- . AD-A268 6 |
USAISEC WA @

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

ISA-97 COMPLIANT ARCHITECTURE

TESTBED (ICAT) PROJECT
FINAL REPORT

ASQB-GC-92-006

. LE(, (' ;‘
uezs 1993%

N
AIRMICS - @
115 O’Keefe Building .

Georgia Institute of Technology
Atlanta, GA 30332-0800 93-19671
WAV RAARMRAD -\

93 8 24 007

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE-

Form Approved
OMB No. 0704-0188
Exp. Date: Jun 30. 1986

e
ta. REPORT SECURITY CLASSIFICATION
LA FIED

1b. RESTRICTIVE MARKINGS
N

2a. SECURITY CLASSIFICAION AUTHORITY
N/A

w
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILIBILTY OF REPORT

N/A

m
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
ASQB-GC-92-006 N/A
6a. NAME OF PERFORMING ORGANIZATION | 6b. OFFICE SYMBOL }7a. NAME OF MONITORING ORGANIZATION
AIRMICS (If applicable)
ASGB-~GCN N/A

P —— A —
6c. ADDRESS (City, State, and Zip Code)
115 0°Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

s
8b. NAME OF FUNDING/SPONSORING
ORGANIZATION

AIRMICS

8b.
(If applicable)

ASGB-GCN

s —
OFFICE SYMBOL

e —~——
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

70, ADDRESS (City, State, and ZIP Code)

N/A

bt ——
8¢c. ADDRESS (City, State, and ZIFP Code)

—r————— —
10. SOURCE OF FUNDING NUMBERS

115 O’Keefe Bldg. PROGRAM PROJECT TASK WORK UNIT |
Georgia Institute of Technology ELEMENT NO.J NO. NO. ACCESSION N2
Atlanta, GA 30332-0800 DY10 01-01
11. TITLE (Include Security Classitication)
L3
ISA 97 Compliant Architecture Testbed (ICAT) UNCLASSIFIED

12. PERSONAL AUTHOR(S)

1.Cl
13b. TIME COVERED
FROM TO

Russe

13a. TYPE OF REPORT

Melody Eidbo, William Putnam, Michael McCracken, Annie Anton,

Ceorse Rouskas

14. DATE OF REPORT (Year. Month, Day,

Paul Cutris,

15. PAGE COUNT

March 30, 1992

16. SUPPLEMENTARY NOTATION

h— g
17. COSATI CODES
FIELD GROUP SUBGROUP

. ——- iyt
18. SUBJECT TERMS (Continue on reverse it necessary and identity by block number;
POSIX, GOSIP, TCP/IP, Distributed Open Environment

1992.

components of the ICAM.

of the architecture.

ment systems and SQL.

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

This report describes research efforts into the guidelines provided in the Information System

Architecture document prepared by the System Integracion Directorate of the USAISEC, August 29,
The report discusses the refinement of the ISA-97 Compliant Architecture Model
The ICAM is a modular architecture for the design,
guide in the transitioning of Army Information System (ISA) into distributed open environment.
The report includes the refinement of the operating system service and interfaces to the other
The POSIX standard is also examined for suitability as a standard op-
erating systems interface for the ICAT implementation.
model that is used to simplify the task of building systems that comply with the requirements

The report summarizes the research concerning the transition of the Army
Management information systems from a mainframe, flat file, third generation environment to a

distributed, open systems environment using workstations, networks, relational database manage-
The report compares existing military protocol standards to their GCOSIP
counterparts, in functionality and service, that would be used in a transitioning network envi-

(ICAM) .
implementation of information systems and a

The report discusses the ICAM demand

20. DlSigl%UTlONNIAVAILlBlLiV OF ABSTRACT

[UNCLASSIFIED/UNLIMITED] SAME AS RPT. [] DTIC USERS
—
Lim a. IVIDUAL

Adrienne J. Raglin

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

. TEL Inciude Aree Code)
(404) 884-3136

c. [YMBOL
ASGB-GCN

DD FORM 1473, 84 MAR

83 Aﬁ edition may be used untll exhausted.
Al other editions are obsolets.

—~SECURITY CLASSIFICATION OF THIS PAGE

This research was performed under contract DAKF11-91-D-0004 for the Army Institute for
Research in Management Information, Communications, and Computer Sciences
(AIRMICS), the RDT&E organization of the Army’s Information Systems Engineering
Command (ISEC). This report is not to be construed as an official Army position, unless so
designated by other authorized documents. Material included herein is approved for public
release, distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

unications Network
stems Division

N

Director
AIRMICS

DTIC QUALITY DISICTED 3

Availability CGodes

Joﬁn R. Mitchell

Accession Por

Vi
NTIS GRA&I = o
DTIC TaB Il
Unannounced O
Justifteation
By
| Distribution/

jAvail andfor |

W -

EXECUTIVE SUMMARY

This report describes research efforts into the guidelines provided in the Information System
Architecture document prepared by the System Integration Directorate of the USAISEC, August
29, 1992. The report discusses the refinement of the ISA-97 Compliant Architecture Model
(ICAM). The ICAM is a modular architecture for the design, implementation of information
systems and a guide in the transitioning of Army Information System (ISA) into distributed open
environment. The report includes the refinement of the operating systems service and interfaces to
the other components of the ICAM. The POSIX standard is also examined for suitability as a
standard operating systems interface for the ICAT implementation. The report discusses the ICAM
demand model that is used to simplify the task of building systems that comply with the
requirements of the architecture. The report summarizes the research concerning the transition of
the Army Management information systems {rom a mainframe, flat file, third geacrauon
environment to a distributed, open systems environment using workstations, networks, relational
database management system and SQL. The report compares existing military protoco! standards
to their GOSIP counterparts, in functionality and service, that would be used in a transitioning
network environment.

ISA-97 Compliant Architecture Testbed (ICAT) Project

Final Report

Software Research Center

College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

CONTENTS

INITOQUCTION conceeiiiititneieeieseeeeesssuessesassoraosesessssssonessassssonsessssasasnssssssnssssassssssessssesssnsessesnnssnnnss 1
1. ICAM REFINEMENT
ISA-97 Compliant Architecture Testbed (ICAT) Project ICAM Entry
Module Refinement Task.......coemmeereeemimrierteeieeeieieeesisseesesssssessasssssesessossssssans 5
William Putnam

ISA-97 Compliant Architecture Testbed (ICAT) Project ICAM Operating

Systems Services Refinement TasKcococviiicmnriniinniinnnncinneieicnsceeeneas 21
Melody Moore Eidbo

2. MODEL OF INFORMATION SERVICES DEMAND
The ICAT Information Demand MOdel......eeeveeeceinieeineenrecccseersiecnreesssssssassssssessssessssans 31
W. Michael McCracken, Annie I. Anton and S. Paul Curtis

3. RE-ENGINEERING AND TRANSITION
ISA 97-Compliant Architecture Testbed (ICAT) Project Tools and Database

Transition SUDLASKS........ccccccieeesinernsseenmentessessnsassncsessassassessassssnessannessasasianses 47
Spencer Rugaber, Bret Johnson and Gary Pardun

A Comparative Study of DOD and GOSIP Protocols..........cccccenee.. teeteetesnersessessseneentesasetaraas 89
George N. Rouskas
Transitioning from TCP/IP to GOSIP Protocols: A Product Overviewcovereveinnnene. 103

Russell J. Clark and Mostafa H. Ammar

THIS PAGE WAS INTENTIONALY LEFT BLANK

i

INTRODUCTION

In response to the current information requirements (standards-compliant systems) and strategies
(open-systems and decentralization of data processing) of the Army, AIRMICS has proposed the
ISA 97 Conceptual Architecture Model (ICAM) as an information system architecture reference
model for building an information system using standardized interfaces and components. The
ICAM serves as a framework for specifying system requirements and developing portable com-
puter software programs. The establishment of these modules and their application programming
interfaces (APIs) will also ease the job of software maintenance, replacement, and information sys-
tems acquisition.

As shown in Figure 1, the ICAM consists of six distinct modules: entry, operating system, appli-
cation, distributed encyclopedia and data, distributed control, and communication modules. These
modules are inter-connected by using standardized APIs. This is the model that formed the basis
for this project. Each task in the project related to some aspect of the ICAM. Thus the ICAM is the
structure which threads throughout the tasks described below.

Entry
Applications
Operating Data Encyclopedia Data
System
Distributed Control
Communications Layers
Hardware

Figure 1. ISA 97 Conceptual Architectural Model (ICAM)

The project was designed to follow the general guidelines provided in the Information System
Architecture, Circa 1997 document (prepared by the System Integration Directorate of the
USAISEC, August 29, 1990). The primary objective of the project was to test candidate techniques
and technologies for incorporation into designs to inwplement the ISA 97 Architecture.

ISA 97 Compliant Architecture Testbed project was conducted during the period of May through
December 1991. The contractor was an interdisciplinary team from the Georgia Institute of Tech-
nology, College of Computing and Software Engineering Research Center. The team was divided
into small work groups to conduct the research. Each group was responsible for a task and worked
on that task independently. This final report is the aggregation of the reports from each of the
groups. The project consisted of the following tasks:

Task 1: ICAM Refinement.

This task required the team to (1) define fundamental services offered by each module, (2) provide
analysis of the technical accuracy of the ICAM proposal, (3) develop specifications for application
programming interfaces (APIs) between the application layer and other layers of the ICAM, and
(4) develop protocols for the upper modules of the ICAM (modules above the communication
module).

The ICAM is a modular architecture for the design and implementation of information systems and
was developed for use as a guide in the transition of Army Information Systems into the distributed
open systems environment. The model is conceptual and is intended to represent services required
from any information system rather than to provide a design for a particular information system.
Using the model as a guide to the required services will also provide a structure from which a
design of a system can be initiated. For example, an operating system is a required service; selec-
tion of POSIX as the operating system is a design choice with attendant trade-offs. The objective
of the ICAM is to assist in evaluating the choice trade-off necessary in designing an information
system by defining services parameters required or desired in the system.

Chapter 1 gives the results of Tasks 1 and 2. The first article focuses on the refinement of the oper-
ating system services, and interfaces to the other components of the ICAM (Task 1). The article
described the separation of application functionality into user interface and computational compo-
nents and considers the effect of that separation. The article also presents several strategies for fur-
ther evolution of the ICAM and selection of tool sets commercially available for separating the user
interface and the computations components of a system.

Task 2: ICAM Implementation.

Task 2 required the contractor to complete two subtasks: (1) implement the entry layer and its API
using X-11 graphical user interface standard and appropriate software to provide lexicallv, syntac-
tically, and semantically consistent look and feel for all applications such that the end users can
access to information services transparently, and (2) provide a consistent operating system inter-
face and common programming interfaces with applications to assure that application programs
can be easily ported across the Army’s computing environment.

The second article in Chapter 1 gives the results of Task 2. The article focuses on the refinement of
the operating systems services. Several application programs are examines to determine services
required and operating systems standards are examined to determine how well the operating sys-
tems provide the required services. The POSIX standard is examined for suitability as a standard

operating systems interface for the ICAT implementation.

Task 3: Model of Information Services Demand.

The Information Systems Architecture (ISA) defines a modern architecture for U.S. Army Infor-
mation Systems, consisting of the use of distributed, integrated information systems, that supports
an open-systems environment. The ISA is supported by a model that is used to simplify the task of
building systems that comply with the requirements of the architecture ICAM).

Task 3 developed a model for information services demand and recommended metrics to validate
it. The model maps user demand for knowledge (as contrasted with data) into the information ser-
vices defined in the ICAM and addresses demand for information services from the user point of
view.

Chapter 2 provides an article on the results of the demand model task. The demand model consists
of a generic description language that is then “instantiated” for particular information system con-
figurations, and demands on that information system. It is anticipated that the outputs of this model
will be used to refine the ICAM as well as to serve as inputs to performance models. The model is
developed as a generic information services demand model and described a method of generating
a specific model based on a set of existing and/or proposed information systems.

Task 4: Re-Engineering and Transition.

The three objectives of the Re-Engineering and Transition task were to: identify CASE and re-
engineering tools that might be used in transitioning legacy COBOL programs into open system,
recommend a least cost strategy for the transitioning databases from flat files into relational data-
bases, and recommend a least cost strategy for the transitioning into GOSIP networks. The results
of the task are given in Chapter 3. The first of the three articles in the chapter describes methods
for examining applications to determine if the application should be translated, re-engineered, or
redesigned into the open environment. A skeleton decision structure is described that allows the
criteria to be used. This article also discusses CASE and reverse engineering tools necessary for
developing new applications and transitioning current legacy-applications to the open systems
environment. A CASE tool was acquired for experimentation.

In addition to transitioning legacy software, the task also investigated transition plans for convert-
ing to GOSIP communications protocols. The task looked at the existing DOD plan for transition
and predicted the best know alternatives for the transition. This issue is still very much open and

will be continued in future work. The second and third articles in Chapter 3 discuss the communi-
cations strategies.

The second article, A Comparative Study of DOD and GOSIP Protocols, compares existing mili-
tary standards to their GOSIP counterparts in terms of functionality and services. The network
transport, and application layers are considered. Some of the network and transport laycr GOSIP
standards that do not have counterparts in the existing military suite of protocols are also discussed.
The article also addresses some of the interoperability issues and how they will affect the perfor-
mance of applications.

The third article is a market survey of currently available OSI/GOSIP products that would be useful

in transitioning to GOSIP communications. The focus of the survey was limited to the Sun, MS-
DOS, and Maclntosh systems. This was considered to be an appropriate scope for the survey, given

the potential size of the task if all computer makes and models were included. The article also
describes the options for transition from TCP/IP to GOSIP protocols.

It 1s generally recognized that IP and TCP provide functionality equivalent to that of their GOSIP
counterparts. On the other hand, the functions supported by the DOD application layer standards
are also supported - the corresponding GOSIP standards. However, the latter offer enhanced ser-
vices and funci+- as that are beyond the capabilities of the former. The transition to the OS] archi-
tecture and the international standards will overcome the limitations of the military standards and
will simplify integration of products and expansion to areas such as document architecture and
transaction processing that are not addressed or covered by these standards.

In conclusion, the articles published herein establishes that the ICAM model of viewing the infor-
mation system as a utility which provides generic services to users has support both in the research
community and in the commercial community. The ICAT testbed network server well both as an
evaluation platform for separation and transition experiments, and as a demonstration platform for
open systems applications and products. Implementation of the ICAT network should continue,
and its capabilities should be augmented to better represent the open systems environment.

1. ICAM REFINEMENT

THIS PAGE WAS INTENTIONALLY LEFT BLANK

ISA-97 Compliant Architecture Testbed (ICAT) Project ICAM Entry Module
Refinement Task

William Putnam

Software Research Center
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract: This document is part of the final report of the ISA-97 Architecture Testbed (ICAT)
project. It presents the results of the work on Task 1, which is concerned with the refinement of the
ISA-97 Compliant Architecture Model (ICAM), and on Task 2, which is concerned with the imple-
mentation of the ICAT itself. The ICAM is a modular architecture for the design and implementa-
tion of information systems and was developed for use a a guide in the transition of Army
Information Systems into the distributed open systems environment. In this report we focus on the
description of the ICAM Entry Module, the services it provides to users and to other modules of
the ICAM, and on the implications of the ICAM for the development of user interfaces to informa-
tion systems. In particular, we describe the separation of applications functionality into user-inter-
face and computation components and consider the effects of that separation. The second part of
the report discusses developments in the implementation of the ICAT and presents several strate-
gies for further evaluation of the ICAM and the user-interface/application separation using com-
mercial tools in the ICAT network.

1.0 Introduction

In this task we have worked to refine the ISA97 Compliant Architecture Model (ICAM) developed
at AIRMICS. The purpose of the ICAM is to provide an architecture for the development of dis-
tributed information systems in an open systems environment. The model is composed of six mod-
ules: Entry, Application, Operating System, Distributed Encyclopedia and Data, Distributed
Control, and Communications. This report focuses on the refinement of the Entry Module descrip-
tion and on the interfaces between the Entry module and the Applications and Operating System
modules.

2.0 Purpose of the Entry Module
The Entry module provides the user with a standardized representation of the information system.

It is the user’s interface to the applications, data, operating system, network, and hardware. The
primary objective of the Entry module is to provide the user with a transparent and consistent inter-
face to the information system regardiess of the application, data, network, or computer being used.
Such an interface will reduce training costs, increase ease of use, reduce operator errors, and sim-
plify transition between computer systems or applications.

The issues related to a transparent and consistent interface are:
Transparency
- device independence
- operating system independence
- network independence
- CPU architecture independence
- data format independence
Consistency
- presentation of information
- behavior of the interface
- functional integration of components
2.1 Transparency

Device independence shields the user (and developer) from details of the display and input hard-
ware connected to a computer system. Applications send requests to display information without
worrying about byte ordering, pixel sizes, keyboard codes, or cursor controls.

Operating system independence gives users and applications an interface to system resources such
as files and applications which hides details such as the storage format of the files, or the binary
form of the applications programs.

Network independence gives the users and applications a representation of computing resources in
a network which hides location and hardware dependencies. Users do not need to know which
devices are attached to which network nodes in order to access and use them. CPU architecture
independence allows users to execute applications in a distributed computing environment without
concem for processor type. Applications are provided in a binary format which is understandable
by all the different computer types in the network, and users don’t have to worry about which soft-
ware runs on which machine.

Data format independence lets applications exchange data across different computer system with-
out concern for conversion issues such as byte order and character sets. Like CPU independence,
this is a fundamental requirement for a heterogeneous distributed computing environment.

2.2 Consistency

Presentation of information in an interface may be thought of as the syntax of the interface. In a
consistent interface, elements or operations common between components will be called by the
same name and displayed or represented in the same manner. In a graphical interface this includes
the appearance of objects, for example push buttons and scroll bars. In a command interface it
would include names for operations, such as “cut” as the name of the operation to delete or remove
an element. The syntax of command options and arguments is also an issue. How are options and

arguments denoted? Is there a required ordering?

In an interface with consistent behavior, a single logical model of operation is used in all applica-
tions. If applications are to be activated by clicking on their icons with a mouse, then all applica-
tions must have a icon and must respond as expected. If data transfer between applications is
accomplished by “drag and drop”, then the same method should be used to send files to the printer.
Use of devices, such as mice, to select and manipulate objects must also be considered, as does the
use and form of menus and selection lists. Specification of program input and output, including
redirection and piping is also an issue. Can it be done consistently for filters and interactive appli-
cations?

Functional integration means that applications work together as though they are subcomponents of
a single, larger system. For example, calendar, scheduling, and electronic mail applications should
work together so that a user can easily plan and schedule a meeting. Applications can be integrated
by using shared data formats, standard communications facilities, and protocols. Integration allows
the use of interface services such as selections and cut/paste operations for information exchange.

2.3 Open Systems Characteristics

An open systems environment is one in which systems conform to published and accepted, or
“open” standards rather than proprietary standards. This environment is characterized by its heter-
ogeneous nature. Products from different vendors can work together, or “interoperate”, because
they adhere to the standards for interaction with other system components. Systems which adhere
to open standards for their interfaces with other systems are called “open systems™. Advantages of
an open systems environment include:

- reduced costs for development and maintenance
- greater portability
- reduced dependence on specific vendors
Three characteristics of open systems (taken from [Nutt90] and [Gray91]) are:
Integration - consistent behavior, presentation, and
functionality
Interoperability - supports exchange of information
among components
Portability - can be moved easily from one environment
to another
In the Entry module we are concerned with each of these characteristics:
- Integration - we want the user’s view of the system to be
the same across differing hardware and applications
- Interoperability - we want users to be able to move information
between objects (including applications) in the interface
environment
- Portability - we want applications to be developed independent

of the details of the interface environment, insulating the -
developer from hardware issues

Integration and Interoperability are of primary interest to the users of information systems. Porta-
bility is a major issue for systems developers and maintainers.

3.0 Separation of Interface and Computation

It is now generally agreed by user interface researchers that the separation of user interface and
computation components of applications is desirable. Advantages of this separation include the
ability to modify or tailor an application’s interface without affecting the computational part, better
support for interface standardization between applications, and greater opportunity for the employ-
ment of reusable components. Iterative design techniques can be applied independently to the inter-
face and computation components of an application. [Hart89] [Hurley89)

This separation raises a number of questions, however. Where do we draw the line between com-
putation and user interface? How will the separate components communicate? What impact will
separation have on performance? In [Hurley89] the authors point out that a good user interface
must have some knowledge of application internals in order to prevent the user from attempting
operations which cannot be executed. But this knowledge tightens the binding between the user
interface and the application and reduces separation and its associated benefits. So there appears to
be a trade off between interface intelligence (an possibly quality) and separation.

The ICAM supports this separation by placing much of the responsibility for user-application dia-
logue in the Entry module, while the computational components of an application reside in the
Application module. Services for information display, input, dialogue control are provided by the
Entry module.

But as Hartson describes in [Hart89], the simple view of separation, wherein no computation is
done in the interface module, would result in a poor quality interface with little power and intelli-
gence. Input to the application would be in the form of raw information on user actions, such as
keystrokes, mouse clicks, and similar events. A great deal of input and display processing would
still be required in the application itself.

A better approach is to give the user interface component (the Entry module in our model) enough
computational power to handle higher level constructs such as prompts, warning and error mes-
sages, help, and some degree of syntactic and semantic checking. Hartson presents a model for this
separation which proposes a runtime architecture having four components on three levels. The
computation component resides in the application level and represents the heart of the application.
At the interface level is the dialogue component of the application, which is subdivided into display
and input components. At the hardware level is an interface devices component which deals
directly with system hardware to implement display and input operations. The input and display
components in the middle layer are endowed with enough computational ability to map raw inter-
face events (such as mouse clicks) into higher level dialogue events (such as button presses).

Our model for the ICAM Entry module is similar to Hartson’s but provides additional components
in the middle layer for resource access, control, and navigation. We also allow provide support for
non-graphical interfaces, though the GUI remains the primary focus of the model.

To relate these models to possible implementations, we can consider the X Window system with
the Motif interface environment. X provides mechanisms for the construction and operation of a

10

graphical user interface, but does not dictate any policies on the use of these mechanisms. In other
words, it provides tools but no standards for their use in applications interfaces. Motif is an envi-
ronment which provides higher level interface components for developers and specifies some basic
rules for their use in applications. Basic input and display event processing and device interfacing
are handled by a separate process called the X server. Mapping of raw interface events into higher
level events is handled by the Motif toolkit. The implementation does not separate the interface and
computation components of the application as completely as our model suggests, however, because
the Motif toolkit functions are linked with the computational component to form the executable
application module.

4.0 Interface Domains

In the ICAM model the Entry module has interfaces to two lower level modules: the Applications
module and the Operating System module. Following this model, we can divide the problem of a
consistent user interface into two domains: Application Interface and Operating System Interface.
We will describe these domains, and then consider the interfaces between ICAM modules in this
context.

4.1 Application Interface

The purpose of a User Interface is to provide users with a means of interacting with applications.
The application does this by displaying text and/or graphics on a computer monitor and by accept-
ing direction and/or information from the user via the keyboard, pointer, or other input devices.
When each application has its own unique user interface, inconsistencies occur between applica-
tions. These inconsistencies can cause users to make errors, become confused, and will in general
reduce efficiency and user satisfaction.

When applications have consistent behavior, users can draw on their knowledge of familiar appli-
cations to quickly master new applications or to migrate to new systems. They also make fewer
errors and have less confusion when switching between applications in a system. So we see that is
important that applications on a given system behave consistently and that behavior is consistent
across different computer systems.

To achieve this consistency, application interfaces should be constructed from standard compo-
nents and follow standard rules of behavior. The standard components are called toolkits, and are
typically implemented as function libraries for use by developers. The rules of behavior are some-
times called a style guide, and are provided to developers for reference as they use the toolkit to
construct an interface.

The toolkit provides a basic set of interface components such as menus and windows. It also pro-
vides mechanisms to manipulate and control the interface components. In a character-based inter-
face the toolkit might include data structures for screens and menus along with functions for cursor
positioning, displaying text, and reading text. In a graphical interface the toolkit contains data
structures and control functions for windows, scrollbars, buttons, and so on.

Standard toolkits ensure that objects such as menus, windows, icons, buttons, and scrollbars are
drawn the same way on all systems. They should also operate in the same way. This is achieved
when the toolkit complies with the style guide to implement the specified behavior. But compo-
nents must be assembled and used in accordance with the style guide in order to be truly consistent.
For example, the toolkit provides a mechanism for pop-up menus, but it is the style guide which
governs when and how such menus are to be used. There is also the issue of hardware compatibil-

11

ity. Keyboard mappings, display resolution, color palettes, and other device dependencies must be
addressed if an application is going to look and operate consistently on different platforms. Since
hardware may vary (the number of buttons on a mouse, for instance) there must be standard trans-
lations to a base level environment which can be guaranteed to be available on all systems. All 3
button mice should behave the same way across applications and systems. The translation of
unavailable buttons on a 1 or 2 button mouse should be standardized, as well as the use of the key-
board when there is no mouse at all.

In our discussion here we will consider the case of the Graphical User Interface (GUT) and will use
the GUI as our model for much of the functionality of the ICAM Entry module. The trend in user
interfaces for applications and systems is clearly toward GUISs, and it is also possible to mimic the
behavior of a character-based interface in a GUI using a terminal emulator.

4.2 Operating System Interface

The purpose of the Operating System in a computer is resource management. The operating system
is responsible the allocation and management of memory, disk storage, processor time, peripheral

devices, network ports, and other resources. Commands and utility programs provide the user inter-
face to the management and manipulation of many of these resources. This user interface is typi-

cally composed of a command interpreter, or shell, and a collection of utility programs.

The operating system must first be internally consistent. Use of command options and arguments
should follow standard rules which apply to all commands and utility programs in the system. But
in a heterogeneous network of systems we also need external consistency. The operating systems
in the network should all offer a standard set of commands and utilities, at least for common oper-
ations.

This does not mean that all computers must run the same operating system. Where the details of
the operating system a hidden from the user there will be differences. For example, job scheduling
will differ on timesharing and realtime systems, but this is hidden from the user. But the command
to rename or copy a file should be the same on either system.

The representation of the file system should be standardized across systems. Executable programs,
systems configuration files, libraries, and so on should be located in prescribed places so that users
and applications can find them easily.

A degree of consistency can be achieved by buying integrated software packages from a single
vendor, whose applications and systems are designed to work together and operate in a consistent
fashion. But this approach often locks the user into a relationship with a single hardware or soft-
ware vendor. It may not be possible to obtain versions of applications software to run on all the
types of hardware that may be in use. Also, some functions may not be provided by one vendor’s
integrated package, requiring the use of different software which does not match the interface
behavior of other applications.

A more desirable approach is to standardize as much of the behavior of the user interface as possi-
ble, making it independent of any specific application program. This standardized interface should
then be implemented across all different hardware platforms which will be employed in the infor-
mation system. Since it is not possible to divorce all details of user/application interaction from the
application program, the application developer should use a standardized toolkit to build applica-
tions. The same toolkit is used to implement the application-independent parts of the interface, so
that the application fits seamlessly into its environment. Applications from different vendors or

12

developers which are implemented with the standard toolkit will be automatically integrated into
a consistent environment.

The POSIX standard which is in development includes specifications for the user interface to the
operating system in its Shell and Utilities section. The POSIX Shell and Utilities will serve as the
interface between the ICAM Entry module and Operating System module.

5.0 Entry Module Interface Elements

In addition to dividing the domain of the Entry Module into Application and Operating System
interfaces, we can divide it into two domains based on the nature of the user/system interaction.
When this interaction is conducted though the display and manipulation of graphical objects we
are in the domain of Graphical Interfaces. When the dialog is conducted in the form of textual com-
mands given to a command interpreter, or shell, we are in the domain of Command Interfaces. It is
possible to have both Graphical and Command interfaces in the same system, and even within the
same application, though this presents inconsistencies.

The elements of the two interface domains are:
Graphical Interface
- Device Independence
- Display
- Input
- Presentation of Interface Objects
- Graphics primitives for building objects
- Standard toolkits for interface development
- Consistent appearance and behavior of objects
- Direct Manipulation of Interface Objects
- Window management and operations
- Icon management and operations
- Widget operations
- Event Handling
- Queueing
- Dispatching
Command Interface
- Command Interpreter
- standard command set
- consistent usage of arguments and options
- interactions between applications
- error messages and exceptions

- Shell Programming

13

- standard programming language
- standard environment
- Ownership and Permissions
- user identification
- ownership
- membership
- access rights (grant, deny, verify)
- Naming, Location, and Navigation
- file naming requirements and limitations
- file system representation and organization

Examining these interface domains and their elements, we have identified the services provided by
the ICAM Entry module and grouped them into classes.

6.0 Classes of Services - Entry Module

We have defined five top-level classes of services provided by the ICAM Entry module. These
classes are: Display, Input, Access, Control, and Navigation. In describing these services, we will
use the X Window System as a model. X in an open standard which has become the de-facto stan-
dard graphical user interface for UNIX workstations. It is also under consideration for adoption as
FIPS 158. We expect that X will be the standard GUI under POSIX as well.

* Display

One of the basic services provided to applications by the Entry module is the display of information
to the user. This display may be in the form of Text or Graphics.

- Text
- Characters
- Fonts
- Graphics
- Primitives
- Lines, Arcs, Shading, etc.
- Interface Components
- Windows, Menus, Buttons, Lists, Scrollbars, etc.
- Resources and Applications
- icons, composite systems of interface components

The display of information by an application is made possible by the layered set of display services.
Using the X window system for an example, the basic display elements of the X intrinsics provide
primitives such as lines and rectangles which are used at the toolkit level to construct interface
components such as buttons and windows. Toolkit components are then used at the application
level to build the application interface, organize the display of information, and structure the inter-
action between user and application.

14

In the X model, applications send display requests to a process called the “server”, which performs
and necessary translations or conversions to handle device dependencies and then displays the
information.

Transparency is provided by the separation of the server from the application, or client, code. Con-
sistency is provided by the use of a standard toolkit in the construction of applications.

* Input

Another fundamental service provided by the Entry module is the acceptance of information from
the user to be delivered to the application. Input may come from keyboards, pointers, or special
purpose devices. The Entry module must handle any device dependencies or translations and
deliver to the application the characters, selections, or operations from the user.

- Keyboard Input
- Text
- Commands
- Functions
- Pointer Devices
- Direct Manipulation
- Selections
- Focus

Some processing of the input stream may be done to ensure correctness (parity checking, byte
ordering) or compatibility (newline-carriage return conversions, control character mapping). In a
multitasking environment where several applications may be active each application will have its
own input stream or queue which must be managed.

In the X Window System model, basic processing of the input stream is handled by the X server
process. The server again handles all device dependencies, and dispatches input to applications in
the form of “events”. Each application has an “event queue” which contains its input stream.

* Access

One service of the Entry module which can easily be taken for granted is the provision of access
to objects in the computing environment. Objects must be named and identified, and typically have
attributes such as ownership and membership which must be observed. This service is a composite
of the lower level services provided by the Operating System for resource management:

- Identification

- Ownership

- Membership

- Verification
* Control

The user must be able to manipulate objects in the computing environment. Once the objects are
identified, the user will need to be able to start and stop applications, use an application on a par-
ticular data object, and, in a multi-tasking environment, switch between applications.

15

Some functions provided by the operating system command interface may be provided graphically,
including copying, movement, and deletion of files or other interface objects.

- Manipulation of Interface Objects
- Activat. ‘n
- Selection
- Cut & Paste
- Drag & Drop

- Manipulation of Applications
- Start, Stop, and Suspend
- Connection (pipes and redirection)
- Foreground / Background
- Shell Programming

* Navigation

The user must be able to navigate in the computing environment to locate applications, data, and
resources to be manipulated. This may be done using operating system commands to traverse the
file system or it may be done graphically using a browser and iconic representations of system
objects and resources. When the user is interacting with an application which has multiple compo-
nents, it is necessary to move the focus of attention among the components to carry on a dialog with
the application. This may be viewed as a form of navigation within the components of an applica-
tion and is similar to the process of navigation between applications and other elements of the com-
puting environment.

- Navigation in the Network
- host identification
- network management
- Navigation in the File System
- representation of the file system
- organization of objects within the system
- Inter-Application Navigation
- focus on active application
- Intra-Application Navigation
- focus on active component
7.0 ICAM Testbed Implementation

As part of the validation of the ICAM, we are setting up a testbed network at AIRMICS using open
systems standards and applications to connect a heterogeneous mix of computer systems. When
complete, the TCAM testbed network (called ICAT) will be used to demonstrate open systems
principles and applications in the Army environment.

‘viost of the effort during this project went into two areas: product research and evaluation and soft-

16

ware installation and configuration. In the area of product research and evaluation, we gathered
information on open systems products in the areas of operating systems, user interface software,
and networking systems. This report will describe the user interface development and transition
tools and packages which were identified or installed. Software for operating systems and network-
ing are described companion reports.

7.1 ICAT Hardware Configuration

The ICAT network is currently part of the AIRMICS ethernet LAN. It was intended that the net-
work would be separated from the administrative part of the AIRMICS LAN and connected with
that network and the internet using a gateway system. The hardware for the gateway (a second
ethernet card in a SPARC workstation) is installed, but the computers designated for the ICAT sub-
net have not yet been reconfigured for use with the thin ethernet cable to be used for the subnet.
Reconfiguration requires the removal of the PC ethernet cards for the installation of hardware
jumpers. Cabling and configuration for the ICAT subnet should require about 1 week to complete.

7.2 Software Installation and Configuration

Network software configuration is partially complete. The configuration for the network gateway
(the router) must be determined, and the addresses of the ICAT subnet machines assigned when
they are re-wired for the subnet. PC-NFS software is installed and operational on all the PC sys-
tems to be used on the ICAT subnet.

One of the primary objectives of the ICAT network is to demonstrate a consistent user interface on
heterogeneous systems. This is being approached in two ways. For graphical user interface (GUI)
capability we are installing the X Window System with the Motif toolkit on both UNIX and DOS
systems. The base X distribution was installed and made operational on all SUN systems at AIR-
MICS, including SPARC, Intel 386i, and Motorola 68020 architectures. An X product for MS-
DOS PCs, called PC-Xview, was purchased and installed on AIRMICS PC systems, but could not
be made operational before the end of the project due to network configuration problems. These
problems have been resolved, and it should be possible to bring up the system with a few hours of
work.

The Motif toolkit distribution from the Open Software Foundation was obtained through Georgia
Tech and installed on AIRMICS Sun SPARC systems. Motif is a “look & feel” standard for GUIs
which goes on top of the X Window System. We intend to use Motif in the development of a graph-
ical interface for a STAMMIS - most likely the IMCSRS system which the COBOL re-engineering
and transition group has been examining, but possibly other systems as well. We also ordered a
Motif-based GUI development tool called Builder Xcessory which will be used with the Motf
libraries to develop application interfaces.

To demonstrate a consistent command interface on both UNIX and DOS systems a product called
PolyShell was purchased and installed on AIRMICS PCs. This product is a UNIX work-alike sys-
tem which runs on top of DOS and provides the UNIX C-shell command interpreter and many of
the standard UNIX commands and utilities. In addition, the PC-NFS package which was installed
to network the DOS machines with the UNIX workstations offers standard UNIX commands for

file transfer, terminal emulation, and remote job execution.

While examining the separation of interface and computation we have identified some commer-
cially available products which claim to provide this capability in different ways. A system called
XVT from XVT Software provides an API for graphical interface development which can be

17

linked with different runtime libraries to form executable versions of an application using different
interface standards, including X, Macintosh, and Microsoft Windows. A product called Deskterm
from IXI Corporation provides two approaches: an API which transforms character based opera-
tions into graphical operations and a script based front end for existing applications which places
a graphical interface on top of a character based application. Both XVT and the Deskterm API
require source code modification and linking with interface specific runtime libraries. The Desk-
term Soft Option (the script interpreter) does not require access to or modification of application
source code. A third product, Oracle Tools, offers an environment for the development of graphical
interfaces to applications based on the Oracle relational database system.

These products offer the opportunity to examine three different approaches to user interface tran-
sition. The first approach is to take an application and modify the source code to make it use an
intermediate API such as that provided by XVT or Deskterm Protocol. The second approach is to
add a graphical interface without modification using a script interpreter such as Deskterm Soft
Option. The third is to first transform the application into an RDBMS application and then add a
graphical interface using a development system such as Oracle Tools.

These approaches could be compared with the process of building a graphical interface for an
application directly, using GUI development tool. Tools such as Builder Xcessory offer rapid pro-
totyping and development environments for applications using the X Window System.

8.0 Conclusions and Recommendations

We have established that the ICAM model of separation of user interface and computation compo-
nents of applications has support both in the research community and in the commercial commu-
nity. The exact nature and impact of that separation is still and open issue, however. The
commercial products described above present the opportunity to evaluate and compare several
approaches to the separation. We feel that this evaluation would be very helpful in the development
of strategies for the transition of Army information systems to the open systems environment.

The ICAT testbed network will server both as an evaluation platform for separation and transition
experiments, and as a demonstration platform for open systems applications and products. Imple-
mentation of the ICAT network should continue, and its capabilities should be augmented to better
represent the open systems environment.

18

References

[Foley90}James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics, Principles and Practice, Second Edition. Addison-Wesley,1990.

[Gray91]Pamela Gray. Open Systems, A Business Strategy For The 1990s. McGraw-Hill, 1991.

[Hart89]Rex Hartson. User-Interface Management and Control. IEEE
Software, January 1989, pp. 62-70.

[Hurley89]William D. Hurley and John L. Silbert. Modeling User Interface-Application Interac-
tions. IEEE Software, January 1989, pp. 71-77.

[Jones89]Oliver Jones. Introduction to the X Window System. Prentice-Hall, 1989,

[Mayr90]Anneliese von Mayrhauser. Software Engineering, Methods and Management. Academic
Press, 1990.

[Nutt90)Gary J. Nutt. Open Systems. Prentice Hall, 1990.

[MPG91]Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.1. Prentice-
Hall, 1991.

[MSG91]Open Software Foundation. OSF/Motif Style Guide, Revision 1.1. Prentice-Hall, 1991.
[MUG90]Open Software Foundation. OSF/Motif User’s Guide, Revision 1.0. Prentice-Hall, 1990.
[Powell90]James E. Powell. Designing User Interfaces. Microtrend Books, 1990.

[Young90]Douglas A. Young. The X Window System: Programming and Applications with Xt,
Motif Edition. Prentice-Hall, 1990.

19

Commercial Products
The following products have been identified and/or acquired for evaluation in the ICAT testbed:

PolyShell from Polytron Corporation, Beaverton OR, 503-645-1150 UNIX work-alike for DOS
systems with C shell, possibly POSIX compatibility for DOS - installed

Poste from Alfalfa Software, Cambridge MA, 617-497-2922Electronic mail system with X-Motif
compliance and X.400 support

PC-Xview from UniPress Software, Edison NJ, 800-222-0550X Window Software for DOS Per-
sonal Computers

Builder Xcessory from ICS Incorporated, Cambridge MA, 617-621-0060GU!I development envi-
ronment for X-Motif applications

XVT from XVT Software, Boulder CO 303-443-4223 GUI development kit - API that’s look &
feel independent, let’s you develop to API, then link to chosen GUI standard

DeskTerm from IXI Corporation, San Ramon CA, 510-275-3120 Development kit for adding
Motif front end to character based applications, including RDBMS systems, with or without source
code modification

Oracle Tools from Oracle Corporation, 800-633-0521 GUI development kit that goes with Oracle
RDBMS, maybe a good choice for COBOL transition

20

ISA-97 Compliant Architecture Testbed (ICAT) Project ICAM Operating Sys-
tems Services Refinement Task

Melody Moore Eidbo

Software Research Center
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract: This document is part of the final report of the ISA-97 Architecture Testbed (ICAT)
project. It presents the results of the operating systems work for task 1, whose overall goal is refine-
ment of the ISA-97 Compliant Architecture Model (ICAM), and task 2, and on task 2, which con-
cerns the implementation of the ICAT testbed itself. The ICAM is a modular architecture for the
design and implementation of information systems and was developed for use as a guide in the
implementation of the Army’s systems to a distributed open systems environment. This report
focuses on the refinement of the operating system services, and interfaces to the other components
of the ICAM. The POSIX standard is examined for suitability as a standard operating systems
interface for the ICAT implementation.

1.0 Introduction

With the advent of new technology in computer communications, it is not uncommon for large
information systems to be shared by users on muitiple machines. The trend towards the desktop
workstation encourages a distributed computing model rather than the single, large mainframe with
terminals, as has been used in the past. Distribution has many advantages, among them accessibil-
ity, reliability, and increased computing power.

However, with this distribution comes heterogeneity in hardware platforms. The availability of
many different architectures means that it is likely that a computer system will consist of several
different platforms, rather than one single one. This produces problems with interoperability and
porting software from one machine to the next; differences in local operating systems and com-
mand interpreters means that users must learn a new interface for each machine.

The recent philosophy of Open Systems seeks to solve these interoperability problems. By agree-
ing upon a standard interface, and implementing that interface on multiple platforms, applications
can be easily ported from one machine to another. The Open Systems effort, supported by such

21

organizations as IEEE, ISO, and ANSI, has been defining standard interfaces for many facets of
development, including operating systems, user interfaces, communications, and language inter-
faces.

The work in this task of the AIRMICS ICAT project has been to identify operating system require-
ments for the STAMIS information system applications and to refine a model of services that
should be supported. These goals were augmented by a desire to provide the maximum portability
among several hardware platforms. Therefore, a natural source of information and input has been
the Open Systems Standards efforts. We have studied in particular the POSIX Operating System
interface as the base of our system services definition.

2.0 The OS Model within the ICAM

The ICAM model defines a series of components that interact with each other to form a system.
(See Fig. 1) Each juncture between components defines an interface. The scope of the work pre-
sented here involves the interface between the Operating Systems component and the Entry Layer
component (called the Command Interpreter), and the interface between the Operating Systems
component and the applications (called System Services).

In the model of the operating system (see Fig 2), the process primitives provide a base for other
system services. These primitives form the low-level kernel services for process control, synchro-
nization, and interprocess communication. Sharing the base of the model with the process primi-
tives is the file system. File System primitives include file control, organization, and navigation.

Entry Layer

Applications

Operating Encyclopedia and Data
System

Distribution Control

Communications

Figure 1: The ICAM Model with OS Interfaces

Upon the base of process and file primitives, the rest of the operating systems model is built. I/O
services, such as read, write, and pipes, use the process primitives and file primitives to implement
higher-level functionality. Similarly, the process environment, including job control, process iden-
tification, and rudimentary security, are built from the same underlying primitive units. Device
drivers provide interfaces to external device hardware using the building blocks of the file and pro-
cess primitive

22

bases.

The Command Interpreter incorporates all of the other operating systems components, giving the
user access to all of the supported services. The language support libraries perform the same ser-

vice for applications programs, providing an interface to operating system functions from applica-
tion code.

Command Interpreter
File Process Device
System 1o Environ - Support
ment

Process Primitives

Figure 2: The Operating Systems Services Model
3.0 Command Interpreter Requirements

The POSIX services model is based upon Unix, therefore, as in Unix, the command interpreter
function of interacting with the user is performed by a program called the shell. There are also util-
ities associated with the shell to form a toolset for the user. Currently, a standard is being developed
for the POSIX shell by IEEE Working Group 1003.2. This standard is nearing completion but is
still under review.

The 1003.2 standard defines a programming, or source code level interface to operating system
services. The shell offers interactive communication between the user and the system, and also pro-
grammability for longer or repeatable tasks (shell scripts). In the ICAM model, the command inter-
preter is part of both the operating system component and the entry layer component.

Although the command interpreter standard is not completed, there is a set of requirements that
has been refined. Following are the command interpreter requirements for the ICAT:

* A shell command language and interpreter that allow users to write shell scripts.

* An interactive command language that allows the user to execute programs, perform 1/O redirec-
tion, handle command line arguments, and other shell control functions.

* A paradigm for argument specification and command names.
* Primitives to allow applications programs to access shell facilities, such as command parsing.

* Environment variables that can be created and manipulated directly by the user, or from applica-
tions programs.
* Access to file system directory hierarchy and organization utilities.

23

* Complex or high-level data manipulation utilities that can be accessed from applications pro-
grams.

* Language services support, currently the languages C, Fortran, and Ada are being considered.
* Standard installation procedures for applications.

* Privileged operating system commands for administration, such as creating user IDs, initiating
daemons, etc.

4.0 Operating System Services Definitions

POSIX Standard 1003.1 was published in 1988; it describes a fairly complete operating system
interface that is an approved standard. For this task, we identified the Operating systems service
requirements for the STAMIS applications and mapped them into this standard.

The Operating System services are divided into several areas of
functionality and level:

* Process Primitives

* Process Environment

* File System Primitives

* Input / OQutput

* Device interfaces

* Language Support

The Process Primitives and the File System Primitives are used by the other components of the
operating system as building blocks. Process and file primitives may also be directly accessed by
the user or application programs. Following are the Operating System requirements for the ICAT,
and a mapping to the POSIX standard 1003.1 where supported.

4.1 Process Primitives

Process primitives are typically kernel functions that involve process control, interrupts (or sig-
nals), timing, and communication. The services required by the ICAM are described below.

- Process Creation - In Unix, this process (fork) duplicates the parent process to produce a child
process, thereby “‘creating” a new process. The child process inherits the parent’s process environ-
ment and file descriptors, but these can be modified.

- Execution - the Unix exec function is supported. This allows a new process to be created, and
then substitute a new process environment to result in a completely new process. The POSIX exec
function supports arguments to the new program.,

- Termination / Deletion - Processes can terminate normally (by a return from the main routine),
or abnormally (from an error or an untaught signal). Processes can also be aborted. It is also pos-
sible to wait for another process to terminate.

- Synchronization - Unix uses the signal as a synchronization primitive, and POSIX also supports
them. Signals are software interrupts that can be generated by processes and may usually be
trapped by other processes. There are some signals (such as kill) that cannot be trapped, ensuring
that processes can be destroyed if they get hung or deadlocked POSIX supports an extensive range
of signal functions, but it does not provide any higher-level synchronization such as semaphores.

24

- Communication - POSIX does not directly provide a model for communication between pro-
cesses. Unix process communication consists mainly of signals and shared memory capabilities.
There is are no message primitives. The ICAM communication requirements could be met by a
combination of signals and pipes (see the I/O section). This would be a good area for further study
and exploration.

- Timing operations - POSIX provides an alarm function that allows a process to “set” an alarm
and then receive a signal after the designated time has elapsed (an interval timer). The alarm func-
tion is not completely accurate, since it does not compensate for process scheduling time. However,
1t should be sufficient for ICAT requirements.

4.2 Process environment

The process environment involves process identification (for security and file access), user iden-
tification, and job control. Following are the process environment requirements for the ICAM:

- Process ID - Process ID’s are assigned by the system in ascending chronological order. POSIX
provides several functions to obtain the process ID of a process or its parent.

- User ID - User identification is important to process and file security. Users may be granted
access to a file through permissions on the real user, effective user, real group, and effective group
ID’s. POSIX prc vides functions for these as well as a setuid function. User names and group IDs
can also be obtained.

- Job control - POSIX provides functions for job control, including setting process group IDs to
determine security access to files and other processes.

- System identification, system name - POSIX supports functions that allow an application pro-
gram to determine information about the hardware platform it is running on. These functions can
greatly enhance portability.

- System time - System time is a monotonically increasing counter that allows relative time values
to be computed. POSIX supports the time function to retrieve this information, and also to record
information about process timing.

- Environment variables - Environment variables allow processes to set, test and modify globally
accessible values. POSIX supports the Unix getenv function, which searches the environment vari-
ables for the specified name, and returns a pointer to its value. Environment variables can be used
as a rudimentary form of communication.

- Terminal identification - Knowing the characteristics of the user’s terminal can be useful for an
application user interface. POSIX provides functions to retrieve information about the terminal,
including the device name and terminal pathname.

4.3 File System

File primitives are important to many components of the operating system. They are used to store
information about processes, to impiement input/output, and to effect communication as well as
store information directly from the user. As in Unix, the POSIX file organization is hierarchical,
with files as the leaves of the tree and directories as the nodes. Following are the file systems ser-
vices required by the ICAM:

- File manipulation - POSIX supports a general set of file manipulation functions, including open,
close, create, delete, append to an existing file, reset a file, associate an external filename with an

25

internal filename, and creating special files. POSIX also defines a standard file characteristic pro-
file, including header and data structure standards.

- Directory operations - POSIX supports a collection of directory operations, including opening,
adding entries, closing, reading, and deleting.

- File security - POSIX provides functions to set the owner and group IDs for files to restrict
access. File access and modification times can be recorded.

- Navigation within filesystem - POSIX provides a set of functions that allow the user to find files
within the filesystem. Among these functions are change working directory (which changes the
current default directory), and obtaining the current working directory pathname.

- File characteristics - As in Unix, POSIX provides functions to set certain attributes of files, such
as file permissions, input/output modes, and file ownership.
4.4 Input/Output

The file system provides the support and storage for input/output activities. The I/O functions are
built on top of the file primitives to provide higher-level functionality. Following are the ICAM
requirements for 1/0:

- Pipes - A pipe is an inter-process communications channel. A single pipe has aread end and a
write end; therefore, information flow is one-way along a pipe. Information can be buffered inside
of a pipe. Two-way communication can be achieved by using two pipes. POSIX supports the Unix
pipe function.

- File descriptors - POSIX supports file descriptor manipulation functions, such as duplicate and
deassignment (close a file).

- Read from file - POSIX supports the unix Read function, which reads a specified number of bytes
from a specified file.

- Write to file - POSIX supports the Unix write function, which attempts to write a byte buffer to
an open file descriptor.

- File control - Files can be locked for reading or writing, preventing accidental access or destruc-
tion of files.

- Reposition / Reset / Set offset - POSIX allows further control, especially with special files, to
change the position of the read or write within the file.

4.5 Device Functions

In a heterogeneous environment, it is difficult to standardize on device interfaces. Devices tend to
have many special purpose constraints and must be dealt with at a rather low level. However,
POSIX addresses these issues and provides some standards for asynchronous communication ports
and terminal control. Following are the device-level requirements of the ICAM:

- General Terminal Interfaces - POSIX has a set of functions that support terminal device files.
Among the functionality provided:

* Open a terminal device file - Terminals are usually opened by special processes, and applica-
tions processes inherit a “standard” input, output, and error file. However, POSIX does give the
control to explicitly open a terminal file.

* Close terminal device file - When the last process that could send output to the screen termi-

26

nates, the terminal device performs a disconnect.

* Process groups - terminals may have processes associated with them, which play a role in han-
dling interrupts. Process groups assigned to terminals may be manipulated, such as killing them all
if the terminal file is closed.

* Access control - Since processes may run logically in parallel, there must be some mutual exclu-
sion mechanisms for writing to the terminal (otherwise output from different processes could inter-
sperse on the screen). POSIX provides access control that blocks background processes from
writing to the terminal device.

* Data control - Since terminals can operate in full-duplex mode, it is possible that input can be
accepted at the same time output occurs. This requires input queueing. POSIX provides two modes
of input process buffering, canonical and non-canonical. POSIX also provides for echoing input to
the screen for full-duplex mode.

* Write control - Similar to input buffering, some implementations may buffer output to the
screen. POSIX provides a standard mechanism for write buffering.

* Special characters - Some characters have special effects on a terminal screen. POSIX provides
a set of standard special characters that can be generated and received by processes.

* Control modes - POSIX provides a mechanism for setting fields in a flag to control the operation
of the terminal hardware (such as a setup). These terminal characteristics can include receiver
enable, number of bits per byte for a character, stop bit parameters, and parity information.

* Baud rate - POSIX supports changing and obtaining information about terminal baud rate.

* Terminal interface control - POSIX provides a large set of terminal control functions. Among
them are: set and get state information, line control functions (such as send break), process group
ID functions, and foreground and background control.

4.6 Language support

The POSIX standard 1003.1 (1988) specifies language support interfaces for the C language. Near-
ing completion [IEEE91] are the specifications for an Ada language binding and a Fortran interface
to POSIX system services. The services described in this section are general to all languages; we

will be most interested in the Ada language bindings. Following are the language services that are
required by the ICAM:

- Math functions - a full math library (including trigonometric functions, log and natural log, expo-
nentiation, square root, etc.) should be supported.

- Input/Output - System services for file access, pipes, read, write, file control, naming, and file
characteristics control are required.

- Date and Time - The system clock should be accessible for timing functions.

- Access to system primitives - There should be an interface through which application programs
can call system primitives such as process control and file control.

27

References

[Kuhn91] Kuhn, Richard D. “IEEE’s POSIX: Making Progress”, _IEEE Spectrum_, December
1991, p 36 - 39.

{IEEE88] IEEE Standard Portable Operating System Interface for Computer Environments
(POSIX 1003.1), Institute of Electrical and Electronics Engineers, Inc. 1988.

[GCN91] Miles, J.B., “POSIX Software”, Government Computer News, Sept. 16,1991.

28

ICAM REFINEMENT

29

THIS PAGE WAS INTENTIONALY LEFT BLANK

The ICAT Information Demand Model

W. Michael McCracken
Annie 1. Anton
S. Paul Curtis

Software Research Center
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

Abstract: The Information Systems Architecture (ISA) defines a modern architecture for U.S.
Army Information Systems, consisting of the use of distributed, integrated information systems,
that supports an open-systems environment. The ISA is supported by a model that is used to sim-
plify the task of building systems that comply with the requirements of the architecture (ICAM).
The ICAM demand model task has developed a service based model of interaction with proposed
and existing systems. The model consists of a generic description language that is then “instanti-
ated” for particular information system configurations, and demands on that information system. It
is anticipated that the outputs of this model will be used to refine the ISAM as well as to serve as
inputs to performance models.

1.0 Introduction

The Information Systems Architecture, Circa 1997 (ISA97)document defines the modern architec-
ture for U. S. Army information systems. Some objectives are (1) the use of distributed, integrated
information systems (2) within an open-systems environment.

With this in mind, AIRMICS has developed an architectural model of informations systems, called
the ISA97 Compliant Architecture Model (ICAM), that will simplify the task of building ISA-com-
pliant information systems.This model identifies the major components of information systems and
describes the interaction between these components.Furthermore, the ISA97-Compliant Architec-
ture Testbed (ICAT) is being develope to refine and partially implement the model.

The purpose of Task 4 is to develop a modeling technique to model the demands on information
services in U. S. Army information systems. We have developed a generic information services

demand model and described a method of generating a specific model based on a set of existing
and/or proposed information systems.

31

1.1 ICAT and the Demand Model

The ICAM may be very useful in developing ISA97-Compliant information systems, but first it
must be refined and validated; the ICAT will help to do this. To build the ICAT testbed, much of
the ICAM model must be refined. In addition, many of the technical feasibility issues of the ICAM
will be answered by the testbed. The ICAT will not, however, indicate how well the ICAM model
will scale up to larger information systems. The ultimate goal of the Army using ICAM is to inte-
grate many large U. S. Army information systems into a single distributed system.

To help assess the applicability of the ICAM for systems larger than the ICAT, a technique to model
information services demand has been developed. Once a demand model has been created, the
ICAM can be evaluated for scalability to that particular size. That is, the ICAM can be assessed in
reference to a particular set of demands for information services. If a performance model exists for
the ICAM, the information service demand model may to used to drive it.

This demand model is similar to a system requirements model. A requirements model is an exter-
nal--or user oriented--view of the system. Certain characteristics of the system'’s required function-
ality are modeled, often including characteristics that affect how the system must be implemented.
A demand model is also an external view of the system. It too models certain characteristics of the
system’s required functionality. The demand model, however, is concerned with characteristics
that affect the scalability of the ICAM--not its implementation. The proposed method of construct-
ing demand models borrows from the requirements modeling literature [Ros85]. Some character-
istics needed for requirements modeling, however, are not needed for the demand modeling. Also
some characteristics needed for demand modeling are not traditionally included in requirements
models.

1.2 Demand Modeling Technique: Representation and Method

Our research has been focused into two areas---defining the generic information services demand
model and developing a method to instantiate a model. In defining the generic model, we have
specified which characteristics to model and how to represent that information. The modeling
method describes how to gather and transform the necessary information into the final representa-
tion.

In Section 2.0, we describe the model and its representation.That is, we describe a template which
can be used to instantiate demand models.

In Section 3.0, we describe how to create a demand model for a particular system or set of systems.
That is, how the data is gathered and used to instantiate a demand model.

2.0 Demand Model

The ICAM describes how applications will reside within and interact with the other information
system components. The information services demand model captures some characteristics of the
demands made by an ICAM application on the rest of the ICAM architecture.

A demand model may have several uses. It may be used to help design and tune an information
system. It may also be useful to generate test data for testing of the information system,; particularly
for statistical usage testing as described by Cobb and Mills [CM90]. But the primary use of a model
would be to assess the scalability of a proposed system architecture against a specific set of infor-
mation services demands. This, would be particularly useful if a performance model of the pro-
posed architecture could be driven by this model. The scalability assessment has been the driving

32

force behind the approach and details of the demand modeling technique.

2.1 Model Approach

The approach to developing the demand model was divided into three subtasks. The first subtask
task was to determine which characteristics of the system to model. There are many characteristics
about the interface between an application and the rest of the information system architecture, but
which of these effect the scalability of the system? The second subtask was to determine how and
at what level to represent these characteristics. The final subtask was to develop an overall structure
within which to represent these characteristics.

2.1.1 Characteristics Modeled

We know we want to model demand for information services. But what is relevant about these
demands do we model? There are certainly many things that characterize information services
demands, but which of these might affect the scalability?

According to ICAM, an application, and indirectly a user, interfaces with the rest of the system
through three application program interfaces (APIs):

- the entry layer,
- the operating system layer, and
- the distributed encyclopedia.

All three of these components provide information services to an application program, and the
functionality of all three interfaces needs to be examined to help vaiidate the ICAM. But only the
distributed encyclopedia is important in validating the scalability of the ICAM.

The entry layer for each site should be independent. As the number of sites in the information sys-
tem grows, the entry layer will remain unaffected. The entry layer will be validated by the ICAT,
and it will not affect the scalability of the system. Therefore, the interaction between an application
and the entry layer is not important for the demand model.

The operating system layer for each site is also relatively independent. The operating system may
provide applications some limited communication to other sites (via electronic mail or file transfer
protocol), but, for the most part, the operating system layer at a particular site will not be affected
by other sites. Therefore, the demand mode] will also ignore interaction between an application and
the operating system layer.

The ICAM distributed encyclopedia component at a site is highly sensitive to other sites. In fact,
in ICAM there is just one distributed encyclopedia that is spread across all the sites. As an infor-
mation system is scaled up, the requirements for the distributed encyclopedia change. The ICAT
may validate some of the functionality of the distributed encyclopedi. component, but it cannot
validate its scalability. The demand model will be exclusively concerned with the interaction
between applications and the distributed encyclopedia.

The distributed encyclopedia provides transparent data access. Access to data is then the primary
characteristic to be modeled. Because different concurrency control mechanisms are used, it is
important to distinguish between updates and inquiries. It is important to model how much data is
being accessed and how often. Finally, it is important to model where the data is being accessed
from.

33

2.1.2 Level of Model

The model must capture most relevant information about the system’s scalability without being
concerned about low level details.

The model treats the distributed encyclopedia as a black box. At this point in the development of
the ICAM, the details of the distributed database implementations are unknown. We cannot there-
fore, model all the processing and communications going on inside the distributed encyclopedia.
The logical stucture of the database has not been specified, so we cannot model the logical data-
base processing (such as indexing, joins, selections, etc.).

The model will represent high-level accesses to data objects, without reference to the logical or
physical structure of the distributed database.

2.1.3 Transaction Basis of Model

Information systems are essentially event-driven; the events are translated into transaction
requests. The transactions are passed into demands onto the ICAM distributed encyclopedia com-
ponent. The information services demands can then be expressed in terms of required transactions.

2.2 Model Overview

The demand model characterizes information services demands as a set of transactions on data
items. Each transaction consists of the following elements:

<transaction_name>: A unique identifier to distinguish transactions.

<frequency>: Numbers indicating the average (and optionally peak) frequency with which a trans-
action will be initiated.

<location>: A unique identifier for the site which requests the transaction.

<reads>: A list of data items that this transaction reads from the distributed encyclopedia. Associ-
ated with each data item in this list is an estimated number of tuples read.

<writes>: A list of data items that this transaction modifies in the distributed encyclopedia. Asso-
ciated with each data item in this list is an estimated number of tuples written.

Note that by analyzing the transactions and data items, the resulting demand model may be refined.
As transactions are optimized, common data items integrated, etc, the demand model will more
accurately model the specific information services demands. We also note that the term tuple has a
formal definition of a group of related fields in a row of a relation. We are using the term more
informally, to note a group of related fields. This is used to help avoid the issue of defining data.
For example, we can use an employee tuple without being specific as to its content, but it can be
casily understood by both the user and the modeler.

2.2.1 Data Item Reads and Writes

The ““data items” are high-level objects stored in the data base. The demand model is not concerned
with the logical structure of the relations within the information system. Instead, it is concerned
with data objects from the application program’s view.

Data items are defined to completely reside in a single location. It is also required that the data
items have consistent names across transactions and applications.

The “reads” indicate data read from the distributed encyclopedia, but not modified. The “writes”
indicate that data is modified in the distributed encyclopedia. In some cases, data will be read and

34

then written,

The model is most useful if there is some indication of the amount of data associated with each read
and write. It is not necessary to have an exact number, but an average figure (or estimate of an aver-
age figure) is useful. The demand to return a single tuple is quite different that the demand to return
10,000 tuples.

2.2.2 Transaction Location

Although the ICAM specifies a distributed encyclopedia which removes concerns about data local-
ity from applications, the actual implementation of a distributed information system must be con-
cerned about data locality. Therefore, it is important that the transaction origin be modeled.

The location should correspond to the physical sites of the distributed information system, not just
to U. S. Army installations or functional organizations. For example, there may be several infor-
mation system sites at any particular fort. It is important that a consistent naming scheme be used
to identify locations.

The details of this naming scheme have not been identified yet. It is assumed, however, that the U.
S. Army already has some naming scheme to identify organizations and their locations that can be
adapted to specify transaction locations.

It is possible to list a transaction location as “unspecified.” There could be two possible reasons for
this. Firstly, the originating location of the transaction may not be known by the persons building
the demand model. Secondly, if a transaction may occur from a number of different sites, the loca-
tion may be left “unspecified” to keep from having to list a separate transaction from each site.

2.2.3 Transaction Frequency

The type of transactions that may occur between an application program and the distributed ency-
clopedia does not fully specify the demands on the distributed encyclopedia. The frequency of
transactions is also necessary. Each transaction in the demand model, then, has an associated fre-
quency associated with it that indicates when the transaction occur.

The average frequency of the transaction is adequate for all but very detailed assessments. The
average frequency is represented as the number of transactions initiated per day. If the originating
location of the transaction is “unspecified” because it may be originating from multiple sites, this
indicates the average number of transactions initiated per day from all the sites.

For more accurate representations of the information services demands, the peak load may also be
represented. A particular transaction may only occur an average of ten times a day, but it may actu-
ally occur three hundred times a day on the last day of each month. To represent the peak load, the
peak transaction frequency and the peak time and duration must be specified.

If this model is used to drive a performance evaluation tool, the peak time and peak duration would
need to be more formally defined. In fact, the transaction frequency could be further refined in a
number of ways.

For instance, the frequency could be specified as a continuous function indicating the probability
of a transaction being initiated at any particular time. For more simple assessments, however, just
the average transaction frequency will suffice.

3.0 Demand Modeling Method
The information services demand model should map user demand for information into the infor-

35

mation services defined in the ICAM and address demand for information services from the user
point of view.

In order to understand the demand services needed by users, the requirements must be acquired in
some way. This section describes the process for instantiating a demand model. The demand mod-
eling instantiation method can be decomposed into phases. The first phase entails actually gather-
ing the requirements and the second phase addresses the actual requirements modeling process.

In terms of gathering requirements (for transition to the model), we are concerned with gathering
the following information:

<reads> (and amount of data)

<writes> (and amount of data)

<transaction_name> (i.e. process)

<frequency> (of transactions average, or peak)

<location> (locality of transactions request)::(special = unspecified)

Several possible approaches exist for gathering this information, including: a study of current
information systems, conducting interviews throughout the user community, or by gathering the
requirements using a group requirements determination technique. We suggest group requirements
determination as the most appropriate technique based on the literature which presents the ARMY's
previous successful experiences in using this requirements elicitation technique [DDH91].

3.1 Requirements Elicitation

Traditional requirements elicitation techniques have included: sequential interviews of individual
end-users, questionnaires of the general user group/community, and observations of end-users
actually interacting with a particular system. In large software development projects these tech-
niques are often inefficient because they lead to poor communication among project members
which requires a lengthy resolution process [CN91].

Our elicitation technique in terms of direct contact with the end-users will be to ask a group of users
to list the processes that ‘happen’ when they interact with the information system and the ‘things’
that those ‘happenings’ require. For example, we will ask users to list things (=data) and happen-
ings (=activities).

As previously stated, we need to elicit the following ‘list’ of information: reads, writes, transac-
tions, frequency of transactions, locality of transaction request. The data will map to the reads and
writes to the data encyclopedia. The activities will map to the transactions. No mapping (or trans-
lation) between the elicited frequency and locality information to the model representation will be
necessary.

3.1.1 Group Requirements Determination

Traditionally, individual analysts have been responsible for eliciting requirements from users, syn-
thesizing the information acquired, and then modeling or developing some representation of the
system requirements. This model is typically based on the analysts own understanding of the
requirements after the analyst has had a chance to synthesize the information. The users only
involvement throughout the requirements determination process was as an information source.
Unfortunately, when an analyst creates a model in this fashion, the structure of the model is usually
understandable only to the analyst [RS77]. A model jointly developed by both the analyst and a

36

group of end-users provides amodel that is easily understood and readily accepted by both parties.

In group requirements determination, analysts, developers and end-users are represented and
included in the process. Researchers at the University of Arizona have advocated increased user
involvement in the systems development process, indicating that this would contribute to the devel-
opment of better systems. According to Hayes, user participation enables the creation of a ‘better’
model than that created solely by the analyst and increases the probability of implementation suc-
cess [Hay91]. Electronic Meeting Systems (EMS) technology seems to be the most efficient
medium for supporting this collaboration between end-users and analysts.

3.1.2 Enterprise Analyzer

The Enterprise Analyzer (EA) is a set of “tools, facilities, and processes that blends aspects of both
Computer Aided Software Engineering (CASE) and the University of Arizona’s GroupSystems
Electronic Meeting System (EMS)” [DDH91}. The EA approach aids groups in the design of infor-
mation systems by providing electronic support for requirements elicitation. EA offers groups of
experts, end-users, and analysts a means to “collectively describe current procedures and identify
critical elements of the proposed system” [HDD90].

EA is a mechanism by which you involve the user in the requirements analysis process in such a
way as to have it culminate in a model or representation that adequately represents the users
requirements. EA works toward integrating elicitation and modelling. The EA Methodology is tai-
lored to groups working on specific projects. It is both an evolutionary and iterative process. We
should not think of EA as a tool but rather as part of the process.

Typically, in an EA session, a large group of participants (end-users) is broken up into groups of
three or four, with representatives from different domains. Each subgroup then tackles a different
module (or subsystem). By having each subgroup be responsible for a different module, the prob-
lem domain is decomposed into subproblems. This enables us to eventually reach an understanding
of the global problem.

A critical part of the enterprise analysis process is the training of participants. Participants must be
trained to think of objects and relationships in general rather than as unique entities. And in our
case, in terms of transactions, reads, writes, locality of transactions, and frequency of transactions.

Disciplined and coordinated teamwork is a must. Teamwork implies continuous and effective com-
munication amongst all of the participants. Capturing the elicited information and involving par-
ticipants in the process will result in clear, complete and correct results.

The EA architecture is a combination of support-team members, (users from client organization
and analysts), computer hardware, and software tools for documenting and analyzing the activities
of an enterprise for the purposes of information systems development and re-engineering.

3.1.3 Model Instantiation

In order to instantiate the demand model for the information services required by the users, we will
employ an elicitation strategy using Enterprise Analyzer. This strategy relies on a transaction based
orientation. For instance, the first step in the elicitation process will be to identify all possible trans-
action requests (current and future). After the transaction activities have been identified, all reads
and writes associated with each transaction (i.c. the data that a particular transaction depends on

and effects) are determined. Subsequently, the frequency of each transaction and the locality of the
transaction requests are identified. This process is obviously iterative and thus we are not requiring

37

that the process be followed expressly in this order.

EA not only provides electronic support for this elicitation, but it adds structure to the requirements
determination process. EA provides an efficient environment for coalescing the information for the
transactions and automatically generates a model representation for each transaction. The models
are in the form of a modified ICOM representation (see section 3.2).

Itis important to note that this is an elicitation processes not an analysis process. The main concern
at this point is to try to get as much data as possible and worry about establishing the relationships
later.

A model is not fully instantiated until some analysis is performed by the analyst. The analyst is
responsible for transforming the representation determined by the users based on experiential heu-
ristics (this transformation is described in section 3.3). EA simplifies the process of gathering the
information we want and provides a mechanism for tracing/tracking requirements. The elicitation
results can be directly fed into the actual demand model transformation process.

3.2 Requirements Representation

A representation technique should display the following characteristics [Davis 90]:
o Facilitate communication (via an easy-to-understand lang)

o Provide a means of defining the system boundary

o Provide a means of defining partitions, abstraction, &

projections

o Encourage the analyst to think & document in terms of the

problem as opposed to the solution

o Allow for opposing alternative but alert the analyst to

their presence

o Make it easy for analysts to modify the knowledge

structure
These characteristics will serve as a basis for our proposed representation.
3.2.1 Representation Framework

Structured Analysis and Design Technique (SADT) TM was developed by Doug Ross in the early
1970s at SofTech Inc. [RS§77]. SADT is a methodology for developing a “clear-cut understanding”
of a problem, “documenting that understanding, and then communicating it to others” [RS85]. This
methodology uses “a nonambiguous graphical notation in which natural language is embedded.”
This notation facilitates projection, abstraction and partitioning [Dav90].

SADT is used to construct a model for a particular problem. The model represents a hierarchy of
diagrams. The graphic language consists of boxes with four sides. Each side represents one of the
following: input, control, output, or mechanism. Basically, the inputs are transformed to outputs
under constraint of the control [RS85].

SADT provides us with a framework within which to instantiate a demand model. In the next sec-
tion, we present certain modifications to the standard SADT model representation.

38

3.2.2 SADT/ICOM

SADT has proven to be an efficient technique for constructing a model of a problem. Structured
Analysis provides a model that describes the functional reality (i.e. what something is and what it
does) of a system. SADT consists of graphical language which results in ICOM (Inputs Controls
Outputs Mechanisms) models.

Traditional ICOM models include the following graphical components
(see Figure 3.2.1):
Boxes - represent activities
Arrows - represent real objects or information needed by
or produced by an activity
Inputs - data needed to perform an activity

- WHAT is done by activity

- Arrow going into left side of box
Outputs - data created when activity is performed

- WHAT is done by activity

- Arrow going to out right side of box
Controls - conditions or circumstances that govern
transformation of input to output

- WHY activity is done

- Arrow going into bottom side of box
Mechanism - the person or device that carries out the
activity

- means by which an activity is performed

- HOW activity is done

- Arrow going out of top side of box

- a downward-pointing arrow indicates a processor

that completely performs the function of the box.

The arrows connecting the output of one box to the input of another represents a data constraint
(not a data flow).

39

Control

Activity o Output

f

Mechanism

Input _|

Figure 3.2.1 Standard IOOM Model

In order to properly represent the information services required by the users in the ICAT demand
model, we present the following modifications to the ICOM notation. Inputs will be referred to as
Reads, Controls will be referred to as Frequencies, Outputs will be referred to as Writes, Mecha-
nisms will be referred to as Locations, and finally, Activities will be referred to as Transactions.

The modified ICOM model includes the following graphical components
(see Figure 3.2.2):
RFWM - Read Frequency Write Location (modified ICOM for ICAT)
Reads - <read>
- Arrow going into left side of box
Frequency - average transactions per day
- HOW OFTEN activity is done
- Arrow into top of box
Wirites - <write>
- Arrow going to out right side of box
Location - location of transaction request
- WHERE activity is invoked
- Arrow going into bottom side of box

Frequency

1

Read Transaction » Write

!

Location

Figure 3.2.2 Modified ICOM model for ICAT Demand model.

Enterprise Analyzer automatically generates ICOM models. We propose the above modifications
in order to effectively apply the existing EA support environment to the demand model information
requirements.

3.3 Transformation from Requirements to Demand Model

The transformation from the <modified ICOM/SADT> representation to the information services
demand model is simple. All the information required for the demand model is present in the
<modified ICOM/SADT> representation.

In, fact, we anticipate that the EA tool could be modified (or a post processor added) to generate
information services demand models explicitly.

The technique for realizing the demand model is as follows. First we can view the user based reads
and writes as redundant and discard them. The rationale for this is that, as previously stated, the
user interface (and thus his/her interactions) are part of the entry layer. The demands on the entry
layer are independent. Thus we are only interested in the demands (reads/writes) on the data ency-
clopedia. The process of eliminating the entry layer inputs and outputsis amental ~ process that
is run by the analyst based on experiential heuristics. The resultant set of information is thus, reads
and writes to the data encyclopedia.

4.0 Sample Model

The following simplistic view of induction of a soldier is used as an example of instantiation of the
model. The soldier has associated with her/him a social security number, and medical results. The
output of the induction transaction is a set of orders and the creation of a personnel file. In this
example, the social security number is a write to the data encyclopedia and the medical results are
a write to the data encyclopedia. We are not concerned with the entry level aspect of this transac-
tion, since that is merely a manual or other type of user input that translates to the data encyclopedia
reads/writes. The outputs consist of creation of a personnel file and the printing of a set of orders.
Again, we are not concerned with the entry layer component (the printing of orders), but only the
data encyclopedia aspect (the creation and thus write, and possibly read of the personnel file). Thus,
the induction instantiation (in our simple example), can be viewed

41

as a single transaction (and the associated frequency can be specified as an average, as well as
peak), with a set of data encyclopedia reads/writes. Finally, the Location is unspecified. As was pre-
viously mentioned, the unspecified attribute allows for the induction to occur at many locations.

Frequency
SSN . Orders
N Induct Soldier -
Medical Results Personnel File
Locality (who/where)
“unspecified”

Figure 4.1. Sample Model

42

References

[CN91]) Minder Chen, Jay F. Nunamaker, Jr. The Architecture and Design of a Collaborative Envi-
ronment for Systems Definition. DATABASE, Winter/Spring 1991.

[CM90] Richard H. Cobb and Harlan D. Mills, “Engineering Software under Statistical Quality
Control,” IEEE Software, November 1987, pp. 44-54.

[DDH91]) Robert Daniels, Alan Dennis, Glenda Hayes, J. Nunamaker, Jr.,Joseph Valacich. Enter-
prise Analyzer: Electronic Support for Group Requirements Elicitation. 1991.

[Dav90] Alan M. Davis. Software Requirements: Analysis and Specification. Prentice-Hall. 1992.
[Hay91] Glenda Hayes. Group Matrix Tool: A Collaborative Modelling Tool. Doctoral Disserta-
tion. University of Arizona. 1991.

[HDD90] Glenda Hayes, Alan R. Dennis, Robert M. Daniels. Jr., V. Ramesh, J.F. Nunamaker, Jr.,
Doug Vogel, Joseph Valacich. Enterprise Analyzer: Electronic Support for the System Design
Team. 1990.

{RS77] Douglas T. Ross and Kenneth E. Schoman, Jr. Structured Analysis for Requirements

Definition. IEEE Transactions on Software Engineering, SE-3(1), January, 1977.
[RS85] Dogulas T. Ross. Applications and Extensions of SADT. IEEE Computer, 18(4), April

1985.

43

THIS PAGE WAS INTENTIONALY LEFT BLANK

RE-ENGINEERING AND TRANSITION

45

THIS PAGE WAS INTENTIONALY LEFT BLANK

ISA 97-Compliant Architecture Testbed (ICAT) Project Tools and Database
Transition Subtasks

Spencer Rugaber
Bret Johnson
Gary Pardun

Software Research Center
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

ABSTRACT: This document is part of the final report of the ISA 97-Compliant Architecture Tcst-
bed (ICAT) project. In particular, it summarizes the work on the fourth task, which is concerned
with the transition of Army management information systems from a mainframe, fiat file, third gen-
eration environment to a distributed, open systems environment using workstations, networks,
relational database management systems, and SQL. This task, in turn, has two parts. The first
involves the selection and acquisition of tools to help the transition process. The second part
describes a variety of strategies that might be applied depending on circumstances. The decision
on which strategy to apply is described in terms of a set of criteria. A skeleton decision structure is
described that allows the criteria to be applied.

1.0 Background And Motivation

Several faculty members of the College of Computing are involved in the ISA 97-Compliant
Architecture Testbed (ICAT) Project, sponsored by AIRMICS. The Performance Work Statement
(PWS)[3] for the project includes the following paragraph describing the project’s background and
objectives.

In response to the current information requirements (standards-compliant systems) and strategies
(open systems and decentralization of data processing) of the Army, AIRMICS has proposed the
“ISA 97 Conceptual Architecture Model” (ICAM) as an information system architecture reference
model for building an information system using standardized interfaces and components.

The project consists of four major tasks directed at prototyping ICAM. The first two involve refine-
ment and implementation of ICAM into a testbed called ICAT. The third major task involves mod-
eling the demand for information services provided by ICAM. The final major task involves the

47

transition from the current information services environment into one based on ICAM. The present
document describes work directed at the accomplishing the first two subtasks of the transition task
(the final major task) of the ICAT project.

The transition task of ICAT involves three subtasks. The third concem transition to the GOSIP
communication protocols and will not be discussed further here. The other two subtasks involve
the transition of information systems to the ICAM environment. The first subtask is concerned with
tool evaluation and acquisition and is described as follows in the PWS:

The contractor shall identify CASE and reverse-
engineering tools necessary for developing new applica-
tions and transiting current applications. Subject to

the approval of the government, the contractor shall
acquire these tools.

The second subtask, concerned with strategies for transiting information systems, is described as
follows in the PWS:

The contractor shall recommend the least effort and
most cost effective strategy for the transition of
databases (from flat files and navigational databases
to distributed relational databases) and the transition
of application programs (from 3GL to 4GL).

2.0 Case And Reverse Engineering Tools Subtask

2.1 Goals

The major goals of the ICAM are to promote the use of open-systems and decentralized data pro-
cessing for Army management information systems. For the purposes of the ICAT project, this
implies the use of the Unix operating system on SUN Sparc workstations running a relation data-
base management system (RDBMS). Typically, these information systems now run on an IBM
mainframe, are written in COBOL, and make use of flat files to hold their data.

The transition from systems based on flat files to systems that make use of an RDBMS requires a
high-level understanding of the application and how it manipulates its data. The process of obtain-
ing that understanding is called reverse engineering. Chikofsky and Cross[6] give the following
definition. “Reverse engineering is the process of analyzing a subject system to identify the sys-
tem’s components a:..! their interrelationships and create representations of the system in another
form or at a higher level of abstraction.”

Reverse engineering is a labor intensive process. It is therefore desirable to automate it to the extent
possible. Part of the aim of this subtask is to investigate tools that can facilitate this process. To
accomplish these end, the following tools have been investigated.

o Unix COBOL compilers: COBOL compilers and run-
time systems capable of targeting Unix worksta-
tions.

48

0 Relational database management systems: RDBMSs -
capable of running on a workstation and being
accessed across a network.

o Computer-Aided Software Engineering (CASE) tech-
nology: integrated tool sets capable of
representing high-level designs of information
systems and aiding the generation of enhanced pro-
grams.

o Program analysis tools: to facilitate the
transformation of flat file COBOL programs to ver-
sions capable of interacting with an RDBMS.

o Other technology to support the transition pro-
cess.

2.2 Tools Identified And Acquired
2.2.1 Open Systems Cobol Compiler Technology

Several vendors advertise COBOL compilers targeted at Unix workstations. We selected and pur-
chased the COBOL tools from Liant Software. In particular, we purchased and installed the RM/
COBOL*85 compiler and development environment. This includes the compiler itself, the run-
time environment that supports execution, and several integrated development tools.

2.2.2 Relational Database Management System

We chose to take advantage of the existing Georgia Tech site license for the Oracle RDBMS run-
ning on the Sparc workstation. In particular, we installed the SQL*Plus interactive interface tool,
the SQL*Forms forms interface, and the Oracle SQL*ReportWriter, as well as the database server
itself.

2.2.3 Case Tools

We chose to take advantage of an existing Georgia Tech site license. In this case, the license was
for the Software Through Pictures (STP) CASE tool from Interactive Development Environments,

Inc. (IDE).
2.2.4 Program Analysis Tools

In order to support the transformation of flat file COBOL programs to programs that access an
RDBMS as cost effectively as possible, it is desirable to automate as much as possible the analysis
and adaptation process. To do this, we made use of a publicly available program analysis tool called
NewYacc[11,13) with which we had previous experience. NewYacc augments a grammatical
description of the language in which the programs that it is analyzing are written. In this case, the
language is COBOL. In order to obtain a grammar for COBOL,, we purchased the PCYACC tool
from Abraxas Software. Unfortunately, despite their advertisements of a Unix version of this gram-
mar and the associated tools, they could only supply a version for the PS/2.

Other Technology To Support The Transition Process

49

It should come as no surprise that there are some vendors who supply tools to support the kinds of
transition with which this project is concerned. We were able to obtain an attractive one called RM/
plusDB, a RDBMS bridging package, also from Liant Software.

2.3 Status And Evaluation

The next section describes how the acquired tools were used during this project. This subsection
summarizes our experience acquiring, installing, and testing the tools.

o COBOL compiler: our guess is that this tool has
itself been recently converted to run in a Unix
environment and that the transition was not
smooth. We had difficulty getting the compiler to
run in our environment, which includes distributed
file services. In fact we had to upgrade our ver-
sion of the operating system in order to get con-
sistent compilations. Once we did this, we had no
further trouble.

o COBOL run-time system: this seems to work, but
has not been extensively tested due to the late
arrival of the test data.

o COBOL development tools: these ran satisfac-
torily.

Relational database management system: the Oracle
software fills three SUN cartridge tapes! So
installation was quite tedious. Once this was
accomplished, it worked satisfactorily.

o CASE Tools: STP was acquired, installed, and
tested without difficulty. It ran satisfactorily.

o NewYacc: was already installed. It ran satisfac-
torily although it places some minor constraints
on the names for tokens that can be used in the
grammar description file.

o PCYACC: although this software was advertized to
run on Unix, and the vendor billed us for a Unix
version, it became apparent that what we had actu-
ally received was a PC version. A telephone
conversation to the vendor revealed that they have

50

not yet released their Unix product. They sug-
gested that we take the grammar from the PC ver-
sion and run it using the standard Unix tools
(YACC and LEX). They felt that it should run
without difficulty. After considerable diffi-

culty, we did get it to run using an adapted ver-
sion of the Berkeley release of YACC. We have
since gotten them to adjust the price.

o RM/plusDB: this product claims to invisibly sup-
port the replacement of flat files by RDBMS
tables. However, the version that they sent us
did not support Oracle. The Oracle version is
about to be released, and the vendor has agreed to
send us a no-cost upgrade.

Overall, it is fair to say that our experience with the vendor-supplied Unix tools was somewhat
frustrating. We had to go to a considerable amount of effort to get working versions of the tools
that we needed. The situation should gradually improve as more vendors target the Unix market-
place.

3.0 Database And Information Systems Transition Subtask
3.1 Goals

This Database and Information Systems Transition subtask requires the selection of a strategy for
the transition of systems from fiat files to RDBMSs and from the COBOL programming language
to fourth generation languages. It is apparent, however, from the range of application systems that
no single strategy will suffice. Therefore, section 3.2 will discuss a variety of strategies that we
explored. Sections 3.3 and 3.4 propose criteria by use of which an appropriate strategy can be
applied to a specific situation.

3.2 Strategy Characterization And Experience

A variety of strategies can potentially be applied to move a management information system to a
distributed opensystems environment. They range from doing nothing (for systems where the cost
of transition outweighs any benefits) to a full rewrite in the new environment. This subsection
begins by describing the spectrum of existing systems. Then a sample system that was used for our
experimentation is described. Finally, the range of strategies that we investigated is presented.

3.2.1 Army Management Information Systems

Two categories of Army management information systems are of concern to this project. The first
category includes the STANDARD ARMY MANAGEMENT INFORMATION SYSTEMS (STA-
MIS’s). Of the 187 STAMIS's listed in the STAMOD database, 118 were written at least partially
in COBOL.* When all systems and variants are considered, the average size of a STAMIS is 206
thousand lines of code. Each such system is broken up into separate programs. The average number

51

of programs per system is 161. Of the original systems, 78 already access a database of some sort.
These databases range from large-scale third generation systems like DMS1100 to PC record man-
agers like DBase. Some systems already access RDBMSs such as Oracle or Informix. Six systems
in the STAMOD database list their DBMS as “TBD”, presumably to indicate that the system is
under construction, and the DBMS has not yet been decided.

The other category of Army management information system is called an INSTALLATION SUP-
PORT MODULE (ISM). These systems have not been standardized and may, in fact, be relevant

only to a single Army installation. An effort is underway to use the ACE prototyping environment
to move these systems toward a distributed open-systems environment. The limited time allowed
for the project did not permit them to be included in the study.

3.2.2 A Typical Army Management Information System

For the purposes of this project, we needed to explore the difficulties that arise when actually tran-
siting a STAMIS. To do this, we used the Installation Materiel Condition Status Reporting System
(IMCSRS)[1]. This STAMIS consists of approximately 10,000 lines of COBOL code, broken into
15 programs. We had become familiar with this systermn during an earlier project[12] that ultimately
lead to the replacement of IMCSRS by a version written in Ada[7].

IMCSRS is smaller than a typical STAMIS, but it performs typical functions. It is responsible for
using input transactions to update a master file and then producing a variety of reports describing
the status of Army materiel. Most of this functionality could ultimately be replaced by RDBMS
activities expressed using a fourth generation

* It should be noted that this database includes multiple occurrences of systems with the same
name. The occurrences have different properties; so the presumption is that they represent signifi-
cant variants. It is unclear how up-to-date the STAMOD database is language (4GL).

3.2.3 Strategies Investigated

A variety of approaches are conceivable when considering the transition of an information system
to a distributed open-systems environment. This subsection lists those at which we have looked.
They are organized roughly from those requiring the least to the most effort to effect.

The strategies that are described in this section are comparable in the sense that each has a costs
and benefits. For any given situation, the costs and benefits for the various strategies must be com-
pared to select the most cost-effective approach. The next subsection describes questions that can
be asked in order to make these judgements. This subsection merely describes the strategies and
our experiences with them.

3.2.3.1 As Is Strategy

The base line against which the other strategies must be measured is the strategy of doing nothing.
In this case, there is no real benefit, and the cost is fairly well understood. This strategy may be
appropriate if it is known that the STAMIS is going to be replaced or phased out. It may also be
applicable if the STAMIS is used only infrequently by a single site. In this case, there is little value
in supporting distributed access.

3.2.3.2 SQL Access To Flat Files Strategy

Another strategy that occurred to us leaves both the COBOL program and the data files untouched.
This strategy involves the development or acquisition of a tool that provides SQL access to flat
files. This strategy allows new queries to be written strictly in SQL without requiring COBOL code

52

alteration. It also supports the incremental replacement of COBOL functionality by SQL queries.
Another advantage of this approach is that it provides another tool in obtaining a hybrid environ-
ment, where some programs are written in COBOL and some in SQL and some data files are flat
files and some are relational database tables. We did not investigate this option experimentally.

3.2.3.3 Direct Stamis Porting Strategy

Another strategy is to simply port the COBOL system from the mainframe environment onto a
Unix workstation without adding any new functionality. We attempted to do this with IMCSRS.
Unfortunately, IMCSRS is written in an older dialect of COBOL, COBOL 68. The compiler which
we have obtained (as well as the PCYACC program analysis tool) is capable of compiling the
COBOL 74 and COBOL 85 dialects.

In order to pursue this strategy, we had to convert the COBOL code by hand in order to compile it.

This was time consuming but relatively straightforward. Appendix A lists the specific conversions
that had to be made. The STAMOD database does not include information about the version of a

programming language that was used to build an information system, so we have no way of know-
ing how frequently such conversions will be required.

After the code was converted, it successfully compiled on the Unix workstation. In order to test the
accuracy of the conversion, however, we needed to obtain sample IMCSRS test data. We were not
able to obtain this until mid-December. Since it has been received, we have been able to run several
of the programs and successfully obtain reports. Examples are included in Appendix E. This gives
us some indication that the COBOL run-time system is working.

Another factor to consider is the conversion of system data. Issues such as word size, byte order,
and character set may cause difficulties in applying this strategy. The unavailability of the test data
prevented us from looking into these issues more fully. When the test data arrived, it did require
conversion. Specifically, the data had to be converted into newline-terminated Unix format. We did
not have any mechanism for determining whether any word size differences, such as might exist
between a 36-bit mainframe and a 32-bit workstation, would lead to loss of precision.

The direct porting strategy may be desirable when it is advantageous to move a system off of a
mainframe. This may happen if execution costs are significantly reduced by using a workstation or
if the network access provided on the workstation increases the customer base and timeliness of
the application’s reports. It may also be applicable as an interim step 1o some of the strategies
described below.

3.2.3.4 Transparent Layered Conversion Strategy

Some vendors are already addressing the software transition problem. For example, Liant Soft-
ware, vendors of the COBOL compiler that we purchased, sells a tool called RM/plusDB. Its pur-
pose is to provide a transparent mechanism so that existing COBOL programs can access RDBMSs
without having to be altered. RM/plusDB provides an extended run-time environment and a server.
The run-time extensions are invoked when a COBOL statement attempts to do I/O to a flat file. The
run-time routines, instead, convert the I/O request to an access to the RDBMS. The server transfers
these requests to the RDBMS and returns any data passed back from the RDBMS.

The steps required to implement this strategy on an information system are the following:
o Extract and annotate the File Description state-
ments (FDs) from the COBOL code. The annotations

53

appear as COBOL comments.

o Using an RM/plusDB utility, create a data diction-
ary describing each of the files.

o Using another utility, convert the data dictionary
into database table definitions. Note that this
step is dependent on the particular target RDBMS.

o Use the data loading capabilities of the RDBMS to
load the flat file data into the RDBMS.

o Relink the application program with the new run-
time environment.

This strategy provides some of the sought-for benefits. All of the advantages of DBMSs over fiat
files such as data security and integrity are available. Also, enhancements are facilitated--new
reports can be easily constructed using the 4GL capabilities of the RDBMS. Because the code is
not altered, the cost is low. This strategy can also be applied as an interim step to those described
below.

Unfortunately, the RM/plusDB tool does not yet support the Oracle RDBMS that we were target-
ing. We were able to accomplish the first two of the steps described above, but the appropriate
server is not available to us to allow testing. They are nearly ready to release their Oracle version,
and we have arranged to obtain a no-cost upgrade that supports Oracle.

3.2.3.5 Code Layering Strategy

The previous strategies have avoided altering the source code of an application system. Sometimes,
however, the benefits of direct intervention are warranted. Most database vendors provide a mech-
anism for directly placing Structured Query Language (SQL) statements into source code. This is
typically accomplished using either a preprocessor or through direct library calls. We did not try
any specific experiments with this strategy, but some of the observations related in the next section
are relevant here.

3.2.3.6 Code Replacement Strategy

4GL programs are smaller and more maintainable than are programs written in third generation
languages like COBOL. These benefits can be a strong inducement to replace parts or all of an
application program by 4GL. programs. Specifically, 4GLs support the construction of reports and
the satisfying of relatively small queries that do not require a great deal of computation. Also,
depending on the specific interactions involved, the VIEW and JOIN capabilities of an RDBMS
can replace some complicated computations involving multiple files. In addition, some 4GLs pro-
vide declarative data validation mechanisms that can further reduce code size.

We conducted an experiment, taking one of the IMCSRS programs and converting it to SQL. In
order to accomplish this, the original COBOL program had to be understood. Traditionally, this
would be accomplished informally--trying to understand the COBOL program in terms of the tar-
get SQL functionality. Although this was the course that we took, our recommendation would be
to make this re-engineering process more systematic. In particular, an explicit reverse engineering
step is required in which a representation of the program’s data processing requirements is con-

54

structed. Such a procedure targeted specifically at information systems is described in Batini’s
book[4]. Another approach, aimed somewhat more at the functional requirements than at data
modeling is described in the technical report by Kamper and Rugaber{9).

The experiment was successful in the sense that SQL reports were generated from the Oracle data-
base. The success is somewhat tempered, however, by the lack of actual test data with which to
compare results. Also, it is important to realize that we intentionally selected a program whose pur-
pOse was to generate a report, So it is not surprising that we were able to do so. Perhaps the most
accurate conclusion to draw is that we now have at least one instance where this particular strategy
has succeeded. The experiment was conducted by one of the authors (Johnson). His description of
the experience is included as Appendix B.

This strategy appears to be applicable in an environment where incremental transition from
COBOL to SQL is desirable. This may be warranted where the programmers are receiving on-the-
job training and need small examples. The feedback obtained from comparing the existing results
with that obtained from SQL can serve to validate the conversion. If the program being converted
is convoluted and difficult to understand, incrementally removing segments responsible for rela-
tively self-contained tasks, such as report generation, can reduce the size of the remaining COBOL
code to the point where direct comprehension is more feasible.

3.2.3.7 RDBMs Conversion By Reengineering Strategy

Program evolution without benefit of a high-level representation of functionality and structure pre-
sents risks in terms of quality. The process of reverse engineering existing software yields such a
representation that can then be used as a basis for enhancements.

The benefits of such an approach are obvious; the costs are, however, difficult to measure. One fac-
tor that needs to be understood is that reverse engineering requires a significant commitment in
time and effort. Some discussions of mechanisms for partially automating the process are described
in the next strategy subsection.

The manual re-engineering strategy is indicated in situations where the existing code will continue
to be used extensively for the foreseeable future. Maintenance activities that require modification
of existing code (versus simply adding new modules) can also help justify the expense of reverse
engineering. Reverse engineering does not have to be applied to an entire system. The log in
Appendix B describes its informal use on one component of IMCSRS. In this case, however, pre-
vious reverse engineering work significantly facilitated the process. Even if only a part of a system
is being reverse engineered, there is still a need for the reverse engineer to understand the context
of the component relative to the entire system. Thus, in situations where resources such as accurate
documentation or experienced maintenance personal exist, partial reverse engineering may by
more feasible.

3.2.3.8 Automatic Reverse Engineering Strategy

Because of the expense involved in reverse engineering, it is desirable to automate as much as pos-
sible the steps involved. Unfortunately, the state of the art is such that few tools exist and those that
do are capable of describing only surface features of an existing system.

The strategy of automatic reverse engineering involves extracting features from existing programs
and translating them into a standard design representation. We performed an experiment to explore
the feasibility of this approach. Specifically, we wanted to know whether we could automatically
extract information from a COBOL program describing the structure of the files that it uses. There

55

are three components of the effort: program analysis, transformation of design information, and
design representation and display.

3.2.3.8.1 Program Analysis

COBOL programs are highly structured descriptions of computations and data. The programs rep-
resent the culmination of a series of design decisions that transform an initial specification into a
final program. Moreover, even after a program is delivered, it undergoes subsequent changes for
the purposes of removing defects, adding enhancements, and adapting to changing environmental
constraints.

In order to construct a high-level design description of a software system, the design decisions that
went into its construction and maintenance must be reconstructed. This is accomplished by a sys-
tematic analysis of the program text, simultaneously constructing a description of the application
domain and procedures that the program models. The analysis can be performed manually, but the
process is labor intensive and therefore costly in time and resources. It is desirable to replace as
much as possible of the manual effort by the use of automated tools.

Because of the structured nature of COBOL, any analysis must be based on a grammatical descrip-
tion of that language, i. ¢. a COBOL grammar. We have previously made use of a grammar-based
tool called NewYacc[11,13]. NewYacc is a preprocessor to the Unix yacc tool. Yacc takes as input
a grammatical description of a programming language and produces as output a parser suitable for
parsing programs written in that language. To yacc’s rules, New Yacc adds two features. First of all,
NewYacc augments the constructed yacc parser so that when it runs it retains a description of the
structure of the program that it is parsing. This description is a parse tree (also called a concrete
syntax tree), and normally the yacc-constructed parser builds it implicitly and then throws it away
when parsing is completed.

This extension to yacc is complemented by the second additional feature. Normally yacc allows its
users to describe not only the structure of the language whose programs will be parsed, but also
semantic rules describing how the program will be translated or interpreted. Thus, yacc is often
used to construct a parser that serves as the first step of a compiler. To this power, NewYacc adds
another kind of grammar annotation. The annotations describe rules that can be applied during tra-
versals of the parse tree.

The rules are of two forms, both of potential use during reverse engineering. The first kind of rule
describes a SELECTIVE TRAVERSAL. These rules indicate which program features should be
extracted from the parse tree during the traversal. In the case of IMCSRS, we are interested in
extracting the File Description statements (FD’s). These can be used for several purposes to auto-
mate parts of the other strategies. For example, in the Transparent Layered Conversion strategy, it
was necessary to use the FDs in order to build a description of the tables in the RDBMS that hold
the input and output data. Also, in the RDBMS Conversion by Re-engineering strategy, we would
like to construct a high-level representation of the data manipulation requirements of the program.

Entity-Relationship diagrams([5] (E-R diagrams) are an appropriate medium for this task. In these
diagrams, each input and output file corresponds to one entity. To automate the process, we would
like to e::'ract the FDs and convert them into the description of entities in the diagram. Selective
traversal. easily provide this information.

The other kind of NewYacc rule supports OPEN TRAVERSALS. In this case, the rules describe
how an input program can be systematically transformed. For example, it might be desirable to uni-

56

formly apply indentation rules to an existing programs. Also, renaming program variables so that
they more clearly express their use in a program can be done in such a way that all and only those
occurrences of a series of characters in the program text that actually denote the variables to be
changed are affected. Occurrences of the characters in comments or string literals are ignored.

In order to use NewYacc on IMCSRS, a COBOL grammar is required. COBOL is a relatively new
language in the Unix world, grammars are not readily available as they are for other languages such
as C or Pascal. We were, however, able to find a vendor that supplies a version of yacc and lex (a
Unix program manipulation tool used to build lexical analyzers for programming languages). This
vendor is Abraxas Software and their product is called PCYACC. PCYACC is primarily intended
to provide yacc and lex to the non-Unix PC world. They do advertise, however, a Unix-based ver-
sion that includes grammars for a variety of languages, including COBOL.

Unfortunately, when we obtained this software we learned that, despite their claims, they still only
had a PC version. They advised us, however, to transport the grammar to a Unix workstation and
use it with the yacc that was there. They foresaw no difficulty with this process.

We were eventually able to accomplish this task, but it was considerably more involved than they
claimed. In fact, there were several difficulties that COBOL presented. The difficulties are
described in Appendix C.

Once we had a working tool, we were able to integrate NewYacc. By the end of project schedule,
we had gotten to the point where New Yacc was working with COBOL, and we were beginning to
construct rules for extracting COBOL constructs. We foresee no further difficulty in using this
mechanism for extracting FDs.

3.2.3.8.2 Transformation Of Design Information

Our New Yacc rules are designed to analyze a COBOL program using selective traversal to extract
FD information. Once the FDs are extracted they can be used by RM/plusDB as part of the Trans-
parent Layered Conversion strategy or as a basis for one part of the Automatic Reverse Engineer-
ing strategy. Specifically, we want to be able to construct an ER diagram that describes an
application’s data model. In this diagram, application files will be mapped to entities. New Yacc is
capable of extracting the FDs, and the Software Through Pictures (STP) CASE tool is capable of
displaying the diagram. The remaining step is to transform the FD information into a form under-
standable by STP.

STP has an OPEN ARCHITECTURE. This means that it is extensible to users in a variety of ways.
In particular, diagrams are stored using a textual representation, and the format of this representa-
tion is documented. The normal mode of diagram construction in STP is by the end user manually
selecting icons and placing them in the diagram on the screen. Using the published file format,
however, we were able to automatically construct diagrams based on the information extracted by
NewYacc. A technical report describing this process has been written by Johnson[8].

In essence, the program has to be able to perform three tasks. It must first read in the information
extracted by NewYacc and construct an internal representation of a file described by an FD. Sec-
ond, the program must build up an internal description of the corresponding diagram that will be
displayed. This process is called layout. Finally, the program must interpret this description and
produce a textual representation readable by STP.

We have previously performed this process using a SmallTalk program that produced Structure
Chart diagrams. The Structure Charts describe the calling structure (call tree) for C programs. For

57

this project, the program was converted from SmallTalk to C and modularized into components
corresponding to the three activities listed above.As mentioned above, we did not quite get to the
point where New Yacc extracted FDs from COBOL programs. However, the call tree problem 1s
inherently more difficult than constructing a picture describing only a single entity and its associ-
ated attributes, so we foresee no fundamental difficulty with completing the tool.

3.2.3.8.3 Design Representation And Display

The diagram that is constructed by this process represents one COBOL file. Such a file correspond
to an entity in an ER diagram. The entity and its attributes are obtained from the FD statements.
Uses of such a diagram include visualization of the file’s structure, graphical manipulation using
the CASE tool’s editing features, and automatic schema generation.

Visualization is limited by this approach in several ways. First, STP provides no mechanism for
refining an ER diagram into lower level diagrams. This is not a fundamental limitation. The Batini
book[4], for example, describes several ways in which complex diagrams can be abstracted. If a
diagram got very crowded, its ability to promote visualization would be correspondingly reduced.
The second limitation has to do with RELATIONSHIPS. An ER diagram consists of entities and
relationships. In our case, the entities correspond to files and can be automatically extracted using
the procedures described above. Relationships, however, are more troublesome. Relationships
between an input and an output file can be arbitrarily complex, and many other relationships are
only implicitly apparent in the code. We see some promise in using a technology from compiler
theory called dataflow analysis to estimate such relationships. One of us (Pardun) has written a
technical report for his database class proposing how this problem might be attacked[10].

Once an ER diagram has been built by the automatic procedure, it is editable just as if the diagram
had been drawn initially from within the CASE environment. This provides support for future
enhancements to the information system. For example, if a program enhancement involved adding
new information to an input file, the corresponding ER diagram could be extracted and edited.
Then the CASE tool’s template generation mechanism could be used to automatically produce a
new version of the FD statement describing the file. In a sense, then, maintenance has been moved
from a code editing activity to a conceptual alteration expressed graphically.

STP has another feature that allows it to antomatically construct table descriptions for a variety of
database systems. In particular, it can construct SQL CREATE statements for Oracle. To explore

this feature, we tried a small experiment. One of us (Johnson) took an FD from one of IMCSRS’s
program (P13AGU) and manually constructed an ER diagram for it using STP. This is the process
described above that we believe is automatable. His description of the process and the difficultes
that he encountered are described in Appendix D. This process supports a transition strategy where
an existing COBOL input file is automatically converted to an Oracle relation. Of course, we have
only looked at part of the problem; it also seems possible to automatically generate the statements
to the RDBMS’s data loader utility to load the file’s contents into the RDBMS.

3.2.3.9 From Scratch Rewrite Strategy

A final strategy needs to be mentioned for reasons of completeness. Under some circumstances, it
may be desirable to throw out the existing program entirely and to rebuild from scratch, including
new requirements gathering. This situation may obtain when the old system needs to be signifi-
cantly modified and its complexity is severe enough that the cost of re-engineering is outweighed
by the costs (and risks) of initial development.

58

3.2.4 Summary Of Strategies
The following table lists the strategies described in this section.

Strategy

As-Is- Strategy

SQL Access to Flat Files Strategy

Direct STAMIS Porting Strategy

Transparent Layered Conversion Strategy

Code Layering Strategy

Code Replacement Strategy

RDBMS Conversion by Re-engineering Strategy
Automatic Reverse Engineering Strategy
From-Scratch Rewrite Strategy

3.3 Decision Criteria

The previous section describes a wide variety of strategies, no one of which is suitable for deal-
ing with all situations. In order to determine which strategy is appropriate in a given situation, those
factors that can effect the costs and benefits of applying the strategy should be weighed. These fac-
tors are called decision criteria, and this subsection lists and defines them. The next subsection pro-
poses a mechanism whereby the criteria can be organized into a structure that will facilitate the
decision making process.

3.3.1 Factors Related To Usage Of The Existing System

o Usage profile and availability: How many users does the
system currently have? How are these distributed
topologically (are they logged into the mainframe, do
they submit batch jobs, or are run requests handled
manually)? How frequently does a given user make use
of the application? In what different ways are the
application used (what is the ratio of data updates to
reports produced)? How frequently is each such use
made? What is the physical process by which a use of
the application is currently made (data entry, valida-
tion handled separately; manual or electronic distribu-
tion of reports)? How many different sites use the
existing system?

o Expected lifetime: What is the expected lifetime of

59

the existing application? Is usage growing or shrink-
ing?

o Current execution costs: How much does it currently
cost to execute the program in terms of machine and
human resources? How does this cost vary across the
various types of uses?

o Ownership and control: Are there political factors
that would impede the reduction in information control
that comes from distributed access?

0 Administration: Are there administrative procedures
that would be difficult to provide in a distributed
environment? What are the costs in transforming these
procedures?

o Interoperation: Do other applications depend directly
on the data produced by this application (master file,
report files, exception files)? Does this application
depend on the products of other applications?

3.3.2 Factors Related To The Structures And Functionality Of The Existing System

0 Current architecture: How amenable is the current
architecture to the client/server model? Is the appli-
cation primarily batch or interactive?

o Hardware configuration considerations - type and
resource availability: What external resources and
connections does the application require? How exten-
sively are thzse used?

o Software configuration considerations: Does the exist-
ing system make use of non-portable operating system
capabilities? Does the existing system interface to
other existing systems?

o Reports: Does the existing system write reports? If
so, how separable is the computational functionality
from the report construction functionality? Are there
reports - could be replaced by SQL queries? Are
there re; s that could be replaced by reports con-

structed by the RDBMS report writer capability?

o Other RDBMS features: Does the current application do
significant data validation that could be replaced by
the data validation features of the RDBMS? Could the
current application make effective use of advanced
RDBMS operations like views and joins?

3.3.3 Factors Related To Expected Usage Of The Transited System

o Increased usage: What is the expected increase in
usage of the system due to networked availability?

What is the expected change in usage (e. g. from batch
to interactive) promoted by distributed access?

o DBMS functions: Can the application take advantage of
DBMS capabilities such as security and integrity?

o Proposed execution costs: What is the expected change
in execution cost in terms of machine and human
resources?

3.3.4 Factors Related To Expected Evolution Of The Transited System

o Technical impediments: Does the existing system make
use of a DBMS? Is it relational? Does the existing
system make use of an older COBOL version? Are there
portability issues related to data conversion? Can
this application be integrated into others?

o Maintenance requirements: How much corrective mainte-
nance activity is there currently on the system? What
enhancements to the system are planned? What enhance-
ments would be facilitated by the use of an SQL inter-
face to the data?

o Support issues: Are there personnel available that
have experience with the internals of the existing sys-
tem? Is there existing documentation for the system?
How up-to-data and accurate is it? Is sufficient fund-
ing available for a comprehensive reverse engineering
effort? Does this include funding to support the
training of users in 4GLs? How feasible is incremental

61

conversion?

o Standards: Is the application part of the effort to
standardize the use of data item names? How closely
does it conform to these standards?

3.4 Skeleton Decision Structure

The various factors and strategies outlined have an internal structure. That is, making one decision
may naturally lead to another question being asked? Some decisions preclude others? To summa-
rize the possibilities, the decisions can be organized into a hierarchical structure called a decision
tree. A decision tree for the transition strategies described above is given by the following. The
numbering of the questions indicates their relative placement.

1. Should the information system (IS):
1.1. be left alone (As-Is Strategy)?
1.2. be moved into an open system/4GL environment?
1.2. In moving to open systems, should the IS
1.2.1 be ported as-is (Direct STAMIS Porting Stra-
tegy)?
1.2.2 be migrated to an RDBMS/4GL?
1.2.2A If migration is desirable, should the new ver-
sion
1.2.2A.1 migrate the data to a RDBMS and leave the
code alone to the extent possible, concentrating
instead on the file data (Transparent Layered
Conversion Strategy)?
1.2.2A.2 replace selected features of the code
with 4GL constructs?
1.2.2A.3 provided the functionality with SQL
access to flat files (SQL Access to Flat Files
Strategy)?
1.2.2A.2 If code is going to be replaced, which combi-
nation of 4GL features should be replaced:
1.2.2A.2.1 File access replaced by embedded SQL
and/or library calls (Code Layering Strategy)?
1.2.2A.2.2 Report formatting replaced by the 4GL
report writer?
1.2.2A.2.3 Some reports replaced by SQL or forms-

62

based queries?
1.2.2A.2.1 If file access is to be replaced, should it
be accomplished
1.2.2A.2.1.1 with a layering tool?
1.2.2A.2.1.2 by replacing COBOL I/O with embedded
RDBMS access?
1.2.2B If migration is desirable, should the new ver-
sion
1.2.2B.1 be developed from scratch, including
requirements gathering (From-Scratch Rewrite Stra-
tegy)?
1.2.2B.2 be the results of reverse engineering the
existing version (RDBMS Conversion by Re-
engineering Strategy)?
1.2.2B.3 be incrementally migrated from the
current version (Code Replacement Strategy)?
1.2.2B.2 If reverse engineering is used, should it be
done
1.2.2B.2.1 by hand?
1.2.2B.2.2 using semi-automated tools (Automatic
Reverse Engineering Strategy)?

In order to use the decision tree described above, the criteria described in the previous subsection
must be interpolated. There are two substantial impediments to doing this? The first impediment
involves measurement. While some of the decision criteria are quantifiable (“average cost of an
execution of the application program”), many of them are qualitative (“can the application take
advantage of advanced RDBMS features such as views and joins?”). In order for there to be a for-
mal decision procedure, metrics for the qualitative factors need to be devised and validated.

The second impediment involves combining the criteria. Even if all criteria were quantitative, it
would still not be meaningful to make a decision that combine the numbers from two criteria. For
example, is an application currently uses a non-relational DBMS? How does this mitigate the
advantages of transiting to an RDBMS?

Two possible approaches to dealing with these impediments are suggested: scenarios and case
studies. A scenario is a hypothetical narrative describing a potential transition effort. It can be used
to explore difficulties in applying the criteria. Scenarios have been effectively used to solicit system
requirements during the early stages of software development, and their use here has the same pur-
pose, to unearth unanticipated costs and benefits.

The second suggestion involves the use of case studies of previous transition efforts. In particular,

63

data concerning costs involved, difficulties that arose, and eventual benefits can serve to seed the
decision structure.

3.5 Integration With The Activities

The two subtasks described in this report are part of a larger effort, the ICAT project. Moreover,
related efforts exist in the Army on which this work impinges.

3.5.1 ICAT Architecture Requirements

The ICAT project involves the construction of a testbed of networked Unix workstations. There are
really two environments to be considered, the transition environment and the resultant distributed
information system execution environment. The development environment requires the inclusion
of a Unix COBOL compiler. As mentioned above, the compiler we obtained initially had difficulty
running in a distributed file system environment. Once this problem was solved, we were able to
compile and run the trial system. This is no guarantee, however, that other information systems will
not tax the compiler beyond its abilities to cope.

In order to support re-engineering, the development environment must also be able to support the
tools that we have acquired. This includes the availability of X Windows. Not only is X Windows
used by the CASE tool, but the possibility also exists of enhancing the interface to the application
systems using X Windows graphics capabilities. Yet to be considered are the issues of how to
design a widget set to promote the standardization and reuse of information system interface com-
ponents.

Two other development requirements were mentioned earlier. They are the availability of a version
of yacc that can handle the number of different reserved words found in COBOL. Both byacc (from
the publicly available Berkeley software distribution) or bison (from the Free Software Founda-
tion) may be suitable. The other requirement relates to the Oracle version of the layering tool. It
must be possible to access the RDBMS through a layered interface such as that provided by Liant.

Execution also places restrictions on the environment. One prominent restriction concerns disk
space. Not only does Oracle require significant space to install, but the amount of data normally
presented to a mainframe application may overwhelm a typical workstation. Of course, network
access and execution cycles also must be gauged before an application can be assured of adequate
execution resources on the workstation.

Currently, application programs running on a mainframe are accessed through PCs or dedicated
terminals. In both cases, the interface is typically character-oriented. This fits well with Oracle’s
forms capabilities, but the desirability of moving to the more versatile X Windows interaction envi-
ronment will certainly impose terminal emulation requirements.

3.5.1.1 Data Encyclopedia Project

The Army is currently developing the ANSWER[2] system to serve as a single point of query entry
for information systems. The intent is to promote standardization particularly in the area of data-
base schema. A prototype exists, but efforts to address information systems that use flat files are
currently not being pursued. If a transition effort is going to involve significant rework of existing
code, it may be advantageous to simultaneous convert to Army standard naming conventions.
Progress on this effort should continue to be monitored.

3.5.2 Other Efforts
Two other projects that should be monitored are the STAMIS Modernization effort being con-

64

ducted from Fort Belvoir and the ACE/ISM project. An Installation Support Module (ISM) is an
information system that does not have STAMIS status. This may be because it is tailored to a spe-
cific installation. An effort is underway to reduce the maintenance requirements on these systems
by the use of ACE. ACE is a forms-oriented prototyping environment for information systems. It
can be used to generate C code from forms definitions.

4.0 Recommendations For Future Work

The ICAT project only lasted five months. Many of the experiments that we tried were necessarily
curtailed by the short time frame. Moreover, problems with vendor supplied software delivery and
installation also forced compromises. Finally, delayed delivery of test data reduced the amount of
hands on exposure to the tools. Hence, interesting work remains to be done to take advantage of

the experience that we have had so far. In addition to following through with these tasks, several

other areas of exploration are apparent.

4.1 Automation

This is the most direct follow on to the current project. It involves activities related to the process
of extracting information from an existing STAMIS, such as the detection of opportunities to move
from 3GL code for report formatting to 4GL report writers, detection of opportunities for replacing
reports by direct queries of an RDBMS, and continued work on extraction of ER diagrams from
code.

In addition to extraction activities, other opportunities for automation include schema normaliza-
tion and data conversion.

4.2 Representation

Fundamental to the transition process of moving from COBOL code accessing flat files to the use
of an RDBMS, is the need for first constructing a high level representation of the program, such as
ER diagrams. While these appear adequate for modeling the relevant file structures, a more general
representation is required to model the computation and control information. We would like to look
at the issues involved in such a representation. This could involve a case study of extending the
models from the current project.

4.3 Case And Prototyping

An important part of the STAMIS transition process is the use of CASE tools. These become even
more important when initial development is considered along with maintenance. In particular,
CASE tools often include a prototyping component. The question to be looked at is how best to
facilitate the movement from prototype to product, while ensure thoroughness and adherence to
quality standards.

At this stage in their evolution, commercially available CASE tools feature design representation
that are primarily graphical, stressing the structural aspects of a design relative the semantic/func-
tional aspects. An alternative approach is available with some prototyping systems that stress the
specification of functionality using a notation such as VDM. It is possible, for example, to auto-
matically generate Ada code from VDM specifications. We would like to look at the question of
integrating these two approaches (the structural and the functional) to best provide the benefits of

both.
4.4 Process Modeling
Another area of investigation involves further modeling the STAMIS transition process. The cur-

65

rent project will produce strategies for transition and criteria for selection among them. This under-
standing might be further refined by describing it using a rule base or expert system.

One other extension involves the inclusion of cost data to the decision process. For example, a
maintenance shop, when deciding whether to convert an existing STAMIS to a 4GL, should con-
sider the amount of current maintenance activity and the cost of conversion. This would serve as a
further refinement for the criteria provided by the current project.

APPENIDX A COBOL 68 CONVERSION GUIDELINES -
GARY PARDUN

Although IBM mainframe COBOL is quite similar to Unix COBOL (in particular, RM/
COBOLSS), porting COBOL programs requires a number of source code changes to successfully
compile programs on Unix systems. The following list of changes reflects the modifications we had
to make in the IMCSRS application programs to compile successfully on Sun Sparc stations using
RM/COBOLSS.

The format of the list is: {COBOL 68 construct} =>
{what to do with it}

o SELECT... ASSIGN TO <name> => replace the <name> by
the actual title in quotes.

The following list shows the filename changes for the IMCSRS programs. The first column shows
the internal filename, i.e. the FD name, where “x” means any letter. The second column is the name
we used in the ASSIGN TO <name> to match the test data filenames. And the third column shows
what the name should be in order to use the RMplusDB product. (The problem is that relational
databases, like Oracle, do not allow table names with embedded periods.) It is possible to use envi-
ronment variables to map the “New External Filenames™ to the “External for RMplusDB” names
so that you do not have to modify the source, but this seems like it could be very clumsy.

Internal New External External fi
FILENAME FILENAME RMPLUSDR
}‘38}2%3 “MB01AGU.DAT”

“MCO1AGU.DAT” «EC ”
0CO01AGU “0C01AGU.DAT” U]él N

(rename to MCO1AGU.DAT

after generating) “UICTRAN”
xA03AGU “DGO1AGU.DAT” “gCCLINTRAN”
xGO1AGU “DG02AGU.DAT” “CONTROL”
IK03AGU “DK03AGU.DAT”

o RECORDING MODE IS F =>delete T
This clause is not supported on RM/COBOLS5 and isn’t needed.
o EJECT => delete

This causes the program listing to go to top-of-form on the mainframe. This clause is not supported
on RM/COBOLSS and isn’t needed.

o EXAMINE => INSPECT
This is a case where COBOL 68 uses a different keyword from COBOL 74 or 85.

67

APPENIDX B COBOL TO SQL REPLACEMENT EXPERIENCE

BRET JOHNSON

This appendix describes a partial reverse engineering of the P13AGU IMCSRS COBOL program.
What follows describes my experience in providing the same functionality via SQL.

I chose a COBOL program, P13AGU, that Gary has ported and began trying to convert it to com-
pletely to Oracle. This program generates an equipment availability report. To understand this pro-
gram’s function, I studied the technical report[12] and the program’s source code. I made the
following observations:

o Studying the technical report helped me much more
that studying the program source. Part of the
reason for this is that my knowledge of COBOL is
very limited. However, with the help of a couple
of books on COBOL, I was able to understand many
of the low-level aspects of the program fairly
well. I seemed, though, to have a lot of trouble
understanding at a higher level what the program
was doing.

o Particularly troubling was the frequent use of
abbreviations in the program, especially in the FD
fields. Whenever I learned, from the technical
report, what an abbreviation stood for, I felt
that my understanding of the program significantly
improved. I still, however, do not know what
several FD field name abbreviations stand for. I
began accumulating a glossary of abbreviations and
what they stand for. I think such a glossary
would be of great help to reverse engineers.

o Also troubling was the lack of sample data files,
the lack of sample reports that the program gen-
erates, and my inability to actually run the pro-
gram and see what it does. All of these things
would be of help to reverse engineers.

o It was clear that the program used two entities --
date cards and 2406 transactions. However, 1
couldn’t quite understand the program well enough

68

to understand the relationship between these two

entities.
With the knowledge I did obtain, I began porting the program to Oracle. I constructed two tables
based on the FDs, created some sample data, and used the Oracle loader to load it into one of the
tables. I learned, mostly from the technical report, how the equipment report is structured (making
some guesses to fill in my missing knowledge), and generated such a report in Oracle.

There appears to be three ways to do reports in Oracle:

o Just do an SQL query.

o Use SQL*Plus to format the results of an SQL query
in various ways (i.e., specify groupings, generate
totals for an attribute on each group, label
column headers, and so on).

0 Use SQL*ReportWriter to do fancier reports than
those supported by SQL*Plus. According to the
documentation, the advantages of SQL*Report over
SQL*Plus are that SQL*ReportWriter supports
reports requiring more than one SQL statement and
supports nontabular reports, such as checks.

I used the second option for my report. Specifically, I went through the following steps when imple-
menting some of P13AGU’s functionality in Oracle. I created the following two tables in Oracle,
corresponding to the two FDs in the program. I created these tables by directly constructing the
SQL CREATE command, not by making an ER diagram with STP and having STP construct the
SQL CREATE command. Note that in Oracle one can use the GET command to load a file con-
taining an SQL command into the SQL buffer and the RUN command to execute the command in
the SQL buffer.

69

DATE TABLE

(army_area char(1),
create table date_card cutoff_day char(2),
cutoff_mon char(3),
cutoff_yr number(2),
cutoff_jl day number (3),
pt_beg_day char(2),
rpt_beg_mon char(3),
1pt_beg_yr char(2),
rpt_beg_jl_day char(3),
station_name char(34),
ctl_edit char(1),
card_code char(1))

2406 TABLE

create table 12406 .
(uic char(6),
seq char(3),
nomen char(8),
model char(10),
ecc_lin char(8),
auth char(3),
oh char(3),
poss number(5),
aval number(5),
o_sup char(5),
o_maint char(5),
s_sup char(5),
s_maint char(5),
util char(1)
card_code char(1),
nomen_p char(10),
or_p char(2),
org_name p char(20),

p char(1),
stauon P &’

sort_key char(21))

Note that in the COBOL code, the date FD has its fields defined explicitly as part of the FD in the
file section of the program. The 2406 FD, on the other hand, is defined explicitly in the file section
as just having a single field, 151 characters long. It is the working storage section, however, where
“WS-D-REC” is defined, that indicates that this single 151 character field can be thought of as
being broken down into 25 smaller fields. The fact that the 2406 FD and WS-D-REC working stor-
age are related is not made explicit by COBOL syntax anywhere in the file section or working stor-
age section. The following syntactic construct in the procedure division does, however, give
evidence that WS-D-REC yvorking storage and 2406 FD (which is officially called the IGO9AGU
FD) are related:

70

0427 READ IGO9AGU INTO WS-D-REC
0428 ATEND
0429 GO TO 0290-FINAL-PROCESSING.

Therefore, an automated tool which constructs ER diagrams from COBOL source might very well
need to look in the procedure division to know what attributes to give to an entity. Another hint that
the WS-D-REC working storage and 2406 FD are related is that the total of the lengths of the 25
components of WS-D-REC is 151 characters, exactly the same as the length of the single field of
the 2406 FD.

1 do not know why the original coders did not make the 25 logical fields of the 2406 FD explicit in
the definition of the FD. In theory, doing things the way they did would allow them to treat the 151
characters in a 2406 FD record as being broken down in different ways into logical fields. However,
it doesn’t appear that the P13AGU code ever treats the records in a different way than containing
these 25 logical fields.

1 then constructed some sample data that could be used to generate a report. Here is the sample
2406 data:

00000D 12345 20 15 234

00000A 23105 36 23 456

00000E 40395 52 29 234

00000D 10323 34 24 234

00000C 20333 20 19 456

00000B 44444 25 17 234
Iloaded this table into the 12406 table with the following command:
o load data infile 12406 replace into table 2406 fields

terminated by whitespace (uic, model, poss, aval, station_p)

I then executed a few commands to format the query results. These commands included TTITLE
and BTITLE, to place titles at the top and bottom of each page; COMPUTE, to tell Oracle to com-
pute the average; BREAK, to group records with the same value of STATION_P together; and per-
haps other formatting commands. I then executed an SQL SELECT command to list some fields
from all of the records in the 12406 table.

The report generated by the above process is the following. Note that this report does not contain
any data from the data_card table, just the t2406 table:

Wed Nov 20 page 1
Inventory Readiness Report
Stati UIC AVAL POSS AVAL/POSS

234 00000B 17 25 .68
00000D 15 20 .75
00000D 24 34 .705882353

71

00000E 29 52 .557692308

ke 000000 eae———
avg 673393665
456 O00000A 23 36 .638888889
Sample Report
Wed Nov 20 page 2
Inventory Readiness Report
STATI UIC AVAL POSS AVAL\POSS
456 00000C 19 20 95
e e 3 ok ok [——
avg 794444444
Sample Report

6 rows selected.

Among other information, this report gives the percentage of days that a certain UIC was avail-
able. “AVAL” is the number of available days, “POSS” is the number of possible days, and “AVAL/
POSS” is thus the percentage of days that a UIC possibly could have been available that it actually
was available {at least this was my reasoning). I generated this report based mostly on what 1
learned from the technical report about what information the Inventory Readiness Report is sup-
posed to contain, using logical guesses to fill in missing pieces. I didn’t use my reverse engineering
of the P13AGU source code very much to learn about the content and structure of this report, as I
couldn’t understand it well enough to do so. I believe that if I would have had a sample Inventory
Readiness Report in front of me, making my Oracle Inventory Readiness Report would have been
much easier and more accurate.

As I studied the technical report and the P13AGU source code, I made up a glossary of what
abbreviations stand form. I found this glossary very helpful, since I would often discover what an
abbreviation stands for and then forget what it stands for a little later. Here is the glossary:

Glossary

Term or Acronym Definiion
IMCSRS Installation Material Condition

Status Reporting System
o unit installation code
?1?;11:? model/serial number
auth number authorized
poss possible days
aval available days
o_sup organization supply
o_maint organization maintenance
s_sup support supply
s_main support maintenance
util utilization code

o EXAMINE... TALLYING => INSPECT... TALLYING TALLY
FOR and define 77 TALLY PIC 99.

COBOL 68 has a predefined REGISTER called TALLY that the EXAMINE... TALLYING con-
struct updates. In newer COBOLSs a program can replace this construct with a program variable
named TALLY like any other numeric variable.

o string literals extending past end-of-line => insert
quote before end-of-line and adjust continuation of
string on the next line

COBOL 68 assumes that long string literals go all the way to the end of the source line (without a
quote mark) and then continue on the next line with a hyphen in column 7 and a starting quote mark
for the rest of the literal. COBOL 74 and 85, however, require string literals to have matching
quotes around each segment and then automatically concatenates them.

o WRITE... INVALID KEY on sequential file => add
RELATIVE to SELECT statement

COBOL 85 only allows AT END on a sequential file. To accommodate INVALID KEY clauses,
we had to make files RELATIVE, rather than sequential.

o MOVE CURRENT-DATE TO... =>
01 WS-CURR-DATE.

03 WS-CURR-YY PIC 99.

03 WS-CURR-MM PIC 99,

03 WS-CURR-DD PIC 99.
and

MOVE CURRENT-DATE TO...

73

ACCEPT WS-CURR-DATE FROM DATE.
MOVE WS-CURR-DD TO...-DD. -
MOVE WS-CURR-MM TO...-MM.
MOVE WS-CURR-YY TO...-YR.

COBOL 68 has a predefined read-only register called CURRENT-DATE that returns the current
date in MMDDY'Y format. The closest equivalent in COBOL 85 is an ACCEPT... FROM DATE,
which returns the current date in YYMMDD format.

o IF SORT-RETURN... => delete IF statement

This COBOL 68 construct tests for errors on an internal sort. COBOL 85 does not return any sort
errors.

74

APPENIDX C DIFFICULTIES IN USING PCYACC IN A UNIX ENVIROMENT

There were several difficulties that COBOL presented to the use of PCYACC directly on a Unix
workstation.

o First of all, COBOL uses multi-character opera-
tors, such as “>=". Unfortunately, Unix yacc is
not capable of dealing with these. There are
several ways of overcoming this limitation. We
chose to break the operator in two (*>’ ‘=’).*

0 Another difficulty that was simple to overcome was
a name conflict between several COBOL keywords and
directives used by NewYacc. We had seen this
problem previously with other languages and were
quickly able to make systematic name changes in
the COBOL grammar.

o A much more troublesome difficulty arises from the
number of keywords in the COBOL language. Yacc
has a statically-allocated table to hold keywords,
and its size is exceeded by COBOL’s requirements.
We initially overcame this difficulty by making
use of the bison yacc clone available as part of
the GNU software distribution. Later, when we
tried to integrate with NewYacc, we had to abandon
bison and obtain the source code for the Berkeley
version of yacc, manually alter the table size,
and rebuild the tool.

o One potential difficulty of which we have not yet
determined the extent is the accuracy of the COBOL
grammar. Recall that IMCSRS was originally writ-
ten with an early version of COBOL. PCYACC sup-
ports a much more recent dialect. Despite our
efforts to convert the COBOL code, there may still
be constructs with which PCYACC is not capable of
dealing.

o Another difficulty that we did not pursue was the

75

issue of PARSING CONFLICTS. Yacc is capable of
producing parsers for grammars that are LALR(1).
This is a technical limitation; yacc provides

* This approach slightly violates the language rules by making one token into two. The two tokens
can now be separatced by whitespace, which would not be legal if the operator were considered as
a single token. A better choice is to change the lexical analyzer to detect this situation and return a
single lexeme to the parser.

default mechanisms for circumventing language con-
structs that violate the property. There are a

variety of instances of these violations in the

COBOL grammar, and we have not yet checked whether
yacc’s default rules mitigate the difficulties

without violating the underlying language syntax.

76

APPENIDX D AUTOMATIC GENERATION OF ORACLE TABLE CREATION
STATEMENTS FROM STPER DIAGRAMS

This Appendix describes an experiment in automatically constructing Oracle table declarations
from STP ER diagrams. The ER diagram was manually constructed from a COBOL FD taken from
the program P13AGU. The FD is defined in the following statement.

0030 FD IA07AGU

0031 RECORD CONTAINS 80 CHARACTERS
0033 BLOCK CONTAINS 0 RECORDS

0034 RECORDING MODEIS F

0035 LABEL RECORDS ARE STANDARD.
0036 01 DATE-CARD-IN.

0037 03 D-ARMY-AREA PIC X.
0038 03 D-CUTOFF-DAY PIC X(2).
0039 03 D-CUTOFF-MON PIC X(3).
0040 03 D-CUTOFF-JL-DATE.

0041 05 D-CUTOFF-YR PIC 99.
0042 05 D-CUTOFF-JL-DA* 1.2999.
0043 03 D-RPT-BEG-DAY PiC X(2).
0044 03 D-RPT-BEG-MON PIC X(3).
0045 03 D-RPT-BEG-YR PIC X(2).
0046 03 D-RPT-BEG-JL-DAY PIC X(3).
0047 03 FILLER PIC X(13).

0048 03 D-STATION-NAME PIC X(34).
0049 03 FILLER PIC X(10).

0050 03 D-CTL-EDIT PICX.

0051 03 D-CARD-CODE PICX.

Figure 1: COBOL Code FD IA07AGU

77

The COBOL code was used to manually construct the ER diagram contained in the following fig-
ure.

cutoff_day cutoff.

rpt_beg day
army_area cutoff_mon

cutoff_jl_day

\/ =

date_card

ctl_edit

station_name card_code
pt_beg_yr

Figure 2: STP Entity Relation Diagram for FD IAO7AGU

In addition to the graphical presentation displayed in the ER diagram, STP is capable of retaining
annotations describing the properties of the entities being modeled. In our experiment, the annota-
tions were made by hand. It is our expectation, however, that much of this work can be automati-
cally provided by NewYacc and the transformation program described above. The contents of the
data dictionary containing the annotations for this diagram is contained in the next figure.

Name: army_area
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card
Note AttributeData
Name: army_area

Type: char(1)

78

Name: card_code
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card
Note AttributeData
Name: card_code
Type: char(1)
Name: ctl_edit
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card
Note AttributeData
Name: ctl_edit
Type: char(1)
Name: cutoff_day
Defined as Data Element in Entity Relationship
Diagram ‘date_card’

Used in 1 Data Structure
date_card

Note AttributeData
Name: cutoff_day
Type: char(2)

Name: cutoff_jl_day
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card

Note AttributeData
Name: cutoff_jl_day
Type: number(3)

Name: cutoff_mon

79

Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card
Note AttributeData
Name: cutoff_mon
Type: char(3)
Name: cutoff_yr
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure
date_card
Note AttributeData
Name: cutoff_yr
Type: number(2)
Name: date_card
Defined as Entity in Entity Relationship
Diagram ‘date_card’

12 Components:

army_area Data Element
cutoff_day Data Element
cutoff_mon Data Element
cutoff_yr Data Element

cutoff_jl_day Data Element
rpt_beg day Data Element
pt_beg mon Data Element
pt_beg_yr Data Element
rpt_beg_jl_day Data Element
station_name Data Element
ctl_edit Data Element
card_code Data Element
Name: rpt_beg_day
Defined as Data Element in Entity Relationship
Diagram ‘date_card’

80

Used in 1 Data Structure date_card
Note AttributeData
Name: rpt_beg_day
Type: char(2)
Name: rpt_beg_jl_day
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure date_card
Note AttributeData
Name: rpt_beg_jl_day
Type: char(3)
Name: rpt_beg_mon
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure date_card
Note AttributeData
Name: rpt_beg_mon
Type: char(3)
Name: rpt_beg_yr
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure date_card
Note AttributeData
Name: rpt_beg_yr
Type: char(2)
Name: station_name
Defined as Data Element in Entity Relationship
Diagram ‘date_card’
Used in 1 Data Structure date_card
Note AttributeData
Name: station_name
Type: char(34)
Figure 3: Data Dictionary for Diagram Describing FD IA07AGU
After the diagram is annotated, the STP schema generation capability was used to generate an Ora-

81

cle SQL command to create a corresponding table. The generated table is given in the following
figure.

Date Card

(army_area char(1),
ctl_edit char(1),

T s T
cutoff_mon char(3),
cutoff_yr number(2),
cutoff_jl day number (3),
rpt_beg_day char(2),
rpt_beg_mon char(3),
rpt_beg_yr char(2),
rpt_beg_jl_day char(3),
station_name char(34),

create table date_card

Figure 4: Data Dictionary for Diagram Describing FD IAO7AGU
Finally, the command was executed using the Oracle RDBMS and successfully executed.
Some difficulties were encountered in this process:
o STP allows a variety of types of annotations to be
attached to an attribute in a entity-relationship
diagram. Besides type information, STP also
allows constraints, aliases, key status, author,
date/time of generation, and other pieces of
information to be attached to an attribute. How-
ever, for most of these kinds of annotations, STP
does no checking to ensure that what is entered is
valid. For example, the user can just as easily
enter “ABC#3$%" as the type annotation of an attri-
bute (clearly an illegal type in Oracle) as he can
enter “NUMBER?” (a legal type in Oracle). This

82

lack of checking causes difficulty in that the
reverse engineer does not know until later in the
process, when creating tables, if the type annota-
tions he entered are valid.

o Another difficulty in the conversion process was

&% ”

naming rules. Oracle does not allow a “-” (minus
sign) to appear in a name, while “-” appears fre-
quently in COBOL identifiers. This problem was
solved by simply replacing all “-” symbols with
“_” (underscore). Of course, this could be done
automatically by New Yacc.

o The “date_card” FD contains one group item,
CUTOFF-JL-DATE, made up of two elementary items,
CUTOFF-YR and CUTOFF-JL-DAY. This abstraction is
called aggregation in database circles. CUTOFF-YR
and CUTOFF-JL-DAY are aggregated together to form
a new object type, CUTOFF-JL-DATE. However, this
use of the aggregation abstraction is not sup-
ported in STP’s version of the ER model nor in
Oracle. This problem was solved by simply doing
away with the aggregation abstraction.

“cutoff_yr” and “cutoff_jl_day” were made two
attributes of the *“date_card” entity in the ER
model and did not represent the fact that these

two attributes can be viewed as a single CUTOFF-
JL-DATE attribute. Of course, this solution to

the problem is not ideal because there is a loss

of information. Note that when attributes are
aggregated together to form an entity, this too is

a form of aggregation abstraction. This form is,

of course, supported by the ER model and Oracle.

The Extended Entity Relationship (EER) model, described in Batini’s book [4] supports the aggre-
gation abstraction. Thus in the EER model, CUTOFF-JL-DATE could indeed be represented as the
aggregation of CUTOFF-YR and CUTOFF-JL-DAY. Of course, there is still the problem that Ora-
cle (and most SQL database systems) do not support this abstraction directly.

83

I find it interesting that many database abstractions that Gary Pardun and I studied in Dr. Navathe’s
database class, database abstractions that aren’t supported by most SQL DBMSs but are supported
by research semantic and object-oriented database systems, are also supported by COBOL. An
example is the aggregatior. abstraction described above. Another example is the generalization
abstraction that is similar to inheritance in object-oriented systems. An example of the generaliza-
tion abstraction is when a business has two kinds of employees, salaried and hourly. In an
“Employee” table, each of the two kinds of employees could share several common fields but also
have several fields that are unique to that kind of employee. This abstraction is supported in
COBOL by allowing an FD (such as “Employee”) to contain two or more different kinds of records
(such as “Salaried” and “Hourly”). I would say that COBOL’s support for generalization isn’t as
elegant as in research databases; the designers of COBOL probably didn’t have a clear picture of
the generalization abstraction in mind when they designed the language. However, some support
is there for it.

The EER model notation also supports generalization. Thus one could reverse engineer COBOL
programs to an FER diagram. From the EER diagram, one could go to a modern object-oriented or
semantic database system implementation that supports many of the abstractions in the EER
model.

However, one could also implement the EER diagram in an SQL database. Batini’s book describes
how to implement abstractions such as aggregation and generalization, supported by the EER
model, in an SQL database system.

84

APPENIDX E COBOL REPRORTS GENERATED ON THE UNIX WORKSTATION

GARY PARDUN

This appendix discusses the process converting COBOL programs to the workstation environment.
In all, the programs pOlagu, p02agu, and p03agu were successfully converted and executed. The

test data worked nicely after converting to fixed length records, but it consisted of only master file
data--no transaction data. So I had to create my own transaction test data. The reports seem reason-
able.

I defined and loaded the test data into an Oracle database using SQL*Loader and then did a few
simple queries. That worked pretty well too. That exercise convinced me, though, that embedding
SQL code in the existing programs would be a difficult and tedious approach. The main problem
is that the existing system is so BATCH oriented and SQL is so INTERACTIVE oriented. Much
of what the existing programs do is edit-checking batch input data, which would be a very tedious
Jjob in SQL. The better, and easier, approach would be to redesign the system based on interactive
transactions rather than relying on offline creation of batch disk files. Doing editing in a screen
form is much more effective and simple. Any transactions that passed the screen form editing could
be written to a transaction table and actually applied to the database later collectively. The
RMplusDB product, if it works as we expect, would be a viable alternative to the straight port, but
I don’t think embedding SQL in Cobol makes much sense.

I also spent some time with RMCo*, the integrated environment, and had some success with it. The
main problem is the keyboard interface, which undoubtedly works nicely on a PC, is clumsy on a
Unix workstation. It did compile programs and edit them successfully. The debugger seems to
work also.

85

References

1. AUTOMATED DATE SYSTEMS MANUAL INSTALLATION MATERIAL CONDITION
STATUS REPORTING SYSTEM IMCSRS FUNCTIONAL USERS MANUAL, Commander
FORSCOM, AFLG-RO, Ft. McPherson, Georgia, April 1, 1984.

2. “Answer Phase I - Final Report,” USAISEC (ASQBG-1-89-027), July 1989.

3. AIRMICS, PERFORMANCE WORK STATEMENT - ISA 97 COMPLIANT ARCHITEC-
TURE TESTBED (ICAT), 1991.

4. Carlo Batini, Stefano Ceri, and Shamkant B. Navathe, CONCEPTUAL DATABASE
DESIGN AND ENTITY-REALTIONSHIP APPROACH, Benjamin Cummings, 1992.

5. Peter Chen, “Entity-Relationship Approach to Data Modeling,” in SYSTEM AND SOFT-
WARE REQUIREMENTS ENGINEERING, ed. Richard H. Thayer and Merlin Dorfman, pp. 238-
243, IEEE Computer Society Press, 1990. IEEE Software, Volume 1, Number 1, January 1984, pp.
75-88

6. Elliot J. Chikofsky and James H. Cross II, “Reverse Engineering and Design Recovery: A
Taxonomy,” IEEE SOFTWARE, vol. 7, no. 1, January 1990.

7. Reginald L. Hobbs, Joseph J. Nealon, and Richard Wassmath, “Ada Transition Research
Project (Phase 1) Final Report,” ASQB-GI-91-005, AIRMICS, December 10, 1990.

8. Bret Johnson, “Reverse Engineering with a CASE Tool,” SRC-TR-91-07, Software Research
Center, College of Computing, Georgia Institute of Technology, December 1991.

9. KitKamper and Spencer Rugaber, “A Reverse Engineering Methodology for Data Processing
Applications,” GIT-SERC-90/02, Software Engineering Research Center, Georgia Institute of
Technology, March 1990.

10. Gary Pardun, “A Proposal for Discovering Entity Relationships in COBOL Applications,”
SERC-91-08, Software Research Center, Georgia Institute of Technology, Fall 1991.

11. James J. Purtilo and John R. Callahan, “Parse Tree Annotations,” COMMUNICATIONS OF
THE ACM, vol. 32, no. 12, pp. 1467-1477, December 1989.

12. Spencer Rugaber and Kit Kamper, “Design Decision Analysis Research Project,” GIT-SERC-
90/01, Software Engineering Research Center, Georgia Institute of Technology, January 28, 1990.

13. Elizabeth L. White, John R. Callahan, and James M. Purtilo, THE NEW YACC USER’S
MANUAL, Computer Science Department, University of Maryland.

86

A Comparative Study of DOD and GOSIP Protocols

George N. Rouskas

Georgia Institute of Technology
College of Computing
Atlanta GA 30332-0280

Abstract: We compare existing military protocol standards to their GOSIP counterparts, in terms
of functionality and services. We consider network, transport and application layer protocols. We
also discuss some of the network and transport layer GOSIP standards that do not have counter-
parts in the existing military suite of protocols. We address some of the interoperability issues and
how they will affect users and the performance of applications.

1.0 Introduction

The Government Open System Interconnection Profile (GOSIP) defines a set of data communica-
tion protocols which allows the exchange of information between users of different applications.
The procurement of GOSIP compliant communication hardware and software has been mandated
by the U.S. Government [GOSIP88, GOSIP89,GOSIP91]. The GOSIP standard is seen as a way
to eliminate system incompatibility problems and to offer alternatives to solutions imposed by ven-
dor-specific implementations. As a result, DOD has made a commitment to make a transition from
its own standards to international standards. A major motivation has been the decrease in develop-
ment, procurement and maintenance cost for products based on international standards [GOSIP91,
LIN90]. In addition to that, as international standards evolve, they have reached a point of maturity
where, not only do they satisfy the DOD requirements, but they also provide greater capability,
overcoming limitations of their DOD counterparts [STALL87]. In this report we compare the DOD
protocols to their GOSIP counterparts. Table 1 list the set of international and military standards
that we will address in this report. This work is motivated by the fact that during the transition
period, systems using the old military standards will coexist and must communicate with systems
employing the GOSIP standards. Therefore, it is desirable for users to be aware of the different
functionality and services offered by the two systems; in addition, this work will provide the basis
for evaluating the relative advantages of various solutions for the problem of interconnecting the
two types of systems. In addition, we will discuss some of the GOSIP version 2 standards that do
not have counrterparts in the old military suite of protocols.

87

DOD Standards International Standards
m
MIL-STD-1780 DIS 8571
Fi T File Transfer, Access
Pﬂroetgcrgln ?FCIEP) and Management (FTAM)
X.400
MIL-STD-1781 Message Handling
Application Simple Mail Transfer System (MHS)
Layer Protocol (STMP)
DIS 9041
MIL-STD-1782 Virtual Terminal
TELNET Protocol Protocol (VTP)
m
Transport MIL-STD-1778 ISO 8073
Layer Transmission Control Connection Orented
Protocol (TCP) Protocol Class 4 (TP4)
Network MIL-STD-1777
4
Layer Internet Protocol (IP) I()iginscc-ﬁ)nless Mode
Network Protocol (CLNP)

Table 1. Military Standard Protocols and Corresponding International Standard Protocols

The paper is organized as follows. Sections 2 and 3 compare the network and transport layer pro-
tocols respectively, in terms of functionality and services. In section 4 we discuss the application
layer protocols, as defined in GOSIP Version 2, and their corresponding DOD standards. Section
5 describes some additional GOSIP protocols in the network and transport layer, and section 6
addresses some effects that the transition to OSI standards will have on users of current military
standards. Finally, section 7 contains some concluding remarks.

2.0 Network Layer Protocols

Both IP and ISO Connectionless Network Protocol (CLNP) provide a connectionless, or datagram
service between hosts. In other words, no logical connection between hosts is set up and there is
no guarantee that packets will be delivered successfully. In addition, packets that are delivered may
be out of sequence. In what follows we examine how the two protocols address the most important
issues involved in providing the connectionless service.

2.1 Addressing

Addressing is an important issue for internetwork operation, since individual subnetworks may use
different addressing schemes. Internet addresses (used by IP) and network access service point

(NSAP) addresses (used by the OSI standard) provide a global addressing scheme by assigning a
unique identifier to each host in the internet. This identifier, or global network address, is usually
of the form “Net.Host” where “Net” is a subnetwork address and “Host” specifies a host within the

88

subnetwork. Both addressing schemes use a hierarchical arrangement of addressing domains; that
is, the set of all addresses, referred to as the global network addressing domain, is divided into net-
work addressing domains in a hierarchical fashion. Every Internet or NSAP address is part of a nes-
work addressing domain, which may be further subdivided to subdomains. However, the domains
and hierarchical arrangement used by the two schemes differ in a large degree.

As a related issue, the sender station should somehow be able to determine the “Net.Host” identi-
fier for the destination. Both addressing schemes rely on a directory service that provides this
unique identifier.

2.2 Routing

Both source and destination addresses appear in the header of both IP and CLNP packets; routing
is then generally accomplished by maintaining routing tables in each station. The tables can be
static (with or without alternate routes) or dynamic. Dynamic tables handle error and congestion
situations with greater flexibility. Other related services available by both standards include source
routing and route recording. If a source selects source routing, it provides the path to be taken
within the datagram, as a list of gateways to be visited. If route recording is selected, the gateways
encountered by a datagram are recorded.

2.3 Datagram Lifetime

The datagram lifetime control function prevents datagrams from looping endlessly through the net-
work. This serves two purposes: to ensure that a datagram does not consume rescurces indefinitely
and to support transport layer requirements. Both protocols assign a “time to live” to each data-
gram. The time to live is decremented by each gateway the datagram passes through and by the
destination host, while datagram fragments are waiting for re-assembly. One difference is in the
way the two protocols treat the time to live parameter. In the IP protocol, the lifetime field is set to
some multiple of 1 second. Each gateway subtracts 1 second, treating this field as a hop count.
However, during re-assembly at the destination host, the lifetime is interpreted as a unit of time. In
the CLNP protocol on the other hand, the lifetime field is expressed as a multiple of 500ms. Each
gateway decrements this field by 1 for each 500ms of estimated delay. The standard provides some
guidance specifying that it is not necessary to subtract a precise measure of the delay, but rather an
overestimate of the actual time taken. Therefore the lifetime is treated as a unit of time, which is
useful since the transport entity cannot count hops.

2.4 Segmentation and Re-assembly

Different networks may specify different maximum packet sizes and therefore gateways may need
to fragment a datagram before forwarding it to the next network. Datagrams are then re-assembled
at the destination node, as dictated by both IP and CLNP. Both protocols use essentially the same
fragmentation and re-assembly technique, which requires the following fields in the datagram
header: the ID uniquely identifies a datagram; the data length gives the length of the data field; the
offset is the position of the fragment in the original datagram, and the more flag indicates whether
or not this is the last fragment of the datagram.

Since the protocols do not guarantee delivery, they must deal with fragments that do not make it to
the destination. The re-assembly process has to be abandoned. To this end, a re-assembly timer is
initialized and an algorithm is used o decrement it. When the timer expires before all fragments
are received, the datagram is discarded. The algorithms used by the two protocols differ slightly
but it is recommended that the lifetime parameter be taken into consideration. In addition, the ISO

89

L —

standard suggests another option, where the re-assembly time is assigned locally at the destination
node, independently to the lifetime field.

2.5 Error Control

In a network that does not guarantee delivery, a datagram may be discarded for several reasons,
including buffer overflow, lifetime expiration and bit error. When a datagram is discarded by an
intermediate station, the station may return an indication of the reason for discard. CLNP mandates
the implementation of the error handling function which uses datagrams of a special format. How-
ever, the function is available only if the sending network user selects it.

Errors in networks employing IP are reported by sending internet control message protocol (ICMP)
messages. ICMP, a user of IP, is a mandatory protocol for providing feedback about problems in
the communications environment.

2.6 Flow Control

Gateways and receiving stations experiencing congestion are allowed to limit the rate at which they
receive data. Under IP, flow control packets are sent to other gateways and end stations requesting
reduced data flow. This is done by using ICMP messages. Under CLNP, the station activates the
optional Congestion Notification function informing the network service user (transport entity) of
the problem.

2.7 Other Optional Functions

A security option is available in both standards for stations wishing to transmit security information
through the network. The securit+ classification system is defined by the user .. i is not specified
in the standards.

A type of service parameter, present in both standards, is used by the network user to request a par-
ticular quality of service. The options that may be specified include delivery reliability, delay and
throughput requirements. If selected, this parameter is mapped into subnetwork-specific transmis-
sion parameters. It is possible that some subnetworks do not support all transmission services; nev-
ertheless they try to match the available services to the desired service quality. Finally, a priority
option, a measure of the datagram’s relative importance is provided, although there is a different
number of priority levels supported by each protocol.

3.0 Transport Layer Protocols

TCP and ISO Transfer Protocol class 4 (TP4) provide a reliable, connection-oriented service; upper
layers do not need to be concerned of the details of the communication facility employed. Both pro-
tocols provide this service independent of the type and quality of the underlying network facilities.
Therefore they must deal with a variety of network characteristics and capabilities. We now discuss
in some detail the important aspects of these protocols.

3.1 Addressing

In terms of addressing, a process using TCP is identified by a port number. A socket is formed by
concatenating a port number to an internet address and is unique across the internet. TCP provides
services by creating a logical connection between a pair of sockets. OSI standards on the other
hand, define transport addresses as transport service access points (TSAP); a TSAP identifies a ses-
sion entity supported by the transport entity. The transport layer maps the TSAP onto a NSAP,
which uniquely identifies an end system.

3.2 Multiplexing

In the TCP view, multiplexing refers to the fact that a single TCP entity may provide services to
many processes using TCP. This is generally accomplished by associating processes that use TCP
services with ports. The TP4 standard on the other hand, supports a broader notion of multiplexing.
In addition to allowing multiple users to employ the same transport protocol (distinguished by
TSAP), it may also perform upward and/or downward multiplexing.

Upward multiplexing is defined as the multiplexing of multiple transport connections onto the
same network connection. This is possible only if the network connection provides sufficient
throughput to accommodate all the transport users. On the other hand, if the network connection
cannot provide the quality of service required by the transport connection, a single transport con-
nection can be split among multiple network connections. This is referred to as downward multi-
plexing. Notice however, that upward and downward multiplexing assume that the underlying
network service is connection-oriented. They can only be useful when TP4 makes use of, i.e, an
X.25 service.

3.3 Connection Management

Connection management generally consists of three phases, namely connection establishment, data
transfer and connection termination. We will discuss data transfer separately in the next section; in
this section we address the other two phases.

During connection establishment, a logical connection is set up between two transport users. The
purpose of the connection is twofold: First it specifies the characteristics to be used for all data
transfers on the connection, such as priority, security, throughput and delay requirements. The
characteristics may be negotiable and there may be a period of negotiation prior to a successful
establishment. The connection may be rejected if some user defined minimum quality of service
cannot be guaranteed. Second it enables the transport entity to maintain state information regarding
the connection, such as sequence numbers, which is needed for controlling the data transfer.

Connection establishment and termination becomes a problem when packets can be lost or be
duplicated. Both protocols use a three-way handshake for establishing and terminating connec-
tions, since it is the only scheme that works properly regardless of lost and old packets.

3.4 Data Transfer

Once a connection is established, data is transported in data units that contain sequence numbers.
In TCP, every data byte has an (implicit) sequence number (stream oriented operation), while in
TP4 data units are numbered sequentially.

Since data units may be damaged or fail to arrive, the need for a re-transmission strategy emerges.
Both protocols use a positive acknowledgment (ACK) scheme. The receiver must acknowledge
successfully received units; however cumulative acknowledgment is permitted. In TCP piggy-
backed ACKs are allowed; this is not the case for TP4, which requires the sending of a special
packet. A re-transmission timer is associated with each data unit; if it expires before an ACK is
received, the unit is re-transmitted. The protocols recommend the use of dynamic timers.

A transport entity that cannot keep up with the flow of data units may regulate the rate at which
data arrives by activating a flow control mechanism. This mechanism should be capable to over-
come problems arising due to transit delay and lost packets. To this end, both standards use a credit-
allocation scheme. In TP4, initial credit is set during connection establishment and additional credit

91

is granted with ACKs. The window of credit is not allowed to be reduced. TCP uses a more general
scheme in which the window may be reduced; since packets allocating credit may arrive out of
sequence or be lost, the potential exists for the sender and receiver to have a different idea about
what the actual value of the credit window is. Finally, we note that duplicate packet detection is
done by using the time to live field discussed in the previous section.

3.5 Special Capabilities

Both protocols provide a means for informing the destination transport entity user that significant
data are carried by the incoming data unit. This is accomplished using the urgent data signaling
mechanism in TCP and the expedited data transfer function in TP4. Urgent or expedited data units
are marked appropriately, although they are transferred using the normal network data transfer ser-
vice. Therefore, these services do not guarantee faster delivery; they only inform the transport user
that the arriving data might require a special action.

In addition, TCP supports the data stream push capability. In general, TCP will wait until a suffi-
cient amount of data has been accumulated before it constructs a data unit for transmission. How-
ever, the user has the option to set a flag to indicate that all outstanding data be transmitted
immediately. On the receiving end, when a data unit marked with this flag arrives, all buffered data
up that point are delivered to the user.

3.6 Error Reporting

When the transport entity faces a catastrophic condition from which it cannot recover, it will report
to the user indicating that a failure has occurred. TCP provides a special primitive for reporting
errors. TP4 on the other hand, issues a disconnect request in which the reason for the failure is
included.

4.0 Application Level Protocols

In this section we discuss the application layer protocols, namely FTAM, MHS and VTP, and their
DOD counterparts, FTP, SMTP and TELNET. In Figure 1 we compare the DOD and OSI commu-
nications architectures. Notice that in the case of the DOD four-layer model, application processes
are direct users of the transport entity, while in the OSI model the services available to the appli-
cation user are enhanced by the presentation and session layers. As we will see, this difference has
a major impact on the functions and services supported by the various protocols.

92

OSI Architecture DOD Architecture

Application Process
FTAM, MHS, VTP FTP, SMTP
TELNET
Presentation
Session
HOST-TO-HOST
Transport
Network Internet
Data Link
Network Access
Physical

Figure 1. OSI and DOD Communications Architectures
4.1 FTP and FTAM

FTP and FTAM offer a means for exchanging information among computers. Transfer of files is a
complicated task since there are almost as many ways to store, access and protect files, as there are
computers. How the protocols handle some of the issues involved will be discussed.

FTP provides a way for one computer to send or get a file from another computer. It relies on TCP
to provide a reliable data transfer. Two TCP connections, the control and data connections are
opened. Control commands and responses are sent over the control connection. This connection
manages the data transfer which takes place over the data connection. In terms of functionality,
FTP is fairly low-level, since the user process needs to interact with details such as establishment
of the data path and the management of the transfer. Access control in FTP is provided during con-
nection setup. It is generally simple and based on login criteria.

FTP does not provide support for every possible data and file type, nor does it define a single virtual
file. Instead it provides three dimensions which can be us~d to provide a common means of infor-

93

mation exchange between two computers. The first dimension refers to the data type: Text can be
represented as either ASCII or EBCDIC characters. All other data are treated as either a bit stream
(for example, executable files), or as groups of bits of a certain size. The second dimension refers
to the file type: In the simple case, files are assumed to be strings of bytes. However, some appli-
cations require that files are organized as a collection of records. In this case, FTP transmits data

one record at a time separated by a special marker. Finally, the third dimension, transmission mode,
allows the transfer to support transfer checkpoint and restart, as well as data compression.

The OSI file service takes a totally different approach. In order to allow the interconnection of a

wide range of systems of different complexity, a common model of files is established, called the
virtual filestore. The virtual filestore defines concepts relating the description of files; by agreeing
on these concepts, independence from particular file systems is realized. In particular, the virtual
filestore defines the following:

The file attributes refer to the properties associated with the file. Attributes are related to the file
transfer (filename), the physical storage (creator, date of creation) or for file-related security
(access control).

The file structure describes the organization of data in the file. A tree structure is used to represent
how units of data within the file are related for access purposes. This structure is capable of mod-
eling most of the existing types of files.

The file operations define the valid operations on files. Operations fall into two categories: opera-
tions on the entire file (open, close, read attribute) and operations on the file contents or data units
(locate, read, erase).

The file transfer is initiated by the file service initiator and a connection is established with the file
service responder on the remote machine. The initiator’s authority to access the file is verified dur-
ing the connection setup, and all control information and data are transferred over the same con-
nection.

4.2 SMTP and MHS

Electronic mail is a facility that allows users at terminals to compose and exchange messages.
SMTP and MHS are the protoco! standards for transferring mail between hosts.

SMTP is not concerned with the format or content of messages themselves, other than standardiz-
ing the character set to ASCIL. It assumes that users create messages by using an editor and that
with each user is associated a mailbox, a special file where incoming messages are stored. Further-
more, SMTP assumes that messages is placed in an outgoing mail queue.

Each message consists of two parts, the message body and a list of destinations. The queue is ser-
viced by the SMTP sender process which transmits the messages to the proper destination over a
TCP connection. The SMTP receiver process on the destination host receives the messages and
places them in the appropriate mailboxes, or adds them to the local mail queue if forwarding is
required. In addition, it adds timestamp and log information in the start of the message body, indi-
cating the path that the message has taken.

The SMTP sender must deal with a variety of errors, including faulty destination addresses and
hosts that are unreachable. In these situations a notification is returned to the sender. In general,
SMTP tries to provide reliable operation, by making sure that the destination host has received the
message. However, no acknowledgment of a successful delivery is returned and errors are not guar-

94

anteed to return either. No recovery from hosts that may lose files is provided. SMTP can perform
several optimizations. For example, messages that are sent to multiple users on the same host are
only transmitted once. In addition, although normally a sender and a recipient are identified by
mailboxes, for difficult destinations the destination mailbox can be augmented by a path that spec-
ifies how to reach the remote host.

In conclusion, SMTP is similar to, although simpler than, FTP, in that the data exchanged is one of
the possible combinations supported by FTP.

The X.400 series of protocols on the other hand, provide a more sophisticated approach for mes-
sage handling. There is a basic functional distinction between message preparation and receipt, and
message transfer. The user prepares and deals with messages under the assistant of functional units
called User Agents (UAs). A UA can be primitive, consisting of an editor and a file structure, or
can support advanced features such as multimedia editors and text-to-voice conversion. When the
message is ready to be sent, the Message Transfer Agents (MTAs) are responsible to deliver it. The
originator’s UA transfers an envelope containing delivery instructions and the message contents to
its MTA. The MTAs provide store-and-forward service between UAs. In addition, three priorities
of delivery are supported, and the result can be reported by means of delivery or nondelivery noti-
fication, if requested by the sender. Other features include message pick up instead of automatic
delivery at the recipient’s end and an option for alternative recipient specification.

The standards provide the ability to exchange multimedia messages (including text, facsimile and
digitized voice) between all UAs, regardless of their level of sophistication. Therefore, a service to
support content conversion is provided; as another option, when content mismatch is identified the
mail may not be delivered. Additional capabilities allow a message to be marked as private (in
which case an additional password is required) or important, causing a special action to bring it to
the user’s attention.

4.3 TELNET and VTP

Virtual terminal protocols allow terminals and hosts on a heterogeneous network to communicate,
thus providing remote terminal oriented communication between network users. Because of the
large number of terminal types that support a variety of characteristics, the general approach is to
define a generic representation of terminal characteristics, called a virtual terminal.

The TELNET protocol defines the network virtual terminal (NVT) which is an asynchronous
scroll-mode device with unlimited line length and unlimited number of lines. It supports 7-bit
ASCII and provides control capabilities associated with common facilities available on TTY-type
terminals. TELNET runs on top of TCP and provides two basic services: data transfer and option
negotiation. Data is sent as a sequence of bytes. It consists of user data and TELNET commands.
Commands are used to provide the NVT control functions. Since some terminals may support
capabilities beyond those provided by NVT, TELNET provides option negotiation. If both sides
agree on an option, it is put into effect so that they get the best possible service during the connec-
tion. Options are not part of the protocol. However, TELNET has its limitations. More specifically,
it does not have the flexibility to successfully support new terminal technology; as scroll mode ter-
minals become out-of-date, network users do not enjoy all the capabilities their terminals can offer.

OSI VTP uses a parameterized approach to define the virtual terminal. The services and the virtual
terminal characteristics are defined on each connection by a set of parameter values. Users are
responsible for negotiating and agreeing upon the set of parameters. In terms of services, the stan-

95

h

dard supports both synchronous and asynchronous mode of communication. It also provides for
delivery control; the user specifies when data is to be delivered. Using this feature, page mode ter-
minals may allow editing before data is delivered to the remote application. The representation and
transfer of graphic information is captured by the display object model. A display object is an array
of cells of one (one line display), two (scroll mode terminal) or three (page mode terminal) dimen-
sions. One cell contains a single graphic character and has attributes (i.e., color) associated with it.
A display pointer points to the current position in the object. Display data is transferred by updating
the contents of the display object, changing the attributed of cells, or moving the pointer. In a sim-
ilar manner, control information is transferred between the users by updating the contents of a con-
trol object. The semantics of the control information is not part of the standard since it is specific
to terminals. As we can see, VTP offers a flexible mechanism to define virtual terminals and should
be able to support new and special purpose terminals.

5.0 Other GOSIP Protocols
5.1 X.25

X.25 is a protocol standard that specifies the interface between an end-host (DTE) and a packet-
switched network (DCE). It follows the virtual-circuit approach for managing the transfer and rout-
ing of packets; in other words, a logical connection is established before any packets are sent. Two
types of virtual circuit are provided: virtual call and permanent virtual call. A virtual call is a virtual
circuit which is dynamically established using a call setup and call clearing procedure. A perma-
nent virtual call is a permanent, network assigned virtual circuit. Data transfer occurs as with vir-
tual calls, but no call setup or clearing is required.

One of the most important services provided by X.25 is multiplexing. Up to 4095 simultaneous vir-
tual calls can be supported over a single physical DTE-DCE link. Each packet contains a virtual
circuit number that identifies the virtual circuit it belongs to. Other services include flow control
using a sliding window protocol, and acknowledgments that have end-to-end (that is, are sent by
the receiving DTE), or local (are sent by the DCE or the network) significance. X.25 provides two
facilities for recovering from errors. The em reset facility is used to re-initialize a virtual circuit:
packet sequence numbers are set to zero and any packet in transit is lost. Recovery is performed by
a higher layer. The restart facility is initiated by a serious error condition, and is equivalent to clear-
ing all ongoing virtual calls and resetting all permanent virtual circuits.

5.2 Transport Protocol Class 0

Connection-oriented transport protocol class 0 (TP0) provides the simplest kind of transport con-
nection. It includes only a subset of the services and functions of TP4. More specifically, flow con-
trol is not explicitly present in TPO, which relies on network level flow control. Connection release
is also based on the release of the network connection. Data units are not numbered, therefore no
re-sequencing is possible. Expedited data transfer is not supported and no multiplexing is per-

formed. As we can see, the only services provided are connection establishment and management,
data transfer and recovery from protocol errors. TPO cannot make use of a connectionless network
service; a connection-oriented network service must be used instead. In GOSIP version 2, TPO is
used on top of X.25. Both protocols are required for connection to a public messaging system.

5.3 Connectionless Mode Transport Service

ISO has issued a standard for a connectionless transport service (CLTS). This service is not
expected to provide ordered delivery of packets, flow control, or error control. Hence, the connec-

96

tionless transport protocol is minimal; it only provides for data transfer. The transport entity user
can specify the desirable quality of service by setting values to parameters such as transit delay,
protection, priority and residual error probability. Depending on the value of the last parameter, the
transport protocol packet may or may not include a checksum.CLTS is optional in GOSIP version
2 since no GOSIP protocols require it. However, several non-GOSIP protocols can use CLTS for
efficiently communicating across local area networks.

6.0 Transition Considerations

Systems based on the GOSIP protocols will replace existing systems based on the old military pro-
tocols gradually. During the transition period old and new systems should somehow communicate
with each other. Obviously, a host running TCP/IP will not be able to directly “talk” to a host run-
ning OSI protocols. An intermediate system that will act as an interpreter is needed; available com-
mercial products that provide this function, and the trade-offs involved, will be discussed in a
future report. In what follows, we concentrate on the effects that the transition will have on users
and system programmers.

We first notice that, in general, users are unaware of the underlying communication protocols.
Their view of the system is in terms of the services provided by the application layer processes. A
transition to OSI-related applications will involve more than a transition from one user interface to
another. Users should become familiar with the enhanced services offered by the new protocols,
overcoming limitations imposed by the old ones. As an example, FTAM allows hosts to exchange
files independent of the underlying file structure, storage system or valid file operations, while FTP
imposes restrictions to the types of files that can be exchanged. However, the additional function-
ality will be available only for hosts supporting the OSI protocols. When hosts using different pro-
tocols communicate (through some intermediate system), the overall service will be defined by the
application protocols that provide the lesser functionality, namely the current military protocols.
Observe that, depending on the type of intermediate system, users may be required to know what
protocols are supported by the host they need to communicate with.

System programmers on the other hand, usually rely on the transport protocol functions and mech-
anisms for establishing and managing connections. Knowledge of the network and transport layer
services is then necessary, since these services define the network environment. The transition to
the OSI model will have a major impact on system programmers. Although TCP/IP and TP4/CLNP
offer equivalent functionality, the mechanisms employed are different. As an example, in TCP data
transfer is stream oriented while in TP4 it is not (see section 3.4). In addition, protocols with totally
different functionality, i.e., OSI transport class 0, connectionless transport service and connection
oriented network service, included in, deviate from the conventional TCP/IP model of, and
assumptions about the network environment. Therefore, a new approach is required for establish-
ing and maintaining communication.

As another observation, the performance of applications will greatly depend on how hosts support-
ing different protocols are interconnected. In general, there are two approaches to providing inter-
connection. The first requires that a gateway be employed (in the network, transport or application
layer), that will translate packets from one protocol to another. In the second, each new host added
to the network will have to support both protocol stacks (dual stack approach). In a later report cur-
rently available commercial products will be discussed in detail. We emphasize however, that per-
formance issues are extremely complicated in nature.

To see this, consider the gateway approach. The lower the layer the packet conversion takes place,

97

the better in terms of delay (computation time at the gateway), since the packet does not have to be
processed by many layers of the protocol stacks. However, if the conversion is made at a higher
layer, the gateway has more information about the packet and the connection it belongs to, than if
the conversion is at a lower layer, and thus it can perform optimizations that may result in a lower
overall delay and/or better service.

Another issue related to the performance of applications is that there may exist points in the net-
work that may become a bottleneck. For example, in the dual stack approach, a node employing
both protocol stacks may become overloaded since all the communication between GOSIP and
non-GOSIP systems has to go through this node. Also, the fact that multiple types of packets will
be transmitted on the network, for example IP and CLNP packets, has to be taken into consider-
ation. Routers have to be able to distinguish between the different types of packets and handle each
one accordingly. They should also have some additional information, such as which routers can
accept what types of packets, for forwarding purposes.

We have mentioned some problems that will arise during the transition period. How much the per-
formance of applications will be affected is difficult to predict. It becomes even more difficult

if there is no actual network that can be studied. Building such a network will be very helpful
because it may reveal additional problems that we have not taken into consideration.

7.0 Conclusions

It is generally recognized that IP and TCP provide functionality equivalent to that of their GOSIP
counterparts. On the other hand, the functions supported by the DOD application layer standards
are also supported by the corresponding GOSIP standards. However, the latter offer enhanced ser-
vices and functions that are beyond the capabilities of the former. The transition to the OSI archi-
tecture and the international standards will overcome the limitations of the military standards and
will simplify integration of products and expansion to areas such as document architecture and
transaction processing that are not addressed or covered by these standards.

98

References

Cunningham, I., and Kerr, 1. “New Electronic Mail Standards. Telecommunications, July 1985.
U.S. Department of Commerce. “Government Open Systems Interconnection Profile (GOSIP) Ver-
sion 1”. FIPS PUB 146, August 1988.

U.S. Department of Commerce. “Government Open Systems Interconnection Profile Users’ Guide
Version 1”. PB90-111212, August 1989.

U.S. Department of Commerce. “Government Open Systems Interconnection Profile (GOSIP) Ver-
sion 2”. FIPS PUB 146-1, April 1991.

Lewan, D, and Long, G. H. “The OSI Fi.e Service”. Proceedings of the IEEE, Vol. 1, No. 12,
December 1983.

Lini, K. F. “U.S. GOSIP: A Tutorial”. Open Systems Data Transfer, August 1990.

McLeod-Reisig, S. E., and Huber, K. “ISO Virtual Terminal Protocol and Its Relationship to MIL-
STD TELNET. Proceedings of the Computer Networking Symposium, 1986. National Research
Council. “Transport Protocols for Department of Defense Data Networks™. February 1985.

Stallings, W. “Handbook of Computer-Communications Standards”, Volume 1: The Open Systems
Interconnection (OSI) Model and OSI-Related Standards. Macmillan, N. York, 1987.

Stallings, W. “Handbook of Computer-Communications Standards”, Volume 3: Department of
Defense (DOD) Protocol Standards. Macmillan, N. York, 1988.

99

THIS PAGE WAS INTENTIONALY LEFT BLANK

100

Transitioning from TCP/IP to GOSIP Protocols: A Product Overview

Russell J. Clark
Mostafa H. Ammar

Software Research Center
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332-0280

1.0 Inroduction

We are conducting a market survey of currently available OSI/GOSIP products that would be use-
ful in a transitioning network environment. For this particular phase of the project we have limited
our focus to products available for Sun, MS-DOS, and MacIntosh systems. This was. considered

to be an appropriate starting point for the AIRMICS testbed network. This document describes the
options for transition from current TCP/IP to GOSIP protocols with respect to the state of imple-

mentation of GOSIP within the computer industry. This is a draft document based on information

gathered to date.

2.0 Transition Options

Several alternatives for transition from TCP/IP to GOSIP protocols have been discussed in litera-
ture from the U.S. Government as well as product briefs from communications vendors. These
alternatives include ideas such as Application Level Gateways, Dual Protocol Stacks, and Trans-
port Layer Multiplexing. In most cases, a network in transition will include more than one of these
alternatives in order to meet the functional requirements of the network users.

2.1 Application Level Gateways

An example of an Application Level Gateway is one that provides connection between TCP/IP
SMTP and OSI MHS. This gateway allows users of current SMTP programs, like UNIX Sendmail,
to send messages directly to users of a MHS X.400 mail system. Another such gateway product
connects TCP/IP FTP and OSI FTAM protocols. This allows transfer of files between TCP/IP and
OSI sites. The main design goal of gateways is to provide interconnection with minimal impact to
the user. A user of a current TCP/IP system can continue to use SMTP and FTP to communicate
with a newly added OSI system. The major disadvantage of this approach is that it limits the func-
tion of both systems to the intersection of the two. The FTP user cannot take advantage of the
increased functionality provided by FTAM and the FTAM user will not be able to use all the FTAM
functionality when accessing a TCP/IP only machine. MHS Gateway products seem to be the most

101

widely available OSI application. Products are currently available from several different vendors
including: Alfalfa Software, OSIWare, Retix, Sun, and Touch Communications. These products
are primarily designed to run on a single host within a current TCP/IP network. All mail within that
network continues to be delivered over SMTP. Mail destined for X.400 systems outside this net-
work are routed through the gateway software.

An FTAM gateway is not as common as the MHS product. There is one available from The Wol-
longong Group and we expect that others are available but have not yet identified them. This prod-
uct also runs on a single system within a TCP/IP network and provides transparent access for FTP
users to remote OS] systems as well as access from FTAM users to the TCP/IP systems.

2.2 Dual Protocol Stacks

Dual Protocol Stacks provide complete implementations of the TCP/IP and OSI protocols on a sin-
gle system. Users of this system use the appropriate stack to connect to the target network. If con-
necting to an OSI nztwork, the OSI applications are used. A dual stack system can be added to a
TCP/IP network as a launching point for all OSI communications initiated from that network. A
user on this network would telnet to the dual stack system and then initiate the call to the OSI sys-
tem. An advantage of this approach is that it allows all users on the local network to take full advan-
tage of the features of the OSI protocols. The drawbacks are that users must be familiar with the
interfaces of both protocols and that local resources (e.g. login, disk, memory) must be available
on the bridge system for all users.

Several vendors supply software support for Dual Protocol Stacks. We have reviewed information
on products from Retix, Sun, and The Wollongong Group. This products are all UNIX based and
are designed to run in multiuser configurations. Like the MHS gateways, this product would run
on a single system within a current TCP/IP network to provide connection to an OS] network.

2.3 Transport Layer Multiplexing

Transport Layer Multiplexing allows OSI upper layer protocols to operate over either OSI or TCP
transport layer protocols. This allows one to use OSI applications on all systems independent of
which transport layer software is used. This does not necessarily mean that a user on a TCP/IP sys-
tem can communicate directly with an OSI system. End systems using this system can only com-
municate with systems using a similar mixed stack. A standard implementation of this option is
outlined in Internet RFC 1006.

Application products in this category are available from Sun and The Wollongong Group. This is
also a feature of the ISODE (ISO Development Environment) which is an experimental public
domain system.

3.0 Implementation Options

Another important aspect of the TCP/IP to GOSIP transition is the method used to acquire the new
technology. One option is for an agency to develop internal products which implement one or more
of the various transition options. This would result in a high degree of control over the features in
the GOSIP products as well as the schedules for development and deployment. However, this
approach would require extensive resources in both time and expertise. This approach also gener-
ates a potential for incompatibilities when connecting that agencies GOSIP networks to other
GOSIP systems.

Another alternative is to acquire GOSIP products entirely from outside vendors. This allows the

102

—*

Army to select from multiple available products based on product features. It allows the Army to
take advantage of the work already being done on implementation and compatibility testing. A
major concern with this approach is that the current availability of certified GOSIP compliant prod-
ucts is limited. For many protocols and computer systems there are either no available products or
there is only one. In general, the implementation and certification of GOSIP compliant protocols
is well behind the schedule for mandating the installation GOSIP compliant systems.

Fortunately, this technology lag is being addressed in the GOSIP standards. The GOSIP User’s
Guide describes several alternatives for agencies contending with the lack of available GOSIP
compliant products. It recommends that agencies work with vendors who are developing GOSIP
products and require in procurement contracts that these vendors provide specific plans for GOSIP
certification. When considering protocols for a new installation, OSI protocols should be used
whenever they are available even if there are no available GOSIP compatibility tests. This should
help provide for increased interoperability of those products even before the standards bodies are
able to certify the specific products. The GOSIP mandate also allows agencies to apply for a waiver
if they require functionality that is not in an available GOSIP product. We propose that the transi-
tion strategy should be largely based on acquiring GOSIP implementations from outside vendors.
In addition, it is likely that each agency will require some functionality that is not provided by
GOSIP products. This functionality can be developed internally but the agency should also work
with the vendors as well as the GOSIP committees to encourage them to include these new features
in the GOSIP standards.

4.0 GOSIP Vendors

This section provides information about the specific GOSIP products we are evaluating. It is orga-
nized by vendor. This section is based on information and the OSI/GOSIP Software Vendor List
we previously distributed. As with that document, this information is preliminary based on infor-
mation we have been able to gather.

4.1 Alfalfa Software, Inc.

Alfaifa Software markets an end user mail product called Poste Electronic Messaging System. This
is a fairly complete mail interface system including message management folders, access control,
and multipart messages (including non-textual files). It uses the OSF/Moutif user interface and runs
primarily on Sun UNIX systems.

This product includes a MHS gateway program that provides an interchange between SMTP and
X.400. In this way, Poste users can communicate with MHS users on an OSI network. This product
could conceivably be used as a gateway for other SMTP mail users though this functionality still
needs to be verified. This product has not been certified as GOSIP compliant but the vendor claims
to support GOSIP level 1.

4.2 Novell, Inc.

Novell is a leading supplier of LAN technology for IBM-PC compatible systems. These products
have traditionally been based on proprietary protocols. Novell has added modules to their network-
ing products which support standard protocols including TCP/IP and more recently, FTAM and
X.25.

These OSI modules, known as Netware FTAM and Netware X.25 provided a limited degree of
interoperability between Novell Netware and OSI/GOSIP networks. Specifically, the FTAM prod-
uct functions as a responder only. This allows OSI systems to access files on the Netware fileserver

103

but does not provide access from Netware client systems to OSI services. Novell indicated plans
for an X.400 bridge product in 1992. In general, these products will provide limited interoperability
for transitioning networks but will not provide the complete GOSIP support necessary for new net-
work installations. These products are not certified as GOSIP compliant.

4.3 OSlware, Inc.

The main business focus of OSIware appears to be in providing consulting services for agencies
developing and installing OSI based networks. They do provide an end-user mail product known
as Messenger X.400. This is an extensive mail package including message folders, autoreply, timed
delivery, certified mail, aliasing, text and binary attachments. The package runs on Sun UNIX over
TCP/IP or SunNet OSI. It runs on IBM-PC compatibles over using Novell Netware or dialup con-
nection.

This product claims to support both X.400 and X.500. It is not clear whether this product could be
used as an MHS bridge or whether it only provides end-user MHS support. This product has not
been certified as GOSIP compliant.

4.4 Retix

Retix is a major vendor of OSI products and services. They have a wide variety of OSI products
and they are very active in the development of OSI standards for protocols which are a part of both
current and future GOSIP versions. A large part of the Retix business is in supplying source and
object code to OSI developers on a wide variety of systems. We are still gathering information on
some end-user products which are available for UNIX and MS-DOS systems. We will describe
those products in a future version of this document.

4.5 Sun Microsystems

Sun has developed a fairly complete set of OSI protocols for their family of UNIX workstations
and servers. These products include SunNet OSI, SunNet X.25, SunNet FDDI, and SunNet MHS.
These products are currently available for Sun 3 and Sparcstation systems. There is some question
as to how long they will be available for Sun 3 systems though Sun has made no formal announce-
ment regarding future Sun 3 support.

In addition to providing end-user OSI functionality the SunNet OSI product provides an implemen-
tation of the Dual Protocol Stack. This allows a single system to provide access to both TCP/IP and
OSI. This system can be used in a current TCP/IP network to provide access to external OSI sys-
tems. This product also supports Transport Layer Multiplexing by supporting FTAM across TCP/
IP connections.

The MHS product provides an Application Level Gateway between SMTP and X.400 mail net-
works. None of the Sun products have been certified as GOSIP compliant.

5.0 Recommendations

We propose that the ICAT project proceed in this evaluation by acquiring the products that would
support a hands-on testbed for some of the previously mentioned transition options. We recom-
mend the use of the Sun OSI products to provide a Dual Protocol Stack for the test network. We
also recommend the evaluation of several of the MHS gateway products to determine which is
most effective in a mixed hardware/software environment. The ISO Development Environment
should be used to provide both a test of Transport Layer Multiplexing and also to provide hands-
on experience with OSI software to the members of the ICAT team.

104

6.0 Conclusions

While the current selection of GOSIP implementations is limited, there are a number of products
which support GOSIP level one and portions of GOSIP level two. Despite the current limited avail-
ability, the GOSIP mandate has stimulated a major effort within the industry to develop OSI and
GOSIP compliant products. These efforts, in addition to those of the various government agencies,
will result in systems that provide broad interconnection between TCP/IP and GOSIP networks.
This interconnection is important to allow GOSIP to be introduced with a minimal impact on cur-
rently installed systems.

105

—ﬁ

TITLE: OSI/GOSIP Software Vendor List

AUTHOR: Russ Clark
I: TE CREATED: Sept 20, 1991 LAST UPDATE: November 3,1991

The following is a list of vendors we are currently researching for OSI product availability. We will
continue to make additions as new information becomes available.

Several of these references were originally found in the document:

“A Catalog of Available X.500 Implementations”, Directory Information Services Infrastructure
Working Group, INTERNET-DRAFT, July 1991

COMPANY NAME
Alfalfa Software, Inc. Tel: 617-497-2922
185 Alewife Brook Parkway Fax: 617-876-2523
Suite 4200
Cambridge, MA 02138
PRODUCTS

Poste Electronic Messaging System - Mail user interface for Sun UNIX systems. Provides message
management folders, access control, multipart messages (including non-textual files), and OSF/
Motif user interface.

CONFORMANCE STATUS
Not complete.

Supports X.400 mail interchange format.
COMMENTS

This is product is a client/server system. The X.400 component consists of a gateway demon that
converts UNIX style mail messages to X.400. This allows Poste users to communicate using UNIX
mail locally and use X.400 to connect to remote OSI systems.

COMPANY NAME
Novell, Inc. Tel: 404-698-8350
1000 Abernathy Road Fax: 404-698-9285
Suite 190
Atlanta, GA 30328
Michael Powell - Sales mpowell@novell
PRODUCTS

NetWare FTAM - Allows access of the NetWare filesystem as a virtual filestore by any system
which supports FTAM. This product functions as an FTAM responder only.

NetWare X.25 - Performs packet assembly and disassembly functions.
CONFORMANCE STATUS

106

Not Complete.

NetWare FTAM - Claim conformance to limited FTAM specification.
Testing not complete, being tested by NIST.
COMMENTS

This appears to be a reasonable transition product for current NetWare installations. I don’t see this
being a GOSIP solution for “new” networks. They indicated that a X.400 product would be avail-
able during Summer’92.

COMPANY NAME
OSlIware Inc. Tel:+1-604-436-2922
4370Dominion Street, Suite 200 Fax:+1-604-436-3192
Bumaby, B, Canada V5G 4L7

PRODUCTS

Messenger X.400 Mail Products - Includes message folders. autoreply, timed delivery, certified
mail, aliasing, text and binary attachments. Sun OS product supports TCP/IP and SunLink X.25.
Includes graphical user interface. PC LAN version supports Novell Netware or dialup connection.

CONFORMANCE STATUS

Not complete.

Supports X.400 (1984 and 1988) and X.500
COMMENTS

The strongest aspect of this product is wide availability on platforms including Sun OS and IBM-
PC. This seems to be a complete X.400 product.

OSIWARE also provides a consulting/integrating service called EDI which works with users and
developers working with OSI networks.

COMPANY NAME
Retix
264430th St.
Santa Monica, CA 90405-3009
Sales and information: (213)399-2200
FAX:(213) 458-2685
PRODUCTS
Retix OSI Networking Products

Retix apparently does not have end user products. They only sell products in source code form.
These products form the basis for several of the other end user products available from various
hardware and software vendors.

COMPANY NAME
Sun Microsystems

107

2500 Garcia Avenue

Mountain View, CA 94043

Sales and Information: (800)USA-4SUN

FAX# - (508)671-0661

Aaron Masciotra - Sales Rep
PRODUCTS

SunNet OS! - Includes both client and server FTAM services, OSI routing capabilities, and
ISODE development environment. Includes Dual-Stack for parallel OSI and TCP/IP support.

SunNet X.25 - Provides connection to public X.25 networks.
SunNet FDDI - Provides support for 100Mbit/S Fiber Optic Token Ring.

SunNet MHS - Provides access to Sun mailtool and other UNIX mail systems. Supports X.400
standards. Supports submission and delivery of ASCII text files.

CONFORMANCE STATUS
Not complete.

SunNet OSI - Based on FTAM (ISO 8571), ACSE (ISO 8649 & 8650), Presentation (ISO 8822
& 8823), ASN.1 (ISO 8824 & 8825), Session (ISO 8326 & 8327), Transport (ISO 8072 &
8073),Network CLNS (ISO 8473), ES-IS Routing (ISO 9542), CONS (ISO 8878)

SunNet X.25 - Based on ISO 8208
SunNet FDDI - Based on I1ISO 9314

SunNet MHS - Based on CCITT 1984 recommendations of X.400, X.401, X.409, X.410, X.411,
and X.420. Conforms to NIST Implementation Agreements NBSIR 87-3674. Provides address
translation as defined in RFC 987 and RFC 1026.

COMMENTS

This is the most complete OSI protocol suite available for the Sun platform. The dual-stack sup-
port is important for providing the transition to OSI protocols. Feedback from users indicates good
performance in these protocols because of the development work done

to incorporate them into the SunOS kernel. The MHS is a gateway product which provides send-
mail to X.400 translation. Product is run on a single host within a local network for connection to

external OSI hosts.
COMPANY NAME

Touch CommunicationslInc.
250 E. Hacienda Ave
Campbell, CA95008
Sales and Information: (408)374-2500
FAX:(408) 374-1680
PRODUCTS

108

_——

Touch Communications provides consulting and porting services for users installing OSI com-
munications.

They have one end user product called Worldtalk 400. This is a mail gateway package which runs
on a 386/ix machine and provides interfaces from X.400 to QuickMail, Microsoft Mail, Inbox Plus,
cc:Mail, Novell MHS, and SMTP/UUCP.

CONFORMANCE STATUS
Not complete.
COMMENTS

This product uses a unique approach to address the problem of connecting various incompatible
mail systems including X.400 systems. While this is a useful transition product it is still unclear
whether it could be considered as a GOSIP product.

COMPANY NAME

The Directory Project,

X-Tel Services Lid,

University Park,

Nottingham, NG7 2RD

Telephone: 602 412648

Fax: 602 790278

E-Mail: x500@xtel.co.uk
PRODUCTS

MDUA (Motif DUA) provides a Motif-compliant X-Windows user interface to the X.500direc-
tory.
COMPANY NAME

The Wollongong Group, Inc.

1129San Antonio Road

PaloAlto

CA 94303

Sales and Information: 800/872-8649

Fax: 415/962-0286

Tom Bromm - Sales
PRODUCTS

WIN/OSI Release 2.1 - 386 Unix only product.
Main features include:

LLS provides TP0,2,4, CLTP, CLNP, CONS, COTP, and ESIS ULS provides FTAM, VT, and TSB
(Transport Service Bridge) this is a bridge which provides connection service between TCP/IP and
TP4. Supports some third party X.25 hardware for 386 systems.

109

S ——

CONFORMANCE
Not complete.

COMMENTS

This is a limited product. It was recently announced (Summer’91) and difficult to find technical
information on these products within the company.

COMPANY NAME
3ComCorporation
5400Bayfront Plaza
Santa Clara,CA 95054
Information:Cyndi Jung
(408) 764-5173
cmj@3Com.COM
PRODUCTS
OSI Network and Directory Services software
Dual Stack OSI and TCP/IP software

110

