be loaded into the

input latch. Also from the second loop onwards the results can be 5
accumulated. Next the eight elments are added to give the innerproduct

which is one element of the column. This repeats for eight loops to compute I
all the elements of the 8x1 column. 5

Similarly the second matrix multiplication is performed except that

this time the X input is the resulting column of the first multiplication and I
the Y input is the row of the T(wj) matrix. This operation is repeated eight 3
times to compute the G matrix for the first frequency bin. The process then

runs through 33 iterations for the 33 frequencies. The values are averaged and 5
the final G matrix is calculated. I

33 1

I

I
3Lop Initialize arrays

Load the Yt input Load the X input
(Row of (column of T H)5 K(w1) matrix) in the first loop

I
Multiply all Load the next row Accumulate

elements in parallel of K(wt) matrix) previous element
ZIY 1 XX if any.

Add the 8
multiplier

S8 Loops outputs

ILoad the Y2 input Load the X input
(w L oa t(result from irst

T(Rw , ofmtrx multiplication)
T~wz) marix)in the first loopI _ _

I Multiply all Load the next row Accumulate

ele ent in parlle of T(w) matrix) previous element
Z2 =Y2XXif any.

Add the ,8
multiplier

8 Loopsoupt

Average for G

Figure 4.5 Flowchart for the computation of 0 matrix 34

XI II
I

-" _ _ I
%ccumulator

, • m IImaitinary

=I
RAddress

y <i•! ML. CONTROLUNTF)

S • I mm,,m mm,,ELEME.NT U1

NI"--LT CoUNT IER

• ROWIADDRESS

ML COU'NTER

ML COU"NTER

:L C-OL NTER

CGlobal .. -

Reset

Figure 4.6 Processing Element for the computation of G matrix

The internal block diagram of the PE used for the calculation of the G i
matrix is shown in Figure 4.6. The X input is the ith column vector of 3
TH(wI). For the fourth processor the input would consist of the fourth

column of the TH(wj) matrix. The loading can be done in parallel, to all the

processors. The other input consists of the K(w 1) and the T(wj) matrices.

The sequence of operations is shown in the flowchart and has been explained 1
above. The eight multipliers perform the eight complex multiplications I

35 i

I
I
3 required to form the innerproduct in parallel. The results are fed through a

multiplexer to an adder which sums them up, and stores the result in the

3 memory array which can be retrieved for later processing. The new row for

the next loop is loaded into the data latch when the multiplications are being

I performed. Once the process goes into the second frequency the adder also has

to retrieve the data from the array and add to the newly computed value. This

operation is performed by first reading the data from the RAM, adding it and

writing the result back into the same memory location.

3 The control unit essentially consists of four counters which are used to

keep track of various operations being performed. The first counter is the

3 element counter which upcounts to eight and is used to control the

innerproduct computation. It enables the latches, which load the data from

the appropriate mulltiplier in to the adder. Once the element counter counts

3 eight, it is reset and a pulse is sent to the row/address counter which is

incremented. The row/address counter also counts to eight and keeps track of

3 the row of the input matrix that is being loaded. This counter also provides

the address for the RAM to store and retrieve the data. The third counter is a

I matrix counter which counts the matrix multiplications. It is a simple

3 inverter and specifies the first or second multiplication. This is

complemented every time the row/address counter is reset. The output of the

matrix control is used to load the appropriate matrix into the processor. The

last counter is the frequency counter which counts upto thirty three frequency

bins. The outputs from the last two counters are basically used to retrieve the

appropriate data from the buffers. Once the G values are computed for all the

frequency bins, the processor then averages the column to give the value of

36

U
U

the column of G. The whole matrix is obtained from the columns from the

eight processors.

4.4 COMPUTATION Gn U
This DOA algorithm requires the knowledge of the noise spectra in the I

signal which is finally expresssed in the form of the Gn matrix. The Gn matrix

can be computed similar to the G matrix except that the signal vectors are

replaced by sampled signals which do not have any wavefronts from the I
objects in them. i.e. they are representative of the medium only. This

operation needs to be performed only for updating the Gn matrix. As 3
explained in the previous section there is one operation which is performed

on the Gn matrix which is not performed on the G matrix, which is the

Cholesky Decomposition. This operation is required to put the two matrices 3
into the standard form for further processing. The Cholesky decomposition

can be carried out effectively offline from the main processing stream, and the 3
result fed back online whenever the need arises. The architecture for this

operation is explained in Section 4.6. 1
4.5 FORWARD SUBSTITUTION I

As explained in the previous section the G matrix needs to be

decomposed into a standard form. This transformation is accomplished by

performing two forward substitution operations as explained in Section 3.4.

The steps in the forward substitution are more complex than the previous 3
stages because the operation involves a series of multiply and accumulate

steps to calculate each element. Hence to reduce the complexity of the PEs, a 3
systolic architecture is adopted for this stage. Figure 4.7 shows a completely

parallel and pipelined architecture for this operation. I

3 71

I
I

3 The stage consists of an array of 8x8 processors each of which computes

one element in the matrix. A detailed figure of a typical processing

II
I1

El PE1 P 31 PE14 PF E1 PE17 PI $

E31 PE3 PE3I 4IVP3 E6 v PE3 v E 38

PE5 PES v E3IPS PS E6 P v PES

"PE1 P6 E3 P6 PE65 I" PE66 v• PE67 v E6

PE7 P72 PE7 P74 PE75 PE:76] PE77 P7

PE81~g P8 PE83 P8 PE8 PE87

Figure 4.7 Fully pipelined and parallel architecture for the Forward Substitution operation

cell is shown in Figure 4.8. The Y input in this case is the particular column of

the lower triangular matrix L and the X input is the corresponding element

from the G matrix. As before the X input is unique to the PE while the Y

I3

I
I

input is broadcast to all the PEs in that column. All the outputs are

transmitted downwards for further processing. In the first cycle the first row

I
ElementI

of G kn kn

Row W. 1 ,4,o I
of sutrc I-add'" I I

L 3
DIVIDE DIVIDE

. I

Figure 4.8 Processing Element used in the Forward Substitution stage 3
elements are computed. The result is broadcast to all the processors directly

beneath it. From the second cycle onwards the processsors beneath the row of

that particular operation, will be active while those which have already

calculated their corresonding elements are inactive. The whole process of

calculation of the result takes eight cycles. After it is done, the next set of data I
is loaded to compute H for the standardization. 3
4.6 CHOLESKY DECOMPOSITION

The flowchart for the Cholesky decomposition shows the various

sequence of steps which the processors have to perform. Figure 4.9 shows the !

39 £

array which is used for Cholesky decomposition of the Gn matrix. The

I triangular array is loaded into the processors with each element going to its

I corresponding processor. The processors along the diagonal are different from

the processors below it as they have different computations to perform. The

I computation

*I1
II

I P21 2

IP51 P62 P53 P64 P655 P6

u-..i.P71 P71 P73 P74 P75 P7 P77

IIý

g ~Figure 4.9A rch itecture for Choleskv decomposition

1 40

I
I

process takes eight cycles during each of which one column of the resultant L

matrix is computed.

The initial inputs are the individual elements of the matrix. Unlike

the previous processes, the input to the processors in the Cholesky I
decomposition change during every cycle depending upon the number of the

column that is

• .• I

I

III

I
Figure 4.10 :Processing Element for Cholesky Decomposition 3

being computed.The X input to a PE will be the above diagonal elements of
the corresponding column while the Y inputs are the corresponding elements I
from the same row. The results are accumulated after every multiplication. 5
For example when the sixth row is being computed, there will be five
multiplications and additions before the final subtraction and division. The 3
accumulated value is subtracted from the original element value and thendivided by the columns diagonal element. The equation for computing the i
subdiagonal element is e

4 I

aki - Xaiiakj
j=1Iaki - i

and the diagonal elements are computed by the equation

k-I
akk= akk - Xaki2

j=I

Hence the PEs on the diagonal have a slightly different function to

perform than the PEs below the diagonal and hence are a little different.

Once the 33 spectral matrices have been combined at a single frequency

then the computation can be carried out by the Householder/QR

transformations and the Power method.

4.6 PROCESSOR WORDSIZE VERIFICATION

One major obstacle in the design of the processor is the estimation of

the number of bits that a complex number needs to be represented. The

important consideration is that the algorithm must resolve the number of

sources without the loss of too much resolution. For this purpose the

algorithm was simulated by assuming eight bits for the real and imaginary

parts. During the simulation the sensor signals were quantized to 8 bit

numbers and the procedure was carried out. The power method estimated the

angles of arrival with the required accuracy and resolution. The plots for the

DOA for the quantized and unquantized methods are shown in Figure 4.11. It

can be seen that the scaling down of the signal mainly has the effect of

reducing the absolute value of the DOA power estimation but does not affect

the ability of the algorithm to discriminate between sources.

42

I

I

I , I I I

8- I

DOA for 8 bit quantized signal

DOA for unquantized signal

Figure 4.11 :Direction of Arrival Estimation using quantized and unquantized data!

43

CHAPTER 5

A combined covariance matrix processor

5.1 INTRODUCTION

A common step in most algorithms used for the estimation of DOA is

the computation of the covariance matrix from the incoming signals. This is

generally the first preprocessing step which generates a correlation function

from the data that is collected at the sensors. From the VLSI implh mentation

point of view it is very appealing to design a combined covariance matrix

processor which will be programmable and can be used for both narrowband

and broadband algorithms. Such a combined processor has the advantage ot

being very cost effective and opens avenues to design a configurable system.

In this work three such algorithms which are very appropriate for the

development of a dedicated system are considered and a combined covariance

matrix processor is developed for them. The design of such a processor is

possible because the basic computations required in this stage are complex

multiplications, accumulations and averaging, which are common to the

three methods considered in this work. One algorithm is the bilinear

transformation algorithm which has been described in the previous chapters.

The other two are the narrowband MUSIC algorithm [171 and a broadband

BASS-ALE method [181. The processor is designed to be compatible with eight

sensors and eight processor system described for the bilinear transformation

method and shown in Figure 4.2. Eight processors in the system are placed on

a processing board with each processor having its dedicated memory as

shown in Figure 5.1. In this work the

44

I
!

Broadcast Bus I

Pr(li•.r Processorr PrFce%.r Procees,-r Pr.ccv p ,CN r Procr~%%r P rfct s r Pr "t' Csr
I Z 3 I 4I

Miemory M1emory M1emory MIenory Meorlemory %1emor,, \ t~.

Figure 5.1 : Processing board for the computation of covariance matrix

design and implementation of an ASIC chip for the processor is carried out.

The processing board can be completed by using commercially available

components for the memories. Though the above two algorithms are not

discussed in detail the procedure involved in generating the covariance I
matrices is explained.

5.2 COVARIANCE MATRIX COMPUTATION FOR MUSIC ALGORITHM !
In the case of the narrowband MUSIC algorithm the covariance matrix

generation is the first step after the sensor stage. To form one matrix we need U
a vector of 8 elements from the sensors which are sampled simultaneously.

The covariance matrix is therefore an 8 X 8 matrix formed similar to the

bilinear transformation case. The matrix can be computed by the processing

board shown in Figure 5.1. Each processor will compute one column of the

matrix. To do this each processor has to multiply the 8 element signal vector I
by a single scalar which is the element in the vector corresponding to that

particular processor. For example the sixth processor in the array will

multiply the vector by the sixth element in it. The initial data flow

requirements can thus be stated as follows. The complete vector is broadcast

to all the processors. The scalar element corresponding to each processor is

.4 5

I
I
3 individually routed to it. For the narrowband case for each computation of

the DOA a total of 4096 such vector samples are collected. The covariance

3 matrix is computed for each vector and the final matrix is obtained after

taking the the average of 4096 computationsI
The flow chart for the case ol the MUSIC algorithm is shown in the

I Figure 5.2. First of all the whole system is reset using a global reset signal

which clears all memory arrays and latches and initializes them to zero. The

I next step is to enable the frame counter (k) which counts the number of

I frames. For each new frame the PE needs to load the incoming sampled data.

The control of the loading operation is handled by an external 1--d counter

3 (1) which synchronizes the loading of the data in all the processors. The

loading operation is done over eight cycles during which one element is

I loaded for every cycle. In the first cycle the first element is loaded into the Y(1)

latch of all processors and the X latch of the first processor. The latches in the

processors are enabled by a decoder which is addressed by the 3 bit load

3 counter. Once the loading is complete the arithmetic operations are started.

5 The next operation is the enabling of the element counter which will

count eight elements of the resultant covariance matrix. To complete the

3 arithmetic operation to generate the covariance matrix for complex numbers,

it is necessary to perform four multiplications, an addition and a subtraction

for each element. Apart from this there is an accumulation operation which

3 is used to average the values over 4096 frames. Once the element counter is

started, the appropriate data latch is enabled sending the output to the

multiplier stage. The real and the imaginary parts of the output are generated

in parallel by performing four real number multiplications.

1 46

U
and counters

Start / count

frame counter (k)

EIncrement load counter()

of vector in YOi) latch] o th~eith processor

N o I

element counter (i 3
Enable address latch3

for reading

Two simultaneous Two simultaneous Retrieve stored

multiplications multiplications value from memory I
I I using i as address.

Subtract for Add fr Disable address3

real part imaginary pa latchI. I ... Ii
ShiftrightShift right

6 bits 6 bits

Accumulate Accumulate

Sl4 7/I

I

2 12

II
3 Write result back

to memory

I
SReset frequency counter and

I increment frame counter (k)

U Global reset
i GR =0

I

Figure 5.2: Flowchart of operations performed to compute covariance

matrix for the narrowband MUSIC algorithm.

48

1
1

This is done by the four eight bit multipliers in the arithmetic unit. To obtain

the imaginary part, one product is subtracted from the other. Similarly the I
real part is obtained by adding the corresponding products. A memory read 3
operation is performed in parallel which will read the previously computed

result and is added to the newly computed element. 3
Overall 4096 such frames are accumulated. The sensor output is 3

quantized into 8 bit real and imaginary parts and hence the word size becomes

16 bits after the multiplier stage. After the final accumulation the data I
becomes 28 (16+12) bits. This increases the chip area, data bus width and the

memory requirements. To alleviate this problem the result is pre-shifted

before accumulation by 6 bits. 3
Once the accumulation is complete the address latch is enabled again 5

and the result is written back to the memory. This loop is performed 8 times

as shown in the flowchart. Then the frame counter is incremented and the I

operations are performed 4096 times. Finally the global reset is enabled which

resets all counters and memory arrays. I

5.3 COVARIANCE MATRIX COMPUTATION FOR BROADBAND 5
BASS-ALE ALGORITHM

The BASS-ALE method is a broadband algorithm which uses the

eigenstructure of a temporal covariance matrix and broadband source models 3
to estimate the DOA. Like the MUSIC algorithm the input vectors to the

covariance stage are samples in the time domain. However for the BASS-ALE

method operating with a system of eight sensors the input vector is a time 3
delayed set of 64 samples. Eight samples are obtained from each sensor taken

after a speccific time delay. They are then stored in a delay array before the 3
4L I

I
U

covariance processor stage, which gives a 64 element vector. The

multiplication of a 64 element with its Hermetian yields a 64x64 matrix. A

3 parallel and pipelined architecture for this procedure will consist of an array

of 64 processors with each one computing one column of the resultant

I matrix. A new scheme has been proposed D18] which allows the computation

of the covariance matrix using an array of eight processors. An eight

processor architecture is adopted as it is similar to the one proposed for the

3 narrowband MUSIC and bilinear transformation algorithms.

3 The flowchart for the computation of the covariance matrix is shown

in Figure 5.3. The arithmetic operations are exactly similar to the ones

Sexplained above. The major difference lies in the controlling of the number

of loops and the loading of the input latches. As before the processor has 8

I latches for the Y input which will recieve the broadcast vector. The X input is

3 distinctive and is given only to one specific PE. As shown in the flowchart

the control unit performs four nested loops for the BASS-ALE algorithm.

3 The 64X64 matrix is split into 8 sub matrices each of which is 64X8 in

dimension with the ith processor computing the ith submatrix. For example

I the 4th processor will compute the 4th submatrix which consists of the

3 columns 25-32 in the covariance matrix. To simplify the control unit these

submatrices are split up into eight 8x8 micromatrices. For each new column

3 of the micromatrix the data has to be loaded into the PE. As before this is

handled by an external load counter. The (8k+i) th component of the vector isI

1 5 0

nitialize all arraysI
and counters

Start / countsegment counter (a)

SStart / count

subvector counter (k)

Strat / count |

column counter (j)

Increment load counter (I I
Load 8 + i)th component sLoad(8i+j) alar 3

II
Reset load counter and 3

Start element counter (i)

Enable address latch

for reading3

Two simultaneous Two simultaneous Retrieve stored N
multiplications multiplications value from memorv

using kji as address I
Subtract for Add for Disable address

real part imaginary part latch

2 3 8

I

11 2 3 '~5 6 78

Sitright Shift right

I I

nable address latch
for writing

Write result back

Ito memory

I
Reset element counter and

increment column counter (i)

I °

incrmen 7uvco one j}

S• Yes

SReset uvctolum counter and

I increment sbegment counter (j)

Io

"• YesY

1 Global reset GR --0

Figure 5.3: Flowchart of operations performed to compute covariance

Smatrix for the BASS ALE method. 5 2

loaded to all the Y latches and the (8i+4)th scalar for that particular submatrix

is loaded in the X latch. The arithmetic operations are the same as before

with four multiplications, an addition and a subtraction. Simultaneously, the 3
word is read in from the memory using kji of the counters as the address. The

accumulating operation is then carried out and the result written back to the i
memory. Once the 8 elements of the column are calculated the processor i

computes the rest of the micromatrix and then each segment to finish one

iteration of computations. The matrix is then accumulated over 512 loops

and finally averaged, the global restA signal is enabled and the matrix is passed

on for the computation of eigenvectors. The calculation of the covariance I
matrix for the BASS-ALE algorithms involves 64 times the number of

computational operations when compared to the previous case. Hence to

complete one full iteration the processor takes more time and to match the 3
processor speed with the sensor speed a delay buffer before the processor stage

is suggested. 3
5.4 COVARIANCE MATRIX MULTIPLICATION FOR BILINEAR 3

TRANSFORMATION ALGORITHM

The computation of the covariance matrix for the bilinear

transformation method has been explained in the previous chapters. The 3
processor outlined previously has a completely parallel and pipelined I
architecture but has the disadvantage of requiring a larger area and hence is

not very suitable for single chip implementation. To reduce the chip size the 3
number of complex multiplying units is reduced to one and another counter

is added in the control unit. This element 3
i

I
SInitialize all arrays]

I and counters

I,

I Starn / count
segment counter (k)

I Start / count

frequency counter (j)

[Increment load counter (I)

! [Load ith component Load ccalar in X lanchof vector in Y latch of the ith processor

III Reset load counter and

Start element counter (i)

Enable address latch
for reading

U Two simultaneous Two simultaneous Retrieve stored
multiplications multiplications value from memory

I I usingji as address.

Subtract for 1Addfor Disable address

Sreal part imaginary part latch

54

1 2 3 4 5 6 7i I

Accumulate Accuuate

I -

Write result back

to memory

N I
7B I

II
•°• I

Yes

Global reset I
GR~ =0 !

Figure 5.4 • Flowchart of operations performed to compute covariance 5
matrix for the bilinear transform method.

533

I
I
3 counter controls the computation of the individual elements of the column

which are now computed sequentially instead of parallelly. This

I configuration can be easily mapped onto a genralized architecture for

covariance matrix computation. The flow chart for the bilinear

transformation operation is shown in Figure 5.4. The computation of the

covariance matrix for this algorithm is done in the frequency domain over a

range of 33 frequencies. One covariance matrix is generated at each frequency

bin and then averaged over 64 frames. The arithmetic operations are simlilar

to previously described operations, but in this case as the averaging is done

over only 64 frames the initial preshift by 6 bits is enough, and the shifting

out after accumulation is not required.

A combined flowchart for the computation of the covariance matrix for

all three algorithms is shown in Figure 5.5. A two bit mode select signal is

used to select the desired algorithm. The control is then transferred to the

individual control units which are driven by the system clock. The system

can be reset at any time by pulling up the global reset (GR) signal which is

usually generated by the control units after the completion of one frame of

operations.

5.5 PROCESSOR ARCHITECTURE

A block diagram of the combined covariance matrix processor is shown

in Figure 5.6. The architecture basically consists of three parts:

1. The input loading stage

2. The arithmetic unit

3. The control units

56

L-3-1

2, -v

II
.9 1! -4I

L4 :I

I

I
I

I
�J r�j

�- 0I-I
o *�

.z

- �
� - 0

iI� � U

0 -�

I ____ U

I _________

I
I
I
I
I
I __________________ 58

Y L-ATCHES Input loading Unit X LATCH

JL -TFTFT CL .OAD)
J. I ON T RE)

MULTIPLIER 11) MULTIPLIER 12) MULTIPLIER (3i MILLTIPL.IER (41

ARITHIMETI essm t memo

-- -- -- -- ---- ~e ----- Ta -- o--- - -- - -- -M~ OD1
to2 me or I-N3

()

EN EN2EN

Element Counter (0-7) 'EmetCntr(-7) ', Elmnt Counter (0-7'

Frequency Counter < ' Frame Counter Clm
I (0-4095)Cun'

Frame Counter
KMcromath

-7 7 LBLGLOBAL GLBA

RESET ~RESETRET

BilIinear Transformation Narrowband MUSIC BASS-ALE
Control Unit Control Unit Control U-nit

Figure 5.6: Block diagramn of combined covariarice mnatrix processor

I

Figure 5.7 shows the mode select unit that is used to select the desired

algorithm. The input loading stage consists of eight input latches for the Y

3 vector and one for the X scalar and a load control unit which latches on the

data at the appropriate clock pulse. Figure 5.8 shows the load control unit. The

unit has two three bit counters and two 3 to 8 decoders. The latch counter is

used to count the clock pulses and the decoder selects the appropriate latch

according to the clock. One counter is used to latch the input data and is

driven by the load clock. As shown in the flowcharts the load clock is received

when the loading operation takes place. Once the data for one particular cycle

3 is latched in, the load clock is disabled and the input clock which

synchronizes the arithmetic operations is enabled. The input clock is used to

I drive the enable counter and the enable decoder which enables the

3 appropriate buffer. The data from the latch is then placed on the internal data

bus which is connected to the multipliers. As all the latches are connected to

the same internal bus, a tristate buffer is used after the latch to prevent data

corruption. The arithmetic unit has four multipliers, an adder, a subtractor

I and two accumulators. The control unit has three separate control modules

3 for three algorithms. The functions and operation of these units are discussed

in detail in the next chapter.

3 In the next section the behavioral simulation of the processor using

VHDL is considered. The architecLure is verified at the module level and all

I the architectural considerations were taken care of.

3 5.5.1 Powerview 5.1

3 Powerview 5.1, from Viewlogic is a CAD package [191 that has the

capability of simulating analog/digital architectures from the logic gate level

I to the module level. It offers a wide variety of choices to the designer who can

I 60

Mode 3
Mo~deI

Mode 1

Figure 5.7 Schematic of mode decode unit

External Broadcast-Bus

LATCH D
16 BT LACHP -...D Loa

01 z

choose from a standard cell library or can construct his own from the basic

logic gates. The package also supports a variety of tools ranging from Hspice,

PCB design, FPGA analysis and VHDL.

To perform a behavioral simulation of the proposed architecture,

VHDL code was written for all the basic modules. Appendix A contains all the

VHDL code for the various modules used in the architecture. The VHDL file

was simulated using Viewsim, the simulation tool available on Powerview.

The VHDL modules were converted into schematic symbols and called as

components inside Viewdraw, Powerviews schematic editor. The modules

were then connected together to form the processor model. The architecture

was once again simulated using Viewsim and the results were plotted using

Viewtrace.

5.5.2 Behavioral Simulation of the Architecture

The first step in the behavioral simulation was to write VHDL code for

all the basic modules in the processor. The processor was then constructed

from them. Figure 5.9 shows the Viewdraw schematic of the input loading

block. The figure shows the latches which form the input block and the load

control unit. The top set of latches in the figure is the Y vector latch and the

separate one is the X latch. The load control unit is shown at the top.

Figure 5.10 shows the Viewdraw schematic of Lhe control unit for the

narrowband MUSIC algorithm. The three bit element counter is connected

through an AND gate to the clock input of the twelve bit frame counter. The

output of the frame counter is given to a 12 bit AND block which generates

the global reset signal. The address latch is connected to outputs of the

element counter. It is enabled when both the control unit and the counter ,Ž

62

CL KL

COIL CL"

iCAtM L-r- 4ýj

C. L M

tM L

CL"C

LOUTCO-11,
RUML

LIN UY I a I

L A TIP ;L LO U T 10 X I

.01 a. r I

L T13 -ý4 LN IT 16 7

Lourto I).

kAT4 LQUý t a
OL

r xt a,
L13UT t a 11

A LO UT A 3

L r

-* A SL LO UT t 0 1 Iý

It.EL I T.-

OL
71

LATI LONT14- 71
OL

LdUlt6 13ý
-r oil,

LO.T14- , 1;
L A To 'ý4 OL

AiL Lout I a y I!

LOUT r 4 7

IXCQ-l I

Fiý-ure iQ Viexdraw Schematic of input loadini, block

t)

-r

2

z

11

Fi~gure . i Vewsim, resuits tor siilu I ation ot narro%% nanda NI LS I C controi ~

enabled. Figure 5.11 shows the Viewsim results of the simulation of the

control unit. It can be seen that the counters generate the required signals

according to the clock input. NC10-NC12 are the outputs of the element

counter and ADLAT is the input clock. ADO-AD2 are the address bits that are

obtained at the output of the address latch.

Figure 5.12 shows the Viewdraw schematic of the control unit for the

broadband BASS-ALE algorithm. The three bit element counter is connected

through an AND gate to the clock input of the three bit column counter

which in turn is similarlv connected to the input of the micromatrix counter.

The output of the micromatrix counter is given to a 3 input AND gate which

generates the global reset signal. The outputs of all the three counters are

stored in the address latch. Figure 5.13 shows the Viewsim results of the

simulation of the control unit. The counter outputs are BCIO-BC12 (element

counter), BC20-BC22 (column counter) and BC30-BC32 (micromatrix counter).

ADOUTO-ADOUT9 are the address bits that are generated by the control unit.

Figure 5.14 shows the Viewdraw schematic of the control unit for the

bilinear transformation algorithm. The three bit element counter is

connected through an AND gate to the clock input of the six bit frequency

counter. The output of the frame counter is given to a logic block which

generates a reset signal when the input bits are 100000(32). This simple logic

bolck consists of a NOR gate with an inverter attached to the MSB input. The

output of this logic gate is used to reset the frequency counter and acts as a

clock to the six bit frame counter whose output generates the global reset

signal. The outputs of the element counter and the frequency counter are

connected to the address latch. Figure 5.15 shov.rs tne Viewsim results of the

,,imulation ot the control unit. -he counter outputs are tLit-6Ci2 ieiernent

66

-I-.

ci

£

Fieure 5.13 :Viewsim simulation results of BASS-ALE control unit

-r

£

Figure ' Viewqim results of the hilinear control unit

counter) and BC20-BC25 (frequency counter). ADOUTO-ADOUT9 are address

bits that are generated by the control unit.

The complete processor was then connected using Viewdraw. The

schematic of the complete processor is shown in Figure 5.16. The data from

the input latches is fed into tt e arithmetic unit which computes the complex

number multiplication and gives the result to the accumulator. The other

input of the accumulator is from the RAM. The memory result of the

previous accumulation is read in using the address supplied from the address

bus. Once the complete cycle of operations are complete the control unit

generates the global reset signal which is used to place the output of the

accumulator on the processor out pins. The Viewsim results of the processor

simulation are shown in Figure 5.17. RAI, RA2, IA1, IA2 are the four inputs

given to the multipliers on each clock pulse and ROUT and IOUT are the

outputs of the processor. Consider the case when the inputs are 01, 02, FC and

FD. The input vectors are 1 +iFC (a+ic) and 2 +iFD (b+id). The outputs of the

four multipliers will be:

ab=lx2 =2

cd = FC x FD = F90C

bc = 2 x FC =1F8

ad = 1 x FD =FD

The real and imaginary outputs ROUT and IOUT will therefore be:

real out = ab + cd = 2 + F90C = F90E

imaginary out= bc-ad=1F8-FD =FB

The processor architecture is hence verified.

71

:it

ur

£

U
I

I CHAPTER 6

VLSI Implementation

6.1 INTRODUCTION

* The VLSI implementation of the processor described in the previous

chapter involves a detailed design of the individual modules and transistor

level optimization to provide a chip which can perform the required

operations-Tn the required time frame. During the VLSI design various

* considerations such as the selection of multiplier and adder architectures and

number representation were taken into account, and the chip design was

carried out accordingly.

I The VLSI simulation and implementation was carried out using

Mentor Graphics Generator Development Tools 5.3. The GDT tools were

used to perform the transistor and logic level simulation on the chip and

conduct a timing analysis. The layout of the chip was generated and verified

using the AutoCells feature in GDT.

6.2 GENERATOR DEVELOPMENT TOOLS

The implementation and simulation of the combined covariance

matri'ý processor has been done using Mentor Graphics GDT on the Sun

Sparcstations. In this section the various GDT tools used to simulate and lay

I out the ASIC are described.

7

1 74

6.2.1 GDT Lxcells - generation of basic gates

The first objective in constructing and simulating the processor on

GDT is to generate basic cells and their layouts. This is done by using the

Lxcells Utility [201. Lxcells provides a Cell Data File (CDF) which is a flexible

database that contains a cell technology library, default vaiues for generators

and cell descriptions. This information is used by the cell generators in the

Lxcells to generate the behavioral models and layouts of the basic cells. The

technology used for this particular process is the 0.8g CMOS technology

available through MOSIS.

The basic gates were first generated using cell generators available in

Lxcells. The transistor sizes were optimized and the layout was created for the

gates. A netlist for the cells was generated and icons were defined so that the

cells could be used in Led.

6.2.2 GDT Led - Schematic creation

Led is the graphics editor available on GDT which supports layout and

schematic creation[21]. It was used to create the schematic of the processor

inside GDT. The basic gates were used to form bigger modules such as flip

flops, latches and full adders which were then used to form the larger

arithmetic and control units. Netlists for various modules were created and

simulated using Lsim.

6.2.3 GDT Lsim - Simulations

Lsim is a mixed-signal multi-level simulation tool available on GDT.

This means that Lsim has the capability to incorporate M language and netlist

75 1

!
I

descriptions at any hierarchical level. It also allows the user to simulate the

model using switch, logic and adept modes on different parts simultaneously.

It also provides extensive debugging tools to help in error checking and

correction.I
The various modules were simulated using both the switch and adept

modes in Lsim. The switch mode gives the switching level simulation of all

gates in the circuit and can be used initially to verify the accuracy of the circuit

I that has been created. The input to Lsim is the netlist file that is created from

the schematic modules inside Led. The modules were then simulated in the

adept mode which gives a more detailed timing analysis of all the transistor

3 inside the modules. The adept simulation gives idea of the speed of the

circuit which was then optimized to fit the timing requirements.I
6.2.4 GDT AutoCells - layout generation, compaction and routing

3 AutoCells is an automatic routing tool for laying out circuits. It can

perform fully automatic and interactive layout and control the aspect ratio of

the layout to fit the block into the chip's floorplan. The input to Autocells

I consists of a netlist, the basic cell blocks and the control parameters. The basic

cells were generated by the Lxcells layout generators for the basic gates that

were created to be used in the schematic.

I
II
I
I

6.3 PROCESSOR IMPLEMENTATION

A Led schematic of the combined covariance processor is shown in

Figure 6.1 which corresponds to the block diagram shown in Figure 5.6. As

described in Section 5.5 the processor can be basically separated into three

functional parts. The detailed design and operation of these three parts are

described below.

6.3.1 The input loading stage.

The input stage consists of 9 sixteen bit latches and a load control unit.

A Led schematic of the input stage is shown in Figure 6.2. Eight of the input

latches are used to hold the Y vector and the ninth one is loaded with the X

scalar. The sixteen bit latch as shown in Figure 6.3 contains 8 bits for the real

part and 8 bits for the imaginary part. The load control unit is shown in

Figure 6.4. It can either be outside the chip in which case it will drive the

input stages of all eight processors in the architecture or it can be placed inside

the processor and driven by an external clock. In the implementation of this I
processor the load control unit has been placed inside the cell. The load

control unit consists of two three bit counters which provide the latch address

and two decoders which interpret the address and enable the appropriate latch

signal. The Led schematic of the 3x8 decoder used in the control unit is shown

in Figure 6.5. The load control provides 2 control signals. One is the latch

control signal which dictates which latch is to be loaded at the particular time

from the external broadcast bus. The other is the enable control which

provides the signal to place the latch contents onto the processor data

"77 7

I 2: Point: (0,S) processor 5

UL ILIERPIU IPLER LTIPLIER MUTFLIER

I....I.P.L..E....Iz
IU J-

Io30ý
LA mo~

WRT
REA

Meor
Figue 6 ed Shemticof he cmbied ovaianc marixpro esso

g 276IL

-4-I

4-)

D I3
0-

CLa

AS'4

-loan
4-)

CL
4-79

aIl i c o c 11 (4)

CJ)H

z z 1-4

IN.-

I 3<1,so

I
I

2: TEXT for ES re 1$(13,-42) W=6 R90- (112,-114) Ioadco

2 1

4-J

LA)TCH :3 1

COUNTER L=TOECE M C

LcTCNTE -'•
ts M> 0

Li;TCLK U

+ LATCH w
COUNTER

M> 4J)

ENAiBLE MI3
COUNTER CR3:ENBLDECE !

ENBLCNTE L
° I-o

ENBLCLK EN0BLE -

DECODER I

I
Figure 6.4 •Led Schematic of control unit for input loading operationi

I

n
I

2: Point: (19,30) dec3 SW

I

ENBL KI ...
I - -- - W

Fu 6. Led S3 ue 0
S. . .2

,, U,,

a~c:• • .'I AD W:
n . -, mm-*.........TUU

Figure 6.5:• Led Schematic of 3 to 8 decoder used in the load control circuitry

* 82

I

bus. As shown in Figure 6.2 the output of the latches is fed into the arithmetic

unit.

6.3.2 The arithmetic unit.

The arithmetic unit has the basic function of performing a complex I
multiplication and accumulation. It consists of four multiplier units, an

adder, a subtractor and two accumulators. The multiplier designed for the

chip has a systolic array architecture[24] as shown in Figure 6.6. The multiplier

is a signed binary multiplier with a 7x7 array of full adders to compute the

partial products. It was decided to use an array architecture for the multiplier I
because for an 8 bit configuration the array architecture performs much better

the other structures[25l. The final stage is a ripple adder which sums up the

partial products. The sign bit is computed by a XOR gate which is fed by the 3
sign bits of the two operands.

The input to the arithmetic unit is assumed to be signed binary because

this representation is the most natural form of representing binary numbers I
especially at the output of a sensor array. But addition and subtraction of

binary numbers can be carried out much more easily if negative numbers are

in the two's complement forms. After multiplying two signed binary 3
numbers the actual product is divided by 64 by dropping the six least

significant bits. Hence the output of a 8 bit signed binary multiplier is a 9 bit 3
result. To convert the output of the multiplier to the two's complement form

an adder circuitry is added at the end of the multiplier. A demultiplexor is

used to separate the positive and negative numbers. The demultiplexor is 3
driven by the sign bit of the product. The positive numbers are sent directly

to the output of the multiplying stage while the negative numbers are fed 3

83 U

I __ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___ ____ ___ ___ ____ ___ _ m-

Le).

* 00

Ie

1 84

I

into the two's complementing stage. The two's complementing operation is 3
achieved by using a ripple adder and taking the complement of the input

before feeding it to a full adder. The second input of the ripple adder is set to

logic zero and its input carry is set to logic one. The Led schematic of the

multiplying unit is shown in Figure 6.7. The Lsim adept mode simulation I
results of the multiplying stage are shown in Figure 6.8. The two inputs are a 3
& b and the output is the product p.The two input numbers are +127 and -127

represented as 7f and ff in 8 bit signed binary representation. The output

product is -16129 [-3f01 or -11 1111 0000 00011. After shifting by six bits the

result is -1111 1100. As this is a negative number it is represented in the 2s I
complement form as 1 0000 0100 or 104 in hexadecimal as shown in the

figure.

After the multiplying stage, there are four such products which are the

result of the first stage of a complex number multiplication operation. These 3
are the inputs to the adder and the subtractor. Ordinarily the subtraction of

two of these operands will give the real part of the result, but in the 3
generation of a covariance matrix, a vector is multiplied by its Hermetian,

which is basically the transpose of its compiLx conjugates. Hence the U
operations are reversed and an addition is performed to obtain the real part of 3
the result. The imaginary part can similarly be obtained by subtracting the two

appropriate operands. 3
The next stage is a 9 bit adder/subtractor. The Lsim schematic of a basic 3

full adder circuit is shown in Figure 6.9. Figure 6.10 shows the construction of

a 9 bit ripple adder generated from the basic full adder circuit. The negative 3
operands are in the two's complement form. So addition is performed by

simply adding all bits including the sign bit [261. There is an erroneous

85 I

2: Point: (-1351,-376) mlt2csft 5U

Sign MULTIPLIER
Bits

U

U. -,

L
7

yL

Figr 2s Complementina
S8tage

OUTPUTS

Figure 6.7 :Led top level Schematic of Multiplying stage

86

SH

OH 08

SL

CIL PO

DL PI

DHI p2

OL PJ

OL P4

OL P5

OL P6

OL P-

SH b7

IX ini

SH bO

SHI b 1

5ti i! ao

ff b

103 P

+ +
+ +-4--ý+ý-+ + +,+ 4 1 f 4 + +1 5 3 ýO 4 5 6ýO 7.5 90 10512.0 135 150 16.5

4 1 C 'i'lePt 11"Ode [I'le ,ý Pit

I

2: BLOCK contents (-29,-18) addi SMI
, oY

CD -
I -

Iu

I ,

7-

I IIIIIIIIIII_ _I

I E

It

+n

m
m

2: Point: (-55,137) adder9 SM

16CarryI

0] n

EL=

0 0

n/

Carry -

Figure 6. 10 •Led top level Schematic of a 9 bit adder m '

reversal of the sign bit if an overflow occurs. To correct the above errorthfe

carry into the sign bit position and the carry out of the sign bit is observed.

The two carrys are applied io an XOR gate and the overflow is detected if the

two carrys are not equal. Then the result is applied to another XOR gate along

with the MSD to obtain the correct result. The Lsim simulation results of the

adder are shown in Figure 6.11. The two operands are a and b and s is the

output sum. For example the two input numbers are +80 (0 0101 0000 or 050)

and +70 (0 0100 0110 or 046) and the owtnut is + 150 (00 1001 0110 or 0%).

Subtraction is carried out in a similar fashion. Subtraction in twos

complement arithmetic is very simple and can be achieved by taking the

two's complement of the subtrahend (including the sign bit) and adding it to

the minuend(including the sign bit). The basic full subtractor unit is shown

in Figure 6.12 and the top level Led schematic of a 9 bit subtractor is shown in

Figure 6.13! The input carry of the LSB is set to logic one and the subtrahend

is complemented to achieve the subtracting operation. The overflow is once

again resolved as explained previously. The Lsim results are also shown in

Figure 6.14. For example when the minuend is -80 (1 1001 0000 or 1b0 in two's

complement form) and the subtrahend is +70 (0 0100 0110 or 046) the

difference is -150 (11 0110 1010 or 36a in two's complement form).

The last stage in the arithmetic unit is the accumulator. The

accumulator basically consists of a 16 bit adder and a demultiplexing unit as

shown in Figure 6.15. One operand of the accumulator is the output from the

previous adder/subtractor stage. The other is the previously stored result in

the memory to which the newly computed value needs to be added. The

output is connected to a demultiplexing stage which places the data either on

,itt ,11tuý1ry bub, 0fitiLg tLhe Lt!uit back to tEie uiejiuLv ui ut- j.roc•ssoi

90

SH b2

OL

sHý a3

SL b3

DL s4

SH a4

SL b4

E)L 55,

SH ds

SL bS

OL 56

SL a6

SH b

SH

SL b-7

b8

SH

OL s7

DH 59

OL 58
-)bO

lba OIIG It'a

Ch-I I tio 04"

001 16-a 36a 3f6

.3 13 17 21 S 23 33 37 41 45 43 53 57 61

Fizure 6. It -. Lsirn adept simulation of 9 bit ripple adder

I)

* 0

I
I .. . i i l ll i l I i i ill

C.-

I 'S

"U -

I I ' .

92

I
I

2: Point: (47,135) subtractorc SM I

6

SI

0") __........I

I
Cz

ScL

C ,L
DD

7- 5

-" I
Carry
In-iI

Figure 6.13 Ledtop level Schematic of 9 bit Subtractor 3
I

93 I

CIL D 0

DL Di

SL JIO

5L SO

SHý rl 1

SHý St

DH D2

D D3

Si r-1 2

SI S2

S1 N 3

S1 53

D I D4

DI Ds

S) M4

S1 54

ris

SS

D6

DI 07

51 vis

S1 56

51 V17

S)I S7

51 r18

D I D8

Ell D C3

3 f 6 3 E,,i 0:ý.- d i f f

IbO mineund

I h'I 046 b:-, 5ubtrahe

23 27 31 3S 33 43 47

Figure 6.14 ý Lstm adept simulation of 9 bit subtractor

0.4

2: Point: ��-85,2e1) accumulator SM

�QDE� DEMUX

�T�GE STF�OE

0

L1�) (I)

J

a 0

.J.Jw
0 nw

0
LU

E

Li 2
Li

(JL
(JO

Figure 6.15 Led top level Schematic of Accumulator stage

95

out bus which signifies the completion of the processing of one frame of data.

The demultiplexor is controlled by the global reset signal which is obtained

from the control unit. The simulation results of the accumulator are shown

in Figure 6.16. As seen from the figure the inputs are a and b while the two

outputs are mem (output to memory) and PR (processor output). When the

global reset (GR) is pulled up the sum is put on the processor out. After it is

pulled down the output is put on the mem. When the inputs are -70 (000

0000 0100 0110 or 0046) and +86 (000 0000 0101 0110 or 0056) and the input

carry is set high then the result is +157 (000 0000 1001 1101 or 009d).

A major block which has been included in the schematic is the random

access memory which is used to store the intermediate results of the

operations. The required memory has been placed outside the chip so that a

commercially available component can be used in conjunction with the

processor ASIC to generate a reliable system. The memory is interfaced to the

processor by a multiplexor as shown in the schematic of the processor. The

data in and data out buses are connected to the multiplexor which is

connected to the memory bus. The multiplexor is controlled by the input

clock. The input clock has a duty cycle of 50% and hence can be used as a

read/write signal. When the clock is high the processor reads from the

memory and when the clock goes low the processor writes the output back to

the memory. The size of the memory rquired for the operation is primarily

dictated by the operations in the BASS-ALE algorithm which stores upto 2'•

elements during the computation of one covariance matrix. These elements

are 32 bits wide including the real and imaginary components and hence

require a RAM 16K bits in size. The RAM has a READ/WRITE signal, an

enable and a reset signal which initializes all arrays to zero.

96

G P

013-1?ý, 0 1 f C

c I t-L) 0 0.1

00

0 If 7 0 if 7

CIL tiEtIOUT14
'ýE _ p
I "OUT 14

L t'Et 113U t 13

Cl L HDIOUtIO

E, L r'Erl[JUT 11

EH r lEr ioUT9

D L r-lErIOUT6

D L MEI tGUT7

F,.H rlEr IuU T4

L)H riFfICUTS

DL rlEHOUT3

DL NEMOUTO

D rlErICJU T I

5 9 13 17 21 25 219 33 37 41 45

T- -4: 1 4

For simulation purposes M model code was written for the RAM and

the Lsim simulations were carried out in the multi-level mode. The code for

the Q model of the RAM is shown in Appendix B.

6.3.3 The control units

The function of the control units is to generate the correct address for

the retrieval of data from the memory during the accumulation stage. The

control unit should also generate the global reset pulse once the processor

finishes its cycle of operations. As most of the required control operation is

basica!lv to count the number of loops that the system has executed, the

control unit consists mainly of counters. The counters are the asynchronous

ripple type with a Master Slave T flip flop as the basic unit. A Led schematic of

the MSFF is shown in Figure 6.17. The output of one flip flop is connected to

the clock input of the next flip flop to generate the ripple action. The

schematic of a 6 bit counter composed of the MSFF is shown in Figure 6.18.

The control unit for the narrowband MUSIC algorithm as shown in

Figure 6.19 consists of two counters one of which is a 3 bit counter which

upcounts to 7. This three bit counter is used to generate the address bits for

the storage of the 8 different elements that are computed. The 6 MSB of the 9

bit latch are grounded, so the 8 elements will occupy the memory cells from

000000000 to 000000111. Even though there are only three address bits a 9 bit

latch is used because the address bus outside the control unit is 9 bits wide.

The outputs of the 3 bit counter are fed to a 3 input AND gate which generates

the clock pulse for the 12 bit frame counter. The frame counter counts the

4096 loops that need to be executed during the accumulation process.

98

I

I

'22

"i II

L.,

i- I2

÷U,' -A-I

I -. I-I

-A-l

I
U

2: Point: (42,115) count6b SM

I- p

-]

*_ n
ii

I Input
CLK (30

I •

Figure 6. 18: Led Schematic of 6 bit counter used in the control circuitry

I Inpu0

J 1I

qEýT 4unI
zI

uiI

(!Jn

+ I0
'00

(EI
6I

NI
CE, _ _

I

3 The control unit for the BASS-ALE algorithm as shown in Figure 6.20

has four counters, three of which are used to generate the address bits. The

first counts the number of elements in the column, the second counts the

column number in the micromatrix while the third keeps track of the

n micromatrix number in the submatrix. The required memory is 29 and the

address runs all the way from 000000000 to 111111111. The 9 bit counter

controls the numbers of frames which the processor needs to. accumulate

3 which in this case is 512.

3 The control unit for the bilinear transformation algorithm as shown in

Figure 6.21 has a 3 bit element counter to count the element number in the

column. The next one a 6 bit counter, is used to count the 33 frequencies and

hence upcounts from 0 to 32. Once it reaches 32, the logic circuitry (which is a

U NOR gate with an inverted MSB) resets it to zero and clocks the 6 bit frame

counter. The frame counter counts the 64 frames that need to be accumulated.

Once all the modules were individually simulated they were called as

instances into the top level processor cell in Led and connected. The netlist

3 was generated and an Lsim simulation was run on the netlist. The results of

the simulations are shown in the Figure 6.22. The inputs to the multipliers

3 are mltina, mltinb, mltinc and mltind. Two of these are the imaginary and

real parts of the X input while the other two are the elements of the Y vector.

The outputs of the complex multiplication are add and sub, while accl and

acc2 give the values after accumulation. The input to the two accumulators

from the memory are given by meml and mem2. The processor was

simulated over two cycles and the multiplication and accumulation

operations were verified.

1I0I

mn ILDol -70 -8 (f

wU
cI
0I

u

mI

n 103

(Jo

J-3

4-)

LL1 la L

CT

00

U

(CI I10

(0-'

Ui "_,_

""I I .

- , [.

Nl .,..-- -- U
•, 4) -.I,

I)

C J

104

k-S

I.j
c

T-) rl u

ul cl

rj C-i fj C-D

D T

10 'o

C-4

Tl tj
ki

r

Ln

(71 Cli ti

uj 4%
r-j

41
4

r j

c 4
cn -it

TI

f

I
I

A particular computation is given as an example below:

Consider the case in the second cycle where the two elements

multiplied are 54 + i41 and -109 + i116. They can be represented in

hexadecimal as 36H + i29H and -6dH + i74H. They are given to the four

multiplier inputs as mltina, mltinc, mltinb and mltind as the eight bit signed

I binary numbers 36,29,ed and 74 respectively as shown in Fgure 6.22. The

outputs of the multiplier are shown below:

Product Before shift After 6 bit shift

axb = 36 x-6d 1010110 1111 1110 (-16fe) 10101 1011 (-5b)

cxd = 29 x 7 4 0 01 0010 1001 0100 (1294) 0 0100 1010 (4a)

U bxc = 29x-6d 1010001 0111 0101 (-1175) 101000101 (-45)

I axd = 36 x 74 0 011000 0111 1000 (1878) 0 0110 0001 (61)

I The next stage is the adder/subtractor stage. The calculations are

ab + cd = -5b + 4a = -11(10 0001 0001) or (1 1 1110 1111 or 3ef in 2's complement)

3 ad - bc = 61 - (-45) =a6 (0 0 1010 0110 or Oa6)

Trhe adder output (3ef) which is the real part of the product and the subtractor

output (0a6) which is the imaginary part are shown in the figure (add & sub

3 signals). These signals are one of the inputs to the accumulator stage.

The two signals meml and mem2 are the other input to the accumulator

stage. These are the accumulator outputs (accl and acc2) from the previous

106

I

cycle which are read in from the memory The accumulator calculation is

shown below:

add + mem2 = acc2 (negative numbers are in 2's complement form) I

3ef (I 1 1110 11l1 or -11) + 7fed (1 11111110 1010 or -16) 3
= 7fdc(1 11111 1101 1100or -27) 1

sub + meml = accl 3
0a6 (0 0 1010 0110) + 0055 (0 00 0000 01010101)=00fb (0 00 0000 1111 1011)

The processor function can be verified from the above calculations.

The rntlist for the processor was generated from the Led schematic.

Then AutoCells was used to generate the layout of the processor. Figure 6.23 1
shows the layout of the complete processor. The layout was verified by

simulating the netlist for the whole processor. The terminal were placed so

that the routing to the pins can be done very easily. The data input terminals

and the input control signals are placed at the top. The data bits (memory and

processor out) are placed at the sides and the address bits are placed at the 3
bottom. The processor was layed out in 25 rows and the total area was

approximately 2200 x 5800 1am 2 .

The pin diagram for the ASIC is shown in Figure 6.24 The chip will fit I
in a 120 pin frame available through MOSIS. The pin designation is according 3
to the terminal placements in the layout The data pins are: -

InO - In7 - Real part of input element 3
In8 - Inl5 - Imaginary part of input element

OutO - Outl5 - Real part of processor output element I

107 I

i
i

OuE16 - Out31 - Imaginary part of processor output element

Memo - MemIr5 - Real part of memory element

Meml6 - Mem31 - Imaginary part of memory element

The I/O diagram of the processor is showrn in Figure 6.25. The data pins

are connected to the memory as shown. The address bits ate supplied from

i the processor and a global reset pin is supplied so that the memory chip can be

reset after one cycle of computations.

__08

I
I
I

I
I
I

I
I
I

I I!08

LDJ:ofl rntEDJ C301n:o33) Dfl3E303J oExtxlmTJ2I0:3L

~ 1* - l0I: C33
31LC

-!r-3A i~. 1310-_ "

jj0C
_ ~i r-3I 1

- f

J3 ti 14 - C31

13 " ' j t .g31 . 3]' IcILJ'ý - ,l E - ' -1

"'LII .

M, 'E3- r'=1 13E

_1 1 -5
I

In C] tb IE.3 j 3M n; Di iD0 . I-'r1 I' CTMI

IIH !UI.5;- 53 3") , 1rl a C -E

101 ito ~ E QIjrl-I t l I - -
tj

1 .4I- X3 C3,1-33 -C3:23'-E-

.~If i ' . :; A nt r L-l0 3 . J i I *

Lp1I -. .- IPJL *1--
3.0

uL22)3Y3I -, 0i321f) -:
F.-' IN1!tIJ 0 .04 11t~f 6j-: -I10 I -d 13:j-'I

GndVddVd

Out2 Mem23

COut3 Mem33

C Out4 Me m43

COUt5 M~em5 :

CIut Me m6 :
COut7 Me m7 :

COUt8 Mem8I O)ut9 Mem9

rOutio Meml 1

IMemI 1:
OutI2 Mem 1

OuUtS Me ml.]

OutI 6 MemIý:

C Outis Me ml-

Out18 Memiý

Outl 7 Me ml1

OUt2O Mem2E

OUtI9 Mem2ýI 0ut22 Mem2t

C ut23 Me m2l

C 0ut22 Mem 32
COut23 Mem2':

- ut24 Mem2-:

C 0ut27 Mem2U
0~ t A~ A~ A -A -Ift

73 Gnd

* U U LI U C3 U Uj U Uj U U LI U Li U U L U U Li u u U U U U= U U U
Vd G nd

Figure 6.24 :Pin diagram for the combined covariance matrix processor on a3 standard 120 pin frame available through MOSIS

IIH

Global Reset

REAL DATA (MemnO -Meml5)

4IO-In)P MEMORY

IMAGINARY DATA IMAGINARY DATA
(1n8 - InIS) Covariance (Meml6 -Memn3l)

Mode Control Address Bus (9)

InputclockREAL OUT (OutO - OutiS5)

LodcokIMAGINARY OUT (Outl6 - Out3l)

Figure 6.25 :1/0 diagram of the covariance matrix processor

I
I

I CHAPTER 7

I Conclusions

I This thesis work has dealt with the problem of estimation of direction of

arrival of signals at a sensor array. In particular the wideband problem has been

I investigated and the bilinear transformation algorithm has been explored and an

implementation devised. The algorithm was modified so that all the possible

parallelization and pipelining can be fully exploited. The algorithm is completely

I modularized so that each module can be designed and simulated independently

of each other.I
A fully parallel and pipelined architecture for the algorithm is described.

I The entire architecture requires multiprocessor structure so the system is

designed using multiple modules. The system architecture consists of

I commercially available components like the DSP 56000 for the FFT stage and the

ASIC chips designed for other modules. Various modules were designed with

emphasis on the timing requirements and the simplified routing of data which

are the prime necessities for a system operating in real time.

A combined covariance matrix processor has been implemented using

0.8pm CMOS technology. Two other DOA estimation algorithms have been

selected namely the narrowband MUSIC algorithm and the broadband BASS-

ALE methoo. One common step in all these algorithms is the computation of the

covariance matrix and hence a combined processor has been developed which

Swill perform this stage of operation for all the three algorithms.

The processor has been simulated at the VHDL level using Powerview

and then at the transistor level using GDT Lsim. The construction of the

I*m

I

processor was done using the Lxcells utillitv in GDT. Finally the processor was 3
laved out using CDT AutoCells. I

I
I
I
I
I
I
I
I
I
U
I
U
I
I

I
I
!
i
I
I
i APPENDICES

I
I
I
i
I
I
I
I
I
I
I
I

I
I
I
I
3 Appendix A

I
I

VHDL programs for various modules in Powerview

I
I
I
I
I
I
I
I
I
I
I
I

I

Behavioral Model for 16-Bit ACCUMULATOR.

--lMputst. .4 le, t! I10 bits)

B leg (10 hits
-- Carry in (I bit)
-- Result ieegister clock
-- Global Reset

-- Outputs: Memory data out (16 bits, latched)
-- Processor data out (16 bits, latched)
-- Memory carry out (1 bit. unlatched)
-- Processor ca rv out (Ibit, unlatched)

-- Inteifaice declaration."

entity accumulator is

-- Generic delays, with default values

3 generic (coutdelay: time := 6500 PS: -- Carry out delay
reg-delay: time := 6000 PS): -- Register delay

0--1 ports:

port (signal mout: out vibitvector(0 to 15);
signal pout: out vlbitvector(0 to 15);
signal mcout: out vlbit:
signal pcout: out vibit;
signal a,b: in vlbitvector(0 to 15),
signal cin: in vlbit;
signal GR: in vlbit;
signal clk: in vlbit);

3 end accumulator:

3-- Ar'chitecture body:

architecture behavior of accumulator is

signal accout: vlbitvector(0 to 16): -- ACCUMULATOR output: cout & dout
signal ResReg: vibitvector(0 to 15), -- Result register

1 116

II

begin

-- ConcL1nrelnt ACC IULATE prwcess ,tu&•'nw•'u.

-- When any input signal changes,
-- (' tfl/utL new/ result. I
add: process(a. b, cin)

variable res_ 18: vlbit ld(-1 to 16): -- 18-bit temporary result I
constant XOUJT: vibit-Id(0 to 16) := (X'.

"*X' X'. X'. X,
"X,"X, "X'. "X',

"X."X. X'. I"X:I

begin 3
-- Compute the ACCUMULATOR output.

res_18 := add2c (add2c (a, b), "0' & cin);
addout <= res_18(0 to 16):
end process:

re gisterprocess: process
begin I
wait until clk = '1"
ResReg <= addout(I to 16):
end process:

-- Concurrent signal assignments: n
.. When ACCUMULATOR output or result register changes,
-- schedule new values on processor or memory datu out pins. 1

if GR=' V
pcout <= addout(O) after coutdelay; 3
pout <= ResReg after reg-delayI

else
mcout <= addout(O) after coutdelay: 3

mout <= ResReg after reg-delay;

end behavior: 3
117 1

I
I

I -- Behavioral Model tOr S-Bit ADDER.

-- Inputs: A l'e 18 /its)

IB lef, 8 bits)
-- Carry in f I bit)3 -- Result register clock

-- Outputs: Data out (8 bits. lutched)
-- Curry out (I bit. unlatched)

-- Inteifatce declaration:

entity add is

-- Generic delays, with default values

I generic (cout-delay: time := 4300 PS: -- Carry out delay
reg-delay: time := 4200 PS): -- Register delay

U -- 10 ports:

port (signal dout: out vibit_vector(O to 7)-
signal cout: out vlbit:
signal a,b: in vlbit vector(O to 7);
signal cin: in vlbit:
signal clk: in vlbit):

end add:

-- Architecture body.

3 architecture behavior of add is

signal addout: vlbitvector(0 to 8); -- ADD output: cout & dout
signal ResReg: vlbit_vector(0 to 7); -- Result register

g begin

i 118

U

--Concurrent ,A00 process statement:

--When any iput signal chaputesI
-- compute new result.

add: process(a. b, cin) I
variable res_10 vlbit-ld(-l to 8): -- 10-bit temporary result
constant XOUT: vlbitld(0 to 8):= ('X'.X. 'X'. X'. X'.,X'. 'X'. 'X'): 3
begin

res_18 := add2c (add2c (a. b). '0' & cin):
addout <= res_ 18(0 to 16):

end process; 3

-- Concurrent Register process statement:
-- Load up the result register. but on/y on rising edge of clock.
.i

register-process: process
begin
wait until clk = 'I';I
ResReg <= addout(l to 16):
end process; 3

-- Concurrent signal assignments:
-- When ADDER output or result register changes,

-- schedule new values on data out pins.

cout <= addout(O) after cout-delay;
dout <= ResReg after reg-delay; Iend behavior:

I

119 1

I - Behav~ioral Modelfinr 6-Bit CO-UNTER -------------

-- Inputs.

U - -Clock (I Bit)

-- Enable (I Bit)

-- Outputs: Data Out (6 Bits, Unlatched)

-- ------------------- ------------------
3 - -Intetface Declaration.

entity count6b is

generic(delay:time: I ns-;I ~max:integer:= 20)

port (signal enbi in vibit;Usignal cik in vibit-;
signal cir: in vibit;g ~signal c :out vibit-vector(0 to 5):= ('0W'0'.'0''0'.'0))

end count6b:

I -0-CO U --N-T --E-R --pr t o -c -s s -s -t-a-t e -m-en -tt-: ------------------I architecture behavior of count6b is

3 signal temp: vibit-vector (0 to 3l):=(0'0','O'.O'0\'0','0I'

'0, ., ,o, ,o0, , , 0 .01,101,01,10"V 0)0;.,''*0 0 0~0,00

signal unknown : vibit_vector (0 to 5):=(Cxx'. '''''x.x)
signal highimp : vibit_vector (0 to 5:(z. .z.z, 'z)

* 120

-- Compute the COUYNTER output.

beg~in
process3

variable E:inte(,er:=l
variable one:vlbit-vector (0 tol)(0,l)3

begin
wait on clk.enbl:.
if enbl='O' then

if t=1 then

c <= unknown.highimp after delay.
end if:

--counter counts from up till 31 when cIk' becomes high (level sensitive).Jt resets to 0 once 31 -

-- is reached

else 3--- - - - - - -- - - - - - -- - - - - - -- - - - - - -- - - - - -
eleif clk='1' then t:=II

if clr='l' then
temp<=addum(zero(1 to 31).one);.

ele c <= zero(26 to 3 1) after delay;

if vld2int(temp)>max-l then

ele temp<=zero,

temp.<=addum(temp(1 to 31),one);
end if,

c <= temp(26 to 31) after delay;

edi.end if:

end if:

end process.

end behavior:

12111

Ie -*Bh-av irl M-de for-i -8-bi L--A-TC H

-- Inputs:I -- tat (I Bit)
-l in (8-bit input data,
-- Enable (I Bit)

-- Outputs: lout ('8 Bits

-- intetjace Declaration:

1 entity latch8b is

generic (delay:time := I ns:,

setup:time :=I ns).

port (signal enbi: in vibit:,I signal lat: in vibit;
signal lin in vlbit -vector (0 to 7):3 signal lout : out vibit-vector (0 to 7)),

end latch8b.

S architecture behavior of latch8b is

signal temp : vlbit -vector (0 to 7);
signal highimp : vlbit-vector (0 to 7):=(Cz*,z'.z'.*z','z '.'z'.'z','z'):

U 1221

I
I

begin

-- LATCH process statement:

process I
variable t.c:integer:=l
begin 3

--larch output is in high impedance state when enable is deasserted.
--When enbl is asserted, the incoming data is latched in and appeari at the output when the

--lat signal is assserted.

wait on enbl.lat.lin:
if enbl='O' then

if t= 1 then
t:--O;
lout <= highimp after delay:.I

end if:
else

if lat='O' then

if c=1 then
lout <= temp after delay;
c:--O:
t:=l: I

end if:
else
c:=l;I

end if:
end if:

end process:
end behavior.

1I
I
I

123 I

I
I

-- Behavioral M~del br" 8-hit Two s Complemnent Multiplier

* - Inputs:
-- a (8-bit input data)
-- b f8-bit input data

I-Outputs.: c (8 Bits)

I -- Ineif~rce Declaration:

entity mult8bt is

generic(delay:time := 10 ns):

3 port (signal a,b : in vlbit_vector(O to 7);

signal c : out vlbitvector(O to 7)):

g end mult8bt;

-- Architecture body:

I.
architecture behavior of mult8bt is

I signal temp : vibitvector (0 to 15);
signal unknown : vlbit_vector (0 to 7):=('x.x','x'.'x'.'x','.','x','x');

I begin
temp <= mul2c(ab);
c <= unknown,temp(O to 7) after delay;

end behavior:

II

1 124

-- Behav~ioral ;Vhdelf'Or R-hit Twio's Comiplemntn subtractor

-- Injuts:
-- A (S-bit input daita t
-- B iS-/nt input data)i
-CLKUI Bit)
-- Outputs: SOUT (8 Bits

COLT! (Ihit)

- nteiyface Declaration:I

entity subt isU
generic(delay: time:= I ns):
port(Akin vlbit-vector(O to 15):1
B:in vibit-vector(O to 15)-,
CLK:in vibit:,
COUT:out vibit:3
SOUT~out vlbit vector(O to 15)):
end subt;

- - Architecture body:3

architecture behavior of subt is

signal S:vlbjt-vector(O to 16);I
begin

--- -- -- -- --- -- -- -- --- -- -- -- -- --- -- -- -- --- -- -- -- -I
-- SUBTRACTOR process statement:

subt~roces
begin

--subtructor sensitive on clk(positive level sensititve)

wait until CLK= '; 3
S <= sub2c(A.B);
end process;
SOUT <= S(0 to 15) after delay;,
COUT <= S(16) after delay:

end behavior:£

1251

I
I

-- Behavioral Modelfr a 3-to-8 decoder used in the loadingI ~--conitrol unit.

-- Inputs:
-- a (2-bit input data)

-- CLK (I Bit)
-- Outputs: oO to o8 (1 bit each)

U - Inteij]7ce Declaration.'

I entity ldec3 is

generic(delay:time := I ns):3 port (signal a: in vibitvector(O to 2):
signal clk in vibit;
signal oO • out vlbit:
signal ol out vlbit:
signal o2 " out vlbit:
signal o3 • out vibit:I signal o4 • out vlbit;
signal o5 out vibit:
signal o6 : out vlbit;I signal o7 " out vlbit):

end ldec3:

S-- Architecture body:

architecture behavior of ldec3 is
signal temp : vlbitvector (0 to 7) := (0'0','0'.'0','0"'0"'0Y0','0");

signal unknown • vlbit_vector (0 to 7):=(x', x','x','xx','xx', x
signal highimp: vibit vector (0 to 7):=(z, z','z'.'z. z. z z, z)
begin

-- DECODER process statement:

ldec3_process:process
-' variable num:integer:

U begin

decoder is sensitive on clk (positive level sensitive)

Stemp(O to 7) <= ('0','0",'0','0".'0','0'.'00,'0'):

I 126

I

wait until clk= 'I' I
if v ld2int(a)=O then

temp(O) <=" I
else

temp(O) <=V.
end if:
if v ld2intta)= 1 then

temp(l) <=,1 :
else I

temp(1) <='O';
end if:
if v I d2int(a)=2 then 1

temp(2) <='1':
else

temp(2) <='0': I
end it'.
if vld2int(a)=3 then

temp(3) <=1';:
else

temp(3) <=O':
end if;
if v ld2int(a)=4 then

temp(4) <='1 '-
else

temp(4) <=*O':
end if;
if v ld2int(a)=5 then

temp(5) <= *I*
else

temp(5) <='O';
end if;
if v ld2int(a)=6 then I

temp(6) <=1l':
else

temp(6) <=O': ;
end if:
if v ld2int(a)=7 then

temp(7) <=' I:
else

temp(7) <='O':
end if:

127

oO <= temp(O) after delay-,o =tm(I)atrdly
o2 <= temp(1) after delay:
o3 <= temp(3) after delay.
o4 <= temp(3) after delay:I o4 <= temp(4) after delay:
o6 <= temp(5) after delay;
o7 <= temp(6) after delay,

end process;3 end behavior;

12

I
I
I
I

I Appendix B

I
i

Fortran program used to simulate the bilinear transformation algorithm

I
I
I
I
i
i
I
I
I
I
I
U

*This program estimnate the DONS Usin",the bilinear transformation

5 ~real kxk33.88),ki(33.8.8).Pr1l(3
6 0)15

real

3 ~real slr(l5P.li(lS'), s2r(15), s2itlS).t(3)

real nr(3,8). ni(3.8). ,xr(8) .xi(8),zr(6 4,8) ,zi(64 .8)

rea bb(6 4). cc (64).br(64 ,8), bj(64,8),b(8 .8)

I ~ ~~realtr88Vi8)tt(8 t(8)gfr 8 8)giS)

real fc.10(.9).10(.9)
integer optionI integer seed, nout. d
externlal rnsetL mrunf. umach

seed=3 4 5

plzacos(-A.I
print *.,O for partially coherent, I otherwise'

3 ~read *,optionl
print '.input the number of sensors

read ~.ns

3 print ~.input the signal power
read *,Sig I

print '~.input the noise power'

3 read *,sig
2

stdev l=sqrt(sigl)
stdev2=sqrt(sig

2)

open(uflit~l.file= 1.dat',status= new')

open(unit2A4,ile= 2.dat' ,status new')

open~unitZ3,fi1e3- .dat',status='new')

*Initialize the covariance matrices

3 do I i=1,33
do I j=z~ns
do t k= l,nS
kr(i~j.k)=O.

ki(i~j~k)=O.Mtrxitiied
Iproninte

Generate signals for sources

I 130

seed~= 12 33
call umach(2.nout)
call mset(seed)
temp I =rnunt(

seed=seed+2
phase 1=2*~pi*temp I

call umach(2..nout)
call mset(seed)
temp2=munf()
phase2=2*pi*temp2
call gauss(stdevl1.x,seed) xxl~l).164I
xx2(l)=xxl(l)
s lr(1)=xx 1(1)*cos(phase 1)

s2r(l)=slr(1)
s2i(l)=s Ii(l)
if (option.eq.0) goto 12
call gauss(stdev 1, x.seed)
xx2(1)=. 164*x
s2r(lI)=xx2(lI)*cos(phase2)3
s2i(l)=xx2(1)*sin(phase2)
12 call gauss(stdevl,x,seed)
xx 1(2)=. 164*x+ 1.37*xx 101)I
xx2(2)=xx 1(2)
s Ilr(2)=xx l(2)*cos(phase 1)
slIi(2)=xx l(2)*sin(phase 1)U
s2r(2)=s Ilr(2)
s2i(2)=s 1i(2)

if (option.eq.0) goto 13
call gauss(stdev I x~seed)
xx2(2)=. 164*x+ I .37*xx2(1)s~r()=xx(2)*os~paseI
s2r(2)=xx2(2)*osi(phase2)

13 do 2 i=3,153
call gauss(szdevlI,x,seed)
xx [(i)=. 164*x+ I 37*xx 1(i- 1)-.723*xxl(i-2)
xx2(i)=xx I1(i)

s I r(iP4 0. *xx 1I)W*cos(phasel1)

s2r(i)=slr(i)3
s2i(i)=s I i(i)
if (option.eq.O) goto 2

call gauss(stdev 1 ,x,seed)I
xx2(i)=.l164*x+ 1.37*xx2(i- l)-.723*xx2(i-2)
s2r(i)= 10. *xx2(i)*cos(phase2)

131 3

THIS

PAGE

IS

MISSING

IN

ORIGINAL

DOCUMENT

xx 1(k)=Xxl(k+l)
xx2(k)=xx2(k+ 1)U 7 continue
call gauss(stdev I x .seed)

xx 1(15)= 164*x+ 1.37*xx 1(4)-.723* 1(13

I XX2(15)=XIl(lS)

S Ir(l 5)=xxl(15)*cosi(phase 1)

if (optiofl.eq.O) goto 15

call gauss(stdev 1.Xseed)

xx2(l5)=,l64*x-1l.37*xx2(14)-723*xx
2 (13)

3 ~s2r(1 5),:xx2(lI5)*cos(phase2)
s2i(I 5)=xx2(1I5)*sin(phase2)
15 do kzl,ns3 ~nx(I ,kY=nx(2,k)
nx(22JC)=lx(3.k)
call gauss(stdev2,x.seed)Inx(3,k)=.164*x + 1.37*nx(2,k) -.723*nx(l,k)
nr(3.k)=nx(3.k)*cos(phase)
ni(3Jz)=nx(3 k)*sin(phase)I enddo
do 8 k~= I ,ns
jl=16-kI ~j2z=l7-2*k
x(r(k)=s Ir~j I)+s2r~2)+flr(3 .k)

xi(k)=s I iOj I +s2iOj2)+fi(3¶k)I 8 continue
5 continue

I * Compute the FFT for every sensor output

n=64I m=6
dok= 1.ns
do 1=1.64
bb(1)=zr(I.k)

enddo
call fft (bb~cc.m.n)
do i=1,64
br(l.k)=bb(I)
bi(l~k)=cc(I
enddo3 enddo

13 3

I
I

* Generate the data covariance matrices

do 9'j= 1,3 3
do 9 k= I.ns
do 9 1= 1ns
kr(j,kl)=kr(j,.k.)+bri-(,k)*bro,l)+bij,k)*bi(j.l)
k9conkil)=kioukel)+ tU'k)*brinue)-bi Ul)*brOk)

9 continue
4 continue

do 10 j=1,33
do 10 k=lns
do 10 1=1.ns
kr(j.k.l)=kr(jk.l)/64.
ki(j.k,l)=ki(j,k,l)/64.
10 continue
print *,'Covariance matrix computed' 3
* Computation of the transformation matrix 3
b(1.1)= I
b(1.2)*=7 3
b(,3)=21
b(1,4)=35
b(1.5)=35 3
b(1,6)=21
b(1,7)=7
b(1,87= 1

b(2,1)=l
b(2.2)=5
b(2.3)=9
b(2.4)=5
b(2,5)=-5
b(2.6)=-9
b(2,7)=-5
b(2.8)=- I
b(3,1)=I
b(3.2)=3
b(3.3)=1 I
b(3.4)=-5
b(3.5)=-5
b(3.6)=l
b(3.7)=3
b(3,8)=1
b(4,1)= I

134

U
I

b(4,2)= I3 b(4,3)=-3
b(4,4)=-3
b(4,5)=3
b(4,6)=3
b(4,7)=- I
b(4.8)=- I3b(5.I)=l
b(5,2)=- I
b(5.3)=-35 b(5,4)=3
b(5,5)=3
b(5,6)=-3
b(5,7)=- 1
b(5,8)=I
b(6. I)= I
b(6.2)=-3
b(6,3)= 1
b(6.4)=5
b(6.5)=-5
b(6,6)=- 1
b(6,7)=3
b(6.8)=- I
b(7.1)= I
b(7.2)=-5
b(7.3)=9
b(7,4)=-5
b(7,5)=-5
b(7,6)=9
b(7,7)=-53 b(7,8)=l
b(8.1)=I
b(8.2)=-73 b(8,3)=21
b(8,4)=-35
b(8,5)=35

Ib(8,6)=-21
b(8.7)=7
b(8,8)=- I
print *,'Transformation matrix generated'

1* Initialize the covariance matrix

do i = 1.ns
do j = l,ns
gr(i.j)=O.

II 135

gnr(i,j)=O.
gni(i.j)=0.
enddo
enddo3
fc= I.
a=2./32'.
print *. 'ovariance matrices initialized'3
print *,a

*Computation of G and Gn3

do i=1,33
print *,float(j)3

print *,f(i)

doj=l.nsU
do k=1,ns
trOj.k)=b(j~k)*(2*fc/f(i))**(k- 1)*int(cos(fioat(k-I)*pj/2.))
tiOj,k)=-bOj.k)*(2*fclf(i))**(k- 1)*int(sjn(float(k- 1)*pi/2.) 5
enddo

enddo
doj=1.ns3

do k=I~ns
ttro.k)=O.
tti(j.k 1=0.
do I=l.ns
ttr(j.k)=ttr(j.k)+troj,l)* kr(jjl,k)..tioj,I)*ki(j,l,k)

ttiQi~k)=tti(.k)+tr(j,1)*ki(i,1,k)+tioj,1)*kr(i,1,k)
enddo
enddo

enddo
do j=l,ns
do k=1,ns
do I=1.ns
gr(j .k)=groj k)+ttroj.I)*tr(k,l)+ttioj,l)*ti(k,I)

gnroi,k)=gflro,k)+Itri.1)*tr(k.1)+tio,1)*ti(kdl)

enddo
enddo
enddo3

print *,'Printing Resultant matrices'
do i= 1, ns
print *,' (gr(i~k),k=I.ns)3

136I

print *', (gti(Lk).k=1,ns)
enddo

doti =1.ns3 print ~.(gnrui.k).k=l~ns)
ptint 'i.(gniui.k),k= Lns)
enddo
call cho (gnr~gni,lr.Ii.ns)I print *.*Cholesky decomposed"
ptinE *.' Printing Triangular in...uix'3 do i = 1, ns
print *,(h.(i,k).k1 ,ns)
print *, (li(i,k).k=1,ns)3 enddo
print *-----------------------------

call tdat (Ir~li,gr~gi,yr.yi.ns)
print *,'Printing Eigendecomposed matrix
do i = 1. ns
print ".(yr(i~k).k=1.ns)3 print ",(yi(i~k),k=l.ns)

enddo
print......................

call hhc (yr~yi.rrri~ur~ui.ns)
print *,'Printing output of householder transformationI do i = 1, ns

print *,(Ir(i~k).k..4ns)
print *a. (ri(i,k).k=1,ns)I enddo
print ---- ---

do i=1.nsI ~write(3,100) (rr(i~j),j=.1.ns)
enddo
write(3.*)I do i=1.ns
write(3. 100) (ri(i~j).j= l,ns)3 enddo

print *,*2'I close(unit=l1)
close(unit=2)3 close(unit=3)

call qrc (rr~ri,tr~ti,ur.ui,ns)

print *,'Printing output of QR transformation

* 137

do i =1. ns
print *.(ur(~k).k-= i~ns)I
print *. (ui(I.k).k-=Lns)
enddo
print '- ---- 5-

do i= I.ns
write(4. 100) (tr(i.J),j=I ns)
enddo

write(4,*)
do i=1,ns
write(4, 100) (ti(i.j),j=lI ns)3

print *.'3'
c lose(unit=4)

1O0fornat(2x.8f 11.2)

d=25
call power (ur~ui.pm.d,ns)

do i= 1.90
jj=i-l I
write(5,*) pm(i)
enddo
write(5,*)
close(unit=5)

This subroutine performs the Cholesky decompositionU

subroutine cho(cnr~cni.Ir~li~n)
real cnr(8.8).cni(8,8),lr(8,8),li(8,8)I
print *,' Starting to decompose Cholesky'
do i= L~n
do j= L~n
lr(,i,j)=cnr(i,j)
li(i,j)=c ni(i~j)I

print*riiIii

enddoI
do I k= ln
do 2 i= Lk-lI
sr=0O.5

138U

do 3 j= U-lII sr~sr-i lr(i~V k.j)+li~i,j) l~j

5~ 3continue

print*lr11.(.)Irki=I~~i-r/rii
2.continueI sr=O.
si=-O.
do 4 J=l,k- II ~sr=sr+Ir(k~j)* lr(k~j)+li(k~j)*li(k.j)

4 continue
t=abs(cnr(k,k)-sr)I if (t.gt.0.) then
Ir(k,k)=sqrt(t)3 else
1r(k,k)--O.
endif
li(k.k)=-O.
I continue
do i= l,n3 do j= i+1I,n

enddo
enddo
return3 end

3 * This subroutine performs the eigendecomposition of
* (G,Gn) to (YI)

3 ~subroutine tdat(rlri,cr,ci~yr~yi,n)
real l(,)l(,)c(,),i88,r88,i88
real xr(8,8),xi(8,8)
doj=l~n
print *,'Lr value is'

print *,lrojj)
xr(1.j)= cr(I.j)/Ir(l,lI)
xi(1.j)= ci(l~j)/r(1.l)
enddo

do I i=2,n

139

do I j=ILn3
sr=O.
Si=0.
do 2 kli-L1-II
sr=sr+ Iq i.kY Nr(k~j-II -(ik) x I(k~j)

2 continueI
print *Ir(i~i)
,xr(i.jY=(cr(i.j)-sr)Ilr(iLi)
xi(i.jY=(c i(i~j)-si)flr(iLi)3
I continue
doj=l~n

enddo
do 3 i=-')n3
do 3 J= I n

si=O.

do 4 k= Li-1I
sr=sr+lr(i.k)*yr(k,j)+li(i.k)*yi(k,j)
si=si+kt(i,k)*yi(k,j)-Ii(i~k)*yr(k,j)

4 continue
yr i ,j)=(xrQ ,i)-sr)/lr(i.i)

3 continue
return
end

* Householders Algorithm for complex data

subroutine hhc (yr,yi~rr,ri~ur~ui.n)3
real rr(n~n).ri(n,n),ur(n~n),ui(n,n),wr(8),wi(8)
real yr(n~n).yi(n~n)g

*Initialisation for the eigenvectors

do1 i= I~n

do 2 J=l~n
ur(i,j)=O.O
ui(i,j)=-O.OI
2 continue
I continue
do 3 i=l~nI
ur(i,i)=l

1 40

ui(i~i)=O3 3 continue

*Compute householder's transformations'

do 4 i=1.n-2
rl=-O.O3 do 5 j=i+1.~n
r 1 =r I. +yrOj,i)*yrOi.i)+yiOj,i)*yiOj,i)
5 continue3 ~ ~~d=sqrt(yr(i+ I.1Y)*yr(i+ I i)+yi(i+ 1,i)*yi(i+l1,i))
r I =sqrt(r)I d
wr(i)=yr(i4- 1. i)+r I *yvr(i+ Li)
w wi(i)=yi(i+ 1.i)+rlI* vi(i+ 1,i)
yr(i+ I ,i)=-rl *yr(i+ 1 ,i)
yi(i+ 1 ,i)=-rl *yi(i+ Li)I ~yr(i~i+ 1)=yr(i+ 1 ,i)
yi(i.i+ I)=-yi(i+ I i)
do 6 j=i+1.~n-1II wr(j)=yrj+ I. i)
wioj)=Yio+ 1 i)

*~ 6continue
c=O.
do 18 j=i~n-1I
c-c+wr(jV" wr(,i)+wioj)*wi(J)I 18 continue
c=c/2

I* Compute the update covariance data matrix for every
* transformation

do 7 j=i+2.n
yr(i.,i)=O.()3 ~yr(j~i i=O.O

*7 continue
do 8j=i-+-1n

I d2=0.0
do)9 k=i+ I.n
d I =dI I +wr(k- I)yr(lkj)+wi(k- 1)* yi(k~j)U ~d2=d2+wr(k- I)*yi(k~j)-wi(k- I)*yr(k~j)
9 continue
d I =d I/c

d2=d2/c

141

do 10 k=i+l.n
yr(k.j)=yr('k.j)-(wr(k- I)d I -wi(k- I)'d2)I
yi(k.j)=yi(k.j)-iwrw k-I)*d2+wi(k-. I)*dj)

10 continue
8 continue1
do I I j=i+l~n
dl=0O.0

do 12 k=i+1,n
d 1=dl+wr(k- I)*yroj,k)-.wi(k.. I)*yjij,k)

d2=d2+wr(k- I)"yioj,k)+wi(k- I)*yrojk)I
12 continue
dl =d 1/c

do 13 k=i+l~n
yroj,k)=yroj,k)-(dl1*wr(k.. I)+d2*wilk-1))

13 continue
I1I continueI

*Compute the eigenvectors

do 14 j=i~n
d 1 -0.0
d2=0.0

I
do 15 k=i+1,n
d 1=d I+wr(k-lI)*ur(k,j)+wi(k.. 1)*ui(k~j)

d2=d2+wr(k- 1)*ui(k~j)-wi(k- I)*ii(k~j)I
15 continue
dl =d /c
d2=d2/cI
do 16 k=i+1.n
ur(k~j)=ur(k,j)-(wr(k- 1)d 1 -wi(k- I)*d2)

ui(k~j)=ui(k~j)-(wr(k- 1)*d2+wi(k- l)*d 1)1
16 continue
14 continue

4 continue

do 17 i=~
Ix

do 17 j=1.n
rr(i~j)=yr(i,j)I

17 continue
return
end

142

I ~ This subroutine computes the QR transformation of the data

subroutine qrc(rr~ri~tr.ti~ur~ui~n)I real tr(n.n),ti(n~n).qr(8.8). qi(8,8)
real rr(n.n).ri(n.n).ur(n,n).ui(n,n)
do I i=1.n
do I j=1,n
tr(i~j)=rr(i~j)
ti(i~j)=ri(i~j)
1 continue
iter=0O5 15 iter=iter+ I
do 2 i=1 n

do 2 j=1l,n* qr(i~j)=tI
2 continue3 do 3i=l,n
qr(i.i)= I
qi(i~i)=0O.I 3 continue
y=tr(l,l)
do 4 i=1.~n- 1

if (x.eq.0.) then
y=tr(i+1.i+1)

else
x=X+y *y
x=sqrt(x)

pri 1 =y/x
pilI 1=0.
prlI2=tr(i+ 1 .i)/x
pilI2=-ti(i+l1,i)/x
pr2l=-prl23 pi2l=pil2
pr22=prl 1
pi22=0.I do 7j=1.n
cr1 =prllI ur(.j)-pil 1 *ui(i~j)+prl2*ur(i+lj)..p1il2"uiOi+1 j)

;I I=prl 11*ui(i j)+pil 11*u(.(i~j)+prl 2*ui(i+lI.j)+pi I 2*ur(i+ I j)
cr2=pr2l1*ur(i~j)-pi2 I*ui(i~j)+pr22*ur(i+lI j)-pi22*ui(i+1 j)
ci2-pr2lI*ui(i,j)+pi2l1*ur(i,j)+pr22*ui(i+lI,j)+pi22*ur(i+l1,j')3 ur(i,j)=cr I

I 143

ur(i+ I .J)=cr2
ui(i+l ,j)=ci23
7 continue
do 8.j= Ln
cr1 =prl j *q.(iij)-pi I I *qi(i.j')+prl2*qr(i+1 I .)-pi 12*qi(i+1lj)
ci I~prl I *qj(j.j)+pi I1 *qr(j.j)+prl2*qi(i+ I j)+pi 12*qr(i+1 j)
cr2=pr2 I *'qr(i.j)-pi2 I *qj(ijj)+pr22*qr(i+ I j)-pi22*'qi(i+ 1 .j)
ci2=pr2 I *qj(ij)+pi2 I *qi.(i.jI)+pr22*qi(i+1 ,j.)+pi22*qr~i+ 1 j)
qr(i,j)=cr I
qi(i~j)=ci I
qr(i+ I j)=cr2 I
qi(i+lI,j)=ci2
8 continue
j=i-i- I
y=pr2 1 *tr(i j)-pi2l *ti(i.ji)+pr22*tr(i+ 1,.j)-pi22'*ti(i+I .J)
endif
4 continueI
do 9 i= I .n
do 9 j=iLn
rr(i.j)=0
ri(i,j)=O

9 continue

do 10 i=lI.n
do I0j=1.n
do 10 k=1.n

10 continue
doll i=1.n
doll j= Ln
tr(i.j)=0

I11 continue
do 12 i=l.n
do 12P L~n
do 12 k=1.n
tr(i.j)=tr(i.;)+rr(i.k)*qr(j~k)+fi(i~k)*qiQj,k)3

12 continue
S=-O.I
do 13 i= l,n-lI

s=s+tr(j,i)*tr(j i)+ti(j i)*tioji)I
13 continue

print *,'. QR matrix'I

144I

do i=1,n3 print 100 ,(qr(i~j)-J=1Ln)

print 100 .(qh~i.j*).j~1.n)

enddo

Uprint *,Umarx
do i=1.n3 print 100 (ur(i~j).j~l.n)
print 100 (ui(i~j).j=I,n)
enddo

do j=3.n
do i=1.2
sr=0O.
si=0O.I do k=1.n
sr=sr-turoj.k)*ur(i~k)
sr=sr+uioj,k)*ui(i,k)I ~si=si+urOj~k)*ui(i~k)
si=si- uiOj,k)*ur(i~k)
enddoI enddo
print *,j,5s,5j
enddo

100 format(2x.8f 1 1.2)
print *.'QR iteration No: %,iter
if iiter.le.20) goto 15
return
end

U * This subroutine estimates the DOA's using MUSIC'
* starts Ii 767

subroutine power(ur.ui,pm,d~n)
integer dI real ur(8,8).ui(8,8),pm(91)

real sr~se.si

d=2
print *', 'D value is', d

do k=l.n

I 145

a=a+ur(l1,k)*ur(1 ,k)+ui(I k)*ui(L.k)

a=.sqrt(a)
a=O.
b=O3
do k=1.n
a=a+ur(1.k)*ur(2,k)+ui(I.k)'*ui(2,k)
b=b+ur(l1 k)*ui(2.k)-ui(l1 k)*ur(2,k)3
enddo
do k= l~n
ur(2.k)=ur(2.k)-(a*ur(I ,k)-b~ui(lI k))3
ui(2.k)=ui(2.k)-(a*ui(lI,k)+b~ur(l1,k))
enddo
a=-O.3
do k=l.n
a=a+ur(2,k)*ur(2,k)+ui(2,k)*ui(2,k)
enddo
a=sqrt(a)

do j=3,n3

a2=-O
b2=0
do k=l~n
a I =a I +ur(l1 k) * urOj,k)+ui(lI,kY'*uiOjk)
b I =b I +ur(1.k)*uiOj,k)-ui(l1 k)*urOj,k)
a2=a2+ur(2,k.)*uroj,k)+ui(2,k)*ui(J,k)
b2=b2+ur(2,k)*uioj,k)-ui(2.k)*uT(J,k)
enddo
do k=l~n
ur(j ,k)=urOj.k)-(al1*ur(l1,k)-blI*ui(l1 k))-(a2*ur(2,k)-b2*ui(2,k))
ui(j~k)=ui(j~k)-(al1*ui(l1 k)+blI*ur(l1,k))-(a2*ui(2,k)+b2*ur(2,k))

enddoI
enddo

do j=3.n
do i=1.2
sr--O.

do k= I,n
sr~sr+ur(j ,k)*ur(i.k,)
sr=sr+ui(,i,k) *ui(i,k)
sI=si+ur(j,k)*ui(i,k)

enddoI

146

enddo,
print *,~rsI print *. Finished inner loop of first part'

enddo,

Iiao(.
do I i=2.903 ~theta=((float(i)- 1)/180.)* pi
prn(i)=-O.
print *c, d .n
do 2 j=3.n

sr=-O.
si=0.3 se=-O.
do 3 k=1I,n

do 4I1=1,k-1I3 se=pi*sin(theta)
4continue
sr=sr+urOj,k)*se
si=si+uiOj,k)*se
3 continue
pm(i)=pm(i)+sr*sr+si*siI 2 continue
jj=i-1I
print *,'. PM(i) value is: '.pm(i)I ~pm(i)= 10.*ALOG(l1./pm(i))IALOG(10.)
print *.j pm(i)
I continueU return
end

subroutine fft(A,D.M,N)
dimension A(N).D(N)
NV2=N/2
NML=N- I

do 7 I=1I,NM I
if(1.ge.J) goto 5
T=A(J)
Z=D(J)
A(J)=A(I)3 D(J)=D(l)
A(I)=T

I 5 K=NV2

I 147

6 if(K.ge.J) goto 7

K=K/21
goto 6
7 J=J+K
P1-3.141592653589793
do 20 L=l.M
LE=2**L
LE 1 =LE/2

U2=0O.
W 1=COS(PIILEl)
W2=-SIN(PIILEl)
do 20 J=1,LEI
do 10 I=JN,LE
IP=L+LE I
TI =A(IP)*U 1.D(IP)*U2
T2=A(lP)*U2+D(IP)*U 1 A([P)=~l)-U
A(IP)=D(l)-Tl

A(I)=A(l)+T I
10 D(I)=D(1)+T2
U1=U1*Wl-V2*W2
20 U2=U1*W2+U2*W1I
returnU
end

subroutine gauss(sdev~a,AI)3
real sdev~a
integer Al
call umach(2.nout)

call rnset(iseed)
s=0.

do 1 jj=1.12
s~s+rnunf()
IcontiflueU
iseed=iseed+ 1
a=(.s-6.)*sdev
call umach(2.nout)
call mset(iseed)
return
end3

148

I
I
3 Bibliography

[1] J. H. Wilkinson, "The algebriac eigenvalue problem," Clarendon Press,

Oxford, Chapter 4, 1965

[21 J. Capon, "High resolution frequency-wavenumber spectrum analysis.

Proc. IEEE, Vol. 57, pp. 1408-1418, Aug. 1969.

[31 J. P. Burg, "Maximum entropy spectral analysis," Proc. 37th Annual

International SEG Meeting Oklahoma City, OK, 1967I
[4] R. 0. Schmith, "Multiple emitter location and signal parameter

estimation," IEEE Trans. on Antennas and Propagation, Vol AP-34 No. 3.,

pp. 276-280, Mar. 1986.

[51 R. Roy and T. Kailath, "ESPRIT-Estimation of signal parameters via

I rotational invariance techniques", IEEE Trans. Acoustic, Speech and

Signal Processing, Vol. 37, No. 7, pp. 984-995, July 1989.

[6] C. H. Knapp and G. C. Carter, "The generalized correlation...", IEEE Trans.

I ASSP, VOL. 24, No. 4, pp. 320-237, 1976.

3 [7] W. J. Bangs and P. Schultheiss, "Space-Time processing...", in Signal

Processing, J. W. R. Griffiths et al, Eds. New York, Academic Press, pp. 577-

590, 1973.

I (81 W. R. Hahn and S. A. Tretter, "Optimum processing for ... ", IEEE Trans. IT,

3 VOL. 19, No. 5, pp. 608-614.

U
I

I
I

[9] M. Wax and T. Kailath, "Optimum localizations of multiple source by I
passive arrays", in proc. IEEE Trans. Acoustic, Speech and Signal

Processing vol. ASSP-31, No. 5, pp. 1210-1218, Oct. 1983.

(10] B. Porat and B. Frienlander, "Estimation of spatial and spectral I
parameters of multiple sources", IEEE Trans. on Information Theory, vol.

IT-29, pp. 412-425, May 1983.

[111 A. Nehorai, G. Su, M. Morf, "Estimation of time difference of arrivals for U
multiple ARMA sources by pole decomposition", IEEE Trans. Acoustic, 3
Speech and Signal Processing, vol. ASSP-31, pp. 1478-1491, Dec. 1983.

[121 M. Wax T. J. Shan and T.Kailath, "Spatio-temporal spectral analysis by

eigenstructure method", IEEE Trans. Acoustic, Speech and Signal

Processing, vol. ASSP-32, No. 4, Aug. 1984. I
[13] H. Wang and M. Kaveh, "Estimation of angles-of -arrival for wide-band

sources", IEEE Trans. Acoustic, Speech and Signal Processing, pp. 7.5.1- 3
7.5.4, Mar. 19-21, 1984.

[14] H. Wang and M. Kaveh, "Coherent Signal Subspace processing for the

detection and estimation of angle of arrival of multiple wide-band 3
sources", IEEE Trans. Acoustic, Speech and Signal Processing, vol. ASSP-

33, No. 4, pp. 823-831, Aug. 1985.

[15] Arnab K. Shaw and Ramdas Kumaresan, "Estimation of angles of arrivals U
of broadband signals", IEEE ICASSP-87, pp.229 6-2299 , 1987. 3

[161 DSP 56000 Simulator Reference Manual Motorola Inc. 1992

I

I [171 D. Spielman, A. Paulraj, "Performance analysis of the MUSIC algorithm,"

i in proc. IEEE Conference Acoustic, Speech and Signal Processing, Tokyo,

Japan, pp 1909-1912, Apr 1986

[181 Kevin M. Buckley and LLoyd J. Griffiths, "Broad-band signal-subspace

spatial-spectrum (BASE-ALE) estimation", IEEE Trans. on Acoustics,

I Speech, and Signal Processing, VOL. 36, No. 7, July 1988.

1 [19] Powerview Viewdraw reference manual Viewlogic Inc. 1991

[201 Lxcells users guide - Software Version 5.3_1 Mentor Graphics Corp. 1992

[21] Led users guide - Software Versiou 5.3_1 Mentor Graphics Corp. 1992

[221 Lsim users guide - Software Version 5.3_1 Mentor Graphics Corp. 1992

[23]AutoCeIls users guide-Software Version 5.3_1 Mentor Graphics Corp. 1992

[24] Ma, G.K, and Taylor F.J., "Multiplier policies for Digital Signal Processing"

I IEEE ASSP Magazine. January 1990

[251 Chua 0. H. and Eldin A.G. "Synthesis algorithms for multipliers used in

ASIC design" NASA symposium on VLSI Design 1993

I
[261 M. Mano. "Computer System Architecture', Prentice Hall 1988.

I
i
i
I
I

