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Bayesian Model Choice: Asymptotics and Exact Calculations

A.E. Gelfand and D.K. Dey*

SUMMARY

Model determination is a fundamental data analytic task. Here we consider the
problem of choosing amongst a finite (with loss of generality we assume two) set of models.

After briefly reviewing classical and Bayesian model choice strategies we present a general
predictive density which includes all proposed Bayesian approaches we are aware of. Using

Laplace approximations we can conveniently assess and compare asymptotic behavior of

these approaches. Concern regarding the accuracy of these approximation for small to

moderate sample sizes encourages the use of Monte Carlo techniques to carry out exact

calculations. A data set fit with nested non linear models enables comparison between

proposals and between exact and asymptotic values.

Key words: Bayes factor, Laplace approximations, Likelihood ratio statistics, Monte Carlo

methods.



2

1. INTRODUCTION

Model determination is a fundamental data analytic task. It is also a complex
matter influenced by intended use for the model as well as perspective regarding the class

of models being entertained. Thus, it is not surprising that no widely accepted strategy for
building models has emerged.

Here we consider a much less ambitious problem, that of choosing, within a

Bayesian modeling framework, amongst a finite specified set of models. Such selection is

based upon predictive distributions and we provide a general predictive formulation which

includes all proposed solutions we are aware of. By employing Laplace approximations

(see, e.g., Lindley 1980, Tierney & Kadane 1986) we can carry out asymptotic calculations

to conveniently assess and compare asymptotic behavior of these proposals and develop

tie--ins with classical likelihood ratio based strategies. We shall then describe how

simulation based techniques can be employed to perform exact calculations. In this regard,
we wish to use the output of recently discussed Markov Chain Monte Carlo methods for

Bayesian computation which supply samples essentially from the posterior distribution.

We shall also present some comparison between proposals, and between exact and

asymptotic values through the fitting of nested non linear models to a data set consisting of

57 points given in Bates and Watts (1988).

The literature on Bayesian model choice is considerable by now. It begins with the

formal Bayes approach which, in the case of two models, results in the Bayes factor.

Subsequent work has proposed modified Bayes factors. A current, reasonably thorough
review appears in Gelfand, Dey and Chang (1992) and its attendant discnssion. Our hope

in this paper is to achieve some unification of this substantial literature.

We note that all of this work presumes that choice is made by reducing each model

to a single summary number and then comparing these numbers. Such severe data

reduction only permits model comparison in aggregate; observation or case-level

diagnostics enable a clearer comparison of model performance. For work of this sort in the
Bayesian context see Geisser 1988, Pettit and Young 1990, Gelfand, Dey & Chang (1992).

The outline of the paper is thus the following. In Section 2 we review the behavior
of the likelihood ratio statistic and well known adjustments to it. In Section 3 we

summarize the Bayesian view of model choice through predictive distributions and the

Bayes factor. This motivates a general definition of predictive densities in Section 4 which
includes known cases in the literature and yields a variety of alternative Bayes factors.

Laplace method asymptotics for general predictive densities are discussed in Section 5 and

illustrated for various Bayes factors in Section 6. Concern for the a'cira'y of Lhe Laplace
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approximations as well as the limitations of these approximations leads us, in Section 7, to

seek arbitrarily accurate exact calculations using Monte Carlo methods. Approximate and

exact calculations are applied to a nested pair of nonlinear models in Section 8. We

conclude with a few summary remarks in Section 9.

2. -CLASSICAL APPROACHES

In what follows, we shall assume a choice between two parametric models denoted

interchangeably by joint density f(y Ii; Mi) or likelihood L(ýi; y, Mi), i = 1, 2 where y

is nil and 9. is pil. Since the model choice techniques we consider reduce models to

single summary numbers overall selection can be made through such pairwise comparision.
Also, in practice models are typically considered in pairs, i.e., model exploration is often

evolutionary, modifying a current model to see if improvement ensues. Moreover, classical

Neyman-Pearson theory for testing of models requires pairwise processing.

Indeed, a few remarks on classical approaches for model choice seems an appropriate

starting point. Informal procedures are generally based upon predictive performance in the

form of comparison, in some fashion, of distances between observed values and values

predicted under a given model. Occasionally certain optimalities can be ascribed to such

procedures. Implementation requires "fitting" the model. Following Neyman-Pearson

theory suppose we create the hypotheses Hi: data y arise from model Mi, i = 1, 2 and

set, say H1 as the null hypothesis. If the Mi are completely general there is no optimal

test of H1 vs H2 unless both models are fully specified. The formulation of a likelihood

ratio test requires an unambiguous specification of a null and alternative hypothesis such as

in the nested models case where M1 is the reduced model and M2 is the full model. The

likelihood ratio test then takes the form: reject HI if AU < c < 1 where

L(0 1 , y, M1)

L(8 2; Y, M2)

We assume here and in the sequel a regular case, i.e., the pi remain fixed as n -, w

whence, under mild conditions, - 2log An is approximately distributed as 2 under

H1. With this approximation, inconsistency of the likelihood ratio test arises, that is,

lir mP(choose M2 JM1 true) = lim P(An < cIM 1 true)
D-u fn-4 a
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=IimP(-2logAn >-2log c) =P(X2 > - 2log c) > 0.
n-amn 27

In other words, An tends to be too small; the likelihood ratio test gives too much

weight to the full model. As a result numerous authors (see below) have proposed

penalizing the likelihood in the form log L(di; y, Mi) - k(n, pi) where k(n, p) > 0, and

increasing in n and p. Hence, the full model will be penalized more than the reduced

model. We replace log An by the larger quantity log An + k(n, P2 ) - k(n, pl). For the

above inconsistency to vanish we need k(n, p2) - k(n, pl) -a, as n -4 m. The form

k(n, p) = mp is most common in the literature (though it does not eliminate

inconsistency). Values for a in the interval 1 < a < 2.5 appear in e.g. Akaike (1973) and

in Bhansali and Downham (1977). Nelder and Wedderburn (1972) suggest = r . Aitkin

(1991) suggests = log 2. Choices of k which depend upon n and do eliminate

inconsistency include k(n, p) = i log n (Schwarz, 1978), k(n, p) = p fl log (log n), f > 2

(Hannan and Quinn, 1979) and k(n, p) = n log(n + 2p) (Shibata, 1980).

3. THE BAYESIAN FORMULATION

The Bayesian model adds a prior specification r(•) to the likelihood specification.

Inference is based upon the posterior distribution r(f0y) c L(01, y) •-w(0). For Bayesian

model choice the two model components may be varied. The case where L is held fixed

and i is varied to assess the sensitivity of the posterior to such prior variation is referred

to as Bayesian robustness (Berger 1984, 1985). Our intent here is to parallel Section 2,

hence to vary L. As such we will assume "noninformative" priors.

The formal Bayesian model choice procedure goes as follows. Let wi be the prior

probability of Mi, i = 1, 2 and f(yI Mi) the predictive distribution for model Mi, i.e.,

f(yI Mi) = jf(yI Oi, Mi) " w(i I Mi) dOi.

f Tobs denotes the observed data then we choose the model yielding the larger

wi (YobsI Mi). If wi = 4 we use the Bayes factor (of M1 with respect to M2 )

BF f(yobsI M) (2)

f(yobs' M2 )
Juffreys (1961), (see also Pettit and Young, 1990) suggests interpretive ranges for



the Bayes factor. Foundational arguments (see, e.g., DeGroot, 1970) insist that the only
way to compare models is through the "probabilities of these models" and hence, with two

models, through the ratio. It is noteworthy that the Bayes factor employs no presumption
of nesting and does not require "fitting".

In fact, presuming (2) can be calculated, why would one seek alternatives? One
criticism is that if ( 9) is improper (as it usually will be under noninformative

specification) then f(y) is as well. Hence, we can not interpret the f(yl Mi) as the

"probabilities of these models" nor can we interpret the ratio. Several authors have

attempted, primarily in the context of normal data models, to develop a multiplier for BF
to overcome this problem (Smith and Spiegelhalter, 1980; Spiegelhalter and Smith, 1982;
Pericchi 1984). Pericchi suggests the essence of the problem is that, for a given
experiment, the expected increase in information about model parameters varies with the

specification of the model and that the multiplier should neutralize this differential.
Closely related to this is the fact that even under proper priors with arbitrarily large

sample sizes the Bayes factor tends to attach too little weight to the correct model. An
illustration is the well known Lindley paradox dating at least to Bartlett (1957). In the
nested model case, under usual regularity conditions, we shall show in Section 6 that BF -4

w as n -4m. In other words, regardless of the data, as n grows large, model M1 will be

chosen. The behavior of BF contrasts strikingly with that of An which provides too

much support for M2 ; BF is qualitatively larger than An. This comparison is quantified

in an asymptotic sense in Section 6.

4. GENERAL PREDICTIVE DENSITIES

The use of predictive distributions in some form has long been recognized as the

correct Bayesian approach to model determination. In particular, Box (1980) notes the
complementary roles of the posterior and predictive distributions arguing that the posterior

is used for "estimation of parameters conditional on the adequacy of the model" while the
predictive distribution is used for "criticism of the entertained model in light of the current
data". In examining two models, it is clear that the predictive distributions will be

comparable while the posteriors will not.
Box and others have encouraged a less formal view with regard to Bayesian model

choice resulting in alternative predictionist criteria to the Bayes factor. Using cross
validation ideas (Stone, 1974; Geisser, 1975) the pseudo Bayes factor (PsBF) arises
(Geisser and Eddy, 1979). Aitkin (1991) proposed the posterior Bayes factor (PoBF) while
recent work of Berger and Pericchi (1992) introduces the intrinsic Bayes factor (IBF). All
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are intended to address the aforementioned problems associated with the Bayes factor.

The underlying suggestion is that we adopt a broader notion of predictive

distributions and densities. In fact, we shall say that a predictive density arises by
averaging a density defined over some portion of the sample space (arising from the
likelihood) with respect to a distribution on the parameter space (arising from a

data-based updating of the prior). We assume that the data, y, consists of a set of

conditionally independent univariate observations, yj given the parameter 0. However,

minor modifications (replacing marginal densities for the yj given 0 with appropriate

conditional densities) permit the handling of more general models.
We introduce some notation. Let y , j = 1,...,n be a sequence of independent

observations which, under model Mi have density f(yj I i, Mi), i = 1, 2. Let Jn denote

the set {1, 2,...,n} and let S be an arbitrary subset of Jn" Define L(Gi; yS, Mi)

n d.
nfl{f(yj I, Mi)} J where dj = 1 if jES, = 0 if j 0 S. Finally, let r 1.(Oi), i = 1, 2 be

j=i .
the prior density for 0. under model Mi with respect to Lebesgue measure.

Consider the formal conditional density

f(Y 2' Mi) I ,S1Mi)) fL(PyS ,Md)i(ITYS2 )dOi

fL(Oi; yS, Mi) " L(0i; YS2, Mi) i(0i)d0i

J=L(Oi; yS Mi) vi 1(01 ) dOi (3)

for S1, S2 arbitrary subsets of Jn" The form (3) defines a predictive density which

averages the joint density of with respect to the prior for 0. updated by yS . WeY1 S2•

take Ys to be a subset of y since for model choice we want a numerical value for (3).

Examples of (3) in the literature include:

(i) S1 = Jn' S2 = which yields the standard predictive or marginal density of the

data. The denominator integral is ignored in this case.
(ii) S1 = {r}, S2 = Jn - {r} which yields the cross-validation density f(yrIY(r), Mi)

where Y(r) = (Yl' Y21 .Yr-1' Yr+l.""Yn), as in Stone (1974) or Geisser (1975).
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f(yr I Y(r), Mi) evaluated at the observed data is called the conditional predictive
n

ordinate (CPO), dating to Geisser (1980). The form 11 f(yrly(r), I i) has been
r=1 ~r'M)hsbe

proposed as a surrogate for f(y) by Geisser and Eddy (1979).

(iii) S1 a small subset of J.;, usually two or three elements, S2 = Jn- S1 extending

the single point deletion in (ii), as in Pefia and Tiao (1992).

(iv) S1 = Jn, S2 = J. which yields Aitkin's (1991) posterior predictive density. Aitkin

argues that, unlike f(y) which results from averaging the joint density of y with

respect to the prior, one should average with respect to the posterior.

(v) S1 = Jn - $2' $2 = 11, 2,...,[pn]} where [.] denotes the greatest integer function.

The idea here is that a proportion p of the observations be set aside for prior

updating with the remainder to be used for model determination. Such an idea was

suggested by Atkinson (1978) and by O'Hagan (1991).

(vi) S1 = Jn - $2' S2 is a minimal subset (Berger and Pericchi, 1992) i.e., the least

number of data points such that 7ri( iyS 2 ) is a proper density. In the regular

case, the dimension of S2 is fixed regardless of n. Then f(YS1 YS 2 Mi) is proper

with, as we will see, with the same asymptotic behavior as f(y; Mi).

Notice that, as n -. m, (i) and (vi) are qualitatively different from the rest; for (ii)

through (v) the cardinality of S2 approaches m as n -4 w. That is, for (ii) through (v),

we are averaging against a distribution over the parameter space which, with increasing

sample size, places its mass where 9. must be. Hence, it is not surprising that (i) and (vi)

exhibit different asymptotic behavior from the rest.

The predictive densities (i), (ii), (iv) and (vi) have been employed in the literature

to create model selection criteria. Clearly, (i) produces the Bayes factor, BF, given in (2).

From (ii), we obtain the pseudo-Bayes factor, PsBF (Geisser and Eddy, 1979)

• n1 f(YrlY(r), MI)PsBF = r (4)

II f(YrIY(r), M2 )
r

Fo (i) we obtain the posterior Bayes factor (Aitkin, 1991), PoBF, i
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PoBF = f(yly, M1) (5)

f(yIY, M2 )

Finally, from (vi) we can develop several versions of an intrinsic Bayes factor (IBF)

(Berger and Pericchi, 1992). If r is the dimension of the minimal subset and S1 , I = 1,

,...,(u) indexes the subsets of size r of Jn) then the objects in (vi) are of the form

f(ys I ySI, Mi), where Sc denotes the complement of S, relative to Jn. We might

consider the ratio of the averages of such forms,

E f(YsCIYS, M1 ) (f(ys I MI))-I
I1 1 = BF -I I I 7
E f(yScIYS, M2 ) E f(Y5s M2 )- (7)

or the average of the ratios,
f(yS•]YI,~ MI) f(YS I M2)

f--y 1 I = BF. (n)-1 (8)
1 f(ysClys, M2) I f(YS Ii)

Since (n) can be quite large, Berger and Pericchi suggest instead averaging on the right

hand sides of (7) and (8) over a random sample of subsets of size r from Jn"

5. LAPLACE METHOD ASYMPTOTICS

We now investigate the asymptotic behavior of (3). Asymptotics are over the

sample space through the sampling distribution of estimates of 0i as n -4 w. We employ

Laplace method approximations as in Tierney and Kadane (1986) whose form depends

upon S1 and ST Let C(S) denote the cardinality of the set S. As n -4 ® we have three cases

(a) C(S 1)-.., C($2) fixed

(b) C(Sl) fixed, C(S2) -

(c) C(S 1) -0, C(S2 ) -,.

Examples (i) and (vi) of section 4 fall into case (a), (ii) and (iii) into case (b); (iv) and (v)
into case (c). For case (a) asymptotics apply only to the numerator in (3). For cases (b)

and (c) they apply to both numerator and denominator.

The basic Laplace approximation is
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f'e"b(•dG = emh(0) (2 ,F)p/2 m-P/2I-H-(,)I + O(m-) (9)

where 0 is p%1 with h having unique mode 8 and H(6) is a pip positive definite

matrix such that (H(O)),k = 82̂h(O)/aojDok. For a ratio of integrals with g(O) > 0

Jg(C)emh(O)dO m(h*(e)-h(i)) 3
eIH_()I +O(m) (10)

where mh*($) = mh(U) + log g(U) with h* having unique mode i?" and H*(O) is pip

positive definite matrix such that (H*(O))k = 02h*(8)/aOjaOk.

We now apply (9) and (10) to (3). In case (a) we use (9) for the numerator of (3)

with m = C(SI) and

mhi($i) = log L(Oi; yS Mi) + log L(9i,y, M) + log Tr(O-). (11)
1 2)

Let i (S1' S2 ) be the mode of (11). Then for case (a) we have:

O(Sl1 1YS 2, i L(0i('1,S2); YS 1, Mi)'L( li(S1,S-,); YS2, Mi) - ri(ei(S1,S2))

• (27) Pi/2(C(S1 )) -p/21 _H(i(SiS2))I i.(f(Ys2; Mi))-I. (12)

(12) has O(n-1 ) accuracy. In case (b) we take g(i) = L(9i; ys1. Mi) with m = C(S 2 ) and

mbi(Pi) = log L(Oi; y$ , Mi) + log ri(Oi). (13)

Let 'i($2) denote the mode of (13). Applying (10) we have for case (b) f(yS 1YS 2, Mi) -

L( #i(S1,2);Ys1,Mi) L(Oi(S 1 ,S2 ); YS 2 Mi) d i(Oi(S1,S 2 )) fI-H- 1f(Oi( 1 ,$2 ))I'

L( O a (S2 ); Th2a Md ) ia(se(Spo) ai-Hn (ti(S2)) (1

(14) has O(n ) accuracy. To handle case (c) assumptions regarding the rates at which the
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C(Si) -• as n -' w are required. If, as in examples (iv) and (v), we have 1 im
n-w

C(S1)/C(S2) = k, then the same approximation as in case (b) arises.

Suppose the usual regularity conditions hold on the likelihoods, L(O6; y, Mi), so

that if i. is the maximum likelihood estimator of 9. based upon a sample of size n we

have 9.in i-46.,o, for some 10 and n- l(-6og L(O;y,Mi) where

I(8) denotes Fisher's information matrix. Suppose we assume that 0i($,$2) maximizes
(11) with log 7ri(Oi) deleted and that maximizes (13) with log li(Gi) deleted.

Then, provided C($2) = O(n), we also have ' -in + ( ) where can be any of

i (S$2), 9i(S 1,S2 ), BP(S2 ) or 8i(S1,$2) whence all of these modes differ by Op(n-1).

Moreover, if i is continuous fi(.) = Ti(oin) + Op(n-l). Finally, -H(0i) - I(0i),

and, in fact, -H(0in) -P-, I(9. ). As for H*(0i), in case (b), L(-; ys1, Mi) is
1,n041

asymptotically negligible so -H*(Oi) -- 1(i) and also -H*(0) For case

(c), if C(SI) = O(n) then -H*(0i) -P- 21(0i) and also -H*(i-n) - 21(8,io). We can

replace .n by • in either H or H* with the same result holding. In fact, substituting

asymptotically equivalent estimators of 0i in (14), still yields O(n-1 ) accuracy.

6. ASYMPTOTICS FOR VARIOUS BAYES FACTORS

Applying (12) to M1  and M2  and using the asymptotics at the end of the

previous section, we obtain

BF = L(G1 n;Y, M1 ) 7rl(l' I n)D [ -HI(^1,n)1 n (P2-Pl )/2

L(9'2,;y, M2) 2092,n) [I-H2 (92,nd'

whence, with obvious definition of K(01,I, )2,n),
p2-Pl

log BF z log An + = log n + K(0 1 ,n, 02,n) (16)

Expression (15) appears in Kass and Vaidyanathan (1992). Expression (16)
precisely reveals the difference in asymptotic behavior between An and -F in the nested
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case; K = 0(1) so the Bayes factor will be consistent but will exhibit Lindley's paradox.

Also, apart from K (16) yields Schwarz's (1978) BIC adjustment of An. If we ignore K in

choosing a model, we can be misled since K need not be negligible (see section 8). Such
concerns are pertinent to the ensuing approximations for the other variants of the Bayes

factor and encourage exact calculation as discussed in section 7.

The pseudo Bayes factor provides an interesting case for asymptotic approximation.

It is built from the cross validation distributions f(yrly(r), Mi) which lend themselves to

a variety of approximations based upon (14) and the different but asymptotically

equivalent estimators of 0G discussed above. Suppose, for instance, in the numerator of

(14) we replace Oi(S 1,$2 ) by Pn and in the denominator we replace ei(S 2 ) by .,

the MLE of 0. based upon the data with yr removed. We obtain
Ir

n 1

lI1 f(y.j IV inM ) 7ri i(U)OIll (-H (o.i- 14
f(YrIY(r)M I f(yr1 ,r),M.) (r)) H-1'( ( .r()1j#n r $,n In

Since the second and third ratios on the right hand side of (17) tend to 1, we also have

rI f(YjVin' Mi)

f(yrIY(r), Mi) j 1 (18)j Orf(Y i•(r

and
HI f(yj[ I0i,n, Mi)

If f(Yr IY(r),I Mi)d I (19a)
r r 11rf(y -I P.(r)

0 rM j ,nMi)

Two obvious simplifying approximations of (19a) are

'I f(yrIy(r), Mi) z 11 f(yrI Oi, Mi) = L(Oi,n; y, M.) (19b)
r r

and

nf1 (YrIY(r)' Mi) z 17 f(yr in Mi). (19c)

Stone (1977) and Geisser and Eddy (1979) discuss these approximations calling (19b) the

predictive likelihood and (19c) the quasi-predictive likelihood. Let us compare all three
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approximations. Stone looks at (19b) and (19c), and argues that

lina (log II f .(r , M1) -log I1 f (yrI ',n M)) Pi

n-4 r 1, r

We can readily compare (19a) and (19c). After some manipulation

1. f(yj[ 0i-n, Mi)
log 11 -- log 1° Mnf(y I (r)'

rr, I j .(-. r rA,n M

j#r J i'n

= X (2-log f(yjI i,n MI)-log f(yrIe.(), M1))
r j

= - -0 . )T 1 in in 0i,n) (20)

where Hi is the Hessian matrix of L(0i; y, Mi) and r(r) lies between 0 .(r) and 0.
1whr I,n )n

By standard argumentation for quadratic forms we may show that, as n -1 w, (20) -. pi/2.

Finally, using the definition (4), the approximation (19a), and the above limiting

relationships between (19a), (19b) and (19c) we obtain

log PsBF z log A + -"2 -- (21)

Hence, using the approximation (19a) we obtain the Nelder and Wedderburn (1972)

adjustment of An as in Section 2. Stone observes that using the approximation (19c) we

obtain the customary AIC adjustment (o = 1) of An (Akaike, 1973).

Turning to the PoBF and recalling earlier discussion about the case (c)

asymptotics, suppose in (14) we replace 0.(SS2) and .(S2) with 8i9n* Then we obtain

SPoBF z An 2(p 2 -p 1 )/2

and

log PoBF z log An + 2" log 2. (22)

Result (22) along with some additional asymptotic calculations are provided in Aitkin

(1991). Hence, the correcton of the likelihood associated with the PoBF falls below that of

Nelder and Wedderburn which, in turn, falls below the customary ,IC adjustment.

Neither the PsBF nor PoBF will suffer the Lindley paradox.



13

We next consider the IBF. From expressions (7) and (8), given (15) or (16) the

asymptotic behavior of the IBF depends upon that of the right hand side summations.

Though the components of the sums are not necessarily independent, in many cases a "law

of large numbers" argument will produce a limiting constant whence, asymptotically the

IBF behaves like a multiple of the Bayes factor.

7. EXACT CALCULATIONS USING MONTE CARLO METHODS

The accuracy of the previous analytic approximations is unknown in practice.

Additionally, these approximations do not produce functional forms since required modes

can rarely be obtained as explicit functions of the data. Rather, for a given observed

sample, P's of O's would be calculated numerically yielding a numerical value for (3).

Therefore, we can not study the behavior of or features of such predictive distributions. A

sampling-based approach is attractive in avoiding the above difficulties. Such simulation

approaches might be noniterative as in standard Monte Carlo (see e.g. Geweke, 1989) or

iterative as for example using the Gibbs sampler or other Markov chain Monte Carlo

techniques (see e.g. Gelfand and Smith, 1990; Tierney, 1991). We present no detail

regarding these techniques. Rather we just describe how they enable arbitrarily accurate

estimates of (3) as a function ofYs1 or of expectations associated with (3).

Suppose g( 8) is taken as an importance sampling density for L( i; ys2; Mi)7ri( i).

If •j' j = ,...,Bi is a sample from g and we define wij = L(#ij; YS2 ; Mi) 7(9ij)/g(ýij)

then a Monte Carlo integration for (3) is

f(yS IYS, i-) = 1 ; L(O*i, ySl; Mi) - w../E wij. (23)
1 21 y M ' 1  1 j(23

If a Markov chain Monte Carlo technique has been used, the output is usually taken to be a

sample 0,j, j = 1,...,Bi from the posterior vr(jIy). But then we can take the posterior as

the importance sampling density in (23) resulting in the approximant

E 1 -- L(ýiJ; Ys1'Mj)

1 2 .L(iJ';Ysc' Mi) J L(uiJ; ySMi) (24)

where S J - S2. The estimator (24) is routine to calculate and simulation consistent.
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However, its precision depends upon the stability of the weights wi (L(Mij, Y2 Mi

that is, upon how good an importance sampling density 7r•( tIy) is for 7ri( IYs2 ). In the

case of the PoBF it is perfect and the resulting estimate takes the simple form

B2  B 1

(I L(*2j; ySI' M2)/B2)- E L(Ol'j; ySI' M1)/BI. (25)
j=l 1 j=1 3

In the context of cross validation we would expect xi(OiOy) to be a good importance

sampling density for each iri(Oi Y(r)) and (24) becomes a harmonic mean

f(yrIY(r), Mi) = B.(E 1 (26)
SJfr(yrI Mi)

from which the PsBF can be straightforwardly calculated.

Consider the special case of f(y, Mi). Here, if r(O-) is a proper density,

(f(y, Mi)- 1 = J •i() .ri.(Gly) dO1.
ML(; y, Mi)7rj(#i)

Thus, our estimator becomes

f(y, Mi) - ( ' O ) 1 (27)
L(; y, M J

In (27) r plays the role of an importance sampling density and natural choices to "match"

the posterior would be multivariate normal or t densities with mean and covariance

computed from the Oi'.'s. If 7ri is proper we could take it as 7- obtaining an estimator of

f(y; Mi) proposed by Newton and Raftery (1991).

Finally, suppose f(Ys 1Ys 2 ; Mi) is proper and we seek the expectation of h(ySl)

with respect to this density. Suppose the conditional expectation al(Oi) = E(h(ys )I Oi,

Mi) with respect to L(i; ySl, Mi) is available explicitly. Then since Eh(YS I2; Mi)

SJal(0i) ri (OilYs2) dOi =
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"7i(ý-iiVs2(.)

f al(Oi) iOLy ri(.I y) dei = f(y Jyss; Mi) "fal(Oi) I dOi
2 L(O,;ysC) Mi)

a Monte Carlo integration for this expectation using (24) takes the form

E~~y Y ;Mi-) - al(Oij)/L(Oij; ys C, Mi)]/ E 1/L(Oi j; y c, Mi-) (30)

1 2 JJ 2 s M2

If al(fi) is unavailable explicitly, but yi ,j j = 1.."'Bi is a sample from f(yS 1 YS2; Mi)

then E h(yS ryS ; Mi) B 1 j h(yl ). To draw yS " f(YS IYS' Mi) it suffices to
1 2 1 111i 1 21

draw Y9 - L(Oij; yS1, Mi) where 8ij, are a sample from ri(-I yS2). Smith and

Gelfand (1992) discuss converting a sample from one posterior to that from another. In the
present case, we must convert the 0ij from ri(#.Iy) to Of from 7i(0i1yS

8. A NUMERICAL EXAMPLE

We consider a data example where the objective is to choose between nested

nonlinear models. We employ both asymptotic results (Section 6) and exact calculation
(Section 7) to numerically compare A n and the various Bayes factors. The data concerns

the steady state adsorption of o-xylene as a function of oxygen concentration, inlet

o-xylene concentration and temperature. The sample of 57 points is presented along with
the full model in Bates and Watts (1988, p. 306-309).

The full model M2 is, in fact, yj = bi~xj, D1M 2 ) + Ej where xj is 3xl and the

error E is assumed independent N (0, e2). Here bi(x, 0) = b1 b2 /(b 1 + .22788 b2 ) with

bl (x, I) = 01x1 exp(-0 3 /x 3 ) and b2 (xl 0) = 02x2 exp(-0 4 /x 3 ). A convenient reduced

model, M1, sets 03 = 04 yielding yj = br(xj, 01M 1 ) + where br(x, 01MI) = #1 02 Xlx 2

exp(-O 3 /x 3 )/(0 1 xI + 2.2788 02x2 ). The modeling implicitly assumes that all 0i > 0.

Hence, we take a flat prior on =i = log Oi independent of the prior r(a2) r ,-2 on a

A nonlinear regression fitting package (SAS PROC NLIN) was used for M1 and for

M2 to obtain the maximum likelihood estimates of all the parameters and thus to compute

the likelihood ratio statistic A (;22/;2)n/2exp{p P2 )/2} which turns out to be .004.
n 2 exP1-P2)/} wichturs ou tobe 004
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The maximum likelihood estimates and their asymptotic covariance were used to obtain,

for each model, a multivariate t-distribution which served as an importance sampling

density for a noniterative Monte Carlo approach. "Exact" calculations based on 10,000

simulations along with asymptotic approximations axe given in Table 1.

log An log BF log PSBF log PoBF

"Exact" -5.52 -4.94 -5.13 -5.27
Calculation

Asymptotic -3.50 -5.02 -5.17
Approximation"

Table 1. Monte Carlo estimates and asymptotic
approximations for model selection criteria

Table 1 indicates that regardless of the criterion, the full model is overwhelmingly

selected. The asymptotic approximation for BF is poor suggesting that for such very

nonlinear models the sample size 57 is not large enough; K in (16) is not negligible. More

precise approximation using (15) is nontrivial in the present case and seems hard to justify

given the relative ease with which the simulation approach can be implemented.

9. CONCLUDING REMARKS

Our effort here has focused on modeling situations where pi < < n, so-called

regular models. Though this encompasses a broad range of classical problems, much of

contemporary Bayesian modeling considers hierarchical or structured random effects

models. In such cases pi or P2- P1 can tend to w as n -, m. Among the disasters which

befall us in such nonregular problems are: i) all of the asymptotics presented here break
down ii) parameters may not be consistently estimated (a matter which was recognized as

early as Neyman and Scott, 1948) iii) under improper priors the posterior need not be

proper (a form of Bayesian nonidentifiability). Attention to the prior specification can

remedy (ii) and (iii) but not (i). Hence, the model choice criteria discussed here require

exact calculation through the approaches of Section 7. In this regard a valuable

supplement to these experiment-4evel criteria is investigation of model performance at the

observation or case level.
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Bayesian Model Choice: Asymptotics and Exact Calculations

A.E. Gelfand and D.K. Dey*

SUMMARY

Model determination is a fundamental data analytic task. Here we consider the
problem of choosing amongst a finite (with loss of generality we assume two) set of models.

After briefly reviewing classical and Bayesian model choice strategies we present a general

predictive density which includes all proposed Bayesian approaches we are aware of. Using

Laplace approximations we can conveniently assess and compare asymptotic behavior of

these approaches. Concern regarding the accuracy of these approximation for small to
moderate sample sizes encourages the use of Monte Carlo techniques to carry out exact
calculations. A data set fit with nested non linear models enables comparison between

proposals and between exact and asymptotic values.


