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Preface
The following report is a working paper on Hotine's (w, 0, N) coordinate system in

which the details missing from Hotine's analysis have been supplied. The manuscript
was started in 1989/90 and essentially represents the effort involved in my reworking
of Chapter 12 of Hotine's treatise. Part of it appeared in my paper "The assertion
of Hotine on the integrability conditions in his general (w, 0, N) coordinate system"
(Manuscripta Geodaeticali5 , 1990), however the major part of the document has not
been previously published. Over the years I have found the material in this original,
informal write-up to be a helpful reference for my ongoing research in differential
geodesy. It is hoped that this slightly edited version will be useful to other theoretical

geodesists.
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"HOTINE'S (w, €, N) COORDINATE SYSTEM"

Joseph Zund

Summary:
This report is an extensive reworking of the material in Chapter 12 of liotine's

treatise Mathematical Geodesy (U.S. Department of Commerce, Washington, D.C.
1969) which dealt with the basic properties of the (w, 0, N) coordinate system. In
1990, the author showed that Hotine's derivation of this coordinate system was in-
complete, and the present document contains the full details of that work as well as
the material required to rigorously complete Hotine's analysis. The latter material
has not been previously published.
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1 Introduction

In this paper we consider the properties of the (w, €, N) coordinate system which was
the major coordinate system investigated by Hotine in his treatise [1]. It is, apart from
a minor change in notation, the local astronomical coordinate system introduced by
Marussi in [2), [3]. The relevance of this coordinate system for differential geodesy is
often misunderstood and overestimated. In fact, the basic significance of this system
is that we have it, and that it was extensively employed by Marussi and Hotine in
their work. It is the obvious choice of a coordinate system which uses the Marussi
Ansatz of identifying the first two coordinates with surface coordinates and the third
one with the geopotential function. Moreover, to a great extent this system satisfies
the conditions laid down by Marussi, [4], [5], for intrinsic geodesy. On the other hand,
physically speaking, it is rigidly tied to astronomical measurements, which while of
immediate importance in the time of Marussi and Hotine, no longer has a predominant
role in modern geodetic investigations. One would be inclined to regard this system
as merely being a historical relic, except for the cogent and embarrassing fact that we
know of no other equally simple and workable coordinate system in which to check our
ideas and cite as an illustrative example. A related question is to determine whether
the properties of the (w, 0, N) system are in any sense indicative of properties which
can reasonably be expected to hold in more general coordinate systems.

The purpose of the present paper is to explicitly address and resolve these ques-
tions. In doing so, we present a new and simplified derivation of this system which
allows the basic steps of its construction to be immediately seen and assessed as to
their generality and speciality. Section 2 contains a review of the required preliminar-
ies from the leg calculus including the basic equations, while Section 3 is concerned
with the geometrical equations which form the first step in the construction of the
(w, 0, N) system. Section 4 is devoted to the primary equations which lead to the
so-called w-degeneracy which was discovered in [6]. The covariant components of the
leg vectors and the line element ds 2 in the (w, 0, N)-system are derived in Section
5. It is then shown in Section 6 that the (w, 0, N) system automatically satisfies the
Lamd equations in E 3. These equations play the r6le of consistency equations which
must be satisfied in order to insure that this system is well-defined.

Throughout our discussion we will frequently make reference to equations appear-
ing in Hotine's treatise, [1], and such equation and page numbers will be indicated in
square brackets.

2 The Leg Calculus

In this section we review the principal notions of the leg calculus as employed in
[6], [7] and in a more rudimentary form by Hotine in his treatise, [1]. A complete
development of the general theory may be found in [8]. By a 3-leg we mean a linearly
independent system of vectorial quantities in E 3 . For our present purpose we choose



our 3-leg to be orthonormal and consist of three vectors X, ps, v which may be

regarded as tangent vectors having contravariant components A', ar, Vt respectively,
or dually three Pfaffian forms (exterior differential 1-forms)

01 := A,dxT , 02 := prdxt, 03 := vdx" (2.1)

where A,,Al,, v, are respectively the covariant components of A, IA, v, and Xr is a set

of arbitrary ambient coordinates in E3 . Abstractly, both {A ,L,*} and 0l,02,031

can be considered as isomorphic representations of the same 3-leg system.
Let S be an arbitrary smooth surface in E 3 and we chose A, f, to be unit tangent

vectors to S and t, being the unit tangent vector to a congruence of curves F normal
to S, i.e. v is a unit normal to S. We associate to the 3-leg, nine leg parameters
defined by the following contractions of the covariant derivatives with pairs of tangent
vectors:

kl := AvTA' = -v,,ArAs

k 2 := lirVril = -- Vrsr
T ,

V,= rrVs - -A-rvrvS
Vs :'- I*r I" -- -P[ri r,,s

t,,:=/,r'A, = -Ar,," (2.2)
t2 := Vra Ar I -= --Arsv I

al := A•,.T•rA = -L,.••8AA
a2 := Ar,8 '11" = -ArArAa

e3 A ,r,,, = -- Prs/r1T s

By virtue of these expressions the covariant derivatives of the leg vectors admit the
following canonical leg-representations:

Ar, = ar11IrA, + a02 14./s + C3pv, + kiVrAa - t2V,/Is - fIVtrs,

/43 = -ajArA3 - "2 Aris - E3 Arvs + tlVrA, + k2vrlts - 7y2 VrVs, (2.3)

v.S = -kA,A3 + t2 Arps + y1 Av, - tI/,A, - k2lPril + ^ 2 1LVs

which are called the basic leg equations since they play a prominent role in the leg
calculus. The leg parameters appearing in (2.3) have the following geometric sig-

nificance where the numerical subscripts refer to the (A, it) directions: (ki, k2) are

the normal curvatures of S; (y1,-y2) are the tendencies of r; hence x := yI + "2i

the curvature of r; (a,,s 2 ) and (tj, t2) are respectively the geodesic curvatures and
torsions of surface curves on S, and since t4 + t2 = 0 we may eliminate t 2 from our
analysis. This parameter E3, which was not employed by Hotine, is more complicated:
it is a measure of the deviation of S from being automatically a member of a triply
orthogonal system of surfaces and it also is part of the torsion r of F. Finally, we
note that the Gauss (mean) and Germain (mean) curvatures of S are given by

K:=k k2 -t', Ht=(k, + k2)/2 (2.4)

respectively.
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Upon introducing the absolute derivative, denoted by D, equations (2.3) become:

DA, = (a'tt, + ,Iv,) 0 + (aOrT2 , + tI v) 02 + (E3/,. - yýv ,.) 03,
DO, = (-OiA, + tIV',.) 01 + (-a2, + k2 V,) 02 + (-E3X, - -Y2Vr) 03, (2.5)
Dv, = (-k., - t Ip,) 01 + (-tA, - k21,)0 2 + (-Yl., + 72 1L,) 03.

The first set of Cartan 's structural equations are given by

S+ w12 A 02 + W13 A 03 = 0,
dA2 +w 21 A0 1 +W 23 AO 3 = 0, (2.6)
dO3 + w31 A 01+ w32 A 02 = 0;

hence, the connection 1-forms Wab = -wb,, are

W12 = -'01 - o*202 - 6303,
L31 = k 10 + t 102 - 7103, (2.7)
W23 = -tiOt - k202 + ^120 3;

or
dO1 = a"10 1 A 02 - k1 03 A 0,. + (t4 - 3 ) 02 A 03 ,
dO2 = a 201 A O2 - (t + 63) 03 A 01 + k202 A 03, (2.8)
dO3 = 7103 A 01- 7202 A 03 .

Since E 3 is a flat space, the second set of Cartan's 3tructural equations reduces to

dW 1 2 = -W 3 1 A wIJ2 3 ,

dw3 1 = w12 A W23 , (2.9)
duw23 = -w 1 2 A W3 1 ,

because the curvature 2-forms f2 ab = -f-,b are identically zero. These equations,
and leg differential equations defined by them, are the leg-theoretic analogues of the
classical Lame equations.

A basic notion of the leg calculus is to systematically resolve all expressions, e.g.such as (2.3) into their leg representations. For derivatives of an arbitrary smooth
function F (with the leg parameters given in (2.2)) this involves the so called PfaJfian
derivatives defined by

dF :=F 1I01 + F/2 02 + F/303  O
where F11 := ArF,, F12 := prF,, F/ 3 := rF, denote directional (leg) derivatives in
the respective A, 1A, , directions, and for scalar functions we follow Hotine's practice
of merely adding a subscript to denote (ordinary) partial differentiation. Note that,
unlike partial derivatives, the leg derivatives are generally not permutable, e.g. F1 112-
F121•j # 0 etc.

The integrability conditions of the Pffafian expression are given by d(dF)
d2F = 0 which upon expansion yields

dF/, A dO, + F1/dO1 + dF12 A 02 + F/2dO( )
+ dF/,3 A 03 + rF3dO3 = 0

3



where dO1, dO2. dO3j are given by (2.6) and

dFr, F111101 + F/,1 /202 + F/1 /303

dF,= F/,2 101 + F/2/202 + F/ 2/303 . (2.12)
dF13 := F131101 + F / 3/ 202 + F/3/303

Explicit evaluation of (2.11) then yields

{ F1211 - F/,1 2 + F,1 ,, + F/202} o1 A 02

+ {FII13 - F,3 /1 - Flk1 - F12 (t + 1-3 ) F/,3 1 } 03 A 01  (2.13)

+{F/312 - F/2 3 + F,1 (t, - -3) + F/2k2 - F/3-Y?} 02 A 03 =0

and by the linear independence of the exterior products 01 A 02, 03 A 01, and 02 A 03
we have the so called F-commutators given in [6]:

F/i/2 - F/2/1 = ,1FI, + ,72F/1,
F1311 - F1113 = -kF 11 - (t, + -6) F12 + 7 1,F13, (2.14)

F1213 - F1312 = (tl - 63 ) F11 + k2F12 - 7y2F3,

which are denoted respectively by (FI), (Fil) and (F111). In practice these permutabil-
ity rules for the leg derivatives need not be remembered since they may be automati-
cally obtained by computing d2 F = 0. It should bc observed that all the leg equations
given in this section are independent of the choice of a particular ambient coordinate
system Xr in E 3. In Section 3, we will consider the consequences of adapting the leg
calculus to the special (w, 0, N) coordinate system in E 3.

3 Geometric Equations

The first step in adapting the leg calculus to the (w, 6, N)-system is to give a proper
definition of the surface coordinates (w, 0) which constitutes the first part of the
Marussi Ansatz, viz.

91 :=w- ,x, :-- .

The second part of this Ansatz, i.e. x3 := N where N is the geopotential function will
be considered in Section 6. In order to introduce (w, 0), Hotine [12.002] takes a con-
stant orthonormal Cartesian 3-leg {A, B, C} whose vectors are respectively aligned
along the Cartesian coordinate axes y' := (x, y, z) cit a fixed origin 0 in E 3. Then he

chooses the general variable 3-leg { A, i }, VI roughly in the directions of the parallel,

meridian, and zenith at a point on the surface S. Thus, as in Section 2, A and ,. are
tangents to S while v is tangent to r which when N is taken to be an equipotential
surface, is along the plumblines of the N-surface S. The surface coordinates (w, 0)
are respectively called the longitude w and the latitude €, and are defined by the
equations [12.003-.005]

coswcosqo :- VAr,

sinwcoso := VrBr, (3.1)
sine := vCT,

4



where tentatively we take -7r/2 < 0 < 7r/2 and 0 < w <7r. Then by inspection, we
have the following algebraic geometrical equations:

A - -Arsinlw+B COSW

It -ArcosWsin-B 7 sinwCos+CcosC , (3.2)
V = Arcoswcos#+fBtsitiwcos¢+Crsin6;

i.e. [12.MJ8]. Since the matrix of the coefficients on the right hand side of (3.2) is an
ortho~onal matrix the inverse geometrical equations are given by

Ar = -A.sinw-1Ircoswsin¢+v, coswcos¢,
Br = Arcosw-frsinuwsin0+ Vrsinfwcos 0, (3.3)
C,- = ji, cos40+vr sin¢.

Covariant differentiation of (3.2), and using (3.3) then yield the diffCrential version
of the geometric equations:

Ar, = (y, sin c - v, cosS )w,
$rs = -A,-w 8 sin 0 - Vr., (3.4)
Vtr, = , + j€,

i.e. [12.014-.0i6], where w., and s denote the gradients of w and .An alternate
derivation of (3.4) may be obtained by covariant differentiation of (3.3). Since

A,., =- 0, B,. = 0, C,,, = 0; (3.5)

which yields the following system of equations:

,s, cos k + v,. sin = (/t, sin d - v, COS)
A,,sin w + Atrscoswsinq0-v -. ,coswcos Cb

[ [-ACcosw+(f(, sin¢- Vcos )sinw]1W,
- [(/, cos + Lr sin 0) cosw] 0, (3.6)

A,, COsW - pj,.,,sinW ufsinif + v,,sinwcos¢
- [-ACOSw+ (#, sin - vP, cos 0) sin wJ w,
+ [(p cos 0 + v, sin 0) sin 10],,.

The matrix of coefficients of the covariant derivatives on the left hand side of (3.6)
is again an orthogonal matrix, so one can immediately invert this system of equations
to yield (3.4).

Equations (3.4) appear - at first glance - to be quite reasonable, however, they
contain a remarkable feature as will be discussed in Section 4.

4 Primary Equations

Contraction of the differential version of the geometrical equations gives the following
expressions for the leg derivatives of w and &:

vr,ArA$ = -Ars VrA' = w/ 1 cos¢,
vrsArp' = -Arv V, = w/ 2 cos¢4 (.C.ta)
V, ,A'V4 = -Ar,VrV, = w/3 cos;

5



or
A,/ 81 A = y, A*As = -, /lsin ¢,
Arap'p' = -r, UArti = W12 sin 0, (4,.lb)
ArAr vs = -p,,A'rv = W/ 3 sinf ;

and ,, = -vu.,tzA 8  = -€/ji

IiT,,s' = - l/raIASjl = -0/2 (4.2)
PrsV=s = -- r.,r = -0l/3

The double contractions appearing on the left-hand side of these equations may be
immediately evaluated by using (2.2). This gives the following specializations:

(W /, 1W/2, = (-k, sec 0,-t, sec 0, yj sec 4). (4.3a)

or

(W ,L/ 1)=(a 1 S - 0sc 'c2 CSC , 63 CSC4 (4.3b)
and

(411,412,413) = (-tl,-k 2 ,, 2 ), (4.4)

which we denote by {w}, {Jw} and {1} respectively.
It is interesting to note that Ilotine failed to observe that the differential version of

the geometrical equations (3.4) furnish two values for the w-leg derivatives. Ile gave
only {w} and {1}, but not {wu}. The two expressions {w} and {w*} must be equal,
and this implies a trivialization of three of the leg parameters, viz. lincar idcuitiiCs

al = -k tan4',
Or2 = -titan€, (4.5a)
E3 = -11 tan 0;

and quadratic identities:

or, = -k/e 3  (4..5b)
a212 = -tIE3

This phenomenon, which we call the wo-degeneracy, was first noted in [61 and yields
the following expressions for the gradients of w and 0:

w, (-kA, - tip,. + ~ylvl)secO', (4.6a)

or
u. = (o1A,+ +r2/pr + E 3Vr)CSC4, (4.6b)

and
Or = -t 1 lA• - k 2 lr + ') 2U7 . (4.7)

Equations (4.6a) and (4.7) appear in Ilotine's analysis as 112.0161 and [12.047).
An alternate version of these equations can be given in terms of the differential"

of (w, 4), i.e.
dw = (-k 01 - 1102 + -y O) sec 4, (4.Sa)

6



or
do = (or,01 + a"202 + C-30 3 )CSCO, (4.8b)

and
dO = -ti0 - k2O2 + -y2 0a (19)

In terms of absolute differentials, (3.4) becomes

DA, = (,,. sin- v, cos b)dw
D~ur = -A, sin Odw - vrdo (4.10)

Dv, = +A, cos Odw + ,,dO,

and the w-degeneracy is the observation that these equations do not provide a unique
determination of dw. Of course,

dw = lrDv, = -v T Dti,, (.11)

so there is no 0$-degener.acy. On the other hand, by contraction of (4.10) we have

dw = /rDA,.cscý = -ArDircsco (4.12)
dw = ArDv,-secO = -vrDArsec (2

A better derivation of {w}, {w*} and {0} may be obtained by using (4.10), the
Pfaffian expressions for dw and dO, and equating the corresponding coefficients of 01,
02 and 03. Then respectively D AX, Dp. and Dv yield:

(a, A, + k ,V.)01 + (62/21 + tIV,.)0 2 + (63i.r -- r)03

= r (Wi/o0 + W12
0 2 + W,303) sin

- V. (U;/o0 + W12
0

2 + w, 303) COS

(-ac),. + tv,.r)o0 + (-a 2 Ar + k2 Vr) 02 + (-e3Ar. - -Y2n.) 03

= -. 'r (w1101 + w/202 + w/ 3 03) cosq (4.13)

- . (0/0o, + 0/202 + 0/303),

(-kiA, - tlip,) o + (-tAr - k2i$r) 02 + (i,.•r + "2,r) 03

= A•, U/101 + /wJ202 + /,303) cos
+ ; : K/10O + !/202 + /303).

Thus, we see that the D A equation gives {w}, {w'}; DI. leads to {w'}, {f}; while

Dv yields {w}, {0}.
Each of these three versions of the primary equations, i.e. (4.3) and (4.4), or (4.6)

and (4.7), or (4.8) and (4.9) or equivalently, (4.11) and (4.12), reveals that values
S= ±7r/2 are inadmissible. These are the familiar polar singularities, but. moreover
the value q5 = 0 must be excluded! Indeed, for r = /2

by {w}, dw is undefined, while
by {w*), dw is well-defined;

and inversely for • = 0:

7



by {w}, dw is well-defined,
by {w*}; dw is undefined.

This requires the exclusion of these values and the € range must be taken to be
-7r/2 < 0 < 0 and 0 < 0 < r/2. The primary equations require no exr:'ision of
w values, however, one usually takes 0 S w < 27r, or 0 < w < 27r, to insure single-
valuedness. The above excluded values furnish a second reason - apart from the
occurrence of {w} and {w*} per se - for the term w-degeneracy.

The primary equations are so named since as we will see they play a paramount
role in the theory of the construction of the (w, 4, N) coordinate system. Our first
indication of this is that the two primary equations we have obtained describe the
variation of (w, 0) on S or in E 3 . They justify our previous comment that, as Hotine
said [page 711, A and 1 are only roughly directed along the parallels and meridians of

S respectively. Equations (4.6) and (4.7), or the corresponding differential expressions
(4.8) and (4.9), give the precise alignments. The vectors A and pA are aligned along
these loci only when

tl = 71 = 72 = 0. (4.14)

These conditions are satisfied identically for spherical polar coordinates x7 = (w, €, r)
in E 3 and for xa = (w, 4) on the 2-sphere S2 . A second even more fundamental role
of the primary equations will be derived in Section 8.

5 Cartesian Integrability Conditions

As noted in Section 3, the first step in adopting the (w, 0, N) coordinate system to the

3-leg {),A L,} was the algebraic geometrical equations. As Hotine observed [page

71] since the consLant 3-leg {A, B, C} is aligned along the Cartesian axes one has

x. = Ar, Yr = Br, zý = C7 , (5.1)

i.e. [12.009], where the subscripts on x, y, z denote partial derivatives with respect
to the ambient coordinates Xr. Hence, upon contraction of these equations with dxr,
we obtain

dx = - (sin w) 01 - (cos w sin 0) 02 + (cos w cosS 6) 03,
dy = (cos w) 01 - (sin w sin 0) 02 + (sin w cos 0) 0a, (5.2)
dz = (cosO)0 2 + (sine)03.

Since x, y, and z are functions, we must have

dx := d(dx) = 0, d2y := d(dy) = 0, d2Z := d(dz) = 0, (5.3)

and these equations constitute the Cartesian integralilty conditions which the (W, €)
coordinates and the Pfaffian forms 01, 02 and 03 must satisfy.

8



Explicit calculation of the conditions (5.3) respectively yields

0 = -(cosw) dw A 01 - (sinw) d01

+ (sinwsin€)dw A 02- (coswsin€)dqd A 02- (coswsinq€) dO2

- (sinwcos)d&,,A0 3 -(cos wsin)dOA03s+(cosuw coso)dO3,

0= -(sinw)dwA O+(cosw)dOi
- (coswsin)dwAAO2-(sinwcos¢)d¢A0 2 -(sinwsin¢)dO 2  (5.4)
+ (coswcos¢)dqA03D-(sinwsin4)d¢A0 3 +(sinwcos6)d03,

0 = -(sin0)doA0 2 +(cos¢)d0 2

+ (cos 0) do A 03 + (sin 0) dO3.

The leg equations corresponding to (5.4) may be obtained by using (2.9) when F
is taken to be w and 0 respectively, and the structural equations (2.6). This yields
nine equations which respectively occur as the coefficients of the linearly independent
exterior products 01 A 02, 03 A 01 and 02 A 03.

It is convenient to refer to these equations as x-equations, y-equations, and z-
equations and in an obvious notation denote then as (X112), (X3AI), and (x2A3), etc.

respectively. Upon cancellation of the common factors of sinw in the x-equations,
cos w in the y-equations, and cos € in the z-equations we have

(xIA2) :/, sin € + w/2 cot w - 0/1 cot w cos 0
= 0 1 +9 2 cotwsin 0,

(X3^A):w/1cos - w13 cotto;+/ 1 cotwsin 0
S-ki - (tx + e3) cot W sin - 71 cot W cos,

(X2A3) -w,/ 2 cos - w/ 3 sin € - €/2 cot w sin € - c/3 Cot L4 cosS

tl - E3 + k2 cot w sin + -y2 cot w sin (5.5)
(yIA3) :-wl sin + w12 tan w - €/1 tan w cos (

= -al + a2 tan w sin ¢,

(Y3Al):-wLcos1 - w13 tan w + 0/1 tan w sin I

-ki - (ti + e3) tanwsin 0- -y tanwcosS,
(Y2A3) :W2 cos + w/3 sin 0 - /02 tan w sin 0 + 0/. tan wcos 0

153 - tl + k2 tan Lu sin 0 + 72 tan w cos 0;

(zl^2) : -0/1 tan 0 -Or2,

(Z3A^) - -- 1 = tl + -3 -- y1 tan 6,

(Z2A3) : 0/2 + €/3 tan € = 72 tan € - to2

These are automatically identically satisfied by virtue of the values of the leg
paramenters given in {w}, {w*}, {€} and by using (4.5)! It would be tempting
to believe that, as in our alternate derivation of the expressions for the covariant
derivatives of the leg vectors given in Section 3 (see the equations displayed in (3.6)),
that the system of x, y, and z-equations can be inverted to yield the expressions
{w}, {wv} and {f}. This is not the case. The values of the leg derivatives of w
are thoroughly mixed in the above system. For example, (X1A2) is checked by using
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w-derivatives from {wf}, while (X3^1) employs w-derivatives from {w}. Moreover, as

is easily seen from (ziA^) and (Z3AI) we obtain the following 0-derivatives:

0/1 = a 2 -cot¢
0/1 = -tj - c.3+ yitan 0

which leads to the identity

a2= -(t, + e3 ) tan 0 + -y1 tan' 0

which is quite intractable unless (4.5) is known.

6 Components of the Leg Vectors and the Line
Element

The primary equations for w and 0 were given in Section 4, and now to obtain the
(W, 0, N) specializations of the contravariant and covariant components of the leg

vectors we need a primary equation for N.
If N is the geopotential function, and the equipotential surface S is defined by

putting N = constant, then we have the basic gradient equation

N, = nfP, (6.1)

which expresses the well known property that the gradient of N with respect to xr
is collinear with the normal to S. By hypothesis, v is a unit vector, so the factor

n is required to insure that n-1N, will be of unit magnitude. Physically n is the
magnitude of the local gravity along the plumblines r of the N-surface S. Equation
(6.1) is a general result, and upon employing the second part x3 := N of the Marussi

Ansatz it yields
v,. = n6. (6.2)

Hence, we have the leg analogue of (6.1)

(N11,,N 2,N 13 ) = (0,0, n) (6.3)

which is our final primary equation, while the Pfaffian version is given by

dN = nO3 . (6.4)

Since each of the leg vectors is a tangent vector, they may respectively be expressed
in the form dxr/ds where s is an appropriate arc length along the respective three
congruences of curves in E3 . Upon making the specialization xr = (w, €, N) it follows
that the leg derivatives in the corresponding directions are given by

A r / 1 2 ^ 2 1 (6.5)

V = (W/3)/3, N13 )
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By virtue of our (w, 0, N) primary equations, these become

Ar = (-kjsecO,-t 1 ,0),
,r = (-tjsecO,-k 2,0), (6.6)
Vr = (Q 1sec 0, 12, n),

i.e. [12.0291, [12.030] and [12.034], which are the canonical components of the con-
travariant leg vectors in this coordinate system.

The corresponding canonical covariant components of the leg vectors were derived
by Hotine by a rather lengthy process [pages 74-75] involving systematically writing
out the components of [2.07], viz.

ArA, + 'PU +P =+> V, (6.7)

A quicker method is to observe that (6.7) is equivalent to the matrix equations

Al, A2, A3  Ai, I ,i ,0,0
PI ,A ,, = 0,Ai,0 . (6.8)

l 2 , ' 3  A3 , Y 3 , V3  0,0,1

The matrices appearing on the left-hand side of this equation are non-singular, and
since by (6.6) the entries in the first matrix are known we immediately obtain the
following canonical covariant components of the leg vectors

A, = (-k 2K-' cos ¢, t1K-1,(k 2-,t - t 17 2 )n- 1K-')
yr = (tK-lcosb,-kKg-',(k,'Y2 - tltY 1)n- 1 I- 1 ) (6.9)
Vr = (0,0,n').

For purely reference purposes we note that if (6.5) is rewritten in matrix form
using (6.3) as

IUII 3= w2,,Y/2 , 0 , (6.10)
V1,V2,/ 3  W/3,k0 3 , n

then denoting its determinant by DET we have

DET = (w1,102 - w1201) n; (6.11)

and consequently

1l f# V / 2 tl, -0/ 1 n, 0
A-2, W,2 V2 E--T -/W 2 n, w/In, 0 (6.12)
A3 ,•p•, v3  C1 , C2 , C3

where
CI :=/w 120/ 3-w! 3 0l2,

C2 LJ/30/- W/0,2 ~

C1



By virtue of (2.1) the (w, ¢, N) Pfaffian forms are given by

01 = {-k 2 cos4'dw+t~d¢+(k 27Y,-tl)'2)dN/nl /K,
02 = {t cosedw- kid +(kl'Y 2 -tlYl)dN/n}/K, (6.13)
03 = dN/n.

The leg representation of the metric tensor g,. is given by [2.08], i.e.

grs = ArA, + pTI- + vrvs, (6.14)

and, hence, the line element ds' of E3 in the (w, 0, N) system is

ds2 = (01)2 + (02)2 + (03)2. (6.15)

The explicit values of g,, are displayed in Hotine's [12.0691 and need not be repeated
here. The matrix version of (6.13) is given by

02 =M d¢ , (6.14)
03 dN

where the entries of the 3 x 3 matrix M are obvious from (6.13). Hence,

dw01,
d = M_1 02 , (6.15)

dN 03

which is a fourth version of the full set of primary equations. Explicitly (6.14) is

dw, -k1 secO, -tlseco, -flsec 0 0

dO -ti, -k 2 , 72 • 02 (6.16)
dN 0, 0, n 03

and the matrix M-1 is called by Grafarend [9] the matrix of integrating factors. He
notes that one cannot take

0, = dX, 02 = dY, 03 = dZ, (6.17)

i.e. the 01, 02 and 03 are not perfect differentials, and he regards this observation as
being "... one of the most fundamental formula of geodetic science .... In Section 8
we will show

d(dw) = d2w - 0
d(dO) = d2€ - 0 (6.18)
d(dN) = d2 N 0

when 01, 02, 03 are general Pfaffian forms, and that, in effect, (6.18) constitutes a
set of integrability conditions which reduce to the (w, O) expressions for the Lain6
equations and the N-integrability conditions. Grafarend's result is that one cannot
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trivialize 01, 02, 03 to the choice (6.17) since then the resulting integrability conditions
would not be satisfied.

The determinant g of the matrix JJgjo is readily evaluated by using liotine's
expressions, i.e. [12.069], and, hence

V/ = n- 1 K-1 cos4. (6.19)

As expected V/•, and the matrices M, M- 1 , admit polar singularities at ±=,r/2,
but are well-behaved at 0 = 0.

7 Digression on Spherical Polar Coordinates

In this section we examine the case of spherical polar coordinates Xr = (W, ý, r)
and consider to what extent the (w, 4, N) system may be regarded as a generalized
spherical polar coordinate system.

First, we note that the definitions of the surface coordinates x' = (w, 0) in both
systems are identical. Hence, all of our adaptation of (w, 0) to the leg calculus - up
to the beginning of Section 6 - hold for both systems. The w-degeneracy and the
(w, 0)-primary equations are common to both systems. This is not familiar merely
because the spherical polar system is not usually constructed by the leg-theoretic
procedure we have followed. The initial generalization consists in the fact noted at
the end of Section 4 that whereas in the polar spherical system the vectors A, JA are

exactly aligned along the parallels (w-lines) and meridians (O-lines) of S, this is only
roughly the case for the (w, 4, N) systems. Furthermore, as a consequence of (4.14)
the plumblines r of S have X = 0, i.e. are straight radial lines, for the polar system
this need not be the case for the (w, 4, N) system (recall the definition of X given in
the discussion following equation (2.3)). Hence, for the polar system the r-surfaces are
2-spheres S 2: r = constant, while in the (w, 4, N) system the N-surfaces S are more
general curved surfaces. The precise character of these N-surfaces is left unspecified
in the Marussi-Hotine approach to differential geodesy. Indeed, they assumed that the
determination of N was a task for physical - not differential - geodesy, and their
use of the (w, 4, N) coordinate system was purely of a descriptive nature designed
to provide a convenient description of a given, but unspecified, geopotential field N.
Thus, the second generalization involved is that whereas the x 3-surfaces in the polar
system are restricted to be 2-spheres of constant radii, for the (W, 4, N) system these
surfaces are arbitrary - subject only to the requirements imposed by the demands of
physical geodesy. It is known that if the S are sphere-like in the sense of the Pizzetti
theorem, [10], then these are compact surfaces in E 3 whenever the Pizzetti inequality
R < 5R,, where R is an appropriated defined radius and Rm is the mean radius of the
Earth. A more general result is that such spherelike surfaces are diffeomorphic, i.e.
differentiability equivalent in a topological sense, to a family of 2-spheres Z concentric
with the Earth, [11]. Thus, this would include spheroids and those S which are convex
or have K > 0.

In Section 5 we considered the Cartesian Integrability conditions and showed
that they were identically satisfied by virtue of the w, 4-primary equations. WVe now
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consider the analogous situation for the spherical polar system (w, 0, r). The spherical
polar line element is given by

ds2 = r 2 cos2 okdw 2 + r2 d0$2 + dr 2, (7.1)

see [page 5], and hence, denoting the purely coordinate- based Pfaffiaii forms by i19,

102, 193, we have
q= r cos Od,
d2 = rdo, (7.2)
V93 = dr;

so
dw = r-' sec Od 1 ,
dob = r-102, (7.3)
dr = t93.

Then upon exterior differentiation, since

ddO = r-1{tan0?1 Ad2 + d 3 A?9},
d192 = -r-d2 A 193 , (7.4)

di93 = 0,

it is readily verified that - as expected - we have

d'w = 0, d2O = 0, d2r = 0. (7.5)

On the other hand, relative the leg based Pfafflan forms 01, 02, 03 we may write

t9 = r cos &d = r (W,101 + ±/• 20 + ±/ 303 ) cos ,

192 = rd = r (1/10, + 0/202 + 0/303), (7.6)

'd3 = dr = (r/101 + r/2 02 + r/303 ).

This yields as our polar spherical primary equations

L01,,W12,W13) = (r-'seco,0,0)

0/1,0/2,0/3) = (O,r-1 ,0) (7.7)

r/1,r/2, r/3) -= (0,0,1)

which confirms the comments on the alignment of A, it, and v with the parallel,
meridian, and radial directions given at the end of Section 4.

Consequently, by the arguments given in Section 6 the canonical contravariant
components of the leg vectors in the polar system are given by

Ar = wl(1 ,pl/,rlI = (r-lseco,0,0)
,,r = UJ/ 210/ 2 , r 2) = (0, r- 1 , 0) (7.8)

,r = L/w, 0/ 3 , r/ 3) = (0,0,1)
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and the canonical covariant components by

A, = (r cos 0, 0, 0)

Pr = (0,r,0) (7.9)
S= (0,0,1).

The latter equations are, of course, also immediate by the expressions given in (7.6).
An obvious question is why the w-degeneracy has not appeared in the primary

equations (7.7). The answer is that, as suggested earlier in this section, the w-
degeneracy occurs by virtue of the construction based on the geometrical equations
(3.2). In other words, the above argument proves that this degeneracy is a consequence
of our metbod for constructing the (w, 0, r) system rather than a structural feature of
this system. On the other hand, in the case of the (w, 0, N) system the x3 coordinate
is not a pure coordinate as it is in the spherical polar system. Hence, since the only
known construction of the (w, 0, N) system is based on the geometricai equations,
the w-degeneracy is unavoidable - at least in this sense - on the basis of present
knowledge.

8 The (w, 0, N) Integrability Conditions

In Section 5 we considered the Cartesian integrability conditions:

d2X = 0, d2y = 0, d2z = 0

and showed that they were identically satisfied by using the primary equations {w},
{w*}, and {f}. In the present section we will consider whether the analogous situation
holds for the (w, 0, N) integrability conditions. This investigation completes that
begun in our previous paper [6].

Our first step is to note that the N-integrability conditions are exceptional and
have no analogue in the polar spherical system considered in Section 7. In that case
t93 = dr and the only non-zero r-leg derivative was r/ 3 = 1. Consequently, d2r = 0
was trivial.

For the (w, 0, N)-system, we have (6.4) where n is an arbitrary smooth function
- not a constant! - so d~n = 0 yields

0 = dn A 03 + n A dO3. (8.1)

Upon using the Pfaffian representation of dn, i.e. (2.9), and (2.8) this equation yields

n/1 + n-yj) 03 A 0 + (n/2 - n7 2 ) 02 A 03,

or

n/i = n ^11 , (8.2)
n/ 2 = n1 2.
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This equation may be regarded as the final step in the adaption of the leg calculus to
the (w, 0, N) system and, as such, it is a definition of the leg parameters -y, 72, i.e.

7' := (log n)/,, 2:= (log n), 2 . (8.3)

This condition amounts to a scaling of Ir was derived by Hotine [page 73I in another
manner, and when it i- imposed our previously general 3-leg is said to be a ttotine
3-leg. Note that (6.4) holds regardless of whether the identification xa := N has been
made, so logically the notion of a Hotine 3-leg is independent of the Marussi Ansatz!
Finally, one should investigate the n-integrability conditions, i.e. d&n = 0, however,
since they are not relevant to the theory of the (w, 0, N) system we refer the curious
reader to [8] for a complete discussion of this issue.

Our principal task is now to consider the integrability conditions:

d(dw) :=d = 0,
d(da) := = 0, (8.4)

when dw is given by {w} {fw}, and do by {1}. Exterior differentiation of (4.8a)
upon cancellation of a common factor of sec 0 gives

tan dO A (-k,01 - t102 + -103)
- dk1 A 01 - dt1 A 02 + d71 A 03  (8.5)
- kid01 - tId02 + 7 1d03 = 0,

and similarily for (4.8b) with a factor of csc 0

- cot Odo A (a101 + 0'202 + E3 03 )
+ do, A 01 + da2 A 02 + dE3 A 0 3  (8.6)

+ a A dA + 02 A d 2 + e 3 d03 = 0,

and finally for (4.9) we obtain

-dt 1 A 01 - dk 2 A 02 + d7 2 A 03 - tjd01 - k 2 d02 + 7 2 d03 = 0. (8.7)

By using the Pfaffian representation for the differentials (2.9), the coefficients of the
exterior products 01 A 02, 03 A 01 and 02 A 03 lead to the following expressions which
we denote by (WA), (wý) and (OkA) for A = I, II, 1II as in [6]:

(wi) : k,/ 2 - t 11 = (K - k2 - t') tan 0,
(wii): k113 + yj1/ = k2 + t2 + 7 t + (2t1 7 1 - k1 y2) tanq€,
(wlII) : t 1/ 3 + 7112 = 2Htj + 7172 - [t1-Y2 + (k, - k2) 71] tan €,
(wj') : a'1/ 2 - a2/1 = aC + a0 - (k 2 a0' - tla2 ) cot l,
(W,"1) 63/1 - O'1/ 3 = -630' 2 + ("2L2 +"4 632 e- 03t1 - OTY2 ) cot 0, (8.8)

(Wi1,) : -3/ 2 - a62/ 3 = ' 3 al - k2O'2 + 63^f2 + (aIa 2 - k2 63 - (72 7 2 ) cot (,

(01) k2/1 - t1/2 = 2Htj tan 0,
(11) : t1/ 3 + 72/1 = 2Ht1 + 7172 + k2-y tan 0,
(01I) :k 2 / 3 + 712/2 = k 2 + t2 +-y 2 - titi tan 6.
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As shown in [6] these correspond to Lamn equations (2.8) which are equivalent to
the vanishing of the leg components the Riemann-Christoffel curvature tensor. More
precisely, if we denote the vanishing of a component R, bcd by (Rabcd) we have

(R.,311) = (.,)

(Rw),31) -= ( ), ((8.9)

(R 2.312) = (6 ,
(R 2331) • ( , )

By the algebraic Bianchi identities, we have

(R1231) (R3112) =€ •)'="(WO-I)

(R 1223) =, (R 2312 • (•) € • (0i) ,( .
(R3123) (R2331) : (W ill) ==>(011);

and by virtue of (4.5) it is clear that we have the reductions:

(Ll) -• (wi), (L"1) -+ (Wil), (41,) -+ (will). (s-

Hence, the six independent Lamý equations consist of

("), (Lai), (will);
(00), (Oil), (Olfl);

which corresponds respectively to the respective conditions d2w = 0, d&€ 0, viz.
the w and 0 commutators.

9 Gaussian Differential Geometry of N-surfaces

In this section we use Gaussian Differential Geometry to argue that in a sense the
(w, 0, N) system can be regarded as a generalized spherical polar coordinate system
in E 3. Part of this is obvious since (w, 0) play identical roles on both tile 2-sphere S 2

and the N-surface S. The problem is to reconcile the difference between the radial
coordinate r and the smooth, but unspecified, geopotential function N. As noted
in Section 7, in the Marussi-Hotine approach to differential geodesy, the function N
must be a priori specified since formally its determination lies outside the province
of their theory.

Our starting point is the fact that an N-surface S is defined by the condition

03 = 0 (9.1)
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and that the first and second basic forms of this surface are given by

I:= (01)' + (02)2 (9.2)

II := 01w3 1 - 02w23  (9.3)

where in the latter expression the connection 1-forms (2.7) are subject to (9.1). An
equivalent version of (9.3) is

If = ki (91)2 + t, (0102+ 02•1) + k2 (02)2. (9.4)

By using the corresponding specializations of (6.10) we have

01 = {-k 2 coskdw + td¢l}/K
02 = {t 1 cos~dw-kid.4}/K (9.5)

and I becomes

I {(k2 + i~ Os2  - 4Ht, cos OdwdO + (k~ +1) d0~21 /N 2 , (9.6)

while for S2 r = r0 where r0 is a positive constant

I =+r• cos2 2 +r0do 2 . (9.7)

The difference between (9.6) and (9.7) is striking, however, can be resolved by
considering the five tIotine curvature parameters. It is convenient to display them in
a quintuple

(ki, k2 , t1, "7, "/2 )

For an S, in general, all five entries are non-zero and non-trivial, while for S2 written
in the usual (w, 0) parametrization one has

(-1/ro, -1/ro0,0,0 0).

However, for S one can obtain a nicer form of I by introducing the radii of curvatures

p, := (k + ti)-(
P2 := (k2 + t2)-' = (k2 - )(9.)

since t2 = -tl. Then we have
K = (pp2)-1 (9.9)

and, hence
k2 + t- + 2kt, = Pi-2  (9.0)k 2+ t 2- 2k2t, = p -2

and (9.6) becomes

I = (P_2 + 2k 2 t11) Cos 2 qOdW - 41Ht 1 cose mdwdO + (6'- 2k~tl) dO2} (p1p2) 2

(9.11)
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On S one may choose without loss of generality

S= 0, (9.12)

which amounts to the selection of A, it, as principal directions on S. This may be done

by a rotation of the Hotine 3-leg {A, it, v} around v. Then A, jt become tangents to
the w-curves, 0-curves:

A= -kl sec 0-a 1= -k 2-- ,

while
v = ^j, sec ~-+ 'Y2ý + n-,V

Thus, k1, k2 reduce to the principal curvatures tK, K 2 , and pl, P2 become the radii of
the principal curvatu, es. Hence, the choice (9.12) permits the simplification of (9.11)
to

I = p2 cos2 dw2 +pk 2. (9.13)

In this form the analogy between (9.7) for S2 : r = r0 and (9.3) for S : N = constant
is clear. In passing from S 2 to S one has replaced the constant ro by a pair of cariablc
radii P, and P2!

A similar argument can be given by considering II. For S2 we have

II = -r 0 cos2 
odw

2 - r o d4 2 , (9.1,)

while for (9.12) in the case of S one has

11 = p1 cos2 Odw2 + P2dq52. (9.15)

The sign differences between these expressions is inconsequential since by virtue of
our outward orientation of S, r 1 , tK2 and, thus, pi, p2, are negative. Itcrce. once

again, our prescription given above for passing from S2 to S is valid.
These considerations lead us to suggest that x" := (w, 0, N) may be regarded

as a generalized spherical polar coordinate system in E 3. Another aspect of this
generalization is that although in E 3

ds2 = r2 cos2 qdw2 + r 2 dtd2 + dr 2  (9.16)

is a triply orthogonal curvilinear coordinate system, i.e. S2 : r = ro is a member

of a triply orthogonal system of surfaces, the corresponding situation is riot true for
S : N = constant in E 3. This may be seen by examining Ilotine's components for gr,
[12.069] in the (w, 0, N) system subject to the restriction (9.12):

d52 = (k 2 cos2 dw +k~dO2

+ ,d•2 (9.17)

- 2{[-tik'JdwdN} /(nK 2sec)

- 2 {[7 2k'] d/dN}/ (nK2).
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Hence, (w, 0, N) is not a triply orthogonal --urvilinear coordinate system in E3, unless

-h = 72 = 0, which is equivalent to X = 0, viz. the normal congruence of curves con-
sists of straigbt lines, which is an inadmissible specialization of the (w, 0, N) system.

We now examine the conditions that an N-surface be a well-defined surface in E3.
This requires examining the determinants a := det Itaa I and b := det I1b,31 of the
surface tensors appearing in I and II. Clearly,

a = (pIp 2)2 cos=K-cos2€ (9.18)

b = PIp 2 cos2 =K1-lcos 2

so a > 0, while b 0 0 has variable sign, for ± 7 +zr/2. As expected, one has hK = b/a.
The Fundamental Theorem of Surfaces then states that modulo these conditions, a
surface is uniquely defined in E3 up to position, i.e. a rigid motion in E 3 , whenever
the equations of the Gauss and Codazzi are satisfied. The Gauss equations amount
merely to (9.9), or K = b/a, and trivially hold. The Codazzi equations are less trivial
and require that

b•v_ - ba = 0, (9.19)

i.e. [6.21], where the final subscript indicates covariant differentiation.
The leg calculus version of this equation is given by

a, (k, - k 2 ) = k112 - ti - 2ta 2 , (9.20)
a 2 (k, - k2 ) = k2i 1 - tl12 + 2tia l ,

(see [8.23] in a slightly different notation). Using the {wo'} and {f} in terms of the
(w, 0) surface coordinates these become

k11 2 - til = (K-k-t•)tan¢ (9.21)

k2/1 - tl/2 = 211t, tan ¢

which are identical with (wi) and (01) of (8.8).

10 Conclusions

In this concluding section we summarize and synthesize the rcsults of the previous
sections on the (w, 0, N) system. The basic issue is how the leg calculus can be
adapted to this coordinate system, and, in effect, whether these systems are comipat-
ible with each other. The leg calculus is a coordinate independent formalism and, as
such, provides a lucid and searching picture of Gaussian Differential Geometry. Our
starting point was a general 3-leg which was chosen to consist of a pair of tangent
vectors to a surface S and a tangent to a congruence of curves r wiiJl; is normal
to S. This leads to a set of three basic leg equations for the covariant derivatives
of the leg vectors which are associated with nine leg parameters which completely
describe the geometry of S and its orthogonal normal congruence. By virtue of its
construction, one of these parameters t 2 may be eliminated, (i.e. t2 = -ti), without
loss of generality and the curvatures K and H of S and X, r of P can be expressed in
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terms of the remaining eight independent leg parameters, six of which are extrinsw,
parameters, i.e. k1 , k2 , t 1 , i), Y2, e3 , with the remaining two, (i.e. o,, a2), being
intrinsic parameters.

The construction of the (w, 0, N)-system outlined by liotine consists of three major
sets of equations: two systems of geometrical equations (respectively of algebraic and
differential form); a system of primary equations (given in three equivalent forms);
and, finally, a system of consistency equations. Hotine's approach and construction of
the (w, 0, N)-system admirable and ingenious - as far as it goes! His presentation of
the geometrical equations (in both the algebraic and differential forms) is complete.
The difficulty begins with his primary equations where by ,i oversight he failed
to notice that the first of his geometrical equations (in differential form) [12.0141
admitted two non-trivial contracted products with the leg vectors. Hence, lie obtained
{w} and {1} but missed {w*}, viz. the w-degeneracy, as well as the fact that as a
consequence three of the leg parameters are trivialized by the degeneracy. It was
most uncharacteristic of him to have missed such a fact, and even more puzzling is
the fact that nowhere in his work are the canonical differential equations exhibited.
Our approach to the leg calculus is implicitly based on having these equations, and
both of our derivations of the primary equations are impossible without having them
in hand.

The geometrical equations (in algebraic form) provide the relationship bet ween the

Cartesian 3-leg {A, B, C} of E3 and the general 3-leg {A,. V I}I while the geometrical

equations (in differential form) introduce the eight leg parameters into the analysis.
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