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PREFACE

The 1992 U.S. Army Edgewood Research, Developr-ent and
Engineering Center (Edgewood RDEC)* Scientific Conference on Obscuration
and Aerosol Research was held 22 - 25 June 1992 at the Edgewood Area
Conference Center of Aberdeen Proving Ground, MD. The Conference is held
annually, the last full week in June, under the direction of Dr. Edward Stuebing,
Research Area Coordinator, Aerosol Science. This report was authorized under
project number 10161102A71A, Research in CWICB Defense.

The Conference is an informal forum for scientific exchange and
stimulation among investigators in the wide variety of disciplines required for
aerosol research, including a description of an obscuring aerosol and its effects.
The participants develop some familiarity with the U.S. Army aerosol and
obscuration science research programs and also become personally acquainted
with the other investigators and their research interests and capabilities. Each
attendee is invited to present any aspect of a topic of interest and may make
last minute changes or alterations in his presentation as the flow of ideas in the
Conference develops.

While all participants in the Conference are invited to submit papers for
the proceedings of the Conference, each investigator, who is funded by the U.S.
Army Research Program, is requested to provide one or more written papers
that document specifically the progress made in his funded effort in the previous
year and indicating future direction3. Also, the papers for the proceedings are
collected in the Fall to allow time for the fresh ideas that arise at the Conference
to be incorporated. Therefore, while the papers in these proceedings tend to
closely correspond to what was presented at the Conference, there is not an
exact correspondence.

The reader will find the items relating to the Conference itself,
photographs, the list of attendees, and the agenda in the appendixes following
the papers and in the indexes pertaining to them. Please note, due to the recent
reorganization of the Chemical Research, Development and Engineering Center,
the terms CRDEC and Edgewood RDEC have been used interchangeably.

The use of trade names or manufacturers' names in this report does not
constitute an official endorsement of any commercial products. This report may
not be cited for purposes of advertisement,

*When this work was performed, Edgewood RDEC was known as the U.S. Army
Chemical Research, Development and Engineering Center, and the Point of Contact
was asbigned to the Research Directorate.

3



This report has been approved for release to the public. Registered users
should request additional copies from the Defense Technical Information Center;
unregistered users should direct such requests to the National Technical Information
Service.
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PROCEEDINGS
OF THE 1992 SCIENTIFIC CONFEREACI

ON OBSCURATION AND AEROSOL RESEARCH

I. AEROSOL DYNAMICS

The Effect of Interparticle Forces on Powder Spraying

by

H. Littman and M. H. Morgan III
Department of Chemical Engineering

RPI, Troy, N.Y. 12180-3590

A. Material properties rel, vant to transporting fine powders.

In all of our research, we have never had any difficulty transporting aeratable

particles into a transport line from a hopper. However, when interparticle forces

become large the material behavior can change from fluidized (behaving like a fluid)

to solid (behaving like a solid). Solid typ- or cohesive behavior is apparent in Fig. 5 of

the paper by Pacek and Nienow (Powder Tech., 1990) where lines of fracture can be

observed in powders. For spraying particles, this cohesive behavior is undesirable

because it makes it difficult if not impossible to obtain sprays consisting of individual

particles.

The isostatic tensile stress, o.. of an unconsolidated bulk powder of mono-sized

spheres is related to the interparticle contact force F., by the equation

1-s k(s) F0go - (1)q r0 c dp2

where (1-e) is the solids fraction, k(c) is the coordination number which is associated

with the number of points of contact a particle has with n, ighboring particles and dp

is the particle diameter. F0 is the cohesive force at particle contact points in the

powder which can arise from a variety of czases, for example, chemical (van der

Waal's) forces, electrostatic forces, etc, Clearly the laiger the interparticle contact

force the larger the isostatic (or apparent) tensile str' ss of the powder. Eqn (1) shows

that ao also increases with the solids fraction and as the particle di aleter decreases.

The fact that aOo varies inversely with the square of the particle diameter is quite

important since changing from a 1 mm to a 1 gim particle increases the apparent

tensile stress by a factor of a million.

_ _ = = = -9



The material properties of a bulk powder involve ao and the angle of internal

friction, *. These material constants are distinctive for every powder and relate the

shear stress in the powder, "cf, to the compressive stress on the powder, a when the

powder is just abo'lt to slide. Thus the yield locus of the powder is

.f = pt(Y+ao); 1i = tan ; a __ 0 (2)

where pt is the coefficient of friction. There aie mechanical -ests for measuring ti, and

0o is obtained by extrapolation of the -tf vs a measurements (Rietema, 1991 and

Broi.n and Richards, 1970). For a non-cohesive powder, ao 4s z,ýro and,

the classical law of friction is obtained between the shear stress and compressive

loading as

f p.g ;.=tan a; c 0 (3)

An important fact of considerable importance practically is that prior history of

tue powder affects the material contants in Eqn (2). If, for example, the particles are

compacted for storage or shipping they may not behave in the same way Ofter the

shipping container is opened. The flow behavior of a cohesive powder depends on its

previous loading history.

Brown and Richards (1970) define a Coulomb powder as a rigid-plastic powder

with a linear yield locus (Eqns 2 and 3). The term plastic is appiied to the powder if

sliding takes place when the shear stress applied equals the shear strength of the

powder. The terr, elastic refers to a material which returns to its original shape after

the load is removed.

B. Description of the stress field at a point in the powdei (Mohr Circle).

The stress field at any point in a bulk powder is commonly presented in terms

of a Mohr circle diagram. To keep the discussion as simble as possible, a planar stress

field will be described. The Mohr circle diagram plots the tangential (or shear) stress

10



vs. the normal (compTessive) stress at a particular point, P(x,y), in the bulk powder.

These stresses vary with the orientation of the plane passing through P as seen in

Figure la.

Consider an element of solid mass located at point P(x,y) in the bulk powder.

The four faces of the planar element are located parallel and perpendicular to the

Cartesian unit vectors i and j as shown in Figure lb. On each face there are normal

(compressive) and tangential (shear) stresses and Figure la shows a face of arbitrary

orientation.

The stress tensor, a, can be represented relative to the i and j unit vectors for

the case of plane stress as

G xx I I + TXy I J + Tyx j I + Gyy j j (4)

where the tensor is symmetric, that is,

txy = "yx (5)

and we will assume that

Oxx > 0 yy (6)

The principal stresses are the eigenvalues of the matrix

xx 'TxY (7)
t•yx c3yy

Following the method given in Kreyszig (1962), the principal stresses are

X(2) and X(2) = + j Y + tx y (8)

where •(1) > %(2). Note from Eqn (8) that %(1) + X(2) = axx + cyy.

11



Along the principal axes of stress there are no shear stresses so that

o = (1)i'pip + X(2) -' J' (9)

The matrix of this tensor is

oM 0( (10)

Comparing the matrices in Eqns (7) and (10), we see again that the sum of the

elements along the diagonal is invariant [Ox, + 0 yy = %(1) + X(2)].

The normal stress along a plane of arbitrary orientation (ac in Figure la) is

obtained by well known tensor operations. Let o'xx represent the normal

(compressive) stress along an arbitrary plane passing through P(x,y).. Then

=

=!-x + 2 ,J + (!-x -a ))cos 20 + r,,y sin 20 (1- 2 + 2

The corresponding tangential stress E 'xy is

OX+ X' + YY) sin 20 + cxy cos 20 (12)
= - 2

where 0 is the angle between i and 1' as shown in Figure Ia.

Along the principal axes, c'xy is zero so that Eqn (12) gives for 0 Op

12



tan 20 - (O - Oyy) (1)

Eqn (13) shows the principal axes are always 900 apart. The principal axes of stress

have been obtained by simply rotating the i and j axes to the plane on which the

shear stress, i'xy is zero.

Suitably squaring Eqns (12) and (13) and combining them, the following

equation of a circle is obtained

O'xx- ( 2xx + a 2 + Xy KX X 2 + Txy2 (14)

The center of the circle is 2XX+ YY 0) and its radius OXX "+ r'Ey2]1/2J2 K 2+ xy "

This is the equation of the Mohr circle seen in Figure 2.

To understand the construction of the diagram note that t 'Xy is zero along the

principal axes so that points A(1) and A(2) represent the principal stresses X(l) and

X(2). The point, E, locates the center of the Mohr circle. The ray ED is the angle (OP -

it/2). Passing from PI to P2 on the Mohr circle must involve an angle change of in 0

of ic/2 because the principal axes are 900 apart (I' to -jp'). Thus points on the circle,

for example, C are located 20 from the principal axis, Op .. 2

If we let the point, C, represent the normal and tangential stresses Oxx and 'txy

on face 1 (0 = 0) in Figure 1, the distance CD must be t,:y and the distances on the EDC

triangle related by the equation

[(o 2 T XY2 (ED) 2 + Cxy2 (15)

Cxx - CTYYTrherefore ED 2 The distance OD therefore represents the stress

13



( 2 + 2XX = 0 xx (16)

In a similar fashion, it can be shown that the distance OF represents the stress Txy and

the point G, the stresses on face 2 (a plane rotated 90' from the plane of face 1).

Points on the circle counter-clockwise between C and G represent a rotation of the

plane of arbitrary orientation by n/2. This coincides with conditions on face (4) in

Figure lb.

C Failure in a bulk powder

The Mohr circle diagram represents the state of stres; in a powder at any point,

P(x,y), along various directions through P. The powder will slide when tf equals r'xy.

If the compression on the powder is raised, the radius of the Mohr circle increases.

There is clearly some compressive stress where the conditions for sliding oc.ur.

Geometrically this is the state for which the yield locus is tangent to the Mohr circle at

a particular point. Figure 3 shows that the powder cracks in shear along the plane 0

equals Of where Of = [Op - nt/2 + 1.

D. Cohesive forces in a consolidated bulk powder

The cohesive force, F0 , at a particle contact point in an unconsolidated powder

arises as previously mentioned due chemical (van der Waal's), electrostatic, or other

forces. Molerus (1975) has formulated the dependence of the cohesive force, F, at a

contact point in a consolidated powder as a function of the compressive normal force

causing the consolidation as

F = F0 + aN (17)

where F0 and ox are material constants cf the powder. The variation of F with N in Eqn

(17) shows how the cohesive force increases as the normal stress at the contact point

increases. One example of such behavior is seen in Figure 4.

14



The compressive force, C, at the contact point in the consolidated medium is

therefore N + F so that we can write

C = FO+(I+ a)N (18)

and by similarity with Eqn (2)

"tfc = tan[ id2J [N + (Fo+ aN)] (19)

where "tfc is shear stress in a consolidated bulk powder when it is just about to slide.

There is an increase in the apparent tensile stress of the powder due to the aN

term which is envisioned as being caused by changing the effective contact point area.

If the applied stresses to the bulk powder are compressive then from Eqn (11)

we can write that alfong an arbitrary plane that the force at the contact point is

N(0) = FM + FR cos 20 (20)

where FM and FR are Mohr circle parameters. The shear force is

I T(0)I = I sin 201 (21)

and thus the limiting condition for sliding is

FRI sin 201 _• (I + a)(FM + FR cos 20) tan (22)

We can define the effective friciton angle as

tan 0, = (1 + c) tan 0 (23)

Thus we have presented a theory for a consolidated bulk powder such as would

be obtained by compressing it for shipping and storage. The basic material

parameters would have to be obtained experimentally.

15



E. Electrification of bulk powders and hazards

Bulk powders passing through transport pipes become triboelectrically

charged due to frictional contacts of individual particles with the wall. High charge

densities in the range of 1 to 100 .tC/kg are generated which cause effects that are

generally undesirable. In bulk they cause individual particles to stick together

making it difficult to feed them into the transport pipe. In the line, they cause

increased pressure drop and make dispersion as individual particles difficult if not

impossible. Finally, there are hazards of dust explosions and spark ignition in bulk

powder piles within containers.

Charge generation and accumulation requires contact between electrically

dissimilar surfaces and high electrical resistivity on one of the surfaces (Gibson,

1983). Moving bulk powders have much make and break interparticle and particle-

wall contacts particularly in the feeder to our transport pipe. The detailed

mechanism of charge generation is not fully understood, nor is the interparticle

contact force predictable with any accuracy because particle shape and surface

properties are important factors in determining this force. Whatever experiments are

done with pure substances and clean surfaces, the fact remains that in practice one

has to deal with the realities of surface contamination, impurities, and absorbed or

adsorbed species. The level of elect'ification in particular processes using particular

equipment must in the end be determined by experiment or estimated from the

literature (Gibson, 1983).

To limit charge buildup, conductors such as pipe walls are grounded. The

earthing condition requires that the leakage resistance to earth be less than 100/

charging current. The 100 constant arises from the fact that 100 V is the minimum

potential at which an incendive discharge can occur. Since the maximum value of the

charging current in industrial processes is 104 A, a resistance to earth of less than 106

Q' will preclude dangerous charge accumulation (Gibson, 1983).
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Grounding is not the answer when non-conducting materials such as. plastics

are used. The 27 g.tC/m 2 figure at which air breakdown occurs (Blyth and Reddish,

1979) is reachable in practice. To minimize this problem, plastic surfaces should be

located where substantial charge generation cannot occur and conducting plastic

materials employed wherever possible.

Glor (1987), in agreement with Gibson (1983), states that within the

transport pipe the charge on the powder is not hazardous but maintains that

incendive sparks or brush discharges can occur due to charges on the pipe if the wall

is non-conducting or conducting but ungrounded. In addition, a grounded conductive

pipe can become hazardous if covered by an internal coating of high dielectric

strength.

The charged bulk powder after passing through the transport pipe becomes

hazardous in a pile within a container. Its bulk density has increased over that in the

pipe and the powder is now charged. If the particles are non-conducting, the charge

will be retained on them for a long period of time and the electrostatic energy within

the pile will present a hazard. This energy, if released within a small volume by an

electrostatic spark, may be hot enough to ignite the powder.

Charges can leak off through the pile by conduction, or through corona or

brush discharges which neutralize charge through highly localized air breakdown

followed by ionization of the gas (Jones and King, 1991). If the conduction is modeled

as ohmic, the charge relaxation time tr = K co y where K is the dielectric constant E0 is

the permittivity of free space and y is the bulk resistivity in ohm-meters. A

relaxation time of 1 second is considered safe. Polymer particles such as polyethylene

have relaxation times of the order of 104 seconds. Charge leakage can be increased

by raising the humidity above about 60% and by the use of thin grounded metal rods

(< 3 mm in diamter) which promote corona discharges.

17



E. Electrostatic force on a particle

Electrostatically active powders such a starch and cabosil can produce about

103 i.C of charge per kg of agitated powder (Eden, 1973). For a 20 Aim sphere with a

density of 3000 kg/m 3 , he calculates the charge per particle as about 10-14 C. The

electrostatic force between the particle and the wall is 1.43 x .0-8 N which is 116

times the gravitational force. This indicates that the particle will stick on the wall.
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ELECTROSTATIC SMOKE (FOG) CLEARING
IN ENCLOSED CHAMBERS

Z. Zhou, W. McLeod, R. Shaffer, and D. Reidy
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ABSTRACT

Smokes or fogs (aerosol clouds) have been cleared up using a method
based on electrostatic precipitation in enclosed chambers. The
visibility of the smoke or fog has been measured as a function of
time betore and after the electrostatic precipitation. The results
show that electrostatic precipitation is effective in clearing
smokes and fogs (aerosol clouds). Further work is needed to extend
the chamber results to outdoor field tests.

INTRODUCTION

Some major accidents generate hazardous smokes or fogs (or aerosol
clouds) which decrease visibility and thus present dangers. These
smokes or fogs (aerosol clouds) need to be cleared up quickly.
Currently, a variety of approaches exist to clear the smokes or
fogs (aerosol clouds). They are generally classified into four
categories: 1) direct removal of aerosol particles from the cloud,
such as electrostatic precipitation, 2) coagulation and subsequent
sedimentation, such as various agglomeration methods, 3)
evaporation of droplets if the smoke is formed by liquid aerosols,
such as light heating, and 4) dilution of smoke or aerosol clouds.
Among these four general approaches, the first method based on
electrostatic precipitation, is considered highly effective [1],
[2]. Smoke or fog clearing experiments in enclosed chambers were
conducted using electrostatic precipitation with a point source
corona discharge.
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EXPERIMENTAL

The experiments were conducted in a chamber of 13.4 M' (3.4M x 2.1M
x 1.9M) for red phosphorous smoke (RP smoke) and in a chamber of
0.7 M' (1.2M x 0.76M x 0.76M) for a fog (liquid aerosol). The
experimental set up is given schematically in Figure 1. The
measurement equipment includes a helium-neon laser (X = 633 nm) at
one side of the chamber and a photodiode at the other side. The
laser light enters from one side of the chamber, passes through the
smoke or aerosol cloud, comes out from the other side and there is
detected by the photodiode. The intensity of transmitted light is
quantified and fed into a personal computer for data processing.
A corona discharge device (a point source) close to the chamber
wall is used to generate ions inside the chamber. The ions collide
with and attach themselves to the aerosols. Then, the charged
aerosols drift and deposit onto the walls under the influence of an
electrical field established between the corona discharge point and
the ground.

CLEARING OF RED PHOSPHOROUS SMOKE

The red phosphorous smoke is generated inside the chamber by
burning approximately 1.4 gram of red phosphor. After the burning,
the chamber is filled with opaque red phosphorous smoke with
transmissivity about 20%. A mixing fan is running all the time
throughout the experiments to keep the smoke uniform inside the
chamber. The smoke transmissivity increases slowly with time,
typically at a rate below 3% over i()OU seconds, due to coagulation.
After the ions are introduced in the chamber by corona discharge
(rate of input electric charge is 43 gA), the smoke precipitates
dramatically to the walls under the influence of the electric
field. This is evidenced by the rise of smoke transmissivity
inside the chamber and directly from the fact that the wall is
covered with a thin layer of smoke particles after the
precipitation.

The result is given in Figure 2. For 4 minute long introdutition of
ions into the smoke chamber, the ligh- transmissivity of the smoke
increases from 23% to 67%. Ten minutes after thp introduction, the
transmissivity increases to over 80%. For 2 minute long
introductions, the light transmissivity increases from 21% to 47%.
Ten minutes after the introduction, the transmissivity increases to
57%.

CLEARING OF LIQUID AEROSOLS (FOG)

Liquid aerosols (fog) are generated by the evaporation and
condensation of a water-based glycol mixture, which is used for fog
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generation. A ROSCO fog machine [3] is used in the experiments.
A fog of approximately 0.5% transmissivity is generated inside the
chamber for the experiments. The electrical corona current in
electrostatic precipitation (rate of input electrical charge) is
varied from 5 gA up to 28 pA while transmissivity of the smoke in
the chamber is monitored constantly throughout the experiment.

A typical plot of smoke transmissivity in the chamber as a function
of time is given in Figure 3 for I = 10 gA. An expanded view of
smcke transmissivity as a function of time is given in Figure 4.
The corona discharge starts at time 36.67 min. and ends at 41.67
min. The time it takes to clear the aerosol cloud in the chamber
from 0.5% to 90% of transmissivity are 4.8 minutes at corona
discharge current of 5 AA, 3.0 minutes at 10 AA, 1.8 minutes at 20
AA, and 1.8 minutes at 28 AA.
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ABSTRACT

In a Langmuir trough, the gas to liquid condensed (G/LC)
phase change of 1-octadecanol monolayers occurs near 0.220
nm 2/molecule. This phase change is also associated with a dramatic
reduction in the transport of water through the monolayer. We use
0220nm2/molecule and the initial octadecanol concentration in a
drop to predict the surface area (S.) at which the change in
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evaporation rate should occur. When we compare our measured
values for the surface area at which the evaporation rate change
occurs (Sm) with Sp, we see the G/LC phase change occur at Sm/St,
values between 0.1 and 0.3. As we add Eu34(EDTA) at concentrations
between 1.0x10- 6 and 2.0x10-4 M, we see the S./S,. ratios rise
asymptotically to 0.6. Increasing the initial pH .-f a drop to 6.0
reduces Sm/Sp at all Eu(EDTA) concentrations. These results are
accounted for in terms of multilayers of octadecanol on the drop
surface created by a delayed G/LC phase change, and heterogeneous
nucleation of the G/LC phase change by the Eu(EDTA).

INTRODUCTION

Studies of monolayer phases and their effects on mass
transport are usually carried out with a Langmuir trough.J, 2 The
results of such studies are reported in terms of surface pressure-
area (I[-A) isotherms and/or monolayer resistivities (R) . The
results of Costin and Barnes link the resistivity increase in a
pure octadecanol monolayer with the gas to liquid-condensed (G/LC)
phase change 3 which occurs at A values near 0.220nm2 /molecule. The
study by Marsden and Schulman 4 shows that fatty alcohol. monolayers
are not affected by pH changes between pH=2-10.

In these experiments, we monitor the evaporation of an
acoustically levitated waterdrop and use the change in evaporation
rate to pinpoint the G/LC phase change. When we compare the
measured drop surface area at the G/LC phase change with that
predicted using 0.220nm2/molecule, we find that the phase change
occurs at surface areas that are 1.5 to 10 times smaller than the
predicted values. We also find that this number varies
asymptotically with Eu 3÷(EDTA) concentration and shows a pH
dependence. In contrast to the drop results, we have obtained 9-A
isotherms for octadecanol on pure water and on water containing
2.0x10-5 M Eu(EDTA) and find them indistinguishable from the
literature results. 5

EXPERIMENTAL

The apparatus, which uses an acoustic standing wave to
levitate -2mm diameter drops in the jet of a wind tunnel has been
described in detail.i For these experiments the gas jet is dry
nitrogen to which water vapor is added to produce -30% relative
humidity. The gas stream temperature is 20.3'C. Production and
handling of the stock solutions has also been described
previously.' The working solutions all contain 1.2 mole% ethanol,
2.85xl0- M octadecanol, and Fu(EDTA) between 0.0 and 2.0x!0- M.
Drops are placed in the acoustic trap with a syringe. Backlit
drops are imaged with a video microscope whose output is digitized
and analyzed at specified intervals to provide drop volume and
surface area measurements.
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RESULTS AND DISCUSSION

Figure 1 illustrates a typical drop evaporation history. In
this figure, we see a drop whose evaooration is indistinguishable
from pure water for the first 750s. At that time a sudden
decrease in evaporation rate occurs. The Lanqmuir trough results
suggest that this change in evaporation rate corresponds to the
G/LC phase change. Thus, we associate the surface area measured
at this time, S., with the area occupiea by the octadecanol
monolayer. Since the number of octadecanol molecules in this
monolayer will depend on the octadecanol concentration and the

-nitial drop volume, we report the ratio Sm/S,), which is
independent of our experimental parameters. The quantity Sp is
calculated from the octadecanol concentration in the working
solution (2.85xi0- 4 M), the initial drop volume, and
0. 220nm2 /molecule.

Figure 2 summarizes the drop history results. Here we see
that the S%/SP ratios increase with Eu(EDTA) concentration and this
increase tends toward an asymptote near 0.60. We also see that
increased pH produces smaller S-iSp ratios at constant Eu(EDTA)
concentration and that the data get very noisy as the Eu(EDTA)
concentration vanishes.

There are three possible interpretations for SI/SP, ratios less
than unity. First, ratios less than one suggest that less than
100% transfer of the octadecanol in the stock solution to the drop
surface. Such would be the case if octadecanol "comes out" of
solution in the working mixture which is only 1.2 mole% ethanol.
This explanation, however, does not account for the dependence in
Sr/Sp on Eu(EDTA) . Another possibility is that the Eu(EDTA)
increases the solubility of the octadecanol. Were this true, we
would expect a decrease in Sn/Sp with Eu(EDTA) concentration.
Additional evidence against a change in solubility comes from our
7t-A isotherm measurements on ultrapure water and on 2.0x10- 5 M
Eu(EDTA)/water. For both substrates, the isotherms are
indistinguishable from the results of Harkins and Copeland., ThPe
increase in Sm/FS) with Eu(EDTA) concentration could be explained if
the inorganic complex gets incorporated into the monolayer.
However, surface tension measurements for the ultrapure water and
the 2.0xl0-', M Eu(EDTA) solution give 72 and 71 dyne/cm2

respectively. This small change precludes surface activity.
Also, >2% Eu(EDTA) in the monolayer would limit the evaporation
rate change after the G/LC phase change. We see no increases in
the final evaporation rates when drops containing Eu(EDTA) are
compared with drops of pure water.

The second explanation postulates the formation of
octadecanol micelles. In this scenario, the G/LC phase change
occurs whenever micelle diffusion has brought enough octadecanol
to the surface to produce a condensed monolayer. The addition of
Eu(EDTA) would then reduce micelle size and increase the micelle
diffusion rate. Our literature searches have uncovered no
evidence for micelle formation by fatty alcohols.
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The final hypothesis is that the G/LC phase change requires
nucleation. In a levitated drop of pure water there are no walls
or barriers to help orient the octadecanol molecules and act as
heterogeneous nucleation sites. Thus, the phase change is delayed
waiting for homogeneous nucleation events and we build up
multilayers of octadecanol on the drop surface prior to the phase
change. The addition of Eu(EDTA) provides heterogeneous
nucleation sites which lie below the surfactant layer and
therefore, expedite the G/LC phase change without effecting the
monolayer's transport characteristics.
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ABSTRACT

The problem of scattering and absorption of electromagnetic radiation by particles can be solved
analytically for only the simplest cases, but established numerical methods allow a straightforward
extension to particles with arbitrary inhomogeneities, arbitrary shapes, and nonlinear response. In
this paper a recently developed frequency domain method involving CFD techniques is reviewed
and applied to the problem of a dielectric sphere of arbitrary size parameter. Numerical results
showing good agreement with analytical solutions for size. parameters over 20 are given. Results
obtained suggest that finite element methods have promise for analytically intractable
scattering/absorption problems and show that the Debye amplitude formulation of the problem
offers great advantages in a numerical scher and that, contrary to the naive view, as we show
here, negligible error is introduced in going I, on the Debye amplitude formulation to field
observables , such as the source function.
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Mie theory exactly describes the absorption and scattenng of a plane electromagnetic wive

by an isotropic, dieltctric sphere of arbitrary size and refractive index 1 ,2. This conceptually simple

analytical solution is well known, but it involves cumbersome computations. However, many

problems of interest do not readily admit inalytical calculation. If a systematic numerical rather than

an analytical approach is taken, the extension to particles with arbitrary inhomogeneitics, arbitrary
shapes, and nonlinear response is -pparent -ince the general governing equations and the solution

technique remain unchanged.
If one takes a nu.nerical approach to solving the light scattering problen., the extension to

particles with arbitrary inhomogeneities and arbitrary shapes is straightforward since the governing

equations and the solution technique iemain unchanged. For comparable electromagnetic wave

scattering problems in radio and microwave engineering, differential methods have been used
predominantly 'Bates, 1975). Finite difference methods and finite element methods are typical

differential solution techniques, and both ,can be applied to the Maxwell equations in their time-
domain or frequency-domain form. While these methods have been applied in various disciplines

for some time fTaflove, 1988; Taflove, 1975; Taflove, 1989; Umashankar, 1982; Lynch, 1985;
Lynch, 1990; Kerner, 1986 ), they have not been adapted to study the absorption and scatteing of

light by,, small particles.
In the majority of past work, the problems have been solved in terms of the vector field

variables (E,H) that aie oscillatory in nature over the infinite domain of the scattering problem.
The difficulty of modeling these oscillations is removed in this study by reformulating the problem

in terms of the Debye amplitude (DA) fntctions as described below. AXother complication in

scattering problems is the treatment of the particle interface and the determination of the internal

fields. This issue has been considered in previous time-domain (Lynch, 1990) and frequency-

domain {Lynch, 19851 solution methods, although many past investigations involved perfect
conductors (no internal fields).

The preferential use of frequency-domain or time-domain methods has not been

established. Frequency-domain approaches are generally *nore accurate and require less
computation time, but time-domain methods typically require less memory and permit easier

handling of material interfaces (Lynch, 1990; Taflove, 1975). In this study the frequency-domain

Maxwell equations are solved.

The advantage of finite element methods uver finite difference techniques lies in geometrical

flexibility;; finite elements can better l:,ndle irregular domains (Lee, 1990). Since one of the

goals of this investigation is to allow for the extension to particles of ar*Uitrary shape. a finite

element method is used. No complete finite element analysis approach to this problem has been

published previously (cf. Morgan and Mei, 1979).
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Previously a finite difference method was applied to the problem of a linearly polarized

plane electromagnetic wave scattered by a perfectly conducting sphere'. The results demonstrated

the applicability of computational fluid dynamics (CFD) methods to the basic scattering problem.

This work differs importantly from this previous work in that the finite element method is

consistently applied, and we use Galerkin's formulation to the whole domain of calculation, and

dielectric particles are considered. Previously Morgan and Mei (1977) used a hybrid nAethod with

a Fourier expansion of the fields to get trial functions with expansion coefficients found by their

so-.alled "unimoment" method. Theirs is not a true finite element formulation of the problem and

extension of their method may not be straightforward and might prove to be problematic; it cannot

apply to nonlinear problems. Our true finite element formulation is described, followed by

presentation of results of comparisons between analytical and numerical solutions,

The problem to be solved consists of a plane polarized wave incident on a dielectric particle;

only linear scattering is considered. Assuming exp(-icot) dependence for all fields, the electric and

magnetic fields, E and H, must satisfy the vector wave equations both inside and outside the

particle, with a requirement that the tangential components of E and H must be continuous across

the surface of the particle 2 and the Sommerfeld radiation condition3 requires that the scattered fields

represent divergent traveling waves as r -4 ,o.

By introducing two auxiliary scalar functions, the electric and magnetic Debye potentials, u

and v, in the usual way4,5,6 , it is possible to reduce the vector wave equations to a set of

uncoupled scalar wave equations.

Since the field variables are oscillatory in nature over the infinite domain it is advantageous

to reformulate the problem once again, this time in terms of a generalized amplitude function which

eliminates the oscillations due to the incident field 7; use of these Debye amplitude functions(DAs)

is an essential step in a numerical approach. Wwe have found no important degradation in

accuracy in recalculating the field observables, such as for example the source function. By

making use of the superposition property of the fields, the Debye potentials outside the particle can

be decomposed into incident and scattered components. The scattered components then are written

as:

Us = os sin 0 fs( r, 0 )eik'r
(k) 2  r)

,S = 1~t2 sin 0 sin 0f'( r, 0) e" 0•v- - 2,z r
(klF (2)

where '"I denotes the exterior region and "lI"will denote the interior region and k2= okp.
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f (r,O) is theDA. Similar expressions can be written for the potentials inside the particle. It should

be noted that the formulation of equations (1) and (2) inherently restricts one to the consideration of
only axisymmetric problems, For asymmetric cases the 0 dependence of the Debye potentials can

not be, factored out explicitly and one must solve forf (r,O, 0).

By substituting equations (1) and (2) into their respective scalar wave equation, it can be
shown that the problem to be solved is

-V2Vlik)-2CQf ik L+Ie &ý- t+ ik~f ) ei k' rik2 _2_ ) = 0

r2 D r Ctr T r2)(3)

(r2  ae r ( Dr r2(4)

The boundary conditions are, in terms off I andf 2:

ei k•. Olf 11n. ei ký eyf -E=_NK

sin0 (5)

ei k' G~flei k'FIf S =WI
sin 0 (6)

E ar /I r I sine0 r (7)

& 2 ar 2 91I sin 0 Dr (8)

where

W(r,O)=eikrcOsO - cot -c2 2
sin 022 22 (9)

and the radiation condition can be expressed as
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lirn °f- 0  lirn af_2 = 0

r-4-0 Dr r-oo ar (10)

Equations (5) through (9) are formulated for a spherical particle, with radius "a". For the gene,,.

asymmetric problem, equations (5) through (9) kust be satisfied at all (x,y) on the particle surface
and the partial derivatives are given by Vf, n.

The system of equations is solved numerically on a Cray Y-MP8/864 by a finite element

method with 9-node Lagrange quadrilaterals 8 using the subroutine HCGBLE, part of the Boeing
Computer Services mathematical library 9. A multiplier method10 is used to enforce the jump in

solution across the particle boundary, which must coincide with element boundaries. The radiation
boundary condition is imposed at a finite artificial surface (r << ,0) with good accuracy by using a

second-order approximation to the Sommerfeld condition 11. Both the radiation boundary condition

and the jump in flux condition are incorporated into the weak forniulation of the differential

equations.
Initial investigations have been performed for a linearly polarized plane wave with a

wavelength of 10.591 g.m, incident on a spherical water particle that has a refractive index of

1.179+0.071 i. The particle was isolated and surrounded by air, assumed to have a refractive index
of 1.0. Size parameters that were studied range from 2.97, to 21, which correspond to water
droplets having diameters of 10.0 lim to -80.0 g.m.

Results are presented for the 70.0 g.m case in Fig. 1. These results were obtained using a

26x45 uniform mesh having a maximum grid radius of twice the particle radius and required -55

seconds of CPU time (including output time for results,with a code that has not been fully
vectorized) to determitie bothf1 andf 2 over the entire domain. Fig. I depicts three-dimensional
views of the numerical and analytical solutions of the real part off,. In these graphs the incident

wave propagates in the positive z-direction, from the left foreground to the right rear. The particle

is centered at the origin which is at the center of the plot, and the x- and z-axes show distances in
micrometers. By comparing the top and bottom pictures, the excellent agreement between the two
solutions can be seen. Plots of the imaginary part offI and the real and imaginary parts of f2 show

similar agreement.
It is not necessary to rely on subjective impressions of agreement between exact and

numerical solutions; one quantitative measure of the error of the numerical solution over its

domain is given by the mean-square, or L2 , norm 8, which is defined for complex functions as
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ABSTRACT

The existence of similarity of the statistical properties of the fluctuations of
line Integrated Concentrations (IC) across plumes diffusing in grid-generated
turbulence is reevaluated using new data. It is shown that the lateral
distributions of the mean values of IC, as well as those of the relative
fluctuations and of the autocorrelation functions, are approximately similar at
all distances from the source. The distributions of the rms/mean values of the
fluctuations and those of the intermittency show, however, a dependence on the
distance from the source, but appear to be approximately similar in the range
20 < x/M < 100 where M is the grid mesh size. Based on these new data and
findings, the development of a comprehensive model for IC fluctuation is planned.

INTRODUCTION

Interest in the dynamics of obscuration by aerosol plumes have led the authors
to undertake a series of systematic studies [1-5] on the nature of line
integrated concentration fluctuations across plumes from point sources diffusing
in shear flows and in grid-generated turbulence. Perhaps the most surprising
finding of these studies has been an observed approximate similarity of the
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statistical properties of the IC fluctuations in the range 20 < x/M < 100
downwind of an M = 3 in. grid. The main goal of this investigation was to
further explore the existence of similarity of the statistical properties of
integrated concentration fluctuations across plumes and to provide new data for
the planned future development of an extensive model of IC fluctuations.

TYPICAL RESULTS

From measurements of IC downwind of a 3 in. grid and a 14 in. grid, the
dimensionless parameter IC* = IC U M/Q, where Q is the strength of the source and
U in the mpan velocity, was calculated. The lateral distributions of its mean
value, ICM (y), at different distances were found to be closely Gaussian:
ICM*(y) = ICM*(O) exp[-y /(2a )], where a(x) is the lateral length scale of the
mean plume.

Typical variations of IC* versus the dimensionless time T* = tU/M, at
approximately the centerline of the plume are shown in Figure 1. The figure
depicts the increase of the time scale of the fluctuations with the distance.
Typical probability distribution functions P(a), which describe the probability
that the ratio of the instantaneous value of IC to its mean is larger than a
given value a, along the centerline of the plume are plotted in Figure 2. They
show that the IC fluctuations at different distances are not similar. However,
it is observed that at large distances from the source, the effect of the
distance becomes milder. For example, the P(a) curves at x/M = 36 and 102 are
very close to each other.

Figure 3 shows the values of the intermittencies -y for the measurements downwind
of the 14 in. grid and downwind of the 3 in. grid. It appears from the data that
the distributions of I at x/M = 2.07, 4.215 and 8.43 are approximately similar.
The distributions of -( at x/M = 36 - 102 downwind of the 3 in. grid are also
similar but much larger, and for y/u < 1 the value of f in this range is about
1. The measurements at x/M = 17 downwind of the 14 in. grid and those at x/M -
20 downwind of the 3 in. grid are quite scattered but appear, on the average, to
be closer to those measured at larger values of x/M.

The distributions of the relative rms values of the fluctuations of the
integrated concentrations, ic*'(y/o)/ic*'(0), at different distances from the
source, are shown in Figure 4. The data exhibit a close similarity of the
relative rms values. The distributions of ic '/ICM , however, were found to
depend on the distance.

Of great interest are the autocorrelation function R(T) of the fluctuations of
IC where r is the time difference. Its value for R(O) is always 1 and its limit
for large r is zero. Figure 5 shows the distributions of R at the centerline of
the plume plotted versus the dimensionless time rU/a. The figure demonstrates
a remarkable similarity of the autocorrelation function at all distances, except
at x/M = 2.07. It indicates that the time scale of the fluctuations at all
distances is proportional to o/U, namely to the time that a fluid parcel with a
longitudinal dimension of a passes a stationary point.
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DISCUSSION

Similarity of dispersing plumes in turbulent flows is defined as the existence
of similar dimensionless cross-wind distributions of the statistical properties
of the concentration field at different distances which are independent of the
distance from the source of the plume. Different levels of similarity may exist,
from a similarity which is limited to the mean values of the concentration fiei.1,
to a similarity of all the statistical properties of the fluctuating
concentration field.

The existence and the level of similarity is of great theoretical and practical
significance. Its theoretical significance is that it exhibits a moving
equilibrium of the flow of the diffusing plume, in which the conditions upstream
are mostly irrelevant, so that dimensionless distributions based on local
velocity and length scales are similar or self preserving [6]. It also indicates
that the various turbulent processes, which are expressed by the various terms
in the equation for the mean and fluctuating quantities, are in equilibrium. The
practical importance of similarity is that it permits formulation of simple
prediction models. The advantage of such models is so great that a similar
(Gaussian) model has been adopted for use in most air-pollution models, even
'though it is well recognized that the vertical mean concentration distributions
in most cases are not similar and depend on the distance from the source.

When analyzing the dynamics of plumes diffusing in turbulent flow, one may
distinguish between an instantaneous plume (typical lateral length scale a1) and
a mean plume (typical length scale a). The fluctuations of the concentrations
at a point are viewed to be a result of the meandering of the instantaneous plume
and the concentration fluctuations within the instantaneous plume. A similarity
of concentration fluctuations within a certain range implies that the ratio cij/a
remains constant within that range. Theoretical considerations [7] suggest that
a. and a grow at different rates at different distances from the source, and that
tie relative role of the meandering reduces with the distance. Very close to the
source, at least for ideally small sources, the fluctuations are primarily due
to meandering caused by relatively large eddies. At very large distances, when
the size of the instantaneous source becomes large compared to the size of the
turbulent eddies in the flow, the effect of meandering decreases, the ratio ai/a
approaches one, and the relative magnitude of the fluctuations decrease.

Indeed, the measurements reported are consistent with such a model. The measured
values of -y are smaller at small distances from the source. As seen from Figure
3, the value of -f at the center of the plume in the range 2.0 < x/M < 4 is about
0.75. Namely, for 25% of the time the entire plume was at either side of the
centerline of the plume. At larger distances from the source, x/M > 20, f was
I at the entire central region of the mean plume - 1 < y/or < 1, and intermittency
due to meandering was noticed only at the edges of the plume. Clearly, this
observation indicates that the fluctuations near the source are primarily due to
the meandering of the instantaneous plume. It also indicates that the average
ratio of a /a increases with the distance from the source and stays approximately
constant for 20 < x/M < 100.

Now, in spite of the lack of similarity of the probability density distributions
of the IC fluctuations, the measurements exhibit a universal similarity of a few
functions of the fluctuations. First, the distributions of the mean values
ICM(y) are always similar and can be described by a Gaussian function. Then, the
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distributions of the rms of the fluctuations at all stations appear to be similar
(Figure 2). On the other hand, the distributions ot the ratio of the rms to the
mean ic '/ICM , was found to depend on the distance. These findings suggest that
for x/M > 20, some of the instantaneous plumes are close to the size of the mean
plume. Thus, they increase the mean value of IC without contributing to the rms
of the fluctuations.

It was also surprising to find that in spite of the absence of similarity, the
autocorrelations at all stations, except very very close to the source, were
proportional to the local length scale u and similar to each other. Since R(T)
is based on the correlation of the fluctuations, namely the deviations from the
mean, the result is consistent with the existence of similarity of the rms values
of the fluctuations.

We have concluded earlier that the autocorrelation curves suggest that the
instantaneous plume disintegrates into patches with relatively high
concentrations separated by entrained air with zero or small concentrations. The
similar autocorrelation curves indicate that these patches pass a given line
normal to the flow within a period of the order of 2 a/U, at all distances from
the sources. This observation also suggests that the break up of the
instantaneous plume is caused by relatively large eddies, which also determine
the meandering of the plume and its mean size. The dominant role of the large
eddies in determining the meandering, or equivalently, the breakup of the
instantaneous plume and its diffusion, is probably the reason for the observed
similarity between the fluctuations of the Vertical Integrated Concentration
across plumes diffusing in a boundary-layer flow and the fluctuation of IC across
plumes diffusing in grid-generated turbulence (4).

Clearly, the investigation has yielded a detailed view of both the dispersion
process and the characteristics of the fluctuations of integrated concentrations
across plumes. Hopefully, a relatively simple model could be developed, using
the data collected in this research, which would describe the dynamics of plumes
diffusing in different types of flows. A development of such a model is planned.
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ABSTRACT

The fractal properties of integrated concentration fluctuations across a plume
diffusing in grid-generated turbulence are analyzed. Two regions are identified
in which a fractal process and a subfractal process of fluctuations exist,
respectively. It is planned to compare the singularity spectrum and the fractal
dimensions of simultaneous records of velocity and integrated concentration
fluctuations and to simulate numerically the diffusion in a fractal velocity
field.

INTRODUCTION

The fluctuations of physical properties in turbulent flows, such as local
velocities, concentrations at a point or integrated concentrations along a line
in space, are an inherent part of such flows and of great interest in many
applications. Since turbulence has been shown to exhibit properties of fractals
(Mandelbrott, 1974), fractal atialysis has been used to explore measurements of
such fluctuations in order to gain new insight and better understanding of their
nature. Fractal analysis derives parameters which are related to the geometry
of the fluctuating signals, such as the Fractal Dimension Db, and has thus been
used to study cloud structure, flame surfaces and velocity and concentration time
series. In cases where the energy spectrum of time series is described by a
power law with an exponent 0, the value of fl can be related through a singularity
spectrum to the fractal dimension. Special attention was given to the
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multifractal nature of energy dissipation rate (Meneveau and Sreenivasan, 1987)
and scalar dissipation rate (Prasad et al., 1988) in various turbulent flows,
using the formalism of the singularity spectrum f(ci) that was suggested by Halsey
et al. (1986).

Recently, Stiassnie (1991) proposed a somewhat different formulation of a
singularity spectrum, which is designated by F(t). For a fluctuating signal
y(t), the value of a, the singularity strength, is associated with the rate at
which the derivative of the signal tends to infinity. For a turbulent signal one
expects y(t) to have different values of e at different times. Thus, y(t) may
be viewed as a union of an infinite number of subsets, each having a typical
singularity strength a with a singularity spectrum F(a). The Fractal Dimension
Db, is related to F(a) by

Db = I - al + F(al), (1)

where a, may be defined by F'(a,) = 1.

A multifractal process is an indication of spectral density power law k"O, and
it can be shown that the spectral exponent 0 is related to F(al) by

= 3 - 2Db + 2F(al). (2)

ANALYSIS OF INTEGRATED CONCENTRATION FLUCTUATIONS

We have examined measurements of Vertically Integrated Concentrations (VIC)
across a plume from a continuous point source diffusing in grid-generated
turbulence (Poreh et al., 1990).

A significant length scale of the dispersing plume is its lateral length scale,
oy. As shown by Poreh et al. (1990), the fluctuating VIC signal exhibits an
approximate similarity, within a large range of distances from the source.
Namely, its statistical properties are functions of y/uy, and practically
independent of the distance.

Figure I shows the dimensionless spectral energy density of the VIC fluctuations
r2

S* = S(n)U/aO2vica], where S(n) is the spectral energy density plotted versus m*
= noJU. The spectral energy distribution suggests that the VIC spectrum is
characterized by two regions. The transition between the two regions is around
m* = noJU = 1. In Region II, which corresponds to length scales between about

and oya (0.2 < n* < 1), one finds a negative spectral exponent close to 5/3,
similar to what is usually obtained in records of velocities and concentrations
in the inertial subrange and between some bounds of wave numbers in measurements
of cross-wind integrated concentrations of plumes in the atmospheric boundary
layer by Bowers and Black (1985). The energy spectrum for these measurements was
calculated by Hanna and Insley (1989). In Region I, that corresponds to length
scales between 0.3o (which corresponds to the Nyquist frequency of the
measurement, and which is longer than both the IR beam diameter and the smallest
eddy in the field) and a , one observes a spectral exponent of 1J/3. One may
conclude that in Region I, the spectral density of VIC fluctuations is the same
as that of the concentration fluctuations at a point, since the line of
integration crosses at each instant only one large eddy. In Region I, on the
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other hand, the integration of the point concentrations with a spectral exponent
5/3 law is the cause for an attenuation of the spectral exponent to a (5/3+2)
law.

As noted earlier, a spectral power law is an indication of a fractal nature. If
our VIC record would have been a monofractal set, we would expect it to have a
fractal dimension of 0 = (5 + #)/2, which yields a value of 2/3 in the Region I,
and a value of 5/3 in the Region II. Similarly, one expects in our case to have
a singularity or Lipschitz-H6oder (L-H) exponent -e = 2 - D which yields values
of 4/3 in Region I, and 1/3 in Region II. But, since our VIC records are
embedded in a two-dimensional space, its fractal dimension must be limited
between the limits I and 2, and its L-H exponent between 0 and 1. Thus, we
conclude that the process in Region I is subfractal, whereas the process in
Region II is fracial.

Independent fractal analysis of the same signal shows that the fractal nature of
the VIC fluctuations corresponding to Region II is characterized by D = 1.62
(±0.03), al = 0.343, F(a) =0.963 and, according to Eq. (2), = 1.693, which
is very close to the value of 8 = 5/3 = 1.667.

DISCUSSION

Analysis of VIC fluctuations across a plume diffusing in grid-generated
turbulence identifies two subdomains. The first is related to integrated
concentration fluctuations and may be described as a subfractal process, whereas
the second one is related to point concentration fluctuations and may be
described as a fractal process.

Our analysis indicates that the VIC fluctuations, in the range where they also
describe concentration fluctuations, are multifractal dnd singular everywhere.
These conclusions were derived from the singularity spectrum F(a) of the record.
The F(a) spectrum is related to the scaling properties of the "statistical
moments." The first two "moments" are related to the fractal box-dimension and
to the spectral exponent, respectively. For the given VIC record, in the range
which reflects concentration fluctuations, we found that D- 1.62 ± 0.03 and

= 1.69. These values are in agreement with the corresponding results from the
box-counting algorithm and from spectral analysis.

Figure 2 shows the singularity spectrum f(a) for the VIC data together with
spectra of other turbulent variables in different flows. It shows that the
calculated f(c) curves for VIC are more similar to the corresponding curves of
velocity fluctuations, than with those of passive scalar fluctuations.

In the future we plan to compare F(a) curves from simultaneous records of
velocity and VIC fluctuations. This will give a better understanding of the
scaling nature of turbulent fluctuations in general and of passive scalar
fluctuations in particular. It is also planned to simulate numerically the
diffusion of particle, in a fractal velocity field.
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ABSTRAGI'

The Center for Electro-optics and electrical engineering department. at the University of'
Nebraska-Lincoln recently acquired from TMA (Toomay, Mathis, and Associates) a TASC (True Angle
Scatter Coordinate system) optical, polarimetric scatterometer. This instrument measures the 4 x 4
Mueller (Stokes) matcrix as well as the Bidirectional Reflective Distribution Fuictions (BRDF) that
completely characterize scattered light reflected from or transmitted through electromagnetic media
with irregular boundaries. The incident and scatter directions can be chosen airbitrarily in 47r.

FUTURE WORK

The scatterometer in conjunction with a scanning tunneling/atomic force microscope will be
used to validate different analytical/numerical solutions to a broad class of electromagnetic scattering
problems by relating electromagnetic scattering data to ground truth measurements in controlled
laboratory experiments.

1. INTRODUCTION

The Stokes vector polarmetrically characterizes 'ight.1'2 . The Mueller matrix relates the
incident Stokes vector to the scattered Stokes vector. In most applications of light scatter only a few
erements of the Mueller matrix are used to determ•ine how light is imodified upon interaction with
electromagnetic material. For example, in ellipsoinetry3- only the relative intensity and the relative
phase of the vertically and horizontally polarized specularly reflected light. are measured, and usually in
remote sensing only the four components of the modified Muoller i'atrix that relate to the vertically
and horizontally polarized intensities are retained.

The TASC instrument produces six incident Stokes vectors and measures six corresponding
reflected/transmitted Stokes vectors. Through combinations of these measurements all sixteen
elements of the Mueller matrix are determined, the eduiidancy in the number of measurements is used
to minimize errors. One of the unique aspects of this instrument, is that the receiver can be rotated in
and out. of the plane of incidence (defined by the incident electromagnetic wave vector and the normal
to the mean surface). Thus bistatic measurements call be made in 47r. Two coherent light sources
(A = 0.6328 pm and A = 1.063 pni) are currently used in the operation of the scatteronmeter. The
instrument can be retrofitted to include additional light sources.

2. SYS'I'EM D)ESCRIPI'rlON
4

The system is designed such that the transmitter can rotate in an arc ill a vertical plane while
the receiver can rotate in both vertical planes aud horizontal planes (with respect to the mean plane of
the sample). The sample is at a distance of 50 cm from the receiver. It is oriented such that the
normal to the niean plane of the sample is alonig the z-axis (see FiKure 1). The sample holder catn
rotate the samiple in the x-y plane to vary the aziinut ;i a ngle (C') of the incid(et wave vector.
Variation of the incident. wave vector in the y-z planto (0- < 0' < +135' with respect to the' z-axis,
Figure 2) is achieved by rotating the opticalI table on which t he sources are mounted. T'he receiver (in
the scattered direction) can rot'ite inl an 180' arc (nmeasnired fromi the 'Z-axis), thus thec ilevation angle
(Of) of the srattered wave vector is varied. The receiver is rotated ini the x-y plane by the receiver armi
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rotating in a 180' arc around the z-axis, tdius tile azitnuthII algle (c)J) of tie scattered wave vector is
varied. The sources are aligned such that the beams have a commnomi path upon exiting the beam
combiner (Figure 3). The system is currently excited by 2 laser sources (see Table I).

- source #I source #2
Laser ty~pe: lleNe "Nd:Yag
Wavelength (,ur): 0.6328 1.063
Power, mW (CW'): 7 10 "

Table 1. Laser sources.

Upon transmission through the beam combiner, the beam encounters a calcite polarizer which
is used to set the polarization state of the beam before it enters the source polarization optics. The
beam is chopped (by an AC synchronous motor turning fan-like blades) in order to detect the scattered
signal. The beam is partially deflected to a reference detector to account for laser power fluctuations.
This reference power is also used as a synchronizing signal for the lock-in amplifier of the receiver.
Upon reflection from the combined beam turning mirror, the laser beam is directed into the source
polarization optic components. These components include a halfwave plate and a quarterwave plate.
They are mounted in rotary stages that are computer controlled. Each laser beam has its own set of
source polarization optics. The source polarization optics are controlled uo produce six different
polarization states: Vertical (p or electric field parallel to the plane of incidence), Horizontal (s or
electric field perpendicular to the plane of incidence), Right circular, Left circular, linear polarizations
+45° and -45' with respect to the plane of incidence. After the desired polarization state is generated
the beam is passed through the optical table and down towards the sample (see Figure 2).

Mounted on the receiver arm is the receiver assembly. This assembly consists of a quarterwave
plate, a polarizer, a preamplifier, and a detector. The detectors for both wavelengths are made of
silicon. They consist of filters and other optical components which enhance operation at the selected
wavelength. The receiver polarizer and quarterwave plate are mounted in rotary stages that are similar
to those of the source polarization optics. This allows for computer control of the receiver polarization
(the same six polarization states as for the transmitter). The whole system is controlled by a software
package. The motorized stages currently operational in this machine are:

Source components:
halfwave plate
souirce quarterwave
source incident angle

Recei ior components:
quarterwave plate
halfwave plate
receiver scattered angle (elevation)
receiver scatter plane (azimuth)

Additional optional computer operated components consist of: sample xy and z translation,
beam expansion, beam focus, and sample rotation. The instrument has the ability to operate in the
retro (backscatter) mode by replacing the mirror that directs the laser beam down to the sample by a
beam splitter (see Figure 3). The backscatter mode is the mode of operation most commonly
associated with active remote sensing.
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3. SAMPLE MEASUREMENTS

Figures 4a and 41b show scans of the jincident. beanis with a receiver apeCrtuLre of 1.07 1mil.
From these scanis we estimate that, the beami diamieters are:

width Nd:Yag Ile~ 7 1

1/e 3.24 nuni 1.86 mu1m1

1/c 2  5.04 mui !!.79 mmn

Table 11, Laser Bean: widths.

In figures 5a, and 51b the Muellder muat-rix elenimemits are p)lott~ed for transmimission through a.
polarizer. For an ideal Ipolarizer with the angle It etweeni tile transmission axis of the(, polarizer
(parallel to the transmnitted electric field) and the x-axis (noninal to the plane of incidenice), tile Mueller
matrix is giveim by 2

I(.os(2mj) 8171(2(v) 0

cos(2i'k) co0.1;2 2 (ro) cos(2(k) sin(2o) 0

The horizontal axes onl the grap)hs is a mmlea-sired iii degrees. Notice that. the dclmient it. n 1 is ideally 0.5

(this elenment relates thle total incident. p~ower to the total transmitted power). It- fluctiuates slightly
below 0.5 due to tile ion-ideal properties of the jpolarizer. Ideally the seven elements show in Figure 51b
shouldh be zero. They also exliibit. a slighit, dependence onl (the rotation angle.

Since the Muteller iiiat~rix contains coma pletec information ab~out. the intensities and thle relative
phases of polarized scattered light, it has very genteral applhic~ationms. F"or example, iii ellipsonietry 3 thle
measurement that is of interest, is the ratio of the Coimiplex reflection coefficients 7,1)7) and (I . for
Fpccularly reflecited light.. TIh is ra tio (t6i v so-c; I led ellipsonwt)iie.c funic tioin) is coi mmonly expressed a-s
follows;

=- -~1- =-Y~ "ii ' -cxfjý )J 1?( I)ca-p( jA) (2)

where %PJ and A are k nown as dthe el lipsometric angles or el lipsonet-ric pairanictem s. Following Azvainý,
awssu ining that the( surface is pe~rfectly flat. and no dc Ixla rizatiomm occurs, the iumei, or Muneller mnatrix
satisfy the special relationships t"it 7I22 I 12 "½1 7i I, nd 77L~ 743 I hscs

the ellipsomnitric angles canl obtainmed iiniquely from the NInller matrix clcimeimts5

II = A7i'cc('T ' (3a)
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Care is taken in interpreting 3b so that A is set ill the correct q tadrant. It practice the assumption
that the surface exhibits no depolarization is not strictly satisfied. The measurements taken off an
isotropic gold reflector at the incident angle of 65 and wavelength of 0.6326 j.m are5

1.000 -0.080 -0.01,1 -0.003

-0.069 0.988 -0.011 -0.008

0.000 0.009 -0.450 0.886

0.006 -0.007 -0.894 -0.457

The corresponding ellipsometric angle 14, ranges from 42.7!' to 43.02 and A range from 116.69" to
117.28' depending on which elements of the Mueller matrix are used to complute these angles.

If there is some depolarization of the incident light by the targ;t, the ellipsometric parameters
should be extracted from the Mueller matrix as follows.

~ mu + 179 .) (1o

ZA = .4,.ctal171.:54 - "'43 (5b)
(1133 + 71'441!

As above, care should be taken in interpreting Arctan( ) to obiain A in the correct quadrant. For a
relative smooth surfaces the most significant elements of the Mueller matrix used in conjunction with
ellipsometry are (see results show in (4) anove),

7 <11 = , 7ppr ,> + < 7'Vs > + <2 7,sP)sp > + < ,.ps > (6a)

7712 < 1,pl1pp > - < 7 sss > + < rsIpp > - < 1 p 7 ps> (6b)

7179) = < 7
' P1t > < 7 sr >- < 2P.Ss Sl7 > + < 1 psp > (6r)

7",22 7 pp > + < 1 t•7s > - < 7•r1.* > - < 7,P. , > (6d)

3 .< 1. > + 9tn < rSp

71,n 3,t = 3 111 < Ip p. P Is > + J il < ,'s P 7,, ' s, > O f )

•73 i < r' t s> + 371 < > (6g)

? ,144 =•b < r l 'SS > - c< rp r p> (

in which < > detioti's tle statistical average. * deihotcs tilt- complex coijigit .u,--(. ) and 31t1(.
denotes the real arid imaginary parts of itli argimient. respert'fully. Thus thle cllil)soitetric angles (5)
can ) be obtained a., i'ollows tfromt Ohw. dehfiitititm of tilt, vllip.,ote nic i)arall, ters:
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<#

- cos(2w) =- rss > -- -- (t 1 2- "'21* m + )n.22)

< m < I p') > 3 < +

tan(A)= - 34"'"43
'R e < nrs> 7 33 + ,4 4

p~p SS .1 -(b

Using his experimental data (4) Azzam 5 obtains t'. following values for the ellipsometric angles;
S= 42.85' and 4 = 117.00'. Assum ing that. the gold is opt-ically thick one can extract the com plex

index of refraction from these values for p (2) using the well know relation3 '5

N = n - jk = sin(0) I + t(O(() <. (8)

The corresponding value for the index of refiaction is N 0.27 - j3.02. The published values 6 for the
index of refraction of gold at 0.633 pnm is approximately N = 0.183 - j 3.09.

In an experiment conducted at the Univeraity of Nebraska-Lincoln a Oilicon wafer was coated
with a 000 Angstroms layer of Nickel. A 1000 Angstroms layer of gold coated this surface. The
sample was scanned (specularly) by the scatteroineter between I to 85 in st.eps of 1', the resulting
values of 1P, A, and N are shown in figure 6. For the same set of paraincters used by Azzam 5 the
Mu,-ler matrix obtained for the experiments with the scatterometer is as follows

1.000 0.0,12 -0.022 -0.002

0.048 0.99LS V.0 11 0.01 i
i = 0.8(61 (9)

0.007 0.014 -0.559 0.82,4

9.022 (0.0(19 -0.827 -0.55s

TI'hie resalts given in (9) for the incident angle of 65 corlespotid to tin vlipsometric paraineters 01
S= 43.71" and A = 124.08'. The complex index of refractioni is computed ats N =( 0.20 - j 3.54.

Note that ii, reference 3 the second element. (I.,) of the st-okes vector is defilued as

1.2=~ - <'p~p' E.I' (1>

whiler using the convenum introduced by 13orn Mj1(1 Wolf" (aitd a(hloct d by us) the second elemefnt of
the( Stokes "ector is defined as

2-= < E.5 EI> - < Lu>. (E1)

As a result there are sign differences in the elements of the NIueller niatrix 1j29 and '(nj (j=1,3,4) as
defined by Azzani and Born an(l Wolf 1 .
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'1. CO)NCL.USION

A-lasuireniviic. of the Mueller nnirix that cnjracieriii' scaltetrel light fronm surtfaces can yield
miore information ahoot th, mtaterial ;an1d its surfa1cf thloin icasiremtcniis takeni by' comtmonly used
we('Iitii(tIIIS. IIn thiS papi'. we aedisciussed thle eaislitin-m of w~ell know opt~icall properties of a flat
opt~ically thick goidl filiri mid( the (om etiiti'o clialctai-tint'at oi of' at wve- know op~tical (ei a linear
pl;oIrizer. IThis opt (1 I liolarimtet 'ii' m.at turol14.11-i will h)1 isel In couiijimtct onl witth a Scanning
11n1cliiig/toinlic htoce ici-coscopri to valolat e loatcoiml 01(1iiicoat eo rough stuiace- scattering theories in)

cont rolledl experititetas in or-der. to felicitate the det ectiont and idejtit icat ot of chemical contaminants
Of rough surfaIces.
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Figure 1. Planes of incidence and scatter.
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Figure 2. Schematic of the Optdv 1 Polarimetric Scatterometer.
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Figure 3. Optical table layout.

70



0.1

E

0

0.01

0.001 L
-4 -3 -2 -1 0 1 2 3 4

Distance (mm)

Figure 4a. Scan of the incident beam for a wavelength of
0.6328 jtm and a receiver aperture of 1.07 mm.
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Figure 5a. Muller matrix elements for a polarizer

Horizontal axis is a (see Equation 1).
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Figure 5b. Muller matrix elements for a polarizer
Horizontal axis is a• (see Equation 1).
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Figure 6b. Complex refractive index.
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ABSTRACT
The Fredholm equation representing the light scattered by a weakly absorbing spherical
particle or a narrow distribution of spherical particles is inverted to obtain the particle size
and refractive index. The solution is obtained by expanding the distribution function as a
linear combination of a set of orthonormal basis functions. The set of orthonormal basis
functions is composed of the Schmidt-Hilbert eigenfunctions and a set of supplemental
basis functions which have been orthogonalized with respect to the Schmidt-Hilbert
eigenfunctions using the Gram-Schmidt orthogonalization procedure. The orthogonality
properties of the basis functions and of the eigenvectors of the kernel covariance matrix are
employed to obtain the solution which minimizes the residual errors subject to a trial
function constraint. The inversion process is described, and results from the inversion of
several synthetic data sets are presented.
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NOMENCLATURE
aj Expansion coefficients for the unconstrained solution,

aC Expansion coefficients for the constrained solution.
t

a. Expansion coefficients for the trial function.

Cavg Average of the angular scattering cross section (gm2).
sca

cavg Average of the normalized and imprecision weighted angular
sca

scattering cross sections (g.m 2).

s Angular scattering cross sections (gm2).

JcaNormalized and imprecision weighted angular scattering cross

sections (g.m 2).

"f(x,n,k) Distribution function.
f(x) Particle size distribution function
ft(x,n) Trial function
h(k) Ratio of the scattering kernels evaluated at a finite value of k to the

scattering kernels evaluated at k equal to zero.
k Imaginary part of the refractive index.
ki Lower limit on the range of imaginary refractive indices.
kf Upper limit on the range of imaginary refractive indices.
ks Retrieved imaginary part of the refractive index.

S(Q,x,n,k) Differential scattering cross sections (4m2 ).
dO

d &jvg
j
- (xn,k) Differential scattering cross sections that have been averaged overdQ'

the solid angle subtended by the detectors (,gm 2).

dejvg
S(x,n,k) Imprecision weighted differential scattering cross sections.dQ

m Number of inputs
n Real part of the refractive index.
ni Lower limit on the range of real refractive indices.
nf Upper limit on the range of real refractive indices.
n. Retrieved real part of the refractive index.
Nij Kernel covariance matrix.

p Number of supplemental basis functions
iuj The jth element of the ith eigenvector of the kernel covariance matrix.

x Size parameter.
xi Lower limit on the range of size parameters
xt" Upper limit on the range of size parameters

8dL Experimental error in the jth measurement (pIm2 ).

Normalized and imprecision weighted experimental errors m 2).
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8(x) Dirac delta function.

ACd Estimate of the imprecision in the jth measurement (tm2).

Af Relative error in the retrieved distribution function.

A§ Solid angle subtended by the detector (sr)

A Wavelength of the laser beam (itm).

).i Eigenvalues of the kernel covariance matrix

(Dj(x,n) Basis functions.

Oj(xn) Supplemental basis functions.

5j(x,n) Orthogonalized supplemental basis functions.

1 Scattering direction.

INTRODUCTION
Techniques for solving inverse scattering problems have received considerable

attention in the literature and are of great interest due to the wide range of potential
applications in areas as diverse as combustion, meteorology, geology, and bioengineering.
The wide variety of applications is primarily due to the fact that properties of a physical
sample can be determined from the interaction of the sample with radiation from a known
source. For instance, measurements of the light scattered by a particle provide an indirect
way of deterrriining the particle's size and optica! properties. Twomey 1 and Bottiger2
describe and compare most of the schemes currently used to invert light scattering or
spectral extinction measurements for the particle size distribution function (PSDF).
Recently, several tecnniques not described by Twomey or Bottiger have appeared in the
literature3- 8. Since the information content in a set of scattering or extinction measurements
is quite limitedl, 9 -1 I, most inversion techniques require the use of a priori information
regarding the PSDF and/or careful optimization of the inputs. Indeed, the primary
difference between most inversion schemes is the way the a priori information is
incorporated or the inputs are optimized. Also, other than the sequential gradient
restoration algorithm 7 , all the techniques are limited by the fact that the complex refractive
index of the particles must be known. This paper describes an inversion scheme that is
capable of retrieving the size and opti."al properties of a weakly absorbing spherical particle
or of a narrow distribution of non-absorbing spherical particles. A description of the
inversion :echnique is given with an emphasis on the actual mechanics of the inversion
process. The results from several inversions of synthetic data sets are also presented.

THE SCATTERING EQUATION
In the development of this invecsion process, attention was focused on simulating

an experiment in which a multi-channel polar nephelometer is used to measure the light
scattered from weakly absorbing particles. The nephelometer uses an unpolarized red ruby
laser (A = 0.67 4m) as a light source and has detectors positioned every 4" from 20" to
160*. Therefore, the available set of measurements consists of measurements of the power
scattered in 36 directions. The ratio of the power scattered in the direction of a particular
detector to the incident irradiance is referred to as an angular scattering cross section. The

angular scattering cross section measured by the jth detector, CscaJ is related to the

unknown distribution of sizes and optical properties by a Fredholm equation,
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kf nf xf

Ca--f f f f (x,n,k) 1 (0,x,n,k) dx dn dk dn + C-
AQ" 'i ni xi d

kf nf Xf d&.vg

=AQŽ J f f f(x,n,k)- (x,n,k) dx dn dk + (1)S~
ki ni x, d!a

The "-N,x,n,k) are differential scattering cross sections and are often referred to as

scattering kernels. Assuming the particles are spheres, the differential scattering cross
sections can be.calculated from Mie theory1 2,13.

The followint, assumptions are made in order to simplify Equation 1. For weakly
absorbing particles (k<- 10-3), the scattering kernels can be approximated by the product of
a function that depends only on k and the scattering kernel with k set equal to zero.

d javg d U- LYw

S(x,n,k) - h(k) - - (x,n,O) (2)

It is assumed that if a distribution of particles is present, all the particles have the same
optical properties.

f(x,n,k) = f(x) 6(n-ns) 8(k-ks) (3)

Equation I now simplifies to

nf Xf djvg

CJ = A h(ks) J J f(x)5(n-ns)- (x,n,O) dx dn+ 5CJ (4)Csca-
ni xi d

Neglecting the error in the measurements, the average of the measurements can be

approximated by the the average of the right hand side of Equation 4.

m

(ravgi Ci

j=1

m nf Xf d~dvg

_ AQ h(ks) f f f(x)8(n-ns)- (x,n,O) dx dn (5)
r=1 .= xi dQ

The unknown function, h(k), can be eliminated from Equation 4 by normalizing by the
average of the measurements. Earlier investigations have also shown that it is beneficial to
weight each measurement and scattering kernel by the corresponding imprecision
estimate1 3,14. These simplifications allow the Equation 4 to be 'rewritten as
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nf xf dCavg

= i-JJf(x) 5(n-n) (L-x,n,O) dx dn + 8sa(6)
C sca =V

where
Ca /CvgAC, (7)C-JscaC'ca/ sea S

&-Jsca = sca/a sC a (8)
,1avg d~vg

- (x,n,O) -(x,n,O) ,ACJ (9)d.Q d• Qe

m rq xf fvg

c - ._ f.._ i x f(x)8(n-ns) (x,n,O) d:Ldn (10).
Ii Xi d

EXAMPLE INVERSION
A linear inversion procedure is used to invert Equation 9 and retrieve the real part of

t!e ; fr.,'- e index. Constrained linear inversion is used to retrieve the PSDF. The value
k, inag-, iiary part of the refractive index is obtained by comparing the measured
scattering pattern with the scattering pattern calculated using the retrieved real refractive
index and PSDF. The value of the imaginary refractive index that results in the smallest
residual enrors is taken to be the retrieved imaginary refractive index. There are five major
st:•ps irn th . inversion process: preliminary analysis of the measurements, selection of the
inputs from the available measurement set, retrieval of the real part of the refractive index
using the unconstrained solution, retrieval of the PSDF using the constrained solution, and
finally, retrieval of the imaginary part of the refractive index by matching the measured and
calculated scattering patterns. An example inversion is described along with (esentation
of the mathematical formulation in order to illustrate the mechanics of inversion
process. An effort has been made to keep the description of the mithematics brief, but still
providle the reader with all the equations needed to actually perform an inversion. Complete
developments of the mathematics of i,'wersion are available elsewhere 1.

PRELIMINARY ANALYSIS OF THE MEASUREMENTS
Angular scattering cross sections should be calculated for several different sizes and

c,-ical properties within the expected ranges before attempting to invert any measured
values. Particular attention should be given to the value of the most forward angular
scattering cross section available and the average of the angular scattering cross sections.
These rarameters will serve as a guide in selecting the trial function usea in obtaining the
constrained solution. The range of sizes and optical properties considered in the example
inversion are listed in Table I. Table 2 lists the average and 20" angular scattering cross
sections for 12 different sizes and 3 sets of optical properties.

Table 1. Range of Sizes and 0O'tcal Properties
Diameter Range Size Parameter Rea Refractive Ilmaginary Refractive

(itrr) R;,e Indrx Range e Range

0.1 _ - _- 1U .5 4 .. 1 1-T -



Table 2. Averaeid 2a 0 Angular Scattering Cross Sections

Refractive Inlex
Diameter Size

(.tm) Parp, meter 1.1 + i 103  1.5 +i 10 3 2.0 + i 103

0.1 0.5 3.3E-7 3.6E-7 7.2E-6 7.9P-6 2,2E-5 2.5E-5

0.5 2.3 3.1E-4 3.IE-3 1.2E-2 7.7E-2 3.5E-2 0.1
1.0 4.7 3.5E-3 0.1 0.7 0.4 0.1 0.3

2.0 9.4 1.1E-2 0.2 0.2 0.6 0.2 0.7

3.0 14.1 3.4E-2 0.6 0.3 1.7 0.4 1.1

A.0 18.8 0.1 0.9 0.5 12 0.6 1.9_

5.0 23.4 0.1 1.9 0.6 3.8 0.9 3.5

6.0 28.1 0.2 2.3 1.1 4.6 1.1 4.5

7.0 32.8 0.3 4.1 1.1 6.2 1.5 4.8

8.0 37.5 0.3 3.9 1.7 7.7 1.7 6.6

9.0 42.2 0.6 8.0 1.7 9.8 2.2 9.8

10.0 46.9 0.6 6.6 2.4 11.0 2.8 11.5J

Synthetic measurements represeniting the light scattered by a single spherical particle
were calculated using Equation 1. The size and the optical properties of tht. particle were
randonly selected from the ranges specified in Table 1, so the actual parameters of the
distributirm function were not known until after the inversion had been completed.
GausY'-, distributed random noise was added to each synthetic measurement in order to
simulatc actual e,,xperimental conditions. The angular scattering cross sections are Dlotted in
Figure 1, and the imprecision estimates shown in the figure are equal to the standard
deviation of the' random noise. The standard deviation of the random noise was equal to
10% of the er: r free measurements. The average of these angulr scattering cross sections
is 0.67 ain,2 and the 200 angular scattering cross section has a value of 2.6 gsm 2 .
Comparison of the 20* angular s,:attering cross section and the average of the angular
scattering crosi sections with the values in Table 2 indicates that the particle has a diameter
of approximately 4 to 5 gtm (a size parameter between 19 and 23).

2.5

W" 4.5" 90" 1W3 1 X"
Dectector Aiigie

l-igurlC 1. Synthetic Anguilar "r.attering Cros., Section's
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INPUT SELECTION
The scattering kernels are not mutually orthogonal functions, so a large number of

measurements may only contain a few measurements that are independent of the rest1 1.
Therefore, it is necessary to select a set of inputs from the available set of measurements.
An algorithm similar to that used by Capps et a19 is used to determine which measurements
to use in the inversion process. A kernel covariance matrix is calculated using the
scattering kernels corresponding to the complete set of measurements, and the eigenvalues
and eigenvectors of the kernel covariance matrix are calculated. The kernel covariance
matrix is defined as

_xf dc-avg dcavg

Nij = f f di_ (x,n,O) -d-- (xnO) dxdn (11).
nix dQ d

Once the eigenvalues are known, an expression derived by Twomeyl 1 for the relative error
(the square root of the ratio of the square norm of the error in the distribution function to
the square norm of the distribution function) is used to determine whether or not the
selected inputs can be successfully used in an inversion process.

Xf =A~ /1 C~ (12).
j=j "',i j --I -- '-1j

If the relative error given by Equation 12 is too large, the largest off diagonal element of the
kernel covariance matrix is used to identify the two most nearly dependent measurements.
The sum of the squares of the off diagor ' matrix elements is calculated for each row
corresponding to the two must redundant measurements. The largest of these sums
identifies the measurement that is most nearly dependent on the rest of the measurements,
and that measurement is eliminated from the set of inputs. A new kernel covariance matrix
is then calculated, and the process is repeated until the relative error calculated from
Equation 12 is small enough. In this study, the best results were obtained when the relative
error is slightly less than 1. For the angular scattering cross sections shown in Figure 1,
27 to 30 of the 36 measurements were eliminated from the input set before a relative error
less t0.j1i I was achieved. The variation in the number of inputs was due to variations in
the range of real refractive indices as discussed in the next se,,'ion.

RETRIEVAL OF THE REAL PARr OF THE REFRACTIVE INDEX
Once a set of inputs has been selected, an unconstrained solution is obtained by

expaiding the distribution function as a linear combination of the Schmidt-Hilbert
eigenfunctions.

m

f(x) 8(n-ns) ý jaj(j(x,n) (13)

The unconstrained expansion cotfficients are calculated from

aj gi u/v% (14)
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where the ki and u1 are the eigenvalues and eigenvectors of the kernel covariance matrix.

The Schmidt-Hilbert eigenfunctions are obtained from

m

4 j(x,n) - . --- (x,n,O)) for 15j < m (15).

The value of the real part of the refractive index and the unconstrained PSDF are
calculated from the unconstrained solution.

nff xf m nf xf m

W(ns) = f f W(n)X aj4(j(x,n) dx dn / f j aj~4)(x,n) dx dn
ni xi i=1 ni xi j"=

ns = W-I(W(ns)) (16)

nf

f(x) = aj4cj(x,r) dn (17)

fj=ni

The weighting function, W, is used to increase the sensitivity of the unconstrained solution
to changes in the real refractive index. A weighting function that proved to be useful in this
study is the phase shift13 squared, x2 [n-1] 2. In practice, it is usually necessary to vary ni
and nf to ensure that the retrieved refractive index is close to the actual value. When
inverting the example data set, the entire range of refractive indices (1.1 - 2.0) was first
considered, and the retrieved real refractive index was 1.47. The range of refractive indices
was then narrowed to 1.3 - 1.6, and the retrieved refractive index was 1.43. This process
was continued until the retrieved value of the real refractive index converged to 1.42. The
unconstrained PSDF is shown in Figure 2.

0.15 ... .. .. . . . . .

0.05
it. S0

-0.05

-011
-0.15

0  10 20 30 40 50

Figure 2. Unconstrained PSDF
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RETRIEVAL OF THE PSDF
The unconstrained solution satisfies Equation 6 for the set of inputs, and therefore,

is a mathematically correct solution. However, the PSDF obtained from the unconstrained
solution displays characteristics such as high frequency oscillations and negative valoes
which make it physically unrealistic. These characteristics are due to errors in the
measurements and to the limited information content of the measurements. Although it is
not possible to eliminate the error in the measurements, the difficulty associated with the
limited information content can be dealt with through the introduction of a priori

information in the form of a trial function constraint. Of course, the nature of the trial
function will depend on the particular conditions under which the measurements are made,
and can onl be determined after careful consideration of the particular experiment. If
measurements are made of the light scattered by a single particle or by an ensemble of
nearly identical particles, the unconstrained solution and the preliminary analysis of the
measurements provide enough information to successfully chose a trial function. In our
example inversion, it is known that the measurements are of light scattered by a single
particle. Based on this fact, the form of the trial function is chosen to be

ft(x,n) = 5(x - xt)0(n - ns) (18)

Based on the preliminary analysis or the measurements, xt is expected to be in the range of
19 to 23. The exact value of xt is obtained by examining the unconstrained PSDF shown
in Figure 2. In this case, there are no prominent peaks within the expected size range.
However, the expected size range only serves as a rough guide in selecting the trial
function, and there is a fairly prominent peak in the unconstrained PSDF at x = 25.1.
Therefore, xt is chosen to be 25.1.

The imposition of the trial function constraint requires that the trial function abnd the
unknown distribution function be expanded as linear combinations of a set of orthonormal
basis functions. However, adequate representations of these functions cannot be obtained
using the Schmidt-lHilbert eigenfunctions alone. Therefore, a set of supplemental basis
functions or pseudo-empirical eigenfunctions"1 0 must be introduced. The additional basis
functions are obtained by orthogonalizing a set of orthonormal functions with respect to the
Schmidt.-Ilfilbert eigenfunctions. The sup1.:lemnental orthonormal functions used in the
example inversion were

0j(x,n) = 6(x - xj)5(n - nt) for 1 •5j _< 101 (19),

where the xj are evenly spaced throughout the size range. The supplemental basis

functions are calculated by orthogonalizing the t%(xn) wvith respect to the Schmidt-Hilbert

eigenfunctions using the Gram-Schmidt orthogonalization procedure. Some of the Oj(xn)
will lie entirely in the space spanned by the lower order basis functions and will be
eliminated by the orthogonalization procedure. Therefore, the number of supplemental

basis functions, p, will be less than the number of Oj(x,n). The number of supplemental
basis functions used in the example inversion was 93.

flf X1,

( x , n ) ( x. . . n) -~ 0j(xn) f f 0j(x',rn)(i(x',n') dx' dn' for 1 _<j < 101
i~1 Ii xi

6)) (x,11) f f'')dx'd ' f-r ni < < m+p (20)
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The trial function and the unknown distribution function can now be accurately
expressed in terms of the basis functions.

ft(x,n) = •a!4Dj(x,n) (21)

j=1

f(x) 8(n-ns) = •af IDj(x,n) (22)
j=1

The expansion coefficients for the trial function are obtained from

nf xf

f f fL(x,n)(IDj(x~n) dx dn (23).
ni xi

The constrained expansion coefficients are found by minimizing the residual errors subject
to the trial function constraint. A performance function is defined as

m nf Xf M

fvg f dxdn)) 2 c-S-ai~i(x'n) J k, Xns'0) dxdn)) - 'a
"= scani • --

nf xf mm

+y-Y f J[X ai (i(x,n) -Yai(x,n)J dx dn (24).
ni xi i=1 i=1

The performance function is proportional to the residual errors in the retrieved solution and
to the square norm of the difference between the unconstrained solution and the trial

function. The weighting parameter, y, determines the relative importance of the trial
function constraint. Minimizing the performance function with respect to the exvansion
coefficients gives the following expression for the constrained expansion coefficients

aj ,j + yaj
C ______

ajC- X-j+ for l_:j 5m

= at form<jgm+p (25).

Clearly, the value used for y will be important in the inversion process. It can be
shown that the square norm of the error introduced by applying the constraint is minimized
if the parameter known as the residual relative variance (RRV) 1 1 is minimized with respect

to y The partial derivative of the RRV with respect toyis given by
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m

dRRV X X{y(aj - at)2 - cav)2/(CsaL)2] / (Xj + -y)13  (2 6).

aRRV.
The optimal value ofy is obtained by increasing 'yuntil -A- is approximately zero. In

aRRV
the example inversion, at "y = 86.3, - -5.OE-08. Once the optimal value of 7 is

determined, the constrained solution can be calculated from Equation 21. The PSDF is
then obtained by integrating the constrained solution over the range of refractive indices.

nf
f(x) = f aC)j(x,n) dn (27)

ni j-1

The constrained PSDF for the example inversion is plotted in Figure 3.

~!

2.5 . . ' . . v '

2

1.57

0.5

-0.5 I
0 10 20 30 40 50

Figure 3. Constrained PSDF

RETRIEVAL OF THE IMAGINARY PART OF THE REFRACTIVE INDEX
A value for the imaginary part of the refractive index can now be obtained. An

initial guess of the imaginary refractive index is made and the scattering pattern is calculated
using Equation 1. The value of the imaginary part of the refractive index can be adjusted
until the measured and calculated scattering patterns are in close agreement. If it is not
possible to bring the measured and calculated scattering patterns into agreement by
adjusting the value of the imaginary refractive index, the inversion process should be
repeated using a different trial function. For the example inversion, the value of the
imaginary part of the refractive index that gave the lowest rms residual error was 10-3. The
measured and calculated scattering patterns are compared in Figure 4. The relatively large
discrepancy between the calculated and measured 20" angular scattering cross section
indicate that the size parameter selected for the trial function is too large. The relatively
good agreement between the calculated and measured scattering cross sections in ihe 100'
to 150' range indicate that the retrieved value of the real refractive index is close to the
actual value. Figure 2 is again used to select a xt value for a new trial function. The largest
peak at a size parameter less than 25.1 is at x = 20.1. A new constrained solution is
calculated as before. Using the new constrained solution, the closest agreement between
the measured and calculated scattering patterns is obtained for an imaginary part of the
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refractive index of 10- 4 . The new calculated scattering pattern in compares well with the
measured scattering pattern as shown in Figure 5.

* Calculated Anguar Scanc ring Cross Sections
o Measured Angular Scattering Cross Sections
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Figure 4. Comparison of the Measured and Calculated Scattering Patterns with xt = 25.1

* Calculated Angular Scattzring Cross Sections
o Measured Angular Scattering Cross Sections
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Figure 5. Comparison of the Measured and Calculated Scattering Patterns with At = 20.1

SUMMARY OF THE EXAMPLE INVERSION
The retrieved and actual size and optical properties of the particle in the example

data set are compared in Table 3.

Table 3. Comparison the Particle Size and Optical Properties with the Retrieved Values
Parameter Actual Value Retrieved Value

Diameter (i.m) 4.5 4.3
Size Parameter 21.2 20.1

Refractive Index 1.45 + i7.5E-5 _ 1.42 + i L .- 4-

INVERSION OF MORE SYNTHETIC DATA SETS
In order to further test the inversion process, J.R. Bottiger provided the authors

with 6 sets of synthetic light scattering measurements. The authors were told that the
measurements corresponded to the light scattered by narrow distributions of non-absorbing
spheres, but no other information was given. The results of the inversions are shown in
Table 4.
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Table 4. Conmparison of the Actual and Retrieved PSDFs and Refractive Indices
Case Retrieved Actu al Reeved Actual Retrieved Actual

Mean Size Mean Size Geometric Geometric Refractive Refractive
Parameter Parameter Standard Standard Index Index

Deviation Deviation
1 10.1 10.0 1.08 1.11 1.33 i.33
2 19.7 20.0 1.11 1.11 1.46 1.45
3 27_.2 20.0 1.09 1.35 1.45 1 .45
4 48.9 35.0 1.03 1.11 1.56 1-55
5 47.4 35,0 1.04 1.22 1.56 1.55
6 55.0 55.0 1.03 1,02 1.33 1.L3

The actual PSDFs are plotted in Figure 6 for all 6 cases. Although the PSDF for
case 4 has the same geometric standard deviation as the PSDFs for cases I and 2, the
PSDF for case 4 is actually broader than those for cases I and 2. These results show that
the technique is successful when the distributions are narrow (cases 1, 2 and 6), but has
difficulty when the distributions are broad (cases 3, 4, and 5). This is due to the fact that
as the PSDFs become broader, the scattering pattern becomes smoother, and probability of
finding another PSDF that will produce a similar scattering pattern increases. It is
interesting to note that even when the retrieved distributions differed from the actual
distributions, the refractive index was retrieved accurately.

0.40

0.35 --- ca I
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0.30 -- -- c 3
...... Cmaw4

0.25 -....-CaweS0 20........... Coe6

S0.20.

0.15

0.10
0.050: •:• .. •.

0.0 10 20 30 40 50 60
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Figure 6. Particle Size Distribution Functions

CONCLUSIONS
An inversion technique that retrieves the particle size distribution function and the

refractive index of weakly absorbing spherical particles from synthetic measurements of
scattered light has been developed. The solution is obtained by cxpanding the distribution
function as a linear combination of orthonormal basis functions. The orthogonality
properties of the basis functions are used to find the expansion coefficients which minimize
the residual errors subject to a trial function constraint. The technique is shown to be
capable of retrieving the size and optical properties from noisy measurements of the light
scattered by a weakly absorbing sphere. The technique was also used to retrieve the PSDF
and refractive index from synthetic measurements of the light scattered by narrow log
normal distributions of non-absorbing spheres in a blind test. Attempts to retrieve the
PSDF were less successful when the distributions were not narrow, but the refractive index
was still retrieved dccurately.
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ABSTRACT

The Gaussian model for the extinction coefficient is often made in optic data inversion. To
obtain the frequency-dependent real refractive index therefrom via the Kramers-Kronig
relations, it is necessary to overlook certain symmetry properties of the extinction
coefficient. A precise measure of error for using the Gaussian model is derived. Also, a
physical basis of the Gaussian model is presented by showing that the dynamic
susceptibility of a semiclassical ideal gas has an identical structure. The Gaussian model
therefore may be viewed as the scattering of light by a semiclassical ideal gas. The use of
the Kramers-Kronig relations in nonlinear optical problems is being investigated.

INTRODUCTION

The Hilbert transforms are well known mathematical techniques for relating the real
and imaginary parts of an analytic function. The transforms are found useful in a variety
of physical problems. In these applications, one finds that functions of physical interest
very often satisfy restrictive symmetry properties owing to the causality principle among
others. The Hilbert transforms in these specialized applications are commonly referred to
as the Kramers-Kronig relations. In optics one is interested in, e.g., the
frequency-dependent complex refractive index. The Kramers-Kronig relations allow one
to calculate the real refractive index from the measured extinction coefficient. This is an
example of optic data inversion.

Let W be a physical quantity of interest depending on some physical parameter
denoted by z, where the real part of z may denote the angular frequency w, the energy e, or
the wavelength A. Then one can decompose W into the real and imaginary parts:

W(z) = W1(z) + i W 2(z). (1)

The Kramers-Kronig relations assert that

W( 1 [® W2(zl) dz' (a

and
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W 2(Z) p W=) dz' (2b)

where P denotes the Cauchy principal value. In deriving the above relations, one assumes
that W(z) is analytic in the upper half of the complex z plane such that W(z) -4 0 as
zI -4m. In physical applications, one finds that Wi(z) is an even function of real z and

Wý2(z) is an odd function of real z, known as crossing symmetries. Observe that the
"susceptibility" sum rule follows from (2a) by setting z = 0:

WI(z=O) = - 1 f W2(z) z-1 dz (3)

where W2(z) is the scattering law, subject to detailed balance.

Now turning to optical applications, let z denote the angular frequency W and W the
complex frequency dependent refractive index n. In the customary notation,

n(W) = ni(w) + i 12(W). (4)

The extinction coefficient n2(w) is measurable or at !east modelable. Hence, given this
input, one can in principle calculate the real refractive index nl(w) as a function of the real
frequency w. Physically the frequericy w is a real positive number. Hence, (2a) is unsuited
to optical applications. Taking note of the crossing symmetries:

ni(-w)- ni(w) (5a)

and

n 2(-W) n 2(W) , (5b)

one can rewrite (2a) as follows:
J•w' ný(a') dw'(6

1P W2 - W12•

where now the measurable frequency w' is limited to positive numbers only. It is
important to recognize that (6) is valid strictly if n2(w) is an odd function of w. What if
n2(w) is not exactly an odd function, is Eq. (6) still applicable perhaps approximately? If
so, what may be measures of the approximate validity of Eq. (6)? Our work provides
answers to these practical questions, described briefly in the following two sections. For
complete detail, we refer the reader to our original work. I Also the previous relevant
references may be found therein.
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DATA MODELING

In an experiment arranged to measure the extinction coefficient, it is desirable to
express the measured values by some convenient function. That is, to find a function to fit
the measured data. 2 Typically, the trial function fi2(w) is a well-behaved function like a
Gaussian:

fi2(w) = A e-B(W-W°) 2  (7)

where A and B are two adjustable parameters. The Gaussian trial function is evidently
peaked at w = w,. In such a fitting, one does not know a priori the significance of A, B and
wo. One hopes that the physical meaning can be deduced ultimately from some basic
optical models of scattering.

It is known that the trial form represents the measured values of the extinction
coefficient rather accurately for a large interval of the frequency in a number of optical
systems. But can one obtain an accurate value of the real refractive index nl(w) therefrom
using Eq. (6)? We observe that fi2(w) is not an odd function of w. It is neither even nor
odd in the frequency. Strictly speaking, we are unable to use Eq. (6) since it requires an
odd function for n2(w). The trial function fi2(W), while evidently quite accurately
representing the t (ue function n2(w), fails to meet the fundamental condition of the true
function, To overcome this difficulty, we consider a modification of the trial function:

=( 2 fi2( A [ . (8)

Now observe that Ai2(W) is an odd function of w, satisfying the fundamental requirement of

the true but still unknown function n2(w). Also observe that if B >> 1, then fi 2(w) M

Ri2(w). Hence, if B is large enough, our new trial function (8) can accurately represent the
true function n2(w) and at the same time it can also meet the fundamer_.al requiuement of
the crossing symmetry. Hence, one can now use Eq. (6) and obtain the real r'fractive
index therefrom.

To understand the accuracy of (8) as a function of B, we shall examine the new trial
function for the entire range of w: --w < w < c. The first term on the rhs of (8) is peakcd
at w = w,), while the second term is negatively peaked at w = - wo. The two terms
overlap, the amount of overlapping depending on the size of the value B. If B -- 0, the
overlap is maximal. If B -4 w, there is no overlap. In fact, as B -4 C (also A -- 0), the rhs of
(8) becomes two delta functions peaked at w = w wo. If there is to be little or no overlap,

then clearly fi2(w) - 0 if w Z 0. Thus, for practical purposes, if there is little overlap in a
trial function, the required oddness of a trial function is of little practical significance.

Thus, one could use 112 (w) in place of fi2(w). It is possible to provide a quantitative
measure for estimating errors for this replacement, described in the next section.
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SCATTERING BY A SEMICLASSICAL GAS

We find that the extinction coefficient of the form (8) is exactly realized in the
dynamic structure factor in the scattering of light by a semiclassical ideal gas, also known
as a Boltzmann liquid in the thermal scattering theory. For this system, one can construct
a complete dynamical theory by means of linear response theory. Hence, it is possible to
provide a quantitative measure of errors in the trial functions for the extinction coefficient.

By a semiclassical ideal gas,' we mean an assembly of identical noninteracting
particles of masos rn each. The positions and momenta of particles, ri and pi, respectively,
do not commute but obey the usual commutation relation: [ri, pj] = i h• 6ij. The
equilibrium state of this assembly is to be described by the Boltzmann distribution. If
scattered by light, each particle in the assembly acts as a free independent scatterer. When
the particles become very massive, the model represents scattering from single fixed atoms
or nuclei.

The total energy of the assembly is

N

H pj 2/2m (9)
j_-!

where N is the total number of particles in a unit volume. The system is assumed to be
translationally invariant. Let p(r) be the density operator at the position r defined in the
usual way

N

p(r) = b(r-rj) (10)
ji -

Then, for a wave vector k, we can define

N

Pk - d3r e p(r) - e (i1)

The time dependent susceptibility Xk(t) has the well-known definition in terms of the
density operator:

Xk(t) = iN--< p_1j> i> 0

=0 ift <0, (12)

where the angular brackets mean the thermal average. Fo- our model defined by (9), we
have shown that

Xk(t) 2 sin(wot) e-at2  if t > 0

S0 ift < 0 (13)
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where wo = h, k2/2m, the recoil frequency, a = wa/fl h, 0 is the inverse temperature.

The frequency-dependent susceptibility X(w), now suppressing the k index, follows
from (13):

CoW tX(w) = J dt e X(t) = X1 (w) + i X 2(w) , (14)

X1(w) = (i/'a) [D(7+) - D(9y_)] (15a)

X 2(w) = F7Ta [(e e-+] (15b)

where

n= (w4 wo)/fl (16a)

and

D(y)= e-y2 dx eX2  (16b)

Here D is Dawson's integral. Observe that 'y,(-w) = - yF(w) and D(-y) D(y). Hence,

X1(w) and X2̂(w) are, respectively, even and odd functions of w.

We observe that X2(w) is exactly in the form of fi2(w) given by (8) if we identify

A = - f7Ta- and B = 1/4a. Referring to (15a,b), let us write:

XI(w) = Xi +(w) + Xi-(w), i = 1 or 2 . (17)

Then, fiR2(w) = X2 -(w). Hence, one can at once write down the measure for errors or the
difference between ni(w) and fit(w) as:

An(w) E n1(w) - fiI(w) = X,(w) - 2. - w

_2p . X2+(W,')W1 dw= X(w) (18)

Hence,

Ani(w) = x, +(w) D(-f+) . (19)
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The magnitude of Anl(w) evidently depends on nonzero values of X2 +(w) for w> 0. If a
or B-I is small, the magnitude of An1 (w) becomes small. This is precisely what has been
observed in some recent numerical studies, 2 The dynamical susceptibility of a semiclassical
ideal gas thus provides an effective measure of accuracy for trial functions employed in
practical use of the Kramers-Kronig relations.

CONCLUSION

We have shown that the Kramers-Kronig relations can be expressed to
accommodate positive values of the frequency only. The frequency-dependent real
refractive index can then be calculated therefrom, given the extinction coefficient. The
extinction coefficient can be measured and it is often modeled by trail functions such as the
Gaussian. If the measured values are sharply peaked at some nonzero frequency, one may
ignore that the extinction coefficient must be an odd function oi the frequency. If not very
sharply peaked, the errors can be corrected. We have provided a particular correction
formula if the extinction coefficient is modeled by a Gaussian.

We have found a theoretical basis for understanding the Gaussian model for the
extinction coefficient. A semiclassical ideal gas gives rise to the dynamic susceptibility,
whose imaginary part has precisely the trial form of the extinction coefficient. The
semiclassical ideal gas model is a fluid model used in thermal scattering theory used for
studying the scattering of light by fixed atoms or nuclei. The correspondence between the
semiclassical gas and the Gaussian model for the extinction coefficient allows us to
interpret the peak position as the recoil frequency in the light scattering. The other
parameters A and B which occur in the Gaussian model of the extinction coefficient have
similar interpretations. A further extension of the use of the Kramers-Kronig relations in
nonlinear optical problems is in progress.
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ABSTRACT

The non-zero elements of the 4 X 4 Mueller matrix were computer visualized over the
mid infrared region of the electromagnetic spectrum where vibrational states of organophos-
phorous and simulant molecales (contaminant analyte) are excited, and over CO2 laser beam
backscattering angles (normal-to-oblique incidence) from randomly surfaces that contain these
liquid contaminant organic layers. Predictions of the Mueller elements were computed from a
full wave model of electromagnetic scattering reported by E. Bahar and co-workers. The non-
zero elements were displayed and recorded in a multi-dimensional format, as geometry of the
scattering surface changes from a specular to Lambertian-like reflector of infrared radiation.
The surface may contain multiple contaminant layers that are targeted for detection by analyz-
ing Mueller elements at beam energies tuned to vibrational resonances of the contaminant
then off-resonance. In a related problem regarding standoff detection of biological simulants
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we present measured Mueller matrices of a chiral amine, on and off vibrational resonance,
emphasizing elements [1,41 and [4,11; identifiers of Vibrational Circular Dichroism, and ele-
ment pairs [1,21, [2,11 and [3,21, [2,31. Together, these elements appear to be features of iden-
tification of chiral matter by elastic polarized scattering on-off beam energies of molecular
resonance by the analyte molecules. Future work calls for refining this technology toward
optimum solution of the chemical/biological standoff detection problem.

INTRODUCTION

We apply elastic polarized infrared (IR) scattering for the remote sensing of contaminant
layers (analytes) spread across terrestrial and other (background interferent) scatterers. In one
problem, the analyte is a liquid layered surface that is randomly rough on the micrometer
scale. A full wave model of EM scattering is applied to predict elements of the Mueller matrix
by scattering from an area of statistically derived mean-squared heights and spatial slopes.
This model, in present form, provides closed form solutions of Maxwell's equations assuming
single-szal.•t-Ing by isotropic surfaces of random geometry. The code RETRO(10) is a 10th ver-
sion of numerical implementation of full wave theory.

Analytes of specific interest include DMMP(2), DIMP(2;, SF96, and TBP, simulants of
the chemical G and VX liquid agents. Absorption of IR radiation by the analyte is key for its
detection. All these organophosphorous and silcon-based hydrocarbons exhibit fundamental
IR vibration modes within primary atom groups. The phosphorous linkages P.O, P-CH3, and
P-0-C in DMMP, DIMP, and TBP are driven into normal modes of rocking, bending, and
stretching vibrational states by tuning of energy of the incident ellipsometer beam source. In
SF96, a silicon based hydrocarbon, Si-O-Si and Si-CH3 are groups exhibiting normal IR vibra-
tional modes.

The optical bandwidth of the ellipsometer instiument is 9 - 12.5 pm. The experiment is
designed to excite at least one IR resonance, then rapidly detune to a non-resonant energy in
the incident beam (an energy for establishing a reference Mueller matrix). We then ascertain
those Mueller Alements in backscattering most susceptible to the targeted analyte mass under
resonance-reference beam energy irradiation conditions. We have and continue to develop
mathematical algorithms(1' 3) that access the entire 16-element Mueller matrix field of elements
(the non-susceptible elements themselves are information used in making detection decisions)
and operate (map) into feature-space, where classification of the analyte is done.

In another remote detection problem of interest to us, chiral matter (crystalline and
saturated in solution) is targeted for detection. (Chirality is handedness of the asymmetric
molecule. Chiral molecules cannot be superimposed on their mirror image.) The chira! com-
pounds of interest in our trial experiments include various amines and sugars that react dif-
ferently to R- and L-circularly polarized IR radiations, as in some organisms which we are
interested in screening. Important features for the detection of chiral molecules are Mueller
elements [1,41 and [4,11. These elements describe the transform between left - right and right
-. left circular polarizations between input beam and scattered radiance. This information
correlates to dextro and levo optical rotational behavior by the chiral structure and ,b a direct
measure of Vibrational Circular Dichroism (VCD), when the energy of the probe beams
matches vibrational resonance of the molecule.( 5).

VCD is a non-Born Oppenheimer phenomena caused by coupling of electronic and
nuclear motions. Nuclear motion of parent atoms causes a slight asymmetry in the way left-
handed and right-handed circular polarizations interact with the chiral molecule. Measure-
ments on low-molecular weight chirals compliment the VCD quantum calculations now being
performed by two of us (Zeroka and Jensen). These calculations provide a means to under-
stand fundamental properties of VCD on molecular structures that are simpler but similar to
some organisms; a basis to build on the more complex biological structures. Much of the
work conducted in our laboratory involves selecting the proper basis wavefunction sets,
optimizing scaled force fields, and determining the correction factors to the raw quantum
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calculations on these molecules.

In addition to VCD Mueller elements [1,4] and [4,11, visual inspection of the raw experi-
mental data suggest that element pairs [1,2], [2,1! and [3,2], [2,31 contain identification infor-
mation on some chiral amine crystals under irradiation by the resonance-reference energy
beams. We include experimental data on L-Alanine, a compound that exhibits these proper-
ties.

RESULTS

A presentation of full wave predictions from randomly rough substrates wetted by
DMMP, DIMP, SF96, TBP, diesel oil, three fatty acids, soot pellets, and other contaminant
layers are given in our previous work.(1' 3'4 ) Several conclusions were drawn: (1) as expected,
the rougher the surface (the greater its spatial mean slope) the more diffuse it is a reflector of
the IR beam, (2) on vibrational resonances of the analyte, the off-diagonal Mueller elements
[1,21 and [3,4] exhibit strong signal intensities about z 300 beam incidence. This signal pro-
pagates through a polarity reversal as the surface roughness parameter of mean-squared slope
increases. The peak in this signal also appears to shift slightly toward oblique incidence. This
behavior was accurately tracked in visualization code applied to the full wave data base.(4)

The Mueller matrix sensor built here at CRDEC is a 2-photoelastic modulator design
with four tunable CO 2 laser of separate isotope and non isotope gas mixtures. It is a monos-
tatic backscattering system automated by stepper-motor computer control. A full description
of the ellipsometer sensor including optic design, electronic sub-assemblies, logic, data
acquisition/reductionlanalysis, and calibration is provided in Reference 1. We have made
several matrix measurements on Arizona road dusts (soils of various particle size distribu-
tions) both dry and wetted by some of the above organic liquid analytes. We have yet to
analyze these data and make comparidons with model predictions. These analyses will be
reported at a later time.

The current data base consists mostly of matrix measurements in backscatteiing by vari-
ous crystalline structures. These include (±) Tartaric, Glutamic, and Aspartic acids; Cam-
phor, Glucose, Sorbose, Histidine, Mannose, Alanine, Tyrosine, and Serine wafers. The 16
element matrix field is measured at wavelengths on vibrational resonance of the molecule
plus a reference wavelength of no vibrational excitation for comparison. Angular positioning
of the sample is performed typically in tenth-degree resolution. Our interest with these
materials is to seek out their chiral property inherent in elements [1,4] and [4,11, and others
that react to the laser-driven molecular resonance conditions. These data also compliment
theoretical work now being done at CRDEC that investigates the quantum properties of VCD.

Figures 1 and 2 are examples of raw data collected by the ellipsometer instrument. The
L-Alanine wafer is two inches in diameter and quarter inch thick, area of beam surface irradi-
ation is 0.8 in2 , and the collected radiance deviates from true backscattering by less than 0.5
degree. Figure 1 represents the Mueller matrix response to the 0.114 eV beam driving a
stretching mode in the NH 2CHCH 3CO 2H molecules. Figure 2 is the same measurement after
the laser was detuned to 0.130 eV, off the resonance band. Three pairs of active elements
about normal incidence can be discerned, without mathematical filtering, viz; [1,4] and [4,1],
[1,2] and [2,1], [2,3] and [3,2]. The norn-active elements complete this 16-element binary map
of L-Alanine. (One envisions a 16-node neural network with 6 firing neurons and 10 dormnant
neurons.)

An initial inspection of the data base have shown few vibrational resonances in chiral
sugar and amine compounds producing measurable activity in the corner [1,4] and [4,1] ele-
ments and associative elements. Much of the work in this laboratory investigates why this is
and what are characteristic quantum effects that cause the slight asymmetry in circular polari-
zations on vibrational resonance in chirals.
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Figure 1. On-Resonance Mueller Matrix Elements of L-Alanine, X = 10.88 p. meters
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Figure 2. Off-Resonance Mueller Matrix Elements of L-Alanine, X = 9.52 t- meters
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CONCLUSION

We use polarized scattering to study problems of remote sensing of chemical and biolog-
ical contaminations in the field. Before a grand leap into field measurements and analysis is
done, a better understanding of the information inherent in the Mueller matrix is needed
through modeling and control experimentation.

At the macroscopic level, investigations were made on applying full wave theory to the
detection problem. This physical optics model predicts Mueller matrix elements as a function
of topographic mean height/slope and refractive index of the scatterer. The present form of
this model restricts the surface as an isotropic medium, it does not incorporate multiple-
scattering effects (depolarization), and cannot describe dichroism (scattering by chiral matter).
We hope that full wave theory, or another analytical theory, can accurately encompass these
phenomena.

At the microscopic level we singled-out elements [1,41 and [4,11 as Andidate features for
possible detection of biological compounds by driving the chiral molecule into vibrational
resonance and detecting Vibrational Circular Dichroism. The VCD information was detected
in only a few sugar and amine compounds over all vibrational modes. Moreover, it is interest-
ing to note that those chirals exhibiting active [1,41 and [4,11 elements have associative cle-
ment pairs, such as elements [1,21, [2,11 and [2,31, f3,2] in L-Alanine.

Both theory and experiment progrdats continue, with goals of determining if and how
phase-sensitive light scattering can be successfully applied and developed into a remote sells-
ing device.
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Abstract

Using a new technique based on the fanning of a coherent light beam

in a photorefractive BaTiO 3 crystal angularly resolved forward light

scattering from quartz fibers of radii from 15 .im to 30 g.m have been

successfully measured. Data have been obtained in the angular range, 00 to

0.30 and they are in good agreement with theory.

Introduction

Light scattering by small particles has been the subject of intense

investigations for many decades. However, virtually all of the experimental

work to date has been limited to angles from near forward to backward

directions.1. 2 The limiting experimental factor in the measurement of

forward scattering is the unscattered incident wave which is superimposed
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to the scattered wave. Trcre has been little previous experimental success

in attempts to separate the two waves in the forward direction.

Wang and Greenberg 3 ,4 used the microwave analog method to measure

light sc,. Lering in all directions including 0'. They used microwave

radiation and artificially constructed targets to simulate light scattering by

micron-size particles at optical frequencies. Spinrad5 used a special low-

angle scattering meter to measure volume-scattering functions down to

angles as small as 0.1° from the forward direction. Forward-scattering

measurements from an isolated sphere have been made recently by using

the Guoy phase shift that occurs at the waist of a focused Gaussian beam. 6

However, that method is applicable only to particles so small that the

scattering phase shift can be neglected in the analysis. By contrast, the

present research is directed toward particles of all size, including larger

ones for which there are appreciable scattering phase shifts.

The purpose of this research is to use a new technique based on the

fanning of a coherent light beam in a photorefractive BaTiO 3 crystal 7 and

measure the forward light scattering from quartz fibers of radii from 15 Am

to 30 pm as a function of angle. 8

Photorefractivity

Photorefractivity is the ability of a crystal to change its index of

refraction by interacting with incident light with energy less than the band

gap. When a photorefractive crystal is exposed to a light beam the charge

carriers (for example, electrons) from localized impurities (donors) are

excited to the conduction band by photoionization process and diffuse or

drift, until they become retrapped by other impurities (traps). If the

intensity of incident light is spatially modulated then the charge density of
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the crystal is accordingly modulated by this process. This spatially

modulated charge distribution induces a spatially modulated electric field.

This static electric field modulates the refractive index of the crystal

through the linear electro-optic effect and forms an index grating. In a

diffusive medium like BaTiO3, this modulation of refractive index is spatially

shifted relative to the modulation of the light intensity, which makes

photorefractive energy coupling possible. The incident beam is diffracted by

this grating and the intensity distribution is changed inside the crystal,

which in turn changes the charge distribution. The whole process is

repeated until a steady state is reached.

Beam fanning can be explained as a photorefractive amplification of

the light scattered by medium inhomogeneities. 6 .9, 1 0  When a

photorefractive crystal is illuminated by a single pump beam some of the

light is scattered by impurities of the crystal. Even though this scattered

light is weak it can be amplified through photorefractive coupling with the

incident beam. In a BaTiO 3 crystal, the photorefractive gain of the scattered

light is especially large so that more than 90% of the incident light energy

can be deflected through beam fanning process alone. The extinction ratio

depends on a number of factors, such as the angle bCtwccn the pump beam

and the crystal c axis, the polarization of the pump beam, crystal geometry,

crystal imperfections and aberrations in the pump beam.

To produce the photorefractive ffect, photoinduced charges should

migrate from regions of high optical intensity to regions of low optical

intensity to eventually establish a static charge distribution. 7 A finite time is

required for the charges to migrate. This time T is known as the

photorefractive response time; it is inversely proportional to the intensity of

the incident, beam.11 The response time becomcs quite long at low
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intensities (e.g., for BaTiO3 , it is of the order of 1 second at 1 mW/cm 2

incident intensity). If the spatial character or the phase of any part of the

beam is perturbed rapidly compared to T, then the perturbed portion does

not undergo fanning and is tran.mitted without deviation. As a result, if the

scattered light has time dependence which is faster than the response time

of the crystal then it can pass through the crystal while the unscattered light

is fanned out. This is the basis of our technique to separate the scattered

and unscattered beams and could be applicable to suspensions of scatterers

as well as to isolated scatterers.

Experimental Results

Fig. I schematically illustrates the experimental setup for the angular

resolved measurement of forward scattering by a quartz fiber. The cw Ar+

laser beam (514.5 nm) is polarized in the plane of the figure. which also

contains the c axis (illustrated with arrows) of two BaTiO3 crystals. Both

crystals are 0-cut and approximately 5 mm X 5 mm X 5 mm cubes. To

introduce a time dependence to the scattered light a quartz fiber is

mounted on a 1 rpm synchronous motor that rotates it in a circle of radius 3

cm. Adjustable apertures Al, A2 and A3 shield the crystals and the detector

from stray light. Most of the incident light is fanned out of its direct beam

path by the first crystal. However, because of the asymmetric nature of beam

tanning, some of the light is left on one side of the beam. This remaining

liglit is fanned out by the second crys%.ai leaving less than 1%6 of the incident

light in the background. As the fiber crosses the laser beara a pulse of

scaticrecd light is, generated in this dark background. The angular

distribultion of this l pulsc is measured with an optical multichannel analyzer
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(OMA) which has 1024 detectors per inch. This signal is recorded in a

computer and compa-ed with the "½s3ults of theoretical calculations.

Polarizer Fiber LI L2 A3 L3 OMA

fI Al A2 f2 f3 f3

Ar+ Laser Crystals Analyzer Computer

Figure 1. Experimental set-up to measure angular resolved forward

scattering by a quartz fiber
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Figure 2. The profile of the background beam before and after

beam famning
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Fig. 2 shows the profile of the background beam pattern before and

after the beam fanning is established without a fiber. Before beam fanning is

established the laser beam profile is measured for short period of time.

Even though it was measured for relatively short period (< 1 sec) the

measured profile shows a sign of beam fanning. Here we can see that 1)

after the beam fanning the extinction of the background beam is so great

that intensity of the background beam is almost zero and 2) even though the

intensity of the background beam is very small it is not zero and the profile

of the background beam is asymmetric. That is because this beam fanning

process is an asymmetric photorefractive process.

2500

S2000-_5 - Measurement

5 - Calculation

-• 1 5 0 0 ... ............................. . .. . .-.-.-------- .---------- ---------- .------------------------

1000-------
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Figure 3. The interference pattern between the forward scattered beam and

the background beam with weak beam fanning

Fig. 3 shows one of the typical nmasurements of the forward scattering

from a quartz fiber. The horizontal axis is the scattering angle in degree and
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the vertical axis is the intensity in arbitrary unit. The thick curve is the

measurement and the thin curve is the calculation. Because the background

intensity is finite what is measured here is the interference pattern between

the background wave and the scattered wave. In this measurement the

beam fanning is relatively weak and the background is comparable to the

scattered signal. In calculating the interference pattern, two fitting

parameters, the amplitude of the scattered field at 0' and the position of 00,

were used. The uncertainty of angle is about 0.0050. The measurement

shows very good agreement with the calculation. In this graph we can see

the most characteristic interference pattern of 00 scattering. The intensity

distribution I(x) at the detector plane is the result of the interference

between the scattered field E.,(x) and the background field Eh(x) which is

given by

AX) = It,(x12 + EI(x)! + 21Eb(x)jIE,(x) cos(o(x)) (1)

Here 0(x) is the phase difference between two fields and x is the

position at the plane which can be converted into the scattering angle. I(x)

is the interference between a plane wave and a cylindrical wave. As shown

in Fig. 4, at precisely 00 the phase difference between the scattered field

and the incident field is about 3n/4 radian. So in the interference pattern

there is local maximum at 0' and this small peak is the signature of 00

position.

Fig. 5 shows the forward scattering from a 24.2 pm fiber with strong

beam fanning. Note that there is a strong interference on the left hand side

of 0' while no clear interference on the other side. The reason is that the

background on the right hand side of 00 is not the remaining incident beam

after beam fanning but it is due to multiple reflection of fanned beam and is

incoherent with the laser beam. Therefore, it does not. interfere with the
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forward scattered beam as in the measurement. However, in the calculation

for the simplicity the coherent background is assumed and we have the

interference.

300 1.0

250 0.8

200-
)0.6

Nq 150 2 , -

•-0.4

N !- Amplitude
50 - Phase Difference

0 - I 0.0

0 5 10 15 20

Radius (pim)
Figure 4. The phase difference (x Tc) between the forward scattered beam

and the background beam.

600

S-- Calculation
* 400 -- Measurement

' 200

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Scattering Angle (in Degree)

Figure 5. Measurement of forward scattering with strong beam fanning
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Fig. 6 shows S(0)*S(0) versus fiber radius. The 00 readings were

made by producing Fig.5 for all different fibers. The rapidly oscillating

curve is the result of Mie calculation. The data show good agreement with

the theory.

200000

- -- Calculation
150000-•0•'•" -_ *Measurement ,A

50

0 10 20 30

Radius (rim)

Figure 6. S(0)*S(0) versus fiber radius.

Conclusions

In conclusion, we have successfully measured the 0° scattering from a

quartz fiber. Angular distribution of forward scattered light has been

successfully resolved including 0° using this technique. BaTiO 3 crystal has

proved to be an excellent novelty filter.
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1 INTRODUCTION

W\V at is 1 1h11 liic ( '1I( ('r ' b'tw(.vii , (ahdr)olet of wartr in a clouid anid a layered struct lire
wlos (',,c c'(ont ai s ;I gcri1 waarfare aig(.ut Which is from thme ('hli('ic of (o)ating ml1 chl to
a;,l)(.;iT 11) o( liii;,,v \iI.;- u intecrrogation to Ic a (1ro)p of water or to ai, a g ,roulp 1)1(1h l iII
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with ;Ii 11 of waiter(i'0drole'ts5 so a,, to be d iffticult to see with ordlinaryv multiple scat,-
erling 'Xprlwirjiii'u? We 'give ill this pap~er a uiiet~liool of telhing the dmff('recle bletweeni anl

\\e~~~~~~~~~~~ I(sli -'litii ~i~raintio f(oelii when a cloud islikely to contain

1 l ii :icill war11fare aIgv'its. Norimlly materials init cloud that, are niot man liiaml( (10 niot hiave'
Cil('a('flillV laven' lstiuct~iire. Xkec show ill ilartiul~ir how to uise scatteredl electromflaglethic

1ma lliat~i( I to (liscri'iiiil litte 1betwe(en Liver'ed phrc mlid uly dspheres, andpo ceed to

lieisthle generail 1)101 lenl of layered particles with an arbit~rar'y shape.
The( 1basic idlea is, to sep~arate a p)otenitially highly complllex prob)lemI into thme two simmpler

pr'ob1 dims of ( i) finiding thme expansion coefficienlts of thme scattered radiation which p~rodulcedl
lie imo 'asuirelivients, and (ii) using the redundancy of droplet paramieter information emi-

1bodiedI ill t liýce expalisiloli coeffic(ielits to) (iscrimiumimitc bletweeni encapsulatedl materials and~

ha I ilia lly occuirring cloimld drop~lets. NVe 5111)1)05 that for ami N layeredl sphere that there is
aI tral isltl(n il atrix Q relalting exp~ansionm coefhiciciits representing the electric and magnletic

v'ct firs inl the biological warfare agent, come to the expanisionm coefficients rep~resenmting the
electric mitil maiieigiti( Vectors in the regioni surrounding the sphere. Thle representation
of thle electric anl ma11gnetic vectors of the sca~tteredl radiation becomes more and~ more

caoill livem'gclit as you miove away froml the spherical cloud droplet, while. thme known
o'lecti'ic vector (If thme inmcolminmg raolia tioii becomnes miore andl more slowly convergent.

2 The Problem of Noisy Data

Nh 'asulreinemit S alWayý-S ha1ve error', Mlid the Mlore dlimnemsions youl have ill an op~tlimilztioni
prob deni, thle longer it talkes to( solve. Do you try t~o find the best fit of p~ar'ameter's for a

()1,or two lyrstrmuictiure to a limited numbuer of mneasuremients or to a large. numiber

(If lilea(I'('1-iii('itS." solvinig the eiltirc problem' at. once or do you try to dc~ollilpX)se the

probleiim1. W\e shiall suiggest. iisilig at very large mnbnler of nmea~suremnents, andl breaking 11l)

lh ie h11 iiii inito) two'( simill('i parts. Acloudo conmsist~s of many p~articles of differing sizes
anld ijit ltiple sc';itct(rilig muist. be taken into accounit. To test tile feasibility of the theory.
WC' ('0IPmisi l thle simllllr probleml of scaittcrilig frtin ia sinigle (1011( (1r0)lot. andl attempt

to olet' il ill'c whet I c i' or jlot. thiat (droplet. is at singlge layered structure or an (encapsu lated
1 ii1gi alwa fa le ag( 'lit Iin the first. Ilalt. we obu tainf, i IldelciiIczlet of the natui re of the

spl ierivia 1 art-i cle tI ia t pros duced thel( sea 1t~t('rcdl radiat-ion, a 1( reprs'enttti oil, ini terrms of

51)! rica I hil Inl iiones. of th I o'(l(ct'ri c v to I'(f thec sca t~t(ered radiation that produlcedl the
iii I asUPm'licilti 'it TI li falct t ha t thle coefhi cienits liieedl'( ill this rellreseritatolon redlundanitly

~ ' )'('5 'theI I '('( sf1111' "tut lmo amid ('l(ctrol(111Agii(tic prnolperties of the s'cit~teri lig 1 mdy thenl
iia .1's11 to I ('I v'hi;i kind of aicatee produced the ini'asiu'-cnio'nts.

2.1 Noise Rlemoval

WAhatt ('l -set (of meu re'a mll(ei(its we ki ke. it Is liimpori'lt ato hI hve eliloighi of theothat

W\I'C' l ('ihiiili A*(' iii t'ia ic oi~se fr-olij those( lie.11 i'rcli('ut-S. If the lioisec is 1luiisvstv'lilat~ic
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or white, then even if the lmre signal were a sniall fraction of the measurements, it could
then ble moved b~y an integration procedure or a local averaging procedure. The local
time averae(' is

S(r T) __ [S(r) + N(r)]dr (1)
,rO Jr=O

2.2 Fibonacci Optimization

We use a kind of higher dimensional Fibonacci optimization using planes perpendicular
to the hyperplane of values that are needed to represent the electric vector of the scattered
radiation. The measurement is determined by the electric vector of the scattered radiation
plus the system noise which we assume we can nearly remove by averaging or filtering
processes. We consider hyperplanes each defi,:eii by keeping one of the parameters of
interest constant. We use normalized variables such as th,. one obtained by replacing the
permittivity e by its ratio e/Eo to free space permittivity. Assume that we move along lines
normal to these hyperplanes. For the jth hyperplane we move from our initial starting
p)oint PO) given by the equation

P = .. ,.x) I(I X

along the vector

j = 6, , (,j),. , 6(,,j)) (2)

a distance of r giving us a function of a single variable. We estimate the partial derivative
of the reciprocal of the noinegative function to be mininmized in this direction given by
equation (2). We use these estimates of the partial derivatives to give us an estimate of
the gradient of the of this function. If we move in the direction of the gradient we will
be moving in the direction of the greatest increase of the function. So far this is almos;t
like the conjugate gradient method. We intersperse now Fibonacci optimization by in this
direction finding the location of the minimum of the function of a single variable that
moves along the line defined by the estination of the gradient. Said differently, if V is the
estimated direction of the gradient of the reciprocal of the function to be minimized, then
we attempt to minimize the function

g(?,) = f(W0) +r 7

We at this stage have the prol)lem of minimizing a function of a single variable. We wish to
carry out this mininmization without any conllputation of gradients. Basically we imagine
that we know the value of the function at points 7- and 7-2 and that. the value at, r1 is larger
than the value at r?. We then move to the point 7- given by adding s * (?. - ri ) to ri,

where s is a positive fraction. We then compare the values at. r2 and r- and renamne the

poilit ill the set

S 7'2H
at which q is larger (2) and the point in this set S it which g is sialher r(2). We pro-

ceed until the difference 1between point s 1ecomims smaller than our error tolerance. This
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tliei beconiis oI(' " 0 mw point for starting the nultidinensional iniiiinuzation process. This
illethod is a coilibillatiol of the 1iuhltidimnensioi1J conjugate gradient miethod and the one
dimensional Fibonacci op~timization.

3 Bioagents Placed in the Core of a Layered Sphere

WV show ill this section how to detect a. biological agent in a cloud when the agent
is stored in the core of a layered sphere. The sphere materials may be isotropic in the
seilse that the electromagnetic properties of each layer are the same in every direction.
The sphere prolprties may he anisotropic in the sense that the properties are permittivity
andI perinealbility only and these properties are different in different directions. One of the
easiest of the ainisotropic spheres to deal with is the uniazial anisotropic material which
has onie lp'oplrty as y(o) go inl the radial direction and another prol)perty as you move
tangentially to the sphere. This is of practical concern as you might have a bioagent
core encapsldated by ani oriented molecular layer designed to make it difficult by ordinary
iiieaiin to (discrilninate between this and an ordinary droplet. The same result may be
theoretically achieved for a bioagent encapsulated by a full tensor material. Bianisotropic
C(iCapsulations of biological agents would present another level of difficulty. Bianisotropic
miaterials might l), created using molecular layers with a twisted and intertwined molecular
structure. Tle Faraday (the one with curl of the electric vector) and Ampere (the equation
with curl of the magnetic vector) Maxwell equations both have the form of a tensorially
bilinear flniction of the electric and magnetic vectors being equal to the curl of either the
electric or ma gnetic vector.

3.1 Spherical Harmonics and Orthogonality Relations

In order to illiierstanld how to solve the inverse problem systematically when you know
that that the scatterer is a single or multiple layered spherically symmetric structure, we
lneed to have some muderstanding of the orthogonality of vector spherical harmonics which
dramiatically reduces the dimensionality of the problem of detecting an encapsulated sphere
collt a iim.g b )iological materials.

The 1•.ýsic i'(,a of t.lc code is that the induced and sca~ttere•d electric and niagnetic
vctors cail 1 c, for (i) isotropic, (ii) uniiaxial, (iii) full tensor anisotropijc, (iv) uni nxially
I1ianmisdtropic, and (v) full tensor 1)ianisotropic spherically symmetric structures be ex-

1 Iss( d in terimis of

P,, '"u(,o.S(9)) d ...ui.(9) •a -[ P,7 , 9~,•O):, ('rp(i/1, ), (1)

[Jl.. ... - -- ,7(co.'ý(O))i'o( + i P,` (2)(O)13,,,) -','cuOVo+j,,Pi~t')tO) ',:,] ,.rp( in u), (2)

(11911
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where r,, ro, mand i are the unit vectors perpcenlicular, respectively, to the r = 0, 0 = 0,
and 6 = 0, coordinate planes, and where P,,(co.,(O)) is the ordinary Legendre function
defined by Rodrigues's formula

1 ( (1)' 7( -2,! -) (z_ -,1 (4)

The associated Legendrc functions P,'," are given by

d(zZ 2)m/2 (d P.(Z(5)

It is obvious that even without integrating over a sphere that the dot product of either
of A(,,,,,,) or B(,,,,,) with C(,,,,,,) is zero. The orthogonality of the functions ,erp(imo) and
exp(imtq.) on the unit circle for m € iTh. show that if as in ([5]) we define the inner product
of two vector valued functions U(8, ¢) and U(0, •) defined on the unit sphere by,

<f, fJ= U(0, ) V(0, V > =sin(O)dOd, (6)

with two different values of m are orthogonal. If we take the dot'product of two distinct
menmbers of the collection

S = {on"'), f C(rn) :nEZ, and IE {m l 1 +1,'"}}, (7)

with the same values of in and make use of ([1], p 333) the negative index relationship
-,7"(z F(v'-tIL)[ 2 .

•) F(vt' +l) P,,(z) - -cxp(-iLt7r)Sin(p7r)Q"(z)(

we find that any two members with different values of n are orthogonal with respect to
the inner product defined by equation (6). For example, to see that

< ,(.,..,, B(,,,,,) > = 0 (9)

for all 7- and r we note 'hat this dot product reduces to

in(27rf) ' [P,'1(r,',(O))PM"(co.s(O))] dO = im.(2rr),-- {P,7(x)P,"(.)} dx (10)
" (0 dx

The details of the remaining orthogonality relations are found in ([5]) or can be derived
from properties of the Legeildre functions described in Jones ([22]).

Plhiie waves in free space can be represented using the functions described above by
carrying out thi, explansion(Bell, [4] page 51 and Jones [22], page 490, equation 94)

.rp(-io'A'7CO.S(O)) = a,,P,,(co.,(O))j",(k•Or) (11)
11=0

where the (Xp)li1sio11 coefficients a,, are given by (see Jones [22], page 490)

-19)"(271 + 1). (12)
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Thee c)(jhcelts re etrmiedby ettngz =k,, carrying out a Taylor series expansion
in ý,andi~making uist of the orthogoinality relationlshlips

0if 71 54 ll

TI'11.4 equiation1 is b asedl on the relation (Bell [4), page 61)

1 /1(L ( - 1)"(z + 1)"dz =(n+1!(4

which follows from integration b~y pa~rts ini the left side of equation (13). This relationship
can1 1 be proven using tihe Rlodrigues definition (equation 4). By using thie notion that the
aIlgebraic strulcture( formed by linearly combining these vector fields ini a ring of radial
funlctions is inva~rianit uid~er the curl operation also enables one to get an exact solution to
the scattering problem for isotrop~ic, anisiotrolpic, or bianisotropic sp~heres.

3.2 Representation of the Electric Vector

The key to thme solution of the remote sensing problem is to decompose a potentially
iiimiecrically intractable problem into two imuch simipler probleis, by using the measured
observations of thme scatteredl radiationi to finid the exp~ansion coefficienits used1 to rep~resent.
the elcrcvector of the scat~tered radliation as a sum of multiples of the vector spherical
hmarmiomiivs givenl by t'(jpatoll." (1), (2), all(l (3) by functions of the distance 7- from the
ceniter of the sphere. Noise is remnovedl by multiple measurements for each sensor. Ultra
high order (jiia~lratimre c'an be used to ob~tainl aii accurate rep~resenltation of the eleC~tric
Nvector of the scat~teredl radiation by prcs placemnelt of sensors at quadlrature j)oints,

lctdonl a section of a sphere. InI this way we can obtain an expansion in sphierical
liarinolincs uishng the orthiogonality of the vector valued functions given by equations (1)
Mimd ( 2) 1 x' integrating 0iilv over a smlall (Ili terms of steradians ) p~ortion of the sphere.

If we puit ill genmera~l functions, of the radial variablel as mu-nltiples of the orthiogonial
funict ions given by (1), (2). and (3) aund substitute into thme Maxwell equiationis we olerive
('(uat ioiis siiohi as

(XI z b)2).

Fot lie ,siiiplc iiii1axially 1 iaiiisotirolmi iimatcrial the radial fuinctionis arc solutionls of

11, r2  7- kjh
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wirj '' (1c ordillary ulNIXially ai.lsot.ropic sphere proplagation constant is

k'2 - iwp~a (3)

If wc' Introduc(' thei' \variable
I, _(4)

amd the lroatiopt loll r t aiit A- is given iwy

k iO(- Ia + a/'3 (5)

tl Oel ordlinry differeiltial ((,Iation (2) satisfieid by ZI()(A'r) is simply

a - (,.Z(a)(kr))+ k 2 ,,,-+ )Z(:)(.,.) =0 (6)

which is easily seen to be a form of Bessel's differential equation whose solution is simply
a Bessel function with a complex index and argument.

One of the radial functions used as a multiplier involves the reciprocal of the radial
v\arial)le r times the partial derivative with reslect to r of a Bessel.fiunction with complex
index given by

W'V( 4 ,() (k r) 1( ))(rZ((r) (• 7-) (7)

and a corresponding equation for the radial functions of type b satisfying equation (1).
Whmen we substitute the suggested representations of the electric and magnetic vec-

tcors ito the Faraday Maxwell equation (the one involving curl(E)) and Ampere Maxwell
eqllatioii, the one involving curl(H), we obtain consistency conditions relating the expan-
sion coefficients in any region. As we imnp~ose the boundary conditions across the layers,
nmem'ly the, iontinuity of tangential components of electric and magnetic vectors across
a separating sphere, we get relations between the coefficicnts in the core and the region
surrounding the sphere. For a simiple uniaxially bianisotropic material the propagation
,-oist.ant in layer p is given by

k -2 = Lo2t1 0(•'f(p) - i W.(voy ae ' + (.P(P)/ 3 (P) (8)

where (:(I') is the per mittivity, ILfP) is the plermeability, a(P) is the conductivity, and ce(P),
aii(l 3,) are coumplex coupling constants giving respectively the contribution of the electric
\.cto,, oin the right side of the Faraday Maxwell equation and the contribution of the
wiagiiti(" vector on the right sid(e of the Ampere Maxwell equation In the pth layer of thc.

sp )h'ere hlie imiagnetic vectol has the forni,

- [ (L ,)(k, 7In) +

,,P) (+ ) 70,A () '1 z 1)i(") +• ' ( \ (r k Pb , (, 7,',
121 - ) 7 + 1 (,,
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1 )!n:.n) +(3( 1 r

00') +hi ... ...- ) +f'ini

I ____ , P(~ 1)))
A) 0 (b, I' )(k r)) + )t3(P)P 1j,,(b.3 ) (k,7-)))B

kw' nb(Inln) (nup) P (nn np doi

\k'i'f"b(/ [,,k ] bZj' 1 j~A r) + !IG)",Z3)( kt }Amn) +

(~ ~( p) { a' 0 L )(kp? K) + a '(7~) (V n,3)(kr} (m)(9

Equiationi (9) impl)lies5, uponl cquatilig tangential coniponec its of Hon each shilc of the

l)01111(1l1a1y 7' Rv,, by taking the dlot product of b)oth sides of (9) with respect t~o B(,,,n)

and integrating over the sphere r = Jp that

-i, k1 (m, ) I(-,3) P
~ ,) p (n )( P ) + p7 w (a k r)}

a)I. ("Ln k+I(n 1) k.Pl mL k 14'47L)(r + O+) (i+) pi}±

givenn by 1) at

(i )[-k] b,Lf) Z(kr.,y) + k +f1'W;?,,1 ) k +k

W/IP+I (mn I-~p 1)...1  Z( 7, 1 ( + 1 )10

Agi uingw tici con tim t, of1 ~l trai-,g i tioiiacmoeties ofhei (m1awilneltivector faiisioii by (9 on di

opoit 1l ie Side of a'X )eimtlsIg~ bocfhciciT'' wei diIerdlcer WIy orthognwith ofii thevori(0;W fucions,
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affter iilt.ilplying b)oth sides of this (pulat.ioll by /101 and dividing both sides of equation

(10) by k1. that

,,Il "* ) 7 O, l ") ,)g , 1 -,a, ,., +
-n) (".1: " 'i r) + . (), vv- 3 ( ,,r)*+ )

________- -( o (14 (3&( k~)I
1',7)kp (Mn?)( (7

t1'(i+1) + ('",") "( k,I ) (I (p,+IIq" (a,Va3 ) (k r)( p(1+1)A;,) ,~~~
1 (n?)'(,P+ I) IA? 0 (nlj) (71,p+] ) ,fpJ +

( I:j ,4 1 )L+ { I v... } j . ( P ) + {3(,, (W,, /. )(k ) (12)

Multiplying both sides of equation (9) by A(..... ) (0, €) and observing that

LIM [ -7 , q,).4 =

LIR4 .. ! ..4 1,.,)(0, q5)dA (13)

we, derive e'quation (11). From this, after multiplying all terms by -itw(P')k 7 , and dividing
all tcrms by k', where kp is defined by (8), we derive the relation that

J { C ) O+ (aP) Z•{$,(,,..,)
---) (,) () Z(n )( k 7.) + /, (77,') ( 7,1,) A ,)} P - +

(p) Z ~ ~(fi .3) 4,7)k~iP~iA 1, {,,,,I {,,},2 ) + /• ( ,,,, , i ) t 8,(,,p+t^7 )t - ,±~[ p ri>1  1 {b( Z , (a ) ((,+ i)T(-71,)

b)A, (in) l- 1 ) (k~ rr )±)

where kp and k P+ are detilled by (8).

We now de'fine1 param('tv,'r which appear in the matrix relat'l g expansion coCeficient.s
il O1IC laybei to those in all adjace'nt layer. W(' obtain these by considering tenl.,s aplpearii ig

ill •(',Iition (14)
p(P,4 , ) :-- ( - L,, i ( - - P)7

Al • s f)( +) K 7j (i0 ,. ,+ } (1 6)

xvtl,,/ ( }( -1 ( /,.(,,+• )•., (16)

w i t.] I,-. 11 k,41 beine;g definiil byv (S). A sinilai t.erim alplpearing il t(hle i tier shell Iiatrix

"0. (00)11
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A emIII th l1( -(-oii(l row. of the otiter shell inat-rix is

0041) ýtHpj(1S)

Ano i( t 1( tc(111 a pp arn ig iii secn ')ii1ow of theu mnatrix is

( p+ 1) = I (? ( ( ' )( 
9

'The c oiiesp oudinig ter Ciiil thle Inner s-hell iiiatrix is

2) ( jp, (20)

thespeialfilictonsZ(")lefinled by (G3), and 7Z'b (1 eindb (1), and the

dlerivat~ive t~eriis (l(fill('( by (eqjlltiofl (7) b~eing evaluated at the separating spherical bound-
a-,ry = R,,. We see that. the imiatrix (equationl relating expansion coefficients in layer p to
t hose 111 htve + 4 1 is given h)V

.0 07 a8'o

(1,7+ 1) I;(a', 3+ ) 0,) 0v 1b I~n 1R I,

(7 7) ) (L 1) b.'2 ) (n 4 (7.+ 14,p(.) (

P) Z ( 1) (7 -t- I ) ( (n p ()I (7, (b. I ) P( b,,3) b(np p) (n )

7L~p 1)(n~p-4) '(In, n)

.3 ) 1 (p-i)
0 0 a(ain

3) I, r(,1 P(p (in3 iL)I

P( 
p ,i1 I ) p±)+ 1)p

(71L,71 (7' P

G.) ((23)
(?,i --T124 ) k )+ R p ( ,7)( 2



\Wronskiim relhitionis will show that(. w(e cal define' a new matrix Q b') ly the Iruh

Q,' r") ( R,,.' Z'(1+i)(,, R,). (24)

Using (quat.hions (22) and (24) we sec that. tl( expiasion coefficients in the core are relate(d
to the ('Xl)allsioll co('(),•cici. iII th(e outr ,uchII by) the rule,

a(1) - I(N+!)
0 Q. )' . . [ (77 ', )Eb(N+i) (25)

I( 7fl.ii) (,,n,)

0L(N+I)! 711,n) J

This gives us four equations in four unknowns, since we assunm that the expansion no-
(,,, + ) I,(,,,,lare determined; these expansion coefficients could define a.

eoilhl)leX source suich as a. radar or laser beam i). the near field (Barton [21 and [31. Pinmicck

et al [27] and Pinnick and Pendleton [26]). Solving equation (25) we find values of ( 0 7,)7,)I) a~l ssnnilg tat auc /1(1)

and b(' I d() are both zero, we can easily ol)tain the.

cx'pansion coefficients in every layer of the structure. If we define the matrix IZ,'() b)y the

7Z701) =T,!"+1)( k+,/,)-' TP)(kR,,) (26)

"We see that the definition of TZ$,T) by equation (26) implies the relationship

S(T') - a(p+ 1 )

r (( ,) i( I)

(in,) ..,(vii )L b(7') b("+ ,) 27

l)etwIn eXl)allsion coefhicieits ill akdjacciet layers of the spherical structure.
Thes(e 'oinll)iItatiolls using ('(qluat(ion (27) atic f;,,'ilital(ed by the fact that we have exact

formiulas for the determina~nt aid inve.rss of the 4 b)y 4 matrices T,1) Let the (lt(eriilallt

of T,'P 1)(' lehfiiid by A,, =Z("),kl 'R (' k ,• Rv
pil )(A (h 1(A.~p (b3 4.l~

(-1 [[Z ''',,(,,,4, ~ gP)W 21'1,7( RP), ,R,,)]

,p(7 (),)')Z(1:' b f W oikai X i~( ,., 7 ,(7 ,,) ?(TL ":)(1 7 1 ,1 7p)( 9

w (''(,(.,) i- .p(,,)". , ( ,,,R ,, ) l (, "-P .,, P,, - W (T,,.,,)( (IL', (2,9,)
VWe find that ((liation (28) am I the Wroxiskiaii relationshill,

,.) (30)
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(.ni1iles 1i, to colupte deternminants with no roundoff error. This enables us to get exact
forxiiulas for the enti('es of the inverse of this matrix. If ( T,')( kl Rp)-1 )(i,j) denotes the entry
il the ith row an(d t1h column of the inverse of the matrix TP), then the entry in row 1
aid cohllU i 1 of the inverse is

R (" '3)(k , )W (b) (k,,Rj,)/Avp (31)

Thle (1,2) entry is
- (a,3) ( R W(h) R(2

(T,~',( kJ?, )- )(1,.) - Z p "(k,)(R ')WV.,2)(kp)(AI) (32)

The (1,3) term is
(T,'7)(k,,R,,)-' )(, 3) = 0 (33)

The (1,4) terrm is

(T )( kR 1 ) -')(1,4) 4 -(Z(k,'R)'(k-p) (-_) W ( ())(kpRp))/A) ) (34)

Equations (31), (32), (33), and (34) define the first row of the transition matrix. The entry
in row 2 and cohunji 1 of the inverse is

(TP)(kRp)')(2,I) - _ W ((,.,") . (b))(2.,,P= _ (., kpRp)W(,,,P)(kpR,)/Ap, (35)

The entry in row 2 and colmm 2 of the inverse is

(T1)(kR,,) )(.2,2) = Z(( kpRp) VV. (.k R )/Ap, (36)

The' entry in row 2 and column 3 of the inverse is

(TP)(kJ,,)-' >2 ,3) = 0 (37)

The entry in row 2 and column 4 of the inverse is

O(_ ) W(b)

Equations (35), (36), (37), and (38) define the second row of the transition matrix. The
(3.1) eitry is

V-VP) (b)k: t(k")tpR,,) - v w(,,,)(-R)A (39)

Thl (3,2) eintry is
(TQ( k,R,,)- )( L2) 0 (40)

The (3,3) itry is

R2 )W6;[,)(k (41)
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The (3,4) enitry is

(T,',)( A,,R,.)- )(',,.) -Z ( ' , ( n, , 1) ( kR,,)/Ak,, (42)(T"(A1Rj) I p )= -Z(h". P (?,l,} )Z•I~

Equations (39), (40), (41), and (42) define the third row of the matrix. The (4,1) entry is
given I)y

T,'(k1)R1 )-).,• = -~ ~ 1  p p,,,( ,R,) -- -1 ,,,,,)
)(1 )( ~ ( k f/(43)

The (4,2) entry is
(T,')(kpRp)-' )(4,2) = 0 (44)

The (4,3) entry is
(T,,( kR,,)' )(4,3) = -1v((' 1) "(,) (R)/A (45)

Finally, the (4,4) entry of the inverse of 2,P) is

(T.P)( kpR, )-' )(4,4) = Z(,,',)( kpRp ) W(,,P)( kpRp,)/Ap, (46)

We have therefore obtained round-off error free expressions for the entries of the in-
verse of T,,')(kpRp). Thus, except for the expression relating the expansion coefficients in
equation (25), all computations are carried out by exact formulas. The matrix inverse
computation requires no subtractions or additions and consequently there is no round off
error if the Bc..scl and Hankel functions of complex index and their derivatives can be
computed precisely.

3.3 Determination of Expansion Coefficients

Let us sup)p)ose that we have an N layer sphere subject to plane wave radiation. By
multiplying the inverse of T,(P) evaluated at kPR 7, by the matrix TP+i) evaluated at kp+,R,
we obtaining the matrix

," - ,{")(k R <'T(')(k,()

relating the explansion coefficients in layer 7) to those in layer p + 1. We then multiply all
of these ,matrices (1) obtaining a matrix

T . T(2) (2)

where N is the iiuniber of layers of the sphere which relates the expansion coefficients
in the core to the xlpansion coefficients in the space surrounding the sphere. This gives
four equations in four iinknowins. But. it is really simpler than that. Using the second
ald fourth rows of this matrix equation, we can relate the expansion coefficients of the
scattered radiation to the known expansion coefficients of the incoming radiation. We then
have ill the first and third rows of this equa tioli a formula for the expansion coefficients in

the inner ('('I('.
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3.4 Recovering the Properties of a Layered Sphere

We 1lw coll sidera'so M * of i'i 118 ions wic vluIi a h e8 used to( recover the properties of ei1thler

;I lay('r(l W~t 1011WN~v" oll(r( (U' laye(114~1 tnitinxially alWiAro~CQ s)lder(' hiiagine that yrou h1ave

I 111 IIIt rix Q '-lIat i I ig tI I ic ex p iII l I501 coefhici('itA,; re p Ieseiftiig t Ie( electric i.11(d magnetic vect~ors
ill the' ilfill corei( to thci X )81'1011 'oe'fficien1ts r e]res('iit-ilg the c'lectric iiid niiagiiet~ii vectors

illHi lgiol '11-1ollllin tc ayeedspere B eimnuating Oeunknowvnexaso

COIificici'it s ill I l1(' core' we get for e'ach ,pl)er'ical liar ~oluc index equa11tions relating the two

comple])(x. ;I liiili ii uknown bW l 11it ie 111(o"l-liviit. (leter'iili('(l e'xpansioni coethiviellts givinig the
r-;Ioia tjio in eiaiia t jug front thel( layeredi splhere to the at prtiori kinowni expainsioni c)cfHiiellts

defili ng t Ic kiioxvi injte(rroga tiing radiation. F~or the different types of spheres thiere are
c('])c('8 ted vit! of ('(u18t ionhl thlat 'should give the saute answeres for sp~here' properties~. If

hisc'~t of epila ian is do a1l iiidira ite tha~t, the sphe(re' is homnogeiteus and1 isotnl~c, tite
WC (011(1 uide thatI thle diroplet. is iiot enicap~sulat~ed. If these are not satisfiedl, Owh eti
(( u1IIdlI(li t hat the (lroplclt 15 sonicithliig else and~ if we prove that the equtationls that. are

saif ied are1 cons'istc(lit. Wýi (iia8 layered 1 phere aSllIlll)tiolI We Conicludle that the particles
815' 1118111 Miade.

\hiexi thle scat t ('i g sphere is usotcqroli and~ lioinogeiious hike an ordinary clould water
dopleihit the oily unikniowns are' ( i) the radhius 1R (ii) the real p)erm~itt~ivity :, (iii) the colidluc-

Ijvjt y (7, (iv ) the rood part alidi (-,-) the iilnaginary p~art of thec compllex permeabl ity /I which
for Nva er mlay 1be assulnied to bie that of free space so that iii any case there are at mlost.

5 real Variabl es to solve for. For each Lv'geildre function ind~ex ?i for thin Vector splwieical
ljiarinmnijes giveni by cv ti at ioills (1 L (2). and (3), we see Ohat there are four equatboxs. giveni
1, Q, nod eal d 811niagilry pars of the eqta tiotis

uPOW (2,21)(1

I'101( wit h I? del(lot-iil' the 2 1by 2 linatrix r'elat~ing thie b) ando bea coefficienits in the core to)
those iii regioin A' iý I oults5idte lici drolet , we have

If xv'k 'ep iit t ilIg t li sailie Valiues for the radhiis ando perinihiit Qi oiidthict vity Vn 81(1('11p1(

pemi i11al'~ii i t , U (1 dib '111it i'olibil it t iC 111 of Li ('( 111t~iois foir hiflerexit, vallics' of the inidex 71,
d11 i'i e(u conclude (hi;l at he We' have it utom layered stii-ict-Ire. iiot a11 anl (licalpsulat~ed biological
8g( lit.

4 Layering Detection on Structures with a General
Shape

IThe o i. 11ii i'xdi't s-ohlitioli to the' prob'ilo oif describing tlie ,cattc'rinlg of c'~h'trmiagiietic

I 8di;1tll (1 fl(Ioto ;III ;w'iosl particle with a gi'uieral shape. Su~rfac(e and vX'(ilic( inltegral

e1 1 i;g ;Ion -il (1111 8m (of ol taekoing the probeii on1 existilg rmnlihmUTw's In thw li('t. sectbi01
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we describe 'murfa-ce integral equlat~ions give a way of treating a complex of hAomlogenevous

struci(turles each with dlifferen'lt properties that. are glued together to form anl aerosol p~art icle

with at C-oiil)lC'X shape. if youl (,iil imagine at structure that by mnoldhing as mnodeling clay You

('0111( chamige into the interior of a sphecre, time interior of a torus (doughnumt.). time interior

of at two hmalifled s'phere (two (loughimiits that, lla\'( 1 (,,il cooked together ) et c'eterla. these

art, thme stnilctil1Ies that arc allowe-(. For examp~le a cuble is allowedl because if you imiagine(

that a cuibe was. miade of Soft putty, it. couldl be chlangedl into a. spherical slhape.

4.1 Surface Integral Equations

A surface Integral equation formulation ba~sed oin a specialization of a vector calculuis

idenitity Which says that.

1 [qýrad( ID) x curl( 1)] du 4

47 "ji v -, grnad'*')) -- i ~j grad) 4)] (1(1

where the distribution (1 in the above equation is the fundamental solution of the scalar

Hlelmholtz operator
L = A 4: 2(2)

that. is temperate and rotationally invariant. New codes canl be developed that. wvould

pe(rmnit the description of interaction of radhiation with bodies covered with differenlt. tylpes
of tenlsor niatecria~l (e.g. bianisotropic, biisotropic, anisotropic, gyroclecitric, ummiaxia 1, et.

cetera). Thme sutrfaces are those surroluidling honlogeneouis regions. The layeredl blian-

isotropic sphiere rode that, I hlave' develop)ed(lcan be used to checck out the layerimig aslpect

of the surface integral e 1umatiomm formulation of the interaction of electromagnet~ic( ra.( a tionl

with the first detailed mlodel of g-enleral aerosol lparticl('s mn a complex electromla~gnetic field.

I have included a. careful descrip~tion of imy unique exact finite ranik integral equation) ap-
proach Which is the onlly mlethod for solving volumec or surface integral equations that vamin

give comnputinig machincpecision.j~

Consider at set S1 inl W with 1bounmdary sturtface DQ oil Which a-re Induced electric anid
magnletic surlface cuirrenits .J, and -M ,. If we have a simplie N 4- 1 region problem, where we

ha-ve N inside anld at legioni out-sidleall N bounded honiogenious aem'os()l part ides corres1 )omds

t~o the regioni in-lex j being enato 1 aiid Hte regionl insidle c'orresp~ondls t~oj valuecs ra;ligilig

froim 2 to N' + 1 , t hen if t lIe( propagatiom Aoi .ai illii regionl j Is, dieflmedl also by itV fuineit ion

4). iiattuiralv (efiiiech ouila Pietimm 13('11111 face' as the spliare root of,

.1. - T(3
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For a Delyc ynuedhiun (Daniel, [13]) the 1 r(uic'l cuts atre along the imaginary w axis. For a

Lorentz ienli un lart.ichl (Brilloixiix, [6], 128]) the bran(ch cuts are in the upperli half of the

(oil'leh.x ", plmae parallel to the real axis. where i, f, and (7 are functions of frequency

t hat assiar t.auslilit3dy mid that the radiation does not. travel faster than the speed of light

ill vaclulil. There are two Helmholtz equations, 01C for the interior of the particle and the

oiitl.r for the lexte.rior. dletinied lI

(A\ + A-2 )G, = 476 (4)

wI,'I( (G, is the teinparate, rotationally invariant, fundamental solution ([21]) of the

liihliholtz olZprat 0r. We let.
.=,1 = -2 (5)

m, = = -AM2  (6)

wherei we assunie that the surface S,1,.2) separates region 1 and region 2. We generalize

c(,(1 1tions (5) aid (6) iid(lictively by saying that. for any surface S0 .5) separating region j

f), reqi,, .gioi j When,
j<J 

(7)

Wce have
= _ (8)

•l~ld
Al, =A'!: - M,(9)

WVC de'fili'c

I {j,) S(,,,) is a separating surface} (10)

whI'iv / is less than .1 . \eV get. a single coupled, combined field integral equation which

dcscril)('s the interaietioln of radiation with the conglomerate aerosol particle or cluster given

1 \'

i'{x(( ) JE J ix (p.1 G,(, i) + i19 G9(r, ,n) da(i)

S... + da(F) +

4 47•. .' I•.)[ j

4(.11r,,(1 A-I (7-1, (G, ( 7-J) + G,•(r,,ý)da,(,)} G1)
Ill Additimi to 'c(lal'tioll (11) w. need ,quIatio{n involving the magnetic vector H'''" of the

sthiiolaii in•c ,ltrltniagixet-i" field which is given 1by

Hx 1 x f A x G,(r,,) + (2 G3 7, d) ()
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+ 1- G. r,,i c- I
grad i f" L /t) +#.

4(G" + G -7 + r, ý)) d} (12)

()cc tdhc coupled conll )imld field syste (ii 11) ;nd (12) is solved for .1and Al, the sulface
hlectric and Inaginct.ic curreiits respectively and we d(f('le the sitiface electric charge densityb~y ([15], 1) 7)

p,(V) J J,. .] (13)

and the surface magnetic charge density

p-v() Phi[i," ,7() (14)

where dity, is the surface divergence. Now for each region index j we define

Jqj) = {J: (,J) C I} (15)

where I is the set of all indices of separating surfaces defined by (10). We now need to be
able to express the electric and magnetic fields inside and outside the scattering body. We
first define the vector potentials A, and E, by the rules, ([15] [24])

Z, = .jE)1, j f,.,i (,).-,(,., ý)d((

.iEJti)

E (S- 4J /Mr Gj(r. i)da(iD] (17)

The scalar potentials are defined ill termis of the electric charge density (13) and magnetic

charge density (14) by the rules,

3(P.M [(41) J1)]
• ,(EI-- 4 7r -1 J ) ; j p i ; ( • .)G ,(7 .• , , , !( •

and

We now can define the electric and magnetic vectors inside the region j in terms of these
1potentials (16), (17), (18), and (19) by the rilcs,

E, =-jj,) m<d÷ (. -. C,,,.1(F,)(,.) (20)
(j

1.1

-j iF, (r 7- f- qad( I( , -47- ) -+cu rl( A, 1() (2(1)
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Sijlar6111 equations iappix' Out.sidlf thc bodty, by there the fields represelitedl are thle dhifferenlces,
El' and~ HSý betwcen tile totail electric alnd miagnetic vectors and the electric vector fin, allo
the iI1,agiI(t je vector fl-I of t lie incomning wave that is p)rovidiing the stimiulation. Thius
(115]) we sec that. out-side t he 1 o(ly,

E'- - 4?WAI(r) - rad( D (r ) + -r-curl( F1 )(r ) (22)

HI=- iw)F1 (r) - qiad(T I (r') + -curl(A 1 )(r) (23)

Tliese epuations generalize the formulation oif Chisson ([151) to a three dhimenisional stru('-
tinre whose regions of hlomlogeneity are (liffeoniorlphisnis of the Interior of the sl)he(re' or a.
t-oruis inl R. If the scattering strucii'ture is not a bodly of revolution, te h einmyh

;I diffcomlorpli of anl N hiadledlc sphiere.

4.2 Recovery of Layering in Objects with a General Shape

The encapsilat~ioii of a sphierical structure is p)robablly fromn a manufacturing standpoint,
the casiest. thing to d1o, hut the onc-e this is known the theoretical problemns of recovering
the interior structure of a layered sphere are easily handled. In theory one canl do the samne
thing for a p)article' With aI comipletely general shape. We use the. fact tha~t each component
of dhe electric vector is real analytic in a connected open set Q1 arud that if in an open
sulbset. U of tile connected open set Q the function is known, then it can be extended to all
of 12. By califyliin out npatial Fourier transforms onl orthogonal spatial hyperplanes which
a1VOid t lie scatterer, we rec'over thme integrand which gives us not. only the a p~riori uinknown
geilerat~ed(h etirretit (densities buit also their suiplort, when regarded as distributions. This
a uit.()liatfically gives uis the layerinig inl the general shape aerosol p~article.

5 Computer Code Validation

How does onev know that aI coiniputcer code is giving accurate answers. There are several
xoet hio)(s. Thiese are, (i ) recilprocit.y mlethiods, (ii) b~oundary Condition checks, and (111)

('ic('ity 1wjalizee cheeks.

5.1 Energy Balance Checks

) mu' (.aII va let lae ti h t.( dal albsorb ed p lower ill t.wo (hiffrelmt, Ways. One mcthiodl Is to
is a is; i(pi (1,1ra ture to InitegratIe thle powem deiisit~y (histrilm)itioil over the initerior of
th wit ~ter (ing ]wody. Amn th11( inclitio(l Is t~o use aI Poyn t itg Vector analysis oil the( surlfalce
of th I i( l~i. a ki un if c'ii'igv 1 )alaie b)oo kkeepinig whilch says thlat the the total1 power

go inig ill tmiunis the itotal iw~er scatltered a~way is thle Initegral of thle Poyimt iig vect~or of t lie

132



total field out side (dotted xvith the iinward directl nornial Ainus the Poyntiing veetor of
lte total scattered field dotte(d wit t lie inward directed liorimd ii l tegrated over the surface
of tle aerosol particle. This check wvas app1lied to a six layer model of the hiiuumaii head
exp osed to 10" Bertz radiation. awl possessing thle Irolerties descriled in the tablhe:

I R f/o (7
1 .0527 60.0 0.90
2 .0547 76.0 1.70
3 .0552 45.0 1.00
4 .0580 8.5 0.11
5 .0590 5.5 0.08
6 .0600 45.0 1.00

The proalgation conlstants for this head uIiodel are listed ill the table below:

l, Iter no lprolpagation conlstant

1 163.78 -... i •(21.69•..)
2 186.23 ... . i-.(36.03...)
3 143.26. -.. i-(27.55..5 )
4 61.51 ... . i. (7.06.
S 49.56 - i. -(6.37...)

6 143.26... - i. (27.55...)

This code has been augmented with a kind of inverse seattering l)roCeduI(, to use the scat-
(ered radiation in n sii l wny to see inside a poteitially layeredl Mshere and c'Trine th

numbler of layers. the electromagnetic properties of these layers and the radius of the outer
sphere bounding these la~ycrs; The expansion coefihcient.s of the scattered radiation hav(,
au infinite number of copies of redundant information which characterize the Pr(l)erties of
thei multiphl layered sphere -which produced the scattered radiation. The Povnting vector
analysis, Which tells us that. the total power going into the sphlere iinus thle total power
sc'att(,red away is tie total al )sorblevd 1ow is emlodied in the equation,

* _ .L [(E x (-i - ( f x

1.45324 x 10-" Wat.ts (1)

A completely differe.nt approach 1ba.;cd on the Gauss divergeunce thcorevii and o11t •aid 1,v
taking the divergenc'e of the Poyntiiig vector and usingi information about the conductivitv
a., of thle mat eial filling the itl, layer and th(. rahius R,1 of the o tern ost. sphere boundlin g
the jil layer and using the muntiplc 1ay/:r(:d .h. qphvr:c comput.er program generated electric
fie ld vectors at Ga(.ssian quadratiire points within t le layers tells us that

./::"• ' " ' '• J -I T

- 1.453240960 x 10- Watts
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TI n, t C )t( ' witi h dV it1c' fact that the1C sp~lericalC1 larllloili(' I'(TIS lies ilt 81101 of the plaiie Nva8 \

118(1 full iliacllilil' preisionl oil tile Surlfilce 811(1 the falct that the serCSr(' COIlvR'(ged ol 011 t

iiisid c' of tile( siilieies volilli tell uis t hat the accurliiacy of thle Int ernial ficiC I is, at 1(851ý

6 dligits. thle liulilti el' of dligit~s oIf agreeiiieiit 11(4wCehiI the two aniswers. This idaL Wh1CII
",Chi '1'll 8 i/cC I to 811 itnr 18 I 1suifllca and' 81(1 isetI aloitg with bondr 1 c11(l1V( d111tioili veriti('at 1011.

reiC 'Cii IC )''i V 11(1 10 loll1 il loa \'erih'at lo11 of' tilt' Maxwvell c~p1atioils \Vj 1 giVe isI ;I 1 flea SI lB

of thle 8 (ccilrac wit Wi i hich thle xiit~eriial hel~ds art, b eing~' compli iedl
Part of i lle pr ciletl ass cia te (1wi thl elect rouliagiiet~ic pullse anlaly'sis. particularly fori

1I)MIC la' Wit itl generll( Sli 81e hlas 1 ecii the nluunl er of olifferenit frequenlcies" for. Nv'liicl the

Ii it.c'18ct ioC 111111Ileiiill uiist. beIC solved( for timle hiariiioiiic illCid~leit. j'I;laW' WI\-('. to see 111C

('c et n ilgti('t ic pullse 'lie t . There are tw(o types of ('c'('t oniagnet ic fpiilS( cil'c't s. The

g(' i i('tr 13of tIc ('can-'81' g11", bol3CII ('10 1 uSo' the 1)uils( to ('olitiiil lil5] 8t e bar ik 811(1

forithI. par t icuilarly inl a low loss nat terial like 1bile, long after the pus i ae h aM )85( l 1b%.
IC 41 icer(fleet is the( (lispIbesivee('fect 1based o11 thel(' dpendeiice of tile islelc(onale'

111(11ic" )etieCl frequenicy.
There is ali (CCO11iicii(al way to See geoiliet~rical plills( effec'ts byV initially assilnuigill t hat

ilie electroniagiietic plopciVti('5, the pibrlilittivi ty f 811( coxlioluitivity 'T, did( not dlepend onl

fr '(picielcv. Integral (e(118t ion formula t ion a1 n d evenI hnlite( differenice equlalioi 1 fon iou alt ions

tel plire thle solumtioni of lairge syste('111 of linear. eqi tat ions. If Nv have tHe ilV( 'crst (If thle
a ss( Wi ate ('l iiitriix for i li*olilinig radia tioin (If otie frequency, Ohen 1)3y an N 2 hloxiot opy 1)rc II'f'ss

h5 Wc' kinow theC IC'pCimdC'licC' of t.ic filled imiiatix onl frequency wc' wotild solve for t I C'i inverse

uiia trix as thle aniswer to1 anl initial v'alueC probl~emi Au1CtlleI N' step,,s wouldl take care of

theiC 1111111 ilplicat lolil of th lC' IiVCrC iliiatrix by\ theC vC'ctor. givinig t11 ilic rcp'1~l lt'~ iat 1011 of tHe
IncoCminiig fieldI. To) 1il1l('rst~ahi( t lli ý siltipIC' i(ClC suppIosCe that. LO1 was t ll(' original iiia I ii

C) lWv iliv(rt (' anid thiat theIC iniverse of this niatrix was: R(1. Suppose that t ll(' filledC iiiatrixI

;it il( ne' iCw frequCency Was, L. It, is Ca8sy to( I CeC thiat a lit mncoluliluiut t~ive p)rodulct ru1b' holds,"

1o 1118trii derC'Iivatives. WeC kniow~ that if yot Is the a v('ctol. I'vp)eseiita~tio~ll of I lie 11Cil~icol g
ia iat oii.then'i th I'vec'torI rC'1rc'sC'ittatioii r, (If t ll' ilitt '11181 hC'l(15. is pivC'IIb 1)3' R0  I/(). WVC

"Sill ]I(151 t hat I?(,,) Is t ltC' illvC'rsc' (f the mlatrix L(,,) Thet iia~ti\ rix auCllt. luiC tells its t l~it

where 0) repretsenits. thlc (I'rivat~iv( of the idelttity iiv at rix. Sixc ie' ' cix' f.w L(.s) md a L'(."
WC C;l S(8151Ivc' for theiC iiC'V iiv('IsC' R( .S) of thle iiat iix L( .,) 1b3 solving th I C i at ix1 (lifl('rc'lltiall

C C ua . C ioi

-R(.)L()

\\'itli ~ ~ 11 a 4 'iitix IIiit'j iicationil wI' ill eC'55c'i( III\c' I i 11181 ix il\dwSili (leic () f t lle
Sit1) MC odler.

We cv' the' fact thaut w\c'~ ('111iluitipl3' a all N 1)3 .A itiatrix 113 8t C(.IluliiiI vCector ill X2

s to' c) Ct all IiivC.1'rsClo Sc'he'lic' that is, gutlilltC'('(l t~o 1l( of o111cr N'2  for uiiliitilvl-l siiialll

Wu'C 5,itppoS'w thalt b' someiC effCort vC' liavo' Oblaililed ailt iliXc'isC for Iil'' Iintrix L, pri\'ii1.L al

1Y ,till', vtill'
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11' wc \\i, sI I eto kno 11 I lie leI)(, poIlse of t Ie 1c ]o(I% to ";'( raIat )Ion of ainothler frequencyv rep resentedl
hv a %e,(t or .1/1 We Nvolo!l tli('t(foI( conisidleri tli('(IliatiOll

Buit if Nve thi eIle iniverse of 11-( .S) as , S, then

whlen. 1 is the i(lentity aldi this relationlship) b)C~oifles

[I + (L(.)- Lo)-R] S I

so that if L( .,) is fairly close to L( 0) we canl write

S = (-) [()-L.] RO) kj

which ililealis that we have a local p~owor series representation of R( s) and( that inl viewv of
the fact. that

x()=R'(-,) -

wve get an ordinary dhifferential equation for thec solution vector givenl by

Ro'(~ -R0  { [(-1)' ([L(,s) - L,,] -RO )k] L'(,) x(s)

This meanls that we can just use R0 and move along a solution path from the solution
vector x() to the solution vector ~rI which will give thec electric and magnetic vectors a~t the
nevxt frequency nleedled for the Fourier inversion. If we limit the inumber of ternis inl the
series 1il1d always multiply miatrix p~roducts by the column vectors first sc) that for examplle
if A, B, anld C were matrices and x were a collinin vector then

.4AB -C x := A -(B(-(C -x)))

c'an be carried out with less tijal ii(iN 2 nultiplications, and acidi tionls. This procedure is also
Vallid for dispersive miaterials, and inieais that we dolnot need a separate miatrix inversion,
an N, proceuss for each new frequency that is needed to rep rcseilt. the electromlagnectic p~ills(.

Another concept is that if we canil, ill a. highly arccuirate manimer, represent the incominig
radialt ioll field with a taiia.h linumber of frequencies, then by Inver tinig the integral op~erators
1we V.1i1 Solve for the Induced initernlal electric fields at thlese frequencies, add~ thlieniIll)
a mld ge.t tile pullse respolise. I plan t~o adapt t his soiili(I idea. by using a novel mlethod of
fireqi ieii partit ioning tha t I developed liimler anl effort. conicerniing mnodelinig the swimming

Iirm isof 1fiii iil~agela mil croiorga i isijis TIhe first graphl sho~ws the iniicroscope slide da ta.
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and the graph bclow shows the very small number of frequencies needed to describe the
oscillations perpendicular to the path along which this singin celled creature is heading.

Cross track motion
A - -.7450419 , B - 316563991, w - 57.499979
A - 1.0479472, B - .65366872, w - 1248.0990

A - -.56414504, B -- -.80276769, w - 80.815101
A - -.059328814, B - .66970221, w - 217.76566
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Note that III thle.-e tw WfI igiines only fou r Si eemingly InIrIelatedl frvyequecies arc signihica iii

1 iit if youi trIe(l it nimve Fourier analysis iisilig a 1 awe freqwiwN CVw andl its harinoi c
2 * ý, 3 - ý) thenl ;ft (,I a thlouisand( teill ('11 ol wouil~l 1be little Ihetter off, t haii MVienI

yolt hadl start e(I. I Wouldl thjerefore p)ropose to tinIodwl thle inlcominug p~illse uisinig this 5ai ilie

ty~ I of frpuay ~rt~itioninig ihla t was5( so c 'sl(..S~fui II lily 1 iohly( odlioyaxilmrs iflOldehillg.

By the way, t his saliiie niethlo(l cou~ld be' iisul ill coiniuter speech recognition, handling

sp i~ a feun ielli a '11iiaiier that Wouhld a)~ilt~ satehhiti' to) rcinlotely positivel1y ideittify

Pclocauialv)( ob jects oil the groundi~ or ill the air.
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1iB. IMAGING OF MICROPARTiCLES AND AEROSOLS

MANIPULATION OF MICROPARTICLES IN MULTIPHASE LEVITATION TRAPS
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Obscuration and Aerosol Research.

ABSTRACT

Electrodynamic levitation traps are used to suspend and
electrically manipulate charged microparticles. Isolation of a
particle from a group, transfer of particles from one trap to
another, and the merging of suspended aerosols of opposite charge
are described. Future work involving particle isolation and the
suspension of microparticles in a gas flow is previewed.

INTRODUCTION

Electrodynamic levitation traps were originally developed by
Wuerkeri, et al, in connection with fusion research in the late
1950's. Under the simplest condition of a single particle in an
evacuated trap, particle motion is described by a set of Mathieu
differential equations. If the magnitude and frequency of the AC
drive voltage to the trap are in the stable range for a given
particle charge-to-mass ratio, stable levitation will occur.
When a group of particles is levitated, particle-to-particle
interaction (due to like electrical charge) causes the particles
to form an array distributed about the geometric center of the
trap. If the trap is not evacuated the stability limits for
levitation are extended due to the damping effect of the air on
particle motion.

In general, levitated particles are held in orbits within
the trap with the diameter of the orbit increasing as the average
distance between the particle and the geometric center of the
trap increases. Thus, a particle becomes nearly stationary at
the center of the trap. Due to the effects of gravity and
particle to particle interaction, a particle will not normally be
at the trap center. DC cross-fields may be added to the AC

141



levitation fields to position particles within the trap as

desired.

EQUIPMENT DESCRIPTION

A cubical trap geometry with six planar electrodes and 24
AC drive as described by Kendall 2 , et al, was used for this work.
The inside dimension of the trap was 3.2 cm on a side. The sides
were constructed of Plexiglas with small holes at their centers
for particle illumination and observation. The top and bottom
were made from aluminum disks with holes at their centers through
which particles could be injected. The electrodes were mounted
to the inside of the cube and were made of a fine wire mesh. Two
traps were joined together with a common mesh electrode to form a
dual chamber trap for particle transfer work.

AC drive on the order of 2 kV rms 2* (60') from 50 to 200
Hz was used to drive the trap. Three DC cross-fields were used to
position the particles along the X, Y, and Z axes. A 5 watt
argon laser operating at about 2.5 watts was used to illuminate
the trap through the bottom mesh electrode. A beam spreader was
used to expand the laser beam for more complete illumination of
the trap.

Particles were injected into the top of the trap in all
cases. Glass beads of a nominal 20 Am diameter were used for
solid particles. They were launched from an aluminim cup, with a
small hole in the bottom, which was elevatea to 20 kV. Aerosol
particles of approximately 50 Am diameter were produced by two
modified perfume sprayers with their metallic atomizers connected
to high voltage power supplies.

ISOLATION OF A PARTICLE

A singlL levitated particle can be isolated from a group of
levitated particles. This is done by positioning the desired
particle at the cente. of the trap with DC cross-fields and then
momentarily switching off the AC drive to the trap. Since the
desired particle is at the center of the trap it is nearly
stationary while all other particles have velocities dependant
upon their position within the trap. Thus, when the AC is
switched off all the particles but the desired one tend to fly
off and be lost. This process may have to be repeated several
times to clear the trap of undesired particles.

Further experimentation with particle isolation is planned.
At present, successful isolation depends upon a skilled operator
and all particles but the desired one are lost. Feedback control
methods might be employed to hold the desired particle at the
trap center while the AC drive is switched off. Also, an
isolation method which allows a desired particle to be removed
from a group, without particle loss, might be possible by using a
small capture trap within a larger trap containing the group of
particles under study.
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TRANSFER OF PARTICLES BETWEEN TRAPS

Two levitation traps were joined together with a common wire
mesh electrode as previously described. DC cross-fields were
then used to force the particles from one trap into the other
where they were recaptured.

AC drive was applied to each of the traps in parallel by
connecting corresponding side electrodes together. The top,
common, and bottom electrodes were operated at AC ground. The
top and bottom electrodes were electrically connected together.
DC cross-fields were then produced by applying a DC potential
between the common electrode and the top and bottom electrodes.
This arrangement made it possible to force levitated particles
from one trap into the other by controlling the DC cross-field
magnitude and polarity during the transfer.

Charged particles were first launched into the top trap with
the DC cross-field adjusted to neutralize gravity and aid in
particle capture. The cross-field was then reversed and
increased in magnitude to expel the particles from the top trap
into the lower one. At this point, the DC cross-field had to be
quickly reversed to its previous value to permit levitation in
the lower trap. This method worked better when the particles
were moved from the upper trap to the lower then in the reverse
direction. This difficulty was overcome by using independent
cross-fields for the upper and lower traps but the equipment
became more difficult to operate. Particle transfer was also
done horizontally by similar techniques.

MERGING OF SUSPENDED AEROSOLS

Charged aerosol particles were produced by the modified
perfume sprayers previously discussed. Two sprayers were used.
The first was filled with a water and glycol mixture (20% glycol
by volume) and was operated with a 20 kV charging potential. The
second was filled with water, glycol, and Rhodamine B dye and was
operated at -100 V charging potential.

Aerosol particles from the first sprayer were levitated
first. Then, a lightly charged aerosol of the opposite charge
was injected into the trap from the second sprayer. Since the
charge-to-mass ratios of the particles in the second aerosol were
very low, they did not levitate but were attracted to the
levitated particles of the first aerosol (due to opposite charge)
causing the particles to merge.

The merging of particles was easily detected since the
levitated particles became dyed as they merged with injected
particles which contained the dye.

Since the dyed particles were lightly charged and had
similar masses to the levitated ones, particles produced from a
merger had only about half the charge-to-mass ratio of the
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original levitated ones. Despite this, the stable range of the
particle trap was sufficient to permit the merged particles to
remain in levitation.

PARTICLE LEVITATION IN A GAS FLOW

A levitation trap is presently being used to levitate
microparticles in a laminar gas flow. The object of this work is
to create an environment for studying the microphysical and
chemical behavior of particles typical of the lower stratosphere.

A DC cross-field is used to balance the force of the gas
upon the particles. Testing to date has used 20 pm glass beads
in gas flows up to 20 cm/s.

Additional tests are planed using submicron aqueous
particles in reagent gas flows up to 10 cm/s. Gas temperature
and pressure will then be controlled within the trap to simulate
lower stratospheric conditions.
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IHC. SPECTROSCOPY OF SINGLE PARTICLES AND AEROSOLS

CW STIMULATED RAMAN SCATTERING IN
MICRODROPLETS

J. D. Fversole

Potomac Photonics Inc.

Lanham, MD 20706

A. J. Campillo and H-B. Lin

Naval Research Laboratory

Washington, D. C. 20375-5000

Recent Journal Papers (7/91-6/92)

This work:
* lH-B. Lin, J. D. Eversole and A. J. Campillo, "Continuous-wave
stimulated Raman scattering in microdroplets", Optics Lett., 1., 828-30
(1992).

Related cavity QED work:
* A. J. Campillo, J. D. Eversole and H-B. Lin, "Cavity quantum
electrodynamic enhancement of stimulated emission in microdroplets", Phys.
Rev. Lett. 67_, 437 -40(July 22, 1991).
* H-B. Lin, J. D. Eversole and A. J. Campillo, "Spectral properties of
lasing microdroplets", JOSA B, 2, 43-50 (1992).
* H-B. Lin, J. D. Eversole, C. D. Merritt and A. J. Campillo, Cavity-
modified spontaneous emission rates in liquid microdroplets" Phys. Rev. A 45,
6756-60 (1992).
* A. J. Campillo, J. D. Eversole and H-B. Lin, "Cavity quantum
electrodynamic enhancement of spontaneous and stimulated emission in
microdroplets", Mod. Phys. Lett. B, j, 447-457 (1992).

Other related work:
* P. Ch'lek, H-B. Lin, J. D. Eversole and A. J. Campillo, "Absorption
effects on microdroplet resonant emission structure", Opt. Lett. 1j, 1723-25
(November 15, 1991).
* J. D. Eversole, H-B. Lin and A. J. Campillo, "Cavity mode
identification of fluoresceri% dnd lasing in dye doped microdroplets", Appl.
Optics, U1, 1982-1991 (1992).
* H-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo and P. Ch:lek,
"Internal scattering effects on microdroplet resonant emission structure",
Opt. Lett., 17 (July 15, 1992).

145



Abstract

Continuous wave stimulated Raman scattering was observed in 11 to
13 glm diameter benzene and toluene microdroplets at pump intensities as
low as 8 kW/cm2 and 24 kW/cm 2 , respectively. Low thresholds were achieved
by exploiting: (1) simultaneous pump and Stokes wave resonance in the
droplets and (2) Raman gains that were cavity QED enhanced - 50 X with
respect to bulk liquid values. Based on a photon state conservation
argument, the cavity gain enhancement factor may be approximated by the
ratio of spectral spacing between resonant modes of the same order to that of
the homogeneous Raman linewidth. This relatior, appears to be consistent
with the relative experimental behavior of benzene, ethanol and toluene.

Introduction
Cross sections for spontaneous Raman scattering are typically quite small,
and those for stimulated Raman (SRS) are correspondingly much lower,
which is why SRS is normally reported using high peak power pulsed laser

pumps. Most of the comparatively few reports of -w SRS employed an
external cavity to enhance the pump and SRS signal intensities. Figure 1
contains a schematic energy level diagram of the SRS process and external
cavity arrangement for a bulk medium, and also introduces the idea of a
sphere (liquid droplet) as a natural optical cavity1 . Radiation may be
trapped in this type of geometry by the mechanism of total internal reflection.

SRS External cavity feedback

Vp . V.i 2 rs

vp Vib.

Kha~re ,and
Nuasenzweig

There are two advantages of using a cavity resonantor

Fig. 1. 1. Concentration of pump radiation

2. Redistribution of density of final photon states
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In addition to multiplying the pump inte ity, a cavity also causes

redistribution of the photon final state-t - !'ase space compared to the free

space environment for a radiating molecule. Such redistribution can result

in an apparent enhancement in the stimulated Raman cross section (also

referred to as QED enhancement) and will be discussed later.

Radiation becomes trapped at particular resonance values of the ratio of

the droplet circumference 27ta to the incident wavelength X (known as the size

parameter x ). Referred to as morphology dependent resonances (MDR's),

their positions can be calculated from Lorenz-Mie theory2 , and each has a

unique internal field distribution (cavity mode) which can be cataloged by

integers n (mode number) and 1 (mode order). Each resonant mode is either

transverse electric or magnetic (TE or TM) and has a characteristic quality
factor Q = X n/Ax. where Ax is the width of the resonance. In Fig. 2 typical

plots are shown of the calculated internal field distributions for the particuk r

modes indicated across the equatorial plane of the droplet 3 ,4 . Emission

spectra are also shown recorded as a function of wavelength in dye-doped

droplets 5 . Intensity peaks occur at MDR positions due to the increased

density of photon states. Below the spectra, computed positions are indicated

by arrows pointing up (down) for TE (TM) polarization and are offset

vertically to indicate mode order. The lowest order modes have the highest

theoretical Q's. In the cw SRS study, the pump radiation is fixed and the

droplet size is varied to achieve resonance conditions.

I:: 7JI7 rY j: r
"'2 r i F Jw3 I I F J

SSIZE PARAMETER
Fig. 2. Cavity Mode Properties
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Experimental

To study the optical propelties of droplets, a monodisperse stream of
either benzene, toluene or ethanol droplets tunable in diameter from 11 to 13

prm was produced using a vibrating-orifice droplet generator with a 5 JIm
diameter orifice 6 . Droplets were optically pumped as they fell through a
514.5 nm wavelength cw argon-ion laser beam focused to a 40 gim spot
diameter. The droplet size and refractive index were determined by matching

the measured fixed-angle elastic laser scattering near 90* as a function of the
generator frequency (see Fig. 3a) to the computed scattering intensities as

previously described 5' 6'7 . Spectral composition of radiation emitted by the
droplet at - 1200 scattering angle was examined using a 1 meter double
monochromator with a resolution of = 2.25 cm"1 and equipped with a cooled
photomultiplier and photon counting system (see Fig. 4b).

Fig. 3a shows a typical 514.5 nm elastic scattering spectrum from a
benzene droplet stream. Figure 3b is the corresponding frequency plot of the
total Raman signal at 542 +1 nm due to the 992 cm"1 C-C stretch vibrational

mode. One large peak and several smaller ones appear in the orifice
frequency spectrum. Fig. 4a shows the spectral dependence of the 992 cm"1

zz U)

S~(a)

W

o 11

z

w (a)

coo

zZ

<: (b)

F-r-T-7 18,455 18,445 18.435
530 450 370 WAVENUMBER (cm-1)

ORIFICE FREQUENCY (kHz)

Fig. 3. SRS Observed As A Fig. 4. Spontaneous and Stimulated
Double Resonance Effect Raman Spectra
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spontaneous Raman emission (width = 2.G cm 1 ) from a 1 cm long sample of

benzene. Fig. 4b shows the spectral dependence of the Raman emission from

the droplet stream under conditions (droplet radius, a : 6.4 gtm)

corresponding to the large peak at 390 kHz in Fig. 3b. These size droplets

lead to the fortuitous placement of high Q cavity modes ver3y nearly

coinedent with both pump and Raman wavelengths. As shown in Fig. 4b,

shifts of several cm"1 from line center were common. We calculate that for

droplets of this size, first and second order 2 TE and TM output modes have

theoretical Q's in excess of 107 and there are 3 orders of input TE and TM

modes having Q's > 5 x10 4 . The experimentally achievable Q's, however, may

be limited to values lower than 107 by iaser induced droplet

heating/distortion. The spectral spacing Av, between modes of the same order

and polarizafion is approximated 2 by: (arctan[(m2-I)Vl2 ])/2lta(m2 1)1/2, where

m is the index of refraction: for a = 6.4 pm, (AV) = 190 cm"'

Observed nonlinear power dependence of the emission (Fig. 5) is indicative of

SRS oscillation with a pump threshold of ca. 50 mW for benzene (open

circles). A second Stokes SRS signal at 1984 cm"1, having an amplitude about

an order of magnitude lower than that of the first Stokes, was also observed.

Up to 14 orders of Stokes waves have previously been observed in pulsed

experiments8 in larger droplets where the probability of aligning appropriate

modes within the respective narrow Stokes gain profiles was more favorable.
The 50 mW threshold power corresponds to an incident intensity Io of only 8

kW/cm 2 . The intensity of the resonant pump within the cavity Ip has been

shown 9 to be greater by a factor of f/[47t2a m 8VL] when Q > V/bvL. Here SVL

is the spectral width of the argon ion laser, measured with a scanning Fabry-

Perot interferometer to be about 0.3 cm". Therefore, the intensity inside the

droplet when the pump is resonant with a high Q mode is - 0.3 MW/cm2 .

Note that the effective intensity may vary due to partial spatial overlap

between the input and output modes represented as f and taken to be = 0.5

here. Assuming an output mode Q of 107, a benzene Raman gain of 3 cm/GW,

and a resonant mode located on the shoulder of the Raman line (i.e. 1/2 gain

as in Fig. 2), the SRS pump threshold intensity should be at least a factor of

70 higher than actually observed.
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These results and conclusions for the benzene experiment are summarized in

Table 1. The apparent enhancement of the stimulated Raman gain is

denoted as K, and can be explained in terms of QED effects discussed below.

Table 1

cw SRS in Benzene

"* Measured SRS threshold: I - 8 kW/cm'

" IP - Io f/4 iim 8va 0.3 MW/cm,

since a = 6 im, 8v 0.3 cmu' and f 0.5.

"* At threshold, gain = loss: goI. L 22m/QX.

for Q-107 
- g¢=210cm/GW,

but bulk gain g. - 3 cm/GW.

Therefore: K.,p.= g,/go 70

' 200

w

Fig. 5. SRS Nonlinear Pump

Deedec 2
DepenencePUMP POWER (wattS)
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QED Effects

A simple heuristic model which conveys a physical idea of how transition
rates are affected by electromagnetic boundary conditions inside a cavity can
be presented in terms of the density of final photon states p(v). The radiative

transition probability for a quantum system (molecule) as given by Fermi's
Golden rule includes a factor of p(v). In free space this quantity is easily
shown to be proportional to v2 which is nearly constant (po) over a given

narrow range (emission bandwidth) as shown in Fig. 6a. When a molecule is
introduced to a cavity the total number of final states is conserved, but the
density is redistributed so the emission probability at resonant frequencies is
increased while emission at nonresonant frequencies is inhibited. The cavity
state distribution can be approximated by Lorentzian lineshapes centered at
resonant frequencies with appropriate widths as shown in Fig. 6b. For
regular periodic spacing of resonances AVMDR, the conserved nvtmber of
states, pOAVMDR, is indicated by the shaded areas in Figs. 6a and 6b. The

gain profile is characteristic of the molecule and in free space the observed
emission profile simply reflects the shape of the molecular profile since p(v) is

flat (Fig. 6c). The actual gain will be proportional to the total number of
photon states available to the molecule under its gain profile and in free
space is just g = po r (where r is the profile width), while in the cavity:

gC - POAVMDR. Thus the QED enhancement: = gc / go AVMDR / .

(a) free space or large cavity (c) g9oc # of modes p. rP~) v 2  
0 do Raman gain_ _ _ _ ( _)_ _ _ p 4

_________M _____%_ ~profile
I I
I I 1#

I -- • I ______ "--"1__________

' I

# of modes - area p poAVMDR AVg PAV
(b) ( MDR

/I \Raman gain
_ _ _ _ _ _ _%, profile

--- V --'-" 1

Fig. 6 QED Gain Enhancement
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Conclusion
To see if this simple model is valid for the case of benzene, we have: rF.

2 cm- 1 and for 6 pm droplet radii, AVMDR - 190 cm 1 resulting in a

predicted K of - 95 consistent with the experimentally observed

enhancement of 70. To further test the model, other liquids (toluene and
ethanol) with different Raman linewidths were studied in similar sized

droplets under identical experimental conditions. Toluene possesses a F

similar to benzene but has a 2.3X lower free space Raman gain. Ethanol has

a free space SRS gain equal to toluene (1.3 cm/GW) but has a r that is
significantly broader than either benzene or toluene. The homogeneous

bandwidth is inversely proportional to the dephasing time of the vibrational
modes1 °. These lifetimes have been estimated to be 2.6 psec and 0.25 psec for
toluene1 0 and ethanol 11, respectively, and so (")EtOH/( l")ToI = 10. The

growth curves of the emission output with pump intensity for toluene and
ethanol droplets are plotted in Fig. 5 with open squares and triangles

respectively. The emission from ethanol was weak spontaneous Raman

scattering as its SRS threshold was not achieved at the maximum pump

intensity of 2.5 W. This result is consistent with the predicted lower QED

enhancement of Raman gain due to the much broader linewidth of ethanol.

Toluene has the same ba•lk Raman gain as ethanol but since its linewidth is a
factor of 10 narrower, it was observed to have an SRS threshold at 150 mW.

The expected threshold for ethanol at = 1.5 W was not observed because at

high pump intensities the effective Q of the mode will be degraded by thermal

perturbations. Table 2 summarizes the results of the three liquids
investigated, listing their bulk Raman gain go, Raman linewidth r, predicted

cavity gain gc (assuming Q = 107), and observed SRS threshold Ip.

Table 29 r gc I P
(cm/GW) (cnil) (cm/GW) (MW)

Benzene 3.0 2 300 50

Toluene 1.3 2 130 150

Ethanol 1.3 >20 <10 >2500
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The significant points of this paper may be sununarized as follows:

"* First observation of cw SRS in microdroplets

"• pump radiation or "input! resonant with droplet
necessary

"* gains appear enhanced by = 100x consistent with
simple mode density model of:- ge gc { Av MDR }

"* relative experimental behavior of benzene,
toluene, and ethanol consistent with model
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ABSTRACT

Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated

glycerol microdroplets (4 -20 microns in diameter) have been investigated to

determine the effects of spherical cavity resonances on spontaneous emission

rates. For droplet diameters greater than 10 microns, the fluorescence

lifetime is essentially the same as in bulk glycerol. As the droplet diameter

is decreased below 10 microns, bi-exponential decay behavior is observed with

a slow component whose rate is similar to bulk glycerol, and a fast component

whose rate is as much as a factor of 10 l-irger than the bulk decay rate. This

fast component is attributed to cavity enhancement of the spontaneous emission

rate and, within the weak coupling approximation, a value for the homogeneous

linewidth a, rooll teLŽmperature can be estim.ited from the fluorescence lifetime

d a t a.

155



1. INTRODUCTION

The ability to modify emission rates from atoms or molecules in an

excited state is of great importance since experimental control over the

pathway for excited state deactivation can be obtained. For example,

inhibition of spontaneous emission can be used to direct excited state

chemical reactions and multi-photon processes. Alternatively, enhancement of

spontaneous emission rates could lead to increased sensitivity in low-level

fluorescence applications such as DNA sequencing or effluent tracing requiring

single-molecule detection limits.[l,2] Recently, both enhancement and

inhibition of spontaneous emission have been demonstrated for chelated

ions.J3] However, whether such effects could be observed for polyatomic dye

molecules was uncertain principally because it was assumed[4,5] that large

homogeneous linewidths (taken to be approximately equal to the fluorescence

spectral width) would result in, at best, only a small emission rate

enhancement. In this paper, we show that a dramatic increase in fluorescence

emission rate occurs in glycerol microdroplets, implying that the homogeneous

linewidth is actually only a fraction of the fluorescence spectral width.

Fermi's 'Golden Rule', given Eqn. 1, provides a basic understanding of

how emission rates can be modified by the geometrical structure of the matrix

in which the atom or molecule is solvated. The transition rate from state I

to state J may be expressed as, [6]

A_,j = -- (i IH i) 2 p(v) (1)

where h is Planck's constant, < i I Hij I j > is the volume-normalized

Hamiltonian matrix element representing the atom-field interaction, and p(v)

is the density of final photon states. Placing the emitter inside an optical

cavity whose dimension is on the same order as the transition wavelength

causes the emitted light to be coupled into discrete cavity modes rather than

into the continuum of vacuum states. Since the density of states is large when

v corresponds to an allowed cavity mode, and small when v is non-resonant, the

emission rate will be modified (enhanced or inhibited) depending upon whether
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the emission frequency corresponds to a particular allowed cavity mode.[7]

Modification of spontaneous emission rates was first observed by

Drexhage and co-workers[8] by measuring emission rates from europium ions

liyered in Langmuir-Blodgett films above a reflective surface. Using a

waveguide structure as a linear micro-cavity, Kleppner and co-workers[9] were

able to demonstrate inhibited spontaneous emission of Rydberg atoms at

microwave frequencies. De Martini and co-workers(10] demonstrated both

enhancement and inhibition of spontaneous emission at optical frequencies

using a linear tunable Fabry-Perot cavity. However, with the exception of the

work of Drexhage and co-workers, these investigations all involved linear

micro-cavities where, despite the simple geometry, exact calculations of

internal fields are not possible. The spherical cavity offers a geometry which

is much more amenable to theoretical modeling since all fields and modes are

exactly calculable from Lorenz-Mie theory.[ll]

It has been known for some time that micrometer sized dielectric spheres

act as high Q resonators, where photons propagate around the sphere near its

edge. Spherical cavity modes in these microspheres arise from so-called

"morphology dependent resonances', or MDRs, which occur at specific values of

the size parameter, X, where X = 2na/X, a is the radius of the sphere, and X

is the wavelength of light. Cavity effects such as stimulated emission(12] and

lasing(13,14] from liquid microdroplecs itave been reported. Recently, Campillo

and co-workers have demonstrated cavity enhanced spontaneous emission of

chelated Europium ions in a stream of falling ethanol droplets[15] and

observed an increase in the spontaneous emission rate of a factor of 2.5 above

the bulk value. These authors argue that, in the regime where the cavity mode

spacing (Avc) > homogeneous linewidth (rHB) > cavity mode bandwidth (6 c) , the

enhancement can be approximated by the ratio

S= Avc / FHB (2)

if rHB is much narrower than Avc, large enhancements similar to those

predicted by the Purcell equation(7] should be observed. Conversely, if r.B

is larger than Avc, no enhancement should be observed. Thus, the cavity mode

spacing is an extremely important parameter in determining the magnitude of

enhancement in these microdroplets. Because the cavity mode spacing can be

estimated based on a knowledge of the droplet diameter, it is possible to
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determine the homogeneous linewidth of a fluorescing molecule by measuring the

fluorescence lifetime.

In this paper, we present the results of fluorescence lifetime

measurements of Rhodamine 6-G in glycerol droplets with diameters ranging from

4 - 20 microns. The enhancement is large (10 x) for the smallest droplets and

decreases with increasing droplet diameter, and does not appear to be

attributable to droplet lasing or stimulated emission. Modeling the variation

of decay rate enhancement using Eqn. 2 with different values of rHB suggests a

value of about 100 cm- 1 for the homogeneous linewidth of R6G in glycerol at

room temperature.

2. EXPERIMENTAL

Spontaneous emission rates of Rhodamine 6-G in levitated microdroplets

were measured using a time-correlated photon counting technique.[16] The

experimental setup is shown schematically in Figure 1. Briefly, a glycerol

droplet with a concentration of R6G ranging from 10-7 to 10-5 U is levitated

in an electrodynamic trap. A mode-locked Ar÷ laser (Spectra Physics 171)

supplies the short (150 ps fwhm) 514 nm excitation pulses and the repetition

rate was reduced to 4 MHz using an acousto-optic cavity dumper (Spectra

Physics 344) as an extra-cavity pulse sele.:tor. The laser beam was focused to

a 50 Jim waist giving a peak intensity at the droplet of about 70 KW/cm2 with

pulse energies of about 100 pJ.

The droplet generator and electrodynamic trap have been described in

detail elsewhere. J17] Rhodamine 6G solutions in glycerol were diluted in

ultrapure water (Carolina Biological Supply Co.) by a factor of 20 - 100.

Approximately 100 gL of this solution was drawn into the tip of a microdroplet

generator and a voltage pulse applied to a piezoelectric transducer in the

generator produces an acoustic wave which forces a droplet out of the tip.

Initially, the droplet diameter is about the same as the tip orifice (40 Jim)

but rapid evaporation of water leaves a nominal diameter between 5 and 15 Jim

depending on the relative amount of glycerol added to the solution.
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fluorescence lifetimes in levitated microdroplets.

Fluorescence from the droplet is collected by a 3 mm diameter GRIN lens with

0.25 pitch and a 20X microscope objective focuses the image through a 1.5 mm

spatial filter onto a cooled photomultiplier tube (Hammamatsu R943-02). An

interference filter centered at 575 nm with 26 nm bandwidth (Omega Optical 575

DF26) spectrally filters the fluorescence and two Corning 3-66 long pass

filters are also used to ensure that no elastically scattered photons are

detected during a fluorescence lifetime measurement. In these experiments, a

16 nanosecond time window divided into 5]2 channels was used, with each

channel having a width of about 33 picoseconds.

In a time-correlated single photon counting experiment, it is essential

that only one photon is detected per excitation pulse as multiple START pulses
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encountered during the voltage ramp can cause distortions in the timing

spectrum.(18] For most of the fluorescence lifetime measurements, the laser

intensity was sufficiuntly low enough so that no additional attenuation of the

input beam was necessary. Typical fluorescence count rates were between 0.1

and 10 KHz; thus the probability of two photons arriving during a single scan

is about 10-. Characterization of the instrument response function was

performed by detecting elastically scattered light from, a blank droplet (no

R6G added) with the interference filter removed, and the laser intensity

attenuated to give approximately 10 KHz count rate. For lifetime measurements

made on bulk glycerol solutions, the upper end cap electrode was removed and a

1 cm square cuvette was placed inside the trap. All other experimental

parameters were identical for droplet and bulk measurements. In the following

section, the results of fluorescence lifetime measurements performed on

droplets of varying size and R6G concentration are discussed.

3. RESULTS AND ANALYSIS

Fluorescence decay kinetics of R6G was investigated for droplets varying

from 4 to 25 microns in diameter, and with concentrations varying from lxlO- 7

to 2 x10- 5 M in glycerol. Figure 1 shows the instrument response function and

normalized fluorescence data for 4, 6, and 11 Jm droplets (10-6 M/glycerol),

as well as for 10-6 X bulk glycerol solution. The full width-half maximum

instrument response is 0.85 ns, [19] and decay components with lifetimes as

short as ý ps can be deconvoluted reliably.(20] The bulk fluorescence decay

is described well by a single exponential decay with t = 3.65 ± 0.05 ns.

Fluorescence from the 11 pm droplet also follows single exponential decay with

the same decay rate as observed in bulk solution. For diameters between 4 and

8 pm, the fluorescence decay becomes increasingly non-exponential, where the

relative amplitude of the fast decay component increases with decreasing

diameter. Because the density of states (and therefore the enhancement)

should vary according to the radial position of the molecule within the

droplet,(21] a distribution of decay rates was expected to provide a more

accurate representation of the system than a simple biexponential decay

function. Using a Laplace inversion technique, [22,23] decay rate probability

distributions were extracted from the fluorescence lifetime data to determine

the emission rate enhancement.
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Figure 2. R6G fluorescence decay data in 4, 7, and 9 pm
glycerol droplets as well as bulk glycerol solution. Dye
concentrations for each data set shown was 10-6 M. The data
has b-,• ,a.,o-thed by a five-point running average.

The observed fluorescence decay data, C(t), can be reprczented by a

convolution of the instrument response function and a sum of exponentials

expressed as

C (t) = IRF (t) *Yn Xi ai exp (-Xti t) (3)

where IRF(t) is the ii-tcument response function, 4 1 is th- ith decay rate,

and ai is the probability that a photon will be emitted at rate X,. If the

sum in Eqn. 3 is replaced by an integral, it can be seen that the function

Xo(X) is the inverse Laplace transform of C(t), where W(X) is a decay rate
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probability distribution fun2V1-ion. Thus, Laplace inversion of the measured

data C(t) yields the function (iX) which contains the decay rate and

probability amplitude information.

In a simplified view, determination of the function a(%) from C(t) is

performed as follows. The solution space is defined by specifying the initial

and final decay rates, X0 and Xn-l, and the number of grid points, n. Values

used for X0 and kn-1 were 0.1 and 15 ns-l respectively, with n = 75. The

array, CL(i), represents a decay rate prcbability distribution and is

determined by singular value decomposition, where the values are subject to

the following constraints: (1) all values are non-negative; (2) X2 parameter

is minimized; and (3) the value of a regularizer, or 2nd derivative smoothness

function, is minimized. In principle, a large number of decay components can

be resolved[24] using this technique, making it a powerful tool for analyzing

multiexponential decays.
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Figure 3. Decay rate probability distributions from

fluorescence decay data for 4, 5, 6, and 11 pm droplets.
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Figure 3 shows decay rate probability distribution functions obtained

from R6G fluorescence lifetime data in 4, 5, 6, and 11 Um droplets. Each

distribution shows a strong peak centered around the bulk fluorescence decay

rate (0.27 rs- 1 ) . However, distributions for the 6, 5, and 4 gm droplets show

a fast decay component whose rate and maximum probability amplitude increases

with smaller droplet diameter. The degree of enhancement of this fast

componezt for the smallest droplets is as much as a factor of 10 larger than

tne bulk decay rate and, as shown in Figure 4, falls of sharply with

increcsing droplet diameter. In the decay rate pronability distributions

obtained from our experimental data, the width of the enhanced rate feature

arises primarily from the limited samplinj (512 points) and the noise in the

data. The non-zero probability for photon emission at extremely large rates

near the edge of the solution grid is probably not physically significant.

Since it is Yell known that stimulated emission and lasing can occur in

mi:rodroplets, the question arises as to whether the en.i;nced decay rate can

be attributed to stimulated emission. The possibility of lasing -',as estimated

using an expressicn given by Lin, et al. [14] as

2inmi/Qextkgo < 1 - L/kgo (4)

where m is the refractive index, X is the size parameter, Qext is the cavity

Q, k is the enhancement in lasing gain, go is the round trip gain, and L

represents the transmissive and internal losses. Laser oscillation may occur

when the above equation is satisfied. Substituting values approptiate for our

experimental conditions, it was, concluded that, -ven at the highest dye

concentration and pulse power, the threshold for lasing would rot be exceeded.

Although it is almost certain that the enhanced decay rate component is not

due to droplet lasing, thie possibility still exists that we are observing

,;tiniulated omfi.:ion. An estimate of the probability of stimulated emission was

r,1de uf;irig values fol photon lifetime in the cavity, "ft, and an estimate of

the nur(ib•e of excited states formed per pulse. This calculation suggests that

th,: piobability of stimulated emission on the order of 10-4.

As an exp•rimentail confirmation that we are indeed observing enhanced

.',|,orit r~eu emiý-vioni , the character st iccs of small droplet fluorescence decay
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were examined as a function of pulse energy. The lazer intensity was varied

using neutral density filters and several measurements were made on each

droplet. Figure 4 shows the ratio of amplitude= for the two (fast and slow)

most probable decay rates for 4 and 5 Vn droplets at 1 x 10-6 and 2 x 10-5 K

concentrations respectively. No significant differences in decay rates or

relative amplitudes, were observed for pulse energies ranging from 45 to 190

picojoules. Since the maximum intensity used in these experiments is well

below saturation level, if the fast decay component were due to stimulated

emission, the number of photons emitted with an enhanced decay rate relative

to the number of photons emitted with bulk rate should increase with

increasing pulse energy. This should be reflected in the lifetime spectrum by

an increase in the relative probability amplitude of the fast decay component.

Because no such dependence is observed, our conclusion is that a modification

in the spontaneous emission rate is taking place.

0.8 1 T • " • • t • • • , ' •

0.7 1 |x T6 M; 4 m icro diameter

S• 2 x 10' M; 5 micro diameter

. 0.6

• 0.4

S0.3

40 60 so 100 120 140 160 ISO 200

pulse energy (plcoloules)

Figure 4 .Ratio of amplitudes corresponding to the

most -probable decay rates (bulk and enhanced) of the two

componenlts for 4 and 5 pm droplets.
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Observation of decreased fluorescence lifetimes in the smaller droplets,

however, does not guarantee that the effect is due to cavity enhancement. For

example, dye fluorescence is k:nown to be self-quenched at la.ge (? 10-3 X)

concentrations.[25] However, this effect should nvt be significant at R6G

concentrations used for these experiments. Other (unknown) quenching

processes can also be effectively ruled out since the fluorescence yield per

molecule is at least as large for the smaller droplets as it is for the larger

ones. On this basis, it appears that the incre-sed spontaneous emission rate

is indeed due to a cavity enhancement.

4. DISCUSSION AND CONCLUSIONS

Examination of R6G fluorescence decay kinetics in microdroplets has

revealed a striking dependence on droplet size. For droplet diameters ; 10 Jim,

the decay behavior is identical to that observed in bulk glycerol. As the

droplet diameter is decreased below 10 'm, increasingly non-exponential decay

behavior is seen where the :ýnhancement and relative probability amplitude of a

fast decay component incre._z•e as the diameter is decreased. This biexponential

decay behavior can be c lal•> tively explained by considering how the 'mode

volume' and degree of enha,.-•o ,-e change as the droplet size is varied.

Light waves which propagrtý near the surface of the sphere in the high-Q

cavity modes occupy a certain volurie which is defined as the mode volume. Most

of the molecules will be unaffected by the presence of cavity modes near the

surface and emit at a rate similar to that of bulk medium. However, molecules

located in the mode volume will have their emission coupled into cavity modes

and their decay rate will be enhanced or inhibited depending on whether the

emission is resonant with a cavity mode. For a 4 gm diameter glycerol droplet,

Vm/V is about 0.1 and falls off roughly as I/XI/ 2 , where X is the size

parameter. Thus, a larger percentage of molecules interact with a cavity mode

in the smaller droplets which will be reflected in the lifetime spectrum as an

increase in the relative probability amplitude of the enhanced rate component.

The second factor responsible for the observed trends in the decay rate

probability distributions is the variation of enhancement with droplet

diameter. :-ince the mode spacing, A-, is appro.ximately equal to f(n)/2nr, [26]

where f(n) ib a function of the ind',x ot refraction, and r is the radius of
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the sphere, experimentally measured rate enhancements can be used to estimate

the homogeneous linewidth of a molecule such as R6G in glycerol at room

temperature from Eqn. 2. Figure 5 shows the average decay rate enhancement

for droplet diameters ranging from 4 to 10 Wn along with the variation of

enhancement expected from Eqn. 2 for three different homogeneous linewidths.

The experimental rate enhancements are in good qualitative agreement with this

simple model, however, the enhancement falls off much more sharply with

droplet diameter than is predicted using this model. We are currently

developing a more detailed theoretical model for decay rate enhancement in

these small droplets which should approach quantitative agreement with

experimental results, giving a clearer physical picture of the interaction of

fluorescent molecules with cavity modes in these microdroplets. However,

within the context of this simple model, the experimental data suggest a value

of about 100 cm 1 for the homogeneous linewidth of R6G in glycerol at room

temperature.

2 0

16 H = 150 cm"
HB

S16 ",•-
r = 100 CM

1-- = 50cm1

•

S8 - .12

* 4- -

A• A A -

2 4 6 8 10 12

droplet diameter (microns)

Figure 5. Enhancement (most-probable enhanced decay rate

divided by bulk emission rate) vs. droplet diameter. Error

bars represent ± 10.
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The narrow homogeneous linewidth for R6G in glycerol suggested by our

experiments is supported by spect al hole burning data. Brito Cruz et al. [27]

measured dephasing times for different dyes in an ethylene glycol dye jet

using a femtosecond pump-probe technique. Similar dephasing times (- 80

femtoseconds) wrre measured for the dyes cresyl violet, nile red and HITC,

corresponding to a homogeneous linewidth of 140 cm-1. Extrapolation from hole

burning data on porphyrin molecules in cold (800 K) polymer matrices(28]

suggest homogeneous linewidths at 3000 K on the order of 50 cm-. It is

therefore reasonable to expect that the homogeneous linewidth for R6G is

narrower than the cavity mode spacing for droplet diameters less than 10

microns and that such a narrow linewidth could produce the large emission rate

enhancements which have been observed experimentally.

The data presented in this paper shows that no significant spontaneous

emission enhancement is observed until the droplet diameter reaches 7 - 8 Jm,

while the work of Campillo[3] on Eu 3 ÷ shows about 2.5x enhancement for a

droplet diameter of about 10 Jim. Assuming that the homogeneous linewidths and

cavity mode spacings are similar for the two cases, the apparent difference

between the two sets of data can be rationalized in terms of differences in

which the measurements were made. The work of Campillo involved dispersion of

broadband emission at successive time frames where bulk and enhanced rate

emission could he more clearly distinguished. In the work presented here, a

measurement was made only of the number of photons arriving at the detector as

a function of time following an excitation pulse. In our experiment, for

larger droplets where the enhancement is smaller, the signal is dominated by

emission at the free space rate which effectively diminishes the contrast

between the two decay components.

Another important difference between these two sets of results is that

no significant inhibited emission was observed in our work. In some cases,

emission rates smaller than that of bulk glycerol were seen, however it is

unclear as to whether this was a QED effect since residual water in the

droplet[29] (bulk lifetime 4.5 ns) could result in a longer bulk emissio-n

rate. Also, because the time window for photon counting was only 16 ns, the

long-time decay kinetics are riot as clear.
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4. SUMMARY

The fluorescence decay kinetics of R6G in levitated glycerol

microdroplets have been investigated as a function of droplet size and shows a

striking transition from single exponential to bi-exponential decay as the

droplet size is decreased. An enhanced rate component becomes apparent it a

droplet size of about 7 and 8 gm whose magnitude and relative probability

amplitude increase as the droplet diameter is decreased. Examination of decay

behavior as a function of input pulse energy suggest that this fast rate

component is due to cavity-enhanced spontaneous emission. Within the context

of a weak coupling model, the homogeneous linewidth for R6G can be estimated

from this fluorescence lifetime measurements and a value of about 100 cm- 1 is

suggested from this data.
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Time and Wavelength Domain Algorithms for Chemical Analysis by Laser Radar

David L. Rosen and James B. Gillespie
U.S Army Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002-5501

INTRODUCTION

Laser-induced fluorescence (LIF) is a promising technique for laser radar
applications. Laser radar using LIF has already been applied to algae blooms
and oil slicks.' Laser radar using LIF has great potential for remote
chemical analysis because LIF spectra are extremely sensitive to chemical
composition. However, most samples in the real world contain mixtures of
fluorescing components, not merely individual components. Multicomponent
analysis of laser radar returns from .nixtures is often difficult because LIF
spectra from solids and liquids are very broad and devoid of line structure.
Therefore, algorithms for interpreting LIF spectra from laser radar returns
must be able to analyze specLra that overlap in multicomponent systems.

Factor analysis-rank annihilation (FARA) is an eigenanalysis technique 2-5 for
analyzing two-dimensional data. FARA usually analyzes excitation-emission
matrices (EEM). EEM Are matrices where the rows (or columns) are emission
spectra at fixed excitation wavelengths and the columns (or rows) are
excitation spectra at fixed emission wavelengths. FARA is insensitive to the
presence of unknown compounds if there is no energy transfer between
constituents. Thip insensitivity would be useful for laser radar applications
where not every compound in a natural environment can be known in advance.
Although the measurement of EEM requires a wavelength tunable light source,
laser sources strong enough for laser radar applications are usually not
wavelength tunable. Therefore, scientists have not previously considered FARA
a suitable method for analyzing laser radar returns.

This paper analyzes the possibility of using FARA to analyze emission-time
matrices (ETM) from laser radar returns instead of EEM. The authors here
define ETM as matrices where the rows (or columns) are emission spectra at
fixed times and the columns (or rows) are temporal profiles for fixed emission
wavelengths. Laser radar usually uses pulsed lasers for ranging purposes,
which are suitable for measuring temporal profiles. Laser radar targets are
hard instead of diffuse; that is, a definite surface emits the fluorescence
instead of an extended volume. A hard target would not broaden the temporal
profiles as would a diffuse target. Both fluorescence lifetimes and emission
spectra are sensitive to chemical composition. Therefore, temporal profiles
can be used instead of excitation spectra in FARA analysis of laser radar
returns. Vie resulting laser radar returns would be ETM instead of EEM.

THEORY

This section describes an FARA algorithm, developed by Ho2 ' " for calculating
nonzero concentrations. The calculation requires an ETM, D, from an unknown
and another ETM, N k, from a calibrant of known concentration. The subscript
k designates the constituent one is looking for it. the unknown, that is, the
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component of interest. D and N k are ETH in this paper, but can either be EEM
or ETM. The laser radar return could come from an unknown, while the
calibrant can be a sample of the component of interest especially prepared in
a laboratory. This algorithm calculates the relative concentration, c k,

which is the ratio of the concentration of a constituent in an unknown to the
concentration of the constituent in a known laboratory standard. The
algorithms discussed in this paper are not valid if c k is zero. Algorithms
for deciding whether c k is zero are available but will not be discussed in
this paper.

The concentration, c k, can be calculated in four steps. First, calculate the
effective rank, r, of the matrix D. The effective rank is the number of
fluorescence centers (that is, components with bilinear spectra) in the
unknown. Complicated methods of choosing the effective rank are available,'
but beyond the scope of this paper. Second, calculate the residual matrix E(c
h'), defined as:

V4j~ -D - c (I

where c k' is a dummy variable that spans over a range of possible concentra-
tions. Note that eq. (1) requires a calibrant only from the component of
interest. Third, calculate the eigenvalues, S J(c k'), of E(c k')E(c k') '-

The superscript t desigiiates transpose, while the subscript J designates the
particular eigenvalue. The subscript I is ordered so that if j > j', then S j
> S J.. Finally, find the minimum of S r(c k'). The value at c k' where the
minimum occurs is the actual relative concentration, c k, of the component.
Another algorithm uses an analytical formula, developed by Lorber,s to find
the minimum of ! (c k'). However, the authors will show the functional form of
S L(c k') to clarify the Oiscussion.

One can easily show that the shape of the laser pulse profile cannot affect
the calculated values of concentration if the same laser pulse shape with the
same time delay generates both the calibrant ETH and the laser radar return.
Therefore, FARA also may serve as a type of deconvolution algorithm if both
the laser pulse shape and electronic triggering are reproducible.

SIMULATION AND RESULTS

The ETM's of three hypothetical compounds (I, II, and III) were generated.
The emission spectra of these compounds are shown in figure 1. Only relative
decay times and relative shapes of emission bands affect the calculations.
For ease of visualization, this paper will refer to the time units as nano-
seconds (nsec) and wavelength units as nanometers (nm). For calcul.ational
ease the authors assumed a laser pulse shape to be a double-sided exponenrial
with a decay constant of 0.5 nsec. The fluorescence decay times of the three
compounds (I, II, and IllI) were 2.0 nsec, 6.0 nsec, and 10.0 nsec,
respectively. The authors repeated the calculations using a Dirac delta
function for the laser pulse profile.

The ETH of compounds I, II, and III were added to create a linear combination
with effective concentrations (thdt is, coefficients) of 1.0, 2.0, and 3.0,
respectively. This linear combination was defined as the ETH of the hypo-
thetical mixture.
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FARA analyzed both the linear combination and the calibrant EM to find the
nonzero concentrations, c k. The calculated concentrations for the three
compound profiles (I, II, and III) from the ETM are shown in table 1. The
values of c k calculated by FARA were the same as the actual concentrations in
the hypothetical mixture. The calculated values were independent of the laser
pulse shape, as expected.

The eigenvalue, S(c I'), for the ETM of compound I is plotted in figure 2.
The eigenvalue, S, shows a clear minimum at c I' - 1.0, which is the true
value of c I. Note that calculating the value of c ! did not require
laboratory standards from compound II or III.

1.2

I 0.8-/

Z 0.6 ,'

S0.4 r'

0.2 -

0 ,, , .. . I, •i . . .

300 400 500 600 700 800

WAVELENGTH

Figure 1. Normalized emission spectra of hypothetical compounds 1, II,
and III.

TABLE 1. CALCULTIONS FOR CONCENTRATION

Comon~ I 1L U ML1

Actual 1.00 2.00 3.00

FARA 1.00 2.00 3.00
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Figure 2. The functional dependence of the appropriate aigenvalue, S, on
the hypothetical concentration c x' for the ETH of compound I.

DISCUSSION AND CONCLUSION9

FARA has potential as a method for interpreting laser radar returns. FARA can
be applied to matrices consisting of fluorescence intensity as a function of
emission wavelength and time. The authors have shown that it can calculate
the nonzero concentration of a constituent in an unknown without having every
laboratory standard from every constituent in the unknown. FARA also can
serve as a deconvolution method for laser radar if the temporal profile of the
laser pulse is reproducible.
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ABSTRACT

Techniques are being explored to combine the chemical specificity of the antibody-antigen reaction
with the high sensitivity of fluorescence detection. Antibodies to the target analyte are labeled with
strongly fluorescing tags. Microspheres with attached antibodies are used in a correlation approach
to discriminate against unattached fluorescent labels.
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We have recently shown that it is possible to detect single molecules of highly fluorescent dyes (1).
However, there is a large number of compounds of practical interest that are either nonfluorescent
or if filuorescent, the emission spectrum is not sufliciently distinctive to give useful analytical
specificity. One way to achieve very high sensitivity and selectivity is to attach a fluorcscent label to
the analyte molecule via an antibody-antigen reaction. We have undertaken s•ome experiments !,;
exploic the utility of immunolluorescence techniques in conjunction with our microparticle
fluorescence measurements for the detection of biologically important substances.

The technique used for our initial experiments has been called by others a sandwich fluorescence
immunoassay. Antibodies specific for the analyte molecule arc covalently bound to carlxxyl groups
on the surface of microspheres about 10 min in diameter. When a suspension of these treated
particles is incubated with a solution containing the analyte antigen, analyte molecules will be
extracted from the solution and become attached to the microparticles. The particles are
subsequently incubated with a solution of the antibody to which a fluorescent tag has been bound.
The microspheres thus become fluorescent in proportion to the original analyte concentration. The
main problems now are how to distinguish between bound and free !abclcd antibodies and how to
minimize nonspecific binding, i.e., the blank signal.

One way to minimize the signal from unbound antitxbdies is to perform a physical separation - by
filtration or centrifugation, for example. The separated microspheres will no longer be in chemical
equilibrium if maintained in suspension so measurement time will be governed by the dissociation rate
constant for the immune reaction. Alternatively, an optical correlation technique can be employed
restricting the number of valid measurements to those small volumes that contain microspheres.
Saunders et al. (2) have achieved detection limits of 1014 M in a flow cytometer in this way. In our
experiments, both methods are used, with the fluores.cent microsphercs first separated by
centrifugatior, then analyzed by confocal fluorescence microscopy (3) correlated with the presence
of a microsphere in the probe volume.

The experiments were performed with the apparatus shown in Fig. 1. Light from an argon ion laser
is focused through a microscope objective onto the sample, an ensemble of microsphicrs in
suspension on a slide. The laser focus has been adjusted so that the excitation volume is somewhat
larger than the microspheres. With the laser beam blocked, the stage is manipulated manually until
a microsphc-c" is centered in the field of view and in the focal volume .f the laser. When this Ls
accomt)lis.Ll . the liser is switched on and the fluorescence signal is measured until the fluorescent
tags have photoly ed. A fresh microsphere is then found and the process repeated until enough
measuremcnts have bee(n made.

The first cxcriment was to determine the dissociation rate constant of a typical antiboldy-antigcn pair.
A mnonoclonal antibody (morse) to horseradish peroxidase (11 RP) was c{valcntly attached to
carboxylatcd 1(1-pm spheres usi,'g a cprox~dimide reaction (3). The anti-ItRP is the antigen in this
experiment. The suspension was incubated over night with a solution of rabbit anti-mouse antibodies
that were labeled with R-phycocrythrin, a highly 4luorcS•cL'1t protein molecule obtained from algae.
After washing by centrifug'aition, the spheres were usi!:,pendcd in storage buffer. Contfcal
fluorcsccrnce, c rrcltion measurements were made on from 201 to 40 sph,.rcs at various times aftcr
the i•nitial sCparation to observc Ihc antibody-antigen dissociatiofn. A portoit) 0f•a typical run is shown
in Fig. 2. Tl'he photonmultipliver sInal saturates while the particles are being observcd with white lit-hl,
then the I', wi(,rs-ccncc-phot)lysis dccay ;s ',t.ined for cach sphere.
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A plot of the average signal obtained as a function of time after separation is shown in Fig. 3. After
an approximately exponential decay, the fluorescence signal reaches a steady state as chemical
equilibrium is reached anew. The dissociation rate constant for the initial decay is kd = 1.5 x I10 s-'.
The results of these determinations imply that reliable measurements could still be made within a few
hours of the initial separation.

We also made a sandwich assay with the same mouse anti-HRP coated microspheres. The analyte
antigen was in this case rabbit anti-mouse and the sandwich was completed with goat anti-rabbit
labeled again with R-phycoerythrin. The antigen and labeled antibodies were incubated
simultaneously with the antibody-coated spheres. A portion of a fluorescence measurement for the
separated spheres is shown in Fig. 4. The fluorescence signal is now much stronger than the signal
when the white light is on and there was visual evidence of coagulation. The measurement at 755
s was on a probe volume with no sphere present.

An estimation of the ultimate sensitivity of the technique will require measurements on a blank,
where the labeled antibodies are incubated with antibody-coated spheres and no antigen present, as
well as with incubations in solutions of known antigen concentration. We are also studying the
possibility of using morpho!ogical resonances of the microspheres to enhance the sandwich
fluorescence relative to the soiution fluorescence and Raman background.
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Fig. 1. Apparatus for measuring fluorescence of individual microspheres.
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Fig. 2. Fluorescence measurement. on individual microspheres. The large signals are when the
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curves are the fluorescence signals from microspheres when the laser is switched on. The decay of
the fluorescence is due to photolysis of the antibody labels.
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Fig. 3. Average fluorescence per microsphere versus time after separation from the unbound labeled
antibodies.
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Abstract

We have measured the fluorescence emission spectra as a function of the excitation
wavelength for several bacteria in suspension. The in vitro samples consisted of the washed

bacteria, centrifuged and then suspended in sterile, phosphate buffered saline at room

temperature. The fluorometer measured the emission spectra at 900 in a 1 cm quartz cuvette in 2

nm steps. The excitation wavelength was scanned from 200 to 7M) nm in 25 nm steps. The data
were smoothed with a sum of G, ssians, least squares fit to the measured data. The smoothed

data were presented as a contour plot and stored as a 21 x 21 matrix. The 21 x 21 square matrix
was subsequently treated as a 441 element linear array. The linear array from a collection of 4
known bacteria could be "fit" using a linear least squares fitting routine to the measured spectrum

of an unknown bacterium. As long as the unknown bacterium was in the collection of known

spectra, the unknown could be identified, unambiguously. Work is in progress to limit the range
of the fluorescence data required for the identification process. This will speed the data

collection and reduce the time needed for the calculations of the least squares fit program.

Introduction

We are developing a fluorescence technique to investigate biological samples, in

particular, bacteria and bacterial spores (Reinisch et al., 1992). The fluorescence from bacteria

and bacterial spores is due to the emissions of intrinsic fluorophores. These emissions are
influenced by the number and the environment of the fluorophores. Thus, the fluorescence

probes the interior and the composition of the biological samples. On the other hand, light

scattering techniques (e.g., quasi-elastic or polarized) probe the exterior shape and size of the
particle. Light scattering has been very effective in monitoring the shape and size changes of
bacteria (Cummins, 1976). We have recently used a cross correlation method of quasi-elastic

183



light scattering to measure subtle changes in the shape of bacterial membranes as ions are

pumped across the membrane (Cz6g6 and Reinisch, 1990).

Fluorescence is a valuable tool in prohing different materials. The emissions from

intrinsic Ifluorophore are influenced hy the surrounding material. Subtle differences in the

emission spectra can, therefoie, he used to identify the environment of the fluorophore. When

studying bacteria, these environmental differences can be linked to the species of the microbes,

or the growth stages of the bacteria (Chou-pong el al., 1987; Cobum et al., 1985; Shelly et al,

1980).
There are several reasons to use fluorescence spectroscopy to detect and identify bacteria.

The fluorescence technique is fast (Rossi and Warner, 1985). Therc is no need to grow the

bacteria in the presence of antigens to determine the species. This traditional method of

identification generally takes several hours or more. It is possible to measure a fluorescence

spcctrum in less than I s with a small f-number monochromator and a diode array detector.

Fluorescence spectroscopy can also he used in remote detection. This has obvious military

applications, espccially in the event of bacterial warfare.

Fluorescence spectroscopy is a resonance phenomenon. This means that a small sample

size can be used and it is still possible to achieve a good signal to noise ratio. The small sample

size also decreases risk to laboratory personnel during the development and testing of the

technique.

Fluorescence has a large n~umber of parameters (e.g.. excitation wavelengtK, emission

wavelength, and fluorescence lifetime). This affords several possibilities to tailor the technique

to the problem. One can also use double or multiple discrimination techniques in the separation

and identification of samples (Shelly et al., 1980).

In earlier studies, several species of bacteria and bacterial spores were studied with

fluorescence excitation and emission spectroscopy (Reinisch et al., 1991). With dilute room

temperature suspenisionis. reproducible characteristics in the fluorescence spectra from several

different species of' bacteria were found. These characteristics are generally independent of the

conditions of growth and thought to he useful as a rapid mean of species identification. In

general. there is an excitation peak near 280 nm with a strong emission peak near 340 nm. This

peak is primarily due to tryptophan (Dalterio et al., 1986, 1987; Munro et al., 1979). Hov.,ever,
the exact shape and size of this peak change with the environment of the tryptophan. These

characteristic changes in the environment are the key to the species differentiation with

fluorescence spec troscopy.

"Thc consistency in the.- fluorescence emission spectrum from a single bacterial strain has

also hectn probed (Rcinisch c/ al., 1991). The Iluoresccnce emission spectra from E. co/i B/r at

oifferent stages along the growth curve was specifically checked. Also the fluorescence emission
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spectra of the E. coli B/r in different growth media was probed. There were minor differences in
the measured fluorescence spectrum found. These differences, in part, resemble the emission

spectra of the different growth media.
We present here an automated technique to identify fluorescence spectra from

suspensions of bacteria from a short list of possible species. The data handling is automated and

does not require operator judgment. The technique has been successful with several trials under

many different conditions.

Materials and Methods

Bacillus subtilis (strain Bacillus globigii) ATCC 9372 was obtained from the U.S. Army

and used without further purification. Haemophilis influenzae, type B, ATCC 33533, and
Branhamiella catarrhalis ATCC 25240 were obtained from American Type Culture Collection,

Rockville, MD, and used without further purification. All bacteria were grown in Luria broth

(10.0 g NaCl, 10.0 g tryptone (Difco 0123), and 5.0 g yeast extract (Difco 0127) with the pH
adjusted to 7.0 in 1.0 1 distilled water) or trypticase broth (30.0 g trypticase soy broth (BBL
11768) in 1.0 1 distilled water). Samples were grown in a shaker bath at 370C with moderate

shaking. A flask containing the broth without inoculation was also placed in the shaker bath to
check that the broth was not contaminated. Additionally, a small fraction of each growth was
streaked on agar plates to confirm a single culture of bacteria present in the medium. The

bacteria were grown to the stationary phase, and centrifuged. The bacteria were washed with
sterile saline, and then resuspended in phosphate buffered sterile saline. The concentration was

adjusted for 0.1 OD in a 1 cm cuvette measured at 600 nm.
The tympanic membrane was removed from a fresh frozen head of a chinchilla. The

chinchilla head was gift of Robert Doyle, M.D. at the Department of Otolaryngology, University

of Pittsburgh. The fluorescence spectrum was measured within 24 hours of harvesting.

The fluorescence spectra were measured on a Gregg 200 Lifetime Fluorometer (ISS,
Urbana, IL). The monochromators had 10 nm bandwidth fixed slits. The fluorescence was
measured at 900 to the excitation in the steady state mode. The excitation was stepped from 2(X)
to 7(X) nm in 25 nm steps. The emission wavelength range was from the excitation wavelength

plus 10 nrn to 10 nm short of the twice the excitation wavelength. The emission monochromator
was stepped every 2 nm.

Each measured emission was smoothed using a sum of Gaussians. Each

Gaussian was represented by

Pi(x) = Ai exp I -(x - xoi2 / 2 0 2
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The Gaussians were equally spaced (Xoi), 4 nm apart on the emission wavelength axis. The

width of each Gaussian (a) was fixed at 4 nm. The amplitudes (Ai) were determined using a

linear least squares fit from Mathernatica (Wolfram Research, Urbana, IL). This smoothing

technique avoided unwanted oscillations, preserved narrow Raman emission bands in the

fluorescence spectrum, and extrapolated to a zero intensity at wavelengths beyond the mesured

region.

Photodetector
Emission Computer Control
Monochromator

Lamp

E x c it a t io n ..... .. ... ... .......... ...... . . ............ ....... ... ... •-.-.. -. :

Excitation
Monochromator

Figure 1: Experimental set-up. T'he light is froin a continuous xenon arc lamp. I'hc excitaiion wavelength is
.slccted by a monochromator with a TO nin bandwidth. i"his Ight is imaged onto the bacterial suspension in a quartz
cuvcttc. Tlhc fluorescence is collected at 90' and passes through a second monochromator with 10 nm bandwidth.
The fluoroincer and subsequelt data analysis is all under computer control.

The resulting smoothed curves were then combined into a contour plot using

Mathematica. The fluorescent intensities from the contour plot were stored as a 21 x 21 matrix.

This was transformed into a 441 element linear array and could he fit using a linear least squares

technique.

Results and Discussion

The fluorescence spectra of the thee bacteria and the tympanic membrane are shown in

Fig. 2. The contours are often referred to as fluorescence finger prints. It is typical to see the

cxcitation wavelength plotted on one axis and the emission wavelength plotted on the other axis.

Instead, we have chosen to plot the excitation wavelength on one axis and a ratio of the emission

wavelength divided by the excitation wavelength on the other axis. This unitless number from
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1.0) to 2.0 gives a better presentation of the data, since the fluorescence spectrum is measured at
wavelengths longer than the excitation wavelength and generally the spectrum is terminated at
twice the excitation wavelength. At longer wavelengths, the second order transmission of the
grating in the monochromator will distort the measurement. The fluorescence intensity is

normalized to 1H.() at the peak. The contours are equally spaced along the intensity axis of the

fluorescence.

II

.. <>(a) 70M (b)

0600

<>500

300

200

S40(0

1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0

Figure 2 a-d: Fluorescence finger prints from four biological samples. (a) is B. sublilis grown in trypticase broth:
(b) is Ht. Infliuenzae grown in trypticasc broth: (c) is flranhiame/Ia calarrhalis in trypticase broth: (d) tympanic
meinhrane from a fresh frozen chinchilla. The vertical axis is the excitation wavelength from 2(0 to 70 unm. The
horii.ontal axis is the ratio ofl tihe emission wavelenIgth divided by the excitation wavelength. The contours represent
chlanges inl thi ti fuo rescence intensity.
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The fluorescence finger print of H. influenzae was measured from a sample grown in

Luria broth (shown in Fig. 3). In all the fluorescent finger prints from bacteria, we see the strong

fluorescence at 340 nm with a peak excitation wavelength near 280 nm.

M()

6()Figure 3: Fluorescence finger print from !-. influenzae

00 grown in Luria broth. The vertical axis is the excitation
5XX) wavelength from 200 to 700 nm. The horizontal axis the

ratio of the emission wavelength divided by the
O •excitation wavelength.

4(X) C =,

2(X)

1.0 1.2 1.4 1.6 1.8 2.0

We treat this second measurement of H. influenzae as the unknown, The identification of

the bacteria is not obvious upon visual inspection of the fluorescence finger print. We have
therefore used a linear least squares technique. We use the measured the fluorescence finger

prints of four different bacteria from above. We then use a linear least squares fit to "fit" the

measured fluorescence profile of the unknown (designated data(x i )) to the four known spectra

(designated f1 (x i)). In this notation, j is from I to 4 for the four different bacteria. The

subscript i is for the individual data points that compose the fluorescence finger print. The least

squares fit minimizes

1i Idata (x i)- j Ai fj (x i)12

Where Aj is the coeflicict for each of the known spectra to "fit" the measured spL:utrum. The

coelficicnts. Aj can be fotund from

Aj = 2 ik I Vjk fk (x i ) data (x i)

and
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(Vjk-l) = Zi l (xi) fk (x i)l

Using the above data, the coefficients from fitting H. influenzae grown in Luria broth, the A1's,

are: A (Branhamella catarrhalis) = 0.055; A (H. influenzae grown in trypticase broth) = 0.901;

A (B. subrilis) = 0.085; and A (tympanic membrane) = 0.(0)5. The match is easy to see.

The measured data that matches the known spectra typically has a fit coefficient 3 to 6

times larger than any other coefficient. We have used our technique with several different

bacteria and combinations of known bacteria. To minimize the computer requirements and

increase the speed of the fitting, we are currently trying to find what regions of the fluorescence

finger print are characteristic of the finger print. Data from regions that are not characteristic can

then be dropped. This will also allow us to make measurements with lasers. For example, a

nitrogen pumped dye laser is not tunable from 200 to 700 nm without an expensive frequency

doubling laser system. If the data at excitation wavelengths shorter than 337 nm are not

essential, this technique will prove invaluable for remote detection and identification using small,

portable nitrogen laser systems. Also, we are attempting to make the measurements using optical

fibers to deliver the exciting light and to couple the fluorescence back into the fluorometer.

Since scattering of the shortest wavelengths of light in the best optical fibers limits the

transmission near 2(X) to 30M nin, we again want to determine the importance of this data in the

fingerprint. The optical fibers will permit point detection of fluores;cence from samples that

cannot be placed into the fluorometer (e.g., a contamin,,:ed hand).
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UV LIDAR DETECTION OF BIOLOGICAL AEROSOLS

Steven Christesen, M. Scott DeSha, and Anna Wong, CRDEC
Clifton Merrow, Mark Wilson, and John Butler, STC Corp.

I. INTRODUCTION

UV laser induced fluorescence detection of biological agents
was investigated from approximately 1980 to 1986. As a result of
these studies, both the strengths (relatively high sensitivity) and
weaknesses (difficulty in discriminating between different agents)
are well known, if not well characterized. The recent conflict in
Southwest Asia provided the impetus to revisit fluorescence
detection of biologicals, and to design and construct the UV
fluorescence lidar system described herein. Technological advances
in lasers, digital oscilloscopes, and gated detectors
(photomultipliers and detector arrays) that have occurred since the
mid 1980's were incorporated into the design of this system to
yield a capability that was not available during the time of the
previous studies.

II. LIDAR SYSTEM

In designing the lidar system, our primary goal was to take
advantage of all the information available from the interaction of
the UV laser with the bioaerosol cloud. To this end, a three
channel detection system was designed. The first channel comprised
a solar blind photomultiplier tube (PMT) to collect the elastically
scattered radiation at 266 nm. This channel. was sensitive to the
presence of any aerosol cloud, fluorescing or nonfluorescing.

The second channel, a gated PMT with a UG-1 filter, detected
the total fluorescence in the 300-400 nm region. A dispersed
fluorescence spectrum was obtained in the third channel via a
spectrograph and gated intensified charge coupled device (ICCD)
array detector. The lidar system is shown in Figures 1 and 2, and
a list of components is provided in Table 1.

III. LIDAR TESTS

The UV lidar tests took place at Dugway Proving Ground, Utah
in September and October of 1991. Bacillus subtillus var niger sp.
globiggi (BG) spores were disseminated at ranges of 600, 1000,
2000, and 3000 meters. Tests were run both predawn (no solar
background) and after sunrise (solar background present). The
outputs from the three detectors are shown in Figure 3. The right
hand peaks visible on the 266 nm scatter and the UV fluorescence
plots are return from a white poster board used as a hard target
for aligning the lidar system. The CCD intensifier gate delay and
width were adjusted to overlap the fluorescence return as observed
on the oscilloscope. This adjustment was crucial to maximizing the
fluorescence signal and minimizing the solar background detected by
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the CCD. It should be pointed out that the system has not been
calibrated, and that the dependence of the sensitivity on
wavelength for the spectrograph/CCD has not been determined. These
calibrations will be performed in the near future and the corrected
spectra will be included in a subsequent publication.

DRY BG [2000m, 6:50am, 190m j]

-• -A • --- 66nm scaltter

"50 laser pulses
-1 NJ 12 pasfdiv

1_V Fluorescence

50 laser pulses
___~ - 2s/div

300 laser pulses

600ns Gate Width

152. 0 30fO ---- 35 .0 di 6.

WAYELENGTH (0m)

FIGURE 3: Outputs from 3 detector channels. Top: 266nm scatter,
Middle: Total fluorescence 300-400nm, Bottom: Dispersed spectrum
from ICCD.

193



TABLE 1i Lidar Components

COMPONENT DESCRIPTION
Laser Spectra-Physics Nd:YAG 4th harmonic (266nm)

10Hz; 170-210mJ

Telescope 16" Casagrain

Gated PMT Hamamatsu R955

Solar Blind PMT Hamamatsu R166UH

Dichroic Filter ARC Full Reflector 248-FR-45-2D-FL
(DF) (98.5% ref.@248nm)

Beamsplitter (BS) Fused Silica Uncoated Window

Filter (F) ARC Interference Filter 266-S-2D
(17% T, 90A FWHM)

Filter (F') Schott UG-1, lmm Thick

Spectrograph Thermo Jarrell Ash; Monospec 18, .18m FL

Intensified CCD Princeton Instruments Model ICCD-576G/RB
(ICCD) with UV-NIR response; 576x384 elements

Oscilloscope LeCroy Model 7200

For all three detection channels, data were collected with the
laser on followed by a background data collection with the laser
blocked. The background signal was subtracted from the signal +
background to producethe oscilloscope traces and spectra shown. An
example of the subtraction process for the CCD data is shown in
Figure 4. Even having to collect a background spectrum, it was
possible to collect BG fluorescence spectra in real time as shown
in Figure 5. The times of day for the data collection are listed to
the right of the curve. This spectrum also contains the Raman
scattering from atmospheric N2 at approximately 284 nm. After
calibrating the lidar system, we expect to be able to use this
signal as a reference for calculating the BG concentration.

An Aerodynamic Particle Sizer (APS) was also located
approximately along the laser line of sight providing time resolved
measurements of particle concentrations and size distributions.
Typical peak concentrations were on the order of 1000 to 3000
particles/cc with mass median particle diameters of 8 to 9 pm. The
high particle concentrations appeared to yield large aggregates of
the BG spores. It was not possible to correlate a specific lidar
test result with a corresponding APS measurement, however, the
highest particle count registered for the trial shown in Figure 5
was 2400 particles/cc.
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Dry BG [600m; 200mJ; 8:47am]

signal + background

50000-1L

A ~~~~background 1,1J,11

0-
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WAVELENGTH (N4M)

FIGURE 4: Subtraction of solar background

6:01

5300 400 500 ~v

Figure 5: Dry BG at 3000m, 9/21/91. Times listed to right.
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PEAK CENTER WIDTH

1 324 nm 16 nm

2 346 27

3 409 97

300 400 500

WAVELENGTH (NM)

FIGURE 6: Fit of BG spectrum showing 3 peaks. Data from 9/23/91,
range = 1000m.

09/26/ '91

PEAK CENTER WIDTH

1 317 nm 16 nm

2 343 21

400 500

WAVELENGTH (NM)

FIGURE 7: Fit of BG spectrum showing 2 peaks. Data from 9/26/91,
range = 600m.
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III. BO FLUORESCENCE SPECTRA

An interesting phenomenon observed during the tests was the
apparent transformation of the BG spectrum. Spectra collected early
in the testing exhibited a superposition of 3 peaks centered at
324nm, 346nm, and 409nm as determined by a least squares curve
fitting routine (Figure 6). In the later tests (Figure 7), the long
wavelength peak had disappeared and the spectra contained only 2
peaks; at 317nm and 343nm. These changes appear not to be
correlated to time of day or attributable to incomplete
substraction of solar background. It will be important to
understand the variability of the BG fluorescence spectrum (and by
analogy the agent spectra) if a useful biofluorescence detector,
either point or remote, is to be designed.

IV. SUMMARY

A biofluorescence lidar system has been built and tested and
has demonstrated a capability to detect biological aerosols at
ranges up to 2000 m in full sunlight and 3000 m at night. The
ability to obtain dispersed fluorescence spectra in real time
proved to be a great asset during the tests. This option does,
however, limit sensitivity and might not be practical in a fielded
system. The ability to predict the overall sensitivity of the lidar
to actual agents hinges on the laboratory measurement of
quantitative agent and simulant fluorescence spectra. It is also
important to determine whether the spectra and/or cross sections
change with particle size. The atmospheric nitrogen Raman signal
provides an internal standard for calculating agent concentrations.
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liD. INTERNAL STRUCTURE

SUPPRESSION of MORPHOLOGY DEPENDENT RESONANCES by
DROPLET SURFACE OSCILLATIONS

M. Essien, R. L. Armstrong, and J. B. Gillespie

M. Essien and R. L. Armstrong are with the Department of Physics, New
Mexico State University, Las Cruces NM. 88003. J. B. Gillespie is with the U.S.

Army Atmospheric Sciences Laboratory, White Sands Missile Range, New

Mexico 88002

RECENT PUBLICATIONS: M. Essien, J. B. Gillespie, and R. L. Armstrong,

"Observation of suppression of morphology-dependent resonances of singly
levitated micrometer-sized droplets," Appl. Opt. 31, 2148-2153 (1992).

ABSTRACT

Suppression of morphology-dependent resonance of the light elastically

scattered by a laser-illuminated, micrometer-sized droplet is observed. A

single nonabsorbing droplet is levitated using an ele:trodynamic quadrupole

trap. The scattered light is monitored as the droplet slowly evaporates.

Suppression is believed to be due to droplet surface oscillations which we

model using an effective imaginary refractive index. Good agreement is

obtained between the experimental curves and theoretica! Mir- computations.

5.1 INTRODUCTION

The characteristic resonance spectrum of a microsphere illuminated by

plane, monochromatic radiation has been studied extensively. 1,2,3 The
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resonances arise when the incident radiation couples to the cavity modes of

the sphere, ,ind are denoted as TE (transverse electric) or TM (transverse

magnetic). Resonances are also labelled by a mode number n and a mode

order 1. The mode number represents the order of the Ricatti-Bessel function

that describes the radial part of the field, while the mode order denotes the

Ith occurrence of a resonance with mode number n. For incident !ight

polarized perpendicular to the scattering plane, the intensity of the scattered

field is given by

I 2n +1 1ai 'nCSI2S=1 n(n +1) n (cosO)+b

where nn and rn are angular dependent functions related to the Legendre

polynomials, 0 is the scattering angle, and n is the mode number of a

particular resonance.

Suppression of morphology-dependent resonances of a single dye-doped

microdroplet has recently been reported. 4 The amount of suppression of an

experimentally observed resonance was quantified by computing the

contribution to the intensity of the same resonance of the theoretical curve

providing the closest fit to the experimental data. The quality factor, Q, of

the resonance is given by

x
Q=-- 2

where x is the size parameter and Ax is the full-width at half of the maximum

resonance intensity. Experimental curves were obtained for a non-absorbing
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droplet and for Iwo absorbing droplets. Theoretical computations have

shown that the suppression effect is greatest in narrow (high-Q)

resonances. 5,6 A similar result is obtained in our experimental observations.

Alowever, each of the curves of the absorbing droplets show more

suppression than that predicted by Mie theory. Similarly, the non-absorbing

droplet also shows suppression of the resonances with Q > - 104. An

explanation for this additional suppression is presented in this report.

Suppression of MDR's by Surface Oscillations

Oscillations of the droplet surface caused by thermal fluctuations may

cause suppression of MDR's. Lai et. al. 7 have estimated this fluctuation to

typically have an amplitude of about 0.1 nm and reports that the effect of

these fluctuations is to lift the degeneracy of a particular mode, with the

splitting given by

<A(02> = 62002 3

where coo is the unperturbed frequency. The parameter 8 is given by

k T

82= E-CI47ysa2

where Ci=0.04 for n (the mode number) ,7 1, kb is the Boltzman constant, T is

the temperature, and ys is the surface tension. Equation 3 then becomes

<Ao_2> = W 2kbTCI 5
Y5a2
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The temperature is given by

T=T0 +AT 6

where To is the ambient temperature and AT is the increase in temperature

that the droplet undergoes as it traverses a resonance. To determine AT,

consider the two mass flux equations

DLMYO AT
m=RT02(1- Y0) a 7

KAT QaI
a -4 8

where K is the thermal conductivity, D is the diffusion coefficient, L is the

latent heat, M the molecular weight, and Yo the mass fraction. 8 Eliminating

m and solving for AT,

QaIa 9
4(F+K)

Now Qa may also be written as

2,•n
Qa = 10

where Ns is the linear absorption coefficient.

Substituting Q = Aco/oO, aN becomes

as = coo
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The absorption coefficient ce is related to the imaginary refractive index -by

k = --- 12

Substituting equation 11 for a and using equation 5, equation 12 becomes

ks=E4 Ea2 13

Substituting for T, ks becomes

k ~ kb ~ To Qala 14ks = 2 ýs TO + 4(F+K)-

Therefore the effect of the surface oscillation is to increase the effective

imaginary refractive index by an amount given by equation 14.

5.3 Results

The experimental apparatus is shown in Figure 1. Figures 2 through 4

show the transparent droplet experimental scattering curves (% = 0.488 jim)

along with the theoretical curves with a real refractive index n=1.4722 and

imaginary refractive index k=0, for three ranges of droplet radii. The curves

show scattered intensity vs size parameter as the droplet evaporates through

the ranges from approximately 15.41 to 15.37 pm, 15.35 to 15.31 A.rm, and 14.71

to 14.68 pm. Each range will subsequently be referred to as case 1, case 2, and

case 3. Resonances in the experimental curves were labelled by noting the

positions of the resonances in the theoretical curves and comparing these

positions to positionr ohtained from a resonance location code. 9 The
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resonances in case 1 are, from the sharpest to broadest resonance, TE1 4
2 0 9 ,

TE15
205, and TE16

20 1. The case 2 resonances are TE14
208, TE15

204, and TE16200,

while the case 3 resonances are TE13
20 1, TE14

19 7, TE1 5
193 . In each case the

sharpest resonance (highest Q) is significantly less intense than the

corresponding resonance predicted by theory. A check of these identifications

was performed by modifying the Mie code of Bohren and Huffman 10 so that

the contribution from a specific resonance is omitted from the sum of

equation 2. In this modification a loop is placed in the code so that the

contribution due to a specified mode number n is neglected. If the

identification is correct, the resonance associated with n will be absent from

the scattering curve. The resulting curves for case 3 are shown in Figure 5.

Similar curves were obtained for cases 1 and 2, confirming the resonance

identification. Equation 14 shows that the effect of droplet surface oscillation

is to increase the effective imaginary refractive index. For a non-absorbing

droplet in thermal equilibrium with its surroundings, ks = 2.5 x 10-6, so that

an effective background suppression is present, even for the case of a

transparent droplet. Figures 6-8 show the Mie theoretical calculations for a

non-absorbing droplet with ks - 2.4 x 10-6, 2.5 x 10-6, and 2.6 x 10-6, and the

experimental curves of the droplet evaporating through the same size

parameter ranges as in cases 1, 2, and 3. The effective k's that fit the

experimental curves are determined with an accuracy of about 5%, about

0.1x1O- 6 for k=2.5x10-6 . The theoretical curves show good agreement with the

experimental curves.
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5.4 Discussion and Conclusions

The total Q of the droplet may be written as

1 1 1

where Qo is the Q of the non-absorbing droplet, and Qpert arises from

additional suppression mechanisms. In this case, Q is taken to be equal to

the ratio, x/Ax, of the resonance peak of the theoretical curve that

provides the best fit to the experimental curve. Therefore 1/Qpert is given by

1 1 1
Qpert - Q Qu

It has been established that the principle mechanism contributing to Qpert is

suppression due to droplet surface oscillations. The effect of surface

oscillations is quantified for three different values of the droplet radius by

analyzing the theoretical curves that provided the closest fit to the

experimental curves. This analysis was made by modifying the Mie scattering

code so that only the contribution due to a specific resonance is included in

the sum of equation 1. Figures 9-11 show intensity vs. size parameter for the

narrowest resonances of cases 1, 2, and 3. The magnitude of Qpert is

calculated from these curves for each resonance and is listed in Table 5.1.
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Table 5.1: QpErt for the resonances effected by surface oscillations.

resonance radius (gm) ks Qpert

TE14209 15.402 2.4 x 10-6 2.2 x 105
TE14208 15.343 2.5 x 10-6 2.8 x 105
TE13201 14.699 2.6 x10"6 3.2 x 105

The three values of the effective imaginary refractive index, ks, listed in Table

5.1 were determined using equation 14 for the radii of the droplet at the

resonances in question. The suppression effect believed to be due to surface

oscillations is quantified by determining Qpert at each resonance. Surface

oscillations have been found to reduce the Q of the TE14209 resonance by -

20%, the TE14
208 resonance by - 24%, and the TE13201 resonance by - 25%.

The error in a measurement of Qpert was determined by varying the effective

refractive index around the value of l-s determined from equation 13 until

the theoretical curve no !onger matched the experimental curve. This

method yielded an error of ý.bout 12 % for each case. No detectable effect is

noted for the mcderate and broad resonances of of cases 1-3.
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Figure 2. Experimental scattering curve of a glycerin/methanol droplet
evaporating from r = 15.41 to 15.37 pm (top) along with the
corresponding theoretical curve for n=1.4722 and k=O.O (bottom).
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Figure 3. Experimental scattering curve of a glycerin/methanol droplet
evaporating from r - 15.35 to 1531 ý= (top) along with the
corresponding theoretical curve for n-=1.4722 and k=O.O (bottom).
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Figure 4. Experimental scattering curve of a glycerin/methanol droplet
evaporating from r - 14.71 to 14.68 ;Lm (top) along with the
corresponding theoretical curve for n=1.4722 and k-0.O (bottom).
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Figure 5. Check of the droplet resonance identification. The curves were
generated by omitting the contribution to the scattered intensity
from n=201 (a), 197 (b), and 193 (C).
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Figure 6. Experimental scattering curve of a glycerin/methanol droplet
evaporating from r = 15.41 to 15.37 pm (top) along with the
corresponding theoretical curve for n =1.4722 and k = 2.4e-6
(bottom).
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Figure 7. Experimental scattering curve of a glycerin/methanol droplet
evaporating from r = 15.35 to 15.31 Wm (top) along with the
corresponding theoretical curve for n=1.4722 and k=2.5e-6
(bottom).
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corresponding theoretical curve for n=1.4722 and k = 2.6e-6
(bottom).
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Figure 9. Contribution to the scattered intensity due to the TE13 201

resonance for k=O.0 (solid curve) and k=2.6e-6 (dashed curve).
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Figure Io . Contribution to the scattered intensity due to the TE14 208

resonance for k-0.O (solid curve) and k=2.5e-6 (dashed curve).
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ABSTRACT

This paper describes the results of a series of studies that
have been conducted to determine if multispectral screening
materials can be generated from JP-8 or diesel fuel under
battlefield achievable conditions. The work that is discussed
demonstrates that carbon particles and filaments with desirable
screening dimensions can be produced from either JP-8 or dizsel
fuel without the use of exotic co-reactants and within temperature
and pressure limits that could be achieved under battlefield
conditions. The investigations discussed show that carbon
particles formed from JP-8 or diesel fuel feedstock exhibit
superior screening clouds as compared to their droplet aerosols.
In the infrared region, extinction coefficients exceeding 0.8 m2/g
at 10 micrometers have been obtained from the JP-8 or diesel fuel
feedstock. In addition, it has been demonstrated that carbon
filaments with diameters in the range of 0.05 to 5.0 micrometers
and lengths from 1.0 micrometer to 1.0 centimeter can be generated
from a JP-8 feedstock under reducing conditions over a nickel,
iron, or iron oxide catalyst. Conductivity and dissemination
studies demonstrate that the carbon filaments generated from JP-8
exhibit attenuation properties in the microwave spectral region.

1.0 INTRODUCTION

The practice of using smoke screens for both offensive and
defensive military operations has been a part of battle theater
operations for hundreds of years. The earliest application of
screening smokes most assuredly had as its objective the creation
of a visual obscuring clýcud. These smoke screens were generated by
burning various types of combustible materials, quite often being
what was available on the battlefield. As time progressed,
battlefield equipment and operations improved and so did the types
and applications of screening smokes. New materials such as
phosphorus, titanium tetrachloride, fog oil, etc. were developed
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for the purpose of producing more effective visual screening smoke
clouds. Each of these materials in its own application was very
affective in producing aerosols that exhibited very large
extinction coefficients in the visible region of the
electromagnetic spectrum. Some of these new materials could also
be used to generate very large screening clouds. For example, fog
oil, when subjected to a vaporization condensation procedure for
generating aerosol particles can be used to generate visual
screening clouds that are thousands of square meters in area.
These large scale smoke screens have proven to be very effective in
minimizing equipment and personnel losses on the battlefield.
However, with the development of new weapon systems that operate in
regions of the electromagnetic spectrum outside the visible band,
a need has been created for screening smokes that attenuate in
those regions outside of the visible window.

Another problem that has arisen with the use of fog oil to
generate screening smokes is a result of changes in procedures and
philosophy relative to logistic material support to the
battlefield. The philosophy is to minimize the number of different
types of items that must be supplied to the battlefield. Thus, fog
oil, which is supplied in drum quantities becomes a logistic
problem. The desire to simplify the logistical supply system to
the battlefield is so strong that the military has decided that
only one fuel will be used and that this fuel will be JP-8. Thus,
with the Army's multispectral screening need being what it is and
the possibly that the only potential material for generating a
screening smoke is a JP-8 type hydrocarbon, it is an important
issue to determine if in fact JP-8 can be used to generate an
effective multispectral screening smoke.

Many methods have been investigated to accomplish the
seemingly simple task of replacing the visual screening feedstock
(fog oil) with more readily available feedstocks such as diesel
fuel (DF) and JP-8. These schemes have thus far been impractical
because of their demand for sophisticated apparatus (i.e. chemical
plants, etc.) and/or special materials (i.e. high pressure gases,
fuels, etc.). These requirements are incompatible with insitu
generation in an operational theater. The problems as well as the
potential pay offs increase when extension is made to IR and
millimeter obscuration.

The objective of this paper is to summarize several studies
that the authors have conducted that have been concerned with the
development of methodologies for generating carbon particles and
filaments from hydrocarbon feedstocks such as diesel fuel and JP-8.
The primary operational guideline that the studies were conducted
under is that the generation conditions be maintained within a
range that could be produced in a battlefield environment.
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2.0 TECHNICAL DISCUSSION

One of the primary purposes of the efforts described in this
paper was to develop an understanding of the variables in the
process required to maximize the production of carbon particles and
filaments when using JP-8 or diesel fuel as the carbon source.
These guidelines were developed by applying an experimental
approach to a partial combustion process by using a systematic
variation of air/fuel ratio, residence time, reaction zone
temperature, and different types of catalysts. In addition to
carbon yield measurements, extinction coefficients were determined
for the airborne particles and filaments in the visual, infrared,
and millimeter wavelength regions. Measurements were also made of
the particle size distribution, evaporation rates, and settling
times. In addition, comparison studies were conducted between
droplet aerosols and particle aerosols.

2.1 THE GENERATION OF CARBON PARTICLE AEROSOLS

Hydrocarbon feedstocks have been used for many years to
produce various carbon particulate products that have industrial
value, with carbon black production being a primary example. Two
important methods have been used industrially to produce carbon
particulate products. One method is based upon the pyrolysis of a
hydrocarbon feedstock, while the other method relies upon the
partial oxidation of a hydrocarbon feed to strip hydrogen atoms off
of molecules leaving behind a product that has a chemical
composition corresponding approximately to C8H. In the studies that
are discussed in this paper, the partial oxidation method was used
because it was determined that the equipment and operational
demands that are required for this methodology could be achieved
more readily under battlefield conditions.

The experimental apparatus constructed to generate carbon
particles in the first laboratory study consisted of a heated
isothermal reaction zone into which preheated air and vaporized
diesel fuel or JP-8 was injected. A flow schematic of this
research reactor is shown in fig. 1. The reaction zone temperature
was set by a surrounding furnace and the air/fuel ratio varied by
independent control of the air and fuel injected into the reaction
zone. Residence time in the reaction zone was varied by air flow
rate and by the relative location of the fuel introduction points.
Initial studies in the use of the laboratory scale reactor to
produce carbon particles from a hydrocarbon feed were conducted to
establish operational procedures and to select process variables
for parametric studies to maximize carbon particle yield from the
partial combustion of diesel fuel or JP-8&2 . The parametric matrix
included variations of: 1) reaction zone temperature, 2) air/fuel
mass ratio, 3) reaction zone residence time, 4) fuel preheat
temperature, and 5) additives mixed with the hydrocarbon feed.

A summary of the major results is provided in Figs. 2, 3 and
4. The carbon particle yield proved to be a strong function of
reaction zone temperature, Fig. 2. A maximum temperature of 1,150 0 C
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was observed in order to respect practical temperature limits of
field smoke generators. The carbon yield was a much weaker
function of air/fuel ratio in the range from 2 to 6, Fig. 3. The
differences noted in yield due to changes in reaction zone
residence time from 1 to 5 seconds were not significant compared to
uncertainty in the data, Fig. 4.

Based upon the results that were obtained with the laboratory
scale reactor, a larger scale prototype reactor was designed and
built. The schematic for this reactor is shown in fig. 5. The
preheat air for this carbon particle generator was obtained from a
turbocombustor that was matched to the particle generator.

The scaled up generator was capable of processing 0.1 gpm of
diesel fuel or JP-8 while maintaining a carbon particulate yield of
approximately 40%. A photograph detecting the quality of the
carbon particle aerosol produced by this generator is shown in fig.
6.

The results of these initial studies demonstrated that it is
possible to produce carbon particle aerosols from diesel fuel and
JP-8 feedstocks by using the partial oxidation method. While these
initial studies established the feasibility of this technology,
they also served to uncover several. areas where further work is
required before a full field scale size carbon particle generator
can be designed and built. For example, one area that must be
addressed concerns the relative large size of the reactor that is
required to process high hydrocarbon feed rates. Scalu up of the
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Figure 6. Carbon Particulate aerosol pr r.odu e...d ty,, scaled-up
prototype generator.

prototype generator would result in a reactor diameter of
approximately 17 inches to achieve 0.5 gpm of diesel or JP-8 feed.
Therefore, these and other unique methodologies need to be
investigated further in order to reduce the size of the equipment.
One potential method might be to operate the reactor at higher
pressures, thus increasing the carbon yield per reactor volume
ratio. Other methods include the use of flame containment and
reaction quenching devices.

2.2 PROPERTIES OF CARBON PARTICLE AEROSOLS

The carbon particulate aerosols that were produced by the
generators described in Section 2.1 were subjected to a series of
tests in order to characterize them both chemically and physically.
In addition, numerous tests were conducted in order to establish
the attenuation properties of the particle aerosols.

Extinction coefficients in both the visinle and infrared
spectra2 regions were determined for carbon particle aerosols
produced at selected particle generator conditions. Measurements
were made in the Engineering Technology, Inc. 10 mr test chamber
located at the University of Central Florida and in the 190 m' test
chamber located at CRDEC. Agreement between the facilities was
excellent and is shown in the data in F'c. 7 and Table I.
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Figure 7. Comparison of extinction coefficients obtained in the ETI
and CRDEC aerosol test chambers.

TABLE 1. EXTINCTION MEASUREMENTS FOR CARBON PARTICLE AEROSOLS AT
A WAVELENGTH OF 0.63 MICRONS

Facility Aerosol Extinction
Concentration Coefficient

g/m 3  m2/gm

ETI Chamber 0.180 8.2
-.10 m3  0.0943 8.0

0.0379 7.1

CRDEC Chamber 0.0476 6.1
-190 m3  0.0098 8.7
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The spectral data in the infrared region were obtained at both
laboratories by the use of a Fourier Transform Spectrometer. The
data at a wavelength of 0.63 micrometers were obtained using a
helium-neon laser light source. Generally, because the extinction
in the visible spectrum was much greater than in the infrared, the
visible attenuation measurements were taken at a much lower value
of airborne mass concentration. Typically, the chambers were
charged with particles until visual transmission was reduced to 40
to 60 percent. After visible attenuation and particle
concentration measurements were taken, charging continued until
similar values of attenuation in the infrared were reached.

The data show that the carbon particles exhibit extinction
coefficients of approximately 0.85 m2/g at a wavelength of 10
microns. This is significantly higher than what is exhibited by
the droplet aerosols (i.e. extinction at 10 microns being less than
0.05 m2/g).

Micrographs of carbon particles collected from the particle
generator are shown in Figs. 8 through 10. The micrographs show
that the carbon particles generated by the partial combustion and
thermal decomposition of diesel fuel or JP-8 of the quality used in
these experiments consist of small spheroids fused together to form
chains and aggregates of various lengths and diameters. In
general, the carbon spheroids vary in diameter between 0.1 and 0.5
micrometers. However, depending upon the concentration of
particles in the agglomerization zone, the chains of spheroids can
grow to lengths of several millimeters as shown in fig. 10.

Even though the use of carbonaceous particulate matter dates
back to thousands of years before Christ 3 , only recently are
advanced techniques being used to probe the nature of carbon
particulates such as the soot produced by the partial oxidation of
hydrocarbon fuels. Surprisingly, the detailed molecular structure
of soot is not known. To account for the spherical morphology of
particles, older models have proposed that polyni 'Iczr aromatic
molecules are arranged with their planes tangential to concentric
spherical annuli 4. However, recently, Zhang, O'Brien, Heath, Liu,
Curl, Kroto, and Smalley (abbreviated herein as ZOHLCKS) have
related soot to three dimensional carbon clusters, suggesting that
because of dehydrogenation reactions "the polycyclic aromatic
molecules known to be present in high concentrations in sooting
flames may therefore, adopt pentagonal rings as they grow, so as to
generate structures which maximize the number of c-c linkages5"o.
While ZOHLCKS did not propose that soot would contain pure carbon
clusters ("buckminsterfulleren&'), they suggested "the result of
such a process would be a soot nucleus consisting of concentric,
but slightly imperfect spheres"'.

A paper published by Ebert, Scanlon and Clausen (abbreviated
herein in as ESC) described structural and chemical studies that
were conducted on the carbon particulate (i.e. soot) produced by
the laboratory scale reactor described in qection 2.1 while diesel
fuel was being used as the hydrocarbon feedstock6 . The purpose of
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Figure 10. Carbon particles generated for diesel fuel (magnified
35X).

the study was to in part address the ZOHLCKS proposal, and in part
to generate d-ta to compare the diesel fuel and JP-8 soots to other
carbonaceous materials. The soot was characterized by x-ray
diffraction and chemical reduction studies.

Microanalysis of several soot samples collected from diesel
fuel based carbon particulate aerosols established that the weight
percent carbon in the particulate averaged 92.06 ± 0.08, while the
hydrogen composition averaged 1.11 ± 0.13 percent. This results in
an atomic H/C ratio of 0.14. Other analyses were for % S (0.46),
% N (0.30, and % 0 (6.11). The average mass balance observed was
100.04%

Figure 11 gives the x-ray diffraction pattern of a typical
diesel fuel soot over the range 2 0 = 15 - 1050. The appearance of
diffraction peaks at 351, 208, 174, and 120 pm can be reconciled
with a model involving stacked, planar benzenoid carbon arrays.
The line widths of the diffraction peaks suggest correlation
lengths on the order of 2 rim.

Chemically, the diesel fuel and JP-8 soot were observed to
react with potassium naphthalenide' in THF to the extent of 1 K0

consumed for every 4.8 carbon atoms. The "soot anion" can be
alkylated by methyl iodide to yield products containing methyl
groups. Examination of both "T11F nolubles", and "THF insolubles"
following alkylation with CD, gjroups via D NMR shows first order
quadrupolar split as well as isotopic lines in each sample.
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Figure 11. X-ray diffraction pattern of diesel fuel soot (Cu K a,
2 e = 15 - 1050, Bakelite sample holder).

The insoluble material shows a greater fraction of quadupolar split
deuterium nuclei. Soot does not intercalate potassium metal under
conditions for which either graphite or petroleum coke will
intercalate potassium.

The results of the ESC study can be reconciled with a model of
diesel fuel originated soot as consisting of collections of large
polynuclear aromatic hydrocarbons and heterocycles as schematically
depicted in fig 12. One does not need to invoke C6 clusters or
open spiraling clusters as models for the majority of the soot. In
fact, x-ray diffraction simulation suggest that such clusters
cannot account for the details of the experimentally observed
diffraction patterns.

2.3 CATALYTICALLY PRODUCED FILAMENTOUS CARBON

In order to produce effective attenuation in the millimeter
wavelength region, it is necessary to use conductive filaments with
length to diameter ratios in the range of 200 to 500. The carbon
particles that are produced by the partial oxidation process
discussed in the previous two sections do not possess aspect ratios
in this range even though they may chain together as shown in fig
10. Part of the reason is that the filaments are not conductively
continuous. Currently, the commercially available carbon and
graphite filaments used by the Army as millimeter screening agents
are produced by the carbonization and graphitization of fibers made
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Figure 12. Schematic model for soot showing arrangement of
polynuclear aromatics tangential to spherical annuli.

from either polymer precursors such as polyacrylonitrile or pitch
precursors from petroleum or coal tar residues. However, it has
been shown that carbon filaments can be produced by metal catalyzed
pyrolysis of hydrocarbons such as methane, heptane, benzene, etc. 7 .
These vapor-grown carbon filaments have a unique structural
morphology that exhibits a greater degree of graphite perfection
than pitch or PAN fibers produced at comparable temperatures. In
addition, the vapor-grown filaments can be made in such a way that
they possess a hollow central core.

The method by which vapor-grown filaments are produced is by
heating small particles of transition metals, especially iron or
nickel, in an atmosphere of hydrocarbon vapors, often with hydrogen
being an accompanying co-reactant. At temperatures greater than
600 0 C the iron particles begin extruding long slender filaments of
fairly graphitic carbon which may grow as rapidly as several
millimeters per minute. Metallic crystals are often found at the
end of the filament. These metallic crystals are believed to be
analytically active for carbon deposition and are called "growth"
crystals.

Based on the accumulated information from controlled
experiments, a model has been proposed to account for the growth of
filamentous carbon produced on metal particles. The key steps in
the mechanism are believed to be the diffusion of carbon species
through the particle from the hotter leading surface, to the cooler
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ý.ear faces at which carbon is precipitated from solution. It has
been suggested that the driving force for carbon diffusion is the
temperature gradient created in the particle by the exothermic
decomposition of the hydrocarbon at the exposed front faces and
endothermic deposition of carbon at the rear faces. Excess carbon
which accumulates at the exposed face is transported by surface
diffusion around the peripheral surfaces of the particle to form
the graphite skin of the filament. Eventually, growth ceases when
the leading face is encapsulated by a layer of carbon pr !venting
further hydrocarbon decomposition.

A number of factors affect the growth of filamentous carbon.
For example, temperatures in the range of 500 to 9000C have been

reported while pressures between 1 and 760 torr have been used.
Several different hydrocarbon feedstocks have been studied with the
resulting carbon filaments appearing to be the same no matter what
feedstock was used. However, the type of catalyst has a tremendous
effect on the filament growth rate as well as on the
characteristics of the filament. Both pure and combinations of
metals have been studied. In general, transition metals provide
the most active catalysts.

The purpose of the project described in this paper was to
determine the conditions that are necessary to produce hollow
carbon filaments under field realistic conditions from JP-8 and to
eval!uate their potential as screening agents.

The major part of the project that was described in Clausen et
al's paper was concerned with studying the conditions that are
necessary to produce carbon filaments unde. batch process
conditions'. Several different batch reactors were designed, built,
and tested. Basically, the batch reactor consists of a 2.5 cm i.d.
quartz tube that is heated by an electric Lindberg furnace. The
filament catalyst is contained inside ceramic boats maintained
within the heated zone. The inlet to the quartz reactor tube is
equipped with the capability of feeding gases, vapors, and liquids.
The outlet of the reactor is fitted with a filament trap and a gas
bubbler. Gas feed to the reactor is monitored and controlled
through a series of rotometers and flow controllers.

When it is desired to crack (i.e. break larger molecules into
smaller molecules) the feed stream, then the system is equipped
with a reactor contAning a cracking catalyst. The cracking
catalyst consists of 1/8 inch pellets of faujasite molecular
sieves. The catalyst bed is normally heated to 7500C.

The liquid feed (e.g. JP-8, diesel fuel) is injected into the
heated zone of the cracking reactor, where it is vaporized and
carried over the cracking catalyst by a stream of hydrogen or
ccirbon monoxide gas. The cracked hydrocarbon stream is then passed
over a bed of catalyst where the filaments grow.
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Because it is desirable to use the filaments in an environment
where personnel will come into contact with the filaments,
relatively safe metal catalysts were chosen for these studies. In
particular, metallic iron and iron compounds were used in the first
series of filament growth studies. These were chosen because
previous studies had suggested that small metallic iron particles
are effective in promoting the formation of filamentous carbon.
However, later experiments determined that iron oxide catalysts
were more effective at growing the carbon filaments. The initial
set of test conditions for growing carbon filaments was established
by using low molecular weight feedstocks like ethylene, acetylene,
and pentane. These experiments were conducted by passing the gas
or vaporized liquid hydrocarbon over a bed of iron oxide catalyst.
The filaments were then collected from the catalyst bed.

Experiments testing the effectiveness of vaporized
hydrocarbons with chain lengths greater than five carbon atoms,
demonstrated that the longer chain molecules had a tendency to foul
the metal catalysts and thus, reduce the yield of filamentous
carbon. The results of these experiments documented that if the
use of long chain hydrocarbons is desirable as the feed source,
then it will be necessary to break this feed stock into smaller
molecules. It was determined at this point in the project that a
cracking catalyst would be required to condition long chain
hydrocarbon feed stocks such as JP-8 prior to reaction over the
filament forming catalyst. Accordingly, a set of experiments were
conducted and representative results of the type of filaments that
were produced are shown in Figs. 13 and 14 where filamentous carbon
was generated from cracked JP-8 feedstocks over iron oxide and
metallic nickel catalysts.

The micrographs shown in Figs. 13 and 14 demonstrate that
carbon filaments can be generated from long-chain hydrocarbons
under field achievable conditions. This is achieved by passing the
long-chain hydrocarbon feedstock (i.e. JP-8, diesel fuel, etc.) in
a hydrogen or carbon monoxide atmosphere over a molecular sieve
cracking catalyst at a temperature of approximately 700 0 C. At this
time, additional studies are being conducted in order to determine
what is the most effective filament growth catalyst. However, it
has been demonstrated that the sialler the particle size of the
catalyst, the greater the yield of the reaction. Some of the most
effective iron oxide catalysts that were used in this study were in
the range of 100 nanometers. With particles of this size, carbon
to filament conversion on a weight basis as high as 30 percent was
observed.

In order for filaments to exhibit effective attenuation
properties in the millimeter wavelength region, they must be
conductive in addition to possessing the necessary length to
diameter ratios. Conductivity measurements for small filaments are
typically performed oy using the four-point probe technique. In
order to use this technique on very small filaments, it Is
necessary to press the filaments into the form of a pellet. For
the measurements conducted in this study, the filaments were
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Figure 14. Carbon filaments generated from the reaction of cracked

diesel fuel over an iron particle catalyst.
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pressed into pellets at a pressure of 7,000 kg cm2 . The pellets
were then measured for their conductivity by using the four-point
probe method. Typical values were in the range of 10 to 40 Scm-I.
This suggests that if the filaments can be dispersed effectively
into an aerosol cloud, their extinction coefficients in the
millimeter wavelength region as comparable to those of graphite
filaments should be similar.

As shown in the previous figures, when filamentous carbon is
grown from a batch process, the filaments form clumps with the
individual filaments being tangled together. This entanglement
makes it very difficult to disperse the material in an airborne
monofilament state. Attempts were made to break the clumps apart
by passing them through high shear forces generated in a high
velocity gas stream through a high speed set of rotating blades.
The material was disseminated into a 3.6 M3 aerosol test chamber.
The path-length for attenuation measurements was 2.4 m and
extinction coefficients were measured at the He-Ne laser wavelength
(0.63 microns) and in the millimeter wavelength region at 35 GHz
and 94 GHz. Table II shows the extinction coefficients that were
measured for carbon filaments generated over iron and nickel
catalysts while using a mixed hydrocarbon feed. The values that
were obtained are less than those observed for 1/8 inch length
chopped 8-micrometer graphite in the millimeter wavelength region,
but greater than the graphite filaments in the He-Ne region. The
reason for the low values in the millimeter region is due to the
inefficiency in disseminating the carbon filaments to a
monodispersed state.

The ultimate goal of the filament project is to generate
carbon filaments on a continuous basis. Generating the filaments
by this procedure should help to minimize the birdnesting problem
that is experienced when the filaments are generated in a batch
process. This should lead to the production of carbon filament
aerosols that are much more effective in the millimeter wavelength
region.

3.0 CONCLUSIONS AND RECOMMENDATIONS

The work that was presented in this paper was the result of a
series of studies designed to explore the potential for using JP-8
and diesel fuel as a feedstock to generate multispectral screening
smokes. These studies demonstrated that JP-8 and diesel fuel can
be converted into carbon particles by a thermal hydrogen stripping
process that produces particulates that are effective screening
agents both in the visible and infrared regions. Recent work has
demonstrated that by cracking JP-8 and diesel fuel over a molecular
sieve catalyst and then mixing the product stream with an iron
oxide powder produces carbon filaments that are conductive and
possess aspect ratios that make them effective attenuators in the
millimeter wavelength region. Thus, it is theoretically possible
to produce a mixed multispectral cloud of particles a.nd filaments
from JP-8 and diesel fuel under battlefield conditions. The next
phase should be to build a prototype unit to evaluate and document
any scale-up problems that might occur in the use of these
processes. 236



TABLE II. ATTENUATION PROPERTIES OF CARBON AND GRAPHITE FILAMENTS

Sample a (mi2 g, 1)

He-Ne (0.63 94 GHz 35 GHz

Filaments 0.21 0.19 0.40
generated from
cracked JP-8 over
a Fe 304 catalyst

Filaments 0.18 0.22 0.50
generated from
cracked JP-8 over
a nickel catalyst

1/8 inch 8-micron 0.02 0.32 1.7
graphite filaments
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ABSTRACT

An analytic semi-empirical approximation to the extinction efficiency, Qewt, for randomly oriented
spheroids, based on an extension of the anomalous diffraction formula, is given and compared to the
extended boundary condition method or T-matrix method. Using this formula, Q.,, can be evaluated
over 104 times faster than by previous methods. This approximation has been verified for complex
refractive indices m = n - ik, where 1 < n < oo and 0 < k < oo and aspect ratios from .2 - 5.
We believe that the approximation is uniformly valid over all size parameters and aspect ratios. It
has the correct Rayleigh, refractive index i.nd large particle asymptotic behaviours. The accuracy and
limitations of this formula are extensively discussed.

1. INTRODUCTION

We have previously presented' a numerical approximation to Q,:t for randomly oriented spheroids.
This work was applicable to particles with 1.01 < n < 2 and 0 < k < 1 for arbitrary sizes and aspect
ratios. The required angular integration was carried out by a 64-point Gaussian quadrature. Since
many materials have optical properties beyond the above limits, we have, in the present work, extended
the refractive index range to 1 < n < o0 and 0 < k < oo. Furthermore, large optical sizes produce
high frequency oscillations in the kernel of the angular integral. These integrals are very difficult and
time consuming to estimate numerically. We have replaced this numerical integral with an approximate
analytic expression that overcomes this difficulty.

The basic approach is to orthogonalize as much as possible the scattering physics into well defined
regimes. For small physical and optical sizes, the electrostatics (Rayleigh) approximation is used.
For larger and very large optical sizes we still use the electrostatics approximation but with the optical
constants transformed 2 to inc!ude the effects of the magnetic dipole. In the large physical size regime we
split the physics into a diffraction (anomalous diffraction) component and, what can be loosely described
as edge effects. The diffraction component is modeled by the anomalous diffraction approximation as
developed by Van de Hulst 3 . The edge effect (Fock theory) component is modeled by extending a
technique introduced by Jones 4 '1. In this report, this component is further generalized to have proper
behaviour at small optical sizes and for large indices. The gap between the large and small particle
regimes is bridged by a binomial formi similar to the generalized mean (Ref. 5, page 10).
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The report is organized as follows: Section 2 develops the extinction formula. This includes section
2.1, small particle scattering, section 2.2 anomalous diffraction, 2.3 the edge effects and 2.4 the binomial
bridging function. Section 3 contains comparisons of this approximation to the T-matrix method". The
final section, Section 4, gives the conclusions and remaining limitations.

2. DEVELOPMENT OF THE EXTINCTION FORMULA

2.1 Small Particle Term

For a physically and optically small particle, all applied electric field gradients disappear and
the particle begins to respond to a homogeneous field. The electrostatics approximation then holds
giving rise to the Rayleigh scattering formula for randomly oriented spheroids7 . If the particle is
still geometrically small but optically large the magnetic dipole field becomes significant. We have
found2 that one can use the electrostatics approximation but with the optical constants transformed.
This transform correctly describes the full field. It is exact for spheres and approximatc for randomly
oriented spheroids. The following formulas for the extinction efficiency from small particles, Qmal are
derived in Ref. 2:

Qsmai ; Qoac + Qab, [1]

with
w 16 b 4

r 2

Q,¢° ~ 1q = - {g12 + py! + i;(I 12 + jq2112)} n1,2]
8 br

Qabs -= ~Re fi [1-7 + i~ + 2 (i 2 + )]
where 1 1.[3

--3(L, + •-1)' i "- 3(Lj + [3"

The optical constants transform is

[ -r2 0,•,1€ 2€(,

el, - C I= and Uj,= [4]

where Vux(z) is the first Ricatti.Bessel function and,

•1=vfi-b (I + X (I - l/r 2)) prolates

Vc-- vf' b ( r 2)X oblates [5]

72 =V-- /b (1I + X'1/ 3(1 - Il/ Vr)) prolates

"=-ve-p- b (V/•) ' X, /aoblates [6]

where X r--v(/10 and C t {(911m - 11 - 64)/155 10 < C < 1}.

The normalization factor is,

A= 1+ . sin-1  for prolates,

Vr-2 -- I rW~
1 + 2 In + for oblates.
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The form factors are defined, for prolates as

L (1 2{ 1+ gIn(±_--)/j L 2 = 2L ' 1 [8]

and for oblates,
L I + 1 t L 2 =----, = -1 [91

The above set of equations is identical to that found in Ref. 2 apart from the exponent C in [4].
This exponent is introduced for the following reason. The exact solution of the scattering problem can
be expressed in terms of scattering coefficients (for spheres these are the Mie coefficients). For small
physical sizes the first scattering coefficient is dominant and can be expanded as an infinite power series
in the size parameter z. The first term of this series is dominant only when Im - 11 is small. If we
transform the optical constants then the first scattering coefficient can still be expressed as an infinite
series in r but this time the first term dominates only when Im - 11 is large. For intermediate values
of Im - 1, more terms of the power expansion of the scattering coefficients are Aequired. Since the
resulting expression would be cumbersome we have decided to modify the first term of the transformed
series in such a way as to empirically model the scattering behaviour from small to large Im - 1i. A
simple and robust way to achieve this is to gradually turn on the transform by using the exponent C.
Thus when C = 0 the Rayleigh expression results and when C = 1 the fully transformed expression
results. Note that C = 0 when Im - 11 _< 64/91 - 0.7 and C = I when jm - 11 ? 219/91 % 2.4.

2.2 Large Particle Term

In this section we discuss the extinction effiri#-ncv of large particles Qiarge. We separate the physics
into two parts, one which corresponds to the anomalous diffraction, Qad and the other, which can be
considered due to edges effects, Qcd.

2.2.1 Extended Anomalous Diffraction

The anomalous diffraction formula is derived',', by assuming that the incident plane wave is not

significantly skewed in passing through the scattering object and that, to first order, the effect of the
scatterer is to locally retard the phase of the wave and attenuate its amplitude3. The strict limit of
validity of the formula is therefore the region where (n - 1) << 1. The scattering object is in effect
treated as an irregular disc normal to the incident wave and possessing a spatially dependent phase and
amplitude. The Fraunhofer pattern at infinity is then derived and Q..t evaluated from the standard
relations. For a spheroidal scatterer, this procedure leads immediately to the following formula :

Qad Re{2+4 e-W +4(e-- - [101

where w is given by

w = iA, AO -= 2(m -1)- fill
p

and
p = /cos2 0 + r2 sin2 O, a = 27ra/A, b 2r//A, m = n - ik. (12]

Where r = a/b is the aspect ratio (for prolates r > I and for oblates r < 1), a is the length of the semi-
axis of rotation, 03 is the other axis of the spheroid, 0 is the angle between the incident radiation and the
a or a axis, A is the waveleihgth of the scattered radiation. Hence a and b are the two size parameters
associated with the spheroid and p can be considered a projection operator of the penumbral ellipse
(the ellipse defined by the shadow line on the surface of the spheroid) onto the plane perpendicular to
the direction of the incoming radiation. When compared to exact results this formulation is satisfactory
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for all oblate spheroids. However for prolates, significant phase differences appear due to deviation of
the central ray.

To account for the refr-.ction of the central ray we have in Ref.1, modified slightly the anomaloup
diffraction approximation. Now the deviation of the central ray is taken into account when computiag
its phase difference.

The extended anomalous diffraction AOb is found to be

W ~iAA!-ibt!"-r+ Pq2 CsO(O) + s sin())]

p p2 cos'(0) + q1 sin2(0) + 2s cos(l sin(4) (M - cos(o))

a2 + p2 A
cos(€) = mr(p4 + s2)

_ s(A - p2 ) [13]
rn(p 4 + 82)

A = [m 2 (p4 + s2) _ s2]1/2

8= Vlp-2 -- r2

q (r 2 cos 2 (p) + sin2 (p)]12 .

In the limiting cases of r -+ 0o A~b becomes:

t= 2b{(m 2 - cos2 2)1/ 2 - sin 01. [14]

For random orientations the angplar averaging is carried out as follows:

"Qad = f/ 2 Qdpsin 0 dO
;U 1r 2  [15]f•1 psin 9d#

The integration in the numerator of [15] car, be readily computed numerically if the kernel is not
too occillatory. However, [1b] can be analytically approximated by the technique described in Ref. 9.
This eliminates numerical difficulties and leads to a more efficient algorithm. Following the procedure
of Ref. 9 , [15] becomes:

iad = 2 + 4 (I - 12)/j(O) [16]

with
Ii =A[-C (1+b•) -r •,--•-)-t-( + ( )-(- + C2n] [17]

and
2 j() A + 1 2A I Bw(ir/2) 1[18

C2 +C (U) ( )r2)+ n C (B + (0))[(8]

where

A = B B + j(0)], B= w(0) - w(rl/4)
-y + [w(ir/4) - w(7r/2)]/j(7rT4)' [19]

Cyw(/2) - w(O)
j(O)

and

.1(9) = - g2 - co 2(o) -sin (gc ] , for prolates,

.[cos(O)V/i7 c )i ±l(f co.V(') 7 1 +Cfcos(+)2)] , for oblates. [20]
L
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SAlso, E.(w(O) - C) E.(w((/2) - C)F.,(C) EE- (•0---C . -C-,7r / 2) C) n"- 1 [211

where En is the nth order exponential integral'. And finally for prolates (considering deviated rays),

W(0) = 2 bi (M 1•o~~o) -2a 1 )(m - 1) + a'/-2- 1/r

w(v1/4) = 2 bz[(,,/;*T/~ iI /- /I ) + ~ '[2

w(1r/2) = 2bi(m - 1),

- Irc r)=,-I,
-l rc)' -m-

for oblates (undeviated rays),
w(0) = 2bri(m - 1),

w(ir/4) 2bri(m - 1) 2 [23]

w(v/2) = 2bi(m -1).

As a consequence of the analytic integration technique, (13] is approximated by (22] at three values
of 0 whereas [11] exactly reduces to [23] at the same three values. Note that Equation [161 can be shown
to reduce to the anomalous diffraction formula of Van de Huist for the sphere.

2.2.2 Edge Effects

For a particle whose typical size is much larger than the wavelength, the edge cannot be treated as
sharp and the effect of the curvature of the object must be included. Jones' has shown how to estimate
these edge effects for three dimensional convex bodies. In Ref. 1 we showed that

2Dr 2 /3  
IPQedge = 2 F1 (-2/3,1/2;1;(1 l-/p 2 )) (prolates)

2Dr2 13  [24]
= - r-- 2F 1(-2/3,1/2;1;(1 -p 2 )) (oblates),

.999947 - 2.19081z + 1.51871z 2 - .325449z3
2F1(-2/3, 1/2; 1; z) 1 - 1.85884z + .947705Z2 - .0847327z 3  IZl < 1 [25]

D = clb

It can be shown for convex bodies, randomly oriented or illuminated by a randomly polarized beam,
that c, is a universal function of m. As Im - 11 --* 0, c, ---ý co = 0.996130 and as Im- 11 -+ oo,
, --t- coo = 0,0659708111,12. This universal function is not known. It is therefore necessary to model

it. Since ce is shape independent, this can be accomplished by studying the sphere alone. An added
complication to D arises, however, when we consider spheroids with small phases, i.e. A0 << 1. This
occurs since, what we have been calling an edge effect is really the field distortion around the boundaries
of the particle, and hence its behaviour for small A0 is quite different than for large AV. As before,
we have modclled this effect in our expression for D by using the sphere. Our empirical model of the
above two behaviours is:

Co

[b2Pl3 + l/im - lIP

4/25 Ico - co, [261
=m - 1l +8/125 llnlm- 1i, Iml <1.95 or Iml>2.05

= 20, 1.95 < Irnl < 2.05
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In the above, the special case for P3 with m r 2 is to avoid the obvious singularity in the main expression.
At this point we require only a relatively large value for /f.

The large particle limit for the spheroid becomes

Qezi -2 + Qedg.. [27]

We now wish to produce a term T which, when it multiplies [10], gives the same limit as (27] without
diverging as the size parameter goes to zero. We have sound that' an adequate expression for our
purposes is: T = 2 - eC-Qd../2 

[28]

For random orientations the angular averaging is carried as in (15] but with T replacing Qad:

= fo2 Tpsin0dO [29]

fo 2 psinOdO

Using the same integration technique to obtain an analytic approximation to [29] we obtain:

T= 2 - e-6C'A'F2j'(0) [30]

where

A' = ''B'[B' +j'(0)], B' I' + 1- v(7r/4)
7' + [•(r/4) - v~ir/2)]/j1(7r/4)' [31]

' v('(/2)-1C, I 'Y B, = j'(O) ' 6 =Dr/.

and F'd E2 (6) E2 (6v(7r/2))
2 6 v(7r/2) [32]

Here E2, is the 2nd order exponential integral. For prolates,

AO() = rj(o),

v(=r/4) = 2FI[-2, 1 1; (, 1)/(2 2+ 1)][2/(4• 4 1)]' [33]

= 2F 1[-ý, 1; 1; 1 - 1/r2]/r21
3

and for oblates,
j'(O) = -j(o),

v(s'/4) =-2 aF1[-3 5 ; 1; 1 -r/] [34)

v(7r/2) = 2F&[-, 1; 1; 1 - r.2]1,.2

2.2.3 Total Contribution to Q1ar,#

The total contribution to QiarSe for a given orientation is1 :

Qla,.e = QadT. [35]

For random orientation the angle averaging would give:

0 QdTpsin OdO 36)
fO2 p4sin 4 dO
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Due to their complementary nature, Qad ; 2 =constant for large JwJ, while T -constant for small to

medium IwJ. Therefore, to a good approximation, we can separate the kernel of the above integral to
get:

Qlarge = QUadT. [37]

An extensive comparison between [37) and the numerical computation of "Lrg. from [36] provides
definitive evidence for the above argument. Some examples of this are shown in the next section.

2.3 Bridging Function

Qm..i is a good approximation to • when the semi-major axis iL less than 1. For larger values
of the semi-major axis it overestimates Q,.,. Similarly, Qlarge is a good approximation to i%,, when
the semi-major axis is greater than 2 - 5 depending on Im- 11. For smaller values of the semi-major
axis it overestimates Qi% . In order to obtain QL,, in the transition region, from iorp and ;,mal we

need a bridging function that smoothly goes between the two. The form must have , as the first
term in its series expansion and asymptotically go to IU1rg1"

A quite general form that can do this is the confluent hypergeometric function or Kummer function
which has the general form I Fj[a; b, cz"] where a, b, c, v are arbitrary parameters and z is the variable6 .
From the basic properties of this function

F(b-az) ______b-a ( -caz" ba(a+l)z'v }
lira--rYiT-caza IF, [a; b, -cz] F~ -a caa 4 V Lz + b( )2
,li-o Fcb) r(b) - b 2! b(b + 1) -381

li r(b - a) Oz" IF, [ab 1 + a(1 + a- b)
X0 (b) CZ1"

With the small particle and large particle limits considered the bridging function 8 becomes:

]3 amo 1 F1[I/i'; b,-(cr)"] with (391

c=r(b)/r(b- 1/), and z = Qama1I/iave

which has the correct limits, i.e.
lim B 1-, small

.D (40]

We now need tc determine v and b. We should expect these parameters to be insensitive to aspect ratio
since most of the shape effects are already accounted for by Q...11 and Qt,,o,' This supposition has
been confirmed by numerical evidence, Assuming these parameters are shape independent, we can, for
each of an array of m values find the 'best' set of values of v and b by considering the sphere only. We
did this by usiig a nonlinear fitting routine. The results of this fit, for the vast majority of cases made
b very large (> 10). When b becomes very large, B goes confluent (see Ref. 13 for more details). This
means that the function simplifies dramatically to a bin'..cMial function, thus:

limn B Q9m,.n (411

b-00 [1+ z1 1 /;,

This can be rearranged in a form similar to a generalized mean as:

- 1 + - [42

We now r.iufSt model the values for -f. We have modelled this parameter in previous papers'1,4 . This

previous modelling is not usefull to the current approach since - and "Qarge have changed, the

formul, for Q,,, has been ext.end,ld to all n > I and angle averaging has been carried out.
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In [42] it is clear that if one of either Qimuti or ýQUargo is much smaller than the other then, to a
good approximation, 0,,t is this value provided that y > 0. Larger values of 7t will drive Qe, to the
smallest value between imt1l and tlarge more than smaller values. Hence, when the physical size of
the particle is small, Q,,namj is equal to or smaller than Qiarge, If should be large. Conversely, when the

physical size of the particle is large, Qamaji is much larger than Ql,,,, and we then merely require that
7 be positive. The real difficulty in modelling 7 is thus in the intermediate ranges of physical sizes.
Most of the behaviour of 7 in the large particle regime can be determined by considering first the real
axis, in the refractive index plane, and then by varying the imaginary component. Considering, first
the real axis, the behaviour can be described by the sum of two asymptotic terms, one as n - I --, 0,
and the other as n --+ oo. The behaviour of - as k increases is well modelled by a single term. The sum
of these terms we will call 7t. As the physical size of the particle changes from small to large, 7 must go
smoothly from some large value to -yi. This transition is most sensitive, and hence best modelled, where
the Rayleigh scattering and absorption are roughly equal. This occurs since the Rayleigh absorption
term and the anomalous diffraction absorption term are close to or may be equal while the scattering
t, ms are usually quite different. This can play significantly on the balance between Q,,ain and Qirge
as the physical size varies. This has been taken into account by an additional term dependent on the
physical size. This size is represented by the volume equivalent sphere radius of the spheroid.

From an empirical fit on the above terms, 7 becomes:

(54 -7) 5 3k,. (n 2 _ 1)2
7=7+j1+(l/ab)4' ck* 2 + Ic +k' k 66n- I 12 16u 6 k [43]

I+ n- 1 +4r 4n 1 6 2 U= k

1[(nz - 1)1/+s + 4 1716 + n 2  r-7' IL [2(n -. 1)] 2

We have verified that none of the above modelling of - changes the empirical fact that B goes confluent
in the best fit and hence [42] still remains valid. It should also be pointed out that the bridging function
is not necessary if i,, is only required outside the transition region. In thio case = Qmatt or
Qext = Qiarge, depending on the region of interest.

3. RESULTS

The complete formula, as given in the previous section, is guaranteed to give correct asymptotic
behaviour for both large and small Im - 11 and b. Thus, in studying the error behavior of the approxi-
mation, mid ranges of Imn- II and b are of greatest interest. In this section we will compare the analytic
approximation with the T-matrix method as implemented by Barber6 or the Mie theory.

Figures 1 and 2 show the comparison of Qt vs b for aspects 2 and 1/2 respectively. The refractive
index is a = 1.3, close to that of water. It is clear that the error decreases at either extreme of b. (The
deviation seen in Fig. I for b > 23 is caused by ill conditioning in the T-matrix code). The largest
errors are near and around the first two peaks. This occurs here since much more of the scattering
physics must be considered to obtain better accuracy.

Figures 3 and 4 are contour graphs of the percent error between the analytic approximation and
the T-matrix computation. The refractive index variei as 1 < n < 2 and 10- < k < 10. Figure 3 is
for an oblate spheroid of aspect 1//. and Fig. 4 is for a prolate spheroid of aspect 2. There are three
feature of note. One is the increase of the error for small k and large n. This error is shown well in Fig.
5 for the case of a sphere and index m = 1.8 - 0 i. This feature is simply due to resonant surface waves
that are not modelled. Note that for aspect 1/2 and 2, these errors are significantly smaller since the
surface waves are damped by the asphericity. The remaining errors arise from inaccurate modelling of
the bridging region-- that is between the Rayleigh region and the first peak. The second feature occurs
approximately when 2 < k < 10. Here, for large particles, the coherence effect of the internal refracted
wave is significant, and has not. been properly modelled'5. This is shown in Fig. 6 for an oblate particle
with aspect ratio 1/2 and m = I - 3 i. This becomes insignificant for larger k since the particle becories
reflective. The remaining error at these large values of k and h ; I i4 again due to difficulties in the
bridging function attempting to model the electromagnetic field on the surface. The third significint
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feature occurs when the Rayleigh scattering and absorption are roughly equal. This occurs since the
Rayleigh absorption term and the anomalous diffraction absorption term are close to or may be equal
while the scattering terms are usually quite different. This was included in the modelling of -y in the
previous section by k•, [43]. Residual errors can still be seen in Figs. 3 and 4 due to imperfect modelling
following curves k cx (0 2 

- 1) 2 /n.

For large ri, body resonances can occur. These are sometimes referred to as morphology dependent
resonances (MDR). For spheres these occur near nr = lir, where I is a natural number. Figure 7 shows
an example of an incipient MDR on the first diffraction peak of Q,.,. Here, rn = 3- 0 i and r = 2. Note
that, despite the significant perturbation in the transition region due to the MDR, the approximation
is excellent. Only the first, and hence simplest MDRs are modelled (by -7, (5] and 72, (6]). To show
the accuracy of the approximation, the T-matrix was low pass filtered for b > 1 and is graphea in Fig.
8. Since by far the main contribution is now from the diffraction peaks, the underlying accuracy of the
approximation is apparent.

The next example is a model of extinction by randomly oriented copper flakes in the infrared
(m = 35 - 35i). An oblate spheroid with an aspect ratio of 0.333 was used. For this index, lower
aspect ratios could not be considered since the T-matrix will not produce usable results and hence no
comparison could be made. Q,,, for this case is shown in Fig. 9. Caution is required since the T-matrix
for b > .25 begins to decrease rapidly and will go negative for larger b. This shows an advantage of
the approximation. It can estimate Q.at for combinations of n, k, b and r when the T-matrix cannot.
Figures 10 and 11 are examples of Q,,t for water prolate and oblates spheroids at 9.4 GHz, respectively.
Both are difficult cases since the T-matrix is almost ill conditioned and several MDRs are becoming
apparent. In Fig. 10, the first MDR is reasonably well modelled while the second is not. However the
latter only introduces an error of about 20 %. Again Fig. 11, the first MDR is well modelled and the
second is not. But in contrast to Fig. 10 it introduces a smaller error since it is coincident with the
first diffraction peak. Note that at the highest b shown the T-matrix has become ill conditioned.

Extensive computations have been carried out to indicate the error of the approximation over the
complete range of stability of the T-matrix method.

All our approximate Qe•t diagrams in this section were produced at a rate of greater than 104 times
faster than by the T-matrix code. Since the T-matrix scales as the cube of the optical size whereas the
analytic approximation is optical size independent, larger size parameters or larger refractive indices
lead to larger speed-up factors.

4. CONCLUSIONS AND LIMITATIONS

We have presented an approximation to Qexi for randomly oriented spheroids which is valid for all
size parameters, aspect ratios and refractive indices n > 1 and k > 0 and p = 1.

Extensive computations have been carried out to indicate the error of the approximation over the
complete range of stability of the T-Matrix method.

If high precision is not required, the formula is far more economical in computer time than the
T-matrix method for obtaining Qez. When both the range of demonstrated validity and the accuracy
are taken into account, this formula is superior to all other approximations known to the authors.

Several limitations of the previous numerical approach1 have been removed. The remaining limita-
tions, that for n < I and/or k < 0, are not modelled since new and significant physics arises (e.g. total
internal reflections, optical gain). Even n modestly less than I can cause problems. Another limitation
occurs for 2 < k < 10 and large particles, In this region the absorption is not well modelled. If this
effect was properly accounted for then Qab, and hence Q,,. could be globally and readily obtained by
using the same approach.

5. ACKNOWLEDGEMENT

The authors would like to thank l)r. Peter Barber of the Clarkson College of Technology for
generously making available his T-matrix spheroid code without which this work could not have been
carried out.

247



6. REFERENCES

1. Fournier, G.R. and Evans, B.T.N., "Approximation to Extinction Efficiency for Randomly Oriented
Spheroids", Applied Optics, Vol. 30, No. 15, p. 2042, 1991.

2. Fournier, G.R. and Evans, B.T.N., "Bridging the Gap Between the Rayleigh and Thomson Limits
for Various Convex Bodies", DREV R-4692/92, 1992.

3. Van de Hulot, H.C., "Light Scattering by Small Particles", Wiley, New York, 1957.

4. Jon-es, D.S., 'High-Frequency Scattering of Electromagnetic Waves," Proc. R. Soc. London, Ser.
A 240, p. 206, (1957).

5. Abramowitz, M., Stegun, I.A., Eds., "Handbook of Mathematical Functions (Dover, New York,
1972).

6. Barber, PW. and Hill, S.C., "Light Scattering by Particles: Computational Methods", World
Scientific, New Jersey, 1990.

7. Kerker, M., "The Scattering of Light and Other Electromagnetic Radiation," Academic Press, New
York, 1969.

8. Greenberg, J.M. a&d Meltzer, A.S., "The Effect of Orientation of Non-Spherical Particles on In-
terstellar Extinction", Astrophys. J., Vol. 132, p. 667, 1960.

9. Evans, B.T.N. and Fournier, G.R., "A Procedure for Obtaining an Algebraic Approximation to
Certain Integrals", DREV R-4653/91, 1991.

10. Wolfram, S., "Mathematica: A System for Doing Mathematics by Computer", Addison -Wesley,
New York, 1989.

11, Nussenzveig, HM. and Wiscombe, W.J., "Efficiency Factors in Mie Scattering", Phys. Rev. Lett.,
45, 1490, 1980.

12. Beckmann, V.P. and Franz, W., "Berechnung der Streuquerschnitte von Kugel und Zylinder unter
Anwendung einer modifizierten Watson-Transformation, ", Z. Naturforschg., 12a, 533, 1957.

13. Luke, Y.L., "The Special Functions and Their Approximations", Vols. I and II, Academic Press,
New York, 1969.

14. Evans, B.T.N. and Fournier, G.R., "A Simple Approximation to Extinction Efficiency Valid Over
All Size Parameters", Applied Optics, Vol. 29, 1 Nov. 1990.

15. Cohen, A. and Tirosh, E., "Absorption by a Large Sphere with an Arbitrary Complex Refractive
Index", Journal of the Optical Society of America A, Vol. 7, No. 2, p 323-325, 1990.

248



4.0

7>/-•. m= 1.3-0O,, rz=2

3.0

2.5

2.0

1-5 T Matrix
1.0 . ........... Approximation

053 _ _ _ _ _ __ _ _ _ _ _ _ _ _

o 0 2, 2*.

0 5 tO 15 20

Scmi-Axis b

Fig.1 Comparison between approximation and T-matrix method for an index of 1.3 and an
aspect ratio of 2.

3.0

1.0 /z
T Matrix

- ------ Approximation

0. 0
o 5 10 15 2.0 25 0 35040 45

Srriti-Axis b

Fig.2 Comparison between approximation and T-matrix method for an index of 1.3 and an

aspect ratio of 1/2.

249



- .. 0- - . 1.0

- -....- ~ ) - --- 0.5

S... .. - 0.• 0"

-2 15

•._..o -- __•_ _'7.. - 1.5

r-1.5 
2.'0 -2.0

.O -2.0 
-2.5

--3.0 
-3.0

oD•
S-3.5 -- 3.5

-4.0 2-4 0

-4.5 . .: -4 5

-5,0 - -- .5
1.0 1 2 1 1I 1.61 20

l(.-1I I11(1,x of Rfefract.ion

Fig.3 Maximum relative error, in percent, between analytic approximation and T-matrix
r = 1/2.

1.0 --- -0-

- I-j ' -. o •- - T---J---- ~ -- 4o
*7'.) j /0 - N (I .

2 I--." -2
0 .- - 0

5 -3.5 
-3

-4.0 4" 0-.0

-4.5 P' 0. . '151LO 1./

-'.. . . ....... ......... .... ....l .... ...... .A ..... 1... ... ./-.. .
1 0 . 2 1.7 ..5 18 2.0

IRe't I I I('uX or fRCfiAC'tlOll

Fig.4 Maximum relative error, in percent, between analytic approximation and T-watrix
r 2.

250



[1,e m! zl.8-0i, r=1

40

3.0

2.0

1.0 Mie Theory
-- ----- Approximation

o 5 10 15 20 25 30

'cn,i-Axis b

Fig,5 Comparison between approximation and Mie theory for an index of 1.8 and an aspect

ratio of 1. Significant surface waves,

So •.•m= 1-3i, r= 112

3.0

•2.0 ----------------------------------------------------- ---

1,0

T Matrix
------ Approximation

02 6 O 10
,Sc. ni.-Axris b

Fig.6 Comparison between approximation arid T-matrix method for an index of 1 - 3 i and
an aspect ratio of 1/2. Significant internal wave coherence effect.

251



7,0

6.0

.M=3-Oi, r=2
5.0

34.0

2.0

T Matrix
1.0 Approximation

0 2 4 6 3 'o 12 14 16
Serir -Axis b

Fig.7 Comparison between approximation and T-matrix method for an index of 3 - 0 i and
an aspect ratio of 2. Incipient MDR at b ,•, 1

5.0

4.0 rn=3-Oi, r=2

3.0

20

1 0 ApproxImotion
Low Pass Filtered T-Matrix

o Ur ,6 'T 11, ,
024 6 A 102 14

Se-,i-Axis b
Fig.8 As Fig. 7 but T-matrix results low pass filtered for b > 1.

252



rm=35-35i, r= 1/3

0.0,9

0.06 "

0.04

0.02 T Matrix
. Approximation

0.00 0.05 0.10 0.15 0.20 0.25 0.3C0
Scmi-Axis b

Fig.9 Comparison between approximation and T-matrix method for an index of 35 - 35 i
and an aspect ratio of 1/3.

3.0

m8.7-. 8 2 4 i, r=2 -

2.5

2.0

1.0

5 "T Matrix
---------------Approximation

0.00 0.20 0.40 0.61 0.80 . o00

Semi-Axis b

Fig.10 Comparison between approximation and T.-matrix method for an index of 8.075 -

1.824 i and an aspect ratio of 2. Water at 9.4 GHz.

253



3.0

2.5

2.0

nm=8.075-1.8 2 4 i, 11=/2

€ 1.5

1.0

T Mat~rix
0.5 -- - Approximation

0 0 f V, rrrll -Irftjr T I . . 1, III rrti f1 -7 I 1TlTS-- "I T-r,r rt T Ii i-t r ri r, I ')1ý r-fltnrT rr

0 0 05 1.0 1.5 2 0 2. 3.0 3.5 4.0 4.5

Ser•i-.4xis 6

Fig. 11 Comparison between approximation and T-matrix method for an index of 8.075 -

1.824i and an aspect ratio of 1/2. Water at 9.4 GHz.

254



Optical properties of spheres containing a spherical eccentric
inclusion.

F. Borgheset, P. Dentil, R. Saijat, 0. I. Sindonitt

tUniversita' di Messina, Istituto di Struttura della Materia, Messina 98050, Italy
ttCRDEC, Aberdeen Proving Ground, Maryland 21.010-5423

ABSTRACT

Fikioris and Uzunogiu few years back presented a formalism to describe
the electromagnetic scattering by homogeneous spheres containing an eccen-
tric spherical inclusion. We have extended our previous formalism whici, is
designed to account for the dependant scattering by aggregated spheres, to the
case of spheres conatining more than one inclusion. Our results are cormipared
with those of Fixioris and Uzunoglu and the existing differences are explained
in terms of the approximations that were used by Fikioris and Uzunoglu. We
also show results for the case of dielectric spheres containing either a metallic
or dielectric inclusion with parameters that could not be considered under the
approximation of Fikioris and Uzunoglu. It will be shown how the scatterers
response depends on the direction of incidence and on the polarization of the
field, therefore making possible to distinguish from both a sphere with con-
centric inclusion and an homogeneous sphere.

1. Introduction

The theory of electromagnetic scattering known as Mie theory was originally developed
to describe the properties of homogeneous spherical scatterers [1]. In time, it has been modi-
fied and improved to extend its applicability to radially nonhomogeneouls spheres either com-
posed of several homogeneous concentric layers or possessing a refractive index continuously
varying along the radius [2]. The layered spheres are dealt with by imposing the appropriate
boundary conditions across the surfaces separating each pair of contigt.... layers; the case of
continuously varying refractive index requires, instead, to replace the spherical Bessel func-
tions, that are appropriate for homogeneous spheres, with the numerical solutions of a pair of
radial equations. This latter approach applies, in particular, to spheres with a so-called soft
surface [3] and proved to be adaptable to deal also with stratified spheres [4]. Obviously, the
theory for stratified spheres is appropriate to deal with a sphere containing a concentric
spherical inclusion but, when the inclusion is nonconcentric, or when more than one inclu-
sion is present, a different approach is in order.

A sphere with an eccentric inclusion, in spite of its external symmetric appearance, is
intrinsically anisotropic so that its scattering properties are expected to evidence effects that
cannot be present for a truly spherical object. One could also expect that these effects influ-
ence in turn the macroscopic optical properties of a dispersion of such objects. Therefore, in
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this paper we investigate t.ie scattering properties of a homogeneous sphere containing a
spherical eccentric inclusion with the specific purpose cf assessing wether the effects due to
the eccentricity make such an object easily distinguishable from a truly spherical scatterer.
To this end we present a formalism designed to deal also with the macroscopic optical
constants of a low-density dispersion of these anisotropic scatterers and discuss the results of
its application to a few significant cases. Our approach can be easily extended to the case of
spheres containing more than one inclusion, but, since these objects require a substantial
increase of the conputational effort, we resolved to defer their treatment to a forthcoming
paper.

As far as we know, the only precedinig formalism devised to study the scattering pro-
perties of the same kind of objects we deal with in this paper is that of Fikioris and Uzunoglu
[5], whose approach is rather similar to the one we are going to describe. Nevertheless, the
results presented by these authors were not obtained through the exact formalism but rather
by means of an approximational procedure that is applicable only when the difference of the
refractive indices of the inclusion and of the external sphere is sufficiently low. As will be
discussed later, the results yielded by our formalism when applied just to the same scatterer
dealt with by Fikioris and Uzunoglu, show that the range of the applicability of their approxi-
mational procedure is narrower than one would expect at first sight. The formalism we
present in this paper arises as an extension of the one we devised a few years ago to deal with
the external anisotropy of clusters of spheres, i. e. of objects built by aggregating several
spherical scatterers [6]. As the approach we refer to is based on the expansion of the elec-
tromagnetic field in a series of spherical multipoles [7] and on the imposition of the appropri-
ate boundary conditions at the surface of each spherical component of the cluster, the
amount of calculation required to get reliable results may grow rather big. In spite of this
inevitable feature of all the approaches based on the multipolar expansion of the electromag-
netie field, our formalism proved effective not only to study single aggregates, even with
rather complicated structure [8], but also, through use of the transformation properties of the
multipoles under rotation, to calculate the macroscopic optical properties of a low-density
dispersion of clusters with random orientation (9]. The scattering properties of a number of
clusters with various geometries were investigated in this way and the predictions of our calcu-
lations proved to be in excellent agreement with the available experimental data for single
clusters [10,11].

Also the treatment of the scattering from spheres with an eccentric inclusion that we
prsent here is based on the boundary conditions approach and on the expansion of the fields
in terms of spherical multipoles. As will be shown in the next section, even in this case we
are able to calculate the properties of single objects as well as the macroscopic optical con-
stants of a low-density dispersion of randomly oriented scatterers of this kind. All our calcu-
lations were performed with no approximation but the truncation of the multipole expansions
of the field to such an order as to ensure the convergence of the results. The refrative
indices and the size parameters of the scatterers we dealt with were chosen well beyond the
limits of applicability of the approximational procedure of Fikioris and Uzunoglu [5]. The
notation is a development of the one we used in our previous papers on clusters and has been
designed to be immediately extended to the case in which more than one inclusion is present.
The underlying mathematics is sketched in section 2; in section 3, after an analysis of the
results yielded by the approximate approach of Fikioris and Uzunoglu [5], we discuss our
specific results and in section 4 we make some conclusive remarks; the definition of the
quantities occurring in our formalism is completed in Appendix A.

2. Theory

To study the scattering properties of a homogeneous sphere containing a spherical inclu-
sion we partition the space into the three regions sketched in fg. i; the external region, that is
assumed to be filled by a homogeneous, non-dispersive, non-absorbing medi"u ',,ith refrac-
tive index n (typically the vacuum); the interstitial region, centered at Ro and of radius Po,
that is filled with a homogeneous medium, possibly absorbing and/or dispersive, with
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refractive index no; the region within the inclusion, centered at R, and of radius P1, charac-
terized by a refractive index n, that may be absorbing and/or dispersive. For the sake of sim-
plicity, the theory in this section will refer to homogeneous inclusions only, on account that
the resulting formulas are easily extended to the case of radial nouhomogeneity.

We assume that all the fields depend on time through the factor e.4" and define the
propagation constants

K = kn, Ko = kno, K,= kni

in each of the regions mentioned above, respectively, with kfw/c. It is also convenient to
define the size parameters of the external sphere and of the inclusion as

xo - kpo, x, = kp,

respectively. Our aim is to determine the response of a sphere when excited by the plane
wave field

Einc-- Eo i eir'

where E0 is the amplitude at R0 , e is the (unit) polarization vector and Kmc:=K ki, is the
incident wavevector. As anticipated in the preceding section, we expand the field in each
region in terms of spherical multipole fields [7]. To this end we define the multilpole fields H
as

HL 4 (K, r) =hL(Kr)XLM (r), H&! (K, r) =--VxHL (K, r), (1)

K

where the XLM'S are vector spherical harmonics [121 and, on account cf the chosen time
dependence of the fields, the hL 's are spherical Hankel function of the first kind; the super-
scripts I and 2 are the values of the parity index that are apppropriate to the magnetic mul-
tipoles and to the electric ones, respectively. We also need to define the multipole fields J
that are identical to the H 's, eq. (1), but for the substitution of the spherical Bessel func-
tions, IL , to the hL 's. Accordingly, the field in the external region can be written as

E=E°E JA?)H?.)(K'r)+W.)J?(K' }'r , (2)

whereas in the interstitial region

EE 0= {P&?nJ (Koro)+ PI H?.' (Korl)}, (3)

and within the inclusion

E = E0 ' C?/), J?.) (K ,rl) . (4)
P"m

In the equations above the A4 's are the multipole amplitudes of the field scattered by the
whole object and the W? are the (known) multipole amplitudes of the incident planewave
field that, according to their definition in Appendix A, encompass all the information on the
direction of incidence and on the polarization; the Pk.) and the P?1,, are the amplitudes of the
interstitial field and the C?,,),, are those of the field within the inclusion. The A's are, there-
fore, the main unknowns of the problem as all the relevant quantities can be expressed in
terms of them, As an example, the nomalized scattering amplitude, that is the quantity we
are mainly interested in, can be written as [9]

f K -(-)t1 [A(1) X,,.(k•,c) + iA• h.--X X,,l('.)J 1], (5)
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= Kk,, being the scattered wavevector, and the dependence on the polarization as well
as on the wavevector of the incident plane wave, Kinc is contained in the A's. To calculate
these latter we have to impose the appropriate boundary conditions at the surface of the
inclusion as well as at the surface of the external sphere. According to eq. (3), not all the
multipoles of the interstitial field are referred to the same origin, so that we have to use an
app-opriate addition theorem [13] to express the whole field with respect to a single origin,
before the boundary conditions are applied. Then, the procedure we found more convenient
to calculate the A's is a two-step one: in the first step, by eliminating the C's, and the A's as
well, by means of the equations that express the boundary conditions, we are confronted with
a system of linear non-homogenous equations for the P's only; then, we get the A's from their
relations with the P's. The system for the P's can be written matrixwise as

(R1)-' 1  '1 _ 1 (6)
Rwl0-i (R0)-* P0 = 1WI

or, in more compact form,

MP= W

with obvious correspondence of the symbols. The elements of all the submatrices uppearing
in eq. (6) as well as those of all the submatrices that will appear hereafter are explicitly given
in Appendix A. The analogy of eq. (6) with the one we obtained for the case of a cluster is
quite evident [6]. In particular, the present equation contains terms which account for the
scattering power of the inclusion and of exteral sphere (the diagonal submatrices R, and 0 ,
respectively) as well as terms that account for the multiple scattering processes between the
inclusion, and the external sphere ( the submatrices .1-0 and Rwlo-1 ). We notice that the
submatrices I arise from the addition theorem of reference [13] and effect the translation of
the spherical multipoles from the origin to the center of the inclusion (l..-0) and viceversa
(to-i).

To solve the system, eq. (6), we have to invert the matrix M, but the actual calculation
of the P's, on account of the particular form of the vector W, that contains a subvector of
zeros, involves only the rightmost columns of the inverted matrix. So, if we write M-1 in the
partitioned form

M-1 Z11 Z011
= ZO0

where all the submatrices are of the same order as the conrresponding ones appearing in M,
and define the rectangular submatrix

Z =Z10
'0 '

the P's are given by the equation

P = ZW,

The A's are then given by the equation

A = 7T = SW, (7)

where L'is the rectangular matrix

T= IMwio). MO

The rightmost form of eq. (7) evidences that the multipole amplitudes of the scattered field
are obtained by operating on the amplitudes of the incident field with the matrix S=TZ that
includes all the information on the geometrical structure and on the scattering power of our
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scatterers.

The matrix M is in principle of order 4LM(Lm+2), if L?, is the highest value of I
retained in the multipolar expansions of the fields, eq. (2)-(4), and its inversion is thus
responsible for the main bulk of our calculations. Nevertheless, since the scatterers we deal
with in this paper have a cylindrical symmetry, group theoretical techniques can be used to
factorize M [14,15]: the maximum order of the matrices to be inverted reduces, in this case,
to 4LM ; only. It is well known, however, that this factorization can be achieved without
using the machinery of the group theory simply by choosing the cylindrical axis as the z-axis
(16).

As anticipated in the preceding section, we are also able to calculate the macroscopic
optical constants of a medium formed by a low-density dispersion of inclusion-containing
spher.2s identical to each other and with random orientations. In general, the macroscopic
optical constants for the propagation of a plane wave through a low-density dispersion of
anisotropic particles are given by the matrix of the refractive index [17]

N,H, -= n 6,m. + 27-r-f p(O)/f,,.(O)dO,(8

where p(O) is the number of paiticles per unit volume with orientation E , this lattL being a
shorthand for the Euler angles that individuate the orientation of each particle. In eq. (8) the
iifl!iccs t,,j'=1,2 rcfer to a pair of unit vettors, i1 and Z2 , orthogonal to each other and to
kin¢ with respect to which we analyze the state of polarization both of the incident and of the
scattered wave. Accordingly

is the component along i,, of the forward-scattering amplitude of a particle with orientation e
when excited by a plane wave with i =-ei , In particular, the macroscopic refractive index
and the extinction coeffcient of the dispersion are related to the diagonal elements of Nm.,
according to

n = Re[N,m] ,% -- 2klm[N,,,]

respectively. Equatio 'S) is valid provided that the density of the dispersion is so low that the
fields scattered by the whole medium can be approximated by the superposition of the fields
scattered by the single isolated objects. Although this amounts to neglect the multiple
scattering processes that may occur among different particles, the approximation is fairly
acceptable for sufficiently tenuous media. To calculate the integral in eq. (8) one h-.s to recall
that the multipoic fields transform under rotation according to the representations of the
three-dimec.uional rotation group [18]. As fully explained in ref. (9), this implies that once f
is known for a scatterer with orientation 8 0 it is immediately known for any other identical
scatterer with orientation 0 . Therefore, assuming that the scatterers are uniformly distributed
nii the orientations, the integral can be performed analytically with the result

N~~r,, = ~~o 2 'Ml

where p is the total number of the scatterers per unit volume and

where f--, must be calculated as f,,(O), eq. (5), but with

A~j 1 ZSiO.,n(60)w?.
21+1 P'M'-

It is to be boric in mind that the definition of f-,. turns out to be independent of the orienta-

tion (4 on,! choose to calculate the matrix elements of S.
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3. Results and discussion

As far as we know, no experimental data are presently available on the scattering pro-
perties of the kind of objects we deal with in this paper. Therefore, we felt necessary to per-
form extensive and careful tests on the results yelded by our formalism. First of all, we ver-
ifed that the scattering amplitude conforms to the symmetries that, as shown by van de Ilulst
[1], it must display. Secondly, we dealt with the properties that our scatterers must have
when all the refractive indices are real; in particular the coincidence of the extinction cross
section and of the scattering cross section was checked. Then, the limiting case of a concen-
tric inclusion with the consequent identification of the scattering properties with those of a
stratified sphere was also considered. At last, we dealt with the limiting cases that occur for
particular values of the refractive indices. For instance, we followed the vanishing of the
scattering when no=n and nl-n as well as the coincidence of the results with those for the
bare inclusion centered off the origin when n, is held fixed and n0 =n. All these tests were
positive for any choice of the parameters and confirmed that sonic of the features we noticed
in our preceding studies on aggregated spheres [191 persist even in the present case. The test
that reduces the eccentric inclusion to a bare sphere off the origin is particularly significant
ior it involves the matrices 11-0 and 10-. that effect the transfer of origin of the mtiltipole
fields according to ihe addition theorem of ref. (131. The numeric results coincide fairly well
with those that can be obtained directly for the bare sphere off the origin, but as a conse-
quence of the intervention of the transfer matrices the multipole expansion must be extended
to higher values of I in order to ensure the convergence to the same precision. This is a very
general condition that occurs in all our calculations not only in the present paper but also in
our previous studies of the scattering properties of aggregated spheres, In fact, we systemati-
cally found that, whenever dependent scat.ering occurs so that the use of the transfer
matrices is necessary, the value of LM that guarantees the convergence of (he results is lareger
than the values of all the Lm's that ensure the same convergence for all the individual
spheres. We give here also a further result from our studies on dependent scattering: the
value of LM that ensures both the fulfilment of the due symmetry properties and the coin-
cidence of the extinction and scattering cross sections when the refractive indices are real is
smaller than the one that insures the convergence. As a consequence, the fulfilnent of the
symmetry properties does not gurantee the accuracy of the results.

Our successive step has been the application of our formalism just to the same scatterer
dealt with by Fikioris and Uzunoglu and the comparison of our results with those reported by
these authors. We recall that the object we refer to is a sphere of refractive index n0=1.3 and
size parameter x0=2, centered at the origin, containing a sphere with nl=1.7 and x1=I, Z .
the center on the x-axis. The external medium is assumed to be the vacuum ( n=1 ). In our
opinion, the most significant comparison is the one we effected in fg. 2 between the back-
scattering efficiencies for incidence along the symmetry axis vs. the eccentricity, xE=kz ,
where z is the coordinate of the center of the inclusion. It is quite evident at first glance that
the general shape of the curves is similar but that the numerical values are quite different. To
explain the origin of this discrepancy we remark that the curves do not completely agree nei-
ther when the inclusion is centered. In fact, with reference to our present notation, Fikioris
and Uzunoglu expand the terms (R,)- 1 , eq. (6), as well as the amplitudes of the interstitial
field, P&) , in powers of (n1-no)x 1=0.4, according to their choice of the parameters, and
retain terms up to the second order only. Unless the expansion is completely convergent, this
procedure alters the scattering power of the inclusion, and this alteration is always effective,
even when the inclusion is concentric. Of course, when the inclusion is off center the effect
of the expansion becomes more visible, as expected, for expanding the P's alters also the
strength of the coupling between the inclusion and the external sphere. These considerations
should explain why the curves in fig. 2 tend to diverge with increasing xE and suggest that the
power series expansion of Fikioris and Uzunoglti is not conmplCtely convergent. A close
examination of the values for the expanded amplitudes reported in Table I of ref. 15] shows
that this is, indeed, the case. For all values of I the first and second order terms in the
expansion of the P's are of the same order of magnitude, so that there is no giiarantee that
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the third order terms are truly negligible. Furtheimore, we found that neither the multipole
expansion of Fikioris and Uzunoglu is perfectly convergent: according to our previous con-
sideramons one expects that their value of L5.t=4 be quite adequate for the bare inclusion, but
from our calculations L5.=6 seems at least necessary to achieve an accuracy of =1 %. As a
consequence, the fact that the calculations of Fikioris and Uzunoglu fulfil the symmetry pro-
perties implies only that LM= 4 is sufficient to achieve this effect and that the power series
expansion, as often occurs, does not affect these properties.

As for tl, angular dependence of the scattered intensity, the curves from our calcula-
tions, apart from vertical shifts, compare fairly well with those in fg. 5 of ref. [5], so that this
comparison does not deserve, in our opinion, a specific figure. The similarity of the angular
behavior is in no way surprising, indeed, as an examination of the formalism shows that the
dependence on the polarization and on the direction of incidence is conteined in the vector
W, eq. (6), while the dt-pendence on the direction of observation is contained in the vector
spherical hamonics in f, eq. (5): both these quantities are untouched by the series expansion.
On the other hand, the vertical shifts are easily accounted for because the amplitudes A?.
that appear in f do are affected by the series expansion.

Considerations very similar to the ones reported above can explain any further differ-
ence between our results and those of ref. (5). Ultimately, we are lead to conclude that the
range of applicability of the approximational procedure of Fikioris and Uzunoglu is narrower
than one could expect so that, in general, it is wise to resort to the exact procedure.

Our specific calculations are performed with reference to the same geometry referred to
above: the external sphere is centerd at the origin and the center of the inclusion always lies
on the z-axis. The incident field is a plane wave whose wavevector is individuated by the polar
angles Oic and oi,,; in turn the wavevcctor of the scattered wave is individuated by the polar
angles 0,,, and ,, . Our calculations were performed with Viar=O, r/4,r/2, and 0j,,=0, and,
indicating by 0(10<0_<r) the angle of scattering,

OscA = Oinc +"- 0 ,sea 0 for 6 inc + 0<7r ,

U,,. =2 'D'k for 0i,c +O>r,

Therefore the scattering uhv..c coincides with the x-z plane; the polarization vector both of
the incident and of ti s-,:ct-cd field is always parallel (i M ii) or orthogonal (i - ) to
that plane.

The scattering propIrtJ';S are desribed through the normalized scattering amplitude:
more precisely, we report the qz'.anwities (101

,,(0)p= .. Qq(0) =

that, on account of the definition of f, eq. (5), are adimensional and independent of the
radius of the spheres, We also report the quantities P and Q that are meaningful for for-
ward scattering only (0=0) and are identical to P(0) and Q(O) , respectively, but for the substi-

tution of f f(0). According to the preceding section, P_ and Q- give information on the
macroscopic optical properties of a low-density dispersion of the scatterers we deal with.

Since the objects we are interested in have a size parameter x0 > 1, the value of LM
that is necessary to get fully converged results turns outto be rather large and the factoriza-
tion of M referred to in the preceding section is, :hcrefore, very useful to reduce the compu.
tational effort. As a criterion of full convergence we iequired that, with respect to the any
increase of LM, our results be stable at least to 4 significant digits; this accuracy is by far
higher than tequircd for any graphical display. It may be interesting to notice that, in agree-
ment with the remarks by other workers dealing with dependent scattering from aggregated
spheres, we met the slowest convergence when the surfaces of the inclusion and of the exter-
mnal sphere touch each other (20).
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Hereafter we present the results of our calculations for a dielectric external sphere with
refractive index no=_nD=l. 6 1+i0.004 - this value describes satisfactorily the optical properties
of spheres of acrylic in a large frequency range [10] - containing eitlher a metallic inclusion
(sect. 3.0.1) or an empty cavity (sect. 3.0.2). In both cases the external medium is assumed to
be the vacuum (n - I),

3.0.1. Metallic Inclusion In a dielectric sphere

The size parameter of the dielectric sphere and of the inclusion are XD= 3 and XM=l,
respectively, so that the ratio of their radii is PD/PM=3. The eccentricity of the inclusion can
range from XE=0, when the inclusion is concentric, to XE=. 2 , when it is tangent to the sur-
face of the external sphere. In our calculations of f(0), i. e. when forward scattering is con-
sidered, the z-coordinate of the center of the inclusion assumes both positive and negative
values. However, since our scattering amplitude rigorously fulfil the dt:e symmetry properties
[1], we will report only the results for XE_>. The dielectric properties of the metallic inclu-
sion are assumed to be well described by the free electron Drude functiorn

1
•U=1-v(V+i'y)'

where w-•-=/wp ,w being the plasma frequency. In our calculations we assume -Y=0.01 and
choose v--0.1 because for most metals this value of v corresponds to a frequency in the visible
or in the infrared range [21]: the resulting refractive index of the inclusion is
nll-- nm V•M = 0.4994 + i9.9126. The results we are going to discuss required at most
LM = 10 to reach full convergence in the sense explained above.

The quantities P(0)andQ(0) as a function of xE for the three directions of incidence
referred to above and for polarization both parallel and orthogona. to the scattering plane are
reportedin figs. 3a and 3b, respectively. In the same figures we also report tlih averages
P and Q that, according to the discussion of the preceding section, are independent both of
the direction and of the the polarization of the incident wave, Of course, also P(O) and Q(0)
are independent of the polarization when the direction of incident wavevector lies along the
symmetry axis (0i., = 0), but, when 0ic = i/4 and 9i,¢ = xr/2 , they become strongly depen-
dent on the polarization. A further interesting remark is at hand in the results of figs. 3. If
we consider only one state of polarization, either parallel or orthogonal, the curves for
P and Q not always lie within the curves for the various incidences, contrary to what
would be expected of averaged quantities. This effect is due to the contributions to
P and Q , coming from scatterers so oriented that their symmetry axis do not lie in the
scattering plane. These contributions are never explicitly computed but arc automatically
accounted for by our analytic averaging procedure. Indeed, the response of a scatterer with
its symmetry axis not lying in the scattering plane is easily recognized as identical to the
response of a scatterer with its axis in that plane when this latter object is excited by a wave
with an appropriate state of polarization that, in general, is neither parallel nor orthogonal.
Therefore the above mentioned response must be a linear combination of the responses for
parallel and orthogonal polarization and, since the scattering properties of the objects we are
dealing with here show a noticeable sensitivity to the state of polarization, we got the seem-
ingly anomalous behavior of P and Q described above.

As a reference we also calculated P(0) and Q(0) for a homogeieous dielectric sphere
either with the same radius of the external sphere (P,(O) = 1.3173 and Qh(O) = 3.9117) or con-
taining the same quantity of dielectric material as the sphere with the inclusion
(P,(O) = 1.3151 andQ,(0) = 3.9044). Indeed, a comparison of these values with those of the
curves in figs. 3a and 3b will give a better insight into the effect of the very presence of the
inclusion and of its eccentricity as well. Let us remark, first of all, that
Ph(O) andPe(0) as well as Qh(O) andQ,(O) differ very little from each other because the ratio of
the volumes of the homogeneous spheres defined above is 27/26 on account of our choice
PD/PAl =3. Moreover, the values of P(O) and Q(O) for a sphere with a centered inclusion (
XE = 0 ) are remarkably different from the corresponding values for the homogeneous
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dielectric spheres of both sizes considered above. When XE increases the difference of P- and
Ph(0) and, specially, that of Q- and Qh(O), tend to decrease while the behavior of the differ-
ence of P(0) andPh(0) as well as that of and Q(0) and Q,(O) depends on the direction
of incidence and, in general, also on the polarization. In fact, the spread of the curves of P(O)
and Q(0) is rather large and reaches its maximum at XE =2 (fig. 3a) and for XE=1.15-1. 3 5 (fig.
3b), respectively.

In figs. 4 we show Q(O) vs. P(O) for parallel polarization and for 0ic = 0 (fig.4a),
iic = r/4 (fig.4b) and 8i,, -, r/2 (fig. 4c). In cach figure we report the curves for the

extreme values of the eccentricity (XE =2 and xE = -2) as well as the curve for the centered
inclusion (XE = 0) ; as a reference, the curve of Ph(O) vs. Qh(O) is also reported. Of course,
both the curves for the centered inclusion and for the homogeneous sphere do not depend on
the incidence and are thus the same in all these figures. It is easily seen that the curves for
the spheres with an eccentric inclusion are rather different from each other and differ also
from those both for the sphere with a centered inclusion and for the homogeneous sphere.
For forward scattering (0 = 0), the curves for the two eccentric positions stick together as
expected on account of the symmetry properties of the scattering amplitude. At all
incidences the position of the inclusion within the external sphere has an evident effect on the
shapc of the P-Q, curves, although the general behavior remains unchanged. When the
incidence is orthogonal to the symmetry axis (0 =ir/2) the curves for XE = 2 and forxEr = -2
stick together not only for forward scattering (0 -- 0) but also at backscattering (0 = Ki) as
required by an obvious symmetry property of tie matrix of the scattering amplitude (fig. 4c).

We do not report the curves we calculated for orthogonal polarization because, although
the values we obtained are numerically rather different from those for parallel polarization,
the general shape and properties of the curves are identical to those reported in figs. 4 and do
not deserve, in our opinion, a separate comment.

3.0.2. Empty cavity In a dielectric sphere

The size parameter of the dielectiric external sphere and of the empty cavity
(n, -nc =1) are xD = 4.3410 and Xc = 2.1705, respectively, and the ratio of their radii is

P/Pc = 2 . As a consequence, the eccentricity can range from xe = 0 XE = :E2.1705 . Our
choice of nD = 1.61 + i0.004 and of XD " 4.341 is due to the fact that, as noted above, the
experimental scattering properties of a solid dielectric sphere with these features are known,
so that we used such an object as a reference scatterer to test the reliability of our calcula-
tions. In the present case the convergence of the results required at most LM - 8.

The main body of our results is displayed in figs. 5a and 5b that axe analogous to figs.
3a and 3b, respectively. As compared with the results of the preceding subsection the
present results show a less strong dependence on the polarization and in particular this depen-
dence is rather weak for Q(0) (fig. 5b). As an immediate consequence of this weak depen-
dence we notice that the curves of P and Q always lie within the curves of P(0) and Q(0) for
a single polarization although those latter refer only to orientations with the symmetry axis in
the scattering plane. The results both for the solid dielectric sphere with radius equal to that
of the external sphere (the reference sphere mentioned above) and of the sphere containing
the same quantity of dielectrec material as the sphere with the inclusion are
Ph (0) =--0. 9 2 3 8,Qh =3.8373 and P, =-0.7796,Q, =4,1082 , respectively. In the present case
these values are noticeably different from each other since the ratio of the radii PD/Pc =2
implies that the ratio of the volumes is 8/7. Furthermore, the relative positions of these values
show that P(0) and Q(0) for a homogeneous sphere are, in this range, decreasing functions of
the size parameter. Both figs. 5a and 5b show that even in the present case, P andspeciallyQ
as the eccentricity increases, tend to reduce their diffence both from Ph(O) and Qh(O) and
from P,(O) and Q,(O) . The spread of the values for the different incidences we considered
reaches a rather large maximum at the highest value of the eccentricity.
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Although we performed also calculations analogous to those displayed in iigs. 4a-c, we
resolved not to report the results because they do not evidence any new significant feature
worth of a separate comment.

4. Conclusions

The results we described in the preceding section are only a small sample of the large
body of calculations that could be performed on the cases of interest. They were, in fact,
chosen as representative examples of the physical situations one can meet in dealing with
scatterers of this kind. By comparing the results for the two kinds of inclusion we dealt with
in this paper it is quite clear that the evidence of the effects we described tend to vanish when
the difference of the dielectric function of the external sphere and of the inclusion becomes
small. The tests we discussed in the preceding section, strongly suggest that even in this limit-
ing case any approximation procedure should be carefully checked, on account of the
transfers effected by the matrices I and of the consequent complicated couplings among the
equations for the multipolar amplitudes.

In our opinion the results we showed in the preceding section succeeded in proving that
the presence of an eccentric inclusion within an otherwise spherical object is quite detectable.
The eccentricity, in fact, introduces polarization effects, that are absent in homogeneous
spheres as well as in spheres with concentric inclusions, i. e.when a true spherical symmetry
is present; furthemore, the eccentricity itself changes the response both in the forward as well
as in the non-forward scattering. We are not able to present experimental data against which
the reliability of our results can be compared. Nevertheless, the magnitude of the effects we
evidenced may encourage specific experimental research on the subject.

Appendix A

In this appendix we will go through the formulae of sect. 2 arid give the explicit expres-
sion of the elements of the submatrices we used in this paper. The multipole amplitudes of
the incident plane wave, Wi, are the elements of the one-column submatrix W, eq.(6), and
are defined as

W0') (k,)-4 ;d' jeX*(imikm) , 1Y1) (i4.,) =4 irl1 (khnc xi)X*m(kiJnc,

Next, it is convenient to introduce the notation

-. no - n
-- --1, n=o-1,

and the functions

u(x) -= xj,(x) , wi(x) = xhi(x) ,

that help to write in compact form the elements of the matrix R1, that characterizes the single
inclusion we consider in this paper, as well as the matrices Ro , Rw , Mo and Mw , that
characterize the sphere containing the inclusion. The matrices R1 , R 0 andRw are diagonal
with elements

Rifm 6pp~b16..,mmR ý11

264



R• ,,= 6,,.6,,,•

where

= (1 + n ,6,)u,(Kjpj)u'1 (Kop,) - (1 + jS..,,2)u';(Kpj)u,(Kopj)

(1 + n ,bpj)u,(K p1 )w',(Kop 1 ) - (1 + n ,6,2)u'j(Kjpj)wj(Kop1 )

RW - i [(1 + no6bpu,(Kopo)w'j(Kpo) - (1 + no6b,2u'j(Kopo)w(Kpo)J-' ,

Rý = -i [(I + n-o6p,1 w(Kopo)w',(Kpo) - (1 + no6p2w',(Kopo)w.(Kpo)] ,

respectively. R91 and RI) coincide with the Mie coefficients b, and at , respectlvcly, for
the scattering by a homogeneous sphere of radius P1 and refractive index n1 embedded in a
homogeneous medium of refractive index no. Also the matrices Mw and MO are diagonal
with elements

MO ,t'm'= 6p'6U'6,c'MM

and

where

MW - i [(1 + no6pw,(Kopo)u',(Kpo) - (1 + no6p2 w'd(Kopo)u,(Kpo)J

and

MW = 1 [(1 + n-obpju,(Kopo)u',(Kpo) (1 + nobp2 u',(Kopo)u,(Kpo)]

respectively. Finally, we define the elements of the matrix l,..0 , that, as explained in sect. 2,

effects the transfer of origin of the multipole fields Re R, :

I r,•' = [•, -V21+1-• -(1- 6_p),)jC(1,1+1-bp6, , 1;-p , m + p) I

X Gj++,6.-.,,, ,+ +,(Ko , RIo)C(I ,ll';- p ,m' + p)

where Rio = R o - R, and

S'•,,(K , R) = I,m;lm') K,R)Y*x,._.(R)
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In the preceding equations the C's are the Clebsch-Gordan coefficients and the quantities IX

are the Gaunt integrals [7] that are defined as

X(l,m;l',m) = fY1.Y*r,,,Y),,,_,,dQ

The elements of the matrix io.-. , that effect the transfer from the site R, to the site RO can
be obtained from the expressions given above by substituting Rol to Ri0 .

As the last item of this appendix we make a comparison between the definition of the
scattering amplitude we adopted in our formalism with the corresponding definitions assumed
in some authoritative textbooks. According to Jackson (12), we assume that the phase of the
incident plane wave field propagating through a homogeneous medium is

= i(n(=k. r - wt) ,

where n(+) is the (in general complex) refractive index defined as

n(+) = n' + in"

For the normalized scattering amplitude f we use just the definition of Jackson

E(+) = E-----f,
r

where E(,+) is the scattered field. Bohren and Huffman [22] as well as Bayvel and Jones [23]
assume different definitions for the scattering amplitude that are related to that of Jackson
through the relations

i 1
f= n(+)-SB = -SBJ.

van de Hulst makes a different choice of the phase:

= - i(n(-)k. r - wI)

with

n(-) = n'in"

Therefore,

n(-)" ' n(+),

and

Et(L-C") +) E-) E.(+
26 6 =
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whence the relation of his noninhalized scattering amplitude with the f defined above follows:

= - in'+±)kf
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5. Figure Captions

Figure 1. Sketch of the three regions into which the space is partitioned. In actual calcula-
tions the center of the extcrnal sphere coincides with the origin and the center of the inclu-
sio)n lies on the z-axis.

Figure 2. Backscattering efficiency, aB/A - (4n 2 /p0) If(e = r) 2 , where A = •rp and 0 is
the angle of scattering, as a function of xE. The dotted curve shows the approximate results
of Fikioris and Uzunoglu (rig. 2 of ref.[5]), while the solid curve shows our results for the
same scatterer.

Figure 3. P(O) (a) and Q(O) (b) as a function of xE for a dielectric sphere containing a metal-
lic inclusion (solid curves). The curves are labelled by the values of 8,c and, when necessary,
ii is also indicated wether the polarization vector is parallel (I) or perpendicular (r) to the
scatterinig plane. The figures also show P fig. 3a. and Q , fig. 3b, as a function of xE (dot-
ted curve).

Figure 4. P(O)vs. Q(O) as a function of 0 = 0 (a) , Oi,, = x-/4 (b) and 6., = -r/2 (c)
for a dielectric sphere containing a metallic inclusion. The hollow circles mark a 30 * incre-
ment of 0 ; the forward scattering side is marbed F. The solid curves are for x, = -2 (B)
and xE = 2 (T), respectively. The dotted curve refers to XE = 0 (centered inclusion). For
the sake of comparison we also report Ph(#) vs. Qh(0 ) (dashed curve).

Figure 5. P(O) und Q(0) (b) as a function of XE for a dielectric sphere containing an empty
cavity (solid curves). The curves are labelled by the values of 6jB and, when necessary, it is
also indicated wether the polarization vector is parallel (1) or perpendicular (r) to the scatter-
ing plane. The figures also show P ,fig. 5a and Q , fig. 5bas a functionofXE (dotted
curve). The maximum value of the eccentricity is XE - 2.1705.
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ABSTRACT

Theoretical procedures are described for the determination of the electromagnetic fields for
an arbitrary field (plane wave, focused beam, etc.) incident on layered particles of spherical,
near-spherical, circular cylindrical, and near-circular cylindrical geometries. Presented calculations
indicate that even a relatively thin layer around an otherwise homogeneous core can significantly
affect the internal electromagnetic field distribution of the particle. Future work will include the use
of spheroidal wave function solutions for the analysis of layered particles with appreciably elongated
or appreciably flattened geometries.

I. INTRODUCTION

Procedures for the theoretical determination of the electromagnetic fields for an arbitrary
field (plane wave, focused beam, etc.) incident on homogeneous particles of spherical1 and near-
spherical 2 geometries have been previously developed. In this paper, the homogeneous particle
procedures have been extended to permit the analysis of layered particles. Applications include the
modeling of laser interactions with biological particles (e.g., a bacteria modeled as a homogeneous
core surrounded by a relatively thin cell wall) and laser interactions with layered aerosols.

II. GENERAL THEORY

The theoretical procedures for the determination of the electrom .guetic fields for an arbitrary
field incident on layered particles of spherical, near-spherical, circular cylindrical, and near-circular
cylindrical geometries are described in detail in Ref. 3, only an overview of the development will
be presented here.

A layered particle of general geometry consisting of a homogeneous "core" (material 1) enclosed
by a homogeneous "layer" (material 2) is considered. The layered particle is surrounded by a
homogeneous, nonabsorbing, infinite medium (the external material). A monochromatic field,
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presumed known, is incident on the particle. Within each of these three homogeneous regions, the

electric and magnetic field vectors satisfy the Helmholtz equation,

V 2E+k 2  -0 (1)

and

V2 H + kPi R 0. (2)
If IIIm is a scalar eigenfunction of the Helmholtz equation,

V 2 1l11 + k2IIt = 0, (3)
then corresponding vector eigenfunctions (Mim,-iim) of the Helmholtz equation can be determ.,ned
from the operations

M = x Fm (4)

and

X

The electromagnetic fields of the core (w) and layer (1), and the electromagnetic field of the
light scattered (s) from the particle are of interest. Each of these electromagnetic fields can be
expressed in terms of expansions over the corresponding vector eigenfunctions.

CORE FIELD
DO - [ceim•flw) + dm w)] (6)

I,m
1(w) = -i i •j [, (W) + (W) (7)

Im

LAYER FIELD

g~i) fl(e1 ~gl) + +1,2 gj~aul) +hm7 2 1](8
L,mE (elm + f~2 + + gim N 1 + h, m4~~ (9)im i•m2 in lin,1 (8)•z,

I'm

SCATTERED FIELD

)- • [aim + bimas)!M (10)

I'm
H(8) = -iVr-.j, E (al..0l + b,. IM 0 (1)

I'm

In spherical coordinates (r,9, 0), the appropriate functional form of the corresponding scalar
eigenfunctions for the core, layer, and scattered fields are

IM) = 1'j(f)Y(9,•), (12)

•(I.) ( )(13)
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1[(1.2)m2 = x,(ii 201)ygm(o,4), (14)

and

IS)= •()(ai)Ym(9,4)) (15)

where

1) = -ix (16)

and 01,X1 are the Riccati-Bessel functions and Y•, is the spherical harmonic function.
The expansion coefficients of the core (eim, dim), layer (el,, fl,, gim, him), and scattered

(ahm,b•m) fields are determined by the application of the boundary condition of continuity of the
tangential components of the electromagnetic fields at the layer/external and layer/core interfaces.

LAYER/EXTERNAL INTERFACE

fi X ('(9W + D()) = fix f() (17)

fX (AM() + i(s)) = fi X (18)

LAYER/CORE INTERFACE

fi X = (t x Efw) (19)

ft x JIM = ii x #(-) (20)

where fi is the unit vector normal to the interface and the incident electromagnetic field at the
layer/external interface (P(), F10)) is assumed known.

After substituting the series expansions of Eqs. (6)-(11) into Eqs. (17)-(20), the eight scalar
equations associated with Eqs. (17)-(20) are multiplied by Yim',(8,O4) and integrated over the
respective interface surface. The result is a set of simultaneous linear, algebraic equations that can
be solved for the expansion coefficients (aim, bim, cj,1 , dim, elm, ftm, gim, him). Once the expansion
coefficients are determined, the expansion coefficients are substituted into Eqs. (6)-(11) and the
electromagnetic field can then be calculated anywhere inside or outside the particle. If the layered
particle geometry is that of concentric spheres, then the boundary conditions can be matched
mode-by-mode and explicit expressions can be derived for the series coefficients.

If a polar cylindrical coordinate system (r,0) is chosen, then the procedure is similar to that
just described except that the appropriate scalar eigenfunctions are of the form

1(w) = Jg(izaie'1 , (21)

19I(1) = Jj(fi2af)e"o, (22)

SH(L'2) = N~i~i 2 c•)e"l, (23)

and

HI(") =H~l)(0f)eilf (24)

where

H(') = J, + iN, (25)

and J1, N, are the cylindrical Bessel functions.
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III. CALCULATIONS

For the calculations that follow, all spatial quantities are nondimensionalized relative to a
characteristic radius of the external particle surface (a) and all electromagnetic quantities are
nondimensionalized relative to a characteristic electric field amplitude of the incident field (Eo).
Important input parameters for the analysis include (1) the particle shape function, f (A nondi-
mensionalized single-valued function of the angular coordinates that defines the geometry of the
external particle surface.), (2) the core/layer interface location parameter, a12, (3) the particle size
parameter, a -= 2 xa/Aext, (4) the complex relative refractive index of the core, n1 , (5) the complex
relative refractive index of the kayer, i, (6) the propagation direction angle of the incident field,
8 bd, (7) the electric field polarization direction angle of the incident field, 0d, and, for focused beam
incidence, (9) the beam waist radius, ED0 , and (10) the location of the beam focal point relative to
the particle, (10,go,io). For the spherical analysis, 9bd is referenced to the y-z plane and Obd is
reference to the x-z plane. For the cylindrical analysis, Pbd is referenced to the x-z plane and obd is
referenced to the x-y plane.

Figure 1 presents the internal and near-surface normalized source function, S = IE/Eol2 , in the
x-z plane for a homogeneous spherical particle (a = 30, ft = 1.33 + 1.0X10- 6 i) with an incident
beam focused within the upper hemisphere uf the particle (two = 0.2, 0o = 0.7, j = 0.0, 4 =
0.0). The beam propagates in the positive z axis direction (0bd = 00) with electric field polarization
perpendicular to the x-z plane (4 bd = 900). The Gaussian profile of the incident beam can be seen
along the right-hand-side of Figure 1.

The conditions of Fig. 2 are identical to the conditions of Fig. 1, except the outer 30%
of the sphere now consists of a layer of a second material (a12 = 0.7, fk2 = 1.1 + 1.0X10-6 i).
As can be observed by comparing Figs. 1 and 2, the presence of the layer significantly affects
the electromagnetic field distribution. Figures 3 and 4 present the same data as Figs. I and 2,
respectively, but in the form of a false contrast visualization (white =* high, black =*, low).

The analysis is not restricted to purely spherical geometries. Figure 5 shows the internal
normalized source function distribution in the x-z plane for a plane wave propagating in the positive
x axis direction (Obd = 900) with electric field polarization parallel to the x-z plane (4 bd = 0')
incident on a homogeneous 1.3 to 1.0 axis ratio prolate spheroid (a = 10, fi = 1.1.8 + 0.07i).
The conditions of Fig. 6 are identical to the conditions of Fig. 5, except that the outer 10% of
the prolate spheroid has been replaced by a layer of a second material (a12 = 0.9, % - 1.48 +
0.0055i). For this case, the presence of even a relatively thin layer significantly alters the internal
field distribution of the particle.

The analysis can also be applied to cylindrical geometries. Figure 7 presents the internal source
function distribution in the x-y plane for a plane wave propagating in the positive x axis direction
(ebd = 00) with electric field polarization perpendicular to the x-y plane (Obd = 900) incident on a
homogeneous circular cylinder (a = 10, ft = 1.18 + 0.07i). The conditions of Fig. 8 are identical
to the conditions of Fig. 7, except the outer 10% of the cylinder has been replaced by a layer of a
second material (a12 = 0.9, h2 = 1.48 + 0.0055i). As was the case for the prolate spheroid particle,
the presence of the relatively thin layer significantly affects the internal field distribution of the
circular cylinder particle.

Figures 9 and 10 are identical to Figs. 7 and 8, respectively, except now (1) the particle
geometry is that of a 1.3 to 1.0 axis ratio elliptic cylinder and (2) the incident plane wave propagates
in the positive y axis direction (Obd = 90') with electric field polarization parallel to the x-y plane
(d'bd = 00).

IV. CONCLUSIONS AND FUTURE WORK

Theoretical procedures have been developed for the calculation of the electromagnetic fields for
the interaction of an arbitrary incident field (plane wave, focused beam, etc.) on a layered particle
of spherical, near-spherical, circular cylindrical, and near circular cylindrical geometries. Initial
calculations indicate that even the presence of a relatively thin layer can alter the electromagnetic
field distribution significantly from that of a corresponding homogeneous particle. Further sys-
tematic calculations will be performed in the future. In addition, spheroidal wave solutions will
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be applied to enable the analysis of layered particles with appreciably elongated or appreciably

flattened geometries.
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FIGURE 3. False contrast visualization of the normalized source function distribution in the x-z
plane for a beam focused on a homogeneous sphere. (a 30, h1 1.33 + I.0x10-6 i, tD0  0.2, io

=0.7, I/o 0.0, ZO 0.0, Obd =' O~,dbd =900)

FlIGUIlI 4. False contra.-t visualization of the ttorrnaiized source function distribution in the x-z
plane for a beam forused ont a layeredJ sphere. (a =3.0, nu1  1.33 + l.0X 10 6 i, f*2 1.1' +
l.OX10-6 i, ~ii2 = 0.7, ii)) 0.2, x-. 0.7, YO) 0.0, ýO =0.0, Obd =0', Okbd 900)
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FIGURE 5. Internal normalized source function distribution in the x-z plane for a plane wave
incident on a homogeneous 1.3 to 1.0 axis ratio prolate spheroid. (a =10, ft 1.18 + 0.07i, ebd=
900, Ob 00)
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FIGURE 6. Internal normalized source function distribution in the x-z plane for a plane wave
incident on a layered 1.3 to 1.0 axis ratio prolate spheroid. (a = 10, fil = 1.18 + 0.07i, 2  =1.48
+ 090055i, a2 0`.9, Obd = 90', )bd = 00)
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FIGURE 7. Internal normalized source function distribution in the x-y plane for a plane wave
incident on a homogeneous circular cylinder. (a = 10, f= 1.18 + 0.07i, =1bd + 0 0, 0bd =- 900)
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FIGURE 9. Internal normalized source function distribution in the x-y plane for a plane wave
incident on a homogeneous 1.3 to 1.0 axis ratio elliptic cylinder. (a = 10, AI - 1.18 + 0.07i, Obd -
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FIGURE 10. Internal normalized source function distribution in the x-y plane for a plane wave
incident on a layered 1.3 to 1.0 axis ratio elliptic cylinder. (a = 10, nl = 1.18 + 0.0Ti, '42 = 1.48
"+ 0.0055i, a12 = 0.9, Obd = 900, Obd = 00)
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Abstract

A comparison of the differential, scattering, and absorption cross sections of a bisphere
obtained from the discrete dipole approximation (DDA) is made with those determined from
modal analysis. The DDA is thus tested, for the first time to our knowledge, against an exact
calculation of the scattering properties of a finite, nonspherical particle. The agreement with
the exact solution is very good, even when the size parameter of the monomers is ; 8 (the
largebt size studied).

Introduction

The discrete dipole approximation (DDA) provides what is perhaps the best method
available for modeling the scattering properties of particles with morphologies that do not
allow for an exact solution. The DDA is obtained by replacing the particle with an array of
N point dipoles on a cubic lattice. The polarization of each dipole is found by solving a self-
consistent set of linear equations that accounts for the electric field of the incident radiation
and of all other dipoles in the array. This is represented by

P = A- 1 Ej,

where P is the 3N-dimensional polarization vector of the array, E1 is a 3N-dimensional vector
that describes the incident electric field of the plane wave at the position of each dipole, a-id A
is a 3N x 3N symmetric matrix that relates the electric field of the jth dipole to the location
of the kth dipole in the ensemble. Once P has been determined, the scattered field of the
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system can be cal, 'ta•.aeo as the vector sum of the scattered fields of the dipoles. A more
detailed description of this formalism is provided by Draine.1

Computations have been greatly accelerated by applying the conjugate gradient method
and the fast Fourier transform to the solution of the above equation. A description of these
enhancements, along with comparison of the DDA technique to the exact solution for spheres
with size parameters as large as 15 is provided in the paper of Goodman et al. 2 Results are
also provided in that work for a cube having a volume equivalent to that of a sphere of size
parameter 10. Application of the DDA to such optically large particles is unprecedented.

A comprehensive treatment of the DDA, along with a compendium of results of its ap-
plication to cirrus cloud particles can be found in the dissertation of Flatau.3

Scattering by Two Pseudospheres

The scattering properties of a bisphere can be found exactly by modal analysis.4' 5 In
applying the DDA, the two spheres are replaced with pseudospheres, each comprised of about
33,000 dipole elements. This system is displayed in Fig. 1. A similar approach was taken
by Kattawar and Humphreys, 6 but the numerical techniques employed at that time did not
allow for size parameters much greater than unity to be considered (pseudospheres of only 32
dipoles were used by those authors).

The monomers used in this study are chosen so that two of them would have a volume
equal to that of a single sphere with a size parameter of either 5 or 10. In all cases, the wave
vector of the incident radiation is taken to be parallel to the symmetry axis of the two-sphere
system. Such a scattering geometry produces the strongest electrodynamnic coupling between
the principals and hence provides what is probably the most stringent test of the DDA. It
is noted, however, that comparisons were made for other particle orientations and agreement
with the modal analysis runs was at least as good as that seen in the case of end-on incidence.

Figures 2 and 3 display the phase functions of two pseudospheres that are made from the
same amount of dielectric as would be required to construct a single sphere of size parameter
5 and 10, respectively. Orthogonal states of polarization of the incident beam are considered.
The scattering plane is taken to be that which contains the symmetry axis of the particle and
the wave vector of the scattered fields. The cases -y - 0 or ,T/2 correspond to an incident
polarization that is parallel or perpendicular to this plane, respectively. The phase functions
of the pairs of pseudospheres closely match those obtained for the corresponding bispheres.
This is especially true in the case of Fig. 2, where the differences are negligible. The slight
disagreements between modal analysis and DDA in Fig. 3 are due, of course, to a need for
an increased number of dipolar subunits in the approximation. It is interesting that the
agreement in Fig. 3 is better for y = 0 than for -y =ir/2, and that the reverse is true in Fig.
2.

In Figure 4, the cfficie:ncicq for extinction and absorption by a bisphere are plotted against
the size parameter of an equivalent volume sphere. The cfficienry factors of the bisphere
are determined from the ratio of its respective cross sections to the cross sectional area of
the equivalent-volume sphere. Agreement between the DDA and the exact calculation is
outstanding.
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Figure 1. The scattering geometry for the pseudosphere calculations.
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Figure 2. Phase function comparisons for a two-sphere system with a volume equivalent to that of a
single sphere with size parameter 5. The solid line corresponds to the phase function of a
bisphere illuminated at end-fire incidence as determined from modal analysis. The discrete
points are the results of the DDA calculations based on the pseudospheres depicted in
Fig. 1. The refractive index of the spheres is 1.33 + 0.01i. The polarization angle, -Y, is
discussed in the text.
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Figure 3. Same as Fig. 2, but for a bisphere having a volume equal to that of a single sphere of size
parameter 10.
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Figure 4. Comparison of extinction and absorption efficiencies of the particles discussed in Figs. 2
and 3 as a function of the size parameter of the equivalent-volume sphere. To obtain these
efficiencies, the respective cross sections were normalized by the geometric cross section
of the equivalent-volume sphere.
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Abstract

An outline is presented of the derivation of the cross section for total scattering by a cluster
of spheres. The theory is then used to study the effects of scavenging and aggregation on
the specific absorption of carbon. Results are presented for polarization- and orientation-
dependent absorption cross sections of sulfate haze elements and cloud droplets with small
carbon grains (spheres) attached to their surfaces. Comparisons between the absorption cross
sections of free carbon, linear chains, and tightly clumped carbon spheres are also provided.

Introduction

The total scattering cross section, ac, of a particle is given by

f Energy scattered/unit time/unit solid angle d.()

.h-. incident energy flux (energy/unit area/unit time)

For a spherical scatterer, this integral can be solved analytically.
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The response of a cluster of spheres to em radiation derives from the natural modes of the
individual spheres, but the modes of each sphere couple to those of all other spheres in the
ensemble and the mathematical description of the scattered radiation is inherently more com-
plicated than that for isolated spheres. With the use of the addition theorem for vector
spherical harmonics, not only can the scattered fields of the cluster be determined; we have
shown that the ao integral can once again be solved analytically. The cross section for total
extinction, a,, can be found with relative ease from the optical theorem and the absorption
cross section of the cluster is simply

or = ae - a,. (2)

Without an analytic solution for a,, the absorption cross sections of small, highly absorbing
-grains attached to (scavenged by) large, weakly absorbing haze elements or cloud droplets
could not have been calculated.

Cross Sections for Spheres: Reduced Symmetry Case

The scattering geometry for the case of a single sphere is depicted in Fig. 1. Rather than
restricting the wave vector of the incident radiation to be parallel to 6,, we will require only
that ko lie in the the xz-plane, oriented at an angle a froni the z-axis. The angle y specifies
the polarization of the incident field E0 . The expansion, in vector spherical harmonics, of this
field is then

E0 exp(tko r) = jEoII E ( n +qn (3)
n=1I mr=--n

where Pmn and q1nn are of the form

Amn.= 2n + 1 .(n -rn)! [-zrm4 (cosa) 0] (4)
n(n+ 1) (n + m)! I "ffm,(cosa) J7' I. 7r/24

and

qmn n 2n + 1 (n- rn)! [%7rmn(cosa)] 0 (5)n (n + 1) Fn +m) I ---rn,,(COS C) ' i r/21 " 5

Radiation is scattered into an angle fl, relative to the ko direction, with polarization compo-
nents E,11 and E,._ that are, respectively, parallel and perpendicular to the plane swept out
by the scattering angle. The scattered field can be expressed as

E9 E lEo E n A ,,N,, +A Hm M (AE (3) M (6)
n=1 m=-v'

where
AEmn = Pmn an

AHmn = q.n b"
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Figure 1. The reduced-symmetry geometry for light scattering by a sphere.
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and an and bn are the Lorenz, Mie coefficients.

When ko is parallel to re and the incident field is polarized in the A. direction, then the more
familiar1 expression,

E.-IEI-- =1 2s n +1) (tanN(3 - -o 3 = 0 (8)

is recovered.

The differential scattering cross section of a particle is defined as

do = Energy scattered/unit time/unit solid angle
d- Incident energy flux (energy/unit area/unit time)' (9)

Integrating the differential cross section over all solid angles yields the cross section for total
scattering:

a - 2 j(S)Re j Sf . r r 2 sin 0 dO do, (10)

where So = (Eo x H;) and S. = (E. x H*) are, respectively, the time-averaged Poynting
vectors of the incident and scattered radiation. From the optical theorem, the extinction cross
section is simply

47'-
a, = 47rRe(Eo(O3 = 0). e), (11)

and the absorption cross section is, by conservation of energy,

aa , e a. (12)

For a single sphere and a = 0

27r 1
a, = T2 E(2n + 1)(1anI' + IbnI 2). (13)

n=1I

When k0 is not parallel to 6,

6" =j rj r 2 sin 0 dO d0r6.

£ 2 £ (AH11( 71)+A71 (M21  )]
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In carrying out the above integration, it is noted that

J (Mm,n X k, r r 2 sinOd dqo =
(15)

J (NM,n, X r r 2 sin 0 do do = 0

and

f(Nm,n X , .2 sin 0 dO do =
(16)

J(Mm,.,n x N*,). Xr 2 sin OdOdo = AF(m,n),

where -47r n(n + 1) (n + m)! *. m1 • , ,
MAJ(mn)'- k2  2n-+ 1) (n-m"!'' n'm'6', (17)

and ý, are Ricatti-Hankel functions. Now,

tRe(%=n* )- -1 (see Ref. 1), (18)

thus

4•r z n n(n+ 1)(n + rn)! QAEmRI'+IAHmnIU (19)k2-•" (2n + 1) (n - 7n)! O n +O n (9

n=-1 m---n

Cross Sections for Sphere Aggregates

Having established the mathematical form of the total scattering cross section of a sphere with
a scattering geometry that does not fully exploit the symmetry of a single sphere, one can
more readily make the transition to scattering by clusters. The optical properties of clusters
of spheres can be understood in terms of multiple scattering centers, and hence, multiple
coordinate origins. The scattering geometry for such a system is shown in Fig. 2. The spheres

in the cluster are centered about the 'O origins, where I is an index that identifies specific

constituents of a set of L spheres. The quantities % are unit vectors in the Ith system. In

the figure, the unit vectors associated with the I'th origin have been displaced from the ex 11Y-
plane to the 'x e-plane. The constituent spheres (with radii 'a) are now characterized by the

size parameters k ta =- ý and complex refractive indices IV. The dimensionless center-to-center
distance between spheres I and I' is denoted by kdt~t,. The principal or primary coordinate
sytem in which the integration of the Poynting flux is to be carried out corresponds to I = 1.

It will he convenient in such instances to visualize 1O in Fig. 2 as the origin of this system,

and any other I'o, t' 0 1 as a secondary origin. The L - 1 secondary coordinate systems are
related to the principal coordinate system by pure translations.

The coefficients of the plane wave expansion about an Ith secondary origin are obtained by
simply multiplying tPm, and lqflLVL by the phase factor exp(t k0 ' dl,t). In the theory developed
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Figure 2. The scattering geometry for multiple scattering centers.
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by Liang and Lo2 and Bruning and Lo,3 as throughout this study, it is assumed that the
scattered fields can be expanded as

E t(nAEmn'N() + .4HnntMM(3)

n=1 m,-n t1=

L (20)

where the expansion coefficients 51Em,,, and k4Hmn correspond, respectively, to the E- and

H-type modes of the eth sphere, and 'Nrn and inn) are the vector spherical harmonics in
the tth coordinate system.

In order to apply boundary conditions successfully, one must be able to expand the fields
scattered by the t'th sphere about the center of any Ith constituent of the cluster. This can
be accomplished through the use of the addition theorem for vector spherical harmonics.2,3,4-6
Applying boundary conditions, it can be shown that

tAEmn =tan [Pmnn + E E 1: (e'AEa,A#A(kd1 f,,) + e (kd 1 1 )) (21

tAHmn = b, tqAmn + (+ "AE1B('(kdt,*))] (22)

where the quantities Am (kdt,,t) and B",'(kde,1 ) are coefficients that are encountered in the
addition theorem. These so-called translation coefficients are rather complicated functions of
Clebsch-Gordan coefficients and of the geometry of the cluster.

Alternatively, the scattering coefficients may be found from the order-of-scattering (OS)
method,7', which can be visualized as follows: First, plane wave radiation strikes onc sphere
which then scatters a field (as prescribed by the standard Lorenz-Mie theory) both to the field
point and to the other sphere. This second sphere then responds to the field incident on it
from the first sphere, scattering radiation to the field point and back to the first sphere. This
process is continued indefinitely, and the total scattered field is obtained as a vector sum of
these partial fields plus a sum of of the partial fields which arise from plane wave radiation
incident on the second sphere. For ease of visualization, the above description has been limited
to just two spheres, but the extension to clusters of three or more is straightforward.

The total field scattered by the pair is thus

o L

E .- EE(i), (23)
j=O 1=1

where the jth-order partial fields 1E,3 are in turn expressed as

U= 0) 1Na .(3 ) + 1bm0 tM(i.. (24)
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For the case of two spheres,

( ) ) 2 0 - 1) )= aaAmn + býM Ban)

'bin =bn Z(2b A +2 am B~m)2"'~ ~ JA Z("-

amn 2 0-m) 2 0 Bm

I,(3U) U (-I) (U- ) (25

mn a A~~ + b RAM
8 'abn EE )AVnL klmi n JAM n

The expansion coefficients of the total scattered field are then given bymn- b (I)+ B

A4Emn = Z amn
j-O
00 (26)

tAHmn = ZE brn.
j=O

The OS method is of particular importance in the efficient calculation of the scattering cross
sections associated with large droplets that have smali carbon grains attached to their surfaces.

In order to determine the total power, W, radiated from a surface E that encloses an ensemble
of scatterers, the integral

J S ir 2 sin OdOd = (E x H*) ir 2 sin OdOdo (27)

must be evaluated, where, for a system of L particles,

L

E =Eo + Z'E. (28)
1=1

and
L

H =Ho + ZIHs. (29)
-1=

The radiated power is thus

W= (Eox 'H: +'Es x H*) ., r 2 sinOdOdo

+E•j(E, x 'H:) er r2 sin dOdo (30)

+ E EfE (IE, x 'H1 ) ., r2 sind#dOd,
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and the equation for the total scattering cross section becomes

j(So)ja = •Re E j- (rE, x eH:). Z, r 2 sin 0 de do. (31)

It is noted that the integration is to be carried out in one set of coordinates, but 1E, is

referenced to a second coordinate system and t'H: is referenced to a yet another.

In principle, one could simply evaluate

tt'a. = fE. x 1 H*e 6r r 2 sinOdOdo (32)

numerically, and calculate the total scattering cross section from

a' ze.., (33)

but, as will be made clear in the next section, this provides only a rather limited solution to
the problem.

We once again make use of the addition theorem. In Eqs. (21) and (22) it is to be understood
that the transformation of coordinates has been carried out at the surfaces of the scatterers and
thus kOr < kdt,. In this case, the dependence of the translation coefficients on the distances
between spheres is governed by spherical Hankel functions. When evaluating the integrals
over a surface that contains all scatterers in the collection, ký" > kdtt,. The dependence on
kdtt, is, in this case, governed by spherical Bessel functions and the corresponding translation
coefficients are here denoted as AX,,(kdt,,t) and Bm71(kdt,,t). The scattered fields of each
sphere can then be expressed in terms of the basis functions of the principal origin, viz.,

00 n

t E, =)
n=1 m=-N

[tAEm" E (3,1•3A•(kd, 1 ) + IM(3)Bmn(kd, 1 )) (34)

+ ý4H-n E _ 'j (3N) mn(kdt,,)+ 1M(32At(kdt,e)
V=1P= 

-MA

and

-A l n =-n

+t z z(3)k(~=.(kdIi) + 1M(3)bmn(kd,)(3

+ ý4:ý N(3.,Bm,(kdt, 1)+ 1M(.)Amn(kdt, a

V= 11=--V 
AM
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The summations in the addition theorem are uniformly convergent and the series can therefore
be integrated term-by-term, giving

47r ReV(V + 1)(V + /I)!
j72 =[(E E E4E + 1)(vH- A)•A

m•,n mlnm pn

+QAEn,. tS4Hs, + 'AHrnn tH,,)k Amn' + B,( A,~ n')* (6
+S mntH*v "--+ "-Hmn t-AE, --; &-• )

(3G)

These terms can then be rearranged to give

47r• n(n + 1)(n + M)! ( iA 12 + is 12)

as mn (2n + 1)(n - In (37)

where

(38)

Bmn= 5 B.n + 14H n)

It is to be noted that 'a.= and thus

tt'a, + "a, = 2Re("'oa•). (39)

This allows the total scattering cross section to be expressed as

a,= ""a + 2Re "o 'r, + 2Re E E t t'°, (40)

S1 t1>1 t'>t

B. Special cases

When coordinate translations are constrained to the z-axis we have

I'M (3) (IM(3).Xmn n3 -,
--- =(M VA,(kdt,,t) + tN,. B,,1(kd1,,,) (41)

max(1, m)

t'N(3) t N (3) An,•, (kd1,,t) + M(,Bn(kdt,, )) (42)

max(1, m)
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It can be shown that

or~, 42 Re n(n + 1)n + m)!

k= L~d(2n+ 1)(n- m)!
mn'

[QA.Emn 4E~nn + 'Hmnn H~ni)(A,,) k + (43)

( ,AEmn eAH;,, + 'AHmn

and
4= r F n(n + 1)(n + m)! (IH,, 2 + 2).

S(2n + 1)(n -(44)

m ,n

If I = t' then S'47r E n(n(2 + 1)(n-(n÷ )!). , 1 2.",.! +, ,- nH., 2),
' (JAEmnI 2 + IAHm (45)

which it must if the solution obtained from Lorenz-Mie theory is. to be recovered in cases
where dependent scattering can be ignored.

From Eq. (36) we have, for I = 1',

T2 E E V(V + 1)(v +/I)! X
MR InAL (2P + 1)(v - L)!

(+EmnAEV + 54H,.AHs.) E (im(i>'r' +
" -"' '-""' - -" "-m"' 1.1

+(tAEmnAH1*AV+AýHmnAE*V) E, (Am(iw ,,'nw)* +B 1.,n(Aj, ))]

(46)

Comparing this last expression with Eq. (45) it can be inferred that

Z Ain"(kdj) (..An'.(kdt,,)) + Bm,,(kdt,,)(B•, (kdtj,)) = ) ,n,,6,, (47)

and that

"z', (A(kdt, 1 )(F7V (kdj)Y +b~n,,t,1)(B. (kdt,1)) + (kdte)(l•' (kde.,l))# = 0. (48)

Applying the same argument to the case of an isolated sphere, displaced to the Ith origin,

n(n+ 1)(n + m)! (A;j kdti)(A;,' (kdn,1)) + Br(kdt,,)(S ' (t, 1 ))
m•- (2n + 1.)(n m )!

307 = 6.,. (49)



and

E n(n + 1)(n + m)! (A•,,•(kd,,, ) (Bm2'n(kdt,,))°0 + Bmn(kd,,,) (A." n (kdt,l))* .(0

m,- (2n + 1)( n)!

These relations provide valuable tests for convergence of the series expression of the scattering
cross section of a cluster.

Gram-specific cross sections

It is popular (and, at times, useful) to use the efficiency factors
aa (51)

where G is the geometric shadow of the particle. In view of the complex morphologies of
aciniform colloids, a better choice for efficiency factors is the gram-specific cross section, A,
the units of which are m2 /g.

aA =- = (52)m (specific gravity)( particle volume)

It is noted that for a single sphere of radius a << X,

.A.(A) 3k Iim(NZ2>-)

9k gN1 2 sin (2 tan- 1 [Im(N)/Re(N)]) (53)

pT[N14 + 4(1 + Re2 {N} - Im 2 {N})]

At A = 5.5 x 10-' m this gives a specific absorption cross section for carbon of • 3.654 m2 /g,
assuming the refractive index of carbon at this wavelength to be 1.8 + 0.5i.

Results

Recent results from field measurements of atmospheric aerosols indicate that a significant
fraction of haze elements can be comprised of sulfate particles with carbon grains disperesed
internally or attached to their surfaces.9 In understanding the optical properties of clouds more
fully it is necessary to understand the scattering properties of cloud droplets with inclusions or
surface contaminants similar to those just described for haze particles. Results are presented
in this section that illustrate the effects that the dispersion of carbon grains onto droplet
surfaces may have on the mass-specific absorption efficieny of atmospheric carbon.

The scattering geometry for the surface diz'ersion calculations is shown in the inset of Fig. 3.
At present, it is assumed that the concentration of the soot component of the aerosol or cloud

308



is low enough so that only single grains of carbon need be considered. Soot concentrations that
would involve two or more grains per aerosol particle will be the subject of future research.
Figs. 3-10 catalogue the calculated specific absorption cross sections of selected sizes of carbon
grains attached to nonabsorbing sulfate particles with radii of 0.5 and 1.011rm or to water
droplets with radii of 3.0 and 5.0prm. The variation in specific absorption with the orientation
of the particle is displayed for orthogonal polarizations of the incident beam.

The basic features can be understood from geometric optics: An optically large sphere with
a refractive index of z 1.5 will focus light into a region near its surface. If the refractive
index is - 1.33 then light will be focused into a volume slightly less than half a radius from
the sphere surface. The refractive effects of the sphere will prevent most of the incident
radiation from reaching any other regions on the shadow side of the surface. Reflections from
the shadow surface of the sphere will produce a secondary focal volume narrowly centered
about the illuminated side of the droplet. Such features of a spherical lense are manifested
in the behavior of the absorption cross sections of the carbon grains with particle orientation
in each of Figs. 3-10. The larger the optical size of the host particle, the more accurate the
geometric optics picture. Attention is also called to the second peak in A. neir a -ý 170. This
corresponds to the location of the so-called critical ring.10

Table I summarizes the orientation-averaged, polarization-dependent absorption efficiencies
for the cases considered in Figs. 3-10. It appears that the more finely divided the carbon, the
more efficient its absorption when residing on the surface of a sulfate host. This efficiency
has not been found to be more than about a factor of two greater than that of free carbon.
Carbon residing on the surface of cloud drops appears thus far to absorb slightly less than
when it exists as isolated grains.

Also of interest are the optical properties of aggregates of carbon monomers. Two examples of
such aggregates are considered here: A linear chain of five spheres and a tightly packed cluster
of five spheres. The specific extinction and absorption cross sections for the linear chain as
a function of orientation are shown in Fig. 11 for two polarizations. Similar results for the
tightly packed cluster are provided in Fig. 12. For comparison, the cross sections for isolated
monomers and for equivalent-volume spheres are also shown.

It is important that the numerical efficacy of Eqs. 37 and 40 compared to straightforward
numerical integration be pointed out. The series expansion avoids the following four pitfalls:

(1) The number of oscillations in the differential scattering cross section of a droplet
increases dramatically with optical size, thereby requiring very high angular resolu-
tion of the integrand when hosts with large size parameters are involved.

(2) When the carbon grains are very small relative to the host particle, the extinc-
tion cross section of the carbon/droplet system is dominated almost entirely by the
scattering cross section of the host. The quantity or - a, can easily be of the order
10-6 or less and hence the integral must be evaluated with a very high precision.

(3) For c :- 00 or 1800, azimuthal symmetry is lost and the integral over 0 cannot
be performed analytically.

(4) The structure of the electric field at the surface of the host is quite compli-
cated and therefore the absorption cross section of a small carbon grain is extremely
sensitive to orientation. Orientation averages require a high resolution in a. (The
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calculations summarized in the Table were based on a sampling frequency of 10.)

This makes it all the more imperative that the integrals over 0 and 4 be evaluated
expeditiously.

An additional problem that will arise when large numbers of spheres are involved is that
the intereference between them will impose an additional oscillation in the differential cross
sections of the clusters. The more monomers there are comprising the cluster, the greater
the number of these interference fringes. (These oscillations are analogous to multiple slit
diffration patterns.)

A fuller discussion of these results will be provided in a future publication.1 1

Acknowledgments

This work was supported in part by National Park Service grant #NA90RAH000077. The
author also wishes to express his thanks to the Chemical Research, Development, and Engi-
neering Command for supporting his travel and accomodations for the 1992 conferepce.

310



.05 pm C grain on 0.5,tm SO 4
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Figure 3. Gramn-specific absorption cross sections for a carbon grain located on the surface of a
spherical sulfate aerosol. The carbon particle has a. radius of 0.05 /Am and a refractive
indexc of 1.80+0.5i. The radius and refractive index of the sulfate particle are 0.50 sim and
1.52 + 0.0i, respectively. The straight line corresponds to the gramn-specific absorption
cross section of an isolated carbon grain. In the inset, the size of the carbon particle
relative to the sulfate aerosol is drawn to scale.
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C grains on 0.51m SO4
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Figure 4. Same as Figure 3, but with either a 0.1 or 0.01 p~m carbon grain. The heavy and light,
lines show the absorption cross sections of isolated 0.1 and 0.01 [Lm grains, respectively.
The inset is drawn to scale for the 0.1Ljm carbon sphere.
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Figure 5. Same as Figure 3, but with a 1.0 Am sulfate particle.
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Figure 6. Same as Figure 4, but with a 1.0 jim sulfate partiCle.
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C grains on 3.Opm H20
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Figure 8. Same as Figure 4, but with a 3.0 jLm water droplet.
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Figure 9. Same as Figure 3, but with a 5.0 pm water droplet.
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Figure 10. Same as Figure 4, but with a 5.0 zm water droplet.
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Table I
Orientation-averaged specific absorption cross sections of carbon grains on droplet surfaces

Specific Absorption of Scavenged Carbon

C Radius
(microns) 7=0 7=90

0.01 8.574244499 4.893493176
0.05 7.896352768 5.202662468 0.5 micron sulfate
0.10 6.503396511 5.337140560

0.01 8.816226959 2.266729116
0.05 6.845155239 3.072171688 1.0 micron sulfate
0.10 5.319453716 4.746981621

0.01 4.135703087 2.469252825
0.05 4.664968014 3.163699865 3.0 micron water
0.10 5.213868141 4,424438477

0.01 4.235696793 3.586464882
0.05 4.673493385 4.323986530 5.0 micron water
0.10 5.013107300 5.192254543

*** Ratio of Specific Absorption of Scavenged Carbon to Free Carbon

C Radius
(microns) 7=0 7=90 (7=0÷7=90)12

0.01 2.320 1.324 1.822
0.05 1.730 1.140 1.435 0.5 micron sulfate
0.10 1.218 0.999 1.109

0.01 2.386 0.613 1.500
0.05 1.499 0.673 1.086 1.0 micron sulfate
0.10 0.996 0.889 0.943

0.01 1.119 0.668 0.894
0.05 1.022 0.693 0.858 3.0 micron water
0.10 0.976 0.828 0.902

0.01 1.146 0.971 1.059
0.05 1.024 0.947 0.986 5.0 micron water
0.10 0.939 0.972 0.956

Specific Absorptions for Single Carbon Spheres

C Radius Specific Absorption
(microns) (MA^2/g)

0.01 3.695
0.05 4.565
0.10 319 5.340
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Figure 11. Extinction and absorption cross sections of a linear chain of five carbon spheres. Each of

the monomers has a radius of 0.05 ysm and a refractive index of 1.8 + 0.5i.
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Close-packed cluster, ka=0.57
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Figure 12. Same as Figure 11, but the monomers now form a close-packed hexahedron.
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ABSTRACT

This paper briefly summarizes the recent work on the subject title, as a continuation of the
work reported in Refs. B) and C). All the 10 rough particIcs studied are comparable in size to the
incident microwave wavelength X ( = 3.1835 cm ), and are of 2 shapes resembling roughened
spheres. The averaged scattering data over random particle orientations are compared to Mie
calculations for independently scattering, size-distributed spheres of very narrow size spread. The
comparison, shown both in tabulated and in graphical forms, is made on extinction and angular

scattering, and also on Q Q. o Z, Q , (averaged efficiencies) and g (averaged asymmetry

factor of scattering). Aside from some minor mismatches at large scattering angles in the angular
profile comparison, the good overall agreement between experiment and theory suggests the
reasonableness of the theoretical modeling. This is a part of our continuing effort in the
systematic analysis/catalogue of our existing microwave data.

I. INTRODUCTION

Almost all scattered light we see are from particles with rough surfaces. Scattering by very
smooth particles, whose surface irregtdarity is very small compared to the wavelength X of incident
radiation, is rather exceptional. Not only the reflected light from a frosted glass is different from a
smooth one, the reflection also depends on the glazing angle of incidence. For this, a simple ray
optics rule known as the Rayleigh Criterion [ Ref. 2 ] was widely employed in estimating the
effective roughness of an object. This classical thcory by Rayleigh, as well as most of the recent
theoretical approaches [ Refs. 1,7,10,11,14,18 J, assume that the scattering target is very large
compared to X, and few have discussed the case of moderately small sized rough particles ( e. g., in
the so-called resonance region).

Resonance-sized rough particles are abound, however, and indeed the extreme difficulty
involed in solving the scattering problems led us to take an experimental approach for seeking
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appropriate answers [ Refs. 4,5 1. We refer the detailed microwave analogue technique and the
data analysis to in our earlier reports [ Refs. C), 9,12,13,16 1 and describe in sec. II the
mathematics and computational procedures for evaluating the Mic scattering by gamma-size-
distributed spheres. The experiment-theory comparison is made in sec. Ill, and sec. IV contains
the concluding discussion.

II. MIE CALCULATIONS FOR GAMMA-SIZE-DISTRIBUTED SPHERES

The gamma size distribution in this article is synonymous to the Standard Size Distribution by
Hansen and Travis [ Ref. 6 ], and represents a skewed Gaussian-like distribution of the sphere
number density n(x) as a function of the sphere size x:

n(x) = const. x(1 -3b)b exp[- (2.1)

where x = 2na/a = sphere size parameter, b = effective variance of the distribution which gives
a measure of the spread of n(x) around the effective size parameter: x. = 2itae/X. ae is the
effective particle radius and corresponds to a certain mean radius of the sphere ensemble. The net
scattering from the sphere ensemble is assessed by integrating the scattering contribution from
each x over the particle size limits x1 and x2, with n(x) in Eq. (2.1) as the weighting factor.

(1) Single Sphere Mie Formulas

The needed Mie scattering functions for each x are copied from the literaure [ Refs. 3,8,15,17].
For example, the perpendicular and parallel components of the complex scattering amplitudes are:

"--'• 2n+l 
_S1(x,m,G)= n {a,..(J)+bTr.(#)} = iSj(x,m,O)1cxp(ic1) (2.2)

. n(n + 1

"--'L 2n+l

S2(xmO)- = IS2(x,m,O )jexp(io 2) (2.3)Sn(n+ 1)

where an, bn = Mie expansion coefficients, with the maximum term at n = nmax,

t- = cosO, tnn(it) = dPn(it)/dit, (it) = Itrn(i-1-it2)dtn(/d9,

and Pn(it ) = n-th order Legendre polynomial of gt.

The respective phase shifts suffered by the scattered wave for the two components arc:

(p1(x,m,O )=n/2-al(x,m,0 ) (2.4)

(p2(x,m,O ) = /2- 2 (x,m,O ) (2.5)

At the forward beam direction where 0 = 0, these formulas simplify to:

Sl(x,m,O) = S2 (x,m,O), and (P 1(x,m,O) = eP2 (x,m,0) (2.6)

and the complex extinction efficiencies P and Q for the single sphere are found to be:
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2 I
P= PF.(x,m)=-- X2 (2n+l)Im{a. +b.} (2.7)

Q=Q. ((x,m)=-2"- (2n+1)Re{a. +b.j (2.8)
X f--I

The perpendicular and parallel scattering intensity components are simply defined as

il(x,m,O) = 1Sl(xm,O)1 2  (2.9)

i2(x,m,O) = I S 2(x,m,O) 2 (2.10)

and similar to Eqs. (2.6), these two components are equal to each other at 0 = 0.

The single-sphere expressions for other efficiencies: Qsca, Qabs, and Qpr, and also the asymmetry
facor of scattering g can be written in terms of the Mie coefficientL an , bn alone [ Refs. 3,8,15 ].

(2) Averaged Extinction/Scattering over the Sphere Ensemble

The complex extinction efficiency expressions for the gamma distribution are then

P(x,,m) = I P(x,m)n(x)dx/ f, n(x)dx (2.11)

"Q,(xm) =f' Q(x,m)n(x)dx/ J' n(x)dx (2.12)

Similarly, the averaged angularscattering intensity components over the ensemble follow from
Eqs. (2.9) & (2.10) as

I] (x"m',0) = f i, (xmO)n(x)dx i n(x)dx (2.13)

12 (x,m,O)= f= i2 (x,m,O)n(x)dx/ n(x)dx (2.14)

The total scattering intensity for unpolarized incident light and the degree of linear polarization

by the size distribution are respectively

Sll = (/11 +12)/2 (2.15)

Pol. = (11 - 12 )/S 1 1  (2.16)

Notice that there is no cross-polarized scattering intensity component for the sphere case.

The ensemble average on other efficincies Qsca, Qabs and Qpr, and also on the asymmetry
factor g can be evaluated, as in Eqs. (2.12)-(2.14), by takfig in the proper integrands.

By virt..ic of the exponential dependence of n(x) on x in Eq. (2.1), the integration limits xI and
x2 are chosen in such a way that born n(xI) and n(x2) fall off from n(xe) by 4 orders of magnitude,
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thereby contributing little to the integral. The smaller the magnitude of b is, the moe rapidly n(x)
drops off from n(xe) as x departs from xe . The required number of divisions, ndiv , between
x, and x2 for the numerical integration then decreases. For example, the value b = 0.005 employed
in most cases represents a rather narrow size distribution so that x1 = 0.75xe and x2 = 1.3 2xe .
ndiv = 40 was then found to give fairly good convergence for all the microwave target sizes. We
took, however, ndiv=160 in this article to make sure the accuracy. Our stable and efficient Mie
algorithm [ Ref. 17 ] has allowed us to perform all computations via the 8-digit single-precision
arithmetic on a VAXI 1/750 computer.

III. COMPARISON OF EXPERIMENT AND THtEORY

Scattering from a rough particle differs strikingly from that of a smooth homogeneous sphere:
the former is particle-orientation sensitive, but the latter is not. Yet, if we take thc avcr.lge of

scattering data over all random particle orientations at each scattering angle 0, the angular p, 111-m

of the former is considerably smoother than the latter [ Ref. C) ]. Similar smoothing of ,h.
angular profiles seen as one goes from a single sphere to an ensemble of spheres [ Ref. ,
motivated us to compare the scattering data for rough particles with Mic results for size-distribut,
spheres in ( Refs. B) & C0]. and, in a more detailed way, also in this article.

The target parameters of the 10 rough particles arc listed in Table I, where the averageo
microwave dat, over random particle orientations for each particle (marked Expt.) are compared to
the sphere-easemble-averaged data ( marked Mie.). The microwave targets cosis'. of two
refractive-index groups: m = 1.610-iO.004 (made of plexiglass) and m = 1.36-i0.005 (made of
expanded polystyrene). They were prepared either by machining or by molding into t, vo shapes
(see Table I inset) resembling roughened spheres but retaining certnai cylindrical rotational
symmetries.

The technical matters related to averaging the microwave data over random particle
orientations were explained in Ref. C). Despite the microwave data were accumulated on a large
number of scattering angles (plus -=44 orientations at each angle), we had to skip the data taking at

some non-important angles due to the time constraints. In evaluating g, e. g., these missed data
were filled in by the Lagrange-Aitken cubic spline technique. To compute the Mic data average
over the size-distributed spheres, the mean radius of the ensembe xe, Eq. (2.1), was taken equal to
x, the size parameter of the correspondiig rough-particle's equal-volume sphere.

The comparison in Table I is made on Q,, Qsa ,Qw, , and Qpr (the averaged extinction.

scattering , absorption and radiation pressure efficincies ); and also on g, the averaged asymmetry

factor of angular scattering. Except for the Q.,. comparison wiiure the smallness of the imaginary

part of refractive indcx results in measurement precision uncertainty, the agreement between

experiment and theory is fairly close. The closest match is seen in the Q,-, and g compadisons,
which are also displayed in Figs. I & 2, respectively. For the Mie curves in Fig. 1, the efffect of
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the effective variance of the distribution, b, on Q,,, is shown for several values of b, from which
we deduce that b = 0.005 appears to give the best fit.

Fig. 3 compares the detailed angular scattering profiles by experiment and theory, and is to
supplement the similar comparisons made in Refs. B) and C). II I and 122 denote respectively the
scattering intensity when both the transmitter and receiver are vertically or horizontally polarized.
S 11 stands f'or the total scattering intensity for unpolarized incident wave, and Pol. is for the degree
of linear polarization. Among the three values of b in Fig 3, b = 0.005 again seems to give the
closest agreement between experiment and theory. The ,cat ering intensity comparison is excellent
at the forward angles, 0 < 500, where most of the scattering energy is directed. Indeed, the

scattering in this angular range is the most dominant one in determining QT". and g, and hence
explains why the experiment & theory agreed best on these two quantities.

IV. CONCLUSION

We summarize below the findings on extinction & angular scattering by a roughened-sphere-
like particle whose volume-equivalent-sphere size is near the first resonance peak in extinction:

(1) The particle volume, rather than the particle surface area, controls the scattering.

(2) Both the extinction and angular scattering depend on the particle orientation in the beam,

but if the averages are taken over the random orientations, the patterns can be qualitatively

predicted using Mie theoory for the equal-volume sphere with same refractive index,

(3) Further improvement on (2) is possible via averaging the Mie data over a gamma-size-

distributed spheres whose effective mean size xe is equal to the volume-equivalent size

parameter of the rough particle, and whose effective variance of distribution is:

b - 0.005. Quantitatively good experiment-theory agreements are then obtained,

particularly on Q,,, and on g.

Schade and Smith's work [Ref. 11] also agrees with our conclusions (2) & (3), in that they
modeled by an ensemble of noninteracting spheres. Mukai and Mukai's scattering evaluation on
fine and coarse regoliths [ Ref. 14 ] also treat a coarse regolith as made of an independently
scattering ensembe of spheres.
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Table I Averaged efficiencies (1cr.Q-,ca.,Qabs.Qpr and the asymmetry factor

g over random orientations of the 10 rough particles. The microwave data
are compared with Mie calculations for gamma-size-distributed spheres
around the equal-volume sphere of each particle, with an effective
variance b=0.005.

ID Target x m=m'-im" Data Qexa Qsca Qabs Qpr g
Shape Source

1 A 3.650 1.610-i0.004 Expt. 3.78 3.58 0.208 1.32 0.690
Mie 4.234 4.152 0.0818 1.373 0.6890

2 A, 5.499 1,610-i0.004 Expt. 2.51 2.04 0.476 1.48 0.506
Mie 2.352 2.223 0.1284 1.287 0.4791

3 A 7.346 1.610-i0,004 Expt 2.49 2.13 0.358 1.20 0,604
Mie 2,276 2.108 0.1690 1.013 0.5996

4 A 8.626 1.610-i0.004 Expt. 2.89 2.56 0.334 1.13 0.689
Mie 2.842 2.650 0.1918 0.8784 0.7409

5 A 3.592 1.25640.003 Expt. 1.65 1.66 -0.01 0.340 0,788
Mie 1.519 1.479 0.0394 0.2926 0,8288

6 A 5.184 1.388 i0.005 Expt. 3.90 3.85 0.050 0.754 0.817
Mie 3.918 3.804 0,1142 0.7996 0.8198

7 B 4,257 1.366-/0.005 Expt. 3.22 3.02 0.192 0.636 0.853
Mie 3.347 3.257 0.0900 0.6599 0.8250

8 B 6.069 1.367-i0.005 Expt 3.96 3.40 0.563 1.09 0.845
Mie 3.840 3.709 0.1308 0.7768 0.8258

9 B 7,694 1.360-i0.005 Expt, 3.43 2.95 0.476 1.09 0.791
Mie 3,136 2.971 0.1644 0.8000 0.7861

10 B 12.882 1.35340,005 Expt. 2.34 1.64 0.701 1.24 0.670
Mie 2.232 1.970 0.2621 0.7463 0.7542

Note: x here denotes the volume-equivalent size parameter.

Shape A Shape B
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Figure I Extinction Efficiency QeXt vs Volume-Equivalent Size Parameter xv
The microwave data (symbols) are dhe averaged data over random orientations of each rough
particle. Curves show the averaged Mie data over gamma-size-distribuied spheres, several values
of the effective variance b employee' for the distributions are as shown.
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Figure 2 Asymmetry Factor • vs Volume. Equivalent Size Parameter xv

The microwave data (symbols) are the averaged data over random orientations of each rough
particle. Curves are the averaged Mie data over a gamma-si7-distributed ensemble of spheres,
whose effective variance of distribution Is b = 0.005.
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Figure 3 Microwave Angular Scattering Data (symbols) Averaged Over Random
Orientations of a Rough Particle with x = 4.257 and m = 1.366-i4.005

Curves show the averaged Mie data over gamma-size-distributed spheres. 3 effective variances of
the distributions arm employed: b = 0.001, b = 0.005 ( marked as -. ) and b=0.025.
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A THEORY OF
HEATING OF VOIGT SOLIDS

AND FLUIDS BY EXTERNAL ENERGY
SOURCES

AND FLAME THEORY

D. K. Cohoon
43 Skyline

Glen Mills, PA 19342

September 3, 1992

The purpose of this paper is to develop both (i) a theory of laser etimulated vaporization
of droplets and (ii) a theory of internal heating resulting from vibration waves in linearly
responding elastic material, and (iii) flame theory. There are applications to sending in-
formation through clouds on laser beams and to the control of temperature in ultrasonic
welding, and improvement of the design of aircraft engines and the processes used for the
destruction of toxic chemicals.

We develop a theory of thermal excursions resulting from ultrasonic welding in 3 and 7
dimensions, and interp,-et it as an elastic interaction with damping in a Voigt solid. It is
hypothesized that with good control of temperature, one could achieve strong and uniform
welds by this process and greatly reduce the cost of manufacture of aircraft, and other alu-
minum structures. We consider equations describing the conservation of mass, momentum,
and energy coupled by an equation of state, and consider general mass, momentum, and
energy transfer relationships in a compressible body subjected to external stimuli. For the
Voigt solid theory, a linear elastic theory with damping forces, we show how some simple
local time averaging gives us a dovetailed system consisting of the elastic wave equations
whose solution provides the source term for an otherwise uncoupled heat equation. For the
more general theory of droplet vaporization we illustrate a general nonlinear energy equation
which includes a radiation energy conductivity term. We get a class of exact solutions for a
nonlinear flame front boundary value problem.
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1 INTRODUCTION

We use this concept of a material derivative and fluxes of mass, momentum, kinetic
energy, internal energy, temperature, and radiation to express the conservation of mass,
momentum, and energy in a Voigt solid that is stimulated by an elastic wave energy source.
Initially there are more dependent variables than there are equations. However, these equa-
tions are coupled by an equation of state which enables one to develop a semigroup for-
mulation which will predict pressure, density, velocity, and temperature distributions in the
interior of the stimulated solid. Local time averaging gives us a heat equation with an elastic
energy source term.

1.1 Vector Analysis

The material derivative of a function f is defined by

Df _9f +Of Ox Of Oy Of Oz
Dt O'-t- CIX 4t O9y 0t OOat

Thus, the material derivative is, if we define,

O 3 3y 8zV C + ,,~ e + ex(1.1.2)
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given by D 8

Dt = 5 + (" grad) (1.1.3)

where V- is the velocity of a point in the fluid.

1.2 External Energy Sources

Thermal energy is transferred by conductivity and internal radiation as well as radiation
from the surface. We assume that the elastic material is electromagnetically polyanisotropic,
a material more general than a bianisotropic material. The nonlinear Faraday Maxwell
equation is given by

while the nonlinear Ampere Maxwell equation has the form

curl(,#) at ,i.., g ,. (1.2.2•)

For a general material where we have continuity of tangential components of A and -I across
the boundary separating regions of co:.tinuity of electromagnetic properties the radiation
source term is

( Ot is = (1/2)R*-(div(E x H) (1.2.3)

The radiation source term which provides a thermal energy is for a linearly responding
material given by

(1/2)Re {" (iw= + a)A + E. -aH'-
'# i,7 ' + ff • ("72')+

xan(r)ao I .tangential I2} (1.2.4)

where if OQ is the surface containing the impedance sheet, then

4 XXofl. I Atangentiai 12 dv = foe. I At,.genti., 12 dA (1.2.5)

defines the characteristic function Xon of the surface supporting the impedance sheet, e is
the permittivity, y is the permeability, a denotes conductivity, and 9 and / are coupling
tensors which appear in the linear Faraday and Ampere Maxwell equations, respectively.

Another internal source term is the Voigt solid damping term contribution which will be
derived in the sections which follow. Another source of heat is the friction of a mechanical
vibrator on the surface of the aluminum.
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2 Mass Transfer

We consider that through melting or movement of a fluid that matter can flow across
the boundary of a surface or that, in the case of an elastic medium, that it cannot, and
examine the consequences and mathematical representation of of these assumptions.

2.1 Continuity Equation

Assuming that in the Voigt solid or liquid interior that the rate at which mass is created
or destroyed is given by QM and that the flux of mass across a surface is given by pvt we see
that Op

S+ div(pv-) = QM (2.1.1)

or if QM = 0 that
0p

div(pff) = - - (2.1.2)

3 Momentum Equations

We examine the consequences of momentum conservation for the Voigt solid and for
liquids permitting the derivation of generalizations of the elastic wave equations and the
Navier Stokes equations.

3.1 Voigt Solid Momentum Conservation

In this section we derive the conservation of momentum by equating the rate of change
of momentum to the work done by the fluid pressure and the viscous forces and the body
forces and the flux of momentum across the boundaries of test volumes. We define the
velocity as

S= u + V + w(3.1.1)

An important identity involving the dyadic product of two vectors A and B is

div(,B) = div(,4)B + (A,. grad)B (3.1.2)

Another important quantity is the tensor or dyadic quantity quantity obtained by taking
the gradient of a vector field given by

grad(A) (3.1.3)

Using equation (3.1.3) we define the symmetric strain tensor in terms of the displacement
O of a point of a solid from its equilibrium position as

= grad(O) + grad(O)'
e -2 2
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n - ( ) (2 -- + !n ) -j (3 -1.4)i=1 j=1

and cubical dilatation 0 is given by

6 =d ) ) (3.1.5)

The Voigt solid elastic stress tensor is defined by

2.y + A07. + (3.1.6)

a+ t

where

I = (6= ,j)e (3.1.7)
i=1 j:l

If F is the force per unit mass, and p is the mass per unit volume, then the generalized equa-
tions of elasticity for a stress tensor ' by Newton's force is equal to mass times acceleration
law, or

o02( = pP + div(3;) (3.1.8)

When the stress tensor 3 is given by the Voigt solid relationship (3.1.6)

02 1OU
&2T= pF +

(A + ps)grad(O) + pAU + (A + 0 0(,7d(O) + P,,- (3.1.9)

where in Cartesian coordinates the Laplacian A is defined by

L(0 ±2 02)

OxA 2+X 2 +.+ U (3.1.10)

When the material through which the elastic wave is propagating is three or seven
dimensional, the displacement vector U is necessarily a curl plus a gradient given by

U = grad(qO) + curl(O) (3.1.11)

This is true for any C' 1-:uiction defined on an open set in Rn with values in C" for n equal
to three or seven, and can be seen from the following lemma ([19]).

Lemma 3.1 If n is three or seven, then for every open set Q in R n and for every vector
field P in C-(j, Ctm) there is a vector field d in the same space such that

P = grad(div(d)) + curl(curl(-d)) (3.1.12)
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where sf n is equal to seven the curl is defined by the rule,

curl(f) =
7 [ M i6+3 08 ,÷,) +

E-1 LVa-Xi+i OX,+ 3
(ME+6 OEi+2Y(+ (O Ei ±V 09(31.13

OXi+2 Cx,+ + OXz+i OXi+-5 ] (
where & is the unit vector in the direction of the ith coordinate axis in 7 dimensional space
and

E,+7 =- (3.1.14)

If we then substitute equation (3.1.11) and equation (3.1.5) into (3.1.9) we deduce that

grad p - (A + 2M)AO - (A+2•)A )

curl~. + 3..5

where A is defined by (3.1.10). If we take the dot product of both sides of equation (3.1.15)
with the gradient of any test function P with compact support and integrate over an open
set containing the support of this test function, then the curl term disappears, since the
curl of a gradient is the zero vector. Wepet two wave equations with damping terms and
different wave speeds satisfied by 0 and 0. The € wave equation is

=2 - (A + 2v)A+ - ( A+2.p)A - (3.1.16)

and 
-4 2

-A (3.1.17)
&2-/AO' + l-I

P~at

with A being defined by (3.1.10). Note that if we set A and , equal to zero, then we get
exactly the wave equations for the two types of observed Earthquake waves. If we Fourier
transform all terms of equations (3.1.16) and (3.1.17) with respect to time we see that the
Fourier transforms of both 0 and € with respect to time satisfy a Helmholtz equation of the
form,

AV + k2V = 0 (3.1.18)

where A is the Laplacian defined by (3.1.10) and k is a complex constant. Thus, except
for the rather complex boundary conditions these equations might be solved by standard
theories. The boundary conditions are highly mixed and require us to consider

* a region of welded contact between the plates where both the displacement and the
stress tensor are continuous,

* a free surface where all the entries of the stress tensor are zero,
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* a region of contact of the vibrator an- the surface of the material being welded where
the stress tensor is specified,

9 the nonwelded contact region where the normal components of the stress and diaplace-
ment are continuous, and

e the region of contact of the workpiece and the clamp, where the normal components
of the stress are specified and the normal component of the displacement is fixed at
zero.

3.2 Generalized Navier Stokes Equations

For compressible materials, the momentum conservation equations are nonlinear. The
momentum flux is the dyad pviVi and using the concept of conservation of mass or equation
(2.1.2) and equation (3.1.2) we see that

div(pVg) = div(pv) + p(t'. grad)i'

op•S-L. +p(i'.grad)i (3.2.1)

If p is the pressure, then the total stress tensor II is given by

I= -p(44 + 4Cy + 4,) + C (3.2.2)

The viscous stress tensor is given, using equation (3.1.1) for velocity, by the rule,

+ O, Du o .•,•',• .. +I • Dv•',
(2Ou )w~ e'D' +1 v + OvA ) * e' 'r57x, awax, TYw

-D af+• + 0v Ow)

ax, 3zeDX D

2 (2,v Dv ++)

Oy ay 19z "

2 IOu Dv OW)
- •, + •-+ e- (3.2.3)

3 Dy z /
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We have seen that the total stress tensor, equation (3.2.2) is given in terms of the presstire
p and the viscous stress (3.2.3). The momentum equation is given by

5i(p' = -div(p6vi)

+ pf+ div(rI) (3.2.4)

Using equation (3.2.1) we see that equation (3.2.4) and equations (3.2.2) and (3.2.3) we see
that

p + p(v -grad(v) =

pf - grad(p) + div(=) (3.2.5)

Using the concept of material derivative, equation (1.1.1) and assuming that fis the zero
vector, equation (3.2.5) reduces to

DtV - -grad(p) + 1_div(r) (3.2.6)D5t p p

4 Energy Conservation

There is internal energy, kinetic energy, work done by the viscous forces (equation 3 2.3),
pressure, and work done by the external body forces. The energy is transferred frora one
region of the heated Voigt solid to another by thermal conduction, kinetic energy flux, and
radiation conduction processes, and by the external elastic and thermal energy source. For
boiling liquids we consider viscous dissipation functions and a radiation conductivity term.

4.1 A Heat Equation for Voigt Solids

We begin by considering the Voigt solid stress tensor and then go on to analysis of energy
transfer where viscous dissipations functions are responsible for energy transfer.

We now consider specific energy per unit mass e within a stimulated Voigt solid, and we
let the velocity V of a point be defined by

-= oU (4.1.1)

where U is the displacement from equilibrium. Then the total energy within a volume 92 is
given by

60(t) {p(e + V-. V/2)} dv (4.1.2)

The time derivative of £E(t) is the rate of energy input into SI by

"* body forces,

"* the stress system,
340



* the flux of kinetic energy across the boundaries,

e thermal heat conduction,

o internal heat generation,

o radiative transport, and

a internal energy flux.

The above means of energy transport are all important in fluid flow, but in elastic media,
many of the terms may be ignored because there is no gross motion of material across
boundaries. With our periodicity assumption, many of the terms which are conceptually
small will be shown to vanish exactly when they are smoothed by using local time averages.
This local smoothing may be thought of as a transistion from a temporally microscopic to
a temporally macroscopic theory.

To get to the final form of the equation that we consider we shall assume that the integral
of the product of a slowly varying function and a highly oscillatory function is nearly zero.
The rigorous energy equation may be expressed in the form,

d V Ip~ /2))dv)

f . + div(S.V)- (div(p( 7 - /2S~OQ

+ div(K,- grad(T)) + -L- + div(q, - epl7))dv (4.1.3)

where the terms on the right side of (4.1.3) are respectively

* power transfer by body forces

o rate of kinetic energy transfer across the boundary

# the rate of energy transfer by thermal ronduction

# the rate at which energy is created internally

o the rate at which energy is transferred into the body by radiation,

o the rate at which internal energy is transferred across the boundary by material mo-
tion.

From equation (4.1.3) we deduce an energy transfer equati3n,

Te t V2- + +PV" =

34V + div V) - div(p (Kii))+ ()
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+ div(q,) - ediv(pV) - pV grad(e) (4.1.4)

If a slowly varying time envelope is riding on a rapidly varying oscillation, (e.g. very
rapid vibrations and a periodic movement of the source of those vibrations or a steady
increase in temperature resulting from those vibrations) then we can use the local time
averaging operator

PT,(f)(t) = 7(t) = f d\Tp/ J-T, 415

then it is clear that

Lemma 4.1 If f is periodic with period 2p and if PTP is defined by (4.1.5) then for all real
t

PTP(f" f') = 0 (4.1.6)

This follows from the fact that

(ff'l)(t) - .( (t) (4.1.7)

and the fact that if f is periodic with period T. that then

f 2 (t + TP) - f 2(t) = 0 (4.1.8)

We shall use elementary vector analysis to reduce the energy equation (4.1.4) to a place
where we can use the Lemma and the local time average operation PT, defined by equation
(4.1.5) to get a simplified heat equation.

We shall use the identity,

divC(A" -#)C) = (X.X )div(C) + C.grad(.4.f ) =

(A. B)div(C) + C. jA x curl(B) + B x curl(A)

+ (A .grad)B + (B.grad)A- (4.1.9)

which means that if we let A be equal to § be equal to C be equal to pV to deduce a
simplification of the divergence of p times half of the dot product of V with itself times V.
We see that

div( (P?1? 1? =(2. div(p1?) + V -grad(? -V?)

( )div(pV) + p 1 {1? x Curl(V) +

V x curl( V) + (1?. grad)V 4- (V?. grad)1 } (4.1.10)

But since
? . (1 x curl(V)) = 0, (4.1.11)
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we see that equation (4.1.10) reduces to

- div( p )V) = ( ) ap - pV.((V.grad)V) (4.1.12)

The generalized momentum conservation equation,

a- - p(1 . grad)17 + P + div(3) (4.1.13)

Using the equation (4.1.12), which simplifies the divergence of the kinetic energy flux, and
the result

p -- = -p.(V.grad)V + P + div(3).V (4.1.14)

of dotting all terms generalized momentum equation, (4.1.13), we deduce from (4.1.3) that

p + p Op + (-+
Ottt

{-pV-.((V.grad)V + F. + div(3).4}

- ,'.j7 + div(3. V) +

SL - pV . (('V. grad)V} +

div(R', grad(T))+ +diq)
- a Q

- e(div(pV)) + p.V grad(e) (4.1.15)

where the terms in energy equation (4.1.15) that differ from the original energy equation
(4.1.3) are enclosed in curly brackets. We further simplify equation (4.1.15) by using the
mass conservation equation (2.1.2) and cancelling out terms that appear on both sides of
the equal sign of equation (4.1.15) to obtain,

S(LP)+ div(3). V di(3 V) +

div(-K. grad(T)) + + div(q,) - pV . grad(e) (4.1.16)

We now make use of the dyadic identity

div(3 . V) - div(3) . V = (S . grad) . V (4.1.17)
Substituting equation (4.1.17) into equation (4.1.16) we obtain equation

Oe g V

p-T = (S. grad) - + div(K.grad(T))
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+ & + div(q,) - pV.grad(e) (4.1.18)

We assume that p and the conductivity tensor K are time independent and that the internal
energy source Q and the radiative energy source q, are both identically zero and apply the
local time averaging operator PT, defined by equation (4.1.5) to all terms of the simplified
energy equation (4.1.18) ([41], p 17) to obtain equation

p at C - grad) + div('.T) - p1.grad(e) (4.1.19)

We now use the oscillation theorem which says that if a is smaller than b and if f is
continuous on [a, b] then

LIM lb cos(nt)f(t)dt = 0 (4.1.20)
n -400 Ja

to say that to a good approximation since V is a rapidly varying function and e is a slowly
varying function we may, in view of (4.1.20), say that to a good approximation,

pV .grad(e) = 0 (4.1.21)

to obtain the first approximate heat equation,
Oe (

•= (•. grad) -" + div(K,- grad(T)) (4.1.22)

We now are prepared to exploit equation (4.1.6) and the relation

e = cT (4.1.23)

where e and T are respectively increases in energy density and temperature, and where c is
the specific heat to obtain our final form of the heat equation with an elastic energy power
density source term. We write for n equal to three or seven,

s ., ,• (4.1.24)

where
= u /\+ aj ais' Oxoxj + \ax

+ A n 6(,,) + n ( 2 U)k , (4.1.25)

We now take the dot product of both sides of equation (4.1.25) with V obtaining,

P. grad).V -"
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n n (n ,L)(1 ,,)(ij,k)b e5 j' k at) (4.1.26)
\i"1- j=1 k=1 9l

We apply the local time average operation defined by (4.1.5) to all terms of equation (4.1.26)
making use of (4.1.6) and substitute into equation (4.1.22). Thus, from (4.1.4) we derive
the heat equation,

PC () -div(7? grad(T))=

2 (8U , + 2 ÷ ( ,2U,_ + (4.1,27)'k a Oxiat + , kaxiat/
(ij)C07(n)

where the index set is defined by

J(n) = {(i,j):j >i and {i,jiE{1,2,...,n}} (4.1.28)

and the internal energy density increase e that appeared in our original energy equation
(4.1.4) is related to temperature increase by the relation (4.1.23), where c is the specific
heat and T is the temperature increase, which means that since the right side source term
of the heat equation (4.1.27) is positive that heat will be generated by vibrations in a Voigt
solid.

4.2 Droplet Explosion by Lasers

We now consider energy transfer in a stimulated fluid. Using equation (3.2.3) we define
the viscous dissipation function 4' by the rule,

[I{(O)2 + (L) 
24)=p2 - V+ 2 + (W2 +

L+N + LU )z)

+ •- + w -)2 2 (•280+'qu) )2z (4.2.1)

In these terms the energy equation is given by (Anderson, Tannehill, and Pletcher [1], pages
188-189).

-2f

- div(pev) + f. V" +

divdT.17 ) - div( (2Dr ~7+

div(Kgrad(T)) + Qi, + Q., (4.2.2)
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We define the enthalpy h as (see Anderson [1], p 188)

h - e + E (4.2.3)
P

where
e = the internal energy including quantum states,
p = the pressure, and
p = the density.

To telescope the terms in the energy equation we make use of the vector identity

grad(X.. A) = x curB) -- B x curl(X) +

(B . grad) i 4 (A . grad)iB (4.2.4)

to observe that

p6. grzid (tf =

pV. { jV x 6u:'', Vf - *f..rad(v-} (4.2.5)

Interchanging the dot and cross product in equwo in (4.2.5) we see that since for an arbitrary
vector field V

v . (V x curl(vl) (V x o) curl(V) = 0 (4.2.6)

it follows that

pv .grad( j) =VpV . { ( 7.grad)(4v)} (4.2.7)

We can then collapse terms in equation (4.2.2) by observing that the momentum equation
implies that

v . p(v. grad)V=

-P V

+ pf- grad(p), V + div(') . (4.2.8)

Thus, using equation (1.1.1) and equations (4.2.7) and (4.2.8) the energy equation (4.2.2)
may be rewritten in the form, Dh Dp

P-t = Dt( Q (1)
4I - div(Egrad(T)) (4.2.9)

where (•8/t) Qi,, is given by equation (1.2.4) and 4 is the dissipation function representing
the work done by the viscous forces of the fluid. The term representing the transfer by
radiation from one part of the fluid to another is given by (Siegel and Howell [62], page 689)

- ,, = div 16an d(T) (4.2.10)

( aR
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This equation may be interpreted as providing a radiation flux across a surface defined by

kr = 1T 3  (4.2.11)3 aR

where aR is the Rosseland mean absorption coefficient (Siegel [62] , p 504 and Rosseland)
and where a (Siegel [62], page 25) is the hemispherical total emissive power of a black surface
into vacuum having a value of

o = 5.6696 x 10-8 Watts / (meters2 0K ) (4.2.12)

Using equation (4.2.10) and equation (4.2.2) we see that

De (\ (

P T t Qi. + lo o+

(-pdiv(v-) - div(7grad(T)) + t (4.2.13)

where t is the viscous dissipation function given by equation (4.2.1)

4.3 EQUATION OF STATE

In the energy equation (4.2.13) the perfect fluid assumption ([1], p 189) would yield

e = c,,T, (4.3.1)

where c, is the specific heat at constant volume, and if we define

-= (4.3.2)
C,

where cp is the specific heat at constant pressure, then the pressure p, the internal energy e
and the density p are related by ([1], p 189)

p = (y - 1)pe (4.3.3)

5 SUMMARY

Using the definition of velocity (equation 3.1.1) and the equation of state (4.3.3) we see
that the number of equations is 5, allowing 3 equations for the three components of the
momentum, and while the intial variables are p, u, v, w, p, e, and T, we sec that since
the tcrnpcraturc T is related to e and since pressure is a function of p and e, we see that
there are now exactly 5 unknowns. This means that locally within the Voigt solid, we can
describe the future state of the Voigt solid as a sernigroup acting on the conditions at time
to. If we want to know the value at time t and S is defined so that the solution at time t is
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given by S(t - to) acting on the values at t = to of the density p, the velocity components

u, v, and to, and the temperature T. The semigroup relation,

(P(t) ( pto)\
u(t) U (to)
,v(t) = S(t - to) v(to) (5.0.1)
w(t) w(to)
T(t) T(to)

tells us how to get future values of the density p, the three velocity components, and the
temperature at time t when the values at time to are known.

6 FLAME THEORY

Flame theory can be considered as a system of partial differential equations ([43]) in-
volving

* conservation of mass,

e species creation, diffusion, and transport,

* conservation of momentum,

* conservation of energy, and

e equations of state.

We need several defintions of terms for the formulation of the equations. The variables are

t -- time
T = temperature
p = density of mixture
Yk = concentration of species k
cp = specific heat of the mixture
c(pk) = specific heat of species k
U = velocity oi mixture
D(j,k) = (j,k) entry of species diffusion tensor
Vk = diffusion velocity of species k

S= r . equals the stream function
for transport down a tube
described in cylindrical coordinates, where

r = the distance from the axis of the cylinder, and
a = molar rate of production of species k.

Here, the specific heat of species k and the specific heat of the mixture are related by ([36])
% = j ( C(Lk) (6.0.1)

where pk is the density of species k
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6.1 Multicomponent Diffusion

One of the more recent developments are the concepts (Q22], [431) of mole fraction dif-
ferential pressure gradients with the idea that even as a gas is moving along a pipe or a jet
aircraft engine with velocity U' the species or molecular entities are diffusing with individual
velocities 1V as a result of weighted mole fraction pressure gradients dk and temperature
gradients. If we suppose that

p = pressure
Xk = mole fraction of species k, and (6.1.1)
Yk = mass fraction of species k

then the weighted mole fraction differential pressure gradient is ([43]) given by

4= grad(9k) + (Xk - Yk) .grad(p) (6.1,2)

and if we let
Wk = molecular weight of species k
W = mixture average molecular weight (6.1.3)
Dkj the species k thermal diffusion coefficient

then the Dixon - Lewis species k diffusion velocity ([22), [43]) (for k running from 1 to N)
is given by

k = x )E W. D (k, j) d.7  P1')( 9 a( (6.1.4)

Then using equation (6.1.4) we see that the species k diffusion flux is given by

A2 = p' Yk"Vk (6.1.5)

The overall gas velocity contribution of the species k flux is given by

Jk = P"l'f (6.1.6)

6.2 Conservation of Species and Energy

Using the species diffusion flux (6.1.5) and the species transport flux (6.1.6) and the idea
that if the partial derivative with respect to time of wk is the molar rate of production of
species k from chemical reactions that then the species conservation equation is

8Ykk

P = div(3h) + div(p. Yk - U) + (6.2.1)

where the species diffusion flux ik is given by equation (6.1.5)
The chemical kinetics and species creation processes are an integral part of flame model-

ing and can be used to describe soot particle nucleation and growth and to understand the
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type and kind of dangerous materials that can be formed during burning processes (Fren-
klach and Wang, [29]); in particular we can describe the formation of the PAH, pulycyclic
aromatic hydrocarbons nucleation and coagulation or growth in premixed flames ([28], [30],
[31], [33]). Microscopic equations can account for surface growth of soot particles; the soot
formation mechanisms, in spite of intensive study have only recently come to be understood.
As a consequence we better understand just how very dangerous to health these particles
really are.

We now turn our attention to the development of energy flux using the concept of
enthalpy which is defined by equation (4.2.3), the universal gas constant, R, and the concept
of the partial pressure Pk of species k and the concept of the energy ek possessed by species
k to define the enthalpy of species k and the total stress tensor fi defined by (3.2.2) to give
an energy flux defined by

f= E(Yh) - KgradT -
j=1

NjRT T
F (WkXk) D, dk+

(P.-01 + 2 +I.U (6.2.2)

Then if we define

- rate of chemical and radiative heat production

to be the heat produced by chemical reactions and the electromagnetic radiation energy
density term (1.2.3)

0Qout = the rate of radiative transfer of heat to the outside

which includes terms like the one on the right side of equation (4.2.10) describing radiation
leaving from flames to all other parts of the reacting system. The energy equation is given
by

= div(qJ

+ NQnternal + 8Q0 t (6.2.3)

6.3 Cylinder Flame Front Models and Homotopy

Margolis and Sivashinsky ([49]) considered a flame front in a right circular cylinder whose
boundary is the surface defined by

z = 1(r, 0, t) (0.3.1
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where t satisfies the nonlinear partial differential equation (Q49), p 100)

O4 c(grad(4') .grad(t)) + A(4b) + 4.A 2(4) - Wo = 0 (6.3.2)

where the parameter c is equal to one and where ([49], p 100)

Wo = - G.(t - T) (6.3.3)

is a scaled diffusion velocity with G ([49]) denoting a scaled buoyancy parameter and with T
denoting the average value of 4P over the cross section of the cylinder defined by the formula

R2tr (8, j2 tf4(e)y-drd8 (6.3.4)

where R is the radius of the right circular cylinder, and we assume that on the sides of this
cylinder the flame front 4P satisfies the boundary conditions

9= 0 = ( •) All (6.3.5)

and since in cylindrical coordinates the laplacian A is given by

,¢= + a2.10 + 4+ (6.3.6)

to see that if we remember that the Bessel function J,,(z) satisfies

d) 2 J_(z) + ( ) J,(z) + (1 • JS(z) = 0 (6.3.7)

and we choose
4' = ecp(iv,)J,(Ar) (6.3.8)

then the easily observed relations that

A(exp(ivO). J,(Ar)) - A2 exp(itO). J•(Ar) (6.3.9)

and
A 2(exp(iWO)• J,(Ar)) = A' exp(ivO). J•(Ar) (6.3.10)

enable us to find simple equations that must be satisfied by A, G, aiia R in order to cause
(6.3.8) to be a solution of equation (6.3.2) when c is equal to zero. For each value of the
cylinder radius there are a discrete collection of A which satisfy the boundary conditions

(6.3.5) which are in view of (6.3.5) and (6.3.9) the condition that

J:'(AR) = 0 (6.3.11)

If equation (6.3.11) is satisfied, both boundary conditions embodied in equation (6.3.5) are
satisfied. If we select one of these values of A we see that there is a simple relationship
between R and G that must be satisfied in order that the expression (6.3.8) satisfy equation

(6.3.2) and the boundary conditions (6.3.5). We can move along a path from these c equal
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to zero sclutions of (6.3.2) using a Maclauren series expansion about c equal to zero, that
involves soiving linear equations at each stage to move along a homotopy path from c equals
zero to c equals one.

However, we give here a direct solution of the nonlinear problem by assuming that we
can represent tihe stationary or nonstationary flame front 4 as a Fourier series of the form

00
4(Ck(t).exp(ikz8). F,(r)) (6.3.12)

k=-1

Applying the Laplacian A defined by equation (6.3.6) to both sides of equation (6.3.12) we
see that £¢ ( ck(t). ezp(ikvO). (r) + + F (r .2. k 2) (6.3.13)

k=1 rr

As we also need to compute A 20 we begin by observing that

2 - (+- ]. F•,'(r) = FI"'(r) + F-.(r) (6.3.14)

[( ) r Orj r

and then that

2 + 1 kF,(r) ."(r) Fk'(r) + F,(r)(6.3.15)

Or r ( ) r2 r3
+ - r (

and also that

)] -+- - - 3 -3 4. 4 (6.3.16)

TrJ r Or r2 r2 r3 r4

Collecting terms using equations (6.3.14), (6.3.15), and (6.3.16) we see that since

A exp(-ikO). FF'(r) + f-) + (-v k 2 )Fk(r)]

1 ex~-vJ 1 kr, r r2  jj

2 + ;( + (-V2k2)] . [exp(-ikvO){ F,'(r) + r + kraFt(r)

(6.3.17)

that

r(.O~ F"' (r (-V Ik2)Fk(r)1A exp(-ikvO). F 1'(r) + - + 2

Fk"'(r) + 2. k - (1 + 2. V.k2)( )

(1 + 2v2 k 2 ) ) (4. 2 k2-V4 k 4) Fk(r)) (6.3.18)

For a class of solutions we can see how to systematically make the transition from the

solution of the problem for c equal to zero to the solution of the problem for c equal to one
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or any other nonzero number by substituting the series under the assumption that V is an
integer which means that T is zero. As a result of the substitution of (6.3.12) into (6.3.2)
making use of equation (6.3.13) and equation (6.3.18) we find that the relationship between
the coefficients is that of a nonhomogeneous linear parabolic equation that is exactly solvable
in terms of a series of Bessel functions which satisfy the boundary conditions as at each stage
the nonlinear terms in the equation involve previously computed functions which at the kth
stage, for k larger than one, we expand using eigenfunctions E(kj)(r) associated with an
eigenvalue A(k,1) such that

.,-) = 0 + -, ) e(k,j)(r) (6.3.19)

We shall construct a fourth order differential operator with eigenfunctions satisfying (6.3.19)
by considering the linear differential equation that enables us to solve the nonlinear problem
by expressing new coefficients ia terms of previously computed coefficients and previously
computed functions is given as

Z (C'(t)exp(ivk9)Fk(r)) -
k=1

S{2c kzi (Cj(t)Ck-..(t) [Fq(r)Fk..1 (r) - v'j -(k - j)F,-(r)Fk...,(r)j) exp(ivkO)]Ik=• lj=l

+ E Ck(t) Fk'(r) + E(,-) + ( 2) '2•] exp(i*vkO) +
k=-I r r

Z{4Ck(t) [F"(.. + 2F"()-(1 + 2 v2 .k)k=l 1

+ (1+2.V2 -k2)(F~) (4 V2 -k 2(Fkr)] exp(ivkO)} +

Ck(t) Fk(r). exp(ivkO) - ((R Fk(r).r. dr e6p(ik 3)d .)

(.3.20)

We can get a representation of the Fk(r) and the expansion coefficients Ck(t) by solving
nonhomogeneous linear equations. To solve this we introduce singular ordinary differential
operators Lk by the rule

Lk = 4.( + I-(d) +

-(1+2.v2.k2)}(d)2 + ( (1+2.vA.k 2  d) +

{ (~-2. k2) (4.v 2 .k'- 4.k 4) } (631

r2- r4 - + G (6.3321)
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We require tha6. the eigenfunctions r{kj) satisfy, in addition to the boundary corndition,
(6.3.19), the relationship

LkE(k,j) + A(kj)C(k,.) = 0 (6.3.22)

If we use the definition (6.3.21) we can simplify the differential equation (6.3.20) after using
orthogonality to

C' (t)Fk(r) =

2 (C 1 ~t)Ck..~t) [F'(rF -,.(r) - v . (k -j)FI(r)Fk...Ar)])]2 j=1

+ Ck(t) Lk(Fk)(r) (6.3.23)

Continuing we define a source term Sk(t, r)for our linear ordinary differential equation by
the rule,

Sk(t,r) =

1:(Cj(t)Ck.-(t) [Fj(r)Fk'-,(r) -. v~j -(k - j).Fj(r)Fk.-i(r)])] (6.3.24)j=1

which means that if we substitute (6.3.24) into (6.3.23) we obtain the relation

Ck'(t)F(r) = Ck(t)LkFk(r) + Sk(t, r) (6.3.25)

for k that are two or larger. At this stage we usc cigenfunctions E(k j) with eigeinvalue A(k,j)
of the linear operator Lk which satisfy the boundary conditions (6.3.5) to write under the
assumption that

Sk(t, r) = Zs(k,j)(t) £ (k,j)(r) (6.3.26)
j=1

and
Fk(r) = Za(,.j) .- (kj)(r) (6.3.27)

.7=l

to further reduce (6.3.25) to
C

C'k(t) - a(k,j) = (--,(k.j))Ck(t) " a(k~j) + - S(k~j)(t) (G.3.28)

This is simply a first order linear ordinary differential equation in the time variable t which
completely determines the functions

t --* Ck(t)'a(k,,) (G.3.29)

and consequently, in view of (6.3.27) and (6.3.12) the flame front P satisfying (6.3.2) and in
view of equation (6.3.19) the boundary conditions (6.3.5). This gives us a means of moving
along a homotopy path from c equal to zero to c equal to one and to obtain exact solutionls
of the full nonlinear flame front equation (6.3.2).
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1 Introduction

Prolate spheroids are cigars and footballs and oblate spheroids are falling raindrops and
doorknobs. A spheroid is an ellipse rotated about an axis. If it is rotated about a major
axis it is a prolate spheroid. If it is rotated about a minor axis, it is an oblate spheroid.
In the halls of Congress a certain young representative had his desk in a most undesirable
location; for some reason, however, he was able to rise instantly and give brilliant rebuttals
of the arguments of his opposition. It turned out that the roof was a spheroid and his desk
was at one of the focal points and the desk of the opposition was at the other focal point.
He could hear the whispered planning of the oppositon long before they got up to speak.
Unlike the wedding guest described 2000 years ago, he refused to move up to a place of
greater honor, and, his secret remaining with himself, others were content to allow him to
remain in his more humble post.

Spheroid scattering is important because it provides challenges for general purpose codes,
and because one is interested in the propagation of electromagnetic information through
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clouds of spheroids, such as falling raindrops. The computer codes developed may also have

a bearing on the design of liquid crystal devices, such as liquid crystal television sets and

computer monitors which would, as they use natural room light, be far safer for the users,

often young girls, than cathode ray tube (CRT) devices currently in use. Young children,

in poor urban settings, often spend hours huddled close to television sets. If they are going

to do this anyway, let us, for the sake of the children, make television screens safer with a

liquid crystal design. The ability to remember sight together with sound, may provide a

way to teach and make literate a larger segment of human society all over the world; we

have many serious problems to solve, and no one knows from where the gerius to create a

solution may come.
There are at least two approaches to spheroid scattering. These use ordinary spheroidal

harmonics ((44], [43], and [45)) and the more general spin weighted angular spheroidal

harmonics (Fackerell [10] and Futterman [17]). The key to both methods is the determination

of the eigenvalues of angular spheroidal harmonics. We have proposed a Rayleigh Ritz

functional approach, the classical method of estimating eigenvalues for elliptic boundary

value problems, and the solution of a transcendental equation involving continued fractions.

The latter requires an efficient method of evaluating continued fractions.

2 Solving Maxwell's Equations

Spence and Wells ([46]) in their classic paper on vector wave functions considered the

difficulties of describing scattering of electromagnetic radiation by spheroids. They consid-

ered the possibility that a general function vector valued function F might give solutions of

the vector Maxwell equations of the form

V = curl(PP)

They show that if T is a solution of the scalar Helmholtz equation, then F must be a

constant vector or else a scalar times the vector

X= + ye + Z'

where (x,y,z) is the representation of a point in Cartesian coordinates and e", e-, and

c,, are the unit vectors along the positive x, y, and z axes, respectively. When these are

transferred to spheroidal coordinates we have a basis of solutions as a lirLear combination of

the functions curl(F(r)'P) and curl(curl(F(r)'P)), since

- A(curl( F(r)'%(r)))curl(curl(cur(F-(,')',))) = curl(grad(div(FP(r)%P(r))) - AT(,'))
(2.1)

Since the curl of a gradient is the zero vector and since

A( =) OT (2.2)

we see that
curl(curl(curl(FvP))) = k. curl( FP) (2.3)

This idea is the basis of the solution of ([1]) and many others.
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3 Spheroidal Coordinates

To solve the problem of spheroid scattering it is important to represent the Faraday and
Ampere Maxwell equations in spheroidal coordinates.

Consider an ellipse with foci at (0, -d/2) and (0, d/2) on the z axis and if

r2 = X2 + Y2 (3.1)

and (r, z) is a point on the generating curve for the spheroid, then if we define for r, being
the distance between (r, z) and (0, -d/2) and if r 2 is the distance between (0, d/2) and (r, z),
and if we then define • by the rule,

4=(r, + r2)/(2 c) (3.2)

and define ý by the relation,
S= (r, - r2)/(2 •c) (3.3)

where c is a constant, we have a set of coordinates for describing points within a spheroid.
We shall actually use a slightly different set of coordinates that are qualitatively the same.
We can define points on the surface of the spheroid as all those points (C, r, 0) for which •.
is a constant, which since an ellipse is the locus of points such that the sum of the distances
from fixed foci is a constant is embodied in the definition of ý given by equation, (3.2).
The other coordinate surface defined by setting q equal to a constant is a hyperbola, as
this says simply that the difference of the distances between two foci is a constant. The
third coordinate surface defined by setting 4 equal to a constant is simply a plane passing
through the axis of rotation. We give an alternative definition of the spheroidal coordinates
and show that this definitioxn is compatible with the more intuitive definitions of equations
(3.2) and (3.3) The relations between spheroidal and Cartesian coordinates are given by

andd 1/

-- d [(1 - r/2)(•2 + 1)] o/2 e (3.4)

y = 2[(1- 72')(ý2 + 1)]'/sin(O) (3.5)

and d
z = jr/• (3.6)

Going back to the equation for an oblate spheroid we have that

(x2 + y2)/A' + z2 /B 2 =

(d2 /4)(1 - 72)(ý2 + 1) (d2/4)77' 2

A2  + B 2

Sr-~ 2 +~ (3.7)
4 L(d/2) 2  (d/2)2J = 1
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if we simply let A and B be defined by

df-
A •- + 1 (3.8)

2
and

andB- = 11(3.9)

For the oblate spheroid, we have
A > B (3.10)

arid the foci of the ellipse may be thought to be on the x axis located at

X = C = V/A2-B2 = d/2 (3.11)

and the sum of the distances from a fixed point on the surface to the two foci is 2A which
happens to be

2A = d4 2 + 1 = rl + r 2  (3.12)

If we compare equation (3.12) with the earlier equation (3.2) we can see easily the connection
betvween C and e and that setting either one of these equal to a constant defines a surface of
a spheroid.

We now try to develop the unit vectors in the direction of the normals to the coordi-
nate surfaces ý = constant or 1/ = constant. Note that if we had a general coordinate
transformation relationship

X~ X (U, v, W)
Y = y(u, v, W) (3.13)
z z(Uv,w)

and the unit vector in the direction of the normal to the coordinate surface

u = constant (3.14)

is given by
, - d- (- 1/ I 1 ) (3.15)d-

where
R=xe + ye' + ze', (3.16)

If we imagine an arc in three dimensional space and try to describe it in Cartesian and
spheroidal coordinate. Assume that the arc R(t) is defined as an orbit defined by a contin-
uous parameter t. Let s(t 2 ) minus s(t1 ) denote the arc length between R(t 2) and 1(t 1 ) on
this curve so that

dt] + + (3d17)

In order to get values of parameters h4 , h,, and ho so that we may express the Laplacian
and curl operations in spheroidal coordinates we observe that equation (3.4) implies that

Ox d 1/2 1)-1/2 (3.18)
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From equation (3.5) we see that

Oy =_ d [_ ý.2\11, 2 [e2 + 1 )j -1 2 si()(3.19)40ý 2

From equation (3.6) we see that
Oz dOz j77 (3.20)

Thus, using the unit vector equation (3.15) and equations (3.18) and (3.19) and (3.20 ) we
see that the unit vector e'( is given by

IF+,I [C +

n-) 1 +sn( ) t, + (3.21)

Thus, we see that the length factors In an analogous manner we write down the unit vector
61 by the rule

C2= -+-c72 -r 1os(¢)e- +

-r/f --1Sin(O)Q, + Ce, (3.22)

We observe from equations (3.4), (3.5 ), and (3.6 ) that

ax- d 1/2e+ 3.3
__ [(1 + 1)]1/2 sin(O), (3.23)

S= 9y [( -ri/2)2

=y d(1 r,2)(ý2 + 1)1]1/2COs(O) (3.24)

and Oz

TO 0 (3.25)

Finally, again making use of the equation (3.15) and equations (3.23) and (3.24) and (3.25
) we see that the unit vector 4"O is given by

, = - sin(O)e• + cos(O)e'4 (3.26)

It is clear from the definition, equation (3.15) used in creating equations (3.21), (3.22), and
(3.23) that there are scalar functions h4, h,, and ho of ý and r that satisfy

hC-4 e + +Fc CYa z (3V.27)

Ox. Ojiy. Oz..
h,,4 = 7-C, + Y-e + e, (3.28)
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and OX O
h = : 4 - + Te + Te (3.29)

We notice that these vectors e-ý, e'?, e'4 are pairwise orthogonal in the sense that

e7 . et = ell F = e . e = 0 (3.30)

We can use these relationships to represent the vector A defined by equation (3.16) in terms
of e'f, C",, and ,e4. We see that

A- (.')•(R + ( + (R.l)4 (3.31)

where y 9Y z Oz
(R +O y z z (3.32)

X Ox y Oy z Oz(R e•,7) -= "'4-n + •'."-' + -"-'T'' (3.33)

and X_. (9 y Cy z Oz
( =ho) = + h'O-F + T.' 0-, (3.34)

First, substituting equations (3.18), (3.19), (3.20), (3.4), (3.5), and (3.6) into equation (3.32)
we obtain

et d C2 + 1 (3.35)

Next, determining that

ex d +1)]12 (_7 2]-1/2
S [ - 1)]2 (-i7)[(1 - p2)] 2 os(O) (3.36)

and that
O9y- d [ f- 1] (- t)sin(O) (3.37)

Equations (3.36), (3.37), and (3.4), (3.5), and (3.6) tell us that

d 1- 7~2
(R.')- - 2 V +2(3.38)

For a general coordinate transformation from an (x,y,z) frame to a (u,v,w) frame we have
the relationship,

(dx ) 2 +d ( 2 d 2  ('X 2 + 2y /2 O21 32

(i dt \dtI[\u O/~ I 'ft~

E(9x) 2 V [(Ox\ (OW '9W (O92 (O\
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[x (x Dy a • z 4z du dv

[4x 'Ox Dy Dy Oz Ozl du dwYU T'a + o-;'5-- + o-; oW--6 47 -T +

2 [Lx • •Dy +Dz • (3.39)

&9 OW c OwV Dv Ow Oj dt Jt
Making use of the orthogonality of the e, q, and 0 coordinate system we see that with

(u,,v,w) = Vr/, ) (3.40)

that all of the terms in equation (3.39) with a factor of 2 vanish, and that

2 (3.41)

Thus, for oblate spheroidal coordinates we obtain upon making use of equation (3.41) the
following expressions for h(, h,, and ho. From this equation and equations (3.18), (3.19),
and (3.20) we see that

d •/'2 +ti 2

h4 = ýC2V -- I(3.42)

Next observe tf.at
d -2V +7) (3.43)

Finally equations (3.23), (3.24), and (3.25) imply that

ho = • i- ý ) (V +ý 1) (3.44)

In order to carry out vector calculus in oblate spheroidal coordinates we need the following
relations. Equations (3.42), (3.43), and (3.44) imply that

d3 (C2 2

h~h,?h - 8 +"1) (3.45)

Also, equations (3.42), (3.43), and (3.44) imply that

h.,h. d (2 + 1) (3.46)
h -2

The other two similar relations are

h4i - 'h,) d ( 2 + )2  (3.47)

h 2 2 +1)(1-72)

and h C' h o d (1 _ 7)2) (3.48)
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The above relations are needed to define the Helmholtz equation in oblate spheroidal coor-
dinates. In order to define the curl operation in oblate spheroidal coordinates we need the
product pairs as well Equations (3.42) and (3.43 ) imply that

ht - , d 2 +7 r2 -(3.49)
= 4 /(e 2 + 1)(1 - 2 )

Equations (3.42) and (3.44) imply that

d2
h( = ( h#+,)(1 q2) (3.50)

Finally, equations (3.43) and (3.44) imply that

h,.h, = d (C2+ ý+)(e 2+1) (3.51)

The curl operator in a general orthogonal coordinate system of orthogonal u, v, and w
coordinates is given by

curl(E) =
1(hwE,,) - O-L(h,.Ev) e, +

ý,h.h I 0v Ow

hh, [8(huEu) - (h.E,)J e" +

1 [,h -(hE•) - 0hE )] 4,, (3.52)

Equation (3.52) may be derived from combining the representation of Cartesian frame unit
vectors in terms of e', e', and 4" and using the gradient equation,

grad(41) = T--.--e, + h,,-e. + h eu (3.53)

since (3.53) can used to express the curl of a vector field as the gradient cross this vector
field. The divergence is given by

div(P)=(~h){(;) (h~h . Eu)

()(h~hu .E) + 'h,, - w (3.54)

It is easy to show that

curl(curl(E) = grad(div(E) - AE (3.55)

where
whee 41 .1 f 0 (hvhL~8P'ý +

h h,, u h Ou ] N
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O,, 0, V L8 hh •* 8 (3.56)
8v h, 8v) w h8w 0wJ

The relationship (3.55) implies that

A(curl(g)) = - curl(curI(curl(.,))) curl(,6(,)) (3.57)

since curl(grad(fl)) = 
(3.58)

4 Rayleigh Ritz Procedures

One method is to use separation of variables to obtain a solution of the scalar Helmholtz
equation and then to use the fact the if we multiply the position vector by this single solution
and repeatedly apply the curl operation, we only generate a basis for a finite dimensional
vector space.

AT + k2 q =

2+ 72 492T+ (CI +; 1)( - ,72) a02j

+ k2(C2 +,?2), = 0 (4.1)

We now seek solutions of equation (4.1) of the form

S= R(ý)S(1q)exp(imq$) (4.2)

and substitute equation (4.2) into equation (4.1) and then divide all terms of this equation
by the function T defined by equation (4.2) after making use of the relationship

•2 + 152

1 1(43)
1  7 - 2  ýj-I

and making the subsitution
c2 = kd 2/4 (4.4)

we obtain the relation,

t2 2  + c2 =
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- (F2)+ R(C ) }/R(cC) +

+ c2C2 = - A•,,. (4.5)P +1

From equation (4.5) we obtain a kind of Rayleigh Ritz functional for the value of Am,,).
Equation (4.5) tells us that

A(m,n,) -

{ 1 d2) + s(2 .{(_C2,72)+ M2 22}] du'7 {s2d} (4.6)

We note that when c is equal to zero, we are dealing with a sphere and that the angular
functions are the associated Legendre functions Pm(7) so it makes sense that we want S to
behave like the function Pn4(q) when c is zero. We note that either ,, - m is even or odd,
and we know the initial conditions exactly in each case. We use partial derivative notation
for functions G(c, q) and note that

D2 G(c,O) = L (4.7)q7-4 0 OR•

and define the intial conditions for the second order ordinary differential equation satisfied
by the functions S(c, ti). We find that if n - m is an even integer

S(m,n)(C90) : {(-i)(n-m)/2-(n + m)!}) 2 {2" (n- ))! (n + m)!l. (4.8)

and
D2S(m,n)(C,O) 0 (4.9)

and when n - m is an odd number that

Skn)(C,0) = 0 (4.10)

and that

D 2 5(m.,i)(C,O) = {(•-1)(-m-1)/2-(n + m + 1)!j 2/ n (- - 1), (n + t7 + ),}

(4.11)
With these initial conditions we have completely specified S and its partial derivative and
mixed partial derivative as a function of 7, c, and A and we also know that

A(0) = n(n+ 1) (4.12)

This gives us an initial value problem and an ordinary differential equation

A'(c) = F(c,A) (4.13)

where the function F is determined by differentiating both sides of equation (4.6) with
respect to c and collecting terms involving A'(c), and then dividing ail terms by the coefficient
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of A'(c) to get the first order ordinary differential equation (4.13). By the uniqueness of the
Cauchy problem, different initial values ca~nnot lead to the same eigenvalue at

d
C = k.- (4.14)

2

This is effective if c is real, but if k is complex, then we think of c as being a function of a
paramter s defined by

c(a) = a k.-d (4.15)2

and with the same initial condiotion develop an ordinary differential equation of the form,

A'(s) = G(s, (4.16)

Vie can also use co:•iniued fraction relationships to get the values of A Separation of vari-
ables applied t(ý the scalar Helmholtz equation in spheroidal coordinates yields the ordinary
differential eqtutior I

' ((1 _ t12) ' S(G, + ,A + 2t72  m S(cif) = 0 (4.17)

VWe seek a solution, S(c, 1) which is bounded at r7 equal to plus and miiaus one only for a
discrete set of eigenvalues A. We obtain these solutions as one of two odd or even power
series,

S(°)(r)=) = (7 -1 r,72)'/2 [LC2k (1. _ 11)' (4.18)

03 S(C)(r1) = (1 - 7)m/2 L. 0 c2k (I - q)k] (4.19)

Differentiating both sides of equation (4,18) with respect to r7 we find that

-as M2n/3Lc2 k (i GA; +)]
1077 ~

ik
ri {(rn/2) (I -- tj')(m/2-1)- (-2Yj)} [c 2  ( , 7 2 )k]* ' L~k=O -

2 -- ?)'1 [/0= {C'ý. k. (1 - ,2)k' (--2. -i)}] (4.20)

Similarly, differentiating both sides of equation (4.19) with respect to r7 we find that

oe) (m/2). (1 - (-217)- C (1i 71

S0.

369



We can simplify the expression (4.20) obtained by taking derivatives with respect to 17 of
the power series defined by equation (4.18) by making repeated use of the tautology

- A. 172 = (+A).(1 - Y72) - A (4.22)

and, in fact, we deduce after collecting terms that

d* (1 -)m/ 2 EC 2k[1+m+2,k](1-7 2k+
k=O

(1- ~2 F,2 C2, m 2k] ( .12 ) k (4.23)
k=O

A similar calculation involving the expression for the derivative of Se given by equation
(4.21) shows that

s ) .. ..', 00
d '1)= 77 (1 - r, 2 ) 1 m/ EC~ [-in - 2. k] (1-_ 772) ki(4.24)

dq k=O

Now we multiply both sides of equation (4.24) by (1 - 972) and differentiate with respect to
q obtaining

C(1  t2 )4se 1 77 (12)m2 ZC,,{[-m -2 -k](1 _ )2f}
k=O

(_T1 2) ( .2 )mn/2 [ 0 {C~k [(2. k)(.-Yn - 2.- k)] (0 2 ) (k-1)] (4.25)

By combining equation (4.25) with equation (4.22) we deduce that

7- E~)/ [Ck {[(-in - 2. k)(-Trn - 2.- k)] (i )k} (4.26)

If we substitute the two power series given by (4.26) and (4.19) into the differential equation
(4.17), we get a seemingly infinite set of recursion relations; a closer examination reveals
that we can use continued fractions to eliminate the a priori unknown coefficients C2k and
gt a single pararneterized continued fraction expression for A of the form

F(A(s),n,m,c(s)) = 0 (4.27)

where if
c(O) = 0 (4.28)

the equation is that of the associated LTegendre function P,0(n) v,hich niean., that

A(O) = n.,n+1) (4.29)

.an
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Thus, the eigenvalues can be systematically determined, since c(s) could be written as s
times the actual value proportional to the distance between focal points of the spheroid, as
the solution to the initial value problem

A'(s) = D 4F(A, n, mn, c)c'(s) (4.30)
DIF(A, n, m, c)

We simply solve the ordinary differential equation (4.30) to get to the eigenvalue, which then,
because of the original recursion relationships gives us all the values of C2k; the spheroidal
harmonics are systematically determined, even when the material properties are complex.
Following this plan we see that the result of substituting equation (4.26) into the differential
equation (4.17) is

((1 2)2-•!) + ((A+C2) - c2.(1-,,2) 12)" =

(1- 2)m/2 [, {Ck {(A + C2) + [1 + mn + 2. kI(-m - 2k)} (1 1 72)k}
Lk=-O

+ (1 - ?2)m/2 2)[ {C2k(-c2)} ( 2)- space+

(1 - r2)2 [Z-,{C2k [-m2 + (-m- 2. k)2]} (l - q)k-4] = 0 (4.31)

Now equation (4.31) will give us a recursion relationship for the coefficients C2k and will
ultimately give us an expression for A. Thankfully, the coefficient of the reciprocal of (1 - 2 )

in the series expansion in equation (4.31) is the k = 0 term of the third sum on the right
side of equation (4.31) which is

C 2.0 [ m2 + (-i-2 0)2] = 0 (4.32)

Making changes in indices using the formulae j = (k + 1) and j = (k - 1) in the second and
thi.1 sums on the right side of equation (4.31) we obtain

0 - (( -_7) Or/) + ((A+ c2) - c2 .(1-t7 2 ) rn2 )2

(_-2)m/' [ 2 {C(k{(A+C2) + [1 +m+ 2. k](--m-2k)}(1- _l2)k]

+ (1- 2)m/2 {C 2(,-)(-c2)} (I - 2

(1- 2)• /2_{C 2U+.,) [-rn 2+ (-n - 2( + 1))2 2-)] = 0 (4.33)

Equation (4.33) after replacing the j, dex j by k in the last two sums on the right side this
equation gives uti P, three wcrnt rc,,,.)-sion relationship involving the expansion coefficients
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and the a priori unknown eigenvalue A for indices k which are larger than 1. For k = 0,
however, we have a vital relationship between Co, A, and C2 given by

Co. [(A+c2 - m.(l+m)] + C2 .(_m2+(-m -2)2) = 0 (4.34)

This tells us that
C,= ((A+c 2)-rn.(m+l).) (.5C2+ -2)_-M.M- .Co (4.35)

If we set Co equal to zero when m is 2, then we can get a solvable relation for all values of
m. Equation (4.35) tells us that

Co 4-2m
C2  (A+c2)- .(m+1) (4.36)

Looking at equation the three term relation determined by equating coefficients of powers
of (1 -_ 12)k in (4.33) for values of k larger than 0 we deduce that

C2k- [(A +c2) +[1+m+2.k.C(-m-2.k)J +

C2.(k+i) [-M 2 + J 2- 2* (k + 1)}12] = C2.(k-1.) *C 2  (7

By dividing all terms of the relation (4.37) by the middle term C2k we get a series of
continued fractions defined by

C2.(k1) = (A+c2)+[1+m+2.k].(-m-2.k)] +

C2.k

[_m2 + {(-m - 2. (k + i)}2] (4.38)

C2. [C,,l/¢.,,+,)]

The continued fraction relationship and a finite relationship based on repeated use of (4.38)
and the initial condition (4.36) gives us a transcendental equation for the eigenvalues A. In
particular combine equation (4.38) for k equal to zero with the initial condition (4.36) then
we get a functional relationship,

F(A,c) = 0 (4.39)

Differentiating both sides of equation (4.39) with respect to c we see that we can think of A
as a multivalued function of c (OF) .A,(c) = aF (4.40)

This is a firdt order nonlinear ordinary differential equation. Let us imagine that a sphere is
changing slowly into a sj )id by having c go from zero to a positive value. The solution of
Ma.xwell's equations will change smoothly from the solution of the sphere scattering prob-
lem to the solution of the spheroid scattering problem. The eigenvalues for the associated
Legendre functions which are n. (n+ 1) will change systematically from those for the solution
of the associated Legendre function equation

0 ((1 _-,72) j PM (17)) + ( 11. + ( ) 1) -M ) P) p (17) = 0 (4.41)
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to the corresponding solution of equation (4.17) by solving the differential equation (4.40)
with initial value

A'(0) = n.(n+ 1) (4.42)

By the theory of continued fractions ([55]) we can show the convergence of the continued
fractions used to represent the function F(A, c) mentioned in equation (4.39) to be the
difference between the two representations of Co/C 2 given by (4.38) for k equal to zero and
(4.36), we can express the derivative by using Gaussian quadrature to help us evaluate the
contour integrals

-F (1 ) I)} 6 (4.43)

where C is a small contour in the complex plane surrounding A inside of which F(A, c)
is analytic. You simply move along solution paths from the n • (n + 1) initial values for
the eigenvalues associated with equation (4.41) to the eigenvalues A(,,•,n) associated with
equation (4.17).

One problem with this approach is that the resulting vector functions that represent so-
lutions of Maxwell equations are not orthogonal with respect to dot product and integration
over the surface of the spheroid as they are with sphere scattering. One way to overcome
this is to use a completely different concept. This is the concept of spin weighted angular.
spheroidal harmonics, solutions of a modification of the differential equation (4.17). The
spin weighted angular spheroidal harmonics can be determined by a similar method.

A generalization of (4.17) is the ordinary differential equation for the spin weighted
angular spheroidal functions ([10]) is given by

S(( 1 7 72)j S( C, 7 )) +

(+ 2 .72 M- r+ s 2  2 2m~ -s -Y 7)~ 7 07
(A +-f 77 - 12 - 1 2 . -f-a q)S(C'17)= 0(4.44)

We note that we get the usual differential equation (4.17) simply by setting s equal to zero
in equaticn (4.44). The method of using the spin weighted angular spheroidal harmonics
to calculate scattering by spheroids is discussed in ([17]). The key to success is the deter-
mination of the eigenvalues. We attempt to find solutions of equation (4.17) of the form of
equation (4.18) or equation (4.19). It appears at first glance that there would be a term
involving the reciprocal of (1 - t72), but this term exactly cancels out, which means that if
we can simply solve the resulting recursion relationship for some values of A, we have our
bounded solution. The values of A for which we can find bounded solutions of equation
(4.17) are eigenvalues and are determined by solving a transcendental equation in A involv-
ing a continued fraction. A similar but more complex situation arises in determining the
eigenvalues associated with the spin weighted angular spheroidal harmonics satisfying the
more general equation (4.44).

The precise solution of a spheroid scattering problem will provide a convincing bench-
mark for the general suiface or volume integral equation method.
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5 Continued Fractions

The following theorems give us a practical means for evaluating continued fractions on
a digital computer with a minimum of round off error.

Theorem 5.1 Let bo, bl, b2, ... and ao, a,, a2, ... be two sequences of complez numbers.
Assume that Wo is equal to bo and let

W ., bo + aL _.

b2 + a3L
bb + ...

• (5.1)

+ 9 _-

bn

for all ;ntegers n greater than zero. Define initial values of a recursion by the relation,

(A..,,B-,Ao, Bo) "= (1,0,bo,1) (5.2)

Then define An and Bn for integers n larger than zero by the recursion

An = b.A.-. + anA.- 2  (5.3)

and the relation
B. = b.B..- + a.B..-2  (5.4)

Assume that bn is nonzero and that for every positive integer n that

b,,- 1 .b,. + a,, 0 0 (5.5)

for all positive integers n. Then for all positive integers n we have

A,
w" = B- (5.6)

Proof: We proceed by induction on n. The staterment (5.6) which we shall call proposition
?(n) is true trivially if n is equal to zero and also for n equal to 1, since the initial conditions
(5.2) and the recursion relations (5.3) and (5.4) imply that

A1  bi•bo+ai.1 b a = W (5.7)
BV-' b. I + a. -0 b +

Thus, assume that n is larger than one and that if m is a positive integer that is strictly
smaller than m, then propositon P(m) or the statement,

W,. - A' (5.8)
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is true. We now define a shorter continued fraction related to the WT, which is defined by
equation (5.1) by the rule, w, = wnO

where w'= boo+ aI
b; +

bb; +
~- ++...

(5.9)

+ a:-,.

where
Wn- b.- .b. + a., (5.10)

a =1- a~.-. •*,• (5.11)

and
a= = aj (5.12).

and
b; = b, (5.13)

for all j satisfying
jE {0,1,...,n-21 (5.14)

Defining, as before,
A = b_-.1 A:_2 + an- 3  (5.15)

and the relation
B =_a = b, .B,- 2 + an.Bn 3  (5.16)

and realizing that
A:_2 = A.- 2, (5.17)

A•_3 = A._ 3, (5.18)

Bn_2 = Bn- 2, (5.19)

and
Bn_3 = B._-3, (5.20)

we see that by the inductive hypothesis

Ww = 1W - - B , -

b•,-i A.- 2  + a'-, A ,-3  (5.21)

b_-l' Bn. 2 + a•_-l B,.-3
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Substituting (5.10) and(5.11) into equation (.;.21) and collecting coefficients of an and b,, we
see that

W = (b_.-. b,,+a,).AA2 + (a,_l. ,).A,.-s
(b.-I bn + an).- B.-2 + (a._-I b.). B,-3

b. (b,-,• A,- 2 + a,.-1 •A-3) + a,. A-2 (5.22)
• (bn.--.1 B,,- 2 + a,,•l B,- 3) + a,,. B,- 2

Using the recursion relations (5.3) and (5.4) for A. and B. and substituting these into
equation (5.22) we see that

b .- An-, + a. A.. 2 _ A,(
Wfl = b,. B,._. + a,. B, 2  B." (5.23)

In view of equation (5.23) and our original definition (5.1) the theorem is proven by induction
on n.

With any fractional representation, one is always concerned about division by zero. If
we regard the ground field to be the quotient field of the integral domain of functions which
are holomorphic on some open set 11 of the field of complex numbers C, then if each a, is
a constant function, and if each b.. b.- 1 and bo is nonzero, then b. and b.- 1 • b. + a. are
nonzero meromorphic functions for all nonnegative integers, which means that under these
hypotheses, all operations of the partial continued fractions W, are defined for all but at
most a countable collection of complex numbers.

The next theorem shows us how to eliminate some of the variables in the continued
fractions.

Theorem 5.2 Let us suppose that a continued fraction
A,,

4,, = BAn (5.24)

is defined by the initial conditions

(A 1,,Ao,B. 1,Bo) = (1,bo, 0,1) (5.25)

and the recursion relations
A. = b,. An-, + A,- 2  (5.26)

and
B- = b,. B,.- 1 + B.- 2  (5.27)

where bn and b,. bn- 1 + 1 are nonzero for all nonnegative integer's n. Then if for all non-
negative n we introduce a symbolic representation of a continued fraction by the relation

1bo + 1
[bb, b2 ,. . ", b,]

[bo, bi,...,b,] = W. (5.28)

then the A,, and B, may be represented in terms of these continued fractions by the relations,

An = [bo]. [b,,bo]. [b2,b 1,bo]... [b,,b,_,...1t't,b 1 ,bo] (5.29)

for all nonncgative integers n and

B, = [b]. [b2,bJ.([b3,b 2,bJ]... [b.,b,_.91,...,b2,b1 ] (5.30)

for all positive integers n
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Proof of Theorem. We proceed by double induction on n. Let P(n) be the assertion that
equation (5.29) is valid and let Q(n) be the assertion that equation (5.30) is valid, where n
is a positive integer. Now if we set

A- 2 -0 (5.31)

then P(0) is the statement
Ao = [bo_ = b= (5.32)

follows simply from the initial conditions (5.25) and is also consistent with the recursion
relation (5.26) which has the form,

A0 = b0 -Ao- 1 + AO- 2  (5.33)

The statement P(1) is valid since

[bo] -[b1, bol = Ibo.QI +

"b0 .b1 + 1 = b,'.Ao + A-. (5.34)

in view of the initial conditions (5.25) and the recursion relation (5.26). This proves the
validity of P(1). Now assume that P(m) is valid for m not exceeding n and attempt to
prove P(n + 1). We use the recursion relations (5.26) to define

An+1 = b,+1 ' An + An- 1  (5.35)

It follows from the inductive hypothesis and substituting the symbol product representation
(5.29) of An and An_ 1 into equation (5.35) that

An+1 = bn+1 . ([bO] • [b1 t b0 - [b2, bl, bo].. l b,, b -,,_,., bit bo])

+  ( [bob]. [bbo[b2, bt bO].. [bn ,b,2t ,..,bi,bo]) (5.36)

Dividing both sides of equation (5.36) by the same quantity, An- 1 , we see that

[bo].- [bi, bo].- [b2, bit,/o]-- [ a be...,[,-1 n 2 bit -o

[b( + -b-b 1 -U.,b 1 ,1]) (5.37)[bbl,',b~bo" ,•+ +[bn,,bn-l,", bitbo]

But by the definition of continued fraction

b,+ + 1bb._-",b,b) (5.38)

Substi'.uting equation (5.38) into equation (5.37) a& d multiplying both sides of this rewritten
equation by the symbol product in the denominator of (5.37) we see that

An+3
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{[bo].- [bi, b]. [b2, bI Ibo] ... [b. I, br._21...,b•, bo]} -[bnbn-_1, s ,bi, bo]([5.+l1, bn,... bi, be)
(5.39)

This shows that P(n + 1) is a consequence of P(n).
We now proceed to prove the validity of Q(n), or the assertion that (5.30) is valid for

the postive integer n. Observe that even Q(0) is true if we assume that a product of an
empty set of integers is 1 and the statement Q(1) is true since the recursion relation (5.27)
says that

B, = b1"Bo + B-1 (5.40)

which in view of the initial conditions (5.25) implies that

Bi = bi = [bl] (5.41)

which proves that Q(1) is true. Now assume that Q(m) is true for all m not exceeding n
and attempt to prove that Q(n+ 1) is valid. Note that the recursive definition (5.27) implies
that

B,+I = bn+1 " B, + B,-.1  (5.42)

and that by the inductive hypothesis we can substitute equations (5.30) and into equation
(5.42) obtaining

Bn+I = b,4+1' ([b] . [b2,b1]. [b3, b2,bl] [b,_, b,_s. .,b2, bl][bf,,bt, '...,I b2,b )

+ ([b] . [b2, b1]. [b3, b2, bi]... [b, 1, bn_2.... .,b 2, b1]) (5.43)

Dividing both sides of equation (5.43) by the product of the first n - 1 symbols we have

([,1]. [b2,,b1 .[] b b•-[•l~ ,..,b2,, 11) -
([il-[b j]-[b3,b2, b1] - , * [b.1 bn2=ibb

bn+l ([bn,bn_ 1,...,b2,b1]) +1 =

[b,,b,,_t,...b7,bd1 b,+ + 1 (5.44)

[bn b.I .,2,1  +2 b

Using the interpretation of the continued fraction in definition (5.28) which says that

[bnl 1,bn,.s. .,b2,b1 ] = b+÷1 + [bnb,-I, .. ,,bj]) (5.45)

Substituting (5.45) into (5.44) we see that

Bn+I=

[b, . [b2, b,] . [ , b2, bi] . .. [b,,, bn_- ,. , b2, bi][b,+,, b,,, . . b2, bi] (5.46)_

which completes the proof of the validity of Q(n) for all positive integers n. This completes
the proof of the theorem.

We can use this to stabilize the numerical computation of any continued fraction by
making transformations which reduce the continued fraction to the form where each an is
equal to one by introducing new variables.
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Theorem 5.3 Under the hypothesis that each b, and a, is. nonzero and

b,._, .b,, + a, 9 0 (5.47)

if we introduce the new variables
10 =o (5.48)

and
S= - (5.49)

a,

and

( rrI, a 2 -, ) ." (5.50)

and if

/ Gn+ .
I I'[=1 a2k-I a•n+l

then if W,, is the general continued fraction defined by (5.1) it follows that

= [obi, &J, in) (5.52)

Proof of Theorem. We proceed by induction on n. Let P(n) be the statement that if
we define W, by (5.1) then (.5.52) is valid, where the b!, are defined by equations (5.50) and
(5.51). The validity of the assertion P(1) is simply the statement that

, a+

bo + - b0o+ (5.53)

which is exactly equation (5.1) for n equal to 1. The assertion that P(2) is valid is, since
the definition, (5.50), implies that

a2)

equivalent to
W2 - + -bo + 1/ +

(,),{bi/a(), +1(/2)

S+ ((a,) 1+ a,(555)a+, '{(b, la,) + l1((a, la2).b`)) = bo b + (a2/l2) (.5

which in view of equation (5.1) is true. We now assume that P(m) is true for m less than
or equal to n aid then attempt to prove the validity of P(n), thereby completing the proof
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of the theorem by induction. We introduce the transformed variables h2 and b.+j that will
help us define the tail of the continued fraction that are defined by the rules,

iZk - at 12 (5.56)
a1

and
S= b2.i a, (5.57)

We also introduce, for this theorem, the shifted sequence variables

a( = a.+, (5.58)

and
b• = 11+1 (5.59)

It will then follow from the inductive hypothesis that

b,+ a2
2+ a3_ _

+ 9a,-
b,

r [( t) , . = [t)]) ,W )* ., (5.60)

Consequently, by P(2), which we have proven it follows that

0O , l I ,' --
bo + a,

[1,(t) P,') ., '0](1 / ) OW)'. . .' M]V

12

To complete the proof of the theorem we make use of the following lemma.

Lemma 5.1 We let [co, cl,.. .c,,] be the continued fraction defined by

[CO, Ch,,..." = CO + 1, (5.2)

Then for all nonzero constants a we have

. [co, C, .C.c2"1

R(a Co), (c, /a), (a . C2) ... O. C2  (5.63)

and
a. (co, c1,-. .c+]

[Q £CO, (CI,'a), (a c2) ... (c2,+,/a)J (5.64)
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The lemma will be proven by induction on n. We prove (5.63) by observing that by
definition,

a. [CO, c1,'..c 2 ] =

C.co + (5.65)
IcI,. .'C2n]

We can then use the inductive hypothesis to show that

a-co + (1/). [c1 ,..' c2 ]

1
'Co - + [c 1/a, ac 2, c3 /a' "ac2,)

[aco, c 1/tg ac2, c3 /a, ..., ac2,,] (5.66)

which completes the proof of equation (5.63) by induction on n.
Next we use induction to establish equation (5.64) by assuming that n were equal to

2 m + 1. Then by definition

a I [Co, CI, C2 ,' "C2m+l] -

a • +-I'- (1/a). [ 1C, C2 ,"'"C 2 m+l] (5.67)

and by the inductive hypothesis we conclude that equation (5.67) implies that

a * [CO, CI, C2, '"C2m+1] - 1I
a-c 0 + 1 (5.68)or. ICo I/r, O' C2,..C•,,+,/Crl

Applying the definition (5.62) to equation (5.68) we conclude that

a'. [co,9cC, c 2 ," "cC2m+1] =

[ae. co, c1/C, a . c2,. 'c2m+1/a] (5.69)

which proves equation (5.64) and completes the proof of the Lemma.
By applying the lemma to equation (5.61) we see that

bo +a,_ _
1 1 2

lbo + 1,,,, .,, (5.70)

in view of equations (5.57) arid (5.56). From equation (5.70) and (5.48) and it follows that
(5.52) and the theorem are valid.

We can use these theorems to compute values of convergent continued fractions by nu-
merically stable algorithms.
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Scattering of Electromagnetic Radiation

by Nonconnected, Heterogeneous

Bianisotropic Structures

D. K. Cohoon

September 3, 1992

We consider in this paper powerful general methods for solving electromagnetic scat-

tering problems that, while with presently used methods require 1000 human life times

of time on an advanced computer, shall with the methods proposed in this paper require

only one hour on the same computer. Furthermore, instead of guessing at the accuracy

by requiring a certain sampling rate, the solution of the integral equation, using the exact

finite rank integral equation methods described in this paper, is obtained to computing

machine precision.

We consider a bounded three dimensional body with full tensor bianisotropy covered

with impcdance sheets.

As a specific and easily understood example, we consider the discretization of the

integral equation of electromagnetic scattering for a magnetic, but penetrable structure

delimited by parallel planes.

We conclude with a general surface integral equation formulation which will permit

analysis of a complex of homogeneous structures whose regions of homogeneity of elec-

tromagnetic properties may be as general as the interiors of diffeomorphs of N handled

spheres.
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1 INTRODUCTION

We shall in this paper consider powerful new methods for formulating and solving

integral equations describing the interaction of electromagnetic radiation with complex

materials. Such interaction problems, for currently used methods, such as the method of

moments, are beyond the capability of existing computers.

1.1 Classes of Tensor Materials
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The most general linearly responding material is the bianisotropic material ([23], p 91)

defined by the equations,

(It is easy to see which interchanges leave the above system of equations invariant; this

gives us a way of checking complex codes) The bianisotropic relations are embodied in the

relationship ([23], p 91)

The biisotropic relations ([23], p 92) are

D =eE + ((X - iK) ( o))(1.1.3)

and

B= (X + i)r.) r(P7760o)E + pH (1.1.4)

If in equations (1.1.3) and (1.1.4) the above two equations we set X equal to zero, then we

obtain the Pasteur medium.

The gyroelectric medium ([2], p 341) is a special case of an anisotropic medium where

the permittivity tensor for a wave propagating in the direction of the z axis has the form

=L £(•,) C(•,) 0 (1.1.5)

0 0 C(Z,Z)

A different type of material is a general type of gyrotropic material ([2], page 342) where

the permittivity has the form,

= C E(,f) C(y, z) (1.1.6)

0 E(Z,,) e('(,z)

389



A third type of anisotropic material is ([2], p 344) are the bia-ial and the uniaxial material

where the permittivity tensors respectively have the form,/0 0
o0 CY 0 (1.1.7)

0 0 e)

and

(0 01

0 0 C,

which serve to characterize the optical properties of many types of crystaline materials.

1.2 Integral Equations and Bianisotropy

Bianisotropic materials, because of their greater complexity, have greater potential

for creating materials with prescribed or desired absorption, transmission, and reflection

properties. Chiral properties are a special case of bianisotropic materials. With chiral

materials there is a special scalar { (Jaggard and Engheta, p 173) such that

=5 . E + icB (1.2.1)

and

B = H. - iC. -E(1.2.2)

With the more general bianisotropic materials described in (Lindell [23]) there are tensors

Sand C such that D3 and B are related to E and H by the 6 by 6 matrix embodied :a

equation (1.1.2). Here the Faraday Maxwell equation has, for time harmonic radiation,

the form

curl(E) - iwB (1.2.3)

while the Ampere Maxwell equation has the form

curl(.l) = iwf, + =. f (1.2.4)
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Using these notions we make Maxwell's equations look like the standard Maxwell equations

with complex sources by introducing the generalized electric and magnetic current densities

by the relations,

curl(E) = iwoH -m (1.2.5)

and

curl(/i) = iweoE + J (1.2.6)

where the J appearing in equation (1.2.6) is defined by

ir = iw•. + iw .H - iwe0E (1.2.7)

and the J. appearing in equation (1.2.5) is defined by

S= iW[.H + E - POH] (1.2.8)

We can think of the current densities (1.2.7) and (1.2.8) as stimulators of radiation in

ambient space and use the Maxwell equations (1.2.5) and (1.2.6) to formulate the resolution

of the interaction problem as the solution of integral equations. We, however, need to use

the current densities given by (1.2.7) and (1.2.8) to define electric and magnetic charge

densities p, and p,, by the relations,

di(J) -0 (1.2.9)div( £ ) + 0-

and

div(J.) + - 0 (1.2.10)

We now use the electric and magnetic current densities given by (1.2.7) and (1.2.8) and

the electric and magnetic charge densities given by (1.2.9) and (1.2.10), respectively, to

develop a coupled system of integral equations describing the interaction of electromagnetic

radiation with a bounded bianisotropic body Q. The electric field integral equation is given

by

E E- grad IG(r3)dv(s)1

+ WOgrad (fan(J,. -iG(r, s)da(s))
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- iW 0 jf G(r, s)dv(s)+

-curl (jXG(r, s)dv(s))(.1)

If the material is nonmagnetic, then there is no nonzero magnetic current density and we

could derive a magnetic field integral equation directly from (1.2.11) simply using Maxwell's

equations. The general magnetic field integral equation may be expressed as

H -H grad (io W140i G(r~s)dv(s))

-- grad W~)Uk)W110

- iwo jn Jm,•G(r, s)dv(s)+

+ curl (j G(r, s)dv(s)) (1.2.12)

where G(r,s) is the rotation invariant, temperate fundamental solution of the Helmholtz

equation,

(A + k2)G = 6 (1.2.13)

given by

G(r,s) = exp(-iko I r - s (1.2.14)
47r r - s

Substituting (1.2.7) and (1.2.8) into equations (1.2.11) and (1.2.12) we obtain, the

coupled integral equations for bianisotropic materials. The electric field integral equation

for a bianisotropic material is given by,

E-E

-grad (ndiv(iw [ -E f + G -eoJ) sJUv~s))

S+r i -E H c )n(r, s)da(s))

-i w i oji w ~ . ~ + - o.~ G (r, s)dv (s)±

-curl (j iw y. ± . -E Io] G(r, s)dv(s)) (1.2.15)
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and the magnetic field integral equation for a bianisotropic material is given by

(gaJ div(iw [1" H + o" .fi)G rH])dals)dg - gI= -ga - V

-iWO j(iw [ 11 H E 1 )G(r, s)dv(.s)+

+curl (jiw [64 + -. 1 - fofj G(r, s)dv(s)) (1.2.16)

In the subsequent sections we shall explore methods of resolving these integral equations

on existing computers using novel, powerful analytical methods of solution.

2 Exact Finite Rarnk Integral Equation Methods

While we have obtained exact solutions for layered materials, most of the problems

are so complex that one must formulate the interaction problems using integral equations.

The primary focus of this report is to describe the design of complex materials using

an improvement of classical spline methods (Tsai, Massoudi, Durney, and Iskander, pp

1131-1139). This paper is unusual in that comparisons are made between internal fields

predicted from moment method computations and Mie solution computations. Successful

comparisons have been made for linear basis functions without enhancement by ezact finite

rank integral equation theory. However, as the scattering bodies become more complex the

computational requirements become larger and larger. With ezact finite rank integral

equation theory if one has a discretization that enables one to closely approximate the

solution, then refinements can be made by a convergent iterative process based on the

concept that the norm of the difference between an approximate integral operator and the

actual integral operator is simply smaller than one, not necessarily close enough to give

answers of acceptable accuracy. Then the answer is improved by an iterative process to

any desired precision without the use of additional computer memory.
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2.1 Examples of Spaces of Approximation

Solving the electromagnetic transmission problem by finding solutions of Maxwell's

equations inside and outside a penetrable scatterer which satisfy boundary conditions and

radiation conditions requires functions on a continuum, the problem is from a practical

point of view a discrete one and involves estimation of the values of induced and scat-

tered electric and magnetic vectors in the interior and the exterior of the scattering body.

Thus, it is important to understand metiiods of determining the accuracy with which a

solution of a discrete approximation of an integral equation formulation of an electromag-

netic interaction problem can be obtained. We specifically need to forinulate a space of

appr(wximates and a projection operator onto this space of approximates and formulate

a finite rank approximation of the original infinite rank integral equations (1.2.15) and

(1.2.16) such that the precise solution of this apnroximate equation is exactiy the projec-

tion onto the space of approximates of the solution of the original infinite rank integral

equation. We further need to develop a means of correcting our solution so that we may

exactly determine by iteration the difference f - Pf between the solution f of the original

equation and the projection Pf of this solution onto the space of approximates, possibly

by an iterative scheme or a series expansion. In this section we illustrate (i) pulse basis

function methods, (ii) linear interpolation, (iii) higher order spline interpolation, and (iv)

a completetely novel LOO norm method of approximating the field components with com-

binations of trignomometric functions of the local spatial variables using carefully selt( "-d

frequencies.

We now explain linear interpolation. A common example would be to approximate the

space V of functions which are continuous on [a, b] by members of a set

S ={[XOX 1 ),[X1 ,X2),..[Xn.1 iX](1

where

a =x 0 < x . < x, = b (2.1.2)

and to define the projection operator of linear interpolation, for the partition defined by
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equation (2.1.1) by the rule,

Pf(x) = Ax,_,) ( -X ) + f(x,) x -,_,• (2.1.3)

if x belongs to the subinterval from xi-I to xi and we note that if this is the case then

since

(Pf)(XiI) = f(x_.) .1 + 0 (2.1.4)

and since

(Pf)(X,) = 0 + f(x,). 1 (2.1.5)

it follows from equations (2.1.3), (2.1.4), and (2.1.5) that

p 2f = pf (2.1.6)

Another simple example is Fourier series or an eigenfunction expansion in the spatial

variables. Suppose that V is a set of functions defined on R" which are square integrable

with respect to Lebesgue measure v multiplied by a positive function p and valued in a

Hilbert space X with norm I . Ix with two measurable and square integrable functions f

and g being equivalent on an open set,

,Q C R, (2.1.7)

if and only if

j(I (f - g)(x) I' ) p(x)dz.4x) =0 (2.1.8)

and where the square integrability with respect to the ordinary Lebesgue measure multi-

plied by p means that

j(I f (x) I' ) p(x)dv'(x) < oo(21)

We say that two Hilbert space valued functions f and g are orthogonal if and only if

f {f(x) . g(x)) p(x)dv(x) = 0 (2.1.10)

where

(f(x),g(x))x = f(x).g(x) (2.1 11)
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is the inner product of the Hilbert space elements f(x) and g(x) so that the square of the

norm of the function f is

I f I = jf {f(x)" f(x)} p(x)dv(x) (2.1.12)

If

F = { E,:i E } (2.1.13)

is a finite set of pairwise orthogonal functions in the space V of functions from fl into the

Hilbert space X, then
[f O ~) i(y)p(y)dv(y)]

Pf(f) = [ f,• .i ) #,(x) (2.1.14)

The projection operator defined by equation (2.1.14) yields a generalized Fourier series

approximation of functions; which is the basis of Mie like solutions of electromagnetic

problems.

The next approximation scheme that is often used in electromagnetic analysis is the

pulse basis function method. The pulse basis function method has been used by Guru

and Chen [13], Hagmann and Gandhi [14], Hagmann and Levine [16], and Livesay and

Chen [24] to predict the results of electromagnetic radiation with complex structures by

decomposing the body into cells within each of which the induced electric vector is assumed

to be a constant and charge densities are also assumed to be piecewise constant. The pulse

basis function method makes use of the concept of the partition of an open set Q' of R .

We havc defined for cach x in Rn and cach positive number r > 0 the set

B(x,r) = {yE R : Ix - y I < r} (2.1.15)

to be the bali of radius r centered at x. We let Q be an open set in R" whose closure is

bounded.

Definition 2.1 A partition of Q is a set P(Q) of pairs (Vi,xi) where iEI and the ball,

B(xi,r) i.q contained in Vi for some positive number r,

U. v, = Q (2.1.16)
3El

396



and

u.(Vjnvk) = 0 (j $ k) (2.1.17)

whenever (Vi, xi) and (Vj,zj) are distinct members of the partition, P(P!) and p, is the

standard Lebesgue measure on Rn where we let

PI = {V : (V,, x)EP(Q) for some xEV,} (2.1.18)

and we define the characteristic functions,

x 1 E V= (2.1.19){ 0 x is not a member of Vi

to be the characteristic functions or pulse functions associated with the sets Vi in P(Q)I.

The sets Vi are called cells in a cellular decomposition of R.

Next we define the projection operators associated with this partition of an open set

in Euclidean n dimensional space.

Definition 2.2 We define the projection operator P associated with the partition,

P(Q) = {(Vi,x•): ziEV1 , iEIT, Vi C S} (2.1.20)

by the rule,

Pf(x) = Z [Xv,(x)" f(x,)] (2.1.21)
VaEp(fl)l

for all functions,

f ; Q --+ Ct  (2.1.22)

where Cm denotes complex m dimensional space.

We prove the following.

Proposition 2.1 If F(f2, C"') is any topological vector space of functions from Q2 into C'

which includes all functions of the form,

X ---+ Xv(X)ii' (2.1.23)

where

V E P(Q)1  (2.1.24)
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and

6f E C'n (2.1.25)

then the mapping P defined by equation (2.1.21) us an endomorphiom of thin topological

vector space wnhich satisfies

PP = P (2.1.26)

2.2 The Standard but Nonoptimal Discretization

Kun Mu Chen meticulously anajyzed the electric field volume integral equation in

the work he directed in ([24]) and correctly formulated the electric field volume integral

equation for a nonmagnetic body as,

(E E)(p, w) fr f2 (e- o- J) G(p, q). - (q)div(q) (2.2.1)

where

( + ( g)grad(grad)) )e p(ikoIp- q (2.2.2)

( T02-) )(ex47r I p - q I)
What is done in practice is to apply the projection operator to the a priori unknown

field f, that appears under the integral and to also apply it also to both sides of the integral

equation (2.2.1) to obtain the approximate equation

(P-E - PxEF) = iW2 f/ ((- °) - iWPZG(x, y) - (PYE)dv(y) (2.2.3)

c2 Jn

where G is defined by equation (2.2.2). The so called method of moments was developed

in the early 1900s by mathematicians and is simply the weak topology approximation; as

currently applied it is an attempt to do a better job of getting a more acceptable solution of

the clearly nonoptimal approximation represented by equation (2.2.3). With the method

of moments one obtains 3N equations for the 3N unknonws representing the electric vector

in the N cells into which the scattering body P is decomposed by simply multiplying both

sides of equation (2.2.3) by a function of x, often the characteristic function of the cell Vi,

where i ranges from 1 to N, and integrating both sides of the new equation with respect

to x
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3 Exact Solutions of Integral Equations

We show in this section a method of creating a computerizable approximate to the

original infinite rank integral equation. After multiplying all terms of the integral equation

by the same invertible matrix, if necessary, we can reduce the coupled E and H integral

equation to one of the form described in the following section.

3.1 Machine Precision in Integral Equation Methods

We show in this section how to correct our errors in an integral equation method, so

that we can obtain, by doing more processing but not using excessive memory, an answer

whose precision is close to that of the particular computing machine being used. Letting

f be a vector valued function defined on an open set S1 of R' and having values belonging

to a Banach space, X, which represents the set of values of the electric and magnetic field

vector within the scattering body and having enough regularity that boundary values are

defined. Suppose that the functions f that we consider all satisfy the condition,

f E (Q,,X), (3.1.1)

that they belong to a Banach space of functions from R into X. We further suppose that

we define a projection operator,

P: £(S, X) --+ C(Q',X) (3.1.2)

We let 13(X) denote a Banach space of operators mapping X into itself and let K be a

function,

K:Qx D --+ B(X) (3.1.3)

which in practice will represent the integral operatcr acting on the values of the electric

and magnetic field vectors in the interior and on the surface of the scattering body. One

way this can be handled is to assitme enough regularity in the space of functions, F(Q2, X)

in which we are seeking the solution (and in the space of approximations within which
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we are attempting to find a solution that is reasonably close to actual solution), that the

required boundary values are defined. Related to this basic projection operator, which

may be defined in one of the ways described in the previous section, or in other ways, we

define the operator Q' on functions from fl into X by the rule,

P j K(x,y)(Pf)(y)dv(y) = j QzK(z,y)(Pf)(y)dv(y) (3.1.4)

We can reduce our origiral problem to that of solving an integral equation of the form,

f(x) - g(x) = ATf(z) (3.1.5)

where

Tf(x) = jK(x,y)f(y)dv(y) (3.1.6)

and f may represent a two tuple consisting of the electric and magnetic vectors and g rep-

resents the result of applying an invertible linear transformation two a two tuple consisting

of the electric and magnetic vectors of the incoming radiation. We define %he operator L

by the rule

L = PTPf(x) (3.1.7)

where P is a projection operator onto a space of approximates, and define the correction

operator N by the rule,

Nf(x) = Tf(x).- Lf(x) (3.1.8)

Normally we require that P is a good enough approximator that solving the equation (2.2.3)

will give us a satisfactory solution. However, with exact finite rank integral equation theory

we need only assume that P is good enough so that if N is defined by (3.1.8) that then

the operator norm inequality,

max {j All N IA III (P -I)N In} < 1 (3.1.9)

Thus, it follows that

T =L + N (3.1. 0)

The usual approximate integral equation has the form

f,, = Pg = APTfa (3.1.11)
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where f, satisfies the condition,

f. E P(C(fl, X)), (3.1.12)

What is usually done is to assume that f. is close enough to f to accurately represent the

solution of the original infinite rank integral equation (3.1.5). We can, if inequality (3.1.9)

is satisfied, define the bounded linear operator

OX = -- \A-lNk (3.1.13)
k-l

so that it will follow that since formally and in fact,

(I - AN). (I + AN + A2N +...)f = f (3.1.14)

that by combining equations (3.1.13) and (3.1.14) that

(I - AN)(I + AG))f = f (3.1.15)

in view of the the geometric series relationship and the identity

(I+ AGx) = (I+ AN+A 2N 2 +..) (3.1.16)

for all functions f satisfying the relationship (3.1.1). Thus, we can in view of the relation-

ship (3.1.10) deduce that

AT = AN + AL (3.1.17)

Equation (3.1.17) then means that we can express the original integral equation (3.1.5) in

the form

f = g + ANf + ALf (3.1-18)

Rearranging terms in equation (3.1.18) we see that

(I - AN)f = g + ALf (3.1.19)

Combining equations (3.1.19) and (3.1.15) and equation (3.1.13) we deduce that

f = g + ALf + AGA(g + ALf +) (3.1.20)
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Now if we simply combine equation (3.1.20) and equation (3.1.18) we deduce that

ANf = AGx(g + ALf) (3.1.21)

We would now like to apply the projection operator P to both sides of equation (3.1.20)

making use of the fact that P is idempotent, equalling its square, and equation (3.1.7)

PL = L (3.1.22)

to obtain the relation

Pf = Pg + ALfAP(G\(g + ALf) (3.1.23)

Substituting equation (3.1.21) into equation (3.1.23) we see that

Pf = Pg + ALf + APNf (3.1.24)

Thus, if we define

L(K,p) = PT (3.1.25)

then in view of equation (3.1.7) and (3.1.25) we see that

Lf = L(K,p)Pf (3.1.26)

Now we see that equations (3.1.24) and (3.1.26) imply that

Pf = Pg + APL(KP)Pf + APNf (3.1.27)

While equation (3.1.27) is not a finite rank integral equation, it suggests that an approxi-

mate finite rank integral equation

Pf = Pg + APL(K,P)PAf + APNPf, (3.1.28)

might give a better approximation to the solution than the traditional approximation given

by equation (3.1.11). We shall go much farther than this, however, and reduce the equation

(3.1.24) to a true finite rank integral equation whose solution will be the projection Pf of

the exact solution f of the original infinite rank integral equation (3.1.5) onto the space

of approximates. This will permit us to achieve our ultimate objective of representing the
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solution f exactly in terms of Pf and the stimulating fields g by an exact formula. Going

back to equation (3.1.19) and making use of equation (3.1.14) we obtain

f = , [(AN)k (g + ALf)] (3.1.29)
k=O

Operating on both sides of equation (3.1.29) with N and then applying AP to both sides

of this equation, we see that
00

APNf = [(AN)k (g + ALf)] (3.1.30)
k=O

Now, simply substituting equation (3.1.30) into equation (3.1.27) we get the finite rank

integral equation,

Pf = Pg+

APL(K,P)PJ + APN [E(AN)k (g + AL(,,p)Pf) (3.1.31)

Now collecting terms in equation (3.1.31) involving Pf and those involving g and Pg we

obtain the relationship

Pf = Pg +APN [Y(AN)kg +

AP (L(KP) + N E (AN)'] AL(K,P)) Pf (3.1.32)

Our first objective is now achieved since equation (3.1.32) is a truly finite rank integral

equation in the unknown member Pf of a finite dimensional vector space. The computer

program giving a solution of equation (3.1.32) would provide us with coefficients of the basis

vectors of this finite dimensional vector space that are needed to represent the solution Pf

of equation (3.1.32). In other words, the linear combination of basis vectors of the vector

space which is the image of the projector P is the exact value, Pf, of the projection of the

exact value of the solution, f, of the original infinite rank integral equation, (3.1.5). From

this point on we assume that Pf is known.

To finish off this section we use our exactly determined value of Pf that was obtained

by solving equation (3.1.32) under the assumption that I- AL is invertible on the image of

the projection operator P, where L is defined by equation (3.1.7). We begin by subtracting

the right sides of equations (3.1.18) and (3.1.24) obtaining the relationship,

(f - Pf) = (g - Pg) + A(I - P)Nf (3.1.33)
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Collecting the terms involving f in equation (3.1.33) and moving the known function Pf

over on the right side, we obtain the equation,

[I- A(I- P)N] f = (g - Pg + Pf) (3.1.34)

The inequality (3.1.9) then enables us to invert the operator acting on the f in the left

side of equation (3.1.34) by applying the geometric series operator
00

S = j(A(I - P)N)k (3.1.35)
k=O

to both sides of equation (3.1.34). Thus, once we solve equation (3.1.32) for Pf we can

correct ourselves by expressing the exact value of f as

f = )(A(I - P)N)k {g - Pg + Pf) (3.1.36)
k=O

Thus, without using auxiliary memory we can with a good enough start and enough

iteration correct our solution to within computer accuracy.

4 Layered Materials

We have formulated some one dimensional scattering problems associated with mag-

netic materials, and solutions obtained from the differential equation formulations have

been substituted into the integral equations and have been shown to satisfy them exactly.

For magnetic materials, a single integral equation was obtained and the significance of

surface values of the derivative of the electric vector were shown to be important. For

higher order splines all terms arising in a matrix representation of the integral equation

formulation of the problem, and all iterates of the integrals could be computed exactly.

Using distribution theory concepts, we have combined the electric and magnetic field in-

tegral equations for the case of a plane wave that is incident normally on the magnetic

slab.

4.1 Magnetic Slab Integral Equation
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We consider in this section radiation normally incident on a magnetic slab, and assume

that the electric vector of the incident radiation has the form

P' = Eoexp(-iko:)4 (4.1.1)

so that the magnetic vector of the incident radiation defined by the Maxwell equation,

- :iwpgH' = ctrl(A') =

(- E-oezp(-ikoz)

-- - ikoEoexp(-ikoz)eV (4.1.2)

is after dividing both sides of equation (4.1.2) by -iws is given by

H' = -'(E ezp(-ikoz)e"v (4.1.3)

Within the magnetic slab, where the permittivity e, the permeability p, and the conduc-

tivity e are diagonal tensors in Cartesian coordinates, the first Maxwell equation has the

form,

curl(H) = (iwe. + 0 3 )E,•, + (iwe, + av)Eu,4

+ (iwe, + o.)Eii (4.1.4)

However, if the stimulating electric vector has only an x component, then the same is true

of the reflected, induced, and transmitted radiation, and, thus, we may assume that within

the slab that this is also true. Hence, we assume that within the slab,

A = g(z)ezp(-iwt)e_ = E.e, (4.1.5)

Since then

curl(f) - - ! (- ) E, = - iwHF(4.1.6)

we conclude that

Hy = i 8E. (4.1.7)

Using (3.4) we conclude that

curl(H) = e '-, Hy (4.1.8)
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which implies that
curl(H) =

8 wi~ 8*2]

i + O=.)£= (4.1.9)

Thus, multiplying all terms of this last equation by iwjA -e see that

8*2 pyV(Z) OZ

S(-W2Yves + iWI#fa)E,• (4.1.10)

We are, therefore, seeking an impulse response of the equation,

S)E,8z'--' jjoeoE=

Y I)E,_ + (W2(poeo -#=)+ iWpya")E= 41.1

We introduce the variable

T 2 P~ex - iWjAtrO - w2Poeo, (4.1.12)

where we agree that e, p, and er take their free space values outside the slab, and assume

that E - E' has the form,

E - E = c rEexp(-iko I z - i•,)di

bL (,4)(i) OE, 41.3
Sb-ep(-iko i I )d (4.1.13)

where we write the global magnetic permeability via the relationship

A,(z) = (Y(z) - Y(z - L))(Ay1 - po) + po (4.1.14)

where
Y~z)l 1ifz >_0

Y(z){1 (4.1.15)
0 if z<0

is the Heaviside function and

Y(')(z) = 6(z) (4.1.16)
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is the Dirac delta function and where we think of p as the permeability at any point and

think of A as the value of permeability inside the slab. Thus, with this definition and

recognizing the tangential component of the magnetic field as being proportional to the

reciprocal of the the magnetic permeability times the derivative of the electric vector with

respect to z in view of the relationship

i OE,
w41y Oz

and seek a representation of the form,

E- - E' = c rEexp(-iko I z - , I di

+b J (P ' exp()• i)ko I z - i I)di

o PIP)E
+b 1- gko) / -' (O)exp(-ikoz)

- b (i '11) 2E- (L)e (iko)x(-ikoL) (4.1.17)

Theorem 4.1 If E. satisfies (4.1.17) and E. is twice continuously at points inside and

outside the slab, then (a) outside the slab E - E4 has the representation

Ct ezp(ikoz) for z < 0

E - E' = (4.1.18)

Ct ezp(-ikoz) for z > L

where Cr is the reflection coefficient, and Ct is the coefficient defining the transmitted

radiation (c) if a function E, that is differentiable inside and oJside the slab satisfies the

integral equation, then E. is continuous on the entire real line, and furthermore, if H - H'

is determined from (4.1.17) via the relationship

H-H'= 1 rE,,exp(-iko(z - �)di.

+ 2 ' jrEL ep(-iko(i - z)di
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+ -~exp(-iko(z -i))di

+ L _& Z T ez-p(iko(i - z))di

+ i (1 _ (O ) /Oxz (0)e.Tp-ikoz)

+ (1 - ) -- v(L)exp(ikoz)exp(-ikoL) (4.1.19)

and H - H' is continuous across the boundaries of the magnetic slab. Furthermore, the

classical solutions of the integral equation (4.1.17) are solutions of Mazxoell's equations

provided that
j

b =(4.1.20)
2ko

and

c -(4.1.21)

Proof. Equations (4.1.20) and (4.1.21), which represent the evaluation of the parame-

ters in the integral equation (4.1.17) follows by substituting (4.1.17) into Maxwell's equa-

tions. We begin by computing the first and second par~ial derivatives of E, with respect to

z from the integral equations and we then use these expressions to show that (4.1.20) and

(4.1.21) are needed in order that Maxwell's equations be satisfied. We find, upon breaking

up the integral from 0 to L into the integral from 0 to z plus the integral from z to L and

differentiating, that
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OE OE'
Oz crE. - c~rE.,

c(-iko) J0 TEexp(-iko(z - di

IL
c(iko)T1 E,,exp(-iko(i - di

4 2-E--= -b" m~'OE, li +

p~z M yO,
Hko(*b P ýexp(-iko(z - i)di

.4-(ko~bf ( P -014exp(-iko(i - z)di

+(-io~b - P !-'(O)exp(-ikoz)

-(iko)b - PL) 'E'(L)exp(ikoz)exp(-ikoL) (4.1.22)
8,L) z

We now take the derivative of both sides of this last equation with respect to z obtaining

092E a2EP

c(-iko)2 To E~exp(-iko(z - i))di + (-ikO)crE2.

- (iko)crE,, + c(iko )2 fL TE,,exp(-iko(i - z))di +4

(-iko)bIYz OE. I i=x +(_k) b p1  OE exp(-iko(z - i)di +

ITI~) OE. L

-(io~ Y i= +(-iko)2b ~ exp(-iko(.i - z)di

+(-iko )2 b (1 - PO:J ) x(o) exp(-ikoz)

- (iko )2 b ~1 - PL) !0 -(L)exp(ikoz)exp(-ikoL') (4.1.23)

We now make use of the fact that

-(E- E') = -k-0 {'I rEzexp(-iko I z - i I di
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+b o !exp(-ikz I z -. I)di

+b(It - P0)) M-x-"(O)exp(-i koz)

AYo) OE z .

-b__ 1E - O (L)exp(Ikoz)ezp(-ikoL)} (4.1.24)

and substitute it into our equation for the difference between the second partial deriva-

tives of the stimulated and incident electric field vectors. Rewriting (4.1.23) to make this

substitution transparent we see that

02E 0 2E'

- (ko) 2 {c frEep(-iko(z - i))di

+ c frE.ezp(-iA,,)(i - z))di

"+ bl' '( -exp(-iko(z- i)di

"+b] b f . --- exp(--iko(z - z)di

+ b - A -(O)ezp(-ikoz)

-b 1 -) PO -tE(L)exp(ikoz)exp(-ikoL)}

- 2(iko)crE,, + 2(-iko)b (? 0 (4.1.25)

p (z) Oz

Simplifying the above equation we find that

82E O 'E - (E -

aZ2 az2 - O E

- 2cikorEý - 2ikob ,z (4.1,26)

We next simplify this equation by making use of the fact that the electric vector, E!,

of the incident radiation satisfies the free space Helmholtz equation

C12Ei-ýT + k'oE' = 0 (4.1.27)
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Substituting this into the previous equation we find that

02E. 2E-jz--2 + k0o,

- 2cikorE - 2ikob )O (4.1.28)AV(--) (9(.128

We now need to select c and b in the above equation so that the equation is identical

to equation (4.1.11) where r is given by

7 = ex - iwyf, - w 2 poeo

= - ko2 = k2 - w 2POeo (41.129)

We see that we need

- 2ikob = 1 (4.1.30)

and

2ikoc = 1 (4.1.31)

In order to define the operations we note here that, while it is true that we cannot in

general multiply distributions, certain orders of distributions can act upon spaces larger

than the infinitely differentiable functions. For example, order 0 distributions can act on

the continuous functions with compact support, and order one distributions can act on the

differentiable functions with compact support, et cetera which will enable us to define the

product of an order 0 distribution u and a continuous function f by the rule,

(uf,4) = (u,f 0) (4.1.32)

where 6 is a test function. However, the function uf is not a general distribution, but is

a continous linear functional on the space of continous functions with compact support.

The integral equation is then dervcd by recognizing that in view of equation (4.1.9) that

, 2E . + k2E. =

- iwp')(z)H, - r (4.1.33)

By convolving the fundamental solution of the left side of this equation with the right

side we obtain the integral equation. Since, as we have shown ([7], [22]), every solution
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of the integral equation is a solution of Maxwell's equations and the solutions of the inte-

gral equation satisfy automatically the Silver Mueller radiation conditions and tangential

components of the electric and magnetic vectors are automatically continuous across the

boundaries, the solution of the integral equation is necessarily the solution of Maxwell's

equations. Since the solution to this electromagnetic interaction problem is unique, the

function space under consideration is the space of functions which are, along with their

derivatives, continuous up to the boundaries. When the slab is nonmagnetic, then unique-

ness may be proven in the function space ([22], pp 69-130) consisting of all vector valued

functions 4, such that .1012 dv + ] cu()12
+ curl() dv < (4.1.34)

5 DISCRETIZATION

To approximate the integral equations on a computer with a finite memory, we divide

the slab with which the radiation is interacting into thin wafers separated by planes whose

normals are perpendicular to the planes defining the boundaries of the slab.

5.1 Piecewise Linear Approximation

Wc consider approximate integral equations of the form

E(z)- ET(z) =

~ A, + B,(y -z;ý)}K(z, y)dy +

zJ ' 13,L(z,y)dy +
.j=- I,)-'

F(z)BI - G(z)BN (5.1.1)

where we suppose that the numnbers zj arc defined by

0 = Zo < z, < ... < z_ < z4 < ... < ZN 7:= L (5.1.2)
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and that within the subinterval (z,-, z,), the electric vector is approximated by

E = (A, + B,(z - z))',,(5.1.3)

where the constants Aj and B, contain the ezp(iwt) time dependence. We have a separate

equation for each value of z. At this stage there are several methods to obtain a matrix

equation from this continuum of approximate equations. One obvious method is point

matching by selecting two points (2j-1 and C2. in the subinterval [z_,., z,]. This gives us a

system of 2N equaticns in 2N unknowns, which have the form

E(Cu_.,+,))- E'((2-.q+t) =

At + Bt((u2-q+1 - z) - E'((2-9+1) =

S' (A, + Bi(t - z*)} K(C21 .q+i, y)dy +

j=l XJ-1 BjL(( 21 ..q+i,,y)dy +

F((2-9+1)BI- G(0(2-q+1)BN (5.1.4)

Defining
1 i = (5•15)

We now use the delta function notation to rewrite the previous equation to make it look

like a matrix equation. We find that

N

b(j) {Ai + B,(2t-q+1 - z;))

N- : Aj K((,2-q÷l,,Y)dY +
j=1 -

Bj (y - zj*)K((2e-,+I, Y)dy -

NEb(j,I)vjr((21-q+l) +

N

,b6(.,1)BiG((2C-q+1) = E'((2t-q+l) (5.1.6)
j=1

We now represent this last equation in the matrix form
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A1  E'(C1 )

B1  Ei(V2)

A2  Ei((3)

B2  E 4
T . T•= .(5.1.7)

T V

AN E'(C2N-I)

BN E'(C2N)I

We now describe the entries of the matrix T. Note that if we define

{A, p =0{3-i+= B (5.1.8)

that then the system of equations may be expressed more compactly in the form

~ (+>. V21 21 + 10
Ei(•2tq+1))(5.1.9)

where qe {0, 1). If p = 0, then for each qe {0, 1) we have

To~t-• q,2j-I+p) = 6 (j,.) - K((21-,+1, y)dy (5.1.10)
4-1

On the other hand if p = 1, then again for each qe (0, 1) we have

T(2f-1+9.2j-1+p) = 6 (m,)(C2t-o+l - Z;)

- J K(C2e_, +)d' L(C21-, +1, y)dy

- 6(j,1)F(C21t-.+l) + 6 (,,N)G(C2*-q+1) (5.1.11)

Therefore, the solution of the matrix equation (5.1.7)

T1 = fi (5.1.12)

then gives parameters in an approximate representation of the electric vector of the induced

electromagnetic field.
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6 Surface Integral Equation Methods

In this section we shall show how in the case where the irradiated structure consists of

homogneous regions which are delimited by diffeomorphisms of the interior of spheres in

three dimensional space to represent the solution of the scattering problem as the solution

of two combined field integral equations with integral operators formed from from the

Green's functions defined on opposite sides of the separating surfaces. The surface integral

equation methods reduce the computational complexity in the sense that they require

discretization electric and magnetic fields defined on a surface rather than on a region of

three dimensional space.

6.1 Combined Field Integral Equations

Consider a set 11 in R' with boundary surface aSI on which are induced electric and

magnetic surface currents i; and AMi. If we have a simple N + 1 region problem, where we

have N inside and a region outside all N bounded homogenous aerosol particles corresponds

to the region index j being equal to 1 and the region inside corresponds to j values ranging

from 2 to N + 1, then if the propagation constant kj in region j is defined also by a function

kj, naturally defined on a Riemann surface as the square root of,

k =w'pe - iwpu (6.1.1)

For a Debye medium (Daniel, [10]) the branch cuts are along the imaginary u; axis. For a

Lorentz medium particle (Brillouin, [3], [32]) the branch cuts are in the upper half of the

complex w plane parallel to the real axis. where M, e, and a are functions of frequency

that assure causality and that the radiation does not travel faster than the speed of light

in vacuum. There are two Helmholtz equations, one for the interior of the particle and the

other for the exterior, defined by

(A + k )G, = 47rb (6.1.2)
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where Gj is the temparate, rotationally invariant, fundamental solution ([19]) of the

Helmholtz operator. We let

J1 = J = J2  (6.1.3)

and

MA =M= -M 2  (6.1.4)

where we assume that the surface 3ij) separates region 1 and region 2. We generalize

equations (6.1.3) and (6.1.4) inductively by saying that for any surface S(, 3 ) separating

region j from region J where

<(6.1.5)

we have

J3 = J = -J; (6.1.6)

and

Mj=M= -AMl (6.1.7)

We define

t = {(j,.i):S(.jt) is a separating surface) (6.1.8)

where j is less than j. We get a single coupled, combined field integral equation which

describes the interaction of radiation with the conglomerate aerosol particle or cluster given

by

fi E'c =(C) (pi. G,(,.f) + G;(r, F)) da(F)

"+ - grad { j J(div,. J) "G(r, F) + G; (r, )l da()d +41rw f£; jJ ''J
(1) curl ( ;J i).(G,(r, F) + G;(r, i)) da(f)) (6.1.9)

In addition to equation (6.1.9) we need equation involving the magnetic vector Hinc of the

stimulating electromagnetic field which is given by

n xH'• = nx E) j MJ ()(w.j(r,f) + t2.Gl(r,f))da(f)
(jEI .)Is1,;)
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+ ( )grad {L J(div, .M)[A (, ) + GI(r, i)]da(f)} +

cu(rl Jib) (Ga(r, F) + G;!(r, F)) a(r)) (J1.0
Once the coupled combined field system (6.1.9) and (6.1.10) is solved for Y and 9iA, the

surface electric and magnetic currents respectively and we define the surface electric charge

density by ([11], p 7)
ieF [div,. - (F)] ( .. 1

and the surface magnetic charge density

pm iF) [div,. -'(9)] (6.1.12)

where div, is the surface divergence. Now for each region index j we define

5(j) = {:( E . )I, } (6.1.13)

where ." is the set of all indices of separating surfaces defined by (6.1.8). We now need to

be able to express the electric and magnetic fields inside and outside the scattering body.

We first define the vector potentials Ai and Fj by the rules, ([11] [25])

A j ' [7r JSj)i J(f9 Gj (r, f )da(F)] (6.1.14)

)J ]M#() G(r,)da(f)] (6.1.15)

The scalar potentials are defined in terms of the electric charge density (6.1.11) and mag-

netic charge density (6.1.12) by the rules,

= [Gy~) I i (f)GI(rf)da(r)

and

=jF ;ij)(47rA, )L pJ P(F)Gi(r~if)da(f)] (6.1.17)

We now can define the electric and magnetic vectors inside the region j in terms of these

potentials (b.1.14), (6.1.15), (6.1.16), and (6.1.17) by the rules,
S= - iwt,(r) - grad(4Zj(r) + lcurlt()(r) (6.1.18)

ej
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and

H - wiFj(r) - grad(%P'(r) + -curl(A4j)(r) (6.1.19)
jLi

Similar equations apply outside the body, by there the fields represented are the differences

El and H/' between the total electric and magnetic vectors and the electric vector E'lc and

the magnetic vector Hine of the incoming wave that is providing the stimulation. Thus

([111) we see that outside the body,

El - iwA4,(r) - grad(C1(r) + -curl(A-1)(r) (6.1.20)

and

Hil - iwfA(r) - grad('I(r) + lcurl(,4)(r) (6.1.21)

These equations generalize the formulation of Glisson ([111) to a three dimensional struc-

ture whose regions of homogeneity are diffeomorphisms of the interior of the sphere or a

torus in R3. If the scattering structure is not a body of revolution, then the region may be

a diffeomorph of an N handled sphere.
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FORWARD SCATTERING AND SIZE PARAMETER IN LAYERED SPHERICAL
AEROSOL PARTICLES
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ABSTRACT

We investigate the scattering amplitude, phases, and Mueller Matrix Elements of polarized
light scattering off a layered aerosol particle, with the goal of finding which combinations of
the above quantities are most sensitive to the existence and thickness of a layer, the size of
the particle, and the iemaining optical parameters of the particle. Particle size parameters
considered are 1 to 25; layer thickness 0 to particle size, indices of refraction from 1.33 to
2.50 and scattering angle from 0 to 180 degrees. Tunable lasers are proposed to enable
scanning over the size parameter of a given aerosol droplet. Plots of the scattering
amplitude, and Mueller Matrix elements for selected cases are shown, and conclusions are
drawn.

KEYWORDS

layered aerosols, inverse scattering problem, forward scattering, intensity, Mueller matrix
elements

INTRODUCTION

We have been investigating the information content in the scattering amplitude and Mueller
matrix elements obtained from light scattering data. Our goal is to determine parametric
quantities which will be used as input to reduce the inverse scattering problem. This
problem is particularly difficult in real 11f, as noise is present in the experimental data. At
present the statistical decision method proposed by Hu and Lax (1992,1991,1990), has been
shown to provide reasonable, albeit computationally intensive solutions. In their analysis all
data is given equal weighting, and computations are performed on all possible values of the
parameters in the system. The decision theory approach of Neyman and Pearson (1933), is
used to determine the most probable parameters from njaximum likelihood ratios. As all
possible parameter space needs to be searched, the method is time intensive, due to the
large number of unknowns for which a likely guess has to be made. Our goal is to consider
whether a limited set of the data could be used to determine uniquely, or provide limit
boundaries, on some of the parameters of the system. The number of unknowns, and
therefore the computation time, will thereby significantly reduced, resulting in increased
accuracy of the results. In plotting the scattering amplitude and the Mueller matrix elements

NRC - Senior Research Associate USA CRDEC/A1TN:SMCCR-RSP-B APO, MD 21010-5423
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as a function of various parameters of the system, with a fixed incident wavelength, due to
interference effects, a unique inversion is not easily observed. IHowcver, by using variable
wavclength lasers, and thereby scanning the size parameter for a fixed size particle, one can
average over many of the short scale resonances, thereby readily obtaining unique
information on the particle - specifically particle size, and a relationship between the other
parameters of the system.

SCATY'ERING INTENSITY, AND MUELLER MATRIX ELEMENTS M1 2,
AND M 34

For illustration purposes, in this short report, we show the plots [Fig.la-ld] for a
homogenous sphere, index of refraction n - (1.33, 0.0), and [Fig.2a-2d] for a layered sphere,
ncor ý= (1.33,0.0), and ntay, = (1.55,0.0), with rcoreirpan, i. = 0.8. The 3D-plots [Figs. 1,2]
are of the parallel [Figs. la,2a) and perpendicular [Figs.lb,2b] scattering amplitude and the
Mueller matrix elements m 12 [Figs.lc-2c], and m34 [Figs.ld,2d], for size parameter vs.
scattering angle. A regular periodicity is readily observed, in all of the above figures. Fig.3
shows the forward ( 0° ) scattering amplitude vs. size parameter for the above two cases.
The dotted lines are an unweighted 9 pt. average (the center point, and 4 points on either
side.) We observe that the relatively rapid osci!lations are damped, and the linear and
sinusoidal dependences are emphasized. The existence of sinusoidal dependences for
homogenous spheres is well known (Bohren and Huffman, 1983). Similar sinusoidal
dependences for layered spheres are observed. The period of the oscillations, in a manner
similar to the homogenous case, is given by the phase difference due to the difference in the
optical path lengths:

(27r]X)(rpmriia(ni.)w--.nwje,,l)-- rc~o•(niayer--ncore))=- 7r

The linear dependence of the averaged amplitude with respect to size parameter is
independ:.t of the indices of refraction, and the existence (or lack thereof) of a layer. In
Fig.4 the scattering amplitude of homogenous spheres of n - (1.33, 0.0), n - (1.55, 0.0) and
n - (2.50, 0.0), and of layered spheres of n,., - (1.33, 0.0), with n,, " (1.55, 0.0) and
nl.y,.r - (2.50, 0.0) are plotted. The mathematical model deriving this results will be
presented in a forthcoming paper.

CONCLUSIONS

Using a tunable wavelength laser and looking at the forward scattering amplitude, we can i)
obtain the size of the particle from the amplitude, and ii) obtain a relationship between the
parameters of the particle from the period of the sinusoidal variation.
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Figs.(1-2] [Fig.la-ld) for a honmogenous sphere, inde~x of refraction n (1,33, 0.0), and [Fig.2a-2dj for a
layered sphere, n.,, - (1.33,0.0), and n, - (1.55,0.0). with ~ 0.8. [Figs. 1,2] are of
thc parallel [Figs. la,2a] and perpendicular [Figs.1b,2bJ scattering amplitude and the Mueller matri'n
elements in 12 [Figs, Ic-2c], and m,4 [Figs. Id,2d], for size parameter vs. scattering angle.
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ABSTRACT

Can a very limited number (5-20) of polarized light scattering measurements from spherical dro-

plets be inverted to obtain a radially varying index of refraction m (r)? No! But if we are res-

tricted to deciding between a uniform droplet and one with a shell-like structure (described by

only two indices of refraction) the answer appears to be yes even in the presence of noise!
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1. Introduction

The full inverse scattering problem requires that polarized light scattering from a spheri-

,c.al object be used to determine the complete dependence of the index of refraction m (r) on

radius r. This requires an enormous amount of highly accurate data. A more feasible question

when only a small amount of (noisy) scattering intensities are available is this: are we observing

a sphere or a shell?

This restricted problem is still non-trivial because one must estimate indices of refraction

and radii before applying decision (or detection) theory to make the binary decision between

sphere and shell. This problem falls into the area of pattern recognition. But it has the special

difficulty that the light scattering data are highly nonlinear functions of the refractive indices and

radii. Thus the relation between what is observed, and what is to be estimated, is much more

indirect than say in character recognition.

Experiments involve experimental errors, that must be considered in our decision pro-

cess. We shall treat the experimental error as a Gaussian noise.

The possibility of success depends on:

1. The amount of experimental inaccuracy and noise present.

2. The permissible range of parameters (radii and indices).

3. The number of measurements.

The logical procedure is to start with fairly restricted parameters and a small number of

measurements. In this way, feasibility can be established with a modest amount of computer

time. Then one can broaden the permitted range of parameters and determine how much the

number of measurements must be increased to handle the larger number or range of parameters.

In this paper, the outer radius of the shell is held fixed, so that the maximum number of parame-

ters is three. We shall demonstrate feasibility over a fairly wide range of parameters.

Because of the nature of the audience, we shall skip a discussion of Mie scattering by a

liyered sphere, but we shall review some concepts in statistical decision theory even though

some of these were originated by statisticians in the 1930's and carried over into communicatioa

theory in the 1960's.
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2. Statistical Decision Method

We adopt the Neyman-Pearson statistical decision method1' 2 which has also been used in

communication theory 3'4 We have shown that this method can also be derived5 with the help of
Bayes theorem. In the language of decision theory, the null hypothesis, Ho will be identified
with a spherical scatterer. The alternate process, H, will be identified with a shell (a signal).

The Neyman-Pearson procedure, in the language of radar detection minimizes the probability PM
of a miss (choosing H0 where a signal H 1 is present) subject to a fixed ftlse alarm probability
PF (choosing a shell H 1, when only Ho , a sphere, is present). If R is an observed quantity (or a
scalar combination of observations) and P (R I Ho) is the conditional probability for R given
hypothesis (or source) Hs, then the false alarm probability can be written

00

PF = P (R I Ho)dR = a (1)

and the value cc is the constraint. Here X, the threshold value for R above which a "hit" or H 1 is

chosen, is determined using Eq. (1). The Neyman-Pearson decision criterion is simply

if A (R) > X choose H1  (2)

if A (R) < X choose Ho (3)

when A (R) = P (R I HO) (4)
P (RH 1H)

A choice for the statistic R follows in a natural way from our two-stage procedure of first

estimating a parameter set il. [ Y10 = radius r3, index m for the sphere, 1' = inner radius r ,,

outer radius r 2 , inner index m 1, outer index m2] and then making a binary choice. An estimate
1 h is made for each hypothesis h = 0, 1 by using a least square fit:

M.
vh=mnln[h •[i (OJ,,9* )_i(O,,11h)]2 (5)

J
Here i (0j, i h ) represents the theoretical intensity at angle 0j for parameters 9 h . A polarization
index has been suppressed. In the present paper, intensigies at two polarizations are used. In the

future, these Mueller scattering coefficients can be calculated (and measured) at each angle.

Also, i (0j, Tj*) represents the measured experimental intensity
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i(Oj, Tr") = i (0j, j*) + nj (6)

appropriate to an unknown parameter set rl* in the presence of the noise nj. In this paper, the

experimental results are emulated by a Monte Carlo procedure in which the parameters il* are

selected at random over the range of allowed parameters, and Gaussian noise n, is added whose

root-mean-square width is proportional to the intensity:

j = k i (j,*) (7)

with k = 0.1.

A natural choice for the statistical test parameter is

R = log (vo/v,) (8)

"N a better fit is obtained with a sphere, vo will be small, v, will be large (hopefully) and logR

will be negative. If a better fit is obtained with parameters iq for a shell, then v, will be small

and vo will be large (hopefully), and logR will be positive. Thus the Neyman-Pearson pro-

cedure, Eqs. (2-4), can be approximated by the simpler procedure

if R > 0 chooseH 1 H if R < 0 choose Ho (9)

3. Monte Carlo Procedures

In order to establish the feasibility of our procedure, we shall perform Monte Carlo calcu-

lations to determine the distribution of values of R when the source is a sphere, and when the

source is a shell. Before discussing the details, we would like to demonstrate the difficulties

incurred in the minimization performed in Eq. (5). We shall plot the logarithm of the function

that is to be minimized

Fh=log [ i [7OrIH(eojill)]2] (10)

We use the source parameters in 71": m; = 1.515, r;! = 6.98 where X is the vacuum wave-

length and plot Fo for the spherical parameters over the range mn = [1.33, 1.8J, r, IX = [4, 8].

The plot in Fig. 1 displays a large number of closely spaced minima and illustrates the difficulty

of finding an absolute as opposed to a relative minimum. By splitting the range for each variable

into 100 parts, we have obtained the plot for F and located the absolute minimum by brute force.
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This calculation is feasible for one experimental point TI* and 104 choices of il for the spherical
case. It is even feasible for the 106 choices of I for the three parameter shell case. However, we
would like to choose N = 1000 experimental sources and 12 measurements. The number of cal-
culations for the shell then involves at least 12 x 1000 x 106 operations. Even if the Bessel func-
tions have been precomputed and table look up is used, brute force becomes unacceptable.

If we use No points (say 105) to sample the TI space for the special case (2 parameters)
and NI points (say 106) to sample the I space for the shell (4 parameters) the number of calcula-
tions is of order N (No + N1 ). However, if we save intensities, we need not repeat the heavy
Bessel function calculations. Then only the sum of squares need be performed N (No + NJ)
times. Moreover, if we create an array of dimension N to hold N values of v , one for each j*,
then if a given Tn makes a best fit for a fixed TI*, store that TI and v (TI*, Il) and discard all infor-
mation regarding previously used TI's. By this procedure, the storage requirements again
become reasonable.

4. Numerical Results

Bottiger's experimental apparatus 6 has so far only been used on spheres, but we shall
consider uniform spheres with indices in the range m. = [1.33, 1.8] and radii in the range
r,/X- [4, 8] and shells with indices in the range mI = [1.33, 1.55] for the inner region and
M -= (1.6, 1.8] in the outer region. The inner shell radius is in the interval r I/X = [4, 6] with a
fixed outer radius, r 2 /X = 8. All calculations are performed with N = 1000 "experimental"
points. Then the two spherical parameters are sampled with No points and the three shell param-
eters are sampled with N1 points. In Fig. 2, we choose No = NI = 100. The left hand portion of
Fig. I is the histogram N (R) for the spherical case. The right hand portion is the histogram

N (R) for the shell case. The overlap region, near R = 0. is large because our trial points
No = 100, NJ = 100 are insufficient to locate the best minima. A considerable improvement is
shown with No = 104, N, - I= in Fig. 3 and even more in Fig. 4 with N5 = lOS, N f = 106. It

can be seen that measurement of twelve pieces of scattering data (intensities at six angles and
two polarizations) provide excellent discrimination in the present case of two spherical and three
shell parameters.

1J. Neyman and E. S. Pearson, "On the Problem of the Most Efficient Tests of Statistical

Hypotheses," Philosophical Trans. A, 231, 289 (1933)
2M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Volume 2 Hafner Publishing
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Co. New York (1967)
3H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part 1, John Wiley and Sons,

(1968)
4David Middleton, Introduction to Statistical Communication Theory, McGraw-Hill (1960)
5P. Hu and M. Lax, "Quasi-Binary Decision Making Using Light Scattering", in Proceedings

of the 1991 CRDEC Scientific Conference on Obscuration and Aerosol Research.
6Jerold Bot tiger, Proceedings, 1991 CRDEC Scientific Conference on Obscuration and Aerosol

Research (to be published).

M~

Fig. 1. Function F=ln( j [i(01 .Tl*)-i(0j,)l 2 ) is plotted over the permitted parameter space.
i;I

The source intensities i(O,Tj*) are generated from a parameter point for a uniform sphere

m * =1.515 and r* =6.98. The fitting hypothesis is chosen as the correct hypothesis (uniform

sphere), and the permitted parameter range is m,=[1.33,1.8] and rs/X=[4,8]. 100 mesh points

are taken for both m, and r,. This figure displays the difficulty of finding a global minimum

when large size parameters are permitted.
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Fig. 2. The approximate distribution functions for both source cases. The numbers of points
for the two hypotheses in the approximate least square fitting are No=100 and NI=100. This
plot is for 12 meast,rements of two polarizations at 6 angles at 75, 90, 115, 130, 145, 160
degrees and th.i noise level ie 10 percent. The parameter ranges are: m,=[1.33,1.8],
r,/=([4.8] for the uniform sphere and m =[1.33,1.55], m 2=[1.6,1.8], r1 /X=-[4,6] for the lay-
ered scatterer while outer radius r2 /X=8 is fixed here.
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Fig. 3. The same distribution functions as Fig. 2 are plotted with a more accurate minimization
process, using the increased number of points No= 104 and N I=10 5 .
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LIGHT SCATTERING FROM A SLICED TARGET USING THE INTERNAL FIELD OF

INFINITE

CYLINDERS:

COMPARISON WITH MIE THEORY AND A SLICED SPHERE

by

Ariel Cohen, R. D. Haracz* and L. D. Cohen*

Department of Atmospheric Sciences
The Hebrew University of Jerusalem,Israel

and
"Department of Physics and Atmospheric Science

Drexel University, Philadelphia

ABSTRACT

Light scattering from a particle that can be decomposed into circular slices is
calculated by performing a coherent integration of the internal field over the volume of
the target. The internal field in each slice is taken to be the internal field solution of an
infinite cylinder of radius equal to the radius of the slice. It is shown that for a spherical
scatterer, the integration leads to results that are in good agreement with those
predicted by the Mie theory solution. The agreement is, in fact, significantly improved
compared to previous approaches such as the Shrifrin approximation through the
second order.

437



IntoLQdCutioL

An integral equation for the scattered field intensities is used for target
particles of size parameters up to x=1.4 and refractive indices m=1.33 or 1.55. This
integral equation uses the internal electric field to obtain the scattered field, and thus
reduces the problem to a search for the internal field. The history of this approach

begins with the work of Shifrin 1 and Acquista 2 - the first improving on the born
approximation (internal field equal to the ambient field) by introducing the polarizabilty
of the medium, and the latter iterates Shrifrin's first approximation in a series involving
the polarizabilty. Later work by our group extended Acquista's approach to a wider
range of shapes by dividing the target into slices 3 and to an attempt to evaluate the
internal field by a direct evaluaton of the relavent integral equations. 4

The work of refs. 4 though guaranteeing success if the numerical evaluation is
precise, leads to extremely time consuming computation and applications to realistic
problems demands quick and accurate results to be able to deal with random
orientations and multiple scattering effects.

The present work thus focuses on an approach that takes advantage of the fact
that the internal electric field inside an infinite cylinder can be obtained to any degree
of accuracy, and this field can be used for each of the disks that form the wide range of
targets considered in the previous papers (including helices).

We will, in fact, use the internal field from an infinite cylinder two ways to show
consistency and compare the resulting far-field results to the Mie theoretical results for
spheres of size parameters ranging between 0.6 and 1.4 and indices of refraction 1.33
and 1.55. We will show that this apprach is at least as good as the second-order
Shifrin approximation with much quicker computational demands.

Integral equation for scatterirn.

A solution to Maxwell's equations 1 for the scattering of radiation from dielectric
targets is

E(r) = Einc(r) + V x V x JdV' (m2 -1)/4n exp(ikolr-r'I)/Ir.r'I E(r')

+(1 -im2 ) E(r), (1)

where the integration is over the volume of the scattering target. Introducing the
effective field by

438



Eeff(r) = (m2 +2)/3 E(r) (2)

and bringing the operators inside the integral5 gives

Eeff(r) = Einc(r) + a JfdV' (grad div - ko 2) exp(ikolr-r'I)/Ir-r'j Eef(r'),

(3)

Here, the integral is over the target volume excluding an infinitesimal region
surrounding the point r=r', if the field point is within the target. The coefficient a is
the polarizability

a =(3/4n) (m2-1)/(m2 +2). (4)

When the field point is far from the target, eq.(3) reduces to

Eeff (r) = a k0 2 exp(i k0 r) [ JdV' exp(- i k0 r. r') [Eeff (r') ]per (5)

where r = r / r , the integration is over the target volume with no singularity si&ce r
is outside the volume and [I Jper indicates that the component of the vector within the
square brackets is to be taken in a direction transverse to the direction toward the
detector. Thus, the far field determined from eq. (4) depends on the effective field
within the target, which by (2), depends on the effective internal electric field, and r' is
the vector of an arbitrary point within the target.

Models for the evaluation of the intergral equatlon.

As in our previous work, we treat targets that have a symmetry axis and
possess a circular cross sectional area perpendicular to this axis. The target in this
paper will be a sphere since Mie theory exists to test the model, and we will take the
scattering plane (plane formed by the directions of incidence and scattering) to be
parallel to the plane of the disks that form the sphere, as shown in Figures 1 and 2.

Two methods are used to calculate the scattered field. Method I is a
calculation of the scattered field for a spherical target sliced Into 19 disks (10 different
sizes), each of which contains the direction of propagation of the incident wave, The
polarization of the incident wave is taken to be either parallel or normal to the disk.
The scattered electric field is then constructed from a coherent sum of the scattered
fields from 19 infinite cylinders ( intensities are per unit length) having
radii corresponding to the 19 disks that form the target . It should be noted that the

infinite cylinder theory for the scattered field has been used in this way in the past to
predict the scattering of particles of helical shapes and the results were in good
agreement with the measurements [3].
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The second method is a ca!culation of the scattered field using the
internal fields obtained from the infinite cylinder theory for each of the 19 disks and
summing these using the above integral equation (5). A comparison is made with the
results from method 1. The basic difference between the two approaches is that in
method 1 the scattered field is derived trom the far-field Eq values alone , whereas in
method 2, [Eeff (r')]Per inside the particle is dependent on the corresponding

projections o' E. and Er inside the target in a direction perpendicular to r for

polarization within the scattering plane. In the case of polarization perpendicular to the
scattering plane, only the z component of the internal field need be taken.

The internal field that is used in eq. (5) when the incident electric field is linearly
polarized parallel to the axis of a disk is (TM wave) :

Eint(r') = i expi(wt -koz') E._, +00 dn (_i)n exp(inO') mko/r' Jn'(komr') k,

(6)

where for incidence perpendicular to the z axis 6

dn =[Jn(koa)Hn( 2 )'(koa) - Jn'(koa)Hn( 2 )(koa)]/

[m Jn(koma)Hn( 2 )'(koa) -mJn (koma)Hn( 2 )(koa)].

The internal field when the' incident electric field is linearly polarized perpendicularly to
the axis of the disk is (TE wave):

Eint(r') = expi(wt -koz') Y'- +Z00  Cn (_i)n exp(inO')[ in/r' Jn(kor') r' -

in (komr') 0],
(7)

where

cn =[Jn(koa)Hn( 2 )'(koa) - Jn (koa)Hn( 2 )(koa)]/

[m2 Jn(koma)Hn( 2 )'(koa) "Jn'(koma)Hn( 2 )(koa)]-

Here, r' and 0' are unit vectors in the plane of the disk as shown in
Figure 2. All summations can be replaced by summations from 0 to infinity so
that Er will be dependent on sin(nB') and E. on cos(nO'). The two methods discussed

above were compared with the results of the Mie theory for the corresponding
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spherical scatterers.

Conclusions,. •

The scattering intensities are defined by
I= ko2 r2/iEo12 JEscI2,

where Esc is the scattered electric field. The scattering matrix elements
S 11 = (Ipar + Iper)12, $12 = (Ipar" -per)/2

are then caluculated, where "par" and "per" refer to the direction of incident
polarization being in and normal to the scattering plane, respectively. These are
shown in figures 3 - 10. The first 6 are for m=1.33 and a size parameter
x = ko a=0.6, 1.0 and 1.4, where "a" is the radius of the sphere. The final figure has

m= 1.55 and a size parameter x= 1. We see that the agreement between the two
methods of calculation is almost perfect, thus showing the consistency of the approach
using the integral of eq. (4) and taking a coherent sum of the far field effects from all
the disks that composed the spherical particle. The agreement with the results of the
Mie theory is also quite good, where differences at the larger scattering angles begin
to show for the larger size parameters.

The final figure is included to make a comparison with the Shrifrin method as
extended by Acquista (Ref. 3). The scattering intensity S11 obtained by our present
approach is significantly better than the second-order result contained in Reference 3.

The results of this approach, suggest that the angular scattered intensities can
be calculated with a high accuracy for all particles of arbitrary shape which can be
sliced into circular cylinder sections. For example, the scattering properties of rain
droplets, whose shape is approximately that of a teardrop, by radar waves can be
studied with the above theoretical tools.

This research was partially supported by research grants from the US Army
CRDEC at Aberdeen Proving Grounds.
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APPENDIX C

TECHNICAL AGENDA

MONDAY, 22 JUNE

9:00 Registration

9:50 Opening: Dr. Edward W. Stuebing, Coordinator, CRDEC

Welcome: Dr. H. Dupont Durst, Acting Chief Scientist, Research Directorate

Announcements: Mr. Elmer H. Engquist, Battelle Edgewood Operations

I. AEROSOL DYNAMICS - Moderator: Glenn Rubel

10:10 M. Seaver, R. Peele (NRL) and G. Rubel (CRDEC), The Dynamics of Water Drop Encapsulation by
Octadecanol Monolayers

10:30 J.R. Brock (Univ. of TX/Austin), Quasi-Molecular Calculation of Complex Droplet Dynamics

10:50 M. Sitarski (Kentucky Wesleyan College), Co-condensation of Vapors of Large and Small Molecular
Weights

11:10 H. Lifttnan and M.H. Morgan IIl (RPI), The Effect of Electrostatic Forces on the Pneumatic Transport
of Aerosols Flowing Through Pipes

11:30 Z. Zhou, R. Shafer, B. McCloud and D. Reidy (Geo-Centers, Inc.), Electrostatic Smoke Clearing in a
Confined Volume

11:50 LUNCH (Sign up for dinner at Josef's)

1i. AEROSOL CHARACTERIZATION METHODS

lF A. NEPHELOMETRY AND INVERSION - Modw.rator; Jerold Bottiger

1:15 A.H. Carrieri, J. Jensen and J. Bottiger (CRDEC), Measured Characterization of Randomly Rough
Surfaces by IR Mueller Matrix Scattering

1:35 D.R. Alexander, R.D. Kubik and E. Bahar (Univ. of NB/Lincoln), Use of a New Polarimetric Optical
Bistatic Scatterometer to Measure the Transmission and Reflection Muller Matrix for Arbitrary Incident
and Scatter Directions

1:55 ff.H. Leong, D.J. Holdridge and M.R. Jones (Argonne), Performance of a Polar Nephelometer

2:15 M.R. Jones, K.H. Leong, B.P. Curry and Q. Brewster (Argonne), Inversion of Light Scattering
Measurements for Size and Refractive Index

2:50 BRIFAK (Signe jp for dinner at Josef's)

3115 E. Fry (Te:,?. 6.0&/1 '.rtiv.), Angular Scattering At and Near Zero Degrees

3:35 M. Lax and Po h.j (CC(NY), Ouasi-Binary Decision Making: An Updata
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MONDAY, 22 JUNE (cont.)

II. AEROSOL CHARACTERIZATION METHODS (con't.)

II A. NEPHELOMETRY AND INVERSION - Moderator: Jerold Bottiger

3:55 D. Cohoon (Geo-Centers, Inc.), N.M. Witriol (LA Tech Univ., NRC Fellow @ CRDEC) and 0.1. Sindoni
(CRDEC), Determination of Layered Aerosol Particle Prcperties from Scattering Data

4:15 M. H. Lee (Univ. of Georgia), Kramers-Kronig Relations in Optic Data Inversion

4:35 ADJOURN (Suggested restaurant for dinner: Josef's)

II ~TUESDAY, 23 JUNE I
II B. IMAGING OF MICROPARTICLES - Moderator: Michael J. Smith

8:30 D.R. Aloxander, S.A. Schaub, J. Stauffer and J. Barton (Univ. of NB/Lincoln), Femtosecond Imaging
and Glare Spot Observations for Small Aerosol Particles

8:50 S. Arnold (Polytechnic Uiiv. of NY), Aerosol Particle Microphotography

9:10 L.M. Folan (Polytechnic Univ. of NY), Morphologically Dependent Imaging Using Enhanced Energy
Transfer

9:30 E. Allison, B.R. Kendall (Penn State Univ.), B.V. Bronk (CRDEC) and D. Weyandt (Penn State Univ.),
Manipulation of Microparticles in Multiphase Levitation Traps

9:50 BREAK (Sign up for Dinaer at Hausners)

II C. SPECTROSCOPY OF SINGLE PARTICLES AND AEROSOLS - Moderator: Burt Bronk

10:10 M. Essien, R.L, Armstrong (NMSU) and J.B. Gillespie (ASL), Suppression of Morphology-Dependent
Resonances of a Single Levitated Laser-Irradiated Microdroplet

10:30 M.D. Barnes, W.B. Whitten (ORNL), J.M. Ramsey and S. Arnold (Polytechnic Univ. of NY),
Fluorescence Emission Rates in Levitated Droplets

10:50 C.J. Swindal, D.H. Leach, R.K. Chang and K. Young (Yale Univ.), Precession of Morphology-Dependent
Resonances in Nonspherical Droplets

11:10 S.D. Christesen, M.S. DeSha, A. Wong (CRDEC), C.N. Merrow, M. Wilson and J. Butler (STC), UV
Fluorescence Lidar Detection of Biological Aerosols

11:30 B.V. Bronk, M.J. Smith (CRDEC) and S. Arnold (Polytechnic Univ. of NY), Fluctuations in Scattering
and FluoreE ;e Due to One or More Subparticles in Micron Size Droplets

11:50 LUNCH (Sign up for dinner at Hausners)
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TUESDAY, 23 JUNE

S ............ o..............I.,.....,.,,............................ I........ ,..................... ................................. I ................. I ............ ......... .............. , ,,.°...... I...... .I .............. ... ,...,,....... .. •....,I ........ ,.., ......... ,......... .. ,

WORKSHOP - CARBON PARTICLES FROM HYDROCARBON FIEDSTOCKS *
, .,............ ,.......................... ................. .... ...... , .......... .. , .,.,,............I...... ....... ,,,.- ....... ....... ,I ........ .. ..... , ..... , ,, .. ....................,,,........ ..°,.,. . . .. *.................. ........ .,,,° ,

1:15 C. Clausen, III (Univ. of Central Flordia), P. Morgan (Environmental Technology, Inc.), G.
Hermann and Teresa Resetar-Racine (CRDEC), Carbon Particles from Hydrocarbon Feedstocks

1:35 J.R. Brock (Univ. of TX/Austin), Problems in Generation of Carban Smoke from Light Fuels

1:55 To be determined

2:15 To be determined

2:35 BREAK (Sign up for dinner at Hausners)
............................ I ........... I......................................................I............ - .........................................................................., ........................................................ ..........,.......................

II. AEROSOL CHARACTER!ZATION METHODS (cont.)

II C. SPECTROSCOPY OF SINGLE PARTICLES AND AEROSOLS - Moderator: Burt Bronk

3:15 J.D. Eversole (PPI), A.J. Campillo and H.B. Lin (NRL), CW Stimulated Raman Scattering in
Microdroplets

3:35 A.S. Kwok and R.K. Chang (Yale Univ.), Fluorescence Seeding of Stimulated Raman Scattering

3:50 P.G. Chen, D.Q. Chowdhury and R.K. Chang (Yale Univ.), Lasing Emission from Descartes Ring with
Multiple-100 ps Pulses

4:05 J.L-C. Cheung, K. Juvan, D. Leach and R.K. Chang (Yale Univ.), Stimulated Kerr-Broadened Scattering

from Droplets

4:20 D. Pack, A. Pluchino and D. Masturzo (Aerospace Corp.), Emissivity of Single Levitated Particles

4:40 ADJOURN (Suggested restaurant for dinner: Hausners)

WEDNIESDAY, 24 JUNE

II D. INTERNAL STRUCTURE - Moderator: Michael J. Smith

8:30 R.G. Pinnick, A. Biswas (ASL), J-G. Xie, T.E. Ruekgauer and R.L. Armstrong (NMSU), Scattering in
Millimeter-Sized Glycerol Droplets

8:50 RiL. Armstrong, J-G. Xie, T.E. Ruekgauer (NMSU) and R.G. Pinnick (ASL), Energy Transfer in
Microdroplet Lasers Seeded with Fluorescent Sol

9:10 D.Q. Chowdhury, M. Mazumder (Yale Univ.) and S.C. Hill (ASL & NMSU), Absorption and Gain
Coefficient of Inhomogeneous Spheres

9:30 A.J. Campillo, H.B. Lin, A.L. Huston (NRL), P. Chylek (Dalhausic Univ.) and J.D. Eversole (PPI), Internal
Scattering Effects on Microdroplet Resonant Emission Structure

10:00 GROUP PHOTOGRAPH - BREAK
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WEDNESDAY. 24 JUNE

,... .o... ....... ....... I............... ................................................... I ...... ............ I....... ... .. . ..... I........ ... -.. ............... ....... . .. ................. , ... ... ,............... ............. I.................. I.................... .

10:45 OVERVIEW & DISCUSSION: DIRECTIONS FOR FUTURE RESEARCH IN THE CRDEC AEROSOL SCIENCE
PROGRAM - E.W. Stuebing (CRDEC)

11:50 LUNCH

II. OPTICAL PROPERTIES; OF AEROSOLS - Moderator: Orazio I. Sindoni

1:15 A. Ben-David (STC) and M.L.G. Althouse (CRDEC), IR Lidar Returns from Cylindrical Graphite Aerosols

1:35 D. Cohoon (Geo-Ceriters, Inc.), Scattering of EM Radiation, by Materials with Tensor Properties--
Predicting Scattering by Irregular Shapes with Error Correction to the Limit of the Machine's Precision

1:55 JR. Brock and N.K. Choi (Univ. of TX/Austin), On Feasibility of Numerical Calculation of Light
Scattering and Absorption by Particles

2:15 J.P. Barton, D.R. Alexander and S.A. Schaub (Univ. of NB/Lincoln), Electromagnetic Field Calculations
for a Beam Focused on a Layered Object

POSTER PROGRAM

2:35 POSTER PREVIEWS (Auditorium)

W Whitten, J.M. Ramsey (ORNL) and B.V. Bronk (CRDEC), Immunoassays Using Microparticles

D. Cohoon (Geocenters, Inc.), Nonlinear Interactions of Solids and Liquids with External Energy
Sources

M. Milham (CRDEC), A Functional Scaling Approach to EM Scattering: Theory and Algorithms
for Spheres and Cylinders

J.D. Eversole (PPI), A.J. Campillo and H.B. Lini (NRL), Aerosol Absorption Spectroscopy

N.M. Witriol and 0.1. Sindoni (CRDEC), Mueller Matrix Elements for Layered Spheres

L. Reinisch (Vanderbuilt Univ.), Computerized Fluorometer Analysis: Automated Identification of
Particles

D.L. Rosen and J.B. Gillespie (ASL), Time and Wavelength Domain Algorithms for Chemical
Analysis by Laser Radar

M.B. Ranade (Particle Technology, Inc.), R. Han and J.W. Gentry (Univ. of MD), Electronic
Sorting of Fibers and Flakes by Aspect Ratio

A. Smart (Titan Spectrum), A New Remote Optical Measurement Technique for Aerosol Sizing
from an Airborrne Platform

E.E.M. Khaled, P.W. Barber (Clarkson Univ.) and S.C. Hill (ASL & NMSU), Scattering of a
Gaussian Beam by a Layered Sphere

E.E.M. Khaled, D.Q. Chowdhury, P.W. isarber (Clarkson Univ.), and S.C. Hill (ASL & NMSU),
Time-dependence of Internal and Scattered Intensity of Sphere Illuminated with a Gaussian Beam

5:30 ADJOURN (Beef & Burgundy Dinner at Edgewood Community Club)



POSTER PROGRAM (cont.)

8:30 POSTER SESSION (cont.)

II. OPTICAL PROPERTIES OF AEROSOLS (cont.)

9:20 S.C. Hill (ASL & NMSU), D.H. Leach, R.K. Chang (Yale Univ) and W.P. Acker (Texaco, Inc.), Third-
Order Sum Frequency Generation in Droplets

9:40 B.T.N. Evans and G.R. Gournier (Defence Research Establishment, Valcartier), General Analytic
Extinction Formula for Randomly Oriented Spheroids

10:00 D. Cohoon (Geo-Centers, Inc.), Scattering of EM Radiation by Multiple Layer Structures Separated by

Confocal Spheroids

10:20 BREAK

0:40 A. Cohen (Hebrew Univ. of Jerusalem), R.D. Haracz and L.D. Cohen (Drexel Univ.), Light Scattering
from Nonspherical Targets Using the Internal Fields from Infinite Cylinders

11:00 K.A. Fuller (Colorado State Univ.), Absorption and Scattering Cross Sections of Carbon Dispersion
Aerosols

11:20 01. Sindoni (CRDEC), F. Borghese, P. Denti and R. Saija (Univ. of Messina, Messina, Italy), Optical
Properties of a Dispersion of Spherical Scatterers Containing Off Axis Spherical Inclusions

12:00 ADJOURN

471

i'x• c



I

I ~DATE:

A10- 3


