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1. INTRODUCTION

Numerical simulation of the ram accelerator has been an ongoing research project at
the U'.S. Army Research Laboratory (ARL) since 1990 (Nusca 1990, 1991, 1992). Computa-
tional fluid dynamics solutions of the Navier-Stokes equations have been applied to turbulent
non-reacting and reacting in-bore flowfields for a ram accelerator projectile launch system.
Numerical simulations reveal in-bore flowfield details and provide comparizon with measured
launch tube wall pressures and projectile thrust as a function of velocity. Numerical sirnula-
tions are also used to investigate the ARL 120mm (bore diameter) ram accelerator system.
These simulations are used as a system design aid and as a means by which geomnetric and

fluid dynamic scaling phenomena are investigated.

For non-reacting flow simulations the Rockwell Science Center USA-PG (Unified Solution
Algorithm Perfect Gas) code is ised (Chakravarthy 1985,1989). In this code the Navier-
Stokes equations are cast in conservation form and converted to algebraic equations using
upwind and central finite differences and finite-volume formulations. The equations are
solved using a second-order TVD (total variation diminishing) scheme. The code 1s capable

of simulating mixed subsonic/supersonic flowfields.

For finite-rate reacting flow simulations the ARL-RAMCOMB (RAMjet COMBustion)
code (Nusca, May 1990) has been used. The steady 2D/axisymmetric Navier-Stokes equa-
tions are written in stream function-vorticity form and solved using a Gauss-Seidel relaxation
scheme. These equations include conservation of chemical species and reacting flow source
terms in the energy equation. Both one-step/global and three-step finite-rate reaction mech-
anisms for fuel (CHy) and oxidizer (O3) are considered. In addition. the latest versions of
the USA-series codes are being uttlized (Ota 1988, Palaniswamy 1989). These codes include
both equilibrium (USA-EC) and finite-rate (USA-RG) chemistry which is fully coupied to
the gasdynamics and are capable of time-accurate simulations. Comparison of results from
the USA-RG and RAMCOMB codes will be reported as well as comparisons between the
USA-EC code and finite-rate computations.

Results for the ram accelerator projectile excluding the obturator have been published
(Nusca 1990,1991,1992). These numerical simulations used non-reacting or reacting flow
codes (in the case of the reacting flow previons efforts used a coupling procedure for the
USA-PG and ARL-RAMCOMB codes) to simulate the effects of acceleration on the projectile
flowfield. Numerical simulations provided a possible explanation of the thrust /velocity curve
as well as data on the fluid dynamic and reacting flow scaling eflects. These results are not
repeated in the present report and the reader is referred to Nusca (Nov. 1991) for detaiis.

It is the purpose of the present report to investigate the projectile/obturator separation




and combustion starting process using non-reacting flow codes (USA-PG) as well as a fully
coupled finite-rate chemistry code {USA-RG). Whereas previous simulations have been for
steady and quasi-steady flows, the present report focuses on time-accurate predictions of

tune-dependent flow phenomena.

e ram accelerator projectile geometry used in these studies represents a simplification
of the actual configuration used for test firings. The actual projectile includes a set of four
bore-riding fins that extend from the point of maximum projectile diameter to the projectile
base and span the area between the projectile and the launch tube. Exclusion of these fins
permits a 2D/axisymmetric calculation and results in a significant computer time savin7s
over the full 3D numerical simulation. Such 3D simulations have been performed with the

present codes.

2. BACKGROUND

The ram accelerator technique was first investigated via experimental test firings at the
University of Washington (UW) (Hertzberg 1988, Bruckner 1988/1991, Krowlen 1992) The
UW ram accelerator facili'y uses a light gas gun (e.g. helium driver gas) to accelerate
projectiles up to 1300 m/s. The muzzle is connected to a perforated tube and cvacuation
tank which serve as a dump for the driver gas prior to entrance into the 16m long ram
accelerator tube. The accelerator tube, which can be divided into sections separated by
diaphragms, is filled with a pressurized fuel/oxidizer mixture and is instrumented at 40 axial
locations. Instrumentation consists of pressure transducers, fiber-optic light guides. and
magnetic transducers. Thin magnetic sheets are mounted in the nose-body joint and in the
base of the projectile (see Figure 1). When the projectile passes electromagnetic transducers
on the accelerator tube these magnets induce signals that are used to determine the distance-
time history (i.e. velocity) of the projectile. Projectile thrust is derived from the velocity
history. The ARL 120mm (bore diameter) facility is described by Kruczynski (1992).

The projectile consists of an axisymmetric cone-boattail body (blunt base) with stabiliz-
ing fins to center it along the launch tube axis (see Figure 1). The projectile is shaped like
the centerbody of a ramjct engine and is injected into a stationary tube filled with a pres-
surized gas mixture of hydrocarbon fuel (e.g. CH,), oxidizer and diluents such as CO,, N,
He, and Ar. There is no propellant on board the projectile. The tube resembles the outer
cowling of a conventional ramjet engine. When the injection velocity is greater than the
sound speed of the gas, a strong oblique shock system develops on the projectile which sus-
tains combustion around the projectile. In this way the energy release process travels along

with the projectile. Thrust is generated by the action of high pressure reacting gases on the




rear part of the projectile. Various combustion ignition mechaniiis hove been investigated
including a perforated pusher sabot. The initial gas pressure, fuel/oxidizer composition. aud
sound speed can be selected to achieve the desired acceleration and projectile velocity at tube
exit. Diluents are used to tailor the acoustic speed of the mixture so that the initial Mach
number of the projectile exceeds the minimum required (>~ 2.8) to start the diffuser (i.e.
projectile/tube clearance at maximum projectile body diameter) and tailors the heat release
of combustion to a level that stabilizes the shock system on the projectile body. Excessive
diluent results in low projectile acceleration levels, whereas insuflicient diluent concentration
can cause pre-ignition on the projectile forebody and deceleration. In addition. fuel lean

mixtures can result in ignition on the projectile forebody.

The total force on the projectile is composed of the drag force on the forebody and a
thrust produced by the high pressure combustion products on the projectile afterbody and
base. Normally a net thrust is obtained since the pressure of the combustion products is
higher than that of the compressed gases downstream of the nose shock. Gas mixtures with
higher heat of reaction yield greater net thrust. Significant combustion must occur only on
the afterbody of the projectile in order to maximize thrust since combustion on the conical
nose contributes to the drag force. As the combustion moves farther behind the cone-boattail
Junction on the projectile (throat), smaller fractions of the afterbody surface arca are exposed

to high pressure gases resulting in reduced thrust.

Several modes of ram accelerator propulsion have been investigated experimentally {Bruck-
ner 1988). The first mode applies to prujectile operating velocities below the Chapman-
Jouguet (CJ) detonation speed of the propellant mixture (Hertzberg 1983) which typically
ranges in Mach number from 2.5 to 4 for hydrocarbon fuels. In this mode. the thrust s
provided by the high pressure projectile base pressure resulting from a normal shock system
stabilized on the body by theorized thermal choking of the reacting flow at full tube arca
behind the projectile (see Figure 2). One theoretical model of the thermally choked mode
predicts that the normal shock recedes along the body as the projectile velocity increases
(Bruckner 1988). If the projec.ile afterbody were to taper to a point and the flow were invis-
cid. this normal shock would gradually fall back to the full tube area. A normal shock in a
constant arca duct. followed by heat addition and thermal choking in steady flow. constitutes
a CJ detonation wave. Thus, theory predicts that the thrust goes to zero as the projectile
velocity approaches the CJ detonation speed of a particular propellant mixture (Bruckner
1988). For projectile speeds as high as 85% of the CJ detonation speed of the mixture, UW
has observed that the thrust as a function of Mach number is indeed accurately predicted
by the one-dimensional theoretical model of thermally choked mode (Bruckner 1983). At

projectile velocities above 85% of the CJ detonation speed. however, the thrust typically




begins to exceed that predicted by the theoretical model, reaching a minimum at velocities
near 95% of the CJ detonation speed of the mixture, and then tends to increase with ve-
locity. This trend coincides with the experimentally observed combustion occurring on the
projectile body. Combustion on the surface of the projectile, as opposed to solely in the
projectile’s wake was proposed by the present author based on numerical simulations {(Nusca
1991). Experiments have shown that in this second mode called “transdetonative™ (v ically
Mach number 4 to G), the projectile can accelerate smoothly at or slightly above the CJ det-
onation speed of the mixture. For operating at higher Mach numbers, a “superdetonative”
mode has been investigated {Bruckner 1988). This mode operates at velocities greater than
the CJ detonation speed of the mixture. UW has proposed that this supersonic combustion
process involves shock-induced combustion, wherein the mixture is ignited by one of sev-
eral reflected oblique shock waves on the body. The supersonic heat release raises the gas
pressure on the afterbody of the projectile, resulting in thrust as reacted propellant expands

back to full tube area.

Typically, beyond the superdetonative mode, measured projectile thrust rapidly decreases
perhaps due to extensive combustion on the forebody of the projectile. Each of the propulsion
modes described above and observed in experiments at the UW has also been observed in
numerical simulations (Nusca 1990,1991,1992).

3. NON-REACTING FLOW SIMULATION

The Reynolds-Averaged Navier-Stokes (RANS) equations for 2D /axisvmmetric flow are

written in the following conservation form. The dependent variables u. v, and ¢ are mass-

averaged.
E)W+6F+OG+ G H 0 1)
b 2 _Zla=
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where a = 1 for axisymmetric flow and 0 for two-dimensional flow. Normal - =5 (¢), shear




stress (7 ), heat transfer (¢), and internal energy (e) are defined in Nusca (Nov. 1991). The

flow medium is assumed to be a perfect gas satisfying the equation of state,
p=pRT (2)

The following power law was used to relate molecular viscosity to temperature (Mazor 1985):

where p, = 0.1716 MPa, T, = 491.6 R, and n = 0.64874. The laminar and turbulent Prandtl
numbers, Pr and Pr,, were assumed constant with values of 0.72 and 0.9 respectively. The
ratio of specific heats, 4, was also assumed constant. The specific heat capacities at constant

volume and pressure, ¢, and c,, are related as v = ¢,/c, and R = (v — 1)c, /7.

Assuming a time-invariant grid and using the transformation of coordinates implied by
7 =t§ = {(z,y),n = n(z,y), Equation 1 can be recast into conservation form where £
and 7 are the new independent variables and z¢, 1, y¢. and y, are the four transformation

coefficients obtained numerically from the mapping procedure (Chakravarthy 1985).

oW 1
7 T Hoeg nF = 20G)e + (—yeF + 2¢G)a + Gy — H[y] = 0 (4)

The “Area” in Equation 4 denotes the area of the finite volume cell under consideration at

the time of discretization of the equations.

The shock/boundary-layer interference flowfield between projectile and launch tube as
wel] as the projectile wake can include regions of recirculating flow. Modeling of these regions
can be critical to the overall flowfield solution quality. However, most existing turbulence
models either do not treat such regions or do so in a semi-empirical fashion that is frequently
inadequate. To improve the predictive capability of separated flows using RANS codes a new
turbulence model has been deveioped (Goldberg 1986). The model is based on experimental
observations of detached flows. The model prescribes turbulence kinetic energy (k) and dis-
sipation (¢) analytically within backflows. A formula for the eddy viscosity (u,) distribution
within backflows is derived and used for the RANS equations when the calculations are done
inside separation bubbles. Outside of them, another turbulence model (Baldwin-Lomax,
1978} supplies the values of eddy viscosity. While the Baldwin-Lomax turbulence model is
used to detect flow separation and to initiate application of the backflow model, the latter

model can relocate the separation point.




4. REACTING FLOW SIMULATIONS

4.1 Chemical Reactions. Systems of chemical reactions are usually complex. A

hydrocarbon fuel, for example, may contain hundreds of distinct chemical species. During
combustion, numerous short-lived intermediate species are formed in addition to the final
products that include H,O and CO;. Any increase in computational accuracy by including
all intermediate species and reaction steps within the framework of a calculation could be
defeated by uncertainties in the thermodynamic, transport, and chemical-kinetic properties
of these species. In addition, the computational costs of a given reaction mechanism depend
primarily on the number of chemical species included, rather than on the number of reactions
(Westbrook 1981). It is possible to make useful predictions of combustion processes by
confining attention to a postulated global reaction between hydrocarbon fuel and oxidizer
that neglects intermediate steps (Westbrook 1981).

Fuel + 60, + Diluents = (1 + 6)(CO, + H20) + Diluents (5)

where ¢é is the stoichiometric oxidizer/fuel ratio. Several limitations of a global reaction model
should be noted (Rogers 1983). During the ignition delay period, when the complete reaction
mechanism will predict the gradual buildup of free radicals with little or no perceptible
temperature change, a global model will indicate an immediate exothermic (or endothermic)
reaction with resulting temperature increase (or decrease). Secondly, the adiabatic flame
temperature predicted by the global model will be higher than for the complete multi-step
reaction mechanism. This results from the fact that a global model does not include all
the product species actually present in the reaction. If very low pressures are avoided. the
discrepancy in flame temperature will not be significant (Rogers 1983). This overestimate of
the adiabatic flame temperature increases with larger equivalence ratio (fuel/oxidizer) and
is directly related to the amounts of CO and H, in the reaction products {Westbrook 1981).
In addition, flame speed tends to decrease with increasing pressure for most hydrocarbon-air
mixtures; thus, it may not be possible to reproduce both high and low pressure ranges with

a single reaction rate expression (Westbrook 1981).

Hydrocarbon reactions arc commonly used for ram accelerator testing at the University

of Washington (Bruckner 1988) for example.
5
;CH«a + 20, + 6N, (6)

The fuel equivalence ratio. ®. is a measure of the amount of {uel available for combustion.
When & = 1, the proportions of fuel to oxygen are stoichiometric. For ¢ values smaller
than unity fuel should be completely consumed. For the reaction stated above ¢ = 2.7
which is considered slightly outside the range of well understood CH4/O; chemical kinetics




(Anderson 1991). This reaction is one of a general class of hydrocarbon reactions investigated
by Westbrook and Dryer (1934),

b
CaHpOc + ;l;(a + g +¢)0; = aCO+ ;}120 {

-]

where elemental and diluent species Nq, C;, and H; are ignored thus (a=1, b=1, ¢=1),
CH4 -+ 202 = C02 + 21‘120 (8)

CH, is considered the fuel, O, the oxidizer, and products are CO, and H,0. A three-step
reaction mechanism has also been proposed by Westbrook (1991} in which CHy is oxidized
to CO and H, with subsequent oxidation of CO and H, forming CO; and H,0.

CO+10; = €O,
2H2+02 = QH;»O

4.2 Reaction Rates and Kinetics. Conservation of chemical species can be written

for each specie in Equations § and 9. Because a rate term is included the governing equations
are mathematically stiff. Stiffness can be defined as the ratio of the largest to the smallest
time scale. In reacting flows, time scales associated with chemistry tend to be much smaller
than time scales of the fluid motion, sometimes by orders of magnitude. In the present code
the stiffness problem is resolved by uncoupling the fluid dynamics equations from the species
conservation (rate) equations for a fixed number of numerical iterations (or sub-iterations
between time steps). then updating the rate terms. The reaction rate is defined (Westbrook
1981, 1984) using the Law of Mass Action and an Arrhenius expression for C, the specific

reaction rate constant.
N _ -E
R=C]]m} = AT exp (-—ﬁ) My, Mo, MEomi, (10)
1

where and N = 4 (for Eq. 8), AT is the collision frequency, the exponential term is
the Boltzmann factor, and E, is the activation energy. The reactant mass fraction terms
(mEH‘,mgz) for the 1-step reaction mechanism (Eq. 8) are raised to non-stoichiometric
coefficients in order to simulate the rate limiting step (CO+%02 = COz) of the 3-step
mechanism (Eq. 9). For reaction sets given by Equations 8 and 9, Westbrook (1977, 1981,
1984) specifies A, E,, ab.c and d with a = 0 and ® = 8.314 J/K-mole (sec Table 1).

Westhrook and Dryer (1981) used a simple procedure for obtaining the single-step reac-
tion rate expression (Eq. 10). Values for the concentration exponents a and b were held fixed




Table 1. Reaction Rate Equation Data

Reaction  E, (kcal/mole) A (moles/cm®s) a« b6 ¢ d
Eq. 8 30.0 8.3x10° -3 1.3 00 0.0
Eq. 9, step 1 30.0 8.3x10° 1.0 20 0.0 0.0
Eq. 9, step 2 44.7 3.0x10° 0.0 05 1.0 00
Eq. 9, step 3 37.6 1.0x10° 0.0 1.0 0.0 2.0

at the values stated above. They found that the relation a + b = 1 was necessary in order to
properly reproduce the correct dependence of flame speed on pressure for gas mixtures where
® is not unity. As expected the flame speed depends strongly on a for fuel-rich mixtures.
For a = —.3 the fuel acts as an inhibitor which matches observations for methane ignition
in shock tubes. The activation energy, E,, was also held fixed and the pre-exponential fac-
tor A was varied until the model correctly predicted measured flame speed for atmospheric
pressure and ® = 1. The resulting rate expression was then used to predict flame speed for
other values of pressure and ®. Each set of rate expression parameters was evaluated on the
basis of how well it reproduced experimental data (flame speed). The results showed that
varying E, from 26-50 kcal/mole (for Eq. 8) effected the flame thickness alone. Westbrook
(1981) suggests £, = 30 and 48.4 kcal/mole as the most appropriate values.

4.3 Governing Equations. The conservation equations for mass (global) and mo-

mentum are the same as those given in Equation 1. Additionally, for reacting flows, species
mass conservation is given by,

1{0 0
- {5; (rpum; +rJ;; ) + o- (rpwm, + rJJ_:)} -R,=0 (11)

where R; is the reaction rate per unit volume for species j. Energy conservation for a
compressible reacting, flow is expressed by the same energy equation as used for non-reacting

flow (see Eq. 1) if expressed in terms of the total enthalpy (h),

v. [p!7l~z+.]‘;+z:lzjj;+J_;-(u7",+v7"g+wﬂ)} =0 (12)
J

where J is a flux term for mass (J; = (pen/Re)Vm;), heat (J; = (pea/Pr)c,, VT), and

turbulence kinetic energy (Jx = (pert/Pr)VE). The mass fraction and molar specific enthalpy

for species j are m, and h;. respectively. Radiation flux is neglected in Equation 12.

In Equation 12 the shear stress (7) includes the Reynolds stress with an effective fluid

viscosity expressed as the sum of the molecular and turbulent viscosities, peg = u + .




A Wilke’s mixing law is used to compute the chemically reacting mixture viscosity. The
calorically perfect gas assumption can be made when the temperature dependence of ¢,, for
the reactants and products is not well determined. The specific heat can also be formulated

using an explicit temperature dependence obtained from tabulated data (Stull 1971).

c,,,/?)_E = A1 + AQT + A3T2 + A.;TJ + A5T4 (13)

For N species only N — 1 specie equations must be solved, since the sum of the mass
fractions must equal unity. In effect the global continuity equation is the N'th specie equation
since the summation of all specie equations yields the continuity equation. The mixture

equation of state for a thermally perfect gas follows from Dalton’s Law,
N
= .
= pRT> 14
p=p XJ: M, (14)

where ® = RY; M;, M; is the molecular weight of species j, and R is the specific gas

constant. Mixture temperature (T') is obtained from the definition of the stagnation enthalpy,

i—TN oAy vZ ol A i

=T em -] T e w g s w DA o)
with V = (u? 4 ©? + w?)!/?, and V is the magnitude of the turbulent (fluctuating) velocity.
The Schmidt number (Sc) is assumed to be unity. The Prandtl number (Pr) is assumed to
be nearly unity (.9) which is considered adequate for gaseous flows even with combustion
(Bradshaw 1981). Mixture viscosity {u) i1s defined using Sutherland’s expression (Ames
Research Staff 1958) for T < 3400R and using Equation 3 for higher temperatures.

A two-equation turbulence model has been suggested by Kim and Chung (1989) for
reacting flows. This model describes the turbulence viscosity () as a function of turbulence
kinetic energy (k) and dissipation rate (€¢) as g, = pCazk?/e. A set of partial differential

equations is written for k and e.

ok ok 10 ok
ety =tz (w3e) + 7 ()] =6 "
Jde de 1[d Je d de -
moge o=+ [as (we) + o ()| = 2 o
_C]GC Czpé o
B=——-— (18)

G ow\’ ou\? u\? Ow  Gu\’
=)+ (3) )+ (53 (19



where, pr = g+ pf A pte =+ pe/ A, A = 1,0 = 1.3,Cy = 1.44,C; = 1.92, (3 = .09.
These equations are solved along with the Navier-Stokes equations. Boundary conditions
for k and € are k = 0,¢ = .056u(du/dy)?/p for solid walls and k = 1079V2 ¢ = k}°/L for

freestream. Initial conditions are k = kyo, € = k5C7%3/(.37208Re™"1).

8. NUMERICAL ALGORITHMS

The spatial discretization technique for the equations of motion must be reliable and ro-
bust if it is to successfully capture the complex physics of in-bore projectile/launch tube in-
teracting flowfields. The TVD formulation for the convective terms along with a special treat-
ment of the dissipative terms provides an appropriate simulation. In recent years, TVD for-
mulations have been constructed for shock-capturing finite-difference methods (Chaxravarthy
1985). Near large gradients in the solution (extrema) TVD schemes automatically reduce to
first-order accurate discretizations locally while away from extrema they can be constructed
to be of higher-order accuracy. This local effect restricts the maximum global accuracy possi-
ble for TVD schemes to third order for steady-state solutions. TVD methods manifest many
properties desirable in numerical solution procedures. By design they avoid numerical oscil-
lations and “expansion shocks” while at the same time being of higher-order accuracy. TVD
formulations are also based on the principle of discrete or numerical conservation which is
the numerical analog of physical conservation of mass, momentum, and energy. Thus, TVD
schemes can “capture” flowfield discontinuities {e.g. shock waves) with high resolution. At
a fundamental level they are based on upwind schemes; therefore, they closely simulate the
signal propagation properties of hyperbolic equations. Schemes based on the TVD formula-
tion are completely defined. In contrast, schemes based solely on central differences involve
global dissipation terms for stability and have one or more coefficients that must be judi-
ciously chosen to achieve desirable results. Any conventional time discretization method
suitable for the Navier-Stokes equations can be used together with this space discretization

methodology; for example, approximate factorization and relaxation techniques.

5.1 Flowfield Grids. Computing in-bore projectile flowfields is complicated by the

multi-wall geometry. The ram accelerator projectile consists of several sharp corners that
would severely hamper conventional grid generation schemes that require one set of grid
lines to be tangent to surfaces and another set to be normal to them. This geometry is
more ecasily gridded by the zonal approach. The internal gcometry of the ram accelerator
launch system in broken up into three zones of simple geometric shape (zone 1 between the

projectile and the launch tube, zone 2 in the projectile wake and zone 3 aft of the obturator).
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An algebraic grid is generated in each zone with clustering near surfaces and other regions
in the flowfield where high gradients are expected. The zonal boundaries are transparent to
flowfield phenomena (e.g. shock waves). The actual grid used for these computations (=~
56,000 nodes) consisted of the following dimensions for zones 1 and 2/3: 26ix41, T41x61.
The computational domain starts a small distance forward of the body and extends 4.5
projectile body lengths downstream. The computational results were found to be essentially
independent of further grid refinement when all other factors were the same. A dense grid is
preferred for resolving flow details within boundary layers, to prevent shock smearing, and

to resolve shock/boundary-layer interactions.

6. RAM ACCELERATOR CONFIGURATIONS

For the simulation of projectile/obturator separation, the University of Washington
38mm system shot CS10 (N; gas fill) was used (Knowlen 1992). The projectile consisted of
a 12.5-degree, 65mm long conical forebody and 6.25-degree, 50.8mm long conical afterbody.
The projectile base diameter was 17.8mm. The obturator was 14.2mm thick (12 grams)
and consisted of 5mm diameter holes, 19 in number or approximately 33% porous. For the
reacting flow simulations, the projectile consisted of a 10-degree, 33mm conical forebody and
8-degree, 7T1mm conical afterbody. The obturator was 16mm thick and consisted of 5mm
diameter holes, 19 in number or approximately 33% porous. For comparison to the ARL
120mm ram accelerator system these 38mm system configurations were not simply scaled
but the actual 120mm system geometry was used. The projectile consisted of a 10-degree,
261mm conical forebody and 4-degree, 261mm conical afterbody. The obturator was 112mm
thick (1.1915 kg) and was assumed to be of the same porosity as the 38mm system. In all

configurations the projectile fins were ignored as well as the non-porous obturator backplate.

7. RESULTS

Simulation of the projectile/obturator separation (ignoring the separation of the solid
obturator backplate) was accomplished by assuming that the projectile and obturator were
mated as they entered the accelerator tube from the launch tube. Simulation of the launch
tube section of the system is addressed by Nusca (Oct. 1992). The velocity of the projectile
as it traversed the accelerator tube was measured for the University of Washington’s shot
CS10 and was specified in the simulation. Separation of the obturator due to the aero-
dynamic forces acting on both sides of the disk was simulated by computing a obturator

force coefficient as the time-accurate simulation was run. This coefficient along with the
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obturator mass was used to update the obturator position (and re-grid zones 2 and 3 of the
computational domain) with respect to the projectile, during the run. The simulation was
stopped periodically (corresponding to the location of measurement stations on the Univer-
sity of Washington’s system) to examine the accelcrator tube wall pressure and compare to
measured data. The results included in this report focus on the first two stations (i.e. up
to .751m from the entrance) although the simulation was run for 3.0m along the accelera-
tor tube (6m in length). For CS10 the tube was filled with nitrogen gas at 35 atm. The
entrance velocity of the projectile/obturator was taken as 1335 m/s (from measurements).
The 120mm system used for comparison has a fill pressure of 68 atm and entrance velocity of
about 1200 m/s. The numerical simulation was performed from the fixed projectile reference
frame with the accelerator tube moving at a fixed (or variable) velocity along with a slug
of gas upstream of the projectile. As a result, the boundary layer on the accelerator tube
wall does not form until the first shock reflection. The holes in the obturator were treated

by assuming uniform porosity of 33%.

Figure 3 shows the projectile velocity versus distance along the accelerator tube as mea-
sured at the University of Washington (shot CS10) used for the simulations. The computed
obturator velocity, initially the same as the projectile’s rapidly decreased as measured but at
values about 15% higher. For the 120mm system, the obturator velocity is about 10% lower
indicating that it separates more slowly. This is not only due to the mass of the 120mm sys-
tem obturator but the lower pressures on the obturator surface (relative to those in the 38mm

system). Scaling of the fluid dynamics has therefore not been completely accomplished.

Figure 4 shows the computed obturator force coefficient as a function of separation from
the projectile. Initially the force is high, but as the obturator separates from the projectile
this force decreases (relief effect) and then increases with separation distance. The shielding
of the obturator from the oncoming flow (relative to the projectile-based coordinate system)
is gradually removed and the drag rises. The force on the obturator for the 120mm system,
for the same relative separation distance, is slightly smaller initially and slightly greater at
larger separation. This indicates a lower initial obturator surface pressure, as mentioned

previously.

Figures 5 illustrates the flowfields over the projectile/obturator configurations at mea-
surement stations 1 and 2 (as well as pre-station 1) in the 38mm system. These pressure
contours highlight areas of large pressure gradients and show that the projectile base flow is

effected by the presence of the obturator.

Figures 6 and 7 show the accelerator tube wall pressure as measured in the University of

Washington’s 38mm system and computed in the ARL simulation. Figure 6 shows station 1
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{just after entrance to the accelerator tube) pressures where the obturator is computed to be
located approximately 78mm (67% projectile length) behind the projectile base (note that
the projectile is .116m long). Pressure rises over the projectile are indicative of nose-shock
reflections from the tube wall. These pressures are smaller than measured due to the absence
of the projectile fins in the simulation. The double pressure peaks in front of the obturator
location are seen in the measured and computed data. As indicated previously the obturator
is slightly aft of the measured location (higher velocity, see Figure 3) in the simulation. The
smaller pressure computed behind the obturator location is due to the downstream boundary
condition imposed (i.e. tube fill pressure as opposed to gas pressure with venting created by
the launch/vent tube which was not part of the present simulation). Figure 7 shows results
for station 2 where the obturator is computed to be approximately 240mm (200% projectile
length). The overall pressure levels are lower and the agreement between measured and
computed data is better. The measured pressure rise at about .25m in Figure 7 occurs at
about .28m in the simulation. The back pressure mismatch is again due to the downstream

pressure boundary condition.

Figures 8 and 9 compare the computed accelerator tube wall pressures for the 38mm
and 120mm systems. Due to the different projectile lengths, the x-axis has been made
nondimensional. The gas pressure in the 38mm system was 35 atm while the 120mm system
was charged to 68 atm. Since the 120mm system projectile has a different forebody angle
(see section “Ram Accelerator Configurations”™) the pressure spikes are larger and at slightly
different locations for this system. The pressures in the vicinity of the obturator are slightly
lower for the 120mm system at station 1 (Figure 8) but slightly higher at station 2 (Figure 9},
which is consistent with the data in Figure 4. As the obturator separates more significantly
from the projectile (Figure 9) trends in pressure levels (downstream of the projectile) are
comparable for the two systems. This reflects the fact that some fluid dynamic analysis has
been used in the design of the 120mm system projectile in order to achieve a good scaling

match to the 38mm system.

Figure 10 shows the results from a projectile/obturator separation simulation for reacting
flow, methane/oxygen/nitrogen mixture at 12 atm fill pressure in the 38mm system. The
projectile/obturator gcometry is slightly different (as detailed in the last section). In this fig-
ure the obturator is computed to be approximately 56mm (37% projectile length of 154mm)
behind the projectile base. The computation is for finite-rate chemical kinetics (three-step
global model). Computed pressures before the reaction zone (before about .12m in the fig-
ure) compare well with measured data. In the reaction zone pressures are slightly smaller
(due to the simplified chemical kinetics model) for the computation. Pressures near the

obturator location are similar to measurements with smaller back pressure since the launch
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tube section has been ignored (see previous discussion). Figure 11 shows the projectile thrust
in the 38mm system as a function of velocity. Overprediction of the thrust is expected to be

corrected when more detailed chemistry models (i.e. more reaction steps) are included.

8. CONCLUSIONS AND FUTURE WORK

Computational fluid dynamics solutions of the Navier-Stokes equations have been applied
to both non-reacting and reacting in-bore flowfields for a ram accelerator projectile launch
system. Good comparison between computed and measured pressures for non-reacting flow
in a 38mm system was achieved, including the investigation of geometric scaling to a 120mm
system. Previous publications by the ARL have focused on the simulation of projectile flow
phenomena in the accelerator. The present work represents numerical simulation of pro-
jectile/obturator separation and the starting mechanism after projectile/obturator entrance
into the accelerator tube. Good agreement with measured pressures during obturator sep-
aration has been achieved. Application of more detailed reaction kinetic models. as well as

the investigation of the launch/vent tube (pre-accelerator) sequence, is warranted.
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q

R
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Sc
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LIST OF SYMBOLS

cross sectional area of launch tube

specific heat capacity, constant p

specific heat capacity, constant volume

specific reaction rate constant
specific total internal energy
activation energy

flux vectors (Eq. 1)

molar specific enthalpy

total enthalpy

flow rate or flux

turbulence kinetic energy
total body length

species mass fraction
molecular weight
stoichiometric coefficient
number of species

static pressure

Prandtl Number, pc,/x

heat transfer rate

radial direction

reaction rate per unit volume
specific gas constant, (v — 1), /7
universal gas constant, R, M,
Reynolds Number, pV L/u
Schmidt Number, p/F

time

static temperature

thrust
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u axial velocity

v radial velocity

% magnitude of the local velocity vector
w dependent variable vector (Eq. 1)
z,y cartesian coordinates

Greek Symbols

« parameter (Eq. 1, 10)

¥ ratio of specific heats, ¢,/c,

r diffusion coefficient

) stoichiometric oxidizer/fuel mass ratio

€ turbulence dissipation rate

7 transformed coordinate

IS heat transfer coefficient

It molecular viscosity

£ transformed coordinate
density

o normal stress

T transformed time

Trr shear stress tensor

T shear stress vector

¢ fuel equivalence ratio

Superscripts

unit vector
total or stagnation

rate
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Subscripts

eff

S I R

3]

8 T D 3

effective

enthalpy

j-th mixture component or species
turbulence kinetic energy

constant pressure

radial component or radial direction
turbulence quantity

constant volume

z-direction

axial component

turbulence dissipation rate
7-direction transform coeflicient
azimuthal component

¢-direction transform coefficient

freestream quantity
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