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NONLINEAR THOMSON SCATTERING OF INTENSE LASER PULSES

FROM BEAMS AND PLASMAS

I. INTRODUCTION

The development of a compact source • ' ble, near monochromatic, well coll-

mated, short pulse x-rays would have profouL 'ide ranging applications in a number

of areas. These areas include x-ray spectroscopy, microscopy and radiography, medical

and biological imaging, x-ray analysis of ultrafast processes, and x-ray holography. One

method for producing such an x-ray beam is by the nonlinear Thomson scattering of intense

laser pulses from electron beams and plasmas [1-9]. Current methods of x-ray production

include third generation synchrotron sources, which are based on high energy electron

storage rings and undulator magnetic fields [10-17]. Alternatively, x-rays can be produced

by a laser synchrotron source (LSS), based on nonlinear Thomson scattering, in which the

magnetic undulator is replaced by ultrahigh intensity laser pulses and the electron storage

ring is replaced by a compact electron accelerator of substantially lower energy or by a

stationary plasma [5-7]. The compactness of the LSS makes it an attractive alternative,

particularly at high x-iay energies (> 10 keV), where conventional synchrotrons require

very high energy (> 5 GeV) storage rings. To generate high peak fluxes of x-rays in an

LSS, ultra-intense laser pulses are necessary. Recent advances in compact, solid-state,

short pulse lasers based on the method of chirped-pulse amplification [18-20], provide the

technology for generating the ultrahigh laser intensities required by an LSS.

In the following, a comprehensive theory is developed to describe the nonlinear Thom-

son scattering of intense laser fields from beams and plasmas. This theory is valid for

linearly or circularly polarized incident laser fields of arbitrary intensities and for electrons

of arbitrary energies. Explicit expressions for the intensity distributions of the scattered

radiation are calculated and numerically evaluated. The effects of the space-charge electro-

6tatic potential are included self-consistently and non-ideal effects, such as electron energy

spread and beam emittance, are discussed. These results are then applied to possible LSS

configurations.

An LSS [5-7], using either an electron beam or a plasma, potentially has a number of

Manuscript approved July 2, 1993.
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attractive features: (i) tunable and near-monochromatic x-rays can be obtained over the

entire x-ray spectrum (from ultraviolet to gamma-rays), (ii) the x-rays can be produced

in ultrashort pulses (-,, 1 ps), (iii) a much lower electron beam energy (,-, 300 times less)

is needed to produce a given photon energy than in conventional synchrotrons, (iv) the

device can be compact and inexpensive compared to conventional synchrotrons, (v) much

higher energy photons ( > 30 keV) can be produced than in conventional synchrotrons, (vi)

the bandwidth can be small (,-, 1%) and is not limited by the length of the undulator as in

conventional synchrotrons, (vii) consequently, narrow bandwidth x-rays can be obtained

with long coherence lengths, (viii) the x-ray polarization is easily adjusted by changing the

incident laser polarization, and (ix) high peak photon flux and brightness can be obtained

using current technology. The capability of the LSS in yielding high average fluxes and

brightnesses is currently limited by the repetition rates of high intensity laser systems.

An important parameter in the discussion of LSS radiation/Thomson scattering is the

dimensionless laser strength parameter, ao, which is analogous to the undulator strength

parameter, K, frequently used in conventional synchrotron radiation literature. The laser

strength parameter is the normalized amplitude of the vector potential of the incident laser

field, ao = eAo/mec 2 , and is related to the laser intensity, Io, and power, Po, by

ao = 0.85 x 1O- 9 A0 [lim] 4/2 ~ cm] (1)

and Po[GW] = 21.5(aoro/Ao) 2, where A0 is the wavelength and r0 is the spot size of

the laser (a Gaussian transverse profile is assumed). When ao <K 1, Thomson scattering

occurs in the linear regime and radiation is generated at the fundamental frequency, W = w,.

When ao > 1, Thomson scattering occurs in the nonlinear regime and radiation is generated

at harmonics in addition to the fundamental, i.e., w = w, = nwl, where n = 1,2,3... is

the harmonic number. Compact laser systems based on chirped-pulse amplification can

deliver modest energy ( > 10 J), ultrashort ( < 1 ps) laser pulses at ultrahigh powers ( > 10

TW) and intensities ( Z 1018 W/cm 2 ). For 0o - 1 pm, a0 > 1 requires Io Z 1018 W/cm 2.

Hence, laser systems which can be used to experimentally explore Thomson scattering

in the nonlinear regime currently exist. Furthermore, these powers and intensities are

sufficient to produce ultrashort LSS x-ray pulses with high peak fluxes and brightnesses.
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In the LSS, two avenues exist for generating short wavelength radiation. The first is to

exploit the relativistic doppler factor which arises from backscattering laser radiation from

a counterstreaming relativistic electron beam. In this case, the wavelength of the funda-

mental (n = 1) backscattered radiation along the axis is given by A = AoyoI2/ [(1 +'3o)Yo] 2 ,

where 'yo = (1 - /3o2)-1/2 is the initial relativistic factor of the electron beam (prior to

the laser interaction), /3o = vo/c is the initial normalized electron velocity and -y. =

(1 + a0/2) /2 . Hence, for -yo > 1 and ao < 1, A _ Ao/4-y2 and extremely short wave-

length radiation can be generated. In practical units, the photon energy, Ep = h&, and

wavelength, A, of the fundamental backscattered radiation are given by

EpkV1 = 0.019Eb2[MeV] (2a)

(1 + a2/2)Ao[Mm]'

(1+ a 2/2)
S[A] = 650Ao[zm 0[m (2b)E. [Mev]

where Eb is the electron beam energy and -y02 > 1 has been assumed. For a conven-

tional synchrotron source [9-16] using a undulator magnet, A = X,, /2-y,2, or E,[keV] =

0.95E2[GeV]/A1, [cm] and ý[A] = 13.0 [cm]/E2[GeV], where X. is the undulator magnet

wavelength and K 2 < 1 and y02 >» 1 have been assumed. Since the laser wavelength in the

LSS (Ao " 1 Mm) is more than four orders of magnitude shorter than the wavelength of a

conventional undulator magnet (A,, > 4 cm), a much lower energy electron beam (- 300

times less) can be used in the LSS to produce a given photon energy. Hence, compared

to a conventional storage-ring based synchrotron, the LSS can be a compact, inexpensive

device, particularly at high photon energies (Ep > 10 keV). As an example, consider syn-

chrotron sources producing 30 keV photons (A = 0.40 A), assuming a2 <« 1 and K 2 < 1.

In a conventional synchrotron using a A,, = 4 cm undulator period, electron beam energies

of Eb > 12 GeV are needed. In the LSS using a A0 = 1 I= laser, Eb = 40 MeV, which is

typical of the energies available from compact accelerators, such as rf linacs or betatrons.

The second avenue to short wavelengths is to exploit the harmonic frequency upshift

factor, Ad = l/n, where A1 is the wavelength of the fundamental. For a»2 > 1, numerous

harmonics are generated. The result is a near-continuum of scattered radiation with

harmonics extending out to some critical harmonic number, n ,,- ao, beyond which the
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intensity of the scattered radiation rapidly decreases. Hence, an ultra-intense laser incident

on a stationary plasma (0o = 1) can generate short wavelength radiation, A = Ao/n. The

critical photon energy for a plasma-based LSS is given by

Ep[eV] = 1.24n,/Ao[ [pm], (3)

where n, - a3. Assuming laser technology limits a0 < 10 and Ao "-, 1 im implies that the

scattered radiation is limited to A > 10 A and Ep < 1 keV. Hence, a plasma-based LSS is

limited by present laser technology to the soft to medium x-ray regime.

Tunability of the LSS radiation can be achieved by adjusting either the electron energy

or the laser intensity, as indicated by Eqs. (2) and (3). Neglecting thermal effects, it can be

shown that the linewidth of the scattered radiation for a particular n harmonic of frequency

w," is given by Aw/wn = 1/nNo, where No is the number of laser periods with which the

electron interacts. In principle, since No is typically large (No > 300), narrow linewidth

x-rays can be generated. In practice, the linewidth will be limited by thermal effects.

For example, the normalized energy spread associated with an electron beam, AE/Eb,

limits the linewidth to Aw/w=, . 2AE/Eb. An additional advantage of generating LSS

radiation using an electron beam is that the scattered radiation is well collimated about the

backscattered direction (i.e., the direction of the electron beam). For an electron beam with

-yo > 1 and ao < 1, the backscattered radiation with linewidth Aw/w !_ 1/No is confined

to a radiation cone of half-angle 0 = 1/('yox/Noo). For a plasma with ao > 1, the radiation

is scattered over a much larger angle. When ao > 1, numerous harmonics are generated,

and tunability is achieved by filtering the scattered radiation. An additional advantage

in using a plasma is that very high electron densities can be achieved in comparison to

densities obtainable in electron beams. The scattered power, as well as photon flux and

brightness, scale linearly with density, hence, the use of high electron densities is favored.

Thomson scattering theory is a classical description which is valid provided the scat-

tered photon energy is small compared to the electron energy, i.e., hw < -yomec2 . For a

plasma, this implies photon energies less than 500 keV. For an electron beam with -yo > 1,

Ao = 1 1Lm and ao < 1, this implies -Yo < 105, i.e., electron beam energies less than 50

GeV. Nonlinear Thomson scattering of intense radiation from a single electron initially
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at rest was examined analytically in considerable detail in the classic work of Sarachik

and Schappert [1]. (This work was recently reexamined by Castillo-Herrera and Johnston

[9].) However, the important effects of the space charge potential [2,21], which arises in

high density plasmas, was neglected and scattering from electron beams was not discussed.

Waltz and Manley [2] also discussed Thomson scattering from plasmas and pointed out

that the space charge potential was important in preventing the drift of electrons in the

direction of the incident laser. However, explicit expressions for the scattered intensity dis-

tribution for arbitrary a0 were not calculated and scattering from electron beams was not

considered. Many authors 110-17] have analyzed the production of synchrotron radiation

in the interaction of relativistic electron beams with static magnetic undulator and wiggler

fields, a process which is somewhat similar to Thomson scattering. These analyses require

that K/-yo < 1 (analogous to ao/-yo <• 1), an assumption which need not be made in the

analysis of nonlinear Thomson scattering. In this paper, nonlinear Thomson scattering

of intense laser fields from electron beams and from plasmas is examined analytically and

numerically. This analysis is valid for linearly and circularly polarized incident laser fields

of arbitrary intensities and for electron beams of arbitrary energies (up to the limits of

classical theory). The effects of the space-charge potential are included self-consistently

and various non-ideal effects, such as electron energy spread, are discussed.

The remainder of this paper is organized as follows. In Sect. H, the orbits of electrons

in intense laser fields, both linearly and circularly polarized, are calculated including the

effects of the self-consistent electrostatic potential. Explicit expressions for the scattered

intensity distributions are derived in Sect. III. These are general expressions, valid for

electron beams and plasmas, and for arbitrary laser intensities. Properties of the scattered

radiation are examined in Sect. IV, including a calculation of the total power radiated from

an electron beam or a plasma, an examination of the resonance function and the behavior of

the radiation spectra in the ultra-intense regime, i.e., ag» 1. Various non-ideal effects are

discussed in Sect. V, including the effects of electron energy spread, electron beam energy

loss, ponderomotive density depletion and plasma dispersion. These results are applied to

possible LSS configurations in Sect. VI, and specific examples of an electron-beam LSS

and a plasma LSS are presented. Section VII is the conclusion.
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II. ELECTRON MOTION IN INTENSE LASER FIELDS

The laser field and space charge field of the electrons can be represented using the

normalized vector and scalar potentials, a = eA/m.c 2 and = e'I/mc 2 , respectively,

where me is the electron mass and e is the magnitude of the electron charge. In the

Coulomb gauge, V a = 0 implies a. = 0 in one-dimension (1D). Then, a1 represents the

laser field and 4 represents the space-charge field of the plasma. The normalized vector

potential of a laser of arbitrary polarization is represented by

a = (aol/x,) [(1 + 6,)1/ 2 cos koi e. + (1- 6P)1/ 2 sin k0o7 ey], (4)

where ko = 27r/Ao is the wavenumber of the laser field, 7 = z + ct, bp = 1 for linear

polarization and 6P = 0 for circular polarization. Using this representation, (a2 )8 =

a2/2 for both linear and circular polarizations, where the subscript s signifies the slow

component (an averaging over the laser wavelength). Hence, the average laser power

Po , (a 2)8 is constant for a given value of a0 , independent of polarization, i.e., Po[GW] =

21.5(aoro/Ao) 2 , assuming a Gaussian transverse profile of the form lal - exp(-r 2 /ro). In

the following, the laser field is assumed to be moving to the left (-z direction) and the

electrons are initially (prior to the interaction with the laser field) moving to the right (+z

direction) with an initial axial velocity v. = vo (see Fig. 1).

The electron motion in the fields a and 4) is governed by the relativistic Lorentz

equation, which may be written in the form

1 du U V- Iaa -o3x (V x a), (5)

where /3 = v/c is the normalized electron velocity, u = p/mec = -yo/ is the normalized

electron momentum, and -y = (1 +u 2 )1 / 2 = (1 _#/2)-1/2 is the relativistic factor. Assuming

that the laser field, a1 , and hence the quantities ,), 01 u, and -y, are functions only of the

variable 77 = z + ct, Eq. (5) implies the existence of two constants of the motion [21,22],

(u.L - a±-) = 0, (6a)

d (- ' .(6b)•-•(y +! uz - 4)) = 0. (b

d77
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Equation (6a) is conservation of canonical transverse momentum in ID, and Eq. (6b) can

be interpreted as conservation of energy in the wave frame. Equations (6a) and (6b) can

be integrated to give [21,22]

UL = aj, (7a)

"T + U. - = -yo (1 +00l), (7b)

where, prior to the laser interaction (a. - 0), u.- = 1i- 0, -y = -Yo and u. = -yoflo have

been assumed. The two constants of the motion, Eqs. (7a) and (7b), completely describe

the nonlinear motion of electrons in the potentials a and 4'. They allow the electron motion

to be specified solely in terms of the fields, i.e.,

h 2 - (1 + a2) (8a)
2•+(+ a2)1

ho h (1+a)'(a

"7 =(h 2 + 1 + a2 )/2ho, (8b)

= a/-y, (8c)

where ho = yo(1 +/,3 o) +4 .

The self-consistent space-charge potential of the electrons, 4, can be determined using

the continuity equation and Poisson's equation,

1C (9tc Ot ±• V. (nLd 3) = 0, (a

V 2 q= = k2(n./no - 1, (9b)

where n. is the electron density, kp = wp/c, wp = (47re 2no/me) 1/ 2 is the plasma frequency

and no is the ambient density. Equation (9b) assumes that the initial equilibrium (prior

to the laser pulse) space-charge potential, 40(), is negligible. For a plasma, a neutralizing

background of stationary ions is assumed, i.e., V(O) = 0. For a long, uniform electron

beam of radius rb, 14(<)I •< k2r2/4 = i'b, where v-b = Ib/IbO is the Budker parameter, Ib is

the beam current, and Ibo[kA] = 1703.. Since vb <K 1 for beams of interest, 0(°) can be

neglected. Assuming ne = ne(77), Eq. (9a) implies [21,22]

d [hie(1 + i3)] = 0, (10)
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hence, ne = no(1 + )3o)/(1 + 0,z). Substituting this result into Eq. (9b) and using Eq. (8a)

give [21,22]

d2 2 k ( -+a2) 1 (11)S-

where V = 4)/1'o(1 + 8o) and kP = kP/_Y312(1 + 00).

Equation (11) describes the self-consistent electrostatic potential induced by the in-

teractioD of the laser field. The solution for T is, in general, highly nonlinear. Simple

solutions can be obtained in two limits in which the characteristic temporal variation of

the laser envelope, rL (typically the laser rise time), is compared to an effective plasma

period, (ckp)- 1. In the short-pulse limit, rL < (ckp)- 1 , Eq. (11) implies IIF < 1 provided

ag < 2/crL k, where ao is the amplitude of the laser pulse, e.g., a = ao cos ko0 7. In the long

pulse limit, -rL > (ckp)-', the left side of Eq. (11) can be neglected and it can be shown

that I = (1 + a2)/ 2 - 1, where the subscript s signifies the slow part. Throughout the
following, the quantity (1+a2)1/ 2 , (1 2a2/2)1/ 2 will be approximated as nearly constant,

i.e., Id(a2 )./dlj <:< ko(a 2 )., which implies that Lo > Ao, where Lo = c7L is the length of

the laser envelope.

For applications which utilize intense lasers with pulse lengths rL - 1 ps, the short-

pulse limit is relevant to interactions with electron beams as long as the beam density is

sufficiently low, no/-y3 <« 1016 cm- 3. On the other hand, the long-pulse limit is relevant

to interactions with stationary (-Yo = 1) plasmas as long as the density is sufficiently high,

no > 1016 cm- 3. Under these conditions, the parameter ho = -yo(i + ,3o)(1 + 4I) is given

by
-yo(1 + 13o), e-beam (short pulse),

o= (12)
o (1 + a2/2)1/ 2 , plasma (long pulse).

Notice that in the limit of a low-density plasma with no < 1016, I14 << 1 and ho = 1.

This corresponds to the single particle limit considered in Ref. [1].

The electron orbits, r(i7) = x e. + y ey + z e., can be calculated as a function of 77

using Eqs. (8a-c) and the relation

I dr dr- / = (1 + l•-)(13)c d- 77

8



which gives dr/di7 = u/ho. For a linearly polarized laser of the form given by Eq. (4) with

6p = 1, the electron orbits are given by

u. = ao cos koi7, (14a)

uy = 0, (14b)

U" = [h2 - (1 + a2 cos2 koi1)] /2ho. (14c)

Hence,

x(7) = xo + rl sin kovn, (15a)

Y(7) = Yo, (15b)

z(7) = Zo + 01 7 + Z± sin 2ko77, (15c)

where additional terms of order Ao/Lo have been neglected and

r, = ao/hoko, (16a)

zi = -a 2/8ho2ko, (16b)

= (1 - 1/Mo)/2, (16c)

with Mo = ho/(1 + a0/2), i.e.,

1 + 13o) 2/(1 + a0/2), e-beam,
(17)

1, plasma.

Similarly, for a circular polarized laser (6p = 0), the electron orbits are given by

Ux = (ao/V,)cos ko7, (18a)

Uy = (ao/-vF2) sin ko 7, (18b)

u- = [h2- (1+ a2/2)] 12ho. (18c)

Hence,

x(77) = xo + (rl/v'-) sin ko7, (19a)

y(77) = Yo - (rl/V') cos koi7, (19b)

z(77) = zo + 0717, (19c)

9



where, again, additional terms of order Ao/Lo have been neglected. In the above equations,

(xo, Yo, zo) are related to the initial position of the electron.

The axial drift velocity of the electrons, /3, can be written in terms of the parameter

,31. Since q = z + ct, Eq. (19c) implies z = (zo + 0lct)/(1 -- ,31). Hence,

= 1/(1 - 1) = (Mo - 1)/(M0 + 1) (20)

is the average normalized velocity of the electrons in the axial direction. Notice that in

the dense plasma (long pulse) limit, Mo = 1 and fý = 0. For a low density plasma in the

single particle limit Mo = (1 + a2/2)-' and • = -(a'/2)/(2 + a 2/2). Hence, in the single

particle limit, a single electron initially at rest receives a finite average drift velocity due

to the ponderomotive force associated with the rise of the incident laser pulse, as pointed

out in Ref. [1]. For an electron in a dense plasma (long pulse limit), 4 = 0 and there is

no average axial motion of the electrons 12,21,221. Physically, f = 0 is achieved through

a balance between the ponderomotive force and the space-charge force set up during the

rise of the laser pulse.

The self-consistent electron density in the presence of the laser field can be calculated

using the constant of motion ne(1 + ,3,) = no(1 + 30). This can be written in terms of the

parameter ho as

S= no(1 + Oo)(h + 1 + a2 )/2h (21)

Of particular interest is the slow part (71 averaged) of the density, n... For a tenuous

electron beam (short pulse limit), ho = "yo(1 +,3o) and ne, = 1, assuming ho> (1 + a0/2).

For a dense plasma (long pulse limit), ho = (1 + a0/2) 1 2 and n,, = 1. However, this is

not the case for a plasma in the single particle regime. For a tenuous plasma in the short

pulse limit, ho = 1 and n,. = no(l + a2/4). In this regime, the plasma density is enhanced

due the ponderomotive force associated with the rise of the laser pulse and the resulting

finite axial drift motion of the electrons, h-.
The above results have assumed the 1D limit, which is valid when ro > A0 and when

the quiver motion is much greater than the ponderomoive motion. In three-dimensions

(3D), the ponderomotive motion, 6u = u - a, is given [23] by 06u/8i = V(O - -Y). The

quasi-static approximation implies that the quantity -y + u, - - a, is a constant of

10



the motion, which is the 3D generalization of Eq. (7b). For a plasma, it follows that

16u1/IaI < A ao/ro, whereas for a relativistic electron beam, I1ul/Ial < Loao/-yoro. The
ponderomotive motion can be neglected when I1ul/Ial <K 1, which is true in the cases

discussed below.
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III. SCATTERED RADIATION

The energy spectrum of the radiation emitted by a single electron in an arbitrary orbit

r(t) and 3(t) can be calculated from the Lienard-Wiechert potentials [24],
•_•d212T e2'l2 dif n 1)] Ewt2)
dd-- =--ec jjT/2 dt[nx (n x 0)]exp[iw(t--n. r/c)] , (22)

where d2I/dwdfD is the energy radiated per frequency, w, per solid angle, fl, during the in-

teraction time, T, and n is a unit vector pointing in the direction of observation. Introduc-

ing the spherical coordinates (r, 0, 0) and unit vectors (er, ee, eo), where x = r sin 0 cos 4,
y = rsin0sino, z = rcosO, and

er = sin 0 cos4' e_ + sin 0 sin 0 e. + cos 0 e,, (23a)

e0 = cos 0 cos4€ e= + cos 0 sin 0 ey - sin 0 e., (23b)

eo = - sin m e. + cos 0 ey, (23c)

and by identifying er = n, give

n x (n x B) - -(0, cos 0 cos ± +,Oycos 0 sin 0 -3, sin 0) ee

+ (0. sin 4 - fly cos 0) eo, (24a)

n. r = x sin 0 cos 0 + y sin 0 sin ' + z cos 0. (24b)

The scattered radiation will be polarized in the direction of n x (n x 1). Hence, I = I1 + 14,

where 1, and 14 are the energies radiated with polarizations in the eq and eo directions,

respectively. In terms of the independent variable q} = z + ct,

d 21o e2 W ° P 0 1 dx dy ) 2

ddf 42c3 ,d -cos cos + 7cos sin¢- sin0 exp(iz) (25a)

d2J0 4 e2w2  10 d X d s - Y cos 4 exp(ik) 1, (25b)
ýdfd I 47rc J-? 1 0  71v d77

where

V) k [17 - z(1 + cos 0) - x sin 0 cos- y sin 0 sin4'], (26)

k = w/c, 7o = Lo/2, Lo is the laser pulse length and L, >> Ao = 27r/ko has been assumed.

In deriving the above expressions, the relation c)9dt = (dr/dil)d27 was used, where r = r(77)

is given by Eqs. (15) and (19).
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A. Linear Polarization

The electron orbit for a linearly polarized incident laser field of the form given by Eq.

(4) with 6p = 1 is given by Eq. (15). The phase 0 can be written as

7 = Oo + [1 - 1f(I + cos 0)] ki

- (kri sin cos 0)sinkot7 - [kzl ( + cos 0)] sin 2koil, (27a0

Oo = -k [zo(1 + cos 0) + xo sin 0 cos 4 + yo sin 0 sin ]. (27b)

Using the Bessel identity

00

exp(ibsinu)= E Jd,(b)exp(ina), (28)

where J,, are Bessel functions, allows the phase factor exp [i(O + ik 0o)] to be written as

exp [i(O + ekoq)] = E Jm(dz)Jn-2,+t(&.)exp [i(00o + k,7)], (29)
m,n=- 00

where

k = k [1 - 01(1 + cos 0)] - nko, (30a)

&a = kzl(1 + cos 0), (30b)

d. = kr, sin 0 cos q. (30c)

In order to evaluate Eqs. (25a) and (25b), it is necessary to evaluate the integrals

o= 17 dd 7) exp(iV)). (31)

Using the orbits, Eq. (15), along with the identities in Eqs. (28) and (29),

Ix =koriei° si Jm(&.) [Jn- 2m-I(&.) + Jn-2,,+l(&,)], (32a)
00m= 00

h=2e"00~ > (sin kq)J(z

S{1lJ.-2lm(&) + koz, [Jn-• 2 n- 2 (&z) + Jn-2m+2 (&z.)} ,(32b)

13



and 4y = 0, where

d21e e2w2 ]ze2
dd--e--- 2 W •' .cos 0 Cos -Isin0 , (33a)
dwdO2 47r2c3

d 2 J. e 2 W2 1 sin 02 (33b)
dwdn (3rb2

The frequency width of the radiation spectrum for a given harmonic is determined by

the resonance function R(k, nko), where

( sin k770 )2
R(k, nko) = ( ) 34')

This function is sharply peaked about the resonant frequency, wn, given by k = 0,
71Wo

1- -31(1 + Cos8) (35)

The width of the spectrum, Aw, about wn, is given by Aw/lw = 1/nNo, where No = Lo/Ao

is the number of periods of the laser field with which the electron interacts.

Since the frequency spectra for two different harmonics, n and n', are sufficiently well

separated, the summations in Eqs. (32a) and (32b) may be simplified to yield

d 21 0e 2k 2 (sin ~o )2

-dwd =: Z4r2-C)
dn =1 , k

2[C(1 - sin 2 e cos 2 2,) + Csin2 0- C.C sin 20 cos 4], (36)

where

00

C2 = E (-1)'korrJm(a.) [Jn-2m-l(a,) + Jn- 2m+I(ax)], (37a)
=-00

00

Cz= E (-1)m2Jm(o:.){fliJn-2m(Q-)

"+ k 0 z 1 [Jn- 2 m- 2 (az) + Jn_ 2 m+ 2 (caz)] }, (37b)

and

2(1 + cos 0)
az 8h2 [1 - 1 (1 + cose)]'

nao sin 0 cos (8
cff ho [1 - 03(1 + cos0)" (38b)
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In the deriving the above expressions, the approximation w ý_ w,, was made in the argu-

ments of the Bessel functions, a. and a_.

Plots of the normalized amplitude of the scattered intensity, d21/dwdf2, versus normal-

ized frequency, w/4-yowo, and normalized observation angle, -yo6 , are shown in Figs. 2(a,b)

for the case of a linearly polarized laser (No = 7) interacting with a counterpropagating

relativistic electron (-yo = 5). The intensity is shown in the plane of electron motion, 0 = 0,

i.e., 0 is the "horizontal" observation angle (0 = 0 is along the z-axis, the axis of propaga-

tion). Figure 2(a) shows the intensity in the first two harmonics for a0 = 0.5. Significant

radiation occurs only at the fundamental (n = 1). The intensity of the fundamental peaks

on axis with a frequency shifted slightly from the low-intensity, Thomson backscattered

value of 4-y2wo, and is confined to an angle 0 < 1/-yo. Figure 2(b) shows the intensity in

the first three harmonics for ao = 1.0. Significant radiation now occurs in the harmonics as

well as the fundamental. Only the odd harmonics are finite along the axis (0 = 0) and the

frequency shift due to finite ao is more apparent. The angular distribution of the higher

harmonics is more extensive than the fundamental. The nfh harmonic exhibits (n + 1)/2,

for n odd, or n/2, for n even, intensity maxima as a function of 0. For larger values of ao,

the harmonics dominate the spectrum.

Plots of the normalized amplitude of the scattered intensity, d2 I/dwdfl, versus obser-

vation angle, 0, are shown in Figs. 3(a-c) for the case of a linearly polarized laser (No = 7)

interacting with a dense plasma electron. The intensity is shown in the plane of electron

motion, 4 = 0, i.e., 6 is the horizontal observation angle. Figure 3(a) shows the intensity

in first three harmonics for a0 = 0.5, Fig. 3(b) shows the intensity in first six harmonics

for ao = 1.0, and Fig. 3(c) shows the intensity in first twelve harmonics for ao = 2.0. For

a dense plasma, there is no average axial drift of the electrons, hence, harmonic radiation

is scattered over large angles and the frequency is not shifted, i.e., w, = nwo. (For conve-

nience, the intensity is plotted only at the resonant frequencies, w = w,.) Only the odd

harmonics are finite along the axis (6 = 0) and the intensity is maximum off-axis for all

harmonics with n > 1. The nth harmonic exhibits (n + 1)/2, for n odd, or n/2, for n even,

intensity maxima as a function of 0 within the region 0 < 0 < w/2.

Backscattered Radiation. Of particular interest is the radiation backscattered along
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the axis. In the backscattered direction, 0 = 0, only the odd harmonics are finite, i.e.,

the even harmonics vanish. Setting 0 = 0 in the above expressions gives, for the nth odd

harmonic,
d2 ___ = e2koNOM2F7 , (ao)G.(w), (39)dwdf2 =

where

F.(ao) = na. [J(._I)/2 (a , )- J(.+l)/2 (a7, )]2 , (40)

is the harmonic amplitude function, a,, = na 2/4(1 + a2/2),

R(k, nko) 1 [sin(w - nMowo)T ]2

G7.(,w) = Aw I [ (w-n, ) J ' (41)

is the frequency spectrum function and T = Lo/2cMo. The function G7, (w) is a resonance

function sharply peaked about the resonant frequency, w,, = nMowo, with a width given

by Aw/w7, = 1/nNo, where the frequency multiplication factor Mo is given by Eq. (17).

Furthermore, G, -+ 6(w - w , ) as No -- oo.

The energy radiated in the nth backscattered harmonic depends on the function

F , (ao), Eq. (40). For high harmonics, n >> 1, Fn becomes significant when a0 2 1.

For modest power lasers for which a0 « 1, only the fundamental, n = 1, is significant. A

plot of the function F, versus the parameter (a 2/4)/(1 + a2/2) is shown in Fig. 4.

B. Circular Polarization

To calculate the scattered radiation from a circularly polarized incident laser field

(6p = 0), the orbits given by Eqs. (18)-(19) are used in Eqs. (25a)-(25b). The intensity

distribution can be written as

=d - 4w f 0 d77 L- cosecos(ko,7-0)- ,/sine exp(iO)I, (42a)

dd77 - e2 w2 1k d,0° exp(i-) (42b)

dwdil 47'2e3 'L72

The phase, V), is given by

0 = 0o + 11- 6I(1 + cos 0)] k77 - (kr 1/v/2)sin0sin(koii - €) (43)
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where 0o is given by Eq. (27b). Using the Bessel identity, Eq. (28), gives

00

exp {i [V; + .(koq - ]- exp [i(?Po + k± l + no)] J.+t(&), (44)
n= -oo

where & = (kri/V/2) sin0 and where k is given by Eq. (30a). This allows the calculation

of the integrals in Eqs. (42a) and (42b). In particular,'70
=o = d~ l exp(iJ)

00

= exp [i(o+no)] s+ k770 2J,(&), (45a)

=l -- d77 cos(koi - 0) exp(iip)

-00

-- • exp [i(po + no)] s no(21), (45b)

i2 - 7J di sin(ko77 - ? ) exp(io)

- 0 expii(no +n)] k770 2iJn'(&). (45c)
E --- KOO--no)

fl=-00

As indicated by Eq. (34), the above expressions imply a frequency spectrum centered

about w = wn, where w,n is given by Eq. (35), of width Aw/w, = 1/nNo. Since the

frequency spectra of two different harmonics, n and n', are well separated, the summations

in Eqs. (42a)-(42b) can be simplified. Using Eqs. (42) and (45), the radiation spectrum

can be written as

d21 e e 2 k 2 (sin••?7o )2

dwddf Z r 2 c k
[COS -_ '61 (1 + COSO)] 2 Jn(a) + -"2" 2(,)(4

sin2 0 2 (46)

where kor, = ao/ho and the approximation w = wn has been made in the arguments of

the Bessel functions, i.e.,

n(ao/ v/2) sin 0 (47)

a =ho [1 - 01 (1 + cos) (4
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In the above expression, the terms proportional to J,,(a) are the contributions from I,

and the terms proportional to J•(a) are the contributions from I0.

Using the identities [1]

n n2 J.(ni) = i2(4 + i2)

16(1 - j2)7/2'
n=1(4 J- •2 (48)

00n 2j1n2 (ni (4±+3 i2)
n=1 

16(1 -- _2)5/2'

the summation in Eq. (46) can be carried out and an expression for dI/dO can be found.

After integrating over frequency, one finds

dl (e2 /c)Nowoa2 /h2

dfZ 32(1 - j2)7/2 [1 -/(1 + cos6)] 3

[coso - 131(1 + cose)1 2 (4+ )+ (4 +32) (1- (42)

1 [1 - 31I (1±+-cos 0)]2

where 2 = ce/n.

Plots of the normalized amplitude of the scattered intensity, d2 I/dwdfl, versus nor-

malized frequency, w/4-y2wo, and normalized observation angle, -yo0, are shown in Figs. 5

and 6 for the case of a circularly polarized laser (ao = 1, No = 7). Because of the symmetry

of the electron orbit, the intensity distribution is independent of 0. Figure 5 shows the

scattered intensity from a counterpropagating relativistic electron (,yo = 5) for the first

three harmonics. Only the fundamental (n = 1) is nonzero on axis, where its intensity

is maximum, and its frequency is shifted from the low-intensity, Thomson backscattered

value of 4-y2wo. The intensity of the higher harmonics peak off-axis and is confined to an-

gles 0 1< 2/M1' 2 , as discussed in Sect. IV C below. Figure 6 shows the scattered intensity

from a electron in a dense plasma for the first six harmonics. For a dense plasma, there

is no average axial drift of the electrons and the frequency is not shifted, i.e., w,, = nwo.

Only the fundamental is nonzero on axis, where its intensity is maximum. For higher

harmonics, the intensity is maximum in the transverse direction, 0 = 7r/2. As the intensity

of the laser pulse increases, more radiation is scattered into the higher harmonics.

Backscattered Radiation. In the backscattered direction, only the fundamental, n = 1,
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is nonzero. In the limit 0 -- 0, J•(a) -- 1/2 and J 1 (a) --* a/2. Hence,

d2I±. = e 2k°N°M a0 G( (50)
Id o=o 4(1 + ao/2)

where Gl(w) is given by Eq. (41) with n = 1.
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IV. RADIATION PROPERTIES

A. Radiated Power

The power radiated by a single electron, P,, undergoing relativistic quiver motion in

an intense laser field can be calculated from the relativistic Larmor formula [24]

P.=2e 2'2[ du) 2 (~ 2]. (51)

Assuming the electron orbit is a function of only the variable 77- z + ct,

2 C- ')2 rldu2 
_fY)

21

P. = -e~cyu) -(d1  kdL (52)

Using the orbits described in Sec. II, the power radiated by an electron in the presence of

a circularly or linearly polarized radiation field is given by

. ý2 e h2 ko 2 a 1/2, circular,P _•-~c~~~ (53)

3 sin2 kCO, linear,

where ho is given by Eq. (12). Averaging the above expression over a laser period, the

ratio of the radiated power to the incident laser power, P8 /Po, can be written as

_.PO= 16r2 ho2/3r2, (54)

where r_ = e2 /meC 2 is the classical electron radius.

The total power radiated by a laser pulse passing through a uniform distribution of

electrons with a constant density no is given by PT = NeP,, where N, = noLoUL is the

total number of electrons interacting with the laser pulse at a given time, Lo = CrL is

the laser pulse length and UL is the effective cross-section. Assuming a Gaussian laser

pulse, & = (aoro/rL) exp(--r2 /r2), where rL is the laser spot size and ro is the minimum

spot size, the effective cross-section, UL, can be found by letting ao --+ a in Eq. (54) and

integrating P. over r. One finds

r2 ro 1, e-beam,
•L= - (55)

2 • fp, plasma,
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where fp = (1 + a2/4)/(1 + a 2/2). In Eq. (55), the top expression holds in the short

pulse (electron beam) limit, i.e., h0 = yo(1 + ,o), and the bottom expression holds in the

long pulse (plasma) limit, i.e., h0 = (1 + ao/2)I/2 . Hence, the total scattered power by a

uniform electron density no is given by

PT/Po = (87r/3)r2Lonofpho. (56)

As example, a no = 1020 cm-3 plasma interacting with a 1 ps laser pulse with ao = 5 gives

PT/Po = 1.4 x 10-5. The ratio of the total scattered energy to the laser pulse energy is

approximately PTL/POLO, where L is the total length over which the laser pulse interacts

with the electrons.

B. Resonance Function

Several properties of the radiation spectra can be ascertained by examining the res-

onance function, R(k, nko), given by Eq. (34). The function R(k, nko) is sharply peaked

about the resonant harmonic frequencies, w,,, defined by k - 0, which can be written as

nMowo
, =[1 + Mol1(1 - COST)]' (7

where n is the harmonic number and Mo is the relativistic doppler upshift factor. For a

plasma, P, = 0 and Mo = 1, which gives wn = nwo, independent of 0. For a relativistic

electron beam with Mo > 1, the radiation is primarily backscattered into small angles,

02 < 1. Hence w, = nMowo/(1 + M 0o 2 /4), which indicates a maximum frequency in the

backscattered direction along the axis, 0 = 0. The change in frequency Aw with respect

to a change in angle AO is given by

j&I. IMo(O6O + A0 2/2)1 (58)
w, (2 + M 062 /2) (

assuming Mo > 1. Alternatively, Eq. (58) can be solved to give the angular spread AO

about 0 over which a given bandwidth Aw about w, may occupy. For a relativistic electron

beam with Mo > 1, two angles are of particular interest. It is shown below that for a
linearly polarized laser, the radiation intensity for the higher harmonics, n > 1, is centered
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about 0 = 0, whereas for circular polarization, the intensity is centered about 00 = 2/M/ .

For these two angles, Eq. (58) implies

AO J_ "7.L f(Aw/w") 112, for 0 = 0,
~ {- w/w- (59)YotI (Aw/wn), for 0e 00,

where Mo = 4"-vo/o_ has been used.

The intrinsic (i.e., associated with the radiation from a single electron) frequency width

Awn of the radiation about a resonant frequency wn can be found by letting w = wn + 6w

and integrating the function R(k, nko) over 6w, which gives

Awn = J_00 d(6w)R(k, ko) = wn/nNo. (60)

Hence, Awn/w,, = 1/nNo, where No = Lo/Ao is the number of wavelengths in the laser

pulse. Furthermore, R(k, nko) --+ Aw,6(w - w,) as No --+ oo. The angular width A0n

within which can be found radiation with frequencies in Awn about w,, for a single har-

monic n, is given by inserting Eq. (60) in Eq. (59),

S7.= 7 f (1/nNo) for G = 0,
A0_ --. (61)

76 (l/nNo), for 0 = 6 o.

Alternatively, similar expressions can be obtained by letting 0 = 0' + 60 and integrating

R [k,(O'), kol over 60. It should be pointed out that Eqs. (59) and (61) apply to relativistic

electron beams with Mo > 1. For plasmas, the angular width occupied by a given Aw

about wU must be determined by considering the full functional form of the radiation

spectrum, Eqs. (36) and (46), not just the resonance function R(k, nko).

C. Ultra-Intense Behavior

For values of ao < 1, the scattered radiation will be narrowly peaked about the

fundamental resonant frequency, w, = wo/ [1 - 01 (1 + cos 0)]. As a0 approaches unity,

scattered radiation will appear at harmonics of the resonant frequency as well, wn = nwu.

When ao > 1, high harmonic (n > 1) radiation is generated and the resulting synchrotron

radiation spectrum consists of many closely spaced harmonics. Finite electron energy
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spread effects can broaden the linewidth causing the radiation from the various harmonics

to overlap. For example, a finite thermal axial velocity spread will lead to overlap when

(Aw/wU)th Z. 1/n, where (Aw/w,,)th is given below by Eq. (77). Hence, in the ultra-intense

limit, i.e., a0 > 1, the gross spectrum appears broadband, and a continuum of radiation

is generated which extends out to a critical frequency, we, beyond which the radiation

intensity diminishes. The critical frequency can be written as w, = nfwR, where n, is

the critical harmonic number. It is possible to calculate nc by examining the radiation

spectrum, Eqs. (36) and (46), in the ultra-intense limit, ao > 1.

Asymptotic properties of the radiation spectrum for large harmonic numbers, n > 1,

can be analyzed using the relationships [251

il/2

J(n2) _( 1  -
7 (62)•i1/2

Jn'(ni) s- 1 - -214K/(:)7rZ

where [zl < 1 and is a function of ao and 0,

=n [1 + (1 2)1I/2] _ In _ (1- 2)"/ 2 , (63)

and K113, K 21 3 are modified Bessel functions. In particular, for ni > 1,

K113 ý- K 21 3 = (7r/2ni) exp(-ni), (64)

and, hence, only harmonic radiation with n:E < 1 will contribute significantly to the spec-

trum. The critical harmonic number is defined as nc:mmn = 1, i.e., n, = 1/i,, where

,min is the minimum value of Eq. (63). Furthermore, di/di < 0 and the minimum of i:
occurs at Typically, for a2  1 1 - < 1 and Eq. (63) can be expanded to

yield, to leading order, -ina ý (1/3) (I - )3/2 The critical harmonic number is given

by the inverse of this expression.

1. Circular Polarization

For a circularly polarized incident laser field, i = a/n, where a is given by Eq. (47),

i.e.,

(aO/v/2) sin 0 (65)
ho [1 - 31(1 + cos6)"
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For a fixed value of ao > 1, the maximum value of i is given by ima = (ao/V'2)/(1 +

a0/2)1 /2 , and occurs at an angle 0o given by

cos 0o = (Mo - 1)/(Mo + 1). (66)

Inserting this value of -;,a: into Eq. (63) gives, for ao2 1, imi,, _• 2v/2/3a3 and, hence,

n, 3ao/2V . (67)

Furthermore, radiation at the harmonic nc will be scattered in the direction 0 = 00, where

0o is given by Eq. (66). The frequency of the radiation scattered in the direction 0 = Oo is

given by

w(9 = Oo) = nwo(Mo + 1)/2. (68)

For a plasma, Mo = 1 and 00 = ±•r/2, i.e., the high harmonic radiation will be scattered

perpendicular to the incident laser field. For a relativistic electron beam with Mo > 1,

0o "- 2/M 1 / 2 and the high harmonic radiation is nearly backscattered. Physically, 00 is
related to the pitch angle of the electron orbit, Iu±I/Iuz I- 2v2/MJ/2 " ao/-yo, assuming

ao2 1 and Mo > 1.

The asymptotic properties (n > 1) of the radiation spectra can be readily obtained

from Eqs. (46) and (62). In the ultra-relativistic limit, ao2 1, the radiation is confined to

small angles 60 about the optimum angle 0o. i.e., 0 = 00 + 60, where 602 < 1. Assuming

n> 1, ao >1 and 662 « 1, Eqs. (46) and (62) give

d21 No 3e 2 - I2ý2 [ "t260 2  K 2 3-0 + K(2/3(,)]
dwd7r2C (1 +-y2602) 1 -6I82) K/3( + (69)

where

WC•= -__(1 + "),2O8)/' , (70a)

wc =c n(MO + 1) Wo, (70b)
2

= ao(Mo + 1) (70c)

2(2Mo)
1/ 2

Equation (69) holds for arbitrary values of M0 , i.e., electron beams of arbitrary energies as

well as stationary plasmas. In Eq. (70a), nc = 3a3/2v'2 and the factor (Mo + 1)/2 is the
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relativistic doppler upshift for radiation scattered at the optimum angle 00, as indicated

by Eq. (68). The expression for -y follows from Eq. (8b) assuming ao » 1. In deriving

Eq. (69), Eq. (62) was used and the summation was approximated by an integral, i.e.,

1_,, R(k, nko) ý- 1/No and, hence, n -- ý.

Notice in the limit 60 = 0, d2I/dwdfL , i2 K K2/3 (), where • = w/wc. A plot of the

function Y(C) = C2K2/ 3 (C) is shown in Fig. 7. The function Y(C) is maximum at C = 1/2

and decreases rapidly for C > 1. Half the total power is radiated at frequencies w < W'/2

and half at w > wc/2. This can be shown by integrating d2I/dwdfl over frequency and

angle [10], i.e., integrating the expression given below by Eq. (71b) over frequency.

Equation (69) is No times the standard result [24] for the synchrotron radiation spec-

trum emitted from an electron moving in an instantaneously circular orbit in the ultra-

relativistic limit with a radius of curvature p = 3-y3c/wc. Several well-known properties

[24] follow from Eq. (69), for example

dI 7e 2  Nowct2 [1 5 -_22 (71

Ts 48c(1I+y 2 b2)5 2  7(1 + 2602)J (71a)

d, 2v/32No_- W.f dCK5 / 3 (0). (71b)

The peak intensity is of the order Noe 2 y/c and the total radiated energy is of the order

Noe 2 Twc/c. The peak intensity occurs at the optimum angle 00, i.e., 68 = 0, at approxi-

mately the critical frequency, w = wc, i.e., n " nc = 3a 3 /2V/2-. For harmonics below nc,

(w < wc), the radiation intensity increases as (W/wo) 2/3 , and above nc (w > wc), the

radiatioD intensity decreases exponentially, i.e.,

d 2 1 , -" N°•c [r(2/3)]2 2 2/3 < wC, (72a)

d21- 3e 2 2 U - w

d-:=o - N°o It exp, W)' U)>> w. (72b)
dwbfl 69=0 27rc \WC kWC,

Furthermore, for w <K wc, the scattered radiation at a fixed frequency is confined to an

angular spread A60 = (W/w)1/ 3/1y about 0 o, whereas for w > wc, A60 = (w1/3w)l/ 2 /y.

The average angular spread for the frequency integrated spectrum is (602)1/2 _ 1/-y.

As an example, the peak intensity in the transverse direction (0 = 7r/2) of each

harmonic, w = nwo, is shown in Fig. 8 for the case of a high intensity, circularly polarized
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laser pulse encountering an electron in a dense plasma. Plots for two different intensities

are shown, ao = 4 and ao = 6. The arrows indicate the approximate critical harmonic

number, n, - ao, for each case. Asymptotically, ao > 1, this curve approaches the form

y() K2 /3 (2), shown in Fig. 7.

2. Linear Polarization

For a linearly polarized incident laser field in the limit a0 < 1, upshifted radiation

at the fundamental frequency is generated in a narrow cone about the backscattered di-

rection, fl _ 27r02, where c -, 1/ho. However, in the limit ao > 1, a near-continuum of

high harmonic radiation is generated and the emission cone about backscattered direction

widens [10]. In particular, in the vertical direction, 4) = 7r/2 (the direction normal to

the x-z plane which contains the electron orbit), emission is confined to the vertical angle

0, -• 1/ho. In the horizontal direction, 4) = 0 (in the plane of the electron orbit), the emis-

sion angle widens and is confined the horizontal angle Oh - ao/ho, which is determined

by the deflection angle of the electron in the x-z plane [10]. The asymptotic properties

of the radiation spectrum can be analyzed using Eqs. (36) and (62). Letting 0 represent

the observation angle in the vertical direction, i.e., 4) = ir/2, then in the limits ao > 1

and n > 1, 02 < 1 and the coefficients C__ and C. occurring in Eq. (36) are given by

C2 = J12(fi) and C.2 = (ao/ho)2J't2(yj), where additional terms of order 1/aO have been

neglected and n = 2V + 1 > 1. Here, for linear polarization,

•=-• --- 2 (1-t +L202 (73)

The asymptotic spectrum near the axis can be found by using the asymptotic properties of

the Bessel functions, Eq. (62). Notice that for 0 = 0, in.a. !- 8/3a3. Hence, 1, = 1/,na,

and the critical harmonic number, n, = 2f4 is given by

n, ý-_ 3a3/4. (74)

Using Eqs. (36) and (62), the asymptotic spectrum is given by

d21 12e2  if2C2  F '•292 12/P
dd 2112e2 i2(2No 72C (1 + j202) (1 +- '2-02) 13 "+ K2/3(() (75)
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where

S-( + .292)3/2, (76a)

w, = ncMowo, (76b)

"= ho/2. (76c)

In deriving Eq. (75), E. R(k, nko) .- I/No and & -- •. Several subsequent properties of

the asymptotic spectrum follow from Eq. (75). As was the case for circular polarization,

Eqs. (71)-(72) apply, with No --+ 4No, 60 --+ 0, -y -- ' and where w, is given by Eq. (76b).

In particular, radiation with w _• w, is confined to a vertical angle 06 , 1/i'. In the

horizontal direction, emission is confined to the angle 0 --, ao/j, i.e., Oh ao//yo for an

electron beam and Oh • 7r/2 for a plasma.

As an example, the peak intensity on axis (0 = 0) of the odd harmonics, w = nMowo, is

shown in Fig. 9 for the case of a high intensity, linearly polarized laser pulse encountering

a counterstreaming relativistic electron (-yo = 5). Plots for two different intensities are

shown, ao = 4 and a0 = 6. The arrows indicate the approximate critical harmonic number,

n, = 3a3/4, for each case. Note that the harmonic intensity is plotted versus the normalized

frequency w/4y2wo L- 1.5ao. Asymptotically, ao > 1, this curve approaches the formyC = 2 W2
-2• 3 (C), shown in Fig. 7.
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V. NON-IDEAL EFFECTS

A. Electron Energy Spread

The above analysis has assumed ideal electron distributions, i.e., thermal and en-

ergy spread effects have been neglected. These effects are important in determining the

frequency line width of the scattered radiation [10]. For example, the resonance func-

tion R(k, nko) indicates that if a thermal axial velocity spread AVth is introduced, i.e.,

=3z = 00 A+3th, where AI3th = AVth/C, then the scattered radiation along the axis will be

shifted in frequency away from w,n by Awth, where

(AW/,W)th = 2"yo'AOth. (77)

For a plasma, A 13th is related to the initial plasma thermal energy, Eth, by A/3th =

(2Eth/MnCc2 ) 1/ 2 . For an electron beam, A43th is related to the initial normalized energy

spread, Alf/-YO, by Af3th = A-y/-y%33o. As an example, a plasma with a temperature of 100

eV would produced a thermal bandwidth of (Aw/wn)th ý-- 4%.

In actual electron beams, the electrons may have an average angular spread as well as

an average energy spread, represented by emittance and intrinsic energy spread, respec-

tively. The normalized beam emittance is given by E = -yorb~b, where rb is the average

electron beam radius and Ob is the average electron angular spread. The fractional lon-

gitudinal beam energy spread due to emittance is (AE/Eb), = c2 /2rb, where E6 is the

initial beam energy. Electron beams may also have an intrinsic energy spread, (AE/Eb)i,

due to various reasons, such as, voltage variation, finite pulse length effects, etc. The total

spectral width of the radiation about the harmonic w, is

(AW/Wn)T ý- [(AW/Wn0 + (AW/ e + (AW1 /wn)f"2 , (78)

where (Awlw,)o = 1/nNo is the finite interaction length spectral width contribution,
S2 2

(AW/Wf)" = fn/rb is the emittance broadened spectral width and (Aw/w,)i = 2(AE/Eb)i

is the intrinsic energy spread broadening contribution. The radiation with total spectral

width (Aw/wn)T is confined to the angle OT = (Aw/w")T1V2 o. This consequently reduces

the spectral intensity, d2Ildwdil, of the scattered radiation from an electron beam for a

particular harmonic by approximately 02/62.
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If a particular application requires a bandwidth (Aw/w,)s < 1, this radiation can be

found within the angle Or,, where

E _ S + 02T = [(Aw/w,)s + (Aw/w.)T)] /y. (79)

If a bandwidth (Aw/w,)s > (Aw/Wn)T is required, all the radiation within a cone of

/2/half-angle O6E z- O = (w jS/-ocan be used. To obtain a bandwidth (Aw/w,,)s <K

(Aw/wn)T, the radiation within the cone Or, = OT = (AW1 )T /7o must be filtered using

a monochromator. As an illustration, for an rf linac electron beam with CE z• 5 mm-mrad,

rb = 50 kim and 7o = 100, (AE/Eb), = 0.5% and (A=/w,)- • 1%. Since the intrinsic

energy spread is typically - 1% and No > 300, the total spectral width of the unfiltered

LSS radiation is typically (Aw/w,)T ý-- 1% and is confined to the angle OT L- 1 mrad.

L. Electron Beam Energy Loss

As the electron beam radiates via nonlinear Thomson scattering, the electron beam

will lose energy. The rate of loss of electron beam energy is equal to the scattered power,

mec2dy/dt = -P,, where P, is given by Eq. (54). Assuming ho - 472, the electron beam

energy will evolve [5] according to -y = 7o/(1 + t/lrR), where t is the electron beam-laser

interaction time and Tt = 3/(4crek0a27o), where a linearly polarized laser field has been

assumed. In practical units, this can be written as

T'R[ps] = 1.6 x 10 22Eb1 [MeV] Io-1 [W/cm2]. (80)

One consequence of the loss of electron beam energy is the introduction of an additional

source of enhanced bandwidth, (Aw/w,,)R = 2(-yo - 7)/7o, where -yo - 7 = 7t/7-R. For

typical values of laser pulse lengths and intensities of interest, t/,rR < 1, and this effect

is small. As an example, a 2 ps (t = 1 ps) laser pulse with intensity Io = 2.6 x 1017

W/cm 2 (ao = 0.43) interacting with a Eb = 40 MeV (-yo = 79) electron beam gives

(Aww,,) =-- 0.13%.

C. Ponderomotive Density Depletion

In a high density plasma, the transverse ponderomotive force from the radial gradients

in the laser pulse profile can displace the plasma electrons leading to a density depression
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on axis. In the long pulse limit, the density depression can be calculated by equating the

electrostatic force with the ponderomotive force, V±4 = V±'y±, which is the adiabatic

response of the plasma electrons to the transverse ponderomotive force [23,26]. This gives

an equilibrium density profile of

n,/no = 1 + k; 2 V2(1 + a2/2)1/2 (81)

where ne/no > 0 has been assumed. Assuming a Gaussian transverse profile of the form

lal - exp(-r 2/r2), Eq. (81) indicates that the density along the axis is given by

no 2 agr2 1 + -/ (82)
no =1 27r 2ro 21

where AP = 27r/k.. As an example, a high-density plasma with ro = 15 pm, AP = 5 jim

and ao = 7 gives a density depression along the axis of Ann/no = 5%. This density

depression reduces the total number of electrons scattering radiation, hence, the total

scattered power P, -,, ne will be reduced. Furthermore, in a high density plasma, the ef-

fects of relativistic self-focusing, which occurs for pump laser powers above a critical power,

Pc[GW] z- 17(Ap/Ao) 2, along with the effects of a density depletion on axis, can provide op-

tical guiding and significantly extend the laser-plasma interaction distance [5,22,23,26,27].

For a relativistic electron beam in the short pulse limit, -rL < 'r/ /wp, the magnitude

of the electron density perturbation, Ant, due to the ponderomotive force, is given by

lAne/noj ^<1 (Loao/'yoro) 2 <K 1, consistent with the discussion at the end of Section II.

D. Plasma Dispersion

The frequency of the scattered radiation can be affected by the dispersion properties

of electromagnetic radiation in a plasma. In the long pulse limit, the nonlinear dispersion

relation for radiation of frequency w and wavenumber k is given [5] by w2 r- c2 k2 + w2/-y±_.

Notice that the dispersion relation is different for radiation within the region of the pump

laser pulse, "y± = (1 + ao/2) /2 , and for radiation propagating in the plasma outside of the

pump laser pulse, -yt_ = 1. In particular, for backscattered radiation, the radiation will

transit a counterstreaming boundary region at the trailing edge of the pump laser pulse.

As the backscattered radiation transits this boundary region, counterstreaming at the
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group velocity of the pump laser pulse, vg, the frequency and wavenumber of the scattered

radiation will be shifted [28]. Hence, the detected frequency, Wd, of the backscattered

radiation will be shifted from the frequency at which it is scattered, w, within the laser

pulse. The detected frequency wd is related to the scattered frequency w by requiring the

phase of the scattered radiation to be continuous across the boundary at the trailing edge

of the laser pulse [28], w + vgk = Wd + Vgkd, where v9 = c(1 - w./7±w2 )'/ 2 and a square

laser pulse profile has been assumed for simplicity. Using the dispersion relation to solve

for k and kd in terms of w and Wd, respectively, and assuming w;/w 2 « 1, implies

W I+ _(I - .(83)

w) 4w 2

Hence, for backscattered radiation, the detected frequency will be upshifted from the scat-

tered frequency. Furthermore, depletion of the electron plasma density within the region

of the laser pulse by the transverse ponderomotive force will produce a additional upshift

for similar reasons. This effect can be approximated by replacing 1/-y± with ne/fj_no

in Eq. (83), where ne/no is given by Eq. (82). The maximum frequency upshift for the

backscattered radiation can be estimated by AwdlO ", w•/4w1 , which is typically small.

Radiation scattered in the transverse or forward directions will not experience a frequency

shift by these mechanisms.
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VI. LASER SYNCHROTRON SOURCES

Nonlinear Thomson scattering can be used as a mechanism for generating x-ray radi-

ation [1-9]. In such a laser synchrotron source (LSS), intense laser pulses are backscattered

from a counterstreaming relativistic electron beam or from a dense plasma [5-7]. The LSS

has the potential for providing a compact source of tunable, short pulse radiation, in the

soft to hard x-ray regime. Two examples of LSS configurations will be discussed, one

using a relativistic electron beam to generate hard x-rays (30 keV, 0.4 A), and the other

using a dense plasma to generate soft x-rays (300 eV, 40 A). In the electron beam LSS,

short wavelengths are generated by exploiting relativistic doppler factor, i.e., A = Ao/4Y02,

assuming -yo > 1 and ao << 1. In the plasma L-, -' short wavelengths are generated by

exploiting the nonlinear harmonic factor, i.c , = Ao/nc, where n, - a3 >» 1 is assumed.

Both configurations will utilize the recently developed solid-state laser technology based

on chirped-pulse amplification (CPA) [18-20]. Lasers based on CPA are relatively com-

pact systems capable of delivering ultrahigh powers ( > 10 TW) and intensities ( Z 1018

W/cm2 ) in ultrashort pulses ( < 1 ps). Currently, the repetition rates of TW CPA systems

are limited to < 10 Hz [19,20]. A summary of the current state-of-the-art in CPA laser

technology can be found in Ref. [20].

A. Electron-Beam LSS

An electron-beam LSS configuration consists of backscattering a linearly polarized

laser pulse from a counterstreaming relativistic electron beam. Two important quantities

characterizing the resulting synchrotron radiation are the photon flux, F, defined as the

number of photons per second within a specified bandwidth, and the photon brightness,

B, defined as the phase space density of the photon flux. The intensity distribution for

backscattered, 0 = 0, radiation at the fundamental, n = 1, in the limit ao << 1 and -fo > 1

(i.e., w = C = 4-y2Wo), is given by

d21(0) e2 2 22 No [sin(-r(u-D)No/D) 2

dw =87-rc
2 A0 N0a0Go(w), G7Mw) - N sir(w - ()No 84)

as indicated by Eq. (39). The angular density of the flux, dF/dfl, i.e., the peak number of

photons in a specified frequency range w, _< w < w2 emitted per second per unit solid angle
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by the micropulse in the forward direction, can be determined from Eq. (84) by integrating

over the frequency range Aws = W1 - w2 , multiplying by the electron flux interacting with

the laser, N•b, and by dividing by the energy per photon, W. The electron flux interacting

with the laser field is given by Nb = f Ib/e, where Ib is the peak micropulse current and f

is the filling factor, i.e., f = o/lab for ao < Ob and f = 1 for ao _> ab, where uo, ab are

the cross-section areas of the laser and electron beam, respectively. The angular density

of the flux is given by

dFo= aNo 2ba( 2 No(Aw/li)s, for (Awl/c)s << 1/No, (85)

dn 1, for (Aw/I)s > 1/No,

where a = 1/137 and Fo denotes the spectral flux for an ideal electron beam, i.e., zero

emittance and energy spread. For an ideal electron beam, the spectral flux with spectral

width (Lw/I)s is given by Fo = 21rO2(dFo/dfl), where 02 = 0o2 + 02, i.e.,

Fo •- 27rgOlbao( AwO/&), (86)

which is valid for all values of (Aw/l)s < 1. For a realistic electron beam with finite

emittance and energy spread, the photon flux, F, is identical to the the ideal case, i.e.,

F = Fo. The angular density of the flux, dF/dfl, however, is reduced, since the photons

are now spread out over a larger radiation angle OE, where OEr is given by Eq. (79), i.e.,

dF/df 1 " Fo/27rO .

The spectral brightness is the phase space density of F. Hence, B = F/(27r) 2 (ROE•) 2,

where (ROrE) 2 is the phase space area of the photon beam. The quantity R is the total

effective size of the radiation source and is given by R 2 _ r2 + (OrL/47r) 2, where e,2

0 ? + YO, 0i - (Aw/&)i' 2 /yo, and r, is the smaller of rb and ro/2. Here L is the laser-

electron interaction distance. The spectral flux and brightness for a non-ideal electron

beam, in terms of practical units, are given by

F [photo, = 8.4 x 1016f (L/ZR)Ib[A]Po[GW](Aw/fi)s, (87a)

B[sec mm2tns mrad2 =8.1 x 109f (L/ZR)(Ib[A]/r2[mmI)

-Eb2[MeV]Po[GW] [+(Aw/•)s/(1+6) , (87b)
3(A31D)S + (A•/i)T'
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where 6 = (E, L/47rr,) 2 is typically <K 1. The interaction length is the smaller of twice the

Rayleigh length (ZR = irr0/Ao) or one-half the laser pulse length, i.e., L = min [2ZR, Lo/2],

unless it is further limited by the specific geometry of the experiment.

As an example, consider an electron beam LSS which generates 0.4 A (30 keV) x-

rays. For a Ao = 1 Am incident laser, A = AO/4-y2 = 0.4 A implies 0YO = 79 (Eb = 40

MeV), assuming ao <K 1. A CPA laser will be assumed with r0 = 2 ps, Po = 10 TW and

ro = 50 ,im, which implies 1o = 2.6 x 1017 W/cm 2 , ao = 0.43 and ZR = 7.9 mm. An

electron beam from an rf linac will be assumed with peak current Ib = 200 A, micropulse

duration Lb/c = 1 ps, beam radius rb = 50 /Am, energy spread (AE/Eb) = 0.5% and

normalized emittance ,, = 5 mm-mrad. The interaction length is one half the laser pulse

length, L = 300 um, and the x-ray pulse duration is the micropulse duration, 7r = 1 ps.

The effective bandwidth is (Aw/I)T f 1.4% and this radiation is confined to a cone angle

of OT "f 1.5 mrad. The total flux with (Awl/)s 1 within the cone 0, - 1/-yo ' 12 mrad is

F = 6.4 x 1021 photons/sec. The peak brightness with (AwI/&)s = 0.1% is B = 2.9 x 1019

photons/s-mm2-mrad 2. The parameters for this electron beam LSS are summarized in

Table I.

For simplicity, a counterstreaming laser-electron beam geometry has been assumed in

which the x-ray pulse length is approximately the electron micropulse length. Shorter x-

ray pulse lengths can be obtained by either reducing the laser Rayleigh length or changing

the laser-electron beam intersection angle [6,8]. (Kim et al. [8] have suggested scattering

at 900 to obtain ultrashort x-ray pulses.) In principle, both these methods may lead to

the production of ultrashort x-ray pulses, with pulse durations on the order of the laser

pulse duration.

B. Plasma LSS

To produce x-rays with a A0 - 1 Am laser and a stationary plasma, it is necessary

to use ultrahigh intensities, a20 > 1. Nonlinear Thomson scattering will then occur in the

asymptotic limit, in which a near continuum is produced with harmonics extending out

to the critical harmonic number, nc - ao, as discussed in Section 2. Consider a linear

polarized laser with a2 >» 1 interacting with a dense plasma. In the near backscattered

34



direction. the radiation spectrum scattered by a single electron is given by
d21(0) _ 3e 2 2(88

S_ NoF -ao(, (88)
dwdn 7r 2

as indicated by Eq. (75), where Y ` 2K2/ 3 (0), C = w/w., we = ncwo and n, = 3a /4.

For a collection of electrons in a plasma, the total energy radiated is given by ET =

NeI(O), where N, = n~ooLp is the total number of electrons with which the laser interacts,

n, is the plasma electron density, ao = irr2/2 is the laser cross-section and Lp is the

laser-plasma interaction distance. Typically, LP "-_ 2 ZR = 2irro/Ao, assuming vacuum

diffraction. The effects of relativistic optical guiding, however, could substantially increase

the interaction distance [5,22,23,26,27]. Geometric arguments indicated that the x-ray

pulse length in the backscattered direction is given by L, ý! 2Lp(1 + L2/4L) 1 / 2 _ 2Lp,

where Lo is the laser pulse length and Lo/4Lp 2< 1 has been assumed. The total power in

the backscattered direction is PT = cET/L. and the photon flux is F = PT/hw. Hence,

the flux intensity, defined to be dF/dfl, for photons in the frequency range Aw. about w

in the near backscattered direction, is given by

dF/dfd L- (3ac/87r)Noneroa2(Aw/w)sY(w/wc). (89)

Recall that the solid angle over which the photons with frequencies near wc are scattered is

relatively large, i.e., 0, ,, 2vf2/ao in the vertical direction and Oh - 7r/2 in the horizontal

direction. The total photon flux, F, can be estimated by multiplying Eq. (89) by the

appropriate solid angle over which the photons are to be collected. The brightness, B, of

the backscattered photons can be estimated by B L_ (dF/dfl)/7rrO. In practical units, the

photon flux intensity and brightness are given by
dF [ photons1
dFi Ls mrad2[ p 3.65 x 10 3-o [ps] Ao [mm mn,, [cm- 3] Po [TW]

(Aw/W)SY(w/W•), (90a)

B phoI:t~oa2]js 1.80 x 10 1 7 ,ro [ps] Aoj~imjne [cm- 3] 10 [W/cm 2]
B8 -s mm2.pht--mrad J

(Awlw)sY(w/wr-), (90b)

As an example, consider a plasma LSS which generates 40 A x-rays. For a A0 = 1 gm,

-To = 1 ps incident laser pulse, A = Ao/n, = 40 A implies nc = 250 and ao = 6.9, which
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corresponds to a laser intensity of Io = 6.6 x 1019 W/cm 2 . Assuming a laser spot size

of ro = 15 pm gives a laser power of Po = 230 TW and a laser-plasma interaction of

length of LP = 2ZR = 1.4 mm. The x-ray pulse duration is r. :- 2Lp/c = 9.4 ps. A

plasma density of ne = 1020 cm-3 implies a flux intensity of dF/df2 :_ 2.1 x 1019(Aw/w)s

photons/s-mrad2 and a brightness of B = 2.9 x 1022 (Aw/w)S photons/s-mm 2-mrad2 . The

parameters for this plasma LSS are summarized in Table II.

For simplicity, the generation of backscattered (0 = 0) x-rays from the interaction of

a linearly polarized laser and a plasma has been considered. For this case, the x-ray pulse

length is of the order of a few Rayleigh lengths. However, Eqs. (36) and (46) indicate that

somewhat larger fluxes of x-rays are emitted in the transverse direction (0 = 7r/2) for both

circularly and linearly polarized lasers incident on a plasma. Hence, by collimating the

transverse emission from a plasma, ultrashort x-ray pulses can be obtained with durations,

in principle, on the order of the laser pulse duration.
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VII. CONCLUSION

A comprehensive theory describing the nonlinear Thomson scattering of intense laser

fields from beams and plasmas has been presented. This theory is valid for linearly or cir-

cularly polarized incident laser fields of arbitrary intensities and for electrons of arbitrary

energies. Explicit expressions for the intensity distributions of the scattered radiation

were calculated analytically and evaluated numerically. The space-charge electrostatic

potential, which is important in high density plasmas and prevents the axial drift of elec-

trons, was included self-consistently. Various properties of the scattered radiation were

examined, including the linewidth, angular distribution, and the behavior of the radia-

tion spectra at ultrahigh intensities (ao » 1). Non-ideal effects, such as electron energy

spread and beam emittance, which can broaden the linewidth and angular distribution of

the scattered radiation, were discussed. These results were then applied to possible LSS

configurations.

The general formula for the frequency of the Thomson backscattered (9 = 0) radiation

is given by w,, = nMowo, where n is the harmonic number and M0 is the doppler multipli-

cation factor, given by Eq. (17). For a linearly polarized laser, only odd harmonics exist

in the backscattered direction, whereas for circular polarization, only the fundamental is

nonzero in the backscattered direction. Both odd and even harmonics can exist at off-axis

angles. General expressions for the scattered intensity distributions are given by Eqs. (36)

and (46). Generation of x-rays at short wavelengths require Mo > 1 and/or n > 1. The

intrinsic linewidth (i.e., for a cold electron distribution) of a particular harmonic is given

by Aw/wn. = 1/nNo, where No is the number of laser periods with which the electrons

interact. Since No P> 300, small linewidths can be achieved. Non-ideal effects, such as

energy spread and beam emittance, can broaden the linewidth, as indicated by Eq. (78).

When ao < 1, radiation is scattered only at the fundamental. When ag >> 1, a multi-

tude of harmonics are produced, which iesults in a near-continuum of scattered radiation

extending out to a critical harmonic number, n, "-, a, beyond which the intensity of the

radiation rapidly diminishes. Expressions for the scattered intensity distributions in the

ultra-intense limit are given by Eqs. (69) and (75). The polarization of the scattered radi-

ation can be adjusted by changing the polarization of the incident laser. Scattering from
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an electron beam has the additional advantage of well-collimated radiation. For -yo > 1

and a' < 1, the upshifted radiation is confined to a cone about the backscattered direc-

tion of half-angle 0 = (Aw/D)'/ 2 /,yo. Scattering from a plasma has the advantage in the

attainability of high electron densities, the photon flux and brightness scaling linearly with

density.

A LSS, based on the nonlinear Thomson scattering of intense lasers from electron

beams or plasmas, may provide a practical method for producing x-ray radiation. The

LSS has a number of potentially unique and attractive features which may serve a variety

of x-ray spectroscopic and imagining applications. These features include compactness,

relatively low cost, tunability, narrow bandwidth, short pulse structure, high photon energy

operation, well-collimated photon beams, polarization control, and high levels of photon

flux and brightness. Specific examples of an electron-beam LSS and a plasma LSS were

given, as summarized in Tables I and II. An electron-beam LSS, designed to generate 30

keV (0.4 A) photons with a A0 = I am laser with a0 < 1, requires a 40 MeV electrun

beam (approximately 300 times lower energy electrons than required by a conventional,

storage-ring synchrotron). This electron beam LSS generates 1 ps x-ray pulses with a high

peak flux ( > 1021 photons/s) and brightness ( > 1019 photons/s-mm 2-mrad2 , 0.1%BW). A

plasma LSS, designed to generated 40 A (0.3 keV) photons with a A0 = 1 Am laser, requires

a0 = 6.9 (I0 = 6.6 x 1019 W/cm2 ). This plasma LSS generates < 10 ps x-ray pulses with

a high peak flux ( > 1021 photons/s, 102 mrad2 ) and brightness ( > 1019 photons/s-m2-

mrad2, 0.1%BW). These peak values of flux and brightness compare favorably to those

obtained in conventional synchrotrons. High levels of average flux and brightness are

presently limited by laser technology. The recent advances in compact, solid-state lasers,

based on chirped-pulse amplification, are capable of generating the ultrahigh intensities

(ao > 1) needed to experimentally explore Thomson scattering and LSS x-ray generation

in the nonlinear regime.

This paper has been restricted to the discussion and analysis of x-ray generation by

the Thomson (incoherent) scattering of intense lasers from beams and plasmas. However,

for sufficiently cold electron distributions, it is also possible to generate short-wavelength

radiation by the stimulated (coherent) backscattering of intense lasers from beams and plas-
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mas [5,21,29,30]. Stimulated backscattered harmonic generation may provided a method

for producing coherent x-rays via a laser-pumped free electron laser (LPFEL). Advances

in CPA lasers and in high-brightness electron beams may soon provide the necessary tech-

nology to realize compact sources of both incoherent (LSS) and coherent (LPFEL) x-rays.

Acknowledgments

The authors would like to acknowledge useful conversations with A. Ting, A. Fisher,

and G. Mourou. This work supported by the Office of Naval Research, the Department of

Energy, and the Medical Free Electron Laser Program.

39



References

1. E.S. Sarachik and G.T. Schappert, Phys. Rev. D 1, 2738 (1970).
2. R.E. Waltz and O.P. Manley, Phys. Fluids 21, 808 (1978).
3. P. Sprangle, B. Hafizi and F. Mako, Appl. Phys. Lett. 55, 2559 (1989).
4. F. Carroll, J. Waters, R. Price, C. Brau, C. Roos, N. Tolk, D. Pickens and H. Stephens,

Investigative Radiology 25, 465 (1990).
5. P. Sprangle and E. Esarey, Phys. Fluids B 4, 2241 (1992).
6. P. Sprangle, A. Ting, E. Esarey and A. Fisher, NRL Memo. Rep. 6973, Jul (1992);

in Proc. Workshop on 4th Generation Light Sources, ed. by M. Cornacchia and H.
Winick, Stanford Synchrotron Radiation Laboratory Report SSRL 92/02 (Standford,
CA, 1992), p. 280; J. Appl. Phys. 72, 5032 (1992).

7. E. Esarey, P. Sprangle, A. Ting and S.K. Ride, accepted by Nucl. Intr. and Meth.

(1993).
8. K.J. Kim, S. Chattopadhyay and C.V. Shank, submitted for publication.
9. C.I. Castillo-Herrera and T.W. Johnston, IEEE Trans. Plasma Sci. PS-21, 125 (1993).

10. K.J. Kim, in Physics of Particle Accelerators, edited by M. Month and M. Dienes,

AIP Conf. Proc. 184 (Amer. Inst. Physics, New York, 1989), Vol. I, p. 565.
11. H. Winick, in Physics of Particle Accelerators, edited by M. Month and M. Dienes,

AIP Conf. Proc. 184 (Amer. Inst. Physics, New York, 1989), Vol. II, p. 2138.
12. S. Krinsky, in Proc. 1991 IEEE Particle Accelerator Conf., edited by M. Allen (IEEE,

New York, 1991), Vol. I, p. 11.

13. A. Jackson, in Proc. 1991 IEEE Particle Accelerator Conf., edited by M. Allen (IEEE,

New York, 1991), Vol. IV, p. 2637.
14. B.M. Kincaid, J. Appl. Phys. 48, 2684 (1977).
15. S.K. Ride and W.B. Colson, Stanford University High Energy Physics Lab Report

858 (1979).
16. R. Coisson, IEEE J. Quantum Electron. QE-17, 1409 (1981).
17. W.B. Colson, G. Dattoli and F. Ciocci, Phys. Rev. A 31, 828 (1985).

18. D. Strickland and G. Mourou, Opt. Commun. 56, 216 (1985); P. Maine, D. Strickland,
P. Bado, M. Pessot and G. Mourou, IEEE J. Quantum Electron. QE-24, 398 (1988);

M.D. Perry, F.G. Patterson and J. Weston, Opt. Lett. 15, 1400 (1990); F.G. Patterson

and M. Perry, J. Opt. Soc. Am. B 8, 2384 (1991).
19. F. Salin, J. Squier and G. Vaillancourt, Opt. Lett. 16, 1964 (1992).

20. G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).
21. P. Sprangle and E. Esarey, Phys. Rev. Lett. 67, 2021 (1991); E. Esarey and P. Spran-

gle, Phys. Rev. A 45, 5872 (1992).
22. P. Sprangle, E. Esarey and A. Ting, Phys. Rev. Lett. 64, 2011 (1990); Phys. Rev. A

41, 4463 (1990); A. Ting, E. Esarey and P. Sprangle, Phys. Fluids B 2, 1390 (1990).

40



23. P. Sprangle, E. Esarey, J. Krall and G. Joyce, Phys. Rev. Lett. 69, 2200 (1992); E.
Esarey, P. Sprangle, J. Krall, A. Ting and G. Joyce, Phys. Fluids B, July (1993).

24. J.D. Jackson, Classical Electrodynamics, second ed. (Wiley, New York, 1975), Chap.
14.

25. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Dover, New
York, 1970), p. 369.

26. G.Z. Sun, E. Ott, Y.C. Lee and P. Guzdar, Phys. Fluids 30, 526 (1987); T. Kurki-
Suonio, P.J. Morrison and T. Tajima, Phys. Rev. A 40, 3230 (1989); P. Sprangle, A.
Zigler and E. Esarey, Appl. Phys. Lett. 58, 346 (1991); A.B. Borisov, A.V. Borovskiy,
O.B. Shiryaev, V.V. Korobkin, A.M. Prokhorov, J.C. Solem, T.S. Luk, K. Boyer and
C.K. Rhodes, Phys. Rev. A 45, 5830 (1992).

27. C. Max, J. Arons and A. B. Langdon, Phys. Rev. Lett. 33, 209 (1974); P. Sprangle,
C.M. Tang and E. Esarey, IEEE Trans. Plasma Sci. PS-15, 145 (1987); W.B. Mori,
C. Joshi, J.M. Dawson, D.W. Forslund and I.M. Kindel, Phys. Rev. Lett. 60, 1298
(1988); E. Esarey, A. Ting and P. Sprangle, Appl. Phys. Lett. 53, 1266 (1988).

28. C.B. Darrow, C. Coverdale, M.D. Perry, W.B. Mori, C. Clayton, K. Marsh and C.
Joshi, Phys. Rev. Lett. 69, 442 (1992).

29. R.H. Pantell, G. Soncini and H.E. Puthoff, IEEE J. Quantum Electron. QE-4, 905
(1968); A. Hasegawa, K. Mima, P. Sprangle, H.H. Szu and V.L. Granatstein, Appl.
Phys. Lett. 29, 542 (1976); P. Sprangle and A.T. Drobot, J. Appl. Phys. 50, 2652
(1976); L.R. Elias, Phys. Rev. Lett. 42, 977 (1979); T.M. Tran, B.G. Danly and J.S.
Wurtele, IEEE J. Quantum Electron. QE-23, 1578 (1987).

30. P. Sprangle and E. Esarey, to be published.

41



Table I

Parameters for an Electron Beam LSS

Incident Laser Parameters

Wavelength, Ao 1 sm

Pulse Length, Lo/c 2 ps
Peak Power, Po 10 TW
Intensity, Io 2.6 x 1017 W/cm 2

Strength Parameter, ao 0.43
Spot size, ro 50 gm

Rayleigh Length, ZR 7.9 mm

Electron Pulse Parameters

Beam Energy, Eb 41 MeV
Beam Current, Ab 200 A
Beam Pulse Length, Lb/C 1 ps

Beam RadLus, rb 50 ,m
Beam Energy Spread, (AE/Eb)i 0.5%
Beam Emittance, En 5 mm-mrad

X-Ray Pulse Parameters

Photon Energy, Ep 30 keV

Photon Pulse Length, Lb/c 1 ps

Peak Photon Flux,a F 6.4 x 1021 photons/s
Photons/Pulse,a FLb/c 6.4 x 109 photons/pulse
Peak Brightness (0.1% BW), B 2.9 x 1019 photons/s-mm 2-mrad 2

Angular Spread, Oc - 1/'1 12 mrad

aIncludes all photons within the 1/1 angle, implying - 100% BW.
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Table II

Parameters for a Plasma LSS

Incident Laser Parameters

Wavelength, Ao 1 jm
Pulse Duration, -ro 1 ps
Peak Power, Po 230 TW
Peak Intensity, Io 6.6 x 1019 W/cm 2

Strength Parameter, ao 6.9

Spot size, ro 15 jim
Rayleigh Length, ZR 710 jim

Plasma Parameters

Electron Density, n, 1020 cm-3

Interaction Length, 2ZR 1.4 mm

X-Ray Pulse Parameters

Wavelength, A, 40o
Photon Energy, Ep 310 eV
Photon Pulse Length, r-r 9.4 ps
Flux Intensity (0.1% BW), dF/dfl 2.1 x 1016 photons/s-mrad 2

Brightness (0.1% BW), B 2.9 x 1019 photons/s-mm 2-mrad2

Photon Flux- (100% BW), F 6.5 x 1021 photons/s

'Includes photons with (Aw/w)s - 1 within a solid angle dM - 7r0 2 with 0 = 10 mrad.
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Fig. 1 Schematic diagram showing the Thomson scattering of an intense laser field from
a free electron.
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Fig. 4 The harmonic amplitude function, F,(ao), as a function of (a•/4)/(1 + a0/2), for

the first ten odd harmonics, n = 1, 3, 5, ... , 19.
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Fig. 5 The normalized intensity, as a function of normalized frequency, w/4"yowo, and

angle, -yo6, of the radiation scattered by a relativistic electron (-yo = 5) from a

counterpropagating, circularly polarized laser pulse (No = 7, ao = 1.0) for the.

first three harmonics.
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Fig. 6 The normalized intensity at the harmonic resonances, W/wo =n, as a function of

angle, 0, of the radiation scattered by a dense plasma electron from a circularly
polarized laser pulse (No = 7, ao = 1.0) for the first six harmonics.
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Fig. 8 The peak intensity of each harmonic in the transverse direction (0 = r/2) versus
normalized frequency, w/wo, for a circularly polarized laser scattering from a

dense plasma electron. The cases ao = 4 and ao = 6 are shown. The arrows

indicate the approximate critical harmonic number, n0 -= ao.
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Fig. 9 The peak intensity of the odd harmonics on axis (0 00) versus normalized fr-

quency, w1-o/4lwo, for a linearly polarized laser scattering from a counterstreain
relativistic electron (010 = 5). The cases ao = 4 and ao = 6 are shown. The arrows

indicate the approximate critical harmonic number, nc =- 3a30/4.
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