
USAISEC -
US Army Information Systems Engineering Command 7[
Fort Huachuca, AZ 85613-5300

(V) • U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

99A COMMUNICATIONS, AND COMPUTER SCIENCES

Integrated Office Information System (IOIS)
Summary Report:

Integration Strategy for Distributed Environment

ASQB-GM-90-025

MAY 1990

93-22588

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved

REPORT DOCUMENTATION PAGE EoMB Dote: 0u-0 08i xDate: Jun 30,!8

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A

2b. DECLASSIFICATIONI DOWNGRADING SCHEDULE N/A

N/A ,,_,
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GM-90-025 N/A

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AIRMICS (if applicable)

C ASQB-GM N/A
6c. ADDRESS (City. State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

115 O'Keefe Bldg.
Georgia Institute of Technology
Atlanta, Ga 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

ASQB-GM
AIRMICS I

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO, ACCESSION NO.
Atlanta, GA 30332-0800 62783A DYl0 05

11. TITLE (Include Security Classlfihation)
Integrated Office Information System (IOIS) Summary Report:
Integration Strategy for Distributed Environment

12. PERSONAL AUTHOR(S)
Dr. Olivia R. Liu Sheng & Dr. Kuni Higa

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FROM TO May 1990 40

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)

FIELD GROUP SUBGROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The key to integrated office support in a distributed environment is the integration of
heterogeneous databases used at different locations for various purposes. The core of
heterogeneous database integration is at the logical level. This report presents an approach
to logical integration of multiple databases.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[] UNCLASSIFIED/UNLIMITEDQ SAME AS RPT. Q DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(include Area Code) 22c. OFFICE SYMBOL

Michael Evans 404/894-3107 ASQB-GM

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

This research was performed for the Army Institute for Research in Manage-
ment Information, Communications and Computer Science (AIRMICS), the
RDTE organization of the U.S. Army Information Systems Engineering
Command (USAISEC). This research is not to be construed as an official
Army position, unless so designated by other authorized documents. Material
included herein is approved for public release, distribution unlimited. Not
protected by copyright laws.

's 3

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

s/'

Wnes Gantt John R. Mitchell
Chief, MISD Director

AIRMICS

Integrated Office Information System (IOIS) Summary Report:

Integration Strategy for Distributed Environment

Dr. Olivia R. Liu Sheng

Department of Management Information Systems

College of Business and Public Administration

University of Arizona

Tucson, Arizona 85721

602-621-2748

Dr. Kuni Higa

Georgia Institute of Technology

College of Management

Atlanta, GA 30332

404-894-4365

May 6, 1990

°tSubmitted to the Army Institute of Research in Management Information, Communications and Computer

Science (AIRMICS), Atlanta, GA. Grant #: DAKF-11-88-C-0021.

Executive Summary

The key to integrated office support in a distributed environment is the integration of hetegeroge-

neous databases used at different locations for various purposes. The core of heterogeneous database

integration is at the logical level. This report presents an approach to logical integration of multiple

databases.

1.

Logical Integration of Multiple Databases

Kunihiko Higa
Georgia Institute of Technology

College of Management
Atlanta, GA 30332
Tel: (404) 894-4365

Bitnet: KHIGA@GTRI01

1. Introduction.

Existing DB schema integration methods minimally, if at all, discuss
the role of data models in their integration processes. We believe

that the use of an effective data model significantly enhance

designers ability to identify and analyze integration problems. In

this paper, the Structured Object Model (SOM) is used as the

backbone data model throughout the logical DB schema integration

process. SOM also represents the global schema when the integration

process is completed. This paper describes SOM-based integration

overview first. Then notion of SOM is introduced, followed by

discussion of SOM-based DB schema integration phases. Examples of

schema integration using SOM are described at the end.

2. The SOM-based Logical Schema Integration Overview.

The SOM-based logical schema integration consists of four basic

phases as depicted in Figure 1. the first phase, preintegration,

requires existing schemas, data dictionaries, other related documents,

and users as inputs. The main objective of this phase is to represent

existing schemas and their usage in uniform manner. The output of

this phase is a set of SOM diagrams, each SOM diagram represents an

existing schema. These diagrams are used at the next phase, schema

comparison, to identify homonyms and synonyms of objects,

attributes, and structures. This phase classifies objects and

attributes into identicals/equivalents, weak conflicts, and strong

conflicts. In the third phase, conflict resolution, both weak conflicts

2

and strong conflicts are resolved and standardized schemas, schema

mapping/transformation, and exception handlings are defined. Then

those standardized schemas are integrated at the last phase,
integration.

Process Flow Input/ouput Flow

[Preintegration isting schema

[Comparison scshemnas represented by SOM)

I Resolut Object classification

[..- (Standardized objects, structures,•

Integration and methods

Integrate schema.

Figure 1. SOM-based Integration Overview.

In this paper, we assume that the logical schema integration process
is performed on existing data bases. However, the methodology

described in this paper is easily applicable to new data bases when
each DB schema is developed using SOM-based DB design
methodology [Higa and Liu Sheng, 1989].

3

3. Structured Object Model (SOM).

Structured Object Model (SOM), originating from System Entity

Structure (SES) [Belogus, et al., 1980], has been developed as an
analysis, design, and navigation tool for database applications [Higa,

1988, Chee, 1989, Higa and Liu Sheng, 1989, and Higa, 1990).
Throughout the integration process, SOM is used as a common
representation scheme and thus the consistency between the global

schema and individual schemas is greatly improved. In addition,
because of its hierarchical structure and decomposition process, SOM
naturally generates layered levels of abstraction in its integration
process. Hence SOM facilitates accomplishment of the integration of
multiple databases in a structured and top-down fashion.

In the following subsections, the basic components and constructs of
SOM are briefly described.

3.1. Basic Components of SOM.

SOM represents data semantics using objects, attributes, and three
types of relationships: aspect (property), specialization, and
collection. An object set is a collection of events or objects about
which users wish to collect and store information. In SOM, objects

are represented by frames. However, there is a distinction between
an object and an object set. Projects, employees, and equipments are
examples of object sets. Attributes are used to describe objects by

providing them with descriptive properties such as name, shape,
color, etc. There are two basic types of attributes: identifiers and
descriptors. An identifier uniquely identifies an object occurrence,
and descriptors describe the state of the object occurrence. SOM also
has an extended attribute type, called a method, which represents

behavioral aspects of objects. For example, update operations and
constraints can be encapsulated into an object as its extended
attributes. Relationships represent associations among objects in the

real world. Semantic meaning of relationships is indicated by the

connectivity between objects (one-to-one, one-to-many, and many-

4

to-many). The graphical representations of the basic components in

SOM are summarized in Figure 2.

COMPONENT REPRESENTATuN

Object Set Projects : Collection of similar
I objects.

Object l project : Single object

Attribute

Identifier * Project ID : Underlined attribute

Descriptor • Project-Name

Method

Constraint
and *label: IF Cond. THEN Action

Operation

Membership *OWNER(Name List), *MEMBER(Name List)

Relationship Engineer I

Aspect 1(uses : Property relationship

i Manual _

Emp'o"
Specialization [loie) Classification

I I!(s)- -

Manager _ Engineer

Projects

Collection II (Collection of)
Project

Figure 2. Fundamental Components in SOM.

Relationships in SOM can be categorized as aspect relationships,

specialization relationships, and collection relationships.

5

1. Aspect

Aspects describe owner-property or owner-member relationships.

An object can be decomposed into the properties and members that

belong to it. The term "aspect" has been adopted by reason of the

fact that properties and members can be thought of as the aspects of

an object. An aspect decomposition is represented in SOM diagrams

by a single vertical link between the "parent object" and "child

objects" and can be read as "has-a" in the top-down direction or as

"is-part-of" in the bottom-up direction. The association name, such

as "has" in Figure 3, may be attached the aspect link in order to

clarify its semantics.

iABC Co.

I has

Figure 3. Aspect Relationships.

A relationship such as: "ABC Co. has employees and projects" can be

expressed in the SOM diagram in Figure 3.

2. Specialization (Taxonomy)

Taxonomic knowledge represents the way in which objects are

categorized into subclasses. In contrast to other decomposition

structures, the taxonomic structure carries with it an inheritance

principle: the specialization object inherits the substructure of its

generalized superior (parent). Thus, what is true for "Employee" is

also true for its special types "Manager" and "Engineer".

6

Consequently, a specialization object has at least the same number of

attached variables and methods as its parent. However, the value of

each inherited variable can be locally initialized. Otherwise, it will

assume the default value from its parent. In Figure 4, all subclasses

of "Employee" inherit attached variables of "Employee".

Figure 4. Specialization Relationships.

A specialization object may have additional properties not shared by
its generic parent nor by its siblings. Indeed, is the additional

properties that distinguish, one subclass from the others. ,A

taxonomy (specialization) is denoted by double vertical lines

between the parent and specialization objects in SOM diagrams and it

should be read as "is-a-kind-of "in the bottom-up direction. For
example, the fact that "Manager and engineer are kinds of employee"

can be described in a SCM diagram as shown in Figure 4. The

association name, such as "is" in Figure 4, may be attached the

specialization link in order to clarify its semantics.

7

3. Collection

One feature of the Structured Object Model is the use of the object set
(multiple object) concept. For example (see Figure 4), "Employees" is
an object set, i.e., it is composed of one or more individual objects of
the type "Employee. An object set has to be decomposed into a
single object by collection relationship (represented by triple
vertical lines in an SOM diagram) before it is further decomposed.
SOM's collection relationship will help designers clarify the difference
between a single object and an object set.

The type of connectivity (one-to-one, one-to-many, or many-to-
many) between two objects, A arid B, can be determined by checking
both A-to-B and B-to-A relationships. For example, if an engineer
uses many manuals and the same manual is used by many engineers,
then the relationship between an object engineer and an object
manual is many-to-many. Finally, a collection relationship
decomposes an object set into individual objects. This decomposition
is necessary to make the connectivity between objects clear.

3.2. Constructs of SOM

SOM is constructed by decomposition and coupling. The
decomposition process generates the structure of an object, while
coupling determines how objects are coupled. Stamp-coupling
[Schneyer, 1984] is the coupling mechanism used in SOM. After an
object has been defined in the structure, the mechanism couples later
appearances of the object with its original definition. As a result, the
mechanism ensures that an object will not be decomposed more than
once.

The constructs of SOM are based on the degree and the connectivity
of a relationship, and the membership class is determined according
to the classification by Teorey, et al. [19861, as depicted in Figure 5.

8

1. Degree of a relationship is determined by the number of objects
participating in a relationship. An n-ary relationship is of degree n

(e.g., binary and ternary relationships are degrees of 2 and 3,

respectively).

Constructs Representation

Degree:

Binary OR

Ternary OR OR

Connectivity:

I I AAND

1:M A~ND

M:N AAND

Membership
Class:

A :Bisamnember of A.
Owner Entity MEMBR(BJ

Member Entity ,B A is an owner of B.

Figure 5. Fundamental Constructs in SOM

2. Connectivity of a relationship specifies the mapping of the

associated object occurrences in a relationship. Types of connectivity

9

for relationships are "one" and "many." The object type (an object or
an object set) determines the connectivity of the relationships in
SOM. If it is a single object, then the connectivity of relationship is
"one," otherwise it is "many."

3. Membership class in a relationship specifies whether either the
"one" or the "many" side in a relationship is a member or an owner.
If an occurrence of the object with connectivity of one is always
required for the occurrence of the other side object, then it is
mandatory, otherwise it is optional. The "many" side of a
relationship is similarly mandatory if at least one object occurrence
must exist, and is optional otherwise. SOM uses constraints methods
within an object (frame) to describe the membership type.

4. SOM-based Schema Integration Process.

The SOM-based schema integration process consists of four phases:
preintegration, comparison, conflicts resolution, and integration
phase. In this section, details of those four phases are discussed.

Preintegration phase: This is a preparation phase for the main
integration activities. In this phase all existing schemas are
transformed to SOM diagrams. This phase consists of the following
two steps.

Step 1, Represent all relations in SOM objects. All existing relations
are expected to be normalized. If they are not, they can be
normalized using the SOM schema design methodology [Higa and Liu
Sheng, 1989]. Each SOM object consists of descriptive attributes and
behavioral attributes. All descriptive attributes are copied from a
relation, e.g., if relation RI's attributes, including its primary key, are
(al, a2, a3, a4), then these four attributes are copied into object 01 as
shown in Figure 6.

10

Object Class:O1 Existing Information

Attributes

f.- Relation:Rl(al, a2, a3, a4)

a2
a3
a4

Behavioral Attr. Data Dictionary

SSource, Domain, Source, Domain, Use,
Use Usel Access & Update Policies,

Methods etc.

Access methods
Update methods
others User provided Information

Figure 6. Defining an SOM Object.

Behavioral attributes include object's usage, users, source, synonyms,

and domain (see Figure 6.) If data dictionaries or similar documents

are available, they will provide those behavioral attributes. If any

documents are not available or incomplete then actual users will be

able to provide most behavioral attributes. It is worth noting that a

complete set of behavioral attributes will help improving accuracy of

the schema integration; however, it is not an absolute requirement of

this methodology to have a complete set of behavioral attributes.

Ste 2. Construct an SOM diagram. SOM objects are put together to

form a diagram which represents a schema. The following objects

are used in this step to illustrate each situations.

* Primary keys are underlin[.

Ol=(al&, a12, a13, a14]; 02={a21, a22, a23, all);

03=al&, a41, a31, a321; 04=(a41, a42, a43);

06=(al1, a21, a71, a61, a62); 07=(a71, a72, a73);

08=[171, a41, a81, a82, a21); 09={&UL., a92, a93, a21);

O10={a7,l a102, a103); Oll={a71, a112, a113);

11

First, generalization-specialization objects are put together with help
from users and existing documents (if no information for those
objects is available, there is still a way to find out about them and
this technique is discussed at the schema comparison phase.) Then

simple objects, which has a single attribute primary key and contains
no foreign key, are identified. Simple objects are direct children of a
root object in an SOM diagram. Next step is to identify child objects

of each simple object. A child object could have a simple relationship
(one-to-one and one-to-many,) or a complex relationship (many-to-
many and ternary) with its parent. Each relationship can be
identified in the following manner:

The one-to-one relationship and the one-to-many relationship are

identified when an object contains a primary key of a simple object
as its non-prime attribute. For example, 01 is a parent object of 02
since 02 contains 01's primary key but 01 does not contain 02's
primary key. Whether they have the one-to-one relationship or the
one-to-many relationship must be determined by existing documents

or by users.

The many-to-many relationship is identified when an object has a

primary key which is a composite of two attributes (i.e., two prime

attributes) and one of its prime attributes is a primary key of a
simple object. For example, 04 is a parent object of 03 since 03

contains 04's primary key but 04 does not contain 03's primary key.
Similarly, 03 belongs to 01 because 03's other prime attribute is 01's
primary key. Thus 03 is an intersection object between 01 and 04.

The many-to-many relationship exists between 01 and 04. The one-

to-many relationship exists between 03 and its parent objects (01 &
04).

The ternary relationship is identified when an object has a primary
key which consists of two or three attributes and at least one of its
prime attributes are primary keys of a simple object. If the

composite key consists of two attribute, the object must contain one

12

foreign key. For example, 06 is an intersection object resulted from
the ternary relationship among 01, 02, and 07 since its primary key
is a composite of three primary keys from 01, 02, and 07. Similarly,
08 is an intersection object resulted from th- ternary relationship
among 07, 04, and 02.

04 07

02 L2:2i1 EM

09

Figure 7. SOM subtrees.

Now we have constructed several SOM subtrees of which each
consists of simple objects and their direct child objects (see Figure 7.)
For the remaining objects, we can apply the same reasoning to add
them to some subtrees. Only one difference is that when two objects
have a one-to-one relationship, they contain each others primary key
as a non-prime attribute, otherwise their relationship is a one-to-
many relationship.

13

a3 All Li A41 Aa13 a3
al a12 a42 a72

Sa13a3a3

Figure 8. An SOM Representation of A Schema.

After all remaining abjects are put to some subtrees, those subtrees

are connected by a common dummy object (a root object). The
resulted tree represents one DB schema (see Figure 8.) Thus if there
are three data bases to be integrated, there are at least three SOM
trees to be constructed.

Schema comparison phase: After all schemas are represented in
SOM, they are ready for the comparison. Each objects, attributes,
structures are tested for similarities, dissimilarities, and conflicts.
Since SOM requires each object being defined exactly once at each

diagram [Higa and Liu Sheng, 1989], all comparisons discussed in this
phase are inter-diagram comparisons. This phase consists of the
following two steps.

Step 1. Identification of homonyms.
Candidates of homonyms are easily identified since they share
common names. Thus any objects and attributes which have
common names are grouped together as potential homonyms. Then

I - Ja2 Iat

14

each group of potential homonyms are tested and classified using the

following rules.

Definitions for conditional clause:

Common: A = B or A is a subset of B or vice versa;

Similar: A intersects with B;
Different: A and 13 are disjoint sets.

Rule 1. IF objects/attributes have a common domain AND

objects/attributes have a common source
THEN objects/attributes are identical.

Rule 2. IF objects/attributes have a common/similar domain AND
objects/attributes have similar/different source

THEN objects/attributes are equivalents.

Rule 3. IF objects/attributes have similar/different domains AND
objects/attributes have a common source

THEN objects/attributes are complements.

Rule 4. IF objects/attributes have different domains AND
objects/attributes have different sources

THEN objects/attributes are homonyms.

Objects/attributes classified by Rule 1 and 2 have strong evidence

that they are either identical or equivalents. For such
objects/attributes, other attributes such as usage, synonyms, and
users will be compared to make the final judgement.

Objects/attributes classified by Rule 3 are most likely specializations
of some other objects/attributes so they will be recognized as
potential specialization groups. Finally, the group classified by Rule 4

is the strong candidates for homonyms. Other behavioral attributes

should also be checked for further behavioral dissimilarities.

15

Step 2. Identification of synonyms. This step consists of two substeps.

SL..t..2.1. Identification of synonyms by name. If known synonyms of
objects/attributes are documented in the existing data dictionary,
their names can be compared. Objects/attributes that share common
names will be grouped together as potential synonyms. Each group
is tested using the following rule.

Rule 5. IF objects/attributes have different names AND
objects/attributes have a common/similar domain AND
objects/attributes have a common/similar source

THEN objects/attributes are synonyms.

Rule 6. IF objects/attributes have different names AND
objects/attributes have different domains AND
objects/attributes have a common/similar source

THEN objects/attributes are specializations.

Step 2.2. Identification of synonyms by structure. For those
objects/attributes whose synonyms and some behavioral attributes
such as domain and source are not documented to identify additional
synonyms, their usage and structures can be compared. The usage of
object/attribute describes how it is used, i.e., for computation, for
construction of composite data, for determination of status, etc.
Standard coding scheme for usage should be established so that the
consistent usage comparison is possible. Using usage code and
synonyms identified by previous steps, following rule will be applied
to identify additional synonyms.

Rule 7. IF objects/attributes have common/similar usage AND
objects/attributes are specializations of a similar
object/attribute OR objects/attributes have
common/similar aspect objects/attributes)

THEN objects/attributes are synonym.

16

Rule 8. IF objects/attributes are specializations of a similar
object/attribute AND objects/attributes have
common/similar aspect objects/attributes)

THEN objects/attributes are synonym.

Conflict resolution phase: resolution of both weak and strong
conflicts. Conflicts exist among homonyms and synonyms. Different
level of abstraction and scale differences which may exist in
synonyms are considered to be weak conflicts. Name conflicts of
homonyms and data/structure inconsistency of synonyms are
considered to be strong conflicts. For the former case, mapping and
translation mechanism will be defined to resolve the conflict. An
example of a weak conflict resolution is shown below:

O1(all, a12, a13) and 02(a21, a22, a23) are synonyms where a13
represents temperature in Fahrenheit and a23 represents
temperature in Celsius;

Then a13->a23 = (a13 - 32) -"5/9 and a23->a13 = a23*9/5 + 32.

Each translation method will now be attached to corresponding
objects shown in Figure 9.

01 02__ _

a12 a22
a13 a23
°Synonyms(02) "Synonyms(01)
*Methods: Methods:

Translatel 2(al 3,a23): Translate2l (a23,al 3):
a23-(a13-32)°5/9; a13-a239/5 + 32;

Figure 9. Objects with Translation Method.

For the latter case, neither mapping nor translation is feasible.
However, using SOM scheme, name conflicts of homonyms can be

17

easily resolved. Each object belong to a schema tree in SOM and each

SOM tree has unique root object name thus by attaching path object

names as prefix, name conflicts will disappear. This point is

illustrated in Figure 10.

01 02 03 04

03 05

Figure 10. Resolution of Name Conflicts.

In this Figure, 03 in SI and 03 in S2 are homonyms; however, with

their path objects, 03 in SI is uniquely identified as S1.01.03 and 03

in S2 is uniquely identified as S2.03. Similarly, attribute homonym

problems are resolved by attaching its object name as prefix.

Strong conflicts among synonyms are not quite this simple. When

they have different data values for the identical object/attribute or

different structure for the identical object, one of the following two

will be the possible cause for the conflicts:

1. One is correct and others are wrong. In this case, check the source

of the object/attribute values and determine the most reliable

source. Then distribute the most reliable value to others. Future

occurrence of this conflict can be prevented by attaching the value

distribution method to the most reliable object.

2. All are correct or others are exceptions of one. In this case, two

things are possible:

(1) they are specializations -- Identify the common aspects and

create a generalization object which contains the common

aspects. Then each object keeps its own unique aspect and

becomes specialization object of the generalization object.

18

(2) one is a general case and others are exceptions -- Identify the

object that represents the general case. Then identify the
differences between the general case object and other objects.

Those differences are the trigger conditions for exceptions. So

formulate rules (methods) for exception handling using those
conditions and store those conditions at the general case

object. Location (or identification) of the general case object

should be stored at each exception object.

More detail examples for different types of weak and strong conflicts

are discussed detail in Section 5.

Integration phase: A wealth of research results are available in

this phase [Batini and Lenzerini, 1984, Navathe et al., 1984, Dayal
and Hwang, 1984, Elmasri et al., 1987, Motro, 1987, Desai and
Pollock, 1989]. We propose a two-step approach, a mixture of a new

approach (integration of SOM diagrams) and an existing approach

(verification using functional dependencies.)

Step _L During the previous phases, all identicals, synonyms, and
homonyms are identified and their conflicts are resolved. In this

phase, the SOM diagram integration process will be applied to
identicals and synonyms. The following discusses the integration

process for each case:

Integration of identicals -- In Figure 11, the subtree S1 and S2 are
identical thus the schema SA and SB can be integrated based on SI
and S2. The decision of which schema holds the original definition
and which other schema copies the original will be most likely an

organizational and political issue, i.e., not a technological issue.
Therefore, we will not attempt to provide a justification for the

decision but will provide a recommendation here. It can be decided
based upon two major factors, (1) whichever has the higher stake on

the information and (2) whichever provides the minimum cost or

maximum benefits (including both tangible and intangible.)

19

SA SB

01 01 02 S2

03 04 05 06 07 03 04 05

SI

SA SB

S1 0 1 02 SA.S1

03 04 05 06 07

Figure 11. Integration o0 Identical Objects.

Integration of synonyms I (specializations) -- When an identical
specialization exists in multiple schemas, the integration process is
similar to that of the integration of identicals. The complete
definition of the specialization exists in one schema and others use
the stamp coupled definition. However, when multiple version of
specialization of an identical object exist, the complete definition of
the specialization will be located underneath the root object and
other use the stamp coupled definition. For example, in Figure 12,
SA.S1 and SB.SI are identical objects but they have different

specialization.

In Figure 12, S1 is directly attached to SI (root) and its two types of

specialization, A-spec and B-spec, are attached to SA and SB

respectively.

20

SA SB

$1 01 $1 02

+ I I1
03 04 05 06

f
A SB

A-spec B-spec 01 S1.A-spec 02 S1.B -spec

03 05 06 07

Figure 12. Integration of Specialization Objects.

Integration of synonyms II (exceptions) -- During previous phase,
conflict resolution, general case objects and exception case objects are
identified, and their corresponding exception handling methods are
defined. In order to integrate those objects,. exception handling
methods must be stored into the general case object. For example, in
Figure 13, suppose SA.01 is the general case object and SB.01 is the
exception case object. SA.O1 can have exactly one 04 and SB.O1 can
have multiple 04s. Thus an exception handling method:

"IF parent = SB THEN many 04 Allowed"

will be stored in SA.01. Then SB uses a stamp coupled 01 object.

S Verification of the integration using functional dependencies.
By checking functional dependencies (FD) among related entities and

21

SA SB

01 02 01 03

I + I
04 04s

$1

S SB

01 02 SA.01 03

I I
04 049

Figure 13. Integration of Exception Objects.

their attributes, the consistency of the integrated schema can be
verified. The use of FD for schema integration is logically sound

approach and it has been studied by several researchers [Smith et al.,
1981 and Dayal and Hwang, 1984,]. However, thcse research efforts

have been mainly focused on algorithmic detection and correction of

inconsistent FD (i.e., the problem-solving phase.) Typical FD-based
problem-solving method assumes that the problem formulation has

already been performed elsewhere. This problem formulation phase
of the FD-based integration process is equally difficult (if not more)
to the problem-solving phase and is very much neglected research
area of the schema integration problem.

In the previous step of this phase, all existing schemas have been
graphically integrated. Since all SOM objects have been normalized,
FD among attributes can be directly extracted from each SOM object.

Also, an SOM diagram is constructed such that all relevaiit

relationships among objects are graphically represented. In addition,

transformation/mapping and exception handling methods can be
I

22

used to avoid incorrect FD analysis. For example, from Figure 14,
following FD among objects can be identified:

for 01 -- 01 -> 03 and (01' or 01"); 01->> 05;
for 02 -- 02 -> O1'; 02 ->> 05 and 04;
for 03 -- 03 -> 05; 03 ->> 01 and 04;

for 01' -- 01' ->> 02;

for 05 -- 05 ->> 02 with exception (05 -> 02) when the parent is 03;
for 04 -- 04 -> 03

SI

01 02 03

IJ! 03 05s 01' 01.05, 04. 01.05 01s 02.04s

01' 01" 05O 04
1 1 1 02

02s 020 03

Figure 14. An Integrated SOM Diagram.

Extracted FD are then used by existing FD-based schema integration
methods. Therefore, the SOM-based integration methodology
supports the problem formulation phase of the FD-based schema
integration method.

5. Schema comparison & conflict resolution examples.

In this section, examples from Batini et al. [1986] and a hospital view
integration case study [Wu, 1989] are used to illustrate the use of the
proposed method in practice.

23

5.1. Examples from Batini et al.

The article by Batini et al. [1986] is frequently cited in the DB
integration field and provides a well defined framework to
researchers of this field. In the article, two major types of conflicts
(naming and structural) and their subtypes are defined and
examples are provided. In this subsection, how the proposed method
treats each conflict is described and discussed.

5.1.1. Naming Conflicts.

(1) Homonyms: Figure 15 shows an example of homonyms. The
EQUIPMENT in Figure 15a refers to
Computers/Copiers/Mimeographic machines, whereas it refers to
pieces of furniture in Figure 15b.

Department Building

(owns) I (contains)

Equipment Equipment

(a) (b)

Figure 15. Example of homonyms.

According to Rule 4 in section 4, both objects in Figure 15 are
identified as homonyms first and then SOM naming convention (as
described in section 4) is applied for each. Thus each object is
referred as Department.Equipment for Figure 15a and

Building.Equipment for Figure 15b.

(2) Synonyms: Figure 16 shows an example of synonyms. The
CLIENT in Figure 16a and the CUSTOMER in Figure 16b both refer to

the same object.

24

Client Customer

I (holds)
(places)

Credit Order

(a) (b)

Figure 16. Example of synonyms.

The CLIENT object and the CUSTOMER object have the common
domain and source; therefore, according to Rule 5 in section 4, they
are identified as synonyms. In SOM, all objects are defined exactly
once, the object CLIENT/CUSTOMER is also defined as single object.
One name will be used as the primary name and the others are
stored in the object as synonyms. The decision of which name to be
used as the primary name must be decided by a data administrator.

5.1.2. Structural Conflicts.

(1) Type Conflicts. SEX in Figure 17a is a specialization, where as it is
an attribute in Figure 17b.

Person Person (sex)

Man Woman

(a) (b)

Figure 17. Example of type conflict.

In SOM, any specialization creates a categorization attribute in the
parent object, thus the PERSON in Figure 17a also has SEX as an
attribute. Therefore, both PERSON objects are identical in SOM.

25

MAN/WOMAN objects in Figure 17a stores unique features of each

objects.

(2)Dependency Conflicts. Batini et al. used marriage between man

and woman as an example. It is 1:1 if current marriage is concerned

(Figure 18a), but m:n if a marriage history is concerned (Figure 18b).

Person Person
(has) (has a marriage history)

Spouse Spouses

(a) (b)

Person

(is married to) (hab a marriage history)

Spouse Ex-Spouses

(c)

Figure 18. Example of dependency conflict.

In SOM, each aspect relationship represents a unique relationship

between objects. When multiple aspect relationships exist between

objects, each aspect is represented as a unique association in SOM.

As it is clear from Figure 18c, they are different aspects of the object

PERSON, thus there is no conflict.

(3) Key Conflicts. Key conflicts occurs when different keys are used

for the same object by different applications. In SOM, all objects

have exactly one primary key and all other candidate keys are

registered as alternate keys (see Figure 19). Both the primary key

and alternate keys are treated equally, i.e., the same reference and

update constraints will be applied to either types. The most

frequently used candidate key will be selected as as the primary

key, although the final selection should be made by the database

administrator (or by the user group.)

26

Application A: Employee(emp-id);

Application B: Employee(ssn).

Object: Employee{ Attributes[Primary-key(emp-id),
Alternate key(ssn),

Descriptor(name, title, etc.),
Foreign-key(proj-id)

Figure 19. Example of key conflicts.

(4) Behavioral Conflicts. This type of conflict exists when the same
class of objects in distinct schemas have different access and update
policies. For example, a department object in one schema (schema A)
is allowed to exist without employees, whereas in another schema
(schema B), a department object will be deleted when it has no
employee. Assuming that either policies are locally correct, there are
two possible resolutions in SOM.

(i). Define one policy as the primary policy and the other one as the

exception case with an exception handling method. For example, if
the schema A is chosen to be the primary policy, then the
DEPARTMENT object class will be defined as:

Object: Department{

* Methods:

Member(Employee);
ExistencePolicy(deptjid, num-of.emp):

IF num_of_emp = 0 THEN SET(object_id, deletekey, TRUE);

27

Access_Policy(schemaid, access_type,
IF schema_id IN (exceptioncases) AND delete-key = TRUE
THEN Deny(schema-id, access-type) WITH Explain("The requested

object does not exist.");
)

With this definition, a delete mark (deletekey = TRUE) is put to the
DEPARTMENT object when it receives a message from the EMPLOYEE
object that indicates that the last employee of the department is
deleted.

In this way, the object is not physically removed, thus it is still
accessible through schemas which do not belong to "exceptioncases."

(ii). Create specializations if applicable. For example, if two subclass
objects, ACTIVEDEPT and NONACTIVEDEPT, are created, then the
schema A refers to the DEPARTMENT object in Figure 20 and the
schema B refers to the ACTIVEDEPT object in Figure 20.

Department

Active-Dept NonactiveDept

Figure 20. Resolution of behavioral conflicts.

If a behavioral conflict is resolvable by neither of the above
resolution, it must be resolved by the database administrator (or by
the user group.)

5.2. Hospital View Integration Example.

In this subsection, partial schema integration process from the

hospital view integration case study [Wu, 1989] is used to illustrate
conflict resolution using SOM. In the case study, there are three

28

database systems. They are the Hospital Information system (HIS)
database for the central management, the Radiology Information
System (RIS) database for departmental management, and the
Picture Archiving and Communication System (PACS) database for
specialized function.

HIS, RIS, and PACS database contains 22, 20, and 16 object classes
respectively, and they are partially depicted in Figure 21.

HIS RIS PACS

ReferringPhysician imageEquipment

Physician Equipment Patient

Patient I Patient

Exam I
Exam

Figure 21. Selected Object Classes for HIS, RIS, and PACS databases.

In Figure 21, HIS.Physician and PACS.Referring-Physician are defined

as

Object: Physician{ Attributes[Primary-key(physician-id),
Alternate_key(ssn, beeper#, home-phone#),
Descriptor(name, dept#, salary, sex, specialty,

years-of-experience)];
*Domain(University of Arizona Hospital physicians);
*Source(physicians master file);)

Object: Referring-Physician[Attributes[Primary-key(physician-id),
Al ternatekey(beeper#, home-phone#),
Descriptor(name, dept#, sex, specialty,
years-of-experience)];

*Domain(University of Arizona Hospital physicians);

*Source(physicians master file); }

I *

29

All attributes in PACS.Referring-Physician is identical to
HIS.Physician and both have the common domain and source;
therefore, PACS.Referring-Physician is a subset of HIS.Physician.
Thus an AccessPolicy method is added to the definition of HIS.
Physician.

Object: Physician{

*Methods:

AccessPolicy(schema-id, accesstype):
IF schemajid IN [PACS] THEN MASK(ssn,salary); }

Three Patient object classes are identical thus RIS and PACS refer to
HIS .Patient.

An object class "Exam" exists in RIS schema and PACS schema. RIS'
Exam is a scheduled exam and PACS' Exam is a performed exam
which contains the exam result. Thus they are not identical object
class. However, since their path names are unique, RIS.Patient.Exam
and PACS.Patient.Exam, they don't create the homonym problem in
the integrated schema using SOM.

HIS' Equipment and PACS' Image Equipment shares identical set of
attributes as shown below:

Object: Equipment{ Attribute[Primarykey(equipment-id),
A I tern ate-key(equ ipment name),
Descriptor(status, description)];

*Domain(central medical equipments);
*Source(central medical equipment resource file) }

Object: Image Equipment(Attribute[Primary-key(equipment id),
Alternate-key(equipmentname),

Descriptor(status, description)];

30

*Domain(radiology departmental image equipments);
*Source(radiology department medical equipment resource file)

Thus they are candidate for synonyms. However, they have

different domains and sources, hence they are not considered as

synonyms. Interviews with users on these object. classes revealed
that "Image Equipment" is a subset of "Equipment." However, all
image equipjnents in PACS are strictly departmental equipments and

are managed solely by the radiology department. Thus they are kept

as separate object classes in the integrated schema.

The resulting integrated schema is depicted in Figure 22.

SI

HIS RIS PACS

HIS.Physllan ImageEqulpment

Physician Equipment HIS.Patient

Patient I HIS.Patient

ExamI
Exam

Figure 22. The Integrated Hospital Schema.

31

References

[1] Batini, C. and Lenzerini, M., "A Methodology for Data Schema
Integration in The Entity Relationship Model," IEEE Transactions on
Software Engineering, 10(6), November 1984, pp. 650-663.

[2] Batini, C., Lenzerini, M., and Navathe, S.B., "A Comparative
Analysis of Methodologies for Database Schema Integration," ACM
Computing Surveys, 18(4), December 1986, pp. 323-364.

[3) Belogus, D., Zeigler, B.P., and Bolsoi, A., "ESP- an interactive tool for
system structuring," In Proc. of the European Meeting on Cybernetics
and System Research, Hemisphere Press, 1980.

[4] Chee, K.H., "SemTool: An Interactive Graphical Database Modeling
Software Using The Structured Entity Model Approach," Master's
degree project, the University of Arizona, MIS Department, March
1989.

[5] Dayal, U. and Hwang, H.Y., "View Definition and Generalization for
Database Integration in a Multidatabase System," IEEE Transactions
on Software Engineering, 10(6), November 1984, pp. 628-644.

[6] Desai, B.C. and Pollock, R., "On Schema Integration in a
Heterogeneous Distributed Database Management System," In Proc. of
Compsac '89, September 1989, Orlando FL., pp. 218-224.

[7] ElMasri, R, Larson, J., and Navathe, S.B., "Integration Algorithms
for Federated Databases and Logical Database Design," Tech. Rep.,
Hon.eywell Corporate Research Center, 1987.

[8] Higa, K., "Object-based Requirements Analysis for End-U
ser Database Development," working paper, Georgia Institute of
Technology, College of Management, March 1990.

[9] Higa, K. and Liu Sheng, O.R., "An Object-Oriented Methodology for
End-User Logical Database Design: The Structured Entity Model
Approach," In Proc. of IEEE Compsac '89, Orlando FL., September
1989.

[10] Motro, A., "Superviews: Virtual Integration of Multiple
Databases," IEEE Transactions on Software Engineering, 13(7), July
1987, pp. 785-798.

32

[11] Navathe, S.B., Sashidhar, Elmasri, R., "Relationship Merging in
Schema Integration," In Proc. of Conference on VLDB, Singapore,
August 1984, pp. 78-90.

[12] Schneyer, R., Modern Structured Programming, Mitchell
Publishing, Inc., Santa Cruz, CA. 1984, pp. 121-122.

[13] Smith, J.M., Bernstein, P.A., Dayal, U., Goodman, N., Landers, T.,
Lin, K.W.T., and Wong, E., "Multibase-integrating heterogeneous
distributed database systems," In Proc. of the National Computer
Conference, Vol. 50, 1981, pp. 335-347.

[14] Teorey, T.J., Yang, D., and Fry, J.P., "A Logical Design Methodology
for Relational Databases Using The Extended Entity-Relationship
Model," Computing Surveys, 18(2), June 1986.

[15] Wu, H.Y., "View Integration on a Hospital Case," case study
report, the University of Arizona, MIS Department, December 1989.

