
AD-A269 459

I THE DEVELOPMENT OF A COURSE SEQUENCE

IN REAL-TIME SYSTEMS DESIGN

FINAL REPORT

H.H. A•OAR ,

AUGUST, 1993

IA TECHNICAL REPORT SUBMITTED TO

THE ADVANCED RESEARCH PROJECT AGENCY

DTIC
I S ELECTE

SEP2 0 1993 1* A

I -~ its

a U Department of Electrical & Computer Engineering

too WEST VIRGINIA UNIVERSITY,V MORGANTOWN, WEST VIRGINIA

I I/

!3 1 93-21489
* 1C11 16''~li~illltlll~

I
I

I THE DEVELOPMENT OF A COURSE SEQUENCE

IN REAL-TIME SYSTEMS DESIGN

FINAL REPORT

H.H. AMMAR,

AUGUST, 1993

I A TECHNICAL REPORT SUBMITTED TO

3 THE ADVANCED RESEARCH PROJECT AGENCY

contract No. MDA972-92-J-1022. K Acce-:oc, For

ýIT~I
By .!V ~ y ; :.

I 7r. Department of Electrical & Computer Engineering

/ ~ WEST VIRGINIA UNIVERSITY,
* , MORGANTOWN, WEST VIRGINIA

I II
U

I
I
I

1 THE DEVELOPMENT OF A COURSEI
SEQUENCE IN REAL-TIME SYSTEMS

3 DESIGN

I

3 FINAL REPORTI
I
3 H. H. AMMAR,

I DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING,

WEST VIRGINIA UNIVERSITYI

I -SUBMITTED TO

3 THE ADVANCED RESEARCH PROJECT AGENCY

I
I

I

i TABLE OF CONTENTS

I PROJECT SUMMARY AND CONCLUSIONS 2
Real-Time Systems Design I (the Software Course) 3
Case Studies ... 6
Real-Time Systems Design II (The Hardware Course) 8

I PART I REAL-TIME SYSTEMS DESIGN I
THE SOFTWARE COURSE

REAL-TIME SYSTEMS DESIGN I 10
COURSE DESCRIPTION AND OBJECTIVES 10

3 CHAPTER I. INTRODUCTION TO REAL-TIME SYSTEMS 12
1.1 Definitions ... 12
1.2 Characteristics ... 12
1.3 Examples .. 13
1.4 Homework: ... 14
1.5 References: ... 14

CHAPTER II. INTRODUCTION TO REAL-TIME SOFTWARE ENGINEERING 14
2.1 The Software Life-Cycle 15

2.1.1 Homework 17
2.1.2 References 17

2.2 Requirements Analysis and System Specification 17
2.2.1 The Structured Analysis Approach 18

2.2.1.1 Homework 20
2.2.1.2 References 21

2.2.2 Object-Oriented Analysis (OOA) 21
2.2.2.1 Homework 23
2.2.2.2 References 23

2.3 Software Design 23
2.3.1 Structured Design 23

2.3.1.1 Homework 26
2.3.1.2 References 26

2.3.2 Object-Oriented Design 27
2.3.2.1 Homework 28
2.3.2.2 References 28

U CHAPTER III. ADA AND REAL-TIME SOFTWARE ENGINEERING 29
3.1 Ada and Software Engineering [Schach 90] 29

3.1.1 Homework 31
3.1.2 References 31

3.2 Ada and Real-Time Software [Somerville&Morrison 87] 31
3.2.1 Tasks and Task Priorities 32

i

I

1 3.2.2 Process Communication Using Ada Rendezvous 33
3.2.3 Resource scheduling 34
3.2.4 Interrupts 34

n 3.2.5 Homework 35
3.2.6 References 35

3.3 Ada Structured Graphs (ASGs) [Nielsen&Shumate 88] 35
3.3.1 Homework 36
3.3.2 References 36

CHAPTER IV. ANALYSIS OF TIMING BEHAVIOR 37
4.1 Introduction ... 37
4.2 Rate Monotonic Analysis 37
4.3 Simple Timing Analysis 39
4.4 Precise Schedulability Assessment 413 4.5 Homework ... 42
4.6 References ... 42

3 CHAPTER V. VERIFICATION AND VALIDATION TECHNIQUES 43
5.1 INTRODUCTION 43
5.2 VERIFICATION AND VALIDATION CRITERIA 43

5.2.1 Completeness 44
5.2.2 Consistency 44
5.2.3 Traceability 44
5.2.4 Feasibility 44

Human engineering 45
Resource engineering 45
Program Engineering 45
Risk Issues 46

Technical risk 46
Cost-schedule risks 46
Environmental risk issues 46

5.2.5 Testability 47
5.3 V&V TASKS .. 47

5.3.1. Requirements Analysis 47
5.3.1.1. Information input 47
5.3.1.2. Information output 49
5.3.1.3. Outline of method 49
5.3.1.4. Effectiveness 49

5.3.2. Requirements Tracing 50
5.3.2.1. Information input 50
5.3.2.2. Information output 50
5.3.2.3. Outline of method 50
5.3.2.4. Effectiveness 513 5.3.3. Assertion Generation 51
5.3.3.1. Required input 52
5.3.3.2. Information output 52

I

I!

5.3.3.3. Outline of method 52
5.3.3.4. Effectiveness 53

I 5.3.4. Analytic Modeling of System Designs 53
5.3.4.1. Required input 54
5.3.4.2. Information output 54
5.3.4.3. Outline of method 54
5.3.4.4 Effectiveness 55

5.3.5 Control Structure Analysis 55
I 5.3.5.1. Information Input 55

5.3.5.2. Information output 56
5.3.5.3. Outline of method 56I 5.3.5.4. Effectiveness 56

5.3.6 Criticality Assessment 56
5.3.6.1. Possible Input 57
5.3.6.2. Information output 57
5.3.6.3. Outline of method 57
5.3.6.4. Effectiveness 59

5.3.7. Formal Verification 59
5.3.7.1 Information input 59
5.3.7.2. Information output 60
5.3.7.3. Outline of method 60
5.3.7.4. Effectiveness 62

5.3.8. Interface Checking 63
5.3.8.1 Information input 63
5.3.8.2. Information output 63
5.3.8.3. Outline of method...................... . 63
5.3.8.4. Effectiveness 64

5.3.9. Regression Testing 64
5.3.9.1. Information input 64
5.3.9.2. Information output 64
5.3.9.3. Outline of method 64

S5.3.9.4. Effectiveness 65
5.4 REFERENCES ... 65

I PART IT REAL-TIME SYSTEMS DESIGN II
THE HARDWARE COURSE

I REAL-TIME SYSTEMS DESIGN II 67
COURSE DESCRIPTION AND OBJECTIVES: 67

I CHAPTER I. HARDWARE COMPONENTS OF A REAL-TIME SYSTEM 68
1.1 Introduction ... 68
1.2 Microcontrollers 68

1.2.1 The RUPI-44 Family of Microcontrollers. 70
1.2.1.1 Microcontroller with On-chip Communication Controller . . 70

I

Architecture Overview 70
1.2.1.2 The RUPI-8044 Architecture 75

1.2.2 The MCS-96 Family 80
1.3 SENSORS .. 85

1.3.1 Temperature sensors 86
1.3.1.1 IC Temperature Sensors 86
1.3.1.2 Thermocouple 87
1.3.1.3 Resistive Temperature Sensors 88

1.3.2 Optical Sensors 90
1.3.3 Displacement Sensors 92
1.3.4 Flow Sensors 95

1.4 SIGNAL CONDITIONING DEVICES 96
1.4.1 Noise Sources 96
1.4.2 Shielding and Isolation techniques 98
1.4.3 Filters 100
1.4.4 Gain conversion and Level Shifting 101

1.5 ACTUATORS .. 102
1.5.1 Outputs Using Two-State Actuators 102
1.5.2 Outputs Using Continuous Actuators 104
1.5.3 Examples of Actuators 105

1.5.3.1 The stepping motor 105
1.5.3.2 DC Servo Motors 107

1.6 DATA ACQUISITION BOARDS 108
1.6.1 Data Acquisition and Control Overview 108
1.6.2 DA&C Systems and How They Connect to the PC 110

1.6.2.1 External Bus Products 110
1.6.2.2 Internal Bus Products 110

1.6.2.2.1 Types of Internal Bus Products 111
1.6.2.2. 1. 1 Fixed Configuration Internal Bus Products ... 111
1.6.2.2.1.2 Modular Internal Bus Products 112

1.6.3 Data Conversion Principles 112
1.6.3.1 Analog input systems 112

1.6.3.1.1 Analog-to-digital converters 112
1.6.3.1.1.1 Successive approximation A/D convertors ... 113
1.6.3.1.1.2 Integrating A/D converters 113
1.6.3.1.1.3 Parallel (flash) A/D convertors 113
1.6.3.1.1.4 AID Accuracy and resolution 113
1.6.3.1.2 Amplifiers 114

- 1.6.3.1.3 Multiplexers 114
1.6.3.1.4 Sample/hold 115

1.6.3.2 Signal conditioning 115
1.6.3.3 Single-ended v.s. differential signals 115
1.6.3.4 Analog outputs 115

1.6.4 SYNOPSIS OF CURRENTLY AVAILABLE DATA
ACQUISITION BOARDS 116
1.6.4.1 Adac corporation 116I

I

1.6.4.2 Quatech -- DAQ-12 117
1.6.4.3 Industrial computer source - LC16-125 117
1.6.4.4 Industrial computer source -- AI08G-P 117
1.6.4.5 Industrial computer source -- AI016-P 118
1.6.4.6 Transera -- MODEL 410 118
1.6.4.7 Cyborg -- LOGGERNAUT II MODEL 910 118
1.6.4.8 Microstar laboratories -- DAP 3200e 119

CHAPTER II. HARDWARE DEVELOPMENT STEPS AND TOOLS 120
2.1 HARDWARE DEVELOPMENT STEPS 120
2.2 SIMULATORS 121
2.3 EMULATION 122
2.4 LOGIC ANALYZERS 123

CHAPTER III. REFERENCES 126

PART ImI REAL-TIME SYSTEMS DESIGN II
LABORATORY

REAL-TIME SYSTEMS DESIGN II LABORATORY 127
1.0 OVERVIEW 127
1. 1 DESIGN REVIEWS: 130
1.2 REQUIRED DOCUMENTATION: 130

SYSTEM DESCRIPTION 130
SOFTWARE DESCRIPTION AND IMPLEMENTATION 131
HARDWARE DESCRIPTION AND IMPLEMENTATION 131
FINAL REPORT 131

1.3 GRADING: .. 132
1.4 HARDWARE AND SOFTWARE COMPONENTS AVAILABLE IN THE

LA B 133

Lab 1. ADA COMPILER OVERVIEW 134
OVERVIEW .. 134
MERIDIAN OpenAda DOS COMPILER 134

ENVIRONMENT SUMMARY 135
ASPECTS OF THE COMPILER 136
ASPECTS OF THE DEBUGGER 136
ADDITIONAL PACKAGES SUPPLIED. 137
ASS[GNMENT 138

LAB 2. INTERFACING C AND ASSEMBLY TO ADA 139
OVERVIEW .. 139
ASSIGNM ENT .. 141

I. Interfacing Assembly to Ada 141
II. Interfacing C to Ada 143

LAB 3. SMART SENSOR CONTROL SYSTEM 143
OVERVIEW .. 143
HARDW ARE ... 144

ANALOG 144
PC INTERFACE 145

SOFTW ARE ... 145
DATA ACQUISITION 145
INTERFACE SCREEN 145
DATA STORAGE 146
DIAGNOSTICS 146
LED INDICATORS 147
SERIAL COMMUNICATION 147

DUE DATES 147

LAB 4. AUTOMATED TRAIN CONTROL SYSTEM 147
OVERVIEW .. 147
HARDW ARE ... 149

TRAIN MOTION 150
DISTANCE TRAVELLED 150
D OOR ... 150
CLIMATE CONTROL 150
PASSENGER STOP REQUEST 150

SOFTWARE ... 151
USER INTERFACE 151
HARDWARE CONTROL 153

HARDW ARE ... 153
TRAIN OPERATION 153
ERROR CHECKING 154

DUE DATES ... 155

LAB 5. SPACE SHUTTLE CONTROL SYSTEM 155
OVERVIEW . .. 155
HARDW ARE ... 156

FLIGHT OF THE SHU'ITLE 157
MOTOR EVALUATIONS 157

SOFTW ARE ... 157
PITCH AND ROLL 157
VELOCITY 158
SKIN TEMPERATURE 158

SOFTW ARE ... 158
USER INTERFACE 159
HARDWARE CONTROL 159
SHUTTLE OPERATION 159
ERROR CHECKING 162

DUE DATES ... 162

PART IV APPENDIX

APPENDIX ... 163

INTEL EMBEDDED MICROCONTROLLERS AND PROCESSORS 163
1. MCS-48 FAMILY 163

1.1 MCS-48 Single Component System 163
1.1.1 Arithmetic Section 163
1.1.2 Program Memory 164
1.1.3 Data Memory 165
1.1.4 Input/Output 165
1.1.5 Test and INT Inputs 166
1.1.6 Program Count and Stack...................... 166
1.1.7 Program Status Word 166
1.1.8 Conditional Branch Logic 167
1.1.9 Interrupt 167
1.1.10 Timer/Counter 168
1.1.11 Clock and Timing Circuits 169
1.1.12 Reset 169
1.1.13 Single-Step 170
1. 1.14 Power Down Mode 170
1.1.15 External Access Mode 171
1.1.16 Sync Mode 171

1.2 MCS-48 Expanded System 171
1.3 MCS-48 Instruction Set 172

2. M CS-51 FAMILY ... 173
2.1 MCS-51 Microcontrollers Architectural Overview 173

2.1.1 Introduction 173
2.1.2 Memory Organization in MCS-51 Devices 174

2.2 MCS-51 SFR Space: Special Function Registers 176
2.3 MCS-51 I/O Ports 178
2.4 MCS-51 Timer/Counters 180
2.5 MCS-51 Serial Port Interface 181
2.6 MCS-51 Interrupts 183
2.7 MCS-51 Instructions and Addressing 187

3. MCS-80/85 Family 187
3.1 8080A 8-bit N-Channel Microprocessor 187
3.2 8085AH 8-bit HMOS Microprocessors 189
3.3 8155H,8156H 2048-bit Static HMOS RAIMI with I/O Ports & Timer . 191
3.4 8185/8185-2 1024 8-bit Static RAM for MCS-85 192
3.5 8228 System Controller and Bus Driver for 8080A CPU 193
3.6 8755A 16,384-bit EPROM with I/O..................... 194

4. Intel 80186/80188 Family 195
4.1 Intel 80186 High Integration 16-bit Microprocessor 195

4.1.1 80186 Base Architecture 195

4.1.2 80186 Clock Generator 198
4.1.3 Local Bus Controller 198
4.1.4 Internal Peripheral Interface 199
4.1.5 DMA Channels 200
4.1.6 Master and Slave Modes Operations202

4.2 The Intel 186 Integrated Processor Family Advance Members 204
4.2.1 Intel 80C186 CHMOS High Integration 16-bit

Microprocessor 204
4.2.2 Intel 80C186XL-20,-16,-12,-10 16-bit High Integration

Embedded Processor 204
4.2.3 Intel 80C186EA-20,-16,-12 16-bit High Integration

Embedded Processor 25
4.2.4 Intel 80C 186EB-20,-16,-i3,-8- 16-bit High-Integration

Embedded Processor 205
4.2.5 Intel 80C186EC-16,-13 16-bit High-Integration Embedded

Processor 205
4.2.6 Intel 80L186EA-13, -8 16-bit High Integration Embedded

Processor 205
4.2.7 Intel 80L186EB-13, -8 16-bit High-Integration Embedded

Processor 206
4.3 Intel 80C187 80-bit Math Coprocessor 206
4.4 Intel 80188 High Integration 8-bit Microprocessor 208

I

I PROJECT SUMMARY AND CONCLUSIONS

I This project deals with the development of a senior level course sequence in software

intensive real-time systems. The sequence consists of a course in real-time software

I development, referred to in this report as the software course, followed by a course in hardware

I development and hardware-software interfacing, referred to in the sequel as the hardware course.

The objective of the course sequence is to fill a demand in industry for real-time software

I engineers. It is aimed at preparing Computer Engineering students with a solid background in

both software development and hardware design for an engineering industrial career in real-time

systems development. The course sequence emphasizes practical standards, techniques, and tools

for system development. Few universities include real-time systems development in their

undergraduate Computer Engineering or Computer Science curriculum, forcing engineers to

learn real-time methodology on-the-job. Real-time applications are increasing in complexity.

Real-time designs have several performance as well as functional constraints, they have longer

design cycles a:;d larger project teams. They require more intricate real-time design work such

3 as hardware interfacing, and often use multiprocessors in distributed environments. The growing

complexity of real-time designs makes it difficult for an engineer to learn about real-time

-- methodology on-the-job.

3 The main topics introduced in the course sequence are summarized as follows:

Real-Time Systems Design I (the Software Course)

n The software course is based on using the Ada programming language for detailed design

3 and implementation. It is assumed that students are already familiar with the basics of Ada

programming. Advanced topics such as tasking and synchronization are introduced in the course.

2

I

I

Throughout the course, an Integrated Computer Aided Software Engineering (ICASE) tool called

Teamwork, by Cadre's Technologies, is used.

The course first introduces, in Chapter 1, the basic concepts and characteristics of real-

I time systems. Examples of such systems, together with their important characteristics such as

concurrency and real-time behavior, are briefly discussed from the cited references in the

literature. Next, the phases of the software life-cycle are briefly introduced, in the beginning of

I Chapter 2, and a standard for software development based on the DOD-STD-2167 standard is

3 discussed. The standard is presented as a general industrial model for software development and

not as a standard for projects developed for the department of defence. The inputs and outputs

I of each phase are briefly discussed using the cited reference. The emphasis on studying an

3 established industrial standard for software development offers the students a practical flavor of

the software development process as related to large projects.

In the remaining of Chapter 2, the course concentrates on the analysis and design phases,

with emphasis on both the structured approach and the object-oriented approach to software

development. Structured analysis based on Ward and Mellor, which was then extended by Hatley

and Pirbhai, is studied using examples developed through Teamwork/SA and RT (for structured

3 analysis of real-time systems). The ICASE tool offers the necessary environment for developing

data/control flow diagrams, state transition graphs and process activation tables used for

obtaining a rigorous specification of the software. The tool can also be used for checking the

I consistency and completeness of the specification. Object-oriented analysis, based on the

I information model which is defined using entity relation diagrams supported by Teamwork/IM,

is then contrasted with structured analysis. The object-oriented analysis technique discussed is

I
I3
I

I

I based on the one developed by Shaler and Mellor and supported by Teamwork/OOA.

The traditional structured design concepts are then introduced with more emphasis on

new concepts such as reusability and testability or verification. Students were exposed to

I software reuse through collaboration with industry such as the ASSET Ada repository managed

by IBM and SAIC. Members of the technical staff of ASSET were contacted. The software

support offered by them was used in the course. Students were given the opportunity to use the

I ASSET database. A special student database was provided for students to populate it with their

own components or assets. In the following page, a student report is given. This report was

written by Marcus Speaker, a student in the software course. This report stresses the fact that

I the importance of software reuse can only be appreciated when a reuse library such ASSET is

3 made available to students.

The demonstration of the importance of the concept of design for reuse plays a nice role in

introducing the benefits of object-oriented design. This design approach is studied through the

3 notation and techniques described by Booch and supported by Teamwork/OOD. A homework

problem designed to familiarize students with the basic concept of object oriented design is given

based on an example of a traffic management system. The differences between the design

3 method using teamwork/OOD and Booch's design method give the students a broader view of

I object-oriented design.

Detailed design concepts based on an Ada implementation are addressed in Chapter 3.

I The chapter covers the use of Ada to address the characteristics of quality attributes such as

3 modularity, reliability, maintainability, and reusability. It deals with the characteristics of real-

time software in terms of concurrent programming, communication and synchronization,

I
I

I
U

The ASSET program appears to be a fast growing project. With the need for a

distributed support system for software reuse, ASSET seems to be providing such a

system. While using the ASSET system, I began to see the need for software reuse.

I However, industry uses reuse software much more than students at the university level.

While working with ASSET I found the catalog service very well organized. The

search for software was both fast and efficient. The layout was easy to follow even for a

I beginner. With a wide selection of software, many routines were available. It would be

beneficial to see more software in the fields of Multimedia, Discrete Signal Processing,

and Artificial Neural Systems. With a good starting selection of reuse, many of the titles

I seemed to be for government use only. The ASSET catalog should be more open to

the public, even at this early date.

When adding entries to the WVU data base, I felt that the system was intended to

be used by someone who knew the system very well. Not having any experience with

3 the system, I encountered many obstacles. To better the present system, several steps

should be taken. First, the system needs better documentation. The present

documentation consists of one and one half pages on how to insert an entry to the

3 system. Give more explanations, and perhaps a tutorial. Next, I found it time

consuming and laborious to go through each of the steps of the insert procedure.

Implement a menu driven system, much like the catalog to ease the addition of elements

I to the database.

In all, the ASSET program Is producing acceptable results. I enjoyed using the

system, and found the work to be a great learning experience.I
I

resource control, and scheduling. Next it describes detailed design and code generation using

u Ada Structured Graphs which is supported by Teamwork/Ada. The material assumes that

students are already familiar with the Ada programming language. Computer Engineering

I students at WVU taking this course should have taken, during their sophomore year, an

introductory course in Ada (CS 15) as well as a data structures course using Ada (CS 16). Ada

tasking, however, is not covered in these courses.

I The temporal requirements, which constitute the distinguishing characteristics of real-time

3 systems, are then analyzed in Chapter 4. The chapter deals with practical quantitative methods

used to analyze and predict the timing behavior of a large class of real time systems. These

I methods can be used to assess design tradeoffs and verify or troubleshoot the system timing

3 behavior. The chapter covers quantitative methods based on the theory of rate monotonic

scheduling. This set of methods termed as rate monotonic analysis (RMA) was recently the topic

of a handbook of real time systems analysis produced for industry practitioners by the Software

Engineering Institute and published by the IEEE computer Society.

Tasks and techniques used for software verification and validation steps at the early

stages of the software life-cycle are discussed in Chapter 5. The importance of these steps to be

3 coupled with the development phases is emphasized.

The above course was offered as a senior level elective course in the fall of 1992 (CpE

291A). Twenty three students took the course. They were mostly seniors, juniors, and a few

I graduate students. -Some of the graduate students were not familiar with Ada, and therefore,

3 were allowed to use C for implementation purposes. The students reacted very favorably to the

course material. For them, it was a big change from the computer science Ada courses they took

!5

I

I

before mainly due to the heavy emphasis in this course on practical techniques and examples.

They no longer had to struggle with abstract programming assignments that are far from the

engineering systems design and from problems they encounter in their engineering courses. The

I only problem with the course was the equipments. The SUN workstations lab, an outdated and

poorly maintained lab in the engineering college consisting of 8 SUN 3 workstations, was the

only lab available to the students in this course. The lab was used to run the ICASE tool and

I develop the homework and projects. Some of the workstations were extremely slow in running

3 the ICASE tool and were down most of the time.

The following are students comments obtained from the course teaching evaluations:

I " Excellent material for a course "

" " This is a course that is important to know! The material and design processes are good

assets. I like the idea of teamwork involved (computer applications) "

I " Good idea for a class, very important topic"

3 The students in this course were extremely motivated and worked very hard all semester.

They put a concentrated effort into the projects. Analysis and design reviews for the projects

were very successful. In the final demonstration day at the end of the semester, the groups

demonstrated their projects, and all the students oa. not have enough sleep the night before.

Indeed some did not sleep at all to complete the final touches on their project. Some of these

projects are summarized next.

I Case Studies - -

3 The case studies presented in this project, in two separate binders, were the work of the

students in the class. Four case studies are presented and briefly described in the following

6

I

paragraphs.

The first and second case studies are on a manual docking system for the space station.

The manual docking system is to be used to guide a user in the process of docking an orbital

I research unit (ORU) on the space station. Collision avoidance between the ORU and other

objects must be maintained at all times. Tactile feedback will be provided to the user in some

type of a graphical display. Two different groups worked independently on the above, one ended

I with an implementation in Ada and the other in C. The work of both groups are included in

volume I of the case studies, and the other case studies are included in volume II.

The third case study is on a fully automated commuter train control system. Again two

I groups worked on this case study and both ended with an Ada implementation. This case study

3 is more complex than the previous one. The requirements for this study were obtained from an

example given in Excelerator/RTS application guide.

The fourth case study is on the development of an Airline ticket dispensing system. The

3 system is to be installed in airports and major hotels to allow customers to obtain flight

information and tickets from remote sites without an airline agent. This project was implemented

in C.

3 A group of students used the material learned in this course in their senior project. The

project is to analyze the hardware and the software required for a methane monitoring system

to be used with mining machinery. The monitoring system is to deactivate the equipment when

I the methane level reaches two percent or higher than the normal level. The system provides self

3 diagnostic tests for keeping record of methane concentration levels over a period of time. This

project is a 3 credit hours senior design course. The students used Teamwork/SA-RT to develop

I
I

I

the analysis of this system. This is a good illustration of how the students applied the material

learned in the software course in their senior project.

Real-Time Systems Design HI (The Hardware Course)

I This course concentrates on hardware development and software-hardware integration.

The course is a laboratory-oriented course consisting of lecturing material and lab assignments.

The lecture notes consist of two parts, the first part deals in detail with the hardware components

I of a real-time system and the second part is on development- and trouble shooting tools.

3 The first chapter on hardware components starts out with a section on microcontrollers.

Two families of Intel microcontrollers are discussed in detail, and details of several other

I microcontroller families are given in the appendix. The other sections deal with sensors, signal

I conditioning devices, actuators, and data acquisition boards. The section on the data acquisition

boards is important since the lab projects are based on using one of these boards.

I The second chapter deals with hardware development steps and tools used for testing,

3 trouble shooting, and verification. Simulation tools, emulator circuits, and state of the art digital

analyzers are discussed in this chapter.

Next, an introductory lab handout and five lab assignments and projects are given. The

3 lab is based on using Pcs equipped with data acquisition boards and the Meridian OpenAda

software development environment. The labs are software intensive and are based on the

material learned in the software course. They contain hardware development with emphasis on

I software-hardware-integration.

3 The first two assignments are weekly assignments done by each student, the remaining

assignments are group projects of 2 to 4 weeks duration. The first lab assignment consists of a

I
I

I

3 simple Ada programming project aimed at familiarizing the students with the OpenAda

environment and supporting packages. The second assignment deals with interrupts, low-level

I/O, and interfacing Ada to hardware drivers based on C or assembly language. The third

I assignment, which is a two week assignment, is a sensor monitoring system used in data

logging, real-time display of data, and error checking. The fourth lab assignment is a 3 week

project, in which an automated train system is simulated. Hardware components are used to

I simulate the operation of the doors, climate control, and train in motion. The software is

3 required to show detailed information about the status of the train and allow for controlling many

aspects of the train operations. The final project is four weeks long and deals with a space

I shuttle simulation. This project involves the development of hardware to simulate the motion of

3 the shuttle, thrust, skin temperature, etc. The software is required to provide detailed

information about the shuttle such as its trajectory and altitude.

The hardware course is yet to be taught due to the severe lack of funds for lab equipment

3 such data acquisition boards, logic analyzers, and even Pcs. The lab is scheduled to be taught

in the next academic year when the equipment needed are available.

I
I
I
I
I
I 9

I

I

_ REAL-TIME SYSTEMS DESIGN I

COURSE DESCRIPTION AND OBJECTIVES

This course is the first course in the real-time system design sequence. This is a project

based course focused on software development with an emphasis on analysis and design of

3 software for real-time systems. The course starts by defining real-time systems and describing

their characteristics and unique attributes. The software life-cycle phases are then described in

the context of the DOD-2167 software development standard. The analysis and high-level design

phases of development are then covered by describing both the structured and the object-oriented

techniques. Detailed design and implementation details using the ADA programming language

are then addressed followed by a detailed coverage of verification and validation techniques and

3 tools.

A computer-aided software engineering (CASE) tool is used throughout the course. A

term project and a set of simple homework assignments are used to assess the students learning

U process. The term project is to be done in teams of 2 to 4 students and it starts very early in the

3 semester during the second or third week and lasts till the finals week. The homework

assignments are the responsibility of each student.

I The desired outcomes of this course are listed as follows:

U The students should be able to

1. Specify the characteristics of real-time software and identify unique attributes and

problems related to the software development for real-time systems using specific

3 examples.

I
* 10

I

i,, ! ! t

I
I
I
I
I

I PART I

II
REAL-TIME SYSTEMS DESIGN IH OTAECUS

i H OTAECUS

I
I
I
I
I
I
I
I
I

I s n

I

I REAL-TIME SYSTEMS DESIGN I

i COURSE DESCRIPTION AND OBJECTIVES

This course is the first course in the real-time system design sequence. This is a project

I based course focused on software development with an emphasis on analysis and design of

j software for real-time systems. The course starts by defining real-time systems and describing

their characteristics and unique attributes. The software life-cycle phases are then described in

the context of the DOD-2167 software development standard. The analysis and high-level design

I phases of development are then covered by describing both the structured and the object-oriented

techniques. Detailed design and implementation details using the ADA programming language

are then addressed followed by a detailed coverage of verification and validation techniques and

tools.

A computer-aided software engineering (CASE) tool is used throughout the course. A

term project and a set of simple homework assignments are used to assess the students learning

I process. The term project is to be done in teams of 2 to 4 students and it starts very early in the

3 semester during the second or third week and lasts till the finals week. The homework

assignments are the responsibility of each student.

I The desired outcomes of this course are listed as follows:

3 The students should be able to

1. Specify the characteristics of real-time software and identify unique attributes and

U problems related to the software development for real-time systems using specific

3 examples.

10I

I

1 2. Specify the key differences between the structured and object-oriented approaches

for software analysis and design.

3. Use a CASE tool to

I a) correctly analyze the software requirements of a specific system and

I develop a specification based on structured analysis or object-oriented

analysis.

I b) develop and verify a high level design according to the specification

I obtained in the previous step.

c) develop a detailed design using Ada Structured Graphs (ASGs) and

I provide an implementation based on reusable Ada packages.

4. Identify techniques used in the analysis and prediction of the timing behavior of

a system based on detailed design. Specify examples of using such techniques for

Assessing design tradeoffs and troubleshooting the system timing behavior.

3 5. Identify tasks and techniques used for software verification and validation at the

early stages of the software life-cycle.

The following five chapters discuss in detail the topics to be covered and suggest

I homework problem for assessing and enhancing the students learning process.

I
I
I
I

I 11

I

CHAPTER I. INTRODUCTION TO REAL-TIME SYSTEMS

1.1 Dermitions

A real-time system (RTS) is a system in which the time at which the output is

produced is significant.

The correctness of a RTS depends not only on the logical results produced, but

also on the times at which such results were produced. (the system may enter an

incorrect state if a correct result is produced too early or too late with

respect to some time bounds (also called deadlines).

I Hard RTSs are those systems where it is absolutely imperative that responses

occur within the specified deadlines. (Examples are aircraft control, air

I traffic control, etc.)

Soft RTSs are those systems were response times are important but the system

will still function correctly if deadlines are occasionally missed. (Examples

are data acquisition systems in which data can be buffered).

1.2 Characteristics

The following characteristics are often found in many RTSs, however, a system

does not need have all these characteristics to be a RTS.

-- A RTS is used within a larger system to provide control and computation

functions. Such systems are called "embedded computer systems". They often

contain devices that act as the senses (e.g., heat sensors, or light sensors), and

devices that act as the effect of physical changes (e.g., mechanical,

electromechanical, and electronic actuators).

12

-- RTS systems often require concurrent processing of multiple inputs. This

involves Correlated processing of multiple inputs over the same time interval (e.g.

an industrial process control system might be required to correlate vaiues of

temperature, pressure, and a concentration of a chemical reaction to perform

simultaneous adjustments of heaters and valves to maintain a reaction in the

desired state).

-- The time scales of many real-time systems are fast by human standards. The

complex Devices monitored or controlled often operate in fast time scales (e.g.,

for an automobile cruise control system to maintain a smooth ride with only small

variations from the desired speed, the actual speed must be monitored many times

per second).

-- The precision of response required for RTSs is greater than that required by other

systems. An early or a late response may constitute erroneous behavior. A

premature shutdown of a chemical plant could cause extensive damage to

equipment or environmental harm.

-- RTS systems have higher reliability and safety requirements than that required by

other systems. The failure of a system involved in automatic fund transfer

between banks can lead to millions of dollars being lost, failure in an embedded

system could result in the failure of a vital life-support system.

1.3 Examples: -

Examples of RTSs are systems used for process control applications in

which a process is monitored and controlled by an RT2S (e.g., Indistrial process

13

I

I control, manufacturing process control, etc.).

Communications, command and control applications are also examples of RTSs

(e.g. real-time audio/video communication, airline reservation systems, medical

I centers for automatic patient care, air traffic control systems, remote bank

ccounting, etc.).

Chapter 1 of [Borko 91] has an excellent introduction to real-time systems. Figure 1.1

I in that reference shows several applications of RTSs and the response time range for each

3 application.

1.4 HOMEWORK

* Based on the characteristics of real-time systems (such as concurrency, timing

1 behavior,etc.), specify using examples the unique problems associated with developing software

for real-time systems.

1.5 REFERENCES

3 [Borko 91] Borko Furht et al, Ral-Time Unix Systems: Design and Application guide,

Kluwer academic, 1991.

[BURNS&WELLINGS 90] A. Bums, and A. Wellings, Real-Time Systems and their

3 programming languages, Addison Wesley, 1990.

I
CHAPTER II. INTRODUCTION TO REAL-TIME SOFTWARE

ENGINEERING

I In this Chapter the development phases in the software life-cycle are first introduced.

3 Then the analysis and design phases are further described based on the support of the Teamwork

* 14

I

I

3 CASE tool notations and components. The well established structured approach as well as the

evolving object-oriented approach are covered.

2.1 The Software Life-Cycle

I The life-cycle approach for software development describes the stages through

3 which the project passes, and defines the end products in each stage and the

activities needed to produce them. It creates a framework for all end products

I and for testing them as they are produced.

3 Many engineering studies have been conducted to establish the life-cycle for a

system. The life-cycle of a real-time system, in particular, is very complex

due to the many distinguishing characteristics mentioned in the above section

3 such as concurrency, reliability, safety, and timing requirements. The

preliminary activities establish the system concepts or conceptual basis, then

a full-scale development phase starts, and finally, the production and

3 deployment phases follow.

One of the results of these studies is a standard adopted by the US Department

of Defense, DOD-STD-2167 (see [DORFMAN&THAYER 90], pp 212-254). The full-scale

3 development phase mentioned in this standard will be considered here further.

3 Given a set of system requirements, the full-scale development phase starts

with requirements analysis and system specification stage, followed by a preliminary

I design stage, a de-tailed design stage, the implementation stage, and finally the testing and

3 validation stage. Verification activities are conducted throughout the development phase in order

to verify the end product of each stage.

1
* 1

I

I

I In the requirements analysis and system specification stage a detailed and

precise description of the system's functional, timing, and data requirements

are developed and documented. The activities in this stage are often carried out

I in parallel with some high-level design, and the requirements and design

activities influence each other as they develop. The system specification

document is not a design document. It should set out "what" the system should do

I without specifying "how". During the creation of this document, errors (or inconsistencies) in

the requirements definition (or statement) are discovered and modified accordingly.

The design phase determines how the system is to do the specifications. The

I two most important activities during design are decomposition and refinement.

3 Decomposition is the process of partitioning the system into smaller modules.

Interfaces between these modules must be precisely specified. Each interface

specification provides the module's clients with the information needed to use the

3 module without knowledge of its implementation, at the same time it provides

the implementer with the information to implement the module without knowledge of

its clients. The interface provides a place for recording design decisions.

I Refinement involves working at different levels of abstraction; perhaps refining

3 a module at one level to be a collection of modules at a lower level, hence the

term architectural design is used to define this phase of the design process.

I The design document consists of two parts: (i) architectural design; a

3 description of the system as a whole, and (ii) detailed design; a description

of each module.

16I

I

3 Design verification is then carried out for checking not just that the design

is in accordance with the specification, but that every specification statement

is reflected in some part of the design (traceability). Design reviews are

I carried out to look for logic faults, interface faults, lack of exception

handling, and most important non-conformance to the specifications

During the implementation stage, a documented code is obtained from the

I detailed design document. Unit testing is then carried out onf each module to

verify that the module correctly implements its detailed design.

Integration testing is then carried out when the modules are put together to

determine if the system, as a whole, functions correctly.

I 2.1.1 HOMEWORK

* Describe in detail the DOD-STD-2167 standard for software development, describe the

various documents produced during development, and the reviews conducted.

U 2.1.2 REFERENCES

[DORFMAN&THAYER 90] Standards, guidelines, and examples on system and software

requirements engineering, M. Dorfman and R. Thayer, IEEE Comp. Soc. press tutorial, 1990.

3 [SOMMERVILLE 92] Software Engineering, Fourth Edition, I. Sommerville, Addison

Weley, 1992.

2.2 Requirements Analysis and System Specification

I As mentioned above, in the requirements analysis and system specification stage

3 a detailed and precise description of the system's functional, timing, and data

requirements is developed and documented. Two major approaches will be

17

I

I

I discussed, namely the structured analysis approach (also called functional or

process oriented approach), and the object oriented analysis approach. The two

approaches differ in the way they model the system requirements in order to

I obtain precise specification.

I
2.2.1 The Structured Analysis Approach

The main objective of system specification is to develop a conceptual (or a

3 logical) model of the system. In this section, the most widely used method for

structured analysis of real-time systems is described. This method was developed by Ward and

Mellor [Ward&Mellor 85] and enhanced by Hatley and Pirbhai [Hat&B 88]. It is supported by

3 all Computer-Aided Software Engineering (CASE) tools. The method is an extension of the

structured system analysis, data flow analysis, and transaction analysis to real-time systems.

The Ward and Mellor technique relies primarily on three graphs:

1. The Transformation Graphs are basically Data Flow and Control Flow Diagrams

(DFDs/CFDs). They depict the processing of information and control in the

proposed system.

1 2. State Transition Diagrams depict the sequence of modes (states) a system follows

3 during its operation.

3. Entity-Relationship Diagrams provide an information model depicting

I relationships among the data items in the system.

U A fully developed specification starts with a context diagram, the highest level

transformation graph. This graph places the system in a real-world context. It defines the

I3 18

I

I

system as one component and models the interfaces to software and hardware that support and

interact with the system.

Other Transformation Graphs (TGs) specify the system at a lower level of detail where

I a component at a higher level is further specified by a TG at a lower level. The various graphs

fit together and form a hierarchy with the context diagram at the top. Nodes in these graphs are

either data transformation nodes or control transformation nodes.

I Processes specifications (P-specs) are used to define data transformation primitive nodes

(those that do not have a lower level TG). P-specs can be defined using pre/post conditions,

structured high-level languages, or pseudocode.

I Control transformation nodes are specified further (C-specs) using State Transition

Diagrams (STDs) which show the control flow behind the system control processes. They give

the details of the sequence of states at which the activities (processes) defined in the Tgs are to

take place. Decision Tables (DTs), Process Activation Tables (PATs), and State/Event Matrices

(SEMs) are also used as C-specs.

The information model defined in an Entity-Relation Diagram (ERD) serves as a library

of data records and describes the relationship between data elements used in the system. All the

3 information used in the Transformation Graphs, must correspond to data derived in the ERD.

The above graphs represent three views of the system, namely, the process view

(described by transformation graphs), the control view (described by the STDs), and the data

I view (described by the ERDs). When these graphs are complete and fully developed, they

provide a complete logical specification of the system.

I
I 19

I

I

Several examples are to be described in class to illustrate the above specification

technique. Examples can be taken from the set of case studies provided in the case studies

volumes associated with this course or from [HATLEY&PIRBHAI 88].

I 2.2.1.1 HOMEWORK

3 The following is a simple assignment designed to introduce the student to the CASE tool

and structured analysis process described above.

I -- Use Teamwork SA and RT to analyze the requirements and obtain the

3 specification of a vending machine which has the following requirements. The

system is to do the following:

* Accept objects from the customer in payment for their purchase.

3 * Check each object, using the object information (such as size, weight, thickness, and

edges) to make sure it is not a slug.

I * Accept only nickels, dimes, and quarters, and treat any other object as a slug.

3 * Initiate payment computation or product selection only after a valid coin is detected.

* Accept product selection from the customer, check to see if product is available, if not

return coins and notify customer.

* Products variety can change from time to time, hence prices should be changeable.

* Return back payment if customers decides not to make a selection.

* Dispense the product to the customer if all conditions are satisfied, i.e., if product is

available and amount is sufficient.

* Return the correct change to the customer.

* Make deposited coin available for change.

I
| 20

I

I
I 2.2.1.2 REFERENCES

[WARD & MILLER 85] Structured development for real-time systems, P. Ward and S.

Mellor, Yourdon Press, 1985.

[HATLEY & PIRBHAI 88] Strategies for real-time system specification, D. J. Hatley

and I. A. Pirbhai, Dorset House, 1988.

2.2.2 Object-Oriented Analysis (OOA)

The OOA approach gives more attention to data specification than structured approach

which gives more emphasis to functional or procedural specification. The OOA approach is

centered around three general concepts: objects, classes, and inheritance. The object-oriented

I approach has evolved from the concepts of computer simulation which is based on simulating

the activities (functions) performed on some entities (objects) of a system.

Objects are the basic run-time entities in an object oriented system. Objects

I take up space in memory and have an associated address like a data matrix structure for

example. The arrangements of bits in an object's allocated memory space determine the state of

the object at any given moment. Associated with each object is a set of functions that define the

I meaningful operations on that object. Thus, an object encapsulates both state and behavior.

Classes define sets of objects, for example, the class of matrices. Ideally, a class is an

implementation of an Abstract Data Type (ADT). An ADT consists of the following parts:

1- A type name (e.g. Matrix),

2- An optional specification of the domain of values for the type (e.g,

integer values)

I
21I

I

I
I

3- A specification of allowed operations (e.g., add, multiply, inverse,

transpose, etc.) on that type.

The implementation details of a class are private to the class. The public interface of such

a class is composed of two kinds of class methods. The first kind consists of accessors functions

that return meaningful abstractions about the instance's state. The other type of methods involves

transformation procedures used to move an instance from one valid state to another. An Ada

package can be used to implement ADT's.

Inheritance is a relation between classes that allows for the definition and implementation

of one class to be based on that of other exist classes (for example the class "square matrix"

can be defined based on the class "matrix"). Inheritance is the most important concept that helps

us realize the goal of constructing software from reusable parts, rather than hand coding every

system from scratch.

I Inheritance not only supports reuse across systems, but it directly facilitates

extensibility within a given system. Inheritance minimizes the amount of work needed when

adding additional features.

I The logical model, which is based on teamwork/OOA (see also [SHLAER & MELLOR

881), consists of class diagrams, object communication diagrams, state transition diagrams

(STDs), and timing diagrams. The class diagram is built using an Entity Relationship Diagram

I defined in the previous section. The class diagram shows the various classes and the relationship

between them. The object communication diagram shows the data flow between the classes of

objects in the system. Then for each class, an STD is defined showing the states of the class and

the function and operation which can be activated in each state. A Data Flow Diagram is defined

I
22I

I
I

for each state in the STD and timing diagram is also defined for the activated operations.

The following is an example of a traffic light problem showing the class diagram, the

U object communication diagram, and a state transition diagram.

1 2.2.2.1 HOMEWORK

1. Using a simple example describe the main differences between structured analysis

I and OOA.

2. Describe the difference between the information provided in an entity relationship

diagram, and an object communication diagram.

I 3. Specify the OOA of the vending machine described in the previous section using

Teamwork/OOA.

2.2.2.2 REFERENCE

[SHLAER & MELLOR 88] Object-Oriented Systems Analysis, Shaler and Mellor,

Prentice-Hall, 1988.

2.3 Software Design

As mentioned above the design phase determines how the system is to accomplish the

specifications. Following the methodology used in the requirements phase in the pervious

U section, structure design is covered first in this section, then object-oriented design using the

teamwork notation is introduced. These topics are introduced as language independent. The

3 section is then-concluded by a description of Teamwork's Ada Structured Graphs as a design

3 tool.

2.3.1 Structured Design

U Structured design is characterized by the development of Structure Charts

U 23* r

I
I

(SCs) which are used for modeling the partitioning of tasks into modules, the hierarchical

organization of these modules, and the data interfaces between them.

I The basic units of a SC are the module, the call, the shared data area, and the

couple. The module is an independently callable unit of code. The call is an activation of a

module, the shared data represent data that is shared among several modules, and the couple

I represents an item of data passed between modules. The modules in a SC are combined in a tree

structure representing a true hierarchy where a module at a lower level may be called by more

than one parent.

I Each module declared in the SC must be accompanied by a module specification

(M-specs). The notation used in the M-specs are similar to those used in P-specs such as

pre/post conditions, structure languages, and pseudocode. The amount of detail provided in the

K M-specs should depend on the destination programming language.

3 It is important to discuss and understand ways in which a SC can be developed

from specifications represented by transformation graphs. Since the top of the hierarchy in the

SC is responsible for controlling the decisions of the activities in the task, control transformation

3 structures can be translated into upper-level module structure. Data transformations connected

to the control transformations will become lower-level modules.

In cases where no control transformation has been allocated to the task, or

when the module- structure of data transformations is needed to be further refined, two

3 techniques are proposed. The first technique is called transform-oriented analysis. In this case

the data transformation nodes can be divided into three groups. The first group of nodes are

I concerned with input data processing, the second group perform some operations on the data,

I 24I

I
!

and the third group are concerned with output data processing. Three modules can then

be defined in the Sc, an input module, a transform module, and an output module. These three

3 modules can then be refined further into sub-modules.

The second technique is called transaction-oriented analysis. In this case the

data transformation is transaction driven, that is, depending on the type of the input transaction,

I an operation is triggered. In this case a module called get transaction , and a module called

3 dispatcher can be defined and then refined further into sub-modules. The dispatcher module

checks the transaction type and identifies the required functions needed.

I Structured chart refinement can be guided by the need for satisfying design

3 criteria regarding the coupling of pairs of modules, and the cohesion, complexity, and reusability

of individual modules.

Coupling is a measure of connection between two modules. This can take the form of call

relationship, parameter passing, or shared data area. One of the important design criteria is to

reduce coupling between modules. This because a good modular design lends itself to loosely

coupled modules. Techniques for reducing coupling include grouping data into data structures,

3 and eliminating control couples.

Cohesion is a measure of internal relatedness of the components of a module.

High cohesive modules are sought out in the process of decomposition and refinement.

3 Components of a module that or operate on shared data structures are more cohesive than

modules whose components have merely a precedence relationship. The module name should

also represent the functions performed by the components of the module. This is termed as

U external cohesion.

25

I

U
I

Complexity is another design criteria used in the process of decomposition and

refinement. A module should be simple enough to be regarded as a single unit for purposes of

I verification and modification.

Reusability is now considered as an important design criteria after the

emergence of software repositories which provide means of classifying, cataloging, and

I retrieving software components. Both domain specific and general reusable modules are sought

out in the design of current software systems. In developing reusable modules, upper-level

modules are likely to be domain specific, whereas lower-level service modules are more easy

I to generalize. Examples on structured design can be found in recent text books on software

3 engineering.

2.3.1.1 HOMEWORK

1. Use Teamwork/SD to develop a design of the vending machine problem. Give

3 detailed specifications of the all the modules in you design.

2. The use of the concepts of coupling and cohesion to provide guidelines for

creating good designs are shown in [NIELSEN & SHUMATE] (pp 137-149) in

3 terms of Ada packages and tasks. Use such concepts in developing an alternate

g design of the robot controller example shown in Chapter 22 (pp210) of the same

referencc.

I 2.3.1.2 REFERENCES

3 (NIELSEN & SHUMATE 881 Designing Large Real-Time Systems With Ada, K.

Nielsen and K. Shumate, McGraw-Hill, 1988.

I [SOMMERVILLE 92] Software Engineering, Fourth Edition, I. Sommerville, Addison

I 26

I

I
U

Weley, 1992.

2.3.2 Object-Oriented Design

U Object-Oriented Analysis specify the system under development as a set of

communication objects. The most important part of Object-Oriented Design is to specify the

design of each class in terms of its data structures and member functions. To show an Object-

i Oriented design, four types of diagrams must be created as follows:

3 1. A diagram for each class to show class characteristics (e.g., data structures and

member functions) and interface characteristics,

2. A class structure chart which shows the implementation of class functions. It

3 shows the internal structure of a single class by showing the structure of the

modules and the data and control flow within the class,

3. A dependency diagram that shows the usage of dependencies between classes and

3 nonclass functions or subprograms.

4. An inheritance diagram that shows the relationship betweer, base classes and their

derived classe9.

3m The notation used in Teamwork/OOD was developed on top of Ada Structured Graphs

to be described in the next chapter. This notation has been tailored to facilitate the generation

of C + + code from the design diagrams.

I Booch developed a notation in [BOOCH 90] which can be used with any object-oriented

3 programming language. The notation can also be used for both analysis and design. In fact the

notation has some resemblance of the one described above in OOA. It consists several diagrams

I as described as follows: a class diagram which defines the classes in the system and their

U
27

I

I

I

relationships (similar to the entity relationship diagram of OOA); a State Transition diagram for

each class in the system describing the class dynamics of the system by associating each

transition with an action; an object diagram showing the objects in the system and their

relationship (similar to the object communication diagram of OOA); a timing diagram specifying

the time-ordered events in the system; a module diagram used to show the allocation of classes

I and objects to modules; and a process diagram describing the allocation of concurrently active

processes to processors. Several case studies describing the use of the design method and

notation, and the implementation in several languages, are provided in the reference (see

I [BOOCH 90], pp 222-470).

I 2.3.2.1 HOMEWORK

* Read chapter 12 in the reference (see [BOOCH 90], pp 444-470) which describes the

I analysis and design of a traffic management system and its implementation in Ada. Describe the

3 differences between the analysis produced using teamwork/OOA, and the analysis used in this

chapter. Comment on the difference between the design method using teamwork/OOD and the

1 Booch design method.

3 2.3.2.2 REFERENCES

[BOOCH 90] Object-Oriented Design with Applications, Grady Booch,

Benjamin/Cummings, 1990.

I
I
I
U 28

I

I
U
I CHAPTER Mf. ADA AND REAL-TIME SOFTWARE ENGINEERING

I In this chapter the use of Ada to engineer better software is addressed. The first section

covers characteristics of quality attributes such as modularity, reliability, maintenance, and

reusability. The second section deals with the characteristics of real-time software in terms of

concurrent programming, communication and synchronization, resource control, and scheduling.

3 The third section describes detailed design and code generation using Ada Structures Graphs

which are supported by Teamwork/Ada. This Chapter assumes that students are already familiar

with the Ada programming language. Students at WVU taking this course should have taken,

3 during their sophomore year, CS 15 which is an introductory course in Ada as well as CS 16

which a data structures course using Ada. Ada tasking, however, is not covered in detail in these

courses.

I 3.1 Ada and Software Engineering [Schach 90]

3 Ada was designed to support the principles of modem software engineering.

Modularity: Ada supports structured programming, the program units can be separately compiled

I with no sacrifice in compiler checking. Programs compiled as separate compilation units,

3 eliminating module interface errors. Both top-down and bottom-up compilations are supported.

Top-down compilation allows the high-level structure of the system to be compiled first, using

U stubs to substitu'te for implementations of low-level program units. Bottom-up compilation allows

I the low-level units to be compiled first providing an easier approach for implementing higher-

level modules. Ada goes beyond separate compilation of modules; its compilation units include

U procedures, functions, ,.. .- ,es, tasks, and generics.

3 29
I

I
I

Reliability: Ada supports strong type checking as well as range checking. Faults are detected by

the compiler if the fault is in the syntax or static semantics of the code, or otherwise by the Ada

I run-time routines. Most importantly Ada code is more reliable due to the exception handling

capability of Ada. Exception handling provides a simple mechanism for fault tolerance. Ada

provides three types of predefined exceptions which are raised automatically by the run-time

I system. The first is a constraint error exception which is raised when an attempt is made to

assign to an object a value outside the range specified by the subtype. The second is a storage

error exception which is raised when a program runs out of memory, and the third is a numeric

I error, raised when an arithmetic operation results in an overflow condition.

Object-Oriented implementation: Ada supports data abstraction, information hiding, and

a limited form of inheritance through private types, subtypes, and derived types. Private types

are important element in Ada's support for abstract data types, and are closely related to

3 packages and generics. By hiding the details of the actual data structures that are used to

implement it, a user of an abstract data type can only use the operations supplied by the

component designer. The subtyping mechanism is needed when objects or parameters need to

3 be of the same base type, but are designed to have different subsets of the base type's values.

3 Using derived data types, when a type is declared to be derived from another, it inherits an

identical set of values as well as all the subprograms declared in the same packet specification

I as the parent, but is still regarded as a distinct type.

3 Reusability: Ada was designed to promote reusability. Reusability features are

summarized as follows: compilation units can be employed in different contexts when types and

I subprograms can be passed as parameters; generics (one of the key features which promotes

I 30I

I
I

reusability) are essentially parameterized templates; the support of unconstrained arrays as

formal parameters and dynamic arrays that allow modules to be used in subroutine libraries. The

I most promising vehicles for reuse is object-oriented programs. The expected explosion of

interest in the practice of reuse and th-a emergence of the so called software component factories

have not yet materialized. However, several Ada repositories such as ASSET, AdaNet, and

I CARDS are now being developed.

I 3.1.1 HOMEWORK

This is an optional assignment. Students attempting this assignment will get bonus credit.

I The assignment involves learning the ASSET reuse repository cataloging procedure, then

3 applying the procedure to catalog an Ada component, and finally writing a brief one page report

on your activity.

3.1.2 REFERENCES

[SCHACH 90] Software Engineering, S.R. Schach, Asken Associates, Inc., Publishers,

I 1990.

3.2 Ada and Real-Time Software [Somerville&Morrison 87]

3 The goal of thiý section is to look at the problems of real-time programming systems and

how the various facilities in Ada may be used. topics to be discussed are resource scheduling

in general, and how task priorities, conditional, delayed and timed-out rendezvous in Ada may

I be used. Interrupt-driven programming is a necessary part of any real-time environment, as are

3 exceptions and exception-driven programming

Embedded systems require specialized facilities Such as:

I 1. The need to communicate with external devices,

31

I I

I
U

2. The need to recover from failures and exceptional conditions, and

3. The need to meet some real-time performance criteria.

U The need to communicate with devices external to the system in real-time is handled by

the interrupt facilities of Ada. The need to recover component failures and other conditions is

handled by the exception handling facilities of Ada. Before these concepts are discussed, we

I should first discuss some basic concepts such as concurrency, scheduling of tasks, entry lists for

rendezvous and concept of time in the Ada environment.

3.2.1 Tasks and Task Priorities

I Tasks is the compilation unit in Ada which is used to define concurrent processes.

An Ada program may consist of many tasks and it is simplest to think of each task as executing

on its own individual processor. This ideal situation is often not realizable, since tasks may be

I created and terminated dynamically whereas the number of processors available to a given

system is probably static at any one time.

Task scheduling or the allocation of tasks to processors is not within the control of the

user or performed by the compilation system but rather is performed by the run-time

environment or system.

Given that there are not enough processors to execute all the tasks, the run-time system

scheduler has to decide which task will be allocated a processor. In many timesharing systems,

I where there is Dfteh only one processor, the scheduling strategy used is called time slicing.

Each task is allocated to a processor for a certain amount of time during which it may execute.

It is then halted and the next task is given the processor for the allocated amount of time which

I is called a time slice. If ten tasks compete equally for the one processor then each task appears

IU 32I

I
U

to execute on a processor running at one-tenth of the speed of the real processor. In reality, the

speed is less than this since switching between processes takes some time.

A task in Ada may be in one of five states:

S-- active: allocated to a processor

-- ready: waiting for a processor

I -- blocked: delayed, waiting for I/O or a rendezvous

3 -- completed: waiting for dependent tasks to terminate

-- terminated: no longer able to execute.

I An active process will release a processor when its time slice has been exceeded or when

blocked, completed or terminated. When the scheduler decides the task to allocate to a

processor, it uses the list of ready tasks. In a round-robin system the list is circular and the next

I task on the list is given the processor. More sophisticated ordering of the ready list can

I be accomplished by giving each task a priority.

A task priority in Ada can be assigned using the PRIORITY pragma. The pragma is

U placed in the specification of the task. For examples see the designated reference p267.

3.2.2 Process Communication Using Ada Rendezvous

Process Communication in Ada is accomplished using a rendezvous which is a protocol

for synchronizing two tasks. A task may have several entries to which other tasks may have a

call. When a task accepts an entry call it executes a sequence of code before ending the accept

i block at which time a reply is sent to the calling task.

The calling task is suspended until a reply is received, and the called task is suspended

I at the accept entry until the call is made by the calling task. For examples see reference p243.

II 33
I

I
I

Conditional rendezvous, implemented using the select statement, are used to insure that

a calling task or a called task should not be delayed to wait for a call or accept. This is

I important in real-time programming to insure that events are serviced when they exist see

reference p269.

Timed rendezvous can be used by a task to check periodically if a call is pending, or an

I event has occurred. This uses the delay statement to suspend the executing task for a certain

I period of time. See reference p271 for an example.

3.2.3 Resource scheduling

I Some control over the relative priority of tasks is achieved using the PRIORITY pragma

as mentioned above. However, servicing entry queues is done in FIFO order without considering

the priority level. In which case a higher priority task can be blocked waiting for other lower

I priority tasks in an entry queue to be served.

The above problem can be solved by means of explicit programming using a family of

entries facility provided in Ada. See reference section 10.3 for examples. The store controller

example in p2 7 8 , and the elevator simulation example in p279 are two excellent examples which

clearly show the above problem and its solution.

3.2.4 Interrupts

It is essential for a real-time system to respond very rapidly to certain stimuli. This is

accomplished by means of an interrupt.

A hardware interrupt in Ada is implemented by means of an entry call coming from a

hardware task whose priority is guaranteed to be higher than any other task in the program. It

I may be implemented using an ordinary entry call, a conditional or a timed entry depending on

I 34I

I
I

the type of interrupt and on the implementation.

An interrupt must associate a memory address with the entry for the handling routine.

nI When an interrupt at this address occurs the entry is called.

See examples in reference p 281, in Burns and Wellings pp 456-462, and in Nielsen and

Shumate pp 189-192.

1 3.2.5 HOMEWORK

In [BURNS & WELLINGS 91], Chapter 12 (see pages 321-365), the Ada specification

of a temperature controller module is given to illustrate the required real-time facilities in a

I language. Since Ada provides no direct support for deadlines (i.e., there are no predefined

3 exceptions that deal with errors associated with missed deadlines), show how the temperature

controller task shown in page 344 can be modified in order to support missed deadline

exceptions.

I 3.2.6 REFERENCES

i [SOMMERVILLE & MORRISON 87] Software development with Ada, I. Sommerville

and R. Morrison, Addison-Wesley, 1987.

[BURNS & WELLINGS 91] Real-Time Systems and Their Programming Languages, A.

Bums and A. Wellings, Addison-Wesley, 1991.

3.3 Ada Structured Graphs (ASGs) [Nielsen&Shumate 881

I Ada Structure Graphs (ASGs) were introduced by Buhr [BUH84] to represent the overall

I . architecture of an Ada program design which will eventually appear as Ada code. It graphically

illustrates package structures and the interfaces between tasks that reside in different packages.

I The ASG diagrams are isomorphic to Ada code specified as a program design language.

I 35
I

I
I

The purpose of ASGs is to describe the detailed design of the system. It specifies the

overall design architecture in detail including the task structure. It also specifies the inter-

package and intra-package control and data flows.

The following conventions are used in an ASG. Large rectangles are used to describe a

package structure. Tasks are shown inside packages as parallelograms with entry points as at

I their edges (entry points are also shown as small parallograms). Entrance procedures are shown

as small rectangles at the edges of the package.

The following two pages show an example of using ASGs, developed in Teamwork/Ada,

I to specify the detailed design of an aircraft monitoring system. The ASG in the first page shows

the context diagram of the system which specifies all packages and the dependencies between

them. Only the visible tasks and subprograms are shown in the context diagram. Other examples

I can be obtained from the case studies volume.

I 3.3.1 HOMEWORK

Refer to the robot controller case study in the designated reference (Case study number

5). Using the structure chart in page 412, develop an ASG for this problem using

3 Teamwork/Ada. Generate code and compare the generated code with the code provided in the

reference.

3.3.2 REFERENCES

3 [NIELSEN&SHUMATE 88] Designing Large Rel-Time Systems With Ada, K. Nielsen

and K. Shumate, McGraw-Hill, 1988.

3
U 36

I

I!

I

CHAPTER IV. ANALYSIS OF TIMING BEHAVIOR

4.1 Introduction

I The temporal requirements which constitute the distinguishing characteristic of real-time

systems must be analyzed at length. Hard real-time systems have timing constraints that must

be satisfied ; soft systems can occasionally fail to perform adequately. Both must be considered

I within the context of real-time scheduling. This chapter deals with practical quantitative methods

used to analyze and predict the timing behavior of a large class of real time systems. These

methods can be used to assess design tradeoffs and verify or troubleshoot the system timing

I behavior.

3 Formal methods have been extensively used in the research literature in the specification,

analysis and verification of the temporal requirements of real-time systems. Although, the state

of the art is not quite mature yet to handle a wide-spread use of such methods in large practical

3 projects found in the industrial applications, a maturing set of quantitative methods has evolved

based on the theory of rate monotonic scheduling. This set of methods termed as rate monotonic

analysis (RMA) was recently the topic of a handbook of real time systems analysis produced for

industry practitioners by the Software Engineering Institute [SEI 92].

In this chapter, the RMA techniques outlined in the SEI handbook are briefly summarized

and other references containing more information related to an Ada implementation are specified.

I 4.2 Rate Monotoilc Analysis

The timing analysis techniques described in this section are based on scenarios or real-

time situations which consist of a collection of event sequence definitions. Each event sequence

I is characterized by the following: an event sequence type which defines the source of the event

I 37

I

I
I

arrival for example as environmental or internal events; the event sequence arrival pattern for

example as periodic or irregular events; the current mode or state of the system when the event

sequence occurred; the responses or jobs invoked which specify in terms of sequences of ordered

actions or tasks (in a sequential, parallel, or selective order) what is done when the event

arrives; and finally the timing requirements which define timing restrictions and deadlines on

the responses. Actions are further characterized by the resources they use including the CPU,

I/O, and data objects, their priority, the resources usage times, and the resources allocation

policies.

I Let Ci denote the execution time of a response (a job) to a periodic event sequence e1 with

period Ti. The utilization Ui associated with the eventsequence is defined as U, = Ci/Ti, and the

total utilization of a set of event sequences, U, is the sum of all individual event sequence

I utilization. The total utilization can be used to determine if the event sequences will meet its

3 timing requirements specified in terms the deadlines imposed on the responses to the event

sequences. For example, according to the rate monotonic scheduling theory which assigns the

I highest priority to the action or task with the shortest period, a set of n perfectly pre-emptible,

3 independent periodic tasks will always meet their deadlines if their total utilization is less than

or equal to a utilization bound defined as n(21" - 1). This utilization bound is a theoretically

derived number which can also be derived for other more general cases which include

U Idependencies between tasks (e.g., through blocking) and any priority assignment strategy. The

utilization bounds provide a way to conduct a fast test on the schedule ability of an event

sequence for a given real-time situation.

I
I 38

I

I
I

The response time of a job is affected by other events with higher or lower priority

responses which compete for the same resources; events which start with higher priority tasks

followed by lower priority tasks,or vice versa; and the execution time of previous jobs in the

event sequence which did not complete at the end of their periods. These factors produce

preemption effects and blocking effects. For example a lower priority task can be preempted

from the CPU by a higher priority task if it is not using any other shared, in which case the

higher priority task will be blocked by the lower priority task.

In the following sections, two analysis techniques pertaining to an increasingly complex

I set of scenarios are described. The first technique can be used to get a fast simplified first-order

3 analysis or tests to check the success of guaranteeing that timing requirements will be met.

Unsuccessful tests mean that a more complex technique such as the second technique should be

I used. The second technique is more involved and it provides a precise schedule ability analysis

showing that timing requirements can not be met for a given real-time situation.

4.3 Simple Timing Analysis.

I The technique discussed in this section is based on using separate utilization bound for

3 each periodic event when deadlines are within the period. It calculates the effective utilization

of an event sequence which includes the effect of other event sequences that can affect the

I completion time of this event sequence. This effective utilization is then compared with the

3 appropriate utilization bounds and if it is less than the bound, then event sequence is deadline

requirements. If the effective utilization is greater than the bound, more precise techniques such

as the one described in the next section must be used.

3
* 39

I

I
I

The following steps are applied to each event sequence e, that has a response time

requirement. Let Pi be the priority, and Di be the deadline, Bi the blocking delay, and u, the

effective utilization of the event sequence.

Step 1. Let H be the set of event sequences which are processed at a priority

higher than or equal to that of e1. Partition the set H into: the set -11

3 consisting of events with periods greater than or equal to D, (these events

will preempt e1 only once); and the set Hn consisting of events with

periods less than Di. The effective utilization of ej is calculated as follows:

I u= (Ej H. Cj/T. + 1/T1 (Ci + Bi + EHk E CH

3 Step 2. The second step determines the utilization bound as follows:

U(n,del) = (n((2del)1 " - 1) + 1 - del.) , when del1 > 1/2, or

= deli , otherwise

3 where n is the number of elements in the set Hn plus 1, and del1 is the ratio of D/T,.

4.4 Precise Schedulability Assessment

This technique is based on calculating the worst case completion time for a response in

3 event sequence e1. The following iterative algorithm is to be applied to each response of interest.

Step 1. Obtain the first estimate ao by summing the execution times of the event

sequence and all higher priority sequences (it is assumed that event

3 - - sequenLes are in priority order, with el having the highest priority).

3 ao = .- , Ci

Step 2. Obtain the next estimate from the current estimate using

I a,+, f C, + Ej.-Y1 t- Ia./T I[Cj

* 40

I

I
I

Step 3. If (a.+, is less than or equal to D,) and (a,+I is not equal to a,) then repeat

U step 2, else if (a.,, is less than or equal to Di) then the event sequence is

3 schedulable.

Step 1 in the above algorithm obtains a first estimate of the worst case completion time

by neglecting all preemptions. Some of these preemptions are taken into account in step 2.

Iterations on step 2 take into account the effect of further preemptions in calculating the worst

case completion time. The above technique assumes that deadlines are within the period of

events. In this case when the worst case completion time is less than or equal to the deadline

3 schedulability is guaranteed. This technique assumes that deadlines are within the period of the

event sequence. More general techniques for arbitrary deadlines and for calculating response

time with blocking and step by step examples are described in the designated reference.

I 4.5 HOMEWOR:"

1. The following :able describes the attributes of three event sequences in a real-time

situation:I
3 Event Arrival period Execution time priority Deadlines

el 100 40 High 80

U e2 150 75 Medium 100

3 e3 750 65 Low 350

I Using the worst case completion time technique of the previous section, determine

3 whether these event sequences will meet their deadlines.

* 41

U

I
2. In the above table, let 20 and 25 be the blocking delays for events el and e2,

I respectively, using the analysis technique of section 4.2, determine if any of the

I above events is schedulable.

4.6 REFERENCES

I [SEI 93] The handbook of real-time system analysis, The Software Engineering Institute,

3IEEE Computer Society Press, 1993.

II

I
I
I
I
I
I
I
I
3 42

I

I

CHAPrER V. VERIFICATION AND VALIDATION TECHNIQUES

5.1 INTRODUCTION

3 Verification and Validation (V&V) techniques at the early stages of development are used

to identify and resolve software problems and high-risk issues early in the software cycle. This

results in cost reductions of up to 100:1 in large projects [3] and 10:1 on the smaller projects.

3 Besides major cost savings, there are also significant payoffs in improved reliability,

maintainability and human engineering of the resulting software product.

Verification is the process of determining whether or not the products of a given phase

I of the software development cycle fulfill the requirements established during the previous phase.

3 Validation is the process of evaluating software at the end of the software development

process to ensure compliance with software requirements.

I In [3] the definition of validation is extended to include a missing activity at the

3 beginning of the software definition process: determining the fitness or worth of a software

product for its operational mission.

I The scope of this Chapter is to investigate the software tools and technology for

3 performance and reliability evaluation and criticality assessment of the software under

development. Analysis and design are the essential first phases in most software development

projects [1]. Thus making it very important to consider verification and validation techniques

I for the early pbases.

I 5.2 VERIFICATION AND VALIDATION CRITERIA

The basic V&V criteria defined in [3] for the requirement/design specifications is

3 completeness, consistency, feasibility and testability. Each of these is discussed below:

U 43
U

5.2.1 Completeness

U A specification is said to be complete if it shows the following characteristics [3].

3 * No ambiguous places, conditions, sentences in the specifications.

* Well defined references to input, outputs and the functions concerned.

I * The necessary specification items are not missing.

* The functions, that should be part of the software product, are called for in the

specification.

I * The products that should be part of the delivered software, are called for in the

3 specification.

5.2.2 Consistency.

Specifications should be consistent from several aspects. Some of these are listed below:

3 * Internal consistency. Specification should not have any set of components which

conflict with each other.

* External consistency. Specification should not have any set of items which conflict with

3 external specifications or entities.

I 5.2.3 Traceability

Traceability is property of system requirements where specification have clear antecedents

3 in earlier specifications or statements of system objectives. Each of the items should indicate

3 the items in earlier specifications from which it is derived to prevent misinterpretations and

embellishments.

I 5.2.4 Feasibility

3 If the life cycle benefits of the system specified exceed its life cycle costs the

3 44

3

I
I

specification are said to be feasible. Based on the feasibility analysis one can identify and resolve

3 any high risk issues earlier in the software development life cycle. The feasibility analysis

involves validation of the specified system that it will be sufficiently maintainable, reliable, and

human engineered to keep a positive life cycle balance sheet.

3 * Human engineering:

It is based on various cor.ditions, some of which are listed as follows:

* The specified system provides a satisfactory way for users to perform their operational

I functions.

3 * The system satisfies human needs at various levels.

* The system helps people fulfill their human potential.

I Examples of human engineering considerations are given in [8] and in [9].

3 * Resource engineering:

It is based on the following conditions:

* Systems developed should satisfy the specified requirements, at an acceptable cost in

3 resources.

* The specified system should accommodate cost-effectively, the expected growth in

operational requirements over its life-cycle.

3 Examples of resource engineering considerations are given in [10] and [11].

* Program Engineering:

The software program should be engineered in such a way that it will be:

3 * Cost-effective to maintain.

3 * Cost-effective from a portability standpoint.

* 45

3

I

* Able to achieve sufficient accuracy, reliability, and availability to cost-effectively

3 satisfy operational needs over its life cycle.

Examples of these program engineering considerations are given in [12].

* Risk Issues:

U The high risk issues have to be identified and resolved in advance, otherwise it is very

likely that problems will arise when the system is realized. In software requirements and design

specifications, technical, cost-schedule, environmental, and interaction effects are some of the

U sources of the risk.

3 * Technical risk:

* Overhead in a multiprocessor operating system

I * Computer security protection

3 * Speed and accuracy of new algorithms

* Performance in "artificial intelligence" domains

I * Man-machine performance

3 * Cost-schedule risks:

* Availability and reliability of the underlying virtual machine (hardware, operating

system, database management system, compiler) upon which the specified software will

3 be built

* Percentage stability of the underlying virtual machine

* Availability of key personnel

3 * Strain on available main memory and execution time.

* Environmental risk issues:

3 46

I

I

* Volume and quality of input data

* Availability and performance of interfacing systems

* Sophistication, flexibility, and degree of cooperation of system users.

5.2.5 Testability

I A specification is testable to the extent that one can identify an economically feasible

technique for determining whether or not the developed software will satisfy the specifications

[3]. Specifications must be specific, unambiguous, and quantitative wherever possible.

I 5.3 V&V TASKS

3 Based on the needs of analysis and design phases, V&V tasks can be listed in table 5.1.

Some of these tasks are explained in detail in the following sections.

1 5.3.1. Requirements Analysis

3 Requirement Analysis is a process to figure out what the customer wants a system to do.

The system requirements are normally specified using a graphical and/or textual language. In

I requirements analysis one can check for syntactical errors in the requirements specifications and

3 then figure out the relationships between system inputs, outputs, processes, and data. During

requirement analysis, some or all of the criteria such as completeness, consistency, feasibility

and testability are considered.

3 5.3.1.1. Information input

The input information to requirement analysis is.generally the textual form supplied by

the customer. In some cases, the information is also supplied in graphical form. Regardless of

3 the format, requirements will specify the inputs to the system and outputs produced by the

system. The specifications can also describe the functions or processes to obtain outputs based

I 47

I

I

on the inputs. Requirement document may also set some goals for the expected performance

and reliability of the system.

Tasks Phase(s) of Development Life-Cycle

Requirements High Level Design

Algorithm Analysis X X

Analytic Modeling X X

Assertion Generation X X

I Assertion Processing X

g Cause-Effect Graphing X X

Control Structure Analysis X X

I Criticality Assessment X X

3 Data Flow Analysis X X

Formal Reviews X X

I Formal Verification X X

3 Interface Checking X X

Regression Testing X

Requirements Analysis X

3 Requirements Tracing X X

U Specification-Based Functional

Testing X

I Timing and Sizing Analysis X

3 Table $.lList of V&V tasks for Requirements and High level Design phases

3I 48

I

I

1 5.3.1.2. Information output

3 Information output from the process of requirement analysis is as follows:

* Error reports showing syntactical errors or inconsistencies in the specifications.

* Representation of the system indicating static relationships among system inputs,

3 outputs, processes, and data.

* Detailed representation of relationships between different data items.

* A mechanism for simulating the requirements using the generated system representation

3 including the performance and timing requirements.

5.3.1.3. Outline of method

During requirement analysis, results are provided to the user who then interprets them.

I Characteristics like completeness and consistency are analyzed using various techniques (e.g.

simulations, cross referencing), feasibility analysis is performed to make sure the system is

worth developing. Input data for other tasks e.g. criticality analysis is prepared.

I A data base is developed to maintain and manage the original set of requirements and the

3 subsequent changes in the set.

5.3.1.4. Effectiveness

I Requirements analysis tools are very effective for maintaining accurate requirements

I specifications. Requirement analysis is essential for medium to large systems with a large

number of requirements. As the tools and techniques for requirements analysis develop further

and their prices become more competitive, small system designs will go through the same

3 rigorous process of requirements analysis.

4
1 49

I

I

I 5.3.2. Requirements Tracing

It is the process where requirements can be traced to customer's statements or from the

design components. Thus one can verify that the software system is linked to each requirement.

I It is an important task as it is used to verify that each requirement is addressed properly and that

the software testing will produce adequate and appropriate responses to stimuli based on the

requirements.

1 5.3.2.1. Information input

3 A set of system requirements serves as input to the process of requirement tracing.

5.3.2.2. Information output

The information obtained from the analysis mainly consists of the correspondence found

3 between the requirements of a system, software specification and the software modules (in high

or low level design).

5.3.2.3. Outline of method

3 Two major tasks can be accomplished through requirements tracing. These are given as

follows:

* Task #1: This ensures that each specified requirement of a system is addressed by an

I identifiable element of the system software.

I * Task #2: This ensures that the testing of software produces results which confirm that

the system responds adequately to each of these requirements.

I Test evaluation matrices can be used in requirement tracing. These matrices identify the

I requirements of a system which have been appropriately addressed and which have not. There

are two kinds of test evaluation matrices as given below:

I
* 50

I

I

I * Matrices which identify the mapping that exists between the requirement specifications

of a system and the modules of that system.

* Matrices that show the mapping between the modules of a system and the set of test

I cases performed on the system. This matrix determines the modules being invoked by

each test case.

The two matrices should be used together to get maximum benefit. The first matrix is useful

to analyze the functional requirements of a system. Whereis, the second matrix is useful in

analyzing the performance, interface, and design requirements of the system, in addition to the

functional requirements. Both are often used in support of a more general requirements tracing

activity, that of preliminary and critical design reviews. This procedure is used to verify the

traceability of requirements to the design of the system.

I 5.3.2.4. Effectiveness

This is very effective technique in discovering errors during the design and coding phases

of software development, and to verify completeness, consistency, and testability of software.

I This technique also helps in retesting software by clearly indicating which modules must be

rewritten and retested, when a system requirement is changed.

1 5.3.3. Assertion Generation

Assertion generation is the process to capture the functional properties of a program using

an assertion language, for insertion into the various levels of program specification. Assertion

I generation can be the basis to many verification techniques. These other techniques can then

utilize the embedded assertions to compare the actual functional properties of the program with

the intended properties.

I

I

I

1 5.3.3.1. Required input

The input required for assertion generation are the specifications of the desired functional

properties of the program. In a relatively simple form, this process breaks down to a

I preconditions and a post conditions. Preconditions is a set of conditions which have to be true

before a module or a process can start performing its intended function and post condition has

to be fulfilled before the process can terminate.

I I5.3.3.2. Information output

The assertions are expressed in a notation called the assertion language. This notation

includes higher level expressive constructs quite similar to the programming language. The

assertion language is equivalent in expressive power to the first order predicate calculus. The

assertions which express the functional properties of the program, can then be used as input to

a dynamic assertion processor, a formal verification tool, walk through, specification simulators,

and inspections, among other V&V techniques.

I 5.3.3.3. Outline of method

Assertion generation process is concurrent with the hierarchical elaboration of program

functions. When a function is identified as being needed, it is usually specified by a set of

I inputs and a corresponding set of outputs. Input assertion expresses the requirements on the

3 data the function is to use during its processing. Output assertion expresses what is to be true

on function termination.

I Later, the necessary steps can be identified to implement the function. After each step

it can be said that a "part" of the task has been accomplished. That part is necessary for the

proper operation of the next step, and so on, until the entire function has been realized. The

* 52

I

I

I character of each part can be captured by an assertion in the same way as the description of the

entire function. The output assertion for one step represents (at least part of) the input assertion

for the following step. Such assertions are called intermediate assertions. Input, output, and

I intermediate assertions are placed into the specification of the function being implemented at the

appropriate points. Thus, the program design language or the source text will include the

assertions. V&V tools, such as dynamic assertion processors, can be developed which could use

these during their processing. Later at the coding stage dynamic assertion processors can help

validate the source assertions during program execution. In this way program behavior can be

verified dynamically.

5.3.3.4. Effectiveness

Assertion generation, when used in conjunction with allied techniques like dynamic

assertion processing or functional testing, can be an extremely effective V&V technique. Such

effectiveness is only possible, however, when the assertions are used to capture the important

functional properties of the program.

I 5.3.4. Analytic Modeling of System Designs.

Analytical modeling is the process of representing software system in a model. Later this

I model can be used to obtain information about the characteristics of the system such as

I performance and reliability issues. Both static and dynamic modeling paradigms can be used

to capture the system characteristics. The process usually follows top down approach to design

I through hierarchical levels. It can be applied at early design stages when functional modules

are relatively large and where knowledge of their execution behavior may be imprecise. As the

design proceeds and the modules are further resolved, the estimates of their behavior and

I 53

I

I execution resource characterization become more precise. Design/CPN can be used effectively

as a tool to evaluate the system models, where system is modeled using colored Petri-nets.

5.3.4.1. Required input

I The inputs required are the system specifications, which can be used to develop a

functional design of the system. The functional design then can be utilized to evaluate

performance and reliability aspects of the system.

I 5.3.4.2. Information output

3 Information output of this task may consist of;

* Throughput of the system

I * Resource utilization

* Reliability measures of the system

* Critical modules/processes of the system.

Criticality being measured in terms of

3 * time bounds on the module activation

* effect of individual components on the system performance.

5.3.4.3. Outline of method

I Analytical modeling is carried out in various steps as given below:

* Identification of the functional components of the software design to be modeled.

* Identification of the execution characteristics (primarily, execution time estimate) of

I each functional component.

* An execution flow graph which gives the definition of the order of execution of the

various functional components.

I
I 54

I

I
* Execution environment specificatons which can include information such as operating

system overhead and the workload on the system that could potentially impact the

particular software under development.

* System execution scenarios which provide the definitions of the external inputs to the

model needed for each simulation of the model.

* Performance goals for the total system and components (an example is an upper

I bound for the mean and variance of the response time for a specified execution

3 environment and scenario).

After the model is complete various tools can be used to simulate the system and view

I its performance characteristics.

5.3.4.4 Effectiveness

Effectiveness of this technique in predicting performance depends upon the quality of

SI the performance specifications. The specifications' quality generally improves as the design

process proceeds further.

5.3.5 Control Structure Analysis

Control structure analysis reveals violation of control flow standards and improper

3 subprogram usage. It can also identify control branches and paths used in test coverage analysis.

3 5.3.5.1. Information Input

Input to the control structure analysis can take various forms as given below:

* Text of the program or design to be analyzed.

* Control flow specifications.

I
55I

I

I
I

5.3.5.2. Information output

I Output from control flow analysis consists of the following information:

* Error reports

* Program call graph

I Violations of the standards are described in the error reports, whereas the structure of the graph

in relation to the use of the submodules is shown in the call graphs. In this analysis routines

which are never called as well as attempts to call nonexistent routines can be discovered.

I Structurally "dead" code within each module can be detected and recursion can be identified.

I 5.3.5.3. Outline of method

The analysis is carried out on the control specification of the system to generate the error

reports and the call graphs. The analyst has to go through the reports and graphs, to look at

various aspects of the system e.g. process activation and control input utilization.

I 5.3.5.4. Effectiveness

The technique is reliable for detecting violations/ambiguities present in the control

3 specifications.

i 5.3.6 Criticality Assessment

In this process, system requirements are classified to determine their relative importance

I in terms of such factors as performance, mission, safety, complexity, and cost risk. The

measure of criticality assessment can be termed as Criticality Factor (CF) [6]. Once the process

of assessment is complete, V&V resources can be concentrated where they are most needed.

I This also helps while developing test plans to slant the testing toward the more critical

3 requirements.

* 56

I

I
I

5.3.6.1. Possible Input

The information needed to perform criticality assessment may consist of the following:

* Program specifications

* Detail of functional components of the program

* Hardware components to be interfaced to the functional modules of the system.

Based on the program specifications, the link between software and hardware components

can be analyzed to explore their mutual dependencies. Designer/analyst can then look into

critical components based on the safety, life support systems etc. to allocate the CF to each of

these components/modules. Moreover there are software modules which are invoked more often

than others during program execution. Such modules become more critical from reliability and

performance aspects.

I 5.3.6.2. Information output

Output of the criticality assessment process can be in the form of charts, tables or

matrices where critical software/hardware modules are listed along with their CF's.

I 5.3.6.3. Outline of method

3 The application of requirement criticality assessment is very much dependent upon the

ability to recognize, select, and appropriately define and scale the weighing factors. The

I criticality assessment methodology consists of several related elements as:

* A numerical figure of merit called the criticality factor (CF) for gauging the relative

criticality of each software requirement

* The computation of CF for each of the requirements by V&V analysts in terms of a

3 criticality assessment matrix

I 57
I

* A set of precise and unambiguous instructions supplied to each V&V analyst for

i determining appropriate entries to the criticality matrix for each of the components of

* CF

* A set of CF component weighing factors established by V&V and approved by the

customer

* A categorical ranking of the CFs, performed by consensus, ordered by the potential

for high project payoff leverage when compared to the amount of project resources to

be expended

* Concentrated verification through the specification analysis phase of software

development of each highly ranked software component in a test configuration thread

* Critical concurrency analysis of each subfunction within each functional data flow.

I Risk and complexity are the two issues which form the basis of the system criticality.

Risks are evaluated by determination of the adequacy of the automation decisions and of the

software/hardware interfaces on the requirements level. Secondly the risks are evaluated by

i judgmental evaluation of the type and degree of potential for described categories of failure

3 contingencies. Failure mode effects analysis (FMEA) approach becomes necessary to provide

additional depth to the quantification[6]. Analysis of the effects that failures, including software

I errors, can have on the system often requires an in-depth study. Thus, FMEA and criticality

assessments work together to provide a way to best utilize the available V&V resources.

Complexity is related to the cumulative nature of implementing multidisciplinary software

requirements. Complex systems contain interfaces with many subsystems at the same time.

i Therefore it is necessary to measure the degree to which a given software requirement may

* 58i s

I
U

impact the baseline system performance requirements if problems occur during program

executions. This measure reflects the concept that criticality is directly proportional to the

3 number of connectivities to different subsystems, and that certain subsystem disciplines

potentially affect the system performance more than do other disciplines. Balancing these

system-related criticality issues is a set of functional issues. These issues require analysis of

the adequacy of pertinent aspects of single point control, system interlocks, error control, and

man/machine interaction. Of special concern is the identification of those modules (hardware,

firmware, or software) with real-time implications. In the software regime, real-time critical

I components are known to consist of system software (the operating system), the applications

software, and support software, which spans system and applications software execution.

5.3.6.4. Effectiveness

I This technique is very effective in safety, mission critical environments where a high

degree of reliability is expected. NASA and its subcontractors do perform criticality assessment

analysis on most of the major projects, an example being the space shuttle project.

1 5.3.7. Formal Verification

3 Formal verification is a task/process in which formal and rigorous mathematics is used

to prove the consistency between an algorithmic solution and complete specification of the intent

of the solution.

3 5.3.7.1 Information Input

The inputs required are the system specifications describing the solution and intent of the

system implementation. This information is provided in the form of executable design language

I and assertions language.

I 59
I

I
I

Depending upon the rigor and specific mechanisms to be employed in the consistency

proof additional information may be required. Also simplification rules and rules of inference

I may be required as input if the proof process is to be completely rigorous.

i 5.3.7.2. Information output

The output report may contain one of the three possible outcomes as given below:

3 * Successfully completed proof of consistency

* Demonstration of inconsistency

* Terminates inconclusively.

I In the first two cases, output is the proofs themselves. In the third case, any fragmentary

chains of successfully proven reasoning are the only meaningful output.

5.3.7.3. Outline of method

I The usual method used in carrying out formal verification is Floyd's Method of

I Inductive Assertions or a variant thereof. This method entails the partitioning of the solution

specification into algorithmically straightline fragments by means of strategically placed

assertions. mis partitioning reduces the proof of consistency to the proof of a set of smaller,

3 generally much more manageable lemmas.

Floyd's Method dictates that the intent of the solution specification be captured by two

assertions. The first assertion is the input assertion which describes the assumptions about the

3 input. The second-assertion is the output assertion which describes the transformation of the

input, which is intended to be the result of the execution, of the specified solution. In addition,

intermediate assertions must be fashioned and placed within the body of the solution specification

I in such a way that every loop in the solution specification contains at least one intermediate

I 60
I

I
U

assertion. Each such intermediate assertion must express completely the transformations which

are intended to occur or are occurring at the point of placement of the assertion.

3 The purpose of placing the assertions as just described is to assure that every possible

u program execution is decomposable into a sequence of straightline algorithmic specifications,

each of which is bounded on either end by an assertion. If it is known that each terminating

I assertion is necessarily implied by executing the specified algorithm under the conditions of the

initial assertion, then, by induction, it can be shown that the entire execution behaves as

specified by the input/output assertions, and hence as intended. For the user to be assured of

I this, Floyd's Method directs that a set of lemmas be proven. This set consists of one lemma for

I each pair of assertions which is separated by a straightline algorithmic specification and no

other intervening assertion. For such an assertion pair, the lemma states that, under the assumed

I conditions of the initial assertion, execution of the algorithm specified by the intervening code

5 necessarily implied the conditions of the terminating assertion. Proving all such lemmas

establishes what is known as "partial correctness." Partial correctness establishes that whenever

the specified solution process terminates, it has behaved as intended. In addition, total

3 correctness is established by proving that the specified solution process must always terminate.

This is clearly an undecidable question, being equivalent to the Halting Problem, and hence its

resolution is invariably approached through the application of heuristic.

3 In the above procedure, the pivotal capability is clearly the ability to prove the various

specified lemmas. This can be done to varying degrees of rigor, resulting in proofs of

corresponding varied degrees of reliability and trustworthiness. For the greatest degree of

I trustworthiness, solution specification, intent specification, and rules of reasoning must all be

61I

I

specified with complete rigor and precision. The principal difficulty here lies in specifying the

solution with complete rigor and precision. This entails specifying the semantics of the

3 specification language, and the functioning of any actual execution environment with complete

rigor and precision. Such complete details are often difficult or impossible to adduce. They

are, moreover, when available, generally quite voluminous, thereby occasioning the need to

3 prove lemmas which are long and intricate.

in 5.3.7.4. Effectiveness

This technique is effective in establishing consistency between intent and solution

U specification. An inconsistency indicates an error in either or both. The amount of detail needs

3 large, complex lemmas. these, especially when proven using complex, detailed rules of

inference, produce very large, intricate proofs which are highly prone to error.

i Formal verification of actual programs is further complicated by the necessity to express

3 rigorously the execution behavior of the actual computing environment for the program. As a

consequence of this, the execution environment is generally modeled incompletely and

rn imperfectly, thereby restricting the validity of the proofs in ways which are difficult to

3 determine.

Despite these difficulties, a correctly proven set of lemmas establishing consistency

between a complete specification and a solution specification whose semantics are accurately

i known and expressed conveys the greatest assurances of correctness obtainable. This ideal of

assurance seems best attainable by applying automated theorem provers to design

specifications, rather than code.

I
*I 62

I

I
I
! 5.3.8. Interface Checking

During the process of interface checking, consistency and completeness of the

3 information and control flow between components, modules or procedures of a system are

i analyzed.

5.3.8.1 Information input

3 Different kinds of system representations with varying level of description can be used

3 as the input to the process of interface checking. Information can be supplied as formal

representation of system requirements or formal representation of system design or a program

I coded in a high-level language.

1 5.3.8.2. Information output

Output generally contains reports about module interface inconsistencies and errors.

I 5.3.8.3. Outline of method

I Interface checking analysis is performed on system representation in some sort of

program design language. PDL (program design language) describes system requirements as a

1 system of inputs, processes and outputs. Both information and control flow are represented.

3 Interface checking consists of ensuring that all data items are used and generated by some

process and that all processes use data. Incomplete requirements specification are, therefore,

easily detected.

I Other tasks-can be used to analyze module interfaces based on a design which contains

information describing, for each module, the nature of the inputs and outputs. Module calls can

be checked against the interface specifications, in the called module for consistency. This

3 produces a consistency report indicating which interface specifications have been violated.

* 63

I

I
I

5.3.8.4. Effectiveness

It is very effective procedure to detect errors which can be difficult to isolate if left to

3 testing. Interface checking can be implemented as part of data flow analysis or a

requirements/design analysis.

5.3.9. Regression Testing

3 In regression testing, a set of test cases is used to perform comprehensive testing of the

3 system's functions. Test cases can be generated using various techniques based on

static/dynamic modeling or cause-effect graphing. The set of test cases is maintained and made

I available throughout the life cycle for testing various stages of development.

3 5.3.9.1. Information input

A set of system test cases is maintained and made available throughout the entire life of

I the system for testing purposes. The test cases should be complete enough so that all of the

3 system's functional capabilities are thoroughly tested. Samples of the actual/expected output for

each test case is supplied and maintained.

5.3.9.2. Information output

3 The output from regression testing is simply the output produced by the system from the

execution of each of the individual test cases. When the output from previous acceptance tests

has been kept, additional output from regression testing should be a comparison of the before

3 and after executions.

i 5.3.9.3. Outline of method

Regression testing is the process of retesting the system in orde" to detect errors which

3 may have been caused by program changes. A set of test cases is developed using functional

I 64
I

I

testing. In case of a change in the system requirements, the effected components are identified.

Then only these components need to be tested. After the tests are executed, the actual output

3 is compared with the expected output for correctness. When errors are detected during the

actual operation of the system which were not detected by regression testing, a test case which

could have uncovered the error should be constructed and included with the existing test cases.

I 5.3.9.4. Effectiveness

The technique is as effective as the quality of the data used for performing the regression

testing. Effectiveness improves a great deal if tests are based on the functional requirements.

U 5.4 REFERENCES

I [1] A.I. Wasserman, P.A. Pircher, "SIGPlan Notices", January 1987, pp 131-142.

[2] B.W.Boehm, "Verifying and Validating Software Requirements and Design

I Specifications", IEEE Software, Vol 1, Number 1, January 1984, pp 75-88.

I [3] IEEE Standard for Software Verification and Validation Plans, ANSI/IEEE Std

1012-1986.

E [4] "Requirements Analysis and Design Tools Report April 1992", by Software Technology

3 Support Center (STSC), Hill Air Force Base, Utah.

[5] Stephen R. Schach, "Software Engineering", Aksen Associates Inc. Publishers, 1990.

[6] Robert 0. Lewis, "Independent Verification and Validation, A life cycle Engineering

Process -for -Quality Software", John Wiley and Sons, INC., 1992.

[7] U.S. Department of Air Force Regulation 800 -14, volume I, Management of Computer

Resources in systems, September 1975.

6
3 65

I

I
I

[8] B. Shneiderman, Software Psychology: Human Factors in Computer and Information

Systems, Winthrop Press, Cambridge, Mass. , 1980.

3 [9] S.L. Smith and A.F. Aucella, Design Guidelines for the User Interface to Computer-

Based Information Systems,SESD-TR-83-122, USAF Electronics Systems Division,

Bedford, Mass, 1983.

1 [10] B. W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs.

N..1., 1981.

(11] D. Ferrari, Computer .Systems Performance EvaluationS, Prentice Hall, Englewood

3 Cliffs, N.J., 2nd ed., 1983.

[12] M. Lipow, B. B. White, and B. W. Boehm, "Software Quality Assurance: An

Acquisition Guidebook," TRW-SS-77-07, Nov. 1977.

I
!
I
I
I
I
I

I
I 66 I I

IIIIII

I
I
I
I
I

g PART II

I
| REAL-TIME SYSTEMS DESIGN II

I THE HARDWARE COURSE

I
I
I
I
I

I

I
I

I

I
* REAL-TIME SYSTEMS DESIGN II

i REAL-TIME SYSTEMS DESIGN II

I COURSE DESCRIPTION AND OBJECTIVES:

This is the second course in the real-time system design sequence. The course is a

laboratory based course which emphasizes hardware design and ;ystem integration and testing,

I i.e., the integration of the developed software and hardware, and testing of the integrated

system.. The following are the desired outcomes from the course. The students should be able

to

t 1. Design and implement the hardware for a real-time system using a processor,

I needed sensors, actuators, and signal conditioning devices.

2. Identify and practice trouble shooting techniques for the implemented hardware

I prototype.

3. Integrate a tested version of the software with the developed hardware.

4. Identify and practice testing and trouble shooting techniques for the integrated

system.

I
1
I
I
I 67

I

I
I

CHAPTER I. HARDWARE COMPONENTS OF A REAL-TIME

SYSTEMI
I 1.1 INTRODUCTION

Microprocessor based controllers (or microcontrollers), sensors, signal conditioning

devices, and actuators are among the most important hardware components in a real-time

system. The topics discussed here will deal with each of these componets in a separate section.

I 1.2 MICROCONTROLLERS (reference text: [PEATMAN 88], and [INTEL 93])

Microcontrollers typically consist of the following components: a processor unit

I implementing a particular machine instruction set; a ROM holding the application program

3 machine instructions as well as static or initialization data; a RAM holding -. namic data and

state information; parallel and serial I/O port as well as A/D and D/A converters for executing

the input/output operations for analog or digital data samples; and interrupt handling and timer

circuitry for event handling and real-time control.

A processor unit is characterized by its instruction set and operand addressiag modes; the

size of operands taking part in an instruction; the size of the bus (bus width) which determines

the size in bits of the data transferred to/from the processor unit and the maximum memory size

to be addressed; and the system clock speed which determines the maximum controller

instruction processing speed in million instructions per second.

I The ROM, used as a nonvolatile storage for the application program and static or

I initialization data, is characterized by its size in bytes, and whether it is erasable and

programmable (i.e., EPROMs) which requires a special device for erasing and programming,

I 68
U

or Electrically erasable and programmable (i.e., an EEPROM) which erases quickly and does

not require the use of a separate device. The RAM or data memory is characterized by its size

and access time. With the increasing complexity of application programs and data, large memor)

capacity are needed in order to buffer and process large amounts of data. Therefore, memories

are important resources in microcontroller units.

Parallel ports are needed for input and output of digital data and handshaking (or control)

I signals. These can be configured as output only, input only, strobed input or output, or strobed

bi-directional. Serial input/output ports can also be used with serial digital data transmission

based on standards such as the RS-232 standard. The configuration of serial 1/0 ports require

the specification of whether the serial I/O is synchronous or asynchronous, and the specification

of the number of stop bits in an asynchronous 1/0.

I Analog data 1/0 is handled by means of A/D and D/A converters in the microcontroller

3 unit. Analog to digital conversion can be done using one of the following A/D converters: dual-

slope A/D converter; successive approximation AID converter; or flash A/D converters. Dual-

I slope AID converters obtain a digital output by integrating the analog input over an interval of

time. They can, therefore, reduce the effect of noise in the input signal and produce an accurate

output data sample. The conversion time is longer however than other A/D converters.

Successive-approximation A/D converters are very common im many controllers. They use a

D/A and control circuitry to carry out fast conversions: Flash A/D converters are the fastest

They relay on parallel comparisons of the input voltage with all possible sample values using fasi

comparators and combinational circuits. They are, however, the most expensive since they nee&

3 a vast amount of circuitry relative to the other two types of converters.

I 69

I

I
I

The Motorola 68HC 11 microcontroller family contains a successive approximation A/D

I with an analog multiplexer to multiplex several input analog channels. It also has a sample and

hold device to sample the input signal and hold its value constant for the duration of conversion

by the AID. Several families of controllers from Intel will be discussed in the next section.

The interrupt structure and real-time clock of a microcontroller are the most important

components related to real-time control. The interrupt structure allows outside events to control

the flow of program execution in the microcontroller. The real-time clock is used to produce

events or interrupts at particular time instants. The particularly necessary features of the interrupt

structure are as follows: multiple prioritized interrupt lines (i.e., vector priority, selective

interrupts enable and disable capabilities, minimized delay which occurs before servicing any

of several interrupt requests made at the same time). The programmable clock or timer can be

I used to control the outputs or inputs of the microcontroller to occur in certain time intervals. The

3 use of a programmable timer is essential since the delay loop approach suffers from many

drawbacks such as consuming the processor time and requiring all interrupts to be disabled. This

I is because the execution of the interrupt service routines can affect the delay loop timings.

3 1.2.1 The RUPI-44 Family of Microcontrollers

The RUPI-44 family is designed for applications requiring local intelligence at remote

I nodes, and communication capability among these distributed nodes. The RUPI-44 integrates

onto a single-chip Intel's microcontroller, the 8051-core, with an intelligent and high

performance Serial communication controller, called the Serial Interface Unit, or SIU. This dual

control architecture allows complex control and high speed data communication functions to be

I realized cost effectively. The RUPI-44 family consists of three pin compatible parts:

I 70
I

I
1. 8344 -- 8051 Microcontroller with SIU; 2. 8044 -- An 8344 with 4K bytes of on-chip ROM

program memory; and 3. 8744 -- An 8344 with 4K bytes of on-chip EPROM program memory.

1.2.1.1 Microcontroller with On-chip Communication Controller

Architecture Overview

The 8044's dual controller architecture enables the RUPI to perform complex control

3 tasks and high speed communication in a distributed network environment. The 8044

microcontroller is the 8051-core, and maintains complete software compatibility with it.

The microcontroller contains a powerful CPU with on-chip peripherals, making it capable

I of serving sophisticated real-time control applications such as instrumentation, industrial control,

and intelligent computer peripherals. The microcontroller features on-chip peripherals such as

two 16-bit timer/counters and 5 source interrupt capability with programmable priority levels.

I The microcontroller's high performance CPU executes most instructions in 1 microsecond, and

3 can perform an 8*8 multiply in 4 microseconds. The CPU features a Boolean processor that can

perform operations on 256 directly addressable bits. 192 bytes of on-chip data RAM can be

I executed to 64K bytes externally. 4K bytes of on-chip program ROM can be extended to 64K

3 bytes externally. The CPU and SIU run concurrently. See Figure 1.

The SIU is designed to perform serial communications with little or no CPU

involvement. The SIU supports data rates up to 2.4 Mbps, externally clocked, and 375 Kbps self

I clocked (i.e., the data clock is recovered by an on-chip digital phase locked loop). SIU hardware

i supports the HDLC/SDLC protocol: zero bit insertion/deletion, address recognition, cyclic

redundancy check, and frame number sequence check are automatically performed.

I
I 71

I

I
I

The SIU's Auto mode greatly reduces communication software overhead. The AUTO

mode supports the SDLC Normal Response Mode, by performing secondary station responses

3 in hardware without any CPU involvement.

The Auto mode's interrupt control and frame sequence numbering capability eliminates

software overhead normally required in conventional systems. By using the Auto mode, the CPU

I is free to concentrate on real time control of the application.

3 The HDLC/SDLC Protocols

HDLC/SDLC Advantages over Async: The High Level Data Link Control (HDLC) is

I a standard communication link control established by the International Standards Organization

(ISO). SDLC (Synchronous Data Link Control) is a subset of HDLC. They are both well

recognized standard serial protocols. SDLC is an IBM standard communication protocol. IBM

I originally developed SDLC to provide efficient, reliable and simple communication between

terminals and computers. The major advantages of HDLC/SDLC over Asynchronous

communications protocol (Async) are:

I 1. Simplicity: Data Transparency;

1 2. Efficiency: Well Defined Message-Level Operation; and

3. Reliability: Frame Check Sequence and Frame Numbering.

The SDLC reduces system complexity. HDLC/SDLC are "data transparent" protocols.

3 Data transparency means that an arbitrary data stream can be sent without concern that some of

the data could be mistaken for a protocol controller. Data transparency relieves the

communication controller having to detect special characters.

I
I 72

I

I
I

SDLC/HDLC provides more data throughout than Async. SDLC/HDLC runs at Message-

level Operation which transmits multiple bytes within the frame, whereas Async is based on

3 character-level operation. Async transmits or receives a character at a time. Since Async

i requires start and stop bits in every transmission, there is a considerable waste of overhead

compared to SDLC/HDLC. Since SDLC/HDLC has well delineated field, the CPU does not

3 have to interpret character by character to determine control-field and information field. In the

case of Async, CPU must look at each character to interpret what it means. The practical

advantage of such feature is straight forward use of DMA for information transfer.

I SDLC/HDLC also improves Data throughput using implied Acknowledgement of transferred

information. A station using SDLC/HDLC may acknowledge previously received information

while transmitting different information in the same frame. Up to 7 messages may be outstanding

I before an acknowledgement is required. Reliable Data transmission is ensured at the bit level

by sending a frame check sequence, cyclic redundancy checking within the frame. Reliable

frame transmission is ensured by sending a frame number identification with each frame. It

I means that a receiver can sequentially count received frames and at any time infer what the

3 number of the next frame to be received should be. It provides a means for the receiver to

inform the sender of some particular frame to be resent due to errors.

HDLC/SDLC Networks: In both the HDLC and SDLC line protocols, a (Master)

primary station controls the overall network (data link) and issues commands to the secondary

(Slave) stations. The latter complies with instructions and responds by sending appropriate

responses. When a transmission station must end transmission prematurely, it sends an abort

3 character. Upon detecting an abort character, a receiving station ignores the transmission block

* 73

I

I

called a frame. RUPI-44 supported HDLC/SDLC network configurations are point to point (half

duplex), multipoint (half duplex), and loop. In the loop configuration, the stations themselves

act as repeaters, so that long links can be easily realized. See fig.2.

Frames: An HDLC/SDLC frame consists of five basic fields: Flag, Address, Control,

Data, and Error Detection. A frame is bounded by flags -- opening and closing flags. An address

3 field is 8 bits wide in SDLC, extendable to 2 or more bytes in HDLC. The control field is also

8 bits wide, extendable to 2 bytes in HDLC. The SDLC data or information field may be any

number of bytes. The HDLC data field may or may not be on an 8 bit boundary. A powerful

error detection code called Frame Check Sequence contains the calculated CRC (Cycle

Redundancy Code) for all the bits between the flags. There are three types of frames:

Information Frame used to transfer data, Supervisory Frame used for control purposes, and

U Nonsequenced Frame used for initialization and control of the secondary stations.

3 Zero Bit Insertion (ZBI): It is desirable to transmit data which can be of arbitrary

content. Arbitrary data transmission requires that the data field cannot contain characters which

I are defined to assist the transmission protocol (like opening flag in HDLC/SDLC

communications). This property is referred to as "data transparency". In HDLC/SDLC, this code

transparency is made possible by Zero Bit Insertion (ZBI), a bit stuffing techniqut. . The flag

I has a unique bit pattern: 01111110 (7E HEX). To eliminate the possibility of the data field

containing a 7E HEX pattern, ZBI is used. It specifies that during transmission, a binary 0 be

inserted by the transmitter after any succession of five contiguous binary l's. This will ensure

that no pattern of 01111110 is ever transmitted between flags. On the receiving side, after

receiving the flags, the receiver hardware automatically deletes any 0 following five consecutive

1 74
U

I
I

l's. The 8044 performs ZBI and deletion automatically.

I Non-Return to Zero Inverted (NRZD: NRZI is a method of clock and data encoding

3 that is well suited to the HDLC/SDLC protocol. It allows HDLC/SDLC protocols to be used

with low cost asynchronous modems. NRZI coding is done at the transmitter to enable clock

I recovery from the data at the receiver terminal by using standard digital phase locked loop

3 (DPLL) techniques. NRZI coding specifies that the signal condition does not change for

transmitting a 1, while a 0 causes a change of state. NRZI coding ensures that an active data

line will have a transition at least every 5-bit times (recall ZBI), while contiguous O's will cause

I a change of state.

Thus, ZBI and NRZI encoding makes it possible for the 8044's on-chip DPLL to recover

a receive clock (from received data) synchronized to the received data and at the same time

3 ensure data transparency.

I 1.2.1.2 The RUPI-8044 Architecture

The 8044 is based on the 8051 core. The 8044 replaces the 8051's serial port with an

I intelligent HDLC/SDLC controller called the Serial Interface Unit (SIU). Thus the differences

i between the two result from the 8044's increased on-chip RAM (192 bytes) and additional

special function registers necessary to control the SIU.

I The Memory Organization of RUPI-8044

The 8044 maintains separate address spaces for Program Memory and Data Memory. The

Program Memory can be up to 64K bytes long, of which the lowest 4K bytes are in the on-chip

I ROM. If the EA pin is held high, the 8044 executes out of internal ROM unless the Program

rn Counter exceeds OFFFH. Fetches from locations 1000H through FFFFH are directed to external

I 75
I

I
U

Program Memory. If the EA pin is held low, the 8044 fetches all instructions from external

1 Program Memory.

3 The Data Memory consists of 192 bytes of on-chip RAM, plus 35 Special Function

Registers, the device is also capable of accessing up to 64K bytes of external data memory. The

Program Memory uses 16-bit addresses. The external Data Memory can use either 8-bit or 16-bit

addresses. The internal Data Memory uses 8-bit addresses which provide a 256-location address

space. The lower 192 addresses access the on-chip RAM. The Special Function Registers occupy

various locations in the upper 128 bytes of the same address space. The lowest 32 bytes in the

3 internal RAM (locations 00 through 1FH) are divided into 4 banks of registers, each bank

consists of 8 bytes. Any bank can be selected to be the "working registers" of the CPU, and

can be accessed by a 3-bit address in the same byte as the opcode of an instruction. Thus a large

3 number of instructions are one-byte instructions. The next higher 16 bytes of the internal RAM

5 (locations 20H through 2FH) have individually addressable bits. These are provided for use as

software flags or for one bit (Boolean) processing. This bit-addressing capability is an important

I feature of the 8044. In addition to the 128 individually addressable bits in RAM, twelve of the

Special Function Registers also have individually addressable bits.

Operand Addressing: There are five methods of addressing source operands: Register

I Addressing; Direct Addressing; Register-Indirect Addressing; Immediate Addressing; and Base-

Register-Plus Index-Register-Indirect Addressing. The first three of these methods can also be

used to address a destination operand. Since operations in the 8044 require 0(NOP only), 1, 2,

3 3, or 4 operands, these five addressing methods are used in combinations to provide the 8044

with its 21 addressing modes.

* 76

U

I
I

Reset: Reset is accomplished by holding the RST pin high for at least two machine cycles

I (24 oscillator periods) while the oscillator is running. The CPU responds by executing an

3 internal reset. It also configures the ALE and PSEN pins as inputs (They are quasi-bi-

directional). The internal reset is executed during the second cycle until RST goes low. It leaves

all the internal registers as OOH or OOOOH, except SP as 07H, PO-P3 as OFFH, IP as ***00000,

3 IE as 0"*00000, SIUST as 01H, and PCON as *******. The internal RAM is not affected by

reset. When VCC is turned on, the RAM content is indeterminate unless VPD was applied prior

to VCC being turned off.

3 The RUPI-44 Serial Interface Unit (SIU)

The serial interface provides a high-performance communication link. The protocol used

in for this communication is based on the IBM SDLC. The serial interface also supports a subset

of the ISO HDLC protocol. The SDLC/HDLC protocols have been accepted as standard

protocols for many high-level teleprocessing systems. The serial interface performs many of the

functions required to service the data link without intervention from the 8044's function as a

I peripheral controller, rather than having to deal with the details of the communication process.

3 Five pins are involved with the serial interface: Pin7: RTS/P16; Pin8: CTS/P17; Pinl0:

I/O/RXD/P30; Pinl1: DATA/TXD/P31; Pinl5: SCLK/T1/P35. SIU.

I Data Link Configurations: The serial interface is capable of operating in three serial

I data link configurations: Half-Duplex, point-to-point; Half-Duplex, multipoint (with a half-

duplex or full-duplex primary); Loop.

I Data Clocking Options: The serial interface can operate in an externally clocked mode

I or in a self-clocked mode.

I 77

I

I
I

In the externally clocked mode, a common Serial Data Clock (SCLK on pin 15)

I synchronizes the serial bit stream. This clock signal may come from the master CPU or primary

3 station, or from an external phase-locked loop local to the 8044. Incoming data is sampled at

the rising edge of SCLK, and outgoing data is shifted out at the falling edge of SCLK.

I The self-clocked mode allows data transfer without a common system data clock. Using

3 an on-chip DPLL, the serial interface recovers the data clock from the data stream itself. The

DPLL requires a reference clock equal to either 16 times or 32 times the data rate. This

I reference clock may be externally supplied or internally generated.

3 Data Rates: The maximum data rate in the externally clocked mode is 2.4M bits per

second (bps) in half-duplex configuration, and 1.OM in a loop configuration. In the self clocked

I mode with an external reference clock, the maximum data rate is 375K bps. For the 8044

3 operating with a 12 MHz crystal, the available data rates are 244 bps to 62.5K bps, 187.5Kbps,

iBand 375K bps.

Operational Modes: The SIU can operate in either of two response modes: AUTO, or

I or FLEXIBLE (NON-AUTO) mode.

Frame Format Options: Variations on the basic SDLC frame consist of omitting one

or more of the fields. The choice of which fields to omit, as well as the selection of AUTO

I versus FLEXIBLE mode, is specified by the settings of the following three bits in the Serial

E Mode Register (SMD) and the Status/Control Register(STS):

1. SMD Bit 0: NFCS (No Frame Check Sequence);

I 2. SMD Bit 1: NB (Non-Buffered Mode -- No Control Field); and

3 3. STS Bit 1: AM (AUTO Mode or Addressed Mode).

3 78

I

Standard SDLC Fornat:The standard SDLC format consists of an opening flag, an 8-bit

I address field, an 8-bit control field, an n-byte information field, a 16-bit Frame Check Sequence

(FCS), and a closing flag. The FCS is based on the CCITT-CRC polynomial

(X16 + X12 + X5 + 1). The address and control fields may not be extended.

I HDLC: In addition to its support of SDLC communications, the 8044 also supports some

3 of the capabilities of HDLC. The principal differences between SDLC and HDLC are as

follows:

1. HDLC permits any number of bits in the information field, whereas SDLC

3 requires a byte structure (multiple of 8 bits). The 8044 itself operates on byte

boundaries, and thus it restricts fields to multiples of 8 bits.

2. HDLC provides functional extensions to SDLC: an unlimited address field is

3 allowed, as well as extended frame number sequencing.

3. HDLC does not support an operation in loop configurations.

SIU Special Function Registers (SIU SFR): The 8044 CPU communicates with and

I controls the SIU through hardware registers which are accessed using direct addressing. The SIU

SFRs are of three types:

1. Three SIU Control and Status Registers: SMD (Serial Mode Register), STS

U (Status/Command Register) and NSNR (Send/Receive Count Register);

3 2. Eight Byte Addressable Parameter Registers: the STAD (Station Address

Register), TBS (Transmit Buffer Start Address Register), TBL (Transmit Buffer

I Length Register), TCB (Transmit Control Byte Register, RBS (Receive Buffer

3 Start Address Register), RBL (Receive Buffer Length Register), RFL (Receive

I 79

I

Field Length Register), RCB (Receive Control Byte Register); and

I 3. The three ICE (In-Circuit Emulator) Support Registers: DMA CNT (DMA Count

i Register), three byte FIFO, and SIUST (SIU State Counter).

Operation: The SIU is initialized by a reset signal (on pin 9), followed by write

I operations to the SIU SFRs. Once initialized, the SIU can function in AUTO mode or NON-

3 AUTO mode.

1.2.2 The MCS-96 Family

I The Intel MCS-96 family members are all high performance microcontrollers with a 16-

3 bit CPU and at least 230 bytes of on-chip RAM. It easily handles high speed calculations and

fast I/O operations. Typical applications include closed-loop control and mid-range digital signal

I processing. Modems, motor control systems, printers, engine control systems, photocopiers,

3 anti-lock brakes, air conditioner control systems, disk drives and medical instrumentations all

use MCS-96 products. All of the MCS-96 components share a common instruction set and

architecture. However, the CHMOS components have enhancements to provide higher

I performance with lower power consumption. To further decrease power usage, idle and power

down modes are available on these devices. These microcontrollers contain dedicated 1/0

subsystems and perform 16-bit arithmetic instructions including multiply and divide operations.

3 The block diagram of the MCS-96 architecture is shown as Figure 1.

i The CPU

The major components of the MCS-96 CPU are the Register File and the

I Register/Arithmetic Logic Unit (RALU). Locations from OOH to 17H- are the I/O control

I registers or Special Function Registers (SFRs). Locations 18H and 19H contain the stack pointer,

* 80

I

I
which can serve as a general purpose RAM when not performing stack operations.

I The remaining bytes of the register file serve as a general purpose RAM, accessible as bytes,

words, or double words.

Calculations performed by the CPU take place in the RALU. The RALU contains a 17-

I bit ALU, the Program Status Word (PSW), tL Program Counter (PC), a loop counter and three

I temporary registers. The RALU operates directly on the Register File, thus eliminating

accumulator bottleneck and providing for direct control of 1/0 operations through the SFRs.

U The Architecture

3 The MCS-96 supports a complete instruction set which includes bit operations, byte

operations, word operations, double-word operations (unsigned 32-bit), long operations (signed

I 32-bit), flag manipulations as well as jump and call instructions. The Jump Bit Set and Jump Bit

3 Clear instructions can operate on any of the SFRs or bytes in the lower register file. These fast

bit manipulations allow for rapid I/O functions.

Byte and word operations make-up most of the instruction set. The Assembly Language

1 ASM-96 uses a "B" suffix on a mnemonic for a byte operation, otherwise the mnemonic refers

to a word operation. One, two, or three operand forms exist for many of the instructions. Long

and double-word operations include shifts, normalize, multiply and divide. The divide instruction

I functions as a 32-bit by 16-bit divide that generates a 16-bit quotient and 16-bit remainder.

The word multiply operates as a 16-bit by 16-bit multiply with a 32-bit result. Both

operations can function in either the signed or unsigned mode. The normalize instruction and

I sticky bit flag provide hardware support for the software floating point package (FPAL-96).

I Addressing Modes

381

I
I

The MCS-96 instruction set supports the following addressing modes:

I 1. Register-Direct Addressing;

2. Indirect Addressing;

3. Indirect with Auto-increment Addressing;

3 4. Immediate Addressing;

5. Short-Indexed Addressing; and

6. Long-indexed Addressing.

I IEach instruction uses at least one of the addressing modes. The register-direct and immediate

3 addressing modes execute faster than the other addressing modes. The register-direct ad-ressing

mode provides access to the addresses in the register file and the SFRs. The indexed modes

I provide for direct access to .-- remainder of the 64K address space. Immediate addressing uses

3 the data following the opcode as the operand. Both the indirect addressing modes use the value

in a word registers the address of the operand. The indirect auto-increment mode increments a

1 word address by one after a byte operation and two after a word operation. This addressing

3 mode provides easy access into look-up tables.

The long-indexed addressing mode provides direct access to any of the locations in the

64K address space. This mode forms the address of the operand by adding a 16-bit 2's

I complement value to the contents of a word register. Indexing with the zero register allows

"direct" addressing to any location. The short-indexed addressing mode forms the address of

operand by adding an 8-bit 2's complement to the contents of a word register. The multiple

I . addressing modes of the MCS-96 family make it easy to program in assembly language and

I provide an excellent interface to high-level languages.

* 823

I

I The Peripherals

8X9X Peripherals: The 8X9X peripherals include the following:

1. Standard I/O Ports;

2. Timers;

1 3. High Speed Input Unit (HSI);

4. High Speed Output Unit (HSO);

5. The Serial Port;

6. Pulse Width Modulator (PWM);

1 7. A/D Converter; and

8. Interrupts.

I 8XC196KB Peripherals: The 8XC196KB peripherals include the following:

g 1. Standard I/O Ports;

2. Timers;

1 3. High Speed Input Unit (HSI);

1 4. High Speed Output Unit (HSO);

5. The Serial Port;

1 6. Pulse Width Modulator (PWM);

7. A/D Converter; and

8. Interrupts.

8XC196KC and 8XC196KD Peripherals: The 8XC 196KC and 8XC 196KD peripherals include

3 the following:

1. Standard I/O Ports;

3 83

I

I

2. Timers;

3. High Speed Input Unit (HSI);

4. High Speed Output Unit (HSO);

5. The Serial Port;

1 6. Pulse Width Modulator (PWM);

7. A/D Converter;

8. Interrupts; and

I 9. Peripheral Transaction Server (PTS).

I 8XC196KR and 8XC196KT Peripherals: The 8XC 196KR and 8XC 196KT peripherals include

the following:

I 1. Standard I/O Ports;

1 2. Event Processor Array (EPA);

3. Serial I/0 Port (SIO);

I 4. Synchronous Serial I/O Port (SSIO);

1 5. A/D Converter;

6. Interrupts;

7. Peripheral Transaction Server (PTS); and

8. Slave Port.

I 8XC196NT Peripherals: The 8XCI96NT peripherals include the following:

1. Extended Address Port EPORT);

3 2. Standard I/O Ports;

3. Event Processor Array (EPA);

3 84

I

I

S4. Serial I/O Port (SIO);

5. Synchronous Serial I/O Port (SSIO);

6. A/D Converter;

I 7 Interrupts;

8. Peripheral Transaction Server (PTS); and

9. Slave Port.

I 8XC196MC Peripherals: The 8XC196MC peripherals include the following:

1. On-Chip Peripherals;

2. 1/0 Ports;

3. Timers and Event Processor Array (EPA);

4. Pulse Width Modulation Unit;

5. A/D Converter;

6. Interrupt Controller and Peripheral Transaction Server(PTS);

U 7. Waveform Generator.

I 1.3 SENSORS (reference text: [TOMPKINS&WEBSTER 88])

In this section, typical transducers or sensors which provide inputs and can be interfaced

I to a microprocessor system are discussed. Several types of sensors for measuring temperature,

I light conditions, displacement, and flow are briefly described.

A transducer is a device used for determining the value, quantity, or condition for some

physical variable or phenomenon which must be monitored. It usually measures.the magnitude

of some particular phenomenon for control processing such as temperature, pressure, stress, etc..

The measurements consist of energy transfer which is used to produce the required information.

* 85

I

I Piezoelectric energy can be converted into electrostatic charge or voltage when certain

crystals are mechanically stressed.

Energy can also be converted to a change of resistance of a semiconductive material from

I the amount of illumination on the semiconductor surface.

Energy can also be converted to a change of capacitance by using a mechanical means

to change the capacitive coupling between two elements.

I The are several criteria to consider when selecting-a transducer. Examples are: the

3 accuracy of the measurements, lower and upper limits of frequency response, power limitations,

signal conditioning required, and transducer effect on the measurand.

In the following sections, specific types of sensors are discussed.

I 1.3.1 Temperature sensors

In this section we discuss IC temperature sensor, thermocouple devices, and resistive

temperature sensors.

I 1.3.1.1 IC Temperature Sensors

IC temperature sensors are based on the temperature-voltage characteristics of

semiconductor devices. For example the base-emitter voltage of a transistor varies directly with

I temperature at a constant collector current.

An IC temperature sensor circuit produces an output voltage proportional to absolute

temperature. Examples are the National Semiconductor LX5700, LM135, LM235, and LM335.

I The LX5700 has an operating range from -55 to 125 °C and the sensitivity is 10 mV/C.

3 The output voltage is 2.98 at 298 1K, and the accuracy is 3.8 OK which may not be satisfactory

for many applications.

I
* 86

I

I

I The LM135, LM235, and LM335 operate as two terminal zeners and have a breakdown

voltage directly proportional to the absolute temperature.

The output of LM335 can be expressed as:

I Vo(T) = vo(T0) T/T.,

where T is the unknown temperature and T, is a reference temperature, both in Kelvin. By

calibrating the output to read correctly at one temperature, the output at all temperature becomes
I correct.

IThe LM135 has a range of -55 to 150 C, and a maximum error of 1.5 C over a 100 C

range when it is calibrated at 25 C. The LM335 has a maximum error of 2 C.

I The Analog Devices AD590 is a two terminal IC temperature sensor whose output

current is proportional to absolute temperature. It achieves a higher performance in terms of

accuracy and linearity than the LM135. The maximum error of the AD590J is 0.3 C over a 100

C range, and that of the AD590M is 0.05 C. The sensor in insensitive to the voltage across it

3 and acts as a high impedance constant-current regulator passing only 1 micro Amp/K for supply

voltages between 4 and 30 V.

1.3.1.2 Thermocouple

Thermocouple are two-wire devices consisting of dissimilar metals or alloys joined or

welded together at the sensing junction, and terminated at their other end by a reference junction

which is maintained at a known temperature called the reference temperature. When a

I temperature difference exists between the two junctions, a voltage is produced. This is known

I as the thermoelectric effect which is caused by the contact potentials at the junction. The

produced voltage is very small and requires signal conditioning.

I
| 87

I

I The Analog Devices AD2B50 is a thermocouple signal conditioner. It provides circuitry

for input protection, isolation, common mode rejection, low-drift amplification, filtering, and

cold-junction compensation all in one chip.

I The gain, G = 200 KOhm / RG + 1, is determined by a user supplied resistor, of value

RG ohms, connecting pins 3 and 5. An integral reference junction sensor is provided for direct

thermocouple connection.

1.3.1.3 Resistive Temperature Sensors

Resistive Temperature sensors are based on materials whose electrical resistance change

with temperature. These material are either conductive material or semiconductors. Resistive

temperature sensors made up of conductive material are called resistance temperature detectors,

and those made up of semiconductors are called thermistors.

Resistance temperature detectors (RTDs) use materials such as platinum, nickel, and copper.

Currently platinum is the most common since it is less susceptible to contamination. The

I increase of resistance with temperature for platinum is approximately linear in the range from

I 0 to 1000 C and follows the following relation,

RT = R. (1 + aT),

I where RT and R0 are the resistance at temperatures T and 0 C, respectively. And a is a constant.

3 The resistance of RTD elements range from about 10 Ohm to 25 KOhms. Platinum is

used for a temperature range from -267.78 C to 1010 C.

I For moire ififormation on RTDs and their use in data acquisition cards see [Miller 86].

Thermistors are thermally sensitive resistors made up of semiconductor materials. They usually

have high resistivity and a high negative temperature coefficient (i.e., the resistance decreases

3 88

I

II

I• with increasing temperature). The temperature coefficient can be as large as several percent per

degree Celsius which makes the thermistor able to detect changes in temperature that could not

be detected with RTDs or thermocouple circuits. This high sensitivity comes, however, with

I a highly nonlinear resistance-temperature characteristics.

A special type of thermistors have a positive temperature coefficient. These are often

called switching thermistors. There resistance-temperature characteristics remains essentially

I constant as temperature increases until a point at which the curve increases sharply with each

slight increase in temperature. These thermistors are frequently used as thermostats to regulate

the temperature in a particular environment.

The basic resistance-temperature characteristics of a thermistor is as follows:

R Ro exp [B(1/T - l/T0)],

where B is a material constant for the thermistor in degree Kelvin.

For more information on thermistors, their applications, and their interfacing to the IBM

N PC see [TOMPKINS&WEBSTER 88] pages 207-221.

Special types of temperature sensors are used in applications such as monitoring the high

temperature of a nuclear reactor, and in the steel industry to measure the temperature of a

* moving steel sheet.

3 An ultrasonic thin-wire sensor is used in nuclear reactors to measure temperatures in the

range of 2000 to 3000 C with a maximal error of 30 C. It is based on the temperature

I dependence of the -velocity of sound.

3 Eddy-Current sensors are used in the steel industry to measure the temperature of a

moving steel sheet from 25 to 300 C with an error of less than 3 C. These sensors are based on

8
m 89

I

I

the eddy currents produced when a high frequency magnetic field cross the surface of a steel

i plate. The magnitude of the eddy current changes with the steel plate temperature.

Other special temperature sensors include a quartz-crystal sensor, and a nuclear quadruple

resonance sensor. For more details see the reference text.

1.3.2 Optical Sensors

Optical sensors are defined as those sensors which are sensitive to electromagnetic

I radiation in the infrared-visible-ultraviolet region of the spectrum.

I These sensors measure many quantities including light intensity, color, displacement,

flow, and temperature. They are also useful in imaging and fiber-optic communications.

I They are divided into two categories: photon detectors, and thermal detectors

I Photon detectors are sensitive to photons with energies greater than a given intrinsic energy of

the detector material. Their sensitivity increases linearly with increasing the wavelength up to

a cutoff wavelength.

Types of photon detectors are: Photoconductive detectors, photovoltaic detectors,

photodiodes, and photoemissive devices.

Photoconductive detectors are based on the photoconductive effect which is the most

I widely used. Using this effect, incident photons with energy greater than a certain level cause

electrons to produce hole-electron pairs resulting in an increase in the conductivity of an intrinsic

semiconductor.

I Photovoltaic detectors are known for their ability to convert sunlight into electrical energy

but they are also used as optical sensors. These detectors use a junction of two dissimilar

materials. Potential barrier is created at this junction where a carrier flow is excited by incident

I I 90

I

photons. This results from hole-electron pairs created near the junction. These detectors do need

an external power source, and are useful for low-light applications.

Photodiodes have a linear relationship between their photocurrent output and the incident

energy. They are based on photon-induced electron-hole production. Schottky photodiodes are

fast, highly-sensitive, expanded spectral detectors. They also have small dark currents

and relatively little noise. They, however, are not recommended for high temperatures or high

I light-level applications.

Photoemissive devices and especially the photomultiplier tubes (PMTs) are the most

sensitive photodetectors. These devices can be made very sensitive, and the relationship between

I photocurrent and illumination is linear over a wide range. PMTs consist of a photocathode

I coated with an alkali metal which emits photoelectrons when high energy photons strike it.

PMTs multiply the photocurrent using several dynodes at successively higher voltage.

I Thermal detectors are the second category of photon detectors. They are also used as

I temperature detectors. Examples of the types of thermal detectors are Bolometers, thermopiles,

and pyroelectric sensors.

Bolometers consist of two aiatched elements in a bridge Lircuit. One of the elements is

I coated with an absorptive coating and illuminated, while the other element is shielded from

radiation and isolated thermally in a heat sink. The elements are made of a similar material as

thermistors. The incident radiation changes the resistance of the first element which in turn

I changes the balance in the bridge circuit.

i Thermopiles are constructed from thermocouple connected in series in which alternate

junctions are coated and exposed or shielded and thermally isolated. Semiconductor elements are

Ii 91

I

used for high sensitivity.

Pyroelectric sensors use pyroelectric crystals which go through a spontaneous change in

polarization when the temperature changes. These sensors are capacitive in nature and like the

piezoelectric sensor have no dc response. The rise time of these sensors can be made as low as

1 pico second which make them superior at very high frequencies over other sensors.

For examples of some common sensor systems and their interface to the IBM PC see the

reference text pages 244-248.

1.3.3 Displacement Sensors

Displacement sensors are very important for many industrial applications. In this section,

potentiometric displacement transducers, strain gauge transducers, and piezoelectric sensors are

discussed.

The potentiometric displacement transducer is one of the simplest and most efficient

displacement transducers. It consists of a sliding contact which is connected to the moving object

while the rest of the potentiometer is attached to a stationary object. Both transactional and

angular displacements can be measured. The resolution of transactional displacement can be

made as high as 0.2%, with linearity of 0.4%.

Strain gauge transducers are based on a mechanical strain which causes a displacement resulting

in a change in resistance. Strain gauges can be made from metal or semiconductor material, or

frum an elastic material. Metal or semiconductor strain gauges measure very small displacements

less than 20 micrometer, while elastic strain gauges measure large displacements.

Strain gauges are classified as unbonded and bonded gauges. The unbonded gauge has

one fixed end and one movable end connected to the force member which can cause the

92

mechanical strain. The bonded gauge is entirely attached to the member whose strain is to be

measured.

Semiconductor mate-: A, usually silicon, is used for strain gauges. The strain gauge

properties can be optimized for a specific application by controlling the amount and type of

dopant in 'he silicon. Bonded gauges can be made by slicing sections from specially processed

silicon crystals doped as n or p types. These gauges have high gauge factor, or strain sensitivity,

however it suffers from high temperature sensitivity, nonlinearity, and mounting difficulties.

The effect of temperature in the use of strain gauges is an important source of error. One

of the best ways to achieve temperature compensation is to use a four-gauge balanced Whetstone

bridge.

Strain gauges are widely used in force measurement and pressure measurement. An

example of a pressure transducer is the National Semiconductor LX1701G. It is a fully signal-

conditioned transducer with an output voltage of 10 V. The transducer can be thermostatically

controlled thus allowing only a very small change in the output voltage over large temperature

variations.

Elastic-Resistance Strain Gauges are used extensively in biomedical applications,

especially in cardiovascular and respiratory dimensional determination. A typical gauge would

consist of a rubber tube (0.5 mm ID, 2 mm OD) from 30 to 250 mm long,filled

mercury or with an electrolyte or conductive paste. The ends of the tube are

sealed with electrodes (amalgamated copper, silver, or platinum). As the tube

stretches, the diameter of the tube decreases and the unstretched length

increases, causing unstretched resistance to increase:

93

Piezoelectric Sensors are based on the piezoelectric effect. The piezoelectric effect arises when

a crystal generates a charge o" voltage as a result of mechanical stress. In this case the distortion

due to stress in the crystal lattice produces a charge reorientation which causes the relative

displacement of positive and negative charges to the opposite outer surface of the crystal.

Piezoelectric properties are found in materials such as synthetic ceramics, and vinylidene

fluoride polymers.

Piezoelectric transducers can be used to measure force, displacement, pressure, and

acceleration. The pressure transducer normally uses a diaphragm to react with pressure and

produce the stress on the piezoelectric crystal. It has the ability to operate over a wide

temperature range with relatively small errors. Piezoelectric force transducers normally use the

strain or the deflection of the sensing element. Their application is mostly in dynamic force

measurements although they can also be used in measurements of quasi-static response when

they are used in conjunction with charge amplifiers.

Piezoelectric accelerometers use the force on a crystal to measure acceleration. The

crystal may be bonded to the mass which also acts as the elastic member. Another design uses

an annular crystal bonded to a center post on its inside surface and to an annular mass on its

outside surface. The upward or downward deflection of the mass causes shear stresses across

the thickness of the crystal. Typical compression designs use a stacked arrangement to increase

the low output of quartz crystals. One transducer uses seven crystals which are stacked and

connected for output multiplications. Piezoelectric accelerometers are widely used in vibration

measurements because of its ruggedness, reliability, and simplicity.

94

I

I 1.3.4 Flow Sensors

In this section we briefly discuss thermal, mechanical, electromagnetic, and ultrasonic

methods to measure fluid flow.

I Thermalflowmeters are based on an inserted heat element in the flow path of the fluid. The rate

3 of heat transfer from the element to the fluid depends on the temperature difference between the

element and the fluid, the speed of the fluid, and the flow profile. The flow speed can be

I measured by measuring the heat lost from the heating element or the fluid temperature change

3 due to heat infusion. The later method however has many potential inaccuracy and therefore is

impractical.

Mechanicalflowmeters are based on having the fluid physically deflect a measuring element such

3 as a turbine or propeller. The rotation speed of a turbine or propeller is easily measured with

an optical or magnetic s.-nsor which outputs one pulse for each rotation. If the output pulses are

TI"L compatible they can be connected directly to the PC. The instantaneous flow can be found

3 by taking the reciprocal of two consecutive pulses, and the average flow can be measured by

counting the number of pulses in a given time interval. Rotating flowmeters are quite accurate

when properly calibrated and maintained. Periodical maintenance is essential due to tear and

3 wear.

Electromagnetic flowmeters are used to measure the average flow of a conductive liquid. They

are based on the effect that a conductor perpendicular to a magnetic field will induce a voltage

I across the conductor linearly proportional to the liquid velocity. Many sources of error exist in

3 these flowmeters. The error in measuring the blood flow in biological studies, for example, may

easily exceed 10%

I
1 95

I

I

Ultrasonic Flowmeters use piezoelectric material which converts power from electric to acoustic

form. In measuring flow, they rely on one of two physical principles. The first is based on the

fact that the effective velocity of sound in a moving medium depends on the velocity of the

I medium itself. The second principle is based on the Doppler shift which is a change in frequency

that occurs when an ultrasonic wave is scattered by a moving medium. These flowmeters have

low noise and are highly efficient. They are used for measuring flow in many industrial and

I biological applications.

3 For a detailed example on interfacing a Parks Electronics Laboratory Model 810

nondirectional continuous-wave ultrasonic Doppler flowmeter to the IBM PC, see the reference

I text pages 326 to 331.

I 1.4 SIGNAL CONDITIONING DEVICES (reference text: [GATES&BECKER 89])

In this section, signal conditioning devices used with the above described sensing devices

are discussed. These are used for signal filtering, level and gain conversion, isolation, noise

3 reduction, and protection. In general, devices needed to suppress the effect of noise on the often

very small signals measured by the various types of transducers will be discussed.

1.4.1 Noise Sources

I We first start by discussing the sources of noise. Noise sources can be either internal or

3 external, i.e, they are either internal to the devices or external due to the connections and

coupling of devices.

I Internal noise sources are, for example, passive or active thermal noise, random shot

3 noise, and A/D quantization noise. External noise sources are mainly introduced from nearby

instruments, motors, fluorescent lighting, and other external devices.

96

I

I

Passive thermal noise is caused by the effect of temperature on passive circuits elements

such as resistors and capacitors. Resistors however, are the main consideration when designing

low noise interface circuits using passive circuit components. This thermal noise is generated

I by the currents produced by electrons colliding with the resistive material. The average thermal

noise generated by a 10 Mohm resistor in room temperature in a 10 KHZ bandwidth is about

40 micro volts. In an experiment using a 16 bit A/D converter in a 5 volt range, the resistor

I noise voltage can approach 1 bit of uncertainty in the A/D conversion.

Random shot (or Shottky) noise is also generated by a resistor subject to dc current

because of the discrete charge of electrons and the collisions of these electrons inside the

I resistor. This noise can also be a factor in sensitive measurements.

The thermal noise voltage and the shot noise voltage can be minimized by controlling the

temperature and dc current flowing through a resistor. This can be done by choosing resistors

I that minimize the dc currents to a shot noise level below the thermal noise level.

3 Active thermal noise sources are the semiconductor devices, such as transistors and

diodes, used in interfacing circuits, such as amplifiers and A/D converters, which are sensitive

to a small variation in temperature. These temperature-sensitive devices were actually used in

3 the design of temperature sensors as mentioned in the previous section. Many common op-amps

composed of semiconductor devices are not designed for ultra-low noise measurements. It is

possible to compensate for the drift noise generated from these devices by incorporating

3 temperature sensing and correction circuitry. Precision op-amps and high precision A/D

converters (14-16 bits) can provide added compensation for the drift noise internally.

I
1 97

I

I
3 A/D quantization noise is another noise source related to the conversion of an analog

signal to a digital signal. For example, a 12 bit A/D converter can digitize a 10 volt analog

signal with a resolution of 5 Mv. If the analog signal is a dc signal then the digitized output may

I jump between two integer values around the dc value causing a noise in the measurements. The

quantization noise can be reduced by using a higher resolution A/D converter or by filtering out

the quantization noise later during data analysis. This later case will be elaborated on further

I when hardware and software filtering techniques are discussed in this section.

3 Next we discuss external noise. External noise can be divided into two categories,

namely, electrical noise and magnetic noise. Electrical noise is generated from currents produced

I due to coupling external electric fields and wiring in the system under design. Magnetic noise

3 refers to currents produced when wires are placed in a large changing or alternating magnetic

fields such as those found in electric motors.

The effect of external noise sources can be reduced by shielding, avoiding ground loops,

3 using guards and optical isolation, and the proper selection of cables and their connections. Each

of these techniques are briefly discussed next.

1.4.2 Shielding and Isolation techniques

3 Shielding is used as a simple solution for reducing the effect of capacitive coupling

between power lines electric fields and conductors in our circuits. For example, a grounded

metal shield can be placed around the conductor driving an op-amp. Line frequency noise (50

I or 60 HZ) will- flow through the shield to the signal ground rather than the op-amp input. The

3 wire shields should be grounded in locations of greatest encountered interference affecting our

analog signals. This is usually at the transducer end where signals are very sensitive. The shield

91 98

I

I

I may not eliminate the effect of capacitive coupling but it is known to reduce this noise signal

I by a factor of 100 to 1000.

Avoiding ground loops is the second technique to be discussed in noise reduction. Ground

I is not an absolute value but can actually vary significantly from one place to another. When the

analog signal transducer and the A/D converter are connected to two separate grounds, a

difference in grounds potential usually exist and is called a common mode voltage (CMV). A

I ground loop is said to be formed with the existence of a CMV. This CMV can be a major

5 source of error in the measurement detected by the A/D converter.

There are several ways to avoid or reduce the effect of ground loops. The best way is

to minimize the distance between the transducer and the A/D converter. The second way is to

3 connect the grounds by a heavy conductor (a ground strap) cable. Since this cable has a very

small impedance, the voltage drop across the cable, which constitutes the CMV, will be

minimized.

3 The effect of alternating magnetic fields can produce substantial alternating currents in

a long ground conductor cable. The effect is minimized using guards and optical isolation. A

guard is a shield that is connected directly to the CMV between the signal source and the A/D

3 converter. Any sizable CMV is effectively shielded by the guard connection. A quality measure,

3 called the common mode rejection ratio (CMRR) is often used to specify the effectiveness of a

technique in reducing the effect of CMV. The CMRR is defined as the ratio between the CMV

I and the signal voltage received at the input of the A/D converter. It is possible to achieve a

I CMRR of 106.

9
1 99

I

I

I Optical isolation is one of the most effective techniques in improving the CMRR. An

optoelectronic isolator is composed of a light emitting diode (LED) connected to the analog

transducer circuit, and a photo-transistor connected to the A/D converter circuit. The LED and

I the photo-transistor are mounted closely together in an IC package. The light from the LED

3 illuminates the base of the transistor which controls the current conducting through the transistor.

Since there is no electrical connection between the transducer circuit and the A/D circuit, a high

I CMMR is achieved. This technique is particularly useful in large signal applications.

1 1.4.3 Falters

Next we discuss techniques used to filter out noise using analog and digital filters. Filters

can be implemented in either hardware or software. Analog filters (such as low-pass filter, high-

3 pass filter, etc.) can be implemented in software, however they are most commonly implemented

in hardware. Digital filters can be implemented in hardware, although they are most commonly

implemented in software.

3 Analog hardware low-pass filters are used to eliminate the harmonic distortions which

are high frequency noise generated by analog transducers such as photodiodes and piezoelectric

sensors. An aliasing error is produced in the data samples when an A/D is used to sample the

3 signal obtained from these transducers (see designated reference for this section, pp 73-75, for

an example).

A software filter, which is considered to be on of the simplest noise reduction technique

I is the bunching filter. This filter, which is a simple type of low-pass filter, is based on replacing

3 Ieach n consecutive data points by a single point which is the average value of these n points. A

bunching filter reduces the effect of randomly distributed noise with the advantage of being very

I

I

I

I rapid so that it can be done in real-time. Bunching rely on a high data sampling rate from the

source to reduce the effect of loosing information when relating n points with a single point (the

sampling rate after bunching should be at least twice the highest frequency component in the

I input signal which is known as the Nyquist rate).

The moving average software filter is an averaging technique with no reduction in the

number of data points. This smoothing technique can also use a set of smoothing functions and

I therefore is much more general than the bunching filter -described above. Other filtering

techniques use the waiting functions with the same effect as fitting a least-squares line through

the data points. These filters, however, are more computationally intensive than the above

I bunching filter.

Digital filtering using fast fourier transform (FFT) is another effective form of noise

reduction. A software filter using the FFT provides ideal frequency filtering of the acquired

data. A large number of data samples must be acquired first, however, before filtering based on

the FFT can be performed. Implementing the filter in software is very computational intensive

I especially for two-dimension and three dimension FFT. Special hardware boards for signal

processing is usually used and is much more effective than a pure software implementation.

1.4.4 Gain conversion and Level Shifting

Signal conditioning circuitry include circuits for two other important functions, namely,

offset adjustments, and gain adjustments. The offset adjustment function sets the input signal

I minimum voltage level to be similar to that required by the A/D converter. The gain adjustment

3 is set so as to allow the maximum input signal to derive the A/D input to its maximum converted

value. For an example of such a circuit see [LAWRENCE & MAUCH 87] pages 314-315.

I
i 101

I

I

I 1.5 ACTUATORS (designated reference [LAWRENCE&MAUCH 87])

The output of a real time system is usually directed to devices used to control another

system or a process. Such devices are called actuators.

I An actuator may often consist of a transducer and an amplifier. The transducer converts

the electric energy to the required control output (e.g. an electric motor converts electrical

energy to mechanical motion). The amplifier amplifies the computer interface output signal to

I the level needed to drive the transducer.

I
Actuators can either have only two states or a continuous state. A two state actuator is

either ON when the electric energy is applied, or OFF when no energy is applied. A continuous

state actuator has a continuous output variable over a range of values.

1.5.1 Outputs Using Two-State Actuators

A two state actuator is designed using a switch. No D/A conversion of the computer

3 output signal is necessary since the output signal can be used to control the states of the switch.

U These switches can be either electrically isolated or non-electrically isolated.

Examples of non-electrically isolated switches are integrated circuits containing transistor

I switches such as the Sprague ULN2069B, the discrete power transistors, or MOSFETs. The

I UNL2069B consists of four transistor switches driven by ITL or CMOS signals and therefore

are considered to be low power switches. The discrete power transistors (such as the TIP 122)

I or MOSFETs (such as the RCA RFP1ON12L), on the other hand, can carry 5 to 10 Amp current

3 and block 100 to 120 V and therefore are used for switching medium power actuators.

I
i I02

I

I

I Electrically isolated switches, used for high power applications, are electromechanical

relays (EMRs) and solid-state relays (SSRs).

EMRs used to be the most common switches used in control applications. An EMR

I consists of a relay coil, an armature, and output two contacts. When an input excitation current

flows through the coil, the armature is pulled away from the normally closed output contact

(which transmits the input power to the output) to the normally opened output contact in which

I no power is transmitted.

The advantages of EMRs are as follows: can handle both direct or alternating currents;

available in a wide range from small relays used to switch millivolt signals to large conductors

I used to switch hundreds of kilowatts of power; can handle momentary overloads without

I damage.

The disadvantages of EMRs are as follows: large switching time (switch in milliseconds)

which might cause large delays; large electrical noise are generated due to contact bounce which

can affect the computer or other sensor systems operations.

SSRs were developed to overcome the deficiencies of EMRs and are now being used

instead of EMRs in many applications. They consist of a control input which is coupled optically

* or inductively to a solid state power switching device.

An SSR can either be designed to switch a direct current or an alternating current but not

both. When designed for switching a direct current, the switching device is either a power

I transistor or a power MOSFET. For alternating currents, the switching device is a Mriac. The

I triac is a member of a class of semiconductor power switches called thyristors. When a

thyristor is switched on (i.e, fired) it stays on as long as the current flows in the switch and

I
i 103

I

I

I switch off when the current goes to zero. They can handle considerably more power than power

transistors or power MOSFETs.

The advantages of SSRs are as follows: low noise since they are usually designed to

I switch at the zero-crossings of the alternating voltage (hence eliminating the noise caused by the

rapid rise of current if the switch is closed while the voltage is nonzero; the control inputs can

be directly obtained from digital logic circuits hence they can be easily interfaced to computers.

I 1.5.2 Outputs Using Continuous Actuators

Continuous actuators require the use of a D/A converter for the computer output interface

to produce a voltage proportional to the value of the binary data. This voltage is applied to the

input of a linear amplifier which then amplifies the signal to a proper level in order to be applied

to the actuator.

Power operational amplifiers are needed since the output of A/D converters is limited to

milliwatts. These op amps produce power levels up to a few hundred watts. Examples of such

3 power op amps are the Microtechnology PAO3 and the National LM675.

For applications requiring higher power ratings, servo amplifiers or programmable power

supplies are often used. Servo amplifiers are used in order to supply power to electromechanical

3 transducers such as motors or electrically controlled valves. Programmable power supplies are

3 power supplies whose outputs are controlled by analog or digital signals. They have higher

accuracy and stability ratings, at the expense of a larger response time as compared to servo

I amplifiers. The maximum rate of change of a programmable power supply is in the order of 1

3 V/ms.

To control the power supplied to the load, the technique of pulse-width modulation

I

I

I (PWM) is used in many amplifiers. PWM amplifiers contain solid-state switches that control the

amount of power applied to the load. These switches transmit power to the load by turning on

and off at a constant frequency but with a variable duty cycle, i.e., with a changing pulse width,

I the larger the pulse the larger the amount of power transmitted. PWM amplifiers have a low

power dissipation factor and are easy to interface to a microprocessor. In this case, the

microprocessor can be used to produce a pulse-width modulated signal to control the switching,

-- and a continuous actuator can be controlled without the need of a D/A converter and a separate

3 analog amplifier. See the designated reference (pages 336-337) for examples.

1.5.3 Examples of Actuators

In this section, some examples of actuators are discussed. These are the stepping motors

and servomotors.

1.5.3.1 The stepping motor

The stepping motor produces incremental motion from electric pulses applied to its

3 windings. A single step is taken due an excitation of the stator windings and the rotor translates

to a new position. The excitation through the stator flux and the rate of increase of the flux

determine the maximum kinetic energy input to the rotor. The load friction is in the form of a

damping. The system inertia consists of both the rotor and load inertias. The acceleration

3 performance of a steeping motor is a function of the driver, load friction, inertia, ramp time,

starting frequency, and final frequency. A digital positioning system can be used to generate

I motion pulses having a linear velocity ramp such that the last pulse of motion and zero velocity

U occur simultaneously.

I
i 105

I

I

I Stepping motors can be either permanent magnet (PM) or variable reluctance (VR)

n motors. The PM motor uses permanent magnet for the rotor assembly. The stator has a number

of wound poles, and each pole may have several teeth for flux distribution. When the pattern

I of winding energization is fixed, for a given excitation, a series of equilibrium points are

generated around the motor and the rotor will move to the nearest of these and remain there.

When the windings are excited in sequence, the rotor will follow the changing equilibrium points

I and rotate in response to the changing pattern. When the excitation is removed, the use of a

I permanent magnet causes a small residual holding torque in the motor.

The VR stepping motor also has a number of wound poles, and the rotor is cylindrical

1 with teeth that are related to the stator poles. This relationship is a function of the step angel

I required. When a current flows through the windings, a torque is developed which tends to move

the rotor to a stable position of minimum magnetic reluctance. This minimum reluctance point

changes, when a different set of windings is energized, causing the rotor to move to a new

I position. In a VR motor, the rotor has a very small residual magnetism than a PM motors, thus

there is no torque when the stator is not energized.

Microprocessors are usually used to control the movements of stepping motors. Some

I hardwired logic are also needed to advance the motor by a step when an output appears on a

state generator. The logic sequence for state generation can also be stored in memory and a state

vector (a byte of information) is sent out one at a time. The control strategies can be done in two

I modes, a constant speed mode in which the motor is moved the sequence of steps in a constant

I rate, or an acceleration-deceleration mode in which progressively decreasing or increasing time

I
i 106

I

delays are used between the steps to increase or decrease the stepping rate.

The advantages of stepping motors are as follows: they are easily controlled by

microprocessors since windings currents are only needed to be switched on or off; the speed of

rotation can be controlled by controlling the time between successive steps; the direction of

rotation can be controlled by the winding excitation sequence; the rotor position can also be

controlled and monitored by counting the number of steps; and finally if the motor is left

energized in the same state once a target position is reached, the rotor will resist movement.

For examples of interfacing stepping motors to microprocessors see the designed

reference for this section pages 337-346, and also see [HOEDESKI 85] pages 201-221.

1.5.3.2 DC Servo Motors

DC servo motors are used in applications where the position and velocity of the actuator

are to be controlled. However, unlike stepping motors, it is not possible to control the rotor

velocity or position of a servo motor without the use of feedback sensors. Therefore, dc servo

motors often come equipped with feedback sensors such as tachometers (for velocity feedback)

and shaft encoders (for position feedback).

The characteristics of dc servomotors are specified by the manufacturer in such detail as

to allow a system designer to determine the motor suitability for a particular motion control

application. The specifications provided include the peak current, the armature power

dissipation, and the maximum speed. Once it is verified that power dissipation for the application

at hand is safely below the maximum limit, and the maximum current and velocity are less than

the peak current and velocity ratings of the motor, the voltage and the current ratings of the

servo amplifier that will power the motor is then determined.

107

I

The interface to the microprocessor is then designed according to one of the following

three cases: The first case is using an analog servo loop in which the microprocessor now

positions data through a D/A converter to an analog feedback positioning control loop; the

second case uses a mixed digital/analog servo control loop in which position control is done

using a digital control circuit; the third case uses a digital servo controller board which

communicates with the microprocessor to produce the armature control current supplied to the

servo amplifier. For more details see the designated reference pages 352-354.

1.6 DATA ACQUISITION BOARDS

[reference Text: The Handbook of Personal computer Instrumentation, Intelligent

instrumentation]

1.6.1 Data Acquisition and Control Overview

Data acquisition is the collecting of information that describes a given situation when a

given condition is satisfied. This condition can be defined by a uniform time base or an event.

"Real-time" systems are characterized by their ability to perform a given data acquisition and/or

control task within set time period. The speed of the real-time system is dependent on the

accuracy and speed of the given application.

In the past, data collection and control was done by technicians, engineers, physicists,

chemists, or others involved in research, testing, development, production, quality control,

management, process control, etc. Today, the emphasis is on getting machines to do these jobs.

The motive is productivity, speed, accuracy, dependability, reliability, and cost.

In the past, an acceptable automated data logging system consisted of strip chart

recorders, printers, and tape recorders. When monitoring was not enough, programmable

108

I

I controllers were added to match the desired task. However as technology increased, the data

loggers and programmable controllers were not sufficient to meet the desired tasks. This was

due to the narrow range of functions supported by such devices. Today this problem has been

I solved. Data acquisition equipment based on the digital computer has replaced the automated

3 data loggers and programmable controllers of the past.

Modem digital computers offer high speed, flexibility, adaptability, consistency,

I reliability, and mass memory. These features allow for extensive capabilities for mathematics,

3 analysis, storage, display, report generation, control, and communications. However many real-

world signals such as temperature, pressure, and speed cannot be read directly into the computer

because of their analog nature. Therefore, a device must be used to translate these signals into

3 a digital representation that the computer can understand.

Data acquisition and control devices (DA&C) translate real-world signals into a format

that digital computer can accept. Also, DA&C's can generate analog signals and other wave

I forms from instructions issued by the host computer and send them back into the real world.

The most accessible host for DA&C's, is the personal computer (PC).

The PC's presence can be seen in a great many areas of applications. These include:

I (1) Laboratory data collection and automation;

I (2) Medical instrumentation and patient monitoring;

(3) Automatic test equipment (ATE) for incoming inspection, life test, bum-in,

I production test, and final test;

I (4) Industrial monitoring and control; and

(5) Environmental and utility management.

I

I

I
1.6.2 DA&C Systems and How They Connect to the PC

There are two different means of connecting a DA&C system to a host computer. The

first is a direct connection to the PC bus. The second is a connection through an external data

I line such as a RS-232, RS-422, or IEEE-488. Each method has its advantages and

3 disadvantages.

1.6.2.1 External Bus Products

I There are several advantages with external bus products, which includes:

3 (1) Virtually any size system can be configured;

(2) The DA&C system can be placed remotely from the host computer, thus

I being closer to the field signals;

3 (3) The DA&C system can relieve the host computer of some of the data-

collecting tasks;

U (4) The DA&C system can be interfaced to virtually any type of computers.

3 The use of external bus systems allows for the construction of distributed systems. Thus,

a large number of parameters can be monitored or controlled even though the location of each

signal is far from each other and the host PC. This type of capability can greatly improve

3 productivity and reduce overall system cost.

U 1.6.2.2 Internal Bus Products

The advantages of internal bus connections include:

(1) High speed;

3 (2) Low cost; and

(3) Smaller size.

I
i 110

I

The cost is reduced with this kind of DA&C system because it does not require a separate

enclosure or a power supply. When the data acquisition hardware resides inside the PC, size

is reduced and space is utilized more efficiently. Higher speed is obtained by eliminating the

3 slow protocols of the communications channel being used. For example, the RS-232 protocol

will allow for only 20 samples per second. In comparison, some direct connect systems allow

for more than 1 million samples per second.

I 1.6.2.2.1 Types of Internal Bus Products

3There are two major types of internal bus products. They are distinguished by the way

in which the Input/Output channels are configured. Both types are board-level systems that

I make a direct connection to the PC bus. The first type of boards have a fixed arrangement.

3 While the second type is based on a modular approach.

1.6.2.2.1.1 Fixed Configuration Internal Bus Products

I A fixed configuration system is a board that retains the original configuration at all times.

3 These boards can not be expanded for modification for future needs. Limitations of this type

of systems include lack of channel expansion capability and the inability to add functions not

originally purchased. The advantage is that the cost is usually the lowest.

3 Often, the use of fixed configuration boards requires great compromises. The user may

not be able to achieve the required number of channels or must buy functions that are unneeded.

It is inevitable that a mismatch between the available channels and the actual requirements will

3 exist. To solve this problem, some fixed configuration boards allow for selected types of

channel expansion via external add-on boards or boxes.

III

11

I
1.6.2.2.1.2 Modular Internal Bus Products

Modular board systems are far more effective in satisfying a user's needs. These boards

can be easily tailored to the precise needs of any system. The addition of new components can

3 be as simple as plugging them into the existing card.

1.6.3 Data Conversion Principles

As mentioned earlier, most real-world systems do not fit the format of the digital

I computer. It is the job of the data acquisition system to perform all conversions necessary to

3 allow the computer to understand a given signal. To do this, the data acquisition system uses

components such as analog-to-digital (A/D) converters, multiplexers, sample/holds, amplifiers,

I counter/timers, and other more specialized functions. The most important function of the data

3 acquisitions system is that it brings together these functions in a compatible, integrated system.

Given the software to drive the system, a user does not have to be intimately familiar with the

I internal details of the conversions.

I 1.6.3.1 ANALOG INPUT SYSTEMS

The function of the analog input system is to convert the analog signals into a

I corresponding digital format. It is the analog-to-digital converter (A/D) that performs this task.

3 In addition to the A/D, other components such as amplifiers, sample/holds, multiplexers, and

signal conditioning elements may be used to gain optimum performance.

1.6.3.1.1 ANALOG-TO-DIGITAL CONVERTERS

3 Today there are many different types of A/D convertors. From this vast group, three

tend to stand out as the most widely used: successive approximation, integrating, and parallel

(flash) converters.

I11
i 112

I

I

I 1.6.3.1.1.1 SUCCESSIVE APPROXIMATION A/D CONVERTORS

The successive approximation A/D is normally used for speeds above 100

samples/second. It has a maximum speed capability of 100K samples/second. The conversion

I is done by using binary weighted guesses and comparing them to the actual input signal until a

3 match is achieved. It is essential that the input signal remain constant during the course of the

successive comparisons or very significant errors can result. For this reason, a sample/hold

I circuit is necessary (see section 1.6.3.1.4 for sample/hold description).

I 1.6.3.1.1.2 INTEGRATING AID CONVERTERS

When high speed is not required, an integrating A/D converter may be used. This

converter can give 12-, 14-, or even 16-bit resolution at low cost. Sampling speed is typically

3 on the order of 3 to 50 conversions per second. The conversion is performed by averaging any

input signal variations during the conversion cycle. This technique inherently filters input noise.

Integrating A/D converters generally have better linearity and overall accuracy than other A/D

3 converter.

U 1.6.3.1.1.3 PARALLEL (FLASH) A/D CONVERTORS

Flash converters are the fastest and most expensive form of the AID. The complexity

I of this device generally limits these devices to low-resolution (8 bits or less). With this

3 converter, the search to determine if each bit's digital value is a 1 or 0 is accomplished in

parallel and the time of conversion is determined by the delay through the circuitry.

U 1.6.3.1.1.4 A/D ACCURACY AND RESOLUTION

I Accuracy is an important measure of an analog input system. It defines the total error

in any particular measurement. For example, a system which is specified as 0.05% accurate of

* 113

I

I full scale on a 10 volt range, would have a worst-case error of 5 millivolts. A system with an

3 accuracy of 0. 1 % on the ± 10 mV range would have an error of 20 microvolts. In assessing

the value of a data acquisition system, the accuracy specification requires careful scrutiny.

I The resolution of an A/D will determine range of a detectable signal. A 12-bit system

3 provides a resolution of one part in 4096 or approximately 0.025% of full scale. 16 bits

corresponds to one part in 65,536 or approximately 0.0015 % of full scale. Therefore, resolution

I not only determines the range, but it also limits the overall system accuracy.

3 1.6.3.1.2 AMPLIFIERS

For an A/D converter to perform at its best, the input signal must be high. In many

I systems, an amplifier is used to boost possible low-level signals to the desired amplitude. These

3 amplifiers come in two forms. The first form is a programmable gain amplifier. This type has

several gain settings that are controlled via software. The second type is the manual adjustment

amplifier. This amplifier is set through the selection of a resistor or the setting of a jumper.

I The use of an amplifier can increase resolution and accuracy greatly. For example,

E amplifying a low-level signal by 10 or 100 increases the effective resolution by more than 2 and

6 bits respectively. Therefore, a 12-bit converter has the dynamic range of 15 to 18 bits.

3 1.6.3.1.3 MULTIPLEXERS

g Multiplexers are often used in acquisition boards to tie several channels to a single

amplifier and AID. This method greatly reduces the cost of the systems. Software can be used

Ito select whichT channel will be processed. Since the amplifier and A/D are being shared, the

3 overall speed of the system will be reduced. To a first approximation, the rated speed of the

amplifier and A/D will be divided by the number of input channels.

I
I 114

U

U

1.6.3.1.4 SAMPLE/HOLD

3 A sample/hold will capture the current value of an analog input signal and prevent it from

varying. This is needed for successive approximation A/D converters. The captured level is

I held constant during the duration of the conversion. This allows for an accurate conversion of

3 high-frequency signals.

1.6.3.2 SIGNAL CONDITIONING

I Signal conditioning is the pre-processing of input -signals. It is divided into two

3 categories. Active signal conditioning can include amplification and isolation, while passive

signal conditioning includes voltage division, surge suppression, current-to-voltage conversion

U and filtering.

I 1.6.3.3 SINGLE-ENDED V.S. DIFFERENTIAL SIGNALS

Analog signals can be configured as either single-ended or differential inputs. Single-

ended inputs all share a common return or ground line. Only the high ends of the signals are

connected to the multiplexer. The low ends return to the amplifier through the systems ground.

This arrangement works fine as long as the potential difference between the line and ground is

relatively small. The main advantage of single-ended inputs is the low per channel cost. Only

3 one multiplexer switch is required to handle each input channel.

g In a differential connection, both the inverting and non-inverting terminals of the

amplifier are connected to the input signal. Any ground-loop-induced voltage appears as a

I common-modesignal and is rejected by the differential properties of the amplifier. A drawback

3 to this connection is the need for two multiplexer switches per channel. Thus, a 32-channel

single-ended system can only support 16 channels of differential connection. Also, a standard

11 115

I

U

I op-amp can not be used for differential connections. An instrumentation type amplifier is

3 required for differential inputs.

1.6.3.4 ANALOG OUTPUTS

U In many applications analog output signals are needed to drive a variety of tasks. These

U signals are may be used for chart recorders, to provide feedback, and to initiate various

functions. Common output ranges include ±5V, ± 1OV, 0-1OV, and 4-2OmA.

I Most D/A converters can supply up to 5 or lOmA of load current. This is normally not

3 a limitation, because the majority of the applications call for driving high impedances. When

large loads such as positioners, valves, lamps, and motors are controlled, power amplifiers or

current boosters are required. Most DA&C systems do not come standard with high-power

3 analog drivers.

1.6.4 SYNOPSIS OF CURRENTLY AVAILABLE DATA ACQUISITION BOARDS

1.6.4.1 ADAC CORPORATION - MODELS 5525MF AND 5550MF

[reference: Models 5525MF, 5550MF data sheet]

These boards are PC bus plug-in multifunction I/O boards. They feature 16 analog inputs

with 12-bit resolution and a ± 10V input range. The boards also feature software programmable

3 amplifiers. The 5525MF has a maximum throughput of 40kHz. While the 5550MF has a

3 maximum throughput of 60kHz. Both boards have 16 digital I/O lines, programmable timers,

and pulse and frequency measurements. Also, two analog output can be added along with signal

I conditioning.

3 To drive the boards, a set of callable subroutines for MS/PC-DOS are available. The

subroutines allow access to all I/O functions. The languages supported by the drivers are:

3
i 116

3

I

I FORTRAN, Pascal, IBM BASICA, GW-BASIC, Quick BASIC, C, and Quick C.

U 1.6.4.2 QUATECH - DAQ-12

[reference: QUATECH 1993 Data Acquisition/communications Handbook]

I The DAQ-12 is a 12-bit data acquisition system with a maximum throughput of 200kHz.

It has 8 differential A/D channels or 16 single ended A/D input channels. It comes standard

with 2 12-bit D/A output channels. The amplifier has a software programmable gain of 1, 2,

i 4, 8, 10, 100, 500 or 1/2, 1, 2, 4, 5, 50, 250. This system is interfaced directly to the PC bus

via a standard card slot.

The DAQ-12 has a set of software dri-v, s that allow access to all functions of the board.

U The driver package includes interfaces to BASIC, C, FORTRAN, and TURBO Pascal.

I 1.6.4.3 INDUSTRIAL COMPUTER SOURCE - LC16-125

[reference: 1993 1/0 SOURCE-BOOK]

IThe LC16-125 is a multifunction I/O card for PC's. This card interface directly to the

I bus via a standard ISA slot. This card features 16 single-ended or 8 differential analog input

I with 12-bit resolution and 125kHz sampling rate. Also, included are 2 12-bit D/A convertors.

The is also a programmable gain amplifier used along with the A/D.

3 Software support is available that allow for customer programming of the board. The

i library supports Microsoft C and Borland Turbo Pascal.

1.6.4.4 INDUSTRIAL COMPUTER SOURCE - AI08G-P

I [reference: 1993 1/0 SOURCE-BOOK]

3 The AI08G-P is a ISA PC standard card. It has 8 differential A/D inputs with 12-bit

accuracy and ± 10V range. They use a successive approximation converter that gives a speed

I
i 117

U

U

i of up to 20,000 samples per second.

3 The board has the capabilities of being directly accessed through assembly language or

the supplied drivers. The drivers support BASICA and GW-BASICA.

I 1.6.4.5 INDUSTRIAL COMPUTER SOURCE - A1016-P

I [reference: 1993 1/0 SOURCE-BOOK)

The AI016-P is an ISA PC standard card. It has 16 single-ended or 8 differential analog

I inputs. It samples at a rate of 50,000 and 100,000 samples/second with 12-bit resolution. It

5 comes standard with 2 analog outputs. The gain on the amplifier is manually switched on the

card. Also, additional gain ranges may be achieved by adding a gain resistor to the board.

i Software is available that runs under windows and a Visual BASIC library for windows

3 that allow access to the boards functions.

1.6.4.6 TRANSERA - MODEL 410

[reference: TransEra model 410 data sheet]

i The model 410 is a low power, high performance analog, digital, counter, and timer

board for PC's. The board fits directly into expansion slots in the computer. It contains a 13-

bit sampling A/D convertor with up to 16 single ended or 8 differential analog inputs. Also,

3 there is a programmable gain amplifier with range of 1, 2, 4, and 8 and a pseudo-simultaneous

i sample and hold.

Software support includes complied C drivers for use with TransEra HTBasic, Microsoft

iC, and Borland C.-

I .1.6.4.7 CYBORG - LOGGERNAUT IT MODEL 910

[reference: LOGGERNAUT H MODEL 910 data sheet]

I
D 118

U

I

3 The LOGGERNAUT II model 910 is an external bus device. It interfaces to the PC via

a RS-232C port. It has 16 single-ended and 8 differential analog inputs. It is expandable up to

64 channels. It has the capability of direct sensor inputs of J, K, and T thermocouple, RTD's,

I 0-100mV, 0-LV, 0-5V and 4-2OmA. The channels can be configured in blocks of four instead

of all 16 the same. It also has automatic cold junction compensation and signal linearization for

thermocouple inputs.

U The system comes with ready to use software that can run the entire acquisition system.

Also, software drivers are available for costumer programming in BASIC, FORTRAN, and C.

1.6.4.8 MICROSTAR LABORATORIES - DAP 3200e

U [reference: DAP 3200e data sheet]

3 The DAP 3200e can acquire up to 512 analog inputs and 128 digital inputs, can process

the acquired data, and can update up to 66 analog outputs and 128 digital output. On board are

DC/DC converters, D/A converters, A/D converters, programmable gain amplifiers, and digital

I I/O. The card has an overall mixed analog and digital sampling rate at over 4 megasamples per

second. These capabilities are obtained through the use of an Intel 80486SX microprocessor and

4MB of RAM on the card. Also, the card has its own multitasking real-time operating system

I on-board. This allows for the host computer to be freed up to do other tasks.

The on-board multitasking real-time operating system has over 100 standard commands

for on-board processing, including Spectral Analysis. These commands configure the DAP,

I smooth data, condition sensor data, wait for or generate triggers, respond to alarms, and format

3 output.

1
1 119

1

CHAPTER H. HARDWARE DEVELOPMENT STEPS AND TOOLS

(reference text: [PEATMAN 881)

2.1 HARDWARE DEVELOPMENT STEPS

Hardware development follows similar steps as those used in software development life-cycles

I described in the software engineering course, the first course in this sequence, for developing

the application software. The hardware development model, however, is centered around

prototying in which a prototype is built and used to test and verify the design decisions.

I Simulations can be used to simulate the microcontroller's operation and its I/0 interactions to

I debug the low-level application software. Emulation tools and digital analyzers are used during

the prototype testing and verification process. An emulator circuit allows the developer to get

I into the microcontroller while it is plugged into the target system and monitor its performance

3 while making the controller execute a specific part of the low-level application software in a

controlled manner. The use of a modem logic analyzer to monitor the performance of the

I system's emulator gives the designer an outstanding tool for debugging interrupt driven real-time

3 software.

The hardware development steps are summarized as follov. s:

I 1. Design the target system hardware: The hardware needed for input and output

3 such as the sensors and actuators is selected. A microcontroller with the required

speed and memory resources to handle the I/O and processing requirements is

then identified. The microcontroller should perhaps be augmented with extra

I RAM chips, peripheral controller chips, or I/O expander chips in order to meet

g the requirements.

120

I

2. Simulations of the designed system is then carried out to verify that the

performance requirements are being met. Simulators of microcontrollers are

usually commercially available in which the microcontroller operations and its 1/0

3 interactions are simulated on another computer. Logic circuit simulators can also

be used to verify the correctness of the special circuits needed in the design.

3. A hardware prototype is then built: This can take the form of wire wrapped

3 boards to support the required hardware interactions with I/O devices. The

prototype can be built in stages in which each stage is verified by the proper

testing and verification tools.

1 4. Low-level software (such as device drivers) is then developed to test the

functionality of hardware. This again is done in stages in accordance with the

developing hardware prototype mentioned in step 3. This software includes small

I hardware test programs to verify that the hardware interactions work.

55. Emulators and logic analyzers are then used in the testing and verification

process. This includes developing data gathering and triggering circuitry for these

I tools. A development environment which allows changes to be made in the low-

I level software or hardware and then tested and verified is very important in

reducing the cost and enhancing the quality of the required product. When the

developing team verifies the working functionality of the prototype, the

3 application software testing process can then start.

2.2 SIMULATORS

1
121I

U

I

Simulating the instruction execution of microcontrollers can definitely help in the

U debugging of low-level application software before it can be integrated and tested on the actual

hardware prototype. Cybernetic Micro Systems developed simulators for a variety of

microcontrollers such as the Sim8096 for the Intel 8096 controller. The DOS compatible

simulation environment converts the display in an IBM PC into multi-windows showing the

operations in different components of the 8096 as it executes software. The windows consist of

I the following: a code widow shows the machine code as it- is executed; the register window

3 shows the current contents of the various registers and flags which include the major registers,

the I/O ports registers, the counters in the programmable timer, and the pointers used to

U establish what is to be displayed in the memory window; the memory window is used to monitor

and modify registers, RAM variables, or port bits during the execution of code; the stack

window shows the contents of the stack during execution; the flow window shows the control

I flow of the program as it executes by displaying a flow chart showing labels and branches; a

3 command window for typing simulator commands; and a help window for on-line help. For

examples on the use of such a simulator for debugging a real-time system see the designated

reference text for this section.

3 Hardware circuit simulators can also help in debugging digital and analog circuit designs

and to verify timing requirements.

2.3 EMULATION

I Simulators,-as described in the previous section, are used to simulate the microcontroller

3 operations on a development system such as the IBM PC. An emulator, on the other hand, is

used to connect the development system to the target system hardware prototype and carry out

1
I 122

I

I

I monitoring and debugging operations in the actual system environment. An emulator hardware

I circuit is needed for the following: providing a RAM memory for the microcontroller for

application program and data and for data needed by the emulator monitor program; providing

I reconstructed 1/0 ports for the microcontroller to substitute for the 1/0 ports given up by the

controller when it is configured with its internal bus lines with the emulator circuit; provide

communication between the monitor program and the development system, including the ability

I to download object coed from the development system to emulator RAM for execution by the

I controller; permitting single stepping or full speed execution of the application software with

capabilities for displaying the effects of instruction executions on the CPU registers as well as

setting, displaying, and clearing breakpoint.

3 Examples of low-cost stand-alone emulators are the Motorola M68HC 11 EVM evaluation

module and the Intel iSBE-96 built to emulate systems based on the M68HC 11 or the 8096

microcontrollers, respectively. Such emulators control the target system with a processor of the

m' same type as in the target system. For more information on such emulator see the designated

a reference for this section pages 436-447, and the manufacturers data sheets.

2.4 LOGIC ANALYZERS

I Modem logic analyzers provide the designer with emulation and logic analysis features

which give an outstanding view of what the microcontroller is doing while running actual

application software. They have the ability to capture data and signals and display them in a

multi-window environment. Such devices can be used for hardware debugging, software

3 debugging, hardware/software integration, performance evaluation, system testing, and system

optimization. As an example of the power of a modem logic analyzer, consider the case in

1 123

I

I

which an application software runs perfectly by itself, but when it is run in conjunction with the

complete instrument or device software, one of its variables becomes corrupted. A logic analyzer

can be set to trigger only writes to the variable and to collect not only the data written to that

I address but also the memory transaction which takes place during the following CPU cycle. This

transaction determines the address from which the next instruction is fetched and hence

determine the part of the program which caused data corruption.

I Earlier emulator/logic analyzer devices, such as the Orion Instruments Universal

3 Development Laboratory, are discussed in the designated reference text for this section pages

454-461.

Modem systems such as the Tektronics GPX logic analyzer offer support for todays

3 microprocessors including the 50 MHz 486, DSPs and high performance RSIC chips. The GPX

provides a single-probe-multimeasurment system which allows a variety of measurements without

I changing probes or double-probing. The low load probing system allows and custom probe

3 adapters enable the monitoring of microprocessor lines both synchronously and asynchronously

I in the same time. The analyzer triggering step is considerably simplified in the GPX by having

27 pre-programmed trigger set-ups that can be used in the majority of cases and that can easily

be customized for specific applications.

The GPX provides the following displays: 4 modes of disassembly (hardware, software,

control flow, and subroutine) with high-level language symbols for software debugging; graph

mode plots acquired data value vs time which is useful for A/D applications; real-time

3 performance analyzer histograms shows the designer where a program is spending its time; a

ROM emulator display -,i'iws memory to be examined and changed for quick program patches.

I
i 124

I

The real-time performance analysis module offers 12 ranges to monitor the

microprocessor's bus activities in real-time such that no bus cycle is missed. This is in contrast

with traditional statistical performance analyzers which sample the bus periodically hence

i missing significant amounts of bus activity. Monitoring every bus cycle is crucial when the

designer is looking for a random glitch or other single-shot anomaly.

I
I
I
I
I
I
I
i
I
l
I
I

B 125

I

I
CHAPTER MT1. REFERENCES

3 [LAWRENCE&MAUCH 87] Real-Time Microcomputer System Design: An Introduction,

McGraw-Hill, 1987.

I [HOEDESKI 85] Design of Microprocessor Sensors and Control Systems, by M. F.

Hordeski, Prentice-Hall, 1985.

[TOMPKINS&WEBSTER 88] Interfacing Sensors to the IBM PC, Prentice-Hall, 1988.

I [Miller 86] Miller, E.M. "RTDs and Thermocouple," PC Tech Journal, 4(6):47, 1986.

[GATES&BECKER 89] Laboratory Automation Using the IBM PC, Prentice-Hall, 1989.

[PEATMAN 88] Design With Microcontrollers, By John B. Peatman, McGraw-Hill,
I 1988.

3 [INTEL 93] Embedded Microcontrollers and Processors Vol. II, Intel Literature Sales,

I 1993.

I
!
I
I
I
1
I

126I
I

I
I
I
I
I

S~PART III

I REAL-TIME SYSTEMS DESIGN II LABORATORYI
I
I

I
1

I

I

REAL-TIME SYSTEMS DESIGN II LABORATORY

I OVERVIEW:

In this laboratory, the concepts learned in the class sequence will be applied to real world

I situations. Each laboratory will require the development of real-time programs, data acquisition,

and hardware control. Also, this lab will assume familiarity with concepts and techniques

learned in REAL-TIME SYSTEMS DESIGN I, the first course in this course sequence which

I dealt with real-time software development. Therefore, CFD/DFDs, structure charts, and Ada

3 Structure Graphs (ASGs) will be used extensively on each project. These charts can be made

using the Teamwork Case Tool used in the first course.

All projects will make use of a data acquisition board and the Ada programming

3 environment. It is required that each student have a basic working knowledge of the Ada

programming language and a good understanding of microprocessor interfacing.

There will be 5 labs during the semester. Labs 1 and 2 will be done on an individual

I basis. Labs 3, 4, and 5 will be done in groups of 4. These labs are briefly described as

* follows:

Lab1. Getting acquainted with the Ada compiler and supporting libraries.

I In this lab, all aspects of the Ada compiler will be explained. A small assignment

will be given. This will be an individual assignment and it will have a 1 week

duration. At the end of the week, the work will be evaluated by the instructor

I durihg the lab session.

ILab2. Ada programming - tasking, interrupts, low-level 1/0, interfacing C and assembly

to Ada.

I
i 127

I

I
3 In this lab, advanced Ada programming topics will be covered. These topics will

include tasking, hardware and software interrupt handling and generation, low-

level 11O, and interfacing C and assembly to Ada. A programming assignment

I will be given using these concepts. This will be an individual lab and it will have

3 a duration of one week. At the end of the week, the program will be evaluated

by the instructor during the lab session.

L ab 3. Sensor Monitoring System.

3 In this lab, a simple analog monitoring system will be constructed. Then the PC

will be used to perform various tasks such as data logging, real-time display of

I data, and error checking (see lab handout for complete details). This will be a

3 group lab and have a duration of 2 weeks. There will be 4 items due: (1) system

design (hardware and software), (2) ASGs and software implementation, (3)

I hardware design and implementation, and (4) system integration and testing. For

this assignment, the system design and software design and coding will be due at

the end of the first week. The hardware design and implementation and the

system integration will be due at the end of the second week. On the due day,

3 a meeting will be scheduled with the instructor and group. Here the group will

present their work to the instructor. At this meeting the instructor will evaluate

the status of the group and the quality of work. Also, suggestions on

3 Iimprovements may be given. At the end of the second week the same type of

meeting will be scheduled. In this meeting the final system will be presented and

the instructor will evaluate it on the basis of prior work, completeness, and

1
m 128

I

I

I usability.

3 Lab4. Automated Train System.

The lab will involve the simulation of an automated train. Various hardware

SI components will be used to simulate the operation of the doors, climate control,

3 train in motion, etc. The software will be required to show detailed information

about the status of the train and allow for user control over many aspects of the

I trains operation. (see lab handout for complete details) This will be a group lab

3 and have a duration of 3 weeks. There will be 4 items due: (1) system design

(hardware and software), (2) ASGs and software implementation, (3) hardware

I design and implementation, and (4) system integration (see REQUIRED

3 DOCUMENTATION for details). For this assignment the system design and

software design and implementation will be due at the end of the first week. The

hardware design and implementation will be due at the end of the second week.

3 Finally, at the end of the third week the complete system must be integrated and

tested. At the end of each week, a design review will take place and the items

listed above will be due. The instructor will evaluate the project on the basis of

3 prior work, completeness, and usability.

I Lab5. Space Shuttle Simulation.

This is the most involved and final lab. It will entail the development of a space

I shuttle simulation. Hardware will be used' to simulate the motion of the shuttle,

3 thrust, skin temperature, etc. The software will be required to provide detailed

information about the shuttle including altitude and trajectory (see lab handout for

I
i 129

U

I

i complete details). This will be a group lab and have a duration of 4 weeks.

3 There will be 4 items due: (1) system design (hardware and software), (2) ASGs

and software implementation, (3) hardware design and implementation, and (4)

I system integration (see REQUIRED DOCUMENTATION for details). For this

i assignment the system design will be due at the end of the first week. The

software design and implementation will be due at the end of the second week.

i The hardware design and implementation will be due at the end of the third week.

3 Finally, at the end of the forth week the complete system must be integrated and

tested. At the end of each week, a design review will take place and the items

i listed above will be due. The instructor will evaluate the project on the basis of

1 prior work, completeness, and usability.

1.1 DESIGN REVIEWS:

At the end of each week, a meeting will be scheduled with each group and the instructor.

In this meeting, the group will present the assigned materials and discuss it with the instructor.

The work will be critiqued, and suggestions may be made on how to improve upon it.

1.2 REQUIRED DOCUMENTATION:

i For each project, four pieces of documentation will be required. They are: (1) the

I system description, (2) software design description and implementation, (3) hardware design

description and implementation, and (4) the final report.
I ~SYSTEM DESCRIPTON:

I .The system description will be comprised of a hierarchy of hardware block diagrams

detailing every aspect of the system and a complete software description will include

I
i 130

I

I

CFD/DFDs, followed by structure charts. At this point the hardware design should be ready

to go to schematics and the software design to ASGs.

SOFTWARE DESCRIPTION AND IMPLEMENTATION:

I The software description and implementation will be comprised of the ASGs for each

module and the corresponding code. At the completion of this step, the software should be

ready for integration with the hardware modules.

I HARDWARE DESCRIPTION AND IMPLEME!NTATION:-

3 The hardware description and implementation will be comprised of all schematics for the

system and the corresponding circuitry. At the completion of this step, the hardware should be

I ready to for integration with the software.

FINAL REPORT:

The final report for each lab will be composed of the following sections:

(1) overview of project

3 -what was the problem?

(2) system description

- how was the problem solved?

- what hardware blocks were needed? (level 1 block diagram)

- what software blocks were needed? (context diagram and CFD/DFD 0)

- how will hardware and software work together?

I (3) detailed software description

3 - general description of the approach used.

- detailed description of CFDs/DFDs for all levels, and all the structure charts for

1
i 131

I

I

* the design.

(4) detailed hardware description

- general description of the approach used.

- what type of components were used and why?

- detailed block diagrams for all levels

- how was the actual system simulated by the hardware?

3 (5) detailed description on how to use of the system

3 - what buttons due what?

- what does the PC screen tell the user?

I - what type of control does the user have?

I (6) conclusions

- did it work?, why or why not?

I - possible improvements.

3 (7) appendix

- hardware block diagrams

- schematics

3 - software diagrams

i - ASGs

- software source code

I 1.3 GRADING: -

Each member in the group will receive the same grade. Only if it is noted that an

individual is not participating in the projects development will this change, i.e., individual

I
i 132

I

I
accountability will be enforced. Each project will be graded based upon the work presented in

the design reviews, the final report, and the completeness of the project.

At each design review, the progress of the group and the quality of the work will be

I evaluated. Complete functionality will not be the main component of the grade. A valid attempt

3 and reasons for the path chosen will compose of the bulk of the design review grade.

The final report will be graded upon the adherence to the above criteria and

I completeness. The report should be written as if the reader-knows nothing about the project.

The only assumption about the reader that can be made is that he/she is an engineer and

understands the concepts the project employs. A person should be able to read the report and

I understand how and why it was implemented in the way it was and should be able to run the

I project without difficulty.

The complete project will be graded on the basis of whether or not it accomplishes the

assigned tasks, and if it is friendly to operate. A friendly system is one that requires little to

3 no instruction to operate. A good user interface can make this easy to achieve.

1.4 HARDWARE AND SOFTWARE COMPONENTS AVAILABLE IN THE LAB:

The laboratory used will be equipped with PCs, each containing a data acquisition board

I which will be used in all projects. All required software will be available in this lab. The

software includes TeamWork, Borland C + + 3. 1, an Ada compiler, all drivers for the data

acquisition board, and an event-driven user interface library.

I The data acquisition board will be equipped with a minimum of 8 analog input lines, 8

3 digital I/O lines, 2 analog outputs, and a timer output. Any combination of these ports may be

used.

* 133

I

I The drivers for this board will allow direct control of the ports. They can be simply

called as subroutines from the program.

The event-driven user interface library will contain all the needed components to create

I a mouse driven graphical user interface. The library will contain callable subroutines that can

3 produce mouse control, windows, buttons, and input boxes. From these basic components, new

elements may be created. Also, the basic framework for an event-driven program will be

I included in the library. With this the user can have complete-control of the environment. Thus

3 eliminating prompts and waiting for the program to ask for input.

I Lab 1. ADA COMPILER OVERVIEW

I OVERVIEW:

During this lab, two things will be covered. The first is the use of the Meridian

OpenAda DOS compiler. The second is a simple programming assignment which will utilize

I various libraries such as the graphics library, and the DOS environment library. Each group

3 will receive a copy of the manual for the compiler.

This handout contains general information that is needed to get you underway. The lab

I instructor will go into more details on specific aspects of the compiler.

I MER IAN OpenAda DOS COMPILER v4.1.4:

During this lab we will not teach you everything about this system. We will show you

I enough for you to get started. Each group has a copy of the manual; so use it. The manual has

I complete documentatior on all aspects of the system. Also included in the manual are the

specifications for all the packages.

134

I

I i

I OpenAda supports protected mode programming, math coprocessors, and graphics.

There is an interactive programming environment called "ACE". Also, there is an interactive

debugger called "MADE".

I OpenAda is very close to the VAX Ada that you already know. There are some

additional libraries that you need to investigate. These packages include: the Ada graphics

utility library, math library, and the DOS environment library. These 3 libraries will be used

I extensively during the semester.

3 ENVIRONMENT SUMMARY:

The environment is a windowing, mouse driven environment. If you are familiar with

Borland's or Microsoft's environments, it will take some time to adjust to this one. ACE is

3 awkward at first, but can be tolerated with time.

To enter the environment type "ACE". Once in, it will ask for a file name. Two things

can be done. The first is to enter the name of a file on the drive, or the name of a new file and

3 hit return. The second is to press return, and a file listing of the current directory will given.

Once the file is loaded, the left mouse button will activate a floating menu that contains the

elements of a standard menu bar. The right mouse button will enter carriage returns.

3 Things that you may have never seen:

(1) If you entered extra carriage raturns, and would like to delete them, the

backspace and delete keys will not do it. The only way to eliminate them is to

I cut them out. To do this, place the cursor on the extra line and select 'cut' from

I the menu.

I
i 135

I

I

I (2) You can not drag and highlight a block of text. To do this go to the beginning

I of the block, activate the menu, select edit, then cut and paste, and finally mark

lines. Then move the cursor to the bottom of the block. Now you can cut and

I copy.

3(3) To unblock something, you must go under the cut and paste menu and select

unmark.

I (4) To manipulate a window, you must use the window selection in the menu. The

3 mouse can not make any alterations on the window.

(5) If you have a line that you wish to break into two lines, placing a carriage return

at the point you wish to break the line will not work. To do this, place the

3 cursor at the point of the brake. Go to the Insert and Change menu and select

Break Line. This will split the line into two sections.

(6) The ANSI standard for Ada is included in the help files.

I ASPECTS OF THE COMPILER:

Before entering the ACE programming environment, a library must be created. To do

this use the "newlib" command. From the command line, enter the command and a file named

3 "ada.lib" will be created. As you compile each element of the project it will be placed in the

3 library. Once all elements are compiled, the "MAKE PROGRAM" command may be used.

This will compile and link the program. Once all files have been compiled initially, there is no

I need to recompile Them. The "MAKE PROGRAM" command will take care of it for you.

There are many switches that may be added to the compile command. See the manual

for a description of them.

I
* 136

I

I

5 ASPECTS OF THE DEBUGGER:

To use the debugger, the '-fD' switch must be used. To do this from the ACE

environment go under options, and then compiler options. Turn on the debugging code

I generation. Then exit ACE and run MADE. The syntax is "MADE [name of exe]". This will

take you to the debugger and load the file. You will find the debugger environment friendlier

than ACE. See the manual for exact usage of the debugger.

I ADDITIONAL PACKAGES SUPPLIED:

In addition to the libraries that came with the compiler, a graphical user interface library,

a mouse library, and several procedures to implement event-driven programs are available. The

I documentation for these libraries are included in the back of the compiler manual to be handed

I in the lab.

The graphical user interface library contains various forms of windows and buttons. The

windows that are available includ,: output windows, input windows, and windows containing

a user defined number of buttons. These windows can be overlaid to create screens containing

buttons and input ports that can launch various functions from the push of a button, display data,

receive information from the user, and send messages to the user. The windows and buttons are

I created by simply calling a procedure with the size and position of the window or button. The

buttons can be accessed by either a mouse click or keyboard entry. If more detailed windows

are desired, new windows can be derived from the standard window and button packages.

3 The mouse library contains the routines necessary to provide mouse control. With this

n library, one can find the mouse coordinates, show and hide the mouse, set mouse sensitivity,

change the mouse cursor, receive button clicks, and many other functions. The mouse library

I
i 137

Il

I

I requires a Mircosoft compatible mouse driver to already be loaded on the system. The event

driven procedures are the frame work for an event driven program.

An event driven program is one that is available for user input at anytime. The program

I does not ask for input from the user (i.e. there is not a single prompt). The program gives the

user multiple areas of input on the screen. The information desired in each window can then

be entered at anytime. This type of program gives the user more control over when and how

I a program will operate. There is no need to wait for a prompt. An example of this type of

interface is Microsoft Windows.

ASSIGNMENT:

I THIS IS AN INDIVIDUAL ASSIGNMENT.

3 This assignment will allow for the creation of an event-driven program. It will use the

event-driven library supplied, along with the DOS and graphical libraries provided in the

OpenAda environment. The things done in this assignment will be used again in later labs.

3 Create an event-driven program using the graphic interface library and mouse library that

will read a provided text file containing numbers and plot each number versus time in a strip

chart format. When the end of the file is reached, loop around and start over. The screen

I should provide an entry location for the file name, start, stop, and end buttons, and the graph.

At any time the user can change the file name. When start is pressed, the program will switch

to the new file and begin to plot the data in the new file. The transition should look as if no file

I switch ever occurred.

I
I

i 138

I

I

I LAB 2. INTERFACING C AND ASSEMBLY TO ADA

I OVERVIEW:

The goals of lab2 are:

1. To be familiar with Ada tasking, and low level I/O programming and

interrupts;

2. To be able to interface Assembly or C routines to Ada

You have to use pragma interface to make calls to subprograms written in 80x86

Assembly language or Microsoft-C from Meridian Ada programs.

See Maridian Ada Compiler User's Guide, Chapter 15 Pragma Interface, for more

details about formal description and calling

I conventions.

3 To interface Assembly program (under Turbo Assembler environment) from your

Meridian Ada program, you have to follow the following steps:

I 1. To have object code for your assembly program use:

(1). TASM YOURASSEMBLY_FILENAME.ASM

(2). TLINK YOURASSEMBLYFILE 2.

I To compile your Meridian Ada program type the following:

I (1). NEWLIB

(2). ADA YOUR ADAFILENAME.ADA

3. To link your program use:

(1). bamp -r -i your ada-filename

(2). link yourada filename your assemblyfile name

* 139

I

U

I -r -4: The data segment is renamed DATA.

Now you may run your Ada program with interfacing to Assembly program as

follows:

I YOUR ADAFILE NAME

To interface C program (under Microsoft-C environment) from an Ada program, you

have to follow the following steps:

1 1. To have object code for your C program key in the following:

cl/AL /Gs /c yourc file name.c

/AL: Compile the C program with MS C using large model code.

/Gs: Inhibit stack checking, which would drag in MS C run-time libraries.

/c: Hold off linking.

2. To compile your Ada program type the following:

(1). NEWLIB

3 (2). ADA YOURADAFILENAME.ADA

3. To link your program use:

(1). bamp -r your ada file name

(2). link /nod /batch yourada.filename

your-c_filename

/nod: Use no default libraries;

I /batch: Ignore missing files.

I
I

i 140

I

I

I ASSIGNMENT:

I Interfacing Assembly to Ada:

1. Using the appropriate DOS/BIOS functions, write an Intel Assembly program

I to implement an interrupt service routine that will get the system time,

maintain your own clock, and display your time on the screen.

2. The output of your program should be as follows:

I Hours : Minutes : Seconds

1 3. The interrupt servicing routine consists of four main parts:

a. Using DOS function 2 lh, function 2ch to get the system

U time.

3 Hours in ch, Minutes in cl, Seconds in dh. You have to save them in

predefined variables.

b. To calculate, and maintain your time in Hours, Minutes, and Seconds

5 in binary code.

You may use the following algorithm to calculate, and maintain your own time from

an interrupt of an average 18.2 times per second:

3 Initialization of Count(to 18, 19 or your choice)

3 Decrease Count

IF Count 0

I THEN return from interrupt

3 ELSE Increase Seconds

IF Seconds = 60

I
* 141

I

I

THEN Increase Minutes

Reset Seconds to 0

IF Minutes = 60

I THEN Increase Hours

Reset Minutes to 0

IF Hours = 13

I THEN Hours = Hours- 12

ENDIF

END-IF

I Set count to 18 (19 or your choice)

Calculate ASCII characters for time string

Display your time

I ENDIF

c. To calculate the time ASCII character equivalent to display the time.

You may use the following algorithm to get the ASCII character

equivalent:

3 mov ax, 00 -- clear ax register for dividing

mov cl, 10 -- place decimal 10 in cl

mov al, [Hours] -- Place binary number Hours in al

I div - cl -- divide by 10 to get BCD

3 add ax, 3030h -- convert to ASCII

d. Using DOS interrupt function 21h, function 9 to display your time on

I
i 142

I

I

I the screen.

4. Write your own Meridian Ada program which will use Pragma

interface(assembly, subprogramname,"Iink name") to interface your

I Assembly unit. See the example in page 108 of "Meridian Ada Compiler

* Guide".

5. Compile, link, and run your program.

I IH Interfacing C to Ada

1. Write your C program unit to fulfil the same objective as you did in the

Assembly program.

2. Write your own Ada program which will use Pragma

interface(microsoft-C, subprogramname,"link name") to

interface your C unit. See the example from page 110 of "Meridian

Ada Compiler Guide".

3. Compile, link, and run your program.

LAB 3. SMART SENSOR CONTROL SYSTEM

I OVERVIEW:

3 This project will involve the development of the hardware and software for a sensor

network. This project will be implemented for an Intel 80x86 based PC.

I The system to be designed is a two sensor network that will have the following

capabilities: (1) to detect changes in air temperature, (2) give warnings when the temperature

reaches certain levels, (3) store all data on the PC, (4) give visual indication of the highest

* 143

I

I

I value, (5) indicate which sensor has the highest value, (6) strip charting of the data, (7) send

3 highest value to a remote terminal via RS-232, and (8) check for proper operation of the

system.

I The system will have two parts. The first is a stand-alone analog system that will

signal when the temperature reaches the warning or critical levels. The second part is the

PC. The PC is used for the following: (1) verify the operation of the analog circuits, (2)

Idisplay which sensor has the highest reading (via hardware); (3) display the highest

temperature, (4) store all values from both channels, (5) strip chart both channels, and (6)

send the highest value to a remote terminal via RS-232. The PC could be used to do both

I parts easily, but, in the real world, there are federal regulations that do not allow the use of

microprocessors as the main source of detection in some situations (e.g., inside of coal

mines).

HARDWARE: (see block diagrams and schematics at the end of the lab description)

IANALOG:

The analog circuitry needed is minimal. Each sensor must be connected to an

amplifier circuit. This is done to boost the millivolt reading up to a level that makes

comparisons easier. Next the maximum value from the two amplifiers must be determined.

The is done simply be using two transistors with the base of each tied to a different amplifier

and the emitters tied together. This value is then sent to two comparitors. Comparitor #1

I will check for the Warning temperature; while comparitor #2 will check for the critical

3 temperature. The output of each comparitor will be tied to an LED to indicate that the value

has been obtained. This circuit should be capable of operating without the PC.

I
S~144

U

I

IPC MTERFACE:

3 The first piece of hardware needed is the A/D convertor. For this project, 7 A/D

channels will be used. The A/D will be connected to the follow points in the analog circuit:

1 (1) sensor #1 output, (2) sensor #2 output, (3) output of amplifier #1, (4) output of amplifier

#2, (5) determined maximum level, (6) output of warning comparitor, and (7) output of

critical comparitor.

I From the placement of the connection points it can be determined if any component in

3 the system has failed. Also, 3 LEDs must be interfaced to the PC. LEDs 1 and 2 will

indicate which sensor has the highest value. The third LED will indicate when a problem

has been discovered. The malfunction LED should be distinguishable from the other LEDs

by blinking it when a malfunction is detected.

I SOFTWARE:

The software for this project has 5 sections: (1) data acquisition, (2) interface screen,

3 (3) data storage, (4) diagnostics, (5) LED indicators, and (6) serial communications.

DATA ACOUISITION:

Data should be read from the sensors continuously. As a new data point is read, it's

3 value and the sensor number should be place in a location available to any other routine that

3 my need it.

INTERFACE SCREEN:

I The PC screen will be divided into 3 sections. The first will be a message area. In

3 this area all information sent be to the user will be displayed.

1
S~145

I

I

I The messages will consist of explanations of any error conditions found, and the state of

3 the sensor reading (i.e. normal, warning, critical).

The second section of the screen will be a strip chart running in real time. This chart will

I be continuously updated with each new data point. Both sensors will be graphed on the same

axis, with each sensor distinguished by a different color. For this project the axis will be

temperature vs. time. This chart should be easily read, and contain at least 320 data points.

I With this many data points and running in VGA 640x480 mode, the chart will be as wide as

I half the screen.

The third section of the screen will display the highest temperature read. The

temperature should be accurate within 1/10 of a degree and be updated constantly.

3 DATA STORAGE:

The values from both sensors will be stored in a file on the PC's harddrive. This file

should contain the sensor number and the value from that sensor. Data should be stored

3 approximately every 1 second.

i DIAGNOSTICS:

The information for the diagnostics comes from the points throughout the analog

I circuit that the AIDs are connected. From comparing this data, each component in the

3 circuit can be judged. When comparing the actual sensor values with those values that

follow the amplifiers, the amount of amplification must be subtracted or added to the

I respective signal. If a problem is discovered, a message warning the user of the problem

3 and an explanation of where the problem is and how to fix it must be displayed. Also, the

LED signaling a malfunction must be activated (by blinking it). This LED will remain active

I
i 146

I

IL CI

g->-
Q()

_ _ _ _ON

o c!zCii 0

(0

C D)co

coo

0 zt

z

I ow
0

zoIL
I/

v Lo

V) z.- w wnf'

I, W
U , a

aa

In

V, a, x2t
ccN Nft

2
0

It cc -

0
U9

0..

0 wUw
I

~z-

OCa-

I

until the problem is corrected.

LED INDICATORS:

The 2 LEDs that indicate which sensor has the high value and the Malfunction LED.

I The high value LEDs will be activated when the sensor corresponding to the specific LED

has the highest value. These values are to be continuously updated. The Malfunction LED

will be activated when a malfunction is discovered in the system.

I SERIAL COMMUNICATION:

3 The highest value will be sent to a remote terminal via the PC's onboard serial port.

The information sent is to be continuously updated.

I This lab will be a group effort lab and have a duration of two WEEKS.

U DUE DATES:

Due at the end of the rust week:

(1) system design (hardware and software), and

3 (2) DFDs/CFDs, ASGs, and software implementation

Due at the end of the second week:

(3) hardware design and implementation AND

I (4) system integration and final report

LAB 4. AUTOMATED TRAIN CONTROL SYSTEM

OVERVIEW:

I This project will consist of the development of software to control the instruments of

3 an automated train system, and various hardware components that will work interactively

with the software to simulate an automated train.

I
i 147

I

I

I This simulation will allow for the control and monitoring of various subsystems of an

I automated train. These systems include: choice of operating modes, climate control,

opening and closing of doors, operation of the motor, distance measurements, and error

I checking. The user will have an interface screen showing the status of the train and allowing

I for the input of various information needed during the run (see SOFTWARE -

INTERFACE SCREEN or SOFTWARE -- TRAIN OPERATION for further information).

I Before the train can operate, a track must be constructed. This will be done by having

the user to provide the number of stations, the distance between stations, and the distance

required for the train to stop at each station. Once the track has been constructed, the

simulation will begin. The train will be able to operate in two different modes. Mode one

3 will be a continuous travel mode. While operating in this mode, the train will travel to all

stations on the track and perform the exiting and boarding of passengers. Mode two will be

a direct travel mode. In this mode, the train will continuously travel around the track

without stopping until a request has been made by a "passenger". The request can come

from two places: (1) a passenger currently on the train, or (2) a passenger waiting at a

station.

3 The request from a currently boarded passenger will be received through a button

I interfaced to the computer (see HARDWARE section for further explanation). When this

signal has been received, the train should stop at the next station. The request from a

I passenger waiting At a station will be received from the keyboard. The user will enter the

3 name of the station to be stopped at next. The train can only stop at the requested station if

the distance to the station is sufficiently long enough to stop.

I
i 148

I

I

I The train will have five major hardware components: (1) the next stop button, (2) a

3 temperature sensor for the climate control, (3) the opening and closing of the doors, (4)

motor operation and distance measurements, and (5) error chc.king of items 2-4 (detailed

m explanations can be found in the HARDWARE section). The next stop button, as explained

m above, will allow for a "passenger" to request a stop at the next station. The temperature

sensor will continuously measure the air temperature, when the temperature goes above or

U below a set value, the appropriate action should be taken, and an indication to the interface

screen of the situation and the action taken. The opening and closing of the doors consist of

an LED indicating if the door has been opened or closed. Also, the door subsystem will

allow for the checking of a door blockage at the time of closing or a door that has been

3 opened during travel.

The motor and distance measurement will be implemented by the use of a motor and

a 555 timer chip. When the train is moving, the motor and the 555 will be activated

3 simultaneously. Each pulse from the 555 will indicate a unit of distance travelled. The error

checking will consist of verifying that information is continuously being received from the

555 and temperature sensor, and that the door is not blocked or opened during travel. If any

m of the errors occurs, the appropriate action will be taken and an indication to the user on the

I interface screen will be displayed explaining the situation and the action taken.

HARDWARE: (see block diagrams and schematics at the end of the lab description)

I The functions simulated will be: the train in motion, distance travelled, door

3 opening/closing, climate control, and "passenger" stop request. This will be done by

interfacing various components to the computer, either directly to the bus, or through a data

1
m 149

I

I

I acquisition board.

I TRAIN MOTION;

The motion of the train will be simulated through the use of a motor. The motor will

I be connected to the computer via a D/A converter. When the train is in motion, the motor

will be running, if the train has stopped, so will the motor.

DISTANCE TRAVELLED:

I The distance traveled will be calculated by activating-a 555 timer chip. With each

I pulse from the 555, the train will have moved a unit of distance. The 555 will be activated

when the train is in motion. The output of the 555 will be tied to a interrupt line of the

I computer. In doing this, special consideration must be made to keep the 555 output below

3 5V. A switch will be placed in the output line to simulate a loss of the motor.

I DOOR:

The door will be simulated by simply lighting an LED connected to the PC. To

I simulate a door blocked door, or a door opening a button will be tied to the PC. A pressed

button will indicate an error, and the state of the train will determine which error. If the

train is in motion, the door has been opened. If the train is stopped, the door is blocked.

U CLIMATE CONTROL:

I The climate control will be a thermistor tied to an A/D convertor and then into the

computer. A switch will be placed in the line to simulate the loss of climate control.

E PASSENGER STOP REQUEST:

3 The "passenger" stop will be a button tied to an interrupt control line. When this

button is pressed, the train will try to stop at the next station. Before attempting a stop, the

I
I 150

I

I

I distance to the station and the distance to stop must be compared to verify that a stop is

3 possible.

SOFTWARE:

I The software required for the system will have four parts: (1) the user interface, (2)

3 the hardware control, (3) train operation, and (4) error checking of the hardware. The user

interface will give the user the ability to control certain aspects of the train. The train

I operation will take all the information from the user interface and "drive" the train. The

3 hardware control will be the routines that read and write to any hardware devices interfaced

to the computer. Finally, the error checking will verify that the correct information in being

received from each device. All software is to be implemented in Ada and should take

advantage of multi-tasking and interrupt handling whenever possible.

I USER INTERFACE:

The user interface will have two functions. The first function will be the

I configuration of the system (i.e. track description) and the second will consist of all aspects

U of running the train.

The configuration screen must allow for the entry of the number of stations, the

I distance between stations, and the distance required for the train to stop at each station.

3 These are the minimum requirements, additional information may be added at the discretion

of the designer. Once all the information has been entered, the track should be "constructed"

I and the system shciuld been prepared for activation.

3 Following the configuration screen will be the control screen. From this screen, the

operator will be able to communicate with the train while in operation. The control screen

I
1 151

I

U

3 will consist of at least 3 sections: (1) input section, (2) status indicators, and (3) a message

I window.

INPUT SECTION:

I The input section will contain control parameters that can be changed during

3 operation. The minimum requirements are TRAVEL TYPE, STOP REQUEST, and

TEMPERATURE SETTING.

I TRAVEL TYPE will have two choices: continuous travel, or direct travel (for a

3 description of continuous or direct travel see TRAIN OPERATION). STOP REQUEST will

be the means by which a station can be specified as a stop while in direct travel mode. Once

I a station has been entered, it will be placed on a list of stops in the order of occurrence on

the track with respect to the current position. The list of stops will be displayed on the

screen. Also, the user must have the ability to add new stops to the list before any

previously entered stops have occurred. TEMPERATURE SETTING will control the

3 temperature at which the "climate control" will be activated. This will be the temperature

that will be compared with the reading returned by the temperature sensor. The user must

have the ability to modify the values of the controls at ANY time.

I STATUS INDICATORS:

The status indicator section of the user screen will contain indicators for the door

status and the climate status. The door indicator needs to show if the door is currently open

I or closed. The clifnate indicator needs to show if the climate control unit is active or not.

1
I

I 152

I

I

E MESSAGE WINDOWS:

The message window will be where the user will receive messages from the system.

The window should report errors, the next destination, and the current status of the train,

I travelling or stopped.

5 HARDWARE CONTROL:

This set of functions will control the hardware interfaced to the computer. The

I required hardware will be a "next stop" button, a temperature sensor, a door simulation

5 circuit, a motor, and distance measurement circuit.

The software for the "next stop" button will consist of a means for determining if the

I button has been pushe . If the button was pushed, a message needs to be sent to the TRAIN

3 OPERATION routines to indicate the occurrence.

The temperature sensor will be read at regular intervals. Each reading needs to be

passed to the TRAIN OPERATION routines.

3 The door simulation circuit software must have the ability to open and close the door.

This will consist of turning on and off an LED (assuming the circuit described in the

HARDWARE section is used).

3 The motor software will access a D/A converter to run the motor while the train is in

3 motion. To meet the minimum requirements, only a single speed will be needed.

The distance measurement software will read a counter mounted on the motor. This

I counter will send a single pulse for each unit of distance traveled. This distance must be

I provided to the TRAIN OPERATION routines.

I
i 153

I

N ~TRAIN OPERATION

This section will use the information entered by the user and any information gained

from the hardware to determine what state the train needs to be in. This set of functions

must have the ability to recognize the need to start or stop the train, open or close the door,

and turn on or off the climate control. Also, these functions must determine the next stop,

distance to the next stop, if the train has the ability to stop at the next station, and if a

I "passenger" stop request can be fulfilled. Once the information has been evaluated, the

functions from the HARDWARE CONTROL will be used to modify the trains status.

ERROR CHECKING:

m The error checking will consist of verifying that data is continuously being received

3 from the motor and temperature sensor, and the door is not blocked or opened.

When the motor is in operation, the software must verify that data is being receive

I from the distance measurement circuit. If this data is absent, we will assume that the motor

3 has a problem. If a motor problem is discovered, the train should be stopped until the

problem is fixed. Therefore, the error checking must continue after a problem has been

discovered. An error in the temperature will be indicated by a loss of data. In the case of a

3 temperature error, the "climate control" should be stopped. A door error is indicated when a

signal from the hardware indicates that something is blocking the door, if the door is open,

or that the door has been opened while the train is moving. If this error occurs while the

I trained is stopped, -the train can not begin until the door closes. If the train is moving and

the error occurs, the train is to be stopped immediately and not to resume motion until the

door is closed. All error conditions should be reported to the user.

I
N 154

I

'UL

I 7g

Iz

6Iv

0 W
U LLJ £ 0z

Ua £15 w

Sj UL, me W

K -zI T)
U r

xa

cca

- S-I *'cc
- z

uu

zN

%nS

II
*

0

II
U0

- A-
UCWO -Z &

I

I This will be a group lab and have a duration of 3 WEEKS.

DUE DATES:

Due at the end of the f'rst week:

I (1) system design (hardware and software) AND

3 (2) ASGs and software implementation

Due at the end of the second week:

1 (3) hardware design and implementation

Due at the end of the third week:

(4) system integration and final report

3 LAB 5. SPACE SHUITLE CONTROL SYSTEM

I OVERVIEW:

This project will involve the development of software for a space shuttle control

I system, and various hardware components that will work interactively with the software to

simulate physical aspects of the space shuttle.

This simulation will allow for the control and monitoring of various subsystems in the

U space shuttle. These systems include: pitch and roll (up, down, left, right), velocity, skin

3 temperature, and altitude and trajectory calculations. The user will have an interface screen

showing the status of the shuttle. All inputs to the system will come from hardware

I modules, except the "begin" and "end" commands.

The simulation will allow for control of the 4 directions (left, right, up, down) and

the velocity of the ship. The pitch and roll controls will consist of 4 buttons interfaced to the

155

I

I

I PC. From reading these buttons, the shuttle can be moved. The shuttle will be represented

by mounting a model on a structure containing 2 motors. MI (motor 1) will be connected to

the ship and control the left and right roll. M2 (motor 2) will control the pitch by moving

I MI and the ship. The velocity will be controlled by turning a potentiometer tied to the PC

via an A/D convertor. The skin temperature (ST) of the shuttle will also be monitored. This

value will be a combination of the air temperature, read through a thermistor, and an

I constant determined by the instantaneous velocity of the ship. If the ST gets to great a

3 warning is to be issued. If it reaches the critical point the ship is "destroyed", and the

simulation is over. The altitude and trajectory is calculated by tracking all previous angles

and velocities in the vertical plane. The ship will begin at 0 altitude and must "take off".

3 Once underway, if the altitude falls below 0, the ship has crashed and the simulation is over.

The designer must define "actual" values that correspond to the values reported by the

hardware. For the direction control, a means of determining the distance turned with respect

3 to the amount of time the button was held. Also, the voltage across the potentiometer must

be converted into a velocity. A temperature constant must also be calculated that is related

to the velocity of the ship. All "actual" values must be unique for a specific input.

I (Determination of values is discussed later.)

U HARDWARE: (see block diagrams and schematics at the end of the lab description)

The functions simulated will be: (1) flight of shuttle, (2) pitch and roll, (3) velocity,

I and (4) skin temperature. This will be done by interfacing various components to the

3 computer, either directly to the bus, or through a data acquisition board.

I
I 156

I

I

I FLIGHT OF THE SHUTTLE:

The ship will be represented by mounting a model on a structure containing 2 motors.

M1 (motor 1) will be connected to the ship and control roll of the shuttle. M2 (motor 2) will

i control the pitch by moving M1 and the ship.

These motors will be tied to the PC through a data acquisition board or by directly

interfacing the needed components to the bus.

I MOTOR EVALUATIONS:

3 Data needs to be collected for each motor to determine the angle the model will go

through in a set amount of time. From this data and the length of time moved in a specific

U direction, the degrees per delta time can be calculated with some accuracy. By placing these

3 values into the code, the altitude and trajectory can be calculated for the model. (See

SOFTWARE:SHU'ITLE OPERATION for more information on altitude and trajectory

calculations.)

3 The speed at which the motor is to operate must also be determined. This value is up

to the designer, and will be the value used in the motor control routine in the hardware

control software.

I PITCH AND ROLL:

U The shuttle will be controlled by four buttons (up, down, left, right). These buttons

will be tied to the PC through a data acquisition board or by directly interfacing the

I necessary components to the bus.

3 There is no need for an A/D convertor. The buttons can be constructed so that they

provide standard logic levels.

I
l 157

I

I

i VELOCITY:

The velocity input is simply a potentiometer tied to an AID convertor. The voltage

across the potentiometer will be logged by the PC and the software will match the voltage to

i a predetermined velocity.

i SKIN TEMPERATURE.

The skin temperature is calculated in two parts. The first part is from the hardware,

I while the second part is determined by the software. The hardware portion of ST is the air

3 temperature. This value is obtained through the use of a thermistor interfaced to the PC.

An A/D must be used for interfacing.

m i SOFTWARE:

The software required for the system will have four parts: (1) the user interface, (2)

the hardware control, (3) shuttle operation, and (4) error checking of the hardware. The

user interface will keep the user informed of the status of the system and provide begin and

i exit options.

Begin and exit will be the only simulation inputs received through the software. The

shuttle operation routines will collect and send data to and from the hardware through the

hardware control routine, track the altitude and trajectory, calculate the skin temperature, and

determine the velocity. The hardware control routines will be the means by which a

software connection to the hardware will is made. All data sent to or received from the

I hardware will travel through this set of routines. The error checking must be capable of

3 detecting a loss of thrust and malfunctioning skin temperature sensor. All software is to be

implemented in Ada and should take advantage of multi-tasking and interrupt handling

I
i 158

I

I

I whenever possible.

3 USER INTERFACE:

The user interface will be used to display information to the user. No input other

I than "begin" and "exit" will be used in the simulation. The user should be kept informed of

the follow items: (1) Altitude and angle of trajectory, (2) skin temperature, (3) percent

thrust, (4) the time to hit the ground at the current velocity and trajectory, and (5) any other

I messages deemed necessary.

I HARDWARE CONTROL:

The software must be able to receive inputs from the four direction buttons, a

potentiometer, and a thermistor. Control of the buttons consist of simply reading when a

3 button is pressed and transferring this information to the SHUTTLE OPERATION. The

potentiometer and the thermistor must be tied thought an A/D convertor. Once the data has

been logged, it must be forwarded to the SHUTTLE OPERATION routines for processing.

3 The software must also have the ability to drive both motors controlling the shuttle

model. These connections will be made via a D/A convertor. The amount of time to run

each motor will be determined by the SHUTTLE OPERATION routines.

I SHUTITLE OPERATION:

3 These routines will use the HARDWARE CONTROL routines to collect all data, send

any control signals to and receive any data signal from the hardware. The data collected will

I consist of: (1) up, down, left, right button presses, (2) voltatge on velocity potentiometer, and

3 (3) the skin temperature. From this data, the shuttle must be moved, the altitude and

trajectory calculated, the time to ground impact calculated, the skin temperature calculated,

I
I 159

I

I

and the all information on the user screen must be updated.

3 BUTTON USAGE (UP, DOWN, LEFT, RIGHT):

The buttons will be used to move the shuttle model. When a button is pressed, the

I corresponding motor must be activated for the duration of the button press. The distance the

model can move in a specific direction will have a maximum angle. For a roll, the value

will be approximately ±90 degrees and for the climb approximately ±60 degrees. The

I method for calculating the angles is described in the description of the altitude and trajectory.

These stops must be checked by the software. When an attempt is made to go beyond the

values, the system must intervene and not allow the model to move any further. The user

I needs to be informed of the system override. (NOTE: make sure the motor configuration

3 has enough degrees if freedom to satisfy the above requirements.)

VELOCITY:

Before a velocity can be determined, a velocity per millivolt must be determined.

3 This value is up to the designer. The velocity data is gathered by accessing the

potentiometer through tht. hardware control routines. Once this data has been retrieved, it is

a trivial task to find the actual "velocity" of the ship.

SKIN TEMPERATURE:

3 Before the skin temperature can be calculated, a degrees per velocity unit must be

determined. With this value and the instantaneous velocity, a constant can be calcui "ted that

I represents the additional heat from air friction. To get the other component of the skin

3 temperature, the thermistor value needs to be gotten through the HARDWARE CONTROL

routines. Once both values have been acquired, the skin temperature is simply the sum of

1
16

I

U

I two values. Two values must be chosen to represent the warning temperature (WT) and the

3 destruction temperature (DT). When WT has been reached, a message should be displayed

to the user. When the skin temperature reaches DT, the shuttle is "destroyed" and the

I simulated ended.

3 ALTITUDE AND TRAJECTORY:

The altitude and trajectory will be calculated by this set of routines. The trajectory

U will be the current vertical angle. It is determined by keeping a running total of the amount

3 of time the up and down buttons have been pressed. The time corresponding to the up

button being pressed is positive and time for the down button is negative. With this time and

n the degrees per delta time for the vertical plane, the trajectory is easily calculated.

The altitude will be calculated using the instantaneous trajectory and velocity as

defined by the equation Yi=Vi*sinEi (i=instantaneous values). A running total must be kept

to maintain the correct value. The altitude will be calculated continuously. To simplify this

task, the function should be implemented as a timer interrupt function. The altitude must

also be monitored for a zero value. If this occurs, the shuttle will crash and the simulation

will end. When the altitude begins to approach zero, the computer is to take control and

3 attempt to level the ship before it impacts with the ground. Since the motor can only move

so fast, the success of the rescue attempt will depend on the velocity, which the computer has

no control over. This means that the computer can change the trajectory of the ship only as

I fast as the motor can move the model.

I
I

i 161

U

I

I ERROR CHECKING:

3 The error checking will detect a loss of thrust and malfunctioning skin temperature

sensor. The loss of thrust will be signified by receiving a zero potentiometer voltage while

I at an altitude greater than zero. A message should be conveyed to the user. A

3 malfunctioning skin temperature sensor will consist of a loss of the reading from the

thermistor. Once again, the appropriate message should be displayed.

I This will be a group lab and have a duration of 4 WEEKS.

I DUE DATES:

Due at the end of the first week:

(1) system analysis and design (both hardware and software)

Due at the end of the second week:

(2) ASGs and software implementation

Due at the end of the third week:

3 (3) hardware design and implementation

Due at the end of the fourth week:

(4) system integration, testing, and final report.

I
I
I
I
I

i 162

I

Iw
I0
I0

Clo

IS

I t o I

0 0
I u

II

-i %r

2

0m- zu nkn o ma o z &

I
I
I
I
I
i PART IV

3 APPENDIX

I
I
I
I
I
i
1
I
U
U
i
I

I

I APPENDIX

3 Intel EMBEDDED MICROCONTROLLERS AND PROCESSORS

I i1. MCS-48 FAMILY

The Intel MCS-48 family consists of the 8748H and 8749H EPROM;

I 8048AH/8049AH/8050AH ROM; and 8035AHL/8039AHL8040-AHL CPU only single

component microcomputers.

1.1 MCS-48 Single Component System

I Taking 8048AH EPROM as the representative product for the MCS-48 Family, we

3 describe its functional blocks as follows.

3 1.1.1 Arithmetic Section

The arithmetic section of the processor contains the basic data manipulation functions of

3 the 8048AH and can be divided into four blocks: Arithmetic Logic Unit (ALU), Accumulator,

u Carry Flag, and Instruction Decoder.

Instruction Decoder: The operation code (op code) portion of each program instruction is stored

3 in the Instruction Decoder and converted to outputs which control the function of each of the

3 blocks of the Arithmetic Section. These lines control the source of data and the destination

register as well as the function performed in the ALU.

I Accumulator: The accumulator is the single most important data register in the processor, being

one of the sources of input to the ALU and often the .destination of the result of operations

performed in the ALU. Data to and from I/O ports and memory also normally passes through

I the accumulator.

1
1 163

I

I

3 Arithmetic Logic Unit: The ALU accepts 8-bit data words from one or two sources and

generates an 8-bit result under control of the Instruction Decoder. The ALU can perform the

following functions: Add with or without Carry; AND, OR, Exclusive OR. Increment/

3 Decrement; Bit Complement; Rotate Left, Right; Swap Nibbles; and BCD Decimal Adjust.

3 1.1.2 Program Memory

Resident program memory consists of 1024, 2048, or 4096 words with the width of eight

I bits which are addressed by the program counter. In the 8748H and the 8749H, this memory is

I user programmable and erasable EPROM; in the 8048AH/8049AH/8050AH, the memory is

ROM which is mask programmable at the factory. The 8035AHLJ8039AHLJ8040AHL has no

I internal program memory and is used with external memory devices. Program code is

completely interchangeable among the various versions. To access the upper 2K of program

memory in the 8050AH, and other MCS-48 devices, a select memory bank and a JUMP or

I CALL instruction must be executed to cross the 2K boundary. There are three locations in

I Program Memory of special importance: Location 0, Location 3, and Location 7.

Location 0: Activating the Reset line of the processor causes the first instruction to be fetched

from Location 0.

Location 3: Activating the Interrupt input line of the processor (if interrupt is enabled) causes

a jump to subroutine at location 3.

Location 7: A timer/counter interrupt resulting from timer counter overflow (if enabled) causes

a jump to subroutine at Location 7. Therefore, the first instruction to be executed after

3 initialization is stored in Location 0, the first word of an external interrupt service routine is

1

I

I
3 stored in Location 3, and the first word of a timer/counter service routine is stored at Location

7. Program memory can be used to store constants as well as program instructions.

1.1.3 Data Memory

Resident data memory is organized as 64, 128, or 256 by 8-bits wide in the 8048AH,

8049AH, and 8050AH. All locations are indirectly addressable through either of two RAM

Pointer Registers which reside at address 0 and 1 of the register array. In addition, the first 8

3 location (0-7) of the array are designated as working registers and are directly addressable by

several instructions. Since these registers are more easily addressed, they are usually used to

store frequently accessed intermediate results. The DJNZ instruction makes very efficient use

3 of working registers as program loop counters by allowing the programmer to decrement and

3 test the register in a single insgwuction.

1.1.4 Input/Output

I The 8048AH has 27 lines which can be used for input or output functions. These lines

are grouped as 3 ports of 8 lines each serve as either inputs, outputs or bidirectional ports and

3 "test" inputs which can alter program sequences when tested by conditional jump instructions.

I Ports 1 and 2: Port 1 and 2 are each 8 bits wide and have identical characteristics. Data written

to these ports is statically latched and remains unchanged until rewritten. As input ports, these

lines are non-latching. The lines of ports I and 2 are called quasi-bidirectional because of a

special output circuit structure which allows each line to serve as an input, and output, or both

even though outputs are statically latched.

i Bus: Bus is also an 8-bit port which is a true bidirectional port with associated input and output

strobes. If the bidirectional feature is not needed, Bus can serve as either a statically latched

I
165U

I

I
output port or non-latching input port. Input and output lines on this port cannot be mixed

however.

1.1.5 Test and INT Inputs

3 Three pins serve as inputs and are testable with the conditional jump instruction. These

are TO, TI, and INT. These pins allow inputs to cause program branches without the necessity

to load an input port into the accumulator. The TO, TI, and INT pins have other possible

functions as well.

1.1.6 Program Count and Stack

The program Counter is an independent counter while the Program Counter Stack is

I implemented suing pairs of registers in the Data Memory Array. Only 10,11, or 12 bits of the

Program Counter are used to address the 1024, 2048, or 4096 words of on-board program

memory of the 8048AH, 8049AH, or 8050AH, while the most significant bits can be used for

I external Program Memory fetches.

1.1.7 Program Status Word

An 8 r-bit status word which can be loaded to and from the accumulator exists called the

E Program Status Word (PSW). The PSW bit definitions are as follows:

3 Bits 0-2: Stack Pointer bits(S0,S1,S2)

Bit 3: Not used (hlI level when read)

Bit 4: Working Register Bank Switch Bit (BS)

0 = Bank0; and I = Bank 1

Bit 5: Flag 0 bit (FO) user controlled flag which can be complemented or

cleaned, and tested with the conditional jump instruction JFO.

I
166I

I

Bit 6: Auxiliary Carry (AC) carry bit generated by an ADD instruction and used

by the decimal adjust instruction DAA.

Bit 7: Carry (CY) carry flag which indicates that the previous operation has

I resulted Ln overflow of the accumulator.

1.1.8 Conditional Branch Logic

The conditional branch logic within the processor enables several conditions internal and

I external to the processor to be tested by the users program. By using the conditional jump

instruction, the conditions can effect a change in the program execution sequence.

1.1.9 Interrupt

I An interrupt sequence is initiated by applying a low "0" level input to the INT pin.

Interrupt is level triggered and active low to allow "WIRE ORing" of several interrupt sources

at the input pin.

I Interrupt Timing: The interrupt input may be enabled or disabled under Program Control using

the EN I and DIS I instructions. Interrupts are disabled by Reset and remain so until enabled by

the users program. An interrupt request must be removed before the RETR instruction is

executed upon return from the service routine, otherwise, the processor will re-enter the service

routine immediately. Many peripheral devices prevent this situation by resetting their interrupt

request line whenever the processor accesses (Reads or Writes) the peripherals data buffer

register. If the interrupting device does require access by the processor, one output line of the

I 8048AH may be designated as an "interrupt acknowledge" which is activated by the service

subroutine to reset the interrupt request.

I
i 167

I

I

1.1.10 Timer/Counter

The 8048AH contains a counter to aid the user in counting external events and generating

accurate time delays without placing a burden on the processor for these functions. In both

I modes, the counter operation is the same, the only difference being the source of the input to

* the counter.

Counter: The 8-bit binary counter is presettable and readable with two MOV instructions which

I transfer the contents of the accumulator to the counter and vice versa. The counter content may

be affected by Reset and should be initialized by software. The increment from maximui. count

to zero (overflow) results in the setting of an overflow flag flip-flop and in the generation of an

I interrupt request. If timer and external interrupts occur simultaneously, the external source will

be recognized and the Call will be to location 3.

As an Event Counter: Ex cution of a START CNT instruction connects the T1 input pin to

U counter input and enables the counter. The T1 input is sampled at the beginning of state 3 or in

I later MCS-48 devices in state time 4. Subsequent high to low transitions on T1 will cause the

counter to increment. TI must be held low for at least 1 machine cycle to insure it won't be

missed. T1 input must remain high for at least 1/5 machine cycle after each transition.

As a Timer: Execution of a START T instruction connects an internal clock to the counter input

and enables the counter. The internal clock is derived by passing the basic machine cycle clock

through a /32 prescaler. The prescaler is reset during the START T instruction. The resulting

I clock increments the counter every 32 machine cycles. Various delays from 1 to 256 counts can

be obtained by presetting the counter and detecting overflow. Times longer than 256 counters

may be achieved by accumulating multiple overflows in a register under software control. For

I
i 168

I

I
time resolution less than 1 count, an external clock can be applied to the Ti input and the

counter operated in the event counter mode. ALE divided by 3 or more can serve as this

external clock. Very small delays or "fine turning" of larger delays can be easily accomplished

by software delay loops.

1.1.11 Clock and Timing Circuits

Timing generation for the 8048AH is completely selfcontained with the exception of a

I frequency reference which can be XTAL, ceramic resonator, or external clock source. The

Clock and Timing circuitry can be divided into the following three functional blocks:

Oscillator: The onr-board oscillator is a high gain parallel resonant circuit with a frequency

I range of 1 to 11 MHz. If an accurate frequency reference is not required, ceramic resonator may

E be used in place of the crystal.

State Counter: The output of the oscillator is divided by 3 in the State Counter to create a clock

I which defines the state times of the machine (CLK). CLK can be made available on the external

pin TO by executing an ENTO CLK instruction. The output of CLK on TO is disabled by Reset

of the processor.

Cycle Counter: CLK is then divided by 5 in the Cycle Counter to provide a clock which defines

*a machine cycle consisting of 5 machine states.

U 1.1.12 Reset

The reset input provides a means for initialization for the processor. This Schmitt-trigger

3 input has an internal pull-up device which in combination with an external 1 u fd capacitor

provides an internal reset pulse of sufficient length to guarantee all circuitry is reset. Reset

performs the following functions:

1
i 169

I

U
3 1. Sets program counter to zero;

2. Sets stack pointer to zero;

3. Selects register bank 0;

I 4. Selects memory bank 0;

5. Sets BUS to high impedance state (except when EA=5V);

6. Sets ports 1 and 2 to input mode;

I 7. Disables interrupts(timer and external);

8. Stops timer;

9. Clears timer flag;

i 10. Clears FO and Fl;

11. Disables clock output from TO.

1.1.13 Single-Step

i This feature provides the user with a debug capacity in that the processor can be stepped

through the program one instruction at a time. While stopped, the address of the next instruction

to be fetched is available concurrently on BUS and the lower half of Port 2. The user can

therefore follow the program through each of the instruction steps.

3 1.1.14 Power Down Mode

Extra circuitry has been added to the 8048AH/8049AH/8050AH ROM version to allow

power to be removed from all but the data RAM array for low power standby operation. In the

power down mode-the contents of data RAM can be maintained while drawing typically 10%

to 15% of normal operating power requirements.

I
i 170

U
1.1.15 External Access Mode

Normally the first 1K (8048AH), 2K (8949AH), or 4K (8050AH) words of program

memory are automatically fetched from internal ROM or EPROM, the EA input pin however

allows the user to effectively disable internal program memory by forcing all program memory

fetches to reference external memory. The External Access mode is very useful in system test

and debug because it allows the user to disable his internal applications program and substitute

_ an external program of his choice -- a diagnostic routine for-instance.

3 1.1.16 Sync Mode

The 8048AH, 8049AH, and 8050AH has incorporated a new SYNC mode. The Sync

I mode is provided to ease the design of multiple controller circuits by allowing the designer to

3 force the device into known phase and state time.

1.2 MCS-48 Expanded System

If the capabilities resident on the single-chip 8048AH/8748H /8035AHL /8049AH/

8749H/8039AHL are not sufficient for your system requirements, special on-board circuitry

U allows the addition of a wide variety of external memory, I/O, or special peripherals you may

require. The processors can be directly and simply expanded in the following areas:

I a. Program Memory to 4K words;

3b. Data Memory to 320 words (384 words with 8049AH);

c. I/O by unlimited amount; and

I d. Special Functions using 8080/8085AH peripherals.

3 By using bank switching techniques, maximum capability is essentially unlimited. Expansion

is accomplished in two ways:

I
m 171

I

I

3 a. Expander I/O A special 1/0 Expander circuit, the 8243, provides for the addition

of four 4-bit Input/Output ports with the sacrifice of only the lower half (4 bits)

of port 2 for inter-device communication. Multiple 8243's may be added to this

I 4-bit bus by generating the required "chip select" lines.

b. Standard 8085 Bus One port of the 8048AH/8049AH is like the 8-bit

bidirectional data bus of the 8085 microcomputer system allowing interface to the

I numerous standard memories and peripherals of the MCS-80/85 microcomputer

family.

1.3 MCS-48 Instruction Set

The MCS-48 instruction set is extensive for a machine of its size and has been tailored

3 to be straightforward and very efficient in its use of program memory. All instructions are either

one or two bytes in length and over 80% are only one byte long. Also, all instructions execute

in either one or two cycles and over 50% of all instructions execute in a single cycle. Double

I cycle instructions include all immediate instructions, and all I/O instructions. The MCS-48

microcomputers have been designed to handle arithmetic operations efficiently in both binary and

BCD as well as handle the single-bit operations required in control applications. Special

I instructions have also been included to simplify loop counters, table look-up routines, and N-way

3 branch routines.

The MCS-48 instructions include the following functions:

I 1. Data Transfers; 2. Accumulator Operations;

3 3. Register Operations; 4. Flags;

5. Branch Instructions; 6. Subroutines;

I

I

I 7. Timer Instructions; 8. Control Instructions; and

- 9. Input/Output Instructions.

2. MCS-51 FAMILY

i The MCS-51 family typified by the 8051 is a good example of an advanced 8-bit

microcontroller. This family has been designed mainly for sequential control applications. There

are three basic members of the MCS-51 family: the 8051, the 8031, and the 8751.

Three new devices -- the 8052, the 8032, and the 8752 -- are expanded versions with 8K of

ROM, 256 bytes of RAM, and three timers. In addition, there are low-power CMOS versions

i designated 80C51, 80C31, and 87C51.

2.1 MCS-51 Microcontrollers Architectural Overview

i 2.1.1 Introduction

3 The 8051 is the original member of the MCS-51 family, and is the core for all MCS-51

devices. The features of the 8051 core are as follows:

1 1. 8-bit CPU optimized for control applications;

3 2. 64K Program Memory address space;

3. 64K Data Memory address space;

4. 4K bytes of on-chip Program Memory;

35. 128 bytes of on-chip Data RAM;

6. 32 bidirectional and individually addressable I/O lines;

7. two 16-bit counter/timers;

3 8. 6-source/5-vector interrupt structure with two priority levels;

9. Full duplex UART;

173

I

I

1 10. Extensive Boolean processing (single-bit logic) capabilities;

1 11. On-chip clock oscillator.

The 8031 has no on-board ROM and uses external memory for program storage. The

1 8751 is the same as the 8051 except that the ROM is replaced by UVEPROM (ultraviolet light

erasable-programmable read only memory). The 8751 is relatively expensive and is meant to be

a program development tool, to be replaced in production by the 8051 containing factory-masked

U ROM.

The basic architectural structure of the 8051 core is described as follows.

2.1.2 Memory Organization in MCS-51 Devices

I Logical Separation of Program and Data Memory: All MCS-51 devices have separate address

spaces for program storage (usually ROM) and data storage ((RAM). The logical separation of

Program and Data Memory allows the Data Memory to be accessed by 8-bit addresses, which

can be more quickly stored and manipulated by an 8-bit CPU.

3 Nevertheless, 16-bit Data Memory addresses can also generated through the DPTR register.

Program Memory can only be read, not written to. There can be up to 64K bytes of Program

Memory. In the ROM and EPROM versions of MCS-51 devices, the lowest 4K, 8K or 16K

bytes of Program Memory are provided on-chip. In the ROMless versions, all Program

Memory is external. The read strobe for external Program Memory is the signal PSEN (Program

Strobe Enable). Data Memory occupies a separate address space from Program Memory. Up

3 to 64K bytes of external RAM can be addressed in the external Data Memory space. The CPU

generates read and write signals, RD and WR, as needed during external Data Memory accesses.

External Program Memory and external Data Memory may be combined if desired by applying

1
i 174

U

the RD and PSEN signals to the inputs of an AND gate and using the output of the gate as the

read strobe to the external Program/Data memory.

Program Memory: After reset, the CPU begins execution from OOOOH. The physical location

of address 0000H is either on chip or external, depending on the 8051 pin designated EA

(external address). If EA is low, address 0000H and all other program storage addresses will

reference external memory. If EA is high, addresses 0000H to OFFFH (to 1FFFH for 8052)

3 will reference on-chip ROM; higher addresses will automatically reference external memory.

The 8031 must operate with EA connected low because it does not contain any on-chip ROM.

Some of the I/O pins are used for address and data when using external memory. Each

I interrupt is assigned a fixed location in Program Memory, the first being address 0003H. The

interrupt causes the CPU to jump to that location, where it commences execution of the service

routine. If the interrupt is not going to be used, its service location is available as general

I purpose Program Memory.

3 The interrupt service locations area spaced at 8-byte intervals. If an interrupt service routine

is short enough (as is often the case in control applications), it can reside entirely within that 8-

U byte interval. Longer service routines can use a jump instruction to skip over subsequent

interrupt locations, if other interrupts are in use. Program Memory addresses are always 16 bits

wide, even though the actual amount of Program Memory used may be less than 64K bytes.

External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of

U addressing the Program Memory.

Data Memory: There are the internal and external Data Memory spaces available to the MCS-

51 user. There can be up to 64K bytes of external Data Memory. External Data Memory

I
I 175

I

addresses can be either 1 or 2 bytes wide. One-byte addresses are often used in conjunction with

one or more other I/O lines to page the RAM. Two-Two-byte addresses can also be used, in

which case the high address byte is emitted at Port 2. Internal Data Memory space is divided

into three blocks, which are generally referred to as the Lower 128 bytes, the upper 128 bytes

(for 8052), and SFR (special function registers) space. The Lower 128 bytes of RAM are

present in all MCS-51 devices. The lower 32 bytes are grouped into 4 banks of 8 registers.

I! Program instructions call out these registers as RO through R7. Two bits in the Program Status

Word (PSW) select which register bank is in use. Only one bank at a time can be in active use.

This allows more efficient use of code space, since register instructions are shorter than

I instructions that use direct addressing. The next 16 bytes above the register banks form a block

of bit-addressable memory space. All of the bytes in the Lower 128 can be accessed by either

direct or indirect addressing. The Upper 128 can only be accessed by indirect addressing. The

U Upper 128 bytes of RAM are not implemented in the 8051, but are in the devices with 256 bytes

3 of RAM.

2.2 MCS-51 SFR Space: Special Function Registers

The registers associated with important functions of the 8051 are assigned memory locations

U in the on-chip data storage space, allowing them to be addressed by program instructions. Some

3 of the SFR locations are bit addressable as well as byte addressable. This feature is not found

in processors such as 8085. Not all the SFR addresses are occupied. Unoccupied addresses in

I SFR space are- reserved for use in future versions of the 8051 and should not be used in

programs for current version.

I
i 176

I

Accumulator(ACC) and B Register: When referring to the accumulator as a location in the

SFR, the mnemonic ACC is used. Accumulator-specific instructions designate the accumulator

as A. The accumulator in the 8051 has the same functions as accumulator in processors such

as the 8085. It is also used in some instructions as an index register. The B register has a

specific function in multiply and divide operations. Otherwise, it can be used as a general-

purpose scratchpad register.

Program Status Word (PSW): The PSW contains several status bits that reflect the current

3 state of the CPU. The PSW resides in SFR space. It contains the Carry bit, other than serving

the functions of a Carry bit in arithmetic operations, it also serves as the "Accumulator" for a

I number of Boolean operations; the Auxiliary Carry (for BCD operations); the two register bank

select bits RSO and RS 1, a number of instructions refer to these RAM locations as RO through

R7, the selection of which of the four banks is being referred to is made on the basis of the bits

RSO and RS1 at execution time; the Overflow flag; a Parity bit, which reflects the number of

3 is in the Accumulator: P =1 stands for odd number of is, P = 0 for even number of Is, thus

the number of Is in the Accumulator plus P is always even; and two user-definable status flags.

Stack Pointer (SP): Since SP is 8-bit wide, it allows a maximum stack size of 256 bytes. In

3 contrast to the 8085, the stack in the 8051 grows upward through memory; hence, the SP is

incremented before data are stored as a result of a PUSH or CALL instruction. The stack may

reside anywhere in on-chip RAM by loading the appropriate address into the SP After reset,

I the SP contains the address 07H, causing the stack to start at location 08H in a register bank.

5 Because the program typically has other uses for the register banks, the stack is usually moved

higher in RAM by loading a new address into SP before doing any PUSH or CALL

1
i 177

U

instructions.

Data Pointer (DPTR): The DTPR is a 16-bit quantity held in two 8-bit parts: the high byte in

DPH and the low byte in DPL. The main purpose of the DPTR is to hold a 16-bit address for

certain instructions. It can be used as a single 16-bit register or as two 8-bit registers.

Port Latches (P0,P1,P2,P3): The 32 1/0 pins are organized into four 8-bit ports designated P0 -

- P3. Each port has an associated 8-bit latch, the outputs of which drive the matching I/O pins.

3 The contents of the latches can be read from or written to in the SFR.

3 Serial Data Buffer (SBUF): The SBUF is actually two separate registers sharing a common

address: One is read-only and the other write-only. When data are written to SBUF, they go to

I• a transmit buffer and are held there for serial transmission. When data are read from SBUF,

5 they come from the serial data receive buffer.

Timer Registers: Registers THO and TLO are the high and low bytes, respectively, of 16-bit

I counting register for timer/counter 0. Likewise, TH1 and TLI are for timer/counter 1. In the

3 8052, TH2 and TL2 are for timer/counter 2. Also the 8052 contains two 8-bit capture registers

(RCAP2H and RCAP2L) used to hold copies of the TH2 and TL2 register contents.

Control Registers: The SFR contains registers used for the control and status of the interrupt

3 system, the timer/counters, and the serial port. They are IP (interrupt priority), IE (interrupt

U enable), TMOD (timer mode), TCON (time control), T2CON (8052 timer 2 control), SCON

(serial port control), and PCON (power control, used mainly in 80C51).

U 2.3 MCS-51 I/O Ports

3 One of the most useful features of the 8051 is the I/O, consisting of four bidirectional ports.

Each port has an 8-bit latch in the SFR space, an output driver, and an input buffer. The ports

1
S~178

I

can be used for general I/O, as address and data lines, and for certain spacial functions.

Input, Loading, and Output Drive: Ports 1,2, and 3 have the equivalent of internal pull-up

resistors. When used as inputs, the pins of P1, P2, and P3 will be high (logic 1) when open-

circuited and will source current when pulled low by an external device. Port 0 does not have

the same pull-up feature and is floating (high impedance) when used as an input. A clarification

is needed for the phrase "read a port." Some instructions read the actual level on the 1/0 pin;

others read the level in the latch. A condition can occur where the port is being used to output

a high (logic 1), but the external load attached to the port is of such low resistance that the

voltage on the pin is at the same level as a low (logic level 0). Reading the latch would a 1, but

reading the pin would show a 0. Instructions that do a read-modify-write operation(e.g., INC)

read the latch. When used as outputs, ports 1, 2, and 3 each can drive the equivalent of four

LS TTL inputs. Port 0 can drive eight such equivalent inputs. To speed up 0 to 1 output

transitions (i.e., to overcome capacitance effects) on ports 1, 2, and 3, an additional internal

3 pull-up is activated briefly during output.

Alternate Port Functikus: All the pins of port 3 (and in the 8052, two PI pins) have an

alternate function. To enable an alternate function, a 1 must be written to the corresponding 0it

in the port latch.

Accessing External Memory: Since 8051 has separate program memory and data memory, it

uses different hardware signals to access the corresponding external storage devices. The PSEN

3(program strobe enable) signal is used as the read strobe for program memory, and RD and WR

3_ are used as the read and write strobes to access data memory. Accesses to external program

memory always use a 16-bit address. Accesses to external data memory may use either an 8-bit

179

U

or a 16-bit address, depending on the instruction being executed. In the case of 16-bit address,

the high-order 8 bits of the address are output on port 2, where they are held constant during

the entire memory access cycle. The prior contents of the port 2 latches in the SFR are not lost

but are restored after the memory access cycle. If an 8-bit address is being used, the contents

of port 2 are unchanged, which allows some of the port 2 pins to be used to select 256-byte

pages for the lower 8 bits of the address. The low-order 8 bits of the address are multiplexed

with the data byte on port 0. When used in this mode, the port 0 pins are connected to an

internal active pull-up; they do not float. The prior contents of the port 0 latches are lost. The

ALE (address latch enable) signal must be used to capture the low-order address bits in an

external latch.

2.4 MCS-51 Timer/Counters

The 8051 has two 16-bit registers that can be used as either timers or counters. They are

designated timer 0 and rimer 1. The 8052 has an additional 16-bit register designated timer 2.

These registers are in the SFR as pairs of 8-bit registers. When used as a timer, the register is

incremented once per machine cycle, which is equal to once per 12 clock periods. When used

as a counter, the register is incremented on a 1 - 0 transition (a negative edge) applied to the

appropriate input pin: TO or TI (or T2 in the 8052). It takes two complete machine cycles for

the 8051 to see 1 - 0 transition; the input must be held high for at least one cycle and then low

for at least one cycle.

Timer 0 and Timer 1: The way that timer 0 and timer 1 will operate is determined by the 8 bits

written to the TMOD register. The bits MO and M1 (a pair for each timer) are used to select

one of four operating modes: mode 0, mode 1, mode 2, and mode 3. Both counters work the

180

I

3 same in mode 0,1, and 2, but different in mode 3.

Timer 2: Timer 2 is a 16-bit timer/counter in the 8052 group of devices; it does not appear in

the 8051 group. The input source for timer 2 can be the clock (timer operation) or an external

I input (counter operation). Timer 2 has three operating modes: capture, auto-load, and baud rate

3 generator. The input source and operating mode are selected by bits in the T2CON control

register.

I 2.5 MCS-51 Serial Port Interface

3 The 8051 has a full duplex serial port that allows data to be transmitted and received

simultaneously in hardware while the software is doing other things. A serial port interrupt is

generated by the hardware to get the attention of the program in order to read or write serial

port data. The receiver hardware is double buffered, meaning that a received frame of data can

I be held for reading while a second frame is being received. Double buffering allows the receiver

interrupt service routihe to be less time critical, but the stored frame must be read before

3 reception of the second frame is complete or the stored frame will be overwritten and lost. To

3 obtain the same level of performance with a processor such as the 8085, the use of a separate

USART (universal synchronous/asynchronous receiver/transmitter) chip is required. Both the

U transmit and receive buffers are accessed at the same location in the SFR space: the SBUF

3 register. Writing to SBUF loads the transmit buffer, and reading from SBUF obtains the contents

of the receive buffer. Any instruction that writes to SBUF initiates serial transmission. The serial

I port has four modes of operation: mode 0, 1, 2, and 3. They are not to confused with the

3 timer/counter modes.

I
i 181

I

U

3 Serial Port Control Register (SCON): SCON is the serial port control and status register. Bits

I SMO and SMI are used to select the operating mode. The SM2 bit is used in a multiprocessor

system where one 8051 acts as a master unit, sending commands to one or more slave units.

I Serial Port Modes: Mode 0 is half-duplex synchronous operation. Data are sent and received

3 (not simultaneously) through the RXD pin in 8-bit frames, LSB first. The bit rate is fixed at one-

twelfth the oscillator frequency. The shift clock which is the same frequency as the bit rate is

I sent out the TXD pin during both transmission and reception and is used to synchronize the

3 receiver to the sender.Reception is initiated when bit REN is set to 1 and bit RI is cleared to 0

in the SCON register.

Mode 1 is full duplex asynchronous operation. Data are sent out TXD and received through

3 RXD. A complete frame consists of a start bit (always a 0), followed by 8 data bits (LSB first),

followed by a stop bit (always a 1). The start and stop bits are added by the hardware; the

software writes the 8-bit data byte to, or reads from, SBUF. The baud rate is variable and can

5 be obtained by using timer 1 as a baud rate generator.

Mode 2 is similar to mode 1, with two exceptions. First, the frame is 11 bit long; a ninth data

bit is inserted before the stop bit. When transmitting, the ninth bit is obtained from TB8 in

I SCON. It assumed that TB8 was written into before initiating transmission. When receiving, the

3 ninth bit can be read from RB8 in SCON. A common use for the ninth bit is as a parity bit for

8-bit data. The second difference is that the baud rate is either 1/32nd or 1/64th of the oscillator

U frequency, as selected by the SMOD bit (bit7) in the PCON register. If SMOD is set to 1, the

U 1/32 number is used. If SMOD is cleared to 0, 1/64 is used.

I
* 182

I

U

5m Mode 3 is the same as mode 2, except that the baud rate is variable and can be obtained in the

same way as in mode 1. Reception for modes 1,2, and 3 is enabled when the REN bit in SCON

is set to 1. Actual reception is initiated when an incoming start bit causes a high to low transition

I on the RXD pin. Transmission is initiated by writing to SBUF in any serial mode.

3 Timer 1 as Baud Rate Generator: Although it is possible to use the timer/counter as a baud

rate generator in any of its modes, its most common use is as a timer (i.e., clock-sourced) in

I auto-reload mode (timer mode 2). The baud rate is then given by:

3 Baud Rate = Oscillator Frequency / N*(256 - THI)

where N depends on the SMOD bit in the PCON register (bit 7). If SMOD = 0, N = 384. If

I SMOD = 1, N = 192. THI represents the contents of register THIL.

3 The Power Control Register (PCON): Of the 8 bits in the PCON, only bit 7, SMOD, is

implemented in the standard 8051. SMOD is used in setting the baud rate of the serial port. Bits

0, 1, 2, and 3 are implemented in the CMOS version. Bits 0, and 1 are used in power saving

3modes, and bits 2, and 3 are general-purpose flags.

I 2.6 MCS-51 Interrupts

The 8051 has five sources of interrupts which are associated with bit locations in registers:

I two from external pins (INTO and INTI), two from the timer/counters (TF0 and TFL), and one

3 from the serial port (TI or SI). These associated bits can be set or cleared by software, with the

same results as when the bits are set or cleared by hardware. All interrupts or each individual

I interrupt can be enabled or disabled by setting or clearing the appropriate bit in the IE register.

3 If enabled, an interrupt will cause a call to one of the predefined locations in RAM. The return

address is automatically pushed onto the stack before jumping and is popped back off when an

1 183

I

i

RETI (return from interrupt) instruction is execution is executed. If an interrupt occurs while

it is disabled, or while a higher priority one is running, it becomes pending. As soon as a

pending interrupt is enabled, it will cause a call, unless it was canceled by software while it was

I still pending or a higher priority interrupt was simultaneously made active.

Servicing External Devices: The timing of events in external devices usually has no

relationship to the timing of the CPU; that is, real-world events are usually asynchronous to the

I processor. In order to monitor and control external devices, a microcomputer must have a

3 method of responding to I/O requests and other external events in a timely manner.

Polling and Buffering: One way a processor deals with I/O devices is to ask them periodically

I if they need service, that is to poll them. Often, a polled device will exchange blocks of

information with the processor. The device will hold such blocks in its own memory, the buffer.

The main drawback of polling is the amount of time the CPU spends checking the I/O device.

I If the I/O device buffer either fills up or empties out while it is waiting for service, data may

3 be lost or the device may stop working. Consider a printer, the processor initially will load the

printer buffer with text. If the buffer runs out before the printer is polled again, it will stop. For

digital communication equipment, if data keep coming in, the receiver buffer can overflow while

3 waiting for the next poll. Real-time applications which require service from the processor as

soon as the need occurs cannot wait for a poll. Therefore, something better is called for, it is

an interrupt.

U Basic Interrupt Action: I/O devices often require immediate service while the processor is in

the middle of doing something else. The interrupt is a software-controlled hardware feature that,

in an orderly manner, forces the processor to suspend what it is currently doing in order to

I
1 184

I

I

U service the I/O device.

When it is finished with I/O, the processor will resume where it left off, much the same

as a subroutine. Interrupts that can be blocked by software are called maskable; those that cannot

I be blocked are called nonmaskable. Interrupts that occur while masked are called to be pending.

"3 An I/O device will request service by activating an interrupt pin on the CPU. If the CPU has

enabled its interrupts in software, it will initiate its response, often with an acknowledgment

I- signal to the 1/0 device. This request-acknowledge sequence is an example of handshaking. The

3 rest of the response is similar to a subroutine call. The CPU will push the return address onto

the stack and branch to a predefined part of memory, where it expects to find the interrupt

I service routine which will handle the interrupting device. The last instruction in the routine will

3 be a RETURN, which will pop the return address off the stack and into the PC register. The

CPU will then resume program execution from the point where it was interrupted.

Multiple Interrupt Sources and Vectoring: When an interrupt occurs, the processor must first

3determine which device was the source, as different devices need different services. One way

is for the interrupt service routine to poll all the devices to find out which one called, perhaps

by having the service routine read status lines from all the devices. But polling can be time-

consuming. A faster way is for each interrupting device to point (like a vector arrow) to the

3 place in memory where its service routine is stored. The CPU can then do there directly. Such

a system is called a vectored interrupt. In a vectored system, a problem will occur if two devices

I request an interrupt at exactly the same time. It needs a means of establishing priority.

U Priority Levels: The 8051 has a two-tier priority structure. The top tier has two priority levels:

high and low. Each interrupt source can be assigned to either high-level or low-level status by

I
i 185

I

i

I setting the appropriate bits in the IP register. When two interrupts of different levels are received

simultaneously, the higher level interrupt is serviced first. The second tier of priority is used to

resolve simultaneous interrupts within the same level. The priority-within-level ordering from

- highest to lowest is fixed as: IEO, TFO, IEl, TF1,RI, OR TI.

3- Interrupt Timing and Handing: A "snap-shot" (sample) of the interrupt flags is taken by the

8051 hardware at the end of a typical machine cycle(C1). During the following machine

U• cycle(C2), the sample from the previous cycle is examined. If one of the flags sampled during

3 Cl is found to be set, then a call to the appropriate interrupt vector will be generated during

cycles C3 and C4. Execution of the interrupt service routine will start with cycle C5 and

n continue for as long as is required by the routine. The hardware will not generate the interrupt

m call if one of the following is true:

1. An interrupt of equal or higher priority is already in progress.

2. The current machine cycle is not the final cycle of the instruction being executed.

3 3. The instruction in progress is RETI or any instruction that writes to the IE or IP

register.

The time between the activation of an interrupt and the start of execution of the service

3 routine is the response time. In the 8051, the shortest response time is three machine cycles and

the longest (worst case) is nine machine cycles.

Activation Levels and Flag Clearing: Interrupts can be either level-activated or transition-

I activated (level-triggered or edge-trigged). Because a transition-activated event is, by definition,

3 a transient, when the flag bit associated with the interrupt is cleared, the interrupt event itself

is cleared. On the other hand, clearing the flag bit of a level-activated interrupt will have no

I
1 186

I

I

i_ effect if the external level causing the interrupt stays active.

I 2.7 MCS-51 Instructions and Addressing

The 8051 has five addressing modes:

1. Direct Addressing;

1 2. Indirect Addressing;

3. Register Instructions;

4. Immediate Operand Instructions; and

3 5. Indexed Addressing.

g The 8051 assembly language uses two special symbols: @, and # to distinguish operand

types. The @ before an operand means that indirect addressing is being used; the # before an

3 operand means it is an immediate operand (a constant). The 8051 has five groups of instructions

i consisting of 111 instruction types: 49 one-byte, 45 two-byte, and 17 three-byte as follows:

1. Arithmetic Operations;

32. Logic Operations;

3 3. Data Transfers;

4. Boolean Operations; and

1 5. Branching Instructions.

3 3. MCS-80/85 Family

3.1 8080A 8-bit N-Channel Microprocessor

i The Intel 8080A is a complete 8-bit parallel central processing unit (CPU). It is

I fabricated on a single LSI chip using Intel's n-channel silicon gate MOS process. This offers a

* 187

U

I the user a high performance solution to control and processing applications. It contains 6 8-bit

general purpose working registers and an accumulator. These six registers may be addressed

individually or in pairs providing both single and double precision operators. Arithmetic and

I logical instructions set or reset 4 testable flags. A fifth flag provides decimal arithmetic

operation.

The 8080A has an external stack feature wherein any portion of memory may be used

I as a last in/first out stack to store/receive the contents of- the accumulator, flags, program

3 counter, and all of the 6 general purpose registers. The 16-bit stack pointer controls the

addressing of this external stack. This stack gives the 8080A the ability to easily handle multiple

I level priority interrupts by rapidly storing and restoring processor status. It also provides almost

unlimited subroutine nesting. This microprocessor has been designed to simplify systems design.

Separate 16-line address and 8-line bidirectional data busses are used to facilitate easy interface

to memory and I/O. Singles to control the interface to memory and I/O are provided directly by

I the 8080A.

Ultimate control of the address and data busses reside with the HOLD signal. It provides

the ability to suspend processor operation and force the address and data busses into a high

I impedance state. This permits OR-tying these busses with other controlling devices for DMA

3 or multi-processor operation.

Instruction Set: The accumulator group instructions include arithmetic and logical operators

U with direct, indirect, and immediate addressing modes. Move, load, and store instruction groups

U provide the ability to move either 8 or 16 bits of data between memory, the six working registers

and the accumulator using direct, indirect, and immediate addressing modes. The ability to

I
* 188

I

i

branch to different portions of the program is provided with jump, jump conditional, and

computed jumps. Also the ability to call to and return from subroutines is provided both

conditionally and unconditionally. The RESTART (or single byte call instruction) is useful for

I interrupt vector operation.

Double precision operators such as stack manipulation and double add instructions extend

both the arithmetic and interrupt handling capability of the 8080A. The ability to increment and

I decrement memory, the six general purpose registers and the accumulator is provided as well

3 as extended increment and decrement instructions to operate on the register pairs and stack

pointer. Further capability is provided by the ability to rotate the accumulator left or right

I through or around the carry bit.

3 Input and output may be accomplished using memory addresses as 1/0 ports or the directly

addressed I/O provided for in the 8080A instruction set. The following special instruction group

completes the 8080A instruction set: the NOP instruction, HALT to stop processor execution

3 and the DAA instructions provide decimal arithmetic capability. STC allows the carry flag to

be directly set, and the CMC instruction allows it to be complemented. CMA complements the

contents of the accumulator and XCHG exchanges the contents of two 16-bit register pairs

m directly.

I 3.2 8085AH 8-bit HMOS Microprocessors

The Intel 8085AH is a complete 8-bit parallel Central Processing Unit (CPU) implemented

I in N-channel, depletion load, silicon gate technology (HMOS). Its instruction set is 100%

3 software compatible with the 8080A microprocessor, and it is designed to improve the present

8080A's performance by higher system speed. Its high level of system integration allows a

I
m 189

I

I

I minimum system of three IC's [8085AH(CPU), 8156H(RAM/IO) and 8755A(EPROM/IO] while

maintaining total system expendability. It requires a single +5V supply. Its basic clock speed

is 3 MHz(8085AH), 5 MHz(8085AH-2), or 6MHz(8085AH-1). The 8085AH-2 and 8085AH-1

I are faster versions of the 8085AH. The 8085AH incorporates all of the features that taw 8224

I (clock generator) and 8228(system controller) provided for the 8080A, thereby offering a higher

level of system integration.

I The 8085AH uses a multiplexed data bus. The address is split between the higher 8-bit

Address Bus and the lower 8-bit Address/Data bus. During the first T state (clock cycle) of a

machine cycle the low order address is sent out on the Address/Data Bus. These lower 8 bits

may be latched externally by the Address Latch Enable (ALE) signal. ALE is used as a strobe

to sample the lower 8-bits of address on the Data Bus. During the rest of the machine cycle the

data bus is used for memory or I/O data. The on-chip address latches of 8155H/8156H/8755A

memory products allow a direct interface with the 8085AH. It has 12 addressable 8-bit registers.

Four of them can function only as two 16-bit register pairs. Six others can be used

interchangeably as 8-bit registers or 16-bit register pairs. They are: 8-bits Accumulator (ACC

or A); 16-bit address Program Pointer (PC); 8-bits*6 or 16-bits*3 General Purpose Registers

(BC,DE) and Data Pointer (HL); 16-bit address Stack Pointer (SP); and 5 8-bit space Flag

Registers (Flags or F). It provides RD, WR, SO, S1, and IO/M signals for bus control. An

interrupt Acknowledge signal (INTA) is also provided. HOLD and all interrupts are

I synchronized with-the processor's internal clock. It also provides SID (Serial Input Data and

1 SOD (Serial Output Data) lines for simple serial interface. The 8085AH has 5 interrupt inputs:

INTR which is identical in function to the 8080A INT; three RESTART inputs: RST 5.5, RST

I1 190

I

6.5, RST 7.5 among which each has a programmable mask; and a nonmaskable RESTART

interrupt TRAP.

You may drive the clock inputs of the 8085AH, 8085AH-2, or 8085AH-1 with a crystal,

an LC tuned circuit, an RC network, or an external clock source. The crystal frequency must

be at least 1 MHz, and must be twice the desired internal clock frequency; hence the 8085AH

is operated with a 6 Mhz crystal (for 3 MHz clock), the 8085AH-2 with a 10 MHz crystal (for

5 MHz clock), and the 8085AH-1 with a 12 MHz crystal (for 6 MHz clock). If your system

requirements are such that slow memories or peripheral devices are being used, a wait state

generating circuit may be used to insert one WAIT state in each 8085AH machine cycle. There

are 7 possible types of machine cycles. Which of these seven takes place is defined by the status

- of the 3 status lines (IO/M, S1,S0) and the 3 control signals (RD, WR, and INTA).

I 3.3 8155H,8156H 2048-bit Static HMOS RAM with I/O Ports & Timer

The Intel 8155H and 8186H are RAM and I/O chips implemented in N-channel, depletion

i_ load, silicon gate technology (HMOS), to be used in the 8085AH and 8088 microprocessor

U systems. The RAM portion is designed with 2048 static cells organized as 256*8. They have a

maximum access time of 400 ns to permit use with no wait states in 8085AH CPU. The 8155H-

2 and 8256H-2 have maximum access times of 330 ns for use with the 8085AH-2 and the 5

II MHz 8088 CPU. The I/O portion consists of three general purpose I/O ports. One of the three

ports can be programmed to be status pins, thus allowing the other two ports to operate in

handshake mode.

A 14-bit programmable counter/timer is also included on chip to provide either a square

I wave or terminal count pulse for the CPU system depending on timer mode. The 8055H/8156H

191

I

Im contains three functional units:

1 1. 2K bit Static RAM organized as 256*8;

2. Two 8-bit I/O ports (PA & PB) and one 6-bit I/O port (PC); and

1 3. 14-bit timer-counter.

The 1O/Memory select pin IO/M selects either the five registers (Command, Status, PAO-

7, PBO-7, PCO-5) or the memory (RAM) portion. The 8-bit address on the Address/Data lines,

I Chip Enable input CE, and IO/M are all latched on-chip at the falling edge of ALE. The 1/0

3 section of the 8155H/8156H consists of five registers: Command/Status Registers(C/S); PA

Register; PB Register; and PC Register. The time is a 14-bit down-counter that counts the

U TIMER IN pulses and provides either a square wave or pulse when terminal count (TC) is

I reached.

The command register consists of eight latches. Four bits (0-3) define the mode of the

ports, two bits (4-5) enable or disable the interrupt from port C when it acts as control port, and

the last two bits (6-7) are for the timer. The status register consists of seven latches, one for

each bit; six (0-5) for the status of the ports and one (6) for the status of the timer.

3.4 8185/8185-2 1024 8-bit Static RAM for MCS-85

I The Intel 8185 is an 8192-bit static random access memory (RAM) organized as 1024

I words by 8-bits using N-channel Silicon-Gate MOS technology. The multiplexed address and

data bus allows the 8185 to interface directly to the 8085AH and 8088 microprocessors to

provide a maximum level of system integration. The low standby power dissipation minimizes

I system power requirements when the 8185 is disabled. The 8185-2 is a high-speed selected

U version of the 8185 that is compatible with the 5 MHz 8085 AH-2 and the 5 MHz 8088. The

1 192

I

8185 haws been designed to provide for direct interface to the multiplexed bus structure and bus

timing of the 8085A microprocessor.

At the beginning of an 8185 memory access cycle, the 8-bit address on ADO-7, A8 and

A9, and the status of CEl and CE2 are all latched internally in the 8185 by the falling edge of

ALE. If the latched status of both CE1 and CE2 are active, the 8185 powers itself up, but no

action occurs until the CS line goes low and the appropriate RD or WR control signal input is

i activated. The CS input is not latched by the 8185 in order to allow the maximum amount of

3 time for address decoding in selecting the 8185 chip. Maximum power consumption savings will

occur, however, only when CE1 and CE2 are activated selectively to power down the 8185

I when it is not in use. A possible connection would be ':) write the 8085A's IO/M line to the

I 8185's CE1 input, thereby keeping the 8185 powered down during I/O and interrupt cycles.

8224 Clock Generator and Driver for 8080A CPU: The Intel 8224 is a single chip clock

I generator/driver for the 8080A CPU. It is controlled by a crystal, selected by the designer to

meet a variety of system speed requirements. It also includes circuits to provide power-up reset,

advance status strobe, and synchronization of ready. It provides the designer with a significant

reduction of packages used to generate clocks and timing for the 8080A.

I 3.5 8228 System Controller and Bus Driver for 8080A CPU

3 The Intel 8228 is a single chip system controller and bus driver for MCS-80. It generates

all signals required to directly interface MCS-80 family RAM, ROM, and I/O components. A

I bidirectional bus driver is included to provide high system TTL fan-out. It also provides isolation

I of the 8080 data bus from memory and 1/0. This allows for the optimization of control signals,

enabling the systems design to use slower memory and I/O. The isolation of the bus driver also

193

I

provides for enhanced system noise immunity.

A user selected single level interrupt vector (RST 7) is provided to simplify real time,

interrupt driven, small system requirements. The 8228 also generates the correct control signals

3 to allow the use of multiple byte instructions (e.g., CALL) in response to an interrupt

acknowledge by the 8080A. This permits large, interrupt driven systems to have an unlimited

number of interrupt levels. The 8228 is designed to support a wide variety of system bus

structures and also reduce system package count for cost effective, reliable design of MCS-80

* systems.

3.6 8755A 16,384-bit EPROM with I/O

The Intel 8755A is an erasable and electrically reprogrammable ROM (EPROM) and I/O

I chip to be used in the 8085AH microprocessor systems. The EPROM portion is organized as

2048 words by 8 bits. It has a maximum access time of 450 ns to permit use with no wait states

in an 8085AH CPU. The I/O portion consists of 2 general purpose I/O ports. Each I/O port has

I 8 port lines, and each I/O port line is individually programmable as input or output.

I PROM Section: The 8755A contains an 8-bit address latch which allows it to interface directly

to MCS-48, and MCS-85 processors without additional hardware. The PROM section of the chip

I is addressed by the 11-bit address and the Chip Enables. The address, CE1 and CE2 are latched

I into the address latches on the falling edge of ALE. If the latched Chip Enables are active and

IO/M is low when RD goes low, the contents of the PROM location addressed by the latched

I address are put out- on the ADO-7 lines (provided that VDD is tied to VCC).

I 1O Section: The I/O section of the chip is addressed by the latched value of ADO-1. Two 8-bit

Data Direction Registers (DDR) in 8755A determine the input/output status of each pin in the

194

I

corresponding ports.

4. Intel 80186/80188 Family

4.1 Intel 80186 High Integration 16-bit Microprocessor

The Intel 80186 ia a highly integrated 16-bit microprocessor. The 80186 effectively

combines 15-20 of the most common 8086 system components onto one chip and provides two

times greater throughput than the standard 5 MHz 8086. The 80186 is object code compatible

with the 8086/8088 microprocessors and adds 10 new instruction types to the 8086/8088

3 instruction set.

3 4.1.1 80186 Base Architecture

The 8086,8088, 80186, and 80286 family all contain the same basic set of registers,

I instructions, and addressing modes.

3 Register Set: The 80186 base architecture has fourteen registers which are grouped into four

categories:

I 1. General Registers: Eight 16-bit general purpose registers may be used for

3 arithmetic and logic operands. Four of them (AX, BX, CX, and DX) can also be

split into pairs of separate 8-bit registers.

I 2. Segment Registers: Four 16-bit special purpose registers select, at any given

3 time, the segments of memory that are immediately addressable for code, stack,

and data.

3. Base and Index Registers: Four of the general registers may also. be used to

3 determine offset addresses of operands in memory. These registers may contain

base addresses or indexes to particular locations within a segment. The addressing

195

I

I mode selects the specific registers for operand and address calculations.

"3 4. Status and Control Registers: Two 16-bit special purpose registers record or

alter certain aspects of the 80186 processor state. These are the Instruction

I Pointer Register which contains the offset address of the next sequential

instruction to be executed, and the Status Word Register which contains status and

control flag bits.

I Status Word Description: The Status Word records specific characteristics of the result of

3 logical and arithmetic instructions (bits 0,2,4,6,7, and 11) and controls the operation of the

80186 within a given operating mode (bits 8,9, and 10).

Instruction Set: The instruction set is divided into seven categories: data transfer, arithmetic,

shift/rotate/logical, string manipulation, control transfer, high-level instructions, and processor

control. These categories can be summarized as follows: general purpose, input/output, address

object, flag transfer, addition, subtraction, multiplication, division, logicals, shifts, rotates, flag

5 operations, external synchronization, no operation, high level instructions, conditional transfers,

3 unconditional transfers, iteration controls, and interrupts.

Addressing Modes: The 80186 provides eight categories of addressing modes to specify

I operands:

1 1. Register Operand Mode: The operand is located in one of the 8- or 16-bit

general registers;

I 2. Imniediate Operand Mode: The operand is included in the instruction;

3 3. Direct Mode: The operand's offset is contained in the instruction as an 8- or 16-

bit displacement element.

1
5 196

I

I

4. Register Indirect Mode: The operand's offset is in one of the registers SI,DI

BX, or BP.

5. Based Mode: The operand's offset is the sum of an 8- or 16-bit displacement and

1 the contents of a base register (BX, or BP).

3 6. Indexed Mode: The operand's offset is the sum of an 8- or 16-bit displacement

and the contents of an index register (SI or DI).

1 7. Based Indexed Mode: The operand's offset is the sum of contents of a base

3 register and an index register.

8. Based Indexed Mode with Displacement: The operand's offset is the sum of a

I base register's contents, an index register's contents, and an 8- or 16-bit

3 displacement.

Data Types: The 80186 directly supports the following data types:

Integer, Ordinal, Pointer, String, ASCII, BCD, Packed BCD, Floating Point. In general,

individual data elements must fit within defined segment limits.

U 1O Space: The I/O space consists of 64K 8-bit or 32K 16-bit ports. Separate instructions

address the I/O space with either an 8-bit port address specified in the instruction, or a 16-bit

3 port address in the DX register. 8-bit port addresses are zero extended such that A15-A8 LOW.

U I/O port addresses 0OF8H through OOFFH are reserved.

Interrupts: An interrupt transfers execution to a new program location. The old program

I address (CS:IP) and machine state (Status Word) are saved on the stack to allow resumption of

U .the interrupted program. Interrupts fall into three classes: hardware initiated which occur in

response to an external input and are classified as non-maskable or maskable; INT instructions

I
'1 197

I

I

with which programs may cause an interrupt; and instruction exceptions which occur when an

unusual condition preventing further instruction processing is detected while attempting to

execute an instruction.

1 4.1.2 80186 Clock Generator

3 The 80186 provides an on-chip clock generator for both internal and external clock

generation. The clock generator features a crystal oscillator, a divide-by-two counter,

I synchronous and asynchronous ready inputs, and reset circuitry.

3 Oscillator: The oscillator circuit of the 80186 is designed to be used with a parallel resonant

fundamental mode crystal. It is used as the time base for the 80186. The crystal frequency

I selected will be double the CPU clock frequency.

3 Clock Generator: The 80186 Clock Generator provides 50% duty cycle processor clock for the

80186. It does this by dividing the oscillator output by 2 forming the symmetrical clock. If an

external oscillator is used, the state of the clock generator will change on the falling edge of the

U oscillator signal.

READY Synchronization: The 80186 provides both synchronous and asynchronous ready

inputs.

I RESET Logic: The 80186 provides both a RES input pin and a synchronized RESET output pin

for use with other system components.

4.1.3 Local Bus Controller

I The 80186 provides a local bus controller to generate the local bus control signals. It also

I employs a HOLD/HLDA protocol for relinquishing the local bus to other bus masters, and

provides outputs that can be used to enable external buffers and to direct the flow of data on and

I

I

I off the local bus.

Memory/Peripheral Control: The RD and WR signals are used to strobe data from memory

or I/O to the 80186 or to strobe data from the 80186 to memory or 1/0. The ALE line provides

I a strobe to latch the address when it is valid.

Transceiver Control: The 80186 generates two control signals, DT/R and DEN which are

generated to control the flow of data through the transceivers, to be connected to transceiver

I chips. This capability allows the addition of transceivers for extra buffering without adding

external logic.

Local Bus Arbitration: The HOLD/HLDA system of local bus exchange provides an

1 asynchronous bus exchange mechanism. Multiple masters utilizing the same bus can operate at

separate clock frequencies. External circuitry must arbitrate which external device will gain

control of the bus when there is more than one alternate local bus master.

4.1.4 Internal Peripheral Interface

3 All the 80186 integrated peripherals are controlled by 16-bit registers contained within

an internal 256-byte control block which may be mapped into either memory or I/O space.

Internal logic will recognize control block addresses and respond to bus cycles. The control

3 block base address is programmed by a 16-bit relocation register contained within the control

i block at offset FEH from the base address of the block.

Chip-Select/Ready Generation Logic: The 80186 contains logic which provides programmable

I chip-select generation for both memories and peripherals. It can be programmed to provide

I READY (or WAIT state) generation, and also latched address bits Al and A2. The chip-select

lines are active for all memory and I/O cycles in their programmed areas, whether they be

1
| 199

I

I

generated by the CPU or by the integrated DMA unit.

3 Upper Memory CS, Lower Memory CS, and Mid-Range Memory CS: The chip select UCS

is provided for the top of the memory which is usually used as the system memory because after

I reset the 80186 begins executing at memory location FFFFOH. The upper limit of memory

defined by the UCS is always FFFFFH, while the lower limit is programmable which is defined

in the UMCS register. The chip select LCS is provided for low memory. The bottom of memory

I contains the interrupt vector table starting at location OOOOOH. The lower limit of memory

3 defined by LCS is always OH while the upper limit which is defined in the LMCS register is

programmable.

The four MCS lines used for mid-range memory are active within a user-locatable

3 memory block defined by the MCS lines.

Peripheral Chip Selects: The 80186 can generate chip selects for up to seven peripheral

devices. These chip selects called PCSO-6 are active for seven contiguous blocks of 128 bytes

3 above a programmable base address which may be located in either memory or 1/0 space.

4.1.5 DMA Channels

The 80186 DMA controller provides two independent DMA channels. Data transfers can

3 occur between memory and I/O spaces or within the same space. Data can be transferred either

3 in bytes (8 bits) or words (16bits) to or from even or odd addresses. Each DMA channel

maintains both a 20-bit source and destination pointer which can be optionally incremented or

I decremented after each data transfer. Each data transfer consumes 2 bus cycles (a minimum of

3 8 clocks), one cycle to fetch data and the other to store data. This provides a maximum data

transfer rate of 1.25M Words/sec or 2.5 M Bytes/sec at 10 MHz.

U
| 200

3

U

I DMA Operation: Each channel has six registers in the control block which define each

3 channel's operation. The control registers consist of a 20-bit Source Pointer, a 20-bit Destination

Pointer, each of these two pointers takes up two full 16-bit registers in the peripheral control

I block; a 16-bit Control Word which determines the mode of operation for the particular 80186

3 DMA channel. The Transfer Count Register (TC) which is decremented after every DMA cycle

specifies the number of DMA transfers to be performed. Up to 64 K byte or word transfers can

I be performed with automatic termination. All registers may be modified or altered during any

3 DMA activity. Any changes to these registers will be reflected immediately in DMA operation.

DMA Requests: Data transfers may be either source or destination synchronized, that is either

the source or the destination of the data may request the data transfer. DMA transfer may be

also unsynchronized, that is the transfer will take place continually until the correct number of

transfers has occurred. When source or unsynchronized transfers are performed, the DMA

channel may begin another transfer immediately after the end of a previous DMA transfer. This

3 allows a complete transfer to take place every 2 bus cycles or 8 clock cycles (assuming no wait

g states). When destination synchronized transfers are performed, data will not be fetched from

the source address until the destination device signals that it is ready to receive it. The DMA

3 controller will relinquish control of the bus after every transfer, the CPU can initiate a bus

I cycle.

DMA Acknowledge: No explicit DMA acknowledge pulse is provided. Since both source and

U destination pointerd are maintained, a read from a requesting source or a write to a requesting

U destination should be used as the DMA acknowledge signal. Since the chip-select lines can be

programmed to be active for a given block of memory or 1/0 space, and the DMA pointers can

2
* 201

U

U

I be programmed to point to the same given block, a chip-select line could be used to indicate a

3 DMA acknowledge.

DMA Priority: The DMA channels may be programmed to give one channel priority over the

3 other, or they may be programmed to alternate cycles when both have DMA requests pending.

3 DMA cycles always have priority over internal CPU cycles except between locked memory

accesses or word accesses to odd memory locations; also an external bus hold takes priority

Iover an internal DMA cycle. Because an interrupt request cannot suspend a DMA operation and

3 the CPU cannot access memory during a DMA cycle, interrupt latency time will suffer during

sequences of continuous DMA cycles. An NMI request, however, will cause all internal DMA

1 activity to halt. This allows the CPU to quickly respond to NMI request.

3 Timers: The 80186 provides three internal 16-bit programmable timers. Two of them are highly

u flexible and are connected to four external pins. They can be used to count external events, time

external events, generate nonrepetitive waveforms, etc. The third one is not connected to any

3 external pins, and is useful for real-time coding and time delay applications, and also can be

g used as a prescaler to the other two, or as a DMA request source. The timers are controlled

by eleven 16-bit registers in the peripheral control block. Each timer gets serviced every fourth

3 CPU-clock cycle, and thus can operate at speeds up to one-quarter the internal clock frequency

3 (one eighth the crystal rate).

4.1.6 Master and Slave Modes Operations

U 1. MasLer Mode Operation

3 Interrupt Controller External Interface: Five pins are provided for external interrupt

sources. One is NMI, non-maskable interrupt which is generally used for unusual events. The

21 202

3

U
other four pins may be configured in any of the following three ways:

1. As four interrupt input lines with internally generated interrupt vectors;

2. As an interrupt line and interrupt acknowledge line pair with externally generated

1 interrupt vectors plus two interrupt input lines with internally generated

3 vectors; and

3. As two pairs of interrupt/interrupt acknowledge lines with externally generated

I interrupt vectors.

3 Interrupt Controller Modes of Operation. ne basic modes of operation of the interrupt

controller are fully nested mode, cascade mode, and special fully nested mode. The controller

I may be used in a polled mode if interrupts are undesirable. The interrupt controller register

I model consists of fifteen registers: In-service register; interrupt request register; mask register;

priority mask register; interrupt status register; timer, DMA 0,1 control registers; INTO-3

I control registers; EOI register, poll and poll status registers.

3 Master Mode Features: The master mode has the following features: programmable priority,

end-of-interrupt command, trigger mode, and interrupt vectoring.

2. Slave Mode Operation

3 When Slave Mode is used, the internal 80186 interrupt controller will be used as a slave

controller to an external master interrupt controller. The internal 80186 resources will be

monitored by the internal interrupt controller, while the external controller functions as the

3 system master interrupt controller. Upon reset, the 80186 will be in Master Mode. IN Slave

3 Mode, each peripheral must be assigned a unique priority to ensure proper interrupt controller

operation. Therefore, it is the programmer's responsibility to assign correct priorities and

U
i 203

3

U

initialize interrupt control registers before enabling interrupts. All control and command registers

are located inside the internal peripheral control block.

4.2 The Intel 186 Integrated Processor Family Advance Members

- The 186 Integrated Processor Family incorporates a wide range of VLSI devices tailored

to suit the needs of embedded system designers. All 186 Family devices share a common CPU

architecture: the industry standard 8086/8088. Code developed on other "X86" platforms can

be ported with little or no modification to any of the 186 Integrated Processor Family devices.

Each of the 186 Integrated Processor Family device adds a full complement of peripherals to the

8086/8088 CPU core. The type of peripherals and level of integration vary between family

members. A complete 186 Family system can often be designed with just the addition of RAM,

I ROM and simple glue logic. The space savings afforded by high-integration are critical as

u designers continue to strive for smaller size and portability.

4.2.1 Intel 80C186 CHMOS High Integration 16-bit Microprocessor

U The 80C 186 ia a CHMOS high integration microprocessor. It has features which are new

to the 80186 family including a DRAM refresh control unit, power-save mode and a direct

numerics interface. When used in "compatible" mode, the 80C186 is 100% pin-for-pin

U compatible with the NMOS 80186 (except for 8087 applications). The "enhanced" mode of

U operation allows the full feature set of the 80C 186 to be used. The 80C 186 is upward compatible

with 8086 and 8088 software and fully compatible with 80186 and 80188 software.

U 4.2.2 Intel 80C186XL-20,-16,-12,-10 16-bit High Integration Embedded Processor

3 The Intel 80C186XL is a Modular Core re-implementation of the 80C186

Microprocessor. It offers higher speed and lower power consumption than the standard 80C 186

204

I

I

3 but maintains 100% clock-for-clock functional compatibility. Packaging and pinout are also

identical.

4.2.3 Intel 80C186EA-20,-16,-12 16-bit High Integration Embedded Processor

1 The Intel 80C186EA is a CHMOS high integration embedded microprocessor. It is the

3 second product in a new generation of low-power, high-integration microprocessors. It enhances

the existing 80C186 family by offering new features and new operating modes. The 80C186EA

I is object code compatible with the 80C186/80C188 embedded processor. It adds the additional

3 capabilities of Idle and Powerdown Modes.In Numerics Mode, the 80C186EA interfaces directly

with an 80C 187 Numerics Coprocessor.

4.2.4 Intel 80C186EB-20,-16,-13,-8 16-bit High-Integration Embedded Processor

3 The Intel 80C186EB is a second generation CHMOS High-Integration microprocessor.

It has features that are new to the 80C186 family and include a STATIC CPU core, an enhanced

Chip Select unit, two independent Serial Channels, I/O ports, and the capability of Idle or

I Powerdown low power modes. It is object code compatible with the 80C186/80C188

microprocessors.

4.2.5 Intel 80C186EC-16,-13 16-bit High-Integration Embedded Processor

3 The Intel 80C186EC is one of the highest integration members of the 186 Integrated

Processor Family. It uses the latest high density CHMOS technology to integrate several of the

most common system peripherals with an enhanced 8086 CPU core to create a compact, yet

1 powerful system ofi a single monolithic silicon die.

I 4.2.6 Intel 80L186EA-13, -8 16-bit High Integration Embedded Processor

The 80L186EA is the second member of the 186 Integrated Processor Family to go to

I
i 205

I

I

I 3V operation, following the 80L186EB. The 80L186EA is the 3V version of the 80C186EA. It

I is functionally compatible with the industry standard 80C186 embedded processor. Current

80C186 users can easily upgrade their designs to use the 80L186EA and benefit from the

I reduced power consumption of 3V operation. The feature set of the 80L186EA meets the needs

of battery-powered applications which benefit from the static CPU core and peripherals.

Minimum current consumption is achieved by combining low voltage operation along with

I features of the power management unit, thus maximizing battery life.

4.2.7 Intel 80L186EB-13, -8 16-bit High-Integration Embedded Processor

The 80L186EB is the 3V version of the 80C186EB embedded processor. It is the first

I product in a new generation of low-power, high-integration microprocessors. It enhances the

3 existing 186 family by offering new features and new operating modes. It is object code

compatible with the 80C186/80C188 microprocessors. By reducing Vcc, further power savings

can be realized over the standard 80C186EB, making the 80L186EB ideal for battery-powered

U portable applications.

I 4.3 Intel 80C187 80-bit Math Coprocessor

The Intel 80C187 is a high-performance math coprocessor that extends the architecture

I of the 80C186 with floating-point, extended integer, and BCD data types. It also executes

I numerous built-in transcendental functions. A computing system that includes the 80C 187 fully

conforms to the IEEE Floating-Point Standard. The 80C 187 adds over 70 mnemonics to the

U instruction set of the 80C 186, including support for arithmetic, exponential, and trigonometric

I mathematical operations. It is implemented with 1.5 micron, high-speed CHMOS III technology

and packaged in both a 40-pin CERDIP and a 44-pin PLCC package, and is also upward object-

I

code compatible from the 8087 math coprocessor and will execute code written for the 80387DX

and 80387SX math coprocessor. A 80C186 system that includes the 80C187 is completely

upward compatible with software for the 8086/8087. The 80C187 interfaces only with the

80C186 CPU. The interface hardware for the 80C187 is not implemented on the 80C188.

Programming Interface: The 80C187 adds to the CPU additional data types, registers,

instructions, and interrupts specifically designed to facilitate high-speed numerics processing. All

i new instructions and data types are directly supported by the assembler and compilers for high-

level languages. All communication between the CPU ar,n the 80C187 is transparent to

applications software. The CPU automatically controls the 80C187 whenever a numerics

I instruction is executed. All physical memory and virtual memory of the CPU are available for

3 storage of the instructions and operands of programs that use the 80C187. All memory

addressing modes are available for addressing numerics operands.

i Data Types: The 80C 187 supports the following 7 data types: word integer, short integer, long

3 integer, packed BCD, single precision real, double precision real, and extended precision real.

Register Set: When Rn 80C 187 is present in a system, programmers may use 80C 187's registers

in addition to the registers normally available on the CPU. The 80C187's register set includes:

3 8 data registers RO--R7, control register, status register, tag register, instruction pointer, and

data pointer.

Interrupt Description: CPU interrupt 16 is used to report exceptional conditions while

3 executing numeric- programs. It indicates that the previous numerics instruction caused an

i, unmasked exception.

Exception Handling: The 80C187 detects six different exception conditions that can occur

I
i 207

I

_ during instruction execution. They are: Invalid Operation, Denormalized Operand, Zero Divisor,

I Overflow, Underflow, and Inexact Result (precision).

Signal Description: The 80C187 pins are grouped by function as follows:

1. Execution Control--CLK (Clock), CKM (Clock Mode), RESET (System

3 Reset);

2. NPX Handshake--PEREQ (Processor Extension Request), BUSY (Busy Status),

ERROR (Error Status);

3 3. Bus Interface Pins--Dl5-D0 (Data Pins), NPWR (Numeric Processor Write),

NPRD (Numeric Processor Read);

4. Chip/Port Select--NPS1 (Numeric Processor Select), NPS2 (Numeric Processor

3 Select), CMDO (Command Select), CMDl (Command Select);

5. Power Supplies--Vcc (System Power), Vss (System Ground).

Bus Cycles: The pins NPS1, NPS2, CMDO, CMD1, NPRD, and NPWR identify bus cycles for

3 the NPX.

CPU/NPX Synchronization: The pins BUSY, PEREQ, and ERROR are used for various

aspects of synchronization between the CPU and the NPX.

3 4.4 Intel 80188 High Integration 8-bit Microprocessor

i The Intel 80188 is a very high integration 8-bit ,nicroprocessor. It combines 15-20 of the

most common microprocessor system components onto one chip while providing twice the

performance of the standard 8088. It is object code compatible with the 8086, 8088

Smicroprocessors and adds 10 new instruction types to the 8086, 8088 instruction set. The 8086,

E 8088, 80186, 80188 and 80286 family all contain the same basic set of registers, instructions,

208

U

I

and addressing modes. The 80188 processor is upward compatible with the 8086, 8088, 80186,

and 80286 CPUs.

Register Set: The 80188 has 14 registers: 8 general purpose registers: AX, BX, CX, DX, BP

I SI, DI, and SP; 4 segment registers: CS, DS, SS, and ES; and two status and control registers:

3 F, and IP.

Instruction Set: The instruction set is divided into 7 categories: Data Transfer, Arithmetic,

I Shift/Rotate/Logical, String Manipulation, Control Transfer, High-level Instructions, and

Processor Control.

Memory Organization: The memory of 80188 is organized in sets of segments. Each segment

1 is a linear contiguous sequence of up to 64K 8-bit bytes.

Addressing Modes: The 80188 has 8 addressing modes: Register Operand Mode, Immediate

Operand Mode, Direct Mode, Register Indirect Mode, Based Mode, Indexed Mode, Based

I Indexed Mode, and Based Indexed Mode with Displacement.

3 Data Types: The 80188 directly supports 8 data types: Integer, Ordinal, Pointer, String, ASCII,

BCD, Packed BCD, Floating Point.

1/0 Space: The 80188 I/O space has 64K 8-bit or 32K 16-bit ports.

3 Interrupt: The 80188 has the following interrupts: Divide Error Exception, Single-Step

Interrupt, Breakpoint Interrupt, Into Detected Overflow Exception, Array Bounds Exception,

Unused Opcode Exception, Escape Opcode Exception, and Non-Maskable Interrupt Request.

2
I
I

I

