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NONLINEAR THOMSON SCATTERING OF INTENSE LASER PULSES
FROM BEAMS AND PLASMAS

I. INTRODUCTION

The development of a compact source ~* ‘ble, near monochromatic, well colli-
mated, short pulse x-rays would have profou. ide ranging applications in a number
of areas. These areas include x-ray spectroscopy, microscopy and radiography, medical
and biological imaging, x-ray analysis of ultrafast processes, and x-ray holography. One
method for producing such an x-ray beam is by the nonlinear Thomson scattering of intense
laser pulses from electron beams and plasmas [1-9]. Current methods of x-ray production
include third generation synchrotron sources, which are based on high energy electron
storage rings and undulator magnetic fields [10-17]. Alternatively, x-rays can be produced
by a laser synchrotron source (LSS), based on nonlinear Thomson scattering, in which the
magnetic undulator is replaced by ultrahigh intensity laser pulses and the electron storage
ring is replaced by a compact electron accelerator of substantially lower energy or by a
stationary plasma [5-7]. The compactness of the LSS makes it an attractive alternative,
particularly at high x-ray energies (> 10 keV), where conventional synchrotrons require
very high energy (> 5 GeV) storage rings. To generate high peak fluxes of x-rays in an
LSS, ultra-intense laser pulses are necessary. Recent advances in compact, solid-state,
short pulse lasers based on the method of chirped—pulse amplification [18-20], provide the
technology for generating the ultrahigh laser intensities required by an LSS.

In the following, a comprehensive theory is developed to describe the nonlinear Thom-
son scattering of intense laser fields from beams and plasmas. This theory is valid for
linearly or circularly polarized incident laser fields of arbitrary intensities and for electrons
of arbitrary energies. Explicit expressions for the intensity distributions of the scattered
radiation are calculated and numerically evaluated. The effects of the space—charge electro-
static potential are included self-consistently and non-ideal effects, such as electron energy
spread and beam emittance, are discussed. These results are then applied to possible LSS
configurations.

An LSS [5-7], using either an electron beam or a plasma, potentially has a number of
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attractive features: (i) tunable and near-monochromatic x-rays can be obtained over the
entire x-ray spectrum (from ultraviolet to gamma-rays), (ii) the x-rays can be produced
in ultrashort pulses (~ 1 ps), (iii) a much lower electron beam energy (~ 300 times less)
is needed to produce a given photon energy than in conventional synchrotrons, (iv) the
device can be compact and inexpensive compared to conventional synchrotrons, (v) much
higher energy photons ( 2, 30 keV) can be produced than in conventional synchrotrons, (vi)
the bandwidth can be small (~ 1%) and is not limited by the length of the undulator as in
conventional synchrotrons, (vii) consequently, narrow bandwidth x-rays can be obtained
with long coherence lengths, (viii) the x-ray polarization is easily adjusted by changing the
inc.dent laser polarization, and (ix) high peak photon flux and brightness can be obtained
using current technology. The capability of the LSS in yielding high average fluxes and
brightnesses is currently limited by the repetition rates of high intensity laser systems.
An important parameter in the discussion of LSS radiation/Thomson scattering is the
dimensionless laser strength parameter, ag, which is analogous to the undulator strength
parameter, K, frequently used in conventional synchrotron radiation literature. The laser
strength parameter is the normalized amplitude of the vector potential of the incident laser

field, ap = eAg/m.c?, and is related to the laser intensity, Iy, and power, Py, by
ao = 0.85 x 10~2Aq [um] I/ [W/cm"’] (1)

and P,[GW] = 21.5(agro/A0)%, where )q is the wavelength and 7o is the spot size of
the laser (a Gaussian transverse profile is assumed). When ag < 1, Thomson scattering
occurs in the linear regime and radiation is generated at the fundamental frequency, w = w;.
When ag 2 1, Thomson scattering occurs in the nonlinear regime and radiation is generated
at harmonics in addition to the fundamental, i.e.,, w = w, = nw;, where n = 1,2,3... is
the harmonic number. Compact laser systems based on chirped—pulse amplification can
deliver modest energy ( 2 10 J), ultrashort ( < 1 ps) laser pulses at ultrahigh powers ( 2 10
TW) and intensities ( 2 10'® W/em?). For Ao ~ 1 um, ao X 1 requires I 2 10'8 W /cm?.
Hence, laser systems which can be used to experimentally explore Thomson scattering
in the nonlinear regime currently exist. Furthermore, these powers and iniensities are

sufficient to produce ultrashort LSS x-ray puises with high peak fluxes and brightnesses.
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In the LSS, two avenues exist for generating short wavelength radiation. The first is to
exploit the relativistic doppler factor which arises from backscattering laser radiation from
a counterstreaming relativistic electron beam. In this case, the wavelength of the funda-
mental (n = 1) backscattered radiation along the axis is given by A = Agv2 / [(1 + Bo)o)°,
where 7o = (1 — 82)~!/2 is the initial relativistic factor of the electron beam (prior to
the laser interaction), By = wvg/c is the initial normalized electron velocity and v; =
(1+ a3/2)Y/2. Hence, for 7o > 1 and a2 < 1, X =~ XAo/47? and extremely short wave-
length radiation can be generated. In practical units, the photon energy, E, = k@, and

wavelength, ), of the fundamental backscattered radiation are given by

_ 0.019EZ[MeV]
EykeV] = (1 a2/2)olpm]’ (2a)
MA] = 650,\o[um]w—g@ (2b)

EZ[MeV]’

where E; is the electron beam energy and 72 > 1 has been assumed. For a conven-
tional synchrotron source [9-16] using a undulator magnet, A = ),/27Z, or E,[keV] =
0.95E%[GeV]/Ay[cm] and A[A] = 13.0\,[cm]/E?[GeV], where ), is the undulator magnet
wavelength and K2 « 1 and 42 >> 1 have been assumed. Since the laser wavelength in the
LSS (Ao ~ 1 pm) is more than four orders of magnitude shorter than the wavelength of a
conventional undulator magnet (A, 2 4 cm), a much lower energy electron beam (~ 300
times less) can be used in the LSS to produce a given photon energy. Hence, compared
to a conventional storage-ring based synchrotron, the LSS can be a compact, inexpensive
device, particularly at high photon energies (E, > 10 keV). As an example, consider syn-
chrotron sources producing 30 keV photons (A = 0.40 A), assuming a2 < 1 and K2 < 1.
In a conventional synchrotron using a A, = 4 cm undulator period, electron beam energies
of E, > 12 GeV are needed. In the LSS using a A\p = 1 um laser, E, = 40 MeV, which is
typical of the energies available from compact accelerators, such as rf linacs or betatrons.

The second avenue to short wavelengths is to exploit the harmonic frequency upshift
factor, A = \;/n, where )\ is the wavelength of the fundamental. For a3 > 1, numerous
harmonics are generated. The result is a near—continuum of scattered radiation with

harmonics extending out to some critical harmonic number, n, ~ a3, beyond which the
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intensity of the scattered radiation rapidly decreases. Hence, an ultra-intense laser incident
on a stationary plasma {yp = 1) can generate short wavelength radiation, A = Ao/n. The

critical photon energy for a plasma-based LSS is given by
E,eV] = 1.24n./Ao[um], (3)

where n. ~ a3. Assuming laser technology limits ag < 10 and Ag ~ 1 um implies that the
scattered radiation is limited to A 2 10 A and E, <1 keV. Hence, a plasma-based LSS is
limited by present laser technology to the soft to medium x-ray regime.

Tunability of the LSS radiation can be achieved by adjusting either the electron energy
or the laser intensity, as indicated by Eqs. (2) and (3). Neglecting thermal effects, it can be
shown that the linewidth of the scattered radiation for a particular n harmonic of frequency
wy, is given by Aw/w, = 1/nNy, where Ny is the number of laser periods with which the
electron interacts. In principle, since Ny is typically large (Np 2, 300), narrow linewidth
x-rays can be generated. In practice, the linewidth will be limited by thermal effects.
For example, the normalized energy spread associated with an electron beam, AE/E,
limits the linewidth to Aw/w, ~ 2AE/E,. An additional advantage of generating LSS
radiation using an electron beam is that the scattered radiation is well collimated about the
backscattered direction (i.e., the direction of the electron beam). For an electron beam with
v > 1 and @ < 1, the backscattered radiation with linewidth Aw/w ~ 1/Nj is confined
to a radiation cone of half-angle 8 ~ 1/(vov/Np). For a plasma with ag > 1, the radiation
is scattered over a much larger angle. When ap >> 1, numerous harmonics are generated,
and tunability is achieved by filtering the scattered radiation. An additional advantage
in using a plasma is that very high electron densities can be achieved in comparison to
densities obtainable in electron beams. The scattered power, as well as photon flux and
brightness, scale linearly with density, hence, the use of high electron densities is favored.

Thomson scattering theory is a classical description which is valid provided the scat-
tered photon energy is small compared to the electron energy, i.e., hw < Yom.c2. For a
plasma, this implies photon energies less than 500 keV. For an electron beam with yo > 1,
o = 1 um and ag < 1, this implies 7o < 10%, i.e., electron beam energies less than 50

GeV. Nonlinear Thomson scattering of intense radiation from a single electron initially
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at rest was examined analytically in considerable detail in the classic work of Sarachik
and Schappert [1]. (This work was recently reexamined by Castillo-Herrera and Johnston
[9].) However, the important effects of the space charge potential [2,21], which arises in
high density plasmas, was neglected and scattering from electron beams was not discussed.
Waltz and Manley [2] also discussed Thomson scattering from plasmas and pointed out
that the space charge potential was important in preventing the drift of electrons in the
direction of the incident laser. However, explicit expressions for the scattered intensity dis-
tribution for arbitrary ap were not calculated and scattering from electron beams was not
considered. Many authors [10-17] have analyzed the production of synchrotron radiation
in the interaction of relativistic electron beams with static magnetic undulator and wiggler
fields, a process which is somewhat similar to Thomson scattering. These analyses require
that K /49 < 1 (analogous to ag/vo < 1), an assumption which need not be made in the
analysis of nonlinear Thomson scattering. In this paper, nonlinear Thomson scattering
of intense laser fields from electron beams and from plasmas is examined analytically and
numerically. This analysis is valid for linearly and circularly polarized incident laser fields
of arbitrary intensities and for electron beams of arbitrary energies (up to the limits of
classical theory). The effects of the space—charge potential are included self-consistently
and various non-ideal effects, such as electron energy spread, are discussed.

The remainder of this paper is organized as follows. In Sect. II, the orbits of electrons
in intense laser fields, both linearly and circularly polarized, are calculated including the
effects of the self—consistent electrostatic potential. Explicit expressions for the scattered
intensity distributions are derived in Sect. III. These are general expressions, valid for
electron beams and plasmas, and for arbitrary laser intensities. Properties of the scattered
radiation are examined in Sect. IV, including a calculation of the total power radiated from
an electron beam or a plasma, an examination of the resonance function and the behavior of
the radiation spectra in the ultra-intense regime, i.e., a3 > 1. Various non-ideal effects are
discussed in Sect. V, including the effects of electron energy spread, electron beam energy
loss, ponderomotive density depletion and plasma dispersion. These results are applied to
possible LSS configurations in Sect. VI, and specific examples of an electron-beam LSS

and a plasma LSS are presented. Section VII is the conclusion.
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II. ELECTRON MOTION IN INTENSE LASER FIELDS

The laser field and space charge field of the electrons can be represented using the
normalized vector and scalar potentials, a = eA/m.c? and $ = e®/m.c?, respectively,
where m, is the electron mass and e is the magnitude of the electron charge. In the
Coulomb gauge, V - a = 0 implies a, = 0 in one-dimension (1D). Then, a; represents the
laser field and & represents the space—charge field of the plasma. The normalized vector

potential of a laser of arbitrary polarization is represented by
a = (ao/V?2) [(1 + 65)1/2 cos ko e + (1 — 6,) /2 sin ko7 ey] , (4)

where ko = 2m/)¢ is the wavenumber of the laser field, n = 2z + ct, 6, = 1 for linear
polarization and 6, = 0 for circular polarization. Using this representation, (a?), =
a2/2 for both linear and circular polarizations, where the subscript s signifies the slow
component (an averaging over the laser wavelength). Hence, the average laser power
Py ~ (a?), is constant for a given value of ap, independent of polarization, i.e., Pj[GW] =
21.5(agro/Ao0)?, assuming a Gaussian transverse profile of the form |a| ~ exp(—r2?/r32). In
the following, the laser field is assumed to be moving to the left (—z direction) and the
electrons are initially (prior to the interaction with the laser field) moving to the right (+2
direction) with an initial axial velocity v, = vp (see Fig. 1).

The electron motion in the fields a and & is governed by the relativistic Lorentz

equation, which may be written in the form

1d . 18
E‘d—tu—VQ‘{‘zaa_ﬂx(vxa), (5)

where 8 = v/c is the normalized electron velocity, u = p/m.c = 78 is the normalized
electron momentum, and v = (1+u?)1/2 = (1—?)~1/2 is the relativistic factor. Assuming
that the laser field, a,, and hence the quantities ®, B, u, and «, are functions only of the

variable = z + ct, Eq. (5) implies the existence of two constants of the motion (21,22},
i(llJ. —-a;)=0, (6a)
dn

d .
o (v+u,—®)=0 (6b)
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Equation (6a) is conservation of canonical transverse momentum in 1D, and Eq. (6b) can
be interpreted as conservation of energy in the wave frame. Equations (6a) and (6b) can
be integrated to give [21,22]

u; =ay, (7a)
y+u, —® =11+ Bo), (7b)

where, prior to the laser interaction (a; = 0), uy = ®=0,v =1 and u, = Y00, have
been assumed. The two constants of the motion, Egs. (7a) and (7b), completely describe
the nonlinear motion of electrons in the potentials a and &. They allow the electron motion

to be specified solely in terms of the fields, i.e.,

_hi-(1+4d?)
B. = h§_+—(m2_)’ (8a)
¥ = (h + 1+ a®)/2ho, (8b)
ﬂ_l_ = aJ./7, (8C)

where hg = 70(1 + Bo) + &.
The self—consistent space—charge potential of the electrons, &, can be determined using

the continuity equation and Poisson’s equation,

12 net V- (ne) =0, (90)
V2% = k2(n./no - 1), (9b)

where n. is the electron density, k, = wp/c, wp = (4me?ng/m,)*/? is the plasma frequency
and ng is the ambient density. Equation (9b) assumes that the initial equilibrium (prior
to the laser pulse) space—charge potential, $(9), is negligible. For a plasma, a neutralizing
background of stationary ions is assumed, ie., $(® = 0. For a long, uniform electron
beam of radius 7y, || < k2r?/4 = vy, where vy = Ip/Iso is the Budker parameter, I, is
the beam current, and Iyo[kA] = 178,. Since v, < 1 for beams of interest, & can be

neglected. Assuming n. = n.(n), Eq. (9a) implies [21,22]
i[n(1+[3)]—0 (10)
dn e z - ]
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hence, n, = no(1 + Bo)/(1 + B.). Substituting this result into Eq. (9b) and using Eq. (8a)
give [21,22]

(11)

2”2 |1+ 9)2

dz‘p_g[(1+a2) 1],
where ¥ = &/9(1 + Bo) and k, = kp/73"*(1 + fo)-
Equation (11) describes the self-consistent electrostatic potential induced by the in-
teraction of the laser field. The solution for ¥ is, in general, highly nonlinear. Simple
solutions can be obtained in two limits in which the characteristic temporal variation of
the laser envelope, 7, (typically the laser rise time), is compared to an effective plasma
period, (ck,)~!. In the short—pulse limit, 7, < (ckp)~!, Eq. (11) implies |¥| < 1 provided
ap < 2/crle:p, where ag is the amplitude of the laser pulse, e.g., a = ag cos kg7. In the long
pulse limit, 71 > (cl?:p)'l, the left side of Eq. (11) can be neglected and it can be shown
that ¥ ~ (1 + az)i/ 2 _ 1, where the subscript s signifies the slow part. Throughout the

/% ~ (1+a2/2)"/2 will be approximated as nearly constant,

following, the quantity (1+a?)
i.e., |d(a®),/dn| < ko(a®),, which implies that Ly > Ao, where Lo = cry, is the length of
the laser envelope.

For applications which utilize intense lasers with pulse lengths 77 ~ 1 ps, the short—
pulse limit is relevant to interactions with electron beams as long as the beam density is
sufficiently low, ng/v8 < 10'® cm~3. On the other hand, the long—pulse limit is relevant
to interactions with stationary (yo = 1) plasmas as long as the c%ensity is sufficiently high,
ng > 10'® cm~3. Under these conditions, the parameter ho = 79(1 + Go)(1 + V) is given
by

~ (12)

! vo(1 + Bo), e~beam (short pulse),
ho =
{ (14 a2/2)'/2, plasma (long pulse).

Notice that in the limit of a low—density plasma with ng < 10'%, |®| < 1 and ho =~ 1.
This corresponds to the single particle limit considered in Ref. [1].
The electron orbits, r(n) = z e; + y ey + z e;, can be calculated as a function of n

using Eqs. (8a-c) and the relation

1
2_=ﬁ=(1+ﬂ')¢-ir_]’ (13)




which gives dr/dn = u/hg. For a linearly polarized laser of the form given by Eq. (4) with

0p = 1, the electron orbits are given by

Uy = ag cos ko7,
uy =0,
u, = [hg — (1 + a} cos® kon)] /2ho.

Hence,

z(n) = zo + r1 sin ko,
¥(n) = yo,
z(n) = zo + B1n + 21 sin 2kon,
where additional terms of order \o/Lo have been neglected and
r1 = ag/hoko,
z) = —a2/8h3ko,
Br=01-1/Mo)/2,
with Mo = h3/(1 + a3/2), i.e.,
M { ¥3(1 + Bo)?/(1 + ad/2), e-beam,
0=

1, plasma.

(14a)
(14b)
(14¢)

(15a)
(15b)
(15¢)

(16a)
(16d)
(16¢)

(17)

Similarly, for a circular polarized laser (6, = 0), the electron orbits are given by

ug = (@o/V/2) cos kon,

Uy = (ao/\/i) sin ko7,

u, = [hd—(1+ aé/2)] /2ho.
Hence,

z(n) = zo + (r1/V2) sin kon,

y(n) = yo ~ (r1/V'2) cos kon,

2(n) = 20 + B,

9

(18a)
(18d)
(18¢)

(19a)
(190)
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where, again, additional terms of order \y/Lo have been neglected. In the above equations,
(z0, Yo, 20) are related to the initial position of the electron.
The axial drift velocity of the electrons, 3;, can be written in terms of the parameter

Bi1. Since n = z + ct, Eq. (19¢) implies z = (2o + f1ct)/(1 — ;). Hence,
B: = B/(1 = B1) = (Mo — 1)/(Mo + 1) (20)

is the average normalized velocity of the electrons in the axial direction. Notice that in
the dense plasma (long pulse) limit, Mp = 1 and 3. = 0. For a low density plasma in the
single particle limit My = (1+a2/2)~! and 8. = —(a3/2)/(2+ a?/2). Hence, in the single
particle limit, a single electron initially at rest receives a finite average drift velocity due
to the ponderomotive force associated with the rise of the incident laser pulse, as pointed
out in Ref. [1]. For an electron in a dense plasma (long pulse limit), 3, = 0 and there is
no average axial motion of the electrons /2,21,22]. Physically, 3, = 0 is achieved through
a balance between the ponderomotive force and the space—charge force set up during the
rise of the laser pulse.

The self-consistent electron density in the presence of the laser field can be calculated
using the constant of motion n.(1+ 8;) = no(1 + Bo). This can be written in terms of the
parameter hg as

ne = no(1 + Bo)(hZ + 1+ a?)/2h3. (21)

Of particular interest is the slow part (n averaged) of the density, n.,. For a tenuous
electron beam (short pulse limit), ho = vo(1+ Bo) and n., =~ 1, assuming h3 > (1+a/2).
For a dense plasma (long pulse limit), hg = (1 + a2/2)'/? and n., = 1. However, this is
not the case for a plasma in the single particle regime. For a tenuous plasma in the short
pulse limit, hg = 1 and n., = no(1 +a3/4). In this regime, the plasma density is enhanced
due the ponderomotive force associated with the rise of the laser pulse and the resulting
finite axial drift motion of the electrons, 5.

The above results have assumed the 1D limit, which is valid when rg > A¢ and when
the quiver motion is much greater than the ponderomo.ive motion. In three-dimensions
(3D), the ponderomotive motion, du = u — a, is given {23] by d6u/8n = V(¢ — 7). The

quasi-static approximation implies that the quantity v + u, — ¢ — a, is a constant of
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the motion, which is the 3D generalization of Eq. (7b). For a plasma, it follows that
[6u(/la| S Apao/ro, whereas for a relativistic electron beam, [6u|/ la| < Loag/voro. The
ponderomotive motion can be neglected when |6u|/|a| < 1, which is true in the cases

discussed below.
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III. SCATTERED RADIATION
The energy spectrum of the radiation emitted by a single electron in an arbitrary orbit
r(t) and B(t) can be calculated from the Lienard-Wiechert potentials [24],

d?I _
dwdQ 47r2c

T/2
] / dt[n x (n x B)] exp fiw(t — n - r/c)] ] (22)

where d?] /dwd(Q is the energy radiated per frequency, w, per solid angle, 2, during the in-
teraction time, T, and n is a unit vector pointing in the direction of observation. Introduc-
ing the spherical coordinates (r,6, ¢) and unit vectors (e,, ey, e,), where £ = rsin @ cos ¢,

y=rsinfsing, z = rcosf, and

e, =sinfcos¢ e, + sinfsin¢g e, + cosf e,, (23a)
ep = cosfcosp e; + cosfsing e, —sinf e, (23b)
e; = —sing e; + cos ¢ ey, (23¢)

and by identifying e, = n, give

n x (nx B) = —(B;cosfcos¢p + B, cosfsing — 3. sinb) ey
+ (B sin ¢ — By cos ) ey, (24a)
n-r=zsinfcos¢ + ysinfsing + zcosé. (24b)
The scattered radiation will be polarized in the direction of n x (n x 8). Hence, I = Iy+ I,

where Iy and I4 are the energies radiated with polarizations in the e and ey directions,

respectively. In terms of the independent variable n = z + ct,

2 dz
di:;) 47r"’c3 l / dn (-—— cosfcos¢ + 51% cosfsin¢g — dn sin 0) exp(n/))’ (25a)
d?I, dy
dwd 47r2c3 b / (— sin ¢ — dn cos ¢) exp "/’)‘ , (25b)

where

¥ =k[n— z(1 + cosf) — zsinfcos ¢ — ysinfsin @}, (26)

k =w/c, no = Lo/2, Ly is the laser pulse length and L, >> Ao = 27 /ko has been assumed.
In deriving the above expressions, the relation cdt = (dr/dn)dn was used, where r = r(n)

is given by Egs. (15) and (19).
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A. Linear Polarization

The electron orbit for a linearly polarized incident laser field of the form given by Eq.

(4) with §, = 1 is given by Eq. (15). The phase 9 can be written as

Y =10+ (1~ (1 + cos)] kn

— (krysin @ cos ¢) sin kon — [kz1(1 + cos 8)] sin 2kqn, (27a}
to = —k [20(1 + cos @) + zg sinf cos ¢ + yo sin fsin @) . (27b)
Using the Bessel identity
o0
exp(ibsino) = Y J,(b) exp(ino), (28)

where J, are Bessel functions, allows the phase factor exp [i(y + £kon)] to be written as

exp [i(¢' + Zkon)] = Z Jm(&z)-]n—2m+l(&c) exp [?(¢0 + ’-‘-777)] y (29)
where
k=k[1— B1(1+ cos8)] — nko, (30a)
&, = kz1(1+ cosb), (30b)
Gy = krysinfcos ¢. (30c)

In order to evaluate Eqs. (25a) and (25b), it is necessary to evaluate the integrals

fewr = | an"EB expliy), )

Using the orbits, Eq. (15), along with the identities in Eqs. (28) and (29),

. . > sin k . . R
I, =k0‘r16"p° Z ( lnk 77) Jm(az) [Jn—2m—l(a::) + Jn—2m+1(az)] ’ (320')

mmn=—oco

L=zew S () e
{B1In-2m(@:) + ko21 [Jn-2m-2(6z) + Jn—2m+2(éz)]},(32b)
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and fy = 0, where

d2I9 e2w2 R - 2

IR = I3 I.cos@cos¢p —I,sinf| , (33a)
d21¢ 62w2 Ca 2

dwd ~ a2 Sm"" ' (330)

The frequency width of the radiation spectrum for a given harmonic is determined by

the resonance function R(k,nkp), where

T\ 2
R(k,nko) = (S“l'ic:o"“) . (34)

This function is sharply peaked about the resonant frequency, w,, given by k = 0,
Wn oad (35)

T 1- B1(1+ cosh)’

The width of the spectrum, Aw, about w, is given by Aw/w, = 1/nNy, where Ny = Ly/Ao
is the number of periods of the laser field with which the electron interacts.
Since the frequency spectra for two different harmonics, n and n’, are sufficiently well

separated, the summations in Egs. (32a) and (32b) may be simplified to yield

d?I 2. e?k? (sin l-cno)2

dwd® ~ Z4n?e " k
- [C2(1 - sin® G cos? ¢) + CZsin? 6 — C,C, sin20 cos ¢] (36)
where
C, = i (—=D)™kor1Jm(ez) [Ja—2m—1(az) + Jn—2m+1(az)], (37a)
m=—oo0
Co= 3 (~1)"2m(@){Ardn sm(as)
T + koz1 [Jn—am—2(az) + Jn—2m42(az)] }, (37b)
and

o = na3(1 + cos6)

* 7 8hZ[1 - B1(1 + cos@))’
_ nag sin 0 cos ¢
" ko[l - Bi(1+cosb)]’

(38a)

0 (38d)
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In the deriving the above expressions, the approximation w ~ w, was made in the argu-

ments of the Bessel functions, o, and a,.

Plots of the normalized amplitude of the scattered intensity, d%I/dwdSQ, versus normal-
ized frequency, w/4v2wo, and normalized observation angle, 00, are shown in Figs. 2(a,b)
for the case of a linearly polarized laser (No = 7) interacting with a counterpropagating
relativistic electron (g = 5). The intensity is shown in the plane of electron motion, ¢ = 0,
i.e., 6 is the “horizontal” observation angle (# = 0 is along the z—axis, the axis of propaga-
tion). Figure 2(a) shows the intensity in the first two harmonics for aq = 0.5. Significant
radiation occurs only at the fundamental (n = 1). The intensity of the fundamental peaks
on axis with a frequency shifted slightly from the low-intensity, Thomson backscattered
value of 4y2wo, and is confined to an angle § < 1/v,. Figure 2(b) shows the intensity in
the first three harmonics for ag = 1.0. Significant radiation now occurs in the harmonics as
well as the fundamental. Only the odd harmonics are finite along the axis (§ = 0) and the
frequency shift due to finite ag is more apparent. The angular distribution of the higher
harmonics is more extensive than the fundamental. The n** harmonic exhibits (n + 1)/2,
for n odd, or n/2, for n even, intensity maxima as a function of 8. For larger values of ag,
the harmonics dominate the spectrum.

Plots of the normalized amplitude of the scattered intensity, d2I/dwd$2, versus obser-
vation angle, €, are shown in Figs. 3(a-c) for the case of a linearly polarized laser (Ng = 7)
interacting with a dense plasma electron. The intensity is shown in the plane of electron
motion, ¢ = 0, i.e., @ is the horizontal observation angle. Figure 3(a) shows the intensity
in first three harmonics for ap = 0.5, Fig. 3(b) shows the intensity in first six harmonics
for ap = 1.0, and Fig. 3(c) shows the intensity in first twelve harmonics for a9 = 2.0. For
a dense plasma, there is no average axial drift of the electrons, hence, harmonic radiation
is scattered over large angles and the frequency is not shifted, i.e., w, = nwy. (For conve-
nience, the intensity is plotted only at the resonant frequencies, w = w,.) Only the odd
harmonics are finite along the axis (§ = 0) and the intensity is maximum off-axis for all
harmonics with n > 1. The n** harmonic exhibits (n+1)/2, for n odd, or n/2, for n even,
intensity maxima as a function of @ within the region 0 < 6 < «/2.

Backscattered Radiation. Of particular interest is the radiation backscattered along
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the axis. In the backscattered direction, § = 0, only the odd harmonics are finite, i.e.,

the even harmonics vanish. Setting # = 0 in the above expressions gives, for the nt* odd

harmonic,
d*I = e2koNoM2F,(a0)Gr(w) 39
dwdle—o ~ € FoVoMo Fnll0)Talw), (39)
where
2
Fu(ao) = now [Jn-1)/2(0n) = Jn+1)/2(am)] ", (40)

is the harmonic amplitude function, o, = na2/4(1 + a3/2),

Gn(w) = —%—

R(k,nko) _1_ [sin(w — nMowo)T ’ (41)

Aw (w — nMowo)T
is the frequency spectrum function and T = Lg/2cM,. The function G,(w) is a resonance
function sharply peaked about the resonant frequency, w, = nMpwp, with a width given
by Aw/wn = 1/nNy, where the frequency multiplication factor My is given by Eq. (17).
Furthermore, G, — §(w — wy,) as Ny — oo.

The energy radiated in the n** backscattered harmonic depends on the function
F,(ag), Eq. (40). For high harmonics, n > 1, F, becomes significant when a2 > 1.
For modest power lasers for which a2 < 1, only the fundamental, n = 1, is significant. A
plot of the function F,, versus the parameter (a2/4)/(1 + a2/2) is shown in Fig. 4.

B. Circular Polarization

To calculate the scattered radiation from a circularly polarized incident laser field
(6, = 0), the orbits given by Eqgs. (18)-(19) are used in Eqgs. (25a)-(25b). The intensity

distribution can be written as

2

:wi‘;z = 41r2c3 |/ dn [——- cos § cos(kon — @) — b1 smO] eXP(”/’)l (42a)
2

:chi?) - 472c3 l./ [ sin(kon - ¢)] exP(”/")| )

The phase, v, is given by

% = o + [L — B1(1 + cos8)] kn — (kr1/v/2)sin 8 sin(kon — ¢), (43)
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where 1 is given by Eq. (27b). Using the Bessel identity, Eq. (28), gives

o0

exp{i[y + L(kon — ¢} = Y exp[i(so + kn+ ng)] Jute(d), (44)

n=-—-0o0

where & = (kr1/v/2)sin6 and where k is given by Eq. (30a). This allows the calculation
of the integrals in Eqgs. (42a) and (42b). In particular,

R o

Io=[ dnexp(iy)
=70
oo

> exp[z(¢o+n¢>](

n=-—o00

sin kno

) 2Jn(&), (45a)

7o

i = / dn cos(kon — ) exp(ish)
—No

5 explitso +no)] () 2,0, (45t)

n=—000

no
I= dnsin(kon — ) exp(iy))

—"o

o0

>~ expli(vo +ng)] (

n=-—00

sm 1)0

) 2iJ.(&). (45¢)

As indicated by Eq. (34), the above expressions imply a frequency spectrum centered
about w = w,, where w, is given by Eq. (35), of width Aw/w, = 1/nNy. Since the
frequency spectra of two different harmonics, n and n’, are well separated, the summations
in Egs. (42a)-(42b) can be simplified. Using Eqs. (42) and (45), the radiation spectrum
can be written as

21 ek (sinl'cno)z
dwdQ w2c k
' { [cos 8 — By (1 + cos§)}?

sin® @

7o)+ 50 1 )} (46)

where kor; = ag/ho and the approximation w ~ w, has been made in the arguments of
the Bessel functions, i.e.,

n(ag/v/2)sin 6
ho [1 - ﬂl(l -+ cos 0)] )

a= (47)
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In the above expression, the terms proportional to J,(a) are the contributions from I,
and the terms proportional to J,(«a) are the contributions from I,.
Using the identities [1]
2J2(n3) = B+ £7)
Z n*J ('n. 16(1 - 22)7/2’

n=1

, 4+ 322
Z"Jz( £) = 16((1+ *2)2/2'

(48)

the summation in Eq. (46) can be carried out and an expression for dI/dQ can be found.

After integrating over frequency, one finds

dr (e2/c)Nowoad /h3
d  32(1— 22)7/2[1 - B1(1 + cos6)]®

{SShmp e e -},

(49)

where Z = a/n.

Plots of the normalized amplitude of the scattered intensity, d?I/dwdS?, versus nor-
malized frequency, w/4v3wo, and normalized observation angle, Yo, are shown in Figs. 5
and 6 for the case of a circularly polarized laser (ap = 1, Ny = 7). Because of the symmetry
of the electron orbit, the intensity distribution is independent of ¢. Figure 5 shows the
scattered intensity from a counterpropagating relativistic electron (yo = 5) for the first
three harmonics. Only the fundamental (n = 1) is nonzero on axis, where its intensity
is maximum, and its frequency is shifted from the low-intensity, Thomson backscattered
value of 4v3wp. The intensity of the higher harmonics peak off-axis and is confined to an-
gles 8 < 2/M3 /2 as discussed in Sect. IV C below. Figure 6 shows the scattered intensity
from a electron in a dense plasma for the first six harmonics. For a dense plasma, there
is no average axial drift of the electrons and the frequency is not shifted, i.e., w, = nwyg.
Only the fundamental is nonzero on axis, where its intensity is maximum. For higher
harmonics, the intensity is maximum in the transverse direction, § = w/2. As the intensity
of the laser pulse increases, more radiation is scattered into the higher harmonics.

Backscattered Radiation. In the backscattered direction, only the fundamental, n = 1,
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is nonzero. In the limit § — 0, Jj(a) — 1/2 and J;(a) — a/2. Hence,

P, | e*koNoMZad
dwdQle=0 ~— 4(1 + a2/2)

where G;(w) is given by Eq. (41) with n = 1.
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IV. RADIATION PROPERTIES
A. Radiated Power

The power radiated by a single electron, P,, undergoing relativistic quiver motion in

an intense laser field can be calculated from the relativistic Larmor formula [24]

P, = %80—272 [(%)2 - (%)2} : (51)

Assuming the electron orbit is a function of only the variable n = 2 + ct,

P, = gezc('y+uz)2 [(j—:’l)z - (%’1—:—)2] . (52)

Using the orbits described in Sec. II, the power radiated by an electron in the presence of
a circularly or linearly polarized radiation field is given by
2 1/2, circular,
P, ~ §e2chgkga(2, . (53)
sin? kon, linear,
where hy is given by Eq. (12). Averaging the above expression over a laser period, the

ratio of the radiated power to the incident laser power, P,/P,, can be written as
P,/Py ~ 16r2hk/3rd, (54)

where 7. = e2/m.c? is the classical electron radius.

The total power radiated by a laser pulse passing through a uniform distribution of
electrons with a constant density ng is given by Pr = N.P,, where N, = noLgoy is the
total number of electrons interacting with the laser pulse at a given time, Lo = c7y is
the laser pulse length and oy is the effective cross—section. Assuming a Gaussian laser
pulse, & = (agro/rr)exp(~r2/r%), where ry is the laser spot size and rg is the minimum
spot size, the effective cross—section, o, can be found by letting ap — @ in Eq. (54) and

integrating P, over r. One finds
2 1, e-beam,

fp, plasma,
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where f, = (1 + a3/4)/(1 + a3/2). In Eq. (55), the top expression holds in the short
pulse (electron beam) limit, i.e., hg = Yo(1 + o), and the bottom expression holds in the
long pulse (plasma) limit, i.e., ho = (1 + a2/2)}/2. Hence, the total scattered power by a

uniform electron density ng is given by
Pr/Py = (87/3)r2Lonofphd. (56)

As example, a ng = 102° cm—3 plasma interacting with a 1 ps laser pulse with ag = 5 gives
Pr/Py = 1.4 x 1075. The ratio of the total scattered energy to the laser pulse energy is
approximately PrL/PyLg, where L is the total length over which the laser pulse interacts

with the electrons.
B. Resonance Function

Several properties of the radiation spectra can be ascertained by examining the res-
onance function, R(k,nko), given by Eq. (34). The function R(k,nkp) is sharply peaked
about the resonant harmonic frequencies, wy, defined by k = 0, which can be written as

_ ‘nMowo
" 14 MoBi(1 — cosb)]’

(57)

Wn

where n is the harmonic number and M, is the relativistic doppler upshift factor. For a
plasma, 8; = 0 and My = 1, which gives w, = nwp, independent of §. For a relativistic
electron beam with My > 1, the radiation is primarily backscattered into small angles,
62 < 1. Hence w, ~ nMowo/(1 + My6?%/4), which indicates a maximum frequency in the
backscattered direction along the axis, # = 0. The change in frequency Aw with respect
to a change in angle A# is given by

|Aw| _ |Mo(6A8 + A82/2)]
wn (24 Mo82/2) '

(58)

assuming Mp > 1. Alternatively, Eq. (58) can be solved to give the angular spread A@
about 6 over which a given bandwidth Aw about w, may occupy. For a relativistic electron
beam with My > 1, two angles are of particular interest. It is shown below that for a

linearly polarized laser, the radiation intensity for the higher harmonics, n > 1, is centered
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about 8 = 0, whereas for circular polarization, the intensity is centered about 6y = 2 /M; 2,

For these two angles, Eq. (58) implies

Ag~ TE

(Aw/wn)?, for 6 =0,
" . (59)

(Aw/wy), for 8 = 8,

where Mo ~ 472/+2 has been used.
The intrinsic (i.e., associated with the radiation from a single electron) frequency width
Awy, of the radiation about a resonant frequency wy, can be found by letting w = wy, + 6w

and integrating the function R(k,nky) over dw, which gives
Aw, = / d(6w)R(k, ko) = wn /nNo. (60)

Hence, Awy, /w, = 1/nNg, where Ny = Lg/)A¢ is the number of wavelengths in the laser
pulse. Furthermore, R(k,nkg) — Awné(w — ws) as Ny — oo. The angular width A6,
within which can be found radiation with frequencies in Aw, about w,, for a single har-

monic 7, is given by inserting Eq. (60) in Eq. (59),

Af, ~ — .

(1/nNo)'/2, for 6 =0,
Yo (61)

(1/nNo),  for 8 = 6.

Alternatively, similar expressions can be obtained by letting 8 = 8’ + 66 and integrating
R [kn(6"), ko] over 8. It should be pointed out that Eqgs. (59) and (61) apply to relativistic
electron beams with My > 1. For plasmas, the angular width occupied by a given Aw
about w, must be determined by considering the full functional form of the radiation

spectrum, Eqgs. (36) and (46), not just the resonance function R(k,nko).
C. Ultra—-Intense Behavior

For values of ap < 1, the scattered radiation will be narrowly peaked about the
fundamental resonant frequency, w; = wp/[1 — B1(1 + cos@)]. As aq approaches unity,
scattered radiation will appear at harmonics of the resonant frequency as well, w, = nw;.
When ag > 1, high harmonic (n >> 1) radiation is generated and the resulting synchrotron

radiation spectrum consists of many closely spaced harmonics. Finite electron energy
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spread effects can broaden the linewidth causing the radiation from the various harmonics
to overlap. For example, a finite thermal axial velocity spread will lead to overlap when
(Aw/wy)en 2 1/n, where (Aw/wy, )i is given below by Eq. (77). Hence, in the ultra-intense
limit, i.e., a9 > 1, the gross spectrum appears broadband, and a continuum of radiation
is generated which extends out to a critical frequency, w., beyond which the radiation
intensity diminishes. The critical frequency can be written as w. = n.wg, where n. is
the critical harmonic number. It is possible to calculate n. by examining the radiation
spectrum, Eqs. (36) and (46), in the ultra-intense limit, ag > 1.

Asymptotic properties of the radiation spectrum for large harmonic numbers, n > 1,

can be analyzed using the relationships [25]

£1/2
Jn(n2) = —(1 - £%)7V4Ky j3(ni),
s
(62)
A $1/2 a\1/4 .
Jo(n2) = ———(1 ~ £2)Y/4K,3(n),
7
where |Z| < 1 and is a function of ag and 8,
F=ln[1+(1- )] -lmz-(1- ), (63)
and K, /3, K3 are modified Bessel functions. In particular, for nz >> 1,
K3 ~ Ky/3 =~ (7/2n%) exp(—nZ), (64)

and, hence, only harmonic radiation with nZ < 1 will contribute significantly to the spec-
trum. The critical harmonic number is defined as n.&min = 1, i.e., ne = 1/&min, where
Zmin is the minimum value of Eq. (63). Furthermore, d#/dZ < 0 and the minimum of Z
occurs at Zmag. Typically, for @2 > 1,1 — 32, < 1 and Eq. (63) can be expanded to
yield, to leading order, £min =~ (1/3) (1 — 2,2,,“)3/2. The critical harmonic number is given

by the inverse of this expression.
1. Circular Polarization

For a circularly polarized incident laser field, Z = a/n, where a is given by Eq. (47),
ie.,
(ao/+/2)sinb

ho [1 = B1(1 + cos 8)] (65)

z =
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For a fixed value of ag >> 1, the maximum value of % is given by Zma. = (a0/Vv?2)/(1 +

a2/2)'/2, and occurs at an angle 8, given by
cosfp = (Mo — 1)/(Mp + 1). (66)
Inserting this value of Z,,, into Eq. (63) gives, for a2 > 1, £min ~ 21/2/3a} and, hence,
ne ~ 3a3/2v2. (67)

Furthermore, radiation at the harmonic n. will be scattered in the direction § = 6,, where
0o is given by Eq. (66). The frequency of the radiation scattered in the direction 8 = 6 is
given by

w(f = 6p) = nwo(Mo + 1)/2. (68)

For a plasma, My = 1 and 6y = £7/2, i.e., the high harmonic radiation will be scattered
perpendicular to the incident laser field. For a relativistic electron beam with My > 1,
6o ~ 2/M3/ % and the high harmonic radiation is nearly backscattered. Physically, 6, is
related to the pitch angle of the electron orbit, |u, |/|u.| ~ 2v2 /Mé 2 ~ a4 /7o, assuming
a?>1and Mp > 1.

The asymptotic properties (n >> 1) of the radiation spectra can be readily obtained
from Egs. (46) and (62). In the ultra-relativistic limit, a2 > 1, the radiation is confined to
small angles 66 about the optimum angle 6. i.e., § = 6 + 60, where §6°> <« 1. Assuming
n>> 1, ad > 1 and 66* < 1, Egs. (46) and (62) give

7‘% = °:§2c § o 1622692) [(1 fjg;oz)Kf/a(f) + Kg/s(f)] : (69)
where
£ = g (1+1266%)%2, (70a)
e "c(ﬂ%ﬂ“’m (70b)
= %%O_O;i/%)‘ (70c)

Equation (69) holds for arbitrary values of My, i.e., electron beams of arbitrary energies as

well as stationary plasmas. In Eq. (70a), n. = 3a3/2v/2 and the factor (Mg + 1)/2 is the
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relativistic doppler upshift for radiation scattered at the optimum angle 6, as indicated
by Eq. (68). The expression for v follows from Eq. (8b) assuming a? > 1. In deriving
Eq. (69), Eq. (62) was used and the summation was approximated by an integral, i.e.,
> n R(k,nko) >~ 1/Ng and, hence, nZ — §.

Notice in the limit 66 = 0, d?I/dwdS} ~ €2K22/3(§), where £ = w/w.. A plot of the
function Y'(€) = £2K2 5(¢) is shown in Fig. 7. The function Y (£) is maximum at £ = 1/2
and decreases rapidly for £ > 1. Half the total power is radiated at frequencies w < w./2
and half at w > w./2. This can be shown by integrating d2I/dwd over frequency and
angle [10], i.e., integrating the expression given below by Eq. (71b) over frequency.

Equation (69) is Ny times the standard result [24] for the synchrotron radiation spec-
trum emitted from an electron moving in an instantaneously circular orbit in the ultra—
relativistic limit with a radius of curvature p = 3y3¢c/w.. Several well-known properties

[24] follow from Eq. (69), for example

al _7e  Nowey? 5__v'e6" (71a)
dQ = 8¢ (1 + 72607)5/2 71+ 72607) |’

dI e?

e 2\/§-C-N07i deK s /3(8). (71b)

We J2uw fuw,

The peak intensity is of the order Npe?v/c and the total radiated energy is of the order
Noe*yw./c. The peak intensity occurs at the optimum angle o, i.e., 66 = 0, at approxi-
mately the critical frequency, w ~ w, i.e.,, n @ n. = 3a3/2\/§. For harmonics below n.,
(w € w), the radiation intensity increases as (w/wo)??, and above n. (w > w,), the

radiation intensity decreases exponentially, i.e.,

d’I 3e2 2 of W )2/3
= T2c Y ! (4] 72
56 | soco = Vo7 [T(2/3)]" v ( 2 W< w (720)
=Noore \ s -—, e 72b
dwéSt | se=0 No 2mc | (wc) €xp ( o w>w (72b)

Furthermore, for w < w, the scattered radiation at a fixed frequency is confined to an
angular spread A60 = (w./w)Y/3/~ about 8y, whereas for w > w, A0 = (we/3w)'/?/7.
The average angular spread for the frequency integrated spectrum is (66%)1/2 ~ 1/~.

As an example, the peak intensity in the transverse direction (§ = =/2) of each

harmonic, w = nwp, is shown in Fig. 8 for the case of a high intensity, circularly polarized
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laser pulse encountering an electron in a dense plasma. Plots for two different intensities
are shown, ap = 4 and ag = 6. The arrows indicate the approximate critical harmonic
number, n. ~ ag, for each case. Asymptotically, ap > 1, this curve approaches the form

Y (€)= §2K§/3(§), shown in Fig. 7.
2. Linear Polarization

For a linearly polarized incident laser field in the limit ay < 1, upshifted radiation
at the fundamental frequency is generated in a narrow cone about the backscattered di-
rection, 0 ~ 2762, where 6. ~ 1/ho. However, in the limit ag >> 1, a near—continuum of
high harmonic radiation is generated and the emission cone about backscattered direction
widens [10]. In particular, in the vertical direction, ¢ = 7/2 (the direction normal to
the z-z plane which contains the electron orbit), emission is confined to the vertical angle
6, ~ 1/hg. In the horizontal direction, ¢ = 0 (in the plane of the electron orbit), the emis-
sion angle widens and is confined the horizontal angle 6, ~ ag/hg, which is determined
by the deflection angle of the electron in the z-z plane [10]. The asymptotic properties
of the radiation spectrum can be analyzed using Eqgs. (36) and (62). Letting 6 represent
the observation angle in the vertical direction, i.e., ¢ = 7 /2, then in the limits ao > 1
and n > 1, 2 < 1 and the coefficients C, and C, occurring in Eq. (36) are given by
C2 ~ J2(£z) and C? ~ (ao/ho)2J}’(£2), where additional terms of order 1/ao have been

neglected and n = 2£ + 1 > 1. Here, for linear polarization,

z 2 h?
2=9e—zl—a—%(l+-f-02). (73)

The asymptotic spectrum near the axis can be found by using the asymptotic properties of
the Bessel functions, Eq. (62). Notice that for § = 0, Z£maz ~ 8/3a3. Hence, £ = 1/Zmaz,

and the critical harmonic number, n. ~ 2£. is given by
ne ~ 3a3/4. (74)

Using Eqs. (36) and (62), the asymptotic spectrum is given by

d2I N 12¢2 :7242 :’,202
dwdQ ~ 0 n2c (1+4262) [(1+4262)

Kf,3<<)+K3,3<c)], (75)
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where

(= ii(l + 4%62)3/2 (76a)
We = ncMDwO; (76b)
'3’ = h0/2 (766)

In deriving Eq. (75), Y, R(k,nko) — 1/Np and €% — (. Several subsequent properties of
the asymptotic spectrum follow from Eq. (75). As was the case for circular polarization,
Eqs. (71)-(72) apply, with Ny — 4Ny, 66 — 6, v — 4 and where w, is given by Eq. (76b).
In particular, radiation with w ~ w. is confined to a vertical angle 8, ~ 1/4. In the
horizontal direction, emission is confined to the angle 8, ~ ag/7, i.e., 6, ~ ao/vo for an
electron beam and 6, ~ 7 /2 for a plasma.

As an example, the peak intensity on axis (§ = 0) of the odd harmonics, w = nMywy, is
shown in Fig. 9 for the case of a high intensity, linearly polarized laser pulse encountering
a counterstreaming relativistic electron (7o = 5). Plots for two different intensities are
shown, ag = 4 and a¢ = 6. The arrows indicate the approximate critical harmonic number,
n. =~ 3a3/4, for each case. Note that the harmonic intensity is plotted versus the normalized
frequency w/493wo ~ 1.5a9. Asymptotically, ap >> 1, this curve approaches the form
Y (€) = €2K3 5(¢), shown in Fig. 7.
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V. NON-IDEAL EFFECTS
A. Electron Energy Spread

The above analysis has assumed ideal electron distributions, i.e., thermal and en-
ergy spread effects have been neglected. These effects are important in determining the
frequency line width of the scattered radiation [10]. For example, the resonance func-
tion R(k,nko) indicates that if a thermal axial velocity spread Av,, is introduced, i.e.,
B: = Bo + AB:in, where ABy, = Avyr/c, then the scattered radiation along the axis will be

shifted in frequency away from w, by Aw,;, where
(Aw/wn)en = 275D Ben. (77)

For a plasma, Af,, is related to the initial plasma thermal energy, Ei,, by Afwy, =
(2Eth/mec®)}/2. For an electron beam, Af,, is related to the initial normalized energy
spread, Av/vo, by ABin = Av/73Bo. As an example, a plasma with a temperature of 100
eV would produced a thermal bandwidth of (Aw/wy )i =~ 4%.

In actual electron beams, the electrons may have an average angular spread as well as
an average energy spread, represented by emittance and intrinsic energy spread, respec-
tively. The normalized beam emittance is given by €, = ~ors0,, where r is the average
electron beam radius and 0, is the average electron angular spread. The fractional lon-
gitudinal beam energy spread due to emittance is (AE/Ep). = €2/2r2, where E, is the
initial beam energy. Electron beams may also have an intrinsic energy spread, (AE/Ey);,
due to various reasons, such as, voltage variation, finite pulse length effects, etc. The total

spectral width of the radiation about the harmonic wy, is
(Aw/wa)r = [(Aw/wa)d + (Aw/wa)? + (Aw/wa)?] 2, (78)

where (Aw/wn)o = 1/nNp is the finite interaction length spectral width contribution,
(Aw/wy)e = €2 /r} is the emittance broadened spectral width and (Aw/wy, )i = 2(AE/Ey);
is the intrinsic energy spread broadening contribution. The radiation with total spectral
width (Aw/wy)r is confined to the angle 8 ~ (Aw/ w,,);‘/ 2 /0. This consequently reduces
the spectral intensity, d2I/dwdS2, of the scattered radiation from an electron beam for a

particular harmonic by approximately 62/62.
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If a particular application requires a bandwidth (Aw/wy,)s < 1, this radiation can be

found within the angle 65, where
0% = 63 + 67 = [(Aw/wn)s + (Aw/wa)T)] /13- (79)

If a bandwidth (Aw/w,)s > (Aw/wy)T is required, all the radiation within a cone of
half-angle 8y ~ fs = (Aw/wn);./ 2/70 can be used. To obtain a bandwidth (Aw/wy,)s <
(Aw/wy)T, the radiation within the cone g ~ 67 = (Aw /w,,)ff,./ ? /4o must be filtered using
a monochromator. As an illustration, for an rf linac electron beam with €, ~ 5 mm-mrad,
ry = 50 pm and o = 100, (AE/E). ~ 0.5% and (Aw/w,)e ~ 1%. Since the intrinsic
energy spread is typically ~ 1% and Ny 2 300, the total spectral width of the unfiltered
LSS radiation is typically (Aw/wn)r ~ 1% and is confined to the angle 6 ~ 1 mrad.

b. Electron Beam Energy Loss

As the electron beam radiates via nonlinear Thomson scattering, the electron beam
will lose energy. The rate of loss of electron beam energy is equal to the scattered power,
mec’dy/dt = —P,, where P, is given by Eq. (54). Assuming ho ~ 442, the electron beam
energy will evolve [5] according to v = v9/(1 + t/7r), where ¢ is the electron beam-laser
interaction time and g = 3/(4cr.k3avo), where a linearly polarized laser field has been

assumed. In practical units, this can be written as
Tr(ps] ~ 1.6 x 1022E;* [MeV] I;! [W/cmz] : (80)

One consequence of the loss of electron beam energy is the introduction of an additional
source of enhanced bandwidth, (Aw/wn)r = 2(70 — 7)/70, where 49 — v = vt/7g. For
typical values of laser pulse lengths and intensities of interest, t/7p <« 1, and this effect
is small. As an example, a 2 ps (¢ = 1 ps) laser pulse with intensity I, = 2.6 x 107
W/cm? (ap = 0.43) interacting with a E, = 40 MeV (v = 79) electron beam gives
(Aw/wyp)r ~ 0.13%.

C. Ponderomotive Density Depletion

In a high density plasma, the transverse ponderomotive force from the radial gradients

in the laser pulse profile can displace the plasma electrons leading to a density depression
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on axis. In the long pulse limit, the density depression can be calculated by equating the
electrostatic force with the ponderomotive force, V¢ = V,v,, which is the adiabatic
response of the plasma electrons to the transverse ponderomotive force {23,26]. This gives

an equilibrium density profile of
ne/no =1+ k;2V2 (1 + a?/2)'/2, (81)

where n./ng > 0 has been assumed. Assuming a Gaussian transverse profile of the form

la] ~ exp(—r2/r2), Eq. (81) indicates that the density along the axis is given by

e =0 02A2 2 -1/2
ne(r=0) _y_ fod (1, %) 7 (82)
no 272rd 2

where A\, = 27 /k,. As an example, a high-density plasma with ro = 15 pm, A, = 5 pm
and a9 = 7 gives a density depression along the axis of An./ng = 5%. This density
depression reduces the total number of electrons scattering radiation, hence, the total
scattered power P, ~ n. will be reduced. Furthermore, in a high density plasma, the ef-
fects of relativistic self-focusing, which occurs for pump laser powers above a critical power,
P.[GW] =~ 17(A,;/A)?, along with the effects of a density depletion on axis, can provide op-
tical guiding and significantly extend the laser—plasma interaction distance [5,22,23,26,27).
For a relativistic electron beam in the short pulse limit, 7, < 73/wp, the magnitude
of the electron density perturbation, An., due to the ponderomotive force, is given by

|An./no| < (Loao/vom0)? < 1, consistent with the discussion at the end of Section II.
D. Plasma Dispersion

The frequency of the scattered radiation can be affected by the dispersion properties
of electromagnetic radiation in a plasma. In the long pulse limit, the nonlinear dispersion
relation for radiation of frequency w and wavenumber k is given [5] by w? >~ ¢2k? + w2/, .
Notice that the dispersion relation is different for radiation within the region of the pump
laser pulse, v, = (1+a2/2)'/2, and for radiation propagating in the plasma outside of the
pump laser pulse, v, = 1. In particular, for backscattered radiation, the radiation will
transit a counterstreaming boundary region at the trailing edge of the pump laser pulse.

As the backscattered radiation transits this boundary region, counterstreaming at the
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group velocity of the pump laser pulse, vy, the frequency and wavenumber of the scattered
radiation will be shifted [28]. Hence, the detected frequency, wq, of the backscattered
radiation will be shifted from the frequency at which it is scattered, w, within the laser
pulse. The detected frequency wy is related to the scattered frequency w by requiring the
phase of the scattered radiation to be continuous across the boundary at the trailing edge
of the laser pulse (28], w + vgk = wq + vgka, Where vy = ¢(1 — w?/y1w?)!/? and a square
laser pulse profile has been assumed for simplicity. Using the dispersion relation to solve

for k and k; in terms of w and wq, respectively, and assuming wz Jw? <« 1, implies
“i~1+w—‘2’(1-i) (83)
w 4w? T

Hence, for backscattered radiat:on, the detected frequency will be upshifted from the scat-
tered frequency. Furthermore, depletion of the electron plasma density within the region
of the laser pulse by the transverse ponderomotive force will produce a additional upshift
for similar reasons. This effect can be approximated by replacing 1/v; with n./y1no
in Eq. (83), where n./ng is given by Eq. (82). The maximum frequency upshift for the
backscattered radiation can be estimated by Awg/w ~ wﬁ /4w?, which is typically small.
Radiation scattered in the transverse or forward directions will not experience a frequency

shift by these mechanisms.
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VI. LASER SYNCHROTRON SOURCES

Nonlinear Thomson scattering can be used as a mechanism for generating x-ray radi-
ation [1-9]. In such a laser synchrotron source (LSS), intense laser pulses are backscattered
from a counterstreaming relativistic electron beam or from a dense plasma [5-7]. The LSS
has the potential for providing a compact source of tunable, short pulse radiation, in the
soft to hard x-ray regime. Two examples of LSS configurations will be discussed, one
using a relativistic electron beam to generate hard x-rays (30 keV, 0.4 A), and the other
using a dense plasma to generate soft x-rays (300 eV, 40 A). In the electron beam LSS,
short wavelengths are generated by exploiting relativistic doppler factor, i.e., A = Ag/442,
assuming v¢ > 1 and a2 < 1. In the plasma L:~ short wavelengths are generated by
exploiting the nonlinear harmonic factor, i.e = Ag/n., where n. ~ a3 > 1 is assumed.
Both configurations will utilize the recently developed solid-state laser technology based
on chirped-pulse amplification (CPA) [18-20]. Lasers based on CPA are relatively com-
pact systems capable of delivering ultrahigh powers ( 2 10 TW) and intensities ( 2 108
W /cm?) in ultrashort pulses ( < 1 ps). Currently, the repetition rates of TW CPA systems
are limited to < 10 Hz [19,20]. A summary of the current state-of-the—art in CPA laser
technology can be found in Ref. [20].

A. Electron—Beam LSS

An electron-beam LSS configuration consists of backscattering a linearly polarized
laser pulse from a counterstreaming relativistic electron beam. Two important quantities
characterizing the resulting synchrotron radiation are the photon flux, F', defined as the
number of photons per second within a specified bandwidth, and the photon brightness,
B, defined as the phase space density of the photon flux. The intensity distribution for
backscattered, § = 0, radiation at the fundamental, n = 1, in the limit a2 <« 1 and 7o > 1
(i.e., w ~ @ = 4y3wp), is given by

d?I1(0)  e%w?
dwdQ) ~ 8rmc?

(84)

sin (i (w — @)No /w)] 2

No
2 . 270 [ 228
/\oNoaoGI(w)’ Gl(w) - o 71'(01 - “.J)NO/“—J

as indicated by Eq. (39). The angular density of the flux, dF/df2, i.e., the peak number of

photons in a specified frequency range w; < w < w; emitted per second per unit solid angle
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by the micropulse in the forward direction, can be determined from Eq. (84) by integrating
over the frequency range Aws = w; — wy, multiplying by the electron flux interacting with
the laser, Nb, and by dividing by the energy per photon, h&. The electron flux interacting
with the laser field is given by Ny = fI, /e, where I is the peak micropulse current and f
is the filling factor, i.e., f = 0g/0s for 69 < 0y and f = 1 for o > o3, where oy, 0} are
the cross—section areas of the laser and electron beam, respectively. The angular density

of the flux is given by

dF, ) No(Aw/@)s, for (Aw/®)s < 1/Np,
Es—.z‘ = aNoNbag’)'g . (85)
1, for (Aw/«D)s > l/No,

where o = 1/137 and Fy denotes the spectral flux for an ideal electron beam, i.e., zero

emittance and energy spread. For an ideal electron beam, the spectral flux with spectral

width (Aw/@)s is given by Fy ~ 276%(dF,/dSY), where 6% = 62 + 6%, i.e.,
Fy ~ 2nraNoNya2(Aw/@)s, (86)

which is valid for all values of (Aw/@)s < 1. For a realistic electron beam with finite
emittance and energy spread, the photon flux, F, is identical to the the ideal case, i.e.,
F = Fy. The angular density of the flux, dF/dS?, however, is reduced, since the photons
are now spread out over a larger radiation angle 0y, where 0g is given by Eq. (79), i.e.,
dF/dQ ~ Fy/2n0%,.

The spectral brightness is the phase space density of F. Hence, B = F/(27)?(R0z)?,
where (Rfs)? is the phase space area of the photon beam. The quantity R is the total
effective size of the radiation source and is given by R? ~ r2 + (65, L/47n)?, where 6%, =
6% + 62, 6; = (Aw/@)}ﬂ/'yo, and r, is the smaller of 7, and ro/2. Here L is the laser-
electron interaction distance. The spectral flux and brightness for a non-ideal electron

beam, in terms of practical units, are given by

F [ph:::“s] = 8.4 x 10'8f(L/Zg)I,|A]Po|GW](Aw/@)s, (87a)

B [ photons ] = 8.1 x 10°(L/Zr)(I5[A]/?{mml)

sec - mm? - mrad?
(Aw/@)s/(1 + 6)
Aw/w)s + (Aw/@)r

- E}[MeV)Py|[GW] [ ( ] ,  (87b)
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where § = (8 L/4nr,)? is typically <« 1. The interaction length is the smaller of twice the
Rayleigh length (Zg = 7r/ o) or one-half the laser pulse length, i.e., L = min [2Z, Lo/2],
unless it is further limited by the specific geometry of the experiment.

As an example, consider an electron beam LSS which generates 0.4 A (30 keV) x-
rays. For a Ao = 1 pm incident laser, A = Ag/47 = 0.4 A implies v, = 79 (Ep = 40
MeV), assuming a2 <« 1. A CPA laser will be assumed with 7o = 2 ps, P, = 10 TW and
ro = 50 pm, which implies Iy = 2.6 x 10} W/cm?, ap = 0.43 and Zg = 7.9 mm. An
electron beam from an rf linac will be assumed with peak current I, = 200 A, micropulse
duration Lp/c = 1 ps, beam radius r, = 50 pum, energy spread (AE/E;) = 0.5% and
normalized emittance ¢, = 5 mm-mrad. The interaction length is one half the laser pulse
length, L = 300 pum, and the x-ray pulse duration is the micropulse duration, 7, = 1 ps.
The effective bandwidth is (Aw/@)r ~ 1.4% and this radiation is confined to a cone angle
of O ~ 1.5 mrad. The total flux with (Aw/@)g ~ 1 within the cone 6. ~ 1/vy ~ 12 mrad is
F = 6.4 x 102! photons/sec. The peak brightness with (Aw/@)s = 0.1% is B = 2.9 x 10'°
photons/s-mmZ2-mrad?. The parameters for this electron beam LSS are summarized in
Table 1.

For simplicity, a counterstreaming laser—electron beam geometry has been assumed in
which the x-ray pulse length is approximately the electron micropulse length. Shorter x-
ray pulse lengths can be obtained by either reducing the laser Rayleigh length or changing
the laser—electron beam intersection angle [6,8]. (Kim et al. [8] have suggested scattering
at 90° to obtain ultrashort x-ray pulses.) In principle, both these methods may lead to
the production of ultrashort x-ray pulses, with pulse durations on the order of the laser

pulse duration.

B. Plasma LSS

To produce x-rays with a A\g ~ 1 um laser and a stationary plasma, it is necessary
to use ultrahigh intensities, a2 > 1. Nonlinear Thomson scattering will then occur in the
asymptotic limit, in which a near continuum is produced with harmonics extending out
to the critical harmonic number, n. ~ a3, as discussed in Section 2. Consider a linear

polarized laser with a2 > 1 interacting with a dense plasma. In the near backscattered
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direction. the radiation spectrum scattered by a single electron is given by

d?1(0) 3e? ,
dwdQ No 21r2ca°Y(§)’ (88)

as indicated by Eq. (75), where Y = £2K7 5(¢), £ = w/w., we = ncwo and n. = 3aj/4.
For a collection of electrons in a plasma, the total energy radiated is given by Er =
N.I(0), where N, = n.00L, is the total number of electrons with which the laser interacts,
ne is the plasma electron density, oo = 7r3/2 is the laser cross—section and L, is the
laser-plasma interaction distance. Typically, L, ~ 2Zp = 2wr2/Ao, assuming vacuum
diffraction. The effects of relativistic optical guiding, however, could substantially increase
the interaction distance [5,22,23,26,27]. Geometric arguments indicated that the x-ray
pulse length in the backscattered direction is given by L, ~ 2L,(1 + L3/4L2)!/? ~ 2L,,
where Lo is the laser pulse length and L3/4L2 < 1 has been assumed. The total power in
the backscattered direction is Pr = cEr/L, and the photon flux is F = Pr/hw. Hence,
the flux intensity, defined to be dF/df2, for photons in the frequency range Aw, about w

in the near backscattered direction, is given by
dF/dQ ~ (3ac/87)Noneriai(Aw/w)sY (w/wc). (89)

Recall that the solid angle over which the photons with frequencies near w, are scattered is
relatively large, i.e., 0, ~ 24/2/ay in the vertical direction and 6, ~ 7/2 in the horizontal
direction. The total photon flux, F, can be estimated by multiplying Eq. (89) by the
appropriate solid angle over which the photons are to be collected. The brightness, B, of
the backscattered photons can be estimated by B ~ (dF/dQ)/nrZ. In practical units, the

photon flux intensity and brightness are given by

% [%] ~ 3.65 x 10737 [ps] Ao [um] n. [cm ™3] Py [TW]
(Aw/w)sY (w/we), (90a)
B L - ::xztio:zl;adz] ~1.80 x 10~ 7 [ps] Ao[pm]n. [cm_3] I [W/cmz]
(Aw/w)sY (w/we), (90b)

As an example, consider a plasma LSS which generates 40 A x-rays. Fora Ao = 1 ym,

7o = 1 ps incident laser pulse, A = Ag/n. = 40 A implies n. = 250 and ao = 6.9, which
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2, Assuming a laser spot size

corresponds to a laser intensity of Ip = 6.6 x 10'® W/cm
of 1o = 15 pm gives a laser power of P, = 230 TW and a laser-plasma interaction of
length of L, ~ 2Zr = 1.4 mm. The x-ray pulse duration is 7, ~ 2L,/c = 9.4 ps. A
plasma density of n, = 102° cm~3 implies a flux intensity of dF/dQ ~ 2.1 x 10*%(Aw/w)s
photons/s-mrad? and a brightness of B = 2.9 x 10?2(Aw/w)s photons/s-mm?-mrad?. The
parameters for this plasma LSS are summarized in Table II.

For simplicity, the generation of backscattered (6 = 0) x-rays from the interaction of
a linearly polarized laser and a plasma has been considered. For this case, the x-ray pulse
length is of the order of a few Rayleigh lengths. However, Egs. (36) and (46) indicate that
somewhat larger fluxes of x-rays are emitted in the transverse direction (@ = 7 /2) for both
circularly and linearly polarized lasers incident on a plasma. Hence, by collimating the

transverse emission from a plasma, ultrashort x-ray pulses can be obtained with durations,

in principle, on the order of the laser pulse duration.
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VII. CONCLUSION

A comprehensive theory describing the nonlinear Thomson scattering of intense laser
fields from beams and plasmas has been presented. This theory is valid for linearly or cir-
cularly polarized incident laser fields of arbitrary intensities and for electrons of arbitrary
energies. Explicit expressions for the intensity distributions of the scattered radiation
were calculated analytically and evaluated numerically. The space-charge electrostatic
potential, which is important in high density plasmas and prevents the axial drift of elec-
trons, was included self-consistently. Various properties of the scattered radiation were
examined, including the linewidth, angular distribution, and the behavior of the radia-
tion spectra at ultrahigh intensities (a2 > 1). Non-ideal effects, such as electron energy
spread and beam emittance, which can broaden the linewidth and angular distribution of
the scattered radiation, were discussed. These results were then applied to possible LSS
configurations.

The general formula for the frequency of the Thomson backscattered (6 = 0) radiation
is given by w, = nMjywp, where n is the harmonic number and M, is the doppler multipli-
cation factor, given by Eq. (17). For a linearly polarized laser, only odd harmonics exist
in the backscattered direction, whereas for circular polarization, only the fundamental is
nonzero in the backscattered direction. Both odd and even harmonics can exist at off-axis
angles. General expressions for the scattered intensity distributions are given by Egs. (36)
and (46). Generation of x-rays at short wavelengths require Mp > 1 and/or n >> 1. The
intrinsic linewidth (i.e., for a cold electron distribution) of a particular harmonic is given
by Aw/w, = 1/nNy, where Np is the number of laser periods with which the electrons
interact. Since Ny 2 300, small linewidths can be achieved. Non-ideal effects, such as
energy spread and beam emittance, can broaden the linewidth, as indicated by Eq. (78).
When a2 < 1, radiation is scattered only at the fundamental. When a3 > 1, a multi-
tude of harmonics are produced, which 1esults in a near-continuum of scattered radiation
extending out to a critical harmonic number, n. ~ a3, beyond which the intensity of the
radiation rapidly diminishes. Expressions for the scattered intensity distributions in the
ultra-intense limit are given by Egs. (69) and (75). The polarization of the scattered radi-

ation can be adjusted by changing the polarization of the incident laser. Scattering from
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an electron beam has the additional advantage of well-collimated radiation. For v > 1
and ¢ < 1, the upshifted radiation is confined to a cone about the backscattered direc-
tion of half-angle 6 ~ (Aw/@)Y/2/~,. Scattering from a plasma has the advantage in the
attainability of high electron densities, the photon flux and brightness scaling linearly with
density.

A LSS, based on the nonlinear Thomson scattering of intense lasers from electron
beams or plasmas, may provide a practical method for producing x-ray radiation. The
LSS has a number of potentially unique and attractive features which may serve a variety
of x-ray spectroscopic and imagining applications. These features include compactness,
relatively low cost, tunability, narrow bandwidth, short pulse structure, high photon energy
operation, well-collimated photon beams, polarization control, and high levels of photon
flux and brightness. Specific examples of an electron-beam LSS and a plasma LSS were
given, as summarized in Tables I and II. An electron-beam LSS, designed to generate 30
keV (0.4 A) photons with a Ag = 1 um laser with ag < 1, requires a 40 MeV electrun
beam (approximately 300 times lower energy electrons than required by a conventional,
storage-ring synchrotron). This electron beam LSS generates 1 ps x-ray pulses with a high
peak flux ( 2, 102! photons/s) and brightness ( 2 10'° photons/s-mm?-mrad?, 0.1%BW). A
plasma LSS, designed to generated 40 A (0.3 keV) photons with a A\g = 1 um laser, requires
ap = 6.9 (Ip = 6.6 x 10'® W/cm?). This plasma LSS generates < 10 ps x-ray pulses with
a high peak flux ( 2 102! photons/s, 102 mrad?) and brightness ( 2 10!° photons/s-mm?-
mrad?, 0.1%BW). These peak values of flux and brightness compare favorably to those
obtained in conventional synchrotrons. High levels of average flux and brightness are
presently limited by laser technology. The recent advances in compact, solid—state lasers,
based on chirped-pulse amplification, are capable of generating the ultrahigh intensities
(a0 2 1) needed to experimentally explore Thomson scattering and LSS x-ray generation
in the nonlinear regime.

This paper has been restricted to the discussion and analysis of x-ray generation by
the Thomson (incoherent) scattering of intense lasers from beams and plasmas. However,
for sufficiently cold electron distributions, it is also possible to generate short-wavelength

radiation by the stimulated (coherent) backscattering of intense lasers from beams and plas-
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mas [5,21,29,30]. Stimulated backscattered harmonic generation may provided a method
for producing coherent x-rays via a laser-pumped free electron laser (LPFEL). Advances
in CPA lasers and in high-brightness electron beams may soon provide the necessary tech-

nology to realize compact sources of both incoherent (LSS) and coherent (LPFEL) x-rays.
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Table 1

Parameters for an Electron Beam LSS

Incident Laser Parameters

Wavelength, A

Pulse Length, Lo/c
Peak Power, P,
Intensity, I

Strength Parameter, aq
Spot size, rg

Rayleigh Length, Zp

Electron Pulse Parameters

Beam Energy, E,

Beam Current, I,

Beam Pulse Length, L;/c

Beam Rad.us, 7}

Beam Energy Spread, (AE/E});
Beam Emittance, €,

X-Ray Pulse Parameters

Photon Energy, E,

Photon Pulse Length, L,/c
Peak Photon Flux,* F
Photons/Pulse,* FLy/c

Peak Brightness (0.1% BW), B
Angular Spread, 6, ~ 1/

1 um

2 ps

10 TW

2.6 x 107 W/cm?
0.43

50 pm

7.9 mm

41 MeV
200 A

1 ps

50 ym
0.5%

5 mm-mrad

30 keV

1 ps

6.4 x 10?1 photons/s

6.4 x 10° photons/pulse

2.9 x 10!9 photons/s-mm2-mrad?
12 mrad

sIncludes all photons within the ~ 1/4 angle, implying ~ 100% BW.
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Table II

Parameters for a Plasma LSS

Incident Laser Parameters

Wavelength, A 1 pym

Pulse Duration, g 1 ps

Peak Power, P, 230 TW

Peak Intensity, Ip 6.6 x 10'® W/cm?
Strength Parameter, ag 6.9

Spot size, rg 15 pm

Rayleigh Length, Zg 710 pm

Plasma Parameters

Electron Density, n. 1020 cm—3
Interaction Length, 2Z5 1.4 mm

X-Ray Pulse Parameters

Wavelength, A, 40 A

Photon Energy, E, 310 eV

Photon Pulse Length, 7. 9.4 ps

Flux Intensity (0.1% BW), dF/dS} 2.1 x 10'® photons/s-mrad?
Brightness (0.1% BW), B 2.9 x 10'° photons/s-mm?-mrad?
Photon Flux® (100% BW), F 6.5 x 102! photons/s

*Includes photons with (Aw/w)s ~ 1 within a solid angle d ~ 76? with § = 10 mrad.
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Fig. 1 Schematic diagram showing the Thomson scattering of an intense laser field from
a free electron.
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Fig. 3 The normalized intensity at the harmonic resonances, w/wp = n, as a function of
angle, 8, in the ¢ = 0 plane, of the radiation scattered by a dense plasma electron
from a linearly polarized laser pulse (No = 7). (a) shows the first three harmonics
for ag = 0.5, (b) shows the first six harmonics for ap = 1.0, and (c) shows the

first twelve harmonics for ag = 2.0.
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Fig. 6 The normalized intensity at the harmonic resonances, w/wp = n, as a function of
angle, @, of the radiation scattered by a dense plasma electron from a circularly
polarized laser pulse (Np = 7, ap = 1.0) for the first six harmonics.
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Fig. 8 The peak intensity of each harmonic in the transverse direction (6 = 7/2) versus
normalized frequency, w/wg, for a circularly polarized laser scattering from a
dense plasma electron. The cases ap = 4 and ag = 6 are shown. The arrows

indicate the approximate critical harmonic number, n. =~ a3.
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Fig. 9 The peak intensity of the odd harmonics on axis (# = 0) versus normalized fre-
quency, w/4~y3wo, for a linearly polarized laser scattering from a counterstreaming
relativistic electron (7yo = 5). The cases ag = 4 and ag = 6 are shown. The arrows
indicate the approximate critical harmonic number, n. ~ 3a3/4.
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