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ABSTRACT

Approximate analytic solutions to the integrated bistatic signal from Gaussian

distributed scatterers in an absorbing medium are derived. Some solutions are useful over

limited ranges of the parameters and others are globally more valid. The former are simpler

than the latter. The error behaviour of each solution is thoroughly discussed.

RESUME

Des solutions approximatives et analytiques sont d~termin~es pour le probl~me de

l'intdgrale du signal bistatique provenant de diffuseurs ý distribution gaussienne dans un

milieu absorbant. Certaines solutions sont utiles pour des dventails limit&s de paramktres

alors que d'autres sont gklbalement plus valides. Les premieres sont plus simples que ces

dernibres. Le comportement de l'erreur de chaque solution est discut6 en d~tail.
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EXECUTIVE SUMMARY

The propagation of radiation through Gaussian distributed scatterers in an absorb-

ing medium is a frequently encountered problem. Lidar studies of obscurant or pollution

plumes and satellite measurements of biomass in the ocean are two examples. These studies

usually try to measure the width and concentration height of Gaussian plumes.

In the above cases, the integrated bistatic signal from remote sensing instruments

leads to an integral that cannot be expressed in closed form. In remote sensing applications

numerous evaluations of this integral are often required. A great many evaluations of

this integral arise when multiple wavelengths, wide area coverage and/or high resolution

measurements are involved. Also, a sensitivity analysis may be desired. In addition, the

analytic behaviour can provide insight into the problem at hand. Hence, an approximate

analytic form would be welcomed.
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1.0 INTRODUCTION

Remote sensing applications are increasing rapidly due to the impact of technology.

Lidar studies of obscurants and satellite measurements over the ocean are two examples.

These applications usually attempt to deduce properties of the scattering medium such as

the concentration distribution and attenuation characteristics. Cases where the concentra-

tion distribution can be represented by the Gaussian distribution are common. Bibtatic

scattering from aerosols and hydrosols that axe distributed in a Gaussian manner can be

analyzed to determine the properties of the distribution remotely. This is highly desir-

able since these properties determine the input to models that help predict microclimate

(obscurants) as well as macroclimate (oceanography) behaviour. The general case must

also consider scatterers imbedded in an absorbing medium. This is always the case when

studying the biomass of phytoplankton in the ocean and frequently the case with lidar

concentration measurements in stack plumes.

This report derives the integral that represents the bistatic return signal from a

remote sensing instrument that is staring at scatterers that axe Gaussian in their concen-

tration distribution and that are in an absorbing medium. In remote sensing applications

numerous evaluations of this integral are often required. A great many evaluations of this

integral arise when multiple wavelengths, wide area coverage and/or high-resolution mea-

surements are involved. This is a great computational burden since the integral cannot

be expressed exactly in closed form. An approximate analytic form would significantly in-
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crease the computational speed and robustness of this integral. Furthermore the analytic

behaviour could provide insight into the problem. Hence, an approximate analytic form

would be welcomed. (For this report, when we refer to an analytic solution we mean that

the result of integration must be represented in terms of combinations of the elementary

and special functions of mathematical physics.)

Approximate analytic solutions to this integral are derived. Some solutions are

useful over limited ranges of the parameters and others are more globally valid. The former

being simpler than the latter. The more globally valid solutions are derived using a new

approximation technique (Ref. 1). The error behaviour of each solution is thoroughly

discussed.

In Chapter 2.0 the integral is developed. In Chapter 3.0 the various analytic approx-

imations axe derived and error behaviour discussed; Chapter 4.0 outlines typical parameters

for the lidar and oceanographic cases and Chapter 5.0 gives the conclusions.

This work was performed at DREV between August and September 1992 under

PSC 42A, Laser Systems in Support of Military Applications.



UNCLASSIFIED
3

2.0 DEVELOPMENT OF THE INTEGRAL

The power received by a bistatic remote sensing instrument P is given by the radar,

or lidar equation

P = Cabe-2 foe(z')dz' [1]

where C is a calibration constant depending on the source strength, receiver geometry

and distance etc., ab is the bistatic or phase function, z is the penetration depth into the

scatterers and a, is the linear extinction coefficient.

The bistatic function is proportional to the number of scatterers N(z): ab = KN(z)

with K some constant. The extinction coefficient is a sum of two terms, one from the

scatterers and one from the absorbing medium, ae = keN(z) + km where ke is the mass

extinction coefficient of the scatterers and km is the absorption coefficient of the medium.

Since it is assumed that the concentration of the scatterers is a Gaussian distribution

superimposed on a constant background, N(z) can be modelled as

N(z) = N, + N, e(zz-) [2]

where zm is the peak location, a defines the width and Nt defines the total concentration

of scatterers in the distribution and N, is the constant background level of scatterers.

The integrated backscatter return is given by the product CKI 1 , where

= jP Vdz'/CK =oN(z')e-'(") dz', [31I, 0



UNCLASSIFIED
4

where

u(z) = 2 [kN(z') + k.]dz'. [41

By using u'(z) = 2[keN(z) + kin], 11 can be rewritten as

Sk eu(z') dz' - [eu(O) u(z) 2k 2  [5
2 Tke

where

12 = e-u(") dz'. [6)

Substituting (21 into function u(z), the result can be integrated in closed form as

u(z) = 2(Noke + k,m)z + N-- Ef z + [7]2 1 (1-!a ) ri [7

This equation can then be substituted in [6] and rearranged to give

12 = /r2ee W+Er 1z+OErf(0J dz, [81

where

a = 2x/2-a(Noke + k..)and

S= Nt ke/2. [9]

The integral in [8] cannot be written in dosed form in terms of elementary or special

functions. Thus the integral to be approximated can be written in generic form as

I = e-i*z+PF-(z)] dz = e-h(z) dz, [10]

where a and J3 are positive, y can be positive or negative and h(z) - az + 13Erf(z).
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3.0 ANALYTIC APPROXIMATIONS

This chapter will derive and discuss analytic approximations with various ranges of

validity. These approximations are obtained by using several different techniques.

3.1 Small y

For small y the Error function, Erf(z), can be expanded in powers of z. Keeping

only the first order term, [10] becomes

limJ = e-3Zdz
_. 1[

where

[128 =a + 2[12]

Figure 1 is a contour diagram of absolute relative error between [11] and I for a = 0. The

maximum error in computing I by [11] occurs when a = 0 since larger a reduces the relative

error in the exponential coefficient. The error is not symmetrical in y. For y > 0 the error

is less since [111 can also be derived under the conditions of large /3 and y > 0. This can be

easily shown. When 6 is large, the major contribution to I comes from small y. This idca

is identical to the concept behind Laplace's method of steepest descent given in the next

section.

Another approach is to do a variable substitution in [10] for h(z) and then approx-
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FIGURE 1 - Contour diagram of absolute relative error for the small y approximation

imate its inverse function for small y. The first order result is the same as [11]. The second

order is

im I (I (+ )(1 _ e-h(1)) _2_h(y)e-h•) [131Y'-0  8 /- 3VS

This approximation is more complicated than [11], and only marginally improves the error

for small y.

3.2 Large 0, y > 0

When ( and siy become large, Laplace's method of steepest descents can be used to

obtain the asymptotic limit of I. Using this method to second order (Ref. 2) the limit is

I. l_ l I= I I+ 40- .
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FIGURE 2 - Contour diagram of absolute relative error for the large 03, y > 0

approximation

The first term in [14] is identical to the first term in [11]. Furthermore, [11] does not have

the second constraint, sy being large due to the exponential term. Therefore the following

Ansatz is the most natural:

Figure 2 is a contour diagram of absolute relative error between [15] and I for a = 0. It has

been computed for y < 0, as in Fig. 1, for comparison and as an indication of the full range

of validity of [15]. Figure 2 shows that [15] is an improvement over [11] for large 13 and

y > 0. It should be noted that [15] is a much better aproximation than [14] when sy < 3.
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FIGURE 3 - Contour diagram of absolute relative error for the small 1 approximation

3.3 Small 1

If13 is small enough, a simple expansion of e-0Ef(z) in 8 can be done. Only the first

two terms of this expansion can be kept in order to obtain closed form expressions. Doing

this the approximation becomes

lim I= 1 1- e-*" -/ leG2 14 [Erf(y + a/2) - Erf(a/2)] - e-"'Erf(y)}] . [16]0 -0 C.

The corresponding absolute relative error diagram is shown in Fig. 3.

If the kernel of I is approximated by Chebyshev polynomials (Ref, 3), the absolute

error in the kernel is then minimized. This leads to the approximation

lim I = I [ _( - -y)-, {C,"e./4 (Erf(y + o/2) - Erf(a•2)] - e-Erf(y)}

S= e-c/ 2 (Io[c/2]+ 211[c/2])
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c, = 41,[,3/2], [7

with c 3 3Erf(y). In [17], lo and I, axe the zero and first order modifie, i Bessel functions

of the first kind.

This approximation, however, does not provide the best error in I. If the kernel

is instead approximated b- a minimax procedure, the absolute relative error is minimized.

Unfortunately, this must be done numerically and thus good approximations to the coeffi-

cients must be found. The numerical procedure, MiniMax, found in Mathematica (Ref. 4)

was used. The resulting coefficients were empirically fitted.

limI = 1[co(1- e-_y) -c {e' 2/4 [Erf(y + a/2) - Erf(a/2)] - e-"Erf(y)}]

co = Jo[c/2]

cl = e-¢/2-(e/7)2 for y > 0

- e-c/2 for y < 0, [18]

where JO is the zero order Bessel function of the first kind. The error diagram is shown in

Fig. 4. It is clear that [18] is superior to [16]. Worst errors, which occur as y -- oo, are

0.06 % for /3 = .1, 0.5 % for/3 = .3, 6.25 % for jO = 1 and 34 % for /3 = 2.

3.4 Kernel Approximation

The partial kernel e--rf[zl, can be approximated by modelling its behaviour in the

range z --+ 0 and z -+ oo. At z = 0 it is 1, at z =oo it is e-0 and at z = -oo it is e,3. This
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FIGURE 4 - Contour diagram of absolute relative error for the minimax approximation.

suggests the following interpolation:

e-OE"2 e + (1 -+ [19]

where it is understood that the upper minus sign is used when z > 0 and the lower plus

sign when z < 0. In the above 6 can be found by assuming that it is independent of z and

simplifying [19] by letting z --# 0. This gives

2 #32 =[201

Integrating to obtain I, with the kernel approximated by [19], gives

InJ(1-e+)1[ 1 -_ (aW 121]
a

This gives a remarkably simple approximation to I when y > 0. The error diagram, given

by Fig. 5, shows that it is a very good approximation. The worst error is 5.77 % when
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FIGURE 5 - Contour diagram of absolute relative error for the kernel approximation

e = 0,/• = 1.09 and y = 1.70. Obvious simple extensions, such as the addition of another

exponential term in [19], or replacing 6x by 6x+ (X 2 , either do not work or produce solutions

that are much less accurate.

3.5 Analytic Approximation Technique

The next two sections apply the approximate analytic technique Ref. I to obtain

two additional analytic approximations to I.

3.5.1 Exponential Integral Solution

The integration technique of (Ref. 1) can be readily applied to I. This technique is

essentially an approximate change of variables. This procedure can be applied to an integral
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such as

Q = eh[f[z] dz, [221

where h[z] is an arbitrary function, but usually roughly monotonic, and f[z] is a function

that is relatively easy to integrate in closed form. Then Q is approximated by

Se' thufdh, [23)

where h[z] has now become the dummy variable and u[h] satisfies the two constraints

u[h] dh z f~z] dz [24]

over the range of interest, and the integral in [23] can be evaluated in closed form.

In the case of I, az + OErf(z) can be identified with h[z] and f[z] = 1. A functional

form for u[z] that satisfies the closed form constraint is q1(z + q2)d, where ql, q2 and d

are parameters. These are found by satisfying [24]. This functional form, which is the

binomial function, can be designed to have u[h] dh fit f[z] dz at three points with the

correct curvature. The curvature is decided by d. For the present case d = 2 is found to be

optimal. See Ref. 1 for more details. Doing the appropriate algebra, we see that the final

solution for this approximation is

qICq 9 [E 2 (h[Vl + q2) E2(q2)] [25]

hly] +q2  q2

where

ql= -q2q3,
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Analytic: Exponential Integral
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FIGURE 6 - Contour diagram of absolute relative error for the exponential integral
approximation

4ty/2j1/4y1
h[y] - 2h[y/2]

h[y] + q2 [261

q3 = y' h[y].

The error diagram is shown in Fig. 6. The error increases as jyj and/or 3 increase. However,

when jyj is large, Erf[y] - I and hence I can be split into the sum of two integrals. This

possibility will be discussed in the next section and this procedure will be seen to result in

a much improved solution.

3.5.2 Exponential Solution

Applying the integration technique as in the last subsection but using the expo-

nential function for ulh] instead of the binomial function, a different solution is obtained.
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Thus, u[h] = qleq2h. Also, for ease of notation, h[z] = Erfizi + -yz, where = o/13.

The one additional complication in obtaining this solution is that an implicit equa-

tion must be solved. This equation is a result of fitting the differential u(hldh to the

differential f[z] dz at three points, whereas in the previous solution the fitting parameters

could be solved explicitly. This equation is

y eq7h(V) - 127]
y/ =a eql h(v/a) -1'

where a determines the location of the middle fitting point, y/a, in the interval [0, y]. The

approximate analytic solution to this equation can be found by taking the various limits of

its parameters and solving. First, let a = 0 and take the two limits of qj, one as y --- 0 and

the other as y -+ oc. One synthetic equation can be written that satisfies both limits and

achieves reasonable accuracy in the intervening region:
S=. (I + a)yey2 ln(a) 1281

3a e(--)T, + In(a) - 1

Using the above solution, valid for small a, an equation satisfying both limits of y and

arbitrary a can be obtained by using the same synthetic technique:

4(1 + a)/ln(ahye aVe [29]
3a(2 + -yV-)2(e('-•)1 + In(a) - 1) + V/ryy2 eV2(1 + -y) ln(a)2(l + a)/a

With the approximate solution for qj we can estimate q2 as

q2 = --q') _ i"
e TIf -- [301

With these parameters, and setting a = 2 the approximation to I becomes

I 2 q2 " e-Pheg1hdh
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Analytic: Exponential
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FIGURE 7 - Contour diagram of absolute relative error for the exponential approx-
imation

- 2 e(Y#r1D/- 11 -[31]
91 - #_I

Figure 7 is the absolute relative error diagram for this approximation. This shows similar

behaviour to that of the previous approximation. Once again, I can be split into the sum

of two integrals. The next section will make it clear why this analytic technique is of value.

3.6 Splitting the Integral

All of the approximations in the previous section have one or more regions where

the error is unacceptably large. In cases where these errors occur at large magnitudes of y.

(about y > 2) the integral can be split into two. This is done by assuming that. for large
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enough y, OErfty] ; Oy/lyl. Hence,

I1= _ e-*-Erf'zl dz + (e-vm - e32]

where ym is the splitting function. This splitting of the integral will work best in conjunc-

tion with the approximations that have the smallest errors at the largest magnitudes of y.

Inspection of Figs. 1-7 indicates that the only two suitable candidates are the exponential

and exponential integral solutions. The immediate problem is to find an optimum ym. As

there is no evident theoretical approach to finding ym, it is easiest to determine it empiri-

cally. From the error diagram behaviour of the two analytic approximations, Figs. 6 and 7,

it is clear that y, has a different behaviour if y > 0 than if y < 0. For y > 0, y,,• decreases

with 0 and for y < 0, yIm increases with )3.

For both analytic approximations the split function has been empirically deter-

mined. It is for y > 0,

y, = (1 - p)(1. 2 52 - .026(a + /3)) + 3.08629p/(8 + a + 03).s1078

p = (a + /)3/(93 + (a + ,3)3), [33]

For V < 0 it is

y. = -2, 0:e

= 21n 1j-j], I > e. [34]

Using this split function and approximating the integral in [32] by the exponential integral

solution, or the exponential solution, error diagrams can be computed. The results are
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shown in Figs. 8 and 9, respectively. Now, the asymptotic error in y is handled correctly

for both y > 0 and y < 0 in both approximations. The remaining problem area, for y • -2

and /3 > 2 cannot be gotten rid of without further splitting the integral and performing

additional approximations such as expansion of Erf[z] about y ; -2. Even this yields only

a marginal improvement at the cost of significant complexity. The center of the problem

area is asymptotically determined by

This region gives the worst errors for both approximations when a = 0 and for about / > 4.

Over the range of / covered by Figs. 8 and 9, the worst error occurs at / = 10. For the

exponential integral approximation when y = -1.72 it is 14.3%, and for the exponential

approximation when y = -1.77 it is 30.5%.

4.0 APPLICATIONS

In this section, two practical applications of the approximations will be considered.

This is to focus attention on the ranges of a and /3 that are likely to be encountered.

The range of these parameters obviously influences the choice of approximation. The two

applications involve lidar and remote sensing of oceanic biomass.

Table I summarises values of the input parameters required to calculate a, # and

y for typical lidar results in obscurants and remote sensing of oceanic biomass. The lidar

parameters were taken from Ref. 5 and Ref. 7. The oceanic biomass parameters were
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TABLE I

Lidar and Oceanic Parameters

Parameters Lidar Oceanic

N. g/m 3  2 x 10-" 10-4

Nt g/m 2  5 0.0188/c*
k, m2/g 1 20c*
km 1//m 5 X 10-6 .02
a 1/m 20 5
zm n 500 42.5

a 0.40 0.30
3 2.5 0.15
y -20<y<2 -6<y<oo

* c is the ratio of chlorophyll mass to phytoplankton mass

obtained from Ref. 6. Note that the ratio of chlorophyll mass to phytoplankton mass, c, is

not needed to obtain the derived parameters since it drops out.

The following discussion is made simplest if we assume y is arbitrary and a arbitrary

positive. From tke error diagrams the critical parameter is the magnitude of 3. When 3 is

small, as in the oceanic case, a number of approximations, discussed in the previous chapter,

can be used. For this Lase where 3 is typically 0.15, the kernel approximation [21] is the

simplest and gives worst errors of about 1 %. Values of 3 up to 0.4 can be accommodated

with errors less than 5 %. The next simplest approximation with improved accuracy is the
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TABLE II

Accuracy Guide

Approximation 1% 5% 10% 20%

Small / [16] 0.1 0.3 0.5 0.9
Kernel [21] 0.1 0.4 0.6 1.1

MiniMax [18] 0.4 0.7 1.0 1.5
Split Exponential [31,32] 0.5 1.7 3.2 6.0

Split Exponential Integral [25,32] 0.3 5.0 7.7 14.0

minimax approximation [18]. Errors of less than 5 % occur for 3 < 0.7.

For typical lidar scenarios in obscurants or smoke stacks # is about 2.5, which is

considerably larger than in the oceanic case. If errors of less than 5 % are required only

one approximation can be used, the split exponential integral approximation. If y is never

close to where the maximum error occurs (at typically y : -2), then other approximations

can be considered. Indeed, since lidar is a remote sensing instrument, y usually ranges

from small positive values to large negative values. In this case combinations of the kernel

approximation with the asymptotic solution for y < 0 may be excellent.

Table II is a condensed guide of the recommended approximations. It lists the

highest /3 that can be used for a given level of accuracy. This accuracy level is approximately

the worst error for arbitrary y and a.
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Val,!es of 0 can, under extreme circumstances, be over an order of magnitude higher

than the typical values given in Table I. These may occur near the smoke source in the case of

obscurants or smoke stacks, or in dense plankton blooms. In addition, sensitivity analysis

may require higher values of 3 than can be expected realistically. However, the task at

hand is usually to determine the three derived parameters, a, # and y and from them

the physically interesting quantities. This requires an inversion of the integral. The errors

incurred in estimating the three derived parameters by inversion of the approximations can

be quite different from the error behaviour outlined in the diagrams or Table I. An example

of this is given in Fig. 10. The split exponential integral approximation was used to find

given the integral

Id = i[yu]- 4 f1 = Y e-az-PErfzldz, [361

which is related to 12, [8]. In Fig. 10, a = 0 and yu = 10. The inversion was performed by

minimizing the absolute relative difference between Id at a fixed 3• and its approximation

with varying f. It can be seen that the pattern of error is quite different from the error

diagram for this approximation, Fig. 8. This is becaase the error in the inversion can be

more sensitive to the change in the value of the integral as 1 changes than the error of the

approximation

b3 6 1 d [37]

Here, 63 and 6Id represent the error in 0 and Id respectively. In Fig. 10 the worst error is

about 15 %.
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Relative Error On Inversion For Beta
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FIGURE 10 - Contour diagram of absolute relative error on inversion for ;
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5.0 CONCLUSIONS ANb DISCUSSION

Seven analytical approximations to the integrated bistatic signal from Gaussian-

distributed scatterers were derived. The error behaviour of each solution was thoroughly

discussed. Four of these, not including some related approximations, were derived based on

well-known approaches. The other three use more nonstandard techniques.

The approximations allow for trade-offs between analytic simplicity and accuracy.

Furthermore, the effects of the error in the approximation on the inversion of the integrated

signal to estimate the parameters involved was found to be minor. This implies that some

of the approximations can be used to determine the in situ parameters from remote sensing

data.

The analytic nature of the approximations allows for rapid evaluation of the integral

and can lead to additional insight.
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