LOAN DOCUMENT

3'8 10 285

9 ()
vE .
oo B g — INVENTORY
S
= | v <R3- 093
é = g "N Moc 00 H
A
- [ey N
 Camanag " D
[DISTRIBUTION STATEMENT ;
-
B~ o a2 TIC
S AU612 1993 D ?
- T
L m R r—y—y— H
SRR C
DISTRIBUTION STAMP A
DTIC QUALITY INSPECTED 3 g
DATE RETURNED
3- 186 11

\IIlIIIIIbS Py

PROTOGRAPH THIS SHEET AND RETURN T0 DTICFDAC

LOAN DOCUMENT

REPORT DOCUMENTATION PAGE | iTngrendi

Oulitie l-ln-lnc...ndlﬂn-nn--ulnunnun-u--u--lnun.n'n|-~rnu-1=-n-l--'..-quunnuu;
O CRNGENER o MiSvmeRen. Seng
:- -.-n-s¢1=--n==-—-ﬂbmnun,,.-m_-1 I'--ﬂ====-4=r-¢--¢lwll-nnnd-
Oows segimey, hath o‘m SPORement

Qifice ot M.

AN ADAPTIVE MESH MOVING AND LOCAL REFINEMENT METHOD FOR

TIME - DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS AFOSR-85-0156

DAVID C. ARNEY AND JOSEPH E. FLAHERTY

Rensselaer Polytechnic Institute REPORT NUMBER
110 8th Street .
Troy, NY 12180-3590 AROSMTR 53 U5 34

ST e
AFOSR-85-0156

Appreved for pudlic release
distriduticaunlimited, . .

We discuss mesh-moving, static mesh-regeneration, and local mesh-refinement
algorithms that can be used with a finite difference or finite element scheme to
solve initial-boundary value problems for vector systems of time-dependent partial
differential equations in two space dimensions and ‘time. A coarse based mesh of
quadrilateral cells is moved by an algebraic mesh-movement function so as to
follow and isolate spatially distinct phenomena. The local mesh-refinement

method recursively divides the time step and spatial cells of the moving base mesh
in regions where error indicators are high until a prescribed tolerance is satisfied.
The static mesh-regeneration procedure is used to create a new base mesh when the
existing ones becomes to distorted. The adaptive methods have been combined with a
MacCormack finite difference scheme for hyperbolic systems and an error indicator
based upon estimates of the local discretization error obtained by Richardson
extrapolation. Results are preseentd for several computational exapmles.

W |
i ! - TY

AK: - SASTIRCATRE BCANITY CLASSING
or o o ragE
UNCLASSIFIED - UNCLASSIFIED

il BB oo i

i e

-

PR G 0 e e ST R T T A R "l

2 Y

An Adaptive Mesh-Moving and Local
Refinement Method for Time-Dependent
Partial Differential Equations

DAVID C. ARNEY

United States Military Academy AUSRTR: 93 vo 34
and

JOSEPH E. FLAHERTY

Rensselaer Polytechnic Institute

We discuss mesh-moving, static mesh-regeneration, and local mesh-refinement algorithms that can
be used with a finite difference or finite element scheme to solve initial-boundary value problems for
vector systems of time-dependent partial differential equations in two space dimensions and time.
A coarse base mesh of quadrilateral cells is moved by an algebraic mesh-movement function so as
to follow and isolate spatially distinct phenomena. The local mesh-refinement method recursively
divides the time step and spatial cells of the moving base mesh in r~gions where error indicators are
high until a prescribed tolerance is satisfied. The static mesh-regeneration procedure is used to create
a new base mesh when the existing one becomes too distorted. The adaptive methods have been
combined with a MacCormack finite difference scheme for hyperbolic systems and an error indicator
based upon estimates of the local discretization error obtained by Richardson extrapolation. Results
are presented for several computational examples.

Categories and Subject Descriptors: G.1.8 {Numerical Analysis]: Partial Differential Equations—
difference methods, hyperbolic equations; G.4 [Mathematics of Computing]: Mathematical Soft-
ware—efficiency, reliablity and robustness

General Terms: Algorithms, Design
Additional Key Words and Phrases: Adaptive methods, local mesh refinement, mesh moving

1. INTRODUCTION

Many initial-boundary value problems for time-dependent partial differential
equations involve fine-scale structures that develop, propagate, decay, and/or
disappear as the solution evolves. Some examples are shock waves in compressible

This research was partially supported by the U.S. Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under grant AFOSR 85-0166 and by the SDIO/IST under management
of the U.S. Army Research Office under contract DAAL 03-86-K-0112. This research was used to
partially fulfill the Ph.D. requirements of D. C. Arney at the Rensselaer Polytechnic Institute.
Authors’ addresses: D. C. Arney, Department of Mathematics, United States Military Academy, West
Point, NY 10996-1786. J. E. Flaherty, Department of Computer Science, Rensselaer Polytechnic
Institute, Troy, NY 12180-3590.

Permisaion to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.
© 1990 ACM 0098-3500/90/0300-0048 $01.50
ACM Transactions on Mathematical Software, Vol. 16, No. i, March 1990, Pages 48-71.

i
1
#
7

-

R T R i)

cremer . R o e R I R e D 2 : i

An Adaptive Mesh-Moving and Local Refinement Method ~ + 49

flows, boundary and shear layers in viscous flows, and reaction zones in combus-
tion processes. The numerical solution of these problems is usually difficult
because the nature, location, and duration of the structures are often not known
in advance. Thus, conventional numerical approaches that calculate solutions on
a prescribed (typically uniform) mesh often fail to adequately resolve the fine-
scale phenomena, have excessive computational costs, or produce incorrect
results. Adaptive procedures that evolve with the solution offer a robust, reliable,
and efficient alternative. Such techniques have been the subject of a great deal
of recent attention (cf. Babuska et al. [8, 9] and Thompson [29]) and are generally
capable of introducing fiher meshes in regions where greater resolution is needed
[1, 2, 3, 6, 14, 15, 22, 26], moving meshes in order to follow isolated dynamic
phenomena [1, 2, 5, 20, 22, 26, 28], or changing the order of methods in specific
regions of the problem domain [17, 21]. The utility of such adaptive techniques
is greatly enhanced when they are capable of providing an estimate of the accuracy
of the computed solution. Local error estimates are often used as refinement
indicators and to produce solutions that satisfy either local or global accuracy
specifications [1, 2, 3, 6, 14, 15, 26]. Successful error estimates have been obtained
using h-refinement [6, 14, 15], where the difference between solutions on different
meshes is used to estimate the error, and p-refinement [1, 2, 3, 15, 21] where the
difference between methods of different orders are used to estimate the error.

We discuss an adaptive procedure that combines mesh movement and local
refinement for m-dimensional vector systems of partial differential equations
having the form

u, + f(x, y, t, u, u,, u,) = [l)l (x, y, t, Wu,], + [Dz(x’ ¥t u)uyly’
for t>0, (1,y) €Q,

(1.1a)

with initial conditions
u(x, y, 0) = u’(x, y), for (x,y) € QU IQ, (1.1b)

and appropriate well-posed boundary conditions on the boundary 3 of a rectan-
gular region Q.

We suppose that a numerical method is available for calculating approximate
solutions and error indicators of (1.1) at each node of a moving mesh of
quadrilateral cells. Most numerical methods are applicable, and the error indi-
cator can either be an estimate of the local discretization error or another function
(e.g., an estimate of the solution gradient or curvature) that is large where
additional resolution is needed and small where less resolution is desired. Our
adaptive algorithm consists of three parts: (i) movement of a coarse base mesh,
(ii) local refinement of the base mesh in regions where resolution is inadequate,
and (iii) creation and regeneration of the base mesh when it becomes overly
distorted. Mesh motion can substantially reduce errors of hyperbolic problems
for a very modest computational cost. Mesh motion alone, however, cannot
produce a solution that will satisfy a prescribed error tolerance in all situations.
For this reason, we have combined mesh motion with local mesh refinement and
recursively solve local problems in regions where error tolerances are not satisfied.
The local solution scheme successively reduces the domain size, and thus further

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

AT e e A el CFUeen . . ~ gt T T ol

50 - D.C.AmeyandJ.E. Flaherty

reduces the cost of the computation. Some problems (e.g., those with severe
material deformations) can result in tangling and distortion of the moving base
mesh. Therefore, we have created a procedure that automatically generates a new
base mesh whenever the old one is unsuitable.

The adaptive procedures described in this paper combine our earlier work on
mesh-moving techniques [5] and local refinement procedures [6]. The inclusion
of a static mesh-regeneration scheme adds greater reliability and efficiency to
these methods. The three components of our adaptive algorithm are described in
Section 2; however, frequent references are made to our previous investigations
[5, 6]. A computer code based on the adaptive algorithm of Section 2 has been
combined with a MacCormack finite difference scheme and an error indicator
based on Richardson extrapolation. It has been used to solve a sequence of
hyperbolic problems (i.e., problems having the form (1.1) with D' = D?:= 0) and
our findings on three examples, where we have attempted to appraise the relative
costs and benefits of the mesh-moving and local refinement portions of our
adaptive algorithm, are reported in Section 3. We have also compared solutions
obtained by adaptive techniques to those obtained using stationary uniform
meshes. Most of the computational time was devoted to calculating the solution
and error indicators, and not to the overhead induced by the refinement proce-
dure. Some possible improvements and future considerations are discussed in
Section 4.

2. ALGORITHM DESCRIPTION

A top-level description of our adaptive procedure is presented in Figure 1 in a
pseudo-Pascal language. This procedure, called adaptive_PDE_solver, integrates
a system of partial differential equations from time tinit to tfinal and attempts
to keep the local error indicators below a tolerance tol. The base-level time step
At is initially specified, but may be changed as needed during the integration.

The rectangular domain Q is initially discretized into a coarse moving spatial
grid of M X N quadrilateral cells. An initial base mesh is generated from this
mesh by increasing the values of M and N, as necessary, and moving the mesh
so that it is concentrated in regions where error indicators are large (cf. Section
2.3). The base mesh is moved for each base time step At, as described in Section
2.1, and the partial differential system (1.1) is solved on this mesh for a base
time step. This is followed by a recursive local mesh refinement in regions where
error indicators are larger than tol. The local refinement procedure local_refine
is described by Arney and Flaherty in [6], and its major features are summarized
in Section 2.2. The integration for each base-mesh time step is concluded by the
selection of a new value of At for the subsequent time step and the generation of
new base mesh (cf. Section 2.3), if necessary.

The mesh-moving, local refinement, and mesh-regeneration algorithms are
uncoupled from each other as well as from the procedures used to solve the
partial differential system and calculate local error indicators. This reduces
computational costs and provides a great deal of flexibility.

2.1 Mesh-Moving Algorithm

Mesh-moving strategies should produce a smooth mesh where the sizes of
neighboring computational cells vary slowly and cell angles differ only by modest
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

PR

T = R

ra 2

S e R LR AN, 3 e e T e Y s

An Adaptive Mesh-Moving and Local Refinement Method . 51

procedure adaptive PDE_solver(tinit, At, tfinal, tol: real; M, N : integer),

begin
Generate an initial base mesh;
t = tinit;
while ¢ < tfinal do
begin
Move the base mesh for the time step ¢ to ¢t + At;
local_refine(0, ¢, Az, tol);
t=t+ A,
Select an appropriate Ar;
if base mesh is too distorted then regenerate a base mesh
end
end { adaptive PDE_solver };

Fig. 1. Pseudo-Pascal description of an adaptive procedure to solve the partial
differential system (1) from ¢ = tinit to tfinal to within a tolerance of tol.

amounts from right angles. It is, of course, essential for the nodes of the mesh to
remain within Q and for cells not to overlap. Meshes that violate these conditions
can produce large discretization errors that overwhelm the positive effects of
mesh moving. Our mesh-moving procedure [5] is based on an intuitive approach
rather than more analytic error equidistribution [18, 26] and variational ap-
proaches [16]. The essential idea is to move the mesh so as to roughly follow
isolated nonuniformities, suck as wave fronts, shock layers, and reaction zones.
This generally reduces dispersive errors and allows the use of larger time steps
while maintaining accuracy and stability.

At each base time, we scan the M X N base mesh of quadrilateral cells and
locate “significant error nodes” as those having error indicators greater than
twice the mean nodal error indicator and also greater than ten percent of tol.
This empirical strategy avoids having the mesh respond to fluctuations when \
error indicators are too small, but is sensitive enough to avoid missing dynamic
phenomena associated with large error indicators. If there are no significant error
nodes, computation proceeds on a stationary mesh. The nearest neighbor clus-
tering algorithm of Berger and Oliger [14] is then used to determine the orien-
tation and size of rectangular w, X w, clusters that contain all of the significant
error nodes. One such cluster is shown as the central rectangular region on
Figure 2.

Clusters are designed so that nodes within them may be assumed to have
related solution characteristics. Thus, we determine mesh movement from the
velocity of propagation, the orientation, and the size of each rectangular error
cluster. Node movement is determined by the propagation of the center of error
of each cluster, which moves according to the differential equation

¥, + AP, = 0. (2.1a)
Here, (') := d()/dt, A is a scalar parameter, and r,(t) = [xn(t), ym(t)]” is the
position of the center of error of the cluster, that is,

_ X ri(t)Ei(t)
rmit) = ———————2 EG) (2.1b)

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

B LT T VN B NP USSP I S - SR BBV Y AR A Ty Pl e s ST R

———:__r

52 . D. C. Amey and J. E. Flaherty

domain

Fig. 2. A rectangular central w, X w, error cluster. Nodes within the
range of the cluster, 3w, X w,, are moved a distance d, i in the x,
principal direction according to Eq. (2.2). Nodes outside the range of
the cluster are moved a distance d; .. in the x; direction according
to Eq. (2.3). The distance z is the shortest distance to the range of
the cluster.

The summations range over all nodes in a cluster, r;(t) is the position of node i
at time ¢, and E;(t) is the positive error indicator at node i and time ¢.

The choice of the parameter A can be critical in certain situations. If A is
selected too large, the system (2.1) will be stiff and computationally expensive.
On the other hand, if M is too small, the mesh can oscillate from time-step-to-
time-step. Coyle et al. [18} and Adjerid and Flaherty [2] suggested some adaptive
procedures for choosing A; however, we found no appreciable differences in
results or computation times when \ varied significantly. The examples of Section
3 are calculated with A = 1,

We solve (2.1) for each base time step and each cluster using an explicit
numerical method. The center of an error cluster is moved a distance Ar,, =
rn(t + At) — rn,(t) at the base time ¢. Let Ar,, and Ar,,, denote the projections
of Ar,, onto the major and minor axes of the cluster. Mesh motion is performed
in two steps, each parallel to a principal axis of an error cluster. To this end, let

Ar,,.‘(-;Z + x;/w;), if —3w/2 < x; < ~w,;/2
dioir = Arp,, if —-w/2<x<w/2
e T) Arm (3 = xfw), i w2 = xS w2’
0, otherwise

i=12 (22

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

AN U AT AU L~ £ A S w1

. — B T

o T, R —
T A R e e e L R C R e a ey 818 5y ol

.

gp—

An Adaptive Mesh-Moving and Local Refinement Method - 53

and
di.ou!side = i.inside[l - (22/D)]y l = 1» 21 (2-3)

denote one-dimensional piecewise linear functions that move nodes along the
two principal axial directions of a w; X w, cluster and let (x;, x;) be local
Cartesian coordinates in these principal directions relative to a cluster’s center
(cf. Figure 2). Consider mesh motion in the x, direction. The cluster is enlarged
to a region {(x, y}|3w/2 < x; < 8w,/2, ~w./2 = x, < w,/2] called the “range of
the cluster” (cf. Figure 2). All nodes in the range of the cluster are moved a
distance d, ;.. in the x, direction. In order to maintain smooth mesh motion
throughout the domain, nodes outside the range of a cluster are moved a distance
diouside 1N the x; direction, where z is the shortest distance to the range of the
cluster (cf. Figure 2) and D is the diagonal of .

Motion of all clusters in the directions of their major axes (i = 1 in (2.2, 3)) is
followed by a similar movement in the directions of their minor axes (i = 2 in
(2.2, 3)). The distances d; insige A0d d; o000 are reduced near 99 in order to prevent
nodes from leaving . In particular, we recalculate d;; as d; ;{min(1, b/c}], i = 1,
2, J = inside, outside, where b is the distance of the node to the boundary and ¢
is twice the length of a cell diagonal on a uniform mesh having the same number
of cells as the moving mesh. Nodes on domain boundaries, except corner nodes,
which are not moved, are restrained to move along the boundary. Finally, the
mesh-moving algorithm is not restricted to the functions given by (2.2) and (2.3),
and several other choices are pcssible.

2.2 Local Refinement Algorithm

As shown in Figure 1, the local refinement procedure is invoked after the base
mesh has been moved for a base time step. OQur refinement strategy consists of
first calculating a preliminary solution on the base mesh for a base time step. An
error indicator is used to locate regions where greater resolution is needed. Finer
grids are adaptively created in these high-error regions by locally bisecting the
time step and the sides of the quadrilateral cells of the base grid, and the solution
and error indicators are computed on the finer grids. The refinement scheme is
recursive; thus, fine subgrids may be refined by adaptively creating even finer
subgrids. This relationship leads naturally to a tree data structure. Information
regarding the geometry, solution, and error indicators of the base grid is stored
as the root node or level 0 of the tree. Subgrids of the base grid are offspring of
the root node and are stored as level 1 of the tree. The structure continues, with
a grid at level [having a parent coarser grid at level [— 1 and any finer offspring
grids at level [+ 1. Grids at level [of the tree are given an arbitrary ordering,
and we denote them as G,;,j =1, 2, ..., N,, where N, is the number of grids at
level I. Our refinement procedures permit grids at the same level of a two-
dimensional problem to intersect and overlap; however, offspring grids must be
properly nested within the boundaries of their parent grid. A one-dimensional
grid with its appropriate tree structure for a base time step is shown in Figure 3.

A top-level pseudo-Pascal description of a recursive local refinement algorithm
that solves systems of the form (1.1) on the tree of grids described above is

ACM Transactions on Mathematical Software, Vol. 18, No. 1, March 1990.

f
&)

A > DBt e 1 R g T :

p 54 - D.C.AmeyandJ. E. Flaherty

G, G|.n

t
11111
| § I SEAE] 1
S
l - X Gy G S

Fig. 3. Coarse and refined gride (top) and their tree representation
(bottom) for a one-dimensional example.

- -
- .

presented in Figure 4. The procedure local_refine integrates partial differential
equations on the grids G;;, j = 1, 2, ..., N,, at level [of the tree from time tinit
to tinit + At and attempts to satisfy a prescribed local error tolerance tol.
L For each grid at level [, a solution and error indicators are calculated at time

tinit + At. Additional finer grids are introduced in regions where the error
indicators exceed the prescribed tolerance tol, and the differential system is
solved again on the finer grids using two time steps of duration At/2 and a
tolerance of tol/2. Implicit in local_refine are the assumptions that a solution can
be computed on any grid and that refinement terminates. If either of these
assumptions is violated, the procedure terminates in failure.

Our technique for introducing finer subgrids consists of four steps: (i) an initial
scan of each level / grid to locate “untolerable-error” nodes as those where the
error indicator exceeds the prescribed tolerance tol, (ii) clustering any untolerable
nodes into rectangular regions, (iii) buffering the clustered regions in order to
reduce problems associated with prescribing initial and boundary conditions at
coarse/fine grid interfaces, and (iv) cellularly refining the level ! meshes and time
step within the buffered clusters. Of course, if there are no untolerable-error
nodes, the solution is acceptable and further refinement is unnecessary.

The same clustering algorithm [14] that was used to move the base mesh is
also used to group untolerable-error nodes for refinement. Each rectangular error
cluster is enlarged by increasing its major and minor axes by twice the size of
the average cell edge within the cluster. The region between the enlarged and
original error clusters provides a buffer so that artificial internal boundary

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

Y T I SN

caw e

s . - O i aa ol T

An Adaptive Mesh-Moving and Local Refinement Method . 55

procedure local_refine(/: integer; rinit, At, 1ol: real).

beg:"j :=1toN[l] do
begi

n
Integrate the partial differential system from tinit to tinit + At
on grid G U1,/ . .
Cach\[xllat? error indicators at rinit + At at all nodes of grid
JEb
if any error indicators > 1ol then introduce level I + 1 subgrids
of G(l.j}
end { for };

if any error indicators > tol then

n
local_refine(l + 1, tinit, A2 /2, tol 12);
local_refine(! + 1, tinit + A¢/2, At/2, t0l/2)

end

end { local_refine };

Fig. 4. Pseudo-Pascal description of a recursive local refinement procedure to
find a solution to the partial differential system (1.1) on all grids at level / of the
tree.

conditions (discussed below) will be prescribed at low-error nodes as far as
possible and fine-grid errors will not propagate through the buffer in a time step.

Refined subgrids are created by bisecting the time step and edges of each cell
of the parent mesh that intersects the buffered rectangular error clusters. Coarse
mesh motion is maintained on the refined grids so that, after two time steps of
size At/2, cells of the refined grids will be properly nested within those of their
parent grid. Additional details of the refinement algorithm and data structures
are presented by Arney and Flaherty in [6].

Artificial initial and boundary data must be determined from solutions on
other grids in order to calculate the solution and error indicators on refined
subgrids. Initial data for a subgrid are calculated directly from the initial function
u’(z, y) at t = 0. For ¢t > 0, initial data is obtained by interpolation using the
solution at the same time on the finest available mesh. In order to provide data
for this interpolation, we save all solution values on previous subgrids until they
are no longer needed due to advancement in time of an acceptable solution.
Bilinear functions using the solution values at the four vertices of the finest
existing cell are used to ubtain the solution at the nodes of cells of the refined
mesh. Further analysis is needed regarding the effects on accuracy and stability
and the proper order of this interpolation. Bieterman, Flaherty, and Moore [15]
give an example where the fine-scale structure of a solution was lost by interpo-
lation from too coarse a mesh.

In a similar manner, boundary data for refined meshes are calculated directly
from the prescribed boundary conditions on portions of subgrids that intersect
9. Dirichlet boundary data are prescribed on the edges of subgrids that are in
the interior of Q by interpolating the solution from coarser meshes. Bilinear
functions using the solution values at the four vertices of the adjacent face of the

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

0

-

B e R

. - - Py R s W e Ay R S

58 - D.C.AmeyandJ. E. Flaherty

finest existing space-time cell are used to obtain solution values for the nodes of
refined cells.

Acceptable fine-ruesh solutions are used to replace solutions at the nodes of
coarser grids th . lie within the untolerable-error portions of clusters. Solutions
at low-errc- .iodes in the buffer zones of clusters are not replaced in order to
avoid possible contamination of accurate solutions. When fine grids overlap each
other in an untolerable-error region, the average value of the solutions at common
fine-grid nodes is used to replace the appropriate coarse grid solution. Boundary
effects do not propagate through a sufficiently large buiffer, and thus have no
effect on the solution within the untolerable-error region of a cluster when an
explicit numerical scheme is used for the integration. Greater care is needed
when implicit integration methods are used, since artificial boundary conditions
can affect the accuracy, convergence, and stability of the soluticn at all nodes in
the cluster regardless of the size of the buffer.

Stability and conservation of, for example, fluxes at interfaces between coarse
and fine meshes must be investigated further, particularly in two dimensions.
For one-dimensional problems, Berger and Oliger [14] showed that linear inter-
polation of solutions from a coarse to a fine mesh produced no instabilities in
the Lax-Wendroff scheme. Berger [12] also discussed conservation at mesh
interfaces and proposed explicit enforcement of conserved quantities at coarse/
fine mesh boundaries. Rai [27] presented some finite difference schemes that
maintained conservation at grid interfaces for two-dimensional compressible flow
problems.

2.3 Initial Mesh Construction and Regeneration

The efficiency of our adaptive mesh-moving and refinement strategies are depen-
dent on our ability to generate a suitable initial mesh and to regenerate a new
base mesh, should it become severely distorted at later times. The proper base
mesh can reduce the need for refinement, and thus increase efficiency.

The two essential elements of a mesh-generation or regeneration procedure
are the determination of the number of nodes and their optimal location. A base
mesh having too few nodes will result in excessive refinement, while one having
too many nodes will reduce efficiency. Our approach to mesh generation is to use
the error indicators computed by a trial solution to determine an initial mesh
that approximately equidistributes the error indicators.

To begin, we create a uniform M X N rectangular mesh using prescribed values
of M and N that reflect the coarsest mesh that should be used to calculate a
solution. We solve the system (1.1) for a base time step At on the uniform
stationary base mesh and compute the solution and error indicators. Local mesh
refinement is performed as described in Section 2.2 until the prescribed tolerance
is attained. We use this solution to determine the number of nodes K in a new
base mesh as

K = MN + 2 (3VK., (2.42)

i=1

where K, is the number of nodes introduced at level / and n is the total
number of levels in the tree. Having computed K, we calculate the dimensions

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1980.

o ———————— o

oo AR e e - b 3 b e

BTN

v = - #o0s 200 steer ot -

An Adaptive Mesh-Moving and Local Refinement Method . 57

of a new M X N mesh as
M = VKM/N, N = VKN/M. (2.4b)

The assumption expressed by (2.4a) is that three-fourths of the nodes introduced
by refinement at level [are actually required to achieve the prescribed accuracy.
The remaining nodes are associated with the buffers and those sharing common
locations with level { — 1 meshes. The assumption expressed by (2.4b) is that the
new base mesh should have K nodes distributed in proportion to the original
base mesh. (The bars have been omitted on M and N in the algorithms displayed
n Figures 1 and 4 and in all further discussions.)

Node placement for the new base mesh is accomplished by locating all nodes
of the original base mesh having error indicators that are greater than twice the
mean error indicator. These nodes are then grouped into rectangular clusters and
are moved toward the center of the nearest error cluster by a procedure similar
to the one described in Section 2.1. Additional details are presented by Arney
and Flaherty in [7].

A new base mesh can be generated whenever the existing one becomes severely
distorted. Since this new mesh is created at a specific time, rather than by mesh
motion, we refer to this process as static mesh regeneration. Qur static mesh-
regeneration procedure consists of three steps: (i} determining that there is a
need for a new base mesh, (ii) creating the new base mesh, and (iii) interpolating
the solution from the old to the new base mesh.

A mesh is regenerated when any interior angle of a cell is less than 50 or
greater than 130 degrees, the aspect ratio of any cell is greater than 15, or the
mesh ratio of adjacent cells exceeds 5 or is less than . In the present context,
the aspect ratio is defined as the average length divided by the average width of
a cell, and the mesh ratios are defined as the ratio of the lengths and widths of
adjacent cell sides.

A new base mesh, having the same number of nodes as the old one, is generated
using the procedure described above for creating an initial base mesh. The error
clusters for the existing mesh are used to generate the new base mesh, so that
new clusters do not have to be computed. This process appears to reduce angle
deviations from ninety degrees, control aspect ratios, and mollify adjacent mesh
ratios.

Once a new base mesh has been constructed, the solution on the old one is
interpolated to the new one by using bilinear interpolation with respect to the
cells of the old base mesh. This procedure is inadequate and, at the very least,
should use fine as well as coarse grid data for the interpolation. The order and
nature of the interpolation also needs further investigation, and we are studying
methods that, for example, conserve fluxes (cf. Berger [12] or Rai [27]).

3. COMPUTATIONAL EXAMPLES

In order to demonstrate the capabilities of the adaptive procedure described in
Section 2, we applied it to three hyperbolic systems. We used a two-step
MacCormack finite difference method (cf. Arney and Flaherty [5], Hindman
[23], or MacCormack [24]}) to integrate the partial differential equations and
Richardsor.’s extrapolation (cf. Arney et al. [4]) to indicate local errors. This

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1980.

B

1O e S NI NN e A et s g . L R ug-..nw,~, g A vy o Y g e

58 + D.C.AmeyandJ.E. Flaherty

error indication procedure differs from Berger and Oliger’s [14] in that (i) separate
estimates of the temporal and spatial errors are produced in order to reduce
computation and provide the possibility of using differential refinement in
different regions of the problem domain, and (ii) an error estimate is obtained
on the finest grid. Base mesh geometry was prescribed as indicated in each
example. If the base mesh time step failed to satisfy the Courant, Friedrichs,
Lewy criterion, it was automatically reduced to the maximum allowed by the
Courant condition (cf. Arney et al. [4, 6]). This procedure should also satisfy the
Courant condition on all subgrids when the characteristic speeds vary slowly.

Numerical results obtained on uniform stationary grids are compared with
those obtained by adaptive strategies that use (i) mesh moving only, (ii) local
refinement only, and (iii) the combination of mesh moving and refinement
discussed in Section 2. The examples are designed to determine the relative cost,
accuracy, and efficiency of our adaptive algorithm and each of its components.
Accuracy is appraised by computing the difference e between the exact and
numerical solutions of a problem in either the maximum or L, norms, that is, by
computing either

le(:, -, t)» := max max |e(x;, y;, t)], (3.1a)
1si<=K 1sj<sm

or

"e('v 'vt)"l=ffP Z 'ejldxdy’ (3-1b)
) j=1

respectively. Here, K is the number of nodes in the mesh at time ¢, and Pis a
piecewise constant interpolation operator with respect to the cells of the base
mesh that, on each cell, has the average value of the errors at the vertices of the
cell. We use either the total CPU time or the maximum number of nodes used in
a base time step as measures of the computational complexity of a procedure.
The CPU times of calculations performed on uniform stationary meshes also
include error estimation times, since error estimation is an integral part of the
solution algorithm and adds reliability to the results. All calculations were
performed in double-precision arithmetic on an IBM 3081/D computer at the
Rensselaer Polytechnic Institute.

Solutions are displayed by drawing either level lines or wire-frame perspective
renditions. Meshes are displayed by showing the complete two-dimensional
spatial discretization at specified times with finer subgrids overlaying coarser
ones, The broken-line rectangles in Figures 5, 6, 9, and 11 indicate the cluster(s)
that are used to move the base mesh.

Example 1. Consider the linear initial-boundary value problem introduced by
McRae et al. [25] and frequently used as an example [14, 22}:

U — yu, + xu, = 0, t>0, (x,y)€Q, (3.2a)
_Jo, if (x—3)2+15y*= 5
ulx 3 0) = {1 ~ 16((x — 1)? + 1.5y%), otherwise,

(x, y) EQUIN (3.2b)
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1980,

PRC TOMRY PRy

{
I

An Adaptive Mesh-Moving and Local Refinement Method . 59

Table I. Errors at t = 3.2 and Computational Costs for Five Solutions of Example 1

Reference Base Base time CPU time
No. Strategy mesh step hell, lelw (sec)
1 Stationary uniform mesh 14 xX 14 0.056 0.2560 0.78 46
2 Moving mesh 32x32 0.026 0.0301 0.20 458
3 Stationary mesh with refinement 14 X 14 0.056 0.0832 048 852
4 Moving mesh with refinement 14 x 14 0.056 0.0249 0.18 904
5 Stationary uniform mesh 56 x 56 0.014 0.0759 0.48 2647
6 Stationary uniform mesh 84 x84 0.0093 0.0257 0.29 8670
and
ulx,y,t) =0, t>0, (x,y) €99, (3.2¢)

where Q:= {(x, ¥)| -1.2 < x, y < 1.2}.

The exact solution of (3.2) is an elliptical cone that rotates about the origin in
the counterclockwise direction with period 2=. In can be written in the form

ulx, y, t) = {g ig g; g (3.3a)

where
C =1 - 16[(xcost + ysint — £)? + 1.5(yycost — xsint)?]. (3.3b)

Six adaptive and uniform mesh solutions of (3.2) were calculated for 0 <t <
3.2; our findings are summarized in Table 1. Solutions 3 and 4, with refinement,
were calculated using an error tolerance of 2 X 107* and a maximum of two levels
of refinement. The tolerance and maximum level of refinement were selected so
that the high-error region under the cone would maintain approximately the
same mesh spacing as the uniform mesh used to obtain Solution 5. The grids
used to obtain Solution 4 are shown in Figure 5 at t = 0.56, 1.68, 2.24, and 3.2. A
new base mesh was introduced at ¢ = 2.82. The meshes used to obtain Solutions
2, 3, and 4 at ¢t = 3.2 are shown in Figure 6. Finally, surface and contour plots of
Solutions 1, 2, and 3 and of Solutions 4 and 5 at ¢ = 3.2 are shown in Figures 7
and 8, respectively.

Solution 1 bears no resemblance to the exact solution and demonstrates the
devastating effects of large dissipative and dispersive errors. Solution 2, with
mesh moving only, provides a dramatic improvement in the results for approxi-
mately one-half the cost of using both mesh motion and refinement. The subgrids
for the refined Solutions 3 and 4 are concentrated in the region of the cone and
are aligned with its principal axes as it rotates. Dissipative and dispersive errors
cause a “wake” of spurious oscillatory information to follow the moving cone (cf.
Figures 7 and 8). Some mesh refinement is performed in the wake region, and
this greatly reduces the magnitude of the oscillations.

Solutions 4 and 6 have approximately the same errors in L,. The adaptive
procedure (Solution 4) took less than 11 percent of the computational time of
the fixed mesh calculation (Solution 6). Solutions 3 and 5 also have approximately
the same errors in both the L; and L. norms. This was by design, since both

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

I

B TR e - -

N GENTE A . e e s TR -~ B R B Ve . LR Rt A

60 - D.C.AmeyandJ.E. Flaherty

Fig. 5. Grids created for Solution 4 of Example 1 at t = 0.056 (upper left), 1.68
(upper right), 2.24 (lower left), and 3.2 (lower right).

solutions have the same mesh beneath the rotating cone. The local refinement
method (Solution 3) took approximately 33 percent of the time of the fixed mesh
calculation (Solution 5). Berger and Oliger [14] compared solutions of this
problem on a fixed uniform mesh and one using one level of local refinement
with a four-to-one ratio between the coarse and fine grids. They found that the
adaptive local refinement procedure took 16 percent of the time of the fixed mesh
computation having the same accuracy. This is slightly less efficient than our
combined moving and refinement method (Solution 4), but more efficient than
our local refinement procedure (Solution 3). The latter differences are due (i) to
our two levels of binary refinement compared to their one level of fourfold
refinement and (ii), more significantly, to our use of the error estimate on the
finest rather than the coarsest mesh. Our error estimation policy is clearly more
expensive, but adds greater reliability to the computed solution.

Example 2. Consider the uncoupled linear initial-boundary value problem:

U, +u, =0, Uy, — Uy, = 0, t>0, (x,y)E€Q, (3.4a)
1 - 16((x —)2 + 1.5y, i -3+ 15y =5
u,<x,y,o>={0 (=B 18yh, i - ey s

(x,y)€QUIN, (3.4b)
ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1890.

o
A
T - N O U iy s U e et AR i i LG WL WS M 3y g P AT W -

|
|
|

P e v

An Adaptive Mesh-Moving and Local Refinement Method - 61

L] T
f;nm:m T — S
YU, — _
"ﬂIIIIIIIIIIIIIIIIII"III'_' L—— -] ‘
[E—Z/ - K
é L——E :
_H
s; DI
BN
ISR |
BN
B |
[T Ry R
; I L_'/
| l::_.—-—————'-"""
-
, ,
1_
i AR L
|t

Fig. 6. Grids created for Solutions 2, 3, and 4 of Example 1 at ¢t = 3.2.

_J1-16((x + 32+ 15y, if (x+ 1)+ 15y’ =<+
ta(x, v, 0) = {O, otherwise,

(x,y) €EQUIQ, (3.4c)
u(x, ¥, t) = uplx, y, t) =0, t>0, (x,y) €99, (3.4d)
and Q :={(x,y)|-1<sx =<1, ~06<y=0.6].

The solution of this problem consists of two moving cones that collide and
pass through each other. We selected it in order to determine how the various
adaptive strategies could cope with interacting phenomena.

One uniform mesh and three adaptive solutions of (3.4) were calculated for
0 <t = 1.2; our findings are summarized in Table II. The solutions involving
refinement were computed with a tolerance of 0.0038. All solutions were designed
to have approximately the same accuracy. The grids that were used to obtain
Solution 4 are shown in Figure 9 at ¢t = 0, 0.23, 0.46, 0.92, and 1.2.

The results of Table II demonstrate the efficiency of mesh moving. We suspect
that the accuracy achieved by mesh moving on this example is due to the reduction

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

S e b

TR L S R, R AR vyt S e N L

[R R e R i 2

D. C. Amey and J. E. Flaherty

R

)

VOO
0.0

000
Q0

O'I.: OO

WU
\.I;Ota.O'
DOV

=,
£
v’O

0

-1.00 0.00 1.00
1.00
(‘
0.00 }
[1
-1.00 e
-1.00 0.00 1.00
1.00!
|
a0} |
!
\
» |
1
i
-1.00
*]
-1.00 0.00 1.00

Fig. 7. Surface and contour plots for Solutions 1, 2, and 3 (top to bottom) at ¢ = 3.2 of Example 1.

in dispersive errors that occur during the time steps when the mesh follows the
cones with approximately the correct velocity. Solution 3 with refinement on a
stationary mesh shows only a modest improvement over Solution 5; however, the :
combination of mesh moving and refinement computed in Solution 4 again shows

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990,

- ——

An Adaptive Mesh-Moving and Locat Refinement Method

1.00 ¢

-1.00¢

0.00

1.00

1.00}

-1.00 1

-1.00

0.00

1.00

Fig. 8. Surface and contour plots for Solutions 4 (top) and 5 {(bottom) at ¢ = 3.2 of Example 1.

Table II. Errors at ¢ = 1.2 and Computational Costs for Four Solutions of Example 2

Reference Base CPU time
No. Strategy mesh leh: lel (sec)
1 Stationary uniform mesh 44x20 0.09 0.31 269
2 Moving mesh 44x20 0.056 0.18 340
3 Stationary mesh with refinement 44 %20 0.0656 0.23 719
4 Moving mesh with refinement 44x20 0.039 0.16 609
5 Stationary uniform mesh 64x34 0066 0.26 710
6 Stationary uniform mesh 88x 40 0.040 0.15 2165

a significant gain in accuracy. Solutions 4 and 6 have similar accuracy in L,;
however, the adaptive procedure (Solution 4) costs 28 percent of the time of the
fixed mesh calculation (Solution 6). This ratio is higher than was observed for
Example 1. This is most likely due to lack of mesh movement while the solution
structures interact and the two error clusters unite to form a single stationary
cluster. A similar loss of efficiency was reported by Gropp [22].

ACM Transactions on Mathematical Software, Vol. 18, No. 1, March 1990.

Py

T ——

{ S ORISR S b R A T s S e A IS M 58 5 o o

64 . D. C. Amey and J. E. Flaherty

Al

Fig. 9. Grids created for Solution 4 of Example 2 at t = 0,
0.23, 0.46, 0.92, and 1.2 (top to bottom).

HH

Example 3. Consider the Euler equations for a perfect inviscid compressible
fluid:

u, + f.(u) + g,(u) =0, (3.5a)
where
P fu pu
= | P¥ =] AU +D - puY
u= pU ’ f(u) UV ’ g(Il) pvz + p . (3.5b, C, d)
e ule + p) vie + p)

Here, u and v are the velocity components of the fluid in the x and y directions,
p is the fluid density, e is the total energy of the fluid per unit volume, and p is
the fluid pressure. For an ideal gas:

p = (y = e - p(u® + v?)/2), (3.5€)

where v is the ratio of the specific heat at constant pressure to that at constant
volume.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

oy LA e

g o- s prpns

[- T e I O SR R S SR G MRS T T R e S e o 4 LT s

< ————

An Adaptive Mesh-Moving and Local Refinement Method - 65

We solve a problem where a Mach 10 shock in air (y = 1.4) moves down a
channel containing a wedge with a half-angle of thirty degrees. This problem was
used by Woodward and Collela [30] to compare several finite difference schemes
on uniform grids. Like them, we orient a rectangular computational domain,
—0.3 < x =< 3.4, 0 < y < 1, so that the top edge of the wedge is on the bottom of
the domain in the interval y = 0, -é- < x < 3.4. Thus, in the computational domain,
it appears as though a Mach 10 shock is impinging on a flat plate at an angle of
sixty degrees. The initial conditions that are appropriate for this situation are
the following:

p=80, p=1165 e=5635 u=4125V3, v=-4125,
if y<+v3(x-1), (36a)
and
p=14, p=10, e=25 u=0, v=0,
if y=V3(x—1%). (3.6b)

Along the left boundary (x = —0.3) and the bottom boundary to the left of the
wedge (y = 0, —0.3 < x < 3), we prescribe Dirichlet boundary conditions according
to (3.6); along the top boundary (y = 1), values are prescribed that describe
the exact motion of an undisturbed Mach 10 shock; along the right boundary
(x = 3.4), all normal derivatives are set to zero; and along the wedge (y = 0,
1 < x < 3.4) reflecting boundary conditions are used.

The solution of this problem is a complete self-similar structure called a
double-Mach reflection that was described in Ben-Dor and Glass [10, 11]. Two
reflected Mach shocks form with their associated Mach stems and contact
discontinuities. The geometry of these structures is very fine, and primarily
confined to a small region that moves along the wedge with the incident shock.
One of the two contact discontinuities is so weak that it is usually not noticed in
computations.

The MacCormack finite difference scheme needs artificial viscosity to “cap-
ture” shocks without excessive oscillations. We used a model developed by Davis
[19], which is total variation, diminishing in one space dimension. This compu-
tational strategy is not competitive with the higher-order methods considered by
Woodward and Collela [30] and Berger and Collela [13]. The latter approach
used a local refinement procedure, which additionally restricted the problem
domain to regions of interest during higher levels of refinement. They thereby
obtained results that advance the state of the art for interacting shock phenom-
ena. Our goal was to make some preliminary judgements about the suitability of
the various adaptive strategies without tailoring methods for specific applications.

Five solutions of this problem were calculated for 0 < ¢ < 1.9 as indicated in
Table III. Refinement was restricted to a maximum of two levels, and a tolerance
of 0.6 in the maximum norm was prescribed. A pointwise error indicator based
on the assumption of smooth solutions, like the present one, is not appropriate
for problems having discontinuities. Without restricting the maximum level of
refinement, we could refine indefinitely in the vicinity of a discontinuity.

ACM Transsctions on Mathematical Software, Vol. 16, No. 1, March 1990.

m

D R T

Yy e e U TN S SN S et

66 - D. C. Amey and J. E. Flaherty

Table III. Maximum Number of Nodes in Any Base Time Step and
Computational Costs for Five Solutions of Example 3

Reference Base Maximum CPU time
No. Strategy mesh no. nodes (sec)
1 Stationary uniform mesh 63 x 29 1827 2130
2 Moving mesh 63 X 29 1827 2220
3 Stationary mesh with refinement 29 x 11 2782 3254
4 Moving mesh with refinement 29 X 11 3540 3725
5 Stationary uniform mesh 120 X 40 4800 6861

Solutions 2 through 5 were intended to be of comparable accuracy, and we
shall attempt to appraise the computational cost of each adaptive strategy.
Contours of the density at ¢t = 0.19 are shown for all five solutions in Figure 10,
and the grids that were generated for Solution 4 at ¢t = 0.038, 0.076, 0.114, 0.152,
and 0.19 are shown in Figure 11.

As in the previous two examples, the mesh-moving strategy of Soiution 2 does
a great deal to improve the results of the static Solution 1. Comparing the top
two contours of Figure 10, we see that the resolution of the incident and reflected
shocks is much finer with Solution 2 than with Solution 1. Additional details of
the structures in the Mach stem region and of the contact discontinuities are
present in Solution 2, but not in the nonadaptive Solution 1. Finally, Solutions
1 and 5 display more oscillatory behavior behind the incident shock near the
upper boundary. This is undoubtedly due to our maintaining a discontinuity
where the shock intersects the upper boundary.

The use of refinement on a stationary mesh again does not give the dramatic
improvement obtained by mesh moving (cf. the second and third contours of
Figure 10). Initially, the fine meshes followed the incident and reflected shock
structures, and better results were obtained; however, by ¢t = 0.19, refinement is
being performed over much of the domain, and two levels of refinement are not
sufficient for adequate resolution (cf. Arney and Flaherty [6]). The combination
of mesh motion and refinement depicted by Solution 4 in Figure 10 provides a
marked improvement in resolution. The sequence of meshes shown in Figure 11
shows that the coarse mesh is able to follow the differing dynamic structures and
that refinement is only performed in the vicinity of discontinuities. Initially, only
one rectangular cluster was needed to follow the incident shock (cf. Arney and
Flaherty [5]). As time progresses, two clusters are created in order to follow the
incident and reflected shocks (cf. the upper three meshes of Figure 11). A third
cluster is created as time increases further, in order to follow the evolving activity
in the region of the Mach stem (cf. the lower two meshes of Figure 11).

Severe distortion of the mesh in the reflected shock region caused a static
mesh regeneration to occur for Solution 4 at t = 0.162. The base meshes before
and after the static regeneration are shown in Figure 12. Thus, Solution 4
demonstrates all of the capabilities of our adaptive procedure. Solution 4 also
shows many of the same characteristics as the solution computed by Woodward
and Collela (30] using MacCormack’s method on a 240 % 120 uniform grid. We
were unable to compute a solution on such a fine mesh due to virtual memory

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

R 5 - et Ay St M

- e e =

Vit e L R e I . R B

PO R T L X e L S ikad

An Adaptive Mesh-Moving and Local Refinement Method - 67

-9.20 9.20 92.40 .30 1.30 2.30 ¢2.30

L 1 ’ L . ff N
0.995° 55 9.35 5.80 1.30 1.0 2.30 2.d90

-1.20 9.30 17.80 1.30 1.80 2.30 2.80
I e e e s e e e My

1.09

9.89
5.50

.39
0.005 Y TR B RN
1 060 20 0. 30 0.80 1.30 1.80 2 30 2. 80

0'090.200.30 0.30 1.30 1.80 2.30 2.80

1,’]@0'&0 0.30 9.36 1.30 .80 2.33 2.30

—~
B 7.

"9.20 0.30 59.80 1.30 1.30 2.30 2.30

-0.20 0.30 0.80 1.30 1 80 2. 30 2 30
1.90 T T T :

0.90 (, i1 e AN
-0.20 0.30 0.80 .30 1.80 2.30 2.380

Fig. 10. Contours of the density at ¢ = 0.19 for Solutions 1 to 5 (top to
bottom) of Example 3.

limitations on our computer; however, we estimate that it would have used
14,400 nodes and 40,000 CPU seconds.

The results presented for this problem demonstrate the power and efficiency
of our adaptive techniques; however, we would have preferred to allow more than

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990,

OOPY AVAILABLE T0 DTIC DOES NOT PERMIT FULLY LEGIELE REPRODUCTION

b

Lv»v e S St S

LN T we -

JEeT - - S e R e eheh e L v R TN Ay b e

68 - D.C.ArmeyandJ. E. Flaherty

17
. iNSSNSSRESENESN
T T T T TTIII LI]
T 111 HHTT
g
-
o -
2 —
’
T A S A 5 W I

= -
o e o e o @ 2=

Fig. 11. Grids created for Solution 4 of Example 3 at
t = 0.38, 0.076, 0.114, 0.152, and 0.19 (top to bottom).

two levels of refinement and a finer base mesh. These calculations would have
produced better resolution of the discontinuities and other fine-scale structures
that further demonstrate the computational advantages of adaptive methods
relative to uniform mesh techniques. As noted, restrictions of our computing
environment prevented us from doing this in a reasonable manner. We hope to
perform these calculations in the future using a larger computing system.

4. DISCUSSION OF RESULTS AND CONCLUSIONS

We have described an adaptive procedure for solving systems of time-dependent
partial differential equations in two-space dimensions that combines existing
mesh-moving [5] and local refinement {6] techniques. The algorithm also con-
tains procedures for initial mesh generation and static mesh regeneration. It can
be used with a wide variety of finite difference or finite element schemes and
error indicators.

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

AR o = o e M 0 T

S e emank M Gl Tl R A L e

(3

An Adaptive Mesh-Moving and Local Refinement Method . 69

] 77 L T I HAF
4 7 7 1 417
[7 Z 7 LA
/[77 7 7 Iy
- - /f [z,
-« 3
T L I T/ JTIAJT /1 T
L1 T TrrtA7 1T 1
I T TTVi]
{1 [T
P 1]
ol = I 7]z
= T, ~F 3.1 3
=1= T
Pl 3 - 1
- = L1
)

Fig. 12. Base grids before (top) and after (bottom) the static
mesh regeneration that was performed for Solution 4 of Example
3att=0.162.

We obtained computational results for hyperbolic systems of conservation laws
by using our adaptive methods with a MacCormack finite difference scheme and
by using Richardson’s extrapolation to furnish local error indicators. Our com-
putational results on three examples indicate that mesh moving can significantly
reduce errors. The use of local refinement without mesh moving provided in-
creased efficiency relative to uniform-mesh calculations, although not as dramatic
as that found using mesh moving.

The results of Section 3 and Arney and Flaherty [5, 6] indicate that our mesh-
moving procedures perform better alone than with refinement. This is because
the projection of fine-mesh solutions onto coarser meshes reduces the errors at
base mesh nodes and mesh motion based on controlling small or zero local
discretization errors either fails or results in no movement. Erratic mesh motion
can also occur with some techniques when movement indicators are small. This
topic is discussed in Coyle et al. [18], and a possible remedy for one-dimensional
problems is suggested by Adjerid and Flaherty [2]. Further experimentation and
analysis are being performed in order to determine the best way to combine mesh
moving and refinement.

There are several other ways to improve the efficiency, reliability, and robust-
ness of our adaptive methods. MacCormack’s finite difference procedure could
be replaced with other more appropriate methods for shock computation [13, 17,
30]. The present Richardson’s extrapolation-based error indicator is expensive,
and we are seeking ways of replacing it by techniques using p-refinement. Such
methods have been shown (1, 2, 3, 15, 21] to have an excellent cost performance
ratio when used in conjunction with finite element methods. An appropriate error
indicator or estimator can be used to control a differential refinement algorithm,
where different refinement factors (i.e., viher than binary) are used in different
high-error clusters. If the error indicator is capable of providing separate esti-
mates of the spatial and temporal errors, as the present one does, then different

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

i e

o’

T e e v,

[VUSRS

70

. D. C. Arney and J. E. Flaherty

refinement factors can also be used in space and time. We also hope to demon-
strate the flexibility of our refinement procedure by using it with a finite
difference or finite element scheme for parabolic problems.

The greater reliability and efficiency of adaptive techniques will be most

beneficial in three dimensions. These techniques must be able to take advantage
of the latest advances in vector and parallel computing hardware. The tree is a
highly parallel structure, and we have been developing solution procedures that
exploit this in a variety of parallel computing environments.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

ADJERID, S., AND FLAHERTY, J. E. A moving finite element method with error estimation and
refinement for one-dimensional time dependent partial differential equations. SIAM J. Numer.
Anal. 23 (1986), 778-795.

. ADJERID, S., AND FLAHERTY, J. E. A moving mesh finite element method with local refinement

for parabolic partial differential equations. Comput. Methods Appl. Mech. Eng. 56 {1986), 3-26.

. ADJERID, S., AND FLAHERTY, J. E. A local refinement finite element method for two-dimensional

parabolic systems. Tech. Rep. 86-7, Dept. of Computer Science, Rensselaer Polytechnic Institute,
Troy, N.Y., 1986.

. ARNEY, D. C., Biswas, R., AND FLAHERTY, J. E. A posteriori error estimation of adaptive finite

difference schemes for hyperbolic systems. In Transactions of the Fifth Army Conference on
Applied Mathematics and Computing (West Point, N.Y., June 1987). U.S. Army Research Office,
Research Triangle Park, NC, 437-458.

. ARNEY, D. C., AND FLAHERTY, J. E. A two-dimensional mesh moving technique for time

dependent partial differential equations. J. Comput. Phys. 67 (1986), 124-144.

. ARNEY, D. C., AND FLAHERTY, J. E. An adaptive local mesh refinement method for time-

dependent partial differential equations. Tech. Rep. 86-10, Dept. of Computer Science, Rensselaer
Polytechnic Institute, Troy, N.Y., 1986.

. ARNEY, D. C.,, AND FLAHERTY, J. E. An adaptive method with mesh moving and local mesh

refinement for time-dependent partial differential equations. In Transactions of the Fourth Army
Conference on Applied Mathematics and Computing (Ithaca, N.Y., May 1986). U.S. Army Research
Office, Research Triangle Park, NC, 1115-1141.

. BABUSKA, 1., CHANDRA, J., AND FLAHERTY, J. E., EDs. Adaptive Computational Methods for

Partial Differential Equations. SIAM, Philadelphia, Pa., 1983.

. BaBuska, ., ZiIENKIEwWICZ, O. C., GAGO, J. R., AND DE A. OLIVERA, E. R, EpS. Accuracy

Estimates and Adaptive Refinements in Finite Element Computations. John Wiley, Chichester,
1986.

BEN-DOR, G., AND GLASS, . 1. Non-stationary oblique shock-wave reflections: Actual isopycnics
and numerical experiments. AIAA J. 16 (1978), 1146-1153.

BEN-DOR, G., AND GLASS, [. I. Domains and boundaries of non-stationary oblique shock-wave
reflections. 1. Diatomic gas. J. Fluid Mech. 92 (1979), 459-496.

BERGER, M. On conservation at grid interfaces. ICASE Rep. 84-43, ICASE, NASA Langley
Research Center, Hampton, 1984.

BERGER, M., AND COLLELA, P. Local adaptive mesh refinement for shock hydrodvnamics.
J. Comput. Phys. 82 (1989), 64-84.

BERGER, M., AND OLIGER, J. Adaptive mesh refinement for hyperbolic partial differential
equations. J. Comput. Phys. 53 (1984), 484-512.

BIETERMAN, M., FLAHERTY, J. E., AND MOORE, P. K. Adaptive refinement methods for non-
linear parabolic partial differential equations. In Accuracy Estimates and Adaptive Refinements
in Finite Element Computations, chap. 19, 1. Babuska, O. C. Zienkiewicz, J. R. Gago. and E. R.
de A. Olivera, Eds., John Wiley, Chichester, 1986.

BRACKBILL, J. U., AND SALTZMAN, J. S. Adartive zoning for singular problems in two dimen-
sions. J. Comput. Phys. 46 (1982), 342-368.

CHAKRAVARTHY, S. R., AND OsSHER, S. Computing with high-resolution upwind schemes for
hyperbolic equations. In Large-Scale Computations in Fluid Mechanics, Lectures in Applied

ACM Transactions on Mathematical Software, Vol. 16, No. I, March 1990,

S S e, O

B R

-, e~y

Al

—

An Adaptive Mesh-Moving and Local Refinement Method . 71

Mathematics, 22-1, B. E. Engquist, S. Osher, and R. C. J. Somerville, Eds., AMS, Providence,
R.IL., 1985, 57-86.

18. CoYLE, J. M., FLAHERTY, J. E., AND LubWIG, R. On the stability of mesh equidistribution
strategies for time-dependent partial differential equations. J. Comput. Phys. 62 (1986), 26-39.

19. Davis, S. F. TVD finite difference schemes and artificial viscosity. ICASE Rep. 84-20, NASA
CR 172373, ICASE, NASA Langley Research Center, Hampton, 1984.

20. Davis, S. F., AND FLAHERTY, J. E. An adaptive finite element method for initial-boundary
value problems for partial differential equations. SIAM J. Sci. Stat. Comput. 3 (1982), 6-27.

21. DORR, M. R. The approximation theory for the p-version of the finite element method, I. SIAM
J. Numer. Anal. 21 (1984), 1180-1207.

22. GROPP, W. D. Local uniform mesh refinement with moving grids. SIAM J. Sci. Stat. Comput.
8 (1987), 292-304.

23. HINDMAN, R. Generalized coordinate forms of governing fluid equations and associated geo-
metrically induced errors. AIAA J. 20 (1982), 1359-1367.

24. MACCORMACK, R. W. The effect of viscosity in hypervelocity impact cratering. AIAA Paper
69-354, 1969. .

25. MCRAE, G., GOODIN, W., AND SEINFELD, J. Numerical solution of the atmospheric diffusion
equation for chemically reacting flows. J. Comput. Phys. 45 (1982), 1-42.

26. ODEN, J. T., STROUBOULIS, T., AND DEVLOO, P. Adaptive finite element methods for the
analysis of inviscid compressible flow, I. Fast refinement/unrefinement and moving mesh methods
for Unstructured meshes. Comput. Methods Appl. Mech. Eng. 59 (1986), 327-362.

27. Ral, M. M. Patched-grid calculations with the Euler and Navier-Stokes equations. SIAM
National Meefing, Boston, Mass., July 1986.

28. Rai, M. M., AND ANDERSON, D. Grid evolution in time asymptotic problems. J. Comput. Phys.
43 (1981), 327-344.

29. THOMPSON, J. F. A survey of dynamically-adaptive grids in numerical solution of partial
differential equations. Appl. Numer. Math. 1 (1985), 3-27.

30. WOODWARD, P., AND COLLELA, P. The numerical simulation of two-dimensional fluid flow
with strong shocks. J. Comput. Phys. 54 (1984), 115-173.

Received December 1987; revised April 1989; accepted May 1989

new o e tomT AN A
F\.- 1 VRN Ve et

NOTICE L %3

This tsoi- - ' N

approve .. .
Distein. i -

Glovris [T

STINFO Proioom Hao_-.

Approvesd for - " 'sralense:

L DECTEE 2 T s
clig* ittt e

ACM Transactions on Mathematical Software, Vol. 16, No. 1, March 1990.

is

ot

' 4
and o - P o

(PR Ty

rotam

-

- g

