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PREFACE

The 1992 U.S. Army Edgewood Research, Development and
Engineering Center (Edgewood RDEC)* Scientific Conference on Obscuration
and Aerosol Research was held 22 - 25 June 1992 at the Edgewood Area
Conference Center of Aberdeen Proving Ground, MD. The Conference is held
annually, the last full week in June, under the direction of Dr. Edward Stuebing,
Research Area Coordinator, Aerosol Science. This report was authorized under
project number 10161102A71A, Rasearch in CW/CB Defanse.

The Conference is an informal forum for scientific exchange and
stimulation among investigators in the wide variety of disciplines required for
aerosol research, including a description of an obscuring aerosol and its effects.
The participants develop some familiarity with the U.S. Army aerosol and
obscuration science research programs and also become psrsonally acquainted
with the other investigators and their research interests and capabilities. Each
attendee is invited to present any aspect of a topic of interest and may make
last minute chianges or alterations in his presentation as the flow of ideas in the
Conferance develops.

While all participants in the Conference are invited to submit papers for
the proceedings of the Conference, each investigator, who is funded by the U.S.
Army Research Program, is requested to provide one or more written papers
that document specifically the progress made in his funded effort in the previous
year and indicating future directions. Also, the papers for the proceedings are
collected in the Fail to allow time for the fresh ideas that arise at the Conference
. to be incorperated. Therefore, while the papers in these proceedings tend to
closely correspond to what was presented at the Confarence, there is not an
exact correspondence.

The reader will find the items relating to the Conference itself,
photographs, tha list of attendees, and the agenda in the appendixes following
the papers and in the indexes pertaining to them. Please note, due to the recent
recrganization of the Chemical Research, Development and Engineering Center,
the terms CRDEC and Edgewood RDEC have been used interchangeably.

The use of trade names or manufacturers’ names in this report does not
constitute an official endorsement of any commercial products. This report may
not be cited for purposes of advertisement,

*When this work was performed, Edgewood RDEC was known as the U.S. Army
Chemical Research, Development and Engineering Certer, and the Point of Contact
was assigned to the Research Directorate.
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This report has been approved for release to the public. Registered users
should request additional copies from the Defense Technical Information Center;

unregistered users should direct such requests to the National Technical Information
Service.
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PROCEEDINGS
OF THE 1992 SCIENTIFIC CONFERECI
ON OBSCURATION AND AEROSOL RESEARCH
I. AEROSOL DYNAMICS
The Effect of Interparticle Forces on Powder Spraying
by

H. Litman and M. H. Morgan III
Department of Chemical Engineering
RPI, Troy, N.Y. 12180-35%0

A. Material properties rel:vant to transporting fine powders.

In all of our research, we have never had any difficulty transporting aeratable
particles into a transport line from a hopper. However, when interparticle forces
become large the material behavior can change from fluidized (behaving like a fluid)
to solid (behaving like a solid). Solid typ- or cohesive behavior is apparent in Fig. 5 of
the paper by Pacek and Nienow (Powder Tech., 1990) where lines of fracture can be
observed in powders. For spraying particles, this cohesive behavior is undesirable
because it makes it difficult if not impossible to obtain sprays censisting of individual
particles.

The isostatic tensile stress, 6,. of an unconsolidated buik powder of mono-sized

spheres is related to the interparticle contact force F,, by the equation

1-e¢ k(¢)
S0 = o Tar (1)

where (1-¢) is the solids fraction, k(¢) is the coordination number which is associated
with the number of pcints of contact a particle has with ncighboring particles and dp
is the pa:ticle diameter. F, is the cohesive force at particle contact points in the
powder which can arise from a variety of ccuses, for example, ¢hemical (van der
Waal's) forces, electrostatic forces, etc. Clearly the laiger the interparticle contact
force the larger the isos.atic (or apparent) tensile strcss of the powder. Eqn (1) shows
that o, also increases with the solids fraction and as the particle diuaeter decreases.
The fact that o, varies inversely with the square of the particle diameter is quite
important since changing from a 1 mm to a 1 pm particle increases the apparent

tensile stress by a factor of a million.
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The material properties of a bulk powder involve o, and the angle of internal
friction, ¢. These material constanis are distinctive for every powder and relate the

shear stress in the powder, T, to the compressive stress on the powder, ¢ when the

powder is just abont to slide. Thus the yield locus of the powder is

Tr=H(@+0y); p =tan¢g; o 20 (2)

where p is the coefficient of friction. There aie mechanicai .ests for measuring u, and
o, is obtained by extrapolation of the T, vs ¢ measurements (Rietema, 1991 and
Brown and Richards, 1970}. For a non-cohesive powder, O, 1§ Ze10 and,

the classical law of friction is obtained between the shear stress and compressive

loading as
T=H0C  pH=tan¢ ; o 2 v (3) .

An importani fact of considerable importance practically is that prior history of
tue powder affects the material contants in Eqn (2). If, for example, the particles are
compacted for storage or shipping they may not behave in the same way eofter the
shipping container is opened. The flow behavior of a cohesive powder depends on its
previous loading history.

Brown and Richards (1970) define a Coulomb powder as a rigid-plastic powder
with a linear yield locus (Eqns 2 and 3). The term plastic is appliec to the powder if
sliding takes place when the shear stress applied equals the shear strength of the
powder. The terr elastic refers to a material which returns to its original shape after

the load is removed.

B. Description of the stress field at a point in the powder (Mohr Circle).
The stress field at any point in a bulk powder is cormnmonly presented in terms
of a Mohr circle diagrem. To keep the discussion as simple as possible, a planar stress

field will be described. The Molir circle diagram plots the tangential (or shear) stress

10




vs. the normal (compressive) stress at a particular point, P(x,y), in the bulk powder.
These stresses vary with the orientation of the plane passing through P as Seen in
Figure la.

Consider an element of solid mass located at point P(x,y) in the bulk powder.
The four faces of the planar element are located parallel and perpendicular to the
Cartesian unit vectors i and j as shown in Figure 1b. On each face there are normal

(compressive) and tangential (shear) stresses and Figure la shows a face of arbitrary

orientation.

The stress tensor, o, can he represented relative to the i and j unit vectors for

the case of plane stress as

G = Oxx 11 + Tyy ij + Tyx ji + Oyy jj 4)
where the tensor is symmetric, that is,

Txy = Tyx (5

and we will assume that

Oxx > Oyy (6)

The principal stresses are the eigenvalues of the matrix

Oxx Txy )
(7)
[Tyx Cyy

Following the method given in Kreyszig (1962), the principal stresses are

Ty + -G 2 1/2
A(1) and A(2) = (9"—‘—2—0-“] + {(-o—’i’-‘~é——y—~“) + rxy} (8}

where A(1) > A(2). Note from Eqn (8) that A(1) + A(2) = oxx + Oyy.
11




Along the principal axes of stress there are no shear stresses so that
[}
9
p (9)
The matrix of this tensor is
Al 0
0 A2)

Comparing the matrices in Eqns (7) and (10), we see again that the sum of the

elements along the diagonal is invariant [oxx + Gyy = A(1) + A(2)].

(10)

The normal stress along a plane of arbitrary orientation (ac in Figure la) is

obtained by well known tensor operations. Let o'xx represent the normal

(compressive) stress along an arbitrary plane passing through P(x,y).. Then

0xx=i" Lo S i.

(Oxx + G Oxx - Cyy)
- (_LL_Z__J_!) + (Az—ﬂ)cos 20 + 1xy sin 20

(1)
The corresponding tangential stress T'xy is
thy =157
= - (Mfiﬂ) sin 208 + txy cos 20 (12)

where 8 is the angle between i and i' as shown in Figure la.

Along the principal axes, t'xy is zero so that Eqn (12) gives for 6 = 0p

12




2 txi

tan 28, =
P (oxx - Cyy)

(13)

Eqn (13) shows the principal axes are always 90° apart. The principal axes of stress
have been obtained by simply rotating the i and-j axes to the plane on which the
shear stress, 'f'xy is zero.

Suitably squaring Eqns (12) and (13) and combining them, the following

equation of a circle is obtained

2 -
[O'xx - (oxx ;—y‘lc )] + ‘c'xy = I:(o——‘——uxx > ¢ )2 + ‘txyz] (14)

Oxx + O Oxx - O 172
The center of the circle is (‘“ 3 = 0) and its radius [('—XLZ——”)Z + Txyz] .

This is the equation of the Mohr circle seen in Figure 2.

To understand the construction of the diagram note that t 'xy is zero along the
principal axes so that points A(1) and A(2) represent the principal stresses A(1) and
A(2). The point, E, locates the center of the Mohr circle. The ray ED is the angle (6p -~
n/2). Passing from Pl to P2 on the Mohr circle must involve an angle change of in ©

of n/2 because the principal axes are 90° apart (T;) to };)). Thus points on the circle,

n
for example, C are located 20 from the principal axis, 0p - 2

If we let the point, C, represent the normal and tangential stresses oxx and txy
on face 1 (6 = 0) in Figure 1, the distance CD must be 14y and the distances on the EDC

triangle related by the equation

Oyx - O
[(Az_yj)l +.t_xy2] = (ED)® + 1¢y? (15)

Cxx - O
Therefore ED = ——&i—‘ﬂ . The distance OD therefore represents the stress




C +0 o + O
(egon), (@aton) "

In a similar fashion, it can be shown that the distance OF rcpresents the stress txy and
the point G, the stresses on face 2 (a plane rotated 90° from the plane of face 1).
Points on the circle counter-clockwise between C and G represent a rotation of the
plane of arbitrary orientation by =n/2. This coincides with conditions on face (4) in

Figure 1b.
C Failure in a bulk powder

The Mohr circle diagram represents the state of stress in a powder at any point,
P(x,y), along various directions through P. The powder will slide when tr equals t'xy.
If the compression on the powder is raised, the radius of the Mohr circle increases.
There is clearly some compressive stress where the conditions for sliding occur.
Geometrically this is the state for which the yield locus is tangent to the Mohr circle at
a particular point. Figure 3 shows that the powder cracks in shear along the plane 6

equals 8¢ where 05 = [8) - r/2 + ¢].
D. Cohesive forces in a consolidated bulk powder

The cohesive force, Fy, at a particle contact point in an unconsolidated powder
arises as previously mentioned due chemical (van der Waal's), electrostatic, or other
forces. Molerus (1975) has formulated the dependence of the cohesive force, F, at a
contact point in a consolidated powder as a function of the compressive normal force
causing the consolidation as

F =Fy, + aN (17)
where Fo and o are material constants of the powder. The variation of F with N in Eqn
(17) shows how the cohesive force increases as the normal stress at the contact point

incrcases. Orne example of such behavior is seen in Figure 4.

14




The compressive force, C, at the contact point in the consolidated medium is
therefore N + F so that we can write
C=F,+(I+a)N (18)
and by similarity with Eqn (2)

1-e)k
T, = tan ¢ {[(—n-%—p-(ég] [N + (Fo + aN )]} (19)

where 1. is shear stress in a consolidated bulk powder when it is just about to slide.
There is an increase in the apparent tensile stress of the powder due to the aN

term which is envisioned as being caused by changing the effective contact point area.
If the applied stresses to the bulk powder are compressive then from Eqn (11)

we can write that alfong an arbitrary plane that the force at the contact point is
N(8) = Fm + FR cos 20 (20)
where Fym and FR are Mohr circle pararﬁeters. The shear force is
I'T®) = |sin 26l (21)
and thus the limiting condition for sliding is
Frlsin 26| < (1 + a)(Fm + Fr cos 20) tan ¢ (22)
We can define the effective friciton angle as
tan O, = (1 + «) tan ¢ (23)
Thus we have presented a theory for a consolidated bulk powder such as would

be obtained by compressing it for shipping and storage. The basic material

parameters would have to be obtained experimentally.
15




E. Electrification of bulk powders and hazards

Bulk powders passing through transport pipes become triboelectrically
charged due to frictional contacts of individual particles with the wall. High charge
densities in the range of 1 to 100 pC/kg are generated which cause effects that are
generally undesirable. In bulk they cause individual particles to stick together
making it difficult to feed them into the transport pipe. In the line, they cause
increased pressure drop and make dispersion as individual particles difficult if not
impossible. Finally, there are hazards of dust explosions and spark ignition in bulk

powder piles within containcrs.

Charge generation and accumulation requires contact between electrically
dissimilar surfaces and high electrical resistivity on one of the surfaces (Gibson,
1983). Moving bulk powders have much make and break interparticle and particle-
wall contacts particularly in the feeder to our transport pipe. The detailed
mechanism of charge generation is not fully understood, nor is the interparticle
contact force predictable with any accuracy because particle shape and surface
properties are important factors in determining this force. Whatever experiments are
done with pure substances and clean surfaces, the fact remains that in practice one
has to deal with the realities of surface contamination, impurities, and absorbed or
adsorbed species. The level of electiification in particular processes using particular
equipment must in the end be determined by experiment or estimated from the

literature (Gibson, 1983).

To limit charge buildup, conductors such as pipe walls are grounded. The
earthing condition requires that the leakage resistance to earth be less than 100/
charging current. The 100 constant arises from the fact that 100 V is the minimum
potential at which an incendive discharge can occur. Since the maximum value of the
charging current in industrial processes is 10-4A, a resistance to earth of less than 106

Q will preclude dangerous charge accumulation (Gibson, 1983).
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Grounding is not the answer when non-conducting materials such as. plastics
are used. The 27 pC/m? figure at which air breakdown occurs (Blyth and Reddish,
1979) is reachable in practice. To minimize this problem, plastic surfaces should be
located where substantial charge generation cannot occur and conducting plastic

materials employed wherever possible.

Glor (1987), in agreement with Gibson (1983), states that within the
transport pipe the charge on the powder is not hazardous but maintains that
incendive sparks or brush discharges can occur due to charges on the pipe if the wall
is non-conducting or conducting but ungrounded. In addition, a grounded conductive
pipe can become hazardous if covered by an internal coating of high dielectric

strength.

The charged bulk powder after passing through the transport pipe becomes
hazardous in a pile within a container. Its bulk density has increased over that in the
pipe and the powder is now charged. If the particles are non-conducting, the charge
will be retained on them for a long period of time and the electrostatic energy within
the pile will present a hazard. This energy, if released within a small volume by an

electrostatic spark, may be hot enough to ignite the powder.

Charges can leak off through the pile by conduction, or through corona or
brush discharges which neutralize charge through highly localized air breakdown
followed by ionization of the gas (Jones and King, 1991). If the conduction is modeled
as ohmic, the charge relaxation time t; = x €, Y where x is the dielectric constant gq is
the permittivity of free space and y is the bulk resistivity in ohm-meters. A
relaxation time of 1 second is considered safe. Polymer particles such as polyethylene
have relaxation times of the order of 104 seconds. Charge leakage can he increased

by raising the humidity above about 60% and by the use of thin grounded metal rcds

(< 3 mm in diamter) which promote corona discharges.




E. Electrostatic force on a particle

Electrostatically active powders such a starch and cabosil can produce about
103 uC of charge per kg of agitated powder (Eden, 1973). For a 20 ym sphere with a
density of 3000 kg/m3, he calculates the charge per particle as about 10-14 C. The
electrostatic force between the particle and the wall is 1.43 x 10-8 N which is 116

times the gravitational force. This indicates that the particle will stick on the wall.
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Face of arbitrary orientation

Notes: © =0is face 1 whose outward drawn normal is i
-t
© = © is the face of arbitrary orientation whose outward drawn normal is i

© =n/2 is face 4 in Fig 1b whose outward drawn normal is—j

Figure 1a Normal and Tangential Stresses in Bulk Powder on a Plane of Arbitrary
Orientation through a Point P(x,y)




Fig 1b  Stresses on Element of Bulk Powder Oriented Parallel

and Perpendicular to the i and ] Coordinate Axes

Located at Point P,
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ELECTROSTATIC BMOKE (F0OG) CLEARING
IN ENCLOSED CHAMBERS
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ABSTRACT

Smokes or fogs (aerosol clouds) have been cleared up using a method
based on electrostatic precipitation in erclosed chambers. The
visibility of the smoke or fog has been measured as a function of
time before and after the electrostatic precipitation. The results
show that electrostatic precipitation is effective in clearing
smokes and fogs (aerosol clouds). Further work is needed to extend
the chamber results to outdoor field tests.

INTRODUCTION

Some major accidents generate hazardous smokes or fogs (or aerosol
clouds) which decrease visibility and thus present dangers. These
smokes or fogs (aerosol clouds) need to be cleared up quickly.
Currently, a variety of approaches exist to clear the smokes or
fogs (aerosol clouds). They are generally classified into four
categories: 1) direct removal of aerosol particles from the cloud,
such as electrostatic precipitation, 2) coagulation and subsequent
sedimentation, such as various agglomeration methods, 3)
evaporation of droplets if the smoke is formed by liquid aerosols,
such as light heating, and 4) dilution of smoke or aerosol clouds.
Among these four general approaches, the first method based on
electrostatic precipitation, is considered highly effective (1],
[2]. Smoke or fog clearing experiments in enclosed chambers were
conducted using electrostatic precipitation with a point source
corona discharge.




EXPERIMENTAL

The experiments were conducted in a chamber of 13.4 M' (3.4M x 2.1M
x 1.9M) for red phosphorous smoke (RP smoke) and in a chamber of
0.7 M (1.2M x 0.76M x 0.76M) for a fog (liquid aerosol). The
experimental set up 1is given schematically in Figure 1. The
measurement equipment includes a helium-neon laser (A = 633 nm) at
one side of the chamber and a photodiode at the other side. The
laser light enters from one side of the chamber, passes through the
smoke or aerosol cloud, comes out from the other side and there is
detected by the photodiode. The intensity of transmitted light is
guantified and fed into a personal computer for data processing.
A corona discharge device (a point source) close to the chamber
wall is used to generate ions inside the chamber. The ions collide
with and attach themselves to the aerosols. Then, the charged
aerosols drift and deposit onto the walls under the influence of an
electrical field established between the corona discharge point and
the ground.

CLEARING OF RED PHOS8PHOROUS SMOKE
The red phosphorous smoke is generated inside the chamber by

burning approximately 1.4 gram of red phosphor. After the burning,
the chamber is filled with opague red phosphorous smoke with

transmissivity about 20%. A mixing fan is running all the time
thrcughout the experiments to keep the smoke uniform inside the
chamber. The smoke transmissivity increases slowly with time,

typically at a rate below 2% over 1000 seconds, due to coagulation.
After the ions are introduced in the chamber by corona discharge
(rate of input electric charge is 43 uA), the smoke precipitates
dramatically to the walls under the influence of the electric
field. This 1is evidenced by the rise of smoke transmissivity
inside the chamber and directly from the fact that the wall is
covered with a thin layer of snmoke particles after the
precipitation.

The result is given in Figure 2. For 4 minute long introduction of
ions into the smoke chamber, the lighc transmissivity of the smoke
increases from 23% to 67%. Ten minutes after the introduction, the
transmissivity increases to over 80%. For 2 minute 1long
introductions, the light transmissivity increases from 21% to 47%.
Ten minutes after the introduction, the transmissivity increases to
57%.

CLEARING OF LIQUID AEROSNLS (FOG)

Ligquid aerosols (fog) are generated by the evaporation and
condensation of a water-based glycol mixture, which is used for fog




generation. A ROSCO fog machine (3] is used in the experiments.
A fog of approximately 0.5% transmissivity is generated inside the
chamber for the experiments. The electrical corona current in
electrostatic precipitation (rate of input electrical charge) is
varied from 5 pA up to 28 pA while transmissivity of the smoke in
the chamber is monitored constantly throughout the experiment.

A typical plot of smoke transmissivity in the chamber as a function
of time is given in Figure 3 for I = 10 pA. An expanded view of
smcke transmissivity as a function of time is given in Figure 4.
The corona discharge starts at time 36.67 min. and ends at 41.67
min. The time it takes to clear the aerosol cloud in the chamber
from 0.5% to 90% of transmissivity are 4.8 minutes at corona
discharge current of 5 pA, 3.0 minutes at 10 pA, 1.8 minutes at 20
uA, and 1.8 minutes at 28 uA.
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ABSTRACT

In a Langmuir trough, the gas to liquid condensed (G/LC)
phase change of 1-octadecanol monolayers occurs near 0.220
nm?/molecule. This phase change is also associated with a dramatic
reduction in the transport of water through the monolayer., We use
0220nm2/molecule and the initial octadecanol concentration in a
drop tc predict the surface area (Sp) at which the change in
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evaporation rate should occur. When we compare our measured
values for the surface area at which the evaporation rate change
occurs (Sy) with S,, we see the G/LC phase change occur at S./S.
values between 0.1 and 0.3. As we add Eu3* (EDTA) at concentrations
between 1.0x10-6 and 2.0x10-% M, we see the S./S, ratios rise
asymptotically to 0.6. Increasing the initial pH »f a drop to 6.0
reduces S;/S, at all Eu(EDTA) concentrations. These results are

accounted for in terms of multilayers of octadecarcl on the drop
surface created by a delayed G/LC phase change, and heterogeneous
nucleation of the G/LC phase change by the Eu(EDTA).

INTRODUCTION

Studies of monolayer phases and their effects on mass
transport are usually carried out with a Langmuir trough.!,? The
results of such studies are reported in terms of surface pressure-
area (m-A) isotherms and/or monolayer resistivities (R). The
results of Costin and Barnes link the resistivity increase in a
pure octadecanol monolayer with the gas to liquid-condensed (G/LC)
phase change? which occurs at A values near 0.220nm?/molecule. The
study by Marsden and Schulmané shows that fatty alcohol monolayers
are not affected by pH changes between pH=2-10.

In these experiments, we monitor the evaporation of an
acoustically levitated waterdrop and use the change in evaporation
rate to pinpoint the G/LC phase change. When we compare the
measured drop surface area at the G/LC phase change with that
predicted using 0.220nm?/mclecule, we find that the phase change
occurs at surface areas that are 1.5 to 10 times smaller than the
predicted values. We also find that this number varies
asymptotically with Eu3*(EDTA) concentration and shows a pH
dependence. In contrast to the drop results, we have obtained n-A
isotherms for octadecanol on pure water and on water containing
2.0x10-> M Eu(EDPTA) and find them indistinguishable from the
literature results.>®

EXPERIMENTAL

The apparatus, which uses an acoustic standing wave to
levitate ~2mm diameter drops in the jet of a wind tunnel has been
described in detail.® For these experiments the gas jet is dry
nitrcgen to which water vapor is added to produce ~30% relative
humidity. The gas stream temperature is 20.3°C. Production and
handling of the stock solutions has also been describhed
previously.’ The working solutions all contain 1.2 mole% ethanol,
2.85x10-> M octadecanol, and Fu(EDTA) between 0.0 and 2.0x10-% M.
Drops are placed in the acoustic trap with a syringe. Backlit
drops are imaged with a video microscope whose output is digitized
and analyzed at specified intervals to provide drop volume and
surface area measurements.




RESULTS AND DISCUSSION

Figure 1 illustrates a typical drop evaporation history. In
this figure, we see a drop whose evaporation is indistinguishable
from pure water for the first 750s. At that time a sudden
decrease in evaporation rate occurs. The Langmuir trough results
suggest that this change in evaporation rate corresponds to the
G/LC phase change. Thus, we associate the surface area measured
at this time, S., with the area occupiea by the octadecanol
monolayer. Since the number of octadecancl molecules in this
monolayer will depend on the octadecancl concentration and the
initial drop volume, we report the ratio S,/S,, which is
independent of our experimental parameters. The quantity S, is
calculated from the octadecanol concentration in the working
solution (2.85%x10-4 M), the initial drop volume, and
0.220nm’/molecule.

Figure 2 summarizes the drop history results. Here we see
that the S./S, ratios increase with Ru(EDTA) concentration and this
increase tends toward an asymptote near 0.60. We also see that
increared pH produces smaller S./S, ratios at constant Eu(EDTA)
concentration and that the data get very noisy as the Eu(EDTA)
concentration vanishes.

There are three possible interpretations for Sm/Sp ratios less
than unity. First, ratios less than one suggest that less than
100% transfer of the octadecancl in the stock solution to the drop
surface. Such would be the case if octadecanol “comes out” of
solution in the working mixture which is only 1.2 mole% ethanol.
This explanation, however, does not account for the dependence in
5-/Sp, on Eu(EDTA). Another possibility is that the Eu (EDTA)
increases the solubility of the octadecanol. Were this true, we
would expect a decrease in S,/S, with Eu(EDTA) concentration.
Additional evidence against a change in solubility comes from our
T-A isotherm measurements on ultrapure water and on 2.0x10-5 M
Eu(EDTA) /water. For both substrates, the isotherms are
indistinguishable from the results of Harkins and Copeland.® Thc
increase in S,/S,, with Eu(EDTA) concentration could be explained if
the inorganic complex gets incorporated into the monolayer.
However, surface tension measurements for the ultrapure water and
the 2.0x10-4 M Eu(EDTA) solution give 72 and 71 dyne/cm?
respectively. This small change precludes surface activity.
Also, »2% Eu(EDTA) in the monolayer would limit the evaporation
rate change after the G/LC phase change. We see no increases in
the final evaporation rates when drops containing Eu (EDTA) are
compared with drops of pure water.

The second explanation postulates the formation of
octadecanol micelles. 1In this scenario, the G/LC phase change
occurs whenever micelle diffusion has brought enough octadecanol
to the surface to produce a condensed monolayer. The addition of
Eu(EDTA) would then reduce micelle size and increase the micelle
diffusion rate. Our literature searches have uncovered no
evidence for micelle formation hy fatty alcohols.,
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The final hypothesis is that the G/LC phase change requires
nucleation. In a levitated drop of pure water there are no walls
or barriers to help orient the octadecanol molecules and act as
heterogeneous nucleation sites. Thus, the phase change is delayed
waiting for homogeneous nucleation events and we build up
multilayers of octadecanol on tha drop surface prior to the phase
change. The addition of Eu(EDTA) provides heterogeneous
nucleation sites which lie below the surfactant layer and
therefore, expedite the G/LC phase change without effecting the
monolayer’s transport characteristics.
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ABSTRACT

The problem of scattering and abscrption of electromagnetic radiation by particles can be solved
analytically for only the simplest cases, but established numerical methods allow a straightforward
extension to particles with arbitrary inhomogeneities, arbitrary shapes, and nonlinear response. In
this paper a recently developed frequency domain method involving CFD techniques is reviewed
and applied to the problem of a dielectric sphere of arbitrary size parameter. Numerical results
showing good agreement with analytical solutions for size parameters over 20 are given. Results
obtained suggest that finite element methods have promise for analytically intractable
scattering/absorption problems and show that the Debye amplitude formulation of the problem
offers great advantages in a numerical scher  and that, contrary to the naive view, as we show
here, negligible error is introduced in going .o the Debye amplitude formulation to field
observables , such as the source function.




Mie iheory exact'y describes the absorption und scattening of a plane electromagnetic wave
by an isotropic, dicl=ctric sphere of arbitrary size and refractive index!+2, This conceptually simple
analytical solution is well known, but it involves cumbersome computations. However, many
problems of interest do not readily admit analytical calculation. If a systematic numerical rather than
an analytical approach is taken, the extension to particles with arbitrary inhomogeneitics, arbitrary
shapes, and nonlinear response is ~pparent since the general governing equations and the solution
technique remain unchanged.

If one tckes a nu:nerical approach to solving the light scattering problen., the extension to
particles with arbitrary inhomogeneities and arbitrary shapes is straightforward since the governing
equations and the solution technique 1emain unchanged. For comparable electromagnetic wave
scattering problems in radio and microwave engineering, difterential mcthods have been used
predominantly {Bates, 1975}. Finite difference methods and finite element methods are typical
differential solution techniques, and both can be applied to the Maxwell equations in their time-
domain or frequency-domain form. While these methods have been appliad in various disciplines
for some time Taflove, 1988; Taflove, 1975; Taflove, 1989; Umashankar, 1982; Lynch, 1985;
Lynch, 1990; Kerner, 1986 }, they have not been adapted to study the absorption and scatte.ing of
light by small particles.

In the majority of past work, the problems have been solved in terms of the vector field
variables (E,H) that are oscillatory in nature over the infinite domain of the scattering problem.
The difficulty of modeling these oscillations is removed in this study by reformulating the problem
in terms of the Debye amplitude (DA) functions as described below. Aaother complication in
scattering problems is the treatment of the particle interface aud the determination of the interr.al
fields. This issue has been considered in previous time-domain {Lynch, 1990) and frequency-
domain {Lynch, 1985} solution methods, although many past investigations involved perfect
conductors (no internal tields).

The preferential use of frequency-domain or time-domain methods has not been
established. Frequency-domain approaches are generally .nore accurate and require less
computation time, but time-domain methods typically requ.re less memory and permit casier
handling of material interfaces {Lynch, 1990; Taflove, 1975}. In this study the frequency-doinain
Maxwell equations are solved.

The advantage of finite eleinent methods uver finite difference techniques lies in geometrical
flexibility;; finite elements can beiter handle irregular domains {Lee, 1990}. Since one of the
goals of this investigation is to allow for the extension to particles of arvitrary shape. a finite
element method is used. No complete finite element analysis approach to this problem has been
published previously (cf. Morgan and Mz=i,1979).
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Previously a finite difference method was applied to the problem of a linearly polarized
plane electromagnetic wave scattered by a perfectly conducting spherel. The results demonstrated
the applicability of computational fluid dynamics (CFD) methods to the basic scattering problem.
This work differs importantly from this previous work in that the finite element method is
consistently applied, and we use Galerkin's formulation to the whole domain of calculation, and
dgielectric particles are considered. Previously Morgan and Mei (1977) used a hybrid n.ethod with
a Fourier expansion of the fields to get trial functions with expansion coefficients found by their
so-.dlled "unimoment” method. Theirs is not a true finite element formulation of the problem and
extension of their method may not be straightforward and might prove to be problematic; it cannot
apply to nonlinear problems. Qur true finite element formulation is described, followed by
presentation of results of comparisons between analytical and numerical solutions.

The problem to be solved consists of a plane polarized wave incident on a dielectric particle;
only linear scattering is considered. Assuming exp(-iwt) dependence for all fields, the electric and
magnetic fields, E and H, must satisfy the vector wave equations both inside and outside the
particle, with a requirement that the tangential components of E and H must be continuous across
the surface of the particle? and the Sommerfeld radiation condition3 requires that the scattered fields
represent divergent traveling waves as r — eo,

By introducing two auxiliary scalar functions, the electric and magnetic Debye potentials, u
and v, in the usual way4~5’6, it is possible to reduce the vector wave equations to a set of
uncoupled scalar wave equations.

Since the field variables are oscillatory in nature over the infinite domain it is advantageous
to reformulate the problem once again, this time in terms of a generalized amplitude function which
eliminates the oscillations due to the incident field”+ use of these Debye amplitude functions(DAs)
1s an essential step in a numerical approach. Wwe have found no important degradation in
accuracy in recalculating the field observables, such as for example the source function . By
making use of the superposition property of the fields, the Debye potentials outside the particle can
be decomposed into incident and scattered components. The scattered components then are written

as.
uS=~c_os ¢ sin efi( . 9)9%2
(k' )
/ . . s
vs___(s‘;)‘ PEnOsnG o g)eikt
Wl P @

where "I" denotes the exterior region and "11"will denote the interior region and k2= w2cp.
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£ (r,0) is theDA. Similar expressions can be written for the potentials inside the particle. It should
be noted that the formulation of equations (1) and (2) inherently restricts one to the consideration of
only axisymmetric problems, For asymmetric cases the ¢ dependence of the Debye potentials can
not be factored out explicitly and one must solve for (1,9, ¢).

By substituting equations {1) and (2) into their respective scalar wave equation, it can be
shown that the problem to be solved is

Rvj (flexk'r) metklraf‘+2. iK'r (gr +lklf) elklfl‘k2 2_)

(1—;"‘2 V2 (fpeixh). 26010 cixr o2 +2 4k'r( f2 +zk1f2) clkrfz‘k2 -l)-_-o
H 12 00 f or (4)
The boundary conditions are, in terms of f | and f 5:
eikr gl eikh glfs = £W
sin © (5)
ei ki Eﬁflzl-eik‘r@fa,_.y_gw _
sin @ (6)
((~ell 5
eiklf (a;f_]_+iklflll)-(§£l+iklfsl) =__l_i\_N._
|\ or or sin@ or )
[ |
oik (Ln.)lfz(%_.q.iklfg)-(.ﬁl.)ln(af ) (5_)”2 8W
{u or u! dar sin6 ar )
where
W(r,e) ~gikicosf cot (9-)93—"— - tan (9—)5'—“
sin © 2/ 2 2/ 2 ©9)

and the radiation condition can be expressed as




lim af 1 lim gf__z_ =0

I —oo or T —oo Jr (10)

Equations (5) through (9) are formulated for a spherical particle, with radius "a". For the gene. ..
asymmetric problem, equations (5) through (9) iuust be satisfied at all (x,y) on the particle surface
and the partial derivatives are given by Vf e+ n.

The system of equations is solved numerically on a Cray Y-MP§/864 by a finite element
method with 9-node Lagrange quadrilaterals8 using the subroutine HCGBLE, part of the Boeing
Computer Services mathematical library 9. A multiplier method!0 is used to enforce the jump in
solution across the particle boundary, which must coincide with ¢lement boundaries. The radiation
boundary condition is imposed at a finite artificial surface (r << o) with good accuracy by using a
second-order approximation to the Sommerfeld condition!1. Both the radiation boundary condition
and the jump in flux condition are incorporated into the weak formulation of the differential
equations.

Iniual investigations have been performed for a linearly polarizcd plane wave with a
wavelength of 10.591 um, incident on a spherical water particle that has a refractive index of
1.179+0.071i. The particle was isolated and surrounded by air, assumed to have a refractive index
of 1.0. Size parameters that were studied range from 2.97, to 21, which correspond to water
droplets having diameters of 10.0 pm to ~80.0 um.

Results are presented for the 70.0 pum case in Fig. 1. These results were obtained using a
26x45 uniform mesh having a maximum grid radius of twice the particle radius and required ~55

seconds of CPU time (including output time for results,with a code that has not been fully
vectorized) to determine both f; and f, over the entire domain. Fig. 1 depicts three-dimensional

views of the numerical and analytical solutions of the real part of f. In these graphs the incident
wave propagates in the positive z-direction, from the left foreground to the right rear. The particle
is centered at the origin which is at the center »f the plot, and the x- and z-axes show distances in
micrometers. By comparing the top and bottom pictures, the excellent agreement between the two
solutions can be seen. Plots of the imaginary part of f; and the real and imaginary parts of f, show
similar agreement.

It is not necessary to rely on subjective impressions of agreement between exact and
numerical solutions, one quantitative measure of the error of the numerical solation over its
domain is given by the mean-square, or L2, norm8, which is defined for complex functions as

LA= U:,a.(c <) dAV ’ 11

41




[EALFLY

PAALY TG B RELMTFAY

(b)

FIG 1

A2




_ -2
60.0 {4 — % 1.2 Norm for f1 —o0— CPU, s B 10
u 0 O O
1 ... & p 2
50.0{ LL“ Norm for f2
i —&— 1.2 Norm for EE*
“ 40.0
g : ....... l—.to
= 30.0 -107° Z
g ] 8 =
20.0 7
]
10.0 -
O‘O-ﬁviﬁ‘rﬂlﬁ1jlll11ﬁlvﬁ—]v“llr 10-4

0.0 5.0 10.0 15.0 20.0 25.0
Size Parameter, x




20 / F ’
- [~ ‘
roth :
g
4 Y - 0.5
3]
£ -0
j '°
y e
= L bl i
~ o2 2 R
*‘1‘?’ o o - rc.a_'. ,;!”9
<~ P ~
o

ACr
R

tffi\ ! \
; ;;.;lr\;\;\\}\\§\ \\&‘\ II

lI /
/II//I[',I/I'

\ '"m"ll" n‘) A
\\\ \\“ ,,.4 n,v ,/” T
%

SOURCE FURCTION (£

FIG.3
44




SOUVRCE FUNCTYON &L,

QOVRCE FURCTYOR (\2\ =Y

FIG.4

—.’.
‘———

.

: o‘

ﬁee
/
0




Blank

46




ON THE SIMILARITY OF LINE INTEGRATED CONCENTRATION FLUCTUATIONS ACROSS
PLUMES DIFFUSING IN GRID-GENERATED TURBULENCE

M. Poreh and J. E. Cermak

Colorado State University
Fluid Dynamics and Diffusion Laboratory
Engineering Research Center
Ft. Collins, Celorado 80523 USA

RECENT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATION:

Poreh, M. and Cermak, J. E., "Statistical properties and similarity of line
integrated concentration fluctuations across plumes diffusing in grid-generated
turbulence," CSU Report No. CER92-93MP-JEC3.

Poreh, M., Hadad, A. and Cermak, J. E., "Fluctuations of line integrated
concentrations across plume diffusing in grid-generated turbulence," 1991, CSU
Report CER91-92MP-AH-JEC2.

Hadad, A., Stiassnie, M., Poreh, M. and Cermak, J. E., "Fractal aspects of
integrated concentration fluctuations," Proceedings of the 35th Ohalo Conference
on Transport and Diffusion in Turbulent Fields, October 1991. Published by

Kluwer Academic Publishers. Submitted to Boundary Layer Meteorology.

Poreh, M., Hadad, A. and Cermak, J. E., "Fluctuations of line integrated
concentrations across plumes diffusing in grid-generated turbulence and in shear
flows," Proceedings nof the 35th Ohalo Conference on Transport and Diffusion in
Turbulent Fields, October 1991. Published by Kluwer Academic Publishers.
Submitted to Boundary Layer Meteorology.

ABSTRACT

The existence of similarity of the statistical properties of the fluctuations of
line Integrated Concentrations (IC) across plumes diffusing in grid-generated
turbulence is reevaluated using new data. It is shown that the lateral
distributions of the mean values of IC, as well as those of the relative
fluctuations and of the autocorrelation functions, are approximately similar at
all distances from the source. The distributions of the rms/mean values of the
fluctuations and those of the intermittency show, however, a dependence on the
distance from the source, but appear to be approximately similar in the range
20 < x/M < 100 where M is the grid mesh size. Based on these new data and
findings, the development ¢f a comprehensive model for IC fluctuation is planned.

INTRODUCTION

Interest in the dynamics of obscuration by aerosol plumes have led the authors
to undertake a series of systematic studies [1-5] on the nature of 1line
integrated concentration fluctuations across plumes from point sources diffusing
in shear flows and in grid-generated turbulence. Perhaps the most surprising
finding of these studies has been an observed approximate similarity of the
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statistical properties of the IC fluctuations in the range 20 < x/M < 100
downwind of an M = 3 in. grid. The main goal of this investigation was to
further explore the existence of similarity of the statistical properties of
integrated concentration fluctuations across plumes and to provide new data for
the planned future development of an extensive model of IC fluctuations.

TYPICAL RESULTS

From measurements of IC downwind of a 2 in. grid and a 14 in. grid, the
dimensionless parameter IC = IC U M/Q, where Q is the strength of the source and
U in the mean velocity, was calculated. The lateral distributions of its mean
value, ICM (y), at difgerent distances were found to be closely Gaussian:
ICM (y) = ICM™(0) exp[-y°/(20%)], where a(x) is the lateral length scale of the
mean plume.

Typical variations of IC" versus the dimensionless time T = tU/M, at
approximately the centerline of the plume are shown in Figure 1. The figure
depicts the increase of the time scale of the fluctuations with the distance.
Typical probability distribution functions P(a), which describe the probability
that the ratio of the instantaneous value of IC to its mean is larger than a
given value a, along the centerline of the plume are plotted in Figure 2. They
show that the IC fluctuations at different distances are pot similar. However,
it is observed that at large distances from the source, the effect of the
distance becomes milder. For example, the P(a) curves at x/M = 36 and 102 are
very ciose to each other.

Figure 3 shows the values of the intermittencies y for the measurements downwind
of the 14 in. grid and downwind of the 3 in., grid. It appears from the data that
the distributions of v at x/M = 2.07, 4.215 and 8.43 are approximately similar.
The distributions of y at x/M = 36 - 102 downwind of the 3 in. grid are also
similar but much larger, and for y/o < 1 the value of v in this range is about
1. The measurements at x/M = 17 downwind of the 14 in. grid and those at x/M =
20 downwind of the 3 in. grid are quite scattered but appear, on the average, to
be closer to those measured at larger values of x/M.

The distributions of the relative rms values of the fluctuations of the
integrated concentrations, ic ‘(y/g)/ic ’'(0), at different distances from the
source, are shown in Figure 4. The data exhjbit a close similarity of the
relative rms values. The distributions of ic '/ICM, however, were found to
depend on the distance.

Of great interest are the autocorrelation function R(7) of the fluctuations of
IC where 7 is the time difference. Its value for R(0) is always 1 and its limit
for large 7 is zero. Figure 5 shows the distributions of R at the centerline of
the plume plotted versus the dimensionless time 7U/0. The figure demonstrates
a remarkable similarity of the autocorrelation function at all distances, except
at x/M = 2.07. It indicates that the time scale of the fluctuations at all
distances is proportional to o/U, namely to the time that a fluid parcel with a
longitudinal dimension of o passes a stationary point.
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DISCUSSION

Similarity of dispersing plumes in turbulent flows is defined as the existence
of similar dimensionless cross-wind distributions of the statistical properties
of the concentration field at different distances which are independent of the
distance from the source of the plume. Different levels of similarity may exist,
from a similarity which is limited to the mean values of the concentration fieid,
to a similarity of all the statistical properties of the fluctuating
concentration field.

The existence and the level of similarity is of great theoretical and practical
significance. Its theoretical significance is that it exhibits a moving
equilibrium of the flow of the diffusing plume, in which the conditions upstream
are mostly irrelevant, so that dimensionless disiributions based on local
velocity and length scales are similar or self preserving [6]. It also indicates
that the various turbulent processes, which are expressed by the various terms
in the equation for the mean and fluctuating quantities, are in equilibrium. The
practical importance of similarity is that it permits formulation of simple
prediction models. The advantage of such models is so great that a similar
(Gaussian) model has been adopted for use in most air-pollution models, even
though it is well recognized that the vertical mean concentration distributions
in most cases are not similar and depend on the distance from the source.

When analyzing the dynamics of plumes diffusing in turbulent flow, one may
distinguish between an instantaneous plume (typical lateral iength scale ;) and
a mean plume (typical length scale o). The fluctuations of the concentrations
at a point are viewed to be a result of the meandering of the instantaneous piume
and the concentration fiuctuations within the instantaneous plume. A similarity
of concentration fluctuations within a certain range implies that the ratio 0,/v
remains constant within that range. Theoretical considerations [7] suggest that
0. and o grow at different rates at different distances from the source, and that
the relative role of the meandering reduces with the distance. Very close to the
source, at least for ideally small sources, the fluctuations are primarily due
to meandering caused by relatively large eddies. At very large distances, when
the size of the instantaneous source becomes large compared to the size of the
turbulent eddies in the flow, the effect of meandering decreases, the ratio 0,/0
approaches one, and the relative magnitude of the fluctuations decrease.

Indecd, the measurements reported are consistent with such a model. The measured
values of vy are smaller at small distances from the source. As seen from Figure
3, the value of vy at the center of the plume in the range 2.0 < x/M < 4 is aboul
0.75. Namely, for 25% of the time the entire plume was at either side of the
centerline of the plume. At larger distances from the source, x/M > 20, 7 was
1 at the entire central region of the mean plume - 1 < y/0 < 1, and intermittency
due to meandering was noticed only at the edges of the plume. Clearly, this
observation indicates that the fluctuations near the source are primarily due to
the meandering of the instantaneous plume. It also indicates that the average
ratio of 0./0 increases with the distance from the source and stays approximately
constant #or 20 < x/M < 100.

Now, in spite of the lack of similarity of the probability density distributions
of the IC fluctuations, the measurements exhibit a universal similarity of a few
functions of the fluctuations. First, the distributions of the mean values
ICM(y) are always similar and can be described by a Gaussian function. Then, the
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distributions of the rms of the fluctuations at all stations appear to be similar
(Figure 2). On the other hand, the distributions ot the ratio of the rms to the
mean ic ‘/ICM, was found to depend on the distance. These findings suggest that
for x/M > 20, some of the instantaneous plumes are close to the size of the mean
plume. Thus, they increase the mean value of IC without contributing to the rms
of the fluctuations.

It was also surprising to find that in spite of the absence of similarity, the
autocorrelations at all stations, except very very close to the source, were
proportional to the local length scale v and similar to each other. Since R(7)
is based on the correlation of the fluctuations, namely the deviations from the
mean, the result is consistent with the existence of similarity of the rms values
of the fluctuations.

We have concluded earlier that the autocorrelation curves suggest that the
instantaneous plume disintegrates into patches with relatively high
concentrations separated by entrained air with zero or small concentrations. The
similar autocorrelation curves indicate that these patches pass a given line
nermal to the flow within a period of the order of 2 o/U, at all distances from
the sources. This observation also suggests that the break up of the
instantaneous plume is caused by relatively large eddies, which also determine
the meandering of the plume and its mean size. The dominant role of the large
eddies in determining the meandering, or equivalently, the breakup of the
instantaneous plume and its diffusion, is probably the reason for the observed
similarity between the fluctuations of the Vertical Integrated Concentration
across plumes diffusing in a boundary-layer flow and the fluctuation of IC across
plumes diffusing in grid-generated turbulence [4].

Clearly, the investigation has yielded a detailed view of both the dispersion
process and the characteristics of the fluctuations of integrated concentrations
across plumes. Hopefully, a relatively simple model could be developed, using
the data collected in this research, which would describe the dynamics of plumes
diffusing in different types of flows. A development of such a model is planned.
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ABSTRACT

The fractal properties of integrated concentration fluctuations acress a plume

diffusing in grid-generated turbulence are analyzed. Two regions are identified
in which a fractal process and a subfractal process of fluctuations exist,

respectively. It is planned to compare the singularity spectrum and the fractal

dimensions of simultaneous records of velocity and integrated concentration

gluctuations and to simulate numerically the diffusion in a fractal velocity
ield.

INTRODUCTICN

The fluctuations of physical properties in turbulent flows, such as local
velocities, concentrations at a point or integrated concentrations along a line
in space, are an inherent part of such flows and of great interest in many
applications. Since turbulence has been shown to exhibit properties of fractals
(Mandelbrott, 1974), fractal analysis has been used to explore measurements of
such fluctuations in order to gain new insight and better understanding of their
nature. Fractal analysis derives parameters which are related to the geometry
of the fluctuating signals, such as the Fractal Dimension D,, and has thus been
used to study cloud structure, flame surfaces and velocity and concentration time
series. In cases where the energy spectrum of time series is described by a
power law with an exponent B, the value of B can be related through a singularity
spectrum to the fractal dimension. Special attention was given to the
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multifractal nature of energy dissipation rate (Meneveau and Sreenivasan, 1987)
and scalar dissipation rate (Prasad et al., 1988) in various turbulent flows,
using the formalism of the singularity spectrum f(«) that was suggested by Halsey
et al. (1986).

Recently, Stiassnie (1991) proposed a somewhat different formulation of a
singularity spectvrum, which is designated by F(a). For a fluctuating signal
y(t), the value of a, the singularity strength, is associated with the rate at
which the derivative of the signal tends to infinity. For a turbulent signal one
expects y(t) to have different values of a at different times. Thus, y(t) may
be viewed as a union of an infinite number of subsets, each having a typical
singularity strength a with a singularity spectrum F(a). The Fractal Dimension
Dy, is related to F(a) by

Db =1 - a, + F(a1), (1)
where a, may be defined by F'(a,;) = I.

A multifractal process is an indication of spectral density power law k#, and
it can be shown that the spectral exponent £ is related to F(a,) by

B =3 - 2D, + 2F(a,). (2)

ANALYSIS OF INTEGRATED CONCENTRATION FLUCTUATIONS

We have examined measurements of Vertically Integrated Concentrations (VIC)
across a plume from a continuous point source diffusing in grid-generated
turbulence (Poreh et al., 1990).

A significant length scale of the dispersing plume is its lateral length scale,
0,. As shown by Poreh et al. (1990), the fluctuating VIC signal exhibits an
approximate similarity, within a large range of distances from the source.
Namely, its statistical properties are functions of y/oy, and practically
independent of the distance.

Figure 1 shows the dimensionless spectral energy density of the VIC fluctuations

S* = S(n)U/{o;coy], where S(n) is the spectral energy density plotted versus m*

= no/U. The spectral energy distribution suggests that the VIC spectrum is
characterized by two regions. The transition between the two regions is around
m* = no /U = 1. In Region 1I, which corresponds to length scales between about
o, and 50, (0.2 < n* < 1), one finds a negative spectral exponent close to 5/3,
similar to what is usually obtained in records of velocities and concentrations
in the inertial subrange and between some bounds of wave numbers in measurements
of cross-wind integrated concentrations of plumes in the atmospheric boundary
layer by Bowers and Black (1985). The energy spectrum for these measurements was
calculated by Hanna and Insley (1989). In Region I, that corresponds to length
scales between 0.30, (which corresponds to the Nyquist frequency of the
measurement, and which is longer than both the IR beam diameter and the smallest
eddy in the field) and o, one observes a spectral exponent of 1)/3. One may
conclude that in Region If, the spectral density of VIC fluctuations is the same
as that of the concentration fluctuations at a point, since the line of
integration crosses at each instant only one large eddy. In Region I, on the
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other hand, the integration of the point concentrations with a spectral exponent
5/3 law is the cause for an attenuation of the spectral exponent to a (5/3+2)
law.

As noted earlier, a spectral power law is an indication of a fractal nature. If
our VIC record would have been a monofractal set, we would expect it to have a
fractal dimension of D = (5 + B)/2, which yields a value of 2/3 in the Region I,
ana a value of 5/3 in the Region II. Similarly, one expects in our case to have
a singularity or Lipschitz-Holder (L-H) exponent -a = 2 - D which yields values
of 4/3 in Region I, and 1/3 in Region II. But, since our VIC records are
embedded in a two-dimensional space, its fractal dimension must be limited
between the limits 1 and 2, and its L-H exponent between 0 and 1. Thus, we
conclude that the process in Region 1 is subfractal, whereas the process in
Region II is fractial.

Independent fractal analysis of the same signal shows that the fractal nature of
the VIC fluctuations corresponding to Region II is characterized by D, = 1.62
(10.03), a, = 0.343, F(e,) = 0.963 and, according to Eq. (2), B = 1.693, which
is very close to the value of g = 5/3 = 1.667.

DISCUSSION

Analysis of VIC fluctuations across a plume diffusing in grid-generated
turbulence identifies two subdomains. The first is related to integrated
concentration fluctuations and may be described as a subfractal process, whereas
the second one is related to point concentration fluctuations and may be
described as a fractal process.

Our analysis indicates that the VIC fluctuations, in the range where they also
describe concentration fluctuations, are multifractal and singular everywhere.
These conclusions were derived from the singularity spectrum F(a) of the record.
The F(a) spectrum is related to the scaling properties of the "statistical
moments." The first two "moments" are related to the fractal box-dimension and
to the spectral exponent, respectively. For the given VIC record, in the range
which reflects concentration fluctuations, we found that D, = 1.62 £ 0.03 and
B =1.69. These values are in agreement with the corresponJ?ng results from the
box-counting algorithm and from spectral analysis.

Figure 2 shows the singularity spectrum f(a) for the VIC data together with
spectra of other turbulent variables in different flows. It shows that the
calculated f(a) curves for VIC are more similar to the corresponding curves of
velocity fluctuations, than with those of passive scalar fluctuations.

In the future we plan to compare F(a) curves from simultaneous records of
velocity and VIC fluctuations. This will give a better understanding of the
scaling nature of turbulent fluctuations in general and of passive scalar
fluctuations in particular. It is also planned to simulate numerically the
diffusion of particles in a fractal velocity field.

57




REFERENCES

Bowers, J. F. and Black, R. B. (1985), "Test report-product improved M3A3
(M3A3E2) smoke generator (mobile appiications)," U. S. Army Dugway Proving
Ground, Dugway, UT 84022-5000.

Frisch, U. and Parisi, G. (1985), "On the singularity structure of fully
developed turbulence," Turbulence and Predictability in Geophysical Fluid
Dynamics and Climate Dynamics, New York, 84-88.

Halsey, T. C., Jensen, M. H., Kadanoff, L. P., Procaccia, I. and Shraiman, B. I.
(1986), "Fractal measures and their singularities: The characterization of
strange sets," Phys. Rev. A 33, 1141-51.

Hanna, S. R. and Insley, E. M. (1989), "Time series analyses of concentration and
wind fluctuations," Boundary Layer Meteorology, 47, 131-147.

Mandelbrot, B. B. (1974), “Intermittent turbulence in self-similar cascades:
Divergence of high moments and dimensions of the carrier," J. Fluid Mecn., 62,
331-358.

Meneveau, C. and Sreenivasan, K. R. (1987), "The multifractal spectrum of the
dissipation field in turbulent flows," Nucl. Phys. B., 2, 49-76.

Poreh, M. and Cermak, J. E. (1987), "Experimental study of aerosol plume
dynamics-1II, Wind-tunnel simulation of vertical integrated concentration
fluctuations," CSU Project No. 5-3 2571, CER87-88MP-JEC4.

Poreh, M., Hadad, A. and Cermak, J. E. (1990), "Fluctuations of line integrated
concentrations across plume diffusing in grid-generated turbulence,” CSUProject
No. 5-3 8765, CER91-92MP-AH-JEC2.

Prasad, R. R., Meneveau, C. and Sreenivasan, K. R. (1988), "Multifractal nature
of the dissipation field of passive scalars in fully developed turbulent flows,"
Amer. Phys. Soc., 61, 74-77.

Sreenivasan, K. R. (1991), "Fractals and multifractals in fluid turbulence,"
Annual Rev. Fluid Mech., 23, 539-600.

Stiassnie, M. (1991), "The multifractal structure of the ocean surface,"
Proceedings of the Nonlinear Water Waves Workshop, Bristol, 22-25 October 1991.

58




10!

|t~ n ik l —P|
100
10!
Lo
E
L J
0
10-2
10°3
[
10-44 v S — —
m'

FIGURE 1.  DIMENSIONLESS SPECTRAL ENERGY DENSITY OF THE VIC FLUCTUATIONS (7
SETS OF 1024 SAMPLING POINTS EACH).

FIGURE 2.  MEASURED SINGULARITY SPECTRA OF THE DISSIPATION RATE.

(-----) Velocity time series (Meneveau and Sreenivasan, 1987),
( ) Spatial instantaneous concentrations (Prasad et al., 1988),
(
(

0 ) Temperature time series (Prasad et al., 1988), and
0 ) VIC fluctuations in Region II.

59




Blank

60




A)

B)

E)

F)

10

)

1. AFROSO! CHARACTERIZATION MFETHODS
A. NEPHELOMETRY AND INVERSION

Use of a new polarimetric optical bistatic scaticrometer to tnecasure the transmission and
reflection Mueller matrix for arbitrary incident and scatter directions

Robert D. Kubik
Fzekiel Bahar
Islectrical Engineering Department and the Center for Electro-optics
University of Nebraska-Lincoln
209N WSEC, Lincoln, Nebraska 68588-0511

Dennis R. Alexander
Mechanical Engilueering Department and the Center for Electro-optics
University of Nebraska-Liucoln

248 WSEC, Lincoln, Nebraska 68588-0656

RECENT PUBLICATIONS

E. Bahar and M. El-Shenawee, “Use of Supetcomputers to Evaluate Singly and Multiply Scattered
electromagnetic Fields from Rough Surfaces,” /EEE Trans. on Magnetics, Vol. 27, No. 5, pp. 4287-
4290, September, 1991.

E. Bahar, “Examination of Full Wave solutions and ‘Exact Numerical Results’ for One-
Dimensional Slightly Rough Surfaces,” Journal of Grophysical Research, Vol. 96, Nu. C9, pp.
17123-17131, September 15, 1991.

E. Bahar and S. M. Haugland, “Multipies Scattering of Electromagnetic Waves from Coated
Rough Surfaces,” Procceding of the 1990 Scientific Conference on QObscuration and Aerosol
Research, 1991.

E. Bahar, S. M. Haugland, and A. H. Carrieri, “Polarized IR Scattering Used to ldentify
Contaminant Coatings Over Rough Surfaces,” Proceeding of the 1991 Scientific Conference on
Obscuration and Aerosol Rescarch, June 1991.

E. Bahar and R. D. Kubik, “Simulation of High Resolution Radar Polarimetric Images - Unified
Full Wave Approach,” International Journal of Remote Sensing, in press.

S. M. Haugland, E. Bahar and A. HI. Carrieri, “Identification of contaminant coatings over rough
surfaces using polarized IR scattering,” Applied Optics, Vol. 31, No. 19, pp. 3847-3852, July 1992.

S. A. Schaub, D. R. Alexander, and J. P. Barton, “Glare Spot Image Calculations for a Spherical
Particle Illuminated by at Tightly Focused Beam,” Journal of the Optical Society of America A, 9,
No. 2, pp. 316-330, February, 1992.

J. Zhang and D R. Alexander, “Hybrid Inclastic Scattering Models for Particle Thermometry:
Unpolarized Emissions,” Applied Optics, 31, No. 24, 1992,

J. Zhang and D. R. Alexander, “Hybrid Inelastic Scattering Models for Particle Thermometry:
I'olarized Emissions,” Applied Optics, 31, No. 24, 1992,

61

e et e g e b



ABSTRACT

The Center for Electro-optics and electrical engineering department at the University of
Nebraska-Lincoln recently acquired from TMA (Toomay, Mathis, and Associates) a TASC (True Angle
Scatter Coordinate system) optical, polarimetric scatterometer. This instrument measures the 4 x4
Mueller (Stokes) matrix as well as the Bidirectional Reflective Distribution Fuunctions (BRDF) that
completely characterize scattered light reflected from or transmitted through electromagnetic media
with irregular boundaries. The incident and scatter directions can be chosen arbitrarily in 4r.

FUTURE WORK

The scatterometer in conjunction with a scauning tunneling/atomic force microscope will be
used to validate different analytical/numerical solutions to a broad class of eleciroragnetic scattering
problems by relating electromagnetic scattering data to ground truth measurements in controlled
laboratory experirnents.

1. INTRODUCTION

The Stokes vector polarmetrically characterizes light'2.  The Mueller matrix relates the
incident Stokes vector to the scattered Stokes vector. In inost applications of light scatter only a few
ciements of the Mueller matrix are used to determ:ine how light is modified upon interaction with
electromagnetic material. For example, in ellipsoinetry? only the relative intensity and the relative
phase of the vertically and horizontally polarized specularly reflected light are measured, and usually in
remote sensing only the four components of the modified Mueller 1watrix that relate to the vertically
and horizontally polarized intensities are retained.

The TASC instrument produces six incident Stokes vectors and measures six corresponding
reflected /transmitted Stokes vectors. Through combinations of these measurements all sixteen
elements of the Mueller matrix are determined, the edundancy in the number of measurements is used
to minimize errors. One cf the unique aspects of this instrument is that the receiver can be rotated in
and out of the plane of incidence (defined by the incident electromagnetic wave vector and the normal
to the mean surface). Thus bistatic measurements can be nade in 47, Two coherent light sources
(A=0.6328 pum and A= 1.063 pm) are currently used in the operation of the scatterometer. The
instrument can be retrofitted to include additional light sources.

2. SYSTEM DESCRIPTIONY

The system is designed such that the transmitter can rotate in an arc in a vertical plane while
the receiver can rotate in both vertical planes and horizontal planes (with respect to the mean plane of
the sampls). The sample is at a distance of 50 cm from the receiver. Tt is oriented such that the
normal to the mean plane of the sample is along the z-axis (see Figure 1), The sample holder can
rotate the sample in the x-y plane to vary the azimuth angie {(¢') of the incident wave vector.
Variation of the incident wave vector in the y-z plane (7 <07 < 4135 with respect to the z-axis,
Figure 2) is achieved by rotating the optical table on whicl the sources are mounted. The receiver (in
the scattered direction) can rotate i an 180" arc (measured from the z-axis), thus the elevation angle
(07) of the scattered wave vector is varied. The receiver is rotated in the x-y plane by thie receiver arin
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rotating in a 180" arc around the z-axis, thus the azimuth angle (C.J) uf the scattered wave vector is
varied. The sources are aligned such that the beams have a common path upon exiting the beam
combiner (Figure 3). The system is currently excited by 2 laser sources (see Table I},

source #1 source #2
Laser type: lleNe Nd:Yag
Wavelength (um): 0.6328 1.063
Power, mW (CW): 7 10

Table 1. Laser sources.

Upon transmission through the beam combiner, the beam encounters a calcite ‘polarizer which
is used to set the polarization state of the beam before it enters the source polarization optics. The
beam is chopped (by an AC synclironous motor turning fan-like blades) in order to detect. the scattered
signal. The beam is partially deflected to a reference detector to account for laser power fluctuations.
This reference power is also used as a synchronizing signal for the lock-in amplifier of the receiver.
Upon reflection from the combined beam turning mirror, the laser beam is directed into the source
polarization optic components. These components include a halfwave plate and a quarterwave plate.
They are mounted in rotary stages that are computer controlled. Each laser beam has its own set of
source polarization optics. The source polarization optics are controlled io produce six different
polarization states: Vertical (p or electric field parallel to the plane of incidence), Horizontal (s or
electric field perpendicular to the plane of incidence), Right circular, Left circular, linear polarizations
+45" and -45° with respect to the plane of incidence. After the desired polarization state is generated
the beam is passed through the optical table and down towards the sample (see Figure 2).

Mounted on the receiver arm is the receiver assembly. This assembly consists of a quarterwave
plate, a polarizer, a preamplifier, and a detector. The detectors for both wavelengths are made of
silicon. They consist of filters and oiher optical components which enhance operation at the selected
wavelength. The receiver polarizer and quarterwave plate are mounted in rotary stages that are similar
to those of the source polarization optics. This allows for computer control of the receiver polarization
(the same six pclarization states as for the transmitter). The whole system is controlled by a software
package. The motorized stages currently operational in this machine are:

Source components:
halfwave plate
solrce quarterwave
source incident angle
Recei ver components:
quarterwave plate
halfwave plate
receiver scattered angle (elevation)
receiver scatter plane {azimuth)

Additional optional computer operated components consist of: sample xy and z translation,
beam expansion, beam focus, and sample rotation. The instrument has the ability to operate in the
retro (backscatter) mode by replacing the mirror that directs the laser beamn down to the sample by a

beam splitter (see Figure 3). The backscatter mode is the mode of operation most commonly
associated with active remote sensing.




3. SAMPLE MEASUREMENTS

Figures 4a and 4b show scauns of the incident beams with a receiver aperture of 1.07 mm.
From these scans we estimate that the beam diameters are:

width Nd:Yag fleNe
1/e 3.24 mm 1.86 mm
1/e? 5.04 mm 279 mm

Table I1. Laser Bean: widths.,

[n figures 5a and 5b the Mueller matrix elements are plotted for transmission through a
polarizer. For an ideal polarizer with the angle « bhetween the transmission axis of the polarizer
{parallel to the transmitted electric field) and the x-axis (normal to the plane of incidence), the Mueller
matrix is given by?

i 0s(2er) sin(2er) 0 ]

1 cos(2a) cosz('.!(r) cos(2a) sin(2a) 0

2 sin{2a) cos(2a) sin(2a) sin2(‘_’u) 0 M
0 0 0 0

The horizontal axes on the graphs is a measured in degrees. Notice that the element m, o is ideally 0.5
(this element relates the total incident power to the total transmitted power). U fluctuates slightly
below 0.5 due to the non-ideal properties of the polarizer. Ideally the seven elements show in Figure 5b
should be zero. They also exhibit a slight dependence on the rotation angle.

Since the Mueller matrix contains complete information about. the intensities and the relative
phases of polarized scattered light, it has very general applications. For example, in ellipsometry3 the
measurement that is of interest is the ratio of the complex reflection coefficients L and rg. for
specularly reflecied light. ‘This ratio (the so-called ellipsometric function) is commonly expressed as
follows;

Too (’J‘])[j(d) 1) "'d)ss)] = t(“’(\y)rlxl’(jA) (2)
S8 i

) = i T
P T

e "'lw

. . N . . . r
where ¥ and A are known as the ellipsometric angles or ellipsometric parameters.  Following Azzamn)
assuming that the surface is perfectly flat and no depolarization occurs, the eiements of Mueller matrix
satisly the special relationships 1y = mgy, m g =My, m',lw = igqe and my, = —myq. In this case

the ellipsometric angles can obtained uniquely from the Mueller matrix elements

1 - m].,- _
¥ = i/h-('('ns —“TT" (3a)




m.
A = Arctan (m—:-;) (3b)

Care is taken in interpreting 30 so that A is set in the correct quadrani.  In practice the assumption
that the surface exhibits no depolarization is not strictly satisfied. The measurements taken off an
isotropic gold reflector at the incident angle of 65 and wavelength of 0.6328 um are”’

I 1.000 -0.080 -0.014 -0.003 ]
-0.069 G.988 -0.011 -0.008
0.000 0.009 -0.450 0.886
0.006  -0.007 -0.894 -0.457

The corresponding ellipsometric angle ¥ ranges from 42.71 to 43.02° and A range from 116.69° to
117.28" depending on shich elemients of the Mueller matrix are used to compute these angles.

If there is some depolarization of the incident light by the targ:-t. the ellipsometric parameters
should be extracted from the Mueller matrix as follows.

—~(Mmyat+m. :
¥ = %Areco.s(—il—z— 21)) (5a) ’

m“ + 71722

Moy, — My
~ 4y 34 43
A= _41cl(171(m33 7”44) (5b)

As above, care should bz taken in interpreting Arctan(-) to obtain A in the correct quadrant. For a
relative smooth surfaces the most significant elements of the Mueller matrix used in conjunction with
ellipsometry are (see results show in (1) above),

My = < pplpp > b <Tetle > + <rgptep >+ <y > (6a)
My = < "pl)";)l? > — K rgrae > + < "sp".:-p > = < "ps";}s > (60)
Mgy = <rpptpp> — < Tesles > — < reptsp >+ < r st ps > (6¢)
Mgy T K Tppthy > b < Tegtie> = KT iiy > = <y > (6d)
Mgy = Rt <1y rie > 4 Ror <1ty > (6¢)

My =< rl'l’r‘:-" > +3mn< 1'51,1';,3 > {(6f)

Mgg = = 3m < rie > +Im < vy > (6g)

myg = Roc < "pp";s > =R < 1'],51';], > {6h)

in which < - > denotes the statistical average. # denotes the complex conjugate, R+ ) and Jmn( )
denotes the real and imaginary parts of the argument, respectfully. Thus the ellipsometric angles (5)
cain be obtained as ollows from the definition of the ellipsorietiie paran.cters:
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* *
< r 1T > — < r R > (1124, - )
—~cos(2W) = pp pp sstas N ( 1ot Mai

O - -
<Tpptpp> + < ".ss";.s‘ > Mgty

Im<r,, r¥. > M, — My,
tan(A) = pplss 2 34~ Mgy

= . 7h
R <1 ppres > 33T Mg )

Using his experimental data (4) Azzam® obtains the following vakues for the ellipsometric angles;
¥ =42,85" and A =117.00". Assuming that thie gold is optically thick one can extract the complex
index of refraction from these values for p (2) using the well know relation™?

2

N =n—jk = sinl0), 11 +<!un(())1 7 ﬂ) . (8)

The corresponding value for the index of refiaction is N = 0,27 - j3.02. The published values® for the
index of refraction of gold at 0.633 ym is approximately N = 0.183 — j 3.09.

In an experiment conducted at the University of Nebraska-Lincoln a silicon wafer was coated
with a 1000 Angstroms layer of Nickel. A 1000 Angstroms layer of gold coated this surface. The
sample was scanned (specularly) by the scatteromneter between 1" to 85 in steps of 1°, the rcsulting
values of ¥, A, and N are shown in figure 6. For the same set of paramcters used by Azzam® the
Murller matrix obtained for the experiments with the scatterometer is as follows

-~ -

1.000  0.042  -0.022 -0.002

) 0.048  0.995  .014  0.016
M =0.8(1 (9
0.007  0.014  -0.559  0.824

0,022 (L00Y  -0.827  -0.558

[ -J

The results given in (9) for the incident angle of 65 correspond to the ellipsometric parameters of
W =43.71 and A = 124.08". The complex index of refraction is computed as N = 0.20 — j 3.54,

Note that in reference 3 the second clement (1.)) of the stokes vector is defined as
Ly= < B B> ~ < EJEG> (10)

while using the convenuon introduced by Born ana Wolf! (and adopted by us) the second element of
the Stokes ector i3 defined as

ly= <EEY> ~ < kLY > (1)

As a result there drc sign differences in the elements of the Mueller matrix mJ., and m.,] (7=1,3,4) as
defined by Azzam? and Born and Wolf?,
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4. CONCLUSION

Measurement of the Mueller mairix that enaracterize scattered light from surfaces can yield
more information aboat the material and its surface than measurements taken by commonly used
techniques.  In this papes we have disenssed the measurement of well know optical properties of a flat
optically thick goid filtn and the complete characterization of a well know optical deviee, a linear
polatizer.  This opticil polarimetric scatterometer will bhe used i conjunction with a scanning
tunneling/atoic foree nicroscope to validate coated aud wicoated rough surface scattering theories in
controlled experiments in order to felicitate the detection and identification of chemical contaminants
of rough surfaces,
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ABSTRACT

The Fredholm equation representing the light scattered by a weakly absorbing spherical
particle or a narrow distribution of spherical particles is inverted to obtain the particle size
and refractive index. The solution is obtained by expanding the distribution function as a
linear combination of a set of orthonormal basis functions. The set of orthonormal basis
functions is composed of the Schmidt-Hilbert eigenfunctions and a set of supplemental
basis functions which have been orthogonalized with respect to the Schmidt-Hilbert
eigenfunctions using the Gram-Schmidt orthogonalization procedure. The orthogonality
properties of the basis functions and of the eigenvectors of the kernel covariance matrix are
employed to obtain the solution which minimizes the residual errors subject to a trial
function constraint. The inversion process is described, and results from the inversion of
several synthetic data sets are presented.




NOMENCLATURE
3 Expansion coefficients for the unconstrained solution.
a}: Expansion coefficients for the constrained solution.
ajl Expansion coefficients for the trial function,
Cas:f Average of the angular scattering cross section (um?2).
c:;ig Average of the normalized and imprecision weighted angular
scattering cross sections (Lm-2).
Cl, Angular scattering cross sections (tm2).
c Normalized and imprecision weighted angular scattering cross
sca p 8 g g
sections (um-2),
f(x,n,k) Distribution function.
f(x) Particle size distribution function
fi(x,n) Trial function
h(k) Ratio of the scattering kernels evaluated at a finite value of k to the
scattering kernels evaluated at k equal to zero.
k Imaginary part of the refractive index.
k; Lower limit on the range of imaginary refractive indices.
k¢ Upper limit on the range of imaginary refractive indices.
kg Retrieved imaginary part of the refractive index.
d€; . . . ,
——(—2-1 (2,x,n,k) Differential scattering cross sections (um2).
dce
3
(x,n,k) Differential scattering cross sections that have been averaged over
the solid angle subtended by the detectors (um2),
acive
: (x,n,k) Imprecision weighted differential scattering cross sections.
dQ ”
m Number of inputs
n Real part of the refractive index.
n; Lower limit on the range of real refractive indices.
ng Upper limit on the range of real refractive indices.
ng Retrieved real part of the refractive index.
N Kemel covariance matrix.
P Number of supplemeital basis functions
i . b . .
uj The jth element of the ith eigenvector of the kernel covariance matrix.
X Size parameter.
Xi Lower limit on the range of size parameters
X¢ Upper limit on the range of size parameters
SCica Experimental error in the j" measurement (Lm?2).
Sc’sca Normalized and imprecision weighted ¢xperimental errors (m-2),
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o(x) Dirac delta fuaction.

AC{r a Estimate of the imprecision in the j" measurement (um?2).
Af Relative error in the retrieved distribution function.
AQ2 Solid angle subtended by the detector (sr)
A Wavelength of the laser beam ((tm).
Aj Eigenvalues of the kernel covariance matrix
CDj(x,n) Rasis functions.
d)j(x,n) Supplemental basis functions.
'(Bj(x,n) Orthogonalized supplemental basis functions.
Q Scattering direction.
INTROBUCTION

Techniques for solving inverse scattering problems have received considerable
attention in the literature and are of great interest due to the wide range of potential
applications in areas as diverse as combustion, meteorology, geology, and bioengineering.
The wide variety of applicaiions is primarily due to the fact that properties of a physical
sample can be determined from the interaction of the sample with radiation from a known
source. For instance, measurements of the light scattered by a particle provide an indirect
way of determining the pariicle's size and optica! properties. Twomey! and Bottiger?
describe and compare most of the schemes currently used to invert light scattering or
spectral extinction measuremems for the particle size distribution function (PSDF).
Recently, several tecnniques not described by Twomey or Bottiger have appeared in the
literature>-8. Since the information conten: in a set of scattering or extinction measurements
is quite limited!:9-11, most inversion techniques require the use of a priori information
regarding the PSDF and/or careful optimization of the inputs. Indeed, the primary
difference between most inversion schemes is the way the a priori information is
incorporated or the inputs are optimized. Also, other than the sequential gradient
restoration algorithm?, all the techniques are limited by the fact that the cocmplex refractive
index of the particles must be known. This paper describes an inversion scheme that is
capable of retrieving the size and optiral properties of a weakly absorbing spherical particle
or of a narrow distribution of non-absorbing spherical particles. A description of the
inversion technique is given with an emphasis on the actual mechanics of the inversion
process. The results from several inversions of synthetic data sets are also presented.

THE SCATTERING EQUATION

In the development of this inversion process, attention was focused on simulating
an experiment in which a multi-channel polar nephelometer is used to measure the light
scattered from weakly absorbing particles. The nephelometer uses an unpolarized red ruby
laser (1 = 0.67 um) as a light source and has detectors positioned every 4° from 20° to
160°. Therefore, the available set of measurements consists of measurements of the power
scattered in 36 directions. The ratio of the power scattered in the direction ot a particular
detector to the incident irradiance is referred to as an angular scattering cross section, The

angular scattering cross section measured by the jth detector, C;ca, is related to the

unknown distribution of sizes and optical properties by a Fredholm equation,
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ki npoxp

. . dC. ) .
Cica = J. J J‘ J‘ f(x,n,k) &J(Q,x,n,x) dx dn dk dQ + SCica
AQ ki ni Xi
ki ng xg dé;‘“’g
=AQ J‘ J- J. ?(x,n,k)
X dQ

(x.n.k) dx dn dk + 8C) (1)

The ;K—;(Q,x,n.k) are differential scattering cross sections and are often referred to as

scattering kernels. Assuming the particles are spheres, the differential scattering cross
sections can be.calculated from Mie theory1213,
The following assumptions are made in order to simplify Equation 1. For weakly

absorbing particles (k<~10-3), the scattering kemels can be approximated by the product of
a function that depends only on k and the scattering kernel with k set equal to zero.

gze acee

(x,n,k) ~ h(k) —— (x,n,0) (2
ad

It is assumed that if a distribution of particles is present, all the particies have the same
optical properties.

f(x,n,k) = f(x) 8(n-ng) 8(k-k) ' , 3)

Equation ! now simplifies to

ng Xfg déjan

cl =40 h(ks)J _[ f(08(n-ng——

nj X

(x,n,0) dx dn+ 8C)__ @

Neglecting the error in the measurements, the average of the measurements can be
approximated by the the average of the right hand side of Equation 4.

Vg___z CJ

nf Xf dé}'“'g

m
-lnrz AQ h(kg) I J. f(x)8(n- ns) (x n,0) dx dn 5
=1

l

The unknown function, h(k), can be eliminated from Equation 4 by normalizing by the
average of the measurements. Earlier investigations have also shown that it is beneficial to
weight each measurement and scattering kernel by the corresponding imprecision
estimate!3.14, These simplifications allow the Equation 4 to be rewritten as
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. dc‘ilvg
stca— g j f f(x) &(n- ns) (x n0) dx dn + Bc’ (6)
Cecali X
where
avga
SCa—c’ca/CMACM Q)
8cl, =8CL, JCataCs, 8)
dCavg dCan
—— e ~j
(x,n,0) = 10 (an)/AL 9)
m Tf X[ avg
avg_ 1y o 9G
Coa = iy dm J (x)8(n-ns) (x,n,0) d::dn (10).
=1

EXAMPLE INVERSION

A linear inversion procedure is used to invert Equation 9 and retrieve the real part of
ke refracicoe index. Constrained linear inversion is used io retrieve the PSDF. The value
¢! e imaginary part of the refractive index is obtained by comparing the measured
scattering pattern with the scattering pattern calculated using the retrieved real refractive
index and PSDF. The value of the imaginary refractive index that results in the smallest
residual errors is taken to be the retrieved imaginary refractive index. There are five major
steps in th> inversion process: preliminary analysis of the measurements, selection of the
inputs from the available measurement set, retrieval of the real part of the refractive index
using the unconstrained solution, retrieval of the PSDF using the constrained solution, and
finally, retrieval of the imaginary part of the refractive index by matching the measured and
calculated scattering patterns. An example inversion is described along with - csentation
of the mathematical formulation in order to illustrate the mechanics of .:... inversion
process. An effort has been made to keep the description of the mzathematics brief, but still
provide the reader with all the equations needed to actually perform an inversion. Complete
dcvelopments of the mathematics of b.version are available elsewhere!l.

PRELIMINARY ANALYSIS OF THE MEASUREMENTS

Angular scattering cross sections snould be calculated for several ditferent sizes and
c,.cal properties within the expected ranges before attempting to invert any measured
values. Particular attention should be given to the value of the inost forward angular
scattering cross section available and the average of the angular scattering cross sections.
These parameters will serve as a guide in selecting the trial function usea in obtaining the
constrained solution. The range of sizes and optical properties considered in the example
inversion are listed in Table 1. Table 2 lists the average and 20" angular scattering cross
sections for 12 different sizes and 3 sets of optical properties.

Table 1. Range of Sizes and (_)_Rtica] Properties

Diameter Range Size Parameter I Real Refractive ] Imaginary Refractive
(um) Ronge ! Index Range o '_?__83“ e
0.1-10.1 um 0.5 4770 ! -2.0 ! et




"l‘able 2. Average and 20 AxlgLular ScattermE Cross Sections

Refractive Index

Diameter |  Size

(wm) | Paremeter] 1) 45107 LS +i10° 20 +i10°
funt)| Copmd| fun?) | urd)| Ceund| Gy

0.1 0.5 | 33E7 | 3667 | 7.2E-6 | 7.98-6 | 2.2E-5 | 2.5E-S
0.5 23 [ 3.1E4 | 333 | 1282 | 7782 [ 3562 [ 01
1.0 4.7 3.5E-3 0.1 0.7 0.4 0.1 0.3
2.0 94 | 11E2] 02 0.2 06 | 02 | 07 |
3.0 | 141 3482 0.6 0.3 1.7 | 04 1.1
40 | 18.8 0.1 0.9 0.5 22 1 06 L9
50 | 234 0.1 1.9 0.6 38 | 09 | 35
60 | 28.1 02 | 23 1.1 46 | 1.1 4.5
70 | 328 03 | 4.1 1.1 6.2 | 1.5 | 48
8.0 | 375 03 | 39 1.7 77 | 17 | 66
9.0 | 422 0.6 | 8.0 1.7 98 | 22 | 98

[ 100 | 269 0.6 | 66 24 (110 | 28 [ 115 |

Synthetic measurements represeating the light scattered by a single spherical particle
were calculated using Equation 1. The size and the optical nroperties of the particle were
randon:iy selected from the ranges specified in Table 1, so the actual parameters of the
distribution function were not known until after the inversion had been completed.
Ganssio distributed random noise was added to cach synthetic measurement in order to
simulaie actual experimental conditions. The angular scattering cross sections are pletted in
Figure 1, and the iinprecision estimates shown in the figure are equal to the standard
deviation of the random noise. The standard deviation of the random noise was equal to
10% of the er: or free measurements, The average of these angular scattering cross sections
is 0.67 um?2 and the 20° angular scattering cross section has a value of 2.6 um?2.
Comparison of the 20° angular s:attering cross section and the average of the angular
scattering cross sections with the values in Table 2 indicates that the pardcle has a diameter
of approximacely 4 to 5 tm (a size parameter between 19 and 23).
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Figure 1. Synthetic Angular Scattering Cros; Sections




INPUT SELECTION

The scattering kernels are not mutually orthogonal functions, so a large number of
measurements may only contain a few measurements that are independent of the rest!!l.
Therefore, it is necessary to select a set of inputs from the available set of measurements.
An algorithm similar to that used by Capps et «l? is used to determine which measurements
to use in the inversion process. A kernel covariance matrix is calculated using the
scattering kernels corresponding to the complete set of measurements, and the eigenvalues
and eigenvectors of the kernel covariance matrix are calculated. The kernel covariance
matrix is defined as

X dCavg dCavg
NU = J' —Eé_ (x,n,0) —=— (x,n,0) dxdn (11).

n

Once the eigenvalues are known, an expression derived by Twomey!! for the relative error
(the square root of the ratio of the square norm of the error in the distribution function to
the square norm of the distribution function) is used to determine whether or not the
selected inputs can be successfully used in an inversion process.

1/2

Zm, i(AC’ ) /2 (k) (12).

==

If the relative error given by Equation 12 is too large, the largest off diagonal element of the
kernel covariance matrix is used to identify the two most nearly dependent measurements.
The sum of the squares of the off diagor ! matrix eiements is calculated for each row
corresponding to the two must redundant measurements. The largest of these sums
identifies the measurement that is most nearly dependent on the rest of the measurements,
and that measurement is eliminated from the set of inputs. A new kernel covariance matrix
is then calculated, and the process is repeated until the relative error calculated from
Equation 12 is small enough. In this study, the best results were obtained when the relative
error is slightly less than 1. For the angular scattering cross sections shown in Figure 1,
27 to 30 of the 36 measurements were eliminated from the input set before a relative error
less t1.;1 1 was achieved. The variation in the number of inputs was due to variations in
the range of real refractive indices as discussed in the next secon,

RETRIEVAL OF THE REAL PART OF THE REFRACTIVE INDEX
Once a set of irputs has been selected, an unconstrained solution is obtained by

expanding the distribution function as a linear combination of the Schmidt-Hilber
eigenfunctions.

m

f(x) 8(n-ng) ~ Zd (b (x,n) (13)
1

The unconstrained expansion coefficients are calculated from

m L
=|_ZJ giw) V% (14)
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where the A; and uf are the eigenvalues and eigenvectors of the kernel covariance matrix.
The Schmidt-Hilbert eigenfunctions are obtained from

.dC3'8
¢j(x,n) =L z u-: d:l (x,n,0)) forlSj<m (15).

’\/’ij i=1

The value of the real part of the refractive index and the uncenstrained PSDF are
calculated from the unconstrained solution.

Ny Xg m Np Xfm
Wing) = J‘ J. W(n)z aj<1>j(x,n)dxdn / J j Z ajq)j(x,n) dx dn
n x; Fl noxg F]
ng = W-1(W(ng)) (16)
l‘lf .
"
f(x) = Jz a;®;(x,n) dn an
j=1
n;

The weighting function, W, is used to increase the sensitivity of the unconstrained solution
to changes in the real refractive index. A weighting function that proved to be useful in this
study is the phase shift!3 squared, x2[n-1]2. In praciice, it is usually necessary to vary n;
and ng to ensure that the retrieved refractive index is close to the actual value. When
inverting the example data set, the entire range of refractive indices (1.1 - 2.0) was first
considered, and the retrieved real refractive index was 1.47. The range of refractive indices
was then narrowed to 1.3 - 1.6, and the retrieved refractive index was 1.43. This process
was continued until the retrieved value of the real refraciive index converged to 1.42. The
unconstrained PSDF is shown in Figure 2.
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Figure 2. Unconstrained PSDF
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RETRIEVAL OF THE PSDF

The unconstrained solution satisfies Equation 6 for the set of inputs, and therefore,
is & mathematically correct solution. However, the PSDF obtained from the unconstrained
solution displays characteristics such as high frequency oscillations and negative valaes
which make it physically unrealistic. These characteristics are due to errors in the
measurements and to the limited information content of the measurements. Although it is
not possible to eliminate the error in the measurements, the difficulty associated with the
limited information content can be dealt with through the introduction of a priori
information in the form of a trial function constraint. Of course, the nature of the trial
function will depend on the particular conditions under which the measurements are made,
and can only be determined after careful consideration of the particular experiment. If
measurements are made of the light scattered by a single particle or by an ensemble of
nearly identical particles, the unconstrained solution and the preliminary analysis of the
measurements provide enough information to successfully chose a trial function. In our
example inversion, it is known that the measurements are of light scattered by a single
particle. Based on this fact, the form of the trial function is chosen to be

fY(x,n) = 8(x - x)8(n - ng) (18)

Based on the preliminary analysis or the measurements, x, is expected to be in the range of
19 to 23. The exact value of x( is obtained by examining the unconstrained PSDF shown
in Figure 2. In this case, there are no prominent peaks within the expected size range.
However, the expected size range only serves as a rough guide in sclecting the trial
function, and there is a fairly prominent peak in the unconstrained PSDF at x = 25.1.
Therefore, x, is chosen to be 25.1.

The imposition of the trial function constraint requires that the trial function and the
unknown distribution function be expanded as linear combinations of a set of orthonormal
basis functions. However, adequate representations of these functions cannot be obtained
using the Schmidt-Hilbert eigenfunctions alone. Therefore, a set of supplemental basis

functions or "pseudo-empirical eigenfunctions”!9 must be introduced. The additional basis
functions are obtained by orthogonalizing a set of orthonormal functions with respect to the
Schmidt-Hilbert eigenfunctions. The supy:lemental orthonormal functions used in the
example inversion were

¢j(x,n) = d(x - xj)S(n -n) forl1<j< 101 (19),

where the x; are evenly spaced throughout the size range. The supplemental basis
functions are calculated by orthogonalizing the (Dj(x ny with respect to the Schmidt-Hilbert

eigenfunctions using the Gram-Schmidt orthogonalization procedure. Some of the ¢;(x,n)

will lie entirely in the space spanned by the lower order basis functions and will be
eliminated by the orthogonalization procedure. Therefore, the number of supplemental

basis functions, p, will be less than the number of (I)j(x,n). The number of supplemental
basis functions used in the example inversion was 93.

-1 nf o X
‘(f)j(x,n)z(bj(x,n) 2 ;(x,n) J. J Oj(x".n)Di(x',n’) dx" dn" for 1 <j <101
i=] n; x;

f 12
(I)(» ny = 6 (x n)/J J- 25 (x',n")dx' dn} form<i<m+p (20)
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The tnal function and the unknown distribution function can now be accurately
expressed in terms of the basis functions.

m+
fi(x,n) = ia}cbju,n) 1)
=1
m+
f(x) 8(n-n) = iajcq)j(x,n) (22)

=1
The expansion coefficients for the trial function are obtained from

g Xg

= J- J. fi(x,n)®;(x,n) dx dn (23).
X

nj

The constrained expansion coefficients are found by minimizing the residual errors subject
to the trial function constraint. A performance function is defined as

ng Xf
Can

EPITTEEREP
X

'MB

Q =
PN

ng  Xg

+Y J j [Zd @;(x,n) Za Di(x, n)] dx dn (24).

The performance function is proportional to the residual errors in the retrieved solution and
to the square norm of the difference between the unconstrained solution and the trial

function. The weighting parameter, Y, determines the relative importance of the trial

function constraint. Minimizing the performance function with respect to the expansion
coefficients gives the following expression for the constrained expansion coefficients

—  forl<j<m
a-:a} form<j<m+p (25).

Clearly, the value used for Y will be important in the inversion process. It can be
shown that the square norm of the error introduced by applying the constraint is minimized
if the parameter known as the residual relative variance (RRV)1 is minimized with respect

10 Y. The partial derivaiive of the RRV with respect to Y is given by
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(lr;—il = Z }\.jli'Y(aJ - a“ll-)2 - (C:f)z/(casgf)z]/(hj + 'Y)3 (26).

The optimal value of Y is obtained by increasing Y until JRRV is approximately zero. In

the example inversion, at Y = 86.3, RRV -5.0E-08. Once the optimal value of Y is

determined, the constrained solution can be calculated from Equation 21. The PSDF is
then obtained by integrating the constrained solution over the range of refractive indices.

Nfm+
f(x) = f i a;®;(x,n) dn 27)

n; j=1

The constrained PSDF for the example inversion is plotted in Figure 3.
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Figure 3. Constrained PSDF

RETRIEVAL OF THE IMAGINARY PART OF THE REFRACTIVE INDEX

A value for the imaginary part of the refractive index can now be obtained. An
initial guess of the imaginary refractive index is made and the scattering pattern is calculated
using Equation 1. The value of the imaginary part of the refractive index can be adjusted
until the measured and calculated scattering patterns are in close agreement. If it is not
possible to bring the measured and calculated scattering patterns into agreement by
adjusting the value of the imaginary refractive index, the inversion process should be
repeated using a different trial function. For the example inversion, the value of the
imaginary part of the refractive index that gave the lowest rms residual error was 10-3. The
measured and calculated scattering patterns are compared in Figure 4. The relatively large
discrepancy between the calculated and measured 20° angular scattering cross section
indicate that the size parameter selected for the trial function is too large. The relatively
good agreement between the calculated and measured scattering cross sections in ihe 100°
to 150° range indicate that the retrieved value of the real refractive index is close to the
actual value. Figure 2 is again used to select a x, value for a new trial function. The iargest
peak at a size parameter less than 25.1 is at x = 20.1. A new constrained solution is
calculated as before. Using the new constrained solution, the closest agreement between
the measured and calculated scattering patterns is obtained for an imaginary part of the




refractive index of 10-4. The new calculated scattering pattern in compares well with the
measured scattering pattern as shown in Figure S.

n  Calculated Angu.ar Scaticring Cross Sections
o Measured Angular Scattering Cross Sections
5 ——r— 77—

YT
' BYWEY NTEWE N

Angular Scattering
Cross Sections (| pmz)

e D p

o - ]

1 " 'u oa - % 'i

: 'H'-"l-ii J!'gﬁl' 3

o L 11 S 3
0" 45° 90° 13§57 180°

Detector Angle
Figure 4. Comparison of the Measured and Calculated Scattering Patterns with x, = 25.1
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SUMMARY OF THE EXAMPLE INVERSION
The retrieved and actual size and optical properties of the particle in the example
data set are compared in Table 3.

Table 3. Comparison the Particle Size and Optical Properties with the Retrieved Values
|| Parameter Actual Value Remcvﬁ Value
I Diameter (1Lm) 4.5 4.3
i Size Parameter 21.2 20.1

Refractive Index 1.45 +17.5E-5 1.42 + 11.UE-4

INVERSION OF MORE SYNTHETIC DATA SETS
In order to further test the inversion process, J.R. Bottiger provided the authors
with 6 sets of synthetic light scattering measurements. The authors were told that the
measurements corresponded to the light scattered by narrow distributions of non-absorbing

spheres, but no other information was given. The results of the inversions are shown in
Table 4.
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Table 4. Comgarison of the Actual and Retrieved PSDFs and Refractive Indices

ase Retrieved Actual Remeved Actual Remeved Actual
Mean Size | Mean Size | Geometric | Geometric | Refractive | Refractive
Parameter | Parameter | Standard Standard Index Index

Deviation | Deviation

1 10.1 10.0 1.08 1.11 1.33 1.33

2 19.7 20.0 1.11 1.11 1.46 1.45

3 23.2 20.0 1.09 1.35 1.45 1.45

4 48.9 35.0 1.03 1.11 1.56 1.55

5 47.4 35,0 1.04 1.22 1.56 1.55

6 55.0 55.0 1.03 1.02 1.33 1.33

The actual PSDFs are plotted in Figure 6 for all 6 cases. Although the PSDF for
case 4 has the same geometric standard deviation as the PSDFs for cases 1 and 2, the
PSDF for case 4 is actually broader than those for cases 1 and 2. These results show that
the technique is successful when the distributions are narrow (cases 1, 2 and 6), but has
difficulty when the distributions are broad (cases 3, 4, and 5). This is due to the fact that
as the PSDFs become broader, the scattering pattern becomes smoother, and probability of
finding another PSDF that will produce a similar scattering pattern increases. It is
interesting to note that even when the retrieved distributions differed from the actual
distributions, the refractive index was retrieved accurately.
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Figure 6. Particle Size Distribution Functions

CONCLUSIONS

An inversion technique that retrieves the particle size distribution function and the
refractive index of weakly absorbing spherical particles from synthetic measurements of
scattered light has been developed. The solution is obtained by ¢xpanding the distribution
function as a linear combination of orthonormal basis functions. The orthogonality
properties of the basis functions are used to find the expansion coefficients which minimize
the residual errors subject to a trial function constraint. The technique is shown to be
capable of retrieving the size and optical properties from r.oisy measurements of the light
scattered by a weakly absorbing sphere. The technique was also used to retrieve the PSDF
and refractive index from synthetic measurements of the light scattered by narrow log
normal distributions of non-absorbing spheres in a blind test. Attempts to retrieve the
PSDF were less successful when the distributions were not narrow, but the refractive index
was still retrieved accurately.
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ABSTRACT

The Gaussian model for the extinction coefficient is often made in optic data inversion. To
obtain the frequency—dependent real refractive index therefrom via the Kramers—Kronig
relations, it is necessary to overlook certain symmetry properties of the extinction
coefficient. A precise measure of error for using the Gaussian medel is derived. Also, a
physical basis of the Gaussian model is presented by showing that the dynamic -
susceptibility of a semiclassical ideal gas has an identical structure. The Gaussian model
therefore may be viewed as the scattering of light by a semiclassical ideal gas. The use of
the Kramers—Kronig relations in nonlinear optical problems is being investigated.

INTRODUCTION

The Hilbert transforms are well known mathematical techriques for relating the real
and imaginary parts of an analytic function. The transforms are found useful in a variety
of physical problems. In these applications, one finds that functions of physical interest
very often satisfy restrictive symmetry properties owing to the causality principle among
others. The Hilbert transforms in these specialized applications are commonly referred to
as the Kramers—Kronig relations. In optics one is interested in, e.g., the
frequency—dependent complex refractive index. The Kramers—Kronig relations allow one
to calculate the real refractive index from the measured extinction coefficient. This is an
example of optic data inversion.

Let W be a physical quantity of interest depending on some physical parameter
denoted by z, where the real part of z may denote the angular frequency w, the energy ¢, or
the wavelength A\. Then one can decompose W into the real and imaginary parts:

W(z) = W(z) +i Wy(2) . (1)

The Kramers--Kronig relations assert that

@ ' t
Wl(z) = -;l?P J Wz d_Z_ (23)

-z’
-




Woz) = — % P J-m M)-,—di/- (2b)

Z—2
-

where P denotes the Cauchy principal value. In deriving the above relations, one assumes
that W(z; is analytic in the upper half of the complex z plane such that W(z) - 0 as
l’f" - o. In physical applications, one finds that W (z) is an even function of real z and

2(2z) i an odd function of real z, known as crossing symmetries. Observe that the
"susceptibility" sum rule follows from (2a) by setting z = 0:

Wy(z=0) = — %r Wo(z) z-t dz (3)

—
where Wy(z) is the scattering law, subject to detailed balance.

Now turning to optical applications, let z denote the angular frequency wand W the
complex frequency dependent refractive index n. In the customary notation,

a{w) = ny(w) +1i ny(w) . (4)

The extinction coefficient n:}w) is measurable or at least modelable. Herce, given this
input, one can in priaciple calculate the real refractive index ny(w) as a function of the real
frequency w. Physically the frequescy wis a real positive number. Hence, (2a) is unsuited
to optical applications. Taking noiw of the crossing symmetries:

ny(~wj = ny(w) (52)
and
no(—w) = — ny(w) (5b)
one can rewrite (2a) as follows:
1 ’ [ d /
n(w) = -3 p [ il ge (6)

where now the measurable frequency w’ is limited to positive numbers only. It is
important to recognize that (6) is valid strictly if ny(w) is an odd function of w. What if
ny(w) is not exactly an odd function, is Eq. (6) still applicable perhaps approximately? If
8o, what may be measures of the approximate validity of Eq. (6)? Our work provides
answers to these practical questions, described brietly in the following twc sections. For
complete detail, we refer the reader to our original work.! Also the previous relevant
references may be found therein.
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DATA MODELING

In an experiment arranged to measure the extinction coefficient, it is desirable to
express the measured values by some convenient function. That is, to find a function to fit
the measured data.? Typically, the trial function fio(w) is a well-behaved function like a
Gaussian:

fiy(w) = A ¢ B(wwo)? (7)

where A and B are two adjustable parameters. The Gaussian trial function is evidently
peaked at w = wy. In such a fitting, one does not know a priori the significance of A, B and
wo. One hopes that the physical meaning can be deduced ultimately from some basic
optical models of scattering.

It is known that the trial form represents the measured values of the extinction
coefficient rather accurately for a large interval of the frequency in a number of optical
systems. But can one obtain an accurate value of the real refractive index n(w) therefrom
using Eq. (6)7 We observe that fiz(w) is not an odd function of w. It is neither even nor
odd in the frequency. Strictly speaking, we are unable to use Eq. (6) since it requires an
odd function for niy{w). The trial function fi(w), while evidently quite accurately
representing the tiue function ny(w), fails to meet the fundamental condition of the true
function. To overcome this difficuity, we consider a modification of the trial function:

Ay(w) - Aa(w) = A[e“B(“"‘*’o)2 - e‘B(‘”+“’°)2] . (8)

Now observe that fia(w) is an odd function of w, satisfying the fundamental requirement of
/

the true but still unknown function ny(w). Also observe that if B >> 1, then fis(w) »
fig(w). Hence, if B is large enough, our new trial function (8) can accurately represent the
true function ny(w) and at the same time it can also meet the fundamertal requiriement of
the crossing symmetry. Hence, one can now use Eq. (6) and obtain the real r=fractive
index therefrom.

To understand the accuracy of (8) as a function of B, we shall examine the new trial
function for the entire range of w: - < w < w. The first term on the rhs of (8) is peaked
at w = w,, while the second term is negatively peaked at w = — w,. The two terms
overlap, the amount of overlapping depending on the size of the value B. If B -4 0, the
overlap is maximal. If B - w, there is no overlap. In fact, as B + o (also A -+ 0), the rhs of
(8) becomes two delta functions peaked at w = + w,. If there is to be little or no overlap,

then clearly fi(w) = 0 if w=~ 0. Thus, for practical purposes, if there is little overlap in a
trial function, the required oddness of a trial function is of little practical significance.

/
Thus, one could use fi;(w) in place of fi(w). It is possible to provide a quantitative
measure for estimating errors for this replacement, described in the next section.




SCATTERING BY A SEMICLASSICAL GAS

We find that the extinction coefficient of the form {8) is exactly realized in the
dynamic structure factor in the scattering of light by a semiclassical idcal gas, also known
as a Boltzmann liquid in the thermal scattering theory. For this system, one can construct
a complete dynamical theory by means of iinear response theory. Hence, it is possible to
provide a quantitative measure of errors in the trial functions for the extinction coefficient.

By a semiclassical ideal gas,! we mean an assembly of identical noninteracting
particles of mass m each. The positions and momenta of particles, r; and p;, respectively,
do not commute but obey the usual commutation relation: gri, pj] = i Lk 6;. The
equilibrium state of this assembly is to be described by the Boltzmann distribution. If
scattered by light, each particle in the assembly acts as a free independent scatterer. When
the palrticles become very massive, the model represents scattering from single fixed atoms
or nuclei.

The total energy of the assembly is

N
CH= 2 pj%/2m (9)
i=1
where N is the total number of particles in a unit volume. The system is assumed to be

translationally invariant. Let p(r) be the density operator at the position r defined in the
usual way

N
oe) = D br). (20)
j=1
Then, for a wave vector k, we can define
N
- ik.r ik.r;
pk='[d3re p(r) = Ze " (11)

j=1

The time dependent susceptibility Xi(t) has the well-known definition in terms of the
densiiy operator:

Xk(t) =iNT1 <[pk(t), p_yj> ifL>0

=0ift <0, (12)

where the angular brackets mean the thermal average. For our model defined by (9), we
have shown that

Xy (t) = 2 sin(wat) 3 ity s 0

= (it <0, (13)




where w, = h k2/2m, the recoil frequency, a = wo/f h, B is the inverse temperature.

~

The frequency—dependent susceptibility X(w), now suppressing the k index, follows

from (13):
X(w) = JZ dt €79 X(1) = Xy(w) + i Xa(w) (14)
X(w) = (1/{8) [D(7,) ~ B(1)] (152)
%olu) = {77 (e = ) (15b)
where
v, = (Wt wo)/{4a (16a)
and
D(y)=e Y’ J Y ix e (16b)
0

Here D is Dawson’s integral. Observe that 7 (~w) = - 7¥(w) and D(~y) = D(y). Hence,

-

Xj(w) and 5{2(0.)) are, respectively, even and odd functions of w.

We observe that 5(2((0) is exactly in the form of ﬁ;(w) given by (8) if we identify
A = —[n]4a and B = 1/4a. Referring to (15a,b), let us write:

ii(w) = 5{1 *(w) + X4 (w),i=1lor2. (17)

Then, fio(w) = X; (w). Hence, one can at once write down the measure for errors or the
difference between n;(w) and fi;(w) as:

An(w) = niw) - iy(w) = Xy(w) =2 P J: X2 (o) o 4o

’.Dn‘i' ’ ’ / ~
=%PJ- X (w) w dw =X +(w)' (18)

7 -~ W2 =M
0 w w




The magnitude of An,(w) evidently depends on nonzero values of X +(w) forw>0. Ifa
or B-tis small, the magnitude of An.lgw) becomes small. This is precisely what has been
observed in some recent numerical studies.2 The dynamical susceptibility of a semiclassical
ideal gas thus provides an effective measure of accuracy for trial functions employed in
practical use of the Kramers—Kronig relations.

CONCLUSION

We have shown that the Kramers—Kronig relations can be expressed to
accommodate positive values of the frequency only. The frequency—dependent real
refractive index can then be calculated therefrom, given the extinction coefficient. The
extinction coefficient can be measured and it is often modeled by trail functions such as the
Gaussian. If the measured values are sharply peaked at some nonzero frequency, one may
iinore that the extinction coefficient must be an odd function of the frequency. If not very
sharply peaked, the errors can be corrected. We have provided a particular correction
formula if the extinction coefficient is modeled by a Gaussian.

We have found a theoretical basis for understanding the Gaussian model for the
extinction coefficient. A semiclassical ideal gas gives rise to the dynamic susceptibility,
whose imaginary part has precisely the trial form of the extinction coefficient. The
semiclassical ideal gas model is a fluid model used in thermal scattering theory used for
studying the scattering of light by fixed atoms or nuclei. The correspondence between the
semiclassical gas and the Gaussian model for the extinction coefficient allows us to
interpret the peak position as the recoil frequency in the light scattering. The other
parameters A and B which occur in the Gaussian model of the extinction coefficient have
similar interpretations. A further extension of the use ¢f the Kramers—Kronig relations in
nonlinear optical problems is in progress. :
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ABSTRACT

The non-zero elements of the 4 X 4 Mueller matrix were computer visualized over the
mid infrared region of the electromagnetic spectrum where vibrational states of organophos-
phorous and sismulant molecules (contaminant analyte) are excited, and over CO, laser beam
backscattering angles (normal-to-ublique incidence) from randomly surfaces that contain these
liquid contaminant organic layers. Predictions of the Mueller elements were computed from a
full wave model of electromagnetic scattering reported by E. Bahar and co-workers. The non-
zero elements were displayed and recorded in a multi-dimensional format, as geometry of the
scattering surface changes from a specular to L.ambertian-like reflector of infrared radiation.
The surface may contain multiple contaminant layers that are targeted for detection by analyz-
ing Mueller elements at beam energies tuned to vibrational resonances of the contaminant
then off-resonance. In a related problem regarding standoff detection of biological simulants
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we present measured Mueller matrices of a chiral amine, on and off vibrational resonance,
emphasizing elements [1,4] and [4,1]; identifiers of Vibrational Circular Dichroism, and ele-
ment pairs [1,2], {2,1] and (3,2}, [2,3]. Together, these elements appear to be features of iden-
tification of chiral matter by elastic polarized scattering on-off beam energies of molecular
resonance by the analyte molecules. Future work calls for refining this technology toward
optimum solution of the chemical/biological standoff detection problem.

INTRODUCTION

We apply elastic polarized infrared (IR) scattering for the reinote sensing of contaminant
layers (analytes) spread across terrestrial and other (background interferent) scatterers. In one
problem, the analyte is a liquid layered surface that is randomly rough on the micrometer
scale. A full wave model of EM scattering is applied to predict elements of the Mueller matrix
by scattering from an area of statistically derived mean-squared heights and spatial slopes.
This model, in present form, provides closed form solutions of Maxwell’s equations assuming
single-scaticring by isotropic surfaces of random geometry. he code RETRO(10) is a 10t ver-
sion of numerical implementation of full wave theory.

Analytes of specific interest include DMMP?, DIMP¥, SF96, and TBP, simulants of
the chemical G and VX liquid agents. Absorption of IR radiation by the analyte is key for its
detection. All these organophosphorous and silcon-based hydrocarbons exhibit fundamental
IR vibration modes within primary atom groups. The phosphorous linkages P=0, P-CH,, and
P-O-C in DMMP, DIMP, and TBP are driven into normal modes of rocking, bending, and
stretching vibrational states by tuning of energy of the incident ellipsometer beam source. In
SF96, a silicon based hydrocarbon, §i<O-5i and Si-CH, are groups exhibiting normal IR vibra-
tional modes.

The optical bandwidth of the ellipsometer instrument is 9 - 12.5 wm . The experiment is
designed to excite at least one IR resonance, then rapidly detune to a ncn-resonant energy in
the incident beam (an energy for establishing a reference Mueller matrix). We then ascertain
those Mueller elements in backscattering most susceptible to the targeted analyte mass under
resonance-reference beam energy irradiation conditions. We have and continue to develop
mathematical algorithms(!-3) that access the entire 16-element Mueller matrix field of elements
(the non-susceptible elements themselves are information used in making detection decisions)
and operate (map) into feuture-space, where classification of the analyte is done.

In another remote detection problem of interest to us, chiral matter (crystalline and
saturated in solution) is targeted for detection. (Chirality is handedness of the asymmetric
molecule., Chiral molecules cannot be superimposed on their mirror image.) The chira! com-
pounds of interest in our trial experiments include various amines and sugars that react dif-
ferently to R- and L-circularly polarized IR radiations, as in some organisms which we are
interested in screening. Important features for the detection of chiral molecules are Mueller
elements [1,4] and [4,1]. These elements describe the transform between left - right and right
+ left circular polarizations between input beam and scattered radiance. This information
correlates to dextro and levo optical rotational behavior by the chiral structure and «» a direct
measure of Vibrational Circular Dichroism (VCD), when the energy of the probe beams
matches vibrational resonance of the molecule.®.

VCD is a non-Born Oppenheimer phenomena caused by coupling of electroenic and
nuclear motions. Nuclear motion of parent atoms causes a slight asymmetry in the way left-
handed and right-handed circular polarizations interact with the chiral molecule. Measure-
ments on low-molecular weight chirals compliment the VCD quantum calculations now being
performed by two of us (Zeroka and Jensen). These calculations provide a means to under-
stand fundamental properties of VCD on molecular structures that are simpler but similar to
some organisms; a basis to build on the more complex biological structures. Much of the
work conducted in our laboratory involves selecting the proper basis wavefunction sets,
optimizing scaled force fields, and determining the correction facters to the raw quantum

98




Measured Characterization of Randomly Rough Surfaces ...

calculations on these molecules.

In addition to VCD Mueller elements [1,4] and [4,1], visual inspection of the raw experi-
menta! data suggest that element pairs [1,2], [2,%j and [3,2], [2,3] contain identification infor-
mation on some chiral amine crystals under irradiation by the resonance-reference energy
beams. We include experimental data on L-Alanine, a compound that exhibits these proper-
ties.

RESULTS

A presentation of full wave predictions from randomly rough substrates wetted by
DMMP, DIMP, SF96, TBP, diesel oil, three fatty acids, soot pellets, and other contaminant
layers are given in our previous work.(-*% Several conclusions were drawn: (1) as expected,
the rougher the surface (the greater its spatial mean slope) the more diffuse it is a reflector of
the IR beam, (2) on vibrational resonances of the analyte, the off-diagonal Mueller elements
[1,2] and [3,4] exhibit strong signal intensities about = 30° beam incidence. This signal pro-
pagates through a polarity reversal as the surface roughness parameter of mean-squared slope
increases. The peak in this signal also appears to shift slightly toward oblique incidence. This
behavior was accurately tracked in visualization code applied to the full wave data base.*)

The Mueller matrix sensor built here at CRDEC s a 2-photoelastic modulator design
with four tunable CO;, laser of separate isotope and non isotope gas mixtures. It is a monos-
tatic backscattering system automated by stepper-motor computer control. A full description
of the ellipsometer sensor including optic design, electronic sub-assemblies, logic, data
acquisition/reduction/analysis, and calibration is provided in Reference 1. We have made
several matrix measurements on Arizona road dusts (soils of various particle size distribu-
tions) both dry and wetted by some of the above organic liquid analytes. We have yet to
analyze these data and make comparisons with model predictions. These analyses will be
reported at a later time.

The current data base consists mostly of matrix measurements in backscattering by vari-
ous crystalline structures. These include (%) Tartaric, Glutamic, and Aspartic acids; Cam-
phor, Glucose, Sorbose, Histidine, Mannose, Alanine, Tyrosine, and Serine wafers. The 16
element matrix field is measured at wavelengths on vibrational resonance of the molecule
plus a reference wavelength of no vibrational excitation for comparison. Angular positioning
of the sample is performed typically in tenth-degree resolution. Our interest with these
materials is to seek out their chiral property inherent in elements [1,4] and [4,1), and others
that react to the laser-driven molecular resonance conditions. These data also compliment
theoretical work now being done at CRDEC that investigates the quantum properties of VCD.

Figures 1 and 2 are examples of raw data collected by the ellipsometer instrument. The
L-Alanine wafer is two inches in diameter and quarter inch thick, area of beam surface irradi-
ation is 0.8 in?, and the collected radiance deviates from true backscattering by less than 0.5
degree. Figure 1 represents the Mueller matrix response to the 0.114 eV beam driving a
stretching mode in the NH,CHCH,CO,H molecules. Figure 2 is the same measurement after
the laser was detuned to 0.130 eV, off the resonance band. Three pairs of active elements
about normal incidence can be discerned, without mathematical filtering, viz; [1,4] and [4,1],
(1.2] and [2,1], {2,3] and [3,2]. The nor-active elements complete this 16-element binary map
of L-Alanine. (One envisions a 16-node neural network with 6 firing neurons and 10 dormant
neurons.)

An initial inspection of the data base have shown few vibrational resonances in chiral
sugar and amine compounds producing measurable activity in the corner [1,4] and [4,1] ele-
ments and associative elements. Much of the work in this laboratory investigates why this is
and what are characteristic quantum effects that cause the slight asymmetry in circular polari-
zations on vibrational resonance in chirals.
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Figure 1. On-Resonance Mueller Matrix Elements of L-Alanine, A = 10.88 . meters

1 -
- wﬂm%u
0 s
1 -
0 —T— 1 7 T T T | I
70 80 90 100 110 80 S0 100 80 90 100 80 9 100

04 - A -—-AA.A-W\MMM

T T 1T T 1 1 | |
70 80 90 100 110 80 90 100 80 90 100 80 90 100

0 -—w—l—w—-‘hﬂ )L .MW

17T T 1 T 1 1 T 1
70 8 90 100 110 80 90 100 80 90 100 80 90 100

0 —»MW«- ....‘..,c*,m.,._.. JL

AT/ T T T T
70 80 9 100 110 80 90 100 80 90 100 80 90 100
Backscattering Angle - Degrees (normal incidence is 86.5")

100




Measured Characterization of Randomly Rough Surfaces ...

Figure 2. Off-Resonance Mueller Matrix Elements of L-Alanine, A = 9.52 . meters
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CONCLUSION

We use polarized scattering to study problems of remote sensing of chemical and biolog-
ical contaminations in the field. Before a grand leap into field measurements and analysis is
dore, a better understanding of the information inherent in the Mueller matrix is needed
through modeling and control experimentation.

At the macroscopic level, investigations were made on applying full wave theory to the
detection problem. This physical optics model predicts Mueller matrix elements as a function
of topographic mean height/slope and refractive index of the scatterer. The present form of
this model restricts the surface as an isotropic medium, it does not incorporate multiple-
scattering effects (depolarization), and cannot describe dichroism (scattering by chiral matter).
We hope that full wave theory, or another analytical theory, can accurately encompass these
phenomena.

At the microscopic level we singled-out elements {1,4] and {4,1] as chndidate features for
possible detection of biological compounds by driving the chiral molecule into vibrational
resonance and detecting Vibrational Circular Dichroism. The VCD information was detected
in only a few sugar and amine compounds over all vibrational modes. Moreover, it is interest-
ing to note that those chirals exhibiting active [1,4] and {4,1] elements have associative cle-
ment pairs, such as elements [1,2], [2,1] and (2,3}, [3,2] in L-Alanine,

Both theory and experiment programs continue, with goals of determining if and how
phase-sensitive light scattering can be successfully applied and developed into a remote sens-
ing device.
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Abstract
Using a new technique based on the fanning of a coherent light beam
in a photorefraciive BaTiO3 crystal angularly resolved forward light
scattering from quartz fibers of radii from 15 ym to 30 um have been
successfully measured. Data have been ubtained in the angular range, 0° to

0.3° and they are in good agreement with theory.

Introduction
Light scattering by small particles has been the subject of intense
investigations for many decades. However, virtually all of the experimental
work to date has been limited to angles from near forward to backward
directions.!-2 The limiting experimental factor in the measurement of

forward scattering is the unscattered incident wave which is superimposed
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to the scattered wave. Trcore has been little previous experimental success
in attempts to separate the two waves in the forward direction.

Wang and Greenberg3.4 used the microwave analog method to measure
light sce iering in all directions including 0°. They used microwave
radiation and artificially constructed targets to simulate light scattering by
micron-size particles at optical frequencies. Spinradd used a special low-
angle scattering meter to measure volume-scattering functions down to
angles as small as 0.1° from the forward direction. Forward-scattering
measurements from an isolated sphere have been made recently by using
the Guoy phase shift that occurs at the waist cf a focused Gaussian beam.6
However, that method is applicable only to particles so smail that the
scattering phase shift can be neglected in the analysis. By contrast, the
present research is directed toward particles of all size, including larger
ones for which there are appreciable scattering phase shifts.

The purpose of this research is to use a new technique based on the
fanning of a coherent light beam in a photorefractive BaTiO3 crystal’ and

measure the forward light scattering from quartz fibers of radii from 15 um

to 30 um as a function of angle.8

Photorefractivity
Photorefractivity is the ability of a crystal to change its index of
refraction by interacting with incident light with energy less than the band
gap. When a photorefractive crystal is exposed to a light beam the charge
carriers (for example, electrons) from localized impurities (donors) are
excited to the conduction band by photoionization process and diffuse or
drift until they become retrapped by other impurities (traps). If the

intensity of incident light is spatially modulated then the charge density of
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the crystal is accordingly modulated by this process. This spatially
modulated charge distribution induces a spatially modulated electric field.
This static electric field modulates the refractive index of the crystal
through the linear electro-optic effect and forms an index grating. In a
diffusive medium like BaTiOg, this modulation of refractive index is spatially
shifted relative to the modulation of the light intensity, which makes
photorefractive energy coupling possible. The incident bcam is diffracted by
this grating and the intensity distribution is changed inside the crystal,
which in turn changes the charge distribution. The whole process is
repeated until a steady state is rcached.

Beam fanning can be explained as a photorefractive amplification of
the light scatiered by medium inhomogeneities.6.9.10 When a
photorefractive crystal is illuminated by a single pump beam some of the
light is scattered by impurities of the crystal. ©fven though this scattered
light is weak it can be amplified through photorefractive coupling with the
incident beam. In a BaTiOg3 crystal, the photorefractive gain of the scattered
light is especially large so that more than 90% of the incident light energy
can be deflected through beam fanning process alone. The extinction ratio
depends on a number of factors, such as the angle between the pump beam
and the crystal ¢ axis, the polarization of the pump beam, crystal geometry,
crystal imperfections and aberrations in the pump beam.

To produce the photorefractive ~ffect, photoinduced charges should
migrate from regions of high optical intensity to regions of low optical
intensity to eventually establish a static charge distribution.7 A finite time is
required for the charges to migrate. This time 1t is known as the

photorefractive response time. it is inversely proportional to the intensity of

the incident beam.!! The response time becomcs quite long at low
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intensities (e.g., for BaTiOg, it is of the order of 1 second at 1 mW/cm?2
incident intensity). If the spatial character or the phase of any part of the
beam is perturbed rapidly compared to t, then the-perturbed portion does
not undergo fanning and is trarcmitted without deviation. As a result, if the
scattered light has time dependence which is faster than the response time
of the crystal then it can pass through the crystal while the unscattered light
is fanned out. This is the basis of our technique to separate the scattered
and unscattered beams and could be applicable to suspensions of scatterers

as well as to isolated scatterers.

Experimental Results

Fig. 1 schematically illustrates the experimental setup for the angular
resolved measurement of forward scattering by a quartz fiber. The cw Ar+
laser becam {514.5 nm) is polarized in the plane of the figure, which also
contains the ¢ axis (illustrated with arrows} of two BaTiO3 crystals. Both
crystals are 0'-cut and approximately 5 mm X 5 mm X 5 mm cubes. To
introduce a time dependence to the scattered light a quartz fiber is
mounted on a 1 rpm synchronous motor that rotates it in 1 circle of radius 3
cm. Adjustable apertures Al, A2 and A3 shield the crystals and the detector
from stray light. Most of the incident light is fanned out of its direct beam
path by the first crystal. However, because of the asymmetric nature of beam
fanning, some of the light is left on one side of the beam. This remaining
light is fanned out by the second crys.al leaving less than 1% of the incident
light in the background. As the fiber crosses the laser beara a pulse of
scattered light is generated in this dark background. The angular

distribution of this pulse is measurced with an optical multichannel analyzer
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(OMA) which has 1024 detectors per inch. This signal is recorded in a

computer and compared with the ~:3ults of theoretical calculations.

Polarizer Fiber L1 L2 A3 L3 OMA
4"—\\

a I IR
A

- | IVl |

feor—o| ]
f1 Al A2 {2 f3 fa
Ar' Laser Crystals Analyzer Computer

Figure 1. Experimental set-up to measure angular resolved forward

scattering by a quartz fiber
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Figure 2. The profile of the background beam before and after

beam fanning
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Fig. 2 shows the profile of the background beam pattern before and
after the beam fanning is established without a fiber. Before beam fanning is
established the laser beam profile is measured for short period of time.
Even though it was measured for relatively short period (< 1 sec) the
measured profile shows a sign of beam fanning. Here we can see that 1)
after the beain fanning the extinction of the background beam is so great
that intensity of the background bicam is almost zero and 2) even though the
intensity of the background beam is very small it is not zero and the profile
of the background beam is asymmetric. That is because this beam fanning

process is an asymmetric photorefractive process.

- Measurement

— Calculation

Intensity (Arb. Unit)

Scattering Angle (in Degree)

Figure 3. The interference pattern between the forward scattered beam and

the background beam with weak beam fanning

Fig. 3 shows one of the typical measurements of the forward scattering

from a quartz fiber. ‘The horizontal axis is the scattering angle in degree and

109




the vertical axis is the intensity in arbitrary unit. The thick curve is the
measurement and the thin curve is the calculation. Because the background
intensity is finite what is measured here is the interference pattern between
the background wave and the scattered wave. In this measurement the
beam fanning is relatively weak and the background is comparable to the
scattered signal. In calculating the interference pattern, two fitting
parameters, the amplitude of the scattered field at 0° and the position of 0°,
were used. The uncertainty of angle is about 0.005°. The measurement
shows very good agreement with the calculation. In this graph we can see
the most characteristic interference pattern of 0° scattering. The intensity
distribution I{x) at the detector plane is the result of the interference
between the scattered field E (x) and the background field E, (x) which is

given by

- 2 - 2 -
I0x) = |E, (x)| +|E,(x)] +2|E,(x)

Es(x)lcos(db(x)) (1)

Here ¢(x) is the phase difference between two fields and x is the
position at the plane which can be converted into the scattering angle. I(x)
is the interference between a plane wave and a cylindrical wave. As shown
in Fig. 4, at precisely 0° the phase difference between the scattered field
and the incident field is about 3n/4 radian. So in the interference pattern
there is local maximum at 0’ and this small peak is the signature of 0°
position.

Fig. 5 shows the forward scattering from a 24.2 uym fiber with strong
beam fanning. Note that therc is a strong interference on the left hand side
of 0° while no clear interference on the other side. The reason is that the
background on the right hand side of 0° is not the remaining incident beam
after beam fanning but it is due to multiple reflection of fanned beam and is

incoherent with the laser beam. Therefore, it does not interfere with the
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forwaid scattered beam as in the measurement.

for the simplicity the coherent background is assumed and we have the
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Figure 5. Measurement of forward scattering with strong beam fanning
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Fig. 6 shows S(0)*S(0) versus fiber radius. The 0° readings were
made by producing Fig.5 for all different fibers. The rapidly oscillating

curve is the result of Mie calculation. The data show good agreement with

the theory.

200000 —

5 — Calculation N

s 150000 '~ & Measurement 3 :
8 N

+ 100000

e -
N -
7y Z
50000 --
o=
0

Radius (um)
Figure 6. S(0)*S(0) versus fiber radius.

Conclusions
In conclusion, we have successfully measured the 0° scattering from a
quartz fiber. Angular distribution of forward scattered light has been

successfully resolved including 0° using this technique. BaTiOg3 crystal has

proved to be an excellent novelty filter.
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What is the difference between a droplet of water in a cloud and a layered structure
whose core contains a germn warfare agent whiech is from the choice of coating marle to
appear to ordinary visual interrogation fo be a drop of water or to as a group blend
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with a cloud of water droplets so as to be difficult to see with ordinary multiple scat-
tering experiments? We give in this paper a method of telling the difference between an
encapsulated germ warfare agent and an ordinary droplet.

Weo deseribe in this paper a method of determining when a cloud is likely to contain
hiologieal warfare agents, Normally materials in a cloud that are not man made do not have
a carcfully layered structure. We show 1 particular how to use scattered electromagnetic
radiation to diseriminate between layered spheres and unlayered spheres, and proceed to
disenss the general problem of layered particles with an arbitrary shape.

The basic idea is to separate a potentially highly complex problem into the two simpler
problems of (1) finding the expansion coefficients of the scattered radiation which produced
the measurements, and (1) using the redundancy of droplet parameter information em-
hodied in these expansion coefficients to discriminate between encapsulated materials and
naturally occurring cloud droplets. We suppose that for an N layered sphere that there 1s
a transition matrix Q relating expansion coeflicients representing the electric and magnetic
veetors i the biological warfare agent core to the expansion coefficients representing the
cleetrie and magnetic vectors in the region surrounding the sphere. The representation
of the clectrie and magnetic vectors of the scattered radiation becomes more and more
rapidly convergent as you move away from the spherical cloud droplet, while the known
cleetrie veetor of the incoming radiation becomes more and more slowly convergent.

2 The Prcblem of Noisy Data

Measurements always have error, and the more dimensions you have in an optimization
problem. the longer it takes to solve. Do you try to find the best fit of parameters for a
one or two layer structure to a limited number of measurements or to a large number
of measurements, solving the entire problem at once or do you try to decompose the
problem. We shall suggest using a very large number of measurements, and breaking up
the problem into two smaller parts. A cloud consists of many particles of differing sizes
and multiple scattering must be taken into account. To test the feasibility of the theory,
we consider the simpler problem of scattering from a single cloud droplet and attempt
to determine whether or not that droplet is a single layered structure or an encapsulated
biological warfare agent. In the first part we obtain, independeat of the nature of the
spherical particle that produced the seattered radiation, a representation, in terms of
spherical hartnonies. of the electrie vector of the scattered radiation that produced the
mcasurement,  The fact that the cocflicients needed in this representation redundantly
represent the lavered structure aud electromagnetic properties of the seattering hody then
enables us to tell what kind of a seatterer produced the measurements.

2.1 Noise Removal

Whatever set of measurements we takeo it is incportant to have enough of themn that

woe can temove unsystematic noise from these measurements, If the noise is unsystematic
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or white, then even if the pure signal were a small fraction of the measurements, it could
then be  moved by an integration procedure or a local averaging procedure. The local
time average is

r=t47}, r=t+7,
/ S(r)dr = / (S(r) + N(r)]dr (1)

=0 =0

2.2 Fibonacci Optimization

We use a kind of higher dimensional Fibonacci optimization using planes perpendicular
to the hyperplane of values that are needed to represent the electric vector of the scattered
radiation. The measurement is determined by the electric vector of the scattered radiation
plus the system noise which we assumne we can nearly remove by averaging or filtering
processes.  We consider hyperplanes each defivea by keeping one of the parameters of
interest constant. We use normalized variables such as the one obtained by replacing the
permittivity € by its ratio €/¢g to free space permittivity. Assume that we move along lines
normal to these hyperplanes. For the jth hyperplane we move from our initial starting
point #© given by the equation

FO = (20 0L g . 1)
along the vector
€ = (01, 0@ys) 2 b)) (2)

a distance of r giving us a function of a single variable. We estimate the partial derivative
of the reciprocal of the nonnegative function to be minimized in this direction given by
equation (2). We use these estimates of the partial derivatives to give us an estimate of
the gradient of the of this function. If we move in the direction of the gradient we will
be moving in the direction of the greatest increase of the function. So far this is almost
like the conjugate gradient method. We intersperse now Fibonacci optimization by in this
direction finding the location of the minimum of the function of a single variable that
moves along the lire defined by the estimation of the gradient. Said differently, if ¢'is the
estimated direction of the gradient of the reciprocal of the function to be minimized, then
we attempt to minimize the funciion

gir) = f(F9+r.&)

We at this stage have the problem of minimizing a function of a single variable. We wish to
carry out this minimization without any computation of gradients. Basically we imagine
that we know the value of the function at points 7, and r, and that the value at ry is larger
than the value at r,. We then move to the point »™ given by adding s * (7, — ) to ry,
where s 1s a positive fraction. We then compare the values at 7'%” and 7* and rename the

point in the set
5= ()

. . . . . 2
and the point in this set S at which ¢ is smaller rg ). We pro-
ceed until the difference between points becomes smaller than our error tolerance. This

. . {2
at which ¢ i1s larger r) )
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then becomes our new point for starting the multidimensional minimization process. This
method is a combination of the multidimensional conjugate gradient method and the one
dimensional Fibonaceil optimization.

3 Bioagents Placed in the Core of a Layered Sphere

We show in this section how to detect a biological agent in a cloud when the agent
is stored in the core of a layered sphere. The sphere materials may be isotropic in the
sense that the clectromagnetic properties of each layer are the same in every direction.
The sphere properties may be antsotropic in the sense that the properties are permittivity
and permeability only and these properties are different in different directions. One of the
casiest of the anisotropic spheres to deal with is the uniazial anisotropic material which
has one property as you go in the radial direction and another property as you move
tangentially to the sphere. This is of practical concern as you might have a bioagent
core encapsulated by an oriented molecular layer designed to make it difficult by ordinary
means to discriminate between this and an ordinary droplet. The same result may be
theoretically achieved for a bioagent encapsulated by a full tensor material. Bianisotropic
cncapsulations of biological agents would present another level of difficulty. Bianisotropic
materials might be ereated using molecular layers with a twisted and intertwined molecular
structure. The Faraday (the one with curl of the electric vector) and Ampere (the equation
with curl of the magnetic vector) Maxwell equations both have the form of a tensorially
bilinear function of the electric and magnetic vectors being equal to the curl of either the
cleetrie or magnetic vector.

3.1 Spherical Harmonics and Orthogonality Relations

In order to understand how to solve the inverse problem systematically when you know
that that the scatterer is a single or multiple layered spherically symmetric structure, we
need to have some understanding of the orthogonality of vector spherical harmonics which
dramatically reduces the dimensionality of the problem of detecting an encapsulated sphere
containing biological materials.

The basic idea of the code is that the induced and scattered electric and magnetic
veetors can be, for (1) isotropie, (1) uniaxial, (1i1) full tensor anisotropic, (iv) umaxially
bianmsotropic, and (v) full tensor bianisotropic spherically symmetric structures be ex-
pressed i terms of

- - PM(cos(6 {
Ay = [nu—"ﬁ(]_(”()(g() ))(_-'0 - (—;617,’,”(('0.\'(8))(7'4,] crplimg), (1)
~ / Pcos(f
By = [;llﬁpv':“(('oﬁ(g))f?; + i7ll*%%::‘%i)aﬁ] crplimd), (2)
and )
Clnny = P (cos(@))earplima)d,, (3)
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where ., ¢, and ¢ are the unit vectors perpendicular, respectively, to the r = 0,6 = 0,

and ¢ = 0, coordinate planes, and where P, (cos(8)) is the ordinary Legendre function
defined by Rodrigues’s formula
1 d\" \a
Pn(:):m(z) (‘: —]/ (4)
The associated Legendre functions P)" are given by
” S\ m/2 d "
Pr(z) = (1= 22) ((—1—) P.(2) (5)

It i obvious that even without integrating over a sphere that the dot product of either
of :‘_l‘(,,h,t) or 5(1,1_,1) with C-.”'(,n',l) is zero. The orthogonality of the functions exp(im¢) and
exp(7mh¢) on the unit circle for m # m show that if as in ([5]) we define the inner product
of two vector valued functions U (8, ¢) and U(6, ) defined on the unit sphere by,

- =3

<O V> = /02"/0"(7(9,¢).17(9,¢)*sz'n(9)ded¢ (6)

with two different values of m are orthogonal. If we take the dot product of two distinct
members of the collection

S = {fi‘(m'n),g(m_n),C_'.(m,n) :meZ, and ne{|m|,[m]|+1,-- }} , (7)
with the same values of m and make use of ([1], p 333) the negative index relationship
(v - 2 .
P) = i [Pre) = Zemptmipmsintum Qi) (8)

we find that any two members with different values of n are orthogonal with respect to
the inner product defined by equation (6). For example, to see that

< /I(m.n)aB_'(m”r) > =0 (9)

for all n and r we note that this dot product reduces to

imn{2m) /Ow % [P (cos(0))P (cos(8))) d8 = i'm.(27'r‘) _/jl (—g‘— {P(x)P"(x)}dr  (10)

The details of the remaining orthogonality relations are found in ({5]) or can be derived
from properties of the Legendre functions described in Jones ([22]).

Plane waves in free space can be represented using the functions described above by
carrying out the expansion(Bell, [4] page 51 and Jones [22], page 490, equation 94)

crpl—ikorcos(8)) = S an Pu(cos(8))ja(kor) (11)
n=0
where the expansion coeflicients a,, are given by (see Jones [22], page 490)
i, = (—=0)"(2n + 1). (12)
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These cocflicients are determined by letting = = ko, carrying out a Taylor series expansion
in z, and making use of the orthogonality relationships

" Pocos ol s [2/@n 4+ 1) ifn=m
A P, (cos(8))P,. (cos(8)sin(0)df = { 0 if 0 £ m (13)
This equation is based on the relation (Bell [4], page 61)
o ! 241 ()2
:2_111!::/ :_17l: 1nd:= '-1" 14
~/—1( ) G _.]( ) ( + ) (271“}-1)! ( ) (J. )

which follows from integration by parts in the left side of equation (13). This relationship
can be proven using the Rodrigues definition (equation 4). By using the notion that the
algebraice structure formed by linearly combining these vector fields in a ring of radial
functions 1s invariant under the curl operation also enables one to get an exact solution to
the scattering problem for 1sotropic, anisiotropic, or bianisotropic spheres.

3.2 Representation of the Electric Vector

The key to the solution of the remote sensing problem is to decompose a potentially
numerically intractable problem into two much simpler problems by using the measured
observations of the scattered radiation to find the expansion coeflicients used to represent
the electrie vector of the scattered radiation as a sum of multiples of the vector spherical
harmonies given by equations (1), (2), and {3) by functions of the distance r frem the
center of the sphere. Noise 1s removed by multiple measurements for each sensor. Ultra
Ligh order quadrature can be used to obtain an accurate representation of the electrie
veetor of the seattered radiation by precise placement of sensors at quadrature points
located on a section of a sphere. In this way we can obtain an expansion in spherical
Lharmonies using the orthogonality of the vector valued functionus given by equations (1)
and (2) by integrating only over a small (in terms of steradians) portion of the sphere.

If we put m general functions of the radial variable as multiples of the orthogonal
functions given by (1), (2). and (3) and substitute into the Maxwell equations we derive

equations sueh as
. "
170
il 'Z“’) Ly
: (d> (rZ(kr)

r(n+ 1)
—

4- [(L: + i) — } Z,(f')(l\'r) =0 (1)

For the simple nniaxially bianisotropic material the radial funetions are solutions of

2
IR TP (Q) (20 =

ji,ré " r \ Jr

= k22 = el () .

[ gV}
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where the ordinary uniaxially anisotropie sphere propagation constant is
2 2 ;
kI = wine — jwpo (3)

If we mntroduce the variable

and the propagation constant & is given by
= wiie —iwpo + of (5)
the ordinary differential equation (2) satisfied by Z(kr) is simply
10\ , .nn+1
- (E) (rZ(kr)) + [M —(a —(7——)] Z&N k) =0 (6)

which is casily seen to be a form of Bessel’s differential equation whose solution is simply
a Bessel function with a complex index and argument.

One of the radial functions used as a multiplier involves the reciprocal of the radial
variable r times the partial derivative with respect to r of a Bessel function with complex
index given by

~1
S

a 1 a a,7
/(11 ;)(l ot ) k'pT (b;) (TZ((n‘:’))(kpr) (

and a corresponding equation for the radial functions of type b satisfying equation (1).

When we substitute the suggested representations of the electric and magnetic vee-
tors into the Faraday Maxwell equation (the one involving curl(E )) and Ampere Maxwell
eqnation, the one involving curl(ﬁ), we obtain consistency conditions relating the expan-
sion coeflicients in any region. As we impose the boundary conditions across the layers,
namely the contimiity of tangential cemponents of electric and magnetic vectors across
a scparating sphere, we get relations between the coefficients in the core and the region
surrounding the sphere. For a simple uniaxially bianisotropic material the propagation
ronstant in layer p is given by

Af, — w’l/l(r)F(r) — twpPlo? 4 a1 g (8)

where € is the permittivity, u? is the permeability, o) is the conductivity, and «{?),
and 37 are complex coupling constants giving respectively the contribution of the clectric
vector on the right side of the Faraday Maxwell equation and the contribution of the
magnetic veetor on the right side of the Ampere Maxwell equation In the ptl layer of the
sphere the magnetic vector has the form,

0 Z("”(L rin(n+1)
7 7 ] 'Il )
H = 7 s 11(17)1 2) +
4 1) ) o) ;
(mn)el wftr
Z(;x‘)(ll\ '.,.)”(” + ]) / Z(b.l) 2 )1_)
af) el S (=) ( @M+ 1 Zinnko)
o r Dk

\
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Zim(kyr)
{(») (») np) T
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I

1 (7) I‘ I/‘"(nl)( )+(}'(}) A I,‘/v(ﬂ. 3)(1\ 7 )}B(”l 71

w/l“') Tenan) M » Y (npy (mn)PY (n,p)

— .
—_— )y bl (P al 7(b, 3\ L )
(u)/[(l')) {(} I (m ”)( (n, ,,)(L r )) + « /3("1‘71)("‘ (n. P) 'p7 ))} B(m.n)"’

(p (b]) (1}
(w/[(l’ )[ AP] {b(i" nj (111)“ ! )+ ﬁ(m n)“{n p)(k r }A(m 'n.)+

! : :
(»), (1) mlad}, . (,) (1,3

(w/t(,,)> { ¥ (l(m 11)4{(“ P ( ) + (Y (Hl ”)Z(n")(l\p'l )} /'1(”1‘,1)} (9)

Equation (9) implics, upon equating tangential componests of H, on cach side of the o

boundary » = R,, by taking the dot product of both sides of (9) with respect to B(m n)
and integrating over the sphere r = R,, that

1’ 1 a,} ) a,3),
— = {al) kW () + agl) kW k) } +

uJ/.’.(" (mym) {n,p)

—1 3 1(7) NTRIVP )P )
(wu(r ) { (’)’hr w(We(kr)) + al”p () Wi (For)) }

L (r+1) (n.1) (r+1) a3d) (L.
w1 Lalt ks Wik (kpr) + o)) ks Wi (Rpiar )} +

—7 s ) b, )
( ) { (7+l)b8:1ln;(w((n 71)-)0-1)(kp+17')) + a(’+])ﬂ((51+11))(w((" ;Ll)( p+17‘))} (10)

“)ll(l"”)

Again using the continuity of tangential components of the magnetic vector given by (9) on
opposite sides of a delimiting boundary we deduce by orthogonality of the vector functions
given by (1) that

() (b.1) (r) (b.3)
("‘J““, ) FJ {I(m ")Z(" p) k o ) + ﬂ(m n)z(n T’)(}'P7 )}
_i ) { (), () Z(“ ”(A » (1' Z(fl 51”‘ Al
w/t(’—'_)) - U—(m n) = () 1T )t a {m.n)“(n,p) pe1? )} -

[ i 1) (1)
\wu(w) {(inn)’ ,,+,]Z(,”,+,,(k,,+,r)

(r+1) (h.3) . .
+ /’(:n n) t l I‘I'H] Z(n 7,+])(}";'+17 )}
u)/,(l’+”

o 1) () (1] 41 41) r(n.3)
( ofi —) {(V(’+ ) ’”‘ ”)/(7: I'Ll)(l‘l""l.’) a ()(7+ ) izn u)Z(nh Fl)(l"f’*]r)} (11)

We now attempt to develop transition matrices which will relate expansion cocflicients
in one layer to expansion coeflicients in another layer. We start with equation (10); we find,

122




afrer multiplying both sides of this equation by p™ and dividing both sides of equation
{10} by &,. that
{ (r) M'

(m n}) " (n,p) {n,p)

( s(a.3
){AIJ)_f (‘(:n)n)u o ) k 1 }+

( (7)
{( *-{*)’H’, (W iUr)) 4 (*7_)’((3; ,1)(11((,"':{(1»',)7'))} =
P r

]
o g (r+Ugprtal) (. (p+1) prr(a.3)
( 1.(;,+"1)k,> { o) W1y (For') + @y Wi o (kyr )}

{(mn) (n,p+1)

(Mg (pt1)
pa 1) b1 p+1) v pr(803)
("",‘Gn i ) b (Wi (ker)) 4 BV (k) (12)
Multiplying both sides of equation (9 ) by A*(m‘n)(O,cﬁ) and observiug that

LIM

_ H A, .0, 6)dA =
v RY O Jayn (mn) )

LIM o .
- R; /‘,,(r) H . ‘4(171,71)(6, (ﬁ)(]A . (13)

we derive equation (11). From this, after multiplying all terms by —iwputPlk, and dividing
all terins by /\,2,, where £k, is defined by (8), we derive the relation that

{p)
o (r) a,1) (a.3)
(.A‘I: ) {a(’“,yl)Z(n r) (L r ) (m n)Z(n p)(k } +

{](7) Z(h])(l\ )+ﬂ(1’) Z(""‘)”‘ )} —

(m,n) < (n,p) (m,n) " (n,p)

(r) (1}
Je o (p) (a.1) (r+1) (a3} . .
( /l(p+])A ) 11171)71‘])+])(1\,+]7)—{ O("l ” Z(11]J+])(1‘7‘+l7)} +

: . 1+1) e (b,1) L (r+1) 7 (63) . g :
[— ;1(7’57?] {’ ) 2 1y B1) = Bl Z(oh 1 (K )}' (14)
: rl
where ky, and k4 are defined by (8).

We now define parameters which appear in the matrix relating expansion coeflicients
in one layer to those in an adjacent layer. We obtain these by considering terms appearing

in equation (14)
(1) .
(p41) t (Apt .
S (FEASEN, I g (1
P(h3) (l,(ﬂ-u) [ k, } )

ey (e (16)
Plasy = /"("+'])A'7'

with I, and k. being defined by (%), A siiilar term appearing in the inner shell matrix

1
(1)
{(r) _ e -
Playy ( I‘.I‘ ) (11)

Also




A term in the second row of the outer

shell matrix is

(L
(r+1) I .
= ()
(l ) ‘/[(1‘}'])1(_7’
Another term appearing in second 1ow of the matrix 1s
(r+1) _ = pMalrtt) 9
f(bz) - /l“"“”-‘ (1 )
;7
The corresponding term in the inner shell matrix is
{(r)
m _ -«
Ploy = (T) (20)
,l

With the special functions Z(‘1 7]; defined Ly {6), and .7( ’) , defined by (1), and the
derivative terms defined by equation (7) being evaluated at tho separatmg spherical bound-

ary = R, we sce that the matrix equation relating expansion coefficients in layer p to

those i layer p+ 1 1s given by

Zow P 0 0 A
Woa W Wi s Wi | | @ | _
PeaZim PlnZom  Zoo) (o) ”ﬁfnn)
0 0 Wi Wi Bl
Z((i:;II’l:)-l) ((E:nl%l) (7r+|) Or(h 1) (P+1) Or(b 3) az(p;:':’];;) ]
(”11‘(),‘,/,&11)) (,,‘31()” r(tl)) ({l; i,])w((:];v)ﬂ) ((I;,i)l);ég,;.)ﬂ) b((:;;z)) ' (21)
Plasy ooty Plasy “mapsny P, 9, (n p+1) Pl (n p+1) (mn)
0 0 el e |
This ~quation can be written more compactly in the form
4 RN
(ry {(p+1)
TR | S| = Ty Ry) | O (22
Yo ) (m.n)
Py Bl
To compute the inverse of the matrix T8 we need its transpose which is given by
Ze Ry W) E'; 2 :i(l.-,,R,,) 0
4,' n(l R,) ”4(,'.' }’(I,R ) jl’ ,)Z(‘: ,’, (k. RR,) 0 = (Tir)ytravaposr
0 L (,’, kR z :,)(l..,,/?,,) Wik By | T )
0 p W, n ) AR F%(L:,,R,,) W ;'(A R,,)
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Wronskian relations will show that we can define a new matrix Q") by the rule
' ' -1 41
Q) = Ty R Tk Ry (24)

Using cquations (22) and (24) we see that the expansion coefficients in the core are related
to the expansion cocficients in the outer shiell by the rule,

“) ”(/\"H)
‘0 ) %’h‘;‘%)
N my e
1(1) — Q(UQ(Z) Q( ) b(( +ll)) (25)
(1e,n) ((1;\1/,11))
+1
0 ﬂ(m.n)

This gives u< four vqudtlons i four unknowns, since we assunie that the expansion co-
N+ }
cfficients (1(”1 n)) arc ’3((”1 4 are determined; these expansion coefficients could define a

complex source su(.h as a radar or laser beam in the near ficld (Barton {2] and [3]. Pinneck

et al [27] and Pinnick and Pendleton [26]). Solving equation (25) we find values of (18,3‘“)

and 1)213 o and assuming that um ") and /3( :

(m,n)

arc both zero, we can easily obtain the
expansion coefficients in every layer of the structure. If we define the matrix R by the
1‘111(’, ’

R = TV (ky R,) ' TP(K, Ry) (26)
We see that the definition of R by equation (26) implies the relationship

{r) (p+1)
a(m n) (mm)
(P) a,(r+l;

(») (m n) _ (m,n D

R'n I (») - ’(1)+]) (21 )
((m ) (m+1;))

») P

/ {m,n) /i(m n)

between expansion coeflicients in adjacent layers of the spherical structure.

These computations using equation (27) are facilitated by the fact that we have exact
formulas for the determinant and inverses of the 4 by 4 matrices T Let the determinant
of T be defined by

_ olal) (a3} g,
Ay = 25, kR W (kR

(g {n.p)

{200k R W 0 e Ry) = WD R R ZG0N KRy ) b 4

(n.p) (n ) (rn.p)

(1) |20k, ROW ) (k, Ry

(n.p)

{Z(hl)(l. R )Hr(/x 5)(1‘ R ) ”’“I)(}\,,R,.)7(

{(n.p) (1.} (r.p)

ek )} (25)

(n.p)

which means that the determinant A, is the produet of two Wronskians w

b
and W,

()
where ,
by b1 (O8] b, 4
W 20 G ROW e, Ry = W (kR 2000 KR, (29)
We find that equation (28) and the Wronskian relationship,
W kR, = T (30)
() B (k,R,)* '
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cnables us to compute determinants with no roundoff error. This enables us to get exact
formulas for the entries of the inverse of this matrix. If (T2 (k,R,)™! )iy denotes the entry
in the /th row and jth column of the inverse of the matrix TP, then the entry in row 1
and column 1 of the mverse is

(T (kR Yy = WDk, RWE) (k,R)/ A, (31)
The (1,2} entry 1s
(TkpRy) N2y = = Ziw (ke Ry )WL (Ko Ry [, (32)
The (1,3) term is
(TD(k,Ry) gy =0 (33)
The (1,4) term 1s
») -1 (1.3) —aP\
(Tn (k])Rp) )\'1.4) = “(Z(nlp)(kpRp) T_ W(n'p)(kpRP))/AP’ (34)
p

Equations (31), (32), (33), and (34) define the first row of the transition matrix. The entry
iu row 2 and column 1 of the inverse is

(TD(kyRp) ) = WD R, RIWE (E,R,)/A,, (35)

(n.p) (n.p)

The entry in row 2 and column 2 of the inverse is

(TP (ky Ry) ™ Nz = Ziog) R R WG, (Ko Ry) [, (36)
Tlie entry in row 2 and column 3 of the iverse is
(TD(kpRy) ™" Y2 = 0 (37)
The entry iu row 2 and column 4 of the inverse is
—a'P
(TP(ky R oy = (200 (kR (—g-) W (k. R)/A,, (38)

Equations (35), (36}, (37), and (38) define the sccond row of the transition matrix. The
(3.1) entry is

’ ~ b —aln
(T,’l)(l"vnp) ])(3.|) = M’((,’I:Z;(}"pRv) ('7—“) W((,b.?,,)(kpﬂp)/Am (39)
-
The (3.2) entry is
(T1,l.‘)(l“]’R]')—‘ )(.’5.‘2) =0 (40)
The (3.3) eutry is
(TJ,’)(}"FRI')~| Jisay = I"'.((:::;(I"FR;')W((;{:,),.)(I"PRP)/AP- (41)
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The (3,4) entry 1s

(TJI')(A}R;»)—] a4y = "Z((i‘.i))(i"rRr)W((“) )(;"T’R”)/A’” (42)

n,p

Equations {39), (40), (41), and (42) define the third row of the matrix. The (4,1) entry is
given by

m —a? .

(TP Ry ay = = Wik Ry) (-—,;) Wian(koRy)/ A, (43)

The (4,2) entry is
(T'r,z))(kpRp)_l Jazy =0 (44)

The (4,3) entry is
(TI)(I"FRP)_I a3 = "I/V((:,‘,],;(ker)W((:,)p)(kpRp)/Ap’ (45)

Finally, the (4,4) entry of the inverse of T is

(TI)(kPRP)-] )(4,4) = Z((vli',::))(ICPRP)W((:.)p)(kpRp)/APa (46)

We have therefore obtained round-off error free expressions for the entries of the in-
verse of Tk, R,). Thus, except for the expression relating the expansion coefficients in
equation (25), all computations are carried out by exact formulas. The matrix inverse
computation requires no subtractions or additions and consequently there is no round off
error if the Bessel and Hankel functions of complex index and their derivatives can be
computed precisely.

3.3 Determination of Expansion Coefficients

Let us suppose that we have an N layer sphere subject to plane wave radiation. By
multiplying the inverse of T{P) cvaluated at k,R, by the matrix T{P*! evaluated at k,,; R,
we obtaining the matrix

T = Tk, Ry) T (ki Ry) W

relating the expansion coeflicients in layer p to those in layer p + 1. We then multiply all
of these matrices (1) obtaining a matrix

T=T1".- 7. . T (2)

where NV js the number of layers of the sphere which relates the expansion coefficients
in the core to the expansion coeflicients in the space surrounding the sphere. This gives
four equations in four unknowns. But it is really simpler than that. Using the second
and fourth rows of this matrix equation, we can relate the expansion coefficients of the
scattered radiation to the known expansion coefficients of the incoming radiation. We then
have n the first and third rows of this equation a formula for the expansion coefficients in
the inner core.
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3.4 Recovering the Properties of a Layered Sphere

We now consider a set of equations which may be used to recover the properties of either
a layered isotropie sphiere or a layered uniaxially anisotropic sphere. Imagine that you have
a matrix Q relating the expausion coeflicients representing the electric and magnetic vectors
i the inner core to the expansion coeofficients representing the electrie and magnetic vectors
in the region surronnding the layered sphere. By eliminating the unknown expansion
cocflicients i the core we get for cach spherical har .onie index equations relating the two
complex. a priort unknown but measurement determined expansion coeflicients giving the
radiation cmanating from the lavered sphere to the a priort known expansion coctlicients
defining the known interrogating radiation. For the different types of spheres there are
repeated sets of equations that should give the same answeres for sphere properties. If
these sets of equations do all indicate that the sphere is homogencous and isotropie, then
we conclude that the droplet is not encapsulated.  If these are not satisfied, then we
conelude that the droplet is something else and if we prove that the equations that are
satisfied are cousistent with a layered sphere assumption we conclude that the particles
arc man made.

When the scattering sphiere is 1sotropie and homogeneous like an ordinary cloud water
droplet the only unknowns are (1) the radius R (1) the real permittivity e, (iii) the condue-
tivity o, (iv) the real part and (v) the imaginary part of the complex permeability 0 which
for water may be assumed to be that of free space so that in any case there are at most
O real variables to solve for. For cach Legendre funetion index n for the vector sphencal
Larmonics given by equations (1), (2). and (3), we see that there are four equations. given
by the real and 1maginary parts of the equations

“t;‘f:f,l)).: (“ [Q(Tl’))' EH‘))) (I/QE; ")")J (1)

and with R denoting the 2 by 2 matrix relating the b and beta coefficients i the core to
those in region N 4 1 outside the droplet, we have

A = [ (R ) ot g

If we keep getting the same values for the radins and permittivity, conduetivity and complex
pertneability, for different combinations of 5 equations for different values of the index n,
then we conelude that the we have a nonlayered structure, not an an encapsulated biological
agent,

4 Layering Detection on Structures with a General
Shape

There is no exact solution to the problem of deseribing the seattering of electromaguetic
radiation from an acrosol particle with a general shape. Surface and vohune integral
canations are one way of attacking the problem on existing computers. In the next section
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we deseribe surface integral equations give a way of treating a complex of homogencous
structures cach with different properties that are glued together to form an acrosol particle
with a complex shape. I you can imagine a structure that by molding as modeling elay you
could change into the interior of a sphere, the interior of a torus (doughnut). the interior
of a two handled sphere (two doughnuts that have been cooked together) et ceteras these
are the structures that are allowed. For example a cube 1s allowed because if you nnagine
that a cube was made of soft putty, it could be changed into a spherical shape.

4.1 Surface Integral Equations

A surface integral equation forinulation based on a specialization of a vector caleulus
identity which says that

1 27t - e
Z;/n [—l\ Vo + dio(1) gra(l(tb)] di

- 4L / [grnrl(@) X curl(f:)] dv +
7 Ja

1 . .
—-/ [V (17 grad(®)) - n (V . grad) CI?] da +
47 Jag
1 SR
-—-/ [ (V -n)grad(@)} da
4w Jan
Vir) ref
0 rer-Q
where the distribution @ in the above equation is the fundamental solution of the scalar
Helmholtz operator

(1)

L = A + &? (2)

that is temperate and rotationally invariant. New codes can be developed that would
permit the deseription of interaction of radiation with bodies covered with different types
of tensor material (e.g.  bianisotropic, biisotropic, anisotropic, gyroclecirie, uniaxial, et
cetera). The surfaces are those surrounding homogeneous regions. The layered bian-
isotropic sphere code that 1 have developed can be used to check out the layering aspect
of the surface integral equation formulation of the interaction of electromagnetic radiation
with the first detailed model of general acrosol particles in a complex electromagnetie field.
I have included a careful description of my unigque exact finite rank integral equation) ap-
proach which is the only method for solving volume or surface mtegral equations that can
give computing machine preeision.

Consider a set €2 in R* with boundary surface 99 on which are induced eleetrie and
magnetic surface currents J, and .’\7_,. If we have a simpie N 4 1 region problem, where we
have N inside and a 1egion outside all & bounded homogenous acrosol particles corresponds
to the region index J being equal to 1 and the region inside corresponds to j values ranging
from 2 to N + 1. then if the propagation constant &, inregion J is defined also by a function
F,onaturally defined on a Riemann surface as the square root of,

/,“' = w“'//r — wyia (3)
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For & Debye medimn (Daniel, {13]) the branch cuts are along the imaginary w axis. For a
Lorentz medinm particle (Brillonin, [6), {28]) the branch cuts are in the upper half of the
complex w plane parallel to the real axis. where ji, €, and ¢ arc functions of frequency
it assnre cansality and that the radiation does not travel faster than the speed of light
i vacuun, There are two Helmholtz equations, one for the interior of the particle and the
other for the exterior. defined by

(A + k)G, = 4mb (4)

where G s the temparate, rotationally invariant, fundamental solution ([21]) of the
Helmbioltz operator. We let

and

My, = M = - M (6)
where we assume that the surface Sipy) separates region 1 and region 2. We generalize
cquations (3) and (6) induetively by saying that for any surface S5 separating region j

from region ) where

J <J (7)
we have
JJ = J = —-J} (8)
and
M, = M = - M, (9)
We define )
I = {(j,j) c S,y isa separating surface} (10)

where  is less than j. We get a single coupled, combined ficld integral equation which
deseribes the interaction of radiation with the conglomerate aerosol particle or cluster given
by

(1)€T
s { [ o) [ S5 SED )
G T o .\‘”.}) (J- 5}_
(;11—_:‘)(-111'1 (/ _ /1\7(7‘)- (G,(r.7) + G;(r,®) da(f-)>} (11)

In addition to equation (11) we need equation involving the magnetic vector H™ of the
stinmlating clectromagnetic field which is given by

ﬁxﬁ“" = X Z {(;)/
.am &y

{1.00€T a

/J\?(f‘) (F] G T) + e G}(r,i')) da(7)
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T G‘ 'y ." ]
" ( ),/,,,,1{/ /,1,,9.‘ [CJ(r .T) N s 7,](1”(7.‘)} N
dnw 1", 15

SR)
~—(m[(/ /7 (r,7) + G;(r, '))([u(f'))} (12)
(2, ])
Once the coupled combined field system (11) and (12) 1s solved for J and M, the surface
clectric and magnetie currents respectively and we define the surface electrie charge density
by ([15], p 7)

pur) = L [(lz'us . J—.(f')] (13)
w
and the surface magnetic charge density
.. " -
p(F) = = [div, - M(F) (14)
w

where divg 1s the surface divergence. Now for each region index j we define
JG) = {j:0.J)eT} (15)

where 7 1s the set of all indices of separating surfaces defined by (10). We now need to be
able to express the electric and magnetic fields inside and outside the scattering body. We
first define the vector potentials A, and F, by the rules, ([15] [24])

1

A = “J /J (r, 7,dm)J (16)
Jej( St3.5)

— L € -~ . - -

F, = L [(:ﬁ;)/S _ ‘/J‘J_,»(r)-G_,-(r.r)(la(r)} (17)
JE€T(7) (3.0}

The scalar potentials are defined 1 terms of the electric charge density {13) and magnetic
charge density (14) by the rules,

®,(r) = >—‘ [(47“ )/ //)J 7)G;(r. 7 )da(7 )] (18)
U, (7) = [(47”1 )/ /p (r7)da(F } (19)

167()

and

We now can define the electric and magnetic vectors inside the region j in terms of these
potentials (16), (17), (18), and (19) by the rules,

— ~ 1
E, = —iwd(r) - grad(®,(r) + ——('ml(F)( ") (20)

€

and 1
ﬁj = - iwﬁ_,(r) — grad(¥Y,(r) + —--('url(fi‘J)(r) (21)

H,
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Similar cquations apply outside the body, by there the fields represented are the (hff(-wn(('s
E; and H* between the total clectric and magnetie veetors and the electric vector E™ and
the magnetic veetor H™ of the ine oming wave that is providing the stimulation. Thus
([15]) we see that outside the body,

El = —iwd(r) — grad(®(r) + —1—cu1‘1(ﬁ| )r) (22)

€1

and 1
H = —iwF(r) = grad(¥,(r) + —cwrl(A)r) (23)

i

These equations generalize the formulation of Glisson ([15]) to a three dimensional struc-
ture whose regions of homogeneity are diffeomorphisms of the interior of the sphere or a
torus in RY. If the scattering structure is not a body of revolution, then the region may be
a diffcomorph of an N handled sphere.

4.2 Recovery of Layering in Objects with a General Shape

The encapsulation of a spherical structure is probably from a manufacturing standpoint,
thie casiest thing to do, but the once this is known the theoretical problems of recovering
the interior struceture of a layered sphere are easily handled. In theory one can do the same
thing for a particle with a completely general shape. We use the fact that each component
of the clectrie veetor is real analytic in a connected open set §) ard that if in an open
subset U of the connected open set  the function is kinown, then it can be extended to all
of 2. By carrying out spatial Fourier transforms on orthogonal spatial hyperplanes which
avoid the seatterer, we recover the integrand which gives us not only the a priori unknown
generated current densities but also their support when regarded as distributions. This
automatically gives us the layering in the general shape aerosol particle.

5 Computer Code Validation

How does one know that a computer code is giving accurate answers. There are several
nmethods.  These are (1) reeiprocity methods, (ii) boundary condition checks, and (i)
cnergy bhadanee checks, ‘

5.1 Energy Balance Checks

One can calenlate the total absorbed power in two different ways, One method is to
use Gausstan quadrature to integrate the power density distribution over the interior of
the seattering hody, Another method is to use a Poynting vector analysis on the surface
of the organ. o kind of energy balance bookkeeping which says that the the total power
gotg i minns the total power seattered away is the integral of the Poyuting veetor of the
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total fHeld outside dotted with the inward directed normal minus the Poyuting vector of
the total scattered field dotted with the inward directed normal mtegrated over the surface
of the acrosol particle. This cheek was applied to a six layer model of the hunan head
exposed to 107 Hertz radiation. and possessing the properties deseribed in the table:

R €/e a
0527 60.0 0.90
0547 76.0 1.70
0552 45.0 1.00
058G 8.5 0.11
0390 5.5 0.08
0600 45.0 1.00

OO WIN Ny

The propagation constants for this head model are listed in the table below:

layer no  propagation constant

1 163.78 -+ — 7-(21.69- )
2 186.23 .-+ — 7-(36.03 )
3 143.26- -+ — 7-(27.55 )
4 6151+ — i-(7.06- )
5 40.56 -+ — i-(6.37- )
6 143.26- -+ —~ 1-(27.55 )

This code has been angmented with a kind of inverse scattering procedure to mse the seat-
tered radiation in a simple way to see inside a potentially layered sphere and determine the
number of layvers, the electromagnetic properties of these layers and the radius of the outer
sphere bounding these layers; The expansion coeflicients of the scattered radiation have
an infinite number of copies of redundant information which characterize the properties of
the multiple layered sphere which produced the scattered radiation. The Povuting vector
analysis, which tells us that the total power going into the sphere minus the total power
scattered away is the total absorbed power is embodied in the equation,

G) [ /( [(E‘ x (H)) (=) = (E* x (H")) -ﬁ] REsin(0)dbde

2= 1.45324 x 107" Watts (1)

A completely different approach based on the Gauss divergenee theorem and obtained Ly
taking the divergence of the Poynting veetor and using information about the conductivity
a, of the material filling the j#h layer and the radius R, of the outermost sphere hounding
the j1h layer and using the multiple layered sphere computer program generated eleetrice
ficld veetors at Gauvssian quadrature points within the layers tells us that

5‘“ PR Y I 1 F‘

1= i

2) resin(@)ydrd@de

= 1.453240960 x 107" Watts
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This together with the fact that the spherical harmonie representation of the plane wave
had full machine precision on the surface and the fact that the series converged on the
inside of the spheres would tell us that the aceuracy of the internal fields is at Jeast
G digits, the number of digits of agreement hetween the two answers, This idea when
ceneralized to arbitrary surfaces and used along with boundary condition verification,
reciproeity validation and local verification of the Maxwell equations will give us a measnre
of the accuracy with which the internal fields are being computed.

Part of the problem associated with electromagnetic pulse analysis. particularly for
hodies with a general shape has been the number of different frequencies for which the
imteraction problem must be solved for time harmonic incident plane waves to see the
clectromagnetic pulse oficet. There are two types of electromagnetic pulse effeets, The
geometry of the seati-iug body caa cause the pulse to continue to resonate back and
forth, particularly in a low loss material like bone, long after the pulse has passed by.
Another effeet is the dispersive effeet based on the dependence of the tissue eleetromagnetice
properties on frequency.

There 1s an cconomical way to see geometrical pulse effeets by initially assuming that
the electromagnetic properties, the permittivity € and conductivity o, did not depend on
frequeney. Integral equation formulations and even finite difference egnation formulations
require the solution of large systems of linear equations. If we have the inverse of the
associated matrix for incoming radiation of one frequency. then by an N homotopy process
as we kuow the dependence of the filled matrix on frequency we would solve for the inverse
matrix as the answer to an initial value problem. Another N2 steps would take care of
the multiplication of the mmverse matrix by the vector giving us the representation of the
incoming field. To understand this simple idea suppose that Ly was the original matrix
to be inverted and that the inverse of this matrix was Ry, Suppose that the filled matrix
at the new frequency was Ly, It is casy to see that a nonconunutative product rule holds
for matrix derivatives. We know that if y, is the veetor representation of the incouming
radiation, then the veetor representation ry of the internal fields is given by R -y, We
suppose that R(s) 1s the mverse of the matrix L(+) The matrix product rule tells us that

Lis) - R(s) + L'(s) R(s) = 0

where 0 represents the derivative of the identity matriv, Sinee we know Lis) and L'(s)
we can solve for the new inverse R(s) of the matrix L(s) by solving the matrix ditferential
cquation

R(s) = - Ris) L'(s) - Ris)
With an V47 matrix multiplication, we in essence have amatrix inversion scheme of the
Nell11e” ()1‘(]"1'.

We nse the faet that we can multiply @ an N by NV matrix by a coluwmn veetor in N'*
steps to get annversion scheme that 1s gnaranteed to bhe of order N4 for arbitrarily siuall
. We snppose that by some effort we have obtained an inverse for the matrix Ly, giving a
solution veetor o solving the cquation,

I‘() o=

by the mude

J - 1{() )
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[f we wished to know the response of the body to radiation of another frequency represented
by a veetor y; We would therefore consider the equation

Lis) (=) = uy
But if we write the inverse of Lis) as Ry- S, then
[Lo+(L(s)—Ly)] - Ro-S = 1
where I s the identity and this relationship becomes
[T+ (Lis)=Ly)-Ry)S = I

so that if L(s) is fairly close to L{0) we can write

S = 3 {(~D([L(s) ~ Lo] - Ro)"]
U

P

which means that we have a local power series representation of R(s) and that in view of
the fact that

! 13
r'(s) = R'(s) -
we get an ordinary differential equation for the solution vector given by

o0

#(5) = = Ro-{ 3 [(=1)F([L(s) = Lo] - Ro)*| § - L'(s) - a(s)

k=0

This means that we can just use Ry and move along a solution path from the solution
vector g to the solution vector ry which will give the electric and magnetic vectors at the
next frequency needed for the Fourier inversion. If we limit the number of terms in the
series and always multiply matrix products by the column vectors first so that for example
if A, B, and C were matrices and r were a colnmn vector then

A-B-C-r = A-(B(«(C-x)))

can be carried ont with less than 6- N* multiplications and additions, This procedure is also
valid for dispersive materialis, aud means that we do not need a separate matrix inversion,
an N? process for cach new frequeney that is needed to represent the electromagunetic pulse.
Another coneept is that if we can, in a highly accurate manner, represent the incoming
radiation ficld with a simall mmber of frequencies, then by inverting the integral operators
we can solve for the mduced internal electrie fields at these frequencies, add them up
and get the pulse response. I plan to adapt this sound idea by using a novel method of
frequencey partitioning that I developed nusder an effort. concerning modeling the swimming
iwotions of uniflagellar microorganisms. The first graph shows the microscope slide data
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and the graph below shows the very small number of frequencies needed to describe the
oscillations perpendicular to the path along which this singie celled creature is heading,.

Cross track motion
A = -7450419 , B = 3.6563991, w = §7.499979
A =1.0479472, B = 65366872, w = 1248,0990
A = ..56414504, B = .,80276769, w = 80.815101
A = -059328814, B = 66970221, w = 217.76566

y
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Note that in these two figures only four scemingly unrelated frequencies are significant,
but if you tried a naive Fourier analysis using a basc frequeney wy and its harmonies
2 woe 3 we. - o - then after a thousand terms you would be little hetter oft than when
you had started. T would therefore propose to model the incoming pulse using this same
type of frequeney partitioning that was so successful in my biohydrodynamies modeling,
By the way, this same method could be used in computer speech recognition, handling
spatial frequencies in a manner that would permit a satellite to remotely positively identify
relocatable objects on the ground or in the air.
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I1B. IMAGING OF MICROPARTICLES AND AEROSOLS
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ABSTRACT

Electrodynamic levitation traps are used to suspend and
electrically manipulate charged microparticles. Isolation of a
particle from a group, transfer of particles from one trap to
another, and the merging of suspended aerosols of opposite charge
are described. Future work involving particle isolation and the -
suspension of microparticles in a gas flow is previewed. .

INTRODUCTICN

Electrodynamic levitation traps were originally developed by
Wuerker!, et al, in connection with fusion research in the late
1950’s. Under the simplest condition of a single particle in an
evacuated trap, particle motion is described by a set of Mathieu
differential equations. If the magnitude and frequency of the AC
drive voltage to the trap are in the stable range for a given
particle charge-to-mass ratio, stable levitation will occur.

When a group of particles is levitated, particle-to-particle
interaction (due to like electrical charge) causes the particles
to form an array distributed about the geometric center of the
trap. If the trap is not evacuated the stability limits for
levitation are extended due to the damping effect of the air on
particle motion.

In general, levitated particles are held in orbits within
the trap with the diameter of the orbit increasing as the average
distance between the particle and the geometric center of the
trap increases. Thus, a particle becomes nearly stationary at
the center of the trap. Due to the effects of gravity and
particle to particle interaction, a particle will not normally be
at the trap center. DC cross-fields may be added to the AC
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levitation fields to position particles within the trap as
desired.

EQUIPMENT DESCRIPTION

A cubical trap geometry with six planar electrodes and 2§
AC drive as described by Kendall?, et al, was used for this work.
The inside dimension of the trap was 3.2 cm on a side. The sides
were constructed of Plexiglas with small holes at their centers
for particle illumination and observation. The top and bottom
were made from aluminum disks with holes at their centers through
which particles could be injected. The electrodes were mounted
to the inside of the cube and were made of a fine wire mesh. Two
traps were joined together with a common mesh electrode to form a
dual chamber trap for particle transfer work.

AC drive on the order of 2 kV rms 2¢ (60°) from 50 to 200
Hz was ucsed to drive the trap. Three BC cross-fields were used to
position the particles aleng the X, Y, and Z axes. A 5 watt
argon laser operating at about 2.5 watts was used to illuminate
the trap through the bottom mesh electrode. A beam spreader was
used to expand the laser beam for more complete illumination of
the trap.

Particles were injected into the top of the trap in all
cases. Glass beads of a nominal 20 um diameter were used for
solid particles. They were launched from an aluminum cup, with a
small hole in the bottom, which was elevatad to 20 kV. Aerosol
particles of approximately 50 um diameter were produced by two
modified perfume sprayers with their metallic atomizers connected
to high voltage power supplies.

ISOLATION OF A PARTICLE

A single levitated particle can be isolated from a group of
levitated particles. This is done by positioning the desired
particle at the cente. of the trap with DC cross-fields and then
momentarily switching off the AC drive to the trap. Since the
desired particle is at the center of the trap it is nearly
stationary while all other particles have velocities dependant
upon their position within the trap. Thus, when the AC is
switched off all the particles but the desired one tend to fly
off and be lost. This process may have to be repeated several
times to clear the trap of undesired particles.

Further experimentation with particle isolation is planned.
At present, successful isolation depends upon a skilled operator
and all particles but the desired one are lost. Feedback control
methods might be employed to hold the desired particle at the
trap center while the AC drive is switched off. Also, an
isolation method which allows a desired particle to be removed
from a group, without particle loss, might be possible by using a
small capture trap within a larger trap containing the group of
particles under study.
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TRANSFER OF PARTICLES BETWEEN TRAPS

Two levitation traps were joined together with a common wire
mesh electrode as previously described. DC cross-fields were
then used to force the particles from one trap into the other
where they were recaptured.

AC drive was applied to each of the traps in parallel by
connecting corresponding side electrodes together. The top,
common, and bottom electrodes were operated at AC ground. The
top and bottom electrodes were electrically connected together.
DC cross~fields were then produced by applying a DC potential
between the common electrode and the top and bottom electrodes.
This arrangement made it possible to force levitated particles
from one trap into the other by controlling the DC cross-field
magnitude and polarity during the transfer.

Charged particles were first launched into the top trap with
the DC cross-field adjusted to neutralize gravity and aid in
particle capture. The cross-field was then reversed and
increased in magnitude to expel the particles from the top trap
into the lower one. At this point, the DC cross-field had to be
quickly reversed to its previous value to permit levitation in
the lower trap. This method worked better when the particles
were moved from the upper trap to the lower then in the reverse
direction. This difficulty was overcome by using independent
cross-fields for the upper and lower traps but the equipment
became more difficult to operate. Particle transfer was also
done horizontally by similar techniques.

MERGING OF SUSPENDED AEROSOLS

Charged aerosol particles were produced by the modified
perfume sprayers previously discussed. Two sprayers were used.
The first was filled with a water and glycol mixture (20% glycol
by volume) and was operated with a 20 kV charging potential. The
second was filled with water, glycol, and Rhodamine B dye and was
operated at -100 V charging potential.

Aerosol particles from the first sprayer were levitated
first. Then, a lightly charged aerosol of the opposite charge
was injected into the trap from the second sprayer. Since the
charge-to-mass ratios of the particles in the second aerosol were
very low, they did not levitate but were attracted to the
levitated particles of the first aerosol (due to opposite charge)
causing the particles to merge.

The merging of particles was easily detected since the
levitated particles became dyed as they merged with injected
particles which contained the dye.

Since the dyed particles were lightly charged and had
similar masses to the levitated ones, particles produced from a
merger had only about half the charge-to-mass ratio of the
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original levitated ones. Despite this, the stable range of the
particle trap was sufficient to permit the merged particles to
remain in levitation.

PARTICLE LEVITATION IN A GAS FLOW

A levitation trap is presently being used to levitate
microparticles in a laminar gas flow. The object of this work is
to create an environment for studying the microphysical and
chemical behavior of particles typical of the lower stratosphere.

A DC cross-~field is used to balance the force of the gas
upon the particles. Testing to date has used 20 um glass beads
in gas flows up to 20 cm/s.

Additional tests are planed using submicron aqueous
particles in reagent gas flows up to 10 cm/s. Gas temperature
and pressure will then be controlled within the trap to simulate
lower stratospheric conditions.
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Abstract

Continuous wave stimulated Raman scattering was observedin 11 to
13 um diameter benzene and toluene microdroplets at pump intensities as
low as 8 kW/cm? and 24 kW/cm?2, respectively. Low thresholds were achieved
by exploiting : (1) simultaneous pump and Stokes wave resonance in the
droplets and (2) Raman gains that were cavity QED enhanced = 50 X with
respect to bulk liquid values. Based on a photon state conservaticn
argument, the cavity gain enhancement factor may be approximated by the
ratio of spectral spacing between resonant modes of the same order to that of
the homogeneous Raman linewidth. This relation appears to be consistent
with the relative experimental behavior of benzene, ethanol and toluene.

Introduction

Cross sections for spontaneous Raman scattering are typically quite small,
and those for stimulated Raman (SRS) are correspondingly much lower,
which is why SRS is normally reported using high peak power pulsed laser
pumps. Most of the comparatively few reports of :w SRS employed an
external cavity to enhance the pump and SRS signal intensities. Figure 1
contains a schematic energy level diagram of the SRS process and external
cavity arrangement for a bulk medium, and also introduces the idea of a
sphere (liquid droplet) as a natural opiical cavity!. Radiation may be
trapped in this type of geometry by the mechanism of total internal reflection.

External cavity feedback
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There are two advantages of 1sing a cavity resonantor

1. Concentration of pump radiation

2. Redistribution of density of final photon states




In addition to multiplying the pump inte: .ity, a cavity also causes
redistribution of the photon final states ;> phiase space compared to the free
space environment for a radiating molecule. Such redistribution can result
in an apparent enhancement in the stimulated Raman cross section (alse
referred to as QED enhancement) and will be discussed later.

Radiation becomes trapped at particular resonance values of the ratio of
the droplet circumference 2na to the incident wavelength A (known as the size
parameter x ). Referred to as morphology dependent resonances (MDR's),
their positions can be calculated from Lorenz-Mie theory2, and each has a
unique internal field distribution (cavity mode) which can be cataloged by
integers n (mode number) and 1 (mode order). Each resonant mode is either
transverse electric or magnetic (TE or TM) and has a characteristic quality
factor Q = x ,/Ax. where Ax is the width of the resonance. In Fig. 2 typical
plots are shown of the calculated internal field distributions for the particulcr
modes indicated across the equatorial plane of the droplet3.4. Emission
spectra are alsc shown recorded as a function of wavelength in dye-doped
dropletsS. Intensity peaks occur at MDR positions due to the increased
densiiy of photon states. Below the spectra, comiputed positions are indicated
by arrows pointing up (down) for TE (TM) polarization and are offset
vertically to indicate mode order. The lowest order modes have the highest
theoretical Q's. In the cw SRS study, the pump radiation is fixed and the
droplet size is varied to achieve resonance conditions,
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Experimental

To study the optical properties of droplets, a monodisperse stream of
either benzene, toluene or ethanol droplets tunable in diameter from 11 to 13
Hm was produced using a vibrating-orifice droplet generator witha 5 ptm
diameter orifice®. Droplets were optically pumped as they fell through a
514.5 nm wavelength cw argon-ion laser beam focused to a 40 um spot
diameter. The droplet size and refractive index were determined by matching
the measured fixed-angle elastic laser scattering near 90° as a function of the
generator frequency (see Fig. 3a) to the computed scattering intensities as
previously described36.7. Spectral composition of radiation emitted by the
droplet at = 120° scattering angle was examined using a 1 meter doubie
monochromator with a resolution of = 2.25 cm™! and equipped with a cooled
photomultiplier and photon counting system (see Fig. 4b).

Fig. 3a shows a typical 514.5 nm elastic scattering spectrum from a
benzene droplet stream. Figure 3b is the corresponding frequency plot of the
total Raman signal at 542 41 nm due to the 992 cm™! C-C stretch vibrational
mode. One large peak and several smaller ones appear in the orifice
frequency spectrum. Fig. 4a shows the spectral dependence of the 992 cm’?
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Fig. 3. SRS Observed As A Fig. 4. Spontaneous and Stimulated
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spontaneous Raman emission (width = 2.5 cm’!) from a 1 em long sample of
benzene. Fig. 4b shows the spectral dependence of the Raman emission from
the droplet stream under conditions (droplet radius, @ = 6.4 lm)
corresponding to the large peak at 390 kHz in Fig. 3b. These size droplets
lead to the fortuitous placement of high Q cavity modes very nearly
coincident with both pump and Raman wavelengths. As shown in Fig. 4b,
shitts of several cm’! from line center were common. We calculate that for
droplets of this size, first and second order? TE and TM output modes have
theoretical Q's in excess of 107 and there are 3 orders of input TE and TM
modes having Q's > 5 x10%. The experimentally achievable Q's, however, may
be limited to values lower than 107 by iaser induced droplet
heating/distortion. The spectral spacing Av, between modes of the same order
and polarization is approximated2 by: (arctan{(mZ-1)V2))/2na(m2-1)1/2, where
m is the index of refraction: fora = 6.4 um, (Av) = 190 em!

Observed nonlinear power dependence of the emission (Fig. 5) is indicative of
SRS oscillation with a pump threshold of ca. 50 mW for benzene (open
circles). A sccond Stokes SRS signal at 1984 cm’!, having an amplitude about
an order of magnitude lower than that of the first Stokes, was also observed.
Up to 14 orders of Stokes waves have previously hbeen observed in pulsed
experimem:s8 in larger droplets where the probability of aligning appropriate

modes within the respective narrow Stokes gain profiles was more favorable.
The 50 mW threshold pewer corresponds to an incident intensity I, of only 8

kW/cm?. The intensity of the resonant pump within the cavity I, has been
shown? to be greater by a factor of f /[4m2a m SVL] when Q > v/&vL. Here 5VL

is the spectral width of the argon icn laser, measured with a scanning Fabry-
Perot interferometer to be about 0.3 cm™L. Therefore, the intensity inside the
droplet when the pump is resonant with a high Q mode is = 0.3 MW/cm?2.
Note that the effective intensity may vary due to partial spatial overlap
between the input and output modes represented as f and taken to be = 0.5
here. Assuming an output mode Q of 107, a benzene Raman gain of 3 cm/GW,
and a resonant mode Jocated on the shoulder of the Raman line (i.e. 1/2 gain
as in Fig. 2), the SRS pump threshold intensity should be at least a factor of
70 higher than actually observed.



These results and conclusions for the benzene experiment are summarized in
Table 1. The apparent enhancement of the stimulated Raman gain is
denoted as X, and can be explained in terms of QED effects discussed below.

Table 1
cw SRS in Benzene

¢ Measured SRS threshold: I ~ 8 kW/cm?
e I, =1, f/4n’méva = 0.3 MW/cm®,

gsince a@ = 6um, &v=03cm!' and f=0.5.
o At threshpld, gain = loss: gl 2 2nm/QA

for Q=10 —= g =~ 210 cm/GW,
but bulk gain g = 3 cm/GW.

Therefore: Kep.=g./g = 70
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QED Effects

A simple heuristic model which conveys a physical idea of how transition
rates are affected by electromagnetic boundary conditions inside a cavity can
be presented in terms of the density of final photon states p(v). The radiative
transition probability for a quantum system (molecule) as given by Fermi's
Golden rule includes a factor of p(v). In free space this quantity is easily
shown to be proportional to v2 which is nearly constant (p,) over a given
narrow range (emission bandwidth) as shown in Fig. 6a. When a molecule is
introduced to a cavity the total number of final states is conserved, but the
density is redistributed so the emission probability at resonant frequencies is
increased while emission at nonresonant frequencies is inhibited. The cavity
state distribution can be approximated by Lorentzian lineshapes centered at
resonant frequencies with appropriate widths as shown in Fig. 6b. For
regular periodic spacing of resonances Avyppp, the conserved nimber of
states, p,AVMDR, is indicated by the shaded areas in Figs. 6a and 6b. The
gain profile is characteristic of the molecule and in free space the observed
emission profile simply reflects the shape of the molecular profile since piv) is
flat (Fig. 6¢). The actual gain will be proportional to the total number of
photon states available to the molecule under its gain profile and in free
gpace is just g, = p, I' (where I' is the profile width) , while in the cavity:
g. = PoAVMDR- Thus the QED enhancement: X = &./ g, = AVMpr /T
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Fig. 6 QED Gain Enhancement
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Conclusion

To see if this simple model is valid for the case of benzene, we have: I'=
2 cm-! and for 6 pm droplet radii, Avypg ~ 190 cm -1 resultingin a
predicted K of = 95 consistent with the experimentally observed
enhancement of 70. To further test the model, other liquids (toluene and
ethanol) with different Raman linewidths were studied in similar sized
droplets under identical experimental conditions. Toluene possesses a I’
similar to benzene but has a 2.3X lower free space Raman gain. Ethanol has
a free space SRS gain equal to toluene (1.3 cm/GW) but has aI” that is
significantly broader than either benzene or toluene. The homogeneous
bandwidth is inversely proportional to the dephasing time of the vibrational
medes!®. These lifetimes have been estimated to be 2.6 psec and 0.25 psec for
toluenel® and ethanol!}, respectively, and so (Dgeon/ (Mg = 10. The
growth curves of the emission outpui with pump intensity for toluene and
ethanol droplets are plotted in Fig. 5 with open squares and triangles
respectively. The emission from ethanol was weak spontaneous Raman
scattering as its SRS threshold was not achieved at the maximum pump
intensity of 2.5 W. This result is consistent with the predicted lower QED
enhancement of Raman gain due to the much broader linewidth of ethanol.
Toluene has the same bulk Raman gain as ethanol but since its linewidth is a
factor of 10 narrower, it was observed to have an SRS threshold at 150 mW.
The expected threshold for ethanol at = 1.5 W was not observed because at
high pump intensities the effective Q of the mode will be degraded by thermal

perturbations. Table 2 summarizes the results of the three liquids
investigated, listing their bulk Raman gain g,, Raman linewidth I, predicted

cavity gain g, (assuming Q = 107), and obscrved SRS threshold Iy,

Table 2 | go r gc I P

(cm/GW) (cm)  (cn/GW) (mW)

Benzene 3.0 2 300 50
Toluene 1.3 2 130 150
Ethanol 1.3 >20 <10 >2500
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The significant points of this paper may be summarized as follows:

» First observation of cw SRS in microdroplets

* pump radiation or "input' resonant with droplet
necessary

e gains appear enhanced by =100x consistent with
simple mode density model of: , _ { Av MpR
C (]

r

* relative experimental behavior of benzenpe,
toluene, and ethancl consistent with model
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ABSTRACT

Fluorescence decay kinetics of Rhodamine 6-G molecules in levitated
glycerol microdroplets (4 -20 microns in diameter) have been investigated to
determine the effects of spherical cavity resonances on spontaneous emission
rates. For droplet diameters Jgreater than 10 microns, the fluorescence
lifetime is essentially the same as in bulk glycerol. As the droplet diameter
is decreased below 10 microns, bi-exponential decay behavior is observed with
a slow component whose rate is similar to bulk glycerol, and a fast component
whose rate is as much as a factor of 10 lirger than the bulk decay rate. This
fast component is attributed to cavity enhancement of the spontaneous emission
rate and, within the weak coupling approximation, a value for the homogeneous

linewidth at roowm temperature can be estimated from the fluorescence lifetime

data.
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1. INTRODUCTION

The ability to modify emission rates from atoms or molecules in an
excited state is of great importance since experimental control over the
pathway for excited state deactivation can be obtained. For example,
inhibition of spontaneous emission can be used to direct excited state
chemical reactions and multi-photon processes. Alternatively, enhancement of
spontaneous emission rates could lead to increased sensitivity in low-level
fluorescence applications such as DNA sequencing or effluent tracing reguiring
single-molecule detection limits.[1l,2) Recently, both enhancement and
inhibition of spontaneous emissicn have been demonstrated for chelated
ions.{3] However, whether such effects could be observed for polyatomic dye
molecules was uncertain principally because it was assumed{4,5) that large
homogeneous linewidths (taken to be approximately equal to the fluorescence
spectral width) would result in, at best, only a small emission rate
enhancement. In this paper, we show that a dramatic increase in fluorescence
emission rate occurs in glycerol microdroplets, implying that the homogeneous
linewidth is actually only a fraction of the fluorescence spectral width,

Fermi's “Golden Rule”, given Egn. 1, provides a basic understanding of
how emission rates can be modified by the geometrical structure of the matrix
in which the atom or molecule is solvated. The transition rate from state {1

to state J may be expressed as, (6]

Ai-—»j=#<i Hiij)2pv) (1)

where h is Planck’s constant, < 1 | Hijj | j > is the volume-normalized

Hamiltonian matrix element representing the atom-field interaction, and p(v)
is the density of final photon states. Placing the emitter inside an optical
cavity whose dimension is on the same order as the transition wavelength
causes the emitted light to be coupled into discrete cavity modes rather than
into the continuum of vacuum states. Since the density of states is large when
v corresponds to an allowed cavity mode, and small when v is non-resonant, the

emission rate will be modified (enhanced or inhibited) depending upon whether
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the emiss.on frequency corresponds to a particular allowed cavity mode.[7]

Modification of spontaneous emission rates was first observed by
Drexhage and co-workers[8) by measuring emission rates from europium ions
layered in Levwgmuir-Blodgett films above a reflective surface. Using a
waveguide structure as a linear micro-cavity, Kleppner and co-workers([9] were
able to demonstrate inhibited spontaneous emission of Rydberg atoms at
microwave frequencies. De Martini and co-workers{10] demonstrated both
enhancement and inhibition of spontanecus emission at optical frequencies
using a linear tunable Fabry-Perot cavity. However, with the exception of the
work of Drexhage and co-workers, these investigations all involved linear
micro-cavities where, despite the simple geometry, exact calculations of
internal fields are not possible. The spherical cavity offers a geometry which
is much more amenable to theoretical modeling since all fields and modes are
exactly calculablas from Lorenz-Mie theory.([11)

It has been krnown for some time that micrometer sized dielectric spheres
act as high Q rescnators, where photons propagate around the sphere near its
edge. Spherical cavity modes in these microspheres arise from so-called
‘morphology dependent resonances”, or MDRs, which occur at specific values of
the size parameter, X, where X = 2Ra/A, a is the radius of the sphere, and A
is the wavelength of light. Cavity effects such as stimulated emission[12] and
lasing(13,14] from liquid microdroplecs nave been reported. Recently, Campillo
and co-workers have demonstrated cavity enhanced spontaneous emission of
chelated Europium ions in a stream of falling ethanol droplets[15] and
observed an increase in the spontanecus emission rate of a factor of 2.5 above
the bulk value. These authors argue that, in the regime where the cavity mode
spacing (AVc) > homogeneocus linewidth (I'yg) > cavity mode bandwidth (8c) , the

enhancement can be approximated by the ratio

§ = Ave / Typ ) (2)

If Tup is much narrower than Av., large enhancements similar to those
predicted by the Purcell equation(7]) should be observed. Conversely, if Ty
is larger than Avc, no enhancement should be observed. Thus, the cavity mode
spacing is an extremely important parameter in determining the magnitude of

enhancement in these microdroplets. Because the cavity mode spacing can be

estimated based on a knowledge of the droplet diameter, it is possible to
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determine the homogenecus linewidth of a fluorescing molecule by measuring the
fluorescence lifetime.

In this paper, we present the results of fluorescence lifetime
measurements of Rhodamine 6-G in glycercl droplets with diameters ranging from
4 - 20 microns. The enhancement is large (10 x; for the smallest droplets and
decreases with increasing droplet diameter, and does not appear to be
attributable to droplet lasing or stimulated emission. Modeling the variation
of decay rate enhancement using Eqn. 2 with different values of I'yp suggests a

value of about 100 em~! for the homogeneous linewidth of R6G in glycerol at

room temperature.

2. EXPERIMENTAL

Spontaneous emission rates of Rhodamine §&-G in levitated microdroplets
were measured using a time-correlated photon counting technique.[16] The
experimental setup is shown schematically in Figure 1. Briefly, a glycerol
droplet with a concentration of R6G ranging from 10-7 to 10-5 N is levitated
in an electrodynamic trap. A mode-locked Ar* laser (Spectra Physics 171)
supplies the short (150 ps fwhm) 514 nm excitation pulses and the repetition
rate was reduced to 4 MHz using an accusto-optic cavity dumper (Spectra
Physics 344) as an extra-cavity pulse selector. The laser beam was focused to
a 50 um waist giving a peak intensity at the droplet of about 70 KW/c¢m2 with
pulse energies of about 100 pJ.

The dro,.let generator and electrodynamic trap have been described in
detail elsewhere.[17) Rhodamine 6G soclutions in glycerol were diluted in
ultrapure water (Carolina Biological Supply Co.) by a factor of 20 - 100.
Approximately 100 ML of this solution was drawn into the tip of a microdroplet
generator and a voltage pulse applied to a piezoelectric transducer in the
generator produces an acoustic wave which forces a droplet out of the tip.
Initially, the droplet diameter is about the same as the tip orifice (40 pm)
but rapid evaporation of water leaves a nominal diameter between 5 and 15 um

depending on the relative amount of glycerol added to the solution.
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FPigure 1. Schematic of experimental apparatus used to measure R6G
fluorescence lifetimes in levitated microdroplets.

Fluorescence from the droplet is collected by a 3 mm diameter GRIN lens with
0.25 pitch and a 20X microscope objective focuses the image through a 1.5 mm
spatial filter onto a c¢ooled photomultiplier tube (Hammamatsu R943-02). An
interference filter centered at 575 nm with 26 nm bandwidth (Omega Optical 575
DF26) spectrally filters the fluorescence and two Corning 3-66 long pass
filters are also used to ensure that no elastically scattered photons are
detected during a fluorescence lifetime measurement, In these experiments, a
16 nanosecond time window divided into 512 channels was used, with each
channel having a width of about 33 picoseconds.

In a time-correlated single photon counting experiment, it is essential

that only one photon is detected per excitation pulse as multiple START pulses
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encountered during the voltage ramp can cause distortions in the timing
spectrum.[18] For most cf the fluorescence lifetime measurements, the laser
intensity was sufficiently low enough so that no additional attenuation of the
input beam was necessary. Typical fluorescence count rates were between 0.1
and 10 KHz; thus the probability of two photons arriving during a single scan
is about 10°%. Characterization of the instrument response function was
performed by detecting elastically scattered light from a blank droplet (no
R6G added) with the interference filter removed, and the laser intensity
attenuated to give approximately 10 KHz count rate. For lifetime measurements
made on bulk glycerol solutions, the upper end cap electrode was removed and a
1 cm square cuvette was placed inside the trap. All other experimental

parameters were identical for droplet and bulk measurements. In the following

section, the results of fluorescence lifetime measurements performed on

droplets of varying size and R6G concentration are discussed.
3, RESULTS AND ANALYSIS

Fluorescence decay kinetics of R6G was investigated for droplets varying
from 4 to 25 microns in diameter, and with concentrations varying from 1x10- 7
to 2 x10°° M in glycerol. Figure 1 shows the instrument response function and
normalized fluorescence data for 4, 6, and 11 um droplets (10‘6 K/glycerol),
as well as for 10-% X bulk glycerol solution. The full width-~half maximum
instrument response is 0.85 ns,(19) and decay components with lifetimes as
short as ' ps can be deconvoluted reliably.([20] The bulk fluorescence decay
is described well by a single exponential decay with t = 3.65 * 0.05 ns.
Fluorescence from the 11 um droplet also follows single exponential decay with
the same decay rate as observed in bulk solution. For diameters between 4 and
8 um, the fluorescence decay becomes increasingly non-exponential, where the
relative amplitude of the fast decay component increases with decreasing
diameter. Because the density of states (and therefore the enhancement)
should vary according to the radial position of the molecule within the
droplet,{21] a distribution of decay rates was expected to provide a more
accurate representation of the system than a simple biexponential decay
function. Using a Laplace inversion technique,[22,23] decay rate probability
distributions were extracted from the fluorescence lifetime data to determine

the emission rate enhancement.
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Figure 2. R6G fluorescence decay data in 4, 7, and 9 Hm
glycerol droplets as well as bulk glycerol soclution. Dye
concentrations for each data set shown was 1076 M. The data
has beeu sicotiied by a five-point running average.

The observed fluorescence decay data, C(t), can be represented by a

convolution of the instrument response function and a sum of exponentials

expressed as

C(t) = IRF(t)*Lpy Ai @i exp(-Aj t) (3)

where IRF(t) is the inolrument response function, A; is tha ith decay rate,
and i is the probability that a photon will be emitted at rate Aj. If the
sum in Eqn. 3 is replaced by an integral, it can be seen that the function

Lt(A) is the inverse Laplace transform of C(t), where (A} is a decay rate
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probability distribution function. Thus, Laplace inversion of the measured
data C(t) yields the function a(l) which contains the decay rate and
probability amplitude information.

In a simplified view, determination of the function a(A) from C(t) is
performed as follows. The solution space is defined by specifying the initial
and final decay rates, Ag and An-1, and the number of grid points, n. Values
used for Ag and Ap-1 were 0.1 and 15 ns~l respectively, with n = 75. The
array, O{(i), represents a decay rate prcbability distribution and is
determined by singular value decomposition, where the values are subject to
the fcllowing constraints: (1) all values are non-negative; (2) X2 parameter
is minimized; and (3) the value of a regularizer, or 2nd derivative smoothness
function, is minimized. In principle, a large number of decay components can
be resolved[24] using this technique, making it a powerful tocl for analyzing

multiexponential decays.
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Figure 3. Decay rate probability distributions from

fluorescence decay data for 4, S, 6, and 11 um droplets.
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Figure 3 shows decay rate probability distribution functions obtained
from R6G flucorescence lifetime data in 4, 5, 6, and 11 um droplets. Each
distribution shows a strong peak centered around the bulk fluorescence decay
rate (0.27 ns~l), However, distributicns for the €, 5, and 4 wm droplets show
a tast decay component whose rate and maximum orobability amplitude increases
with smaller droplet diameter. The degree of enhancement of this fast
component for the smallest droplets is as much as a factor of 10 larger than
tne bulk decay rate and, as shown in Figure 4, falls of sharply with
increassing droplet diameter. In the decay rate probability distributions
obtained from our experimental data, the width of the enhanced rate feature
arises primarily from the limited sampling (512 points) and the noise in the
cdata. The non-zero probability for photon emission at extremely large rates
rear the edge of the solution grid is probably not physically significant.

Since it is .7ell known that stimulated emission and lasing can occur in
microdroplets, the guestion arises as to whether the erainced decay rate can
be attributed to stimulated emission. The possibility of lasing was estimated

using an expressicn given by Lin, et al.[(14] as
Zm(/QextkgO < 1 - L/kgo (4)

where m 1s the refractive index, X is the size parameter, Qext 1is the cavity
¢, k is the enhancement in lasing gain, go is the rocund trip gain, and L
represents the transmissive and internal losses. Laser oscillation may occur
when the above equation is satisfied. Substituting values appropriate for our
experimental conditions, it was concluded that, oven at the highest dye
concentration and pulse power, the threshold for lasing would 1ot be exceeded.
Although it is almost certain that the enhenced decay rate component is not
due to droplet lasing, the possibility still exists that we are obsetving
stimulated emisacion. An estimate of the probability of stimulated emission was
made using vaiues for photon lifetime in the cavity, 7., and an estimate of
the number of excited states formed per pulse. This calculation suggests that
the probability of stimulated emission on the order of 10-4.

As an experimental confirmation that we are indeed observing enhanced

spontaneous emission, the characteristics of small droplet fluorescence decay
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were examined as a function of pulse energy. The laser intensity was varied
using neutral density filters and several measurements were made on each
dropiet. Figure 4 shows the ratio of amplitudesz for the two (fast and slow)
most probable decay rates for 4 and 5 pm droplets at 1 x 1076 and 2 x 1075 u
concentrations respectively. No significant differences in decay rates or
relative amplitudes were cbserved for pulse energies ranging from 45 to 190
picojoules. Since the maximum intensity used in these experiments is well
below saturation level, if the fast decay component were due to stimulated
emission, the number of photons emitted with an enhanced decay rate relative
to the number of photons emitted with bulk rate should increase with
increacsing pulse energy. This should be reflected in the lifetime spectrum by
an increase in the relative probability amplitude of the fast decay component.
Because no such dependence is observed, our conclusion is that a modification

in the spontaneous emission rate is taking place.
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Figure 4. Ratio of amplitudes corresponding to the

most-probable decay rates (bulk and enhanced) of the two

components for 4 and S um droplets.
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Observation of decreased fluorescence lifetimes in the smaller droplets,
however, does not guarantee that the effect is due to cavity enhancement. For
example, dye fluorescence is known to be self-quenched at la.ge (2 10-3 o)
concentrations. [25] However, this effect should nut be significant at R6G
concentrations used for these experiments. Other (unknown) gquenching
processes can also be effectively ruled out since the fluorescence yield per
molecule is at least as large for the smaller droplets as it is for the larger
ones. On this basig, it appearc that the increased spontaneous emission rate

is indeed due to a cavity enhancement.

4., DISCUSSION aND CONCLUSIONS

Examination of R6G fluorescence decay kinetics .in microdroplets has
revealed a striking dependence on droplet size. For droplet diameters 2 10 um,
the decay behavior is identical to that observed in bulk glycerol. As the
droplet diameter is decreased below 10 pum, increasingly non-exponential decay
behavior is seen where the anhancement and relative probability amplitude of a
fast decay component increase as the diameter is decreased. This biexponential
decay behavior can be ¢ :ai.iarively explained by considering how the ‘mode
volume' and degree of enhai.c» ¢pt change as the droplet size is varied.

Light waves which propagacse near the surface of the sphere in the high-9
cavity modes occupy a certain volume which is defined as the mode volume. Most
of the molecules will be unatfected by the presence of cavity modes near the
surface and emit at a rate similar to that of bulk medium. However, molecules
located in the mode volume will have their emission coupled into cavity modes
and their decay rate will be enhanced or inhibited depending on whether the
emission is resonant with a cavity mode. For a 4 jm diameter glycerol droplet,
Vm/V is about 0.1 and falls off roughly as 1/X1/2, where X is the size
parameter. Thus, a larger percentage of molecules interact with a cavity mode
in the smaller Jdroplets which will be reflected in the lifetime spectrum as an
increase in the relative probability amplitude of the 2nhanced rate component.

The second factor responsible for the observed trends in the decay rate
probability distributions 1is the variation of enhancement with droplet
diameter. -ince the mode spacing, A~, is appro..imately equal to f(n)/2nx, [26]

where f(n) 1s a function of the i1ndex of refraction, and r is the radius of
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the sphere, experimentally measured rate enhancements can be used to estimate
the homogeneous linewidth of a molecule such as R6G in glycerol at room
temperature from Egn. 2. Figure 5 shows the average decay rate enhancement
for droplet diameters ranging from 4 to 10 pum along with the variation of
enhancement expected from Egn. 2 for three different homogeneous linewidths.
The experimental rate enhancements are in good qualitative agreement with this
simpie model, however, the enhancement falls off much more sharply with
droplet diameter than 1is predicted using this model. We are currently
developing a more detailed theoretical model for decay rate enhancement in
these small droplets which should approach quantitative agreement with
experimental results, giving a clearer physical picture of the interaction of
fluorescent molecules with cavity modes in these microdroplets. However,
within the context of this simple model, the experimental data suggest a value

of about 100 cm'! for the homogeneous linewidth of R6G in glycerol at room

temperature.
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The narrow homogeneous linewidth for R6G in glycerol suggested by our
experiments 1s supported by spect al hole burning data. Brito Cruz et al.[27)
measured dephasing times for different dyes in an ethvlene glycol dye jet
using a femtosecond pump-probe technique. Similar dephasing times (= 80
femtoseconds) were measured for the dyes cresyl violet, nile red and HITC,
corresponding to a homogeneous linewidth of 140 cm™!, Extrapolation from hole
burning data on porphyrin molecules in cold (80° K) polymer matrices{28)
suggest homogeneous linewidths at 300° K on the order of 50 em'!. It is
therefore reasonable to expect that the homogeneous linewidth for Ré6G is
narrower than the cavity mode spacing for droplet diameters less than 10
micrens and that such a narrow linewidth could produce the large emission rate
enhancements which have been observed experimentally.

The data presented in this paper shows that no significant spontaneous
emission enhancement is cobserved until the droplet diameter reaches 7 - 8 um,
while the work of Campillo(3] on Eul* shows about 2.5x enhancement for a
droplet diameter of about 10 MUm. Assuming that the homogeneous linewidths and
cavity mode spacings are similar for the two cases, the apparent difference
between the two sets of data can be rationalized in terms of differences in
which the measurements were made. The work of Campillo involved dispersion of
broadband emission at successive time frames where bilk and enhanced rate
emission could be more clearly distinguished. In the work presented here, a
measurement was made only of the number of photons arriving at the detector as
a function of time following an excitation pulse. In our experiment, for
larger droplets where the enhancement is smaller, the signal is dominated by
emission at the free space rate which effectively diminishes the contrast
between the two decay components.

Another important difference between these two sets of results is that
no significant inhibited emission was observed in our work. In some cases,
emission rates smaller than that of bulk glycerol were seen, however it is
unclear as to whether this was a QED effect since residual water in the
droplet [29] (bulk lifetime 4.5 ns) could result in a longer bulk emissi»n
rate. Also, because the time window for photon counting was only 16 ns, the

long-time decay kinetics are not as clear.
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4. SUMMARY

The fluorescence decay kinetics of R6G in levitated glycerol
microdroplets have been investigated as a function of droplet size and shows a
striking transition from single exporential to bi-exponential decay as the
droplet size is decreased. An enhanced rate component becomes apparent at a
droplet size of about 7 and 8 um whose magnitude and relative probability
amplitude increase as the droplet diameter is decreased. Examination of decay
behavior as a function of input pulse energy suggest that this fast rate
component is due to cavity-enhanced spontaneous emission. Within the context
of a weak coupling model, the homogeneous linewidth for R6G can be estimated
from this fluorescence lifetime measurements and a value of about 100 cm~1 is

suggested from this data.
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Time and Wavelength Domain Algorithms for Chemical Analysis by Laser Radar
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INTRODUCTION

Laser-induced fluorescence (LIF) is a promising technique for laser radar
applications. Laser radar using LIF has already been applied to algae blooms
and oil slicks.! Laser radar using LIF has great potential for remote
chemical analysis because LIF spectra are extremely sensitive to chemical
composition., However, most samples in the real world contain mixtures of
filuorescing components, not merely individual components. Multicomponent
analysis of laser radar returns from wixtures is often difficult because LIF
spectra from solids and liquids are very broad and devoid of line structure,
Therefore, algorithms for interpreting LIF spectra from laser radar returns
must be able to analyze specira that overlap in multicomponent systems.

Factor analysis-rank annihilation (FARA) is an eigenanalysis technique?™ for
analyzing two-dimensional data. FARA usually analyzes excltation-emission
matrices (EEM)., EEM are matrices where the rows (or columns) are emission
spectra at fixed excitation wavelengths and the columns (or rows) are
excitation spectra at fixed emission wavelengths. FARA is insensitive to the
presence of unknown compounds if there is no energy transfer between
constituents. This insensitivity would be useful for laser radar applications
where not every compound in a natural environment can be known in advance.
Although the measurement of EEM requires a wavelength tunable light source,
laser sources strong enough for laser radar applications are usually not
wavelength tunable. Therefore, sclentists have not previously considered FARA
a suitable method for analyzing laser radar returns.

This paper analyzes the possibility of using FARA to analyze emission-time
matrices (ETM) from laser radar returns instead of EEM. The authors here
define ETM as matrices where the rows (or columns) are emission spectra at
fixed times and tha columns (or rows) are temporul profiles for fixed emission
wavelengths. Laser radar usually uses pulsed lasers for ranging purposes,
which are suitable for measuring temporal profiles. Laser radar targets are
hard instead of diffuse; that is, a definite surface emits the fluorescence
instead of an extended volume. A hard target would not broaden the temporal
profiles as would a diffuse target. Both fluorescence lifetimes and emission
spectra are sensitive to chemical composition. Therefore, temporal profiles
can be used instead of excitation spectra in FARA analysis of laser radar
returns. The resulting laser radar returns would be ETM instead of EEM.

THEORY

This section describes an FARA ulgorithm, developed by Ho?' ? for calculating
nonzero concentrations. The calculation requires an ETM, D, from an unknown
and another ETM, N,, from a calibrant of known concentration. The subscript
k designates the constituent one is looking for ir the unknown, that 1g, the
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component of interest. D and N, are ETM in this paper, but can either be EEM
or ETM. The laser radar return could come from an unknown, while the
calibrant can be a sample of the component of interest especially prepared in
a laboratory. This algorithm calculates the relative concentration, ¢ ,,
which is the ratio of the concentration of a constituent in an unknown to the
concentration of the constituent in a known laboratory standard. The
algorithms discussed in this paper are not valid if ¢, is zero. Algorithms
for deciding whether c¢ , is zero are available but will not be discussed in
this paper.

The concentration, ¢ ,, can be calculated in four steps. First, calculate the
effective rank, r, of the matcix D. The effective rank is the number of
fluorescence centers (that i{s, components with bilinear spectra) in the
unknown. Complicated methods of choosing the effective rank are available,*‘
but beyond the scope of this paper. Second, calculate the residual matrix E(c
x' ), defined as:

E(C.lk) D - C;Nk (L)

where c ' is a dummy variable that spans over a range of possible concentra-
tions. Note that eq. (1) requires a calibrant only from the component of
interest. Third, calculate the eigenvalues, S ;(c '), of E(cy')E(c ") *.

The superscript t designates transpose, while the subscript j designates the
particular eigenvalue. The subscript } is ordered so that if j > j', then S ;
> S8 ;.. Finally, find the minimum ¢f S ,(cy'). The value at c ' where the
minimum occurs is the actual relative concentration, c,, of the component.
Another algorithm uses an analytical formula, developed by Lorber,® to find
the minimum of ¢(cy'). However, the authors will show the functional form of
S, (cy') to clarify the discussion.

One can easily show that the shape of the laser pulse profile cannot affect
the calculated values of concentration if the same laser pulse shape with the
same time delay generates both the calibrant ETM and the laser radar return.
Therefore, FARA also may serve as a type of deconvolution algorithm if both
the laser pulse shape and electronic triggering are reproducible,

SIMULATION AND RESULTS

The ETM's of three hypothetical compounds (I, II, and II1) were generated.
The emission spectra of these compounds are shown in figure 1. Only relative
decay times and relative shapes of emission bands affect the calculations.
For ease of visualization, this paper will refer to the time units as nano-
seconds (nsec) and wavelength units as nanometers (mm). For calculational
ease the authors assumed a laser pulse shape to be a double-sided exponenrial
with a decay constant of 0.5 nsec. The fluorescence decay times of the three
compounds (I, I1, and II1) were 2.0 nsec, 6.0 nsec, and 10.0 nsec,
respectively. The authors repeated the calculations using a Dirac delta
function for the laser pulse profile.

The ETM of compounds I, II, and 111 were added tc c¢reate a linear combination
with effective concentrations (that ig, coefficients) of 1.0, 2.0, and 3.0,
respectively. This linear combination was defined as the ETM of the hypo-
thetical mixture.
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FARA aralyzed both the linear combination and the calibrant EEM to find the
nonzero concentrations, c¢,. The calculated concentrations for the three
compound profiles (I, II, and III) from the ETM are shown in table 1. The
values of c, calculated by FARA were the same as the actual concentrations in
the hypothetical mixture. The calculated values were independent of the laser
pulse shape, as expected.

The eigenvalue, S(c p'). for the ETM of compound I is plotted in figure 2.
The eigenvalue, S, shows a clear minimum at ¢ ;' = 1.0, which is the true
value of ¢ ;. Note that calculating the value of ¢ ; did not require
laboratory standards from compound II or III.
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Figure 1. Normalized emission spectra of hypothetical compounds I, II,
and III.

TABLE 1. CALCULATIONS FOR CONCENTRATION
compound 1 1 . JAll
Actual 1.00 2.00 3.00

FARA 1.00 2.00 3.00
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Figure 2. The functional dependence of the appropriate aigenvalue, S, on
the hypothetical concentration ¢ ;' for the ETM of compound I.

DISCUSSION AND CONCLUSIONS

FARA has potential as a method for interpreting laser radar returns. FARA can
be applied to matrices consisting of fluorescence intensity as a function of
emission wavelength and time. The authors have shown that it can calculate
the nonzero concentration of a constituent in an unknown without having every
laboratory standard from every constituent in the unknown. FARA also can
serve as a deconvolution method for laser radar 1f the temporal profile of the
laser pulse is reproducible.

REFERENCES

1. Measures, R., 1984. [aser Remote Senging, New York: John Wiley and Sons.

2. Ho, C. -N,, G. D, Christian, and E. R. Davidson, 1980. Angl, Chem.,
52:1071-1078.

3. Ho, C. -N., G. D. Christian, and E. R. Davidson, 1978. Angl,.Chem,,
50:1108-1113,

4. Malinowski, E. R., and D. G. Howery, 1980. Factor Analysis ip Chemistry,
New York: John Wiley and Sons.

5. Lorber, A., 1986. Anal, Chem., 58:1167-1172.

176




MICROPARTICLE-BASED FLUORESCENCE IMMUNOASSAY

W. B. Whitten, J. M. Ramsey
Oak Ridge Nationai Laboratory
Oak Ridge, Tennessee 37831-6142

aid B. V. Bronk
U.S. Aimy CRDEC
Abcrdzen, Ma-yland 21010

RECERT PUBLICATIONS, SUBMITTALS FOR PUBLICATION, AND PRESENTATIONS -

A) . M. Dale, W. B. Whitten, and J. M. Ramscy, "Laser Ablation Mass Spectremetry of
Levitated Mirroparticles”, Proceedings of the 1991 T (-2 Scientific Conference on
{hscuration wnd Aerosol Researchi, in preparztion.

E) J. M. Dale. W. I} Whitter and J. M. Ramscy, "Chemical Cliaracterization of Microparticies
hy Laser Ablaton in an .on Trap Mass Spectrometer, 3Z2nd ORNL/DOE Conference on
Analrtical Chemistry in Energy Technology, Gatliaburg, TN Oct. 1-3, 1991,

C J. M. Ramscy, W. B. Whitten, S. Arnold, and B. V. Bronk, "Single Molecule Detection in -
Microdroplets”, Federation of Analytical Chemistry and Spectroscopy Societies Meeting, -
Anahcun, CA, Oct. 6-11,1991.

D) S. Arsold, C. T Liu, W. B. Whitten, and J. M. Ramscy, "A Microparticle-Based Spectral Hole -
Burning Memony™, Optics Lett. 16 420 (1€91).

E) I. M. Dalz, W. B. Whitten, and J. M. Ramsey, "Cheinical Characteristics of Micre, aruicles by
Laser Ablation in an lon Trap Mass Spectrometer”, Proceedings of 39th ASMS Conference
on Mass Spectrometry and Allicd Topics, Mashville, TN, 1991, p. 534.

F) J. M. Dale, W. B. Whitten, and J. M. Ramsey, "Detection of Explosives M. .ials on Single
Microparticles”, FAA Symposium on Explosives Detection Technology, Atlantic City. NJ,
iHovember 13-15, 1991,

i) J. M. Ramsey, "Advanced Techniques for the Chemical Characterization ol Microparticles”,
U.S. Dept. of Encrgy EXPO 91 on Special Operations, Albuquergue, WM, Nov. 19-21.

) L. M. Daie, W. B. Whitten, and J. M. Ramsey, "Laser Desorption from Single Microparticles o
in an lon Trap Mass Spectiometer”, ASMS 4th Sanibel Confererce on Mass Spectrometry, L a
Sanitel Isiand, FL., Jan. 25-28, 1992.

1) J. M. Ramscy, W. B. Whitten, S. Arnold, and K. C. g, "An Ultrasessitive Fluorescence
Detector for Capillary Electrophoresis™ 4th Intl. Symp. on High Performance Capillacy
Electrophoresis 92, Amsterdam, The Netherlands, Teb 9-13, 1992,

1) W. B. Whitten, J. M. Ramscy, X C. Ng, ani S. Arpold, "Digital Molecular Detection”,
Inctitute for Spectrochemistry and 2w dytical Spectroscopy. Dortne + © Ciermany, Feb. 18,
1992.




K)

L)

M)

N)

0)

P)

S. Arnold, J. Comunale, W. B. Whitten, J. M. Ramsey, and K. A. Fuller, "Room-Temperature
Microparticle-Based Persistent Hole-Burning Spectroscopy”, J. Opt. Soc. Am. B9, 819 (1992).

W. B. Whittea, J. M. Dale, and J. M. Ramsey, "Detection of Explosives Material on Single
Microparticles”, Proceedings of FAA 1st Intl. Symp. on Explosives Detection Technology,
Atlantic City, NJ, 1991.

K. C. Ng, W. B. Whitten, J. M. Ramsey, and S. Arnold, "Digital Chemical Analysis of Dilute
Microdroplets”, submitted to Anal. Chem.

J. M. Dale, W. B. Whitten, and J. M. Ranisey, "Laser Ablation from Microparticies in an Ion
Trap Mass Spectrometer”, ACS Symposium on Lascr Materials Interactions, San Francisco,
CA, April 5-10, 1992.

W. B. Whitten, J. M. Ramsey, and S. Arnold, "Room Temperature Persistent Spectral Hole
Burning”, Computer Systems Policy Project Materials Track Meeting with DOE Labs,
Albuquerque, NM, April 15-16, 1992.

W. B. Whitten and J. M. Ramsey, "Photocount Probability Distributions for Single
Fluorescent Moleccules”, Appl. Spectrosc. in press.

ABSTRACT

Techniques are being explored to combine the chemical specificity of the antibody-antigen reaction
with the high sensitivity of fluorescence detection. Antibodies to the target analyte are labeled with
strongly fluorescing tags. Microspheres with attached antibodies are used in a correlation approach
to discriminate against unattached fluorescent labels.
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We have recently shown that it is possible to detect single molecules of highly fluorescent dyes (1).
RHowcever, there is a large number of compounds of practical interest that are cither nonfluorescent
or it fluorescent, the cmission spectrum is not sufficiently distinctive to give usceful analytical
specificity. One way to achieve very high sensitivity and sclectivity is to attach a fluotescent label to
the analyte molecule via an antibody-antigen reaction. We have undertaken some experiments 1o
exploie the utility of immunolluorcscence techniques in conjunction with our microparticle
fluorescence measurements for the detection of biologicaily important substances.

The technique used for our initial experiments has been called by others a sandwich fluorescence
immunoassay. Antibodics specific for the analyte molecule are covalently bound to carboxyl groups
on the surface of microspheres about 10 pm in diameter. When a suspension of these wreated
particles is incubated with a solution containing the analyte antigen, analyte molecules wiil be
extracted from the solution and become attached to the microparticles.  The particles are
subscquently incubated with a solution of the antibody to which a fluorescent tag has been bound.
The microspheres thus become fluorescent in proportion to the original analyte concentration. The
main problems now zre how to distinguish between bound and free labeled antibodies and how to
minimize nonspecific binding, i.e., the blank signal.

Onc way to minimize the signal from unbound antibodics is to pertorm a physical separation - by
filtration or centrifugation, for example. The separated microspheres will no longer be in chemical
cquilibrium if maintained in suspension so measurcment time will be governed by the dissociation rate
constant for the immune reaction. Alternatively, an optical corrclation technigue can be employed
restricting the number of valid measurements to those small volumes that contain microspheres.
Saundcrs ct al. (2) have achieved detection limits of 10" M in a flow cytometer in this way. In our
experiments, both methods arc used, with the fluorescent microspheres first scparated by
centrifugation, then analyzed by confocal fluorescence microscopy (3) correlated with the presence
of a microsphere in the probe volume.

The experiments were performed with the apparatus shown in Fig. 1. Light from an argon ion laser
is focused through a microscope objective onto the sample, an ensemble of microspheres in
suspension on a slide. The laser focus has been adjusted so that the excitation volume is somewhat
larger than the microspheres. With the laser beam blocked, the stage is manipulated manually until
a microsphe-e is centered in the field of view and in the focal volume of the laser. When this is
accomplisi . the laser is switched on and the fluorescence signal is measured until the fluorescent
tags have photoly.cd. A fresh microsphere is then found and the process repeated until enough
mcasurcments have been made.

The first exneriment was to determine the dissociation rate constant of a typical antibody-antigen pair.
A monoclonal antibody (mouse) to horseradish peroxidase (HRP) was covalently attached to
carboxylated 10-pm spheres using a carbodimide reaction (3). The anti-HRP is the antigen in this
experiment. The suspension was incubated over night with a solution of rabbit anti-mouse antibodics
that were labeled with R-phycoerythrin, a highly luorcscent protein molecule obtained from algac.
After washing by centrifugation, the spheres were iesuspended in storage buffer. Confocal
Huorescence correlation measurements were made on from 20 10 40 spheres at various times after
the initial separation to observe the antibody-antigen dissociation. A portion of a typical run is shown
in Fig. 2. The photomultiplier sienal sawarates while the particles are being observed with whiite light,
then the Huorescence-photolysis decay s cotained for cach sphere.
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A plot of the average signal obtained as a function of time after separation is shown in Fig. 3. After
an approximately exponential decay, the fluorescence signal reaches a steady state as chemical

TN . . . sl . — $ -1
equilibrium is reached anew. The dissociation rate constant for the initial decay is ky = 1.5 x 10”57,
The results of these dcterminations imply that reliabie measurements could still be made within a few
hours of the initial separation.

We also made a sandwich assay with the same mouse anti-HRP coated microspheres. The analyte
antigen was in this case rabbit anti-mouse and the sandwich was completed with goat anti-rabbit
labeled again with R-phycoerythrin. The antigen and labeled antibodies were ircubated
simultaneously with the antibody-coated spheres. A portion of a fluorescence measurement for the
separated spheres is shown in Fig. 4. The fluorescence signal is now much stronger than the signal
when the white light is on and there was visual evidence of coagulation. The measurement at 755
s was on a probe volume with no sphere present.

An estimation of the ultimate sensitivity of the technique will require measurements on a blank,
where the labeled antibodies are incubated with antibody<coated spheres and no antigen present, as
well as with incubations in solutions of known antigen concentration. We are also studying the
possibility of using morphological resonances of the microspheres to enhance the sandwich
fluorescence relative to the soiution fluorescence and Raman background.
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Fig. 1. Apparatus for measuring fluorescence of individual microspheres.
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Abstract

We have measured the fluorescence emission spectra as a function of the excitation
wavelength for several bacteria in suspension. The in virro samples consisted of the washed
bacteria, ccntrifuged and then suspended in sterile, phosphate buffered saline at room
temperature. The fluorometer measured the emission spectra at 90° in a 1 cm quartz cuvette in 2
nm steps. The excitation wavelength was scanned from 200 to 700 nm in 25 nm steps. The data
were smoothed with a sum of Geussians, least squares fit to the measurcd data. The smoothed
data were presented as a contour plot and stored as a 21 x 21 matrix. The 21 x 21 square matrix
was subsequently wreated as a 441 element lincar array. The linear array from a collection of 4
known bacteria could be "fit" using a lincar least squares fitting routine to the measured spectrum
of an unknown bacterium. As long as the unknown bacterium was in the collection of known
spectra, the unknown could be identified, unambiguously. Work is in progress to limit the range
of the fluorescence data required for the identification process. This will speed the data
collection and reduce the time needed for the calculations of the least squares fit program.

Introduction

We are developing a fluorescence technique to investigate biological samples, in
particular, bacteria and bacterial spores (Reinisch er al., 1992). The fluorescence from bacteria
and bacterial spores is due to the emissions of intrinsic fluorophores. These emissions are
influenced by the number and the environment of the fluorophores. Thus, the fluorescence
probes the interior and the composition of the biological samples. On the other hand, light
scattering technigues (¢.g., quasi-clastic or polarized) probe the exterior shape and size of the
particle. Light scattering has been very cffective in monitoring the shape and size changes of
bacteria (Cummins, 1976). We have recently used a cross correlation method of quasi-elastic
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light scattering to measure subtle changes in the shape of bacterial membranes as ions are
pumped across the membrane (CzEgé and Reinisch, 1990).

Fluorescence is a valuable ool in probing different materials.  The emissions from
intrinsic fluorophore are influenced by the surrounding mawrial.  Subtle differences in the
emission spectra can, therefore, be used to identify the environment of the fluorophore. When
studying bacteria, these environmental differences can be linked to the species of the microbes,
or the growth stages of the bacteria (Chou-pong et al., 1987; Cobum et al., 1985; Shelly et al.,
1980)).

There are several reasons to use fluorcscence spectroscopy to detect and identify bacteria.
The fluorescence technigue is fast (Rossi and Warner, 1985). There is no need to grow the
bacteria in the presence of antigens to determine the species.  This traditional method of
identification gencrally takes several hours or more. It is possible to measure a fluorescence
spectrum in less than | s with a small f-number monochromator and a diode array detector.
Fluorescence spectroscopy can also be used in remote detection.  This has obvious military
applications, especially in the event of bacterial warfare.

Fluorescence spectroscopy is a resonance phenomenon. This means that a small sample
size can he used and it is still possible to achieve a good signal to noise ratio. The small sample
siz¢ also decrcases risk to laboratory personnel during the development and testing of the
technique.

Fluorescence has a large number of parameters (e.g.. excitation wavelength, emission
wavelength, and flucrescence lifetime). This affords several possibilitics to tailor the technique
to the problem. One can also use double or multiple discrimination techniques in the separation
and identification of samples (Shelly et al., 1980).

In carlier studies, several species of bacteria and bacterial spores were studied with
fTuorcscence excitation and emission spectroscopy (Reinisch er al., 1991). With dilute room
temperature suspensions, reproducible characteristics in the fluorescence spectra irom several
dilferent species of bacweria were found. These characteristics are generally independent of the
conditions ol growth and thought to be uscful as a rapid mean of species identification. In
general, there is an excitation peak near 280 nm with a strong emission peak near 340 nm. This
peak is primarily due to tryptophan (Dalterio er ul., 1986, 1987; Munro ¢t al., 1979). However,
the exact shape and size of this peak change with the environment of the tryptophan. These
characteristic changes in the environment are the key to the species differentiation with
Nuorescence spectroscopy.

The consistency in the fluorescence emission spectrum {rom a single bacterial strain has
also been probed (Reinisch er al., 1991). The fluorescence emission spectra from E. coli B/r at

different stages along the growth curve was specifically checked. Also the uorescence emission
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spectra of the E. coli B/r in different growth media was probed. There were minor differences in
the measured {luorescence spectrum found. These differences, in part, resecmble the emission
spectra of the ditferent growth media.

We present here an automated technique to identify fluorescence spectra from
suspensions of bacteria from a short list of possible species. The data handling is automated and
does not require operator judgment. The technique has been successful with several trials under
many different conditions.

Materials and Methods

Bacillus subtilis (strain Bacillus globigii) ATCC 9372 was obtained from the U.S. Army
and used without further purification. Haemophilis influenzae, type B, ATCC 33533, and
Branhamella catarrhalis ATCC 25240 were obtained from American Type Culture Collection,
Rockville, MD, and used without further purification. All bacteria were grown in Luria broth
(10.0 g NaCl, 10.0 g tryptone (Difco 0123), and 5.0 g yeast extract (Difco 0127) with the pH
adjusted to 7.0 in 1.0 1 distilled water) or trypticase broth (30.0 g trypticasc soy broth (BBL
11768) in 1.0 1 distilled water). Samples were grown in a shaker bath at 37°C with moderate
shaking. A flask containing the broth without inoculation was also placed in the shaker bath to
check that the broth was not contaminated. Additionally, a small fraction of each growth was
streaked on agar plates to confirm a single culture of bacteria present in the medium. The
bacteria were grown to the stationary phasc, and centrifuged. The bacteria were washed with
sterile saline, and then resuspended in phosphate buffered sterile saline. The concentration was
adjusted for 0.1 OD in a 1 cm cuvette mecasured at 600 nm.

The tympanic membrane was removed from a fresh frozen head of a chinchilla. The
chinchilla head was gift of Robert Doyle, M.D. at the Department of Otolaryngology, University
of Pittsburgh. The fuorcscence specirum was measured within 24 hours of harvesting.

The fluorescence spectra were measured on a Gregg 200 Lifetime Fluorometer (ISS,
Urbana, IL). The monochromators had 10 nm bandwidth fixed slits. The fluorescence was
measurcd at 90° to the excitation in the stcady statc mode. The excitation was stepped from 2(4)
to 700 nm in 25 nm steps. The emission wavelength range was from the excitation wavelength
plus 10 nm to 10 nm short of the twice the excitation wavelength. The emission monochromator
was stepped every 2 nm.

Each mcasured cmission was smoothed using a sum of Gaussians. Each

Gaussian was represented by

Pi(x) = Ajexp| -(x- xpi2 /202 ]
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The Gaussians were cqually spaced (xpi). 4 nm apart on the emission wavelength axis. The
width of cach Gaussian (6) was fixed at 4 nm. The amplitudes (A;) were determined using a
lincar lcast squares (it rom Mathematica (Wolfram Rescarch, Urbana, IL). This smoothing
technique avoided unwanted oscillations, preserved narrow Raman emission bands in the
fTuorescence spectrum, and extrapolated to a zero intensity at wavelengths beyond the mesured
region,

Photodetector
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Computer Control

Lamp

Excitation
Monochromator
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Figure 1: Experimental sct-up. The light is from a continuous xenon arc lamp.  The excitailon wavelength is
selected by a monochromator with a 10 nm bandwidth. This t'2ht is imaged onto the bacterial suspension in a quartz
cuvette. The fluorescence is collected at 90° and passes through a second monochromator with 10 nm bandwidth.
The fluorometer and subsequent data analysis is all under computer control.

The resulting smoothed curves were then combined into a contour plot using
Mathematica. The uorescent intensitics from the contour plot were stored as a 21 x 21 matrix.
This was transformed into a 441 clement lincar array and could be fit using a lincar least squares
technique.

Results and Discussion

The Nuorescence spectra of the thiee bacteria and the tympanic membrance are shown in
Fig. 2. The contours arc often referred to as fluorescence finger prints. It is typical to sce the
excitation wavelength plotted on one axis and the emission wavelength pletted on the other axis.
Instead. we have chosen to plot the excitation wavelength on one axis and a ratio of the emission

wavelength divided by the excitation wavelength on the other axis. This unitless number from
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1.0 0 2.0 gives a better presentation of the data, since the fluorescence spectrum is measured at
wavclengths longer than the excitation wavelength and generally the spectrum is terminated at
twice the excitation wavelength. At longer wavelengths, the second order transmission of the
grating in the monochromator will distort the measurement.  The fluorescence intensity is

normalized to 1.00 at the peak. The contours aie equally spaced along the intensity axis of the

fluorescence.
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Figure 2 a-d: Fiuorescence finger prints from four biological samples. (a) is B. subtilis grown in trypticase broth:
(b) is H. Influenzae grown in trypticasce broth: (¢) is Branhamella catarrkalis in trypticase broth: (d) tympanic
membrance from a fresh frozen chinchilla. The vertical axis is the excitation wavelength from 200 to 70 nm. The
horizontal axis is the ratio of the emission wavelength divided by the excitation wavelength, The contours represent
changes in the fluorescence intensity.
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The fluorcscence finger print of H. influenzae was measured from a sample grown in
Luria broth (shown in Fig. 3). In all the fluorescent finger prints from bacteria, we see the strong
fluorescence at 340 nm with a peak excitation wavelength near 280 nm.

700

6(X)
Figure 3: Fluorescence finger print from H, influenzae
grown in Luria broth. The vertical axis is the excitation

500 wavelength from 200 to 700 nm. The horizontal axis the
ratio of the emission wavelength divided by the
excitation wavelength.

4(X)

300

200 P

We treat this sccond measurement of H. influenzae as the unknown. The identification of
the bacteria is not obvious upon visual inspection of the fluorescence finger print. We have
therefore used a lincar least squares technique. We use the measured the fluorescence finger
prints of four different bacteria from above. We then use a linear least squares fit to "fit" the
mcasured fluorescence profile of the unknown (designated data(x j )) to the four known spectra
{designated f j (x {)). In this notation, j is from 1 to 4 for the four different bacteria. The
subscript i is for the individual data points that compose the fluorescence finger print. The least
squarcs fit minimizes

Zi [ data (xi) - Zj Aj fj (xi)]?
Where Aj is the cocfficient for each of the known speetra to “fit” the measured spectrum.  The
cocfficients, Aj can be found from
Aj = Zik [ Vik Tk (xi) daa (x)]

and
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(Vik 1) = £ [jxi) fkxi)]

Using the above data, the coefficients from fitting H. fifluenzae grown in Luria broth, the Ay's,
arc: A (Branhamella catarrhalis) =0.055; A (H. influenzae grown in trypticase browh) = 0.901;
A (B. subnlis) = 0.085; and A (tympanic membrane) = 0.(X)5. The match is casy to see.

The measured data that matches the known spectra typically has a fit coetficient 310 6
times larger than any other coefficient. We have used our technique with several different
bacteria and combinations of known bacteria. To minimize the computer requirements and
increase the speed of the fitting, we are currently trying to find what regions of the fluorescence
finger print arc characteristic of the finger print. Data from regions that are not characteristic can
then be dropped. This will also allow us to make measuremenis with lascrs. For example, a
nitrogen pumped dye laser is not tunable from 200 to 700 nm without an cxpensive frequency
doubling laser system. It the data at excitation wavelengths shorter than 337 nm are not
essential, this technique will prove invaluable for remote detection and identification using small,
portable nitrogen lascr systems. Also, we are attempting to make the measurements using optical
fibers to deliver the exciting light and to couple the fluorescence back into the fluorometer.
Since scattering of the shortest wavelengths of light in the best optical fibers limits the
transmission near 204 to 304 nm, we again want o determine the importance of this data in the
fingerprint.  The optical fibers will permit point detection of fluoreseence from samples that
cannot be placed into the fluorometer (e.g., a contamina:ed hand).
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UV LIDAR DETECTION OF BIOLOGICAL AEROSOLS

teven Christesen, M. Scott DeSha, and Anna Wong, CRDEC
Clifton Merrow, Mark Wilson, and John Butler, STC Corp.

I. INTRODUCTION

UV laser induced fluorescence detection of biological agents
was investigated from approximately 1980 to 1986. As a result of
these studies, both the strengths (relatively high sensitivity) and
weaknesses (difficulty in discriminating between different agents)
are well known, if not well characterized. The recent conflict in
Southwest Asia provided the impetus to revisit fluorescence
detection of biologicals, and to design and construct the UV
fluorescence lidar system described herein. Technological ad-ances
in lasers, digital oscilloscopes, and gated detectors
(photomultipliers and detector arrays) that have occurred since the
mid 1980's were incorporated into the design of this system to

yield a capability that was not available during the time of the
previous studies.

ITI. LIDAR SYSTEM

In designing the lidar system, our primary goal was to take
advantage of all the information available from the interaction of
the UV laser with the biocaerosol cloud. To this end, a three
channel detection system was designed. The first channel comprised
a solar blind photomultiplier tube (PMT) to collect the elastically
scattered radiation at 266 nm. This channel) was sensitive to the
presence of any aerosol cloud, fluorescing or nonfluorescing.

The second channel, a gated PMT with a UG-1 filter, detected
the total fluorescence in the 300-400 nm region. & dispersed
fluorescence spectrum was obtained in the third channel via a
spectrograph and gated intensified charge coupled device (1ICCD)
array detector. The lidar system is shown in Figures 1 and 2, and
a list of components is provided in Table 1.

III. LIDAR TESTS

The UV lidar tests took place at Dugway Proving Ground, Utah
in September and October of 1991. Bacillus subtillus var niger sp.
globiggi (BG) spores were disseminated at ranges of 600, 1000,
2000, and 3000 meters. Tests were run both predawn (no solar
background) and after sunrise (solar background present). The
outputs from the three detectors are shown in Figure 3. The right
hand peaks visible on the 266 nm scatter and the UV fluorescence
plots are return from a white poster board used as a hard target
for aligning the lidar system. The CCD intensifier gate delay and
width were adjusted to overlap the fluorescence return as observed
on the oscilloscope. This adjustment was crucial to maximizing the
fluorescence signal and minimizing the solar background detected by
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FIGURE 1: UV Fluorescence Lidar System
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FIGURE 2: UV Fluorescence Lidar Detector Layout
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the CCD. It should be pointed out that the system has not been
calibrated, and that the dependence of the sensitivity on
wavelength for the spectrograph/CCD has not been determined. These
calibrations will be performed irn the near future and the corrected
spectra will be included in a subsequent publication.

DRY BG - [2000m, 6:50am, 190m])

266nm scatter

7 50 laser pulses
2 ps/div

UY_Fluorescence

§0 laser pulses
2 us/div

.

Dispersed UY
Fluorescence

300 laser pulses
_5 600ns Gate Width

52.0 205,0 356.0 413.0 464.0 Y25

WAYELENGTH {nm)
FIGURE 3: Outputs from 3 detector channels. Top: 266nm scatter,

Middle: Total fluorescence 300-400nm, Bottom: Dispersed spectrum
from ICCD.
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TABLE 1: Lidar Components

COMPONENT DESCRIPTION
Laser Spectra-Physics Nd:YAG 4*" harmonic (266nm)
10Hz; 170-210mJ
Telescope 16" Casagrain
Gated PMT Hamamatsu R955
Solar Blind PMT Hamamatsu R166UH

Dichroic Filter ARC Full Reflector 248-FR-~45-2D-FL
(DF) (98.5% ref.e248nm)

Beamsplitter (BS) | Fused Silica Uncoated Window

Filter (F) ARC Interference Filter 266-S-2D

(17% T, 90A FwuM)
Filter (F') Schott UG-1, lmm Thick
Spectrograph Thermo Jarrell Ash; Monospec 18, .18m FL
Intensified CCD Princeton Instruments Model ICCD-576G/RB
(ICCD) with UV-NIR response; 576x384 elements
Oscilloscope LeCroy Model 7200

For all three detection channels, data were collected with the
laser on followed by a background data collection with the laser
blocked. The background signal was subtracted from the signal +
background to produce'the oscilloscope traces and spectra shown. An
example of the subtraction process for the CCD data is shown in
Figure 4. Even having to collect a background spectrum, it was
possible to collect BG flucrescence spectra in real time as shown
in Figure 5. The times of day for the data collection are listed to
the right of the curve. This spectrum also contains the Raman
scattering from atmospheric N, at approximately 284 nm. After
calibrating the lidar system, we expect to be able to use this
signal as a reference for calculating the BG concentration.

An Aerodynamic Particle Sizer (APS) was also located
approximately along the laser line of sight providing time resolved
measurements of particle concentrations and size distributions.
Typical peak concentrations were on the order of 1000 to 3000
particles/cc with mass median particle diameters of 8 to 9 um. The
high particle concentrations appeared to yield large aggregates of
the BG spores. It was not possible to correlate a specific lidar
test result with a corresponding APS measurement, however, the

highest particle count registered for the trial shown in Figure 5
was 2400 particles/cc.
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Figure 5: Dry BG at 3000m, 9/21/91. Times listed to right.
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FIGURE 7: Fit of BG spectrum showing 2 peaks. Data from 9/26/91,

range = 600m.
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III. BG FLUORESCENCE SPECTRA

An interesting phenomenon observed during the tests was the
apparent transformation of the BG spectrum. Spectra collected early
in the testing exhibited a superposition of 3 peaks centered at
324nm, 346nm, and 409nm as determined by a least sgquares curve
fitting routine (Figure €). In the later tests (Figure 7), the long
wavelength peak had disappeared and the spectra contained only 2
peaks; at 317nm and 343nm. These changes appear not to be
correlated to time of day or attributable to incomplete
substraction of solar background. It will be important to
understand the variability of the BG fluorescence spectrum (and by

analogy the agent spectra) if a useful biofluorescence detector,
either point or remote, is to be designed.

IV. SUMMARY

A biofluorescence lidar system has been built and tested and
has demonstrated a capability to detect biological aerosols at
ranges up to 2000 m in full sunlight and 3000 m at night. The
ability to obtain dispersed fluorescence spectra in real time
proved to be a great asset during the tests. This optlon does,
however, limit sensitivity and might not be practical in a fielded
system. The ability to predict the overall sensitivity of the lidar
to actual agents hinges on the laboratory measurement of
quantitative agent and simulant fluorescence spectra. It is also
important to determine whether the spectra and/or cross sections
change with particle size. The atmospheric nitrogen Raman signal
provides an internal standard for calculating agent concentrations.
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SUPPRESSION of MORPHOLOGY DEPENDENT RESONANCES by
DROPLET SURFACE OSCILLATIONS
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RECENT PUBLICATIONS: M. Essien, J. B. Gillespie, and R. L. Armstrong,
"Observation of suppression of morphology-dependent resonances of singly
levitated micrometer-sized droplets,” Appl. Opt. 31, 2148-2153 {1992).

ABSTRACT

Suppression of morphology-dependent resonance of the light elastically
scattered by a laser-illuminated, micrometer-sized droplet is observed. A
single nonabsorbing droplet is levitated using an ele:trodynamic quadrupole
trap. The scattered light is monitored as the droplet slowly evaporates.
Suppression is believed to be due to droplet surface oscillations which we
model using an effective imaginary refractive index. Good agreement is

obtained between the experimental curves and theoretica! Mic computations.

5.1 INTRODUCTION
The characteristic resonance spectrum of a microsphere illuminated by

plane, monochromatic radiation has been studied extensively. 1.2.3 The
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resonances arise when the incident radiation couples to the cavity modes of
the sphere, .ind are denoted as TE (transverse electric) or TM (transverse
magnetic). Resonances are also labelled by a mode number n and a mode
order I. The mode number represents the order of the Ricatti-Bessel function
that describes the radial part of the field, while the mode order denotes the
Ith occurrence of a resonance with mode number n. For incident light
polarized perpendicular to the scattering plane, the intensity of the scattered

field is given by

2n +1 2
' ’l zn(n +1) (an“n (cos8)+ bntn(cose))l 1

where =%, and 1, are angular dependent functions related to the Legendre
polynomials, 6 is the scattering angle, and n is the mode number of a
particular resonance. .

Suppression of morphology-dependent resonances of a single dye-doped
microdroplet has recently been reported. 4 The amount of suppression of an
experimentally observed resonance was quantified by computing the
contribution to the intensity of the same resonance of the theoretical curve
providing the closest fit to the experimental data. The quality factor, Q, of

the resonance is given by

where x is the size parameter and Ax is the full-width at half of the maximum

resonance intensity. Experimental curves were obtained for a non-absorbing
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droplet and for ‘wo absorbing droplets. Theoretical computations have
shown that the suppression effect is greatest in narrow (high-Q)
resonances. 6 A similar result is obtained in our experimental observations.
Iowever, each of the curves of the absorbing droplets show more
suppression than that predicted by Mie theory. Similarly, the non-absorbing
droplet also shows suppression of the resonances with Q > ~ 104. An
explanation for this additional suppression is presented in this report.
Suppression of MDR's by Surface Oscillations

Oscillations of the droplet surface caused by thermal fluctuations may
cause suppression of MDR's. Lai et. al. 7 have estimated this fluctuation to
typically have an amplitude of about 0.1 nm and reports that the effect of
these fluctuations is to lift the degeneracy of a particular mode, with the

splitting given by
<Aw2> = §2ay2 3

where wy is the unperturbed frequency. The parameter 3 is given by

kpT

2=
o 'Ysa2

1 4

where Ci=0.04 for n (the mode number) » 1, ky is the Boltzman constant, T is

the temperature, and ;s is the surface tension. Equation 3 then becomes

2k, T
<A0)2> — Q_).O_P__C_l.
'Ysa2

w»
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The temperature is given by

T= To + AT 6
where Tj is the ambient temperature and AT is the increase in temperature
that the droplet undergoes as it traverses a resonance. To determine AT,

consider the two mass flux equations

__DLMYp AT .,
M = RTe2(1- Yo a
KAT Qil

Lm = 2 = 4 8

where K is the thermal conductivity, D is the diffusion coefficient, L is the
latent heat, M the molecular weight, and Yp the mass fraction. 8 Eliminating

m and solving for AT,

Qala
T=—""" 9
A 4(I'+K)
Now Qa may also be written as
2%n
= 10
A7 Ao
where a is the linear absorption coefficient.
Substituting Q = Aw/wy, og becornes
g = 2un 29 11
T A w
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The absorption coefficient a is related to the imaginary refractive index by

k=—"" 12

Substituting equation 11 for a and using equation 5, equation 12 becomes

k 2]
k=D A [R0TC 13
2 Ysa2

Substituting for T, ks becomes

KeC I
ks=-§-\/—b~1('r0+ Qala 14

vsal 4T+K)

Therefore the effect of the surface oscillation is to increase the effective
imaginary refractive index by an amount given by equation 14.
5.3 Results

The experimental apparatus is shown in Figure 1. Figures 2 through 4
show the transparent droplet experimental scattering curves (A = 0.488 um)
along with the theoretical curves with a real refractive index n=1.4722 and
imaginary refractive index k=0, for three ranges of droplet radii. The curves
show scattered intensity vs size parameter as the droplet evaporates through
the ranges from approximately 15.41 to 15.37 pm, 15.35 to 15.31 um, and 14.71
to 14.68 um. Each range will subsequently be referred to as case 1, case 2, and
case 3.  Resonances in the experimental curves were labelled by noting the
positions of the resonances in the theoretical curves and comparing these
positions to positions ohtained from a resonance location code. * The
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resonances in case 1 are, from the sharpest to broadest resonance, TE14;qg,
TE15505, and TE16591. The case 2 resonances are TE145g, TE15594, and TE165qq,
while the case 3 resonances are TE139g1, TE4197, TE13193. In each case the
sharpest resonance (highest Q) is significantly less intense than the
corresponding resonance predicted by theory. A check of these identifications
was performed by modifying the Mie code of Bohren and Huffman 10 so that
the contribution from a specific resonance is omitted from the sum of
equation 2. In this modification a loop is placed in the code so that the
contribution due to a specified mode number n is neglected. If the
identification is correct, the resonance associated with n will be absent from
the scattering curve. The resulting curves for case 3 are shown in Figure 5.
Similar curves were obtained for cases 1 and 2, confirming the resonance
identification. Equation 14 shows that the effect of droplet surface oscillation
is to increase the effective imaginary refractive index. For a non-absorbing
droplet in thermal equilibrium with its surroundings, kg = 2.5 x 10-6, so that
an effective background suppression is present, even for the case of a
transparent droplet. Figures 6-8 show the Mie theoretical calculations for a
non-absorbing droplet with kg = 2.4 x 106, 2.5 x 10-6: and 2.6 x 10-6, and the
experimental curves of the droplet evaporating through the same size
parameter ranges as in cases 1, 2, and 3. The effective k's that fit the
experimental curves are determined with an accuracy of about 5%, about
0.1x10-6 for k=2.5x106. The theoretical curves show good agreement with the

experimental curves.
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5.4 Discussion and Conclusions

The total Q of the droplet may be written as

1 1
o> Qpen 15

Qo=

where Qg is the Q of the non-absorbing droplet, and Qpert arises from
additional suppression mechanisms.  In this case, Q is taken to be equal to
the ratio, x/Ax, of the resonance peak of the theoretical curve that

provides the best fit to the experimental curve. Therefore 1/Qpert is given by

1 1 1
Qpert - Q~ 16

It has been established that the principle mechanism contributing to Qpert is
suppression due to droplet surface oscillations. The effect of surface
oscillations is quantified for three different values of the droplet radius by
analyzing the theoretical curves that provided the closest fit to the
experimental curves. This analysis was made by modifying the Mie scattering
code so that only the contribution due to a specific resonance is included in
the sum of equation 1. Figures 9-11 show intensity vs. size parameter for the
narrowest resonances of cases 1, 2, and 3. The magnitude of Qpert is

calculated from these curves for each resonance and is listed in Table 5.1.
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Table 5.1: Qpeﬂ for the resonances effected by surface oscillations.

resonance radius (um) ks Qpert
TE4309 15.402 2.4 x 109 22x10°
TE4y03 15.343 2.5x10% 2.8 x 105
TE1301 14.699 2.6 x106 32x10%

The three values of the effective imaginary refractive index, k;, listed in Table
5.1 were determined using equaticn 14 for the radii of the droplet at the
resonances in question. The suppression effect believed to be due to surface
oscillations is quantified by determining Qpert at each resonance.  Surface
oscillations have been found to reduce the Q of the TE143p9 resonance by ~
20%, the TE4208 resonance by ~ 24%, and the TE13301 resonance by ~ 25%.
The error in a measurement of Qpert was determined by varying the effective
refractive index around the value of ¥s determined from equation 13 until
the theoretical curve no longer matched the experimental curve. This
method yielded an error of w.bout 12 % for each case. No detectable effect is

noted for the mc ierate and broad resonances of of cases 1-3.
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Figure 2, Experimental scattering curve of a glycerin/methanol droplet
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corresponding theoretical curve for n=1.4722 and k=0.0 (bottom).
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Figure 3. Experimental scattering curve of a glycerin/methanol droplet
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corresponding theoretical curve for n=1.4722 and k=0.0 (bottom).
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ABSTRACT

This paper describes the results of a series of studies that
have been conducted to determine if multispectral screening
materials can be generated from JP-8 or diesel fuel under
battlefield achievable conditions. The work that is discussed
demonstrates that carbon particles and filaments with desirable
screening dimensions can be produced from either JP-8 or diusel
fuel without the use of exotic co-reactants and within temperature
and pressure limits that could be achieved under battlefield
conditions. The investigations discussed show that carbon
particles formed from JP-8 or diesel fuel feedstock exhibit
superior screening clouds as compared to their droplet aerosols.
In the infrared region, extinction coefficients exceeding 0.8 m?/g
at 10 micrometers have been obtained from the JP~8 or diesel fuel
feedstock. In addition, it has been demonstrated that carbon
filaments with diameters in the range of 0.05 to 5.0 micrometers
and lengths from 1.0 micrometer to 1.0 centimeter can be generated
from a JP-8 feedstock under reducing conditions over a nickel,
iron, or iron oxide catalyst. Conductivity and dissemination
studies demonstrate that the carbon filaments generated from JP-8
exhibit attenuation properties in the microwave spectral region.

1.0 INTRODUCTION

The practice of using smoke screens for both offensive and
defensive military operat.ons has been a part of battle theater
operations for hundreds of vyears. The earliest application of
screening smokes most assuredly had as its objective the creation
of a visual obscuring cloud. These smoke screens were generated by
burning various types of combustible materials, quite often being

what was available on the battlefield. As time progressed,
battlefield equipment and operations improved and so did the types
and applications of screening smokes. New materials such as

phosphorus, titanium tetrachloride, fog o0il, etc. were developed
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for the purpose of producing more effective visual screening smoke
clouds. Each of these materials in its own application was very
2ffective in producing aerosols that exhibited very large
extinction coefficients in the visible region of the
electromagnetic spectrum. Some of these new materials could also
be used to generate very large screening clouds. For example, fog
oil, when subjected to a vaporization condensation procedure for
generating aerosol particles can be used to generate visual
screening clouds that are thousands of square meters in area.
These large scale smoke screens have proven to be very effective in
minimizing equipment and personnel losses on the battlefield.
However, with the development of new weapon systems that operate in
regions of the electromagnetic spectrum outside the visible band,
a need has been created for screening smokes that attenuate in
those regions outside of the visible window.

Another problem that has arisen with the use of fog o0il to
generate screening smokes is a result of changes in procedures and
philoscphy relative to 1logistic material support to the
battlefield. The philosophy is to minimize the number of different
types of items that must be supplied to the battlefield. Thus, fog
0il, which 1is supplied in drum guantities becomes a logistic
problem. The desire to simplify the logistical supply system to
the battlefield is so strong that the military has decided that
only one fuel will be used and that this fuel will be JP-8. Thus,
with the Army's multispectral screening need being what it is and
the possibly that the only potential material for generating a
screening smoxe is a JP-8 type hydrocarbon, it is an important
issue to determine if in fact JP-8 can be used to generate an
effective multispectral screening smoke.

Many methods have been investigated to accomplish the
seemingly simple taesk of rewplacing the visual screening feedstock
(fog o0il) with more readily available feedstocks such as diesel
fuel (DF) and JP-8. These schemes have thus far been impractical
because of their demand for sophisticated apparatus (i.e. chemical
plants, etc.) and/or special materials (i.e. high pressure gases,
fuels, etc.). These requirements are incompatible with insitu
generation in an operational theater. The problems as well as the
potential pay offs increase when extension is made to IR and
millimeter obscuration.

The objective of this paper is to summarize several studies
that the authors have conducted that have been concerned with the
development of methodolcgies for dgenerating carbon particles and
filaments from hydrocarbon feedstocks such as diesel fuel and JP-8.
The primary operational guideline that the studies were conducted
under is that the generation conditions be maintained within a
range that could be produced in a battlefield environment.
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2.0 TECHNICAL DISCUSSION

One of the primary purposes of the efforts described in this
paper was to develop an understanding of the variables in the
process required to maximize the production of carbon particles and
filaments when using JP-8 or diesel fuel as the carbon source.
These guidelines were developed by applying an experimental
approach to a partial combustion process by using a systematic
variation of air/fuel vratio, residence time, reaction zone
temperature, and different types of catalysts. In addition to
carbon yield measurements, extinction coefficients were determined
for the airborne particles and filaments in the visual, infrared,
and millimeter wavelength regions. Measurements were also made of
the particle size distribution, evaporation rates, and settling
times. In addition, comparison studies were conducted between
droplet aerosols and particle aerosols.

2.1 THE GENERATION OF CARBON PARTICLE AEROSOLS

Hydrocarbon feedstocks have been used for many years to
produce various carbon particulate products that have industrial
value, with carbon black production being a primary example. Two
important methods have been used industrially to produce carbon
particulate products. One method is based upon the pyrolysis of a
hydrocarbon feedstock, while the other method relies upon the
partial oxidation of a hydrocarbon feed to strip hydrogen atoms off
of molecules leaving behind a product that has a chemical
composition corresponding approximately to CgH. In the studies that
are discussed in this paper, the partial oxidation method was used
because it was deterimined that the equipment and operational
demands that are required for this methodology could be achieved
more readily under battlefield conditions.

The experimental apparatus constructed to generate carbon
particles in the first laboratory study consisted of a heated
isothermal reaction zone into which preheated air and vaporized
diesel fuel or JP-8 was injected. A flow schematic of this
research reactor is shown in fig. 1. The reaction zone temperature
was set by a surrounding furnace and the air/fuel ratio varied by
independent control of the air and fuel injected into the reaction
zone. Residence time in the reaction zone was varied by air flow
rate and by the relative location of the fuel introduction points.
Initial studies in the use of the laboratory scale reactor to
produce carbon particles from a hydrocarbon feed were conducted to
establish operational procedures and to select process variables
for parametric studies to maximize carbon particle yield from the
partial combustion of diesel fuel or JP-8'?. The parametric matrix
included variations of: 1) reaction zone temperature, 2) air/fuel
mass ratio, 3) reaction zone residence time, 4) fuel preheat
temperature, and 5) additives mixed with the hydrocarbon feed.

A summary of the major results is provided in Figs. 2, 3 and
4. The carbon particle yield proved to be a strong function of
reaction zone temperature, Fig. 2. A maximum temperature of 1,150°C
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Figure 4. Effect of residence time on carbon yield.

was observed in order to respect practical temperature limits of
field smoke generators. The carbon yield was a much weaker
function of air/fuel ratio in the range from 2 to 6, Fig. 3. The
differences noted in yield due to changes in reaction 2zone
residence time from 1 to 5 saconds were not significant compared to
uncertainty in the data, Fig. 4.

Based upon the results that were obtained with the laboratory
scale reactor, a larger scale prototype reactor was designed and
built. The schematic for this reactor is shown in fig. 5. The
preheat air for this carbon particle generator was obtained from a
turbocombustor that was matched to the particle generator.

The scaled up generator was capable of processing 0.1 gpm of
diesel fuel or JP-8 while maintaining a carbon particulate yield of
approximately 40%. A photograph detecting the quality of the
carbon particle aerosol produced by this generator is shown in fig.
6.

The results of these initial studies demonstrated that it is
possible to produce carbon particle aerosols from diesel fuel and
JpP-8 feedstocks by using the partial oxidation method. While these
initial studies established the teasibility of this technology,
they also served to uncover several areas where further work is
required before a full field scale size carbon particle generator
can be designed and built. For exampie, one area that must be
addressed concerns the relative large size of the reactor that is
required to proress high hydrocarbon feed rates. Scale up of the
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Figure 6. Carbon Particulate aercscel produced by scaled-up
prototype generator.

prototype generator would result in a reactor diameter of
approximately 17 inches to achieve 0.5 gpm of diesel or JP-8 feed.
Therefore, these and other unique methodologies need to be
investigated further in order to reduce the size of the equipment.
One potential method might be to operate the reactor at higher
pressures, thus increasing the carbon yield per reactor volume
ratio. Other methods include the use of flame containment and
reaction dquenching devices.

2.2 PROPERTIES OF CARBON PARTICLE AEROSOLS

The carbon particulate aerosols that were produced by the
generators described in Section 2.1 were subjected to a series of
tests in order to characterize them both chemically and physically.
In addition, numerous tests were conducted in order to establish
the attenuation properties of the particle aerosols.

Extinction coefficients in both the visiple and infrared
spectral regions were determined for carbon particle aerosols
produced at selected particle dgenerator conditions. Measurements
were made in the Engineering Technology, 1nc. 10 m' test chamber
located at the University of Central Florida and in the 190 m' test
chamber located at CRDEC. Agreement between the facilities was
excellent and is shown in the data in Fig., 7 and Table I.
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Figure 7. Comparison of extinction coefficients obtained in the ETI
and CRDEC aerosol test chambers.

TABLE 1. EXTINCTION MEASUREMENTS FOR CARBON PARTICLE AEROSOLS AT
A WAVELENGTH OF 0.63 MICRONS

Facility Aerosol Extinction
Concentration Coefficient
g/m’ m?/gm
ETI Chamber 0.180 8.2
-10 nd 0.0943 8.0
0.0379 7.1
CRDEC Chamber 0.0476 6.1
-190 m’ 0.0098 8.7
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The spectral data in the infrared region were obtained at both
laboratories by the use of a Fourier Transform Spectrometer. The
data at a wavelength of 0.63 micrometers were obtained using a
helium~neon laser light source. Generally, because the extinction
in the visible spectrum was much greater than in the infrared, the
visible attenuation measurements were taken at a much lower value

of airborne mass concentration. Typically, the chanbers were
charged with particles until visual transmission was reduced to 40
to 60 percent,. After visible attenuation and particle

concentration measurements were taken, charging continued until
similar values of attenuation in the infrared were reached.

The data show that the carbon particles exhibit extinction
coefficients of approximately 0.85 m?’/g at a wavelength of 10
" microns. This is significantly higher than what is exhibited by
the droplet aerosols (i.e. extinction at 10 microns being less than
0.05 m?/qg).

Micrographs of carbon particles collected from the particle
generator are shown in Figs. 8 through 10. The micrographs show
that the carbon particles generated by the partial combustion and
thermal decomposition of diesel fuel or JP-8 of the guality used in
these experiments consist of small spheroids fused together to form

chains and aggregates of various lengths and diameters. In
general, the carbon sphercids vary in diameter between 0.1 and 0.5
micrometers. However, depending upon the concentration of

particles in the agglomerization zone, the chains of spheroids can
grow to lengths of several millimeters as shown in fig. 10.

Even though the use of carbonacecus particulate matter dates
back to thousands of years before Christ’, only recently are
advanced techniques being used to probe the nature of carbon
particulates such as the soot produced by the partial oxidation of
hydrocarbon fuels. Surprisingly, the detailed molecular structure
of soot is not known. To account for the spherical morphology of
particles, older models have proposed that polynv-lczar aromatic
molecules are arranged with their planes tangential to concentric
spherical annuli‘. However, recently, Zhang, O'Brien, Heath, Liu,
Curl, Kroto, and Smalley {abbreviated herein as 20HLCKS) have
related soot to three dimensional carbon clusters, suggesting that
because of dehydrogenation reactions '"the polycyclic aromatic
molecules Known to be present in high concentrations in sooting
flames may therefore, adopt pentagonal rings as they grow, so as to
generate structures which maximize the number of c-c linkages®",
While ZOHLCKS did not propose that soot would contain pure carbon
clusters ("buckminsterfullerenz2"), they suggested "the result of
such a process would be a soot nucleus consisting of concentric,
but slightly imperfect spheres"’.

A paper published by Ebert, Scanlon and Clausen (abbreviated
herein in as ESC) described structural and chemical studies that
were conducted on the carbon particulate (i.e. soot) produced by
the laboratory scale reactor described in Section 2.1 while diesel
fuel was being used as the hydrocarbon feedstock®., The purpose of
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Figure 10, Carbon particles generated for diesel fuel (magnified
35X) .

the study was to in part address the ZOHLCKS proposal, and in part
to generate data to compare the diesel fuel and JP-8 soots to other
carbonaceous materials. The soct was characterized by x-ray
diffraction and chemical reduction studies.

Microanalysis of several scot samples collected from diesel
fuel based carbon particulate aerosols established that the weight
percent carbon in the particulate averaged 92.06 * 6.08, while the
hydrogen composition averaged 1.11 * 0.13 percent. This results in
an atomic H/C ratio of 0.14. Other analyses were for % S (0.46),
% N (0.30, and % O (6.11). The average mass balance observed was
100.04%

Figure 11 gives the x-ray diffraction pattern of a typical
diesel fuel soot over the range 2 & = 15 - 105°. The appearance of
diffraction peaks at 351, 208, 174, and 120 pm can be reconciled
with a model involving stacked, planar benzenoid carbon arrays.
The line widths of the diffraction peaks suggest correlation
lengths on the order of 2 nm.

Chemically, the diesel fuel and JP-8 soot were observed to
react with potassium naphthalenide' in THF to the extent of 1 K°

consumed for every 4.8 carbon atoms. The "soot anion" can be
alkylated by methyl iodide to yield products containing methyl
groups. Examination of both "THF solubles", and "THF insolubles"

following alkylation with CD, gyroups wvia D NMR shows first order
quadrupolar split as well as isotopic lines in each sanmple.
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Figure 11. X-ray diffraction pattern of diesel fuel soot (Cu K «,
2 = 1

r
e 5 - 105°, Bakelite sample holder).

The insoluble material shows a greater fraction of guadupolar split
deuterium nuclei. Soot does not intercalate potassium metal under
conditions for which either graphite or petroleum coke will
intercalate potassium.

The results of the ESC study can be reconciled with a model of
diesel fuel originated soot as consisting of collections of large
polynuclear aromatic hydrocarbons and heterocycles as schematically
depicted in fig 12. One does not need tc invoke C, clusters or
open spiraling clusters as models for the majority of the soot. 1In
fact, x-ray diffraction simulation suggest that such clusters
cannot account for the details of the experimentally observed
diffraction patterns.

2.3 CATALYTICALLY PRODUCED FILAMENTOUS CARBON

In order to produce effective attenuation in the millimeter
wavelength region, it is necessary to use conductive filaments with
length to diameter ratios in the range of 200 to 500. The carbon
particles that are produced by the partial oxidation process
discussed in the previous two sections do not possess aspect ratios
in this range even though they may chain together as shown in fig
10. Part of the reason is that the filaments are not conductively
continuous. Currently, the commercially available carbon and
graphite filaments used by the Army as millimeter screening agents
are produced by the carbonizatior and graphitization of fibers made
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Figure 12. Schematic model for soot showing arrangement of
polynuclear aromatics tangential to spherical annuli.

from either polymer precursors such as polyacrylonitrile or pitch
precursors from petroleum or coal tar residues. However, it has
been shown that carbon filaments can be produced by metal catalyzed
pyrolysis of hydrocarbons such as methane, heptane, benzene, etc.’.
These vapor-grown carbon filaments have a unique structural
morphology that exhibits a greater degree of graphite perfection
than pitch or PAN fibers produced at comparable temperatures. In
addition, the vapor-grown filaments can be made in such a way that
they possess a hollow central core.

The method by which vapor-grown filaments are produced is by
heating small particles of transition metals, especially iron or
nickel, in an atmosphere of hydrocarbon vapors, often with hydrogen
being an accompanying co-reactant. At temperatures greater than
600°C the iron particles begin extruding long slender rfilaments of
fairly graphitic carbon which may grow as rapidly as several
millimeters per minute. Metallic crystals are often found at the
end of the filament. These metallic crystals are believed to be
analytically active for carbon deposition and are called "growth"
crystals.

Based on the accumulated information from controlled
experiments, a model has been proposed to account for the growth of
filamentous curbon produced on metal particles. The key steps in
the mechanism are believed to be the diffusion of carbon species
through the particle from the hotter leading surface, to the cooler
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~ear faces at which carbon is precipitated from solution. It has
been suggested that the driving force for carbon diffusion is the
temperature gradient created in the particle by the exothermic
decomposition of the hydrocarbon at the exposed front faces and
endothermic deposition of carbon at the rear faces. Excess carbon
which accumulates at the exposed face is transported by surface
diffusion around the peripheral surfaces of the particle to form
the graphite skin of the filament. Eventually, growth ceases when
the leading face is encapsulated by a layer of carbon pr :venting
further hydrocarbon decomposition.

A number of factors affect the growth of filamentous carbon.
For example, temperatures in the range of 500 to 900°C have been
reported while pressures between 1 and 760 torr have been used.
Several different hydrocarbon feedstocks have been studied with the
resulting carbon filaments appearing to be the same no matter what
feedstock was used. However, the type of catalyst has a tremendous
effect on the filament growth rate as well as on the
characteristics of the filament. Both pure and combinations of
metals have been studied. In general, transition metals provide
the most active catalysts.

The purpose of the project described in this paper was to
determine the conditions that are necessary to produce hollow
carbon filaments under field realistic conditions from JP~8 and to
evaluate their potential as screening agents.

The major part of the project that was described in Clausen et
al's paper was concerned with studying the conditions that are
necessary to produce carbon filaments undei batch process
conditions’. Several different batch reactors were designed, built,
and tested. Basically, the batch reactor consists of a 2.5 cm i.d.
quartz tube that is heated by an electric Lindberg furnace. The
filament catalyst is contained inside ceramic boats maintained
within the heated zone. The inlet to the quartz reactor tube is
equipped with the capability of feeding gases, vapors, and liquids.
The outlet of the reactor is fitted with a filament trap and a gas
bubbler. Gas feed to the reactor is monitored and controlled
through a series of rotometers and flow controllers.

When it is desired to crack (i.e. break larger molecules into
smaller molecules) the feed stream, then the system is equipped
with a reactor contiining a cracking catalyst. The cracking
catalyst consists of 1/8 inch pellets of faujasite molecular
sieves. The catalyst bed is normally heated to 750°C.

The liquid feed (e.g. JP-8, diesel fuel) is injected into the
heated zone of the cracking reactor, where it is vaporized and
carried over the cracking catalyst by a stream of hydrogen or
carbon monoxide gas. The cracked hydrocarbon stream is then passed
over a bed of catalyst where the filaments grow.
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Because it is desirable to use the filaments in an environment
where personnel will come into contact with the filaments,
relatively safe metal catalysts were chosen for these studies. 1In
particular, metallic iron and iron compounds were used in the first
series of filament growth studies. These were chosen because
previous studies had suggested that small metallic iron particles
are effective in promoting the formation of filamentous carbon.
However, later experiments determined that iron oxide catalysts
were more effective at growing the carbon filaments. The initial
set of test conditions for growing carbon filaments was established
by using low molecular weight feedstocks like ethylene, acetylene,
and pentane. These experiments were conducted by passing the gas
or vaporized liquid hydrocarbon over a bed of iron oxide catalyst.
The filaments were then collected from the catalyst bed.

Experiments testing the effectiveness of vaporized
hydrocarbons with chain lengths greater than five carbon atoms,
demonstrated that the longer chain molecules had a tendency to fcul
the metal catalysts and thus, reduce the yield of filamentous
carbon. The results of these experiments documented that if the
use of long chain hydrocarbons is desirable as the feed source,
then it will be necessary to break this feed stock into smaller
molecules. It was determined at this point in the project that a
cracking catalyst would be required to condition 1long chain
hydrocarbon feed stocks such as JP-8 prior to reaction over the
filament forming catalyst. Accordingly, a set of experiments were
conducted and representative results of the type of filaments that
were produced are shown in Figs. 13 and 14 where filamentous carbon
was generated from cracked JP-8 feedstocks over iron oxide and
metallic nickel catalysts.

The micrographs shown in Figs. 13 and 14 demonstrate that
carbon filaments can be generated from long-chain hydrocarbons
under field achievable conditions. This is achieved by passing the
long-chain hydrocarbon feedstock (i.e. JP-8, diesel fuel, etc.) in
a hydrogen or carbon monoxide atmosphere over a molecular sieve
cracking catalyst at a temperature of approximately 700°C. At this
time, additional studies are heing conducted in order to determine
what is the most effective filament growth catalyst. However, it
has been demonstrated that the snraller the particle size of the
catalyst, the greater the yield of the reaction. Some of the most
effective iron oxide catalysts that were used in this study were in
the range of 100 nanometers. With particles of this size, carbon
to filament conversion on a weight basis as high as 30 percent was
observed.

In order for filaments to exhibit effective attenuation
properties in the millimeter wavelength region, they must be
conductive in addition to possessing the necessary 1langth to
diameter ratios. Conductivity measurements for small filaments are
typically performed by using the four-point proke technique. 1In
order to use this technique on very small filaments, it is

necessary to press the filaments into the form of a pellet. For
the measurements conducted in this study, the filaments were
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Figure 13. Carbon filaments generated from the reaction of cracked
JP-8 over a Fe,0, catalyst.

SKU WD JIMM - beded P

Figure 14. Carbon filaments generated from the reaction of cracked
diesel fuel over an iron particle catalyst.
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pressed into pellets at a pressure of 7,000 kg cm?., The pellets
were then measured for their conductivity by using the four-point
probe method. Typical values were in the range of 10 to 40 Scm!.
This suggests that if the filaments can be dispersed effectively
into an aerosol cloud, their extinction coefficients in the
millimeter wavelength region as comparable to those of graphite
filaments should be similar.

As shown in the previous figures, when filamentous carbon is
grown from a batch process, the filaments form clumps with the
individual filaments being tangled together. This entanglement
makes it very difficult to disperse the material in an airborne
monofilament state. Attempts were made to break the clumps apart
by passing them through high shear forces generated in a high
velocity gas stream through a high speed set of rotating blades.
The material was disseminated into a 3.6 m' aerosol test chamber.
The path-length for attenuation measurements was 2.4 m and
extinction coefficients were measured at the He~Ne laser wavelength
(0.63 microns) and in the millimeter wavelength region at 35 GHz
and 94 GHz. Table II shows the extinction coefficients that were
measured for carbon filaments generated over iron and nickel
catalysts while using a mixed hydrocarbon feed. The values that
were obtained are less than those observed for 1/8 inch length
chopped 8-micrometer graphite in the millimeter wavelength region,
but greater than the graphite filaments in the He-Ne regiori. The
reason for the low values in the millimeter region is due to the
inefficiency 1in disseminating the <carbon filaments to a
monodispersed state.

The ultimate goal of the filament project is to generate
carbon filaments on a continuous basis. Generating the filaments
by this procedure should help to minimize the birdnesting problem
that is experienced when the filaments are generated in a batch
process. This should lead to the production of carbon filament
aerosols that are much more effective in the millimeter wavelength
region.

3.0 CONCLUSIONS AND RECOMMENDATIONS

The work that was presented in this paper was the result of a
series of studies designed to explore the potential for using JP-8
and diesel fuel as a feedstock to generate multispectral screening
smokes. These studies demonstrated that JP-8 and diesel fuel can
be converted into carbon particles by a thermal hydrogen stripping
preccess that produces particulates that are effective screening
agents both in the visible and infrared regions. Recent work has
demonstrated that by cracking JP-8 and diesel fuel over a molecular
sieve catalyst and then mixing the product stream with an iron
oxide powder produces carbon filaments that are conductive and
possess aspect ratios that make them effective attenuators in the
millimeter wavelength region. Thus, it is theoretically possible
to produce a mixed multispectral cloud of particles aad filaments
from JP-8 and diesel fuel under battlefield conditions. The next
phase should be to build a prototype unit to evaluate and document
any scale-up problems that might occur in the use of these
processes. 216




TABLE II. ATTENUATION PROPERTIES OF CARBON AND GRAPHITE FILAMENTS

Sample a (m? gt)
He-Ne (0.63 94 GHz 35 GHz
&)
Filaments 0.21 0.19 0.40

generated from
cracked JP-8 over
a Fe;0, catalyst

Filaments 0.18 0.22 0.50
generated from

cracked JP-8 over

a nickel catalyst

1/8 inch 8-micron 0.02 0.32 1.7
graphite filaments
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ABSTRACT

An analytic semi-empirical approximation to the extinction efficiency, Q.r¢, for randomly oriented
spheroids, based on an extension of the anomalous diffraction formula, is given and compared to the
extended boundary condition method or T-matrix method. Using this formula, Q.. can be evaluated
over 10* times faster than by previous methods. This approximation has been verified for complex
refractive indices m = n — ik, where 1 < n < oo and 0 < k < oo and aspect ratios from .2 ~ 5.
We believe that the approximation is uniformly valid over all size parameters and aspect ratios. It
has the correct Rayleigh, refractive index w.nd large particle asymptotic behaviours. The accuracy and
limitations of this formula are extensively discussed.

1. INTRODUCTION

We have previously presented! a numerical approximation to Q... for randomly oriented spheroids.
This work was applicable to particles with 1.01 < n < 2 and 0 < k¥ < 1 for arbitrary sizes and aspect
ratios. The required angular integration was carried out by a 64-point Gaussian quadrature. Since
many materials have optical properties beyond the above limits, we have, in the present work, extended
the refractive index range to 1 < n < 00 and 0 € k < oo. Furthermore, large optical sizes produce
high frequency oscillations in the kernel of the angular integral. These integrals are very difficult and
time consuming to estimate numerically. We have replaced this numerical integral with an approximate
analytic expression that overcomes this difficulty.

The basic approach is to orthogonalize as much as possible the scattering physics into well defined
regimes. For small physical and optical sizes, the electrostatics (Rayleigh) approximation is used.
For larger and very large optical sizes we still use the electrostatics approximation but with the optical
constants transformed? to include the effects of the magnetic dipole. In the large physical size regime we
split the physics into a diffraction (anomalous diffraction) component and, what can be loosely described
as edge effects. The diffraction component is modeled by the anomalous diffraction approximation as
developed by Van de Hulst?. The edge effect (Fock theory) component is modeled by extending a
technique introduced by Jones®!. In this report, this component is further generalized to have proper
behaviour at small optical sizes and for lazge indices. The gap between the large and small particle
regimes is bridged by a binomial form! similar to the generalized mean (Ref. 5, page 10).
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The report is organized as follows: Section 2 develops the extinction formula. This includes section
2.1, small particle scattering, section 2.2 anomalous diffraction, 2.3 the edge effects and 2.4 the binomial
bridging function. Section 3 contains comparisons of this approximation to the T-muatrix method®. The
final section, Section 4, gives the conclusions and remaining limitations.

2. DEVELOPMENT OF THE EXTINCTION FORMULA

2.1 Small Particle Term

For a physically and optically small particle, all applied electric field gradients disappear and
the particle begins to respond to a homogenous field. The electrostatics approximation then holds
giving rise to the Rayleigh scattering formula for randomly oriented spheroids’. If the particle is
still geometrically small but optically large the magnetic dipole field becomes significant. We have
found? that one can use the electrostatics approximation but with the optical constants transformed.
This transform correctly describes the full field. It is exact for spheres and approximatc for randomly
oriented spheroids. The following formulas for the extinction efficiency from small particles, Q,man are
derived in Ref. 2:

Q:ma” = Qua + Qaba [1]
with
16642 2 2 ~ (2 2
Qica = T3 {lml? + 17?2 + 2 (11 + 15l*) } and 2
8br e ~
Qats = §—X'R£{' [+ +2( + 7))
where
R S FE N S— [3
dLit+pmy) 1 Mlitgim)
The optical constants transform is
(2@ _ T2w@E))*
bu=e [2} vi(z)) ' and thi=p zi yi(z)) i)
where 1);(2) is the first Ricatti- Bessel function and,
71 = Eab (1 + x (1 - 1/r%)) prolates 5]
= Jeab(r?)x oblates
T2 = Eab(1 + x/3(1 - 1/y/r)) prolates (4
= \/Fﬁb(\/ﬂ"m oblates
where x = v/3/10 and ¢ » {(91)m — 1] - 64)/155 | 0 < ¢ < 1}.
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The form factors are defined, for prolates as

_(1-4% 1. rl+g _1-L, 4, 1
b= {‘l+2g'"(1—g) » ez =15 R
and for oblates, \ .
_l+f tan~ f _I—Ll 2__._1__
Ll - fz {1 f }) L2 - 2 ] f - rz 1. [9]

The above set of equations is identical to that found in Ref. 2 apart from the exponent { in [4).
This exponent is introduced for the following reason. The exact solution of the scattering problem can
be expressed in terms of scattering coefficients (for spheres these are the Mie coefficients). For small
physical sizes the first scattering coefficient is dominant and can be expanded as an infinite power series
in the size parameter z. The first term of this series is dominant only when |[m — 1| is small. If we
transform the optical constants then the first scattering coefficient. can still be expressed as an infinite
series in z but this time the first term dominates only when |m — 1] is large. For intermediate values
of |m ~ 1|, more terms of the power expansion of the scattering coefficients are iequired. Since the
resulting expression would be cumbersome we have decided to modify the first cerm of the transformed
series in such a way as to empirically model the scattering behaviour from small to large |m — 1|. A
simple and robust way to achieve this is to gradually turn on the transform by using the exponent (.
Thus when ¢ = 0 the Rayleigh expression results and when { = 1 the fully transformed expression
results. Note that ¢ = 0 when |m ~ 1| < 64/91 ~ 0.7 and { = 1 when |m — 1| > 219/91 = 2.4.

2.2 Large Particle Term

In this section we discuss the extinctiou efficiency of large particles Qy,r;.. We separate the physics

into two parts, one which corresponds to the anomalous diffraction, @,4 and the other, which can be
considered due to edges effects, Q..

2.2.1 Extended Anomalous Diffraction

The anomalous diffraction formula is derived!:®, by assuming that the incident plane wave is not
significantly skewed in passing through the scattering object and that, to first order, the effect of the
scatterer is to locally retard the phase of the wave and attenuate its amplitude®. The strict limit of
validity of the formula is therefore the region where (n — 1) << 1. The scattering object is in effect
treated as an irregular disc normal to the incident wave and possessing a spatially dependent phace and
amplitude. The Fraunhofer pattern at infinity is then derived and Q.. evaluated from the standard
relations. For a spheroidal scatterer, this procedure leads immediately to the following formula :

_ e~  (e7¥-1)
Qua = Re{2+4°— +45 1} [10)
where w is given by
w =iAy, Al/J=2(rn---l)rp2 [11]
and —— '
p= \/5520+r’sin20, a=2raf), b=2x8/), m=n—ik. (12]

Where r = a/b is the aspect ratio (for prolates r > 1 and for oblates r < 1), a is the length of the semi-
axis of rotation, 3 is the other axis of the spheroid, 8 is the angle between the incident radiation and the
a or a axis, A is the waveler.gth of the scattcred radiation. Hence a and b are the two size parameters
associated with the spheroid and p can be considered a projection operator of the penumbral ellipse
(the ellipse defined by the shadow line on the surface of the spheroid) onto the plane perpendicular to
the direction of the incoming radiation. When compared to exact results this formulation is satisfactory
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for all oblate spheroids. However for prolates, significant phase differences appear due to deviation of
the central ray.

To account for the refraction of the central ray we have in Ref.1, modified slightly the anomalous
diffraction approximation. Now the deviation of the central ray is taken into account when computiag
its phase difference.

The extended anomalous diffraction Ay is found to be

)= iA =3 ’:‘_r: p? cos(¢) + ssin(¢) _
w=ist i 2 o ey s o) }"" os(#)
_ 2 +pA
COS(¢) = m
Lo 8(A—p?) [13]
()= T )
A= [m2(p4 + 82) - 3211/2
g = [r* cos®(8) + sin?(9)]*/2.
In the limiting cases of r — 00 Ay becomes:
Ly = 2b{(m? — cos® 6)}/? - sin §). (14]

For random orientations the angular averaging is carried out as follows:

Do, = f;lz Qadpsin 6 db
T T psing do

(18]

The integration in the numerator of [15] car be readily computed numerically if the kerne) is not
too oocillatory. However, [15] can be analytically approximated by the technique described in Ref. 9.
This eliminates numerical difficulties and leads to a more efficient algorithm. Following the procedure
of Ref. 9, {15) becomes:

Qua =2+ 4(1L — 13)/4(0) : (16]
with 5 .
Ile[ {(1+ =) 25 ((‘) ~(+ 557 1(C)}+(1 2) ‘Cff)+—~F’C(f)] [17)
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L
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Also, .

En(w(0) =)  En(w(x/2)-C) -

(w(0)—-C)y ' (w(xf2)=C)n-1

where E, is the nth order exponential integral®. And iinally for prolates (considering deviated rays),

Vm® —1(m - 1)

(1-a)m-1)+avm? =1/r|’
= -1

(/) = 26 [T - VD +

w(rf2) =2bi(m - 1),

(1-7) re = ‘m—ll,

F.(C)=

w(0)=2bi[

[22)

m+1
for oblates (undeviated rays),
w(0) =2bri(m ~ 1),
w(r/4) =2bri(m - 1)\/1—_—3—;2-, [23]
w(m/2) =2bi(m ~1).

As a consequence of the analytic integration techrique, {13] is approximated by [22] at three values
of § whereas [11] exactly reduces to [23] at the same three values. Note that Equation [16] can be shown
to reduce to the anomalous diffraction formula of Van de Hulst for the sphere.

2.2.2 Edge Effects

For a particle whose typical size is much larger than the wavelength, the edge cannot be treated as
sharp and the effect of the curvature of the object must be included. Jones* has shown how to estimate
these edge effects for three dimensional convex bodies. In Ref. 1 we showed that

2/3
Qeage = -2-32:,3—- 2 F1(~2/3,1/2;1;(1 = 1/p?)) (prolates)
2 [24]
2Dr?/3 ) 2
= ~ 2 F1(-2/3,1/2;1;(1 — p*)) (oblates),

.999947 — 2.19081z + 1.518712% — 32544923
2A(=2/3.1/% 1:2) ® e o 4T708,7 — 084T3ZTSE
D = ¢ [6*/3.

It can be shown for convex bodies, randomly oriented or illuminated by a randomly polarized beam,
that ¢, is a universal function of m. As j/m-1| — 0, ¢, — ¢ = 0.996130 and as Im — 1| — oo,
Ce — € = 0.0659708111:12 This universal function is not known. It is therefore necessary to model
it. Since ¢, is shape independent, this can be accomplished by studying the sphere alone. An added
complication to D arises, however, when we consider spheroids with smali phases, i.e. A¢Y << 1. This
occurs since, what we have been calling an edge effect is really the field distortion around the boundaries
of the particle, and hence its behaviour for small Ay is quite different than for large Ay). As before,

we have modclled this eflect in our expression for D by using the sphere. Our empirical model of the
above two behaviours is:

D= Co
T [6%A3 4 1/|m - 1jP]11P
4/25 C, — C
P=tmz l|£+8/125 o)) ImlS195 or |mfx20 [26]
= 20, 1.95 < |m| < 2.05
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In the above, th= special case for 8 with m == 2 is to avoid the obvious singularity in the main expression.
At this point we require only a relatively large value for 5.
The latge particle limit for the spheroid becornes

Qezt — 2+ Qedye- [27]

We now wish to produce a term T which, when it multiplies [10], gives the same limit as [27] without
diverging as the size parameter goes to zero. We have found that' an adequate expression for our
purposes is:

T=2- e‘Q-l'-/2 [28]
For random orientations the angular averaging is carried as in {15] but with T replacing Q,4:
x/2 .
— T 8 do
7o ho_Trintd (29]
Jo “psind do
Using the same integration technique to obtain an analytic approximation to [29] we obtain:
T=2-e"AF/'0) (30]
where 1~ ofx/4)
A=yB[B'+50) B= T as
TEEHIOL B = R = o 2N %) a1
2) -1
C'=1-9H, '::2&1/—-——, 6 = Dr3/3,
7 7 3(0)
and
LA su(w/2)
Here E, is the 2nd order exponential integral. For prolates,
i'(6) = ri(8),
21
v(r/4) =2/, [—5. 5; 1; (7‘2 - 1)/("2 + 1)][2/("2 + 1)]3 (33]
v(r/2) = ,F,[-g, %; 1;1—1/r%)/r?/3
and for oblates,
i'(8) = —j(6),
21
”(7"/4)=2F1[—§,§i1;1"f'2/2]/" {34
v(n/2) = 3F1[—§, %; 1;1~rl)/r?
2.2.3 Total Contribution to Quarge
The total contribution to Qarge for a given orientation is!:
Qlar:e = QadT~ [35]
For random orientation the angle averaging would give:
x/2 .
T, 0dé
Trarge = fo '?;d psin0df (36
o psin0do

244




Due to their complementary nature, Q¢ & 2 = constant for large |w|, while T ~ constant for small to
medium |w|. Therefore, to a good approximation, we can separate the kernel of the above integral to
get: _ o

Qlarye =Quq7T. [37]

An extensive comparison betweer. [37] and the numerical computation of 22-,,,,.9e from [36]) provides
definitive evidence for the above argument. Some examples of this are shown in the next section.

2.3 Bridging Function

@, maut 18 a good approximation to Q,., when the semi-major axis is legs than 1. For larger values
of the semi-major axis it overestimates Q.. Similarly, Qiarge 18 a good approximation to Q.. when
the semi-major axis is greater than 2 — 5 depending on jm — 1|. For smaller values of the semi-major
axis it overestimates (J,;,. In order to obtain Q,,, in the transition region, from Q,,,. and Q.mall We
need a bridging function that smoothly goes between the two. The form must have Q,,,,,; 88 the first
term in its series expansion and asymptotically go to 5,"”.

A quite general form that can do this is the confluent hypergeometric function or Kummer function
which has the general form y Fy[a; b, c2"] where a,b,c, v are arbitrary parameters and z is the variable®.
From the basic properties of this function

: P(b __a_) 10 i Npe 4 N F(b -~ a) a ,av - caz’ ba(a'." 1)125« -
lim gy "2 1 Filas b —er'] — =t - = gy T (38
: F(b - a) & _ay . oV EQ_T a - b)
zllargo_—i‘—(‘ﬁ_cz 1F)[G'b, C~]-—’1+ c———“-zy +...
With the small particle and large particle limits considered the bridging function B becomes:
B=Q,,.n1F1[1/v;b,~(c2)*] with (28]
c= F(b)/r(b - I/U), and z= _Q_nmull/alar,c
which has the correct limits, i.e.
PH},B - 61'"4“
s—l-vngo = Wierge

We now need tc determine v and b. We should expect these parameters to be insensitive to aspect ratio
since most of the shape effects are already accounted for by @,,,..y and a,a,.". This supposition has
been confirmed by numerical evidence. Assutning these parameters are shape independent, we can, for
each of an array of m values find the ‘best’ set of values of v and ¥ by considering the sphere only,. We
did this by using a nonlinear fitting routine. The resulte of this fit, for the vast majority of cases made
b very large (> 10). When b becomes very large, B goes confluent (see Ref. 13 for more details). This
means that the function simpiifies dramatically to a bin.:mial function, thus:

: agmall
Jim B = T il
This can be rearranged in a form similar to a generalized mean as:
1 1 1
= = =5— + =3 [42)
Qert leall Qlargc

We now raust model the values for y. We have modelied this parameter in previous papers''*. This
previous modelling is not usefull Lo the current approach since Q,nqy 8nd Q4 . have changed, the
formula for Q,,, has been extend-d to all n > 1 and angle averaging has been carried out.
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In [42] it is clear that if one of either Quman OF a,d,ge is much smaller than the other then, to a
good approximation, Q,,, is this value provided that ¥ > 0. Larger values of v will drive @,,, to the
smallest value between Q,,,.;; and Q,,w, more than smaller values. Hence, when the physical size of
the particle is small, Q,,,,; is equal to or smaller than '—Q-,a,.ﬂ, v should be large. Conversely, when the
physical size of the particle is large, @, .1 is much larger than —Q—,‘,,gc and we then merely require that
v be positive. The real difficulty in modelling v is thus in the intermediate ranges of physical sizes.
Most of the behaviour of 7 in the large particle regime can be determined by considering first the real
axis, in the refractive index plane, and then by varying the imaginary component. Considering, first
the real axis, the behaviour can be described by the sum of two asymptotic terms, one as n — 1 — 0,
and the other as n — oo, The behaviour of ¥ as k increases is well modelled by a single term. The sum
of these terms we will call ;. As the physical size of the particle changes from small 10 large, v must go
smoothly from some large value to ;. This transition is most sensitive, and hence best modelled, where
the Rayleigh scattering and absorption are roughly equal. This occurs since the Rayleigh absorption
term and the anomalous diffraction absorption term are close to or may be equal while the scattering
tc:ms are usually quite different. This can play significantly on the balance between Q,,,,,; and 5,"”
as the physical size varies. This has been taken into account by an additiona! term dependent on the
physical size. This size is represented by the volume equivalent sphere radius of the spheroid.

From an empirical fit on the above terms, 4 becomes:

ey _(B4=7) _ 5 3k _ (n?-1)?

Yy=v+— 1+ (ar”ab)“' a = 3 + kot k' ke = 56n [43]
1Nl +4[ an ]’+ 16u? ue ok

"= [(n =14 1P V16 + n? Vudi+1’ T 2(n-1)

We have verified that none of the above modelling of y changes the empirical fact that B goes confluent
in the best fit and hence [42] still remains valid. It should also be pointed out that the bridging function
is not necessery if Q. is only requu-ed outside the transition region. In this case Q.zy = Q,may OF
Quze = Q,a,.‘,, depending on the region of interest.

3. RESULTS

The complete formula, as given in the previcus section, is guaranteed to give correct asymptotic
behaviour for both iarge and small |m — 1] and b. Thus, in studying the error behavior of the approxi-
mation, mid ranges of [m — 1| and b are of greatest interest. In this section we will compare the analytic
approximation with the T-matrix method as implemented by Barber® or the Mie theory.

Figures 1 and 2 show the comparison of Q.. vs b for aspects 2 and 1/2 respectively. The refractive
index is @ = 1.3, close to that of water. It is clear that the error decreases at either extreme of b. (The
deviation seen in Fig. 1 for b > 23 is caused by ill conditioning in the T-matrix code). The largest
errors are near and around the first two peaks. This occurs here since much more of the scattering
physics must be considered to obtain better accuracy.

Figures 3 and 4 are contour graphs of the percent error between the analytic approximation and
the T-matrix computation. The refractive index varies as 1 < n < 2 and 1075 < k < 10. Figure 3 is
for an oblate spheroid of aspect 1/2 and Fig. 4 is for a prolate spheroid of aspect 2. There are three
feature of note. One is the increase of the error for small k and large n. This error is shown well in Fig.
5 for the case of a sphere and index m = 1.8 - 0i. This feature is simply due to resonant surface waves
that are not modelled. Note that for aspect 1/2 and 2, these errors are significantly smaller since the
surface waves are damped by the asphericity. The remaining crrors arise from inaccurate modelling of
the bridging region---that is between the Rayleigh region and the first peak. The second feature occurs
approximately when 2 < k& < 10. Here, for large particles, the coherence effect of the internal refracted
wave is significant, and has not been properly modelled'5. This is shown in Fig. 6 for an oblate particle
with aspect ratio 1/2 and m = 1-- 3i. This becomes insignificant for larger k since the partizle becornes
refiective. The remaining error at these large valuee of k and b & 1 i+ again due to difficulties in the
bridging function attempting to model the electromagnetic field on the surfece. The third significant
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feature occurs when the Rayleigh scattering and absorption are roughly equal. This occurs since the
Rayleigh absorption term and the anomalous diffraction absorption term are close to or may be equal
while the scattering terms are usually quite different. This was included in the modelling of v in the
previous section by k., [43]. Residual errors can still be seen in Figs. 3 and 4 due to imperfect modelling
following curves k o (n? —1)?/n.

For large n, body resonances can occur. These are sometimes referred to as morphology dependent
resonances (MDR). For spheres these occur near nz = Ir, where { is a natural number. Figure 7 shows
an example of an incipient MDR on the first diffraction peak of Q... Here, m = 3—0i ana r = 2, Note
that, despite the significant perturbation in the transition region due to the MDR, the approximation
is excellent. Only the first, and hence simplest MDRs are modelled (by Ty, [5] and Z,, [6]). To show
the accuracy of the approximation, the T-matrix was low pass filtered for b > 1 and is graphea in Fig.
8. Since by far the main contribution is now from the diffraction peaks, the underlying accuracy of the
approximation is apparent,

The next example is a model of extinction by randomly oriented copper flakes in the infrared
(m = 35 — 35i). An oblate spheroid with an aspect ratio of 0.333 was used. For this index, iower
aspect ratios could not be considered since the T-matrix will not produce usable results and hence no
comparison could be made. Q. for this case is shown in Fig. 9. Caution is required since the T-matrix
for b > .25 begins to decrease rapidly and wili go negative for larger 8. This shows an advantage of
the approximation. It can estimate Q.- for combinations of n, k, b and r when the T-matrix cannot.
Figures 10 and 11 are examples of §.z; for water prolate and oblates spheroids at 9.4 GHz, respectively.
Both are difficult cases since the T-matrix is almost ill conditioned and several MDRs are becoming
apparent. In Fig. 10, the first MDR is reasonably well modelled while the second is not. However the
latter only introduces an error of about 20 %. Again Fig. 11, the first MDR is well modelled and the
second is not. But in contrast to Fig. 10 it introduces a smaller error since it is coincident with the
first diffraction peak. Note that at the highest b shown the T-matrix has become ill conditioned.

Extensive computations have been carried out to indicate the error of the approximation over the
complete range of stability of the T-matrix method.

All our approximate Q. diagrams in this section were produced at a rate of greater than 104 times
faster than by the T-malrix code. Since the T-matrix scales as the cube of the optical size whereas the

analytic approximation is optical size independent, larger size parameters or larger refractive indices
lead to larger speed-up factors.

4, CONCLUSIONS AND LIMITATIONS

We have presented an approximation to Q.r¢ for randomly oriented spheroids which is valid for all
size parameters, aspect ratios and refractive indices n > 1 and k>0 and u = 1.

Extensive computations have been carried out to indicate the error of the approximation over the
complete range of stability of the T-Matrix method.

If high precision is not required, the formula is far more econotnical in computer time than the
T-matrix method for obtaining Q.-¢. When both the range of demonstrated validity and the accuracy
are taken into account, this formula 18 superior to all other approximations known to the authors.

Several limitations of the previous numerical approach? have been removed. The remaining limita-
tions, that for n < 1 and/or k < 0, are not modelled since new and significant physics arises (e.g. total
internal reflections, optical gain). Even n modestly less than 1 can cause problems. Another limitation
occure for 2 < k < 10 and large particles. In this region the absorption is not well inodelled. If this

effect was properly accounted for then Qgqp, and hence Q,., could be globully and readily obtained by
using the same approach.

5. ACKNOWLEDGEMEN'T

The authors would like to thank Dr. Peter Barber of the Clarkson College of Technology for

generously making available his T-matrix gpheroid code without which this work could not have been
carried out.

247




6. REFERENCES

1.

10.

11.

12,

13.

14.

15.

Fournier, G.R. and Evans, B.T.N., “Approximation to Extinction Efficiency for Randomly Oriented
Spheroids”, Applied Optics, Vol. 30, No. 15, p. 2042, 1991.

. Fournier, G.R. and Evans, B.T.N., “Bridging the Gap Between the Rayleigh and Thomson Limits

for Various Convex Bodies”, DREV R-4692/92, 1992.

. Van de Hulst, H.C., “Light Scattering by Small Particles”, Wiley, New York, 1957.

. Jou=s, D.S., “High-Frequency Scattering of Electromagnetic Waves,” Proc. R. Soc. London, Ser.

A 240, p. 206, (1957).

. Abramowitz, M., Stegun, 1.A., Eds., “Handbook of Mathematical Functions (Dover, New York,

1972).

Barber, PW. and Hill, 5.C., “Light Scattering by Particles: Computa"tional Methods”, World
Scientific, New Jersey, 1990.

Kerker, M., “The Scattering of Light and Other Electromagnetic Radiation,” Academic Press, New
York, 1969. .

. Greenberg, J.M. aad Meltzer, A.S., “The Effect of Orientation of Non-Spherical Particles on In-

terstellar Extinction”, Astrophys. J., Vol. 132, p. 667, 1960.

. Evans, B.T.N. and Fournier, G.R., “A Procedure for Obtaining an Algebraic Approximation to

Certain lntegrals”, DREV R-46563/81, 1991,

Wolfram, S., “Mathematica: A System for Doing Mathematics by Computer”, Addison -Wesley,
New York, 1989.

Nussenzveig, H.M. and Wiscombe, W.J., “Efficiency Factors in Mie Scattering”, Phys. Rev. Lett,,
45, 1490, 1980.

Beckmann, V.P. and Franz, W., “Berechnung der Streuquerschnitte von Kugel und Zylinder unter
Anwendung einer modifizierten Watson-Traneformation, ”, Z. Naturforschg., 12a, 533, 1957.

Luke, Y.L., “The Special Functions and Their Approximations”, Vols. I and I, Academic Press,
New York, 1969.

Evans, B.T.N. and Fournier, G.R., “A Simple Approximation to Extinction Efficiency Valid Over
All Size Parameters”, Applied Optics, Vol. 29, 1 Nov. 1990,

Cohen, A. and Tirosh, E., “Absorption by a Large Sphliere with an Arbitrary Complex Refractive
Index”, Journal of the Optical Society of America A, Vol. 7, No. 2, p 323-325, 1990.

248




m=1.3-01 r=£

-———— T Matrix
R Approximation

L4 A2 3 a a2

v
0‘1
&8
(¥4

+ r ...‘Ovﬁ,.fsv
Semi-Axis b

Fig.1 Comparison between approximation and T-matrix method for an index of 1.3 and an
aspect ratio of 2.

4.0 4
] m=1.3=-0i, r=1/2
3.0 1 '
]
1 2
-;; ] - v-e.:_‘://,-\\
o 2.0
. d J
]
1.0
1 —— T Matrix
| Approximation
]
0.0 1 Zammﬁmﬂﬂwmﬂwmnﬁmhw

T'rrm"'r"rmm
0 5 10 15 20 25 . 30 35 40 45
Semi-Axis b

Fig.2 Comparison between approximation and T-matrix method for an index of 1.3 and an
aspect ratio of 1/2.

249




1.0 - - —— r 1.0

———-25—__ 7
05 j\ A= 20 i’ lo.5
- -}_—~th5 — = 30 15 ~—— 18
e 16 e S e 18 e e 125 I
0.0 3 ~ T Ty T 128 e 100
/f\‘—- ~ —— ——

i | !
— — f e
(&) o [$4)
—
4
e
‘\\
<
\
/ S~
~ /\‘\
N 3
\ r
\
(L
- F
!
I\
{
.\
)
]
L
] i
- O
o i

Log Imaginary Index
!

2.0 5 73 1-2.0
'y
-25 ¢t /7'5/\ Lo S 1-2.5
~3.0 > ! 1-3.0
©
-35} ~ ~ ’ {-35
-4.0 F } 4-~4 0
-45t . 5 \ I {-45
, ~ TN, b e e /
-5.0 l o : a S ) ] -5 0
1.0 12 1.6 1.8 20

14
Real Index of Refractinn

Fig.3 Maximum relative error, in percent, between analytic approximation and T-rnatrix
r=1/2

.T‘
0.5 ¥ 0 iy
________ g el Tty ]
R T Ty T 1y e T ~—— “
0.0 i it LI
. -5 ) e T g T
£ -05 ST [ os
o 75 07 W (/ (
£ _1,o/>//" v _ g 1 1.0
. e T~ T TS
>‘-—1_5 ) e 1.5 = ™10 T sk ’~~—"’1 5
; L -~ S \\‘\ o \
£ -2.0 ) 1,)>« ) 1-20
h s
S -25 = 2 -2 5
E -
-3.0 / 4-30
op “
A
8 -35 N 1-3.5
~-4.0 ] -4.0
~4.5 = w445
o tr
-510 e [P— 1 1 TP D A 50

1 1.6 o8 Do
Real (ndex of Refraction

Fig.4 Maximum relative error, in percent, between analytic approximation and T-rnatrix

r=2
250




wn
[»]

E
]
PN m=1.8-01, r=1
a0 3
1
J i
30 9 ‘ ‘
-2 4 .
&] ﬁwﬂ
Q ] A - L
~ o] ‘ Wﬂw\ww
4 - 7 .
2.0 -
3
] :
1.0 3 —— Mie Theory
i e Approximation
1
0.0 :rj—v-vw—r-r'v—vﬂ'rv—r'v'r'r—r‘r'r-r'rv T T T T Ty T T T T T TN YT Y T Y T T T T T
0 ' 15 20 25 30

Semi~Axis b

Fig.5 Comparison between approximation and Mie theory for an index of 1.8 and an aspect
ratio of 1. Significant surface waves,

[&]
' o
A s a2

(T B U A Y

FUNUS S U N S

———— T Matrix
------ Approximation

00 frrrrrrrrr T
0 l

-t ﬁ~v~f1~wﬂﬁ~f<rv-vw—v—|—1~r‘v—r—r-r‘r1—f-1v—v—r~r~r—rv‘f—.—?o
m
Scemi-Axis b
Fig.6 C'omparison between approximation aud T-matrix method for an index of 1 - 3iand
an aspect ratio of 1/2. Significant internal wave coherence effect.

251




7.0

6.0
m=3-01, r=2
5.0
t
ol 40 g
i
SIRE
3.0 3 :
3 . !
: M P i
20 | g
— T Matrix
odg Approximation
N
0.0 d4rrrrarr—rrrrro  AAAZA T T T T T ARARRR e T 1
0 2 4 ] 8 0 12 14 16

Semi-Axis b

Fig.7 Comparison between approximation and T-matrix method for an mdex of 3 -0i and

an aspect ratio of 2. Incipient MDR at b= 1

3.0 4
]
p [ —
. 4.0 7"—2
3.0 3
bl .
N ]
Y ] = — -~
Q« -:- = W—\_;
20 ]
5 .
10 3 - — = Approximation _
3 Low Pass Filtered T—-Matrix
OU"‘? \BAGARASSREARRARERSEAReanand e nehate it n S SIS T EEIEE S T T I T T
0 2 4 6 f 10 i2 14

Semii—-Axis b
Fig.8 As Fig. 7 but T-matrix results low pass filtered for b > 1,

252




0.10 -3
: m=35-35i, r=1/3
] .-
008 -E /"':&
0.06 3
~— ] ,”
~ h
Y] 3
<> 3 \
0.04 J
4
B
1
1
b
0.02 1 ——— T Matrix
i S e Approximation
:
Q.0C h I T T T T T T T T T T T R T Y YY)
(.00 0.10 0.1% 0.20 0.25 0.3¢C

Semi—-Axis b

Fig.9 Comparison between approximation and T-matrix method for an index of 35 — 35§
and an aspect ratio of 1/3.

3.0

.........

m=8.075-1.8244, r=2 [/ T
2.5 ’

taaaardaaaraiaxaaal

AL

assaadxriiasasssasia

——— T Matrix

- Approximation

Sl o S S8 S A s M S S e S S M B SR A LA

0.40 067 " 0.80 1.00
Semi-Axis b

Fig.10 Comparison between approximation and T-matrix method for an index of 8.075 -
1.8241 and an aspect ratio of 2. Waier at 9.4 GHaz.

253




o
o
)

2.5

alagacnsaqadlaagay

m=8.075~1.824%, r=1/2

sJdadasaasstasasanaaalaaneyins

— T Matrix

0.5

. Approximation
]
-
]
4 L
1 7
[ L n i Rasabinsntnskattanand el L Eudiunoha SN e o R ad e R R e AR AR R R RN AR RS R R R AR RARAS]

00 05 1.0 1.5 249 R 30 3.5 4.0 a5
Serri—4Axis b ’

Fig.11 Comparison between approximation and T-matrix method for an index of 8.075 —
1.824i and an aspect ratio of 1/2. Water at 9.4 GHz.

254




Optical properties of spheres containing a spherical eccentric
inclusion.

F. Borghesef, P. Dentit, R. Saijat, O. I. Sindonity

tUniversita* di Messina, Istituto di Struttura della Materia, Messina 98050, Italy
t+CRDEC, Aberdeen Proving Ground, Maryland 21010-5423

ABSTRACT

Fikioris and Uzunogiu few years back presented a formalism to describe
the electromagnetic scattering by homogencous spheres containing an eccen-
tric spherical inclusion. We have extended our previous formalism whici is
designed to account for the dependant scattering by aggregated spheres, to the
case of spheres conatining more than one inclusion. Qur results are cor.pared
with those of Fikioris and Uzunoglu and the existing differences are explained
in terms ol the approximations that were used by Fikioris and Uzunoglu. We¢
also show results for the case of dielectric spheres containing either a metallic
or dielectric inclusion with parameters that could not be considered under the
approximation of Fikioris and Uzunoglu. It will be shown how the scatterers
response depends on the direction of incidence and on the polarization of the
field, therefore making possible to distinguish from both a sphere with con-
centric inclusion and an homogeneous sphere.

1. Iatroduction

The theory of electromagnetic scattering known as Mie theory was originally developed
to describe the properties of homogeneous spherical scatterers [1]. In time, it has been modi-
fied and improved to extend its applicability to radially nonhomogeneonus spheres either com-
posed of several homogeneous concentric layers or possessing a refractive index continuously
varying along the radius [2). The layered spheres are dealt with by imposing the appropriate
boundary conditions across the surfaces separating each pair of contigu..... iayers; the case of
continuously varying refractive index requires, instead, to replace the spherical Bessel func-
tions, that are appropriate for homogencous spheres, with the numerical solutions of a pair of
radial equations. This latter approach applies, in particular, to spheres with a so-called soft
surface [3] and proved to be adaptable to deal also with stratified spheres [4]. Obviously, the
theory for stratified spheres is appropriate to deal with a sphere containing a concentric
spherical inclusion but, when the inclusion is nmonconcentric, or when more than one inclu-
sion is present, a different approach is in order.

A sphere with an eccentric inclusion, in spite of its external symmetric appearance, is
intrinsically anisotropic so that its scattering properties are expected to evidence effects that
cannot be present for a truly spherical object. One could also expect that these effects influ-
ence in turn the macroscopic optical properties of a dispersion of such objects. Therefore, in
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this paper we investigate the scattering properties of a homogeneous sphere containing 2
spherical eccentric inclusion with the specific purpose cf assessing wether the effects due to
the eccentricity make such an object easily distinguishable from a truly spherical scatterer.
To this end we present a formalism designed to deal also with the macroscopic optical
constants of a low-density dispersion of these anisotropic scatterers and discuss the results of
its application to a few significant cases. Qur approach can be easily extended to the case of
spheres containing more than one inclusion, but, since these objects require a substantial
increase of the conputational effort, we resolved to defer their treatment to a forthcoming
paper.

As far as we know, the only precedinig formalism devised to study the scattering pro-
perties of the same kind of objects we deal with in this paper is that of Fikioris and Uzunoglu
[5], whose approach is rather similar to the one we are going to describe. Nevertheless, the
results presented by these authors were not obtained through the exact formalism but rather
by means of an approximational procedure that is applicable only when the difference of the
refractive indices of the inclusion and of the external sphere is sufficiently low. As will be
discussed later, the results yielded by our formalism when applied just to the same scatterer
dealt with by Fikioris and Uzunoglu, show that the range of the applicability of their approxi-
mational procedure is narrower than one would expect at first sight. The formalism we
present in this paper arises as an extension of the one we devised a few years ago to deal with
the external anisotropy of clusters of spheres, i. . of objects built by aggregating several
spherical scatterers [6]. As the approach we refer to is based on the expansion of the elec-
tromagnetic field in a series of spherical multipoles [7] and on the imposition of the appropri-
ate boundary conditions at the surface of each spherical component of the cluster, the
amount of calculation required to get reliable results may grow rather big. In spite of this
inevitable feature of all the approaches based on the multipolar expansion of the electromag-
netie field, our formalism proved effective not only to study single aggregates, even with
rather complicated structure [8], but also, through use of the transformation properties of the
multipoles under rotation, to calculate the macroscopic optical properties of a low-density
dispersion of clusters with random orientation [9]. The scattering properties of a number of
clusters with various geometries were investigated in this way and the predictions of our calcu-
lations proved to be in excellent agreement with the available experimental data for single
clusters {10,11].

Also the treatment of the scattering from spheres with an eccentric inclusion that we
prsent here is based on the boundary conditions approach and on the expansion of the fields
in terms of spherical multipoles. As will be shown in the next section, even in this case we
are able to calculate the properties of single objects as well as the macroscopic optical con-
stants of a low-density dispersion of randomly oriented scatterers of this kind. All our calcu-
lations were performed with no approximation but the truncation of the multipole expansions
of the field to such an order as to ensure the convergence of the results. The refrative
indices and the size parameters of the scatterers we dealt with were chosen well beyond the
limits of applicability of the approximational procedure of Fikioris and Uzunoglu [5]. The
notation is a development of the one we used in our previous papers on clusters and has been
designed to be immediately extended to the case in which more than one inclusion is present.
The underlying mathematics is sketched in section 2; in section 3, after an analysis of the
results yielded by the approximate approach of Fikioris and Uzunoglu [5], we discuss our
specific results and in section 4 we make some conclusive remarks; the definition of the
quantities occurring in our formalism is completed in Appendix A.

2. Theory

To study the scattering propertics of a homogenecus sphere containing a spherical inclu-
sion we partition the space into the three regicns sketched in fg. I; the external region, that is
assumed to be filled by a homogeneous, non-dispersive, non-absorbing medium “.ith refrac-
tive index n (typically the vacuum); the interstitial region, centered at Ry and of radius po,
that is filled with a homogeneous medium, possibly absorbing and/or dispersive, with




refractive index ny; the region within the inclusion, centered at R; and of radius p;, charac-
terized by a refractive index n; that may be absorbing and/er dispersive. For the sake of sim-
plicity, the theory in this section will refer to homogeneous inclusions only, on account that
the resulting formulas are easily extended to the case of radial nonhomogeneity.

We assume that all the fields depend on time through the factor e #“! and define the
propagation constants

K= kn, Ko = kNO, K|= k"l

in each of the regions mentioned above, respectively, with k=w/c. It is also convenient to
deline the size parameters of the external sphere and of the inclusion as

Xo=kpy, X =kp

respectively. Qur aim is to determine the response of a sphere when excited by the plane
wave field

Einc = Eo 3 eithro

where E, is the amplitude at Ry , e is the (unit) polarization vector and K=K l?;,,c is the
incident wavevector. As anticipated in the preceding section, we expand the field in each
region in terms of spherical multipole fields [7). To this end we define the multilpole fields H
as

H‘R{ (Ks l') =hL(Kr)xLM (;)’ HSR{ (K9 l') =’}6va‘3{ (K7 I‘), (1)

where the Xpy's are vector spherical harmonics [12] and, on account ¢ the chosen time
dependence of the ficlds, the h; 's are spherical Hankel function of the first kind; the super-
scripts 1 and 2 are the values of the parity index that are apppropriate to the magnetic mul-
tipoles and to the electric ones, respectively. We also need to define the multipole fields J
that are identical to the H ’s, eq. (1), but for the substitution of the spherical Bessel func-
tions, ji. , to the hy ’s. Accordingly, the field in the external region can be written as

B=r5 (AR G RIR R | ®
pim
whereas in the interstitial region
E=E} {P&)n”ﬁ)(xo , o) + P, HE) (Ko , 7vy) }. ()
pim

and within the inclusion
E = E, Y C I (K ,1y) . )
plm

In the equations above the Aff) ’s are the multipole amplitudes of the field scattered by the
whole object and the W} are the (known) multipole amplitudes of the incident planewave
field that, according to their definition in Appendix A, encompass all the information on the
direction of incidence and on the polarization; the P§), and the P{), are the amplitudes of the
interstitial field and the C{f), are those of the field within the inclusion. The A’s are, there-
fore, the main unknowns of the problem as all the relevant quantities can be expressed in
terms of them, As an example, the nomalized scattering amplitude, that is the quantity we
are mainly interested in, can be written as [9]

f= 71{ E(—i)I“ [Aﬁ:) xlrn (l“(scn) + lAf,z,,) f‘sux xlm(ém) ] ’ (5)
im
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K., = Kk, being the scattered wavevector, and the dependence on the polarization as well
as on the wavevector of the incident plane wave, K;;,. is contained in the A’s. To calculate
these latter we have tc impose the appropriate boundary conditions at the surface of the
inclusion as well as at the surface of the external sphere. According to eq. (3), not all the
multipoles of the interstitial field are referred to the same origin, so that we have to use an
appropriate addition theorem [13] to express the whole ficld with respect to a single origin,
before the boundary conditions are applied. Then, the procedure we found more convenient
to calculate the A’s is a two-step one: in the first step, by eliminating the C’s, and the A’s as
well, by means of the equations that express the boundary conditions, we are confronted with
a system of linear non-homogencus equations for the P’s only; then, we get the A’s from their
relations with the P’s. The system for the P’s can be written matrixwise as

-1
(Rl) llo—(] Pl _ lol (6)
Rwloe1 (Ro)™'| | Pol — W]~
or, in more compact form,
MP= W,

with obvious correspondence of the symbols. The elements of all the submatrices uppearing
in ¢q. (6) as well as those of all the submatrices that will appear hereafter are explicitly given
in Appendix A. The analogy of eq. (6) with the one we obtained for the case of a cluster is
quite evident [6]. In particular, the present equation contains terms which account for the
scattering power of the inclusion and of exteral sphere (the diagonal submatrices R; and R, ,
respectively) as well as terms that account for the multiple scattering processes between the
inclusion, and the external sphere ( the submatrices 1, y and Rylo._;). We notice that the
submatrices | arise from the addition theorem of reference [13] and effect the translation of
the spherical multipoles from the origin to the center of the inclusion (l;.o) and viceversa

(‘0*—] ) .

To solve the system, eq. (6), we have to invert the matrix M, but the actual calculation
of the P’s, on account ot the particular form of the vector W, that contains a subvector of
zeros, involves only the rightmost columns of the inverted matrix. So, if we write M~ in the
partitioned form

Z, %1y

-1 _
M= = Ly, Zy

]

where all the submatrices are of the same order as the conrresponding ones appearing in M,
and define the rectangular submatrix

. Zyo
/_1 = ZO y
the P’s are given by the equation
P=2ZW,
The A’s are then given by the equation
A = TP = SW, ™)

where 1'is the rectangular matrix
T= Myl M,

The rightmost form of eq. (7) evidences that the multipole amplitudes of the scattered field
are obtained by operating on the amplitudes of the incident field with the matrix S=77 that
includes all the information on the geometrical structure and on the scattering power of our
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scatterers.

The matrix M is in principle of order 4Ly (lL\+2), if Ly is the highest value of |/
retained in the multipolar expansions of the fields, eq. (2)-(4), and its inversion is thus
responsible for the main bulk of our calculations. Nevertheless, since the scatterers we deal
with in this paper have a cylindrical symmetry, group theoretical techniques can be used to
factorize M [14,15]: the maximum order of the matrices to be inverted reduces, in this case,
to 4Ly ; only. It is well known, however, that this factorization can be achieved without
using the machinery of the group theory simply by choosing the cylindrical axis as the z-axis
(16).

As anticipated in the preceding section, we are also able to calculate the macroscopic
optical constants of a medium formed by a low-density dispersion of inclusion-containing
spheres identical to each other and with random orientations. In general, the macroscopic
optical ccnstants for the propagation of a plane wave through a low-density dispersion of
anisotropic particles are given by the matrix of the refractive index [17]

2 .
Ny =1 |80 + T<72L I o(8)fm(8)d8), *®

where p(8) is the number of paiticles per unit volume with orientation 6 , this latt: - being a
shorthand for the Euler angles that individuate the orientation of each particle. In eq. (8) the
incices n,9'=1,2 rcfer to a pair of unit vettors, €; and e, , orthogonal to each other and to
kine with respect to which we anailyze the state of polarization both of the incident and of the
scattered wave. Accordingly

S (8) = 1,(B)ee,;
is the component along e, of the forward-scatiering amplitude of a particle with orientation €
when excited by a plane wave with ¢ = e, . In particular, the macroscopic refractive index

and the extinction cocffcient of the dispersion are related to the diagonal elements of N,
according to

n, = Re[Ny,] v, = 2kIm[N,,] ,

respectively. Equatio ”8) is valid provided that the denrsity of the dispersion is so low that the
fields scattered by the whole medium can be approximated by the superposition of the fields
scattered by the single isolated objects. Although this amounts to neglect the multiple
scattering processes that may occur among different particles, the approximation is fairly
acceplable for sufiiciently tenuous media. To calculate the integral in eq. (8) one b 1s to recall
that the multipole fields transform under rotation according to the representations of the
three-dimer.sional rotation group [18]. As fully explained in ref. {9), this implies that once f
is known for a scatterer with orientation 8, it is immediatcly known for any other identical
scatterer with orientation © . Therefore, assuming that the scatterers are uniformly distributed
on the orientations, the integral can be performed analytically with the result

27 -
Ny =1l + -7(’2’— ol

where p is the total number of the scatterers per unit volume and
— - A‘
oo =1 oty
where £, must be calculated as f,(8), eq. (5}, but with

AR = S S s o)W

2141 p

It is to be borue in mind that the definition of f . turns out to be independent of the orienta-
tion 6, ons choose te calculate the matrix elements of S.
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3. Results and discussion

As far as we know, no experimental data are presently available on the scattering pro-
perties of the kind of objects we deal with in this paper. Therefore, we {elt nccessary to per-
form extensive and careful tests on the results yelded by our formalism. First of all, we ver-
ifed that the scattering amplitude conforms to the symmetrics that, as shown by van de Hulst
{1], it must display. Secondly, we dealt with the properties that our scatterers must have
when all the refractive indices are real; in particular the coincidence of the extinction cross
section and of the scattering cross section was checked. Then, the limiting case of a concen-
tric inclusion with the consequent identification of the scattering properties with those of a
stratified sphere was also considered. At last, we decalt with the limiting cases that occur for
particular values of the refractive indices. For instance, we followed the vanishing of the
scattering when ng=n and n;=n as well as the coincidence of the results with those for the
bare inclusion centered off the origin when n; is held fixed and ng=n. All thesc tests were
positive for any choice of the parameters and confirmed that some of the features we noticed
in our preceding studies on aggregated spheres [19] persist even in the present case. The test
that reduces the cccentric inclusion to a bare sphere off the origin is particularly significant
for it involves the matrices Iy and L, that effect the transfer of origin of the mtiltipole
fields according to ihe addition theorem of ref. [13]. The numeric results coincide fairly well
with those that can be obtained directly for the bare sphere off the origin, but as a conse-
quence of the intervention of the transfer matrices the multipole expansion must be extended
to higher values of | in order to ensure the convergence to the same precision. This is a very
general condition that occurs in all our calculations not only in the present paper but also in
our previous studies of the scattering propertics of aggregated spheres. In fact, we systemati-
cally found that, whenever dependent scatiering occurs so that the usc of the transfer
matrices is necessary, the value of Ly that guarantees the convergence of ihe results is lareger
than the values of all the Ly’s that ensure the same convergence for all the individual
spheres. We give here also a further result from our studies on dependent scattering:  the
value of Ly that ensures both the fulfiiment of the due symmetry propertics and the coin-
cidence of the extinction and scattering cross sections when the refractive indices are real is
smaller than the one that insures the convergence. As a coasequence, the fulfilment of the
symmetry properties does not guranitee the accuracy of the results.

Our successive step has been the application of our formalism just to the same scatterer
dealt with by Fikioris and Uzunoglu and the comparison of our results with those reported by
these authors. We recall that the object we refer to is a sphere of refractive index np=1.3 and
size parameter xp=2, centered at the origin, containing a sphere with n,=1.7 and x,=1, a «
the center on the x-axis. The external medium is assumed to be the vacuum ( n=1). In our
opinion, the most significant comparison is the one we effected in fg. 2 between the back-
scattering efficiencies for incidence along the symmetry axis vs. the eccentricity, xg=kz ,
where z is the coordinate of the center of the inclusion. It is quite evident at first glance that
the general shape of the curves is similar but that the numerical values are quite different. To
explain the origin of this discrepancy we remark that the curves do not completely agree nei-
ther when ths inclusion is centered. In fact, with reference to our present notation, Fikioris
and Uzunoglu expand the terms (R,)™!, eq. (6), as weil as the amplitudes of the interstitial
field, Pff,, in powers of (n;—np)a;=0.4, according to their choice of the parameters, and
retain terms up to the second order only. Unless the expansion is completely convergent, this
procedure alters the scattering power of the inclusion, and this alteration is always effective,
even when the inclusion is concentric. Of course, when the inclusion is off center the effect
of the expansion becomes more visible, as expected, for expanding the P's alters also the
strength of the coupling between the inclusion and the external sphere. These considerations
should explain why the curves in fig. 2 tend to diverge with increasing xp; and suggest that the
power series expansion of Fikioris and Uzunoglu is not cemnpletely convergent. A close
examination of the values for the expanded amplitudes reported in Table 1 of ref. [5]) shows
that this is, indcced, the case. For all values of [ the firsi and second order terms in the
expansion of the P's are of the same order of magnitude, so that there is no grarantee that
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the third order terms are truly negligible. Furthermore, we found that neithier the multipole
expansion of Fikioris and Uzunoglu is perfectly convergent: according to our previous con-
siderziions one expects that their value of Ly=4 be quite adequate for the bare inclusion, but
from our calculations Ly4=6 sccms at lcast necessary to achieve an accuracy of =1 %. As a
consequence, the fact that the calculations of Vikioris and Uzunoglu fulfil the symmetry pro-
perties implies only that Ly =4 is sufficient to achiceve this effect and that the power series
expansion, as often occurs, does not affect these properties.

As for the angular dependence of the scattered intensity, the curves from our calcula-
tions, apart from vertical shifts, compare fairly well with those in fg. 5 of ref, [5), so that this
comparison docs nol deserve, in our opinion, a specific figure. The similarity of the angular
behavior is in no way surprising, indced, as an cxamination of the formalism shows that the
dependence on the polarization and on the direction of incidence is contzined in the vector
W, ¢q. (6), while the dependence on the direction of observation is contained in the vector
spherical hamonics in f, eq. (5): both these quantities are untouched by the series expansion,
On the other hand, the vertical shifts are easily accounted for because the amplitudes AP/
that appear in f do are affected by the series expansion.

Considerations very similar to the ones reported above can explain any further differ-
ence between our results and those of ref. (5). Ultimately, we arc lead to conclude that the
range of applicability of the approximational procedure of Fikioris and Uzunoglu is narrower
than one could expect so that, in general, it is wise to resort to the exact procedure.

Our specific calcvlations are performed with reference to the same geometry referred to
above: the external sphere is centerd at the origin and the center of the inclusion always lies
on the z-axis. The incident field is a plane wave whose wavevector is individuated by the polar
angles 0, and ¢4, 5 in turn the wavevector of the scattered wave is individuated by the polar
angles 0,., and é,c, . Our calculations were performed with 6,,.=0,7/4,7/2, and ¢;,.=0, and,
indicating by 0{0<0<r) the angle of scattering,

Osca = Oine + 0 ,05ca =0 fOr i + <7,
Hoc = 20 — (Bine + 0) 1@sca = 7 fOT b + 0>,

Therefore the scattering vie-ic coincides with the x-z planc; the polarization vector both of
the incident and of b - seatiered field is always parallel (e = e;) or orthogonal (e = ) to
that plane.

The scattering propertics are desribed through the normalized scattering amplitude:
more precisely, we report the (uantities (10]

P,(0) = '7 Belfn(9], Qq00) = ImUm(o)]

that, on account of the definition of f, eq. (5), are adimensional and independent of the
radius of the spheres. We also report the quantities P~ and Q that are meaningful for for-
ward scattering only (0=0) and are identical to P(0) and Q(0) , respectively, but for the substi-

tution of £ £(0). According to the preceding section, P~ and Q give information on the
macroscopic optical properties of a low-density dispersion of the scatterers we deal with,

Since the objects we are interested in have a size parameter xp > 1, the value of Ly
that is nccessary to get fully converged results turns outto be rather large and the factoriza-
tion of M referred to in the preceding section is, therefore, very useful to reduce the compu-
tational cffort. As a criterion of full convergence we 1equired that, with respect to the any
increase of Ly, our resuits be stable at least to 4 significant digits; this accuracy is by far
higher than required for any graphical display. It may be interesting to notice that, in agree-
ment with the remarks by other workers dealing with dependent scattering from aggregated
spheres, we met the slowest convergence when the surfaces of the inclusion and of the exter-
nal sphere touch each other (20).
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Hereafter we present the results of our calculations for a diclectric external sphere with
refractive index ny=np=1.614+i0.004 — this value describes satisfactorily the optical properties
of spheres of acrylic in a large frequency range [I0] —~ containing eitker a metallic inclusion
(sect. 3.0.1) or an empty cavity (sect. 3.0.2). In both cases the external mediem is assumed to
be the vacuum (n = 1),

3.0.1. Metallic inclusion In a dlelectric sphere

The size parameter of the dielectric sphere and of the inclusion are xp=3 and xp=1,
respectively, so that the ratio of their radii is pp/py=3. The eccentricity of the inclusicn can
range from xg=0, when the inclusion is concentric, to xg=+2, when it is tangent to the sur-
face of the external sphere. In our calculations of £(0), i. e. when forward scattering is con-
sidered, the z-coordinate of the center of the inclusion assumes both positive and negative
values. However, since our scattering amplitude rigorously fulfil the dve symmetry propertics
[1]}, we will report only the results for x;>0. The diclectric properties of the metallic inclu-
sion are assumed to be well described by the free electron Drude function

1

u(u+r/)

where v=w/w, ,w, being the plasma frequency. In our calculations we assume 4=0.01 and
choose v=0.1 because for most metals this value of v corresponds to a frequency in the visible
or in the infrared range [21): the resulting refractive index of the inclusion is
n=Eny = VcM 0.4994 + i9.9126. The results we are going to discuss required at most
Ly = 10 to reach full convergence in the sense explained above.

The quantities P(0)andQ(0) as a function of xz for the three directions of incidence
referred to above and for polarization both parallel and orthogonal to the scattering plane are
reported_in figs. 3a and 3b, respectively. In the same figures we also report the averages
P and Q that, according to the discussion of the preceding section, are independent both of
the direction and of the the polarization of the incident wave. Of course, also P(0) and Q(0)
are independent of the polarization when the direction of incident wavevector lies along the
symmetry axis (0, = 0), but, when 8, = /4 and 8, = n/2 , they become strongly depen-
dent on the polarization. A further interesting remark is at hand in the results of figs. 3. If
we consider only one state of polarization, either parallel or orthogonal, the curves for
P and Q not always lie within the curves for the various incidences, contrary to what
would be expecled of averaged quantitics. This effect is due to the contributions to
P and Q, coming from scatterers so oriented that their symmetry axis do not lie in the
scattering plane. These contributions are never explicitly computed but arc automatically
accounted for by our analytic averaging procedure. Indeed, the response of a scatterer with
its symmetry axis not lying in the scattering plane is easily recognized as identical to the
response of a scatterer with its axis in that plane when this latter object is excited by a wave
with an appropriate state of polarization that, in general, is neither parallel nor orthogonal.
Therefore the above mentioned response must be a linear combination of the responses for
parallel and orthogonal polarization and, since the scattering properties of the objects we are
dealing with herc show a noticeable sensitivity to the state of polarization, we got the seem-
ingly anomalous behavior of P and Q described above.

y =

As a reference we also calculated P(0) and Q(0) for a homogcneous dielectric sphere
either with the same radius of the external sphare (P, (0) = 1.3173 and Q,(0) = 3.9117) or con-
taining the same quantity of dielectric material as the sphere with the inclusion
(P.(0) = 1.3151 andQ_(0) = 3. 9044) Indeed, a comparison of these values with those of the
curves in figs. 3a and 3b will give a better insight into the effect of the very presence of the
inclusion and of its cccentricity as well. Let us remark, first of all, that
P4(0) andP,(0) as well as Q,(0) and(,(0) differ very little from each other because the ratio of
the volumes of the homogeneous spheres defined above is 27/26 on account of our choice
pp/ra =3. Moreover, the values of P(0) and Q(0) for a sphere with a centered inclusion (
xg =0 ) are remarkably different from the corresponding values for the homogeneous
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dielectric spheres of both sizes considered above. When x increases the difference of P and
P,(0) and, specially, that of O and (,(0), tend to decrease while the behavior of the differ-
ence of P(0; andP,(0) as well as that of and Q(0) and Q,(0) depends on the direction
of incidence and, in general, also on the polarization. In fact, the spread of the curves of P(0)
and Q(0) is rather large and reaches its maximum at xg =2 (fig. 3a) and for x;=1.15-1.35 (fig.
3b), respectively.

In figs. 4 we show Q(9) vs. P(f) for parallel polarization and for 6, =0 (fig.4a),
Oinc = /4 (fig.4b) and 6. — a/2 (fig. 4c). In cach figure we report the curves for the
extremc values of the eccentricity (xr =2 and xg = —2) as well as the curve for the centered
inclusion (xz = 0) ; as a reference, the curve of P,(f) vs. ©Q,(9) is also reported. Of course,
both the curves for the centered inclusion and for the homogeneous sphere do not depend on
the incidence and are thus the same in all these figures. It is easily seen that the curves for
the spheres with an eccentric inclusion are rather diiferent from each other and differ aiso
from those both for the sphere with a centered inclusion and for the homogeneous sphere.
For forward scattering (9 = 0), the curves for the two eccentric positions stick together as
expected on account of the symmetry properties of the scattering amplitude. At all
incidences the position of the inclusion within the external sphere has an evident effect on the
shapc of the P-Q, curves, although the gencral behavior remains unchanged. When the
incidence is orthogonal to the symmetry axis (¢ =x/2) the curves for xg =2 and forxg = -2
stick together not only for forward scattering (# = 0) but also at backscattering (0 = x) as
required by an obvious symmetry property of tie matrix of the scattering amplitude (fig. 4c).

We do not report the curves we calculated for orthogonal polarization because, although
the values we obtained are numerically rather different from those for parallel polarization,
the general shape and properties of the curves are identical to those reported in figs. 4 and do
not deserve, in our opinion, a separate comment.

3.0.2. Empty cavity in a dielectric sphere

The size parameter of the dielectiric external sphere and of the empty cavity
(ny =nc =1) are xp = 4.3410 and x. = 2.1705, respectively, and the ratio of their radii is

pp/pc = 2. As a consequence, the eccentricity can range from xz =0 xp = £2.1705 . Qur
choice of np = 1.61 + i0.004 and of xp == 4.341 is due to the fact that, as noted above, the
experimental scattering properties of a solid dielectric sphere with these features are known,
so that we used such an object as a reference scatterer to test the reliability of our calcula-
tions. In the present case the convergence of the results required at most Ly = 8.

The main body of our results is displayed in figs. 5a and 5b that axe analogous to figs.
32 and 3b, respectively. As compared with the results of the preceding subsection the
present results show a less strong dependence on the polarization and in particular this depen-
dence is rather weak for Q(0) (fig. 5b). As an immediate consequence of this weak depen-
dence we notice that the curves of P and  always lie within the curves of P(0) and Q(0) for
a single polarization although those latter refer only to orientations with the symmetry axis in
the scattering plane. The results both for the solid dielectric sphere with radius equal to that
of the external sphere (the reference sphere mentioned above) and of the sphere containing
the same quantity of dielectrec material as the sphere with the inclusion are
Py (0) =—0.9238,Q4 =3.8373 and P. =—-0.7796,0, =4.1082 , respectively. In the present case
thesc values arc noticeably different from each other since the ratio of the radii pp/pc =2
implies that the ratio of the volumes is 8/7. I‘urthermore, the relative positions of these values
show that P(0) and Q(0) for a homogeneous sphere are, in this range, decreasing functions of
the size parameter. Both figs. 5a and Sb show that even in the present case, P andspeciallyQ
as the eccentricity increases, tend to reduce their diffence both from P,(0) and @,(0) and
from P.(0) and Q.(0) . The spread of the values for the different incidences we considered
reaches a rather large maximum at the highest value of the eccentricity.




Although we performed also calculations analogous to those displayed in iizs. 4a-c, we
resolved not to report the results because they do not evidence any new significant feature
worth of a separate comment.

4. Conclusions

The results we described in the preceding section are only a small sample of the large
body of calculations that could be performed on the cases of interest. They were, in fact,
chosen as representative examples of the physical situations one can meet in dealing with
scatterers of this kind. By comparing the results for the two kinds of inclusion we dealt with
in this paper it is quite clear that the evidence of the effects we described tend to vanish when
the difference of the dielectric function of the external sphere and of the inclusion becomes
small. The tests we discussed in the preceding section, strongly suggest that even in this limit-
ing case any approximation procedure should be carefully checked, on account of the
transfers effected by the matrices ! and of the consequent complicated couplings among the
equations for the multipolar amplitudes.

In our opinion the results we showed in the preceding section succeeded in proving that
the presence of an eccentric inclusion within an otherwise spherical object is quite detectable.
The eccentricity, in fact, introduces polarization effects, that arc absent in homogeneous
spheres as well as in spheres with concentric inclusions, i. e.when a true spherical symmetry
is present; furthemore, the eccentricity itself changes the response both in the forward as well
as in the non-forward scattering. We are not able to present experimental data against which
the reliability of our results can be compared. Nevertheless, the magnitude of the effects we
evidenced may encourage specific experimental rescarch on the subject.

Appendix A

In this appendix e will go through the formulae of sect. 2 and give the explicit expres-
sion of the elements of the submatrices we used in this paper. The multipole amplitudes of
the incident plane wave, W, are the elements of the one-column submatrix W, €q.(6), and
are defined as

W (Kiac) = 4 7' € X¥m(kinc) » WIZ (Kinc) =4 1" (KineX€)X*im(Kinc) »
Next, it is convenient to introduce the notation

= o - n
n,=—-1,ny=—-1,
ny ny

and the functions

w(x) = xji(x) , wi(x) = xhy(x) ,

that help to write in cornpact form the elements of the matrix R,, that characterizes the single
inclusion we consider in this paper, as well as the matrices Ry, Ry , My and My, that
characterize the sphere containing the inclusion. The matrices R; , Ry andRy are diagonal
with elements

R{Pb‘:l’),lm’ = 6pp'6ll’6mm‘R£,l’) ’
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R?)&’,lm' = 6”'6”'6MM'R$) ’

Rw%z Jm' = Jpp"s"’&mm'Rw‘ ’

where

Rf) = ( +'£ 15, )i (Kip)u'i(Kopy) = (1 + n 1 8,2)u's(Kyp1)ui(Kopy)
(1 +n S u(Kip)w'i(Kopr) ~ (14 n 18.2)u's(Kyp1)wi(Kops)

RE = i[(1 +n odpur(Koro)Wi(Kpo) — (1 +1 o826’ i(Kopo)wi(Kpo)] ™

R = —i [(1 +n o8pwi(Koro)W'i(Kpo) = (1 + 1 o8p2w'1(Koro)wi(Kpo))

respectively. R{) and R{ coincide with the Mie coefficients b, and a;, respectlvcly, for
the scattering by a homogeneous sphere of radius p;, and refractive index n; embedded in a
homogeneous medium of refractive index ny. Also the matrices My and M, are diagonal
with elements

ML) 1 = Sppbubmm M

and
MO tw = Sppburbum My
where
M@ =i [(1 + n o8wi(Kopo)u'f(Kpo) — (1 + 1 o8,2w'(Kopo)ui(Kpo))
and

MP =i[Q +n obu(Kopo)u'i(Kpo) —~ (1 + 1 o8,01'1(Kopo)us(Kpo))

respectively. Finally, we define the elements of the matrix 1, , that, as explained in sect, 2,
effects the transfer of origin of the muitipole fields Ry R, :

/ .24l - ,
Iﬂ'vﬁ)ﬂ’m’ = |fppr =~ i \/_—?:-' - 5”,')}2(:(1,14-1—6»' s li=ppy m + p) X
y
X Gretetyy imiu iim+u(Ko , Ri)C(1 15—y ,m" + )

where Ryy = Ry — R; and

GRIMAK , R) = xS (mid, m)js (K, R)Y*s mm(R) .
Y
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In the preceding equations the C’s are the Clebsch-Gordan coefficients and the quantities I
are the Gaunt integrals [7] that are defined as

L,mt',m) = [V Yty memd
The elements of the matrix L., , that effect the transfer from the site R; to the site Ry can

be obtained from the expressions given above by substituting Ry; to Ry .

As the last item of this appendix we make a comparison between the definition of the
scattering amplitude we adopted in our formalism with the corresponding definitions assumed
in some authoritative textbooks. According to Jackson (12), we assume that the phase of the
incident plane wave field propagating through a homogeneous medium is

¢(+) . i(n‘*’k- r-— wt) ,
where n is the (in general complex) refractive index defined as
At = n'4in" .

For the normalized scattering amplitude f we use just the definition of Jackson

ein‘ ks

Es:a) = Ep r r,

where E{}) is the scattered field. Bohren and Huffman [22] as well as Bayvel and Jones [23]
assume different definitions for the scattering amplitude that are related to that of Jackson
through the relations

i 1
J = g Sen = el

van de Hulst makes a different choice of the phase:

¢ = —i(n ke r — wr) ,
with

) = n'—in” .
Therefore,

W=’ = g
and

E!n_c). = Em ’ Es-cz' = Estl) ’
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whence the relation of his nonimalized scattering amplitude with the f defined above follows:

SO = —in™if .

References

[1] H. C. van de Hulst, Light scattering by small particles (Wiley, New York, 1957).
[2) M. Kerker, The scattering of light (Academic Press, New York, 1969).

[3] R. Ruppin, " Optical Properties of Metal Spheres with a Diffuse Surface,” J. Opt. Soc.
Am. 66, 449453 (1976).

[4] F. Borghese, P. Denti, R. Saija, G. Toscano and O. 1. Sindoni, "Extinction cofficients
for a random dispersion of small stratificd spheres and a random dispersion of their binary
aggregates,” J. Opt. Sec. Am. A4, 1984-1991 (1987).

[5] J. G. Fikioris and N. K. Uzunoglu,"Scattering from an eccentrically stratified dielectric
sphere,” J. Opt. Soc. Am. 69,1359-1366 (1979).

[6] F. Borghese, P. Denti, R. Saija, G. Toscano and O. 1. Sindoni, "Multiple electromagnetic
scattering from a cluster of spheres. 1. Theory," Aerosol Sci. Technol. 3, 227-235 (1984).

[7) R. M. Rose, Multipole Fields (Wiley, New York, 1955).

(8] F. Borghese, P. Denti, R. Saija, G. Toscano and O. 1. Sindoni, "Optical absorption coef-
ficicnt of a dispersion of clusters composed of a large number of spheres,” Aecrosel Sci.
Technol. 6, 173-181 (1987).

[9] F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Macroscopic optical
constants of a cloud of randomly oriented nonspherical scatterars,” Nuovo Cim. 81, 29-50
(1984).

[10] R. T. Wang, J. M. Greenberg and D. W. Schuerman, "Experimental results of the depen-
deat light scattering by two spheres,” Optics Lett. 11, 543-545 (1981).

{11} F. Borghese, F. Denti, R. Saija and O. 1. Sindoni, “Reliability of the theoretical descrip-
tion of clectromagnetic scattering from non-spherical particles,” J. Aerosol Sci. 20, 1079-
1081(1989).

[12] J. D. Jackson, Classical electrodynamics (Wiley, New York, 1975).

(13] F. Borghese, P. Denti, G. Toscano and O. I. Sindoni, "An addition theorem for vector
Helmholtz hannonics,” J. Math. Phys. 21,2754-2755 (1980)

(14] F. Borghese, P. Denti, R. Saija, G. Toscano and O. I. Sindoni, "Use of group theory foi
the description of cicctromagnetic scattering from molecular systems,” J. Opt. Soc. Am Al,
183-191 (1984)




[15] O. 1. Sindoni, F. Borghese, P. Denti, R. Saija and G. Toscano, "Multiple eloctromag-
netic scattering from a cluster of spheres. II. Symmetrization,” Aerosol Sci. Technol. 3,
237-243 (1984).

(16] K. A. Fuller and G. W. Kattawar, "Consummate Solution to the Problern of Classical
Electromagnetic Scattering by an Ensemble of Spheres. I: Linear Chains," Optics Lett, 13,
90-92 (1988).

[17] R. Newton, Scattering theory of waves and particles (McGraw-Hill, New York, 1966).

[18] E. M. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

[19] See, for instance, ref. [4] and references therein.

[20] K. A. Fuller, "Recent Progress in the Study of thc Optical Resonanccs of Two-sphere
Systems,” in Proc. 2nd Int. Conf. On Optcal Particle Sizing, 65—68 (University of Arizona,
Tempe, 1990).

[21] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).

[22] C. F. Bohren and D. R. Huffman, Absorplzan and Scattering of Light by Small Particles
(Viley, New York, 1983)

[23] L. P. Bayvel and A. R. Jones, Electromagnetic Scattering and its Applicattions (Applied
Science, London, 1981 ).




§. Figure Captions

Figure 1. Sketch of the three regions into which the space is partitioned. In actual calcula-
tions the center of the extcrnal sphere coincides with the origin and the center of the inclu-
sion lies on the z-axis.

Figure 2. Backscattering efficiency, og/A = (4n®/p3)|f(6 = 7)|* , where A = xp} and 4 is
the angle of scattering, as a function of xg. The dotted curve shows the approximate results
of Fikioris and Uzunoglu (fig. 2 of ref.[5]), while the solid curve shows our results for the
same scatterer.

Figure 3. P(0) (a) and Q(0) (b) as a function of xz for a dielectric sphere containing a metal-
lic inclusion (solid curves). The curves are labelled by the values of 8,,. and, when necessary,
it is also indicated wether the polarization vector is parallel (/) or perpendicular (r) to the
scatterinig plane. The figures also show P fig. 3a. and Q , fig. 3b, as a function of xg (dot-
ted curve).

Figure 4. P(9)vs. Q) as afunctionof 8 =0 (a) , i = x/4 (b) and 6;,c = 7/2 (c)
for a dielectric sphere containing a metallic inclusion. The hollow circles mark a 30 ° incre-
ment of ¢ ; the forward scattering side is marbed F. The solid curves are for xg = -2 (B)
and xg = 2 (T), respectively. The dotted curve refers to xg = O (centered inclusion). For
the sake of comparison we also report P,(8) vs. Qx(6) (dashed curve).

Figure 5. P(0) and Q(0) (b) as a function of xg for a dielectric sphere containing an empty
cavity (solid curves). The curves are labelled by the values of 8, and, when necessary, it is
also indicated wether the polarization vector is parallel ( /) or perpendicular (r) to the scatter-
ing plane. The figures also show P ,fig.5a and Q , fig. Sbas a functionofrz (dotted
curve). The maximum value of the eccentricity is xg = 2. 1705
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ABSTRACT

Theoretical procedures are described for the determination of the electromagnetic fields for
an arbitrary field (plane wave, focused beam, etc.) incident on layered particles of spherical,
near-spherical, cireular cylindrical, and near-circular cylindrical geometries. Presented calculations
indicate that even a relatively thin layer around an otherwise homogeneous core can sigrificantly
affect the internal electromagnetic field distribution of the particle. Future work will include the use
of spheroidal wave function solutions for the analysis of layered particles with appreciably elongated
or appreciably flattened geometries.

I. INTRODUCTION

Procedures for the theoretical determination of the electromagnetic fields for an arbitrary
field (plane wave, focused beam, etc.) incident on homogeneous particles of spherical’ and near-
sphericai’ geometries have been previously developed. In this paper, the homogeneous particle
procedures have been extended to permit the analysis of layered particles. Applications include the
modeling of laser interactions with biological particles (e.g., a bacteria modeled as a homogenecus
core surrounded by a relatively thin cell wall) and laser interactions with layered aerosols.

II. GENERAL THEORY

The theoretical procedures for the determination of the electromaguetic fields for an arbitrary
field incident on layered particles of spherical, near-spherical, circular cylindrical, and near-circular
cylindrical geometries are described in detail in Ref, 3, only an overview of the development will
be presented here.

A layered particle of general geometry consisting of a homogeneous “core” (material 1) enclosed
by a homogeneous “layer” (material 2) is considered. The layered particle is surrounded by a
homogeneons, nonabsorbing, infinite medium (the external material). A monochromatic field,
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presumed known, is incident on the particle. Within each of these three homogeneous regions, the
electric and magnetic field vectors satisfy the Helmholtz equation,

VE+KE=0 (1)
and
VH +H =0. (2)
If Iy, is a scalar eigenfunction of the Helmholtz equation,
Vi im + k*Mim = 0, (3)

then corresponding vector eigenfunctions (M, Ni,») of the Helmholtz equation can be determined
from the operations :

ﬁlm =V x i (4)

and
] 1 -~
Fim = 29 x Mim. (5)
The electromagnetic fields of the core (w) and layer (I), and the electromagnetic field of the

light scattered (s) from the particle are of interest. Each of these electromagnetic fields can be
expressed in terms of expansions over the corresponding vector eigenfunctions,

CORE FIELD
EC) = 3" [eim N + dim M )
Im
ﬁ(w) = -i\/feﬂﬁl Z [clmﬁl(::) + d"ﬂﬁl(i‘:) (7)
{,m
LAYER FIELD
EO = 3 [ermNED + fim NED 4 gum M 4 by D) ()
lym
}7(1) = —1, /CcztﬁZ Z [elmﬁl(y‘r:‘) + flmﬁ‘(:.;z) + glmﬁ}rﬁl) + hlmﬁl(:r;”] (9)
i,m
SCATTERED FIELD
EO = 3 [aim ) + bin 1Y) (10)
im
HO = /et Y [aim M2 + bim 9] (11)
I,m

In spherical coordinates (r,8, ), the appropriate functional form of the corresponding scalar
eigenfunctions for the core, layer, and scattered fields are

I = ¢u(A1af)Yin (6, 4), (12)
0§D = gu(Azaf)Yim(8, 4), (13)
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D = yi(R2af)Yim(8, ¢), (14)
and

{2 = £ (af)Yim(0, 4) (1)
where

£ = ¢ - iy (16)

and )y, x; are the Riccati-Bessel functions and Y}, is the spherical harmonic function.

The expansion coefficients of the core (¢im, dim), layer (eim, fim, gim, him), and scattered
(Gim,bim) fields are determined by the application of the boundary condition of continuity of the
tangential components of the electromagnetic fields at the layer/external and layer/core interfaces.

LAYER/EXTERNAL INTERFACE

i x (ED + E®) = x ED (17)
ax (HO + H®)=ax O (18)
LAYER/CORE INTERFACE
ax EW =4 x B (19)
ax HO =7 x f (20)

where 1 is the unit vector normal to the interface and the incident electromagnetic field at the
layer/external interface (E(¥), H(")) is assumed known.

After substituting the series expansions of Eqs. (6)-(11) into Eqs. (17)-(20), the eight scalar
equations associated with Eqs. (17)-(20) are multiplied by Yy (8,¢) and integrated over the
respective interface surface. The result is a set of simultaneous linear, algebraic equations that can
be solved for the expansion coefficients (@im, bim, €ims dim, €tmy fimsGim, Bim). Once the expansion
coefficients are determined, the expansion coefficients are substituted into Eqs. (6)-(11) and the
electromagnetic field can then be calculated anywhere inside or outside the particle. If the layered
particle geometry is that of concentric spheres, then the boundary conditions can be matched
mode-by-mode and explicit expressions can be derived for the series coefficients.

If a polar cylindrical coordinate system (r,8) is chosen, then the procedure is similar to that
just described except that the appropriate scalar eigenfunctions are of the form

Y = Jy(#af)e?, (21)
") = Ji(ryaf)e™, (22)
(" = Ni(izaf)e™, (23)
and
) = BV (af)e* (24)
where
HY = Ji+iN, (25)

and J;, N; are the cylindrical Bessel functions.




III. CALCULATIONS

For the calculations that follow, all spatial quantities are nondimensionalized relative to a
characteristic radius of the external particle surface (a) and ail electromagnetic quantities are
nondimensionalized relative to a characteristic electric field amplitude of the incident field (Eo).
Important input parameters for the analysis include (1) the particle shape function, # (A nondi-
mensionalized single-valued function of the angular coordinates that defines the geometry of the
external particle surface.), (2) the core/layer interface location parameter, a;2, (3) the particle size
parameter, a = 2xa/A.rt, (4) the complex relative refractive index of the core, #, (5) the complex
relative refractive index of the .ayer, fi;, (6) the propagation direction angle of the incident field,
04, (7) the electric field polarization direction angle of the incident field, ¢4, and, for focused beam
incidence, (9) the beam waist radius, W, and (10) the iocation of the beam focal point relative to
the particle, (%o, §o,20). For the spherical analysis, 6,4 is referenced to the y-z plane and ¢4 is
reference to the x-z plane. For the cylindrical analysis, 8,4 is referenced to the x-z plane and ¢4 is
referenced to the x-y plane. .

Figure 1 presents the internal and near-surface normalized source function, $ = | E/Ep|?, in the
x-z plane for a homogeneous spherical particle (a = 30, # = 1.33 + 1.0x107%) with an incident
beam focused within the upper hemisphera of the particle (wy = 0.2, 5 = 0.7, §o = 0.0, % =
0.0). The beam propagates in the positive z axis direction (854 = 0°) with electric field polarization
perpendicular to the x-z plane (¢4 = 90°). The Gaussian profile of the incident beam can be seen
along the right-hand-side of Figure 1.

The conditions of Fig. 2 are identical to the conditions of Fig. 1, except the outer 30%
of the sphere now coasists of a layer of a second material (d;2 = 0.7, Ai; = 1.1 + 1.0x107%i).
As can be observed by comparing Figs. 1 and 2, the presence of the layer significantly affects
the electromagnetic field distribution. Figures 3 and 4 present the same data as Figs. 1 and 2,
respectively, but in the form of a false contrast visualization (white = high, black = low).

The analysis is not restricted to purely spherical geometries. Figure 5 shows the internal
normalized source function distribution in the x-z plane for a plane wave propagating ir the positive
x axis direction (6,4 = 90°) with electric field polarization parallel to the x-z plane (¢ps = 0°)
incident on a homogeneous 1.3 to 1.0 axis ratio prolate spheroid (o = 10, i = 1.18 + 0.07i).
The conditions of Fig. 6 are identical to the conditions of Fig. 5, except that the outer 10% of
the prolate spheroid has been replaced by a layer of a second material (&, = 0.9, fi; = 1.48 +
0.0055i). For this case, the presence of even a relatively thin layer significantly alters the internal
field distribution of the particle.

The analysis can also be applied to cylindrical geometries. Figure 7 presents the internal source
function distribution in the x-y plane for a plane wave propagating in the positive x axis direction
(6s4 = 0°) with electric field polarization perpendicular to the x-y plane ($sq = 90°) incident on a
homogeneous circular cylinder (a = 10, # = 1.18 + 0.07i). The conditions of Fig. 8 are identical
to the conditions of Fig. 7, except the outer 10% of the cylinder has been replaced by z layer of a
second material (a,2 = 0.9, 72 = 1.48 4+ 0.0055i). As was the case for the prolate spheroid particle,
the presence of the relatively thin layer significantly affects the internal field distribution of the
circular cylinder particle.

Figures 9 and 10 are identical to Figs. 7 and 8, respectively, except now (1) the particle
geometry is that of a 1.3 to 1.0 axis ratie elliptic cylinder and (2) the incident plane wave propagates
in the positive y axis direction (8y4 = 90°) with electric field polarization parallel to the x-y plane

(&pa = 0°).
IV. CONCLUSIONS AND FUTURE WORK

Theoretical procedures have been developed for the calculation of the electromagnetic fields for
the interaction of an arbitrary incident field (plane wave, focused beam, etc.) on a layered particle
of spherical, near-spherical, circular cylindrical, and near circular cylindrical geometries. Initial
calculations indicate that even the presence of a relatively thin layer can alter the electromagnetic
field distribution significantly from that of a corresponding homogeneous particle. Further sys-
tematic calculations will be performed in the future. In addition, spheroidal wave solutions will




be applied to enable the analysis of layered particles with appreciably elongated or appreciably
flattened geometries.
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FIGURE 1. Normalized source function distribution i

in the x-z plane for a beam focused on a
homogeneous sphere. (a = 30, # = 1.33 + 1.0x1078i, Wy = 0.2, £, = 0.7, fio = 0.0, Z, = 0.0, O4
= 0° ¢pa = 90°)
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FIGURE 2. Normalized source function distribution in the x-z plane for a beam focused on a
layered sphere. (a = 30, fi; = 1.33 + 1.0x107%, i,

p = 1.1 4+ 1.0x1078, &, = 0.7,
= 07,5 = 0.0, 2 = 0.0, 6,y = 0°, ¢pq = 90°)
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FIGURE 3. False contrast visualization of the normalized source function distribution in the x-z
plane for a beam focusetd on a homogeneous sphere. (a = 30, it = 1.33 + 1.0x107%i, Wy = 0.2, &
= 0.7,% = 0.0, 2 = 0.0, §pq = 0°, pq = 90°)

FIGURE 4. False contrast visualization of the normalized source function distribution in the x-z
plane for a beam focused on a layered sphere. (a = 30, mi = 133 4+ 1.0x107%, 7y = 1.1 4
1.0x107%, @12 = 0.7, 00 = 0.2, #0 = 0.7, §o = 0.0, 3o = 0.0, B4 = 0°, dpg = 90°)
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FIGURE 5. Internal noricalized source function distribution in the x-z plane for a plane wave
incident on a homogeneous 1.3 to 1.0 axis ratio prolate spheroid. (a = 10, i = 1.18 + 0.07i, Opq =
90°, ¢pa = 0°)

FIGURE 6. Internal normalized source function distribution in the x-z plane for a plane wave
incident on a layered 1.3 to 1.0 axis ratio prolate spheroid. (a = 10, iy = 1.18 + 0.07i, iz = 1.48
+ 0.0055i, d1p = 0.9, fpg = 90°, dpg = 0°)
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FIGURE 7. Internal normalized source function distribution in the x-y plane for a plane wave
incident on a homogeneous circular cylinder. (a = 10, ft = 1.18 4+ 0.07i, 8sq = 0°, Ppa = 90°)
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FIGURE 8. Internal normalized source function distribution in the x-y plane for a plane wave

incident on a layered circular cylinder. (o = 10, 2; = 1.18 + 0.07i, fi; = 1.48 + 0.0055i, ay2 = 0.9, | .
0ba = 0°, Ppa = 90°)




FIGURE 9. Internal normalized source function distribution in the x-y plan
incident on a homogeneous 1.3 to 1.0 axis ratio elliptic cylinder. (a = 10, & =
90°, ¢pa = 0°)

e for a plane wave
1.18 + 0.07i, Op4 =

r 2009
5 1,900
- 1.0 )
_-,/‘ '
- % A
“\ # _;»..' %, {9]

I

()

4
il

il
i

'FI(:;URE 10. Internal normalized source function distribution in the x-y plane for a plane wave
incident on a layered 1.3 to 1.0 axis ratio eliiptic cylinder. (a =10, iy = 1.18 + 0.07i, i; = 1.48

+ 0.0055i, 412 = 0.9, 8pg = 90°, ¢y = 0°)
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- Abstract

A comparison of the differential, scattering, and absorption cross sections of a bisphere
obtained from the discrete dipole approximation (DDA) is made with those determined from
modal analysis. The DDA is thus tested, for the first time to our knowledge, against an exact
calculation of the scattering properties of a finite, nonspherical particle. The agreement with
the exact solution is very good, even when the size parameter of the monomers is = 8 (the
largest size studied).

Introduction

The discrete dipole approximation (DDA) provides what is perhaps the best method
available for modeling the scattering properties of particles with morphologies that do not
allow for an exact solution. The DDA is obtained by replacing the particle with an array of
N point dipoles on a cubic lattice. The polarization of each dipole is found by solving a self-
consistent set of linear equations that accounts for the electric field of the incident radiation
and of all other dipoles in the array. This is represented by

P=A" E;,

where P is the 3N-dimensional polarization vector of the array, E; is a 3/V-dimensional vector
that describes the incident electric field of the plane wave at the position of each dipole, and A
is a 3N x 3N symmetric matrix that relates the electric field of the jth dipole to the location
of the kth dipole in the ensemble. Once P has been determined, the scattered field of the




system can be calt alared as the vector sum of the scattered fields of the dipoles. A more
detailed description of this formalism is provided by Draine.!

Computations have been greatly accelerated by applying the conjugate gradient method
and the fast Fourier transform to the solution of the above equation. A description of these
enhancements, along with comparison of the DDA technique to the exact solution for spheres
with size parameters as large as 15 is provided in the paper of Goodman et al.? Results are
also provided in that work for a cube having a volume equivalent to that of a sphere of size
parameter 10. Application of the DDA to such optically large particles is unprecedented.

A comprehensive treatment of the DDA, along with a compendium of results of its ap-
plication to cirrus cloud particles can be found in the dissertation of Flatau.3

Scattering by Two Pseudospheres

The scattering properties of a bisphere can be found exactly by modal analysis.*® In
applying the DDA, the two spheres are replaced with pseudospheres, each comprised of about
33,000 dipole elements. This system is displayed in Fig. 1. A similar approach was taken
by Kattawar and Humphreys,® but the numerical techniques employed at that time did not
allow for size parameters much greater than unity to be considered (pseudospheres of only 32
dipoles were used by those authors).

The monoiners used in this study are chosen so that two of them would have a volume
equal to that of a single sphere with a size parameter of either 5 or 10. In all cases, the wave
vecior of the incident radiation is taken to be parallel to the symmetry axis of the two-sphere
system. Such a scattering geometry produces the strongest electrodynamic coupling between
the principals and hence provides what is probably the most stringent test of the DDA. It
is noted, however, that comparisons were made for other particle orientations and agreement
with the modal analysis runs was at least as good as that seen in the case of end-on incidence.

Figures 2 and 3 display the phase functions of two pseudospheres that are made from the
same amount of dielectric as would be required to construct a single sphere of size parameter
5 and 10, respectively. Orthogonal states of polarization of the incident beam are considered.
The scattering plane is taken to be that which contains the symmetry axis of the particle and
the wave vector of the scattered fields. The cases v = 0 or r/2 correspond to an incident
polarization that is parallel or perpendicular to this plane, respectively. The phase functions
of the pairs of pseudospheres closely match those obtained for the corresponding bispheres.
This is especially true in the case of Fig. 2, where the differences are negligible. The slight
disagreements between modal analysis and DDA in Fig. 3 are due, of course, to a need for
an increased number of dipolar subunits in the approximation. It is interesting that the
agreement in Fig. 3 is better for v = 0 than for v = 7/2, and that the reverse is true in Fig.
2.

In Figure 4, the cflicicncics for extinction and absorption by a bisphere are plotted against
the size parameter of an equivalent volume sphere. The efficiency factors of the bisphere
are determined from the ratio of its respective cross sections to the cross sectional area of
the equivalent-volume sphere. Agreement between the DDA and the exact calculation is
outscanding.
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Figure 2. Phase function comparisons for a two-sphere system with a volume equivalent to that of a
gingle sphere with size parameter 5. The solid line corresponds to the phase function of a
bisphere illuminated at end-fire incidence as determined from modal analysis. The discrete
points are the results of the DDA calculations based on the pseudospheres depicted in
Fig. 1. The refractive index of the spheres is 1.33 + 0.017. The polarization angle, v, is
discussed in the text. '

292




0 50 100 150

LR

10°
102
10"
1 -
0.1
1072 b —————— - ———+
10° _
102
10
1 -
0.1
1072 .
Lt
0 50 100 150
9
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parameter 10.
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Abstract

An outline is presented of the derivation of the cross section for total scattering by a cluster
of spheres. The theory is then used to study the effects of scavenging and aggregation on
the specific absorption of carbon. Results are presented for polarization- and orientation-
dependent absorption cross sections of sulfate haze elements and cloud droplets with small
carbon grains (spheres) attached to their surfaces. Comparisons between the absorption cross
sections of free carbon, linear chains, and tighuly clumped carbon spheres are also provided.

Introduction
The total scattering cross section, o,, of a particle is given by

Energy scattered/unit time/unit solid angle

= [ ;= - — N2 1
7s Jq Incident energy flux (energy/unit area/unit time) (1)

For a spherical scatterer, this integral can be solved analytically.
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The response of a cluster of spheres to em radiation derives from the natural modes of the
individual spheres, but the modes of each sphere couple to those of all other spheres in the
ensemble and the mathematical description of the scattered radiation is inherently more com-
plicated than that for isolated spheres. With the use of the addition theorem for vector
spherical harmonics, not only can the scattered fields of the cluster be determined; we have
shown that the o, integral can once again be solved analytically. The cross section for total
extinction, g, can be found with relative ease from the optical theorem and the absorption
cross section of the cluster is simply

Oa = 0c ~ 0,. (2)

Without an analytic solution for o,, the absorption cross sections of small, highly absorbing
‘grains attached to (scavenged by) large, weakly alsorbing hazc elements or cloud droplets
could not have been calculated.

Cross Sections for Spheres: Reduced Symmetry Case

The scattering geometry for the case of a single sphere is depicted in Fig. 1. Rather than
restricting the wave vector of the incident radiation to be parallel to &, we will require ouly
that kg lie in the the zz-plane, oriented at an angle « fron: the z-axis. The angle vy specifies
the polarization of the incident field Ey. The expansion, in vector spherical harmonics, of this
field is then

EO exp("kﬂ ' l') = IEOI E Z (pmnNgzz +qmnM£11121) ’ (3)

n=lm=-—n

where p,,,,. and q,,,, are of the form

_ a2n+1 (n=m) [ —1r,u(cosa) _|0
Pmn = —% n(n+ 1) (n +m)! { Tmn(COS ) } ’ - [W/2] )
and ( "
_a2n+1 (n—m)! fimp,(cosa) |10
Gmn =1 n(n + 1) (n +m)! [—'Tmn(cosa)] i [1/2] ' (5)

Radiation is scattered into an angle 3, relative to the ko direction, with polarization compo-
nents E,| and E,; that are, respectively, parallel and perpendicular to the plane swept out
by the scattering angle. The scattered field can be expressed as

o0 n
E,=|ElY. (AE,,,,,NSIZ, +AH,,.,,M$,3.Z,), (6)

n=lm=-—n

where
AEp = Pinln

7
AHpp = 9mn by ( )

298




Figure 1. The reduced-symmetry geometry for light scattering by a sphere.
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and a, and b, are the Lorenz Mie coefficients.

When kg is parallel to &, and the incident field is polarized in the &; direction, then the more
familiar! expression,

2n+1 3 a—0
B - 18 3 s (s - baME ). 5 ®

is recovered.
The differential scattering cross section of a particle is defined as

do _  Energy scattered/unit time/unit solid angle
d? ~ Incident energy flux (energy/unit area/unit time)’

(9)

Integrating the differential cross section over all solid angles yields the cross section for total
scattering:

1 2x x
a,=—————Re/ / S, &, r*sin@déde, 10
2[(So)|” Jo o ¢ (10)

where Sy = (Eg x Hy) and S, = (E, x H}) are, respectively, the time-averaged Poynting
vectors of the incident and scattered radiation. From the optical theorem, the extinction cross
section is simply

0c = — Re(E (8 =0) - éo)a (11)

and the absorption cross section is, by conservation of energy,

Oq = 0e = Oy (12)
For a single sphere and a = 0
O, = k7 z:l (2n + 1)(lan|® + [6a]?). (13)

When k; is not parallel to &,,

2 x
= / / 72 5in 0 dO dpé, «
0 0

Re[zi (AEmn NE&)) +AH,, (Mﬁi%))x (14)

n=lm=-n

> 3 (A (NS 4B (M3, |

n'=lm=—n
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In carrying out the above integration, it is noted that

]((Mm‘ﬂ X My ) - & T sin0d0d¢ =

(15)
}( (N X No ) - & r2sin6d6dé = 0
and
f(N w XMoo ) & r2sin 0d0dg =
(16)
- f(M,,,',,,: x N, ) - & r¥sin8d6d¢ = N(m,n),
where ( ' "
—4dmnn+1)(n+m
Nmm) = 2= 2n+ D) (o= )i ot omamt a7)
and £,, are Ricatti-Hankel functions. Now,
Re(1£5€) = =1 (see Ref. 1), (18)
thus
__1°° 2. n(n+1)(n+m) 2 2
T k2 Z=: ; 2n+1) (n m)! (MEmnl +MHmn| (19)

Cross Sections for Sphere Aggregates

Having established the mathematical form of the total scattering cross section of a sphere with
a scattering geometry that does not fully expleit the symmetry of a single sphere, one can
more readily make the transition to scattering by clusters. The optical properties of clusters
of spheres can be understood in terms of multiple scattering centers, and hence, multiple
coordinate origins. The scattering geometry for such a system is shown in Fig. 2. The spheres

in the cluster are centered about the ‘O origins, where £ is an index that identifies specific
constituents of a set of L spheres. The quantities ‘& are unit vectors in the £th system. In
the figure, the unit vectors associated with the £'th origin have been displaced from the ¢z ©y-
plane to the & %-plane. The constituent spheres (with radii %) are now characterized by the
size parameters k % = 9 and complex refractive indices N. The dimensionless center-to-center
distance between spheres £ and ¢’ is denoted by kdg .. The principal or primary coordinate
sytem in which the integration of the Poynting flux is to be carried out corresponds to £ = 1.
It will be convenient in such instances to visualize ‘O in Fig. 2 as the origin of this system,

and any other O, ¢ # 1 as a secondary origin. The L — 1 secondary coordinate systems are
related to the principal coordinate system by pure translations.

The cocfficients of the plane wave expansion about an £th secondary origin are obtained by
simply multiplying 'p,,., and q,,.,, by the phase factor exp(1ko - dj,¢). In the theory developed
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Figure 2.

The scattering geometry for multiple scattering centers.
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by Liang and Lo? and Bruning and Lo,® as throughout this study, it is assumed that the
scattered fields can be expanded as

n L
z Z (%Emnthgz; + tAHm,.‘Mgz‘)

I1m=-~nf=1

E,,

E,

il
M

n

(20)

it
M=

~
[

1

where the expansion coefficients 4E,,, and 4H,,, correspond, respectively, to the E- and

H-type modes of the £th sphere, and ‘N and ‘M), are the vector spherical harmonics in
the ¢th coordinate system.

In order to apply boundary conditions successfully, one must be able to expand the fields
scattered by the £'th sphere about the center of any £th constituent of the cluster. This can
be accomplished through the use of the addition theorem for vector spherical harmonics.?:34=6
Applying boundary conditions, it can be shown that

UE = tan [¢ Pron + N Z(”AE VALY (kdp o) + CAH ,, B (kdy c))] (21)
L#L v

YUH = ‘b,, “Gmn + 3 Z(”AH JAYY (kdp o) + CAE,, B ‘;,(kdm))], (22)

U3t v

where the quantities A%, (kdy ¢) and B&Y (kdy ¢) are coefficients that are encountered in the
addition theorem. These so-called translation coefficients are rather complicated functions of
Clebsch-Gordan coefficients and of the geometry of the cluster.

Alternatively, the scattering coefficients may be found from the order-of-scattering; (OS)
method,”® which can be visualized as follows: First, plane wave radiation strikes one sphere
which then scatters a field (as prescribed by the standard Lorenz-Mie theory) both to the field
point and to the other sphere. This second sphere then responds to the field incident on it
from the first sphere, scattering radiation to the field point and back to the firat sphere. This
process is continued indefinitely, and the total scattered field is obtained as a vector sum of
these partial fields plus a sum of of the partial fields which arise from plane wave radiation
incident on the second sphere. For ease of visualization, the above description has been limited
to just two spheres, but the extension to clusters of three or more is straightforward.

The total field scattered by the pair is thus
oo L (3
S5 EY, (23)
j=0£=1

where the jth-order partial fields ‘Egj) are in turn expressed as

‘EP=Z( Grun N, + b, ‘M“”) (24)

n.m
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For the case of two spheres,

1 ) 1 2 -1 pv :’— v
Qmn = "Gn E § : auv Amn pu an
v

o G=1) G-
lb""‘ = lb”ZZ(zb;w A$Z+2a B'w)
() i G-1) G-t (25)
o =0 D2 (ol At + 4. B2
(')
on = 2by Zz( Aw 41 B“”).
The expansion coefficients of the total scattered field are then given by
%)
54E,,m = Z‘amn
—
2, ) (26)
UHpn =Y by
j=0

The OS method is of particular importance in the efficient calculation of the scattering cross
sections aasociated with large droplets that have smali carbon grains attached to their surfaces.

In order to determine the total power, W, radiated from a surface T that encloses an ensemble
of scatterers, the integral

/ S - #r?sin0dfdp = / (E x H*) - £r25in 6d0d¢ (27
T T
must be evaluated, where, for a system of L particles,
L
E=Eo+ Y 'E, (28)
=1
and
L
H=H,+ ) ‘H,. (29)
=1

The radiated power is thus

W= Z/(Eo x ‘H, + ‘E, x H}) - &, r*sin 0 d0 d¢

+Z/(’E x ‘H))- &, r’sin0dod¢ (30)
+ZZ/ (*E, x *H}) - &, % sin 6 df dg,
€ U#EL
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and the equation for the total scattering cross section becomes
x px o
(S0, = %ReZE/ / (‘E, x “H,) - & 7% sin 6 d0 d¢. (31)
[ ‘I 0 0

It is noted that the integration is to be carried out in one set of coordinates, but E, is
referenced to a second coordinate system and ¢ H: is referenced to a yet another.

In principle, one could simply evaluate

2 px
“a,=./ / (Z ‘Byx )y "H:) +& r*sin0dod¢ (32)
0 0 ¢ &
numerically, and calculate the total scattering cross section from

0, = ;; “o., (33)

but, as will be made clear in the next section, this provides only a rather limited solution to
the problem.

We once again make use of the addition theorem. In Egs. (21) and (22) it is to be understood
that the transforination of coordinates has been carried out at the surfaces of the scatterers and
thus k& < kdge. In this case, the dependence of the translation coefficients on the distances
between spheres is governed by spherical Hankel functions. When evaluating the integrals
over a surface that contains all scatterers in the collection, k& > kdgy. The dependence on
kd¢e 18, in this case, governed by sp‘lerica.l Bessel functions and the corresponding translation
coefficients are here denoted as A""‘(kdg: ¢) and B""‘(kd¢: ¢). The scattered fields of each

sphere can then be expressed in terms of the basis functions of the principal origin, viz.,

n

>

n=lm=-—

0o
[ § : pv Auy puv * py
v=1lp

( N(3)Am"(kd¢,1) + lM(3)B""‘(kd¢'1)) (34)

v

( N@Bm™(kde,) + ‘ML‘BZ,'I‘.,"(kdz,x)ﬂ

and

[‘AH‘ >y ("N AR ke ) + MR (der)) (%)
v=1 p=-—-v
fAE,,.,,Z Z ( N B kdm)+‘M935L"u"('°d“)) ]
v=1p=—v
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The summaticns in the addition theorem are uniformly convergent and the series can therefore

be integrated term-by-term, giving

v(v+1)(v + p)!
Rez 22 v + 1) - p)

mam' n' g

+(54Emn %H:w + %H"m IAE;W) (A"‘"(Bm n'\e + an(A

These terms can then be rearranged to give

n(n 4+ 1)(n +m)!

o E (2n + 1)(n -~ m)! ( I-Amn|2 * IB,,.,.|2),

where

=TT (4B A, + 41, B,

[ 414
Bun=3.9 (54E“, Bl +4H,, Ze,,",,).
£ pw

It is to be noted that %a, = €%, and thus

%o, + %%, = 2Re(%0,).

This allows the total scattering cross section to be expressed as

—z‘ +2Rez1 +2Rezzwa,,

010>t

B. Special cases

When coordinate translations are constrained to the z-axis we have

‘M= Y (M“"A"'"(kda) ‘N&?Lz'iz:(kdy.z))
Vv =
maz(l,m)
‘NOL= ) (‘N"’A"‘"(kdm ‘MﬁlBﬁL‘(kda.e))-
v =
maz(1l,m)
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It can be shown that

Z [(IAE"‘" tAE:rm' + IAH"‘" AHmn’)(Armn: ‘+ (43)

nl

(lAE'mn UH?. . + UHom %E.,.,.,)(E:::' ]

and
1
e Z (2:..: 1;(: +: 1 (IhEm,nlz + IhH".‘nlz). (44)
If £ ={' then ) )
(n+1)(n+m 2 2
‘o L 2t D=y AEmal + AHma]), (45)

which it must if the solution obtained from Lorenz-Mie theory is. to be recovered in cases
where dependent scattering can be ignored.

From Eq. (36) we have, for £ = £/,

_ 4w v(v+ 1)(v + u)!
= FRegg @+ D)(v—p)

[(%E,,,,,AE;,+54H,,.,.AH;,) 7 (Amn( ATy + By

m' ,n' ’

+ (%E,,.,,AH;,, + fAHm"AE;u) 3 ( Amn(Bren'y* 4 Bon(Am )]
m',ﬂl
(46)
Comparing this last expression with Eq. (45) it can be inferred that

) (Z,':;"(kd,,,) (A (kdea))” + Bor(kde,) (E;:;’ﬂ'(kd,,,))') = bmubny  (47)

and that

Z (Amn(kdg 1)(B kd[ 1)) + an(kdg'l)(A (kdt.l )).) =0, (48)

m' . n'

Applying the same argument to the case of an isolated sphere, displaced to the £th origin,

) o . - _— .
Z?z(:::]l;é:fm) (A"‘"(kdz,l)(A,Tu" (kdes)) + BIr(kde, ) (BI™ (kdes)) )

307 = 6'""‘6“"1 (49)




and

+ 1)( mn pm'n' * . nmn Am'n’ .
5 T T (AR ) (B () + B k) (A (k) = 0. (50

These relations provide valuable tests for convergence of the series expression of the scattering
cross section of a cluster.

Gram-specific cross sections

It is popular (and, at times, useful) to use the efficiency factors

Oe

Q¢=EsQ= ’Q“—G‘ (51)

where G is the geometric shadow of the particle. In view of the complex morphologies of
aciniform colloids, a better choice for efficiency factors is the gram-specific cross section, A,
the units of which are m?/qg.

o o
A=o= (specific gravity)( particle volume) (52)

It is noted that for a single sphere of radius a << A,
AL = ' 3k1m N? -1
¢ NZT+2
_ 9k|N|2 sin(2tan~1 [Im(N)/Re(N)])
= PTINT + 41 + R (N} = Im2{N})]

(83)

At A =5.5x 10~7 m this gives a specific absorption cross section for carbon of ~ 3.654 m?/g,
assuming the refractive index of carbon at this wavelength to be 1.8 + 0.5i.

Results

Recent results from field measurements of atmospheric aerosols indicate that a significant
fraction of haze elements can be comprised of sulfate particles with carbon grains disperesed
internally or attached to their surfaces.? In understanding the optical properties of clouds more
fully it is necessary to understand the scattering properties of cloud droplets with inclusions or
surface contaminants similar to those just described for haze particles. Results are presented
in this section that illustrate the effects that the dispersion of carbon grains onto droplet
surfaces may have on the mass-specific absorption efficieny of atmospheric carbon.

The scattering geometry for the surface dicpersion calculations is shown in the inset of Fig. 3.
At present, it is assumed that the concentration of the soot component of the aerosol or cloud
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is low enough so that only single grains of carbon need be considered. Soot concentrations that
would involve two or more grains per aerosol particle will be the subject of future research.
Figs. 3-10 catalogue the calculated specific absorption cross sections of selected sizes of carbon
grains attached to nonabsorbing sulfate particles with radii of 0.5 and 1.0um or to water
droplets with radii of 3.0 and 5.0um. The variation in specific absorption with the orientation
of the particle is displayed for orthogonal polarizations of the incident beam.

The basic features can be understood from geometric optics: An optically large sphere with
a refractive index of =~ 1.5 will focus light into a region near its surface. If the refractive
index is = 1.33 then light will be focused into a volume slightly less than half a radius from
the sphere surface. The refractive effects of the sphere will prevent most of the incident
radiation from reaching any other regions on the shadow side of the surface. Reflections from
the shadow surface of the sphere will produce a secondary focal volume narrowly centered
about the illuminated side of the droplet. Such features of a spherical lense are manifested
in the behavior of the absorption cross sections of the carbon grains with particle orientation
in each of Figs. 3-10. The larger the optical size of the host particle, the more accurate the
geometric optics picture. Attention is also called to the second peak in A, near a &~ 17°. This
corresponds to the location of the so-called critical ring.!°

Table I summarizes the orientation-averaged, polarization-dependent absorption efficiencies
for the cases considered in Figs. 3-10. It appears that the more finely divided the carbon, the
more efficient its absorption when residing on the surface of a sulfate host. This efficiency
has not been found to be more than about a factor of two greater than that of free carbon.
Carbon residing on the surface of cloud drops appears thus far to absorb slightly less than
when it exists as isolated grains.

Alsoc of interest are the optical properties of aggregates of carbon monomers. Two examples of
such aggregates are considered here: A linear chain of five spheres and a tightly packed cluster
of five spheres. The specific extinction and absorption cross sections for the linear chain as
a function of orientation are shown in Fig. 11 for two polarizations. Similar results for the
tightly packed cluster are provided in Fig. 12. For comparison, the cross sections for isolated
monomers and for equivalent-volume spheres are also shown.

It is important that the numerical efficacy of Eqs. 37 and 40 compared to straightforward
numerical integration be pointed out. The series expansion avoids the following four pitfalls:

(1) The number of oscillations in the differential scattering cross section of a droplet
increases dramatically with optical size, thereby requiring very high angular resolu-
tion of the integrand when hosts with large size parameters are involved.

(2) When the carbon grains are very small relative to the host particle, the extinc-
tion cross section of the carbon/droplet system is dominated almost entirely by the
scattering cross section of the host. The quantity o. — o, can easily be of the order
107° or less and hence the integral must be evaluated with a very high precision.

(3) For a # 0° or 180°, azimuthal symmetry is lost and the integral over ¢ cannot
be performed analytically.

(4) The structure of the electric ficld at the surface of the host is quite compli-
cated and therefore the absorption cross section of a small carbon grain is extremely
sensitive ‘o orientation. Orientation averages require a high resolution in «a. (The
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calculations summarized in the Table were based on a sampling frequency of 1°.)
This makes it all the more imperative that the integrals over 6 and ¢ be evaluated
expeditiously.

An additional problem that will arise when large numbers of spheres are involved is that
the intereference between them will impose an additional oscillation in the differential cross
sections of the clusters. The more monomers there are comprising the cluster, the greater
the number of these interference fringes. (These oscillations are analogous to multiple slit
diffration patterns.)

A fuller discussion of these results will be provided in a future publication.!
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.05 pm C grain on 0.5um SO,
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Figure 3. Gram-specific absorption cross sections for a carbon grain located on the surface of a
spherical sulfate aerosol. The carbon particle has & radius of 0.05 um and a refractive
index of 1.80+-0.5i. The radius and refractive index of the sulfate particle are 0.50 ym and
1.52 + 0.01, respectively. The straight line corresponds to the gram-specific absorption
cross section of an isolated carbon grain. In the inset, the size of the carbon particle

relative to the sulfate aerosol is drawn to scale.
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C grains on 1.5um SO,
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Figure 4. Same as Figure 3, but with either a 0.1 or 0.01 um carbon grain. The heavy and light
lines show the absorption cross sections of isolated 0.1 and 0.01 pm grains, respeciively.
The inset is drawn to scale for the 0.1um carbon sphere.
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.05 pm C grain on 1.0um SO,
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Same as Figure 3, but with a 1.0 um sulfate particle.

Figure 5.
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Same as Figure 4, but with a 1.0 um sulfate particle.

Figure 6.
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Absorption Cross Sections (mz/ g)

.05 pm C grain on 3.0um H,0O
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Figure 7. Same as Figure 3, but with a 3.0 um water droplet. The refractive index of water is taken
to be 1,33 + 0.01.
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Figure 8. Same as Figure 4, but with a 3.0 um water droplet.
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.05 pym C grain on 5.0um H,0O
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Figure 9. Same as Figure 3, but with a 5.0 um water droplet.
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C grains on 5.0um H,O
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Figure 10.  Same as Figure 4, but with a 5.0 um water droplet.
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Table I
Orientation-averaged specific absorption cross sections of carbon grains on droplet surfaces

Specific Absorption of Scavenged Carbon

-0

8.574244499
7.896352768
6.503396511

8.816226959
6.845155239
5.319453716

4.135703087
4.664968014
5.213868141

4.235696793
4.673493385
5.013107300

'7:0

2.320
1.730
1.218

2.386
1.499
0.996

1.119
1.022
0.976

1.146
1.024
0.939

C Radius
{microns)

0.01
0.05
0.10

1,324
1.140
0.999

0.613
0.673
0.889

0.668
0.693
0.828

0.971

0.947
0.972
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4.893493176
5.202662468
5.337140560

2.266729116
3.072171688
4.746981621

2.469252825
3.163699865
4.424438477

3.0 micron water

31.586464882
4.323986530
5.192254543

5.0 micron water

Ratio of Specific Absorption of Scavenged Carbon to Free Carbon

.’7=90

(Y=0 +7 =90) /2

1.822
1.435
1.109

0.5 micron sulfate

1.500
1.086
0.943

1.0 micron sulfate

0.894
0.858
0.902

3.0 micron water

1.059
0.985
0.956

5.0 micron water

Specific Absorptions for Single Carbon Spheres

Specific Absorption
(m~2/g)

3.695
4.565
5.340

0.5 micron sulfate

1.0 micron sulfate
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Figure 11.  Extinction and absorption cross sections of a linear chain of five carbon spheres. Each of
the monomers has a radius of 0.05 pm and a refractive index of 1.8 + 0.5:.
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Close-packed cluster, ka=0.57
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Figure 12. Same as Figure 11, but the monomers now form a close-packed hexahedron.
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ABSTRACT

This papcer briefly summarizes the recent work on the subject title, as a continuation of the
work rcported in Refs. B) and C). All ithe 10 rough particles studied are comparable in size to the
inciderit microwave wavelength A (= 3.1835 ¢cm ), and are of 2 shapes resemtling roughened
spheres.  The averaged scattering data over random particle orientations are compared to Mie
calculations for independently scattering, size-distributed spheres of very narrow size spread. The
comparisoi, shown both in tabulated and in graphical forms, is made on extinction and angular

scattcring, and also on a: _Q,: -(Z 5;,_ (averaged efficiencies) and E {averaged asymmetry
factor of scattering). Aside from some minor mismatches at large scattering angles in the angular
profilc comparison, the good overall agreement between experiment and theory suggests the
rcasonableness of the theoretical modeling. This is a part of our continuing effort in the
systematic analysis/cataloguc of our existing microwave data.

[. INTRODUCTION

Almost all scattered light we sce are from particles with rough surfaces. Scattering by very
smooth particles, whose surface irregularity is very small compared io the wavelength A of incident
radiation, is rather exceptional. Not only the reflected light fromn a frosted glass is different from a
smooth one, the reflection also depends on the glazing angle of incidence. For this, a simple ray
optics rule known as the Rayleigh Criterion [ Ref. 2 ] was widely employed in estimating the
effective roughness of an object. This classical theory by Rayleigh, as well as most of the recent
theoretical approaches [ Refs. 1,7,10,11,14,18 ], assume that the scattering target is very large
cempared to A, and few have discussed the case of moderately small sized rough particles ( e. g., in
the so-called resonance region).

Resonance-sized rough particles are abound, however, and indced the extreme difficulty
involed in solving the scattering problems led us to take an experimental approach for seeking
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appropriate answers [ Refs. 4,5 1. We refer the detailed microwave analoguc technique and the
data analysis to in our earlier reports [ Refs. C), 9,12,13,16 ] and describe in sec. I the
mathematics and computational procedures for evaluating the Mic scattering by gamma-size-
distributed spheres. The experiment-theory comparison is made in sec. III, and sec. 1V contains
the concluding discussion.

11. MIE CALCULATIONS FOR GAMMA-SIZE-DISTRIBUTED SPHERES

The gamma size distribution in this article is synonymous to the Standard Size Distribution by
Hansen and Travis [ Ref. 6 ], and represents a skewed Gaussian-like distribution of the sphere
number density a(x) as a function of the sphere size x:

n(x) = const. x"0" exp[— -f—} 2.1)
xb

¢

where x = 2na/A = spherc size parameter, b = effective variance of the distribution which gives
a measure of the spread of n(x) around the effective size parameter: x, = 2na /A. a, is the
effective particle radius and corresponds to a certain mean radius of the sphere ensemble.  The net
scattering from the spherc enscmble is asscsscd by integrating the scaltering contribution from
each x over the particle size limits x1 and x5, with n(x} in Eq. (2.1) as the weighting factor.

(1) Single Sphere Mie Formulas

The needed Mie scattering functions for cach x are copied from the literaure [ Refs. 3.8,15,17].
For example, the perpendicular and parallel components of the complex scattering amplitudes are:

A=

S, (x,m,0)= z 2nt1 {a,zt,(u)+b,,r,(u)} = 18,(x,m.0)| exp(io,) (2.2)
= n(n+1)
L

S, (x,m,0)= 3 2”“—{a,r,(y)+b,n,(p)}=I.sz(x,m,e Jlexplioy)  (2.3)

Al Mn+l)
where  ay, b, = Mic expansion cocfficients, with the maximum term at n = npy 4y,
w=cosd,  mu(W) = dPpu/dn,  Tu() = pry()-(1-u2dn,(wdy,
and  P,(u ) = n-th order Legendre polynomial of .

The respective phase shifts suffered by the scattered wave for the two components arc:
¢1(xm8 )=n/2-61(x,m0 ) 24)
¢o(x,m,0 )=mn/2 - 0x(x,m,0 ) (2.5)

At the forward beam direction where 8 = 0, these formulas simplify to:

S1(xm,0) = 55(x,m,0), and ¢1(x,m,0) = @2(x,m,0) (2.6)

and the complex extinction ¢fficiencies P and Q for the single sphere are found 10 be:
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A=Ay .
P=P, (x,m)= ;27 2(211 +1) Im{a,, +b,,} ()]

n=l

2 '
Q=0 (xm=75 Y (2n+1)Refa, +5,} (2.8)

a=]
The perpendicular and parallel scattering intensity components are simply defined as
i1m,8) = |51 (xm,0)|2

2.9)
in(x,m,8) = | So(x,m,0)! 2

2.10)
and similar to Egs. (2.6), these two components are equal to each other at 6 = 0.

The single-sphere expressions for other efficiencies: Qscq. Qgbs» and @py. and also the asymmetry
facor of scattering g can be written in terms of the Mie coefficients a,, , b, alone [ Refs. 3,8,15 ].

(2) Averaged Extinction/Scattering over the Sphere Ensemble

The complex extinction efficiency expressions for the gamma distribution are then

P(x,m) =" PCe,myn(x)dx/ [ n(x)ds @.11)

O(xm) = [ QCemn(x)dx/ [ n(x)dx 212

Similaﬂy. the averaged angularscattering intensity components over the ensemble follow from
Eqgs. (29) & (2.10) as

1,(x,,m,8)= [, (x,m,0)n(x)dx/ j: n(x)dx (2.13)

I,(x,m.8) = [ iy (r,m,O)n(x)dx /[ n(x)dx @2.14)

The total scattering intensity for unpolarized incident light and the degree of linear polarization
by the size distribution are respectively

S11=U1+12)/2 (2.15)

Pol.=(Il1-12)/811 (2.16)

Notice that there is no cross-polarized scattering intensity component for the sphere case.

The ensemble average on other efficincies Qgeq Qgbs and Qpp, and also on the asymmetry
factor g can be evaluated, as in Eqs. (2.12)-(2.14), by takiug in the proper integrands.

By virt.ae of the exponential dependence of n(x) on x in Eq. (2.1), the integration limits x; and
x7 are chosen in such a way that botn n(x) and n(x;) fall off from n(x,) by 4 orders of magnitude,

325




thereby contributing little to the integral. The smaller the magnitude of & is, the more rapidly n(x)
drops off from n(x,) as x departs from x, . The required number of divisicns, ngy, . between
xyand x7 for the numerical integration then decreases.  For example, the value b = 0.005 employed
in most cases represents a rather narrow size distribution so that xy = 0.75x, and x3 = 1.32x, .
ngjy = 40 was then found to give fairly good convergence for all the microwave target sizes.  We
took, however, ng;,=160 in this article to make sure the accuracy. Qur stable and cftficient Mic
algorithm [ Ref. 17 ] has allowed us to perform all computations via the 8-digit single-precision
arithmetic oh a VAX11/750 computer.

I1II. COMPARISON OF EXPERIMENT AND THEORY

Scattering from a rough particle differs strikingly from that of a smooth homogeneous sphere:
the former is particle-orientation sensitive, but the latter is not.  Yet, if we take the averge of
scattcring data over all random particie orientations at each scattering angle 0, the angular p. 'tcm
of the former is considerably smoother than the latter [ Ref. C) ].  Similar smoothing of 'h-
angular profiles seen as one goes from a single sphere to an ensemble of spheres [ Ref. .
motivated us to compare the scattering data for rough particles with Mie results for size-distribut
spheres in [ Refs. B) & C)). and, in a more detaiied way, also in this article.

The target parameters of the 10 rough particles arc listed in Table 1, where the averageu
microwave datz over random particle oricntations for each particle (marked Expt.) are compared to
the sphere-ensembile-averaged data ( marked Mie.). The microwave targets cosis. of two
refractive-index groups: m = 1.610-i0.064 (made of plexiglass) and m = 1.36-i0.005 (made of
expanded polystyrene). They were prepared cither by machining or by molding into t'vo shapes
(sce Table 1 inset) resembling roughened spheres but retaining cenain cylindrical roiational
symmetries.

The technical maticrs related to averaging the microwave data over random particle
orientations were explained in Ref. C).  Despite the microwave data were accumulated on a large
number of scattering angles (plus =44 orientations at cach angle), we had to skip the data taking at

some non-important angles due to the time constraints. In evaluating E e. g., these missed data
were filled in by the Lagrange-Aitken cubic spline tcchnique.  To compute the Mic data average
over the size-distributed spheres, the mean radius of the ensembe x,, Eq. (2.1), was taken cqual to
x, the size parameter of the corresponding rough-particle’s equal-volume sphere.

The comparison in Table I is made on Q,,, —Q;.Qm, and Q; ( the averaged extinction.
scattering , absorption and radiation pressure efficincies ); and also on E the averaged asymmetry

factor of angular scattering. Except for the @, comparison wiicre the smallness of the imaginary
part of refractive indux results in measurement precision uncertainty, the agrecment between

experiment and theory is fairly close. The closest match is scen in the @; and § comparisons,
which are also displayed in Figs. 1 & 2, respectively.  For the Mie curves in Fig. 1, the efffect of
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the effective variance of the distribution, b, on QT; is shown for several values of b, from which
we deduce that b = 0.005 appears to give the best fit.

Fig. 3 compares the detailed angular scattering profiles by experiment and theory, and is to
supplement the similar comparisons made in Refs. B) and C). 11, and I3 denote respectively the
scattering intensity when both the transmitter and receiver are vertically or horizontally polarized.
S stands Jor the total scattering intensity for unpolarized incident wave, and Pol. is for the degree
of lincar polarization. Among the three values of b in Fig 3, b = 0.005 again seems to give the
closest agreement between experiment and theory. The scatiering intensity comparison is excellent
at the forward angles, 8 < 50°, where most of the scattering energy is directed. Indeed, the

scattering in this angular range is the most dominant one in determining —Q:,- and E. and hence
explains why the experiment & theory agreed best on these two quantities.

1V. CONCLUSION

We summarize below the findings on extinction & angular scattering by a roughened-sphere-
like particle whose volume-equivalent-sphere size is near the first resonance peak in extinction:

(1) The particle volume, rather than the particle surface area, controls the scattering.

(2) Both the extinction and angular scattering depend on the particle orientation in the beam,
but if the averages are taken over the random orientations, the pattems can be qualitatively
predicted using Mie theoory for the equal-volume sphere with same refractive index.

(3) Further improvement on (2) is possible via averaging the Mie data over a gamma-size-
distributed spheres whose effective mean size x, is equal to the volume-equivalent size
parameter of the rough particle, and whose effective variance of distribution is:

b =0.005. Quantitadvely good experiment-theory agreements are then obtained,
particularly on Q: and on E

Schade and Smith's work [Ref. 11] also agrees with our conclusions (2) & (3), in that they
modeled by an ensemble of noninteracting spheres. Mukai and Mukai's scattering evaluation on
fine and coarse regoliths [ Ref. 14 ] also treat a coarse regolith as made of an independently
scattering ensembe of spheres.
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Table I Averaged efficiencies @:E;Qab:b_; and the asymmetry factor

Eover random orientations of the 10 rough particles. The microwave data

are compared with Mie calculations for gamma-size-distributed spheres
around the equal-volume sphere of each particle, with an effective
variance b=0.005. :

ID  Target x m=m’-im" Data Qext Qsca Cabs 6;: 8
Shape Source
1 A 3.650 1.610-i0.004 Expt. 3.78 3.58 0208 1.32 0.690
Mic 4.234 4,152 00818 1.373 0.6890
2 A 5.499 1.610-i0.004 Expt. 2.51 2.04 0476 148 0.506
Mic 2.352 2223  0.1284 1.287 04791
3 A 7.346 1.610-i0.004 Expt 2.49 2.13 0358 120 0.604
Mie 2,276 2.108  0.1690 1,013 0.5996
4 A 8.626 1610-i0.004 Expt. 2.89 2.56 0334 1.13  0.689
Mice 2,842 2650 0.1918 0.8784 0.7409
5 A 3.592 1.256-i0.003  Expt. 1.65 1.66 -0.01 0.340 0.788
Mic 1.519 1479  0.0394 0.2926 0.8288
6 A 5.184 1.388.iG.005S Expt. 3.90 3.85 0.050 0.754 0817
Mie 3.918 3.804 01142 0.7996 0.8198
7 B 4257 1.366-i0.005 Expt. 322 3.02 0.192 0.636 0.853
Mie 3.347 3.257  0.0900 0.6599 0.8250
8 B 6.069 1.367-i0.005 Expt 3.96 3.40 0563 1.09 0.845
Mic 3.840 3709  0.1308 0.7768 0.8258
9 B 7.694 1.360-i0.005 Expt. 343 295 0476 1,09 0791
Mie 3.136 2971  0.1644 08000 0.7861 )
10 B 12.882 1.353-i0.005 Expt. 2.34 1.64 0701 124  0.670

Mie 2232 1.970  0.2621 0.7463 0.7542

Note: x here denotes the volume-equivalent size parameter,

e & 1B - i e A 3l S o M A S Kt =
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Figure 1 Extinction Efficlency 0, vs Volume-Equivalent Size Parameter x,,

The microwave data (symbols) are the averaged data over random orientations of each rough

particle. Curves show the averaged Mie data over gamma-size-distributed spheres, several values

of the effective variance b employec. for the distributions are as shown.
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The microwave data (symbols) are the averaged data over random orientations of each rough
particle. Curves are the averaged Mie data over a gamma-size-distributed ensemble of spheres,
whose effective variance of distribution is b = 0.005.
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Microwave Angular Scattering Data (symbols) Averaged Over Random

Orientations of a Rough Particle with x = 4.257 and m = 1.366-10.005
Curves show the averaged Mie data over gamma-size-distributed spheres. 3 effective variances of
the distributions are employed: b = 0.001, b = 0.005 ( marked as s+ ) and b=0.025.
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A THEORY OF
HEATING OF VOIGT SOLIDS
AND FLUIDS BY EXTERNAL ENERGY
SOURCES
AND FLAME THEORY

D. K. Cohoon
43 Skyline
Glen Mills, PA 19342

September 3, 1992

The purpose of this paper is to develop both (i) a theory of laser stimulated vaporization
of droplets and (ii) a theory of internal heating resulting from vibration waves in linearly
responding elastic material, and (iii) flame theory. There are applications to sending in-
formation through clouds on laser beams and to the control of temperature in ultrasonic
welding, and improvement of the design of aircraft engines and the processes used for the
destruction of toxic chemicals.

We develop a theor; of thermal excursions resulting from ultrasonic welding in 3 and 7
dimensions, and interp.et it as an elastic interaction with damping in a Voigt solid. It is
hypothesized that with good control of temperature, one could achieve strong and uniform
welds by this process and greatly reduce the cost of manufacture of aircraft, and other alu-
minum structures. We consider equations describing the conservation of mass, momentum,
and energy coupled by an equation of state, and consider general mass, momentum, and
energy transfer relationships in a compressible body subjected to external stimuli. For the
Voigt solid theory, a linear elastic theory with damping forces, we show how some simple
local time averaging gives us a dovetailed system consisting of the elastic wave equations
whose solution provides the source term for an otherwise uncoupled heat equation. For the
more general theory of droplet vaporization we illustrate a general nonlinear energy equation
which includes a radiation energy conductivity term. We get a class of exact solutions for a
nonlinear flame front boundary value problem.
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1 INTRODUCTION

We use this concept of a material derivative and fluxes of mass, momentum, kinetic
energy, internal energy, temperature, and radiation to express the conservation of mass,
momentum, and energy in a Voigt solid that is stimulated by an elastic wave energy source.
Initially there are more dependent variables than there are equations. However, these equa-
tions are coupled by an equation of state which enables one to develop a semigroup for-
mulation which will predict pressure, density, velocity, and temperature distributions in the
interior of the stimulated solid. Local time averaging gives us a heat equation with an elastic
energy source term.

1.1 Vector Analysis

The material derivative of a function f is defined by

Df _0f 9f0r Ofdy, 010 )
Dt ~ 8t  0zodt Oyodt 020t -
Thus, the material derivative is, if we define,
- _ QE-O @-0 2{-0
v—ate,+8t ”+3t 2 (1.1.2)




given by
+ (V' grad) . (1.1.3)

where ¥ is the velocity of a point in the fluid.
1.2. External Energy Sources

Thermal energy is transferred by conductivity and internal radiation as well as radiation
from the surface. We assume that the elastic material is electromagnetically polyanisotropic,
a material more general than a bianisotropic material. The nonlinear Faraday Maxwell
equation is given by :

- - - a k - a k -y
curl(E):.F(E,H,-u, (?a't') E, (E) H) (1.2.1)

while the nonlinear Ampere Maxwell equation has the form

curl(H)=¢ (E‘,I?,- ‘e (%)k E, (%)k .. ) | (122)

For a general material where we have continuity of tangential components of E and H across
the boundary separating regions of coutinuity of electromagnetic properties the radiation
source term is

(gt-) Qin = (1/2)Re(div(E x H*) (1.2.3)
The radiation source term which provides a thermal energy is for a linearly responding

material given by
0
(E) Qin =

(1/2)Re {E" - (iwi+F)E+ E - & H*-
B (g + 8- (F E)+
Xan(r)U. I Etanyanﬁal |2} (1.2.4)

where if 0 is the surface containing the impedance sheet, then

/ﬂXanU. ' Etangcntial ’2 dv = An g, I Etangenﬁal !g dA (1-2'5)

defines the characteristic function xaqg of the surface supporting the impeda..gce sheet, € is
the permittivity, s is the permeability, o denotes conductivity, and & and § are coupling
tensors which appear in the linear Faraday and Ampere Maxwell equations, respectively.

Another internal source term is the Veigt solid damping term contribution which will be
derived in the sections which follow. Another source of heat is the friction of a mechanical
vibrator on the surface of the aluminum.
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2 Mass Transfer

We consider that through melting or movement of a fluid that matter can flow across
the boundary of a surface or that, in the case of an elastic medium, that it cannot, and
examine the consequences and mathematical representation of of these assumptions.

2.1 Continuity Equation

Assuming that in the Voigt solid or liquid interior that the rate at which mass is created
or destroyed is given by Qa and that the flux of mass across a surface is given by pv’ we see
that

%tﬂ + div(p¥) = Qum (2.1.1)

or if Qp = 0 that 5

div(p?) = — a‘t’ (2.1.2)

3 Momentum Equations

We examine the consequences of momentum conservation for the Voigt solid and for
liquids permitting the derivation of generalizations of the elastic wave equations and the
Navier Stokes equations.

3.1 Voigt Solid Momentum Conservation

In this section we derive the conservation of momentum by equating the rate of change
of momentum to the work done by the fluid pressure and the viscous forces and the body
forces -and the flux of momentum across the boundaries of test volumes. We define the
velocity as

U = uéy + véy + we; (3.1.1)

An important identity involving the dyadic product of two vectors Aand B is
div(AB) = div(A)B + (A - grad) R (3.1.2

Another important quantity is the tensor or dyadic quantity quantity obtained by taking
the gradient of a vector field given by

grad(d) = ¥ (%‘%) & (3.1.3)
1=1 '

Using equation {3.1.3) we define the symmetric sirain tensor in terms of the displacement
U of a point of a solid from its equilibrium position as

= grad(0) + grad(D)!
2
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(2 4 %)z @10

and cubical dilatation 8 is given by

e 2 (0U;

= div(U) = .=Ex (az'_) (3.1.5)

The Voigt solid elastic stress tensor is defined by

S =
= = 08  .00=
2.-pe + M1 + 2-#5{ + z\-&-I (3.1.6)
where 2 n

= Y Y (8ua&d) (8.1.7)

W
-t

=1 =1

If F is the force per unit mass, and p is the mass per unit volume, then the generalized equa-

tions of elasticity for a stress tensor 5 by Newton’s force is equal to mass times acceleration
law, or

&*U
o =
When the stress tensor S is given by the Voigt solid relationship (3.1.6)

F + div(3) (3.1.8)

Pom = PE T
ol
(A + p)grad(0) + pAU + (A + p)atgrad(O) + uA—aT (3.1.9)
where in Cartesian coordinates the Laplacian A is defined by
5 & 9\ -
AU = (52—¥+(—9z_§+ 61:,2,)U (3.1.10)

When the material through which the elastic wave is propagating is three or seven
dimensional, the displacement vector U is necessarily a curl plus a gradient given by

U = grad(¢) + curl(d;‘) (3.1.11)

This is true for any C™ f:nction defined on an open set in R® with values in C" for n equal
to three or seven, and can be seen from the following lemma ([19)]).

Lemma 3.1 If n is three or seven, then for every open set §) in R™ and for every vector
ficld F in C=(%2, C") there 13 a vector field G in the same space such that

F = grad(div(G)) + curl(curl(-G)) (3.1.12)

337




where sf n 1s equal to seven the curl is defined by the rule,

curl(E) =
" [(9Eiss 3E.'+1)
g—.; [(333-41 0zit3 *

OEiye OEi4q OEiys OFisd\] & \
(33:’+2 ax.'+a)+(6:c;+4 9zirs )| © (3.1.13)

where €; ss the unit vector in the direction of the ith coordinate azis in 7 dimensional space
and

E 7 =E; (3.1.14)
- If we then substitute equation (3.1.11) and equation (3.1.5) into (3.1.9) we deduce that

2

grad ( a&t‘f (A+2u)A¢ — (A +2i )Aa¢)

5t 5 (3.1.15)
where A is defined by (3.1.10). If we take the dot product of both sides of equation (3.1.15)
with the gradient of any test function P with compact support and integrate over an open
set containing the support of this test function, then the curl term disappears, since the
curl of a gradient is the zero vector. We get two wave equations with damping terms and
different wave speeds satisfied by ¢ and . The ¢ wave equation is

¢ 9¢

w2 7
= curl (pAzp + pAa¢ M)

Sz = (A+2)aé - (A+2- BA5 (3.1.16)
and 5 o0
8% = W

Pom = HAY + BA: (3.1.17)

with A being defined by (3.1.10). Note that if we set /i and A equal to zero, then we get
exactly the wave equations for the two types of observed Earthquake waves. If we Fourier
transform all terms of equations (3.1.16) and (3.1.17) with respect to time we see that the
Fourier transforms of both 1 and ¢ with respect to time satisfy a Helmholtz equation of the
form,

AV 4+ KV =0 (3.1.18)

where A is the Laplacian defined by (3.1.10) and & is a complex constant. Thus, except
for the rather complex boundary conditions these equations might be solved by standard
theories. The boundary conditions are highly mixed and require us to consider

¢ a region of welded contact between thc plates where both the displacement and the
stress tensor are continuous,

¢ a free surface where all the entries of the stress tensor are zero,
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e aregion of contact of the vibrator an< the surface of the material being welded where
the stress tensor is specified,

¢ the nonwelded contact region where the normal components of the stress and displace-
ment are continuous, and

e the region of contact of the workpiece and the clamp, where the normal components
of the stress are specified and the normal component of the displacement is fixed at
zero.

3.2 Generalized Navier Stokes Equations

For compressible materials, the momentum conservation equations are nonlinear. The
momentum flux is the dyad pvv’ and using the concept of conservation of mass or equation
(2.1.2) and equation (3.1.2) we see that

div(ptv) = div(p?) + p(V - grad)v

= —%tet'f+ p(7 - grad)v (3.21)

If p is the pressure, then the total stress tensor II is given by
O=-pe,e+ &5, +EE)+T7 (3.2.2)

The viscous stress tensor is given, using equation (3.1.1) for velocity, by the rule,

w\.. 2 (8u dv OBw\ .
(2“52 e’“"’s“(az*ay*az)”"’

ENCIIEAY
3H\8z "oy T Bz ) v

2 (Ou Ov 6w)ﬂ~
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We have seen that the tctal stress tensor, equation (3.2.2) is given in terms of the pressure
p and the viscous stress (3.2.3). The momentum equation is given by

2(6) = ~div(o7)

+ pf +div(I) (3.2.4)

Using equation (3.2.1) we see that equation (3.2.4) and equations (3.2.2) and (3.2.3) we see
that

o ~
by + p(T+ grad(d) =

pf — grad(p) + div(F) (3.2.5)

Using the concept of material derivative, equation (1.1.1) and assuming that f is the zero
vector, equation (3.2.5) reduces to

%‘{- = -%grad(p) + %div(?) (3.2.6)
4 Energy Conservation

There is internal energy, kinetic energy, work done by the viscous forces (equation 3 2.3),
pressure, and work done by the external body forces. The energy is transferred frora one
region of the heated Voigt solid to another by thermal conduction, kinetic energy flux, and
radiation conduction processes, and by the external elastic and thermal energy source. For
boiling liquids we consider viscous dissipation functions and a radiation conductivity term.

4.1 A Heat Equation for Voigt Solids

We begin by considering the Voigt solid stress tensor and then go on to analysis of energy
transfer where viscous dissipations functions are responsible for energy transfer.

We now consider specific energy per unit mass e within a stimulated Voigt solid, and we
let the velocity Vofa point be defined by

Y. 1
V== (4.1.1)

where U is the displacement from equilibrium. Then the total energy within a volume  is
given by

Ea(t) = /ﬂ {ple +V-V/2)} dv (4.1.2)
The time derivative of £q(t) is the rate of energy input into by
e body forces,

o the stress systen,
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the flux of kinetic energy across the boundaries,

thermal heat conduction,

internal heat generation,

radiative transport, and
o internal energy flux.

The above means of energy transport are all important in fluid flow, but in elastic media,
many of the terms may be ignored because there is no gross motion of material across
boundaries. With our periodicity assumption, many of the terms which are conceptually
small will be shown to vanish exactly when they are smoothed by using local time averages.
This local smoothing may be thought of as a transistion from a temporally microscopic to
a temporally macroscopic theory.

To get to the final form of the equation that we consider we shall assume that the integral
of the product of a slowly varying function and a highly oscillatory function is nearly zero.
The rigorous energy equation may be expressed in the form,

dit ([ete+P-P/2)d0) =
/ﬂ (F -V +div(3 - V) - (div(o(V - V/2)V))

+ div(K - grad(T)) + %tg + div(g, — epV))dv (4.1.3)
where the terms on the right side of (4.1.3) are respectively
o power transfer by body forces

o rate of kinetic energy transfer across the boundary

the rate of energy transfer by thermal conduction

the rate at which energy is created internaliy

the rate at which energy is transferred into the body by radiation,

the rate at which internal energy is transferred across the boundary by material mo-
tion.

From equation (4.1.3) we deduce an energy transfer equation,
Op Oe op\ [V -V L oV _
&)+ 0(3) + @ F) - (%) -

F-V + div(S-V) — div(p (V—Z—V-) V) + div(K - grad(T))




%2- + div(g,) — cdiv(pf}) - pV-grad(c) (4.1.4)

If a slowly varying time envelope is riding on a rapidly varying oscillation, (e.g. very
rapid vibrations and a periodic movement of the source of those vibrations or a steady
increase in temperature resulting from those vibrations) then we can use the local time
averaging operator

Prif)t) = F(t) = (Tl) ' frydr (4.1.5)

t"'Tp

then it is clear that

Lemma 4.1 If f is periodic with period T, and if Pr, is defined by (4.1.5) then for all real
t

Pr(f fY=0 (4.1.6)
This follows from the fact that

d [ f?
’ — — —
a-ne = (5o (41.7)
and the fact that if f is periodic with period T}, that then

FE+T) ~ fi(t) = 0 (4.18)

We shall use elementary vector analysis to reduce the energy equation (4.1.4) to a place
where we can use the Lemma and the local time average operation Pr, defined by equation
(4.1.5) to get a simplified heat equation. :

We shall use the identity,

div((A- B)C) = (A-B)div(C) + € -grad(A-B) =
(A- B)div(C) + € - {A x curl(B) + B x curl(A)
+ (A-grad)B + (B -grad)A)} (4.1.9)

which means that if we let 4 be equal to B be equal to € be equal to pV to deduce a
simplification of the divergence of p times half of the dot product of V with itself times V.
We see that

div(( —T) V) = (KZ—K) div(pV) + V -grad(V - V) =

1

(-—VT‘{-) div(pf;) + p-g- . {‘7 x curl(V) +

V x curl(17) + (V- grad)V + (V-grad)f;} (4.1.10)

But since

V- (V x curl(V)) = 0, (4.1.11)
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we see that equation (4.1.10) reduces to

— div( pu V) = V-V _ oV (V- grad)V) o (4112)
2 2 ot
The generalized momentum conservation equation,
%t‘z = —p(V grad)V + F + div(?) (4.1.13)
Using the equation (4.1.12), which simplifies the divergence of the kinetic energy flux, and
the result 7
oV - % = —pV.(V-grad)V + F.V + div(5).V (4.1.14)

of dotting all terms generalized momentum equation, (4.1.13), we deduce from (4.1.3) that

g£e+ 0c +_(V ‘7)-{-

ot 5t ot 2

{'-pV‘-((V‘-grad)V‘ + F.V + div(?)~f7}
= F.V + div(8 - V) +

{(‘72‘7) - - pV ((17 grad)V}

div(K - grad(T)) + %% + div(g,)

~ e(div(pV)) + oV - grad(e) (4.1.15)

where the terms in energy equation (4.1.15) that differ from the original energy equation
(4.1.3) are enclosed in curly brackets. We further simplify equation (4.1.15) by using the
mass conservation equation (2.1.2) and cancelling out terms that appear on both sides of
the equal sign of equation (4.1.15) to obtain,

( gft’) + div®) -V = divT-V) +

div(K - grad(T)) + %% + div(g,) — pV - grad(e) (4.1.16)
We now make use of the dyadic identity
div(S- V) - div(5)-V = (5 grad)-V (4.1.17)
Substituting equation (4.1.17) into equation (4.1.16) we obtain equation

pg; = (5-grad)-V + div(R - grad(T))
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i/ . -
3?— + div(g,) — pV - grad(e) (4.1.18)
We assume that p and the conductivity tensor K are time independent and that the internal
energy source @ and the radiative energy source ¢, are both identically zero and apply the
local time averaging operator Pr, defined by equation (4.1.5) to all terms of the simplified
energy equation (4.1.18) ([41], p 17) to obtain equation

+

p(%) = (5-grad) -V + div(R-T) - oV - grad(e) (4.1.19)

We now use the oscillation theorem which says that if a is smaller than b and if f is
continuous on [a, 5] then
LIM

n— oo abCOS(nt)f(t)dt =0 (4.1.20)

to say that to a good approximation since Visa rapidly varying function and e is a slowly
varying function we may, in view of (4.1.20), say that to a good approximation,

. pV-grad(e) =0 (4.1.21)

to obtain the first approximate heat equation,

de
P 5t

We now are prepared to exploit equation (4.1.6) and the relation

= (§-grad)-V + div(K - grad(T)) (4.1.22)

e = cT (4.1.23)

where e and T are respectively increases in energy density and temperature, and where ¢ is
the specific heat to obtain our final form of the heat e¢quation with an elastic energy power
density source term. We write for n equal to three or seven,

5= Y Suaéd (4.1.24)
=1 j=1
where
S = w (24 05 4 (0, O
() = 6.1:, .‘E,‘ 3:-,6t 6z.6t

i
U n QU
+ A(Za ")%.n + A(L ")6(.,) (4.1.25)

We now take the dot product of both sides of equation (4.1.25) with 1% obtaining,
(? . grad) V=
noano ] n aU[ .
(Z Y22 SiaEbiin 5 ) (Z 3,;61>
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n

n n ‘ 8 U
22 2 Siabiadimbing—: . (4.1.26)
i1 j=1 k=] £Ot

We apply the lecal time average operation defined by (4.1.5) to all terms of equation (4.1.26)
making use of (4.1.6) and substitute into equation (4 1.22). Thus, from (4.1.4) we derive
the heat equation,

pc (%—1;) - dz'v(?-grad(T)) =

. [ 9*U; O’U,- n ?

("J)EU (")
where the index set is defined by

J(n) = {(i,j):j 24 and {i,j}€{1,2, - -,n}} (4.1.28)

and the internal energy density increase e that appeared in our original energy equation
(4.1.4) is related to temperature increase by the relation (4.1.23), where c is the specific
heat and T is the temperature increase, which means that since the right side source term
of the heat equation (4.1.27) is positive that heat will be generated by vibrations in a Voigt
solid. '

4.2 Droplet Explosion by Lasers

We now consider energy transfer in a stimulated fluid. Using equation (3.2.3) we define
the viscous dissipation function ¢ by the rule,

d=ypu|2 Ou 2 + O 2 + w 2 +
—# Oz Jdy 0z
o , 0w\, (0w, v’
Oz Jy Oy Oz
ou  dw\® 2fou  Bv ow\’
+ (-a—z'-i-‘—?';) —5(5;+-a;+—a-;)] (4.2.1)
In these terms the energy equation is given by (Anderson, Tannehill, and Pletcher [1}, pages

188-189).
0 pU v
ot {”e 3 } =

— div(pe?) + f-U +

div(Tl - 7) - div ( 5 )

div(Fgrad(T)) + (5;) Qi + (5;) » (4.22)
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We define the enthalpy h as (see Anderson [1], p 188)

h=e+?2 (4.2.3)

P

where
e = the internal energy including quantum states,

p = the pressure, and
p = the density.

To telescope the terms in the energy equation we make use of the vector identity
grad(A- B) = A x curi(8) + B x curl(A) +
(B-grad)d + {A - grad)B (4.2.4)
to observe that
* [T-T )
pU gmd \ 2~ =
o7 {T X curli ¥ 4 7 grad(?)} (4.2.5)

Interchanging the dot and cross product in equiiion (4.2.5) we sce that since for an arbitrary
vector field ¢

T (¥ x curi(D)) == (¥ x 7) - curl(?) = 0§ (4.2.6)
it follows that o
pv - grad (1’2_”.) = pv+ {(7 grad)(T)} (4.2.7)

We can then collapse terms in equation (4.2.2) by observing that the momentum equation
implics that
7 p(v grad)v =
2
5t
+ pf ~ grad(p) - 7 + div(F) - ¥ (4.2.8)

Thus, using equation (1.1.1) and equations (4.2.7) and (4.2.8) the energy equation (4.2.2)
may be rewritten in the form,

Dh _ Dp
ot oDt
d 9
('a—t) Qc’n + (5‘{) Qout+
& — div(K grad(T)) (4.2.9)

where (3/0t) Qin is given by equation (1.2.4) and ® is the disgipation function representing
the work done by the viscous forces of the fluid. The term representing the transfer by
radiation from one part of the fluid to another is given by (Siegel and Howell [62], page 689)

R
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This equation may be interpreted as providing a radiation flux across a surface defined by

16073
kr— 30R ’

(4.2.11)

where ap is the Rosseland mean absorption coefficient (Siegel [62] , p 504 and Rosseland)
and where o (Siegel [62], page 25) is the hemispherical total emissive power of a black surface
into vacuum having a value of

o = 5.6696 x 10™® Watts / (meters® °K ) (4.2.12)

Using equation (4.2.10) and equation (4.2.2) we see that

De 0 a\ .
'5‘{ = (5{) Q:’n + (5;) Qout+
(~pdiv(¥)) ~ div(Kgrad(T)) + & (4.2.13)

where & is the viscous dissipation function given by equation (4.2.1)

4.3 EQUATION OF STATE

In the energy equation (4.2.13) the perfect fluid assumption ([1], p 189) would yield
e=c,T, (4.3.1)
where ¢, is the specific heat at constant volume, and if we define

¥y == (4.3.2)

where c, is the specific heat at constant pressure, then the pressure p, the internal energy e
and the density p are related by ([1}, p 189)

p=(y—1)pe (4.3.3)

5 SUMMARY

Using the definition of velocity (equation 3.1.1) and the equation of state (4.3.3) we see
that the number of equations is 5, allowing 3 equations for the three components of the
momentutn, and while the intial variables are p, u, v, w, p, ¢, and 7', we sec that since
the temperature T is related to e and since pressure is a function of p and e, we see that
there are now exactly 5 unknowns. This means that locally within the Voigt solid, we can
describe the future state of the Voigt solid as a semigroup acting on the conditions at time
to. If we want to know the value at time t and S ic defined so that the solution at time t is
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given by S(¢t —¢;) acting on the values at ¢ = ¢ of the density p, the velocity components
u, v, and w, and the temperature T. The semigroup relation,

o(t) p(to)
u(t) u(to)
v(t) | =8(t—-t)| v(t) (5.0.1)
w(t) w(to) J
\ T(t) T(to)

tells us how to get future values of the density p, the three velocity components, and the
temperature at time ¢ when the values at time ¢, are known.

6 FLAME THEORY

Flame theory can be considered as a system of partial differential equations ([43)) in-
volving

e conservation of mass,

o species creation, diffusion, and transport,
¢ conservation of momentum,

e conservation of energy, and

o equations of state.

We need several defintions of terms for the formulation of the equations. The variables are

t = time
T = temperature
p = density of mixture
Y = concentration of species k
cp = specific heat of the mixture
cpsy = specific heat of species k
u = velocity ol mixture
Dy = (jk) entry of species diffusion tensor
Vi = diffusion velority of species k
v = r?.4 equals the stream function
for transport down a tube
described in cylindrical coordinates, where
r = the distance from the axis of the cylinder, and
%ﬁt‘ = molar rate of production of species k.

Here, the specific heat of species k and the specific heat of the mixture are related by ([36])

% = ) (p—;) " Clnk) (6.0.1)

k=1

where p; is the density of species k
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6.1 Multicomponent Diffusion

One of the more recent developments are the concepts ([22], [43]) of mole fraction dif-
ferential pressure gradients with the idea that even as a gas is moving along a pipe or a jet
aircraft engine with velocity & the species or molecular entities are diffusing with individual
velocities V; as a result of weighted mole fraction pressure gradients d and temperature
gradients. If we suppose that

p = pressure
X: = mole fraction of species k, and (6.1.1)
Y: = mass fraction of species k

then the weighted mole fraction differential pressure gradient is ([43]) given by

d. = grad(X.) + (Xi - Yi) - grad(p) (6.1.2)

and if we let

Wi = molecular weight of species k
W = mixture average molecular weight (6.1.3)
DT = the species k thermal diffusion coefficient
then the Dixon - Lewis species k diffusion velocity ([22], {43]) (for k running from 1 to N)
is given by
- 1 N = DT \ (grad(T)
= (). D ndi ] — 1.
Vi (ka) (J:El W, D5 ,) (p~ Yk) ( T ) (6.1.4)

Then using equation (6.1.4) we see that the species k diffusion flux is given by

k=Y Vi (6.1.5)

The overall gas velocity contribution of the species k flux is given by

—

Ji = p- Yot (6.1.6)

6.2 Conservation of Species and Energy

Using the species diffusion flux (6.1.5) and the species transport flux (6.1.6) and the idea
that if the partial derivative with respect to time of w; is the molar rate of production of
species k from chemical reactions that then the species conservation equaticn is

aY . - . - a
—(—9—; = div(ys) + div(p Yy -7) + -gt—k (6.2.1)
where the species diffusion flux j is given by equation (6.1.5)

The chemical kinetics and species creation processes are an integral part of flame model-
ing and can be used to describe soot particle nucleation and growtn and to understand the
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type and kind of dangerous materials that can be formed during burning processes (Fren-
klach and Wang, [29]); in particular we can describe the formation of the PAH, puivcyclic
aromatic hydrocarbons nucleation and coagulation or growth in premixed flames ([28], [30],
(31], [33)). Microscopic equations can account for surface growth of soot particles; the soot
formation mechanisms, in spite of intensive study have only recently come to be understood.
As a consequence we better understand just how very dangerous to health these particles
really are.

We now turn our attention to the development of energy flux using the concept of
enthalpy which is defined by equation (4.2.3), the universal gas constant, R, and the concept
of the partial pressure p; of species k and the concept of the energy e, possessed by species
k to define the enthalpy of species k and the total stress tensor II defined by (3.2.2) to give
an energy flux defined by

J=1
N/ RT N\ r
,g(wkx )PL-d +
(p-e)i + (@) 7+ 04 (6.2.2)
Then if we define
aQinternal . s .
5 = rate of chemical and radiative heat production

to be the heat produced by chemical reactions and the electromagnetic radiation energy
density term (1.2.3)

0Qous
ot

which includes terms like the one on the right side of equation (4.2.10) describing radiation
leaving from flames to all other parts of the reacting system. The energy equation is given

by
0 T .
3 {pe +p (%E)} = div(q)

aQiﬂternal aQaut
& T o

= the rate of radiative transfer of heat to the outside

+ (6.2.3)

6.3 Cylinder Flame Front Models and Homotopy

Margolis and Sivashinsky ([49]) considered a flame front in a right circular cylinder whose
boundary is the surface defined by
z = ®(r,0,1) (6.3.10
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where ® satisfies the nonlinear partial differential equation ([49], p 100)

%‘:’i + £ (grad(®) - grad(®)) + A(®) + 4:4%8) - Wo = 0 (6.3.2)

where the parameter c is equal to one and where ([49], p 100)
Wo = -~ G- (2~ 9) (6.3.3)

is a scaled diffusion velocity with G ([49]) denoting a scaled buoyancy parameter and with &
denoting the average value of ® over the cross section of the cylinder defined by the formula

_ 1 2 R
3 = (Tm) [ [ #(r,8,trdras | (6.3.4)

where R is the radius of the right circular cylinder, and we assume that on the sides of this
cylinder the flame front ® satisfies the boundary conditions

a® 0
5 =0= (5;) Ad (6.3.5)

and since in cylindrical coordinates the laplacian A is given by

0*® (1) o0d 1 (6%) + 0*®

w2\ T aE\Ge) t e

A® = (6.3.6)

to see that if we remember that the Bessel function J,(z) satisfies

(d_‘j-;)zjﬂ(z) + () () + (1-5)aw =0 s

and we choose

® = exp(iv8)J,(Ar) (6.3.8)
then the easily observed relations that
Aleap(ivd) - J,(Ar)) = — A?.exp(ivd)- J,(Ar) (6.3.9)
and
A¥exp(iv8) - J,(Ar)) = M. exp(ivh)- J, (Ir) (6.3.10)

enable us to find simple equations that must be satisfied by A, G, wuu R in order to cause
(6.3.8) to be a sclution of equation (6.3.2) when c is equal to zero. For each value of the
cylinder radius there are a discrete collection of A which satisfy the boundary conditions
(6.3.5) which are in view of (6.3.5) and (6.3.9) the condition that

J(AnR) = 0 (6.3.11)

If equation (6.3.11) is satisfied, both boundary conditions embodied in equation (6.3.5) are
satisfied. If we sclect one of these values of A we sce that there is a simple relationship
between R and G that must be satisfied in order that the expression (6.3.8) satisfy equation
(6.3.2) and the boundary conditions (6.3.5). We can move along a path from these c equal
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to zero sclutions of (6.3.2) using a Maclauren series expansion about ¢ equal to zero, that
involves soiving linear equations at each stage to move along a homotopy path from c equals
zero to ¢ equals one.

However, we give here a direct solution of the ncnlinear problem by assuming that we
can represent tie stationary or nonstationary flame front ® as a Fourier series of the form

& = Y (Ci(t)-: exp(ikvb) - Fi(r)) (6.3.12)
k=1
Applying the Laplacian A defined by equation (6.3.6) to both sides of equation (6.3.12) we
see that
o0 !
Ad = Z(Ck(t)-e:cp(ikue)-[ v(r) + kar) + (F:(zr)) '(-'Vz'kz)]) (6.3.13)
k=1
As we also need to compute A?@ we begin by observing that
O\ . 1(O\| py = pom Fy'(r)
[(E) + ;(-a—r):l v(r) = F'(r) + E— (6.3.14)
and then that
o\* . 1(8\| E() _ R() _ F() _ F()
@) +HF) A - m . K o
and also that
a\" . 1({8\| Flr) _ Fir) F(r) Fi(r)
[(5) + - (5;)] T T T T 3- .3 + 4- v (6.3.16)

Collecting terms using equations (6.3.14), (6.3.15), and (6.3.16) we see that since

A [c:cp(-—ikug) . {F:(T‘) + I:fr) + (-—V2k2)Fk(1‘) }]

=

[(g;)z + -,1:(56;) + (—u’kz)} : [czp(—ikua).{F,:'(r) + Fir(’) + (*V’k:g)Fk(r)}]

‘ (6.3.17)
" A[exp(-ikue)-{F:(r) e (“”2’°:ij(")}] _
F"(r) + 2 (I—?':—I}r—)) — (1 + 2.7 K. (fé(z_’"_)) +

(1 + ZVQ’CQ)'(E':;Y_)) - (4"’2"“2*1/"-“)-(—@%52) (6.3.18)

For a class of solutions we can see how to systematically make the transition from the
solution of the problem for ¢ equal to zero to the solution of the problem for < equal to one
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or any other nonzero number by substituting the series under the assumption that v is an
integer which means that @ is zero. As a result of the substitution of (6.3.12) into (6.3.2)
making use of equation (6.3.13) and equation (6.3.18) we find that the relationship between
the coefficients is that of a nonhomogeneous linear parabolic equation that is exactly solvable
in terms of a series of Bessel functions which satisfy the boundary conditions as at each stage
the nonlinear terms in the equation involve previously computed functions which at the kth
stage, for k larger than one, we expand using eigenfunctions & ;)(r) associated with an
eigenvalue A ;) such that

, alraN 1/
£(k,j)(1') =0 = -6_1‘ [(E) + ; ('a—r)] E(k',-)(r) (6,3,19)

We shall construct a fourth order differential operator with eigenfunctions satisfying (6.3.19)
by considering the linear differential equation that enables us to solve the nonlinear problem
by expressing new coefficients in terms of previously computed coeflicients and previously
computed functions is given as

i(ci(t)czp(iuka)pk(r)) -

k=1

!
—

k=2 1J

T
I

© |k
§{2 [—‘(C ()Ck-5(t) [F{(r)Fi;(r) = v%- (k- j)F,-(r)Fk..J-(r)])ezp(iuk&)]}

+ Z{Ck(t) [Fl:’(r) + Fl:fr) Fk(7)

(—v? )] e:z:p(iuke)} +
oot + B 45 i (0)
k=1
+ (1+42-02-k%) (El:;(g) -~ (42 K? (Fk(r))] ea:p(wke)}
s . 1 2 R ' —
G (kX:; Ci(t) [Fk(r) <exp(ivk8) — (W_Rz) /0 ([) F(r)-r. dr) e:cp(wkﬂ)de])
(6.3.20)

We can get a representation of the Fi(r) and the expansion coefficients Cy(t) by solving
nonhomogeneous linear equations. To solve this we introduce singular ordinary differential

operators L by the rule ) \
d 8(d
wee(z) +3(5) ¢

14202 k2 d\* (1422 K\ (d
o (R (o ) (g
—py?. )2 L2 k2 4, 14
{( Vrzk) R kr4 vi- kY N G’} (6.321)
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We require thal the eigenfunctions £ ;) satisfy, in addition to the boundary coudition,
(6.3.12), the relationship

L€y + Axp€ii) = 0 (6.3.22)
If we use the definition (6.3.21) we can simplify the differential equation (6.3.20) after using

orthogonality to
Ci(t)Fi(r) =

k-1
5 [Z (Cit)Cw-s(t) [F(r)Fis(r) = %5 - (k- j)F,-(r)Fk-,-(r)])}

J=1
+ Cu(t) - Le(Fie)(r) (€.3.23)
Continuing we define a scurce term Si(t,r)for our linear ordinary differential equation by

the rule,

Si(t,r) =

k-1
[Z (CoOYCk-i(8) [FUrVFL_(r) ~ v - (k - j)ﬂ(r)Fk-j(r)])} (6.3.24)

J=1
which means that if we substitute (6.3.24) into (6.3.23) we obtain the relation

CL(t)Eu(r) = Cu(t)LiFi(r) + % - Si(t,r) (6.3.25)
for k that are two or larger. At this stage we usc cigenfunctions E; ;) with eigenvalue A j)

of the linear operator L, which satisfy the boundary conditions (6.3.5) to write under the
assumption that

Sk(t,r) = is(k.j)(t)'g(k.j)(") (6.3.26)
and j
F(r) = ia(;_.,j)-f(k',-)(r) (6.3.27)
i=
to further reduce (6.3.25) to
Ci(t) - aprsy = (=Aka))Oult) @y + 5 - Sika() (6.3.28)

This is simply a first order linear ordinary differential equation in the time variable ¢ which
completely determines the functions

t — Ck(t)-a(k,j) (6329)

and consequently, in view of (6.3.27) and (6.3.12) the flame front ¢ satisfying (6.3.2) and in
view of equation (6.3.19) the boundary conditions (6.3.5). This gives us a means of moving
aloug a homotopy path from ¢ equal to zero to ¢ equal to one and to obtain exact solutions
of the full nonlinear flame front equation (6.3.2).
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