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1.0 INTRODUCTION

There has been considerable interest over the past several decades in the interactions of

laser beams with a variety of materials, especially those involved in aerospace applications

(Refs. 1 and 2). More recently these interactions have been of particular interest in the

context of space defense systems such as the U. S. Strategic Defense initiative system (or

Star Wars concepts) and laser blow-off of spacecraft materials (Ref. 3), especially

laser-composite interactions. These interactions can involve a variety of energy deposition

phenomena which include laser shock effects (including shock pressure effects, spallation,

and shock heating) (Ref. 4), and constrained plasma (pyrolysis) effects (Ref. 5) which can

lead to a host of chemical effects, blow-off of discrete matter, and deposition of recombined

components (including molecular fragments) as well as direct or redeposition of molecular

fragments (Ref. 6). Earlier efforts to investigate some of the phenomena involving laser

blow-off of spacecraft materials attempted to develop analytical methodologies to predict

target materials' response to repetitive (pulsed) laser irradiation. These methodologies

included the vapor plume characterization: velocity, expansion angle, and mass fraction.

These more recent investigations, unlike those originally conceived to simply explore

degradation of target materials in laser impact situations (Refs. I and 2), have been more

concerned with the contamination of neighboring surfaces by deposition of interaction and

reaction products. The specific concerns in these processes include the contamination or

alteration of sensor, optical, or other protective surfaces by blow-off or plume debris.

In the research to be reported here, a time-of-flight mass spectrometer (TOFMS) analytical

technique developed at the NASA Ames Research Center to dynamically sample vapor

plumes was modified to collect deposition fractions (or fragments) of plumes from a

pulsed-laser-irradiated graphite-epoxy (G/E) composite. This technique included a TOFMS

equipped with a special collection system employing carbon support grids which would

collect deposited plume material that could be examined in a transmission electron

microscope (TEM). The hope was to examine the ablation site, the plume composition and

any residual deposition fragments.
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2.0 EXPERIMENTAL PROCEDURES

In this investigation, a TOFMS capable of producing time-resolved spectra along the

duration of a vapor plume was incorporated into a pulsed-laser/materials interaction

chamber. The laser wavelength was 1.06 jtm with a pulse duration of 800 jis. The beam

spot size was nominally 6 mm2 corresponding to an energy density of 3 to 36 Ca/J/cm' or a

peak irradiance of 5 to 60 Kw/cm 2. The TOFMS system itself utilized a nude electron

source operating continuously at a preset repetition rate of 30 to 40 kHz. This system,

illustrated schematically in Figure 1. is a modification of a system described previously by

K. A. Lincoln (Ref. 3).

In addition to the TOFMS system integrated into the laser interaction regime to examine the

blow-off or plume material, a vapor collection stage was incorporated to allow 3-mm

electron microscope carbon-coated grids to be exposed to the vapor plume. Located a

distance of 5.75 cm and an angle of 640 from the sample surface, the grid collector surfaces

could be exposed to the vapor plume one at a time by rotating the collection stage by an

aperture which shielded exposed or unexposed grid collector surfaces as shown in Figure 1.

The target materials, consisting of 1.2-cm squares of G/E composites containing 60 percent

volume fraction of Hercules (1M6-G- i2k) graphite fibers in an epoxy matrix (LRF 387

resin system containing Epon 828, NAM, and a TERCOL 1000 plasticizer, Ref. 3) were

introduced into the test chamber in Figure 1 through a loading port and were positioned at a

focal distance of 33 cm from the laser focusing lens to maintain a spot size of 6 mm 2.

Samples were irradiated with single pulses and their "vapor pulse" spectra examined in the

TOFMS.

The collection grids for TEM were examined following single and multiple-pulse

experiments. These examinations involved both conventional and scanning transmission

electron microscopy (CTEM and STEM) which included energy-dispersive X-ray

spectrometry, selected-area electron diffraction and microdiffraction analysis, and lattice

imaging of deposited, electron transparent fragments.

2
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Figure 1. Schematic diagram of the advanced Iaser/TFOFMS system with TEM
grid specimen collection stage.
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3.0 RESULTS AND DISCUSSION

Figure 2 presents a rather practical (and macroscopic) overview of the laser-G/E target

materials interaction involving localized damage to the irradiated focal area on the specimen

surface. These residual damage micro-structures show graphite fiber fracture and matrix

ablation. Evidence of local melt or vapor redeposition is also illustrated.

Figure 3 shows a typical, multi-shot (laser pulse) spectrum for a vapor plume created in an

ablation process as illustrated typically in Figure 2. There are several notable features

(pyrolysis products) of this spectrum: free hydrogen, free carbon, epoxide fragments (free

radicals), acetylenes (fixed gases) and impurities. Other notable fragments include CH, CH,

and CH3 groups. These constituents can be visualized with the aid of sorme generalized

chemical structures for epoxy resins illustrated schematically in Figure 4. The epoxide

group (C2H30) shown in Figure 4 contains a covalent half-bond available for bonding. For

solid resins n, in Figure 4, is 2 or greater. The epoxy and hydroxyl groups (-OH) are the

reaction sites for cross-linking.

The presence of contaminants such as Na, K, Fe, Ca, Cl, Al, and water vapor (-I,0) occur

primarily on or very near the specimen surface, and this is illustrated to some extent by

comparing time-resolved, multi-pulse spectra as illustrated in Figure 5 which shows a

reduction in water vapor from the first to fourth pulse, and little other contamination as a

result of having simply wiped the target surface with a lint-free cloth. Figure 5 also shows

a marked reduction in the epoxide component with repeated laser pulsing and an increase in

Cn and the acetylene family fragments. The resulting ablation sequence after larger

numbers of pulses generally showed spectra typical for graphitic materials (Ref. 7).

When looking at the vapor plume in a time-resolved fashion as in Figure 5, it was found

that the species possessed different generation times and life spans. The expected order of

species generation was epoxides, acetylene, and finally carbons. This was based on

4
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(a) Broken. exposed graphite fibers (b) Broken, exposed graphite fibers
in ablation zone. in ablation zone.

- - .o•T-..• _ _ _.------------ .

(c) Ablation tunnel showing fiber (d) Melt/deposition hemisphere
damage detail, growth in ablation zone.

Figure 2. Scanning electron microscope views of laser-ablated GIl specimen areas.
Magnification markers correspond to I mm in (a). 0.1 mm
in (b), 20 p.im in (c). and 2 ptm in (d), respectlive!y.
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the corresponding heats of formation of the different species (H1,poxde ý 260 kCal/mol;

Huetyln = 333 kCal/mol; Hc 3 = 480 kCal/mol). In fact, the carbons were generated before

the acetylenes. The C3 was assumed to be a product of laser decomposition of the epoxide

component deposited on the sample surface.

The surface vaporization temperature of the C3 component, for example, can be calculated

from a simple gas dynamic model for a hypersonic free jet expanding adiabatically as

illustrated previously by K. A. Lincoln (Refs. 8 and 9) to be about 4700 K. The C3 also

apparently emanates as free radicals but with less affinity for the surface than the epoxides.

The moderate life spans of carbon seen in the TOFMS spectra may be attributed to the fact

that C3 is a condensable, which is represented by the symmetry of the C3 spectrum in the

time versus intensity data illustrated in Figure 5. On examining the carbon grid surfaces in

the TEM, a variety and distribution of deposited "particles" were observed. These parti-

culates assumed a variety of morphologies ranging from apparent "spheres", to faceted

polyhedra, and plate-like morphologies to sheetlike fragments. Some individual particles

aggregated, and some of these aggregates contained contaminating particulates. Many

aggregates contained growth features such as rosettes and spiral structures typical of high

quality (pure) graphites (Ref. 10). These morphological features are illustrated in the

examples reproduced in Figures 6 through 8.

The crystallographic features unique to graphite and implicit to some extent in Figures 6

through 8 are illustrated in more detail in the examples shown in Figures 9 and 10.

These examples, together with those shown in Figures 6 through 8, suggest a wide range of

graphite ablation fragments either as a direct consequence of graphite fiber damage or
"condensation" of carbon fragments in the plume composition from the epoxy matrix. The

TEM observations in Figures 6 through 10, taken together with the plume spectra shown in

Figures 3 and 5, suggest a complex set of ablation-related phenomena which include both

the graphite fibers and the deposition of graphite fragments which result from laser-

induced decomposition (pyrolysis) of the epoxy matrix. Indeed, it is well known that

destructive shock wave reactions/interactions can break molecular bonds leading to

either isomerization or polymerization (Refs. 11 and 12). In the crystallization of low

molecular weight fractions from the melt at high temperatures, it is possible to obtain

extended chain crystals in which the distribution of crystal thickness approximates the

10
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(a) Secondary electron (SEM-mode) (b) STEM-mode image of
particle image. cluster.

!AWN

(c) Hexagonally-faceted graphite (d) Variations of CTEM
particles observed in CTEM mode. particle images.
Magnification markers are 0.05 ,tm. Magnification markers

are 0.05 rim.

Figure 6. Examples of graphite deposition residue (particulates) collected
on TEM carbon-coated grids.
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Figure 8. Standard, high-purity graphite lattice-image standard showing growth
features and polycrystalline structures. Insert shows lattice image
details for micro-rosette growth.
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(a) "Amorphous" reference diffraction pattern
for the carbon support film composing the
TEM grid collector.

(b) The TEM (bright-field) image (c) The selected-area electron
showing facets characteristic of diffraction spot pattern.
hexagonal graphite crystals oriented
parallel to basal (0001) plane confirmed
by (c).

Figure 9. Crystallinity and crystal morphology in deposited (hexagonal) graphite.
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Figure 10. Polycrystalline and textured (oriented) graphite platelets showing lattice
fringes for (0002) basal plane spacing. The selected-area electron diffrac-
tion pattern insert shows the polycrystalline, fine crystal texture implicit in the
TEMinage while the energy-dispersive x-ray spectrum shows the elemental carbon peak
characteristic of the graphite structure. The copper peaks represent the copper support
grid and serve as a calibration standard.
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distribution of chain lengths (Ref. 13). A polymer molecule in the vicinity of a surface has

its entropy decreased and its free energy increased in comparison to a molecule not so

impeded (Ref. 14). Consequently, the combination of localized high temperature, shock

spallation and shock heating as well as shock energy localization can cause fragmentation

and re-combination (condensation) as illustrated schematically in Figure 11. This process

produces a wide range of crystalline and polycrystalline (hexagonal) graphite particulates

and aggregates as illustrated in Figures 6 through 10, and consistent with the spectra shown

as typical in Figure 3. While other carbon variants were investigated (such as the higher

forms of C,: C4,0 C6, C7 0, etc.) the analyses only identified various forms (crystallinity and

polycrystallinity in a variety of morphologies ranging from spheroids to platelets) of

hexagonal graphite.

4.0 CONCLUSIONS

Scanning electron microscopy (SEM) was used to examine the macroscopic features of

laser ablation damage to a G/E composite along with TOFMS to examine the pulsed plume

emission during ablation, and TEM to observe debris and deposition fragments resulting

from the ablation process. The total picture which emerges from these observations

involves laser shock damage fragments along with pyrolysis components, all of which are

finally deposited some distance (-5 cm) from the ablation zone. These deposited

particulates include a wide range of hexagonal graphite morphologies and crystal structures

which include direct fragmentation (or spallation) from the graphite fibers in the composite

along with shock and pyrolysis-induced graphites which originate from the molecular

fragmentation and carbon condensation from the epoxy matrix.

17
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Figure 11. Schematic representation of a simple molecular fragmentation
model to produce graphite particulates in the ablation blow-off
plume for laser-irradiated G/E composite. In this simple model,
laser-shock-induced hydrogen fragmentation leaves C3 and C6 benzene
groups which recombine to form various shapes and periods of
crystalline and polycrystalline hexagonal graphites.
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While it is impossible to differentiate between the shock-induced and pyrolysis-induced

deposition of graphite particulates on surfaces away from the ablation zone, it might be

assumed that similar phenomena would occur in hypervelocity particle impacts with G/E

composite materials in space. The important aspects of these ablation and hypervelocity
impact phenomena are concerned with the potential for altering, compromising, or

degrading sensor, optical, or control surfaces as a consequence of graphite deposition from

a vapor plume. This scenario may be especially important in alteration of the electrical

conductivity of neighboring components, a consequence of graphite deposition from

impacted polymeric materials in general if elemental carbon is redeposited as graphite. In

this regard, there was no evidence in this work for other, higher carbon complexes

(fullerenes) such as C40, Co, C70, etc., or of crystalline diamond.

19
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