
LOAN DOCUMENT
I LO• Ioonu I m I I

00a- ______

too

DOCUMENT IDENTIFICATION

I '~cv C \ H
_----- A

DiawstDuom UuwwftdD

DISTRIBUTION STATEMENT L

"9 GRAa %NTIf' E
lTiC TIAC 0r-l

UNANNOUNCED 0 -]

JUSTIFICATION ELECTF

DATE ACCSSONED31D ISTRIBUTIONSTP

AVAILABIIT'Y ICOIDES

A
DISTRIBUTION STAMP

DIC QUALITY rNSPEC"D R
E

DATE REMNED

93-18101

DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC

OTIC ,t70A DOCUmENVT PROCESSING shmE I mu gm MW I

LOAN DOCUMENT

•\ / W\i I

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

The Fifth
Distributed Memory

Computing Conference
April 8-12, 1990 Charleston, South Carolina

Proceedings Volume I
Applications

Edited by:

David W. Walker
and

Host Institution:
The Ujiversliy pfSouii Laroiina

iLZ c C f,-- lpu o uC.,:-eQt y PiOess . i ,,s il 11tbulle U• 1nu l It . i , Igineers, Inc.

REPORT DOCUMENTAT!C>," ;'DAGE "1 No CJ.o0?

:WI-7-no S~ 7 -r .'1 T~ ? t'r ar '-- - zp r'e r ~ae ere cr t~ . ! nqr lstrl. I 01"s saacnrq e..iang caaa sour'-a
g~t ef-i-~aa j n m tjin,' -e~ zata neacm. a ro oeaimq ar~o e ~........... ormau~on itnvo tormient5s rvg~alrorq U'-s ou , Je estimate or -ani te' 3$Dec, S f
colleCIOlO Of ltor'lVatOr. rCictO'g suggestions tor reouclng airs ourcen *1 A s,.r''n -,eaouar.eri Ser*,ce. oDrectorate "c, -"rr-at-ca Ooe.,afons 4n , , '5 ,
oswi mqhwav.Suite 12C4 Arl.rigtorl , A 22202-4302 dlo toZ1 ~O'4,'a 11 '" aro 3uoqe! 0101,.Crri' Reducl. C- A' 1%,sr~) ~ - - .:.~~

1. AGENCY USE ONLY :-e.ave oianK) 2. REPORT 0A &T Vf 7ba T Y 0 ZATC -o VI4fl0 91

4. TITLE AND SUBTITLE I S. FUNDING NUMBERS

THE FIFTH DISTRIBUTED MEMORY COMPUTING CONFERENCE VOL I AFOSR-90-0212

6. AUTHOR(S)

DR. DAVID WALKER 61102F 2304/A3

7. PERFORMING ORGANIZATION NAME(S) AND ADDS53 '3. -"RFOCMING ORGANIZATiON
REPORT NUMBER

UNIVERSITY OF SOUTH CAROLINA
COLUMBIA, SC 29208

AF MR-~ (ýtj >
9. SPONSORING/;MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING

AGENCY REPORT NUMBER

AFOSR-90-0212
Bldg 410
BOllingU8 A 90332-640

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION IAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Appue4v tot Publie ralees*e;
d 41t,•, b tion unhiut•l t .4.

13. ABSTRACT (Mastmum 200 words)

Contrciling interplanetary spacecraft and planning their activities,
as currently practiced, requires massive amounts of computer time and
personnel. To improve this situation, it is desired to use advanced

1computing to speed up and automate the commanding process. Several
design and prototype efforts have been underway at JPL to understand
the appropriate roles for concurrent processors in future
interplanetary spacecraft operations. Here we report on an effort to
identify likely candidates for parallelism among existing software
systems that both generate commands to be sent to the spacecraft and
simulate what the spacecraft will do with these commands when it
receives them. We also describe promising results form effort to
create parallel prototype of representative portions of these systems
on the JPL/Caltech Mark III hypercube.

14. SUBJECT 7TRMS '.3. NUMBER OF PAGES

", ".RICE CODE

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICA ' SECURITY CLAS•iFiCATION 20. LIMITATION OF ABSTRAC7 I
OF REPORT OF THIS PAGE OF ABSTRACT

I 1ThA5_qT"TiF [UNCLASSIFIED UNCLASSIFIED SAR
" 15 /5j"1'0.6 '. S= '• •=a 298 R. "

• -" t•(•D, &% ,'= ":-A

AEO.TB. 93 0490

Proceedings of , .-

The Fifth
Distributed Memory

Computing Conference

Volume I
Applications

(i %,

" ;, I

.90 5 0 15 4

Proceedings of

The Fifth
Distributed Memory

Computing Conference
April 8-12, 1990 Charleston, South Carolina

Volume I
Applications

Edited by:
David W. Walker

University of South Carolina

and

Quentin F. Stout
University of Michigan

Host Institution:
The University of South Carolina

IEEE Computer Society Press
Los Alamitos, California

Washington * Brussels 0 Tokyo

The papers in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors' opinions and are published as presented
and without change, in the Interests of timely dissemination. Their Inclusion in this
publication does not necessarily constitute endorsement by the editors, the IEEE
Computer Society Press, or The Institute of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright 0 1990 by the Institute of Electrical and Electronics Engineers, Inc.

Cover by Wally Hutchins

Printed in United States of America

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
iUbraries are permitted to photocopy beyond the limits of U.S. copyright law for private
use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 29 Congress Street, Salem, MA 01970. Instructors are permitted to
photocopy Isolated articles for noncommercial classroom use without fee. For other
copying, reprint or republication permission, write to Director, Publishing Services, IEEE,
345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society Press Order Number 2113
Library of Congress Number 90-82988

ISBN 0-8186-2113-3 (paper)
ISBN 0-8186-6089-9 (microfiche)

SAN 264-620X

Additional copies can be ordered from:

IEEE Computer 8oolety Press IEEE Computer Society IEEE Computer Society IEEE Service Center
Customer Shriss Center 13, Avenue do IAquilon Ooshima Buildng 445 Hoes Lane

11062 Lo Vaqueros Cirele B-1200 Brussels 2-19-1 Minami-Aoyama, P.O. Box 1331
P.O. Bx 3014 BELGIUM Minato-Ku Piscataway, NJ 06855-1331

Los Alsmitos, CA M0720-1264 Tokyo 107, JAPAN

4 The Institute of Electrical and Electronics Engineers, Inc.
'21EW

iv

Preface

The Fifth Distributed Memory Computing Conference (DMCC5) was held April
8-12, 1990, at The Omni Hotel, Charleston, South Carolina, and was hosted by the
the University of South Carolina. Four invited talks and 99 contributed talks were
presented, with 12 more papers making up the two mini-symposia. In addition,
approximately 100 posters were presented. This two-volume set includes papers
from all four of these categories. Volume 1 covers applications, and Volume 2 deals
with all other areas, including hardware, software tools, performance, languages,
and so on.

DMCC5 continues the conference series, previously known as the "Hypercube"
or "HCCA" conference, that originated in 1985 at the Oak Ridge National Labo-
ratory (ORNL). The first two conferences were hosted by ORNL in Knoxville, TN,
and focused almost exclusively on the hypercube concurrent computer. The scope
of the third and fourth conferences, respectively hosted by Caltech's Jet Propul-
sion Laboratory, and Sandia National Laboratories, was broadened to include other
types of distributed memory computers. With DMCC5 this trend has continued,
and as the new name indicates, the conference series now embraces all aspects of
distributed memory computing.

The DMCC5 conference theme was "Education", which we believe is essential
in encouraging the effective use of distributed memory computers. This theme was
promoted by half-day tutorials, student conference awards, and a student paper
competition. A grant from the National Science Foundation provided funds for 26
student attendees, many of whom might otherwise have been unable to participate
in the conference. The Student Paper Competition (for papers authored solely by
students) generated several good entries. IBM Corporation generously sponsored
3 first prizes of $500 each. Three runner-up prizes were sponsored by the College
of Science and Mathematics of the University of South Carolina, and an additional
runner-up prize was donated by the Caltech Concurrent Computation Program.
Prize winners are listed on the following page. We are grateful to the NSF, and the
sponsors of the Student Paper Competition, for their support of student participa-
tion in DMCC5.

A large number of persons and organizations have contributed to the success of
DMCCS. We are particularly grateful to the conference sponsors:

Air Force Office of Scientific Research

Defense Advanced Research Projects Agency, ISTO
Joint Tactical Fusion Program Office

NASA Ames Research Laboratory

Sandia National Laboratories
Strategic Defense Initiative Organization/OIST

U.S. Air Force, Electronic Systems Division

We would also like to thank the members of the Organizing and Program Com-
mittees for ensuring the smooth running of the conference. Also essential to the
conference organization were those who gave their time and expertise to serve as
session chairs, and reviewers, and participants in the panel discussion. Finally, we
are grateful for the support of the DMCC5 host institution, the University of South
Carolina.

David W. Walker
Quentin F. Stout

V

Student Paper Competition Awards

First Prize (Hardware)
Philip R. Miller and Jelio T. Yantchev, Department of Electronics and Computer
Science, University of Southampton, UK, "Developing Powerful Co mimunication
Mechanisms for Distributed Memory Computers from Simple and Efficient Message
Routing."

First Prize (Algorithms and Applications)
Stefan Vandewalle, Department of Computer Science, Katholieke Universiteit Leu-
yen, Belgium, "Waveform Relaxation Methods for Solving Parabolic Partial Differ-
ential Equations."

First Prize (Operating Systems and Software)
Anthony Skjellum and Alvin P. Leung, Department of Chemical Engineering, Cal-
ifornia Institute of Technology, "Zipcode: A Portable Multicomputer Communica-
tion Library Atop the Reactive Kernel."

Runner-Up Prizes
Anne C. Elster, School of Electrical Engineering, Cornell University, "Basic Matrix
Subprograms for Distributed Memory Systems."
Arjun Khanna, Department of Electrical and Computer Engineering, University of
Texas at Austin, "On Managing Classes in a Distributed Object-Oriented Operating
System."
Silvia M. Muller, Department of Computer Science, University of Saarland, West
Germany, "A Method to Parallelize Tridiagonal Solvers."
Anthony Skjellum and Alvin P. Leung, Department of Chemical Engineering, Cali-
fornia Institute of Technology, "LU Factorization of Sparse, Unsymmetric Jacobian
Matrices on Multicomputers: Experience, Strategies, Performance."

vi

Organizing Committee

Paul G. Huray, General Chairman
University of South Carolina
Quentin F. Stout, Program Co-Chairman
University of Michigan

David W. Walker, Program Co-Chairman
University of South Carolina

Terrance L. Huntsberger, Vendor Exhibit Chairman
University of South Carolina

Jane W. Squires, Conference Administrator
University of South Carolina

Donald M. Austin
U. S. Department of Energy

F. Ron Bailey
NASA Ames Research Center

Robert E. Benner
Sandia National Laboratories

Sudhir Bhagwan
Oregon Advanced Computing Institute

Terry Cole
Jet Propulsion Laboratory

Geoffrey C. Fox
California Institute of Technology

Michael T. Heath
Oak Ridge National Laboratory

Anthony J. G. Hey
University of Southampton
S. Lennart Johnsson
Yale University

Paul Messina
California Institute of Technology

C. Edward Oliver
Oak Ridge National Laboratory

Horst D. Simon
NASA Ames Research Center
Stephen L. Squires
Defense Advanced Research Projects Agency, ISTO

Gilbert G. Weigand
Sandia National Laboratories
Pat Windham
U. S. Senate CST Committee

vii

Program Committee

Quentin F. Stout, Program Co-Chairman
University of Michigan

David W. Walker, Program Co-Chairman
University of South Carolina
William Athas
University of Texas at Austin

Robert E. Benner
Sandia National Laboratories

Geoffrey C. Fox
California Institute of Technology

Joydeep Ghosh
University of Texas at Austin
John L. Gustafson
Ames Laboratory - USDOE, Iowa State University
John P. Hayes
University of Michigan
Terrance L. Huntsberger
University of South Carolina

Ted Lewis
Oregon Advanced Computing Institute
Paul Messina
California Institute of Technology

Steve W. Otto
California Institute of Technology

Daniel A. Reed
University of Illinois
Paul Reynolds
University of Virginia
P. Sadayappan
The Ohio State University

Horst D. Simon
NASA Ames Research Center

Robert C. Ward
Oak Ridge National Laboratory

Patrick H. Worley
Oak Ridge National Laboratory

"viii

Steering Committee

Michael T. Heath, Chairman
Oak Ridge National Laboratory

Terry Cole
Jet Propulsion Laboratory

John L. Gustafson
Ames Laboratory - USDOE, Iowa State University

Paul Messina
California Institute of Technology

Gilbert G. Weigand
Sandia National Laboratories

Organizational Assistance

Leigh Hayes
University of South Carolina

Donna Reynolds
Palmetto Economic Development Corporation

Courtnay Squires
University of South Carolina

ix

Session Chairs

William Athas University of Texas at Austin

Michael Barton Intel Scientific Computers

Edward A. Carmona Air Force Weapons Laboratory

Alva L. Couch Tufts University

David Curkendall Jet Propulsion Laboratory

Robert D. Ferraro Jet Propulsion Laboratory

Paul Frederickson RIACS, NASA Ames Research Center

W. Kent Fuchs University of Illinois at Urbana-Champaign

Dirk Grunwald University of Colorado at Boulder

John L. Gustafson Ames Laboratory - USDOE, Iowa State University

Michael T. Heath Oak Ridge National Laboratory

Anthoeny. J. G. Hey University of Southampton

C•.ling-lien Ho IBM Almaden Research Center

Leer'lhrt M. Huisman IBM Thomas J. Watson Research Center

S. Lennart Johnsson Thinking Machines Corp. and Yale Univeruity

Judson P. Jones Oak Ridge National Laboratory

Ted Lewis Oregon Advanced Computing Institute

Manton M. Matthews University of South Carolina

Paul Messina California Institute of Technology

Russ Miller 5tate University of New York at Buffalo

Arthur A. Mirin Lawrence Livermore National Laboratory

C. Edward Oliver Oak Ridge National Laboratory

Steve W. Otto California Institute of Technology

Roy P. Pargas Clemson University

John L. Pfaltz University of Virginia

Walter Rudd Oregon State University

P. Sadayappan Ohio State University

Joel Salts ICASE, NASA Langley Research Center

Steven R. Seidel Michigan Technological University

Richard Sincovec RIACS, NASA Ames Research Center

Quentin F. Stout University of Michigan

Robert C. Ward Oak Ridge National Laboratory

Roy D. Williams California Institute of Technology

Mike Wolfe Oregon Graduate Institute

Patrick H. Worley Oak Ridge National Laboratory

x

Reviewers

In addition to those already listed as members of the Program Committee and
Session Chairs, the following people assisted in reviewing papers.

Marsha Berger New York University

Sungwoon Choi Oregon State University

Raymond Cline Sandia National Laboratories

William Dally Massachusetts Instutute of Technology

Wayne Davidson Cogent Research Inc.

Phil Dickens University of Virginia
Joan Francioni North Carolina Supercomputer Center

Richard Fujimoto Georgia Institute of Technology
Gary Garunke Sequent Computer Corp.

Andrew Grimshaw University of Virginia
Rajiv Gupta North American Philips Corporation

Susanne Hambrusch Purdue University
William Harrison University of Illinois at Urbana-Champaign

Ralph Johnson University of Illinois at Urbana-Champaign

Jeffrey N. Jortner Sandia National Laboratories
Ken Kennedy Rice University
Inkyu Kin Oregon State University

Ten-Hwang Lai Ohio State University

Larry Lesser Parasoft Corporation
Jim Li University of Illinois at Urbana-Champaign

Richard Ma Aerospace Corporation
Worthy Martin University of Virginia

Piyush Mehrota Purdue University
Trevor Mudge University of Michigan

Lionel Ni Michigan State University

David Nicol College of William and Mary

Kathleen Nichols Apple Computer Inc.
David Notkin University of Washington, Seattle

David Padua University of Illinois at Urbana-Champaign

Ben Peek Oregon Advanced Computing Institute

Mike Quinn Oregon State University

C. S. Raghavendra University of Southern California

U. Ramachandran Georgia Institute of Technology

xi

Bob Rau Hewlett-Packard Laboratories, Palo Alto

Tony Reeves Cornell University

Larry Snyder University of Washington, Seattle

David Socha University of Washington, Seattle

J. A. Stankovic University of Massachusetts at Amhurst

Binay Sugla AT&T Bell Laboratories

Ewan Tempero University of Washington, Seattle

Brian Totty University of Illinois at Urbana-Champaign

Martin Waugh Intel Scientific Computers

Craig Williams University of Virginia

Larry Wittie State University of New York at Stony Brook

Kun-Lung Wu University of Illinois at Urbana-Champaign

xii

Panel Discussion

We are grateful to the following people for participating in the panel discussion "Is Massive Paral-
lelism Ready for the Masses?", which was chaired and organized by Horst D. Simon.

Horst D. Simon NASA Ames Research Center

Greg Astfalk Convex Computer Corporation

Richard Clayton Thinking Machines Corporation

John L. Gustafson Ames Laboratory - USDOE, Iowa State University

George Michael Lawrence Livermore Nntional Laboratory

Hossur Srikantan Union Bank of Switzerland

Christopher G. Willard Dataquest

xiii

Table of Contents

Preface .. v
Student Awards .. Vi
Organizing Committees vii
Program Committee Viii
Steering Committee ix
Organizational Assistance ix
Session Chairs ... x
Reviewers .. xi
Panel Discussion .. xiii
Author Index .. xxvii

Volume I

Session 1: Expert Systems

Hypercubes for Critical Space Flight Command Operations 2
J.C. Horvath, T. Tang, L.P. Perry, R. C. Cole, D.B. Olster, and J.E. Zipse

A Massively Parallel Expert System Architecture for Chemical Structure Analysis 11
R.S. Sobczak and M.M. Matthews

Hypercube Expert System Shell Applying Production Parallelism 18
WA. Harding, GA. Sawyer, and G.B. Lamont

Session 2: Aitemate Applications

Parallel Distributed-Memory Implementation of the Corrective Switching Problem 30
J.-Y. Blanc, D. Tryatram, and J. WA. Ryckbosch

Fault Simulation on Message Passing Parallel Processors 33
L. Huieman, L Nair, and R. Daoud

Determination of Algorithm Parallelism in NP-Complete
Problems for Distributed Architectures 42

RA. Beard and G.B. Lamont
Concurrent Implementation of Munkres Algorithm 52

T.D. Gottschalk
Multi-Tiered Algorithms for 2-Dimensional Bin Packing 58

R. Fenrich, R. Miller, and Q.F. Stout
Efficient Serial and Parallel Subcube Recognition in Hypercubes 64

S. Al-Bassam, H. El-Rewini, B. Bose, and T. Lewis
Parallel Thinning on a Distributed Memory Machine 72

J.H. Baek and KA. Teague

Session 3: Mull-Target Tracking

A Nonconvex Cost Optimization Approach to Tracking Multiple Targets by a
Parallel Computation Network 78

K Rose, E. Gurewitz, and G.C. Fox
Concurrent Multi-Target Tracking 85

T.D. Gottschalk

xv

Seulon 4: Simulation of Systems and Discrete Events

Parallel Discrete Event Simulation Using Synchronized Event Schedulers 90
W.L. Bain

Air Traffic Simulation: An Object Oriented, Discrete Event Simulation on the
Intel iPSC/2 Parallel System 95

W.L. Bain
Application of Transputers to Aircraft Simulation and Control 101

D.J. Doorly and S. Peamajoglou
Simulation of an Urban Mobile Radio Channel on the Myrias SPS-2 107

M. Fattouche, L. Petherick, and A. Fapojuwo
Portable Asteroids on Hypercube or Transputers 111

A.W. Ho and G.C. Fox
A General Framework for Complex Time-Driven Simulations on Hypercubes 117

D.L. Meier, K.L. Cloud, J.C. Horvath,
L.D. Allan, W.H. Hammond, and HA. Maxfield

Session 5: Path Planning and Navigation

Path Planning on a Distributed Memory Computer 124
S. Miguet and Y. Robert

Learning to Plan Near-Optimal Collision-Free Paths 131
A. W. Ho and G.C. Fox

Parallel Algorithms for One- and Two-Vehicle Navigation 140
E. Gurewitz, G.C. Fox, and Y.-F. Wong

A Neural Network Approach to Multi-Vehicle Navigation 148
G.C. Fox, E. Gurewitz, and Y.-F. Wong

Session 6: Data and Image Processing

A Connectionist Technique for Data Smoothing 154
R. Daniel, Jr. and K. Teague

Component Labeling Algorithms on an Intel iPSC/2 Hypercube 159
B. Falsafi and R. Miller

Digital Halftoning by Parallel Simulation of Neural Networks 165
R.M. Geist, R.P. Pargas, and P.K. Khambekar

Hypercube Algorithms for Image Decomposition and Analysis in the
Wavelet Representation 171

T.L. Huntaberger and BA. Huntsberger
Parallel Processing Applied to 3D Coronary Arteriography 176

A. Sarwal, J. Ramanathan, D.L. Parker, and J. Wu

Session 7: Computer Vision

Surface Reconstruction and Discontinuity Detection: A Fast
Hierarchical Approach on a Two-Dimensional Mesh 184

R. Battiti
An Adaptive Multiscale Scheme for Real-Time Motion Field Estimation 194

R. Battiti

Session 8: Ray Tracing

Hypercube Algorithm for Radiosity in a Ray Tracing Environment 206
S.A. Hermitage, T.L. Huntsberger, and B.A. Huntaberger

xvi

The Hypercube Ray Tracer 212
M.B. Carter and K.A. Teague

Distributed Object Database Ray Tracing on the Intel iPSC/2 Hypercube 217
M.B. Carter and KA Teague

Session 9: Sorting

Parallel Sorting on Symult 2010 224
P.P. Li and Y.-W. Tung

Load Balanced Sort on Hypercube Multiprocessors 230
B. Abal4 F. Ozgainer, and A Bataineh

Parallel Sorting on the Hypercube Concurrent Processor 237
T. Tang

Session 10: Mathematical Methods

Parallel Methods for Solving Polynomial Problems on
Distributed Memory Multicomputers 242

X Zhang and H. Lu
Applications of Adaptive Data Distributions 249

E.F. Van de Velde and J. Lorenz
The Quadratic Sieve Factoring Algorithm on Distributed Memory Multiprocessors ... 254

M. Cosnard and J.-L. Philippe
Parallel Quasi-Newton Methods for Unconstrained Optimization 263

C.H. Still
Parallel Nonlinear Optimization 272

R. Daniel, Jr.
Parallelizing Multiple Linear Regression for Speed and
Redundancy: An Empirical Study 276

M. Xu, J.J. Miller, and E.J. Wegman

Session 11: Full and Banded Matrix Algorithms

Solving Very Large Dense Systems of Linear Equations on the iPSC/860 286
D.S. Scott, E. Castro-Leon, and E.J. Kushner

Parallel Solution Algorithms for the Triangular Sylvester Equation 291
A Gerasoulis and L Nelken

Reducing Inner Product Computation in the Parallel One-Sided Jacobi Algorithm 301
C. Romine and K Sigmon

Basic Matrix Subprograms for Distributed Memory Systems 311
A.C. Elster

Linear Algebra for Dense Matrices on a Hypercube 317
M.P. Sears

Session 12: Sparse Matrix Algorithms

Incremental Condition Estimator for Parallel Sparse Matrix Factorization 322
J.L. Barlow and U.B. Vemulapati

LU Factorization of Sparse, Unsymmetric Jacobian Matrices on Multicomputers:
Experience, Strategies, Performance 328

A. Skjellum and AP. Leung

xvii

Session 13: Tridlagonal Systems

A Method to Parallelize Tridiagonal Solvers 340
S.M. Miller

Solution of Periodic Tridiagonal Linear Systems on a Hypercube 346
T.R. Taha

The Error Analysis of a Tridiagonal Solver 351
H. Zhang

Sesslon 14: Basic Algorithms

An Efficient FFT Algorithm on Multiprocessors with Distributed Memory 358
J.P. Zhu

Distributed Evaluation of an Iterative Function for All
Object Pairs on an SIMD Hypercube 364

F. ErVal
The Complexity of Reshaping Arrays on Boolean Cubes 370

S.L. Johnsson and C.-T. Ho
Random Number Generation in the Parallel Environment 378

H.F. Sharp, III and C.H. Still

Session 15: Monte Carlo Physics

Cluster Algorithms for Spin Models on MIMD Parallel Computers 384
P.D. Coddington and C.F. Baillie

Quantum Spin Calculations on a Hypercube Parallel Supercomputer 389
H..Q. Ding and M.S. Makivic

Lattice QCD: Commercial vs. Home-Grown Parallel Computers 397
C.F. Baillie

Session 16: Electromagnetic Scattering Problems

The Finite Element Solution of Two-Dimensional Transverse
Magnetic Scattering Problems on the Connection Machine 408

S. Hutchinson, S. Castillo, E. Hensel, and K. Dalton
Parallel Finite Elements Applied to the Electromagnetic Scattering Problem 417

R.D. Ferraro, T. Cwik, N. Jacobi, P.C. Liewer,
T.G. Lockhart, G.A. Lyzenga, J. Parker, and J.E. Patterson

An Examination of Finite Element Formulations and Parameters for
Accurate Parallel Solution of Electromagnetic Scattering Problems 421

J. W. Parker, R.D. Ferraro, and P.C. Liewer

Session 17: Plasma Physics Applications

Massively Parallel Fokker-Planck Calculations 426
AA Mirin

Implementing Particle-in-Cell Plasma Simulation Code on the BBN TC2000 433
J.E. Sturtevant and AB. Maccabe

A 2D Electrostatic PIC Code for the Mark III Hypercube 440
R.D. Ferraro, P.C. Liewer, and VK Decyk

Xviii

Session IS: Computational Fluid Dynamics

Massively Parallel Computation of the Euler Equations 446
C.E. Grosch, M. Ohose, S.V. Gupta, T.L. Jackson, and M. Zubair

Concurrent Implementation of a Fast Vortex Method 453
F. Pipin and A. Leonard

Parallel Computation of the Compressible Navier-Stokes Equations with a
Pressure-Correction Algorithm 463

M.E. Braaten

Session 19: Other Scientific Applications

Hypercube Simulation of Electric Fish Potentials470
R. Williams, B. Rasnow, and C. Assad

Molecular Dynamics Simulations of Short-Range Force Systems on
1024-Node Hypercubes478

S.J. Plimpton
Transputer Modelling of Be Star Circumstellar Discs 484

M.J. Gorrod, M.J. Coe, and J. Kastner
A Hypercube Application in Large Scale Composite Materials Modeling 490

C.H. Baldwin, S.D. Durham, J.D. Lynch, and W.J. Padgett
Electron-Molecule Collisions on the Mark IIIfp Hypercube 498

P. Hipes, C. Winstead, M. Lima, and V. McKoy
Modeling High-Temperature Superconductors and
Metallic Alloys on the Intel iPSC/860 504

GA Geist, B.W. Peyton, WA Shelton, and G.M. Stocks
Parallel Solutions to the Phase Problem in X-Ray Crystallography 513

N. Bashir, M. Crovella, G. DeTitta, F. Han, H. Hauptman, J. Horvath,
H. King, D. Langs, R. Miller, T. Sabin, P. Thuman, and D. Velmurugan

An Automata Model of Granular Materials 522
G.M. Gutt and PK. Haff

Seismic Modeling and Inversion on the NCUBE 530
J. Sochacki, P. O'Leary, C. Bennett, R.E. Ewing, and R.C. Sharpley

Session 20: Structural Analysis

Implementation of JAC3D on the NCUBE/ten 538
C.T. Vaughan

Porting the ABAQUS Structural Analysis Code to Run on the iPSC/2 545
M.L. Barton and E.J. Kushner

Session 21: PDE Methods

Conjugate Gradient Methods for Spline Collocation Equations 550
C.C. Christara

Multigrid on Massively Parallel Computers 559
D.E. Womble and B.C. Young

A Parallel Algorithm for Solving Higher KdV Equations on a Hypercube 564
T.R. Taha

The Triangle Method for Saving Startup Time in Parallel Computers 568
H. Eissfeller and S.M. Maller

xix

Session 22: Mini-Symposium on Concurrent Simulation Paradigms

Waveform Relaxation Methods for Solving Parabolic Partial Differential Equations... 575
S. Vandewalle

A Parallel Implementation of ESACAP
S. Skelboe

Concurent DASSL Applied to Dynamic Distillation Column Simulation 595
A Skjelium and M. Morari

Convergence and Circuit Partitioning Aspects for Waveform Relaxation 605
U. Miekkala, 0. Nevanlinna, and A Ruehli

Partitioning Tradeoffs for Waveform Relaxation in Transient
Analysis Circuit Simulation 612

L. Peterson and S. Mattisson
Distributed Model Evaluation for the Waveform Relaxation Method 622

L. Olseon, L. Peterson, and S. Mattisson

xx

Volume II

Session 23: Overviews
Concurrent Supercomputing in Europe 630

A.J.G. Hey
Touchstone Program Overview 647

S.L. Lillevik

Session 24: Dual Ported Memory Computers
Communication on H16: A Study of Methods and Performance in a
Hypercubic Network Based on Dual Port RAM 660

O.J. Aske and 0. Torbjornsen
Evaluation of Dual Ported Memories from the Task Level 670

R.F.H. Hofman

Session 25: Shared Memory

Design and Implementation of a Multi-Cache System on a
Loosely Coupled Multiprocessor 676

B. Rochat
Hot-Spot Performance of Single-Stage and Multistage Interconnection Networks 682

K.G. Gunter and E.F. Gehringer
Programming the PLUS Distributed-Memory System 690

R. Bisiani and M. Ravishankar
Parallel Processor Memory Reference Analysis and its Application to
Interconnect Architecture 697

T.M. Pinkston and M.J. Flynn

Session 26: Other Hardware and Architectures

A Heterogeneous Hypercube Based on Strengthened Nodes for a Fast
Processing of SAR Raw-Data 704

G. Aloisio, M. Bochicchio, and C. Marzocca
An SIMD Multiprocessor Using DSP Microprocessors 713

S. Canesan and P.V. R. Raja
A Reconfigurable Reduced-Bus Multiprocessor Interconnection Network 719

T. Ramesh and S. Ganesan
An Orthogonal Multiprocessor with Snooping Caches 725

P. Vi?. Raja and S. Ganesan

Session 27: Distributed Computing

DAWGS: A Distributed Compute Server Utilizing Idle Workstations 732
H. Clark and B. McMillin

HIGHLAND: A Graph-Based Parallel Processing Environment for
Heterogeneous Local Area Networks 742

D.E. Meyer and R.W. Wilkerson

Session 28: Communication Systems
A Deadlock-Free Communicating Kernel for Binary N-Cube Architectures 750

P. Pramanik, P.K. Das, and AK. Bandyopadhyay

xxi

Mapping and Compiled Communication on the Connection Machine System 756
E.D. Dahl

Zipcode: A Portable Multicomputer Communication Library Atop the
Reactive Kernel .. 767

A. Skellum and A.P. Leung
Desynchronized Communication Schemes on Distributed-Memory Architectures 777

J.-Y. Blanc, D. Trystram, and G. Villard
MMPS: Portable Message Passing Support for Parallel Computing 784

A. Grimshaw, D.A. Mack, and W.T. Strayer
The Performance/Functionality Dilemma of Multicomputer Message Passing 790

GD. Burns and RB. Daoud
Extension of the iPSC/2 Message Passing System with the
Select-by-Sender Functionality 794

L. Bomans, H. Embrechts, D. Roose, and R. Hempel

Session 29: Routing
Optimal Self-Routing of Linear-Complement Permutations in Hypercubes 800

R. Boppana and C.S. Raghavendra
Developing Powerful Communication Mechanisms for Distributed
Memory Computers from Simple and Efficient Message Routing 809

P.R. Miller and J.T. Yantchev
Routing Frequently Used Bijections on Hypercube 824

K Zemoudeh and A. Sengupta

Session 30: Fault Tolerance

Distributed Fault-Tolerant Embeddings of Rings in Hypercubes 834
M.Y. Chan and S.-J. Lee

Shortest Path Routing in a Failsoft Hypercube Database Machine 839
0. Torbjornsen

An Approach to Reconfigure a Fault-Tolerant Loop System 845
C.T. Liang, S-. Chen, and W.T. Taai

Fault Tolerant Computing: An Improved Recursive Algorithm 851
W. Zhou

Session 31: Matrix Decomposition and Allocation

An Efficient Method for Distributing Data in Hypercube Computers 858
D.-L. Lee and M. Aboelaze

An Algorithm Producing Balanced Partitionings of Data Arrays 867
L. Snyder and D.. Socha

An Input/Output Algorithm for M-Dimensional Rectangular Domain
Decompositions on N-Dimensional Hypercube Multicomputers 876

H. Embrechts and J.P. Jones

Session 32: Data Allocation and Mapping

Mapping Data to Processors in Distributed Memory Computations 884
M. Rosing and R.P. Weaver

Resource Allocation in Hypercube Systems 894
G.-M. Chiu and C.S. Raghavendra

"A Class of Mapping Algorithms for Hypercube Computers 903
Y. Moon and J. Slanaky

"A Task Mapping Method for a Hypercube by Combining Subcubes 909
S. Horiike

xxii

An Empirical Study of Data Partitioning and Replication in Parallel Simulation 915
F. Wieland, L. Hawley, and L. Blume

On Distributing Linked Lists 922
D.A. Sykes

Session 33: Dynamic Load Balancing for Spatial Domains

Recursive Partitions on Multicomputers 930
K.P. Belkhale and P. Banerjee

Dynamic Load Balancing in a Concurrent Plasma PIC Code on the
JPLdCaltech Mark III Hypercube 939

P.C. Liewer, E.W. Leaver, V.K Decyk, and J.M. Dawson
Hierarchical Domain Decomposition with Unitary Load Balancing for
Electromagnetic Particle-in-Cell Codes 943

P.M. Campbell, EA. Carmona, and D.W. Walker
A Run-Time Load Balancing Strategy for Highly Parallel Systems 951

D.Y. Hinz
Hypercube Dynamic Load Balancing 962

D. King and E.J. Wegman

Session 34: Load Distribution
Experimental Comparison of Bidding and Drafting Load Sharing Protocols 968

A. Ross and B. McMillin
Scheduling Real-Time Computations on Hypercubes with Load Balancing 975

K-J. Lin, J.-Y. Chung, and J.W.-S. Liu
Empirical Comparison of Heuristic Load Distribution in
Point-to-Point Multicomputer Networks 984

D.C. Grunwald, B.A.A Nazief, and DA. Reed
A Distributed and Adaptive Dynamic Load Balancing Scheme for
Parallel Processing of Medium-Grain Tasks 994

V.A. Saletore
A Hierarchical Approach to Load Balancing in Distributed Systems 1000

R. Gupta and P. Gopinath

Session 35: Data Parallel Programming
Scalable Abstractions for Parallel Programming 1008

W.G. Griswold, G.A. Harrison, D. Notkin, and L. Snyder
An Approach to Compiling Single-Point Iterative Programs for
Distributed Memory Computers 1017

D.G. Socha
A Scheme for Supporting Automatic Data Migration on Multicomputers 1028

S. Mirchandaney, J. Saltz, P. Mehrotra, and H. Berryman

Session 36: Object Oriented Programming
Experience with Concurrent Aggregates (CA): Implementation and Programming... 1040

A.A. Chien and W.J. Dally
Aggregate Distributed Objects for Distributed Memory Parallel Systems 1050

W.L. Bain
On Managing Classes in a Distributed Object-Oriented Operating System 1056

A. Khanna

xxiii

The Mentat Run-Time System: Support for
Medium Grain Parallel Computation 1064

A. Grimshaw
A Concurrent Object-Oriented Programming Language and
Its Distributed Implementation 1074

C. Neusius

Session 37: Automatic Exploitation of Parallelism
Architectural Support for Efficient Execution of
Reusable Software Components 1082

L.R. Welch and B.W. Weide
Nested Loop Tiling for Distributed Memory Machines 1088

J. Ramanguam and P. Sadayappan
Parallel Loops on Distributed Machines.. 1097

C. Koelbel, P. Mehrotra, J. Saltz, and H. Berryman
An Automatic and Symbolic Parallelization System for Distributed
Memory Parallel Computers 1105

K Ikudome, G.C. Fox, A Kolawa, and J. W. Flower
Data Distribution in Pandore 1115

F. Andre, J.-L. Pazat, and H. Thomas

Session 38: Parallel Languages
APL on the DATIS-P Parallel Machine 1122

J. Sauermann
A Systolic Array Programming Language 1125

P.S. Tseng
A Distributed Memory Implementation of SISAL 1131

D.H. Grit
Experiences with Bilingual Parallel Programming 1137

I. Foster and R. Overbeek
BT-Server FP Interpreter 1147

E.T. Ong, K.M. George, and KA. Teague

Session 39: Software Development Tools

Parallel Programs as X-Window Clients: An Implementation 1154
L. . Angus

An Interactive Environment for Data Partitioning and Distribution 1160
V. Balasundaram, G. Fox, K Kennedy, and U. Kremer

Task Grapher: A Tool for Scheduling Parallel Program Tasks 1171
T.G. Lewis, H. EI-Rewini, J. Chu, P. Fortner, and W. Su

Session 40: Performance Monitoring and Profiling

Instrumentation and Performance Monitoring of Distributed Systems 1180
R.D. McLaren and WA. Rogers

Monitoring Parallel Executions in Real Time 1187
AL. Couch and D. W. Krumme

Design of a Communication Modeling Tool for Debugging Parallel Programs 1197
J.M. Francioni and M. Gach

Visualizing the Performance of Parallel Matrix Algorithms 1207
R.F. Paul and D.A. Poplawaki

Visual Animation of Paralel Algorithms for Matrix Computations 1213
M.T. Heath

Xxiv

Visualization: An Aid to Design and Understand Neural Networks in a
Parallel Environment 1223

S.N. Gupta, M. Zubair, and C.E. Grosch
Pictures of Performance: Highlighting Program Activity in Time and Space 1228

D.T. Rover and C.T. Wright

Session 41: Performance Evaluation and Analysis

Performance Results on the Intel Touchstone Gamma Prototype 1236
D.H. Bailey, E. Barszcz, RA. Fatoohi, H.D. Simon, and S. Weeratunga

Numerical Simulations of Dynamically Traingulated Random Surfaces on
Parallel Computers with 100l Speedup 1246

C.F. Baillie and R.D. Williams
Fixed Time, Tiered Memory, and Superlinear Speedup 1255

J.L. Gustafson
An Empirical Analysis of Parallelization Decisions Affecting
Parallel Simulation Performance 1261

M.L. Huson and T.C. Hartrum
Emulation Through Time Dilation 1271

J.K. Antonishek and R.D. Snelich
Performance Characterization of ES-Kit Distrib:uted Environments 1276

R. Shah, S. Lamb, and R.J. Smith, II
Distributed Algorithms for Multi-Channel Broadcast Networks 1285

X. Guan and M.A. Langston
The Impact of Sparsity and Mapping on a Concurrent Finite Element Code 1289

M. O'Sullivan and J. Rodriguez
The 600 Megaflops Performance of the QCD Code on the Mark IIIfp Hypercube.....1295

H.-Q. Ding
Synchronized Blocking in a Distributed Memory System 1302

C.G. Rommel
Performance of Mutual Exclusion Algorithms on Hypercubes 1307

J. Westall, D. Stevenson, and R. Toppur

Session 42: Communication Performance

Performance Evaluation of Multicomputer Networks for Real-Time Computing 1314
J.T. McHenry, S.F. Midkiff, and N.J. Davis, IV

Complexity of the Symmetric Matrix-Vector Product on a Ring of Processors 1324
K. Grigg, S. Miguet, and Y. Robert

Refining the Communication Model for the Intel iPSC/2 1334
S.R. Seidel and T.E. Schmiermund

Complexity of Scattering on a Ring of Processors 1343
P. Fraigniaud, S. Miguet, and Y. Robert

Parallel Implementation of Triangular Computation Graphs on the
iPSC/2 ad the iPSC/860 1348

J.E. Brandenburg and D.S. Scott
Communication Parameter Tests and Parallel Back Propogation
Algorithms on the iPSC/2 Hypercube Multiprocessor 1353

BK. Mak and 6. Egecioglu

Session 43: Embeddlngs
Embedding Meshes into Small Boolean Cubes 1366

C.'-T. Ho and S.L. Johnsson

xxv

Local Search Variants for Hypercube Embedding 1375
W.-K. Chen and M.F.M. Stallmann

Multiple Network Embeddings into Hypercubes 1384
AK. Gupta and S.E. Hambrusch

Embedding a Pyramid on the Hypercube with Minimal Routing Load 1393
R./ Sen

Session 44: Database and File Systems

A Large Scale File Processing Application on a Hypercube 1400
C.H. Baldwin and W.C. Nestlerode

The Design and Analysis of a Tightly Coupled Hypercube File System 1405
H. Hadimioglu and R.J. Flynn

Analysis of Distributed Join Algorithms 1411
J. Peck, S. Dharmaraj, and R. Pargas

Session 45: Education

Tranferring Parallel Processing Technology to Undergraduate
Computer Science Students 1422

W.L Thacker and O.E. Katter, Jr.

Session 46: Mlnisymposlum on Fault Tolerance In
Real-Tlime Distributed Memory Computing

Quick Recovery of Embedded Structures in Hypercube Computers 1426
T.C. Lee

A Method for Evaluating Message Communication in Faulty Hypercubes 1436
M. Peercy and P. Banerjee

Graceful Degradation on Hypercube Multiprocessors
Using Data Redistribution 1446

C. -C.J. Li and W.IK Fuchs
Embeddings, Communication and Performance of
Algorithms in Faulty Hypercubes 1455

J. Wang and F. Ozginer
Load Sharing in Hypercube Multicomputers in the Presence of Node Failures 1465

Y..C. Chang and K.G. Shin

xxvi

Author Index

Abali, B 230 Chiu, G.-M 894
Aboelaze, M 858 Christara, C.C 550
AI-Bassam, S 64 Chu, J 1171
Allan, L.D 117 Chung, J.-Y 975
Aloisio, G. 704 Clark, H 732
Andrd, F. 1115 Cloud, K.L. 117
Angus, I.G 1154 Coddington, P.D 384
Antonishek, J.K. 1271 Coe, M.J 484
Aske, O.J 660 Cole, R.C 2
Assad, C 470 Cosnard, M 254
Baek, J.H 72 Couch, A.L 1187
Bailey, D.H 1236 Crovella, M 513
Baillie, C.F 384, 397, 1246 Cwik, T. 41A7
Bain, W.L 90, 95, 1050 Dahl, E.D 756
Balasundaram, V 1160 Dally, W.J 1040
Baldwin, C.H A90, 1400 Dalton, K. 408
Bandyopadhyay, A.K.............7 50 Daniel, Jr., R 154,272
Banerjee, P 930, 1436 Daoud, R.B 33, 790
Barlow, J.L. 322 Das, P.K. 750
Barszcz, E 1236 Davis, IV, N.J 1314
Barton, M.L. 545 Dawson, J.M 939
Bashir, N 513 Decyk, V.K. 440,939
Bataineh, A................... 230 DeTitta, G 513
Battiti, R. 184, 194 Dharmaraj, S 1411
Beard, R.A.................... 42 Ding, H.-Q 389, 1295
Belkhale, KP. 930 Doorly, D.J 101
Bennett, C 530 Durham, S.D 490
Berryman, H 1028, 1097 Egecioglu, (5.................. 1353
Bisiani, P. 690 Eissfeller, H 568
Blanc, J.-Y. 30, 777 EI-Rewini, H 64, 1171
Blume, L. 915 Elster, A.C 311
Bochicchio, M 704 Embrechts, H 794,876
Bomans, L 794 Eral, F 364
Boppana, B.................. 800 Ewing, RE 530
Bose, B 64 Falsafi, B 159
Braaten, M.E 463 Fapojuwo, A. 107
Brandenburg, J.E 1348 Fatoohi, &A. 1236
Burns, G.D 790 Fattouche, M 107
Campbell, P.M 943 Fenrich, R 58
Carmona, E.A 943 Ferraro, R.D 417,421,440
Carter, M.B 212,217 Flower, J.W 1105
Castillo, S 408 Flynn, M.J 697
Castro-Leon, E 286 Flynn, RJ 1405
Chan, M.Y 834 Fortner, P 1171
Chang, Y.-C 1465 Foster, I 1137
Chen, S.K. 845 Fox, G.C 78, 111, 131, 140,
Chen, W.-K. 1375 148, 1105, 1160
Chien, A.A. 1040 Fraigniaud, P 1343

xxvii

Francioni, J.M 1197 Huson, M.L 1261
Fuchs, W.K. 1446 Hutchinson, S 408
Gach, M 1197 Ikudome, K. 1105
Ganesan, S 713,719,725 Jackson, T.L 446
Gehringer, E.. 682 Jacobi, N 417
Geist, G-.. 504 Johnsson, S.L 370,1366
Geist, R.M 165 Jones, J.P 876
George, KM 1147 Kastner, J... 484
Gerasoulis, A. 291 Katter, Jr., O.E.. 1422
Ghose, M 446 Kennedy, K. 1160
Gopinath, P 1000 Khambekar, P.I. 165
Gorrod, M.J 484 Khanna, A. 1056
Gottschalk, T.D 52,85 King, D 962
Grigg, K 1324 King, H 513
Grimshaw, A. 784, 1064 Koelbel, C 1097
Griswold, W.G 1008 Kolawa, A 1105
Grit, D.H 1131 Kremer, U 1160
Grosch, C.E 446,'1223 Krumme, D.W. 1187
Grunwald, D.C 984 Kushner, E.J 86,545
Guan, X. 1285 Lamb, S 1276
Gunter, KG...................682 Lamont, G.B 18, 42
Gupta, A.K. 1384 Langs, D 513
Gupta, R 1000 Langston, M.A................. 1285
Gupta, S.N 446, 1223 Leaver, E.W.................. 939
Gurewitz, E 78, 140,148 Lee, D.-L 58
Gustafson, J.L 1255 Lee, S.-J834
Gutt, G.M 522 Lee, T.C 1426
Hadimioglu, H 1405 Leonard, A. 453
Haff, P.K. 522 Leung, A.P 328,767
Hambrusch, S.E................ 1384 Lewis, T.G 64. 1171
Hammond, W.H 117 Li, C.-C.J 1446
Han, F 513 Li, P.P 224
Harding, W.A. 18 Liang, C.T 845
Harrison, G.A. 1008 Liewer, P.C 417,421,440, 939
Hartrum, T.C 1261 Lillevik, S.L 647
Hauptman, H 513 Lima, M 498
Hawley, L 915 Lin, K.-J 975
Heath, M.T 1213 Liu, J.W.-S 975
Hempel, R 794 Lockhart, T.G 417
Hensel, E 408 Lorenz,.J 249
Hermitage, S.A. 206 Lu, H 242
Hey, A.J.G....................630 Lynch, J.D 490
Hinz, D.Y 951 Lyzenga, GA. 417
Hipes, P 498 Maccabe, A.B 433
Ho, A.W 111, 131 Mack, D.A. 784
Ho, C.-T 370, 1366 Mak, BK.................... 1353
Hofman, R.F.H 670 Makivic, M.S 389
Horiike, S 909 Marzocca, C 704
Horvath, J.C 2,117,513 Matthews, M.M 11
Huisman, L 33 Mattisson, S 612,622
Huntsberger, B.A. 171,206 Maxfield, H.A 117
Huntsberger, T.L 171, 206 McHenry, J.T 1314

Xxviii

McKoy, V. 498 Raja, P.V.R. 713,725
McLaren, R.D 1180 Ramanathan, J. 176
McMillin, B 732,968 Ramanujam, J................. 1088
Mehrotra, P............... 1028, 1097 Ramesh, T.................... 719
Meier, D.L. 117 Rasnow, B 470
Meyer, D.E. 742 Ravishankar, M.................690
Midkiff, S.F. 1314 Reed, DA.................... 984
Miekkala, U 605 Robert, Y............. 124,1324,1343
Miguet, S 124, 1324, 1343 Rochat, B 676
Miller, J.J. 276 Rodriguez, J 1289
Miller, P.R. 809 Rogers, W.A•................. 1180
Miller, 58, 159,513 Romine, C 301
Mirchandaney, S 1028 Rommel, C.G. 1302
Mirin, A.A. 426 Roose, D 794
Moon, Y. 903 Rose, K...................... 78
Morari, M 595 Rosing, M. 884
Mfiller, S.M 340,568 Ross, A. 968
Nair, I 33 Rover, D.T................... 1228
Nazief, B.A.A. 984 Ruehli, A. 605
Nelken, I 291 Ryckbosch, J.WA 30
Nestlerode, W.C 1400 Sabin, T..................... 513
Neusius, C 1074 Sadayappan, P.................1088
Nevanlinna, 0 605 Saletore, V.A. 994
Notkin, D 1008 Saltz, J. 1028,1097
O'Leary, P. 530 Sarwal, A. 176
O'Sullivan, M 1289 Sauermann, J. 1122
Olsson, L.....................622 Sawyer, G.A. 18
Olster, D.B 2 Schmiermund, T.E 1334
Ong, E.T. 1147 Scott, D.S 286, 1348
Overbeek, R. 1137 Sears, M.PY.................... 317
Ozgdner, F................ 230, 1455 Seidel, S.R. 1334
Padgett, W.J................... 490 Sen, R.K.................... 1393
Pargas, R.P................ 165, 1411 Sengupta, A. 824
Parker, D.L. 176 Shah, R. 1276
Parker, J.W. 417, 421 Sharp, III, H.F. 378
Patterson, J.E 417 Sharpley, R.C. 530
Paul, R.F. 1207 Shelton, WA................... 504
Pazat, J.-L. 1115 Shin, KG. 1465
Peck, J. 1411 Sigmon, K. 301
Peercy, M....................1436 Simon, H.D...................1236
Pdpin, F. 453 Skelboe, S 585
Perry, L.P. 2 Skjellum, A............. 328,595,767
Pesmajoglou, S 101 Sklansky, J. 903
Peterson, L................. 612, 622 Smith, II, R.J. 1276
Petherick, L. 107 Snelick, R.D 1271
Peyton, B.W 504 Snyder, L. 867,1008
Philippe, J.AL. 254 Sobczak, KS. 11
Pinkston, T.M 697 Socha, D.G................ 867, 1017
Plimpton, S.J 478 Sochacki, J 530
Poplawski, D.A. 1207 Stallmann, M.F.M 1375
Pramanik, P................. ,750 Stevenson, D.................. 1307
Raghavendra, C.S 800, 894 Still, C.H 263, 378

xxix

Stocks, G.M 504 Wang, J 1455
Stout, QF 58 Weaver, R.P 884
Strayer, W.T 784 Weeratunga, S 1236
Sturtevant, J.E 433 Wegman, E.J 276,962
Su, W. 1171 Weide, B.W 1082
Sykes, D.A 922 Welch, L.R. 1082
Taha, T.R 346,564 Westall, J 1307
Tang, T 2,237 Wieland, F 915
Teague, KA....... 72, 154, 212, 217, 1147 Wilkerson, R.W 742
Thacker, W.I 1422 Williams, R.D 470, 1246
Thomas, H 1115 Winstead, C 498
Thuman, P 513 Womble, D.E 659
Toppur, K................... 1307 Wong, Y.-F. 140,148
Torbjornsen, 0 660, 839 Wright, C.T 1228
Trystram, D 30 Wu, J 176
Trystram, D 777 Xu, M 276
Tsai, W.T 845 Yantchev, J.T 809
Tseng, P.S 1125 Young, B.C 559
Tung, Y.-W 224 Zemoudeh, K. 824
Van de Velde, E.F 249 Zhang, H 351
Vandewalle, S 575 Zhang, X. 242
Vaughan, C.T 538 Zhou, W 851
Velmurugan, D 513 Zhu, J.P 358
Vemulapati, U.B 322 Zipse, J.E 2
Villard, G 777 Zubair, M 446, 1223
Walker, D.W 943

xxx

The Fifth Distributed Memory

Computing Conference

1: Expert Syste

Hypercubes for Critical Space Flight Command Operations

J. C. Horvath, T. Tang, L. P. Perry, R. C. Cole

Mission Profile and Sequencing Section

D. B. Olster and J. E. Zipse

Flight Command and Data Management Systems Section
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109

Abstract built on the JPLUCaltech Mark III hypercube[3], which is
Controlling interplanetary spacecraft and planning their a 68020-based hypercube topology distributed memory
activities, as currently practiced, requires massive parallel processor. The Mark I1I we have been using has 4
amounts of computer time and personnel. To improve this Mb per node, with no shared memory. Two 68020s are
situation, it is desired to use advanced computing to speed used on each node, one of which is dedicated to message
up and automate the commanding process. Several design routing, the other of which is used for data processing.
and prototype efforts have been underway at JPL to Distributed-memory machines of topologies other than
understand the appropriate roles for concurrent processors hypercubes have not been examined for this application at
in future interplanetary spacecraft operations. Here we this time, and will not be discussed further in this paper.
report on an effort to identify likely candidates for Other architectures are, however, being considered as well
parallelism among existing software systems that both for flight versions.
generate commands to be sent to the spacecraft and
simulate what the spacecraft will do with these commands Software systems have been built to support planetary
when it receives them. We also describe promising missions over the years that both generate commands to
results from efforts to create parallel prototypes of be sent to deep-space spacecraft (e.g., the "SEQGEN"
representative portions of these software systems on the program) and simulate what the spacecraft will do with
JPICaltech Mark III hypercube. these commands when it receives them. These software

systems have grown up around the architecture of a
I. Background Unisys 1100 mainframe (including substantial

implementation in assembly), and hence it will require
Controlling interplanetary spacecraft and planning their some thought and planning to accurately port this system
activities, as currently practiced, requires massive to distributed-memory parallel processors in a way that
amounts of computer time and personnel [1,2]. As successfully exploits this architecture. Along with porting
missions become longer and more ambitious, and as the software to a parallel machine, studies are being done
budgets become tighter, it is desirable to have more to understand what new capabilities and system
autonomous spacecraft, or, at least, more automated ways architectures are enabled by using a ,'iore capable machine,
of controlling spacecraft from the ground. As spacecraft particularly a parallel one. The current mainframe
become more autonomous their onboard computers sequencing environment is a heavily batch-oriented one,
become correspondingly more complex, and simulating and a culture of spacecraft command review has grown up
them on the ground to predict and plan their actions around the files that go into these existing programs.
becomes more difficult. It is further desired that these new Hence moving to a parallel machine and building more
software systems be "multi-mission" and able to support powerful software may enable some cultural changes (and
more than one complex spacecraft. Hence, larger ground manpower savings) in the way command loads are built
computers and more sophisticated ground software are for spacecraft. More powerful software might also be
required to support these more advanced spacecraft. more general and more able to be used for multiple
Several design and prototype efforts have been underway at missions, instead of largely rebuilt for each new mission.
JPL to understand the appropriate roles for concurrent
processors in future interplanetary spacecraft operations. Figure IA shows the generic process of commanding

planetary spacecraft, commonly referred to as the "uplink"
The prototypes that will be described in this paper were process. Figure IB shows the current top-level design of

2
0-8186-2113-3/90/000010002$01.00 0 1990 IEEE

our sequencing and simulation system, which is prototyping some of the characteristic functions of these
implemented as subcubes of a Mark III hypercube. A user codes in parallel to see which portions benefit the most,
employs an editor of some sophistication and consults and which would perhaps be adequate in sequential mode.
with experts on the various spacecraft subsystems to
determine a plausible set of commands. A time-ordered
file is created with these commands in it. These II. Parallel Command Generation
commands are fed to the expander program. When the
expander program gets the file, it expands the first SEQGEN has several main parts. The core routines
time-slice of the file, and then sends the expanded output alluded to above are known as "expander" and "checker."
to the checker program and the simulator program. The Expander takes in high-level spacecraft "profile activities"
checker program checks the output against high-level (PAs) and outputs a time-sorted list of lower-level
constraints ("Don't turn the star scanner within ten degrees commands that have been "expanded" from the input
of the sun.") The simulator program predicts what the PAs. A typical PA might be "take a series of pictures of
spacecraft will actually do, at either the functional or bit Venus." A typical low-level command that might occur in
level, with these commands. While the checker and that sequence might be "turn toward Venus." In flight
simulator are processing the first time slice of commands, SEQGEN, the code that tells expander which commands
the second set is expanded. For future high-fidelity to generate from a given PA is written in "Sequence
bit-level simulators, however, it may be necessary to Component Development Language" (SCDL) . SCDL is
expand all commands before simulating them, since a vaguely FORTRAN-like "little language" which is then
memory management issues may come into play. Then it translated into PL/1 code. It is this PL/I code which
may make more sense to multitask and first use all the actually runs on the Univac and generates expansions
processors of the hypercube to perform expansion, and from input files of PAs. One could write the code
then use half of them for simulation and half for checking. describing how to expand PAs directly in PL/I (or C);

however since many expansion functions are used over and

over, the application- tailored SCDL is more efficient for
i developing actual flight expansions. However, note that

nglnee (iteration as the translation of SCDL into the language that actually
If simulation necessary) runs on the target machine is only performed rarely, and
results sw "thus this translation step is not really important in our

.te. hypercube timing and feasibility design; indeed, it wasIterate seqening software:

I[[team [an n avoided for the first prototype, as will be described.
[[checking

The parallel version of expander described here avoided the
SCDL step and had hard-wired C code that parsed various
"flight-like" PAs. Each of the N nodes of the hypercube

FIGURE IA. THE CURRENT UPLINK PROCESS expanded to completion 1/N of the input PAs. The only
inefficiencies were thus load imbalance among the nodes
of the hypercube (if some PAs were more complex to

enitHYPERCUBE expand than others) and sorting inefficiencies when the
eng s eander PAs expanded on different nodes were interleaved into one

su cube master file on all nodes and sorted in time order on all
nodes. It became apparent that sorting was a bottleneck,

Sequening Itor u ng and so we wrote a efficient parallel sort to decrease these
r odes) inefficiencies.

This program is really a cross-compiler for the onboard
ubecker Slmulatul computer. We have come to the conclusion that front-end

u compilation (without optimization) is naturally highly
FIGURE lB. TOP-LEVEL DESIGN OF parallel, since each command in the input file is checked

PARALLEL SYSTEM. semantically and parsed without any interaction with other

commands. Hence the incoming command file can be

Simultaneous with this system-level design (the first split over hypercube processors with no interaction

incarnation of which was described in [4]) we are required among the processors.

3

III. Integration of expander and sort code each PA expansion. Instead, we are building a
simplified SCDL interpreter that produces C code that

The parallel version of expander with hard-wired could run on either the Mark III or transputer. This
expansions has been integrated with a high-speed sort [5]. SCDL interpreter will initially interpret only the subset of
This sort improved the run time substantially, as shown. commands required to interpret an expansion of the
These are all relatively small cases so load-balancing Galileo profile activity which performs a spacecraft
effects dominate after four nodes. Here, the efficiency, E, maneuver, but as time and resources is available the
is defined as: interpreter could grow up to full flight capability, and use

the preexisting PA definitions that were built in SCDL
E = Time to run with sequential sort (1) for the Unisys. This will let us know if we are scalable

N * Time to run on N nodes to full flight capability.

Table 1. Times and efficiencies Since all expansion of given PAs is done fully
for expanding and sorting independently and in parallel, and since all nodes have

(times do not include I/0) knowledge of all the input PAs (although not their
expansions) it is not necessary to add any parallel features

Nodes Sequential sort Parallel sort to the expander C code generated by the SCDL interpreter
time E time E and hence this portion of the code will port nearly
(s) (%) (s) (%) automatically to transputer or Mark III hypercube. The

1 20.94 (100%) 23.81 (88%) load balancing and sorting portions of the code will need
2 13.30 (79%) 10.60 (99%) to be adapted slightly, however, should we port the current
4 10.02 (52%) 6.67 (78%) Mark III expander to a transputer, or other machine. Note
8 7.58 (35%) 4.91 (53%) that distributed memory is not a disadvantage with this

application and may indeed be an advantage in this portion
of the code.

The parallel sort has some overhead which slows down its
one-node version from the non-parallel sort one-node
version. Hence, parallel efficiencies are quoted for the IV. Command Checking in Parallel
parallel sort both relative to the one-node non-parallel sort
case. This overhead is such that the code gives the A design was developed for a parallel implementation of
appearance of running more than twice as fast on two SEQGEN checker, which takes the low-level commands
nodes. This is a peculiarity of the sort implementation. generated by the SEQGEN expander software described
From these numbers, it is apparent that a large portion of above and checks them against a matrix of constraints. A
the inefficiency was indeed due to the non-parallel sort. design study was performed to understand the best
Remaining inefficiencies are mostly of the load-balancing mapping of this problem to the hypercube, and both Time
variety and will improve when we use large, flight-like Warp and Chandy-Misra implementations were considered.
sequences with more complex expansions than our small A recommendation was made to use Chandy-Misra
test demonstrations, and do not restrain ourselves to a test algorithms for a future prototype, since this paradigm
case that will fit on one node's worth of memory (4 Mb in lends itself better to the network-style interactions found
the Mark III case.) in Checker.

Since it is envisioned that eventually SEQGEN and a Checker takes the list of low-level commands generated by
simulator might run on the same cube at the same time, expander and checks the commands against a matrix of
the next step was to modify expander to run on just a constraints. The constraints are also specified by a flight
subcube of the hypercube, instead of occupying the whole project in another "little language", this time a vaguely
cube in single-user mode. This generalization was LISP-like one. This parser changes constraints written in
completed late last year. It is important that we be able to this language into code that can be used by the host
run on various parallel machines without massive computer (PL/I in the case of the Univac flight version).
rewrites; this generalization makes the code more portable. Hence, the translation into C code can be done once and

the checking network will remain the same for long
As noted above, the translation from SCDL (in which periods of time. This will allow conventional
expansions are designed) to code which can run on the optimization techniques to be used to map the constraint
host computer is not done too frequently. However, if we network to the hypercube nodes in the most efficient
directly hard-wire expansions we will need to individually possible way.

4

IV.A. Sequential Discrete Event Simulation Time Warp algorithms, on the other hand, take advantage
Checker can be thought of as a discrete event simulator; of the parallelism inherent in the system being simulated.
it takes each command to be executed at a discrete point in Logic circuits, for instance, can be partitioned very easily
time and models the spacecraft functions driven by that even to the point where each processor simulates one
command. All discrete event simulators operate on circuit node.
sequentially ordered event lists [6]. In this case, the
command sequence is the event list and the command In parallel discrete event simulation, the repeated
execution time is the simulation time. The simulator manipulation of a sequential event list would inhibit
takes the event of lowest simulation time and removes it concurrency [9]. Therefore, events are divided among the
from the list. It performs all computations defined for processors. If one event affects another it sends a
that event and effects changes on the system being timestamped message along the communication links.
simulated (here, a spacecraft). This event may generate The processor receiving this message can accept it
other events for future simulation which are placed on the immediately or place it in an input queue. For the
event list in time order. The simulator then moves to the parallel simulation to be consistent with its sequential
next event and updates the simulation time. counterpart, the system must be deterministic which

means that the current state of the system uniquely
Since the internal spacecraft structure consists of determines the next state. Otherwise event messages may
electronic circuits, Checker functions to a large extent as a not cause the correct event to be simulated, or the
logic circuit analyzer [7]. A circuit node is defined using simulation halts when a processor is unable to make a
a constraint network, the set of functions that simulates decision. The simulation proceeds by synchronizing
the state of the spacecraft. The command is physically an events. Time-Warp and Chandy-Misra have different
electronic pulse and its state is set to true. This triggers synchronization schemes which allow speedups only when
the constraint network functions that update the circuits their particular applications meets certain criteria. Which
state, and verify rules and constraints. This information algorithm works better is usually application dependent.
may be used as input for all circuit components (or nodes)
that the command affects. Then the state of that command IV.B.1. Time Warp
is set to false and the process repeated until all nodes have The Time Warp mechanism is operational on the
been analyzed. Some nodes may call models which JPL/Caltech Mark III hypercube and was therefore
simulate spacecraft operations. Models take the form of seriously considered for implementing spacecraft
commands local to SEQGEN and are placed on a constraint checking. In Time Warp, events are distributed
time-ordered event list. These commands are checked in among the processors and communicate with timestamped
the same manner as sequence commands. When messages [10]. Each processor stores messages in an
necessary, constraint network writes error or status input queue sorted by time. The message with the
messages to the SEQGEN's output files. smallest timestamp is simulated and the Local Virtual

Time (LVT) is advanced to that timestamp. At any
Checker's similarity to logic circuit simulators makes it point, one processor may have an LVT ahead of the
especially adaptable to a parallel implementation. others, but this does not affect the simulation except to
Constraints in separate sections of the circuit need not be determine the timestamp of a message. A process does
checked sequentially since they do not affect each other not concern itself with the possibility of receiving future
immediately (although they may interconnect elsewhere). events; this is considered an optimistic approach. The
Parallel logic circuit simulation has already been state of each event is saved in case a processor should
implemented successfully on several multiprocessors, receive an event with a timestamp less than the LVT. If
such as the Intel iPSC and Ametek Series 2010, and it does, the simulation rolls back to the event just
should demonstrate similar speedups on the hypercube [8]. previous to that timestamp and resimulates. For example,

if a message with the timestamp 9.5 is simulated and then
IV.B. Parallel Discrete Event Simulation the message with timestamp 8.2 reaches the input queue

Paradigms next, a rollback will occur.
One way to parallelize SEQGEN checker would be to
divide sequential procedures onto separate processors. After rollback, messages that had been previously sent
However, finding the inherent parallelism in simulation with timestamps later than the rollback timestamp are
code is difficult and usually inefficient. In this case, it is obsolete and must be removed. The processor sends an
not at all feasible since the JPL hypercube does not anti-message which contains the same information as the
support the PL/l or Univac assembly code in which original message, but will cause both to be removed from
SEQGEN was originally written. The Chandy-Misra and an input queue. If the original message has already been

5

simulated, or hasn't arrived yet, the anti-message is IV.C. Checker Implementation
processed. Upon discovering a duplicate event in the state The first and most difficult consideration of writing

queue, an event will trigger another rollback which then, Checker in parallel is determining how to distribute the
in turn, may cause more rollbacks. How then, does the circuit nodes among the processors. Load-balancing
simulation progress? Each processor also keeps track of requires an analysis of the circuit nodes, their associated
the Global Virtual Time (GVT) which is the lowest constraints and the event list. Either all of the circuit or
timestamp of every message or event in the system. No only the sections being checked can be partitioned and sent
processor can rollback prior to the GVT, and all event to the processors.
states with timestamps less than the GVT can be
removed. Therefore, Time Warp is guaranteed to progress. Figure 2 shows an example of Checker logic. The entire
Time Warp terminates only when all events have been circuit may be placed on one processor, or the top and
simulated and all messages and anti-messages processed. bottom halves on two separate processors, and node

"OUT" on a third, etc. What processor a circuit node
would be sent to depends on how many constraints it has,

IV.B.2. Chandy-Misra how long it takes to check those constraints, how many
The Chandy-Misra simulation proceeds conservatively. A times it is evaluated, and what other nodes it affects (to
processor does not begin computation until it is sure that avoid interprocessor communication). At first this
it will not receive any messages with a timestamp less information would be determined ahead of time, and
that its local simulation time [9]. Therefore, the circuit nodes would be statically allocated to a processor.
simulation does not require a global time clock or more (The current flight SEQGEN checker has a constraint
memory than necessary for the sequential simulation. network that does not change from run to run, and hence
Events, in this case called logical processes (LP), are this mapping could be done very optimally, with a
distributed among the processors. The LP simulated annealing or other approach.) Later it might be
interdependencies are mapped so that a processor will send possible to implement dynamic load-balancing so that an
and accept messages from certain processors with as many idle processor could take on another's work. However,
input and output queues. The LP waits until event this might incur a huge overhead in information transfer.
messages are received from all input links. In this way, it Another large overhead would be repeated file
ensures that no future messages will be received with manipulation. In fact, earlier versions of Time Warp did
timestamps less than those of the inputs. The event of not support file handling because rollbacks require
minimum timestamp is simulated and the local messages to be buffered and written sequentially in global
simulation time updated to this timestamp. Then the LP time order. Checker writes each command to SEQGEN's
will wait to output a message until the receiving LP output files; it may also write status and error messages,
expects it. All future messages will have a greater but only if certain conditions are met. How often a
timestamp. processor writes to a file greatly affects its load. Once

the synchronization scheme has been implemented, we
The simulation may deadlock if a processor waits to send will investigate various load-balancing strategies to
or receive messages but is blocked. Deadlock can be optimize the simulation.
prevented using null messages which serve to update the
simulation time and free waiting processes. However, if Choosing between the Time Warp and Chandy-Misra
the computation time of an event exceeds the time for algorithms proved to be difficult since the constraint
another process to produce a null message, the system network is large and complex with many different types of
may become overloaded with null messages. Though this computations. Knowing exactly how the system behaves
cannot be avoided if there are too many long is essential in determining which synchronization scheme
computations, some null messages may be delayed and is appropriate. Figure 3 shows the structure of constraint
bundled until they can be send with the next event checking using Time Warp. The circuit being checked is
message. This still prevents deadlock and reduces the that of Figure 2, where all circuit nodes are completely
number of messages. Deadlock can also be allowed to distributed among the four processors. (Note the time
occur and then overcome using an algorithm which tags on the commands.) Individual commands to be
determines the cause of deadlock and how to recover from checked are assigned to one of the processors in this case,
it. This scheme has a computation time overhead which and instances of changes in state of these network nodes
may be acceptable depending on how often the system needs to be transmitted across the hypercube processors, as
deadlocks. The simulation terminates when it has shown with the heavy arrows in Figure 3. Note that
processed all events and messages. although there is an even distribution of network nodes

across the hypercube processors, Node 3 remains idle since

6

no commands that it handles were in the input command overhead. This is usually true for simulation of physical
file. This is an inherent risk with this parallelization; systems where a guess in behavior does not cause too
however the other possibility (having the entire network many rollbacks. Physical systems involving large
on every node with commands randomly assigned to computations allow most messages affecting an event to
processors, as is done in expander) is unwieldy to arrive before an incorrect choice can be made. However,
implement owing to the high interconnection of the static logic circuit verification involves little computation
network. per node. It does take time to verify complicated circuits

that may have thousands of nodes which is what makes a
At first it would seem that saving all states would take parallel simulation worthwhile. If constraint checking

up too much memory, but that is solved by removing all added a large amount of extra computation time, the
states before the GVT. This particular example shows the simulation would work well with Time Warp. We tested
bottleneck that can occur by simulating only a small several different constraints on the hypercube and they
sequence of commands. However, the average number of took very little time to process.
commands in a sequence ranges from 1000 to 5000 and
this bottleneck would not be as likely to occur as long as
the command assignments of command types to IIYPERCUBE PROCESSORS

processors were reasonably optimal. PROC 0 PROC 1 PROC 2 PROC 3
C1 C2 C3 C4 ALLOCATIONS

SCC7OF NETr WORK
C C CNODES TO

SFF12 FF34 FF86 FF78 PROCESSORS

SI OUT S2

C3, T=1 TYPICAL

CS, T=2 COMMAND
C 2, T:-3 LIST INPUT

OUT PROC 0 PROC I PROC2 PROC3

C5 C, T.O C2,T=3 C3,T=1
C5,T=2 NO Q
CIT=-4 COMMANDS

Tills NODE
WERE

C2,T=3 RECEIVED
SFF12,T. C3ISO Tills

C7FFI2T= C3,1= CST=2 NODE
FF12,T-3 REMAINS
FF12,T=4 FF34,T=l FFS6,T=2 IDLE)

FF34,TF43
X

FF34,T--3

S1,T=0

S1,Tffi._ ,S.
S2 = S • C6 XO 7 FF CI8 SIT=4

N h, SI,T=O
otrr = s~ AND USI,T.1 S2,T=2

SI,T=-3

* S2,T=4

FIGURE 2. SAMPLE LOGIC FOR CHECKER
S2,T=2

OUT,T=0
OUT,T=1
OUT,T=2
OUT,Tf3
OUT,T-S

Although Time Warp could easily support spacecraft
ARROWS INDICATE STATEconstraint checking, several factors make it unsuitable. CHANGE COMMUNICATION

Time Warp is a general simulation operating system that -ROLLBACS NOTSHOWN

would have to be adapted to the specific requirements and GURE 3. SAMPLE MESSAGE FLOW IN PARALLEL CHECKER

intricacies of constraint checking. It produces significant
speedups only when rollbacks do not present too much

7

When simulating the same system as shown in Figures 2 One of the major portions of flight SEQGEN checker is a
and 3 for Time Warp, if there are only a few commands, "little language" parser, which translate the LISP-like
the system deadlocks very quickly if null messages are not constraint network specifications into the C which runs
sent or a detection and recovery algorithm used. on the hypercube nodes. A subset of this parser will be
Otherwise the logical process FF12 has to wait until it needed for a checker prototype that can perform the
receives both C1 at time 0 and C2 at time 3. The constraint checks for Profile Activities that are being
Chandy-Misra method has already been adapted for logic used as tests for the expander module. Building this
circuit simulation, though not strictly to test circuits, but realistic prototype will prove that the checker can take the
to test the algorithm itself. Therefore, the major drawback results of the expander and check them in parallel.
in using the Chandy-Misra method is that no
implementation exists on the JPL/Calhech Mark III V. Spacecraft Simulation in Parallel
hypercube. However, in writing it from scratch,
eventually the simulation would be especially efficient for An existing VAX high-level simulation of some of the
spacecraft constraint checking. But if the circuit is so functions of the Galileo spacecraft onboard computer was
interconnected with multiple outputs and feedback that it ported to the hypercube. This particular simulation
reduces the inherent parallelism of the system, then turned out to run very quickly on one node, making
Chandy-Misra would essentially lock-step through the parallelization unnecessary. The reasons why this was
simulation and Time Warp would be the only alternative, true give insight into design requirements for future
Evidence indicates that this is not the case, and a simulations. The Galileo onboard computer is itself a
simplified subset of Chandy-Misra will be implemented, parallel computer (although of the master/slave variety),

and the VAX simulation took this parallel computer and
The prototype will simulate a small subset of commands simulated it sequentially. A large portion of the code was
-- the same set being used as an example by expander, bookkeeping to accomplish this simulation of a parallel
allowing the integration of the two protctypes. computer. Therefore, if such a simulation is desired, it
Constraint network definitions will be statically should not be ported from a sequential simulation of a
distributed to the processors and each command from the parallel system but should be written in parallel in the
sequence will be sent to the processor containing its first place. Some observations along ihese lines will be
definition. Then the simulation will proceed according to discussed. Plans are in place to boild a simulation of the
the Chandy-Misra algorithm. Though deadlock avoidance full capabilities of the Galileo onboaid computers.
using null messages is simpler to program than the
deadlock avoidance and recovery algorithm, we will VI. Flight-qualifying parallel code
investigate which scheme is more efficient. Later more
constraints and commands will be added. Previous results An attempt was made to understand what it will take in
with parallel logic circuit simulations have shown that the the way of new software testing methods and design tools
simulation will be most efficient when a large set of to certify hypercube code (and hypercube operating
commands is used to reduce the number of idle processors systems) for flight-critical systems to the same standards
[8]. The prototype implementation of Chandy-Misra will that are now applied to sequential codes. Parallel codes
serve to test constraint network behavior, since it will have several unique characteristics that make them
demonstrate significant speedups only when a large challenging to debug and to test fully. In particular,
portion of constraint network has been adapted for the although any one module may be tested thoroughly,
hypercube. exactly when and how and with which other program

running on which other node it will interact is difficult to
How efficient the parallel implementation of Checker predict. Quasi-parallel onboard computers, like the Galileo
proves to be is dependent on the sequence and its and Magellan onboard computers, get around these
associated models. Checker might demonstrate significant difficulties with architectures that are both synchronous,
speedups for some spacecraft models such as simple are not interrupt-driven, and are controlled by one master
light-switch relay circuits, but may even slow down the processor (although which processor is the master can
checking time for a complicated, highly-intcrconnected change over tirie.)
constraint network such as the one modeling the
restrictions on a spacecraft maneuver. But since the In parallel code, three major classes of software failures
spacecraft is comprised largely of simple models, it would can be encountered: the hard failure (where the software
be possible to run Checker in parallel for most sequences hangs), the soft failure (where the software continues to
and sequentially for the few remaining sequences and still process, but gives the wrong numerical result), and the
work efficiently. algorithmic failure (a "bug" of the same sort as one

S' ' , ,I I I

encounters in sequential coding.) Typically, one will way.

build a sequential version of the code which removes most
of the latter bugs, but some new ones inevitably show up VII. Open issues and conclusions

as interaction phenomena when the software is run in
parallel for the first time. It has been the first author's Many open issues remain in the use of hypercubes for
experience that most interaction bugs show up on two critical operations. Issues of reliability and predictability
processors and can be removed there, and that virtually all need to be understood more thoroughly. However we feel

show up on four processors. However, it has occasionally that parallel computers in general and hypercubes have a

been true that certain bugs show up on eight or sixteen role in spacecraft commanding and other critical
processor or larger cubes only, and these bugs are applications, but many challenges remain to make these
frequently subtle and :ntermittent in their symptoms. codes both powerful and reliable. Although this study is

geared to the particular problem of generating commands
By their nature, synchronous codes running under the for, and predicting the actions of, a deep-space probe, the
Crystalline Operating System (CrOS) or its commercial conclusions are applicable to efforts to generate and verify
variations have a priori predictable communication code for any critical computer, remote or not.
patterns, since interrupt-driven communications are not
allowed and processors are required to handshake in a VIII. Acknowledgements
predictable pattern, or deadlock results. Synchronous
programs, therefore, are more prone to the hard failure Many people have contributed to the work described in
during the development phase while these communication this paper; space does not permit naming them all. In
patterns are being debugged. Hard failures do have the particular, the authors would like to acknowledge the JPL
virtue that they are usually easier to spot than the soft Hypercube Project and Dave Curkendall for making
failure ; however, they are more difficult to debug since hypercube time available for the prototypes. Nooshin
the cube will simply stop in most cases with no Meshkaty and Edith Huang gave invaluable user support.
diagnostic output. Sometimes these failures will not Barbara Zimmerman, John Flower, gave us assistance on
show up until perverse data is processed by the code. The various portions of this task; Phil Hontalas, Matthew
general synchronous sorting routine described above, for Presley and Ed Upchurch on Time Warp; and Wen-King
example, initially failed when presented with unbalanced Su and Mani Chandy on Chandy-Misra. L. Perry's
partial lists to sort on different nodes; the algorithm had research was conducted through the Caltech Summer
assumed balanced lists to sort across the cube. This was Undergraduate Research Fellowship. The work described
corrected, but at the cost of more complexity, which in in this paper was carried out by the Jet Propulsion
turn exposes the code to failures of the other two types. Laboratory, California Institute of Technology, under

contract with the National Aeronautics and Space
Purely asynchronous code is probably the most difficult Administration.
for the design of software qualification tests and criteria
for its acceptance, since the possible interactions of the
software with itself and with the commands it is checking IX. References
are so numerous. This will particularly be a problem for
checking algorithms, which tend to naturally be somewhat [U] Linick, T.D., "Spacecraft Commanding for
asynchronous and hard to design even sequentially (since Unmanned Planetary Missions: The Uplinkmoresopistcatd oes ergeon xpet sstes.)Process", Journal of the British Interplanetary
more sophisticated ones verge on expert systems.) Society, Vol. 28, No. 10, 1985.

We will need to design cases that test communication
paradigms, and not just output. This is analogous to the [2] Mcaughlin, W.I., and Wolff, D.M., "Automating
process in expert system debugging where both the the Upin P es panetary Missions."
reasoning that produced a certain result as well as the AIAA-89-0580, 27th Aerospace Sci Mtg, Jan 9-12
result itself both need to be correct before the system can
be accepted for critical applications [11]. For example,
the commonly-used flight software testing technique of [3] Burns, P., Crchton, J., Curkendall, D., Eng, B.,
regression testing would need to be expanded to test Goodhart, C., Lee, R., Livingston, R., Peterson, J.,
communications as well. In a sequential code, testing Pniel, M., Tuazon, J., and Zimmerman, B., "The

four sets of the same command to be expanded might not JPL/Caltech Mark IN fp Hypercube." Proceedings of

be interesting, but might be valuable in parallel to test the Third Conference on Hypercube Concurrent

whether all processors take care of the expansion the same Computers and Applications, Pasadena CA Jan.

9

1988, p.872.

[4] Horvath, J.C. and Cole, R.C., "Spacecraft
Sequencing on the Hypercube Concurrent
Processor", Fourth Conference on Hypercubes,
Concurrent Computers and Applications, Monterey,
CA, Mar. 1989.

[5] Tang, T. "Parallel Sorting on the Hypercube
Concurrent Processor." Presented at DMCC5,
Charleston, SC, April 1990.

[6] Samadi, B., "Distributed Simulation, Algorithms
and Performance Analysis", Ph.D. Thesis, UCLA,
1985.

[7] Cole, R.C. and Crichton, G.A., "Galileo User's
Guide: SEQGEN Program Set", JPL internal
document D-263, May 1985.

[8] Su, W. and Seitz, C.L., "Variants of the
Chandy-Misra-Bryant Distributed Discrete-Event
Simulation Algorithm", Caltech CS Technical
Report TR-88-22, Dec. 1988.

[9] Chandy, K.M. and Misra, J., "Asynchronous
Distributed Simulation via a Sequence of Parallel
Computations", Communications of the ACM,
Vol. 24, No. 11, April 1981.

[10] Jefferson, D., et.al, "The Status of the Time Warp
Operating System", Proceedings of the Third
Conference on Hypercube Concurrent Computers and
Applications, Pasadena CA Jan. 1988, p.738.

[11] Stagier, R., "The Problem of Certification for
Expert Systems." JPL internal document, October
1988.

10

A Massively Parallel Expert System Architecture
for Chemical Structure Analysis

Ronald S. Sobczak
Manton M. Matthews

Department of Computer Science
University of South Carolina

Columbia, SC 29208

1 Introduction states that the maximum speedup for any problem
is always bounded by 1/s where s is the time for

This paper discusses a novel approach to solving the serial work fraction (that portion which cannot

properly asynchronous heterogeneous problems on be parallelized). Asynchronous problems are the

a hypercube architecture such as the NCUBE/10 most difficult problems to execute efficiently in an

computer. The discussion is divided into the clas- MIMD environment and therefore offer the great-

sification of possible problems on the hypercube, a est challenge to the programmer. According to

description of blackboards and their utility in solv- Fox, out of 84 programs reviewed only 8 properly

ing properly asynchronous heterogeneous prob- asynchronous problems were identified. Properly

lems on the NCUBE, the application of these tech- asynchronous problems contain the greatest un-

niques to a specific example, structure elucidation certainty for speedup on a machine like the Ncube.

of organic compounds from spectroscopic data. No matter what type of problem, it is essential to
minimize communication and when it is necessary,

consistheg NCU 1024 [3, 15]is a n M a com ter to restrict it to adjacent processing nodes with rel-consisting of 1024 32-bit processors and a coarse atively large program segments working largely in-

grained homogeneous distributed memory. The de ly ia t al s sible.

types of problems can be divided and described dependently if at all possible.

in terms of how the nodes communicate and how Synchronous communication implies that all
the problem is subdivided between the individual processors are executing identical code on different
nodes [6]. Communication can be synchronous, segments of the data. Asynchronous communica-
loosely synchronous or asynchronous. In syn- tion may also involve identical code but because
chronous communication, all processors are doing of differences in the complexity of the data, the
the same thing at the same time and as a result, all processors may not complete their assignments at
communication is automatically synchronized. In the same time. On the other hand, it is feasible
properly loosely synchronous problems, each pro- that different processors may actually be execut-
cessor is doing its own thing but must synchronize ing different code simultaneously. Fox has "ruled
with all other processors whenever doing interpro- out course grained functional decomposition, e.g.,
cessor communication. In properly asynchronous different sub-routines of a given application run-
problems, each processor acts independently, corn- ning on different nodes, because this is only capa-
municating whenever necessary without regard for ble of obtaining modest speedup as essentially all
synchronizing with the other processors. In a se- real applications only have a few distinct actions
quential asynchronous problem, there is a lock- to be performed currently." We are interested in
step order which allows no parallelization of the just how much speedup is possible in a problem
problem whereas concurrent asynchronous prob- which involves asynchronous communication be-
lems can be processed in parallel. Amdahl's Law tween different segments of code executing simul-

i00-6188-2113-3/90/0000/001 iS01.00 0 1990 IEEEi

taneously. tween disparate sources of information regardless
of the different vocabularies involved. Ultimately
this should minimize communication between spe-

2 Blackboard Systems cialists so that the individual processors can con-
centrate on computation.

Our approach for solving heterogeneous problems In order to limit interaction between knowledge
with properly asynchronous communication on a sources, the problem is decomposed into loosely
parallel computer is to use a blackboard model coupled subproblems. The individual knowledge
for control of the different code executing simul- sources can be implemented as rules, objects or
taneously and for communication of the partial procedures. Each knowledge source knows what it
solutions between the different code segments. A is capable of contributing to the solution. Details
blackboard [221 is a problem-solving model that of the task dictate the type of knowledge represen-
allows opportunistic reasoning. The blackboard tation and the reasoning methods employed. The
model consists of three major components: con- interaction is organized hierarchically, with inte-
trol, the blackboard data structure and separate gration of diverse concepts and vocabulary. Each
knowledge sources. knowledge source can be modified without affect-

Control dynamically selects which knowledge ing the other sources, making it relatively easy to
sources to execute and which data to manipu- update the knowledge base. Since each knowledge
late at any one time, thereby coordinating the source works relatively independently no one piece
manipulation of the blackboard and determining of data becomes a barrier to the solution but addi-
the focus of attention. This is especially useful tional information will improve performance. Any
for complex ill-structured problems with poorly uncertainty is handled with credibility weights.
defined goals and an absence of a predetermined Conflicting data can either be eliminated if the
decision path which is a good description of how difference in certainty is large or both partial so-
a heterogeneous asynchronous problem must be lutions can be saved independently on the black-
solved in a parallel environment. Because control board for further processing.
is dynamic, it can utilize opportunistic reasoning Blackboards are especially effective at handling
techniques and avoid lock-step control sequences problems with large solution space, dependent on
which would make execution inefficient. Alternate noisy and unreliable data. A variety of input data
solutions can develop simultaneously and heuris- can be handled. Multiple reasoning methods can
tic methods can be used to short-circuit compu- be used simultaneously and solutions can develop
tation. Forward and backward reasoning can be in stages. The blackboard is a potentially effective
used simultaneously. Control maintains criteria method for finding and expressing parallelism in a
for determining when to terminate execution and heterogeneous asynchronous problem. The knowl-
is capable of handling errors gracefully. edge sources can be divided to provide optimal

The blackboard data structure is a global grain size of data and knowledge. The knowledge
database. The individual knowledge sources com- sources know what they can do and can be respon-
municate and interact via the blackboard. The sible for local control while Control is responsible
solution space includes all possible partial and full for global control.
solutions. It can be organized into one or more
application-dependent hierarchies. Each level of
the hierarchy can contain its own unique vocab- 3 The Structure Analysis Prob-
ulary. Ultimately these vocabularies will coalesce lem
as the solutions develop and progress up the hier-
archy. Reasoning which supports the partial solu- We have chosen a problem which should be an ef-
tions, can come from below and/or above in the fective test of using a blackboard to maximize con-
hierarchy. The blackboard handles all message- currency for a heterogeneous asynchronous prob-
passing constraints and allows communication be- lem. Organic chemists are always concerned with

12

determining the chemical structure of unknown or- is exhausted before moving on to other sets. As
ganic compounds. In the past this was done by already indicated, this is counterproductive with
using a battery of chemical tests but these tests spectra. The blackboard approach will allow a
are messy, time consuming and destroy the sample much more flexible manipulation of the spectra,
in the process. Modern organic structure elucida- allowing for opportunistic reasoning similar to a
tion depends heavily on absorption spectroscopy. human expert's approach. Since the blackboard
In absorption spectroscopy, a specific frequency of allows several different solution paths to develop
light is passed through the organic compound to simultaneously, no one piece of spectral data will
determine whether the light is absorbed or not. inhibit the progress of the program.
Measuring the absorption gives a variety of :iufor-
mation about the compound. The advantages of
these techniques is that they are quick, relatively 4 The Knowledge Sources
easy and do not destroy the sample. The disad-
vantage is that the resulting data must be ana- The following is a description of some of the ex-
lyzed by an "expert" We intend to develop an perts involved in the elucidation of chemical struc-
expert system which can run effectively on the ture. The knowledge sources can be divided into
hypercube. Some of the characteristics of this three groups of experts, the structure generation
problem are as follows. There are several differ- routines, spectral experts, and chemical experts.
ent types of spectroscopy which look very differ- Structures are generated in stages [8]. The
ent, and give very different information. In other different stages can be executing simultaneously
words, they involve very different expertise and since more than one structure is often possible.
very different "vocabularies" which must some- These routines are modeled after the design of
how be integrated to generate the structure. Each CHEMICS. The following are a list of primary
spectrum may include many different absorptions. components which are basic components for con-
Much of the information in the spectra is uncer- structing organic molecules: CH3 , CH2 , CH, C,
tain and ambiguous. Therefore a human expert CO, OH, 0, NH2, NH, N, SH, S, F, Cl, Br,
will process the most important and most reliable and I. Secondary components are combinations
information in each spectrum first. If a structure of primary components useful in constructing or-
can be determined, no further processing is neces- ganic molecules and that can be related to spectral
sary. On the other hand, if the solution is incom- data. There are 86 secondary components. Ter-
plete, further processing of the data can be done. tiary components consist of a secondary compo-
Some of the ambiguity in the data is alleviated by nent combined with an "afferent nature" which is
the fact that data from different spectra can re- simply a restriction on what the secondary com-
inforce each other. If data from different spectra ponent can bond to. There are 630 such corn-
conflict, the data with the greater reliability axe binations. Initially maximum and minimum val-
used first. If this fails, the data can be reevalu- ues for primary and secondary components are de-
ated. A chemist may not have all the data that termined from the molecular formula. All possi-
would be useful. Each facility will have different ble sets of primary components are determined.
equipment with limits on their capabilities. There- Based on these, the possible sets of secondary
fore a human expert must be flexible in what data components are generated. The secondary compo-
and what order is used to solve the problem. nents are reviewed for consistency with the chem-

To handle these problems, the computer expert ical formula and spectral data. Finally tertiary
must be modular so that individual experts can component sets are generated. The sets of tertiary
work independently on the different spectra. This components are used to generate complete struc-
also makes it easier to update and add new experts tures including the bonding of the components.
without affecting the performance of existing ex- There are a variety of steps done including gen-
perts. Computer programs are often designed in eration of linkage, tests for absolute linkage and
a very sequential manner where each set of data absolute nonlinkage, checking of separated struc-

13

tures and checking of generated structures. low easy modification and addition to the experts
Common spectroscopy techniques include in- without disrupting the system. Each spectroscopy

frared, ultraviolet, proton NMR, carbon-13 NMR, expert must handle very different data as indi-
and mass spectroscopy. The characteristics of an cated above but the analysis of each results in
infrared spectrum include frequency in reciprocal molecular fragments. Therefore the blackboard
centimeters, the intensity (strong, medium, weak) will allow the individual experts to use their own
and shape (broad) of the peaks. The infrared is unique vocabulary and ultimately convert it into a
particularly important in determining the pres- universal vocabulary of molecular fragments which
ence or absence of specific functional groups such are then used to direct and restrict the struc-
as carbonyl (C=O), hydroxyl (Oi), amino (Nit), ture generation routines. As the experts gener-
nitrile (CN), and carbon-carbon double and triple ate components, these can be used to prune pri-
bonds. mary, secondary and tertiary components thereby

Mass spectroscopy gives entirely different re- preventing combinatorial explosion. If fragments
sults. It is a bar graph where the one coor- from different experts conflict, the fragments with
dinate corresponds to mass to charge ratio and the highest certainty factor will be added to the
the second relates to the abundance of the ion. active fragment list and the other fragments will
Mass spectroscopy also contains a large number of be retained on an inactive list. The inactive list
peaks where many of the peaks are often ignored will be used only if the active list fails in generat-
in determining chemical structure. The mass of ing a structure(s) which adequately explains the
the molecular ion is the molecular weight of the data. Control will use the spectroscopy experts
molecule which makes it particularly important. not only to generate possible fragments but also

Ultraviolet spectroscopy is much simpler but to test generated structures to see that they are
also much less useful than either infrared or mass consistent with the spectral data. Therefore the
spectroscopy. An absorption in the ultraviolet in- spectroscopy expert will be used both at the front
dicates conjugation (alternating double and single end and at the back end and will be an integral
bonds). Usually there are only a few absorptions part in determining when to terminate execution.
or possibly none. Analysis depends on the fre- Like any good expert, the system will also be able
quency and the intensity of the peak. to determine when there is insufficient information

Proton NMR (nuclear magnetic resonance) to identify one structure as the correct one.
spectroscopy can be analyzed based on the chem- An example of the solution of a spectroscopy
ical shift in parts per million or ppm (chemi- problem is as follows: (This problem is included to
cal environment of the different hydrogens in the indicate the variety of information which must be
molecule), integration (ratio of different hydrogens integrated in a structure elucidation problem. The
in the molecule), and splitting pattern (number of actual details would probably be comprehensible
adjacent hydrogens). It contains large amount of and interesting only to another chemist.) The
useful information and all absorptions are signifi- molecular formula for the unknown is C 711120 4.
cant in structure determination. The primary structure generator determined that

Carbon-13 NMR is a source of information there were 93 possible combinations or sets of pri-
about the carbons in the molecule just as pro- mary structures. Using these as the starting point,
ton NMR is a source of information about the 497 sets of secondary structures were produced
hydrogens in the molecule. Chemical shift and as possible candidates using the secondary struc-
splitting are available but integration is not. The ture generator. All possible combinations of these
range of chemical shift is over 200 ppm (unlike would then be tested in determining the tertiary
proton NMR where overlap often occurs). As a structures and the complete structural formulas
result there is very little chance for overlap be- that were possible. Alternatively the spectroscopy
tween chemically different carbons. experts could be used to prune the primary sets,

Other spectroscopy techniques are continually drastically reducing the number of possibilities.
being developed and refined. Our system will al- The following information was obtained from

14

spectra. The Infrared spectrum for this un- 100,000 sets of secondary components were con-
known contained at least 15 distinct peaks (or ab- structed. The spectral data did give the follow-
sorptions) but two were particularly important, ing information: In the infrared, an absorption at
a broad absorption at 3000 cm-1 and a strong 1750 cm-1 indicated that the molecule contained a
peak at 1725 cm-i. This was indicative of the carbonyl (C=O). The mass spectrum had a molec-
-OH and C=O of a carboxylic acid group. The ular ion of 196 consistent with the above molecular
mass spectrum contained approximately 30 peaks formula. There was no absorption in the ultravi-
with the parent or molecular ion being at 160 olet spectrum indicating a lack of conjugation. In
m/e. This could be used to determine the molec- the proton NMR, there were four vinyl protons,
ular formula which was C7H120 4 . The ultravio- two of which were split into a doublet (indicating
let spectrum contained no significant absorption a hydrogen on the adjacent carbon atom). The
which indicated that the molecule lacked conjuga- rest of the protons all appeared at roughly the
tion (alternating carbon-carbon double and single same location allowing for little additional infor-
bonds). The carbon-13 NMR contained 7 absorp- mation. Therefore the major restriction put on
tions. The first two came at about 180 ppm offset the structure generator was that the possible sets
from TMS which suggests two different carbonyl of primary components must contain at least one
carbons (C=O). The next peak at 70 ppm was due carbonyl.
to the solvent used (dioxan). The last four peaks Utilizing a blackboard based architecture for ex-
were in order a singlet (C), triplet (CH2), triplet Utisizing allows the architetr f ex-(Cl!2) and quartet (Cl!3) in the off-resonance de- pert systems allows the parallelization of hetreo-
coupled spectrum. Finally the proton NMR con- geneous asynchronous problems. A set of nodes is
taiued a peak for HOD (indicating an exchange- dedicated to updating the blackboard, overseeingtaind apea forHOD(inicaing n echage- communication between the nodes and the black-
able proton in the molecule), a singlet for the sol- communicatin ween the n nditheublack-
vent (dioxan), two multiplets integrating for two borancntligwhthendvulndsprotons each (CH2-CH2) and a singlet integrating are executing at any one moment. The program
for six protons (two methyl groups). is implemented on a cube of size 2n, which is sub-

Uorsing allothis information troupse tdivided into two cubes of size n. The first is the
Usingblackboard cube or bcube which, as the control

primary structures leaves only one possibility, the unit, is responsible for maintaining and updat-
set containing the following primary components: init, blackbor contr ining how updat-1 methyl (Cl!3), 2 carbonyl groups, 2 hydroxyl ing the blackboard, controlling how the problem
groups, (combining these give you two carboxylic is subdivided, determining the focus of attention
acid groups, which are examples of secondary in each module, handling any dynamic load bal-
structures), 1 carbon (C), and 2 methylenes ancing as the solution progresses and acting as
structures), W carbombine , tenly2 feasilestc the communication link between the different het-(C H 2). W hen com bined, the only feasible struc- c o e e u e m n s o h r b e . T e s c ntris(CHa)2C(CO2H)CH2CH2CO2H. This erogeneous segments of the problem. The second
ture is T cube of size n consists of the processing nodes each
dramatically reduces the number of possibilities of which is directly connected to one of the nodes
that must be explored, in the bcube. The processing nodes act collec-

In some problems, the available information will tively as the knowledge sources. All communica-
be less restrictive. As a result, the structure gen- tion is transparent to the processing nodes except
erator will have much more work to do. In theseeratr wll hve uchmorewor todo. n tese for their contact with the blackboard node directly
cases, it is feasible for Control to divide the work of foretei co th t kl
the structure generator between several processing
nodes. The following example demonstrates this: In the following table we summarize the per-

The molecular formula for the unknown is formance of the system for the molecular formula
C12HI80 2. The primary structure generator pro- C7H120 4. In this case there were 93 primary com-
duced hundreds of primary components that were ponent vectors and 497 secondary vectors. The
consistent with this formula. Without any restric- data in the table does not take into consideration
tions generated by the spectroscopy experts, over communication time of results back to the host.

Is

Expert [3] "Multidimensional Spectroscopy", W.
Processors Time Speedup Bremser, W. Fachinger, Magnetic Resonance

1 450 in Chemistry, Vol. 23, #12, 1056- 1071, 1985.
4 115 3.98 60 7.5 [4] "GENOA: A Computer Program for Struc-

16 38 11.0 ture Elucidation Utilizing Overlapping and

32 26 17.3 Alternative Substructures", R.E. Carhart,

64 25 18.0 D.H. Smith, N.A.B. Gray, J.G. Nourse, C.
Djerassi, J. Org. Chem. 1981, 46, 1708-1718.

Figure 1: Times for C 7 H 1 2 0 4 [5] "Structure Generation by reduction: A New

Strategy for Computer Assisted Structure
5 Conclusions Elucidation", B.D. Christie, M.E. Munk, J.

Chem. Inf. Comput. Sci. 1988, 28, 87-93.

In summary, successful structure elucidation re- [6] "What Have We Learnt from Using Real
quires the combination of several different ex- Parallel Machines to Solve Real Problems?",
pertises such as the chemical knowledge of how G.C.Fox, 1988, p897-955, Third Conference
molecules are constructed from simple compo- on Hypercube Concurrent Compuuters and
nents and how this process can be restricted based Applications.
on different spectroscopic data. The different
structure generation routines can run simultane- [7] "Further Development of Structure Gener-
ously since many different pathes must be pur- ation in the Automated Structure Elucida-
sued. To prevent combinatorial explosion, the tion System CHEMICS" K. Funatsu, N.
spectroscopy experts can simultaneously deter- Miyabayashi, S. Sasaki, J. Chem. Inf. Comut.
mine restrictions on the structure generation rou- Sci. 1988, 28, 18-28.
tines and check the resulting partial and full solu-
tions. Control can dynamically reallocate proces- [8] "Introduction of two-Dimensional NMR
sors to different subproblems. Parts of the struc- Spectral Information to an Automated Struc-
ture generation routines can be further subdivided ture Elucidation System, CHEMICS. Utiliza-
into homogeneous subproblems. Although a prob- tion of 2D-Inadequate Information", K. Fu-
lem such as this will never attain the efficiency natsu, Y. Susuta, S. Sasaki, J. Chem. Inf.
of a simultaneous homogeneous problem where all Comput. Sci. 1989, 29, 6-11.
processors are executing the same code on differ- [9] "Large-Scale Concurrent Computing in Arti-
ent data, our goal is not to compete with such ficial Intelligence research", L. Gasser, p1342-
problems but to show that parallel processing on 1351.
a hypercube can dramatically speed up the execu-
tion of problems which were originally considered [10] "Parallel Algorithms and Architectures for
inappropriate for such an architecture. Rule-Based Systems", A. Gupta, C. Forgy,

A. Newell, R. Wedig, p28-37.

[11] "Development of Parallel Methods for 1024-
References Processor Hypercube", J.L. Gustofsen, G.R.

Montry, R.E. Benner, SIAM Journal on Sci-

[1] NCUBE Users Handbook. entific and Statistical Computing, Vol. 9, #4,
July 1988.

[2] "Parallel Processing with Large-Grain Data [12] "A Microprocessor-based Hypercube Super-
Flow techniques", R.G. Babb I1, IEEE Coin- computer", J.P. Hayes, T. Mudge, Q.F.
puter July 1984, p55-61. Stout, IEEE Micro, p6-17, 1986.

16

[13] "PROTEAN: Deriving Protein Structure [22] "Blackboard Systems: Blackboard Applica-
from Constraints", B. Hayes-Roth, B. tion Systems, Blackboard Systems from a
Buchanan, 0. Lichtarge, M. Hewett, R. Alt- Knowledge Engineering Perspective", P. Nii,
man, J. Brinkley, C. Cornelius, B. Duncan, The Al Magazine, p82-106, August, 1986.
0. Jardetzky, p417-432 from Blackboard Sys-
tems, Edited by R. Engelmore & T. Morgan, [23] "CHEMICS-F: A Computer Program System
1988. for Structure Elucidation of Organic Com-

pounds", S. Sasaki, H. Abe, Y. Hirota, Y.
[14] "A Computer Program for Generation of Ishida, Y. Kudo, S. Ochial, K. Saito, T. Ya-

Constitutionally Isomeric Structural Formu- masaki, J. Chem. Inf. Comput. Sci. 1978, Vol.
las" H. Abe, T. Okuyama, I. Fujiwara, S. 18, #4, 1978, 211-222.
Sasaki, J. Chem. Inf. Comut. Sci. 1984, 24, [24] "Structure Elucidation System Using Struc-220- 229.[4]"tutrElcdtoSytmUigtu-

tural Information from Multisources:

[15] "A Multiprocessor Design in Custom VLSI", CHEMICS", S. Sasaki, Y. Kudo, J. Chem.
D. Jurasek, W. Richardson, D. Wilde, VLSI Inf. Comput. Sci. 1985, Vol. 25, 252-257.
Systems Design, p26-30, 1986. [25] "Mapping Parallel Applications to a Hyper-

(16] "CSEARCH: A Computer Program for Iden- cube", K. Schwan, W. Bo, N. Bauman, P.

tification of Organic Compounds and Fully Sadayappan, F. Ercal, p141-151, The Third

Automated Assignment of Carbon-13 Nu- Conference on Hypercube Concurrent Coin-

clear Magnetic resonance Spectra", H. Kalch- puters and Applications, Pasadena, Califor-

hauser, W. Robien, 1985, 25, 103-108. nia, 1988.

[17] "Combinatorial Problems in Computer As-
sisted Structural Interpretation of Carbon-13
NMR", A.H. Lipkus, M.E. Munk, J. Chem.
Inf. Comput. Sci. 1985, 25, 38-45.

[18] "Automated Classification of candi-
date Structures for Computer-Assisted Struc-
ture Elucidation", A.H. Lipkus, M.E. Munk,
J. Chem. Inf. Comput. Sci. 1988, 28, 9-18.

[19] "Artificial Intelligence Used for the Interpre-
tation of Combined Spectral Data. 3. Auto-
mated Generation of Interpretation Rules for
Infrared Spectral Data", H.J. Luinge, G.J.
Kleywegt, H.A. Van't Klooster, J.H. Van Der
Maas, 1987, 27, 95-99.

[20] "Structure Generation by Reduction: A New
Strategy for Computer-Assisted Structure
Elucidation", B.D. Christie, M.E. Munk, J.
Chem. Inf. Comput. Sci. 1988, 28, 87-93.

[211 "Blackboard Systems: The Blackboard
Model of Problem Solving and the Evolution
of Blackboard Architectures", P. Nii, The Al
Magazine, p38-53, Summer, 1986.

17

Hypercube Expert System Shell
Applying Production Parallelism

William A. Harding
George A. Sawyer
Gary B. Lamont

Department of Electrical and Computer Engineering
School of Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Abstract programs capable of emulating the problem solving ca-
pabilities of a human expert in a specific field of knowl-

Production system implementations of expert sys- edge [4, 5]. The most significant problem facing the use
tems are becoming more prevalent in a large number of expert systems for real-time tasks is their slow exe-
of diverse specialties, but the relatively slow execution cution speeds. A real-time requirement means "there
speed of these systems precludes their use in most real- is a strict limit by which the system must have pro-
time applications. The feasibility of improving the per- duced a response to environmental stimuli regardless
formance of production systems software using parallel of the algorithm it employs"[14, 10]. A number of ex-
computer architectures is an area of significant interest pert systems proposed and developed for real-time use
in artificial intelligence research. One of the parallel are not capable of sustaining this level of performance
computer architectures of interest is message-passirq [10, 27].
multicomputers. Production parallelism attempts to The feasibility of improving the performance of real-
apply parallelism at a very high level in order to es- time expert systems (particularly those based on the
tablish problem granularities that are compatible with production system paradigm) using parallel computer
current generation multicomputer architectures. Even architectures is an area of current interest in Al re-
when using larger grain parallelism, high performance search. The performance requirements of real-time
production system shells represent a problem for some productions systems motivates the researcher to elim-
multicomputer architectures. The problems related to inate common expert system inefficiencies. These in-
implementing a production system shell on a message- efficiencies include the overhead associated with sym-
passing multicomputer and mapping a specific applica- bolic languages (e.g. Lisp, Prolog) and the dispropor-
tion to this implementation are analyzed. Further re- tionately large amount of time spend in the pattern
search into the problems of parallelizing real-time pro- matching phase of a production system's match-select-
duction systems applications is also discussed. act cycle. Despite the use of more efficient languages

Introduction (such as C) and match algorithms (such as Rete), the
problem related to match phase efficiency persists [5,

Intelligent real-time control and real-time monitor- 14]. This problem becomes the focus of increasing the

ing tasks are one of the most challenging new envi- execution speed of expert systems through the use of

ronments for computer applications. Efforts to apply parallel computer architectures.

traditional software implementation methods to some Background
of these areas have typically met with failure due to the
unmanagability of the associated computer code [15, Robotic Air Vehicle Application
77]. Researchers are discovering that complex tasks One sponsor of research in this area, the Air Force
performed by trained human (like piloting an aircraft) Wright Aeronautical Laboratories (AFWAL), requires
lend themselves to solution using artificial intelligence a fast multiprocessor architecture to process an expert
(AI) approaches. One of the most successful areas of system capable of piloting a robotic air vehicle (RAV)
Al research is in the area of expert systems, computer [12, 1326]. Under contract with Texas Instruments

is
0-6186-2113-3/90/0000/0018$01.00 0 1990 IEEE

isfied in order for them to be applied to solving
the problem. A CE can be thought of as an ob-

N~tul ject with an instantiated values, capable of being
L...gu.g Voice n h

M P matched with facts in WM. Rules have the gen-
eral form:

if (these facts exist) then (execute this action)
Pi~ctilg Aietp~c.

Expet E.pert * a control structure known as a production cycle
s,....- s...I. that performs the generalized search of the prob-

lem state-space:

Vehicle 1. Match - evaluate the "if" part of each rule
C -1-1 to determine whether it is consistent with the
Sy.... current contents of WM. This is equivalent

to producing all possible extensions of the
current state of a problem.

W.,•,,i,•.. 2. Select - choose one rule from those passing
the match test, if no rules are eligible, termi-
nate execution. This is essentially the same

Figure 1: RAV System Architecture [12, 1327] as choosing the most promising extension of
the current state (path).

(TI), the RAV was developed as a production system 3. Act - perform the actions specified in the

based expert system using the Automated Reasoning "then" part of the chosen run and return to

Tool (ART) implemented on several TI Explorer Lisp match phase unless an explicit stop condition

machines. Figure 1 shows the overall structure of the exists. This phase updates the current state

current RAV implementation including the piloting ex- of the problem (WM), forming a new state.
pert system and airspace expert system. Both the The Rete Match Algorithm
piloting and airspace expert systems applications are The match phase of the production cycle accounts for
based on the production system paradigm. Unfortu- approximately 90% of the total execution time in most
nately, the RAV expert system has proven to be too production systems [6, 70] and therefore becomes the
compute-intensive to yield results in real-time on any focus for increasing production system performance
serial or parallel computer architecture (hardware and though the use of specialized algorithms. Rete is an
software) developed to date [2]. efficient match algorithm which exploits two preva-
Production Systems lent characteristics of most production sys, -m applica-
The production system paradigm is one of the most tions to obtain significant increases in execution speed:
common methods for implementing expert systems ap- First, in a typical production system application, only
plications. Production systems apply pattern directed a small fraction of the WM changes during each pro-
search (inference) using rules which are based on a duction cycle. Rete takes advantage of these small
subset of first order predicate logic. The execution of WM changes by storing CEs satisfied during previous
these rules modifies a set of facts which describe the production cycles and using them to aid in satisfy-
current state of a specific problem. The following ex- ing rules during subsequent production cycles. This
panded definition describes a production system by its "state saving" feature means that only recent changes
basic components [11, 185]: to WM need to be evaluated during the current match

"a set of facts, collectively known as working mem- phase instead of evaluating the entire WM. Second,
ory (WM) that describe the current state of a Rete exploits the commonality of CEs in the "if" side
problem. A common way of expressing rules is of the rules in the rule base. By eliminating redun-
as an object-allribute-value triple [5, 8] such as: dant CEs, the Rete algorithm evaluates a given CE

(autopilot-switch position off) only once each cycle even though this CE may exist in
the "if' side of a number of rules. Eliminating redun-

"* a set of rules, collectively known as the rule base. dant CEs tends to significantly reduce the number of
Each rule represents an element of problem solv- pattern matching tests that need to be accomplished
ing knowledge for a specific application. A Rule during each production cycle [3, 35).
typically contains 1 or more condition elements The Rete algorithm uses a special type of constraint
(CEs) (i.e. logical predicates) that must be sat- network compiled from the "if" side of rules in the rule

19

node in figure 2 tests the consistency of binding
between the aircraft and target objects. Because(IT the location attribute value of both objects match,

(AIRCRAFT CALLSION X LOCATION A a joined token is propagated.
(TARGET CALLSION Y LOCATION A)

THEN AIRCRAFT TARGET

(ASSERT (CONDITION STATUS RED))) IP rleiigP t
Extensive research by Gupta shows that the Rete

match algorithm is suitable for efficient parallel pro-
[1COSTN TESTNOD o.i, .. ,c- duction system implementations. The data flow na-Scm.IIilg l 747 cl.lIsig s DC-IO

0Th MEMORY NODE [o ture of the Rete algorithm makes it possible to execute
the actions of a number of Rete nodes in parallel. It's

_ _ _AND TEST NODE__ __ also possible to process multiple changes to WM in
parallel. The following two general methods are typ-

t=(t 'K9 -. Ihif.s DC-toIo.,0
.i--ft i-I,.n 7 o7 1tio ically considered in parallelizing the Rete algorithm:

production parallelism and node parallelism [5, 191.
Production parallelism divides an application's rule

Figure 2: A Single Rule Rete Network base among a number of processors. Each of these
processors then performs the match phase on its par-
tition of the complete rule base. Because production

base to perform efficient pattern matching. Figure 2 parallelism constitutes a static partitioning, its execu-
shows an example of a simple Rete network compiled tion involves very little communication between pro-
from a single rule. The Rete network is generated at cessors. Hence it is a relatively large grain problem.
compile time, before the production system applica- Unfortunately, this static partitioning can lead to large
tion is actually executed. At run-time, entities (i.e. variances in processing time between processors thus
tokens) containing a flag, a list of time tags and a list of limiting achievable speed-up [5, 46].
variable bindings flow through the Rete network dur- Node level parallelism attempts to execute the ac-
ing each match phase. Each token flows through the tions of a number of Rete network node in parallel
network only until a match for its list of variable bind- using different processors. Node level parallelism re-
ings is not possible. A token reaching the bottom of quires a minimum of two communications per node
the graph contains a complete and valid list of variable processing action making it a relatively small grain
bindings, making it eligible for execution. [3, 38]. problem. Despite the heavy communication costs as-

The Rete network contains three basic types of sociated with node parallelism, it allows for efficient
nodes [7, 688): and balanced use of all processors [5, 49].

" Constant Test Nodes - test for consistency be- A significant amount of research has been directedtween attribute values of individual CEs, such toward implementing Rete on multiprocessors, but the
as binding the aircraft objects location attribute prospects of implementing Rete on multicomputers
vaslbindin th "a"infircraf obThese loat ataribe remains relatively unexplored. Multiprocessors havevalue to "a" in figure 2. These nodes appear in been favored, because simulation shows node paral-
the top part of the network and take less than be aoebcuesmlto hw oeprl
10% of the total Rete network update time. lelism is superior to production parallelism [5, 55],

and the small granularity of node parallelism is not

" Memory Nodes - store the results of previous efficiently compatible with the communications facili-
match phases for use in the current match phase. ties of most message passing multicomputers [7, 687].
The state stored by these nodes consists of a list Limited theoretical analysis of a parallel architecture
of all previous tokens that match the CEs bound which implements Rete in an object-oriented manner
up to this point in the network. This means that on a multicomputer has been performed, but it draws
only changes made to WM by the most recent rule heavily on previous multiprocessor design concepts [7,
firing need to be considered during the current 689].
cycle. Research Methodology

" Two Input Nodes - check consistency of vari- It is common practice for parallel computer re-
able binding between two different token inputs, searchers to compare the performance of their design
A new token is propagated if and only if there is with current state-of-the-art performance applied to
complete consistency between the variable bind- the same problem, however this comparison actually
ings of the two inputs. For example, the "and" tells us very little about the relative merits of the de-

20

search) for this application when implemented on
a parallel computer architecture.

2. The minimum goal performance value in terms of
execution speed required for this application to be
feasible. This measure is independent of computer

S...spd architecture coiisiderations.
mi .ait. of intere1 t)

3. The lower bound performance determined by the
processing speed of this application using the best
known sequential algorithm implemented on a
comparable sequential computer architecture.

1 2 3 4 5 6 7 a 4. The theoretical upper bound performance for this
N omb., *f Parallel Po... or. application based on the selected parallel algo-

Lsg..d: I - I ... , bon.d p- .o-.... ,i rithm and its implementation on a specific parallel
a . current f-the..... p.aralle performanc. computer architecture under ideal conditions.
p - proposed p.n)Iel architecture perforb.ne

S - o.) Pfo,..c.... 5. The actual measured performance of the new par-
u - upper bound on proposed architecture perfoum-.ce

allel implementation. Ideally, this measurement
should be available for different numbers of pro-

Figure 3: Example Performance Spectrum Chart cessors.

This performance spectrum approach results in two
sign. The direct comparison of designs is necessary important contributions: First, at any point in time, if
to show advancement of knowledge in the field, but the research does not appear promising, the researcher
there are two basic reasons why this limited analy- has the choice of proceeding with the current design,
sis is generally not adequate: First, new parallel de- altering the current design or falling back on another
signs are often configured to run on different machines possible design. Second, the performance spectrum in-
where speedups attributable to different hardware can- dicates whether it is theoretically possible to attain the
not be distinguished from speedups attributable solely desired goal performance using the chosen combina-
to new program design. Second, it is not enough when tion of algorithm and architecture. Performance spec-
the new parallel design outperforms the existing one, trum information also supports intelligent decisions on
because the performance of both designs may fall far whether to proceed with refinements of the current de-
short of the required performance for the proposed ap- sign or to try new designs that eliminate weaknesses
plication. of the current implementation.

In order to determine the true merit of a parallel Previous Best Performance
design (for a given implementation), one must deter- The performance of any new parallel architecture must
mine where on the performance spectrum the current be compared to that of any existing parallel architec-
implementation lies in terms of processing speed. This ture that is considered state-of-the-art. The only par-
processing speed is defined in terms that are significant allel architectures applied to the RAV expert system
to the particular application (e.g., for expert systems, are those developed by Donald Shakley [151. This ef-
the performance metric is typically expressed as the fort concentrated on a Lisp implementation of the RAV
average number of rules fired for every second of run- on a first generation Intel Hypercube (iPSC1) multi-
time). By looking at the performance of the current computer. Using production parallelism and the up-
implementation with respect to other important met- dated Winston and Horn inference engine, Shakley's
rics, the actual merit of the current implementation iPSC/l implementation fired an average of 1 rule ev-
can be seen more clearly, ery 11 seconds with a peak performance of 0.5 rules
The performance spectrum encompasses five important every second using 16 processors [16, 13521.
measures of performance for determining the relative Although this study shows that the increased par-
merits of the design and for guiding the research for- allelism of the iPSC/1 design could in fact produce
ward in a logical and methodical manner. Figure 3 processing speedup compared to the TI Explorer de-
shows an example performance spectrum based on the sign, the amount of speedup realized was hampered by
five measures of performance explained below: the effects of interprocessor communication overhead,

load imbalance, and modelling errors. The program
1. The state-of-the-art performance (prior to this re- design was implemented in Common Concurrent Lisp

21

required just to obtain the optimum serial algorithm's
level of performance [8, 122). For this research, the
processing speed of a "good" serial design is needed
to delineate a lower bound on performance expected in
processing the RAV expert system. Furthermore, the

Ft"le serial design must be implemented on hardware simi-

p., lar to the hardware upon which the subsequent parallel
designs are implemented if the comparisons are to be

sc •valid.

The proposed serial design employs an existing ex-
22 4 8 28 32 pert system inference engine or shell, which uses the

N.mber ot P.llel Proceoi Rete algorithm when performing the match phase of
the match-select-act cycle. The possible alternatives
viewed were: Inference Corporation's Automated Rea-

Figure 4: iPSC1 RAV Performance Results son ing Tool (ART), Official Production System, ver-
sion 5 (OPSh) from Carnegie-Mellon University and
the NASA developed C-Language Integrated Produc-

on the iPSC1, which is significantly different than the tion System (CLIPS). The original RAV system is im-
proposed environment for this research. Without reim- plemented using ART, however ART is available only
plementing Shakely's program on the iPSC/2, a direct in Lisp and Bliss based versions. Sequential versions
comparison with the new parallel design is not possi- of OPS5 have the same problem, but Carnegie-Mellon
ble. Reimplementing the code on the iPSC/2 was not has recently developed more efficient versions of OPS5
within the scope of this research; however by scaling expressly for parallel applications. Unfortunately, the
the previous iPSC/1 results' a more direct compari- parallel version of OPS5 uses a combination of C and
son is possible. Accounting for the differences in the machine language making the shell non-transportable.
iPSC/1 and iPSC/2 architectures, 8 rules per second NASA's CLIPS interpreter is the expert system shell
represents an optimistic upper bound on Shakely's im- chosen for this research. The C language composition
plementation on the iPSC/2. of CLIPS supports transportability and its syntax is
Goal Performance similar to ART making transliteration of application
The goal performance for a real-time application de- rule bases easier.
termines how "fast" a given design must be in order The lower bound performance implementation uses
to meet the feasibility requirements of the application, a full CLIPS interpreter executing the RAV rule base
and this figure in turn influences the design of possi- on the host processor of the iPSC/2. At system ini-
ble solutions. AFWAL managers were interviewed to tialization, the processor is loaded with the entire RAV
determine what the best estimate of the real-time re- rule base (326 rules) and a set of facts describing the
quirements for the RAV system are and the critical initial state (389 facts). In AFWAL's implementation
points of the RAV mission are. The estimated goal of the complete RAV system, several conventionally
performance for the RAV application was determined programmed subsystems provide continuous simulated
by the rate of the incoming data and the number of inputs to the piloting expert system subsystem. Be-
rules needed to process this data and provide control cause these systems providing inputs to the RAV ex-
outputs before the next set of data is received. The pert system were not available under this design, an-
most critical parts of the RAV application involve low- other approach to providing these inputs was required.
level route following and final approach to landing. The "if" side of rules involving processing of input data
During these phases of the RAV mission, the system were modified to obtain data from WM instead of from
design must be capable of sustained firing of between outside systems. This data was provided by a set of
37 and 75 rules every second [2]. data facts asserted along with the initial facts. This

Lower Bound Performance study's benchmark test simulates a limited RAV mis-
A "good" parallel implementation typically starts with sion; in this test, a total of 73 rules are fired as the
a "best" or at least "good" serial implementation in RAV progresses through the simulated mission. Over
terms of algorithms and data structures. Parallelizing numerous test runs, the sequential implementation av-
a less than optimum serial algorithm is typically justi- eraged 3.5 seconds to fire the 73 rule benchmark test.
fled only when the optimum algorithm is not amenable The average 20.9 rule per second figure now becomes
to parallelism. If a less than optimum algorithm is se- the lower bound performance.
lected, increased performance through parallelism is Upper Bound Performance

22

Certain assumptions are made at the outset of this performance measurements, we know that the serial
analysis to model an ideal environment for the RAV implementation of CLIPS requires 3.5 seconds to exe-
expert system design executing on the proposed par- cute the 73 cycle restricted rule base. The minimum
allel architecture. First, the model assumes perfect parallel computation time now becomes the serial pro-
load balance among the available processors and that cessing time divided by the number of processors used.
no computational overhead is introduced through par- In comparison with the computation time, deter-
allelism. Second, the model assumes that the only mining the minimum communication time is a some-
activity other than computation on a processor that what more involved task, but provides a more accurate
produces time cost is inter-processor communication. indication of the actual cost. A total of d + 1 commu-
Under the HyperCLIPS design, the execution time for nications between processors is required to determine
a single match-select-act cycle is: which processor has the best candidate rule, where d is

the dimension of the cube being used. Only one broad-
1. The maximum time spent by any given processor cast communication is required for the processor with

"besto"up t local rte, n k athe "best" global rule to send the actions associated
"best" local rule, plus with that rule to all other processors.

2. the time for the processors to determine which Using a simple message passing ring program, it was
processor has the global "best" rule through gray- determined that a compare and exchange communica-
code compare/exchange (with its neighbor proces- tion requires 0.00424 seconds and the average action
sors), plus message broadcast requires 0.00776 seconds (9, 6-5].

The iPSC/2's 2.8 Mbytes per second interconnection
3. the time for the processor with the global "best" network is capable of transferring each compare and

rule to broadcast the actions associated with the exchange communication in 0.0000825 seconds and the
best rule to all processors. broadcast message in 0.0001678 seconds. These times

Given the time components related to a single are two orders of magnitude less than the message

match-select-act cycle, it is possible to calculate upper transmission times actually observed, It becomes obvi-

bound performances for the complete RAV benchmark ous that overheads associated with preparing the data

test. Under the assumptions of the model (even load for transmission, setting up the message transmission

balance and parallelization overhead), the total exe- path and converting the message to data at the re-

cution time should be evenly divided by the number ceiving node account for most of the actual message

of processors. This parallel computation model repre- passing time.

sents a linear decrease in processing time with respect Given the lower bound processing time and commu-

to the number of processors used. The easiest method nication time figures, the upper bound performance

for computing the total minimum communication time (in seconds) can be expressed as:

involves finding the minimum communication time per 3.5
cycle and then multiplying by the number of cycles. By (-) + ((((d + 1) x 0.00424) + 0.00776) x 73)
adding this minimum total communication cost to the
linear speedup figure representing the total computa- where N equals the number of processors and N = 2d.
tion time, the total minimum computation time can be Figure 6 shows the results of this analysis applied to
determined. Using N processors running a restricted different numbers of processors.
rule base with C cycles, the upper bound performance HyperCLIPS Design and Performance
of the proposed design, in seconds can be expressed as: The HyperCLIPS system design implements a paral-

lel production system interpreter in CLIPS using the

_PAR NsE + production parallelism concept. This design supports
N "the use of parallelism in all three phases of the match-

where t
PAR is the parallel computation time, tSEQ select-act cycle. A general high level description of the

is the sequential computation time, tSE is the select- HyperCLIPS algorithm follows:
exchange time and t AB is the act-broadcast time. 1. While termination is not detected, continue

The task of determining the actual upper bound per-
formance now becomes that of acquiring actual times 2. Parallel Match
for the variables in the previous upper bound equation.
This process can be significantly simplified if we con- * each processor receives WM changes from a
sider the computation and communication costs sep- root processor

arately. Finding the minimum computation time is a * each processor updates its local Rete net-
relatively straightforward task. From the lower bound work based on WM changes

23

TOTAL TIME, 20

j18

RULES

TIME w COMM TIME PER

2 * SEC

V.
"V..

2 10

S." PROC TIME
" ° "° O . o...

1 2 4 8 1 2 4 a

NUMBER OF PROCESSORS NUMBER OF PROCESSORS

Figure 6: Experimental Performance (RAV)

Figure 5: Upper Bound. Performance Metric

during the match phase. Each processor's local match
3. Parallel Local Select phase requires no communication because all informa-

* each processor selects the "best" rule from tion needed to update the Rete network is already local

its local conflict set to that processor.
The most significant modification to the serial

4. Global Select CLIPS code involves adding the message passing capa-

"* processors perform compare/exchange of lo- bilities between processors. For the compare/exchange
cal prest"orue periority withareighboing oo- communication, each processor exchanges messagescal "best" rule priority with neighboring pro- with all its nearest neighbor processors in the binary

N-cube network. This message contains only the pri-
"• root processor holds the "best" global rule ority of a given processor's "best" rule. The processor

when compare/exchange is complete with the highest priority rule becomes the root pro-

5. Broadcast Global Act cessor and broadcasts the action associated with its
chosen rule to all other processors. This communica-

* root processor broadcasts WM change spec- tion is simply an ASCII string that is processed by the
ified by the global "best" rule's "then" side. CLIPS interpreter on each processor.

6. Return to step 1 The upper bound prediction, shown in figure 5, in-
dicates that almost no speed-up can be expected by

Under the concept of the HyperCLIPS design, each this design and indeed, the results are somewhat dis-
active processor supports a full production system in- couraging. Figure 6 shows that, as the number of pro-
terpreter; each processor executes this CLIPS shell cessors increases, the amount of actual speedup actu-
program on a subset. of the total rule base. At sys- ally decreases. On the surface, it appears that corn-
tern initialization, the iPSC2 host processor loads all munication overhead is the culprit, but further anal-
working processors with an approximately equal sub- ysis shows it to be only a contributing factor. The
set of the rule base. This research makes no attempt communications costs shown in figure 5 represents an
to allorate rules in an optimum manner with respect arcurate measurement of the average communication
to load balance among processors. Instead, an ad- times whereas the computation times are optimistic.
hoc allocation is used to distribute the rules evenly This knowledge allows us to make a meaningful assess-
among processors. With this static decomposition ap- ment of the load balance among processors achieved in
proach, no interprocessor communication is required this research. Comparing the upper bound results with

24

those in figure 6, it is obvious that the load balance
among processors is far from optimum. This problem
raises the question of whether an efficient partitioning
of the RAV expert system is possible. 40

Performance Comparison Findings MINIMUM GOAL

This research indicates that the basic methods behind
this design are promising, but the design and imple- 30

mentation suffer due to influences of the parallel archi- RULES

tecture chosen and the characteristics of the applica- PER BOU

tion itself. The lower bound performance experienced SEC - = LOWER BOUND

by the serial CLIPS design is impressive (especially -
considering it is implemented on a micro-computer), UPPER BOUND

but it still falls short of the minimum real-time require- 10 ST.OTE.R

ments. CLIPS performs particularly well because it STATE-OF-THE-ART

takes advantage of the Rete state-saving algorithm for
the match phase of the match-select-act cycle. This is ACTUAL PERFORM NCE

largely the reason that the serial version outperforms 1 2 4

Shakley's parallel implementation [15, 62]. NUMBER OF PROCESSORS

The results show that the HyperCLIPS implemen-
tation on the iPSC/2 will not produce effective results
for the RAV application. The upper bound on perfor-
mance indicates that almost no speed-up is achievable Figure 7: Actual Performance Spectrum (RAV)
using the HyperCLIPS design due primarily to large
communication overheads. Even when using minimum
communication between processors, the overhead in- Gupta discusses the affect-set problem and gives sev-
curred constrains speedup to 1.13 times. In the case eral plausible reasons why this problem exists in pro-
of the RAV application, it is both load imbalance and duction systems. If we subscribe to Gupta's assertions
communication overhead that conspire to produce neg- that small affect-sets are basically an inherent part of
ative speedups. The ad-hoc partitioning method used production systems, then production parallelism be-
for the RAV application fails to effectively balance the comes significantly less attractive as the following sec-
processing load. The results indicate that using mul- tion discusses.
tiple processors and ad-hoc rule partitioning does not Production parallelism relies heavily on the exis-
reduce the serial processing time. These results war- tence of fortuitous rule-to-processor allocations in a
rant an investigation of the RAV expert system char- given application. In order for production parallelism
acteristics to determine why the use of multiple pro- to produce significant speedups, the computational
cessors does not appear to decrease execution time. load associated with the match phase must be as
Additionally, the use of some algorithmic mechanism evenly distributed as possible. Considering the Rete
to partition rules among processor for effective load algorithm, this means that the computational load of
balance must be investigated, updating the local Rete network on each given pro-

The Partitioning Problem cessor must be as equal as possible. Oflazer reminds
us that this problem must be considered for the case

The characteristics of expert systems applications of firing every rule in the rule base, particularly those
becomes significant when considering the optimum rules that fire more often than others [13, 96). Oflazer
manner for parallelizing them. Empirical measure- proves that this problem is NP-Complete, but also de-
ments by Gupta and Forgy uncover two of the more scribes an efficient heuristic approach for rule parti-
vital characteristics of production systems [6, 93]: tioning [13, 94]. More recently, Dixit and Moldovan

I The affect-set (the set of rules affected by a given describe a method for allocating rules to processors
l fthat is independent of Rete-based implementations.rule firing) is generally very small with respect to Their motivation is based on finding more generalized

the total number of rules in the application, ways of expressing and applying parallelism in produc-

The size of the affect-set does not increase as the tion systems that is independent of algorithm-specific
number of rules in the application increases, in- details [1, 24].
stead it remains approximately constant (between Oflazer's partitioning algorithm results in rule-to-
25 to 40 for the systems measured). processor allocations that produce 1.15 to 1.25 more

25

speedup than ad-hoc allocation methods [5, 155]. to influence it considerably. Other factors aside, it now
There are several reasons that this partitioning does becomes obvious that production parallelism is only a
not produce better results [5, 111]: marginally promising means for increasing the execu-

I1. The size of the affect-set constrains the number tion speed of the RAV expert system application in its

of processors that can produce effective work. If current form due to the struture of its rule base.

the number of processors is larger than the size Conclusions
of the affect set, then the there will be some pro-
cessors that do not contain rules affected by the Parallel processing is a promising approach to

firing of a given rule. Whenever this situation oc- achieving real-time processing of expert systems soft-

curs, the processors without affected rules will be ware, but a number of impressive problems exist be-

essentially idle. tween this concept and its implementation. The pri-
mary problems that need to be overcome are inter-

2. The time to process different rules in the affect-set processor communications overhead and load balanc-
can vary greatly depending on the specific appli- ing. The major factor in minimizing both of these
cation. If each processor has one affected rule, problems involves the proper choice of problem de-
then the actual time each processor takes to up- composition and the parallel computer architecture.
date that rule will produce some computational Although the Rete match algorithm produces imprcs-
load imbalance. sive serial performance in processing expert systems, it

also results in a problem granularity that is marginally3. Loss in Rete network sharing will tend to increase compatible with the architecture chosen for this re-
the number of redundant computations. Rules in search. The results indicate that this type of problem
t fcommon condition elements. If these rules are requires the use of parallel computer architectures with

allocated to different processors, then each pro- significantly less communication overhead.
alcatessor wl derformredundant p csom ations eahie pThis research goes beyond just producing a new par-cessor will perform redundant computations while allel architecture application. Although the perfor-

I updating its local Rete network.
mance of the HyperCLIPS design on the iPSC2 Hty-

Top-level examination of the RAV expert system in- percube was less than impressive, it's performance is
dicates that it is not particularly amenable to produc- quantified in terms of the lower and upper performance
tion parallelism methods. Analysis indicates that each bound and the ultimate goal performance. This ap-
rule firings affects an average of just four rules, with proach not only adds validity to the design, but ex-
an observed range of between 1 and 18. Four rules poses the level of maturity the RAV expert system
represents only 1.5% of the 273 rules in the RAV rule research achieves from this research. Based on this
base. These results indicate that the typical affect-set approach, the findings indicate that research into par-
for the RAV expert system is significantly smaller than allel processing of the RAV expert system is still in
the applications measured by Gupta and Forgy. Vari- its infancy. The processing speeds obtained from us-
ations in rule processing time within the affect-set and ing serial CLIPS supports the continued use of the
loss in Rete network sharing among processors have Rete match algorithm. But, the characteristics of the
not been examined. The existance of small affect-set RAV expert system suggest that the system lends itself
sizes is sufficient to explore the assertion that the RAV to very limited speedup using production parallelism.
application is not amenable to production parallelism. Therefore, RAV expert system research may be better

This discussion indicates that production paral- served by approaching parallelism from the standpoint
lelism is significantly constrained by the character- of node parallelism rather than production parallelism.
istics of the particular application, particularly the The problems encountered in this research under-
size of the affect-set [5, 113]. The average affect-set score the need for significantly more background re-
size is a reasonable determinant of the upper-bound search in the area of real-time expert systems. Most
speedup that can be expected using production par- previous research in applying parallelism to production
allelism if processing differentials and losses in Rete systems concentrates on "stationary" types of prob-
network sharing are not considered. The size of the lems instead of real-time types of problems. Process-
average RAV expert system affect-set (four), now be- ing speed is important in a number of computation-
comes the upper bound on the number of processors ally intensive "stationary" applications, but the need
that can be effectively used to increase execution speed for additional processing speed in real-time systems is
and the tipper bound on speedup as well. Other fac- critical. Laffey notes that Gupta and Forgy's asser-
tors not considered in this analysis may influence the tions about the level of parallelism in the average pro-
upper bound of four somewhat, but they are not likely duction system does not typically apply to real-time

26

production systems. Real-time applications typically [6] Gupta, Anoop and Charles L. Forgy. Static
involve changes to WM each cycle as a direct result of and Run-Time Characteristics of OPS5 Produc-
incoming data. This characteristic of real-time appli- tion Systems. Journal of Parallel and Distributed
cations has the potential to increase achievable speed- Computing, 8(1):20-29, January 1990.
ups significantly [10, 401. [

In their article, Fast is not Real- Time, O'Reilly [7] Gupta, Anoop and Milind Tambe. Suitability of
and Cromarty state that guaranteed response time is message passing computers for implementing pro-
just important as fast processing capability in achiev- duction systems. In Proceedings of the National
ing real-time behavior. Without guaranteed response Conference on Artificial Intelligence, pages 687-
times, the system may not be capable of responding 692, August 1988.
quickly enough in critical situations even though its [8] Gupta, Anoop, and others. Parallel Implementa-
average processing time is very fast [14, 249]. The im- tion of OPS5 on the Encore Multiprocessor: Re-
plication is that average processing times mean very sults and Analysis. International Journal of Par-
little in terms of real-time expert system performance. allel Programming, 17(2):95-124, April 1988.
Instead, the critical measure now becomes: the maxi-
mum time required to process updates to WM at any t91 Harding, Capt William A. Hypercube expert sys-
given time. This problem is likely to be compounded tem shell - applying production parallelism. Mas-
by the assynchronous flow of data into the WM. Laf- ter's thesis, Air Force Institute of Technology,
fey even cites research by Halley indicating that Rete Wright-Patterson Air Force Base, Ohio, Decem-
is not appropriate for real-time applications because ber 1989.
an upper bound on the Rete network update times [10] Laffey, Thomas J. and others. Real-Time Knol-
cannot be accurately predicted [10, 40]. wedge Based Systems. Al Magazine, 9(1):27-45,

What level of parallelism does exist within real-time Spring 1988.
expert systems applications? Can this parallelism be
successfully extracted allowing significant increases in [11] Luger, George F. and William A. Stubblefield.
speed-up using parallel processing methods? Is it pos- Artificial Intelligence and the Design of Expert
sible to accurately predict the guaranteed response Systems. The Benjamin/Cummings Publishing
time in these systems? Future research will concen- Company, Inc., Redwood City, California, 1989.
trate on determining the feasiblility of applying differ- [12] McNulty, Christa. Knowledge engineering for pi-
ent levels of parallelism to solving the problems inher- loting expert system. In Proceedings of the IEEE
ent in real-time expert system applications. National Aerospace and Electronics Conference,

pages 1326-1330. IEEE, May 1987.

References [13] Oflazer, Kemal. Partitioning in Parallel Process-
ing of Production Systems. IEEE, pages 92-100,

[11 Dixit, V. V. and D. I. Moldovan. The Allocation 1984.
Problem in Parallel Production Systems. Journal [14] O'Reilly, Cindy and Andrew S. Cromarty. Fast
of Parallel and Distributed Computing, 8(l):20- is not real-time: Designing effective real-time ai
29, January 1990. systems. In Proceedings of the International Con-

[2] Fanning, 1Lt Jesse. AFWAL Robotic Air Ve- ference for Optical Engineering, pages 249-257.
hicle (RAV) Project Member. Telephone inter- SPIE, April 1985.
view. Air Force Wright Aeronautics Laboratory, [15] Shakley, Capt Donald J. Parallel Artificial Intel-
Wright-Patterson AFB, OH. 22 November 1989. ligence Search Techniques for Real-Time Applica-

tions. Master's thesis, Air Force Institute of Tech-[3] Forgy, Charles L. Rete: A Fast Match Algorithm. nology, Wright-Patterson Air Force Base, Ohio,
Al Expert, pages 34-40, January 1987. December 1987.

[4] Giarantano, Joseph C. and Gary Riley. Expert [16] Shakley, Donald J. and Gary B. Lamont. Par-
Systems: Principles and Programming. PWS- allel Artificial Inteiiigence Search Techniques for
Kent Publishing Co., Boston MA, 1989. Real-Time Applications. In Proceedings of the

Third Annual Conference on Hypercube Concur-[5] Gupta, Anoop. Parallelism in production sys- rent Computers and Applications, pages 1352-
tems. Master's thesis, Carnegie-Mellon Univer- 1359. ACM Press, January 1988.
sity, Pittsburgh, Pennsylvania, March 1986.

27

The Fifth Distributed Memory
Computing Conference

2: mAlte ApUtes

Parallel Distributed-Memory Implementation
of the Corrective Switching Problem

J-Y. BLANC and D. TRYSTRAM J.W.A. RYCKBOSCH
LMC-IMAG EDF-DER

46 avenue F. Viallet 1 avenue De Gaulle
38031 Grenoble Cedex (FRANCE) 92141 Clamart Cedex (FRANCE)

Abstract.
For the past 20 years. an increasing interest has been devoted where the matrices Ai (of size n by n) are "close" to each
to the sequential Conjugate Gradient Method for solving large other, viz, Ai+1 = Ai+Ai, with Ai of small norm. The
linear systems arising from the modeling of physical problems solutions xi will be close to each other in this sense, and we
(especially for very large systems with sparse matrices). This want to take full advantage of this.
paper deals with the implementation on parallel Note that this problem also occurs in Adaptive Filtering or
supercomputers of a preconditioned conjugate gradient method Finite Element modeling.
for solving the corrective switching problem obtained while
modeling the behavior of power systems in electrical
networks. This problem consists in finding the successive 2. Solving the corrective switching problem
solutions of many close linear systems (not too large) with
very ill-conditioned matrices (sometimes even singular). We The method commonly used for solving this problem consists
present a new method based on the Preconditioned Conjugate of refactorizing the matrix of each system (Si) by the direct
Gradient algorithm with an original preconditioning and study Cholesky Method and solving it separetely. Note that the use
its parallelization on both shared and distributed memory of this method is not available when n becomes too large, for
computers. both reasons of huge storage and high rounding errors.

Practically speaking, n is about 100 for a typical corrective
switching problem. However, during the parallelization, the

1. Setting of the problem successive solutions can be obtained simultaneously on
multiple processors without any communications, and theDuring the control of electrical networks, the operator must local computations require a load-balanced amount of

ensure the system to be in a safe state (i.e. to be able to operations, namely 0(n3). Moreover, the solution will be
protect the system against incidents liable to occur in real difficult to carry out because the matrices are very ill-
time). The demand and the possibility of the plants are such conditioned (they can even be singular, that means in practice
that nuclear energy between two plants flows from various that we obtain several solutions).
nodes of the network. The loss of one element could jeopardize
the security of the whole system by a chain tripping: in such
case, an overload line occurs and without any operation the 3. A better algorithm based on the
protective devices will act and the line will trip out. In actual Conjugate Gradient
operations conditions, the switching actions that the operator
applies to the electrical network ensure that overloads will A new iterative method based on the Preconditioned Conjugate
disappear before the delayed protective devices go into action. Gradient Method has been proposed by the authors for
Such actions are shown on the picture at the end of the paper. sequential computers. It takes into account the small norm
The computation of switching actions is a combinatorial variations of the matrices. The basic idea is to factorize a
problem, very hard to solve. The connections of the switching matrix Ai (by Cholesky) for a given index i and to use it as a
elements are described as discrete variables. The corrective
switching problem corresponds to determine the various preconditioning of the Aj (for j>i) until this factorization
possible solutions of the load flow calculation. Each such differs too much from Aj. We can typically solve about 50
situation requires to solve a linear system where the matrices linear systems with the same preconditioning.
have only a few elements which differ from each other. A complexity study has proved the superiority of this method

in regard to the usual methods, since each step costs less than
Let us consider the N consecutive linear systems below: a Cholesky factorization and the preconditioning is not

(Si) Aixi = bi, l_<i_<N computed at each step, but only for the next reinitialization.

30
0-6186-2113-3/90/0000/0030$01.00 01990 IEEE

The figure below gives the numerical results on an usual The strategy consists in dispatching the various systems to the
sequential computer (SUN3). processors. Note that the shared-memory vector-computers are

limited by the slight number of processors (no more than 10

70- in practice).

60 5. Parallel implementation on distributed-
's I "memory computers

CD50-
4 0To find an efficient implementation of this method is difficult

C • -becaise successive sytems are solved with the same
5 30- preconditioning and we need a global checking to ensure that

(D some processors are not locally computing too many
Lu 20- iterations. Thus, the amount of computations is not well

balanced from a processor to the other. In order to simplify the
1 0computation, an initial phase is run where the number of
0 50 100 150 200 linear systems to be solved with the same preconditioning will

5 e obe determined. This initialization leads to a static tasks
Number of linear systems allocation.

Figurel. We propose here an implementation where a processor
Successive Preconditioned Conjugate Gradient method. computes first the Cholesky factor of A1 and then broadcasts it

to the others. Each processor computes the solution of a
It is well-known that the Preconditioned Conjugate Gradient system with a given amount of computations (that means a
algorithm gives the solution of a system of size n in less than given number of iterations, which increases with the index i)
n iterations. Each iteration requires, refering to the basic linear inversely proportional to its distance from the sender
algebra subroutines BLASI (vector level operations), two processor.
DOTs (inner products) and three SAXPYs (vector updates), Then, we asynchreonously compute and broadcast a new
plus the solving of a system (usually not too expensive to Cholesky factor to the processors. Thus, the first processor to
solve) and a matrix-vector product (both needing O(n 2) receive the data is the one which has to do the most iterations.
operations), which are BLAS2 operations and can be also The aim is then to find the "better" allocation for the
decomposed into BLAS 1 vector elementary operations, and the successive linear systems to the processors, in fact the one
evaluation of two scalar parameters. Because of both the data which minimizes the total execution time.
and operations regularities, the granularity of the tasks will be The following figure gives the numerical results for the same
taken as O(n) and are suitable for an implementation on vector example as before for a Cholesky factorization plus the
processing units. resolutiorn by successive Conjugate Gradient method until the
This analysis leads to two basic ways to implement the next reinitialization.
successive Conjugate Gradient in parallel: first, we can run
each Conjugate Gradient algorithm locally to the processors The experiments have been performed on a 32 hypercube
(this first solution will be limited by the local memory size), vector computer (FPS T40). The various results represent the
or we can parallelize successively the most expensive task of various levels of programming of each processor.
one Conjugate Gradient (the BLAS2 operations) to run it
concurrently on all the processors. 102

4. Parallel implementation on shared-memory
computers o

1101 1

The parallelization of numerical algorithms on this kind of
parallel computers has been much studied. It is quite simple if
we take into account the analysis of the precedence constraints. 0
The schedule of the tasks is synchronized even if the numbers
of iterations are different on the various processors. The large
shared-memory allows every processors to get easily all the
global informations (like the knowledge of the Cholesky 1o-1

factors used as preconditionings for several systems). The use 10

of local cache memories speeds-up the execution time after the Scan gene vectrfomu

duplication of the common data. Figure 2.
Schedule of work on the distributed-memory

vector-computer

31

Another way to implement the corrective switching problem is Basic References.
to distribute among the various processors all the local
informations about the physical problem. This approach will J-Y. BLANC, P. COMON and D. TRYSTRAM, Using
completely change the problem to solve: instead of having a Preconditioned Conjugate Gradient for Consecutive Linear
linear system, each processor should exchange local Systems, Comm. in Applied Numerical Methods (to appear)
informations between neighbor processors, perform local Z. CVETANOVIC, The Effect of Problem Partitioning,
elementary operations such as the sum of the electric powers Allocation and Granularity on the Performance of Multiple-
stemming from a node in all the directions. Processor Systems, IEEE TC, Vol. 36, N. 4, 1987

J.J. DONGARRA, F.G. GUSTAVSON AND A. KARP,
Implementing linear algebra algorithms for denses matrices on

6. Conclusion a vector pipeline machine, SIAM Review 26, 1984
G.H. GOLUB and C.F. VAN LOAN, Matrix Computations,

We conclude by numerical comparisons between shared- Johns Hopkins University Press, 1983
memory and distributed-memory computers (of the "same J. RYCKBOSCH, A Method for Solving the Problem of
magnitude order" of performances). Numerical experiments Optimal Swithching, proceedings of IFAC, Pekin, 1986
have been run first on a shared-memory parallel computer
(Alliant FX80 with 8 vector-processors of each 16 MFLOPS
of peak performance) and a distributed-memory parallel Example of a practical
computer (FPS T40 hypercube with 32 vector-processors of corrective switching problem.
each 12 MFLOPS of peak performance).
The experiments show the good behavior of the successive We give below the picture of a fragment of the Electrical High
preconditioned conjugate gradient method for solving the Voltage (EVIH) French system in a very strained situation. The
practical corrective switching problem on parallel computers. demand and the possibility of the plants are such that nuclear
The distributed-memory implementation is better because of energy of Bugey and Cruas plants flow from Ssv.OS71 to
the larger number of processors and worst as the shared- Vielm S71. The loss of one of the Crey-Gen element could
memory implementation for the same number of processors, jeopardize the security of the whole system by a chain
as it was expected. tripping: in such case, an overload of the Alber-Gen line

occurs and without any operation the protective devices will
act and the line will trip out.

.•...:g• .:.:.: ..¢..s .:...[

to Moit S71

Cpuic S71 v . . . s. .

72
7. 71

Rawo S71 Cache S71

Emergency
state

Coula S
71 72

32

Fault Simulation on Message Passing Parallel Processors

Leendert Huisman
Indira Nair

I.B.M. Thomas J. Watson Research Center

Raja Daoud
The Ohio State University

Abstract The parallel processors that we will consider in this
paper are distributed memory machines. Such a ma-
chine consists of a number of nodes, also calledA new parallelization technique for Fault Simu- rcsos ahnd hsaC.adsm oa

lation is described that is suited for message passinglocallatin i decried tat s site formesagepasing memory, typically in the order of several megabytes.
based parallel processors. The problem is parallelized The nodes communicate by sending messages to each

by first casting it in Dataflow form and then con- other.

structing a Dataflow emulator for message passing

systems. A fault simulator for combinational logic First, we wanted the simulator to be flexible. By
has been implemented on a Transputer based parallel this we mean that it should not restrict too much the
processor, the IBM VICTOR multiprocessor. Over- thsge m ea n that i o n resict t o eall performance has been measured for several logic range of logic designs that can be simulated. For ex-
designs, ample, the simulator should be able to handle easilyvery large designs, designs with embedded memory

elements like latches and feedbacks. Parallel pattern
techniques[2-5] do not have this attribute, because
they do not handle memory elements or feedbacks

1. Introduction efficiently. The inability to handle feedbacks well also

excludes pipeline techniques[6, 7].
Fault simulation [1] means the simulation of a

logic design that has been modified to reflect the Secondly, the limit on the parallelizibility of a
presence of a fault. Simulating such faulty designs is given problem should be determined by the properties
done, among other things, to asses the ability of a of that problem and not by hardware or software.
proposed set of test patterns to expose faults in the For example, parallelization according to the single-
real design. Typical faults that are simulated arc any controller/many-slaves model does not have this
input pin or output pin of any gate stuck at I or stuck characteristic, because for sufficiently many process-
at 0. In principle, each such fault gives rise to a ors the central controller becomes the bottleneck.
modified design that has to be simulated. Many such The maximum speedup is then determined by how
faults are equivalent however, in the sense that the fast the central controller can work and not by the
corresponding modified designs behave identically. degree of parallelizibility of the problem.
Typically there are on the order of 3 or 4 non-
equivalent faults per gate in a logic design. Simulating A practical measure of how well a problem has
all these modified designs is therefore very costly. been parallelized is the number of processors P. at

which the speedup curve flattens out. A good
In developing our parallel fault simulation algo- parallelization is one where Pm depends only on some

rithm, we considered various attributes that the fault overall characteristic of the problem, like its size for
simulator should have. Not all attributes have been example.
implemented yet, but we feel confident that they can,
with the approach that we have used. Thirdly, when the number of processors increases,

the total available memory increases with it and the
I low these attributes are implemented depends on size of the largest problem that can be handled should

the hardware characteristics of the parallel processor. increase as well. It does not always work out that

33
0-8186-2113-3/90/0000/0033$01.00 0 1990 IEEE

way however, because of the limited local memory an efficient parallelization when 'l*cpu is not much
that is available to each processor: the partitioning larger than the CPU time needed by the correspond-
that was used may lead to an overflow of that local ing sequential version of the algorithm on a single
memory and if no provisions are made to use memory processor.
available on other processors, even small problems
may not be handled. These requirements lead to some important con-

clusions. First, when we partition the problem
Good memory usage can be described as follows, among the available processors, the partitioning

Assume that the uni-processor on which we run the should be done such that there is no duplication of
uni-processor version of our algorithm has infinite design descriptions and no duplication of calculations,
memory and let the memory required by this se- to avoid underutilizing memory and/or processing
quential version for a given problem be M. Assume power. This requirement therefore excludes parti--
there are P processors, each with local memory of size tioning the fault list among the processors, because
m. Finally, let the total memory, summed over all P such a partitioning requires multiple copies of the
processors, that is needed by the parallel algorithm for design description and repeated simulation of the
the same problem be Mp. Me should be almost inde- same patterns on the fault free design. In addition, if
pendent of P. Complete independence is not possible, we want to be able to shift jobs from one processor
because for example some information about the to another, to balance the load among the processors,
network connectivity has to be stored somewhere, the jobs should be fairly small. This excludes
and this information does increase with P. Memory coarse-grained parallelization like the partitioning
is then used properly when Mp is bounded by cM, suggested in [I I].
where c is a number that depends only weakly on P
and is close to I for small P, and when any problem 2. Parallelizing Fault Simulation
that can run on a uni-processor with memory Pm/c
is also guaranteed to run on the parallel processor. A general fault simulation algorithm has three DO

The classical way of paraltelizing fault simulation loops: one over the patterns that have to be simu-
is by partitioning the fault-list among the available lated, one over the faults in the fault-list and one over

is b patitinin thefaut-lit aong he vailble the gates in the design. T he loop over the patterns is
processors [8-10]. This parallelization is straightfor- done in the order in which the patterns are applied to

ward because different faults can be handled inde- the re desin whie the paover the aults

pendently. It is very suitable for shared memory done in any order. The loop over the gates is done

machines where the partitioning of the fault list can in topological order [12]. This is defined even for
be done dynamically [8]. It has the disadvantage on sequential designs because when the real design is
distributed memory machines that the complete de- tested it is put first in test mode [13]. In this mode,
sign has to be replicated on all processors. Better all memory elements are controllable and observable,
partitioning algorithms have been designed [11] in and the design is reduced to a collection of discon-
which each processor only needs the description of a nected pieces of combinational logic. In each such
portion of the design, but even then the total amount piece, there is a trivial partial ordering among theof m em ory required for the design de scription is con- ga e : at A pr c d s a e B wh n 1 is n t e d o -sideabl mor thn ona ui-prcesorgates: gate A precedes gate B when B is in the down-
siderably more than on a uni-processor. cone of A.

Finally, all processors should be used as much as The fault simulation algorithm that we will con-
possible within the limits set by the inherent sider in this article is (a slightly modified version of)
parallelizibility of the problem itself. Roughly speak- Concurrent Fault Simulation [14]. The overall
ing, this means that most of the time most of the structure of this algorithm is shown in table I. The
processors should be doing useful work. If the num- calculation at each gate determines which faultsber of processors is P and the total lapse time is t, cluaina ahgt eemnswihfutthen the total time taken by the problem is Pt. The produce fault-effects on the output of that gate for the
thenothe total time takent b the problem is Pt.aled pattern being simulated. Implicitly, we do a loop
total CPU time spent on the problem is called Tcr over all faults in the fault-list, as indicated in the pro-
and is obtained by adding up all the time periods on gram fagment, b ut -lict, we i n side r in ut sall rocssor whn aprocsso isworkng.The gram fragment, but explicitly we only consider faults
all processors when a processor is working. The that have fault-effects on the inputs of the gate or that
(implementation of the) algorithm is called load-
balanced when Pt is not much larger than Tcru. It is are located on the input or output pins of the gate.

34

nodes is done via message passing, for which the
Transputer provides substantial hardware support.

DO all patterns; Each node has four links to neighbors and the nodes
DO all gates in topological order; are connected in a mesh topology. The bandwidth

Do all faults; over the hard links between neighbors is on the order
code; of 1.5 Mbyte/sec. More details about the hardware
END;

END; can be found in reference [15].
END;

V256 is connected to a host, a PC/AT. The host
Table 1: DO loop structure of Concurrent Fault has an additional Transputer on which the host pro-

Simulation gram runs. This host program supervises the fault

The innermost DO loop, the one over the faults, simulation: it requests information from the user:
is treated as an unbreakable, atomic unit. It is the job which design to simulate, how many patterns and

unit out of which the parallel fault simulation will be which patterns, and where to store the results.

built up. lTis partitioning meets the various re- Loading the simulation programs and the design de-

quirements mentioned in the previous section. By scriptions onto the nodes of V256 is done from the
partitioning the problem into disjoint jobs, there is host as well.
no duplication of design descriptions and no dupli-
cation of calculations. In addition, the atomic jobs All programs are written in OCCAM [19, 20], a
are sufficiently small that they can be moved around parallel programming language that implements
easily when required to maintain load balance. The CSP[21]. All nodes run the same program. an over-
output of the job is a fault table, consisting of all the view of which is shown in Figure I. The program is
faults that produce fault-effects on the output of the divided in two processes, that run in parallel but with
gate. Their sizes range from I to several thousand in different priorities (PRI PAR in OCCAM language).
the designs that we considered. When the node where The high priority process, above the dashed line, is a
the output table is calculated does not have enough router. The low priority process is below the dashed
memory to store the table, no local memory overflow line, and consists of four processes that run in parallel.
need to occur, because the table can be stored on an- The actual application program consists of the FSIM
other node. and CTI. processes. MMIJ is a memory manager and

10 is an input/output interface between the router
Each gate needs fault tables from its preceding and the other low priority processes. The five differ-

gates and the corresponding job can therefore not be ent main processes shown in the figure communicate
executed before all jobs corresponding to preceding via soft channels, indicated by the dashed arrows.
gates have been executed. Gates will be called inde-
pendent when they are not in each other's downcone. The function of the 10 process is to funnel mes-
If two gates are independent, neither has to wait for sages from the application and the memory manager
the other and both can be executed in parallel. It is to off-node processes through the on-node router and
this parallelism that we want to exploit in our parallel to distribute messages from off-node processes be-
fault simulation. A rough measure of the number of tween the memory manager and the application. In
gates that can be treated in parallel is given by the addition, the 10 process plays a crucial role in gath-
width of the design, i.e. the ratio of the total number ering fault simulation and system statistics, since all
of gates in the design and the average number of gates data relevant to a particular node passes through it.
between a controllable input, like a latch or a Pl , and
an observable output, like another latch or a PO. The task of the memory manager is to provide for

several system services, like allocating and freeing
3. System Hardware and Software chunks of memory. The memory manager is also

used to obtain memory on other nodes when a node
The parallel Fault Simulation algorithm has been has run out of space in its own local memory. (see

implemented on the IBM VICTOR V256 multi- also chapter 4.4).
processor [15]. This is a Transputer [16, 17] based
message passing machine. V256 has 256 nodes, each Both on-node and off-node memory allocation
consisting of a model T800 Transputer [18] and 4 requests are handled equally by the memory manager.
Mbyte of local memory. Communication between They share the same resource, the memory, and use

35

the same allocation/deallocation algorithms. In order number of read requests, without requiring an extra
to reduce the number of messages in the fault simu- free message per fault list. No attempts are made for
lator, each malloc request specifies the number of read garbage collection in the event of an unsuccessful
requests (life span) for the particular fault list, which malloc request since, in most cases, the performance
for purely combinational logic, is known. This ena- penalty would not justify the memory gain. A differ-
bles the memory manager to free the allocated mem- ent approach is followed to insure better global
ory block automatically after receiving the right memory utilization (chap 4.4).

hardlink to up-nelghbor

hardlink to hardlink to
left neighbor Router right neighbor

i ihardlink to down-neighborHigh priority i

Low priority

8. .. Z......... • i;- -;;;7;.......,:....

Figure I: Overview of a single node process

The task of the router is to route message between h to n (host to node) or n to n/h (node to node or
different nodes. In our application, messages can host). FEach job requires the sending of many mes-
have varying sizes. Most of them are short, 10 - 100 sages; on average 2.4 request messages per job and 2.3
bytes, but some of them can be very long. Table 2 result messages per job.
shows some message statistics. These statistics were
collected on a 32 node partition of V256, by fault Messages can be sent from any node to any other
simulating five random patterns on one of the sample node. Fach message is sent as a unit and consists of
designs (C7522). With this many nodes, fault simu- a destination, a length and the actual message. The
lating one pattern takes about 0.7 seconds during application program is responsible for providing the
which 1155 jobs are executed and about 1200 faults destination of the message but is not involved in ac-
out of 7550 are caught. The columns show the aver- tually getting the message to its destination. It merely
age size of message, the range when the size is vari- sends the message to its on-node router. The router
able, the frequency with which the messages are sent processes on the nodes then cooperatively route the
and the type. The latter can be n to n (node to node), message to its proper destination.

Message Description Average Range Freq. Freq. Type
size min-max per per

(bytes) (bytes) job pattern

input pattern 41.9 28 - 72 32 h-n
fault list request 20 2.4 2724 n-n
fault list 63.0 20-3280 2.4 2724 n-n
result message 24 2.3 2642 n-n/h

Table 2: Message characteristics-

36

The main characteristics of the router are that 4.2 Overall Simulation Flow
messages are sent along a shortest path from the
sender to the destination and that the routing is done The simulation of the clusters that are assigned to
in a strict store-and-forward fashion. The router reads a processor is controlled by the controller process
the destination and determines whether the message CTI,, shown in figure I. When the design is loaded
has to be forwarded or sent to the application pro- into the parallel processor, the controller process on
gram. If the message has to be forwarded, the router each node builds several data structures and initializes
determines the next neighbor to which to send the them. After initializing the data structures, the con-
message by consulting a router table. The contents troller blocks, waiting for an input pattern message
of the router tables depend on the node on which the or result message. These messages indicate that the
router process resides and on the destination. They fault table for some line that is an input to a cluster
do not depend on the sender's address. The message on that node has been evaluated. The message gives
is then forwarded as one unit and stored on the also the processor number where the fault list is lo-
neighbor where it will be processed in a similar fash- cated. These messages cause an update to take place
ion by its router. for all clusters on that node to which the line fans out.

For each cluster a counter keeps track of the number
In addition, the routing is done in a deadlock-free of input stems that have been evaluated. When all its

fashion. The paths that a message can take are im- inputs have been evaluated, a cluster is put in a FIFO
plicitly stored in the router tables and are restricted to buffer to be simulated. All clusters on that queue will
make the routing deadlock-free. The deadlock be simulated locally except when dynamic load bal-
avoidance algorithm that we implemented is the ancing modifies this allocation (chapter 4.5).
2-plane scheme described by Yantchev et al. [22].

Clusters are taken from the queue and sent to the

4. Simulation Software actual simulator, FSIM in the figure. When FSIM
finishes its simulation, it sends a result message to the

4.1 controller, which then updates its data structures.
1Preprocessing The controller also forwards the result message to

those nodes that own clusters to which the output of
We parallelize fault simulation by assigning gates the simulated cluster fans out. These messages will

in the design to the nodes in the parallel processor. cause further updates and the simulation proceeds as
In fact, we improve the performance by combining above. The simulation of a pattern terminates when
gates in small single output clusters and assigning there are no more clusters on any ready queue and
clusters rather than individual gates to the processors. no more processors are working.
The job associated with a cluster is the calculation of
the output fault table, i.e. the table of faults that Notice that this method guarantees that the clus-
produce fault-effects on the output of the cluster. The ters are processed in topological order even when they
input to a job are the logic values on the inputs of the were not ordered so in the controller's data structures.
cluster, the logic description of the cluster, faults on Once the qucue contains some clusters, the mcch-
the input or output pins of the cluster and internal to anism of sending jobs, receiving result messages, put-
the cluster and the fault tables for the input nets to the ting clusters on the queue and taking them off is all
cluster. that is required to keep the simulation going. This

way, the fault simulation is cast into a Dataflow
I low the assignment of clusters to processors is process, with the result messages functioning as to-

done strongly influences the performance of the sim- kens.
ulator. Presently, the allocation is done randomly.
This assignment of clusters is clearly not very good To make the controller as efficient as possible, the
from a communication point of view: the average data-structures it works on arc tailor-made for emu-
distance messages have to travel is of the order n , lating the I)ataflow process. All job descriptions are
where n is the number of nodes in the parallel ma- pre-stored in the local memory of the controller and
chine. Better assignment algorithms are possible, but filled in as much as possible when the design de-
they have not been implemented yet. scription is received by the controller. Once a cluster

is ready to be processed, the job description can be
sent to FSIM without any further alterations.

37

4.3 Fault Simulation send/forward the off-node malloc to. In the current

implementation, the next processor is determined
When the fault simulation process FSIM receives randomly and the se!arch for an acceptor is terminated

a job message, it parses it and then sends out requests after a pre-fixed number of trials.
for the input fault tables that it needs. While waiting
for the input tables to return, the fault simulation 4.5 Load Balancing
process simulates the internal cluster faults. The
faults in the input fault tables are processed in as- Static assignment of clusters to nodes runs the risk
cending order of fault numbers, so that a sorted fault of severe load imbalance. When a processor has no
table is produced at the end. The internal faults that clusters on its ready queue but has not yet processed
were caught are merged into the final list, and the re- all its clusters, it should ask other processors, accord-
suiting fault table is stored at the node and a result ing to some protocol, for work. This protocol can
message is sent to the controller process. be the same as the one used to find off-node storage.

If a processor receives such a request, and if it has
4.4 Global Memory Utilization enough clusters on its ready queue, it sends a job

message to the requestor. Any job message is such
As mentioned previously, a good paralleliz.ation that the FSINI process that handles it does not need

strategy should properly use the total available mem- to know to which node this job was originally allo-
ory in the distributed system. This is a trivial re- cated. When it finished its job, it sends a result mes-
quirement to fulfill in the cases where memory sage back to its controller. Only this controller knows
utilization patterns are "well-behaved", that is com- whether the job was originally assigned to it node or
pletely known at compile-time. This is typically the not. In the latter case it forwards the result message
case in regular problems such as matrix manipu- to the controller on the node where the job origi-
lations, image processing and finite element method nated. The latter controller then handles the result
analysis. The problem becomes difficult in fault sim- message in the usual way.
ulation since the amount of memory required cannot
be determined a-priori, and fluctuates widely from 5. Experimental Results
one test pattern to another. It is possible for the
memory of one processor to overflow with malloc The parallel fault simulation program has been
requests, while the memories of other processors are exercised on various logic designs. We will discuss
under-utilized. Such nondeterministic behavior could here the results for the two largest ones. The circuit
cause a particular run of the fault simulation to abort characteristics for these two design-s are given in table
while, in a global sense, there is enough memory to 3. C7522 is the largest design in the ISCAS suite of
accommodate the simulation. Memory compaction test generation benchmarks [231. I)!SIGNA is an
techniques would temporarily alleviate the problem, internal design and is almost four times larger than
at the expense of performance, but would not solve C7522.
it.

C7522 DESIGNA
In order to achieve good global utilization of the

available memory, the following memory overflow H clusters 1155 5454
suppression (MOS) approach is taken. Upon an un- average cluster size 3.8 2.7
successful on-node malloc request, the MMIJ issues # faults 7550 26299
an off-node request. The node receiving the off-node
malloc services it and returns an acknowledge message Table 3: l)esign statistics
when the malloc is successful. If the node did not
have enough memory, it forwards the original request
to another processor. The scheme proceeds until a 5.1 Overall peformance
success is reported back to the originator of the re-
quest, which then sends its fault table to the node Table 4 shows the simulation time per pattern,
where the malloc succeeded. measured by simulating five random input patterns

and taking their average simulation time. The simu-
Tlhe efficiency of this method rests on the algo- lation time is measured from the moment an input

rithm used in determining the processor to pattern is send to V256 to the moment the result

38

message is returned. Clearly, the single pattern simu- work after requests have been sent out and the time
lation time for DESIGNA is not four times as much spent doing that work should not bc counted as wait
as it is for C7522. To understand this improved per- time. The second lapse time is the real wait time, i.e.
formance and also to understand the actual speedup, the time between finishing this additional work and
more detailed statistics have to be taken. receiving the fault tables.

Three different times were measured. First of all, Results for both designs are shown in table 4.
the time to complete a single job, i.e. the simulation Clearly, the main difference between the two designs
of one cluster including the requesting and receiving is in the average job times and the number of idle
of required input fault tables. These times are most periods. Tlhe difference in average job time results
conveniently measured in the CTL process: it is the from the smaller average size of the clusters in
time lapse between the sending of a job description I)ESIGNA: the average time per gate is roughly the
to FSIM and the receiving of the corresponding result same in both designs. More importantly, I)'SIGNA
message. Secondly, we want to know how much time has relatively fewer idle periods than C7522. This is
is spent idling, i.e. waiting for another job to become to be expected, because a large number of idle periods
ready. Such idling occurs when a processor still has indicates a lack of parallelism, which in larger designs
some clusters to process but all of them need input is less likely than in smaller ones. In fact, in (C7522
tables that have not been computed yet. These idle the idle periods account for about 25 % of the total
times are again most conveniently measured by CTIL. lapse time, while in IFSIGNA they account for only

12%.
Finally, we want to know how much time FSIM

spends waiting between sending requests for ex- Both idle times and wait times load im-
ternally stored fault tables and receiving them. These b o r largrmesigns teid times and the
wait times are measured by FSIM itself. In fact, balance. For larger designs the idle thees and the

FSIM measures two distinct waiting times. T]he first number of idle periods will decrease and therefore are

one is the total lapse between sending out the mes- of no real concern. The influence of the waiting times

sages and receiving the replies. FSIM does some will be discussed in the next section.

C7522 DESIGNA

Total simulation time (secs.) 0.7 2.0

Average job time (msecs.) 9.50 7.65

Total number of idle per. 271.2 404
Average idle period (msec.) 21.57 18.35
Maximum idle period (msec.) 194.50 202.94

Average request time (msec.) 5.83 5.42
maximum request time (msec.) 45.95 53.63

Average wait time (msecs.) 3.44 3.47
Maximum wait time (msecs.) 40.32 46.72

Table 4: Performance statistics per pattern (32 nodes)

5.2 Performance analysis paralleli,/tion can reduce the time needed the simu-late the nodes on such a path. Willh the random as-

'The wait period-, depend on how much timue it signment of gates to processors employed here request

takes for fault list requests to reach their iestinations ftimes are proportional to d(P), the average distance

anke for the requested fault lists to travel to the re- in a mesh of P nodes, and the minimum time needed

i nto do the fault simulation will therefore nave a termquesting node. This is a fundamental problem. The proportionial to d(P) as well.

minimum time any simulator needs is governed by
the longest paths in the design. As no node on any Tlhe total time T taken by the fault simulation
such a longest path can be simulated before the pre- depends on the number of processors P, the number
vious node on that path has been simulated, no of clusters C and the allocation of the clusters to the

39

processors. In practice, C is roughly one third of the
number of gates in the design. The time needed for
the simulation of one cluster is roughly the sum of the 24
time needed to obtain the fault tables from other
nodes and the time needed for processing these fault
tables. When P becomes large, the first term will -
dominate and we will focus on its effects. .<-NESSIGNA - 16

We therefore find: 12 . -
.(P) *- C7522

T oc - CS, (I) -8

-6
where we assumed that there is perfect load balance.
The total time taken on one processor is also pro-
portional to C and S, and the resulting speedup is I i
therefore proportional to P/d(P). With the random 1 16 32 64 128 256
allocation on a rectangular mesh, d(P) is roughly NUMBER OF PROCESSORS
equal to 2./1-/3, and the speedup is proportional to

Figure 2: Relative performance
The most interesting application of parallel

processors to fault simulation occurs when we let P Speedup data are plotted in figure 2 as a function
grow linearly with C. This a very natural thing to do, of P/d(P). [he figure shows that for a range of P
because, when C increases, the amount of memory values, the speedup behaves roughly as P/d(P), as was
required to hold the design description has to increase found in the previous analysis. For small P, the
as well. This is true even for uni-processors. In a speedup is not proportional to P/d(P) because the
parallel processor, a node typically has a fixed amount analysis was only correct for large 1'. For very large
of memory and the easiest way to increase the total P, perfect load balancing cannot be maintained, be-
memory is therefore to increase the number of nodes cause of the finite degree of parallelism in the design.
P. When P is proportional to C, the total time taken Hlowever, as shown by the figure, larger designs keep
for the fault simulation grows only as SC°- rather their parallelism longer than smaller ones.
than as SC when done on a uni-processor. Note also
that on topologies with d(P)t- In P the total simu- 5.4 Scaled speedup
lation grows only as S In C.
5.3 Speedup Finally, we would like to measure the actual

speedup that is feasible with this parallelization. The

Figure 2 shows the speedup as function of the maximum speedup shown when all 256 nodes are
number of processors. The speedup is calculated as used is not realistic because of thc severe underutili-
follows. First, the total simulation time as seen from zation of most of the nodes. We therefore consider
the host is ohfained. The speedup is then measured the simulation times at the number of processors
by dividing the total simulation time at some fixed where the speedup curve starts to flatten out (32 for
number of processors by the simulation time at the C7522 and 12R for DFlW SIGNA). We could not run
actual number of processors. Because these designs these designs on a single node, but by subtracting the
are too large to run on a single processor, the speedup wait times from the average job times and then
with respect to the single node parallel processor multiplying the result by the number of jobs, we can
could not be measured. Instead. the speedup is cal- estimate how long the fault simulation would take on
culated relative to 32 nodes and the speedup at 32 a uni-processor. For C7522 we find about 7 seconds
nodes is set to 8. This arbitrary speedup was obtained and for DIF SIGNA about 22.8 seconds. This leads
by calculating P1/d(PI) (see the section on the per- to an estimated real speedup of l0 for C7522 and 22
fonnance analysis) and using for d(P) the value for for DFE SIGNA.
random allocation on a rectangular mesh (= 4).

40

Acknowledgments [10] Srinivas Patil and Prith Banerjce, "Fault
Partitioning Issues in and Integrated Parallel

We would like to thank Gail Irwin, Dennis Shea, Test Generation/Fault Simulation
Winfried Wilcke and Deborra Zukowski for their help -nvironment," Proceedings International
and support. Test Conference, pp. 718-726, IEFF, August

1989.
[11] R. B. Mueller-Thuns, 1). G. Saab, R. F.

Bibliography Damiano, and J. A. Abraham, "Portable
Parallel Logic and Fault Simulation," Pro-

(1] Alexander Miczo, Digital Logic Testing and ceedings ICCAD, pp. 506-509, IFFE, No-

Simulation Iharper & Row, chap. 4.8, 1986. vember 1989.
[2] Zeev Barzilai, J. Lawrence Carter, Barry K. [12] Alfred V. Aho, John F. llopcroft, and Jeffrey

Rosen, and Joseph D. Rutledge, "IISS - A I). UIIlman, Data Structures and Algorithms
I ligh-Speed Simulator," IEEE Transactions Addison-Wesley, chap. 6.6, 1983.
on Computer-Aided Design, vol. CAD-6, pp. [13] F. B. F.ichelberger and T. W. Williams, "A
601-617, July 1987. L xogic Design Structure for I.S l Testability,"

[3] John A. Waicukauski, idward B. Proceedings 14th Design Automation Confer-
[ichelberger, Donato 0. Forlenza, Eric ence, pp. 462-469, IEEE, 1977.
lindbloom, and Thomas McCarthy, "Fault [14] Alexander Miczo, Digital Logic Testing and
Simulation for Structured VILSI," VLSI Sys- Simulation Ilarper & Row, chap. 4.8.3, 1986.
terns Design, pp. 20-32, December 1985. [15] W. W. Wilcke, 1). G. Shea, R. C. Booth, D.

[4] Nagisa Ishiura, Masaki Ito, and Shuzo II. Brown, M. F,. Giampapa, L. hluisman,
Yajima, "Iligh-Speed Fault Simulation Using G. R. Irwin, E. Ma, T. T. Murakami, 1. Nair,
a Vector Processor Design," Proceedings F. T. Tong, P. R. Varker, and D. J.
International Conference on Computer Aided, Zukowski, "The IBM Victor Multiprocessor
pp. 10-13, I.EEE, November 1987. Project," Proceedings Fourth Ilypercube

[5] Raja Daoud and Fusun Ozguner, "Ilighly Conference, 1988.
Vectorizable Fault Simulation on the Cray [16] INMOS Limited, Transputer Reference
X-MP Supercomputer," IEEE Transactioris Manual Prentice I fall, 1988.
on Computer-Aided Design, vol. 8, pp. [17] R. W. Ilockney and C. R. Jesshope, Parallel
1362-1365, December 1989. Computers 2 Adam Ililger, chap. 3.5.5, 1988.

[6] F. Ozguner, C. Aykanat, and 0. Khalid, [18] INMOS l.imited, Transputer Reference
"Logic Fault Simulation on a Vector Manual Prentice Ilall, chap. 3, 1988.
Ilypercube Multiprocessor," Proceedings [19] INNIOS limited, OCCAM 2 Reference
3rd. Conference on llypercube Concurrent Manual Prentice I fall, 1989.
Computers and Applications, pp. 1108-1116, [20] Dick Pountain and l)avid May, A tutorial
ACM, January 1988. introduction to OCCAM programnmning

[7] Prathima Agrawal, Vishwani D. Agrawal, INMOS, 1988.
Kwang-Tl'ing Cheng, and Raffi Tutundjian, [21] C. A. R. lloare, "Communicating Sequential
"Fault Simulation in a Pipclined Multi- Processes," Communications of the ACM, vol.
processor System," Proceedings International 21, pp. 666-677, August 1978.
Test Conference, pp. 727-734, IEF.F, August [22] .clio Yantchev and Chris .Jesshopc, "Adap-
1989. tive. low latency, deadlock-free Packet

[8] 1). L. Ostapko and Z. Barzilai, "Fast Fault Routing for Networks of processors,"
Simulation in a Parallel Processing <A1issing journal>, < Missing year>.
Environment," Proceedings International [23] Franc Brglez, Philip Pownall, and Robert
Test Conference, pp. 293-298, IFFF, Sep- Ihum, "Accelerated ATPG and Fault Grad-
tember 1989. ing via Testability Analysis," Proceedings of

[9] Patrick A. Duba, Rabindra K. Roy, Jacob IS(7AS, pp. 695-698, IFF:, 1985.
A. Abraham, and William A. Rogers, "Fault
Simulation in a Distributed Environment,"
Proceedings 2577/ Design Automation Con-
ference, pp. 686-691, ACM/IEFEE, 1988.

41

Determination of Algorithm Parallelism in
NP-Complete Problems

For Distributed Architectures

R. Andrew Beard
Gary B. Lamont

Department of Electrical and Computer Engineering
School of Engineering

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

Abstract lem, and the traveling salesman problem (TSP). Serial
solutions to these problems are well known and doc-

This paper explores the methods used to parallelize umented for specific cases as well as for the general
NP-complete problems and the degree of improvement case [2, 5, 8, 13]. Specific parallel implementations of
that can be realized using a distributed parallel proces- the assignment problem and the traveling salesperson
sor (hypercube) to solve these combinatoric problems. problem have been reported [7, 10, 20, 11].
Common characteristics of NP-complete problems are In the following sections, a brief background is pre-
identified and the set covering problem (SCP) is chosen sented followed by a discussion of the parallel solution
as the vehicle for exploration. The SCP has applica- techniques. The SCP is explained and three paral-
tion in many Al, communcations, computer science, lel SCP algorithms are discussed. The final sections
and control problems and has been extensively studied present the performance of the parallel SCP programs
in the serial case but a parallel implementation has and the utility of the parallel programs.
not been reported. The design process states the ba-
sic algorithms in terms of UNITY metaprograms and NP-Complete Problems
iteratively develops three increasingly complex paral-
lel versions of the SCP: coarse grain/static allocation,
fine grain/dynamic allocation, and a dynamic load bal- "it is an unexplained phenomenon that for many of
ancing version. A speedup is obtained in each of five the problems we know and study, the best algorithms
test inputs with super-linear speedup obtained in four for their solution have computing times which clus-
of the five tests. ter into two groups" (15]. The solution time for the

first group of problems is bounded by a polynomial-
time function. For example, sorting - O(n log n), bi-

Introduction nary searching - O(log n), and matrix multiplication
- O(n 1*07). The second group of problems are those

This paper explores the methods used to parallelize whose best known algorithms are nonpolynomial. For
NP-complete problems vnd the degree of improvement example, the TSP - O(n 22n), 0/1 knapsack problem
that can be realized using a distributed parallel proces- - O(21w), and the SCP - 0(2n) (15]. The thrust
sor to solve these combinatoric problems. Many prob- of this paper is a collection of problems in the second
lems in Al, communications, computer science, con- class termed nondeterministic polynomially-complete
trol, and VLSI involve problems that reflect, in the (NP-complete).
worst case, an enumeration of all possible paths to a All NP-complete problems have two distinguishing
solution; that is, a combinatoric explosion whose as- characteristics. First, an NP-complete problem must
sociated solution time characteristics is bounded by be in the class AK*P. Secondly, any NP-complete prob-
an exponential function. General examples include: lem must be transformable to all other NP-complete
the set covering problem (SCP), the assignment prob- problems in polynomial time and vice-versa [2].

42
0-8188-2113-390/0000/0042$01.00 0 1990 IEEE

Many NP-complete problems exhibit common char- design methods.
acteristics which can be exploited or have an impact The second and third phases of the design itera-
on a parallel implementation. Such characteristics in- tively transform the UNITY metaprograms into more
clude polynomial-time a priori reductions which poten- complex UNITY representations of the problem until
tially reduce the input problem, graph search, collec- the UNITY metaprograms are sufficiently developed
tion and use of partial state information (determinis- to map directly to a target architecture. The algo-
tic/estimation), and the unpredictable nature in which rithms for this research are implemented on an In-
an NP-complete search progresses. In many instances, tel iPSC/2 hypercube; hence, the UNITY design is
the a priori reductions are matrix manipulation oper- mapped to a cube-connected architecture. The final
ations and experience by other authors [6, 12, 16, 211 design phase is to conduct a complexity analysis of
has shown that numerous matrix operations can be the algorithms.
parallelized. Hence, it is reasonable to assume that
the a priori reductions can be efficiently implemented Preprocessing
on a parallel computer. NP-complete search methods, In many instances, the efficiency of the search tech-
in general, utilize partial state information in conjunc- niques may be improved through the use of precom-
tion with a bounding function or lower bound test to putation or preconditioning in the form of a priori re-
improve the efficiency of the search. The availability ductions and selective bounding functions [5].
of selected partial state information obtained in other In many problems, it is possible to reduce the
processors could potentially increase the efficiency of amount of searching required with problem specific re-
such bounding functions. Finally, the unpredictable duction techniques or precomputation to reduce the
nature of the search makes a coarse grain data parti- dimensions of the original graph or tree [5]. One such
tioning algorithm inefficient for most problems; there- reduction is to remove any states which are included in
fore, some method of dynamic load balancing is usu- every branch of the search tree. For example, consider
ally necessary to distribute sections of the search tree a tree search in which every branch contains the same
to idle processors. node, say node 1. Since node 1 is contained in every

To study the parallelization of NP-complete prob- solution to the search, it is not necessary to include

lems requires the selection of a representative problem this node in every search path. Rather, the node is re-
which is proven NP-complete. The SCP was chosen moved from from the input problem and retained for
for this research because many applications such as later insertion into the final solution.
graph coloring, information retrieval, optimal resource Dominance testing is a precomputation method
scheduling, Al, circuit simulation, operations research, which may decrease the size of the search tree by corn-
assignment problems, and VLSI logic expression sim- paring the current state of the search to previously
plification can be structured as an SCP problem. In saved states. For instance, if the current state is a
addition, its generic NP-complete common character- subset of a previous state and the current state's cost
istics are well documented [8] and a parallel implemen- is greater than or equal to the previous state's, then
tation has not been reported. the algorithm can backtrack. This technique requires

a list of previous states be maintained in some suitably
arranged manner (list) to allow an efficient compari-

Solution Techniques son to the current state. If desired, all previous states
may be saved; in which case, this approach resem-

Parallel programming design techniques involve de- bles a breadth-first search of the problem space. As
composing the problem and developing the parallel al- with most engineering problems, some tradeoff must
gorithms. The major -omponents of a parallel solu- be made between the number of stored previous states
tion are developed in a four phase process. In the and the computation time required to check for dom-
first phase, a meta-level design is accomplished using inance [9].
an appropriate design language such as UNITY (Un- In addition to dominance testing, the computation
bounded Nondeterministic Iterative Transformations). of a lower bound is sometimes useful in bounding the
UNITY is a design syntax developed by Chandy and search. A lower bound is the lowest possible cost down
Misra [6] for use in developing parallel programs. It is a branch of the search tree. Whether or not the lower
their attempt to incorporate a formal syntax into the bound can actually be obtained is irrelevant. What
parallel program design process and is similar, in many does matter is that if the current cost plus the lower
respects, to the Hloare's [14] method of designing con- bound exceeds the best cost obtained thus far, the al-
current sequential processes. Both methods are based gorithm backtracks. As the computation of the lower
on predicate calculus, temporal logic, and structured bound becomes more accurate, more branches of the

43

search tree are pruned. In the best case, the lower optimal cover is formed by columns 0, 3, and 4 with a
bound is exact and the search proceeds down the op- cost of 15.
timum path without backtracking. It is natural to
assume that the precision of the lower bound compu- Columns
tation is inversely proportional to the amount of com- 0 1234567
putation time required to compute the lower bound. 0 1 1 1 0 0 1 0 1
That is, a precise lower bound may require a long time 1 1 0 1 0 0 1 0 1
to compute. Therefore, a suitable lower bound com-
putation is one in which the time required to compute 3 0 10 0 10 0 1 1
the bound does not adversely impact the overall search 4 0 0 0 0 1 1 1 0
time [5, 9]. 5 1 1 0 0 0 0 1 0

Load Balancing 4osts
Costs

As previously stated, NP-complete problems are in-
homogeneous; therefore, it is difficult to balance the Figure 1: 0-1 Matrix [8]
workload between autonomous processors. The incor-
poration of a global best cost which is known by all
searching processors further increases the likelihood A branch-and-bound search for a set cover attempts
of a load imbalance as noted by Lai and Sahni [17]. to minimize the number of set combinations tested in
Hence, load balancing is an integra. component in the search tree. It could be argued that all optimal
any parallel implementation of an NP-complete search, search techniques are elaborate bookkeeping exercises.
The load balancing may take the form of static or The branch-and-bound algorithm must store the tra-
dynamic allocation of subgraphs or it may be in the versed states so they can be recalled during the back-
form of a dynamic load balancing scheme. In either tracking phase. Furthermore, it is desirable to choose
instance, the necessity to balance the load between only those sets which actually contribute to the so-
processors is well documented [24, 20, 11, 19, 23, 18]. lution. For instance, in Figure 1, suppose the search

algorithm has chosen sets {0, 1} to cover rows {0, 1,
3, 51. It is pointless to choose set {2} since it will

The Set Covering Problem not cover any rows not already covered by sets {0, 1}.
Therefore, the efficiency of the search process is im-

The set covering problem (SCP) is one of a large proved if there exists some method to choose the next
class of NP-complete problems [2] extensively stud- set that covers rows not already covered.
ied in the late 1960's and early 1970's in connec- Christofides [8, 9] suggests the construction of a ta-
tion with operational research problems such as air- ble to assist in the bookkeeping and selection of the
line and assembly line scheduling, design of computer next set. The construction of the SCP table essentially
systems, crew scheduling, and political districting are preorders the rows and columns of the input matrix
all types of problems which can be formulated as an which guides the search in an efficient manner. The
SCP [9, 24, 3]. The SCP is the problem of finding result is a variation of a best-first search without the
the minimum number of columns in a 0-1 matrix such requirement to maintain a priority queue ("open list").
that all rows of the matrix are covered by at least one The algorithm to build the table defines a block for
element from any column and the cost associated with each row of the matrix. All columns covering a par-
the covering columns is optimal (minimum or maxi- ticular row are contained in the block for that row. A
mum) [8]. A 0-1 matrix is a rectangular matrix in search algorithm which selects one column from each
which a covered row is denoted by a '1' in the covering block is guaranteed to cover all the rows. If, in addition
columns. If the rows in the matrix represent the ver- to just selecting columns from the blocks, the search
tices of a graph, the existence of an arc between any algorithm keeps track of the rows already covered, the
two vertices is denoted by a '1' in the column of the algorithm could skip blocks which correspond to rows
matrix. A worst case search requires that all combi- already covered. The search progresses from left to
nations of the various sets be check. This number of right in the table continually selecting and marking
combinations is the power set or 2". As an example, one column from each block as necessary. If the al-
Figure 1 shows a 0-1 matrix in which the rows are gorithm must backtrack, it regresses from right to left
covered by several different combinations of columns. until it has found a block that can be further expanded.
The worst case search would be 0(28). Columns 0, 1, Notice, also, that the columns within each block are
2, 3, and 4 form a cover with a total cost of 27. The ordered in ascending order on the cost. This ordering,

44

in most cases, decreases the number of expanded nodes are divide-and-conquer algorithms using a logarith-
in the search tree. The worst case, of coarse, requires mic collection technique, the bitonic merge sort is a
that all columns be checked before the optimal solu- generic implementation of the algorithm presented by
tion is found. As stated, the purpose of the SCP table Quinn [21], and the parallel search for the optimal
is to assist the search in the bookkeeping and selection set cover is an extension of the branch-and-bound al-
of the next column. gorithm presented by Christofides (8]. The parallel

The SCP may be defined as follows [8]: search utilizes a dominance test, a lower bound test,
and a global best cost maintained at a central location

Given a set R --- {ri, 2,r... f sr} and a for distribution to all processors.
family £ = {S, S2,...,iSN} of sets such As with the development of the UNITY programs,
thatIs Si21 ... Ran subfamily ofa serial SCP algorithm is developed first followed by
{Sj, S,..., S} such that the development of three increasingly complex parallel

k algorithms. Each new version of the parallel SCP is
U Sji = R (1) based on the previous version and is aimed at reducing
i=1 individual processor idle-time. The first parallel imple-

mentation of the SCP employs a coarse grain algorithm
is called a set covering of R. with static allocation of the search space. The second

Given a 0-1 matrix, version is a fine grain algorithm with dynamic alloca-

N tion of the search space, and the third version is a fine

Minimize: z = Ecjj grain algorithm with the addition of a dynamic load
balancing technique in which the searching processorsN nondeterministically share portions of the search tree.

Subject to: tij j, i = 1,2,..., m All three parallel algorithms employ a common con-
j=l trol structure. Processor 0 is reserved as a con-

troller with the remaining processors executing only
That is, minimize the cost such that all the elements the search algorithm. The controller receives the input
of R are covered by at least one set from i. matrix from the host processor and, following any user

Since the parallel SOP programs are derived in part requested reductions, it coordinates a parallel bitonic
from serial SOP programs, a serial SCP UNITY pro- megsotfthrwsadclnsndedsheaa

gram is developed first and then transformed to a torte serchi ro cors. D nd on the par-
paralelUNIY pogrm. he irs paalll UITY to the searching processors. Depending on the par-

parallel UNITY program. The first parallel UNITY tclragrtm sdsusdblw tmyo a

program is not specific to any architecture; hence, an t arithe inputse se.o In ither cas

additional iteration is performed to develop an archi- it function the in t s ite for the case,

tecture specific UNITY program. Since the SOP is it functions as the central repository for the globally
impementu ed oneanfi cube-pogram.nSinected co ue r, Smaintained best cost and the corresponding list of coy-
implemented on an iPSC/2 cube-connected computer, ering sets. As the searching processors search their
the UNITY program is designed to take advantage of respective search trees, they compare their local best
the distributed nature of a cube-connected computer. cost against their copy of the global best cost. If a
The UNITY programs are quite extensive and are not searcher finds a better solution than its copy of the
presented here; rather, they may be found in Beard (4]. current global best solution, it submits the solution
Following the development of each UNITY program, to the controller. The controller compares all received
an invariant, a fixed point, and a progress condition costs against its current global cost and retains the bet-
are derived and employed to prove the correctness of ter. If a new global best cost is received, this cost is
the UNITY program. One of the strengths of UNITY broadcast to all searching processors for use in bound-
is the ability to build on previous proofs; hence, at each ing their search trees. The following sections describe
iteration, the new program is proven correct based on the three parallel algorithms.
the proof of the previous program.

Coarse Grain/Static Allocation

Parallel Algorithms The coarse grain algorithm is the simplest of the
three. Once the searching processors receive the sorted

For the major SCP process components, the UNITY input matrix, each processor builds a copy of the SCP
design and subsequent translation are mapped to ap- table and expands the state space with the results of
propriate algorithms. These components include two the expansion stored in a queue. The expansion algo-
a priori reductions, a bitonic merge sort, and a multi- rithm is a simple breadth-first expansion of the state
faceted search technique. The a priori reductions space which divides the search tree by first inserting

45

the level 1 nodes into a queue. If necessary, the ex- they are assigned another subtree from the queue un-
pansion algorithm continues to expand the tree by re- til all the queue is empty. At which point, increasing
moving the top entry from the queue and expanding numbers of processors become idle during the wind-up
it to the next level. The expansion is complete when phase of the search. Intuitively, this search algorithm
the number of subtrees is greater than the number of should perform better than the coarse grain algorithm
searching processors or a preset number of subtrees with static allocation since processor idle-time will de-
exist. crease.

As stated, the same expansion algorithm is executed
by all searching processors; therefore, the queue on Dynamic Load Balancing
each searcher is identical. This duplication is not nec- The dynamic load balancing version of the SCP be-
essarily globally efficient but the algorithm is simple to gins as a fine grain parallel algorithm and enters a dy-
develop and duplicate on all processors. Following the namic load balancing process when all subgraphs have
initial expansion of the search tree, the searching pro- been distributed. Upon completion of the fine grain
cessors remove subtrees from the queue based on their distribution of subgraphs, the controller triggers the
processor ID. For example, given a queue with three active participation of a separate process called the to-
entries and two searching processors, processor 1 re- ken process. The token process exists on all processors
moves the first item from the queue and processor 2 and its only function is to coordinate the dynamic load
removes the second item from the queue. When fin- balancing scheme. A token is circulated (ring) through
ished with the current subtree, processor 1 removes all nodes in the cube and is composed of a linear array
the third subtree from the queue. Processor 2 sits idle of m integers where m is the number of processors in
following the completion of its search. the user acquired cube. The first integer in the to-

In this load balancing scheme, the initial search tree ken (Token[0]) denotes the number of searchers still
is divided a predetermined number of times and all searching and is included to facilitate quick checking
searching processors may or may not receive a subtree of the status of the search. The remaining integers in
to search. The subtrees are statically allocated to the the array are used by the searchers to indicate whether
searching processors since the allocation of subtrees to they are working or idle.
processors is determined in the algorithm (i.e., 'hard- The token process located on the controller (i.e.,
coded'). processor 0), initally examines the first element in the

As one might suspect, much time is wasted by idle token to determine if any searchers are still searching.
processors and the workload is far from balanced for If all searchers are waiting for another subgraph (To-
most problem instances. Therefore, the coarse grain ken[O] = 0), the search is complete and the token pro-
algorithm is modified to decrease the processor idle- cess notifies all searching processors. If any searcher
time. is still working (TokenOl t 0), the token is passed un-

changed to the next node in the ring.
Fine Grain/Dynamic Allocation Each token process residing on the searching pro-

The initial expansion for the fine grain algorithm cessors continually monitors its receive buffer for the
is quite similar to the breadth-first expansion for the presence of the token, a request from another proces-
coarse grain algorithm. One major difference is worth sor, or a message stating that the current processor
noting. In an attempt to converge on the optimal is idle. Should the token arrive and the processor is
solution quicker, the new expansion algorithm com- idle, the token is updated and the token process cycles
bines both a breadth-first and a depth-first expansion. down the linear array until it finds a processor still
Given the matrix preordering and the construction of searching or it has polled all active processors.
the SCP table previously explained, it is likely that If the token process finds a working pr3cessor, it re-
the optimal solution to the SCP lies in the left-most quests a subgraph from that processor. The requesting
portion of the search tree. Therefore, at each level in token process communicates with the token process lo-
the search tree, the expansion algorithm accomplishes cated on the active processor. The searching processes
a breadth-first expansion on the left-most node in the are never allowed to communicate with each otitr All
search tree. dynamic load balancing is coordinated through the to-

The dynamic allocation portion of the search at- ken process. The result is an efficient, simple, and
tempts to decrease overall processor idle-time. The highly reusable dynamic load balancing scheme.
expansion algorithm is moved from the searching pro- The token processes coordinate/control the dynamic
cessors to a controlling processor (supervisor). The load balancing process; however, the searching process
subtrees are constructed and the controller assigns is responsible for partitioning the search tree for shar-
each processor a initial subtree. As processors finish, ing. Two problems must be addressed. First, the shar-

46

ing algorithm must ensure completion of the search. In 100 x 100 matrices with densities of 0.28, 0.27, and 0.26
other words, a race condition must not develop where respectively. Matrix #4 is 75 x 125 with a density of
the same subtree is continually passed between pro- 0.25 and matrix #5 is 70 x 70 with a density of 0.08.
cessors. Second, it is desirable to limit the amount of
unnecessary sharing. Performance Metrics

The race condition is easily prevented. A search- For the purpose of this paper, the performance met-
ing process is only allowed to share after it has back- rics of primary concern are the search time and the
tracked. This requirement forces the searching process total execution. The search time is used to compute
to expand at least one branch in the search tree and, the speedup and the total execution time is used to
since any shared subtree consists of unexpanded nodes, measure the maximum processor idle-time. Clearly,
a race condition can not occur, other metrics are of interest such as the number of

To limit the amount of sharing, the algorithm which expanded nodes, the time spent sorting and prepro-
partitions the subtrees is designed to partition the cessing the input data, the time expended by the dy-
largest possible subtree. When a subtree is requested, namic load balancing programs, number of times the
an active searching process backtracks through the global best cost was updated, and the time when the
search tree until it finds the highest expandable node. global best cover was last updated. These metrics are
The beginning of this new subtree is marked so that it not considered here but a discussion may be found in
will not be searched by the current processor and the Beard [4].
(largest expandable) subtree is given to the token pro-
cess which transmits it to the requesting token process. Results

Much of the justification for implementing three dif-
ferent parallel versions of the SCP is based on reducing

Performance individual processor idle-time. The results indicate
that, in general, the coarse grain algorithm incurred

A serial version and the three parallel algorithms for the most idle-time (85-1065 seconds) followed by the

the SCP were executed on a 32-node Intel iPSC/2 com- fine grain algorithm (152-144 seconds) and then the

puter. Since the clock on the host measures relative dynamic load balanced (DLB) algorithm (19-42 sec-

process time and the node processor's clock measures onds); however, these numbers are deceiving. If one
were tojuethpaaelaortmbaesolyn

absolute time, on would expect the serial program ex- judge the parallel algorithms based solely on

ecution time to be equivalent on both the node proces- processor idle-time, the DLB algorithm is clearly the

sor and the host. In most cases, the host search time most efficient algorithm and the fine grain algorithm is

was longer probably due to the context switching of usually better than the coarse grain algorithm. Such

other user processes. Therefore, in order to accurately a conclusion is invalid.

measure the speedup, an optimized serial version of the Figures 2, 3, 4, 5, and 6 show the normalized

SCP is executed on one of the node processors and all speedups obtained for each of the five test matrices

time associated with communications is removed from described above for 1-31 searching processors. The

the search time. A comparison between the serial pro- legend is displayed to the right of each graph and is

gram time executing on a node processor and the par- defined as follows: L - linear speedup, cg - coarse

allel program time decreases the measured speedup, grain algorithm with static allocation, fg - fine grain

but is a more accurate reflection of the actual speedup algorithm with dynamic allocation and lb - dynamic

since the effects of the hardware and operating system load balanced algorithm.

are essentially eliminated. Interpretation of the data from three of the five test
cases (Figures 2, 3, and 5) show that even though

Test Problems the dynamic load balancing is effective in balancing
Twenty-four 0-1 test matrices are generated to val- the load, the additional processing necessary to ac-

idate the effectiveness of the SCP algorithms. Five of complish this may actually increase the overall search
these matrices require in excess of two hours to solve time such that the dynamic load balancing algorithm
by the serial algorithm and are used to measure the is slower than the fine grain algorithm. Furthermore,
efficiency of the three parallel SCP algorithms. The three of the test cases (Figures 4-6) indicate that the
density of the matrices is defined as the total number coarse grain expansion algorithm is more efficient than
of l's divided by the total number of matrix elements the fine grain expansion algorithm. Notice also that
and the columns are all assigned unit cost since unit four of the five test cases (Figures 3-6) exhibited super-
cost problems are usually more difficult to solve. Three linear speedup with the search of matrix #4 shown in
of the five test cases (matrices #1, #2, and #3) are Figure 5 obtaining the largest speedup at 61!

47

Speedup
35

30
L

25

20 .g Speedup
A - fg70

15 b cg

1070
50 cg 50

60g

40 lb
0 5 10 15 20 25 30 30 L

Searching Processors 20

Figure 2: Matrix #1 Speedup 10

0 5 10 15 20 25 30

Searching Processors

Speedup Figure 5: Matrix #4 Speedup
35

L
30' lb
25 fg

20
1 5 -

cg

5

0 5 10 15 20 25 30

Searching Processors

Figure 3: Matrix #2 Speedup Speedup

35L
30 L

25
Speedup 20 lb
30 L 15 cg

25* 10
25"

20 lb 5 fg
15 cg 0 5 10 15 20 25 30

10 fg Searching Processors

5 • Figure 6: Matrix #5 Speedup

01 5 10 15 20 25 30

Searching Processors

Figure 4: Matrix #3 Speedup

45

These seemingly erratic results are easily explained. sors are spending too much time partitioning and send-
Recall that the coarse grain and the fine grain ver- ing subgraphs to other processors. Unfortunately, the
sions of the SCP use different breadth-first expansion mclocko) function does not provide a method to corn-
algorithms. Given that NP-complete problems are in- pute the CPU time consumed by the separate token
homogeneous, the different expansion algorithms pro- process; hence, another method must be found to mea-
duce radically different search graphs; hence, the dif- sure process time. The second reason suggests that the
ference in performance between the coarse grain and processors are partitioning the subgraph at too low a
fine grain algorithms is unpredictable. In fact, one level in the search tree and a heuristic algorithm is
could argue that the two algorithms are searching en- required to prevent such low-level partitioning.
tirely differently since the search graphs produced for Despite the previous figures, Figure 6 shows that the
the same problem are different. DLB algorithm does work. For this specific problem,

The expansion algorithm affects both the solution the fine grain expansion algorithm only creates 19 sub-
time and the idle-time; however, the processor idle- graphs due to limitations in the expansion algorithm.
time is affected more by the allocation of the initial In effect, this is a coarse grain partitioning of the initial
subgraphs than by the expansion algorithm. Since search graph. Since only 19 subgraphs are developed,
subgraphs in the coarse grain algorithm are statically the processors quickly become idle and the efficiency
allocated, processor idle-times are typically longer of the search suffers. With the DLB algorithm, the
with the coarse grain algorithm than with the dynam- idle processors immediately receive a subgraph from
ically allocated fine grain algorithm. Even so, an ex- the working processors and contribute to the search.
amination of the raw data reveals that the coarse grain Had the dynamic load balancing algorithm not been
expansion algorithm usually results in a quicker best effective, the DLB's speedup curve would have paral-
cover time (i.e., it finds the optimal cover before the leled the fine grain algorithm's curve as in previous
fine grain expansion algorithm), graphs.

The DLB algorithm was developed to further de-
crease maximum processor idle-time and to improve Summary of Results
the efficiency of the search algorithm. However, Fig-
ure 2 shows that the fine grain algorithm is consistently
faster than the DLB algorithm. Either the DLB is in- The SCP has application in solving many 'real-
efficient or the fine grain algorithm is highly efficient world' and NP-complete problems. For example, air-
for this problem instance. In this particular problem, line and assembly line scheduling, design of computer
the fine grain expansion algorithm balances the load systems, railroad-crew scheduling, and political dis-
from the beginning of the search. Any additional load tricting are all types of problems which can be formu-
balancing (e.g., dynamic load balancing) simply steals lated as an SCP [9, 24, 3]. Furthermore, since the SCP
CPU cycles from the search algorithm and delays the is an NP-complete problem, it can be used to solve
completion of the search, other NP-complete problems such as the assignment

The DLB algorithm is not necessarily inefficient; and graph coloring problems after proper transforma-
however, it does include additional code to dynam- tion. The key to applying the SCP to any of these
ically share portions of a processor's search graph. problems is to identify the items that must be covered

Even though the timing data obtained from the node by some subset of another list of items. Once the two
processors indicates an extremely small percentage of lists of items are identified, they must be formulated as

time devoted to the dynamic load balancing process, a 0-1 matrix with the items to be covered as the rows

the data does not show the total processor time de- and the covering items as the columns. Additionally,
voted to the token process. This time is significant in the covering items must have some associated cost to

some problem instances as shown in Figures 2, 3, 4, identify their relative importance.
and 5. In each of these graphs, the speedup of the One of the objectives of this research was to inves-
fine grain algorithm closely parallels the speedup of tigate methods to parallelize NP-complete problems.
the DLB algorithm. Furthermore, notice that the Three methods are presented and a speedup is ob-
fine grain algorithm is frequently more efficient than tained for each. In fact, a super-linear speedup is
the DLB algorithm even though the performance data obtained for four of the five test matrices. The pos-
from the searching processors indicates the DLB algo- sibility of super-linear speedup in branch-and-bound
rithm did in fact share subgraphs between searching search problems was predicted by Lai and Sahni [17)
processors. Two reasons for the DLB's apparent inef- but it is unclear whether anyone had confirmed this
ficiency are: 1) the token process is stealing too much phenomenon via the test results from an actual im-
time from the search process, 2) the searching proces- plementation. This is not to say that the algorithms

49

developed for this research routinely produce a super- load balancing. However, as Figure 6 indicates, a dy-
linear speedup. On the contrary, one could develop namic load balancing algorithm is necessary in those
many test cases which would quickly disprove such a instances where the initial distribution fails to obtain
statement. However, the algorithms presented here the desired load balance. The dynamic load balancing
show a tendency to go super-linear for input test cases algorithm developed for this research is a much sim-
that require a substantial amount of time to solve with pier algorithm than those presented by Felten [111 or
a serial algorithm. More research is required to ascer- Ma [18]. The algorithm employs a separate process to
tain whether specific problem characteristics can be pass a token between the processors and to coordinate
a priori exploited to obtain predictable super-linear all load balancing. The separate token process is de-
speedup. signed such that termination is easily detected and, in

The performance increases presented here are the the absence of any other load balancing scheme, the
result of a different approach than that documented DLB algorithm may provide acceptable performance.
in much of the published literature [18, 22, 1, 19, 11]. The concepts used to develop the data and control
The typical approach to parallelizing an NP-complete structures for this design lend themselves very effi-
problem seems to center around the existence of a cen- ciently to solving general NP-complete problems in
trally maintained priority queue containing unsolved an effective manner. These concepts include the di-
subbranches. The processors receive a subgraph, fur- vision of data and control for the search algorithms,
ther partition the subgraph, and then transmit the as well as the load balancing algorithms required to
newly partitioned subgraphs back to the centrally achieve the most productivity from every node proces-
maintained queue. Such an approach is communica- sor. For the a priori reductions, the data is partitioned
tions intensive as shown by Quinn [22]. The approach out to the processors where a reduction is performed
presented here is to partition the search space first and on the reduced problem. The results of the individual
distribute the subgraphs to the individual processors. reductions are recombined in neighboring processors
As such, the communications overhead becomes in- and further reduced. Each node search is essentially
significant and the problem becomes compute bound. a serial algorithm searching a reduced section of the
This simple but elegant approach to the initial load tree with knowledge of the lowest cost obtained by all
balancing is only possible because of the preordering processors. Finally, the inhomogeneous nature of NP-
(i.e., the construction of the SCP table) accomplished complete problems forces the development of a load
before the search. The result is a simple and highly balancing algorithm. Many such algorithms are possi-
efficient initial distribution of the load for many prob- ble; however, the designer must balance the amount of
lem instances. The possibility of a similar preordering time required to load balance against the time required
in other NP-complete problems is left for future re- to complete the search. The dynamic load balancing
searchers. algorithm developed for this SCP research is simple,

To date, much of the research into parallel branch- reusable, and effective.
and-bound algorithms has focused on the traveling We would like to thank the following Intel represen-
salesman problem. The research presented here con- tatives: Tony Anderson, Ray Asbury, Sean Griffin, and
tains the first known parallel implementation of the Randy Hufford. Without their combined help and pa-
SCP. Given the general application of the SCP to tience, the results presented here would not have been
many different problems and the results published in possible.
this document, applications based on a parallel SCP
(e.g., weapon to target assignment, optimal resource
scheduling, VLSI expression simplification, and infor- References
mation retrieval) could achieve considerable perfor-
mance increases. Furthermore, the methods presented [1] Abdelrahman, Tarek S. and Trevor N. Mudge.
here show that it is possible to realize a performance Parallel branch and bound algorithms on hyper-
increase using control and data structures centered cube multiprocessors. In The Third Conference
around something other than a centrally maintained on Hypercube Concurrent Computers and Appli-
priority queue. cations, Volume 2, pages 1492-1499. The Associ-

The results further indicate that the performance ation for Computing Machinery, 1988.
of a parallel NP-complete search is highly dependent
on the method chosen to distribute or balance the load [2] Aho, Alfred B., John E. llopcroft and Jeffrey
between the processors. The initial distribution of sub- D. Uliman. The Design and Analysis of Corn-
graphs accomplished by the parallel SCP algorithms, puter Algorithms. Addison-Wesley, Reading,
in many of the test cases, is sufficient to ensure a 'good' Massachusetts, 1974.

5O

[3] Balas, Egon and Manfred W. Padberg. On (14] Hoare, C. A. R. Communicating Sequential Pro-
the set-covering problem. Operations Research, cesses. Prentice-Hall, Englewood Cliffs, New Jer-
20:1152-1162, 1972. sey, 1985.

[4] Beard, Ralph A. Determination of algorithm par- [15] Horowitz, Ellis and Sartaj Sahni. Fundamen-
allelism in NP complete problems for distributed tals of Computer Algorithms. Computer Science
architectures. Master's thesis, Air Force Institute Press, Rockville, Maryland, 1978.
of Technology, Wright-Patterson Air Force Base, [16] Hwang, Kai and Faye A. Briggs. Computer Ar-
Ohio, March 1990. chitecture and Parallel Processing. McGraw-Hill,

[5] Brassard, Giles and Paul Bratley. Algorithmics: New York, 1984.

Theory and Practice. Prentice Hall, Englewood [17] Lai, T-H and S. Sahni. Anomalies in par-
Cliffs, New Jersey, First edition, 1988. allel branch-and-bound algorithms. CACM,

[6] Chandy, K. Mani and Jayadev Misra. Parallel 27(6):594-602, March 1984.

Program Design: A Foundation. Addison-Wesley, [18] Ma, Richard P., Fu-Sheng Tsung, and Mae-Hwa
Reading, Massachusetts, 1988. Ma. A dynamic load balancer for a parallel branch

and bound algorithm. In The Third Conference
[7] Chen, Woei-Kae and Edward F. Gehringer. A on Hypercube Concurrent Computers and Appli-

graph-oriented mapping strategy for a hyper- cations, Volume 2, pages 1505-1513. The Associ-
cube. In The Third Conference on Hypercube ation for Computing Machinery, 1988.
Concurrent Computers and Applications: Volume
1, pages 200-209. The Association for Computing [19] Pangas, Roy P. and Wooster, E. Daniels. Branch-
Machinery, 1988. and-bound algorithms on a hypercube. In The

Third Conference on Hypercube Concurrent Coin-
[8j Christofides, Nicos. Graph Theory: An Algorith- puters and Applications, Volume 2, pages 1514-

mic Approach. Academic Press, London, Eng- 1519. The Association for Computing Machinery,
land, 1975. 1988.

[9] Christofides, Nicos and S. Korman. A computa- [20] Pettey, Chrisila and Michael R. Leuze. Paral-
tional survey of methods for the set covering prob- lel placement of parallel processes. In The Third
lem. Management Science, 21(5):591-599, Jan- Conference on Hypercube Concurrent Computers
uary 1975. and Applications: Volume 1, pages 232-238. The

Association for Computing Machinery, 1988.
[10] Ercal, F., J. Ramanujam and P. Sadayappan.

Task allocation onto a hypercube by recursive [21] Quinn, Michael J. Designing Efficient Algorithms
mincut bipartitioning. In The Third Conference for Parallel Computers. McGraw-Hill, New York,
on Hypercube Concurrent Computers and Appli- 1987.
cations: Volume 1, pages 210-221. The Associa- [22] Quinn, Michael J. Analysis and implementation
tion for Computing Machinery, 1988. of branch-and-bound algorithms on a hypercube

[11] Felten, Edward W. Best-first branch-and-bound multicomputer. IEEE Transactions on Comput-

on a hypercube. In The Third Conference on Hy- ers, 39(3):384-387, March 1990.

percube Concurrent Computers and Applications, [23] Schwan, Karsten, John Gawkowski and Ben
Volume 2, pages 1500-1504. The Association for Blake. Process and workload migration for a par-
Computing Machinery, 1988. allel branch-and-bound algorithm on a hypercube

multicomputer. In The Third Conference on fly-
[12] Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. percube Concurrent Computers and Applications,

Salmon, and D. Walker. Solving Problems on Volume 2, pages 1520-1530. The Association for

Concurrent Processors. Prentice-Hall, Englewood Computing Machinery, 1988.

Cliffs, New Jersey, 1988.

[24] Wah, Benjamin W., Guo-jie Li and Chee Fen
[13] Garey, Michael R. and David S. Johnson. Comn- Yu. Multiprocessing of combinatorial search prob-

puters and Intractability: A Guide to the Theory lems. Computer, 18(6):93-108, June 1985.
of NP-Completeness. W. H. Freeman and Com-
pany, San Francisco, California, 1979.

51

Concurrent Implementation Of Munkres Algorithm

T. D. Gottschalk
California Institute of Technology

Pasadena, CA 91125

April 7, 1990

1 Introduction 2 The Sequential Algorithm

The so-called Assignment Problem is of considerable The input to the assignment problem is the matrix
importance in a variety of applications, and can be D _= {dij} of dissimilarities from Eq.(3). The first
stated as follows. Let point to note is that the particular assignment which

minimizes Eq.(6) is not altered if a fixed value is added
A -= {al, a2. ... , apn } (1) to or subtracted from all entries in any row or column

of the cost matrix D. Exploiting this fact, Munkres
and solution to the Assignment Problem can be divided

B {bl, b2 ,., bN5 } (2) into two parts

be two sets of items and let M1 : Modifications of the distance matrix D by

=d[a,, b] Ž 0, ai E A, bi E B (3) row/column subtractions, creating a (large)
number of zero enties.

be a measure of the distance (dissimilarity) between M2 : With {Rz(i)} denoting the row indices of all
individual items from the two lists. Taking NA < NB, zeros in column i, construction of a so-called
the objective of the assignment problem is to find the Minimal Representative Set, meaning a distinct
particular mapping selection Rz(i) for each i, such that i y j =>

i - 11(i), 1 < i < NA, 1 < UI(i) <: YB (4) Rz(i) $ Rz(j).

The steps of Munkres algorithm generally follow those
i # j =, 1(i) W 11U(j) (5) in Lhe constructive proof of P. Hall's theorem on Min-

such that the total association score imal Representative Sets.
The preceding paragraph provides a hopelessly in-N 1 complete hint as to the number theoretic basis for

STOT =Z d[i, ll(i)I (6) Munkres Algorithm. The particular implementation
1.1 of Munkres algorithm used in this work is as de-

is minimized over all permutations 11. scribed in Chapter 14 of Ref.[3]. To be definite, take
For NA < NB, the naive (exhaustive search) com- NA < NB, and let the columns of the distance matrix

plexity of the assignment problem is O[NB!/(NB - be associated with items from list A. The first step is
NA)!]. There are, however, a variety of exact solutions to subtract the smallest item in each column from all
to the assignment problem with reduced complexity entries in the column. The rest of the algorithm can
O[NA2NB], (Refs.[1-3]). Section 2 briefly describes one be viewed as a search for special zero entries (starred
such method, Munkres Algorithm [2], and presents a zeros Z*), and proceeds as follows:
particular sequential implementation. Performance of Munkres Algorithm
the algorithm is examined for the particularly nasty
problem of associating lists of random points within Step 1 Setup
the unit square. In Section 3, the algorithm is gen-
eralized for concurrent execution, and performance 1. Find a zero Z in the distance matrix.
results for runs on the Marklll hypercube are pre- 2. If there is no starred zero already in its row
sented. or column, star this zero.

52
0-8186-2113-3/90/0000/0052$01.00 © 1990 IEEE

3. Repeat steps 1.1, 1.2 until all zeros have Step I
been considered. Initialization

Step 2 Z* Count, Solution Assessment.

1. Cover every column containing a Z°. Z* Coute 2 ?

2. Terminate the algorithm if all columns are
covered. In this case, the locations of the Z* 4
entries in the matrix provide the solution to
the assignment problem. Step 5

Step 3 : Main Zero Search Zero Search Nu L

Manufacture
1. Find an uncovered Z in the distance matrix Interesting Z

and prime it, Z i-- Z'. If no such zero exists,
go to Step 5 S

2. If No Z* exists in the row of the Z', go to Z' -> Z* Swaps

Step 4.

3. If a Z* exists, cover this row and uncover Figure 1: Flowchart for Munkres algorithm
the column of the Z*. Return to Step 3.1
to find a new Z.

A (very) schematic flowchart for the algorithm is
Step 4 Increment Set Of Starred Zeros shown in Fig.(1). Note that Steps 1,5 of the algo-

rithm overwrite the original distance matrix.
1. Construct the 'Alternating Sequence' of The preceeding algorithm involves flags (starred or

primed and starred zeros: primed) associated with zero entries in the distance

Z0 Unpaired Z' from Step 3.2. matrix, as well as 'Covered' tags associated with in-
dividual rows and columns. The implementation of
the zero tagging is done by first noting that there is

Z2N : The Z' in the row of Z2N-1, if such at most one Z* or Z' in any row or column. The
a zero exists. covers and zero tags of the algorithm are accordingly

Z2N+1 : The Z* in the column of Z2,v. implemented using five simple arrays:

the sequence eventually terminates with an CC(k) Covered column tags, I < k < %'COL.
unpaired Z' = Z2N for some N.

2. Unstar each starred zero of the sequence. CR(j) Covered row tags, I < j < NUOWS

3. Star each primed zero of the sequence, thus ZS(k) Z' locators for columns of the matrix. If

increasing the number of starred zeros by, positive, ZS(k) is the row index of the Z" in the

one. kth column of the matrix.

4. Erase all primes, uncover all colunms and ZR(j) : Zl locators for rows of the matrix. If pos-
rows, and return to Step 2, itive, ZR(j) is the column of the Z' in the j'"

row of the matrix.
Step 5 :New Zero Manufactures ZP(j) : Z' locators for rows of the matrix. If posi-

1. Let h be the smallest uncovered entry in the tive, ZP(j) is the column of the Z' in the j'" row
(modified) distance matrix, of the matrix.

2. Add h to all covered rows. Entries in the cover arrays CC and CH' are one if the

3. Subtract h from all uncovered colunis row or columni is covered zero otherwise. FVntris in
the zero-locator arrays ZS, Z/1 and ZlP are zero if no(

4. Return to Step 3, without, altering stars, zero of the appropriate type exists in the indexed row
primes or covers, or columin.

53

Sequential Timings ecuted. The 190x 190 case involves 6109 entries into
Step 3 and 593 entries into Step 5.

.. Since the zero searching in Step 3 of the algorithm
S .is required so often, the implementation of this stepCurve T -, 0N o is done with some care. The search for zeros is done

0 • T column-by-column, and the code maintains pointers
C) 0 x x to both the last column searched and the most re-

0

x x the time spent on subsequent re-entries to the Step 3

000 x K box ofashedi line if Fig.(2) indicates the nominal

3

x AT a N3 scaling prediTe for fores algorithm.
101 Tt By and large, the timing results in Fig.(2) are consis-

x~~ ~~ x : oalT

K tent with this expected behavior. It should he noted,
x 0 Step 5 however, that both tl e nature of this scaling and tho e

4 10Step2 coentl uof ared vey dependent on th redof

100 - trivial lists

50 ~~~ 100 0

NA-=NID ai=-b,-i, 1L<i<N (7)

with the distance between items given by the absolute
Figure 2: Timing results for the sequential algorithm value function. For the data sets in Eq.(7), the prelim-
versus problem size mAnaies and Step 1 of Munkres algorithm completely

solve the association in a time which scales as Nr .
In contrast, the random point association problem is

With the Star-Prime-Cover scheme of the pre- a much greater challenge for the algorithm, as nomi-
ceeding paragraph, a sequential implementation of nal pairings indicated by the initial nearest-neighbor

Munkres algorithm is completely straightforward. At searches of thle ;: lii. •ry step are tediously undone
the beginning of Step 1, all cover and locatr flags in the creation re r :case-like sequence of zeros
are set to zero, and the initial zero search provides an needed for Step C ons id ief, instructive illustration
initial set of non-zero entries in ZS0. Step 2 sets ap- of nature of this processing, Fig.(3) plots the CPU

propriate entries in CC0 to one and simply counts the time Per Step for the last passes through the outer
covered columns. Steps 3 and 5 are trivially imple- loop of Fig.(l) for the 150x 150 assignment problem
mented in terms of the Cover/Zero arrays and the 'Al- (recall that each pass through the outer loop increases
ternating Sequence' for Step 4 is readily constructed thv Z count by one). The processing load per step

from the contents of ZS(), ZR0) and ZP(). is seen to be highly non-uniform.
As an initial exploration of Munkres algorithm,

consider the task of associating two lists of random
points within a 2D unit square, taking the cost func- 3 The Concurrent Algorithm
tion in Eq.(3) to be the usual Cartesian distance. Fig-
ure(2) plots total CPU times for execution of Munkres The timing results from Fig.(2) clearly dictate the
algorithm for equal size lists versus list size. The ver- manner in which the calculations in Munkres algo-
tical axis gives CPU times in seconds for one node rithm should be distributes among the nodes of a hy-
of the Marklll hypercube. The circles and crosses percube for concurrent execution. The zero and mP-
show the time spent in Steps 5 and 3, respectively. imum element searches for Steps 3 and 5 are the most
These two steps (zero search and zero manufacture) time consuming and should be done concurrently. In
account for essentially all of the CPU time. For the contrast, the essentially bookkeeping tasks associated

190x 190 case, the total CPU time spent in Step 2 was with Steps 2 and 4 require insignificant. CPU time and
about 0.9 CPU sec, and that spent in Step 4 was too are most naturally done in lockstep (i.e., all nodes of
small to be reliably measured. The large amounts of the hypercuhe perform the same calculations on the
time spent in Steps 3 and 5 arise from the very large same data at the same time). The details of the con-
numbers oftim thseuartof the algorithm are x- current algorithm are as follows.

54

aloih equl sielissvruist size Th ve- mneinwihteclcltosi uk lo

where S is a zero-search status flag,

CPU Time Per Step [sec] (-1 No Z was found
S 0 Z with Z* in row (Boring) (9)

20 1 Z without Z° (Interesting)

If the status is non-negative, the last two entries in

15 the status list specify the location of the found zero.
A simple channel loop is used to collect the individual
status lists of each node into all nodes, and the action

10 taken next by the program is as follows:

* If all nodes give negative status (no Z found), all

5 nodes proceed to Step 5.

e If any node gives status 1, all nodes proceed to

0 .. Step 4 for lockstep updates of the zero location
50 55 60 65 70 lists, using the row-column indices of the node

which gave status 1 as the starting point for
Step Step 4.1. If more than one node returns status 1

(highly unlikely, in practice), only the first such

Figure 3: Times per loop (i.e., N[Z*] increment) for node (lower node number) is used.

the last several loops in the solution of the 150x 150problem. *If all zeros uncovered are 'Boring', the cover-
switching in Step 3.3 of the algorithm is per-
formed. This is done in lockstep, processing the

Data Decomposition Z's returned by the nodes in order of increas-
ing node number. Note that the cover rearrange-

The distance matrix {dij } is distributed across the ments performed for one node may well cover a Z

nodes of the hypercube, with entire columns assigned returned by a node with higher node number. In

to individual nodes. (This assumes, effectively, that such cases, the nominal Z returned by the later

NCOLS > NNODES, which is always the case for as- node is simply ignored.

signment problems which are big enough to be 'inter- It is worth emphasizing that only the actual searches
esting'.) The cover and zero locator lists defined in for zero and minimum entries in Steps 3 and 5 are
Section 2 are duplicated on all nodes. done concurrently. The updates of the cover and zero

locator lists are done in unison.
Task Decomposition The concurrent algorithm has been implemented on

the MarkIII hypercube, and has been tested against

The concurrent implementation of Step 5 is partic- random point association tasks for a variety of list
ularly trivial. Each node first finds its own minimum sizes. Before examining results of these tests, how-
uncovered value, setting this value to some 'infinite' ever, it is worth noting that the concurrent implemen-
token if all columns assigned to the node are covered. tation is not particularly dependent on the hypercube
A simple loop on communication channels determines topology. The only commun;cation-dependent parts
the global minimum among the node-by-node mini- of the algorithm are
mum values, and each node then modifies the contents
of its local portion of the distance matrix according 1. Dtrmntio oe
to Steps(5.2,5.3). value for Step 5.

The concurrent implementation of Step 3 is just 2. Collection of the local Step 3 status lists (Eq.(9).
slightly more awkward. On entry to Step 3, each node
searches for zeros according to the rules of Section 2, either of which could be easily done for almost any
and fills a 3-element status list: MIMD architecture.

Table 1 presents performance results for the asso-
LJ] S L[Nodej _= {S, kRow, kcOL) (8) ciation of random lists of 200 points on the MarkIll

55

N[Nodes) 1 2 4 8 N[Nodes] 1 2 4 8
T[Total] 654.83 372.70 205.48 119.25 T[Total] 68.08 38.79 23.11 16.40
T[Step 3] 183.80 128.04 81.59 56.66 T[Step 3] 19.63 13.09 9.69 8.00
T[Step 5] 462.06 237.54 117.39 57.94 T[Step 5] 44.99 22.99 11.79 6.16
fTotal - 0.878 0.800 0.686 cTotal - 0.878 0.736 0.519
fStep 3 0.718 0.563 0.405 EStep 3 - 0.750 0.506 0.307

'Step 5 - 0.973 0.984 0.997 'Step 5 0.978 0.954 0.913

N[Step 3] 7075 4837 3483 2778 N[Step 3] 2029 1 1430 1134 991

Table 1: Concurrent performance For 200x200 ran- Table 2: Concurrent performance For 1OOxl00 ran-
doma points dom points

hypercube for various cube dimensions. (For consis- locators and cover tags, the node without the zero
tency, of course, the same input lists are used for all determines the actual time spent in Step 3, so that
runs.) Time values are given in CPU seconds for the
total execution time, as well as the time spent in Steps (TSearch[2 Nodes]) s! (TSearch[1 Node]) (12)
3 and 5. Also given are the standard concurrent exe-
cution efficiencies, In the full program, the concurrent bottleneck is

not as bad as Eq.(12) would imply. As noted above,
N T[I Node] the concurrent algorithm can process multiple 'Bor-
N x T[N Nodes] ing' Z's in a single pass through Step 3. The frequency

of such multiple Z's per step can be estimated by not-
as wll s te nmbes o tims te Sep bo of ing the decreasing number of times Step 3 is entered

Fig.(1) is entered during execution of the algorithm, with increasing hypercube dimension, as indicated in

The numbers of entries into the other boxes of Fig.(1) Table 1. Moreover, each node mainainis a counter
are independent of the hypercube dimension. Tbe1 oevr ahnd anan one

a here independpent of the hpceimirentsion. Tof the last column searched during Step 3. On subse-
The ishanlaspet nofthed. timi, results iny Tabl ne- 1 quent re-entries, columns prior to this marked column

whichncis soud be concurrenote Namelyh aese alciatef are searched for zeros only if they have had their cover
ficiencies of the concurrent algorithm are associated tag changed during the prior Step 3 processing. While
with Step 3 for 2 Nodes compared to Step 3 for 1 each of these algorithm elements does diminish the
Node. The times spent in Step 5 are approximately problems associated with Eq.(12), the fact remains
halved for each increase in the dimension of the hy- that the search for zero entries in the distributed dis-

tance matrix is the least efficient step in concurrent
zero searching in Step 3 are rather poorer, particularly implementations of Munkres algorithm.
for larger numbers of nodes. The results presented in Table 1 demonstrate that

At a simple, qualitative level, the inefficiencies asso- an efiet plementatin of mu nstalgorthmi
ciatd wth tep ar redilyundrstod. onsder an efficient implementation of Munkres algorithm is

ciated with Step 3 are readily understood. Consider certainly feasible. It is next interesting to examine
the task of finding a single zero located somewhere how these efficiencies change as the problem size is

inside an N x N matrix. The mean sequential search varied.
time isvaried.

time is The results shown in Tables 2,3 demonstrate an im-

(TSearch I1 Node]) o (N x N)/2 (11) provement of concurrent efficiencies with increasing
problem size - the expected result. For the 100x 100

since, on average, half of the entries of the matrix will problem on 8 nodes, the efficiency is only about
be examined before the zero is found. Now consider 50problem is too small for 8 nodes, with only 12 or 13
the same zero search on two nodes. The node which columns of the distance matrix assigned to individual
has the half of the matrix containing the zero will find nodes.
it in about half the time of Eq.(11). However, the While the performance results in Tables 1-3 are cer-
other node will always search through all of its N x tainly acceptable, it is nonetheless interesting to in-
N/2 items before returning a null status for Eq.(9). vestigate possible improvements of efficiency for the
Since the node which found the zero must wait for the zero searches in Step 3. The obvious candiidaett for
other node before the (lockstep) modifications of zero an algorithm modification is some sort of checkpoint-

56

3. S. S. Blackman, Multiple-Target TRacking with
N[Nodes] 1 2 4 8 Radar Applications, Dedham, MA: Artech
T[Total] 2046.91 1154.27 622.53 353.30 House(1986).
T[Step 3] 585.61 399.41 235.49 154.57
T[Step 5] 1442.22 742.90 377.89 188.59
"ETotal - 0.887 0.822 0.728
(Step 3 0.733 0.621 0.473
'Step 5 - 0.971 0.954 0.956

N[Step 3] 13250 8583 5785 4365

Table 3: Concurrent performance For 300x300 ran-
dom points

ing : at intermediate times during the zero search,
the nodes exchange a 'Zero Found Yet ?' status flag,
with all nodes breaking out of the zero search loop if
any node returns a positive result.

For message passing machines such as the MarklII,
the checkpointing scheme is of little value, as the time
spent in individual entries to Step 3 are not enormous
compared to the node-to-node communication time.
For example, for the 2-node solution of the 300x300
problem, the mean time for a single entry to Step 3
is only about 46 msec, compared to a typical node-
to-node communications time which can be a signif-
icant fraction of a millisecond. The time required to
perform a single Step 3 calculation .is not large com-
pared to node-to-node communications. As a (not
unexpected) consequence, all attempts to improve the
Step 3 efficiencies through various 'Found Anything
?' schemes were completely unsuccessful.

The checkpointing difficulties for a message-passing
machine could disappear, of course, on a shared mem-
ory machine. If the zero-search status flags for the
various nodes could be kept in memory locations read-
ily (i.e., rapidly) accessible to all nodes, the problems
of the preceding paragraph might be eliminated. It
would be interesting to determine whether significant
improvements on the (already good) efficiencies of the
concurrent Munkres algorithm could be achieved on
a shared memory machine.

References

1. F. Burgeios and J. C. Lassalle, 'An Extension of
Munkres Algorithm for the Assignment Problem
to Rectangular Matrices', Comm. of the ACM,
14(1971)802.

2. H. W. Kuhn, 'The Hungarian Method for the
Assignment Problem', Naval Research Logistics
Quarterly, 2(1955)83.

57

Multi-Tiered Algorithms for 2-Dimensional Bin Packing*

Richard Fenrich Russ Miller Quentin F. Stout
State University of New York State University of New York University of Michigan

Buffalo, New York 14260 Buffalo, New York 14260 Ann Arbor, Michigan 48109
fenrich@cs.buffalo.edu miller@cs.buffalo.edu qstout@zip .eecs.umich .edu

Abstract rectangle pi having height hi and width wi, and a ver-
tical strip V of width C. The objective is to pack the

This research is concerned with approximation algo- rectangles into V so as to minimize the height of V.
rithms for NP-hard optimization problems on hyper- Two interpretations of 2-dimensional bin packing
cube multiprocessors. We investigate methods of solv- help illustrate the applicability of our work. First, if
ing such problems, focusing on the tradeoffs in running we do not allow rotations of the rectangles, then we
time, number of active nodes, input size, and accuracy can interpret the problem as minimizing the comple-
of solution. In this paper, we consider a tiered algo- tion time of a computational system where rectangles
rithm framework that describes our level algorithms correspond to program tasks. The hliight ofa rectangle
and we expand upon the 2-dimensional bin packing corresponds to the amount of processing time required
results given in [4]. The major contributions of this and the width corresponds to the amount of memory
paper are data structures which dramatically improve required. Notice that in this situation C represents
the run time of the first fit and best fit algorithms pre- the total memory of the system that is available. Ob-
sented in [4]. The results in this paper were obtained viously, in this situation rotations do not make sense
on a 32 node Intel iPSC/2. since memory cannot typically be traded for process-

ing time. The second application is to stock-cutting
Introduction where "raw" material comes in rolls from which we

wish to cut out rectangular patterns. The waste of the
A variety of important industrial optimization prob- raw material is minimized if we minimize the length of
lems are known to be NP-hard, which implies that the strip used. In this situation it may be reason-
we should not expect to find efficient (i.e., polynomial able to allow the rectangles to be rotated by ninety
time) algorithms yielding optimal solutions to these degrees. One common characteristic of these appli-
problems for all input sets. (These problems include cations is their ability to be considered in a dynamic
packing items on trucks, scheduling jobs on a com- sense in which rectangles are input in a stream or in a
puter system, and a variety of stock-cutting problems, static sense in which we know the entire rectangle set
to name a few.) In fact, if P 9 NP then even a poly- prior to packing. The former case is known as 'on-line'
nomial number of processors (i.e., polynomial in the packing while the latter is known as 'off-line' packing.
size of the input) cannot be used to produce efficient Due to the economic importance of efficient stock-
solutions to NP-hard problems. cutting, a wide variety of heuristic methods have been

For NP-hard problems, researchers typically study developed for these problems over the last 20 years.
approximation algorithms which attempt to find a (The reader is referred to [1] for an excellent overview

yoptimal solution in an acceptable amount of of bin-packing problems.) These algorithms includenimeay R"level" (or "shelf" or "strip") algorithms, which allowtime. Recently, this study has included algorithms for

multiple processor machines. Parallel approximation one to apply knowledge gained from the I-dimensional
algorithms for the traveling salesperson problem are bin-packing problem to the 2-dimensional case. In
given in (12, 5], for the 0/I knapsack problem in (10], this paper, we propose a multi-tiered algorithm frame-
for the 2-dimensional bin-packing problem in [4], and work that promotes modularization for a variety of
for the multiprocessor scheduling problem in 13]. these level algorithms. The first tier of the framework

This paper focuses on the 2-dimensional bin pack- is responsible for any preprocessing of the rectangles
ing problem, which is often referred to as the rectangle while the second tier packs the rectangles in a sequen-
packing problem. The 2-dimensional bin packing prob- tial manner. The third and final tier post-processes
lem consists of a set of orthogonal rectangles, with each the packing to improve the packing from the second

tier. Straight forward divide-and-conquer techniques
"*This work was partially supported by 1NSP grants IhR- are used to implement this framework in a hypercube

6800514 and ASC-8705104. environment.

00
O-8186-2113-3/90/OO00/0058501.00 0 1990 IEEE=!

The next section of the paper proposes the tiered Tier LI: Preprocessing
computational framework for our level algorithms.
The two ensuing sections reiterate some of the con- PI: No preprocessing. These algorithms can be con-
clusions made in [4] and discuss implementation de- sidered as 'on-line' algorithms. Time: e(1).
tails on the iPSC/2. The fifth section investigates en-
hancements to the algorithms used in [4]. These en- P2: A sort, keyed by height, in each partition of P.
hancements include data structure improvements and Time: O(N/P) assuming that the height of the
increased attention to the preprocessing step. Finally, rectangles is bounded by a constant.
we present our conclusions and some final comments. P3: A rotation of the rectangles so that their height

Algorithm Framework is greater than or equal to their width. Time:
e(N/P).

All of our bin-packing approximation algorithms are
based on the concept of level algorithms [2]. Such level P4: A rotation of the rectangles so that their width
algorithms, including many of those presented in [1], is greater than or equal to their height. Time:
can be considered in the following three-tiered frame- O(N/P).
work:

In the case that the preprocessing occurs 'off-line',
Li: Preprocess the rectangles. the number of alternative preprocessing algorithms is

L2: Pack the rectangles by levels with each rectangle bounded only by the number of one-to-one and onto

being placed so that its bottom rests on one of the mappings from the input rectangle set onto itself.

levels. The levels are determined by the following Tier L2: Packing
constraints: In this packing tier we have considered three funda-

mental algorithms in conjunction with two heuristics.
* The bottom of the first level is the bottom The three level packing algorithms follow. The asymp-

of the vertical strip V. totic running times listed reflect the analysis consid-

* Subsequent levels are determined by a hori- ered in [4] where P corresponds to the number of active
zontal cut through the top of the tallest rect- nodes and N equals the total number of rectangles to
angle in the previous level, be packed.

L3: Post-process the resultant packing. Al: Next fit packs rectangles left justified in the re-
maining unused width of the current level. If aThe objective in each of the three tiers of this frame- rectangles will not fit in thle current level then a

work is to maximize the benefits from the time/quality new level is initialized with this rectangle and the

tradeoff perspective. Results in [4] consider the ben- packing continues with the new level assuming the

efits in performing certain preprocessing steps. For role of the current level. Time: t(N/P).

instance, heuristics that rotate the rectangles prior

to packing improved packing efficiency dramatically A2: First fit packs rectangles left justified into the re-
in certain cases while impacting insignificantly on the maining unused width of the lowest level that they
running time. Likewise, heuristics used in tiers L2 will fit in. If a rectangle wil not fit in any of the
and L3 impact upon the quality of the final packing as existing levels then a new level is initialized with
well as the running time of the algorithm. Since this this rectangle. Time: e(N 2/P 2).
framework has been developed so that we may consider
off-the-shelf 2-dimensional bin packing algorithms, it A3: Best fit packs rectangles left justified into the re-
lends itself to modular descriptions of the component maining unused width of a level they fit in that
algorithms used in each tier. minimizes the unused width of all such levels. If

We now consider each of the three tiers in turn a rectangle will not fit in any of the existing levels
by describing the possible computations in each tier. then a new level is initialized with this rectangle.
Consider a total of N rectangles as input to any tiered Time: O(N 2/P 2).
2-dimensional bin packing algorithm. Let P be a par-
tition of the N rectangles into P subsets of NIP rect- The two heuristics involved in the packing process
angles each. For each preprocessing algorithm the were considered in [4]. Since these methods depend on
asymptotic running time within each partition of P both the distribution of the data and the complex rela-
will be given as a function of N/P, the number of tionships between levels, an asymptotic time analysis
rectangles in each class of the partition. seems inappropriate.

59

HI: Level Combining. When two levels, call them Li a global level when we view the partition as corn-
and L2 , are complete we consider combining them posed of the single set of all N rectangles.
in a simple fashion so as to reduce the total height 2 E
taken by the two. This combination procedure . very node uses a level packing algorithm possibly
consists of taking one of the levels, say L1, re- augmented by a heuristic to independently pack
versing the rectangles (i.e., the leftmost rectangle its rectangles into a vertical strip of width C.
becomes the rightmost, etc.), moving the rectan- 3. Recursive doubling is used to combine the inde-
gles to the top of the level, and then lowering the pendent solutions into a global solution. Post-
newly rearranged L, on top of L2 as far as possi- processing heuristics are applied in this stage.
ble.

112: Width Covering/Level Unpacking. When a level Previous Results

L is complete, we will unpack the rectangles in Several combinations of the tiers LI, L2, and L3 were
L if the unused width of L is greater than some considered in [4]. In the case that rectangle rotations
heuristic factor. All unpacked rectangles will be were allowed (P3 and P4) we concluded that if time is
repacked at the end of the algorithm by using a critical, then
post-processing algorithm.

. the most efficient packing of the rectangles is by
Tier L3: Post-processing the next fit algorithm, as follows.

The post-processing tier has been considered in two
possible ways. - If the number of rectangles per node is rel-

atively small (e.g., 8 or fewer), then include
01: If there are any rejected rectangles from step L2 the preprocessing heuristic P4.

these rectangles are accumulated and packed us- - Otherwise, include the width covering and
ing some combination of the packing steps in Li level combining heuristics, hI and 112.
and L2.

02: No post-processing. Conversely, if time is not as critical, then

The possible operations that can be used in this tier * the first fit algorithm should be used as follows.
are considerably more complex than those in tier Li. - If there is a relatively small number of rect-
In fact, the set of possible operations could consider angles per node then widthwise rotating and
interactions between levels as well as interactions be- the level unpacking heuristic should be used.
tween individual rectangles. - Otherwise, the heightwise rotation of rectan-

Parallel Realization gles should be used.

The framework presented above can be applied when Next, we considered the packings for which rectangle
using hypercube computers. In [3], a variety of hy- rotations are prohibited. If time is critical, then
percube solutions were given for solving the multipro- * the most efficient packing of the rectangles is using
cessor scheduling problem. These algorithms can be the next fit algorithm with the level unpacking
viewed as instances of a bottom-up parallel divide-and- and level combining heuristics.
conquer solution strategy, where initially each node
solves the problem on its own set of data, followed by Conversely, if time is not as critical, then
a sequence of steps where these partial solutions are
combined to give the complete solution. Our level al- * the first fit algorithm should be used as follows.
gorithms follow this basic approach. A level algorithm - Given no more than 32 rectangles per node,
template that incorporates the multi-tiered framework include the level unpacking heuristic.
is given below. We assume that given an input set of
N rectangles, each of the P nodes of the hypercube - For more than 32 rectangles per node, use
initially assumes responsibility for NIP rectangles. the straight first fit algorithm.

Rectangle Packing

1. Preprocessing can occur at a local level when the
partition, P, of the rectangles is the partition in-
duced by the nodes. Preprocessing can occur at

60

Implementation Details sort was realized as a local sort followed by a merging
operation. In the merging operation each node would

Initially, all nodes know the width, C, of the vertical route sets of rectangles that are grouped by height to
strip and the initial seed for a random number gener- the nodes responsible for rectangles of those particu-
ator. When the program begins, the host broadcasts lar heights. Upon receiving a set of rectangles, the set
the total number of rectangles to be packed to every is merged in sorted order into the current set of rect-
node. It should be noted that all nodes know the same angles on the node. In general, as the same number
initial seed to the random number generator so every of rectangles are spread across more processors this
node can generate a distinct set of random rectangles. method performs better than the next fit decreasing
We use the minimal standard generator, as described height of [4]. The packing improvement is the high-
in (11], where if the ith node is to generate k rect- est when using 32 nodes and is generally more than
angles, then it uses 2k random numbers beginning at 1%. Alternatively, this method always performed 5%
random number 2k(i - 1) + 1. We store the rectangles worse than the next fit decreasing height algorithm
in a static array that holds the maximum number of with level unpacking ([4]) and many times it packed
rectangles that will ever be used in the node. with 10% less efficiency.

After every node has generated its rectangle set us- Interestingly, given a fixed number of rectangles
ing the random number generator, the set of active greater than 1024, the packing efficiency was nearly
nodes synchronize. Each node continues by sampling identical for every number of active nodes. In fact,
the clock and by using a three-tiered algorithm to pack when using P and Q nodes, where P $ Q, the pack-
the rectangles. Upon completing a level during pack- ing efficiency differs by at most 0.3% in every case
ing, the node accumulates the packing statistics for where the total number of rectangles is larger than
that level. When the recursive doubling step is per- 1024. This phenomenon is presented in Figure 1 and
formed the packing heights from each node are col- is explained as follows. The global sort distributes the
lected. In addition, if this step is a nodes last oper- rectangles in ordered intervals across all nodes. Given
ation in the recursive doubling procedure the clock is P nodes and N rectangles, the packing in the P nodes
sampled again, the running time of this node is de- will differ only slightly from the one in 2P nodes. In
termined and this time is sent to a neighboring node both cases the first N/2 rectangles will be packed iden-
in the recursive doubling procedure. Of course, when tically. The packingfor the second halfofthe rectangle
heuristic H2 is used, the unpacked rectangles are re- set in 2P nodes differs from the packing in P nodes
tained and passed in the recursive doubling step along by at most the height of the level that contains the
with the other relevant packing statistics. The running (N/2 + I),t rectangle. For a large number of sorted
time of an algorithm is simply the maximum running rectangles the height of any two neighbors is nearly
time of all nodes. identical and hence the level heights remain nearly the

Performance Analysis same. The dominance of the time in the higher num-
ber of nodes is attributed to the overhead associated

In this section we discuss the performance of algo- with the global sort.
rithms that extend previous results found in [4]. Since First Fit
we use randomly generated rectangles as input, it is A major improvement in the computation time of
not possible (in the sense that the problem is NP- first fit with local pre-sorting was achieved. We imple-
hard) to determine the optimal packing. Therefore, mented a static tree structure in which the leaf nodes
if an algorithm A packs the rectangles into vertical were heaps. Each heap represents all of the levels with
strip V (which has width C) using height D, then we a particular amount of unused width. The root of each
use the percentage of the area CD that the rectangles heap contains the minimum layer number with that
cover as a measure of the quality of the solution pro- particular amount of space left. The search for the
duced by A. We ran our algorithms on inputs of size lowest indexed level that will fit an input rectangle
32,64,128,256,...,1048576, using 1, 2, 4, 8, 16, and starts at the lowest indexed leaf node that can pos-
32 nodes. Our results consider rectangles with height sibly fit the rectangle. By traversing the tree from
and width independent and uniform on (0... CJ. leaf level to root level and using information stored

Next Fit in the trees nodes the correct level can be identified.
The next fit decreasing height algorithm, one vari- For 32,768 rectangles per node our implementation of

ation of next fit with the P2 heuristic, was previously first fit decreasing height with a static tree was about
explored in [4]. This research considers the next fit 18.8 times faster than the first fit decreasing algorithm
algorithm with the heuristics P2 and 02 where P2 is used in [4]. For the smaller number of rectangles the
implemented as a global sorting routine. This global overhead associated with the static tree dominated the

61

run time. In the worst case, the static tree implemen- in [4] several modifications can be made. We are now
tation was 6.5 times slower than that of [4] with the in the position to suggest the use of a best fit algo-
static tree using 58 milliseconds and the older imple- rithm in place of the corresponding first fit algorithm
mentation taking 9 milliseconds. This case appeared for several reasons. As we have pointed out earlier,
for 32 total rectangles on one node. the balanced search tree implementation is preferred

First fit augmented with global version of heuristic since it is faster, more elegant and more flexible than
P2 was implemented next. Similar effects to those of the static tree implementation. Additionally, as we
next fit with the global presorting were noticed. But, mentioned in [4] best fit and first fit are nearly corn-
the effect was not nearly as dramatic since neighboring parable in their packing efficiency. The time critical
rectangles in the sorted order do not necessarily belong suggestions made in [4] remain valid with the realiza.-
to the same or neighboring levels in the packing. In tion that now there are fast implementations of best
addition to this effect the preprocessing also increased fit. Application writers may find that the advantages
the packing efficiency over that of first fit decreasing of a much better packing efficiency with a slower speed
height for any given number of rectangles and more outweigh the advantages of the fast but rather ileffi-
than one node. The increase in packing efficiency was cient packing with next fit. The last modification is
over 1% many times but never more than about 2.2%. the use of best fit in the cases in which P3 and P4 are
This effect is best explained by the fact that any given prohibited. The best packings in these cases will be
node will have a contiguous set of sorted rectangles. given by best fit augmented with the global presorting
Thus, in a first fit packing less space will be wasted by heuristic in the case that there are more thtan 32 rect-
placing relatively short rectangles into relatively tall angles per node. Otherwise, if there are less than 32
levels since the heights are closer in proximity to each rectangles per node use best fit with heuristic 112.
other than in the first fit decreasing case.
Best Fit Final Remarks

Best fit decreasing height had similarly striking im- In this paper, we considered a multi-tiered framework
provements in its data structure. Two possible im- for 2-dimensional bin packing algorithms. This three-
provements were investigated. The first improvement tiered framework describes many level algorithms and
was the use of the static tree structure that we used is extensible enough to include many other algorithms
for first fit. The only difference in the first fit and not considered here. The emphasis in each of these
best fit implementations is in tree search methods. In three tiers is on the optimization of the packing qual-
the best fit decreasing height implementation the low- ity/packing time tradeoff. The tiers describe modular
est indexed leaf node that contains a level with enough algorithms.
space to fit the next rectangle is chosen. Therefore, the aloithms.We included new results to complement those pre-
implementation turned out slightly faster than that of sented in (4]. All algorithms were implemented for in-
first fit in most instances since the amount of search put sets with between 32 and 1048576 rectangles on an
logic has been reduced. In the best case, this imple- Intel iPSC/2 with between 1 and 32 active nodes. In
mentation was about 167 times faster than the best fit particular, we considered the effects of global presort-
decreasing height algorithm presented in [4]. ing as well as improved data structures. Conclusions

The second time saving measure was to implement were drawn incorporating the new results.
the best fit decreasing height by using balanced search Our future plans include the consideration of rela-
trees [13] instead of static trees. The implementation tionships between the width of the vertical packing
of this structure improved the solution in two respects. strip and the sizes of the rectangles. For example, it
First of all, we were no longer bound to the imple- may be interesting to consider the heights and widths
mentation dependent static tree and secondly, the tree of the rectangles chosen independently and uniformly
traversal overhead associated with the static tree was on (0.. .bC], for b < 1. In addition, we also plan
minimized. Thus, this implementation of best fit ran to consider 'on-line' algorithms in depth. These al-
at least 9% faster than best fit decreasing height with gorithms typically use the preprocessing heuristic P1.
static trees. The largest speedup was achieved for We would also like to study various post-processing
smaller number of rectangles because the overhead on operations and the theoretical bounds placed on level
the static tree in.0lementation dominated the timing. packing algorithms by the various tier components.
Figure 2 presents the timings and performance results
using a balanced search tree.

CompaisonReferencesComiparison
M11 E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson, Ap-

With resrect to the algorithm comparison presented proximation algorithms for bin-packing - An updated

62

survey, Bell Laboratories, Murray Hill, New Jersey, [81 R.L. Graham, The combinatorial mathematics of
Technical Report, 1988. (This is an update of [7].) scheduling, Scientific American, Mar. 1978, pp. 124-

[2] E.G. Coffman, Jr., M.R. Garey, D.S. Johnson, and 132.

R.E. Tarjan, Performance bounds for level-oriented (9] D.E. Knuth, The Art of Computer Programming, Vol-
two-dimensional packing algorithms, SIAM J. Com- uine 3 / Sorting and Searching, Addison-Wesley Pub-
put., 1980, pp. 808-826. lishing Company, Reading, Mass., 1973.

(3] E. Cohen and R. Miller, Ilypercube algorithms for [10] J. Lee, E. Shragowitz, and S. Sahni, A hypercube algo.
the multiprocessor scheduling problem, Supercomputer rithm for the 0/1 knapsack problem, Proceedings of the
(27), vol. V, no. 5, September, 1988, pp. 17-32. 1987 International Conference on Parallel Processing,

(41 R. Fenrich, R. Miller, and Q. Stout, Hypercube Algo- pp. 699-706.

rithms for some NP-Hard Packing Problems, Proceed- [11] S.K. Park and K.W. Miller, Random number genera-
ings of the Fourth Conference on litpercube Concur- tors: good ones are hard to find, Communications of

rent Computers and Applications, 1989, to appear. the ACM, Oct. 1988, pp. 1192-1201.

[5] E.W. Felten, Best-first branch-and-bound on a hyper- [12] N. Toomarian, A concurrent neural network algo-

cube, Proceedings of the Third Conference on Hyiper- rithms for the traveling salesman problem, Proceedings

cube Concurrent Computers and Applications, 1988, of the Third Conference on HIlpercube Concurrent

pp. 15O0-1504. Computers and Applications, 1988, pp. 1483-1490.

(6] M.R. Garey and D.S. Johnson, Computers and [13] N. Wirth, Algorithms + Data Structures = Programs,

Intractability: A Guide to the Theory of NP- Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

Completeness, W.Ii. Freeman and Co., San Francisco,
1979.

[7] M.R. Garey and D.S. Johnson, Approximation algo-
rithms for bin-packing - A survey, in Analysis and De-
sign of A lgorithms in Combinatorial Optimization, G.
Ausiello and M. Luccrtini (eds.), Springer-Verlag, New
York, 1981, pp. 147-172.

104_ 80.

103. 60
• • 1 node

• - • 2 nodes

102 . 404noe

01 aos 20 32 nodes

100 1. . I

64 512 4096 32768 64 512 4096 32768

Total Number of Rectangles Total Number of Rectagles

Figure 1: Next fit with a global pre-sort.

10 S. 100

104. go.0

UI node

4 Snodes

0 1l6nodes

E~ 32 nodes

lot 20S 100-

64 512 4096 32768 64 512 4096 32768

Total Number of Rectangles Total Number of Rectangles

Figure 2: Best fit with a balanced search tree.
63

Efficient Serial and Parallel Subcube Recognition in Hypercubes

S. AI-Bassam*, H. El-Rewini**, B. Bose*, and T. Lewis*

* Oregon Advanced Computing Institute (OACIS) and ** Department of Math and Computer Science

Department of Computer Science University of Nebraska at Omaha

Oregon State University Omaha, NE 68182

Corvallis, OR 97331

Abstract based on buddy and gray code systems. We propose two

ways to extend the buddy system methodology to
We develop an efficient subcube recognition algorithm maximize the number of recognized subcubes with low
that recognizes all the possible subcubes. The algorithm fragmentation: 1) an extended buddy tree and 2) multiple
is based on exploiting more subcubes at different levels of extended buddy trees which is suited for a multi-processing
the buddy tree. In exploiting the different levels, the system. Also we introduce a new heuristic for increasing
algorithm checks any subcube at most once. Moreover, the availability of the processors.
many unavailable subcubes are not considered as
candidates and hence not checked for availability. This The buddy system algorithm searches for a subcube of
makes the algorithm fast in recognizing the subcubes. dimension k only at level n-k of the buddy tree. The
The number of recognized subcubes, for different subcube extended'buddy tree algorithm generalizes the search for
sizes, can be easily adjusted by restricting the search level available subcubes to cover more than one level down the
down the buddy tree. The previous known algorithms buddy tree. When the search covers all the levels beyond
become a special ease of this general approach. When one n-k (i.e. from n-k to n), complete subcube recognition can
level is searched, this algorithm performs as the original be achieved. At every search level, the proposed
buddy system. When two levels are searched, it will algorithm recognizes the candidate subcubes at that level
recognized the same subcubes as the ones in [4] with a only so that subcubes recognized at previous levels are not
faster speed. When all the levels are searched, a complete checked again. Also, it avoids checking many unavailable
subcube recognition is obtained. In a multi-processing subcubes. Therefore, this algorithm performs significantly
system, each processor can execute this algorithm on a faster than exhaustively searching all subcubes at that
different tree. Using a given number of processors in a level. The method becomes faster as the number of
multi-processing system, we give a method of searched levels increases.
constructing the trees that maximizes the overall number
of recognized subcubes. Finally, we introduce an The multiple extended buddy trees method takes advantage
allocation method "best fit" that reduces hypercube of parallel computers. A set of disjoint trees are created
fragmentation. Simulation results and performance and distributed among concurrently running processors.
comparisons between this method and the traditional "first Each processor executes the extended buddy tree algorithm
fit" are presented. on its own buddy tree. It is desired to have different

recognized subeubes at each processor to maximize the
total number of recognized subcubes. Chen et. al.[l] has

1. Introduction studied the distribution of multiple trees with depth 0
among many processors to maximize the recognized

Hypercube multiprocessors have been drawing subcubes. In section 3, we consider the general problem of
considerable attention due to their structural regularity for distributing the buddy trees with arbitrary depths to the
easy construction and high potential for parallel execution different processors.
[1-6). Efficient allocation and/or deallocation of node

processors in the hypercube is a key to its performance A hypercube is said to be fragmented when there are
and utilization. The main objective is to maximize the enough processors to accommodate a subcube request but
utilization of the available resources as well as minimize they don't form a subcube. We study an allocation
the inherent system fragmentation. In this paper we strategy that increases large subcube availability. When
introduce an efficient algorithm to achieve this objective. many candidate subcubes are recognized, the one with the
This problem has been studied in [1-41 using strategies minimum effect on the larger subcubes is allocated. In

640-6186-2113-3/901000010084501.00 0 1990 IEEE

section 4, this (best fit) method is discussed and compared section p =1). Then in a hypercube of dimension n,
to the traditional first fit method. Finally, in section 5 we N(k,d,1) = (n-k+d 2 n-k for 05 d!5 k. 0
give some concluding remarks. n-k)

We first introduce some notations that are used in this It is clear from lemma 2.1 that increasing the search depth
paper. Let Qn denote a hypercube of dimension n and . (d) will increase the number of recognizable subcubes.

be the ternary symbol set (0,1,*), where * is a don't care Let Dk represent the maximum depth used in searching for

symbol. Every Qk subcube in Qn can be represented by a Qk subcubes, where 0 < Dk< k. Also let Time(k,d)

string of symbols in 1 having k *'s. For example, the denote the number of comparisons needed to search for a
address of the subcube Q2 formed by nodes 0010, 0011, Qk subcube using one tree between levels n-k and n-k+d

0110, 0111 in Q4 is 0*1*. Let a*a* represent the where 0 <d < k. Notice that N(kk,l) = (nnk) 2 n-k,

subcubes 0*0*, 0"1", 1*0*, and 1*1*. In general, a

string of length n of symbols in {a,*), where a is 0 or I, which is all the possible subcubes of size k. The number

with k *'s and n-k a's represents 2 n'k subcubes of size k of Qk subcubes recognized at depth d (but not at the
("n-k+d-1"\

since a can be 0 or 1. previous depths) is N(kd,l) - N(k,d-1,1) = n-k-]

2. Extended Buddy Tree 2 n-k. The maximum search time occurs when all the
recognizable subcubes are not available and the search is

In the buddy system [1], a binary tree of n levels, as forced to depth Dk. Therefore, Time(k,Dk) can be
shown in Figure I for n = 4, is used to represent the bounded as shown in the following Lemma.
availability of some subcubes of Qn" In the buddy system,

Qk subcubes are recognized only at level n-k. There will Lemma 2.2: Given a hypercube of dimension n, the

be 2 n'k recognizable subcubes at level n-k, namely search time needed to recognize a Qk subcube using depth

aa...a**...* with n-k a's and k *'s, i.e. the subcubes parameter Dk, is

an'-kk. For example, the Q3 's at level I are 0*** and Dk n-k+d-I n-k+d
I***. Time(k, Dk) <_ I (n-k-) 2 n

d~Eo
By extending the search to more levels (levels n-k, n-k+l, (n-k+Dk\' 2 n-k+Dk
... etc.), more subcubes can be recognized. When the next C n-k)
level is searched, i.e. level n-k+l, then (nnk~l) 2 n'k

Proof: When the search goes through all depths, i.e.
subcubes can be recognized. This is true since any n-k 0,1, ..., Dk, the time will be
bits can be chosen among the n-k+l bits in the tree, Dk
recognizing the following: Time(k, Dk) 5 7 (N(kd,l) - N(k,d-1,1)) 2 d

d=o
-- n - k + .- + 1 k D ,

aa **... * =\, nk-1k) 2dk I (n-k+d-1
aa....*a*. ... * - -k I 2d2', and X(n-k-l) 2 - 2'
a *0aa*. .. *

.... is bounded by n-k+Dk) 2n-k+Dk. I• aQ a* ... *C -

i.e. the subcubes (an-k-i * ai *k-1 I 0 < i < n-k 1. As seen from Lemmas 2.1 and 2.2, both the number of
recognized Qk subcubes and the maximum search time

Using a similar argument, searching to depth d yields increase as the depth parameter Dk increases. Figure 1
(nk+d) 2 n'k recognized Qk subcubes, as stated in shows the increase in both log maximum time and log the

following Lemma. number of recognized Q6 subcubes in Q8 " In general,
table 1 illustrates the spectrum of the recognition and its

Lemma 2.1: Let N(k,d,p) denote the number of maximum time.
recognizable Qk subcubes between levels n-k and n-k+d,
i.e. at depths 0 to d, where 0 < d < k using p trees (in this

65

Depth Number of Maximum Comment considered as candidates. When q is not available all the
recognized Qk's search time Qk subcubes containing q are not available and hence not

0 2 n-k Buddy system candidates. The other 2 d - I Qk-d's, that form with q a

2 n-k+1 2 n-ku Gray code candidate subcube, can then be tested for availability.
I 2n-k+ 2 2 n-k Ga-c This process speeds up the search considerably.

:- : : More formally, let Sn = {n }, Sn1 = 0 n-1, 1 n-I },

nDk \ n-k / dk=• n-kd-I)2n'k+d Sn_2 {0 0*n-2, 0 1,n02, 10,n-2, 11*-n2} etc.

dko n-k-I In general let Si = an-i *i = { 0 n-i .i ln-i *i } for 0
k :5< i < n, i.e. Sk is the recognized Qk subcubes at level

k (n) 2 n-k • (n-k+d-) 2n-k+d n-k. Let T be the buddy system tree of Qn" The

n-k d=o n-k-I algorithm is then stated as follows.

full recognition)
Algorithm 2.1: Subcube Recognition.

Table 1. . n-k+Dv'Given n, k, and Dk, the algorithm recognizes n-k)
Example 2.1: In a hypercube of dimension 4, let D0=0, 2nk

D1 =0, D2 =2, D3 =1, and D4 =0. Using the tree shown in 2 nk subcubes of dimension k.

Figure 1, we can recognize N(k,Dk,l) -..n'k+Dk'• n-k For d = 0 to Dk do
k n-k s For each q = v, v2 v3 ... vn E Sk.d such that TIq] = true

Qk'S, for 0 :<k _: n. That is, we can recognize 16 Q0s, 8 (i.e. ava',able) do
Ql'S, 24 Q2 's, 4 Q3 's, and 1 Q4. The maximum search 1.1 LetQ be the set of all Qk subcubes that contain q.

2 (l+d) For each subcubepr Qdo
time for recognizing a Q2 , for instance, is I (1 1.2 If the other 2d - 1 Qk-d'S forming p are available

2 2+d = 4xI + 8x2 + 12x4 = 68 node comparisons. 0 then p is available, stop.

To recognize the Qk subcubes efficiently at depth d, i.e. at The set Q in step 1.1 can be formed by changing any d 0's

level n-k+d, we take into account two factors to **s in the first n-k+d-1 positions of q. Notice that if
position n-k+d was included then all previously recognized

I hek the bbe tha h subcubes will be formed, and hence this position is

been checked at the previous levels, avoided. Since q = v1 v2 v3 ... vn where vi for
n-k+d+l < i 5 n, so Q = [p "1 "2 ... Un-k+d-1 Vn-k+d

2) Narrow down the recognition to 'candidate' subcubes ,k-d I where the number of *'s in p is k [i.e. there are d 's

instead of exhaustively checking all possible (n-k-d_11) in (uI u2 ... Un-k+d.1)] and if ui = '*' then vi = 0). In
Sn-k- I general, the d *'s can be chosen in any of the positions

2 n-k subcubes at depth d. from I to n-k+d-1, however when only the positions

containing O's (or l's) are considered, every Qk at this
A Qk can be formed by 2 d Qk-d subcubes at level n-k+d. level will be generated by exactly one Qk-d"
Any Qk having an '*' in bit number n-k+d is generated at

some level before n-k+d. At level n-k+d, we only In step 1.2, given any subcube p e Q, where p = uI u2 .
generate subcubes that have no '*' in bit n-k+d. Only Unk+d.-I ,k-d. The other 2 d - 1 Qk-d subcubes that form
n-k-l a's can be chosen among the n-k+d-1 positions to p are obtained by enumerating the d *'s in the first

reonien-k+d-l " 2n-k subeubes at depth d. n-k+d- I positions of p. These Qk- subeubes (having the
-k)last k d positions as *'s) can be directly checked at level

The candidate Qk subcubes at level n-k+d are generated as n-k+d of the tree. E]

follows. Let q be a Qk-d subcube at level n-k+d. If q is The number of recognized subcubes can be controlled by
available then all the Qk subcubes containing q are setting appropriate values of Dk for different subcube

66

sizes. For instance, when Dk = 0 for 0 < k < n, this
method performs as the original buddy system. When Dk Recall that, as in Lemma 2.1, given a tree T = [a1 , a2 ,

= 1 for 0 < k 5 n, this method recognizes the same an), the number of recognized Qk's up to depth d is (nk+d)
subcubes as in [41 with greater speed. In this case, this

algorithm performs faster than the one in [4], especially 2 n-k. These subcubes are of the form V = v, v2 . vn
when the system is highly loaded, since many unavailable such that V has n-k a's and k *'s and the a's can only
subcubes are not considered as candidates whereas in [41 all appear in the positions a1 , a2 , ..., or an-k+d.
possible subcubes at that level are candidates. The gray
code strategy is somewhere between depths 0 and 1 (more Let C1 and C2 be the sets of the recognized Qk subcubes
towards the 0). On the other extreme, when Dk =k, for 0 using T 1 = [a,, a2, an] and T2 = [b, b2 , ...- bn] to

< k ! n, all the possible subcubes can be recognized, depth d, respectively. C1 and C2 are distinct, i.e. C1 n

In example 2.1 (using Figure 1), all the 24 Q2 's are C2 =, Cff I (al, a2 , .. an-k+d) r) (b1 , b2 , .., bn-k+d) 1
recognized since D2 =2, i.e. searching depths 0, 1, and 2. < n-k. This is true since the n-k a's in C1 can never be

The following tabulation shows the recognized (but not inthe same positions as the n-k a's in C2 .

necessarily candidate) subcubes at each level of the tree.
For example, consider T1 = [1,2,3,4] in Figure 1. When

d = depth level recognized # of subcubes recognized D3=l, the recognized Q3 's at levels I and 2 are cz*** and
subcubes only at depth d *a**, and when 72 = [4,3,2,11 in Figure 2 is used, the

0 2 ta** 4 recognized Q2 's are **a* and ***a. The subeubes are

3 aa and*a* 8 wihbi3* disjoint sine (1,2) n (4,3) I< n-k= 1.

2 4 a**ca, *a*a,**aa 12 with bit 4 * * Distinct Trees Matrix (DTM):

Example 2.2: Consider the hypercube of dimension 4 A DTM for a hypercube of dimension n represented by m
represented by the tree T in Figure 1 where the dark trees, is defined to be an mxn matrix, where each row
subcubes are occupied and the light ones are available, represents a different tree.
The following sequence illustrate how algorithm 2.1 (xII x1 2 ... xln
proceeds to recognize Q2 when D2 = 2. / xl... x2n

When d=0, the subcubes 00**, 01**, 10"*, 11"* are (.xm1 xm2 ... xm n)
considered but they are all not available. When d=l,
Since q = 000* is busy the subcubes 0*0* and *00* are
skipped. Since q =001* is available we consider the where row i is a [xii, xi 2 xn tree, therefore
candidatesetQ={0*l*,*01*}. 0l*=OQI*and011* xil, XN2 ,. .. xin}=Zn=(l,2. . . , n) forSiSi-m (3.1)

but 011* is not available so 0*1* is not. _01* =QOI*
and 101* but both are available so *01* is available. 0 A matrix M is considered a DTM if for any i distinct

numbers from Zn there is at least one row in M such that

3. Multiple Extended Buddy Trees these i numbers appear in the first i + Yn-i positions in

that row. When M has few rows, not all the permutations
In this section we study the performance of the extended are achievable. In order to maximize the total number of
buddy system when multiple trees are employed. In a recognized Qk'S, the DTM must have the maximum
multi-processing system these trees can be assigned to possible permutations. More formally, let Sk,i be the set
different processors to speed up the recognition process. of all possible subsets of { xi I x 2 ... xi (n-k)+Yk)) of

Let [a,, a2 , ..., an] denote a tree that splits at the first size n-k. Let Ck= (Skj' 1 < j 5 m), i.e. Ck represents

level according to bit number a1 , then at the second level the set of the recognized Qk subcubes. In the construction

according to bit a2 , ... and so on. Every bit position of the DTM, the Ck's must be maximized, so a DTM

appears exactly once, i.e. I a1, a2 , an) = { 1,2, ..., n must satisfy the following property.

). The tree shown in Figure 1, say T1 , is a [1,2,3,4]. IC = min (m (n-k+Yk) (n)

Figure 2 shows another tree T2 = (4,3,2,11. 1 \n-k

for 0 S k S n (3.2)

67

Example 3.1: Let n = 4, m = 6, and Yk=0 for all k.
The following 6x4 matrix is a DTM As seen from Lemma 3.1, when each processor in the

parallel system is assigned a different tree, the number of
1 2 3 4 the recognized Qs is linearly dependent on the number of
2 3 4 1 proces .
3 4 1 2
4 1 2 3 Lemma 3.2: Given an pxn DTM, M, and Yk for
1 3 2 4
2 4 1 3 0.k•n. Let Rk denote the number of the recognized Qk's,

where 0:< Rk5 ((nnk) 2n-k, then

Using the 6 trees (with depth 0) given in the above DTM nk
allows us to recognize all possible subcubes in a p Rk
hypercube of dimension 4. For example all the Q2 n-k+Yk) 2 n-k for 0< k n.

subcubes are recognized because in columns I and 2 all n-k
the possible combinations exist. For instance, the a**k
Q2 subcubes are recognized from the [4,1,2,3] tree. 0l Proof: From lemma 3.1, any tree can recognize + kk)

Example 3.2 Let n = 6, m = 3, Yk I for 0 < k < 6. 2 n'k Qk subcubes when searched to depth Yk" Therefore,
Then the following matrix is a DTM. all the trees in the DTM can recognize at most p (n-k k

123 45612

3 345 61234 2Pn-k k k+Yk2n_'whensearcheduptodepthYkYi'e.Rk
-<P5 6n-k) 2 n-k El

The trees in M give the maximum recognized subcubes.
In this case, all the subcubes of size 0, 1, 5, and 6 are Consider the following special cases of the Lemma 3.2.
recognized; and the recognized subcubes of size 2, 3, and 4
are maximized. For instance, the **a'a* Q2 subcubes n k a
are recognized from the [3,4,5,6,1,21 tree since (3,5) 1) Suppose that Rk = O 2nk and = 0 forallk,
appear in the first n-k+Yk = 3 positions of this tree. El i.e. complete recognition with zero depth. Then,

LetY=max (YkI0<k:n). ADTMofLv-IJor p> (n-k)2n-kf n-k T

less rows can be formed by letting the first row be [1, 2, (n-k)
n) and row i be a Y+I left circular shift of row i-I, for

n ~maximum occurs when k = n/2, in which p;- Ž(n
1 Vij" The matrix M in the previous example is

generated using this method. When all the depths are 0 n)=
then a DTM with any number of rows can be constructed 2) Suppose that Rk =knk) 2n- k and = k for all k.
using matching theory [1]. In the presence of a In this case m Ž I for 0 < k 5 n. This confirms that a
multi-processing system with p processors, a DTM with single tree can recognize all the subcubes when searched
p rows and n columns provides the best tree to processor up to depth k.
assignment. That is, processor i performs the search
using the tree in ith row of the DTM, for I s i < p. Figure 3 illustrates, for n=8 and k=6, the relation between

the search depth in each tree and the number of required
Lemma 3.1: Given p processors, let M be a pxn DTM. (8.) 28-6
The maximal subcube recognition is achieved by trees neededtorecognizeall the Q6 subcubes
assigning the p trees of M to the p processors. And, in Q8 . The figure also shows the log of the maximum

N(kYkP) = min((n) 2 n-k (n C-k+Yk) 2 n-k) search time for the different depths.S(n-k) nkP n-k

where N(k,Yk,p) is the total number of the recognized As seen in section 2, a uni-processor can recognize

Qk's up to depth Yk in the p trees of M. El

68 J

N(kDk'l) = k+D 2n-k Qk in at most The improvement is mainly due to the usage of the

Dk n-k+d-1) n-kdistinct multiple trees in Tp. So it is faster to distribute
I (n-k-1) 2n.k+d time units. Using p processors, the trees among the processors rather than distributing the

n-o original function.

the N(kDk,1) Qk's can be recognized much faster since
the search depth (Yk) in each processor is smaller than Also, notice that more than one tree can be used at each
Dk. To recognize N(kDk, l) Qk'S using p trees, the trees processor, and so all these distinct multiple trees can run

must be searched up to depth where p * N(k,Yk, 1) > on one processor. This will yield a faster subcubemust bseceurecognition; however, the major drawback of this method,
N(kDk,) i.e., p n-k+Yk 2n- (kn-k+Dkj 2 n-k other than increased memory, is the time taken to update

N n-k) > n-k) the trees after each subcube allocation.
Using the approximation n-k+k 1 k 4. Subcnbes Recognition with High

eetn-k Availability (Low Fragmentation).
(n-k+D•O we get

-n-kJ)In the sections 2 and 3 the emphasis was on the number
- log P 3.2.1 of recognized subcubes. When low fragmentation is

Yk Dk"logn - log k desired, an allocation strategy that chooses among the
recognized subcubes must be employed. This problem is

Let T1 be the maximum time to recognize all possible Qk similar to the traditional memory system where the
subcubes in Qn with one processor. Let T be the time memory is allocated based on some strategy, say first fit,
to recognize all possible Qk subcubes in Qn using the best fit, worst fit, etc. The fragmentation problem also

extends to the deallocation, i.e. when a subcube becomes
best parallel algorithm on a parallel system of p available. In this case one can also rearrange the

processors, so Tp = -. Let T denote the maximum processor-task mapping to minimize fragmentation. This
P =p is somewhat similar to compacting the memory.

time to recognize all possible Qk ýubcubes using the The current allocation methods can be considered as first
multiple trees method with p processors. Let improve(p) fit since the first available subcube is chosen for

=1 then allocation. We propose a new method similar to the best
T fit in memory systems. This method chooses the

subeube, among all available subcubes, that leaves the
improve(p) > 1 (2n' 1 h maximal unfragmented system. Simulation results and

p\n-k/ performance comparisons between this method and the
where h- log p 3.2.2 "first fit" will be presented. We start with some

log n - log k definitions.

This can be proved as follows. The max time to Let A = <an, an. 1....... a0 > denote the subcube
recognize all Qk'S using one tree is T1 = (nk) 2 n-k 2 k availability vector, where ak is the number of available

nk 2n (and recognizable) Qk subcubes. We call A the "state" of

(nk) W n pthe system. The initial state is <N(n,Dn,1),and hence Tp- . When ptrees are used then Nn-Dn, .N(D 0 1.LeA anni.,an ec P p N(n-1,Dn.1.1) N(0,D0,1) >. Let A = ý<a, an_,,.....

a0> and B = <bn, bn. I b0 > be two states and let j be

T=p n-k 2 where y - k - log p the largest integer (0,j!n) where aj~b3 . We say that A isless fragmented than B iff aj > b., i.e. lexicographic order.
so J

k- nThis metric gives more weight to larger subcubes than
T (!)k'Y (nnk) 2 n-k+Y smaller ones.

Let q be a recognizable and available subcube and let L =

phen improv n - l <In* In-l' P10> be the loss vector resulting from
o pe log n - log k

69

allocating q. The loss vector implies that Ii Qi, for modified for multiple processors (trees) as follows.
Qriý, recognizable subcubes are made unavailable as a
result of allocating q. The new state after allocating q will Algorithm 4.2: To recognize a Qk subcube with low

be: fragmentation using p trees.
new state = current state - Lq

o Let qi and Ai be the candidate subeube and the new

In order to achieve less fragmentation (high availability) state, respectively, of processor i.
when allocating a new subcube, we choose the one that o Processor i sends its qi and A, to the host.
causes the minimum loss to large subcubes in the o The host computes in such that Am 22 Ai for l~i<p.
allocation process. This is illustrated in the following o Allocate q. (if any).
algorithm. o Each processor updates its tree and state accordingly. [0

Algorithm 4.1: Best Fit Allocation (using a single To completely remove system fragmentation, deallocation
tree). must be considered. When a task releases a given

"o Let S be set of all the recognized and available Qk'S. subcube, the cube might become fragmented. In this case
"k L bs tone can rearrange the task-processors allocation to remove

o Let q e S be the subcube such that Lq < % for any p e S. this fragmentation. This process, referred to as task
"o Allocate q (if any). migration [3], has a high overhead since it requires task
"o The tree and the state are updated accordingly. 0 deallocation and allocation. Task migration can be done at

every deallocation, if fragmentation exist, to maintain an
In the above algorithm, when all the depths are restricted unfragmented system. However, when the system is
to zero, L can be easily calculated by counting the highly available it may not be worthwhile. The other
number of !4k's that become unavailable at level n-k as a approach to this problem is to compact the whole system
result of allocating q. When q is of dimension k, L will when the fragmentation exceed some threshold.

be of the form <0, ..., 0, 1, ..., 1, 2, 4, ... , 2k- 1, 2 k>. So References
Lq can be determined by the largest lost subcube
corresponding to the first "I" in Lq. When the depths are [1] M. Chen and K. G. Shin, " Processor Allocation in an

arbitrary, the computation of Lq might take longer time. N-cube Multiprocessor Using Gray Codes". IEEE

Transaction on Computers, Vol. C-36, No.12. 1987.
A simulation was performed to analyze the new method. [2] M. Chen and K. G, Shin, " Embedment of interesting task
The following parameters were varied: hypercube sizes, modules into a hypercube multiprocessor", Proc. Second
load factors, and the sizes of the requested subcubes. For Hypercube Conference, 1986.
the later, the uniform and geometric distributions where [3] M. Chen and K. G, Shin, " Task Migration in Hypercube
used. Figure 4 is for Q8 with system load between 80% Multiprocessor". to appear.

to 100%. The geometric distribution was used to generate (41 A. Dehlaan and B. Bose. "A New strategy for Processor

the size of the requested subcubes. At every time unit a Allocation in an N-cube Multiprocessor", Phoenix

random subcube is chosen from the allocated subcubes to Conference on Computer and Comm., March 1989.

be released. This gives a semi-exponential distribution for [5] B. Becker and H. Simon, "How robust is the n-cube?",
their execution time. The simulation was run for 1000 Proc, 27th Symp. on Foundations of Comp. Sci. 1986.

time units, after reaching a 90% load factor. Figure 4 (61 L. N. Bhuyan and D.P. Agrawal, "Generalized hypercube
suggests that for higher subcube sizes the best fit and hyperbus structures for a computer network", IEEE
performs considerably better than the first fit method. Transaction on Computers, Vol. C-33. 1984.

When multiple trees are used, let A, be the state of the

system using the tree at processor i, for lisp. The
system (global) state is then defined as the maximum
(element wise) of the Ai's. In this case, algorithm 4.1 is

executed at each processor. Processor i then sends its new
state Ai and its candidate subcube qi, i.e. with the one

with the lowest loss. The "host" collects this information
and chooses the best among qi's. Algorithm 4.1 can be

70

4,C-

4R R

tz .

Cd Oh~ .71

Parallel Thinning on a
Distributed Memory Machine

Joong R. Baek and Keith A. Teague

School of Electrical and Computer Engineering
OkLahoma State University
Stillwater, OkLahoma 74078

Abstract 2. Parallel Boundary Detection
and Object Extraction

A paraLlel thinning algorithm based on boundary
following is presented in this paper. The boundary of To avoid the problem of breaking the objects between
each object region is extracted and linked in parallel, nodes, we extract the objects and thin them individually
The resulting object boundary data is divided based on in each node in parallel. In this section we introduce
the object size and the number of nodes for Load a parallel boundary detection and object extraction
balancing, then the divided objects are redistributed to method on a distributed memory computer.
the nodes. Each boundary in a node is projected on a
"working plane". Next, the boundary data is repeatedly
shrunken until only the skeleton of the region remains. 2.1 Input Image Distribution
The conventional iterative parallel algorithm as welt as Method
our new algorithm are implemented on a hypercube-
topology multiprocessor computer, the Intel iPSC/2. The
two algorithms are compared and analyzed. Some Poor performance can result if processor loading is

resulting figures and execution times are presented. uneven. In order to maximize the performance, the
amount of data Loaded to each node must be balanced. A
distribution method in which the image plane is divided
into rows as evenly as possible according to the number

1. Introduction of nodes being used and each resulting sub-image is
distributed to each node is conmonly used in parallel
image processing. It is obvious that the processing

Thinning is one of the most important procedures in time can be reduced in theory to 0(1/N) by using this
pattern recognition and image data reduction, but it is distribution method, where N is the number of nodes
a very time consuming procedure. In most existing being used. Here some rows on the borders of each node
thinning algorithms, several templates (usually 3x3) are need to be shared with its adjacent nodes for detecting
scanned on the image for deleting boundary points but boundaries by using the template matching method
not the skeleton of an object. This procedure is described in the next section. The number of shared
repeated until no points are deleted. Oqiousty the rows depends on the number of rows of the template: r/2
complexity of the whole procedure is 0(n) (1). In rows need to be shared, where "r" is the number of rows
order to reduce processing time many parallel algorithms of the template used.
E2-7] has been proposed which can be easily implemented
on currently available mesh computers. Unfortunately,
those parallel thinning algorithms are undesirable for 2.2 Boundary Detection
implementation in distributed memory computers because
the global shapes of the objects in an image might be
affected when the image is divided and distributed to Let us assume that we have a digitized binary image.

each node. To avoid this problem, data swapping between Then an object region in the image can be simply
nodes, that is, communication, must be performed at represented by the set of boundary points, or connected
every iteration 183. edge points, of the object. The connectedness of two

In this paper, we propose a new parallel thinning boundary points in a binary image depends on the

algorithm based on boundary following and shrinking, definition of the neighborhood: four-neighbor (N4) or

Each object boundary in the Image is extracted and eight-neighbor (N8) 193. N. and N. neighborhoods of a
linked in parallel. The number of objects is divided point at (IJ) consist of the following points:
based on the number of nodes and object size. Then the
objects are distributed to the nodes and thinned in N4 ((,j-1), (i,j+), (i0-,j), (1+l,!)) (1)
parallel by following the boundaries and shrinking them N8 (N4. (Ci-,j-1), (il,j+l), (i+¶,j-1),
in the direction perpendicular to the boundary and (1+1,j1)) C?)
pointing toward the inside of the oWect. Phis
algorithm reduces the complexity from O(n)to O(n). in this paper we have chosen eight-neighbor as the

720-8186-21 13-3/90/0000/0072$01 .000 1990 IEEE

definition of the neighborhood. Two points are eight- In order to link the local objects in the nodes
connected if they are eight-neighbors of each other. globally, the Local objects which have top border
Figure 1 shows a 3x3 template according to the eight- elements or bottom border elements must be sent to their
neighbor definition, adjacent nodes and Linked one after the other for all

Let us assut. that the size of the input binary image nodes. Since this step is a kind of sequential top-down
is nxn, and no object points touch the periphery. Then Linking procedure and it involves an exhaustive
the boundaries can be detected by the following comparison between every pair of 'bbe' and 'tbe', it
procedure: might cause some degradation in the parallelism. To

maximize the parallelism, we have proposed a paralLeL
procedure Boundary.Detection; linking algorithm in [10]. The theoretical speed-up is
begin t dLg 2 N, where N is the number of nodes being used.

for j=O to n-1 do begin

for i=O to n-1 do begin
if ILL,j)=1 and I(p,q)=1 for all

(p q) i NM, then B(i,j)=O; bound

else B(i,j)=X;
end; bbe-, Node 0

end;
end; tbe Node I

where ! is an array representing the input image, and B T
is an array representing the output which contains only F
boundary points. This procedure is performed in each
node for its sub-image in parallel. Node N-2

SNode N- I

Pe P1 P2

(1-,j-t) (i,j-) (0+ U,-) Figure 2. Boundaries (bound), bottom border elements

P7 PO P 3 (bbe), and top border elements (tbe).
(-1,J) 01~J) 0t+ U)

P6 P5 P(l-lj+1) (l,j+1) (l+l,J+1) 3. Parallel Object Thinning

Figure 1. 3x3 template according to the eight- For load balancing, the root node collects theFigur t tefcingition tinformation of the number of objects and their sizes
neighbor definition from all nodes. Then the root node divides the number

of objects according to the number of nodes being used
2.3 Object Extraction and the object sizes and redistributes the objects to

2j all nodes. In the global object-linking step described

in the previous section, the boundary data of the
As the result of the boundary detection, each node objects might be shuffled. To rearrange the data, we

has boundary points only for its own sub-image. Now, we project the objects on a 'working plane' and perform the
extract the objects Locally by the boundary-foLlowing boundary-foLlowing step once again.
method which is described in E9] (see ch.4). The data Now, we thin the objects in each node in parallel by
structure for an object might be the following: following the object boundaries clockwise and by

shrinking them in the direction perpendicular to the
typedef struct (boundary and pointing toward the inside of the object.

int numofbound, /* nu.ber of boundary 0/ This procedure is repeated until the number of boundary
/* points */ points is not changed. Note that we find the direction

numoftbe, /* number of points on */ for shrinking based on the eight boundary-following
/* top border */ directions shown in Figure 3 and defined by the

numofbbe; /* number of points on *1 following equation:
/* bottom border

XYCRD *bound, /* pointer for boundary 0/ shrink dir = (foLLow dir + 2) mod 8 (3)
/* data *1

tbe, / pointer for top */ where if shrinkdir is zero, then shrink dir is
/* border elements */ reassigned to eight.

bbe; / pointer for bottom */ Figure 4 shows the result of shrinking a simple cross
/* border elements '/ object after only one iteration. The starting point is

) OBJECT; the top-Left position of the object, and the arrows
represent the boundary-following direction which is

where XYCRD is another data structure for a data clockwise. 'x' and '.' denote the boundary of the
position. Figure 2 illustrates the 'bound', 'tbe', and original object and the boundary of the shrunken object,
Obbet. respectively. Note that the circled points are inserted

73

to make the shrunken object boundary connect. The
connectivity of the shrunken-object boundary is
essential for the next iterations. If a boundary point
is an element of a parallel Line or a single Line
(overlapped) then the point is just copied without
shrinking. The parallel line and the single line are
depicted in Figure 5(a) and Sb), respectively. 6 8

The shrinking step produces the skeletons of the
objects, which are at most two-pixels wide. To make
singte-pixet wide skeletons, we use the Zhang and Suen N,
algorithm E2] which preserves the connectivity of the
skeletons. Note that we can remove two-pixet-wide 4 3 2
points by following the skeleton data points instead of - -

scanning all over the working plane. Also note that we
need only one iteration, that is, two subiterations. Figure 3. Eight boundary-foLlowing directions.

4. Experimental Results

Our paralLet-thinning algorithm was implemented on a Working plane Startinq point
hypercube-topology multiprocessor computer, the Intel
iPSC/2. Figure 6(a) shows a test image which contains
sixteen 'N's. The size of the image is 512x512.
According to the input image distribution method x x X x x

discussed in section 2.1, the input image was divided by 4 Lthe number of nodes and each sub-image was distributed II
to each node. Then the boundary detection for each sub- 10. x x .- -Bo
image was performed in parallel. Figure 6(b) shows the x x x x 0 x x x x
result of the boundary detection from the original
image. Through the parallel Linking procedure, the x 0 0 0 x
sixteen objects were extracted and redistributed to the x x
nodes as evenly as possible. Finally, the objects were
thinned by boundary-foltowing and shrinking. Figure x 0 0 0 x
6(c) is the final result. The skeletons are single- x x x 0 x x x x
pixel wide.

For the comparison, we also implemented Zhang and I4 x X ,

Suen's algorithm on the iPSC/2. As we discussed in the x x
introduction, we needed to swap data between nodes at I
every iteration. The processing times of Zhang and x x x x
Suen's algorithm as well as our algorithm according to
different numbers of nodes are shown in Table 1. The
data described above was used for both cases. We can
see that our algorithm is much faster than Zhang andSuets. ut ur agorthmhas omedegadaton hen Figure 4. The result of shrinking a simple crossSuen's. But our algorithm has sowe degradation when object after one iteration.

using 32 nodes because there are only 16 objects in the
image and more communication time is needed for object
extraction as more nodes are used.

5. conclusions x x x x x x

In most conventional thinning algorithms, the x I
complexity of the whole procedure is O~n). Moreover, x x xx x
the algorithm are undesirable for distributed memory -

computers. To solve these problems, we have presented
a new parallet-thinning algorithm which is based on (a) (b)
boundary following and shrinking. Also we have
implemented this algorithm on the Intel iPSC/2. Figure 5. (a) Parallel line
Theoretically, the complexity of our algorithm is O(n2). (b) Single line (overlapped)
According to the experimental results, our algorithm is
much faster than Zhang and Suen's. However, our
algorithm depends on the number of objects in the input
image. That is, the more objects in the scene, the more
efficient the algorithm. Another problem is that, so

74

far, our algorithm works only for solid objects. But References
this problem can be solved by some modification of the
algorithm: if an object contains some holes inside, 01] N. Pilar Martinez-Perez (1987), "A thinning
then we detect the boundaries of the holes as well as algorithm based on contoursu, Computer Vision,
the boundary of the object. In the shrinking procedure, Graphics, and Image Pro# sing 39, pp. 18& J1.
we shrink the boundary of the object inward and shrink 2 T. Y. Zhang and C. Y. S (Mar. 1984), "A fast
the boundaries of the holes outward, pare llet algorithm . ,. thinning digital

patterns", Communications of the ACM4 27, Mum. 3,
pp. 236-239.

H H H H (31 H. E. Lu and P. S. P. Wang (Mar. 1986), "A
comment on a fast parallel algorithm for

H H H H thinning digital patterns", Comunications of
the ACM 29, Mum. 3, pp. 239-242.

H H H H [41 Roland T. Chin and Hong-Khoon Wan (1987), "A
one-pass thinning algorithm and its parallel

H H H H impLementation", Computer Vision, Graphics, and
Image Processing 40, pp. 30-40.

[53 Christopher N. Holt, Alan Stewart, Maurice
(a) Clint, and Ronald H. Perrott (Feb. 1987), "An

improved paratLet thinning algorithm",
Communications of the ACM 30, Mum. 2, pp. 156-

I 160.
[6] Richard W. Halt (Jan. 1989), "Fast parallel

SI: - thinning algorithms: parallel speed and
connectivity preservation", Communications of

J [J • [the ACM 32, Num. 1, pp. 124-131.
(7] Zicheng Guo and Richard W. Halt (Mar. 1989),

1111 9n nn nlfl "Parallel thinning with two-subiteration
algorithms", Communications of the ACM 32, Num.
3, pp. 359-373.

(b) [8] James T. Kuehn, Jeffrey A. Fessler, and Howard
Jay Siegel (1985), "Parallel image thinning and
vectorization on PASM", Proceedings of CVPR '85:
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 368-374.

[91 Yoshiaki Shirai (1987), Three-Dimensionat
H H H Computer Vision, Springer-Verlag, New York.

[10] Joong H. Baek and Keith A. Teague (1989),
H H1 H H "Parallel object representation using straight

lines on the hypercube multiprocessor computer",
Proceedings of the 4th Conference on Hypercube,
Concurrent Computers, and Applications, Vol. 2,

(c) pp. 987-990.

Figure 6. (a) An original input image (512Y512)
(b) A boundary-detected image
(c) A thinned image

s 4 8 16 32

Algortthmý_

ZhangandSuen 56.1 34.4 23.6 13.0

Ours 10.2 6.4 3.7 4.5

Table 1. Comparisons of the processing times

75

The Fifth Distributed Memory

Computing Conference

I :Multi-Target 'racking

A Nonconvex Cost Cptihnization Approach to Tracking Multiple Targets

by i Parallel Computational Network

Kenneth Rose, Eitan Gurewitz and Geoffrey Fox

Caltech Concurrent Computation Program
California Institute of Technology

Mail Stop 206-49
Pasadena, CA 91125

Abstract ing only the most likely associations and assign-
fhe problem of tracking multiple targets ing an association probability to each hypothe-

in the presence of displacement noise and clut- sis. The method outputs as state estimate the
ter is formulated as a nonconvex optimization corresponding average of the conditional state
problem. The form of the suggested cost func- estimates. Another difficulty arises when deal-
tion is shown to be suitable for the Graduated ing with multiple targets. Unlike clutter, the
Non-Convexity algorithm, which can be viewed presence of another target produces points with
as deterministic annealing. The m, :hod is first a structured distribution. Thus in the case of
derived for the two-dimensional (s atial/ tem- crossing targets, these points may be assigned
poral) case, and then generalized io the multi- high association probabilities and mislead the
dimensional case. The complexity grows linearly estimator. This gave rise to the Joint Proba-
with the number of targets. Computer simula- bilistic Data Association method [3], which as-
tions show the performance with crossing tra- signs joint association probabilities to sets of
jectories. hypotheses. The complexity of this method

clearly grows combinatorially. A neural network
Introduction method for approximating the joint association

The problem of tracking is that of esti- probabilities has recently been proposed [4].
mating the trajectories of moving (point) ob- An interesting approach to tracking is by
jects given a set of noisy measurements in time, using Dynamic Programming [5]. Here the space
Many approaches have been suggested for track- is discretized, and a full search through all possi-
ing, some of which will be briefly mentioned here ble states is efficiently performed by exploiting
so as to clarify the relationship between them special properties of the problem. The advan-
and our new method. tage of the method is that for a single target, it

Two types of noise are assumed present, will always find the optimal trajectory (within
namely, displacement noise and clutter. The the resolution of the grid). On the other hand,
displacement noise corresponds to - rrors in the the ability to resolve crossing targets is deter-
location of returns with respect tt. the actual mined by the resolution since two trajectories
locations of targets. Clutter consi.its of noisy passing through the same state will be merged
points which do not relate to an existing target. by the search procedure. Refining the resolution
If only displacement noise were present, then the clearly affects the complexity.
problem would reduce to that of curve fitting to Hough Transform methods have also been
minimize some appropriate measure. In particu- suggested for tracking [6]. The Hough Trans-
lar, if the target dynamics could be modelled by form detects trajectories belonging to a speci-
state space equations driven by Gaussian white fied family of parametrized curves, by a voting
noise, then the Kalman filter recursive solution procedure. It is relatively insensitive to clutter,
could be used to minimize the mean squared er- but quite sensitive to displacement noise. Much
ror criterion. work has been devoted to reduce the complex-

The presence of clutter, however, adds a ity of the multi-dimensional Hlough Transform.
data association aspect to the problem, i.e. It can naturally be used as a track initiator for
which of the observed returns corresponds to another tracking method, by detecting possi-
the target. The Probabilistic Data Association ble trajectories within small windows in the raw
method [2] overcomes this difficulty ')y consider- data.

O-8186-2113-3/90/0000/0078$01.00 0 1990 IEEE 7/'

In this paper a new approach is proposed. time (ao). The first term of the energy func-
First, the tracking problem is reformulated as a tion measures the trajectory's distance from the
non-convex optimization problem, i.e., the mini- observed data. The second term penalizes non-
mization of an appropriate energy function. The smooth trajectories. The third term takes into
form of this energy function is then shown to be account predictions and allows adding external
suitable for an algorithm based on the princi- information.
ple of Graduated Non-Convexity (G(NC) which This energy function has many local min-
was proposed for visual reconstruction [1]. We ima because of the first term which is not con-
propose a deterministic algorithm which enables vex, and indeed, the first term contains the data
avoiding local minima. In fact the cnergy func- association problem. Reconsider the first term,
tion is replaced by a sequence of energy func- E= Egi(ui), (2)
tions which converges to the original energy
function. The sequence starts with a convex
energy function and gradually introduces non- where
convexity as it approaches the final energy func- g Jx) = min{(6 - d)2}. (3)

tion. We wish to find a convex approximation E* to

The method is first developed for the two- the energy function, and we shall do it by replac-
dir:•pensional (space/time) case, and then genet- ing the functions gi by some g!. The condition
aii-ed to deal with the n-dimensional case. Sim- for convexity is that the Hessian be positive def-
ulai ion results are shown to demonstrate the inite. The Hessian of E* is given by
performance. Finally, issues of possible paral- 82E*
lel implementation, notably in terms of cellular Hij(u) -OuOu
automata, are discussed. (4)d g2a (4

The two dimensional (time/space) : .(u-)ij + 2i(Q 2)0" + 2-• i

derivation where 6,, is the Kronecker delta and Q is the

As stated in the introductioji, the prob- matrix given by

lem is made hard Lby its data associ:ition aspect, 2, if i = j;
i.e., which point is associated with which tar- Qij = 1, if Ji- Ji = 1; (5)
get. In fact, if we knew the correct data as- 10, otherwise.
sociation we could easily compute the optimal
trajectory since the energy function would be Since the matrix Q2 is positive semidefinite,

convex. Moreover, the analytic solution could then by requiring the diagonal matrix represent-

be given in terms of Green functions. The ap- ing the first and third terms in (4) to be positive

proach in this study will be to implicitly look definite we ensure that so is H and therefore E*

for the set of points to associate m ith a target is convex. Hence we require

so as to minimize the energy. From such a view- d 2 g* 2a
point, if one considers all possible trajectories dX2 - a-,

for a target, one should compute its energy af- The functions gi are piecewise parabolic as il-
ter assigning to it the nearest returns. lustrated in Figure 1. The best approximat-

The proposed energy function for two- ing functions (from below) g' which satisfy (6)
dimensional (spatial-temporal) data is

are obtained by fitting inverted parabolas to the

E = .min{(ui -)}+ -,(i+2 boundaries as shown in Figure 1. These func-
tions are differentiable and their derivative is

Ui , (1) continuous. Between two detected points, 2d
+, apart, we get (assuming the origin is at the mid-
i ai Ipoint)

g? l-d2 - eX2, if Izl < .d _
where ui is the trajectory location at time i, d0j) = .x i 1+C, (7)16 (d - X)2, otherwise.
is the j'th data point at time i, and ft is some
prediction of the trajectory given past data or Note that for c = ci we get the convex approx-
other external information such as other sensors imation we needed, while on the other hand for
etc., which may be nonuniformly weighted in c -- oo we get g' .- i g, and therefore E* -- E.

79

One may therefore choose c as a natural pa- to this data point. In order to obtain the con-
rameter for gradually introducing non-convexity vex approximation we smooth the function over
into the energy function. This is not the only these boundaries to satisfy the second derivative
possibility, another choice of parameter which requirements. Similarly to the one-dimensional
is closely related to multi-scale methods is cur- case (7), the function is modified within a sleeve
rently under investigation, around the boundary hyperplanes.

The algorithm will therefore be in the fol- The form of the approximating function at
lowing lines. Initiafize c = ci so that the en- a given point will depend on the number of data
ergy function is convex, and optimize using your points associated with it. For the case of two di-
favorite method (e.g. gradient descent). At mensional space, a point is associated with two
each iteration increase c to introduce some non- data points if it is in a sleeve, and with three
convexity and re-optimize. An important issue data points if it is in the intersection of two
is that of where to stop the iterations. Recall sleeves. In general each point may be associated
that with up to n + 1 data points (excluding patholo-

gW(x5 < g,(z), Vx (8) gies). Now suppose that we are in a zone that is
associated with k + 1 data points. These points

which implies that if the configuration u glob- are all in a k-dimensional subspace. Moreover,
ally minimizes E*, then assuming they are "generally positioned", i.e.,

E*(u*) < E(u), Vu. (9) no (k-1)-dimensional subspace contains all of
them, then they are on some k-dimensional hy-

Hence, u* is the global minimum of E if and persphere (which will be simply referred to as
only if sphere).

E(u*) = E*(u*). (10) The approximating function is defined as

In certain cases it turns out that the convex ap- an inverted paraboloid over the k-dimensional

proximation is already a good enough approxi- space centered at the center of the bounding

mation of the energy function (this depends on sphere, and an upright paraboloid in the remain-

the choice of parameters) so that (10) holds and ing orthogonal directions.

the global minimum is found. Moreover, if by k n

choosing a careful schedule for updating c we g9(Xz,...,X) = K - c-ZX + r (11)
can ensure that we are always at the global min- j=1 j=k+l
imum of E*, then whenever we reach a config-
uration which satisfies (10), we have found the where K is a constant to be determined, k + 1

global minimum of E. Note that each of the in- is the number of data points associated with

tervals over which gi 3 g! is made imaller as c (Z1 , ... , zn). These data points are in fact

is increased, the vertices of a hyperpolyhedron in the k-
dimensional space.' The intersection of the cor-

Generalization to the n-dimensional responding sleeves is a smaller polyhedron con-
space gruent to it whose bounding sphere has the samesiace gcenter (see Fig. 2 for the two-dimensional case).

The generalization will be given for the n-

dimensional spatial case and illustrated for the Let R be the radius of this hypersphere, then

two dimensional spatial case. The main issue K = cR 2 + gi(v) (12)
here is to produce a convex approInimation to
the energy function. Once we have that, we shall where v will stand for any of the vertices of
immediately see how to introduce non-convexity, the sleeve intersection. Note that gi has the

Again let us consider the first term of same value for all these vertices (equally distant
the energy function. It is a set of paraboloids from data points). Note also that for the one-
centered at the data points. Over a two- dimensional spatial case we obtain (7) from (11)
dimensional space, the energy fuicti,,n looks like and (12) by substituting R = d/(l + c) which is
an irregular egg tray. The boundaries within indeed the radius of the one-dimensional bound-
which each paraboloid is defined a-e given by ing sphere, i.e. half the distance.
the appropriate Voronoi diagram. 'ihis is a set We shall omit the details here but it is not
of hyperplanes which encloses wit] each data difficult to show that the approximating func-
point all the points in space which are nearest tions g' are continuous, differentiable and their

so

derivative is continuous everywhere. Such an formulations and dynamic programming meth-
approximating function is shown in Fig. 3. ods.

We have generalized our convex approxi- On the other hand, the discretization in
mation to multi-dimensional spaces, and the re- time which is assumed to be property of the
suiting energy can still be naturally parametrized input, enables a parallel implementation. This
by c to introduce non-convexity, can be done by a network of processors, each

in charge of a given time slice. The only
On parallel implementation of the inter-processor communication is within small

algorithm neighborhoods, through the smoothness term of

In the previous sections we have con- the energy function which contains a temporal

structed the sequence of energy functions which derivative. It is therefore natural to visualize

starts with a convex approximation and con- such a system in terms of cellular automata.

verges to the original energy function. How- For a given time window, each cell processes one

ever, the actual computation in the algorithm time slice data while incorporating into the pro-

does not involve evaluating these functions ev- cessing the output of its defined neighbors.

erywhere. All that is required at each iteration In order to eliminate the need to trans-
is to evaluate the derivative with respect to each fer input data between processors as the time
variable at the current point. As the g? func- window slides, a cyclic index rotation is used.
tions are defined by cases, the main problem is The processors are connected in a circle, and the
to establish the case, i.e., with how many and connection is severed between the last and the
which data points it is associated. By geomet- first time slices in the window. As the window
rical considerations, it can be showIL that given slides by one time unit, all indices are rotated so
the current point and the nearest data point, all that each processor still deals with the same in-
that is required is to search a certain window for put data, but advances within the window. The
additional data points. The window is defined processor which was last now becomes first and
as the difference of two hyperballs B - b, where b receives fresh input. Note that the disconnected
is a ball centered at the current point and whose branch is also rotated to be between the current
radius is the distance to the nearest data point last and first time slice in the window.

r = Ix - d(M)j. (13) Simulation

The larger ball B is the interior of a sphere pass- A simulated example is shown in Fig. 5.
ing through the data point, whose center is on There is one spatial dimension and one temporal
the line connecting the two points, and whose dimension. Five crossing targets are detected in
radius is the presence of clutter and displacement noise.

1 + C The targets were generated by specifying initial
c positions and velocities, and applying small ac-

This is illustrated in Fig. 4. The data points celeration noise to them at each time unit.
found in the crescent B - b will d:termine the
form of g!. Summary

Let us reconsider the energy fu iction given A nonconvex cost optimization approach is
in (1). As there is no interaction between tracks, suggested for multitarget tracking in the pres-
the complexity grows linearly with the number ence of displacement noise and clutter. The
of tracks. In fact, all trajectories can be com- method is based on deriving a convex approxi-
puted in parallel. We shall next discuss possi- mation to the energy function and gradually in-
ble parallelization of the computation of a sin- troducing nonconvexity. By this procedure we
gle trajectory. The second observation to make start with the global minimum of the approxi-
is that trajectories are temporally but not spa- mated energy function, and perform "tracking"
tially discretized. of the global minimum while varying the non-

The fact that the trajectories are not dis- convexity parameter. In this respect the method
cretized in space allows avoiding apriori limi- can be viewed as deterministic annealing. The
tations on resolving crossing targets. The dis- convex approximation was derived for the two-
cretization of space into a large number of mutu- dimensional (spatial/temporal) case and then
ally exclusive states is typical for neural-network generalized for multi-dimensional cases. The

81

computations can be performed in parallel per using joint probabilistic data association,"
track and per time slice. A simulated example IEEE Journal of oceanic Eng., July 1983.
is presented to demonstrate the performance of [4] Sengupta, D., and R. A. Iltis, "Neural
the method. solution to the multitarget tracking data

association problem," IEEE Trans. on
References Aeros. and Electr. Systems, vol. 25, pp.

[1) Blake, A., and A. Zisserman, Visual Re- 96-108, Jan. 1988.
construction. Cambridge, MA: MIT Press, [5] Barniv, Y., "Dynamic programming so-
1987. lution for detecting dim moving targets,"

[21 Bar-Shalom, Y., and E. Tse, "Tracking in IEEE Trans. on Aeros. and Elect. Sys-
a cluttered environment with probabilistic tems, vol. 21, pp. 144-156, Jan. 1985.
data association," Automatica, Vol. 11, [6] Krishnapuram, R., and D. P. Casasent,
pp. 451-460, Sept. 1975. "Hough transform detection of 3-D curves

[3] Fortmann, T. E., Y. Bar-Shalom and M. and target trajectories," Applied Optics,
Scheffe, "Sonar tracking of multiple targets vol. 28, pp. 3479-3486, 1989.

Figure 1. The function g and its approximation g*

82

Ji3)

-- x
d¢) d(2)

Figure 2. Partition of the domain of g* according to Figure 4. The search window is given by the shaded
its definition. region B - b.

Figure 3. The approximation g" between three data points

i3

-- r 41: dv.-. , . - . .% -&4t j '.1.:;Y*

*~~~ Y .&.~

504 *.7.c *4* -. . .

- -1 **:.1 A

Figure 5(b). The computed trajectories.pu lutr

. I -, - -": -". *- -, * ..

Concurrent Multi-Target Tracking

T. D. Gottschalk
California Institute of Technology

Pasadena, CA 91125

1 Overview

Simulation89 is an emulation of various SDI tasks
(tracking, engagement management and 'look ahead')
developed for the U. S. Air Force. The simulation Ssor

presently deals with the boost, post-boost and early

midcourse phases of a 'mass raid' scenario, and is de- 2D Mono 2D Reports 2D Mono
signed to process scenarios with a few thousand tar- Tracking
gets. The simulation is run on the Mark-Ill hyper-
cube, with individual tasks performed on subcubes
of the full hypercube. In general, the computations TaknS J
within individual subcubes are done in a synchronous
manner (i.e., CrOS), while communications between
tasks/subcubes are done asynchronously. Figure 1: Schematic Tracker Organization

The nominal task for the tracking module is to pro-
vide state information on individual targets, given 2D many candidate tracks through a single sensor datum
line of sight data from various sensors at regular timeinteval. Tis askis omplcatd b mens f afew are allowed. Such a model is subject to exponential
intervals. This task is complicated by means of a few explosions of the overall track file. This fundamental
relevant additional requirements: difficulty is resolved by a number of rules for pruning

1. In the initial boost phase, the trajectories of in- the size of the overall track file. In particular
dividual targets are not fully known. 1. Two tracks ending on a given datum are said to

2. The overall system must scale in such a way that be equivalent if they share the same 2D data over
increases in the size of the underlying scenario the last four scans.
are accomodated by (proportional) increases inthe size of the tracking sub-cube. 2. The number of inequivalent tracks per datum is

limited by a cutoff parameter.
3. The tracker must meet 'real time' requirements. 3. The total number of 2D tracks is also limited by

The first requirement in fact dictates the gross over- a global cutoff.
all structure of the tracking package, as illustrated
in Fig.(1). A single tracking system is formed from If two tracks in the system are found to be equiva-
two elementary 2D tracking subsystems. Each 2D lent according to point 1, one of the tracks is simply
tracking sub-system processes individual data from its deleted. As is discussed below, the task of identifying
own associated sensor, forming lists of plausible mono equivalent tracks in the distributed 2D track file dic-
tracks through these data sets. These 2D tracks are tates the maner in which the 2D tracking problem is
then shared between the two 2D sub-systems, and a decomposed for concurrent execution.
single set of 3D tracks is formed. Unlike the 2D tracking system, the 3D tracker

The tracking models used for the 2D and 3D sub- in Fig.(I) maintains (at most) one track per sen-
systems are quite different. According to the first re- sor data point, representing the best global interpre-
quirement listed above, it must be assumed that the tation of tracks through the data (this single 'best
data from a single sensor are insufficient to resolve guess' answer is the output of the tracker expected
all Track.-.Hit ambiguities. As a consequence, the 2D by the other elements of Sim89). In place of the
systems use a Multiple Hypothesis formalism in which Multiple-Hypothesis model used for 2D tracking, the

0-81862113-3190/0000/0085$01.00 0 1990 IEEE 8

3D tracker is based on Optimal Associations. These
optimal associations in fact come in two distinct Object Counts
forms: 104.

1. For track extensions, the predicted data positions
of individual 3D tracks are associated with actual
data from the two sensing subsystems of Fig.(1).

2. For 3D track initiations, 2D tracks form the two
subsystems of Fig.(1) are associated according to 100 00
values of projections onto an association refer-
ence axis (so-called 'Hinge Angle' associations). 1

The adoption of an Optimal Association formalism 0 X W
essentially trivializes the concurrent decomposition of 1C2
the 3D tracker : the 3D tracks are distributed among 0 50 100 150 200
the nodes of the subcube in such a way that the num-
ber of tracks per node is constant. The challenge of Scan
concurrent 3D tracking comes entirely in performing
the two types of optimal associations. Figure 2: Data Set and Track File Sizes Versus Scan

A general concurrent algorithm for optimal associ-
ations is described in Ref.[l]. However, the resource for purposes of communications: The 3D track file
requirements for the general optimal association prob- structures according to the kinematic model are huge
lem (AT cc N 3 for Nx N association problems) is srcre according to int moere huge
such that a straightforward use of the general associ- (more than 100 floating point numbers per track),

ation formalism is completely inappropriate. Instead, and the model-dependent parameterizations greatly

the concurrent association algorithm proceeds as fol- reduce the sizes of track file messages passed between

lows: subcubes of the full Sim89 simulation. The concur-
rent estimation of track parameters is again trivial,

1. Each node computes a list of associations keys with each node independently performing this task
(i.e., projections onto an appropriate reference for its own subset of the global track file.
axis), for all items in its local track list.

2. The distributed lists of association keys are glob- 2 Some Sample Results
ally sorted.

3. The sorted lists are divided into a number of sub- This section briefly examines some typical results of
blocks, determined by appropriately large gaps in the Sim89 tracker for a standard input set. The threat
the lists of keys. scenario involves 200 primary targets, each of which

4. The sub-blocks are assigned to individual nodes ultimately spawns 10 daughter objects (RV's). The

and the assignment problems for sub-blocks are targets are launched from six separated launch sites

solved using a modified 'sparse' formalism of the over a two minute time window. The primary threat

general assignment problem. is preceeded by a simultaneous launch of sixty sec-
ondary targets (ASAT's).

This procedure is efficient as long as the number of Sizes of the data sets and 2D and 3D track files are
separate sub-blocks found in the third step is large plotted versus scan number in Fig.(2). The peaks near
compared to the number of nodes in the tracking sub- scan 40 are due to interception of the ASAT's, while
cubes (which is, empirically, almost always the case the prolonged increase in object counts after scan 80
for the Sim89 problem). is due to gradual deployment of RV's from the sur-

In addition to the central tasks of Track+-*Hit and viving primary targets. As expected, the number of
Track,--.Track associations, the 3D tracker also evalu- 2D tracks greatly exceeds the actual number of tar-
ates trajectory fits for all 3D tracks in the system. Un- gets. The 'kinks' in the 2D track counts for large scan
like the predecessors to Sim89, these trajectory fits are numner are the result of the automatic reductions in
not essential elements of tracking per se. All tracking tracks/datum cutoffs mentioned in Section 1.
is done using kinematic system models. The trajec- The number of 3D tracks is very close to the actual
tory parameterizations are added to the tracking task number of targets. The histogram in Fig.(3) shows

86

Track Purity (%) 3D Step Times [sec]

o,+. 1 : 1, 2, 3 Sans 101 0 ,

100

+

a X :Param.

95 to100

0 50 100 150 200

Figure 3: Track File Completeness, Purity Versus 0 50 100 150 200

Scan Scan

Figure 4: CPU Step Times For 3D Tracking
the percentage of targets in track,

3 Concurrent Aspects
P[In Track] E N[3D Tracks]/N[Data]

The task of multi-target tracking is well-suited for

versus scan number. Once the primary targets are concurrent execution, with most of the 'tracking' per

into second stage (about scan 50), the percentage in se done by way of CPU-intensive operations involv-

track is excellent. Also shown in Fig.(3) are the frac- ing individual track+-+data pairs (the filter update of a

tions of pure tracks single 3D track involes more than one thousand float-
ing point operations : an ideal use of the WEITEK
coprocessor). In the entire tracking program (more

Pj = NLI-Scans Correct]/N[3D Tracks] than 35000 lines of code), there are really only three
general concurrent operations/aspects,

where the numerator is the number of 3D tracks which 1. Global collection of data across the subcube.
(correctly) incorporate data from a single underlying
target through the past j scans. 2. Distributed sorting.

The mild degradations in both percentage in track 3. Track file redistributions.
and j-Scan correct tracks between scans 150 and 200anedue tSaor t rasuccksses be tweengscansme150anda200 with each of these tasks occuring in a variety of guises.
are due to the successes of the engagement manage-. .

ment component of Sim89 in intercepting the targets. The sorting task is done using the basic algorithm of

The disappearence of expected targets causes some Ref.[2], with a trivial but important modification to
'confusion' for Track4-4Hit associations on subsequent allow empty local sublists (empty track files on some

tracking scans. nodes occur during the first few scans of the tracking
task).

The CPU times for various components of 3D track- The global data collections are all done using a sim-
ing are plotted versus scan number in Fig.(4). Most pie loop on communication channels:
of the CPU resources are spent in the evaluation of
Track'--Hit associations. With the exception of the a Set Global Value To Local Value
'confused' scans with disapperaing tracks, the CPU o Loop On Communication Channels
requirements for tracking generally scale as AT oc
NiogN for N active targets. - Exchange Values Across Channel

87

- Update Global Value Using Input This redistribution is in fact done as the last step
in 2D processing at each scan, so that the next scan

* End Oi Channel Loop begins with the basic track distribution requirement
This simple paradigm is used throughout the code satisfied.

for a variety of purposes, such as assessment of global Once data points (hence tracks) have been assigned
status (the 'Update' task is a logical and of individual to individual nodes, the actual redistribution of the
status flags), determining global file sizes ('Update' is tracks is a straightforward application of the basic
simple addition) or assessing global Track4--'Data as- CrystaLRouter formalism of Ref.[3]. The calculation
signments ('Update' is a slightly more complicated of destinations for individual data is done using the
merging of track assignment arrays generated on in- following simple set of rules:
dividual nodes). 1. Each datum is assigned a Weight, taken to be the

For the 3D tracking task, concurrent efficiency re- total number of tracks in the system wich end at
quires only that the number of tracks per node be that datum.
approximately constant. Accordingly, track file re-
distribution for 3D tracking is done using a simple 2. Data are assigned to nodes such that the total

variant of the channel loop model: Weight per node is approximately constant.

"* Loop On Communication Channels 3. If, prior to the redistribution, a particular node
already contains more than half of the total

- Exchange Track File Sizes weight of an individual datum, then the datum is
- Set 6 WHERE - NTHERE)/2 assigned to that node - provided that such an as-

(-E If b ,Sn tmsOe hnsignment does not violate the total node weight

- It 6 > 0, Send 6 Items Over Channel. restrictions of point 2.

4. Unassigned data (i.e., data without tracks) are

"o End Of Loop On Channels. assigned to nodes in a simple 'Card Dealing' fash-
ion.

After the exchanges across a given channel, the

number uf items on each half of the subcube with These rules are easily implemented by means of a few
respect to that channel is (approximately) the same, simple channel loops of the form discussed above.
and subsequent loops on other channels do not mod-
ify this equality. At the end of the channel loop, the
tracks are equally divided across all channels - mean- 4 Conclusion
ing that the number of tracks per node must be ap- The hard part of 'Concurrent Tracking' is the tracking
proximately the same.

The only aspect of the full tracking program which iteslf, not the concurrency.

involves concurrent 'subtleties' is the redistribution
of the the global 2D track files. Wasteful cube-wide
searches for equivalent tracks (same sensor data over 1. T. D. Gottschalk, 'Concurrent Implementation of
the last four scans) can be avoided if the assignment of Munkres Algorithm', there proceedings.
tracks to nodes is done according to a single essential
requirement. 2. G. C. Fox et al., Solving Problems on Concur-

rent Processors, Englewood Cliffs, NJ: Prentice
At the start of each 2D tracking scan, all Hall(1988), Chapter 18.
tracks ending on a given sensor datum are 3. Chapter 22 of Ref.[21.
to be assigned to a single node.

If this condition is satisfied, then searches for equiv-
alent tracks need only be done locally. The require-
nient is enforced as follows:

1. Assign each datum of the current data set to a
specific node.

2. Transfer all tracks in the system to that node
which 'owns' the data point for the last scan in-
cluded in the track.

88

The Fifth Distributed Memory
Computing Conference

4: Simulation of Systems and Discrete Event

Parallel Discrete Event Simulation

Using Synchronized Event Schedulers

William L. Bain

Block Island Technologies
15455 NW Greenbrier Parkway, Suite 210

Beaverton, Oregon 97006

Abstract delays required to access backing store in
virtual memory systems.

This paper describes a new algorithm for
the synchronization of a class of parallel In order to avoid bottlenecks to parallel
discrete event simulations on distributed speedup [11, parallel synchronization
memory, parallel computers. Unlike algorithms have been developed. These
previous algorithms which synchronize algorithms distribute the event
on a per process basis, this algorithm scheduling algorithm among parallel
synchronizes on a per processor basis. system's processes, which eliminates the
The algorithm allows full generality in hot spot in memory access patterns
the simulation model by allowing dynamic arising from the use of a centralized event
process creation and destruction and full scheduler, a problem that occurs in both
inter-process interconnections, and it is shared and distributed memory parallel
shown to be deadlock and livelock free. It computers. Two principal classes of
has been used to simulate very large parallel synchronization algorithms have
parallel computer architectures. emerged. The conservative approach

[1],[2],[3] constrain the processes to handle
This algorithm has been implemented on incoming events in strict time order.
the Intel iPSC/2 parallel computer system, These algorithms take steps to ensure time
and its performance has been measured. order before processing events. The
The algorithm achieves a time overhead of optimistic approach [41 allows events to be
O(log2 N) for binary hypercube systems handled in their order of arrival and
with N processors and O(D) in general, provides rollback and recovery
where D is the diameter of the parallel mechanisms to handle events processed
system. In order to obtain good overall out of order in time.
parallel speedup, the algorithm requires
that the simulation generate at least O(N) Algorithms developed for both approaches
events at each simulated time. distribute the synchronization algorithm

on a per process basis, thereby allocating
Introduction one logiczal clock and event scheduler to

each process in the simulation model. By
As discrete event simulations increase in so doing, these algorithms incur a total
size and complexity, iý becomes time and memory overhead to advance all
advantageous to execute them on parallel process clocks one time interval that is at
architectures. Parallel architectures offer least proportional to the number of
the processing power to execute multiple processes, P, in the system; denote this
processes concurrently, thus speeding up overhead the synchronization overhead.
the simulation. In addition, they provide Conservative algorithms may suffer time
sufficient physical memory to hold large overheads much greater than P,
simulation models without suffering the depending on the connectivity of the

inter-process communication graph. This

9O
0-8186-2113-3/90000010090$01.00 0 1990 IEEE

occurs because each process must required to either broadcast from one
determine the state of all processes that processor or aggregate data from all
may send it an event message before it can processors.
safely advance its time. Hence, in a system
with N parallel processors, these The next section describes the algorithm.
algorithms incur a time overhead of at The following section provides recent
least O(P/N) to advance all P clocks one performance measurements of the
time interval each. algorithm's time overnead. This algorithm

has been implemented as part of the
Because of the practical need to maximize Interwork I1Tm software package [8] on the
the number of processes executed by each Intel iPSC/2 parallel computer system [9].
processor in current systems, this It has been used to simulate very large
synchronization time overhead typically parallel computer architectures [10].
becomes at least O(N). With today's
parallel computer technology, it is The Synchronization Algorithm
important to maximize the problem size
per processor in order to amortize the The synchronization algorithm described
interprocessor communication delays and here uses one event scheduler per
thus maximize the observed speedup processor of the system. All of the
[5],[61. In systems with several megabytes processes residing on a given processor
of memory per processor, such as the Intel share the same event scheduler, which
iPSC/2 system, and typical process memory consists of a logical clock and a time
requirements of 2-6K bytes, one can ordered queue of pending events. These
execute multiple thousands of processes event schedulers are synchronized in a
per processor (i.e., P/N > 1000). Thus, for conservative manner so that no event
systems with up to a thousand processors scheduler may advance its clock until it
(i.e., N <= 1000) these simulations will can be sure that no other event scheduler
encounter a time overhead of at least O(N). will send one of its processes a lower time

event.
This paper describes a new parallel
synchronization algorithm using multiple In order to allow full generality to the
synchronized event schedulers, one per simulation model, the event schedulers are
processing node of the system. The use of fully connected. That is, processes within
multiple event schedulers was described the simulation can send messages to
for the Yaddes simulation environment arbitrary other processes. This eliminates
[7]. However, the Yaddes mechanism uses the need to describe a static inter-process
a centralized synchronizer and relies communication graph, as in other
upon knowledge of the interconnection conservative algorithms, and it allows
between logical processes. It also requires processes to be dynamically created and
that N * (N-I) messages be sent per time destroyed. These characteristics greatly
step, which results in an overhead of at simplify the description of complex
least O(N) to advance all P clocks by one applications. Full interconnection of
time step. In contrast, the algorithm event schedulers also simplifies the
described here has been demonstrated to partitioning of processes to processors. A
have a synchronization overhead of process can be allocated to any processor,
0(0og2 N) on hypercube based parallel and it may send an event message to any
systems. It will in general have an other process in the system.
overhead of O(D), where D is the diameter
of the parallel system. The diameter is The use of full connectivity between event
defined here as the maximum path length schedulers requires that all event
between the root and leaf nodes within a schedulers be synchronized to the same
spanning tree of all processors; it value of global system time. The
represents the number of time steps algorithm synchronizes the event

schedulers using multiple, distributed

91

spanning trees, one rooted at each event must report to its event scheduler that the
scheduler, to collect and distribute clock system is still active even though its local
times in parallel and with minimum total event queue has become empty.
delay. The event schedulers initialize
their clocks to time zero and execute their Performance of the Algorithm
portion of the simulation model's
processes until they complete all events at The use of a spanning tree to collect next
this time. After each event scheduler event times incurs a time overhead of
becomes quiescent, it exchanges its next O(D), where D is the diameter of the
event time, i.e., the lowest time at which it system. The broadcast of the globally
can next process an event or infinity if no lowest next event time requires a second
events are enqueued, with each of its O(D) time. Thus the total time overhead to
neighbors in turn. Each scheduler advance the clock is O(D). For binary
determines the minimum of all collected hypercube systems, such as the Intel
and its own next event times. In this iPSC/2 system,
manner, all event schedulers thus
determine in parallel the globally D = log2 N.
minimum next event time. The event
schedulers advance their clocks The actual performance of the algorithm
accordingly and execute all events at the was measured on an Intel iPSC/2 system
new time. The algorithm repeats these with from one to 32 processors. Figure 1
actions for each event time. shows the average time to advance the

clock one clock interval versus the
By synchronizing all event schedulers to number of processors for an early
the same global time, the algorithm implementation of the algorithm. In
ensures that no process can send a lower order to measure only the
time event to another process in the synchronization overhead, the event
system. This guarantees the correctness schedulers handled no actual events per
of the algorithm. The algorithm is time step. The graph shows that the time
deadlock free because the system is grows logarithmically with the number of
guaranteed to advance to a new time after processors. By scaling the simulation
all event schedulers exhaust their events model to maintain a constant processor
at the current time, which they load as processors are added, the algorithm
eventually must do. It is also livelock free thus becomes more efficient for larger
because the sequence of globally systems and larger simulation models. The
minimum next event times is strictly algorithm's time overhead remains
increasing. A next event time of infinity constant as more memory and thus more
can only be reached when there are no processes are be added for each processor,
events in the system left to process. and its fraction of the total simulation time

becomes smaller. Unlike previous
The algorithm's relative simplicity makes conservative and optimistic approaches,
it straightforward to implement. However, the algorithm's performance is also
implementations of this algorithm must largely independent of the interprocess
handle the race condition that occurs communication patterns. A dependence
when a process sends an event message to may occur in handling the previously
a process at another event scheduler just cited race condition, whose frequency
before the first process's event scheduler depends on the communication patterns,
becomes quiescent. If the second event load balance, and system delays.
scheduler has already become quiescent
and reported its next event time, its
neighbor(s) could determine an erroneous
globally minimum next event time while
an active event message at the current
time is in transit. The sending process

92

S 29.0 has been used to simulate very large
y 232 parallel computer architectures.

20.3

17A This algorithm has been implemented onI 14.5

M11.6 the Intel iPSC/2 parallel computer system,
7 7 and its performance has been measured.The algorithm achieves a time overhead of

2.9 0(log2 N) for binary hypercube systems
0) 1 2 4 a Is 32 with N processors and O(D) in general,

NumbweofSystem Nod" where D is the diameter of the parallel
system.

Figure 1: Time synchronization overhead
per time step versus number of processors In order to obtain good overall parallel

speedup, this synchronization algorithm
requires that the simulation generate at

This synchronization algorithm yields least O(N) events at each time step and that
best performance for a limited class of these events be well load balanced across
discrete event simulation models. In order the processing nodes. Symmetric, discrete
to obtain good overall parallel speedup, time simulations, such the simulation of
the algorithm requires that the simulation distributed memory architectures or VLSI
generate at least O(N) events at each circuits, are well suited to this scheduling
simulated time and that these events be mechanism. Future investigations will
well load balanced across the processing assess the applicability of this algorithm
nodes. Symmetric, discrete time to continuous time simulations, such as the
simulations, such the simulation of simulation of air traffic (11]. In these
distributed memory architectures or VLSI simulations, it may be possible to quantize
circuits, are well suited to this scheduling the simulation clock without adversely
mechanism. Simulations which do not affecting the accuracy of the results.
meet these criteria may achieve better
overall speedup using previously References
described schemes, despite their higher
synchronization overhead. [1] Misra, J. 1986. Distributed Discrete-

Event Simulation. Computing Surveys
Summary 18, no. I (March): pp. 39-65.

This paper has described a new algorithm [2] Bain, W. L. and Scott, D. S. 1988(b). An
for the synchronization of parallel Algorithm for Time Synchronization
discrete event simulations on distributed in Distributed Discrete Event
memory, parallel computers. Unlike Simulation. In Distributed Simulation
previous algorithms which synchronize 1988 (San Diego, Feb. 3-5). The Society
on a per process basis, this algorithm for Computer Simulation, San Diego,
synchronizes on a per processor basis. pp. 30-33.
This is accomplished by grouping
processes within one event scheduler per [3] Reynolds, P. 1982. A Shared Resource
processor and then synchronizing the Algorithm for Distributed Simulation.
event schedulers u6.ng multiple, In Proceedings of the 9th
distributed spanning trees. The algorithm International Symposium on Computer
allows full generality in the simulation Architecture (Austin, TX, Apr. 26-29).
model by allowing dynamic process IEEE, New York, pp. 259-266.
creation and destruction and full inter-
process interconnections, and it was [41 Jefferson, D. R. 1985. Virtual Time. ACM
shown to be deadlock and livelock free. It Trans. Prog. Lang. Syst. 7, no. 3 (July):

pp. 404-425.

93

[51 Moler, C. 1987. A Closer Look at
Amdahl's Law. Technical Note TN-02-
0587. Intel Scientific Computers,
Beaverton, Oregon.

[6] Gustafson, J. L. 1988. Reevaluating
Amdahl's Law. Communication

[7] Preiss, B. 1989. The Yaddes Distributed
Discrete Event Simulation
Specification on Language and
Execution Environments. In
Distributed Simulation (Tampa, March
28-31). The Society for Computer
Simulation, San Diego, pp. 139-144.

[8] Block Island Technologies 1988.
Interwork 1i1TM Concurrent
Programming Toolkit, Reference
Manual, Portland, Oregon.

[9] Intel Scientific Computers 1988.
iPSC®12 Technical Description,
Beaverton, Oregon.

[10] Bain, W. and Arshi, S. 1988. Hypersim:
A Hypercube Simulator for Parallel
Systems Performance Modeling. In
Proceedings of the Third Conference
on Hypercube Concurrent Computers
and Applications (Pasadena, Ca., Jan
19-20). ACM, Los Angeles.

[11] Bain, William L. 1990. Air Traffic
Simulation: An Object Oriented
Discrete Event Simulation on the Intel
iPSC/2 System, Fifth Conference on
Distributed Memory Concurrent
Computers (Charleston, Apr. 9-12).

94

Air Traffic Simulation:
An Object Oriented, Discrete Event Simulation

on the Intel iPSC/2 Parallel System

William L. Bain

Intel Scientific Computers
15201 NW Greenbrier Parkway

Beaverton, Oregon 97006

Abstract simulations. They have sufficient
primary memory to hold vezy large

A discrete event simulation model of air simulation models; this avoids the delays
traffic flow within the United States has encountered in paging simulation data to
been written and executed on the Intel and from backing store. They also have
iPSC®/2 parallel system. The simulation the parallel processing power to exploit
program was written in an object oriented the inherent parallelism of the simulation
manner using the Interwork IITM models. For example, the many aircraft
Concurrent Programming Toolkit. This within an air traffic simulation
simulation demonstrates how object independently progress along their flight
oriented programming can simplify the paths in parallel. This provides the
design of complex simulations and can opportunity to speedup the execution of
simplify the effort to distribute and the simulation.
balance the processing load on distributed
memory, parallel architectures, such as Object oriented programming techniques
the iPSC/2. It also demonstrates the offer advantages in describing discrete
capacity of these architectures to solve event simulation models. These
very large simulation problems. techniques foster the construction of

modular programs by associating logically
Introduction related data with the procedures that

manipulate the data. This allows the
Discrete event simulation techniques can programmer to build new data types that
be used to model large physical systems extend the set of types provided by the
and thereby predict aspects of their compiler. In a simulation model, the
behavior. An important example of a simulated entities are convenieatly
large discrete event simulation is the described as obj ct types which
modeling of the air traffic flow within the encapsulate their various characteristics.
United States. Over three thousand In the air traffic simulation, the aircraft
commercial flights per hour cross the and airports are modeled as separate object
skies, and their motions must be carefully types. Instances of these types are
controlled to avoid congestion. Modeling dynamically created (and destroyed)
this complex system allows planners to during the course of a simulation to
minimize delays, maximize use of available represent an actual physical system. This
resources (such as airways, runways, and modular approach simplifies the
fuel), and anticipate the effects of weather simulation's structure.
and mechanical problems.

Object oriented techniques also simplify
Distributed memory, parallel systems, such the implementation of large discrete event
as the Intel iPSC/2 parallel system [11 simulation models on parallel systems.
provide an excellent hardware platform The modular decomposition of the
for running large discrete event simulation data provides a basis for

95
0-8186-2113-3190/0000/0095$01.00 © 1990 IEEE

partitioning these data among the system's air traffic controller, which controls
processing nodes. The name space by access to airport runways for takeoff and
which objects are identified and accessed landing and provides separation between
provides a logical basis for communication aircraft in the airspace sectors, and
between objects that is independent of the
objects' locations within the physical dispatcher, which schedules new flights
system. This maintains the simple view of for departure at each airport.
the simulation program as a collection of
communicating entities. It also provides a Following the Hoare process-monitor
means for transparently relocating the model [2] for communicating processes,
objects among the nodes (for example, to instances of these process types
improve the load balance) without communicate and synchronize their
disrupting the programmer's view. actions by accessing instances of the

airplane, airport, and sector object types.
The remainder of this paper describes how The latter three types serve as monitors in
the air traffic simulation was modeled on this communication model. Figure 1 shows
the Intel iPSC/2 system using object the access relationships between the
oriented techniques. The next section process and monitor objects; a directed arc
describes the object oriented simulation in the graph from a process type to a
model. The following section describes the monitor type indicates that an instance of
implementation of this model on the the process type accesses an instance of
iPSC/2 system. the monitor type.

The Air Traffic Simulation Model

The air traffic simulation program models
the motion of aircraft between source and
destination airports through intervening
sectors of controlled air space. The airport secto

simulation model uses three main object
types: Figure 1: Access Relationships Between

Simulation Objects
airplane, which models the position,
velocity, and other characteristics of The use of a process-monitor model
aircraft, clarifies the communication relationships

between the simulation objects and
airport, which models the location, naturally models the physical system. For
characteristics (such as runway headings example, a pilot requests permission to
and lengths) and access to air traffic land at an airport by accessing the airport
control for takeoff and landing, and object, which relays the request to an air

traffic controller at the airport. This
sector, which models a portion of the approach models a pilot's targeting
airspace and the data required to manage communication to an airport instead of to
the aircraft flying therein, a particular controller at the airport. It

also easily allows the simulation to
Instances of these object types are created accommodate multiple air traffic
to model their physical counterparts. In controllers at the airport. Other
addition, three process types are used in simulation techniques (e.g., Misra 13],
the air traffic model: Time Warp [4]) model all simulated entities

as reactive objects which receive
pilot, which commands the actions of a incoming messages and invoke the
single aircraft throughout a flight, appropriate procedures, which in turn

generate messages for other objects. The
communication between processes and

96

monitors can be cast into this form.
However, the use of processes appears to The Sleep-flightO procedure encapsulates
more clearly express the temporal the actions required to move the aircraft
behavior of active simulation entities from sector to sector of the airspace until
(e.g., pilots) by collecting their sequence it reaches its destination. It returns
of actions into one thread of execution. control to the pilot process at an earlier

time only if the aircraft comes into
The initiation of a simulated flight is conflict with another aircraft and must
accomplished by dynamically creating change its course. This design allows the
objects and invoking their interface pilot process to simulate the actions of a
procedures. After a random interval and real pilot in managing changes of course,
following a closed queueing model, the while making the handoffs between
dispatcher process at an airport creates an airspace sectors transparent for
airp'>.ie object and a pilot process to simplicity.
control it. The dispatcher passes
parameters to the pilot process identifying The sector objects manage the progress of
the airplane object and the destination, flights across the airspace. Each sector
The pilot process computes the course to object represents a particular portion of
the destination and then requests takeoff the air space and has an associated
permission by invoking the controller process. Pilots enter their
Request_ctlr() procedure of the local aircraft into the local sector by executing
airport object. The airport object records the Sleep-flight() procedure. This
the request for the controller, and the procedure enqueues the flight for
pilot process blocks awaiting a reply. The examination by the sector controller and
airport's air traffic controller process blocks the calling pilot process. The
obtains a request by invoking the sector controller process repeatedly
Deq-request() procedure of the airport dequeues requests in its sector by
object. After a simulated delay, it grants invoking the Get _ next-request()
the request by invoking the procedure on its sector object. The
Replyjo-plane() procedure of the controller records the flight in its list of
requesting pilot's airplane object. The aircraft operating in the local sector. It
pilot process unblocks and directs the also computes the earliest time at which it
airplane toward the destination airport by will either depart the sector or come into
invoking the Change-velocity() conflict with another aircraft within the
procedure of its airplane object. sector. The controller then unblocks the

pilot process, which sleeps until this time.
The pilot process simulates a flight by If the process awakens due to exiting the
sleeping for the simulated time required to sector, it invokes sector procedures
reach the destination airport. (Note that required to remove it from the current
in other simulation models, the pilot sector and enqueue it into the next sector
process could equivalently send itself a along its path. If it awakens due to a
message at the future time of arrival.) traffic conflict, control returns to the
This is accomplished by invoking the pilot process to take the necessary actions.
Sleep flight() procedure on the local (Pilots do not take evasive action in the
sector object, i.e., the sector object in current implementation of the
whose area the departing airport is simulation.)
located. This procedure causes the pilot
process to sleep until it reaches the The use of a sector controller models the
destination. At this time, the pilot process actions of its physical counterpart. It also
requests permission to land at the avoids the potential deadlock that can
destination airport; the sequence of object arise if multiple pilot processes access
invocations follows the sequence used to airplane objects in order to detect
depart. Takeoff and landing delays are conflicts and atomically update the
measured and averaged for all airports. airplane objects' states.

97

them to be transparently referenced on
Implementation on the Intel iPSC/2 remote nodes. For example, a sector

System controller can unblock a pilot process
without knowing on which node the pilot

The air traffic simulation was process is located.
implemented on the Intel iPSC/2 system
using the Interwork II Concurrent The parallel system's distributed memory
Programming Toolkit (5]. This C language architecture requires that the simulation
toolkit provides a global object name space objects be partitioned among the
spanning the system's nodes in which memories of the processing nodes. The
objects can be dynamically created, use of object oriented techniques
destroyed, and accessed [6]. This object simplifies this somewhat by encapsulating
name space was used to create instances of logically related data into separate object
the simulation object types described instances. To maximize the load balance of
above (i.e., airplane, airport, and sector). the simulation, the objects are distributed
Interwork II provides a built in object across the nodes according to their
type for lightweight processes; this was position within the airspace. Thus,
used to create the simulation processes parallelism in the simulation is achieved
(i.e., the dispatchers, pilots, and using a domain decomposition, where the
controllers) as instances of the domain is the simulated airspace.
lightweight process type.

In order to avoid manually placing the
The use of a global object name space objects on the nodes, an Interwork II
greatly simplified the implementation of indexed object is used to represent the
this simulation on a distributed memory, airspace. An indexed object is a collection
parallel system. The simulation objects of related objects, which are referenced
can be directly." referenced to invoke their within the collection using an n-
interface procedures by using their global dimensional index [7]. Interwork 1I
names. For example, a pilot process can automatically distributes the component
request permission to land at an airport by objects across the nodes so as to best
knowing only the airport's name. Without balance the number on each node and
a global name space, the pilot would need minimize communication delays between
to know the processing node on which the neighboring objects. In this simulation,
airport object resides and would have to an indexed object is used to represent the
send a message to communicate with a airspace, and each component object
remote airport. Interwork [lI's global represents a sector of the airspace. In this
name space transparently locates objects manner, the sector objects are
within the system and generates messages transparently partitioned across the
as necessary to invoke their procedures processing nodes. In addition, by
on remote nodes. In addition, the airplane associating the airport and dispatcher
objects transparently migrate from node objects with their corresponding sector
to node as the sector controllers access objects, these other objects are also
their contents. This allows the controllers transparently partitioned across the
to atomically update the states of two nodes. This method statically load
airplanes (to re-vector them in case of a balances the simulation load within the
conflict) without regard to the nodes on parallel system, which works well when
which the airplanes reside. the airports and resulting air traffic are

evenly distributed across the air space.
The use of lightweight processes allows The relationship between the sector
thousands of processes to be created, objects and their associated airport objects
which is required for large simulations is depicted in figure 2. Future
with thousands of flights and hundreds of implementations need to dynamically
airports. The use of the global name space remap sectors to nodes to provide dynamic
to access the lightweight processes allows

98

load balancing for irregular simulation interleaved) mappings of the sector
loads. mappings to the nodes. Beyond this,

dynamic load balancing algorithms may
be needed to compensate for the dynamic
redistribution of simulation events across
the nodes as the simulation progresses.
The use of a global object name space
enables simulation objects to be
transparently moved between nodes to
load balance the simulation withoutchanging the application code.

Summary
chninfheaplctincoe
This paper has described a discrete event

eSimulation simulation model of air traffic flow within
Figure 2: Relationship Between the United States. This simulation model is

Objects characterized by having a very large

number of simulation entities and by its
Discrete event simulations run within a dynamic creation and destruction of thesecommon time base, with which they entities. The simulation program was

synchronize their actions. For example, written in an object oriented manner for

this time base is used to synchronize pilot tte . in distriented memor

processes executing the Sleep-flight() the Intel iPSC/2 distributed memory,

procedure. Since the iPSC/2 system has no parallel system using the Interwork 11
gloalcloka gobl sftareclckis Concurrent Programming Toolkit. The

global clock, a global software clock iPSC/2 system has sufficient memory to
synthesized by Interwork II h8]. The hold the very large simulation program,
method used by Interwork ii has the and it has the processing power to exploit
advantage of relative simplicity in the simulation's parallelism.

comparison to the Time Warp approach [4].

It also has the flexibility necessary to The use of object oriented programming
capture the simulation model's dynamic techniques led to a very straightforward
object creation, unlike the Chandy-Misra- simulation model. Interwork II's global
Bryant [3] approach. However, in order to object name space, indexed object
achieve substantial parallel speedup, this paradigm, and global synchronization
method requires the availability of many, mechanism simplified in the model's
well distributed simulation events to
process at each simulated time. The implementation on the iPSC/2 system. Incurentimpemetaton sesa foatng particular, it provided the means to
current implementation uses a floating automatically distribute the simulation
granularity results in relatively few objects among the processing nodes and tograulrit rsuls n rlaivey ew transparently access objects on remote
events to process at each simulated time. nodes.
Future implementations will use integral
clock periods with sufficient granularity More work is needed to measure and
to capture the simulation's behavior. This improve the parallel speedup. In
approach should yield much greater -articular, the use of an integral
parallelism for exploitation by the parallel simulation clock and dynamic load
system. balancing techniques may prove useful in
Maximal parallel d also depends on extracting more parallelism from theMaia aallspecdup asdenson simulation.

the distribution of the simulation events

across the processing nodes at each
simulated time. Future versions will
explore the use of alternative (e.g.,

99

References

[1] Intel Scientific Computers 1988.
iPSC 012 Technical Description,
Beaverton, Oregon.

[21 Hoare, C.A. R. 1974. Monitors: an
Operating System Structuring Concept.
Comm. ACM 17:10, (October): pp. 549-
557.

[31 Misra, J. 1986. Distributed Discrete-
Event Simulation. Computing Surveys
18, no. 1 (March): pp. 39-65.

(4] Jefferson, D. R. 1985. Virtual Time. ACM
Trans. Prog. Lang. Syst. 7, no. 3 (July):
pp. 404-425.

[5] Block Island Technologies 1988.
Interwork I! ' Concurrent
Programming Toolkit, Reference
Manual, Portland, Oregon.

[61 Bain, William L., 1988 A Global Object
Name Space for the Intel Hypercube,
Third Conference on Hypercube
Concurrent Computers and
Applications (Pasadena, Ca.., Jan 19-
20).

[7] Bain, William L. 1989. Indexed, Global
Objects in Distributed Memory Parallel
Architectures, Sigplan Notices, 24:4,
(April): pp. 95-98.

[81 Bain, William L. 1990. Parallel Discrete
Event Simulation Using Synchronized
Event Schedulers, Fifth Conference on
Distributed Memory Concurrent
Computers (Charleston, Apr. 9-12).

100

APPLICATION OF TRANSPUTERS TO AIRCRAFT SIMULATION AND
CONTROL

D.J.Doorly
S. Pesmajoglou

Aeronautics Dept.
Imperial College

London SW7 2AZ

Abstract The purpose of the paper is to examine simple
parallelisation strategies for the various computational

Techniques for implementing an aircraft tasks which are performed by the separate functional
simulation and control system on a network of units. The assessment of potential performance is
transputers are described. Different parallelisation intended to guide future work, which will concern
approaches are shown to be appropriate within each of synthesis of the complete parallel system. The paper is
the major constituent processes. The task of divided into four sections as follows.
atmospheric turbulence simulation is used to illustrate The main components of the simulator are reviewed in
the procedure. the first section.

The second section discusses the use of information
Introduction flow routes, and the amount of computation within

procedures to guide the division of the system into a set
The Inmos Transputer is a processing element of communicating tasks. The methods for software

which allows great flexibility in the design of a implementation and effective mapping onto the
distributed memory concurrent computer. The basic transputer network are outlined.
architecture of the T-800 series, comprising 32-bit In the third section, the simulation of atmospheric
CPU, on-chip FPU, 4K bytes of RAM, 4 bi-directional turbulence is used as an example to illustrate how the
(20 Mbit/sec) links, and a 32-bit external memory parallelisation strategies may be applied. The problems
interface, is now widely familiar, and well documented. in achieving effective parallelisation for a complex task,
The application of transputers to simulation in the and of load balancing the parallel turbulence generator,
aerospace industry, however, lags behind systems which simulator, and control system is then addressed.
are usually based either on bus-connected conventional Finally, in the fourth section, the procedures are
microprocessors, or dedicated shared memory reviewed, and the conclusions presented.
minisupercomputers. Previously the necessity of
programming in Occam, or of writing a dedicated Overview
Occam harness to handle inter-processor
communication, coupled with the lack of The simulator used for this work was designed to
cross-development tools, proved a stumbling block fulfill two roles. Firstly, it should allow the handling
which undoubtedly restricted the more widespread use of qualities of modified aircraft configurations to be
transputers. The development of parallel operating studied, in both the linear (low angle of attack) and
systems, and parallel versions of Fortran, C, Pascal and non-linear (high angle of attack) regimes. The second
recently Ada for the transputer, should greatly assist in purpose is to assess the effectiveness of various control
the translation of existing codes and provide a more techniques to alleviate gust loads (due to atmospheric
open environment for code development, turbulence), and for the optimisation of advanced

This work is concerned with the conversion of a configurations in manoeuvring flight. The principal
sequential Fortran code for aircraft simulation and components of the system are outlined in Fig.1.
control to run on a transputer network. The problem The simulator (1) models the response of the
area provides a challenge for effective parallelisation, aircraft to inputs IL from the controller, and d1 from the
since the system functions as an aggregation of very turbulence field. At each time step, the simulator
disparate algorithms working in loose synchronisation. outputs the updated complete state of the aircraft to a

1010-8166-2113-3/9010000/0101$01.00 0 1990 IEEE

nex t.
1 TUýR!ýWLENCE 2 Parallelisation Strategies for Transputers.

GENERATOR

Most of the literature on parallelising sequential
code is concerned with multi- processors of the shared
memory type, and concentrates on DO LOOPS as the

d source of parallelism. Nearly 70 references to work in
this area are listed in [31, which also reports some

.. _o 3 U preliminary experiments on the feasibility of loop
or CONTROLLER SIMULATOR DATABASE partitioning across a transputer chain.

' w) /At present, there is no efficient, autoparallelising
conventional language compiler suitable for a

Es- kyX) distributed memory concurrent computer. As described
in [41, to achieve this requires some information to be
specified on the placement of data. The present parallel

Fog, 1. Components of Simulator. compilers for the transputer essentially mimic the
Controller & Turbulence Generator have underlying Occam, in concentrating on the distribution
local Databases. of tasks, to which the necessary inter-task message

handling must be added. Although improvements in
compilers (particularly C), and operating systems are

database. This also holds details of the terrain, other being made, translation of sequential code is still a
aircraft, etc. , and it may, in turn, be connected to a "hands-on" approach. Fortunately though, it is not
graphics display pipeline, via a ring control to which necessary (particularly using the farm approach
other simulators can be attached. (The graphics discussed below) to explicitly specify every realisation
processing, and ring control are not of primary concern of a concurrent task. A knowledge of the relative
here; an effective parallel solution is documented in the performance of the transputer at processing,
Inmos applications notebook, [I], and their note 36 [2 communications, and the speed ratio for on- versus
]. The simulator also outputs the position X of the off-chip RAM is however, obviously required. The
aircraft to a local database attached to the turbulence transputer has the ability to communicate across links,
generator. whilst concurrently executing a second process,

The turbulence generator (2) performs the twin although each link transfer in all cases occupies the
functions of regularly updating the turbulence field, and processor for a "setup" time. Decisions regarding the
of calculating the components of the local turbulent optimal parallelisation thus evolve by balancing the
gust velocity d, when the aircraft is at a point specified length of data packets sent, the setup times, as well as
by S.. (The variation in turbulent velocity across the the connection topology, and the ability to utilise
wing span introduces significant moments. It is parallel execution threads, as discussed in [5].
necessary to include this, either by introducing averaged A PC-hosted network of eight T-800 transputers
asymmetric turbulent velocities, (by integrating the using the 3L parallel Fortran compiler was used in this
turbulent velocities across the span), or for a more study, although future development work and
accurate treatment, to utilise a three dimensional implementation will use a Meilko Computing Surface,
turbulence field). with an initial complement of 32 T-800 transputers.

Finally, the controller (3), which also has a local The techniques for parallel processing may be
database, accepts inputs from either the pilot, or a preset grouped into three principal paradigms: the geometric
trajectory. It then compares this with the current array, the algorithmic pipe, and the processor farm. It is
estimate of the aircraft state (which it computes from chiefly the latter two of these which have been applied
the measured simulator output y), and sends a control u to the part of the work reported here. (The geometric
to the simulator. array is clearly advantageous for the display processing,

The first, obvious, stage in parallelism follows and is also suitable for a turbulence generator more
from the identification of the three major components. complex than that chosen as an illustration below.)
The use of specialised local databases, where possible,
clearly distributes the communications load. Mapping Algorithmic pipelines
the major tasks onto a network of distributed In the algorithmic pipe, each task is first
processors offers the major challenge, as considered examined to establish the routes along which the data

10z

processing flows, and the connections between routes. Fig. 2a shows a simple process, that of
A single section of data flow, between input to the task, calculating a new value of the direction cosine matrix
and output from the task is then treated as an [S] from the rotation rate vector. The computation
algorithmic pipeline. There are, however, two major follows three stages, and is thus divided into three
difficulties with the algorithmic pipeline which have communicating processes, marked by boxes. Since the
been encountered. computational requirements of each process is roughly

Firstly, for any given task, there is a limit to comparable, each task may be placed on a separate
the number of pipelined sections into which it may processor. The simplest approach to resolving
efficiently be divided. As the number of pipeline computational imbalance, which can sometimes be
sections is increased, the work done in each section applied, is to merge those requiring least, and
decreases, whereas the communication between tasks sub-divide into a cascade those requiring most

tends to increase, since more intermediate results need to computation , (eg. for a multistage integration scheme).
be transferred. Consequently the
computation/communication ratio for each section
diminishes rapidly. Although the transputer is capable
of concurrent computation and communication in
parallel threads once the communication link engines Aerodynamic

Coefficients
are started, a fixed time interval is required to set up the
link engines. The subdivision of each task is relatively

coarse grained as a result, although since there is a P F Plarge number of tasks, this does not prove to be

restrictive in practice. I L [

A second problem is that one or more sections IS]
in the pipeline may require far more computation time Solve fr each T~al Rot

than other stages, leading to execution bottlenecks, element M, Moment Rate

and consequent low parallel efficiencies. Sub-division Fig,_2b,
into more sections is often not possible, for the reasons Use of Embedded Geometric Array in
above. In this case, possible solutions are: Algorithmic Pipe.
(i) use a faster processor (a valid option now that
heterogeneous processor networks (for example T-800
and i860) are available.) To update the rotation rate vector is slightly
(ii) Effectively "widen the pipeline" at the bottleneck, more complex, (fig. 2b), particularly in a more exact
using an array of transputers. simulation where the variation in turbulent gust

Two examples taken from the simulator illustrate velocity across the wing span is included in the model.
the application of algorithmic pipelines to the problem The simplest approach considered effectively divides the

area. wing span into parallel strips, and evaluates the
contribution of each strip, to the total, together with an

Fig.2a overall correction. Since this computation takes by far
the longest time in this section of the simulator,

Simple Algorithmic Pipeline, branching the pipeline, or using an array to compute the
elemental contributions may be used. This provides an
effective solution, and is suitable for direct mapping as

__ • 'a transputer array embedded in a linear pipe.

Processor Farms

The processor farm uses a different approach, and

P L} _"--. e- -- [S] may be of the data farming or task farming type. In data

farming, identical copies of a program ("workers") are
qualiont sdtVS distributed across a set of processors, which are under

rates csiels the control of a master program ("farmer"). The farmer
sends data packets to the workers, and collects their

results. (Task farming requires the master to

103

dynamically load tasks onto processors via the operating
system, and is not considered hrre). A "router task" is J(,
placed on each transputer nod(of the network, to pass X
the work packets to the available processors. It is not n1()

necessary to specify the number of processors or ------ +- d(x)

configuration, as this is determined at load time.
A problem with current versions of the transputer H-(w 1

is that messages routed through an intermediate I +RZ

transputer from one node to another results in delays. n H
Consequently, as the routing of messages is generally Random No. Filter Scale
less efficient and the communications overhead larger Generator
than in the case of a fixed geometric partitioning (where
the latter is an alternative), one often achieves
disappointingly poor parallel efficiencies. To,-Gaussianrurbulence
implement a general farm-based approach apparently ,i ,
still necessitates programming in Occam, however for
this work the 3L Fortran library of farm handling j
procedures was used. The results obtained in a number
of different applications indicated that, for this d
implementation at least, high levels of parallel dN uNon-Gaussian
efficiencies could only be attained if the worker tasks Turbulence
are computationally intensive.

Turbulence Simulation and _

Aircraft Control.

The generation of a single component of a one

dimensional (ie. no variation in y or z) turbulent gust Generation of Simulated Turbulence
velocity field is considered first . Let d(x) denote the
vertical component of the disturbance velocity along the
x-axis, (the direction of flight). It is required that both The longitudinal and lateral turbulent velocity
the spatial frequency content, and the probability components are generated in a similar fashion, with
distribution function of d(x) should closely match that slightly different linear filters. To account for the effect
measured in real turbulence. The method used (fig. of lateral variations in the turbulent velocity field, the
3) requires three independent uniform random number simplest approach is to generate an additional two
sequences. (The procedure used for the random velocity components. The procedure is exactly as
sequence generation is the standard linear congruential before, (though with appropriate filter characteristics).
method, with an additional randomising shuffle table, These velocity components account for the integrated,
[6]).Firstly, the random numbers are processed to moment inducing effect, of instantaneous spanwise
obtain a Gaussian distribution. An approximately asymmetry in the longitudinal and vertical turbulent
Gaussian distributed random sequence is most simply gust velocities, (8]. Thus fifteen random numbers
obtained by forming the subsequence consisting of the generators may be required to provide the five turbulent
mean of n terms of the original uniformly distributed velocity components required for a two dimensional
sequence, where n is at least 12. (strictly quasi-two dimensional) turbulence field

The processed sequences serve as independent simulation.
white noise sources nl,n 2 , and n3 , and each source The obvious technique which may be used to
then passes through a linear filter. The output from any apply the linear filters is the FFT. The spectral
of these filters has the correct spectral distribution of distribution of real turbulence however may be
frequencies, but the spatial distribution is too approximated sufficiently accurately for simulation by
homogeneous, as shown. To correctly represent the a simple rational filter, such as:
non-Gaussian "patchy" nature of real turbulence, the
outputs of the linear filters are combined non-linearly, H(w) = A / (1 + B.jw)
[7].

104

with A,B constants, and w the frequency variable. Packet
The Z-transform may then be applied to derive a Length
recursive filter, such that the i-th turbulence velocity
di is given in terms of previously filtered values 5 128
di_ ,di.2, and previous unfiltered inputs wi.1, wi.2, by S 16
a relation such as : Speed 4

di = kl.di. 1 + k2 .di. 2 + Up 3
k3. wi + k4. wi. 1 + k5.wi.2 0

2
where kI, k2 etc. are constants

Clearly this provides a considerable
computational saving. Furthermore, by relating the
position x, to the time t, the turbulent velocity
components may be generated as a time series, (ie. at 1 3 4 5
each time step in the solution of the equations). This is
the approach normally used for the implementation of No. of Processors
one dimensional and quasi two dimensional turbulence
generators. For an efficient transputer implementation Performance of Farm Algorithm:
it is not appropriate to attempt to generate each value Effect of Length (in integers) of
just when it is required for the reasons considered next.

The generation of random numbers is well suited Results Packet.
to the data farm aproach, as it is only necessary to start Since the filters differ for each velocity component
each generator with different parameters and initial however, a farm-based implementation of this form
seeds. The generator is formulated as a worker task, would require non-identical workers. Although this
under the supervision of a master task, and a copy of could be accomplished, it adds complexity, and is not
the worker resides on each transputer including the root easily realisable for a general transputer network. In any
node. The master task, which resides on the root event, the computational overhead recauired for a simole
transputer, distributes the initial data to the generators, recursive filter is very low, and may be placed entirely
and collects the results. The sequence of random values on the master task, without noticeably reducing the
produced by the generators may be routed back to the high efficiencies achieved.
master task in packets comprising either a single value, To implement a full three-dimensional turbulence
or up to 256 values, (in the current 3L release). field generator, requires the use of the FFT for the

It is not efficient, however, for each worker to spatial filtering. Although it would be very useful to
send back one random value at a time, since the wasted combine a processor farm for the random noise
processor time required to initiate a communication generation, with a geometric array to accomplish the
across a hardware link then becomes very significant in spatial filtering in a hybrid parallel system, this option
relation to the time spent in computation. This is is not effectively supported for PC-hosted systems in
illustrated in fig.4 in which the performance of a farm the current 3L release. For a complete simulation
based Gaussian random number generator is compared therefore, it is necessary to specify the entire network,
for varying result packet lengths. Consequently each effectively as a geometric configuration. Load balancing
worker generates a long array of values which are between the resources required by the random
transmitted back to the master as a single packet. generators, and the filters is thus fixed, as a result of a
The workers continue asynchronously generating and process of trial and error. It is difficult to gain a
transmitting packets without further intervention, satisfactory (or even sometimes any) gain in
Simple double buffering may be used in the output performance each time a single transputer is added to a
from the master task, to emulate continuous generation, completely geometrically partitioned network. The
if values are required on a pointwise basis. simplest procedure is clearly to add the transputers to

In the implementation of the turbulence increase the performance of one part of the network (eg.
generator, it is possible to lump the filtering together the filter stage) at a time. Future work using the Meiko
with the random number generation on the worker should allow the implementation of hybrid strategies.
tasks. This has the potential of ensuring that the The results show, however, that it is possible to
worker tasks arc highly computationally intensive, obtain high parallel efficiencies in the generation of one

105

0 S ___ - __ - -0.5

(Deg) PITCH A 11TUDE PITCH A'TIUDE

o 0

-o - --- - -

-0 5 -0.5

0. ETCLA N.0.5 VERTICAL ACCELI

-0. -0.

-1. 10 -10
0 10 20 30 40 s0 0 10 20 J0 4(5f.

Time (Sec.) Time (Sec

A: UNCONTROLLED B: CONTROLLED

Fie. 5 Simulated aircraft response to atmospheric turbulence

Discussion and Conclusions

and quasi-two dimensional turbulence. Both algorithmic pipeline and processor farm
For aircraft control, simple PID controllers, approaches have been applied to the parallel

predictive, and linear optimal controllers are being decomposition of an aircaft flight simulation and
considered. Fig. 5 shows the application of an optimal control system. Currently the techniques employed for
controlled (applied to stabilise the longitudinal load balancing are very much of a "'hands-on" nature, for
dynamics only, ic. velocity components u,w, pitch the geometric and algorithmic parallelisation strategies.
angle q, and rate q, and augmented by the integral of To allow more efficient general parallelisation, the
pitch). For the linearised state variable equations, problem of through communication delays needs to be

resolved on ,he hardware side, whilst the ability to mix
x = [AI x + Bu I IL + flid I d paradigms would be very useful. It is anticipated that

the next generation of transputcrs will solve the routing
The control vector L is obtained from problem, and also facilitate effective general

parallelisation, rather than adherence to a rigid paradigm.
L = -IRI" 1 [Blu 0'" [PI & Hopefully this should allow the obvious benefits of the

transputer to be more generally employed for this
where P is the solution of the steady-state Ricatti application area.
equation,

References
IPIIAI + JAI Tjp 1 1. Inmos Transputer Applications Handbok, 1989

- IPI I 0ul IRI"1 IBuI T IPI + IQI = 0 2. Inmos technical note no. 36
3. van Santen, P. & S.K. Robinson. "Parallel

and [Q] and (RI are the weighting matrices associated Extraction Techniques and Loosely
with the state-space vector and control input Coupled Target Systems" Software For
respectively. ParTilel Computers 1989

The solution of the above matrix equation is 4. Lake, T "Distributing Computations"
accomplished by converting to an cigenvalue problem, Software For Parallel Computers 1989
forming a matrix of eigenvectors, and performing an 5. Pritchard,D. "Performance analysis and

inversion, measurement on Transputer Arrays"
The parallelisation procedures which have bc-n Software For Parallel Computers 1989.

considered to date to obtain the control vector u 6. Knuth, Donald E. "Seminumerical Algorithms, 2nd
comprise a coarse algorithmic parallelisation of the ed. vol. 2 of "The Art of Computer
major stages of the solution algorithm. As the Programming" pp. 116, 1981.
techniques are as described above this will not be 7. Reeves, P.M. et al.
discussed further. The potential efficiencies attainable NASA CR-2451, 1974
are high, for a coarse discretisation is. Currently 8. Gerlach, O.H. & Baarspul, M.
approaches for a fine discretisation are being considered. Repi. VTH-139. Delft University of

Technology, 1968

106

Simulation Of An Urban Mobile Radio Channel
on the Myrias SPS-2

M. Fattouche L. Petherick A. Fapojuwo
ATRC Affiliate Professor Myrias Research ATRC Postdoctorate Fellow

University of Calgary Corporation University of Calgary
Calgary, Alberta Edmonton, Alberta Calgary, Alberta

Canada Canada Canada

Abstract The Digital Radio Simulator

Combining techniques in an urban mobile com- The combined effect of Doppler and fading isCombnin tehniuesin a uran obie crn- simulated using a modified Hashemi model •2],

munications channel are simulated using a

modified Hashemi model. The parallel imple- [3]. A block diagram of the channel simulator

mentation of this simulation on a distributed is given in Figure 1. The transmitter consists

memory, M1IMD parallel architecture is dis- of a precoder and a transmitting filter
cussed. Combining techniques suitable for the corresponding to the first generation digital

first generation digital cellular communications cellular communications system in North
system in North America are analyzed. Scala- America ll. The precoder maps the informa-

bility and overall performance results on the tion sequence {ck into -r/4-shifted Quadra-

SSPS-2 are presented. ture Phase Shift Keying (QPSK) and the
transmitting filter corresponds to a square

Introduction root spectral raised cosine filter with a roll-off

In mobile radio, energy can travel from the factor of 0.25.
transmitter to the receiver via more than one The channel in Figure 1 corresponds to one
path. This "multipath" situation arises that would be used in a sparse high rise
because of reflection and scattering from urban environment at 800 M!Hz carrier fre-
buildings, trees and other obstacles along the quency, with the vehicle traveling at
path. At the receiver, the radio waves com- 50 kmi/hr. The delay spread is limited to
bine vectorially to give a resultant signal 7 psec. which corresponds to intersymbol
which can be small. When this occurs, the interference over only one adjacent symbol.
signal is said to be subject to fading. More- This yields a symbol rate of 24 ksymbols/sec.

over, whenever relative motion exists, there isa Doppler shift in the received signal. The The receiver can accommodate a receiving
cDombined eifft ofin g anereceid Doppal.her p filter identical to the transmitting filter, ancom bined effect of fading and D oppler pro- a a t v q a i e , a d o i e b l o
duces a received signal with an amplitude adaptive equalizer, and/or a Viterbi algo-

and phase that changes quite substantially rithr (VA). The equalizer can be either a

with time. decision feedback equalization (DFE) or a
simple linear equalization (LE). The adapta-

This poster sessio,. describes the simulation of tion algorithm associated with it can be
the first generation digital cellular communi- either a least mean square (LMS) or a recur-
cations system in North America [il. together sive least square (RLS) algorithm.

with a suitable technique for carrying out the
simulation on the Myrias SPS-2. a parallel Parallel Implementation

processing architecture. Bit error rate curves Digital radio channel simulations are done on
resulting from the simulation are presented. the Myrias SPS-2. The SPS-2 utilizes a dis-
Scalability results and overall performance of tributed memory, MIMD parallel processing
the simulation on the SPS-2 are presented. architecture. A parallel implementation of
Conclusions derived from results obtained the simulation is done in the following
using this simulation, as well as the suitabil- manner.
ity of running this simulation on the SPS-2
are discussed.

107
0-8186-2113-3190/0000/0107$01.00 0 1990 IEEE

The first level of parallelism implemented is Performance Results
to analyze different system parameters/ The channel is simulated using 9 to 378 pro-
operating conditions in parallel. For each set cessors on the SPS-2. Absolute performance
of these operating conditions, the simulation results are measured using 9 to 108 proces-
is done over several city blocks. Calculations sors. Scalabilitv results are measured using
within a given city block are independent of 54 to 378 processors. It should be noted that
all other locations; hence are done in parallel, no changes to the code or the executable are
Several signal to noise ratios (SNR) are simu- required to run the program using different
lated within the channel in each city block, numbers of processors.
Calculations for each of the SNR are also
done in parallel. Thus, 3 levels of parallelism Figure 3 shows absolute performance results
are identified, and implemented. for two sets of operating conditions. The firstset of operating conditions includes a DFE

Bit error rates predicted using the simulation with no receiving filter. The second set con-
are discussed in the next section. tains both a DFE and a receiving filter. Each

Simulation Results channel is simulated over 6 city blocks. 9

Using the operating conditions associated SNRs are evaluated. Using 9 processors, a

with Figure 1, simulation results were run time of 13 hours and 27 minutes was

obtained. Figure 2 displays 5 bit error rate measured. The same simulations were done

curves versus Eb/No, where Eb is the average using 18. 54. and 108 processors.

bit energy and N0/2 is the magnitude of the The run time decreases by a factor of 11.5
two-sided power spectral density of the addi- when the number of processors is increased by
tive white Gaussian noise. Curves A and P a factor of 12. from 9 to 108.
correspond to a receiver with DFE, curves D Scalabiiity rfsults are presented in Figure 4,
and E to a receiver with LE and curve C using 5.4 to 378 processors on the SPS-2. Sca-
with no equalization. Curves .4 and D lability is defined here to be constant work
correspond to a receiver with no receiving (computation) per processor. One set of
filter, and curves B, C, and E to a receiver operating conditions is simulated using 54
with a receiving filter. Run times for the
simulation and scalability results, using the
Nlyrias SPS-2 are presented in the next sec-
tion.

"Fo Simulator

Prcoer "IFitter Filter Filter

Al orithm

Figure 1 - Mobile radio simulation I.Decision

SDevice

Decoder

Results are also presented for simulations per- Some processors are idle during the following
formed using 216, 324, and 378 processors. parts of the simulation. Initially, only one
Run times (elapsed time), non-dimensionalized processor is used when the system parameters
using a run time of I hour and 9 minutes on for each datafile are being set up. Processors
54 processors. vary from 1.01 on 108 proces- are also idle while the simulation over each
sors to 1.10 on 378 processors. Using 54 pro- city block is being established.
cessors, 96% of the total run time is actual Using 378 processors, idle time accounts for
user (CPU) time. 1% is used by the operat- 12% of the run (elapsed) time. User time
ing system. Idle processors account for the (CPU) is 87%. The remaining 1% is used by
remaining 3% of the elapsed time. the operating system.

0-
A - DFE, no receiving filter
B - DFE, with receiving filter

_" C - no equalization, with receiving filter13E -LE, with receiving filter• -1 D - LE, no receiving filter

S/A

-10 20 30 40

E /N indB
bO0

Figure 2. The bit error rate for urban land mobile channels

• 12"

0 1

a:

-2
B

,,

o

CD

Q) 6'E

"~ 4

.E 2

020 40 60 80 100 120

Number of Processors

Figure 3. Scalabilite - fixed problem size

109

lo -I

Conclusions ported to the SPS-2 with very little effort.

From Figure 2. it is seen that DFE offers a Testing and evaluation of various techniques
poorer performance than LE, and should used in the channel simulation program are
therefore be avoided. It is also seen that LE done rapidly on the SPS-2. Use of the simu-
offers a slight improvement in performance lation on the SPS-2 enables rapid evaluation
over having only a receiving filter. However, of many configurations before the final red.
the improvement is very small at bit error world experiments are conducted.
rates of 10 For that reason, it is believed References
that equalization is not needed. tin Cellular System, January 1990, Dual-
The VA is not displayed in Figure 1, since it. Mode mobile station-base station compa-
was found that with a delay spread limited to tibility standard, EIA/TIA, Project
7 psec, the channel is essentially flat. In Number 2215, Electronic Industries
other words, there is no need for a VA for Association.
such a channel. Moreover, it is found that
with a vehicle travelling at 50 km/hr, the i21 Hashemi, H., 1979, Simulation of the

channel is fast fading, and the LMS algo- urban radio propagation channel. IEEE

rithm fails to track the rapid amplitude and Trans. Veh. Tech., vol. VT-28. pp. 213-

phase variations of the channel. 225.

The Myrias SPS-2 is a very suitable computer ;l Turin, G.L.. 1972, A statistical model of

platform for doing this type of simulation. urban multipath propagation. IEEE

An existing code, written in Fortran 77. was Trans. Veh. Tech., vol. VT-21, pp. 1-9.

1.4
0C,)

0

0 1.2

E
C-

0 0.8
EC:
t- 0.

Cr 0.6
0 100 200 300 400

Number of Processors

Figure 4. Scalability - constant work per processor

110

PORTABLE ASTEROIDS ON HYPERCUBE OR TRANSPUTERS

Alex W. Ho and Geoffrey C. Fox

Concurrent Computation Program
206-49, California Institute of Technology,

Pasadena, CA 91125, USA

Abstract There is another class of computation inten-
sive programs which compete or cooperate with one

A multi-player 3D Asteroids video game de- another within a simulated organizational struc-
signed to be used as a testbed for evaluating con- ture. Usually, these are programs which implement
troller algorithms was described in [1.] The origi- artificial intelligence, decision-making algorithms.
nal version of the game and a separate interactive An example of a simulated organizational frame-
3D graphics interface for a human player were im- work is a game environment with a game manager
plemented, based on CrOS III and VERTEX, on program which coordinates the actions and com-
an NCUBE-1 hypercube equipped with a paral- petitions of multiple player programs via message-
lel Real-Time Graphics board. The Asteroids and passing. The "players" and the game manager can
interactive graphics interface programs are exam- benefit from parallelization. However, it is difficult
pies of parallel programs which communicate with to develop portable codes for these communicating
each other in a space-shared multi-processor envi- parallel programs which does not only require inter-
ronment. processor communication within each program but

also communication among different programs.
We have successfully ported the Asteroids and

the interactive graphics interface to run on NCUBE There is a proliferation of small parallel corn-

using ParaSoft EXPRESS. The new version of these puter systems for tutorial and experimental pur-

programs were further ported to run on a SUN poses. Among these, the Transputer-based system

386i with an add-on Transputer board. We present is a popular one. We present general system design

general design considerations that enable easy mi- guidelines which enable easy porting of the game

gration of communicating parallel programs to any environment to other hardware platforms that are

other hardware platform that runs EXPRESS. We supported by EXPRESS, and discuss specific expe-

also report specific experience of porting Asteroids rience in the porting of the NCUBE Asteroids to

and an associated interactive player interface pro- SUN 386i Transputer-based system.

gram on an NCUBE hypercube to a SUN 386i Why A Game?
Transputer-based system, with no modification of
codes. There have been mammoth interest in re-

search on intelligent controller algorithms which
Introduction can perform tasks that normally require human su-

pervision for decision making. Some examples of
Code portability is a major concern for peo- such tasks are navigation control and multi-target

pIe who writes programs, and especially so for those tracking 12, 3.] Intelligent algorithms are in general
who implement computation intensive algorithms, very computation intensive. Moreover, there are
Scientists would like to run their specialized codes, no effective ways to evaluate or compare the per-
without modification, on faster computers when- formance of these algorithms, either running alone
ever they are available. Ample examples can be or simultaneously.
found in the fields of computational fluid dynam-
ics, chemical dynamics, and in quantum chromody- A dynamic game which contains the features
namics, just to name a few. of randomness, secrecy, incomplete and noisy infor-

0-6186-2113-3t90/OOO/OI111$O1.OO 0 1990 IEEE III

mation, as well as limited resources of the players 3D Asteroids is designed to accommodate
would provide a natural arena for these algorithms, multiple 'players'. All players do not have to join
Such a game generates a consistent, dynamically the game at the same time. At any time when the
evolving environment for the participating player game is running, the game program is capable of
programs which are implementations of various al- adding new or removing existing 'players'. This
gorithms for some simple, well-defined objectives, arrangement allows a real-time competition among
It is also essential that such a game be implemented the different 'players' who are subjected to the same
on a powerful computing environment so that corn- global conditions and games rules, but are occupy-
putation intensive algorithms can compete fairly in ing different locations in the 3D toroidal space.
real-time.

Overall Design of Asteroids
Asteroids

One way to look at the Asteroids game sys-
The Asteroids arcade game is a single player tem is to treat the game objectives as the objec-

game which features a spacecraft traversing a 2D tive functions of an optimization problem which
toroidal space with inert, moving celestial bodies of is constrained by the imposed game rules. The
various sizes. Given an interactive graphics display user-supplied algorithms, including the interactive
and button-controlled interface, a human player can player's intelligence, implement different approaches
maneuver a spacecraft to turn, thrust, yank, or to to solve the posed problem. Therefore, it is essen-
fire missiles. The objective of the game is very sim- tial that the game can support multiple players for
pIe. It is to destroy as many asteroids as possible the purpose of direct comparison of several algo-
without being hit by them. Large asteroids split rithms. This also makes the game more realistic
into multiple smaller ones when hit by other as- and extiting.
teroids, missiles or spacecraft. A spacecraft is de-
stroyed when hit by any objects. Since the Aster- All programs that are involved in Asteroids
oids game is conceptually simple, we have chosen to do not make any assumptions about the underlying
implement it, with some enhancement, as a testbed hardware environment, and are classified by func-
for the evaluation of intelligent algorithms which tionality into three categories. They are the 'game
are developed specifically to achieve the game ob- driver', 'player', and 'graphics driver' programs.
jectives.

The 'game driver' is the core of the game.
We have implemented a 3D Asteroids game Only one copy of the game driver is needed at all

environment on an NCUBE hypercube which was time. The primary entities in the game driver are
equipped with a parallel graphics board [1.] The objects like spacecraft, missiles, and asteroids. It
software system was based on CrOS III and VER- implements rules of the game, processes player re-
TEX. The implementation of Asteroids on a space- quests, and evolves game objects in time.
shared concurrent processor makes it easy to com-
pare performance of different algorithms that are There are two types of 'player' programs. An
assigned to a common task at the same time. interactive player program implements a 3D graph-
Preferably, an intelligent algorithm in use is paral- ics interface for a human player to control a space-
lelized to take advantage of the multi-processor ar- craft, while a batch player program implements an
chitecture for efficiency. Otherwise, it will be trivial intelligent algorithm to take over the responsibili-
to modify a sequential program so that it will run ties of what a human player is supposed to do dur-
on one node of a concurrent processor, and still be ing the game. A player program is isolated from
able to take part in the game. the rest of the game so that any modifications of it

will affect the performance of an individual player
The enhanced Asteroids game models space- only, and has no effect on the operation of the game

crafts and asteroids, governed by physical laws, itself.
traversing a 3D toroidal space. Unlike the arcade
game, spacecrafts are not destroyed immediately A 'graphics driver' is an interface between
when collide with other flying objects. They only player programs and the graphics hardware. It pro-
lose 'energy' which is used as an index of cost. If vides tht low-level graphics operations for player
a player's spacecraft is out of energy, that player is programs and isolates them from the ever-changing
out of the game. graphics hardware. An interactive player program

112

certainly needs graphics support because a human transfer takes 1/30 second. However, altering the
player relies on the visual-oriented display to make data in the frame buffer while a DMA is in progress
decisions. A batch player program has the option usually produces an unpleasant among of flicker.
of using graphics display for the convenience of the
observers of the game.

Hardware Considerations ATrANSPUrERS

The first version of Asteroids was developed
for an NCUBE hypercube with a Real-Time Par-
allel Graphics Board which has 16 NCUBE pro-
cessors, and uses Hitachi HD63484 Advanced CRT
Controllers (ACRTC.) The processors on the graph- ION• / TORRA"E SCW-861

ics board will be called graphics nodes, and those BUFFER

on an NCUBE hypercube will be called array nodes
for nomenclature convenience.

Figure 1 is a block diagram of an NCUBE
with a parallel graphics system. The control pro-
cessor of the entire system is an Intel 80286. Two
distinct features of the graphics system are that the Figure 2: A Block Diagram for a SUN
16 graphics nodes are capable of communicating Fi 2: a alo Dram fora
with each other, or with the array nodes using high- 386i with an add-on Transputer Board
speed I/O channels; also, signals from the graphics Of the 128K local memory available in the
tablet can by-pass the control processor and reach graphics nodes, about 20K is used by GRAPIIOS
the graphics board directly via a RS-232 port at (a nucleus similar to VERTEX.) A single buffer for
19200 baud. each graphics node is 48K. If 2 consecutive 1/16

frames of display are to be computed by each of
the 16 graphics nodes before calling a DMA trans-

110 CIIMSIE fer, the executable graphics processing program on

the graphics nodes has to be smaller than about 8K.
16 PROCESSORS •It is unreasonable to expect any realistic graphics

PCREAL-TIME programs to occupy only 8K memory space. There-
fore, it is very difficult to make use of the 2-Mbyte

CONTR•OL frame buffer for real-time double buffering.
A block diagram for a SUN 386i is shown in

OI~rnCSl lFig. 2. It is a much simpler configuration because
TABLET it does not have a parallel graphics system. The

SUN 386i acts as the control processor for an add-
KEYB~OARD on multi-processor Transputer board. All input de-

vices are connected to the SUN 386i. There is no
direct 1/O channel from the Transputer board to
the frame buffer which talks to the 386i only. This

Figure 1: A Block Diagram for an hardware configuration will not support real-time
NCUBE-I with Rteal-Time Graphics animation. llowever, the speed of graphics dis-

play can always be improved by adding specialized
A graphics node can issue a graphics com- graphics hardware later.

mand, by sending a message to the 80186 on the
graphics board, to initiate a DMA transfer of pixel System Software Considerations
data in the local memory of the graphics node to
the frame buffer of the display monitor. Local mem- There is no established standard for the new
ory of the graphics nodes are mapped to the frame parallel computer languages, programming method-
buffer in alternating 2-pixel wide strips. A DMA ologies and operating systems. We have chosen

113

to implement the new version of Asteroids on an to implement INTERCOM is to make use of Unix-
NCUBE and a SUN 386i Transputer system using style pipe. Even though AXIS does not provide sys-
ParaSoft EXPRESS. The few reasons behind this tem support for pipe communication on the CP, it
choice are that EXPRESS is portable, simple, effi- is not difficult to implement such a mechanism. Us-
cient, and CrOS compatible. Any carefully written ing pipes, the game driver and the player programs
EXPRESS applications can be migrated separately which run on the same space-shared parallel corn-
from one hardware platform to another relatively puter can communicate with one another on the CP.
easily, as long as the computer system runs EX- However, this method is very inefficient and is not
PRESS. suitable for real-time simulations, especially when

the CP has to perform many other tasks besides
Implementation Guidelines handling the game processes. It is more acceptable

if inter-program communication takes place within

Portable and efficient intra-program commu- the parallel computer or via special high-speed I/O

nication is easy because they are provided by EX- channels.
PRESS functions which are already available for a
wide range of parallel computer. However, port- On an NCUBE-1 with a Real-Time Graphics
ing a set of parallel programs which space-shared board, inter-program communication can take place
a concurrent processor and communicate with one via the graphics board which has 16 high-speed I/O
another is not as straight-forward. Some operating channels to the main array. Since VERTEX only
systems, like VERTEX on NCUBE, do not allow a checks on the destination of messages that originate
parallel program to send messages outside its own from a processor in the main array, we made use
allocated sub-cube to another sub-cube within the of the graphics board to handle message routing
main array. Also, there are hardware dependent to different sub-cubes of the NCUBE hypercube.
codes such as those for graphics display. Efficient When a player program (in a sub-cube) sends a
graphics are hardly portable because it involves too message to the game driver (in another sub-cube,)
much hardware specific programming. the message is actually being routed through the

graphics I/O board. The high-level INTERCOM

In order to make Asteroids portable, i.e., to library provides the service transparently with the

run the same game driver and its associated player help of a set of message forwarding routines in the

programs unchanged on different hardware plat- FWDLIB library which has to be downloaded to the

forms, an extra layer of software which contains 16 graphics nodes before loading the game driver

two modules is introduced. These tv -modules, and the player programs onto distinct sub-cubes in

INTERCOM and POLYCOM are small user-level the main array .

libraries which provide player programs with the ca- Since EXPRESS does not check on the des-
pability to communicate with the game and graph- tination of a message and it is the native operat-
ics drivers, respectively. We have implemented IN-
TERCOM and POLYCOM on NCUBE-1 with a ing system running on each betransputer processor,Real-Time Graphics board, and SUN 386i with a inter-program communication between player pro-
Transputer board. grams and the game driver can take place entirelywithin the Tvansputer network. For portability, an

equivalent INTERCOM library is written on top of
Implementation of INTERCOM EXPRESS for a SUN 386i Transputer-based sys-

tem. In this case, no FWDLIB library is needed.The migration of the CrOS-based Asteroid to

EXPRESS-based is straight-forward and does not The INTERCOM library for the game is very
deserve further discussion. We start the discussion simple. There are only four routines available.
with the implementation of INTERCOM. At the beginning of a player program, a call to

play-init() will register the player with the game
Common to most distributed-memory concur- driver. The game driver will be able to find out

rent computers is a control processor (CP) which the number of processors a player occupies, and as-
usually runs a version of Unix or Unix-like oper- sign player number. When a player makes a call
ating system such as SUN-OS on a SUN 386i, and to read-stateo, a new update of the environment
AXIS on an NCUBE. These operating systems sup- will be returned. All nodes of a player will receive
port multi-tasking on the CP. A simple approach the same message from the game driver. If a player

114

wants to send a move to the game driver, it makes a SUN 386i. Since a graphics driver and player pro-
call to send-moves(). For a player program which grams run on different processors with no shared-
expects to receive input from the keyboard, a call memory, the player programs have to send drawing
to get-keys() will fill a designated buffer with all commands via messages.
the keystrokes received so far, and the number of
keystrokes placed in the buffer will be returned. While the graphics drivers hide all hardware

details and provide 3D polygon drawing capabilities

The FWDLIB library is implemented for the for the players, POLYCOM is a small library which

NCUBE-1 with parallel graphics only. It provides furnishes a consistent set of user-level routines for

communications between arbitrary nodes in the player programs to communicate with the graphics

main array, regardless of whether they are in the driver. Player programs using POLYCOM can send

same allocation group or not. The library main- drawing instr,,ctiuns to the graphics driver without

tains 16 communication channels, each of which knowing where it is.

stores the addresses of two sub-cubes in the main POLYCOM supports drawing points, lines,
array as well as the addresses of a particular node and filled polygons. Simple functions like pointo,
in each sub-cube as a receiver. If an array node in and filled polyg inc o are aoil-
one of the two sub-cubes sends a message with a pointsett), linedr , and polyline() are avail-
call to fwd.msgO), it will be sent to the receiver in able. It can draw background stars by stap() or
the other sub-cube, where it can be read with a call stapsot() for any space games. It also supports
to get.msgo. An array node can identify itself as polygon drawing by the the function calls pony() or
a receiver and its allocation group as the sub-cube polyset o which draws a collection of one or more
by calling attach-to-channel(). To detach both filled or wire-frame polygons. Fundamental graph-
communicating sub-cubes from a specific commu- ics routines like ginit() for initializing the graph-
nication channel, the parallel programs running in ics library, reseting the clipping boundaries, and
the two sub-cubes have to call clear-channelO). clearing the screen, setclipC) for setting the clip-ping boundaries, setcolor() for changing the RGB

The INTERCOM library on NCUBE makes values of a palette entry, dmao) for making draw-

use of FWDLJB library implicitly. A player pro- ing visible by sending images to the frame buffer,

gram using INTERCOM can communicate with the gcmdo) and gcmd.nodma() for executing the accu-
edriver without using or the need to know any mulated drawing commands with or without auto-

of the FWDLIB routines. matic calling of dmao) are also provided by POLY-
COM.

Implementation of POLYCOM Asteroids on NCUBE and Transputers

There is a significant difference between the The Asteroids game was implemented both on
NCUBE-1 and SUN 386i graphics hardware, as can NCUBE with parallel graphics and SUN 386i with
be seen in Fig. 1 and 2. A user of the Asteroids sys- a Transputer board. It uses EXPRESS, INTER-
tem who's main concern is to develop intelligent al- COM, and POLYCOM for intra and inter-program
gorithms to play the game would not want to spend communication. The overall relationships of the
too much time in experimenting different graphics three category of programs and the communication
display strategies, not to say to deal directly with among them are illustrated in Fig. 3 and 4.
the graphics hardware at a very low-level. We have
developed a parallel polygon graphics drivers for the Oval shape is used for a process, and rect-
NCUBE Real-Time Graphics board and an equiv- angular box is used to differential the three types
alent Sunview-based graphics driver for the SUN of programs in Fig. 3 and 4. The top level of a
386i. box indicates the type of program, while the lower

levels show the libraries in use by the program. EX-
On an NCUBE, player programs run on dis- PRESS is not included in the boxes because we have

tinct sub-cubes in the main array, while the paral- assumed that it is available and is being used for
lel polygon graphics driver runs on the 16 graph- programs that require intra-program communica-
ics nodes on the Real-Time Graphics board. On a tion. Bi-directional arrows in the figures indicate
SUN 386i system with no specialized graphics hard- links for inter-program communication, while uni-
ware, player programs run on the Transputer nodes, directional arrows show the parent and child rela-
and the graphics driver runs on the CP, i.e., the tionship of processes. Although there is a batch

I1IS

player program in both Fig. 3 and 4, it has not general guidelines, both the Asteroids game driver
been developed yet. The two figures just assume and the associated interactive player programs can
that competing player programs exist. be migrated from an NCUBE-1 with a Real-Time

Graphics board to a SUN 386i Transputer-based
system with absolutely no change of codes.

"CUB'

"- AcknowhIcdgeiment
Control Processor Ilypercube Real-irnme Grphbks

This study is based on research work F,'!f
Ces Drivr ported by the Joint Tactical Fusion Program Man-

cusix(IMUCOM)ager.
Driv'er

interactivetXfRccrcxllces
1?oz layer (ZHTanC(ON)

(TZH RCOM) (POLICON)

,oLTeo.H[1] H[o, Alex W. and Fox, Geoffrey C. and Sny-
der, Scott and Chu, Diana and Mlynar,,UBXtW 96 'rTed, "3-D Asteroids Using Parallel Graph-

(I ,,ne<1m) ics on NCUBE: A Testbed for Evaluat-
ing Controller Algorithms," in Proceedings
of The Fourth Conference on llypercubes,

Figure 3: Schematic of program rela- Concurrent Computers, and Applications,
tionshiip in NCUIBE Asteroids. pp. 1177-80, Monterey, Ca.; also in Caltech

report C 3 P-681b, 1989.

[2] Io, Alex W. and Fox, Geoffrey C., "Learn-
*ll 39CLtrns,,,ate,,,+ ing to Plan Near-Optimal, Collision-FreePaths," to appear in Proceedings of The

Fifth Conference on Distributed Memory
SON 3______, Buffer _r__sPU__Rs Computing Conference, Charleston, South

Carolina; also Caltech report C 3 P-881,
CUSI -Cm Drver1990.

(INTERCOM) [3] Gurewitz, Eitan and Fox, Geoffrey C. and
Interacti•ve Wong, Yiu-Fai, "Parallel Algorithm for

One and Two-Vehicle Navigation," submit-
ted to The Fifth Distributed Memory Corn-

(PoLYCOM) puting Conference, Charleston, South Car-
Ba-tch Player olina; also Caltech report C3 P-876, 1990.

CURI(4HTERCO"Q)

Figure 4: Schematic of program rela-
tionship in SUN 386i Asteroids.

Conclusions

We have presented guidelines to port com-
municating programs, both parallel or sequential,
which space-shared a distributed memory concur-
rent processor environment. Specifically, we dis-
cussed porting a version of NCUBE Asteroids and
an associated interactive graphics interface for a hu-
man player to a SUN 386i with a multi-processor
Transputer board. We showed that, following the

116

A General Framework for Complex
Time-Driven Simulations on Hypercubes

David L. Meier, Kathleen L. Cloud,
Joan C. Ho.vath, Lynn D. Allan, Wayne H. Hammond

Jet Propulsion Laboratory

Heath A. Maxfield
California Institute of Technology

ABSTRACT time-dependence. That is, the character of the solution
We describe a general framework for building and running evolves with time. We call such applications

complex time-driven simulations with several levels of inhomogeneous time-driven simulations and they are
concurrency. The framework has been implemented on the characterized by the following features: 1) They are
Caltech/JPL Mark IIIfp hypercube using the Centaur composed of TASKS with various degrees of workload. 2)communications protocol. Our framework allows the Tasks communicate with one another to perform the
programmer to break the hypercube up into one or more simulation. 3) Each task has a COMPUTATION
subcubes of arbitrary size (task parallelism). Each subcube
runs a separate application using data parallelism and CYCLE which is repeated many times duration the
synchronous communications internal to the subcube. simulation. 4) Each cycle has four phases: a) reception of
Communications between subcubes are performed with data from other tasks, b) processing of that data, c)asynchronous messages. Subcubes can each define their own communication of results to other tasks, d) advancing
parameters and commands which drive their particular simulation time T. 5) Different tasks may take different
application. These are collected and organized by the Control amounts of simulation time to perform their computation
Processor (CP) in order that the entire simulation can be cycles, as well as taking different amounts of real time.
driven from a single command-driven shell. This system
allows several programmers to develop disjoint pieces of a We have developed a general simulation framework for
large simulation in parallel and to then integrate them with building and running such inhomogeneous time-driven
little effort. Each programmer is, of course, also able to take simulations on hypercubes. The goals of our framework are
advantage of the separate data and I/O processors on each to:
hypercube node in order to overlap calculation and
communication (on-board parallelism) as well as the 1. run tasks in parallel for maximum speed-up;pipelined floating point processor on each node (pipelinedprocessor parallelism). 2. load balance the processing power of thehypercube nodes so CPU-intensive tasks receive

We show, as an example of the framework, a large space more CPU cycles than simple tasks;
defense simulation. Functions (sensing, tracking, etc.) each
comprise a subcube; functions are collected into defense 3. keep tasks distinct so they can be added, deleted,platforms (satellites); and many platforms comprise the or replaced at will -- even at run time (however,
defense architecture. Software in the CP uses simple input to we do not support the addition, deletion, or
determine the node allocation to each function based on the migration of tasks during the simulation);
desired defense architecture and number of platforms simulated
in the hypercube. This allows many different architectures to 4. allow multiple instances of each task to be
be simulated. The set of simulated platforms, the results, and simulated, the number of such instances also
the messages between them are shown on color graphics being determined at run time;
displays. The methods used herein can be generalized to other 5. develop a communication system which can
simulations of a similar nature in a straightforward manner.

I. INTRODUCTION a. determine which tasks communicate with
Many applications in scientific computing cannot be each other and with what kind of data (at

solved with the homogeneous approach traditionally used present we allow such dynamic configuration
with hypercube multicomputers. Solutions to to occur only at run time, but we plan to
inhomogeneous problems are required by such applications as support dynamic reconfiguration during the
electronic circuit simulations, war games, simulations of simulation in the near future),
spacecraft systems, simulations of national or world
economies, etc. Often such applications involve a degree of

1170-8188-2113-3/90/000010117501.O00 ©1990 IEEE

b. react to the inclusion of additional task Our scheme for decomposing the hypercube into subcube
instances as well as the non-inclusion of tasks is described as below. Consider the following input
other tasks by developing an appropriate parameters:
communication graph (again supported only
at the beginning of the run at present), D -- dimension of full hypercube

c. keep messages in proper simulation time and Atli -- real time for task i to run one cycle on one
real time sequence, deliver them at the hypercube node
correct simulation time, and keep the system
from deadlocking; A -- desired simulation time for one cycle of task i

6. allow the simulation to be controlled by the user ni number of instances desired for tasks i
from a single location, despite its multifaceted
character.

In this paper we describe the methods by which we have A GENERIC EXAMPLE WITH 32 NODES
implemented such a simulation framework and then discuss,
as an example, a large space defense simulation -- .Tf

"Simulation 88" - which makes use of at least five different M C
levels of parallelism available in the JPL/Caltech Mark IIIfp
hypercube. We believe that Simulation 88 is one of the
most sophisticated applications run on a hypercube to date.

II. THE GENERAL HYPERCUBE
SIMULATION FRAMEWORK

A. Mixed Task and Data Parallelism Using the WGN0:

Centaur Operating System
Goals 1 - 4 are achieved in the following manner. Each TI-TS SMULATIN TASKS ON SUBCUSES OF DIMENSION 0-3 (WTh

task is decomposed onto a SUBCUBE of the hypercube MLTVE INSrA.ES)

(task parallelism). As well as possible, the number of nodes eP H aERaE CONT. PROESSOR

in each subcube is kept approximately proportional to the - INTER-TASK COMMUNICATIONS (MERCURY)

task workload per computation cycle divided by the desired - INTRAT-S COMMUNICATIONS (CR00)

simulation time per cycle (the throughput of the subcube). - SIMULATION CONTROL COMMUNICATIONS (MERCURY; NOT AL
(Of course, the number of nodes in each subcube must be a SHOWN

power of 2.) Each subcube has a designated master node, the
CORNER NODE, which communicates with comer nodes FIGURE 1
of other subcubes. To solve the decomposition problem, one ni.st solve for the

Within each task the computation is generally dimension of each task's subcube di, subject to the following
homogeneous. Therefore, algorithm speed-up is accomplished constraints:
using data parallelism algorithms, i.e., the traditional
homogeneous algorithms often proposed for hypercubes [1]. Each task's throughput must be load balanced as well as

possible: TP 1 - TP 2 = TP 3 ... where TPi =
All communications, whether within or between 2 di Ai /Atli

subcubes, are handled by the CENTAUR OPERATING
SYSTEM. [2] Within a subcube, the programmer uses Each task has at least one node: di > 0
fast synchronous communication subroutine calls (those from
the so-called "crystalline operating system" or CrOS portion
of Centaur). Between subcubes, specifically between comer Tasks must fill hypercube: I. ni 2di = 2D
nodes, and in communications with the outside world, the i
programmer uses asynchronous communication subroutine
calls (those from the "Mercury" portion of Centaur). In These constraints are satisfied by the following algorithm:
Figure 1 we show a generic example of a 32-node hypercube
decomposed into eight (8) separate subcubes, each of which is 1. Initialize all di = 0
an instance of one of five distinct tasks. 2. Compute the throughput TPi of each subcube i

113

3. Choose the subcube j with the lowest throughput The receiving task 1=
and compute the result of attempting to double the
number of nodes for subcube j:

A COMMUNICATION RULE specifying to which
Nest = ni 2 di + nj 2dj+ 1 of the several possible instances of sending tasks thelj z+ receiving task should LISTE for this message type.

i*j
Note that this "simulation mapping" process requires4. If Ntest -< 2D, replace dj - dj + 1; else freeze algorithms specific to the simulation being performed. It

dj , but continue searching for lowest throughput must be modified for each new simulation being developed.among other subcube tasks (i;•j) The specification of "to whom to listen", rather than "to
5. If all di have been frozen, exit the above loop, whom to send", is important. One can be derived from the

advancing to step 6; else to go step 2 other, but it is much easier to construct the latter from theformer and insure that all tasks receive the data they need. In
addition, by avoiding multiple sources of data for each type,6. If the final Ntest < 2D, then there are spare nodes this method insures that most (if not all) messages sent will

left, but there is no task which needs them or which be picked up and used by the receiving subcube. (This iscan be doubled to fill them. Instead, fill them with useful as hypercube nodes have a finite amount of memorya null task. and cannot afford to leave a large number of unread
messages.) There is also no need to create data arbitration
algorithms for each communication reception to handle theB. Constructing the Communications Graph case when more than one message of a given type arrives.

(Between Corner Nodes) However, this feature limits our framework to thoseOnce the hypercube has been partitioned into subcubes, simulations where tasks have only one source for any giventhe set of communication links among the subcubes -- the data type. (Of course, additional data types can be defined tocommunications graph -- must be specified. This graph, and maintain the flexibility needed in most situations.)
the communications calls made during the simulation, are the
key elements of our simulation framework. They ensure that At run time the general links are used to construct thethe correct data are passed between tasks at the proper specific communication links. A specific link is defined bysimulation times so that the tasks can continue to perform 1) the sending subcube's comer node number and task type,their computations without deadlock. 2) the receiving subcube's corner node number and task type,

and 3) the message type. All links involving a single cornerOne important requirement of the communication system node are stored on that node in a lookup table. When ais that it must be able to build a graph given the number of SEND of a certain message type is executed by a task, thetasks and their instances available in the hypercube at run intended receiving subcubes' type must also be specified in
tjme. It would be very cumbersome for the user if he were the communication call. (Only one call is needed to send torequired to manually reconfigure the communication links all subcubes of the same task type, but multiple sends mustevery time he added or deleted a single task instance, or be performed if the same message type is intended for morechanged a task's throughput, thereby changing the number of than one task type.) The framework software then looks innodes devoted to it. We have therefore implemented a general the table for all links with the proper receiving task type and
scheme where the user specifies GENERAL delivers the message to them. If no links satisfy the criteria,
COMMUNICATION LINKS, which are valid under a the call is ignored, but an error code is returned. Likewise,when a RECEIVE of a message type is executed, the softwarewide variety of circumstances. These general links are then first checks the lookup table to see if the link has been
used by the framework to construct SPECIFIC defied
COMMUNICATION LINKS at run time. The user
need not know the number, size, or position in the hypercube The above scheme avoids deadlock in two cases: when aof the subcube tasks in order to use this general scheme. specific link is defined, but SEND and/or RECEIVE are not

called; and when a link is noLtdefined, and SEND orFor each general link the user must specify: RECEIVE is called. Nevertheless, the tasks must be coded
carefully as problems can still occur. Deadlock will occur ifThe type of data being sent (a master list of allowed a link is defined and a RECEIVE is called by one task, butmessage types must be defined and be made part of the the sending task specified by the link has not called a SEND.framework); Data overflow can occur if a link is defined and a SEND is
called by one task, but the corresponding RECEIVE is not.The sending task bn (but not the instance nor the node The message queue on the receiving task then grows linearlynumber); with time.

119

C. The Synchronization of Tasks Using Message Sending all messages first "primes the pump" and allows
Passing, The Control of Simulation Time, And other tasks to continue executing itnp~lel, especially when

The Assurance of Task Parallelism closed loops exist in the graph. Advancing the simulation
A message-passing system works properly only if the time after the computation emulates the passing of

messages are sent and received at the proper times. Therefore, simulation time during the computation portion of the cycle.
message passing cannot be considered without also
considering the flow of time in the simulation and the D. Centralized Simulation Control
method by which the tasks are synchronized. In our (The C3PO System)
framework, synchronization is controlled by the message Control of the execution of the simulation is provided by
passing, just as it is in homogeneous applications, by a program running in the Control Processor of the hypercube
forcing the receiving task to wait until it has received a (see Figure 1): C3PO (Command and Parameter Processor
message which satisfies certain criteria, for Program Organization). After the hypercube is

partitioned, and before the communication links are set up,
Each task has its own internal clock which advances each subcube task defines a set of pameters and commands

simulation time in fixed increments of A'i. (Simulation which control that task. (Typical parameters are names of
time increments of different task types do not have to be the initialization files, printing and plotting flags, etc.; typical
same.) Furthermore, in addition to the normal message commands are initialization, starting the execution of the
header information which Centaur places on the message, our cycles in each task, and commands which alter the simulation
framework also timetags each message with the simulation during execution such as shutdown.) The parameters and

time at which it is sent. A message sent by task j at command names and types are sent up to C3PO in the CP
simulation time rj and received by task i at time Ti is where they are stored in a symbol table. All tasks then listen

accepted only if its time tag rj is in the interval to C3PO for commands and continue to do so even while
executing other commands.

" -i - a Axj < ctj < "ti + (1-a) Atj A one-word command issued by the user at the C3PO

prompt will execute a subroutine on all subcubes which
(at is a parameter which describes the type of message recognize that command. In addition to commands, the
acceptance: ct=1 denotes backward-biased, a=O denotes C3PO interpreter also executes a C-like language. Parameter
forward-biased, and at=1/2 denotes time-centered acceptance.) values may be altered at the C3PO level with assignment
Messages which are accepted are read from the queue but not statements, C3PO functions, etc. Each command issued will
discarded; only messages with tags tj < Ti - aATj are use the latest values of the parameters.
deleted. Note that the acceptance time interval is determined
by the sender's simulation clock "tick" (Arj) and not the For sophisticated simulations the C3PO program itself
receiver's. This avoids deadlock regardless of whether the can be a task with its own set of parameters and commands.
ratio Arj / Axi is less than or greater than unity. If a This is most useful during the pre-initialization phase of a
message of the correct type, sending node, and time tag is not simulation when the partitioning of the hypercube into tasks

in the queue, the receiving task waits until one arrives. This is determined.
synchronizes the tasks.

III. APPLICATION TO A COMPLEX
It is possible with such a synchronization scheme to force STRATEGIC DEFENSE SIMULATION:

the tasks to execute in a sequential fashion and not in SIMULATION 88
parallel! That is, it is possible that only one task at a time is
performing any computations and that all the other tasks are We have used the above framework to construct a detailed
waiting, especially if the communication graph has one or simulation of a strategic defense system. This simulation,
more closed loops embedded in it. This serial processing can called Simulation 88, is an emulation of a portion of a
be avoided if each task executes its operations in each cycle in constellation of missile sensors, trackers, battle managers,
a particular order: and weapons platforms. Simulation 88 is composed of the

following major tasks, each of which is a separate C
1. Send all messages; if there is no data to send, still program: SWlR (short-wave infrared) sensor; tracker

send a null message (header); SIBsnsor a capable of stereo processing; LMIR (long-
2. Receive all messages from other tasks; wave infrared) ==o; tracker of LWIR sensor data capable of
3. Perform CPU-intensive work stereo processing; a global engagement manager which
4. Advance simulation time by A'ri seconds allocates weapons in the arsenal based on ability to engage

and the probability of kill; a fire control module which
schedules weapon release and performs guidance; an
environment generator which launches the threat, flies the

120

SDI platforms, and generally takes care of functions Simulation 88 makes use of at least five different levels
performed by the enemy or by nature; and a simulation of parallelism:
monitor which doubles as the null task when not running on
node 0 of the hypercube. In addition to being able to Multi-machine parallelism: graphics processing and

communicate with one another to assess and respond to the display occur in parallel with the hypercube simulation
threat, most tasks can also open one or more windows on computations;
external color graphics workstations for viewing the
simulation progress. The amount of C code running on these Task allelism within the hypercube: the simulation

workstations is nearly equal to that running in the hypercube. is subdivided into subcubes; C3PO in the CP is also a
task;

Simulation 88 has been designed and implemented in an
unclassified environment. However, it is parameterized Datagarallelism within each subcube of dimension di >
(through the use of C3PO parameters and initialization files) 0: each task occupies 2 di nodes;
so that it can be run in a classified manner in the proper
environment. Intra-node parallelism: each task's code runs in the

68020/68882 processor or in the Weitek floating point
processor; the Centaur communications is performed in

parallel by a separate 68020 on each hypercube node;

"=wf Pipelined parallelism: some tasks execute their code in
°HT-WE-- " the Weitek floating point processor of the Mark Illfp"*,lo K-06hypercube; this processor accomplishes parallelism on a

machine instruction level.

L "IV. ACKNOWLEDGEMENTS
The work described in this paper was carried out at the Jet

Propulsion Laboratory, under contract with the National
"PR "ANAeronautics and Space Administration.

FIM CMTW FfElTAt

Simulation 88 itself is a much larger project than just the
RCKo T - - results reported herein. In addition to the above authors, the

ESPTKM GLWP ATOEO Afollowing contributed substantially to the individual pieces ofLUNK NOT SI.HqM A.LLWTP TASKS TO ED: A.LL'TASKS TO SWMAJ•TiON MWOR;

TRACKERS. WTP,, AD ED TO ,ERF-AL oGAIvS DYCES software run on the various subcubes: environment
FIGURE 2 generation -- R. Yeung; sensing / tracking -- T. Gottschalk,

R. Yeung; weapon-target pairing / fire control -- D. Payne,

A run of Simulation 88 is uniquely determined by a E. Leaver, J. Steinman. The color graphics screens were
configuration file which defines 1) which tasks are active, 2) developed by J. Lathrop, R. Iwashina, M. Pomerantz, and L.
how tasks are bundled together to form SDI platforms, 3) the van Warren. We are also grateful for the considerable
total number of platforms of each type and their orbits, 4) assistance given by members of the Hypercube system
how tasks communicate (the general links), 5) how many software team (R. Lee, C. Goodhart, L. Craymer, J.
platforms of each type we wish to emulate in the hypercube Crichton, N. Meshkaty, and B. Zimmerman) and of the
(the rest are simulated in lower fidelity), and 6) how large a hardware team (i. Peterson, M. Pniel, and D. Smith). The
hypercube we wish to use for the simulation. All this JPL Hypercube project is managed by D. Curkendall, the
information is parsed by the C3PO program before the teams are managed by J. Fanselow, and the applications team

hypercube is booted. After all executable code is downloaded is managed by D. Rogstad.

into the hypercube, the specific platforms to be emulated are V. REFERENCES
chosen from the constellations according to which ones can V . REEENCES
fight the battle best. All communication links between [1] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon,
platforms are constructed, but only that subset which J., and Walker, D., Solving Problems on Concurrent
involves the chosen platforms is used for actual Centaur Processors, Prentice Hall, lnglewood Cliffs, N.J., 1988.

communications between tasks. Figure 2 shows the node
allocation which results from a typical 64-node run. [21 Goodhart, C. and Lee, R. "Centaur: A Mixed

Increasing the cube dimension to seven (7), for example, Synchronous /Asynchronous Communication Protocol

would not change the number of modules but would change for the Mark III Hypercube", Fourth Conference on

the numbers of nodes allocated to each. Hypercubes, Concurrent Computers, and Applications,
Monterey CA, Mar 6-8, 1989.

121

The Fifth Distribute,4 Memory

Computing Conference

5:ý Path Planning and Navigation j

Path planning on a distributed memory computer

Serge MIGUET Yves ROBERT

Laboratoire de llnformatique du Parall6lisme LIP-IMAG
Ecole Normale Suplrieure de Lyon

46 a11e d'Italie
69364 Lyon Cedex 07, France

ABSTRACT

In this paper, we discuss the implementation of Bitz and Kung's algorithm is not efficient in the context of general
Kung's path planning algorithm on a ring of general- purpose processors, due to the intensive communication
purpose processors. We show that Bitz and Kung's scheme that it requires.
algorithm, originally designed for the Warp machine, is
not efficient in this context, due to the intensive inter-
processor communications that it requires. We design a
modified version that performs much better. The new
version updates a segment of k positions within a step and
allocates blocks of r consecutive rows of the map to the
processors in a wraparound fashion. Bitz and Kung's
algorithm corresponds to the situation (k,r) = (1,1). We
analytically determine the optimal values of the
parameters (k,r) which minimize the parallel execution
time as a function of the problem size n and of the
number of processors p. The theoretical results are nicely
corroborated by numerical experiments on a ring of 32
Transputers.

Figure 1: A shortest path on an artificial map.

2. PATH PLANNING ALGORITHM
1. INTRODUCTION

A map M is an n x n grid of positions, for some positive
Given a map on which each position is associated with a integer n. The eight neighbors of a position p are indicated
traversability cost, the path planning problem is to find a by the corresponding cardinal point in the compass (see
minimum-cost path from a source position to every other figure 2).
position in the map : look at the artificial example of
figure 1. The altitudes of the points of this surface are NW N NE
proportional to their traversability costs. The top of the
spiral-shaped hill has a high traversability cost, while the W p E
bottom of the valley is easier to go through. The source
lies in the center of the spiral. We plot here a shortest SW S SE
path from the border of the domain to the source. We
clearly see that the path hesitates between walking in the Figure 2 : Labeling the eight neighbors of a position p
valley (long but easy), and crossing the hill (shorter in
distance, but more costly). Each position p is associated with a non-negative real-

number tc(p) corresponding to the traversability cost of
Bitz and Kung [BK] have recently proposed a dynamic the position. Given a position p and a neighbor q of p, the
programming algorithm to solve the problem, and they edge (pq) is weighted with a cost c(pq) = (tc(p)+tc(q))/2 if
have mapped this algorithm onto the linear systolic array q E fN,S,W,E) and c(pq) = (tc(p)+tc(q)) 4 2/2 otherwise:
in the Warp machine [AAG]. We show that Bitz and the q2 multiplier reflects the added traveling distance due

This work has been supported by the Research Project C3 of CNRS and by the ESPRIT Basic Research Action 3280
(NANA).

124
0-681-2113-3t90/0000/0124$01.00 0 1990 IEEE

to the diagonal connection. Given a position, called the .------------------------- - - ---
source, we want to compute the shortest path (or
minimum-cost path) from it to every position in the map. -

Bitz and Kung [BK] propose a dynamic programming -. -- 1
algorithm to solve the problem. Initially, the best known 1 . N
cost f(p) for every position p in the map is assigned the [E
value 0 at the source and oc at all other positions. The
algorithm performs a succession of red and blue sweeps of SW $ SE
the map.

2.1. RED SWEEP
The red sweep is a forward scan of the map M in the row-
major ordering. During the red sweep, each position p is Figure 4: Blue sweep and the associated mask
updated according to the red mask depicted in figure 3.

f(p) := min(f(p), f(E) + c(E,p), f(SE)+ c(SE,p), f(S) +
c(Sp), f(SW)+ c(SW,p))

=- that is

NWV N NE (BS) f(p) := min(f(p),
f(E) + (tc(p)+tc(E))12,

i i f(SE)+ (tc(p)+tc(SE))y212,
n-_ f(S) + (tc(p)+tc(S))i2,

f(SE)+(tc(p)+tc(SE))/2/2I)

2.3. PATH PLANNIlNG ALGORITHiM

Given the initial values stated above, the red and blue
sweeps are performed alternatively until no values are
changed in one sweep. Let us color the edges of a path

Figure 3 : Red sweep and the associated mask according to their directions: edges pointing to W, NW, N
and NE directions are colored blue, whereas edges pointing

For the current position p of the sweeping, we update the to E, SE, S and SW directions are colored red. Then Bitz
best known cost f(p) if there exists a better path passing and Kung [BK] show that the number of required sweeps
by one of the red neighbors of p. For instance if the best before all positions receive their final values is C or C+ 1,
known cost f(W) of the west neighbor of p plus the cost where C is the maximum number of color changes in a
c(W,p) of the edge from W to p is smaller than f(p), we shortest path from the source to any other position. Hence
update f(p) into f(p) := f(W) + c(W,p). In the general case, in the worst case, the number of required sweeps can be as
the update of f(p) is defined as large as 0(n 2). However in practical situations, it is

expected to be much smaller than n [BK].
f(p) := min(f(p), f(W) + c(Wp), f(NW)+ c(NW,p), f(N) +

c(Np), f(NE)+ c(NEp)) In the following, we concentrate upon the parallel
implementation of a single sweep (a red sweep) on a ring

that is of processors.

(RS) f(p) := min(f(p), 3. PARALLEL IMPLEMENTATION
f(W) + (tc(p)+tc(W))/2,
fNW)+ (tc(p)+tc(NW))42/2, We briefly recall Bitz and Kung's solution for mapping
f(N) + (tc(p)+tc(N))/2, the path planning algorithm onto the Warp. Such a
f(NE)+(tc(p)+tc(NE))V2/2) solution is not suited to a ring of general-purpose

2.2. BLUE SWEEP processors, and we derive a modified version that performs2.2. LUE WEEPmuch better.
The blue sweep scans the map M in the reversed row-

major ordering as shown in figure 4. For the current 3.1. BITZ AND KUNG'S MAPPING METHOD
position p of the sweeping, the update of f(p) is defined We consider a ring of processors numbered from 0 to p-l.
similarly as for the blue sweep, but using the blue Each row of the map is assigned to a processor. Assume
neighbors instead of the red ones: first that the number of processors p is equal to the

problem size n. In this case processor i gets row i, 0•_i<n.

125

For the red sweep, immediately after processor i has
computed the value of two positions, it will pass these 3.2. UPDATING A SEGMENT OF LENGTH K
values to processor i+ 1 to get it started. We summarize in The first way to decrease the communication overhead is
figure 5 the time-steps at which each position is updated. to use longer messages. We use the same mapping

-- strategy as before, but we update a segment of k
Po 0 1 2 3 4 5 6 7 8 9 10 11 consecutive positions at each step. The algorithm is

=-= illustrated figure 6. Note that k does not need to be a
P1 2 3 4 5 617 8 910 1161 21 - divisor of n. In figure 6, we let 10 be the number of
P2 4 5 6 7 8 9 1 11 positions updated by P0 at time 0: we choose 10 = k-I in
P3 6 7 8 9 10 114 T OI our implementation, just as if P0 had received k fictitious

-4,- values before beginning (but 10 can be any number
P4 8 9 10 between 1 and k-I). Each processor always updates k

P5 l0 11 positions, except may be for the first and last updates: we
, -start the update of the next row while finishing the update

of the current row (see figure 6). The condition for P0 not
to finish its first row before receiving data from Pp-I will

Figure 5 : Time-steps for Bitz and Kung's parallel be derived in the next section: we obtain the condition n >
algorithm (k+1) p.

n

At time 2i+j, Processor Pi operates as follows (wherever I k k

indices make sense):II_1
"* it receives position (i-lj+l) from Pi-I 1o-i k
"* it updates position (ij) _, 1__4___1__A1 _

"* it sends position (id) to Pi+,

When p is smaller than n, partitioning techniques must be P2 4 7

considered. Assume for the sake of simplicity that p 4_1_SI______7_78_1__

divides n. Bitz and Kung propose to assign the rows of the P3 -
map to the processors in a wraparound fashion: processor iSecond row

gets rows j such that j = i mod p. The wrap mapping is a First row of each processor

widely used technique to well balance the workload among Figure 6 : Updating a segment of length k
the processors [GH, MR, MV, SaaJ. Now P0 needs to
receive computed values from Pp-1. Note that P0 receives The number of data items communicated between two

the first value (p-l,O) from Pp-I1 at time 2p-1. At time 2p, neighbor processors is exactly the same as before, but the
larger k, the more efficiently the communications are

P0 receives the second value (p-I,1) and updates position performed. On the other hand, the larger k, the greater the
(p,0). Hence we do not want P0 to finish the updating of latency between the startup times of two adjacent
row 0 before time 2p, otherwise it would stay idle for a processors. We must be ready to find a compromise
while. This imply that n > 2p. If n > 2p, P0 will simply between the two contradictory exigences of mimimum
store the values it receives from Pp-1 until it starts the startup delay (small k) and inexpensive communications
updating of its second row. (large k).

We see that the latency between the startup times of two 3.3. MOVING TO NEW MAPPING STRATEGIES
adjacent processors is small (two time-steps). The major Another way to decrease the communication overhead is to
drawback of the algorithm is that is involves many short communicate less data items between neighbor processors.
communications between the processors. For current We now consider more general allocation functions than
distributed memory machines, the time to transfer L words the wrap mapping, and we assign blocks of r consecutive
between two adjacent processors can be modelized by P + rows to the processors in a wraparound fashion [RTV].
L tc, and it turns out that P is significantly higher than rc For instance with r = 3, n = 36 and p = 4 we have the
([GH, MV, Saa], see also the experiments reported in following repartition:
section 5). This renders the cost of small messages
prohibitive. PO P1 P2 P3

Rows 0,1,2 3,4,5 6,7,8, 9,10,11
We explain below how to modify Bitz and Kung's 12,13,14 15,16,17 18,19,20, 21,22,23
algorithm in order to decrease the communication 24,25,26 27,28,29 30,31,32 33,34,35
overhead. We describe the new algorithm informally, and
postpone its complexity analysis up to next section.

126

Such a repartition is illustrated figure 7. Analytically, and Kung's implementation, because the processors only
processor i gets rows j such that i = Lj/ mod p. 0 < j < need to exchange informations relative to the boundary
n- 1. rows of each block. Segments belonging to an internal

row of a block do not require any inter-processor
communication. We illustrate the communications

n _ between two neighbor processors in figure 10.
kP0 r

inning of step t for Pq

Computed
P3 PQ before step S Step t

....... End ofstep I for Pq

P. n Beginning of step tII for Pq.i

P2 Compu
I Pq.11 b e rt / StepIP3 sbefore step

P0n

P ... Figure 10 : Communications between two processorsP2

P3 The price to pay for such a dramatic reduction of the
communication volume is again an increase in the latency

Figure 7: Block-r mapping, n = 36 , p = 4, r 3 between the startup times of two adjacent processors.
Hence the best value of r will result of a compromise, just

The time-steps are depicted in figure 8. At each step as the best value of k.
except the first and last ones, all the processors update a
parallelogram of r*k positions. Just as before for r = 1, we In the next section, we perform a complexity analysis.
start the update of the next block while finishing the Given n and p, we analytically determine the values of k

update of the current block (see figure 8). and r that minimize the parallel execution time.

n 4. PERFORMANCE EVALUATION

P. Ili 2 1 5 r-B Ili - r7 I ? I. I1r°I.dr2? I I I- In this section, we analyse the performances of the parallel

Pi 3 • 5 6 , algorithm described above. For the arithmetic, we let ta be
P[Ž- Ž4 4ŽJ j oi 4•lJ_ the elemental time needed for updating a position durinf

Irsr? -rj.,F j rY9CFI-rY-rFrJ] Il~t~i~the sweep (formulae RS or BS). Since there are n

P3 r6rJJ 7 rJ o , r I r? 1. rII 12 ,13 i rr positions to update during a sweep, the sequential time for
a problem of size n is Tseq = n2 Ta.

First block Second block

Figure 8 : Parallel algorithm, n=36, p=4 , r=-3 and k=4 4.1. MEMORY REQUIREMENT

The condition that k and r must meet to keep all The space requirement for the sequential algorithm is

processors activated is the following: n Ž p (r+k) (see next proportional to the size of the map, that is n2 positions.

section). We show in figure 9 an example where this For each position, we need to store a word for its current

condition is not met: we see that P0 is idle at time 4, value and 8 words for the traversability cost of the 8

because it has not received in time from P3 the first adjacent edges. Let us choose as a unit the memory
requirements for a position. Given a single processor with

positions of row 11. a memory of size M, this implies that the maximal

_ _? ,__ 3 r_ __J_ problem size that can be dealt with is nmax,,I = .

1' Consider now a ring of p processors. First of all, we have
3t-• ' 4 5 a ' to determine the relationship between p and n. We have pS3 • rfj rr 6 r ' memories of size K, so that we can solve in parallel a

4 r"• ' r-• ' / ' 'problem of size at most nmax.p = " ip M. Note that we
First block Second block neglect here any additional storage required by the parallel

Figure 9 :Parallel algorithm, n=36, p=4 , r=3 and k=1 I implementation, such as the need for communication
buffers. In fact, the value nmax.p above is an upper

Now, the number of data items communicated between bound.

two neighbor processors is r times smaller than in Bitz

127

As stated before, we consider an allocation by blocks of We retrieve the condition illustrated in figures 8 and 9.
consecutive rows of size r in a wraparound fashion, where
1 - r S n/p. For the sake of simplicity (without loss of Neglecting low order terms and ceiling functions, we
generality), we assume that p*r divides n, so that each obtain the following analytical evaluation for the parallel
processor holds the same number of rows in its local execution time T/f.
memory.

Proposition : Given a problem of size n and a ring of p
4.2. PARALLEL EXECUTION TIME processors, the parallel execution time T// for a block-r
Even though the implementation is asynchronous, we can allocation, l<_r<n/p, using segemnts of length k, 1 < k <
view the parallel algorithm as a succession of time-steps, n/p - r, is
where at each time-step each processor updates r segments r r)(+\) ,pn 2p
of k positions. Withinatime-step, processorPireceivesa T//=(15 + k -c + r k Ta (p-) rJ
message of length k from processor Pi-1, updates r*k
positions, and sends a message of length k to Pi+ 1 Given n, p and r it is easy to find the value kopt(r) of k
(indices are taken mod p). Note that the emission is non- that miminizes the execution time T/1. We obtain the
blocking, whereas the reception is. Pi does not wait for its value
emission to be completed before moving to the next step.
As a consequence, the communication within a time-step kopt(r) = min(kmax(r), k//r))
has a cost equal to P3 + k Tc. The total time needed to where k (r) = np- r
perform a time-step is rstp = 3 + ktc + r k ca and

To evaluate the total number of time-steps in the k// is the optimal value obtained from the

algorithm, we first compute the time-step at which a expression of T/f.
processor Pq, Oeq!p- 1, initiates its computation. Recallthat P0 updates 10 positions in its first row at time to= 0. k/lir)= 2 +r
We see that P1 updates 11 = (10-r) mod k positions in its = + r a
ftpst row at time t= = I + f(r-10) I k1, and more generally,
that Pq updates Iq positions in its fist row at time tq, Given n, p and numerical values for the parameters
wheat P,'c,Ta, it is easy to compute kopt and to plug it into the

lq = (10 - q*r)mod k, tq = q + F (q*r - 1o) / ki expression of T// to determine the best value of r. We
report numerical experiments in the next section.

Now, we derive easily the total number of time-steps Tp,
since Pp-1 is the last processor to end its computation. S. NUMERICAL EXPERIMENTS
After updating its first parallelogram, Pp-1has still

r (n2/(p*r) - lq + r - 1) / k) " In this section,we report on numerical experiments on a
parallelograms to update, so that ring of Inmos Transputers T414, using up to 32

Tp= tp. 1 + F (n2/(p*r) - lq + r - 1) / k) . processors. We use a FPS-T40 hypercube [GHS], which
e pwe configure as a ring. First of all we have to determineThe parallel execution time of the algorithm is then • n c

T//= Tstep * Tp raandT.

This evaluation is valid only if the processors are not kept Each update in (RS) or (BS) amounts to four additions,
four comparisons, plus some conditional logic. We find

idle, waiting for some data they need from their that ca = 75e-6 seconds. For the communications, we
predecessor. As explained in the previous section, this obtain experimentally that the time to transfer L wordscondition is equivalent to ensuring that P0 has not between two adjacent processors is [3 + Lt¢, with 13 = 7.e-3

finished the updating of its first block before receiving seconds and ac = 12.5e-6 seconds.

from Pp-I the data that it needs for its second block. PO

performs its first reception at time tp. At that time it has The first thing we check is that the parallel execution time
already updated 10 + k * tp1 .1 positions in the first row of obeys our formulas. We fix n and p and let the segment
its first block. The condition is that the sum of the size k vary, with various values of the block size r. We
remaining positions in this row plus the number of superimpose in figure II the experimental and theoretical
positions that it might update in the first row of the curves (with the previous values of A, tc and Ta) for the
second block is greater than or equal to k, so that it can parallel execution time. There is a very good adequation
update a whole parallelogram at time tp. between the curves.

n - (10 + k*tp-I) + lp > k
After some algebra we get: We find experimentally the optimal values of r and k: ropt

n ? p (r+k) = 6 and kopt = 54. For these values we obtain T// = 10.36

128

seconds. These values are in good accordance with the show is the function e(r , k) for the following values of r
theory: if we plug the values of n = 1920 and p = 32 in and k: 1 < r < n/(2p), 1 < k < kmax(r). The optimal
the formulas of the previous section, we obtain efficiency e = 0.81 is obtained for the highest point of this

r kmax(r) for r < 5 surface, with r =6 and k =54.
kopt(r) = k//(r) for r > 6

and T// is miminum for r = 6 and k = k//(r) = 54. We
obtain T// = 10.52 seconds with the analytical
expressions.

We point out that the execution time with (ropt , kopt) is
divided by a factor of 23.8 as compared to Bitz and Kung's k
algorithm which corresponds to the values (rk) = (1, 1)
and for which the execution time is as high as 247
seconds.

-T- l. 30 (eý.) r
T . (s3on4) - 0 (hýo)

"- .20 Wexp
IS- f 120 (hp)

51• 0 .. Po)
14 r. 6S(e.p)

7 • 6 :501)

22 3 .tol Figure 13: 3D-plot of the efficiency e(rk),
-4- l. 1(eop)

,o -.... (, n = 192 0, p = 32

0 10 20 30 40 so s0

6. CONCLUSION

Figure 11 : Parallel time as a function of k; In this paper, we have discussed the implementation of
n = 1920; p = 32 Bitz and Kung's path planning algorithm on a ring of

general-purpose processors. We have designed a modified
In figure 12, we plot the speedups that we obtain with 32 version that updates a segment of k positions within a
processors when solving a problem of size n = 1920. Note s
that these speedups are computed according Gustafson's step and allocates blocks of r consecutive rows of the map

recent proposal [Gus, CRT], in that they are normalized to the processors in a wraparound fashion. We have
by the amount of arithmetic operations which they require analytically determined the optimal values of thee ibroleqir parameters (kr) which minimize the parallel execution
(since it is impossible to solve such a large problem with time as a function of the number of processors p and of
a single processor). Using 32 processors, we report the problem size n. The theoretical results are nicely
acceleration factors as high as 26. corroborated by numerical experiments on a ring of 32

Transputers. We obtain a speedup of 23.8 over Bitz and
Kung's algorithm.

Sealed .pmdoup

30- -. 30 7. REFERENCES

20- -[AAGJ M. ANNARATONE, E. ARNOULD, T. GROSS,H.T. KUNG, M. LAM, 0. MENZILCIOGLU, J.A.
,WEBB, The Warp computer architecture, implementation
and performance, IEEE Trans. Computers 36, 12 (1987),

o I ' 1523-1538
0 10 20 30 40 50 60

(BK] F. BITZ, H.T. KUNG, Path planning on the Warp
computer: using a linear systolic array in dynamic

Figure 12: Scaled speedup as a function of k; programming, Intern. J. Computer Math. 25 (1988), 173-
n = 1920; p = 32 188

We finally show in figure 13 a 3D-plot of the efficiency [CRT) M. COSNARD, Y. ROBERT, B.
e(r,k) of the algorithm to better visualise the influence of TOURANCHEAU, Evaluating speedups on distributed
the parameters on the execution time. The surface we

129

memory architectures, Parallel Computing 10 (1989),
247-253

[GH) G.A.GEIST, M.T.HEATH, Matrix Factorization on
a hypercube multiprocessor, Hypercube Multiprocessors
1986, M.T. Heath ed., SIA M (1986), 161-180

[GHS] J.L. GUSTAFSON, S. HAWKINSON, K.
SCOTT, The architecture of a homogeneous vector
supercomputer, in Proceedings of ICCP 86, IEEE
Computer Science Press (1986), 649-652

[Gus] J.L. GUSTAFSON, Reevaluating Amdahl's law,
Communications of the A.C.M. 31, 5 (1988), 532-533

[Hwal K. HWANG, Advanced parallel processing with
supercomputer architectures, Proceedings of the IEEE 75,
10 (1987), 1348-1379

[MR] S. MIGUET, Y. ROBERT, Dynamic programming
on a ring of processors, Hypercube and Distributed
Computers, F. Andr6 et J.P. Verjus eds., North Holland
(1989), 19-33

[MV] O.A. MAC BRYAN, E.F. VAN DE VELDE,
Hypercube algorithms and implementations, SIAM J. Sci.
Stat. Comput. 8, 2 (1987), s227-s287

[RTV] Y. ROBERT, B. TOURANCHEAU, G.
VILLARD, Data allocation strategies for the gauss and
Jordan algorithm on a ring of processors, Information
Processing Letters 31 (1989), 21-29

[Saa] Y. SAAD, Gaussian elimination on hypercubes, in
Parallel Algorithms and Architectures, M. Cosnard et al.
eds., North-Holland (1986), 5-18

130

LEARNING TO PLAN NEAR-OPTIMAL COLLISION-FREE PATHS

Alex W. Ho and Geoffrey C. Fox

Concurrent Computation Program
206-49, California Institute of Technology,

Pasadena, CA 91125, USA

Abstract goal-oriented planning - to achieve a high level spec-
ification of a goal by generating a sequence of robot

A new approach to find a near-optimal collision- actions in advance, motor control - to execution the
free path is presented. The path planner is an imple- planned sequence of actions step by step, and learning
mentation of the adaptive error back-propagation al- - to gain domain-specific knowledge from experience
gorithm which learns to plan "good", if not optimal, and response to unknown environment intelligently.
collision-free paths from human-supervised training In this paper, we confined our study to path plan-
samples. ning for robot navigation.

Path planning is formulated as a classification
problem in which class labels are uniquely mapped The objective of developing autonomous robot

onto the set of maneuverable actions of a robot or navigation controller is to enable a robot to guide it-
vehicle. A multi-scale representational scheme maps self moving from one point of space to a destination

physical problem domains onto an arbitrarily chosen without collision with the obstacles in its environ-

fixed size input layer of an error back-propagation ment. The most basic form of a motion planning
network. The mapping does not only reduce the size problem is the generalized mover's problem, which
of the computation domain, but also ensures appli- is also known as the Findpath or obstacle avoidance
cability of a trained network over a wide range of problem [1] The goal is to find any collision-free
problem sizes. Parallel implementation of the neural path. For economic reasons, the path that a robot
network path planner on hypercubes or Transputers tracks should obey some constraints, which is usu-
based on Parasoft EXPRESS is simple and efficient. ally in time and/or energy usages. For all practical
Simulation results of binary terrain navigation indi- purposes, the notion of planning a "good" path is of
cate that the planner performs effectively in unknown prime importance to any reasonable navigation con-
environment in the test cases. troller.

There are many variants of the path planning
Introduction problem. The task of planning an optimal path is

achievable only for simple problems. Most of the
Robots have been successfully employed in very time, the amount of computation required to obtain

restricted, mechanical, and repetitive tasks such as to such a path could be costly. In many circumstances,
improve productivity and quality in assembly lines in optimal paths are not required. It is often more im-
automotive industry. Although it is not likely that portant to obtain a "good" (i.e., nearly but not pre-
man can construct even a near general-purpose robot cisely optimal) path quickly than to devote precious
in the foreseeable future given the current level of computational resources to find the exact solution. In
technology and advancement of science, the future fact the input data is often imprecise (e.g. the exact
generation of task-specific robot systems are expected nature of the terrain is not known) and the notion of
to be more "autonomous" and "intelligent". These a precise optimal path undefined. Several new opti-
future robot systems would posses highly integrated mization techniques such as simulated annealing, neu-
capabilities of task-specific sensing - to gather rele- ral networks, elastic networks and genetic algorithms
vant information of the environment and construct have been devised for such approximate optimization
a limited world model of the physical surroundings, problems [2-7.1

1310-8186-2113-3/90/0000/0131$01.00 @ 1990 IEEE

The use of a multi-layer feedforward neural net- ator can handle easily and efficiently. Obvious ex-
work for path planning was first reported ir [8], and amples are in pattern classification and speech recog-
some preliminary results on performance of such a nition. Another example is in playing chess. It has
trained network were discussed in [9.] In this pa- been a long-standing speculation that a good chess
per, we will describe in detail the implementation player recognizes abstracted patterns of the current
of the neural approach used in [8,9] to the problem board and commands a move with efficacy, while a
of planning a near-optimal, collision-free path for a chess playing computer program has to evaluate and
single mobile robot moving in 2-dimensional binary search a huge game tree of legal moves and counter-
terrains. Computational performance of the paral- moves rooted from the current board, iteratively to a
lel algorithm on several distributed-memory MIMD fixed depth.
processors like NCUBE-1, MEIKO Computing Sur-
face (Transputer-based system), and iPSC-2 are com- In the same vein, the path planning problem can
pared. We will present algorithmic and implementa- be transformed to a pattern classification problem in
tion performances for cases of robot navigation on which class labels are uniquely mapped onto the set of
binary terrain, maneuverable actions C of a robot, while each time

instance of a scenario is mapped onto a 2-d binary
pattern. We used a multi-layer perceptrons based on

Modeling The Navigation Terrains the adaptive error back-propagation algorithm [10] as
the pattern classifier for the transformed path plan-

We have chosen to apply our new approach to ning problem.
the simplest non-trivial path planning problem which
is the navigation of a single vehicle in a plane with The back-propagation model has been wilely
binary terrain. The terrain partitioning is a standard used for pattern recognition tasks. The architecture
grid tessellation of the physical space of the problem of such a neural net model has an input, output, and
domain which contains regions of random or struc- intermediate layers. All inter-layers are fully con-
tured obstacles. The remaining regions are robot nected. Unlike the Hopfield model which has recur-
traversable space. The discretized binary problem rent connections[4,] the perceptrons model does not
domain is represented as a 2-d matrix. A measure provide a feedback mechanism for neuronal activa-
of the size of an instance of the path planning prob- tion to propagate. A set of training sample pairs
lem is the number of elements in the 2-d matrix. The which carries some form of relevant information about
higher the resolution of discretization, the bigger the the classification problem at hand is used to train
problem size. the multi-layer network. Iterative synaptic weight

adaptation occurs following the back-propagation al-
Although our technique can be extended to gorithm as the error signal at the output layer is

cover a more general path planning problem, the propagated backward and filtered by the same set of
problem statement of our current study is stated as: synaptic connections for forward propagation.

Given a discretized 2-d rectangular physi-
cal domain R, a distribution of binary ob-
stacles D over R, the robot's current posi- The Issue of Representation
tion S E R - D, a high level specification
of the target position T E R - D - S, and The success of the back-propagation model on
a set of maneuverable actions or motor pattern recognition problems relies heavily on !he
control constraints C governing the robot, choice of the pre-processing operations. The choice
find a near-optimal, collision-free path for of pre-processing operations for raw pattern data de-
the robot to move around in R from S to termine the selective pruning and encoding of infor-
T. mation. The representations that emerge from these

operations impose constraints on subsequent process-
ing by the back-propagation neural model.

Supervised Neural Network Approach
A reasonable pre-processing scheme should be

Artificial neural networks have been employed one which reduces and encodes raw patterns into
in a variety of applications, and were found most use- some form of standard representations. We adopted
ful in the class of applications which a human oper- a non-linear, multi-scale sampling strategy which

132

mapped a physical problem domain onto an arbi- of a back-propagation model. The activation values
trarily chosen fixed size input layer of an error back- of the five grandmother cells indicate how good it
propagation network. The multi-scale representation is to move a robot in each of the five corresponding
of patterns is a natural consequence of the sampling directions (see Fig. 2.)
strategy used.

The sampling strategy involves using high res- ACTIVATION OF OUTPUT NEURON
INDICATES

olution neurons to encode terrain information close SCALE OF GOODNESS
to a robot, and progressively coarser neurons away
from a robot by increasing the sampling interval.
The physical problem domain is separated, in a fuzzy bad gOod
sense, into a near field and a far field. Near field infor-
mation which is encoded in high resolution neurons
is used to generate immediate action (corresponds to
local planning,) while far field information which is
encoded in the coarse neurons is used for global plan- -. 0

ning.

The only traffic regulation imposed on robot
motion is that every move must be collision-free. In
this study, a robot was restricted to move in one of the
five admissible directions in a 2-d rectangular prob-
len doiiaini, andI(the cost to itiove iII ally of the five
admissible directions is the same. Our formulation
of robot maneuverable motions could be extended to
eight directions to include the eight nearest neighbor
in the case of a 2-d grid tessellation. Figure 1 shows
Lthe five admissible moves of a robot. Since the cost
of selecting to move in any of these five directions
are the same, an optimal collision-free path would be
one which minimizes the number of moves required to
get from a source point to a target position without
violating the traffic regulation. Figure 2: A robot moves in the direction

which corresponds to the highest activa-
tion voltage.

We have arbitrarily chosen to use four differ-
ent scales and nine general directions (East, NEE,
NE, NNE, North, NNW, NW, NWW, West) to repre-
sent each scenario. This sampling strategy divides the
problem domain into 36 regions. At the input layer,
one neuron is needed to encode information for each

S11*region which is actually one combination of direction
and scale. All together, 36 neurons are needed. An

-_ -intermediate layer with 20 neurons was used. The
number of neurons in the intermediate layer was ar-
bitrarily chosen to achieve a fan-in architecture.

Figure 1: Vehicle is constrainted to move The activation value for each input neuron is a
in one of the five directions. All moves function of a porosity index which is a measure of the
have the same cost. traversability of the corresponding region. The poros-

ity index is taken as the compliment of the density of
The five admissible moves are mapped one to obstacles. The input neuron activation is computed

one onto five grandmother cells at the output layer by using Eq. (1)

133

V,,, =f(1-p,-1,) + (target, -y) (1) f 10 1 e-(() (4)

where VI, E [-1.0, 1.0] is the activation value for neu- is used for this purpose.
ron •ii in the region -/, p is the density of obstacles in
yi, and b is the Kronecker delta which equals to 1 if Given the measure of the error on any pattern

the target position is in yi, and zero otherwise. in the training set as

Parallel Back-Propagation E = (di)2 (5)

The back-propagation algorithm is an effective and the neuron activation function f as described in

training algorithm for the feed-forward multi-layer Eq. (4), adaptive correction of the connection weights

perceptron model. It is a generalization of the least in the direction of -OE/Ow corresponds to perform-

mean square algorithm or the delta rule. Back- ing a steepest descent search in the weight space to

propagation uses a gradient descent technique to min- minimize error. Synaptic weight adaptation follows

imize a quadratic error function which is defined as Eq. (6)

the mean square differences between the pair of ac-
tual network output vector and its associated target Awq (t + 1) = iibf(C) + aAwi,(t) (6)
vector for the set of training samples.

where 17 is the learning rate, cc is the momentum term
Let us define the following: which determines how much is remembered about the

"* wij is the connection weight between the jth previous iteration, and 6 is the filtered error signal.
neuron in the current layer and the Oth neuron
in the immediate lower layer, Similarly, the internal thresholds 9j are cor-

"* 9i is the internal threshold of the jth neuron in rected adaptively in the threshold space. The partial
the current layer, derivatives -OE/8w and -OE/80 are computed by

"* xi is the ith continuous-valued input from the propagating error signals from the output layer back
input layer or the layer underneath the current to the lower layers through the net, which motivates
layer, the name "back-propagation".

"* zxj is the output of the j"h neuron in the current
layer, Parallel implementation of the back-propagation

"* yj is the actual model output of the jth neuron model for Chinese character recognition on hyper-
in the output layer, cubes based on a character decomposition technique

"• and dj is the desired or target output of the jth using bitmap masks has been discussed by [11.] Our
neuron in the output layer. current implementation of the path planner is based

on a distribution of the set of training patterns over
The model is trained by initially assigning small the number of processors of a hypercube. Essen-

random weights to the synaptic connections and small tially, each processor of an allocated hypercube or
random thresholds to the artificial neurons. The neu- Transputer-based concurrent processor is responsible
ronal outputs from each layer are then computed by for only a small subset of the set of training samples.

Using Parasoft EXPRESS as the communication soft-
ware the same code runs on NCUBE-1, iPSC-2, and

S= f(Z wx, - 9,) (2) on Meiko Computing Surface which is a Transputer-
'=0., N-i based system.

where N is the number of neurons in the layer below
the current layer. If the current layer is the physical The training set we used consists of 184 pat-

output layer, terns, which contains knowledge of 184 scenarios of
human-supervised optimal and collision-free moves in

yj = xIj. (3) binary terrain navigation. The choice of using 184
patterns is arbitrary. Our first goal is to teach the

The neuron activation function f has to be non- navigator enough basic knowledge upon which it can
decreasing, continuously differentiable. Usually, the generalize, not just memorize, to cope with most sit-
sigmoid logistic function uations.

134

Learning Histories of A a. The learning histories for seven different learning
Back-Propagation Path Planner rates are displayed in Fig. 5.

Besides the issue of pattern representation, pa-
rameter tuning is a major concern for the back-
propagation model to converge fast, or converge at
all. Convergence of the model depends on the imi-
tial configuration of the network, the choice of the LC 1.5 Fixed Learning Rate r

learning rate P7, and the momentum term a. Variable Momentum term a

The learning histories for four different initial 1 0.80
configurations with fixed learning rate ri = 0.10, and ,
momentum a = 0.80 are shown in Fig. 3. Average • 0.5
error is defined as the average of the total quadratic 0.." 4
error per pattern per output neuron. The back-
propagation path planner converged for these four
cases. 0 200 400 600

ITERATIONS

0 Random Initial Configurations- Figure 4: The learning histories of a back-
fixed Learning Rate 71 - 0.10 propagation path planner using four dif-
Fixed Momentum Term a - 0.8 ferent values for the momentum term.

In general, the bigger the learning rate the faster

S0.5 the convergence. llowever, when the learning rate is
set to a value that is "too big", it leads to big oscil-
lations and instability. Small learning rates usually

< lead to smooth but slow learning.

0 200 400 600
ITERATIONS

0x 1.5
Figure 3: The learning histories of a back-
propagation path planner for four different 1,0
initial configurations. o

Tv study the effect of the momentum term a on =-.
the convergence of the model, we used a fixed initial
configuration and set l = 0.10. Figure 4 shows the
learning histories for a = 0.2, 0.4, 0.6, and 0.8. The 0 100 200 300
behavior of the model in its learning phase were very ITERATIONS
similar for the four different values of a. All four cases
converged roughly at the same rate because they had
the same learning rate.

More dramatic effects were observed, as ex- Figure 5: The learning histories of a back-
pected, for the cases of using different learning rates propagation path planner for seven differ-
Y7, and fixing the initial configuration and the value of ent learning rates.

135

Performance of A Trained to get from a source to a target position within the

Back-Propagation Path Planner problem domain, the paths displayed in Fig. 6, 7, 9,
and 10 are optimal. However, the planned path is

We tested the performance of a trained back- near-optimal in Fig. 8.

propagation neural path planner by submitting to it
unlearned scenarios in the form of 47 x 24 as well as
105 x 53 discretized map. Several instances which Performance of Parallel Implementation
include random and structured obstacles are shown
in Fig. 6 to 10. We used up to 64-node NCUBE-I, iPSC-2, and

16-node Meiko for our simulations. A training set of
184 patterns becomes a small problem for the case
of 64 processors because each processor is then re-
sponsible for performing computations for at most

3 patterns. Figure 11 shows the timing result for
running one iteration of the back-propagation path
planner. The reported time is normalized to that
needed to run one iteration of the same planner on a
20 MHz SUN4/60 SPARCstation 1. For the one pro-

cessor case, a Meiko Transputer node was the fastest,

achieving a performance close to that of a SUN4/60.
The efficiencies of the same program on the three dif-
ferent concurrent processors are shown in Fig. 12.
Although the efficiency for the simulations performed
on an NCUBE-1 seems to be better than on ar iPSC-
2 or a Meiko Transp,,ter systems, this result should

Figure 6: A 47 x 24 binary terrain with be taken with care. ';ven though exactly the same

randomly distributed obstacles. Trian- EXPRESS program was used for simulations, there

gle indicates starting location, and an in- were differences in the hard-wired configuration of the

verted triangle indicates target position. three computer systems, and in the implementation

An optimal collision-free path was planned. of EXPRESS.

Figure 7: A 47 x 24 binary terrain with
randomly distributed obstacles. An opti-
mal collision-free path wa~s planned.

Figure 8: A 47 × 24 binary terrain with
Since an optimal path in this study is one which structured obstacles. The planned path is

minimizes the numb~er of collision-free moves neceded near-optimal.

136

SL i I I I I I | I I

There is one simple explanation for the poor the time of the simulations, the Transputer system

efficiency of the simulations on a Meiko Computing was hard-wired as a 2-d torus instead of a hypercube;
Surface. EXPRESS communications are best suited thus, resulting in poor performance.
for hypercube connectivity concurrent processors. At

Figure 9: A 105 x 54 binary terrain with randomly distributed obstacles. An optimal collision-free
path was planned.

Figure 10: A 10)5 x 54 binary terrain with structured ob)stacles. An optimal collision-free path was
planned.

1I7

41,• • m n~m n un m nmll lulNnIIu

- r• I I I •

6 \ NCUBE-1
0U Meiko (Transputers)

W iPSC-2

4
Q

NN

o 2Z

0 1-

0 2 4 6
log2 (processors)

Figure 11: Timing result normalized to the time required to run one epoch on a 20 MHz SUN4/60
SPARCstation 1.

100 0 NCUBE-1

- Meiko (Transputers)
A iPSC-2

80 "

60r• 60

0 2 4 6

log2 (processors)

Figure 12: Efficiency plo(tted as a function of the dimiension of a hyvprcuhe.

' ,, , i I I I I I I I II II II I I I I I

EXPRESS was optimally implemented on the Networks and Dynamic Complex Systems", con-

NCUBE-l. As for the iPSC-2, EXPRESS was imple- tribution to the 1989 SCS Eastern Conference,

mented on top of the native operating system (NX). Tampa, Florida, (March 1989,) Technical Re-

This extra layer in between EXPRESS and the hard- port C 3 P-695, California Institute of Technology,

ware is expected to incur inefliciency. 1988.

[4] llopfield, J. J. and Tank, D,,"Neural Compu-

tation of Decisions iii Optimization Problems,"
Conclusions ~Biol. Cybernetics 52, 141-152 (1985.)

Simulation results indicate that a trained back- [5] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.,

propagation path planner possesses satisfactory capa- "Optimization by Simulated Annealing," Science

bility of planning near-optimal, collision-free paths in 220, 671 (1983.)

binary terrains with random or structured obstacles. [61 Fox, Geoffrey C. and Gurewitz, Eitan and Wong,

The multi-scale mapping scheme does not only reduce Yiu-fai, "A Neural Network Approach to Multi-
the size of the computational domain and encode suf- vehicle Navigation", contribution to the 1989
ficient information to carry out the planning task, but SPIE Conference, Philadelphia, Pennsylvania,

also ensures applicability of the trained network on a (Nov. 1989,) Technical Report. C3 f-833, Cali-

wide range of problem sizes. fornia Institute of Technology, 1989.

The advantages of this new approach of trans- [7] Wong, Issac and Fox, Geoffrey C., "Use of neural

forming a path planning problem to one in pattern networks for path planning," Technical Report

classification by neural networks are: C 3 P-784, California Institute of Technology, May
1989.

"* External homing strategy is not required.
"* No explicit heuristic is used for shortest path. [8] Ilo, Alex W., "A Back-propagation Navigation

"* No need to decompose the problem domain into Controller for Land and Space Vehicles," Techni-

configuration space and free space. cal Report C 3 P-735, California Institute of Tech-

The homing strategy, and the notions of optimality nology, April 1989.

and obstacles avoidance are all encapsulated into the [9] Ilo, Alex W. and Fox, Geoffrey C, "Parallel Neu-

training patterns as task-specific knowledge from a ral Net Planner on Ilypercube and Transputer,"

human teacher. in Parallel Processing in Neural Systems
anl Computers, eds. R. Eckmiller et. al., El-
sevier, 421-426, (1990.) Technical Report C3 P-

Acknowledgement 848, California Institute of Technology, 1989.

[10] D.E. Runielhart, G.E. Hlinton, and R.J. Williams,
This study is based on research work supported "Learning Internal Representation by Error Prop-

by the Joint Tactical Fusion Program Manager. agation" in D.E. Rumelbart & J.L. McClelland

(Eds.), "Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition. Vol.
References 1: Foundations." MIT Press, 318-364 (1986.)

[111 lo, Alex W. and Furmanski, W., "Pattern
[1] Schwartz, I.T. and Sharir, M., "A Survey of Recogniition using Neural Networks in Hlyper-

Motion Planning and Related Geometric Algo- cubes," in the Proceedings of the Third Confer-

rithms," Artificial Intelligence 37, 157-169 (1988.) ence on Ilypercube Concurrent Computers and

[2] Simic, P., "Statistical Mechanics as the Under- Applications, Vol. 2, (ed.) Geoffrey C. Fox,

lying Theory of 'Elastic' and 'Neural' Optimiz- ACM Press, New York, 1011-1021 (1988), Tech-

ers," NETIVOlIK: Computation in Neural Sys- nical Report C 3 P-528, California Institute of

terns 1, 1-15 (1990), Technical Report CALT-68- Technology, 1988.

1556, C 3 P-787, California Institute of Technol-
ogy, May 1989.

[3] Geoffrey Fox, Wojtek Furnianski, Alex Ilo, Jeff

Koller, Petar Simic, and Issac Wong, "Neural

139

Parallel Algorithms for One and Two-Vehicle Navigation

Eitan Gurewitz*, Geoffrey Fox, Yiu-fai Wong

Caltech Concurrent Computation Program
California Institute of Technology

Mail Code 206-49, Pasadena, CA 91125

Abstract dynamic programing approach [3], where a "sig-
nal" is initialized at a source point and propa-A two vehicle navigator on a descrete space gates from a node to all its nn along the edges

is analyzed. The concept of linking time maps joining them. The time the signal travels along

as source to optimal path planning is discussed. anieg the weig o the di rec ed eg.E r
The ule forcontrutingthee mps ae gvenan edge is the weight of the directed edge. Every

The rules for constructing these maps are given node vi records the first time ti it was hit by the
in a cellular automata mode. The implemen- signal. The graph in which all the nodes vi have
tation of these rules on a parallel computer is their correct time values ti is called: the linking
presented. time map [LTM] with respect to the generating

1. Introduction. node.

In this study navigation means determina- In fact the linking time ti at the node vi is
tion of a path on a navigation surface [NS] from the cost of an optimal path from the source to
an origin point to a destination point. A cost this node and it depends only on the weights of

function is defined on the NS, measures the cost the edges and the generating node. The linking

of traveling a length segment. The cost can be: times ti and tj of two sequential nodes vi and
time, length, hazard of traveling the segment vj on an optimal path, where vi proceeds vj are
etc. An optimal path on the NS is a path along related by:
which the integration of the cost function from t = ti + w(*)
origin to destination is minimum. The objective
of a navigator is to find the optimal path under An optimal path from the origin to any
the constraints set by the NS. The problem of point on the graph is traced from that point back
an optimal path for a single vehicle on a contin- to the origin. Every step is from a node vij(ti) to
uous surface [11 as well as a discrete surfaces [2] a node vi(ti) where ti and tj satisfy (*). Tracing
were solved. This study analyses the two vehicle back ensures that one stays on an optimal path
navigator and presents the linking time maps as initialized at the origin.
a tool to deal with these problems. Let us call the traveling object a vehicle

A discrete solution for navigation on a con- and consider the case of two vehicles traveling
tinuous space requires mapping of the space into on the same NS. If the path of each vehicle in-
a finite graph. This is done by choosing a fi- troduces restrictions to the path of the other ve-
nite number of points {vi} on the surface as the hicle (e.g. collision avoidance) then a search for
nodes of the graph. Each node is connected by an optimal solution is much more complicated.
an edge to all the nodes which can be reached, The layout of this study is : In section
without traversing another node. The set of all 2 we discuss navigation of an autonomous ye-
the nodes {vj } having a common edge with vi hicle on an NS which is updated while travel-
is the set of vi nearest neighbors [nn(i)]. The ing. In section 3 we intoduce time and deal with
value wij of the cost of traveling along the di- conflicts between vehicles. The resolution of a
rected edge [vi, vj] is assigned to this directed conflict by imposing a delay on a vehicle is dis-
edge. This procedure maps the sui face onto a cussed and the paths solving a two vehicle nay-
directed graph, Fig. 1. Mapping the NS onto a igator are analysed. Section 4 outlines briefly
directed graph transfered the search for an opti- the algorithm for two vehicle navigator. Section
mal path to the the search for an optimal path 5 presents the cellular automata rules for con-
on a directed graph. This search is solved by a structing linking maps. Section 6 deals with the

140
0-8186-2113-3/90/0000/0140$01.00 0 1990 IEEE

actual parallel implementations of the construc- Assuming the two vehicles start at the same
tion of linking maps, and section 7 presents the time, then time of travel is the time it takes
simulation results. until both of them have arrived. This optimum

is restricted to non conflicting paths.

2. Autonomous vehicle in uncertain envi- A conflict between two paths occurs when
ronment the two vehicles are at the same site at the same

time. The set of points on the graph edges is
An autonomous vehicle in an uncertain en- partitioned into sites as follows. Each point

vironment start with an estimate of the edges is associated to the nearest of the two nodes
weights. The estimate reflects the prior knowl- triaigteeg.Acnlc a cu i

edge or model it has for the terrain to be trans- terminating the edge. A conflict can occur ei-

versed. The estimate is improved as more infor- the boundary between two sites. In the second

mation is obtained. The vehicle knows its posi- case the vehicles are going in opposite directions.

tion and destination and at each instance of time Let ve icv0 and goiv in bepthree seqtial

the vehicle is doing the following: 1) updates i" sequentialthe ehile s dong he ollwing 1)updtesnodes on the paths of vehicle 0 and vehicle 1 re-

the database of the weights {wij}. 2) Based on spectively. The node Vj is on the two paths. A

the updated data it determines the optimal path conflict of type (a) at vj occur if and only if

from its current position to the destination. 3) c

Moves on the chosen optimal path. 4) Collects tJ - 2 <to -to _.•

data. 2

and
Updated weights {wjj} change the LTM, - 2_ <4, - ,

but a change in the linking time of a node may j 2 2

effect the linking times of only part of the other A conflict of type (b) at the boundary between

nodes. In section 5 we show how to update the vj and vk occur if and only if:

LTM in a cellular automata fashion, based on i'= k
local decisions of each node.

and
The navigator for an autonomous vehicle is to - !L±. w - ELL

based on the reversed linking time map [RLTM]. 2 j- 2

The construction of the RLTM is similar to the To resolve the conflict at vj one vehicle cannot
construction of the LTM. Except that in con- enter into the site until the other clears the site

structing the RLTM the signal is initializing at of vi. In the graph representation this is done

the destination point and propagates from vi to by imposing a delay w at vi on either one of the
vj with traveling time of w3i. The path is traced two vehicles:
from the vehicle position toward the destination, w = t1 - Wij, - t w +
from vi with reversed linking time 0i to its near- 2 - 2
est neighbour vj with reversed linking time Oj on vehicle 0, or
which satisfies: W + tvI 3

Oi = 0i - w0 2

Whenever the vehicle gets new information it on vehicle 1. Imposing a delay w at vi on ye-

updates the {wj, } database and its RLTM, and hicle k means that tk is set to tk = tk + w and

determines an optimal path, Fig. 2. LTMk is accordingly updated. imposing a delay
on a vehicle and updating its LTM preserves the
characteristic of the LTM to yield, by the trac-
ing back procedure, the optimal paths under the

3. Navigation in Space-Time, and non imposed restriction.
conflicting paths for two vehicles. If the optimal paths of vehicles 0 and 1

Assume that the cost function is time, i.e. have more than one conflicting nodes then: 1)
the weights {wj}) are the time of travel along their path segments from the first to the last
the corresponding edges. Then a navigator for conflict have exactly the same time of travel. 2)
two vehicles aims to find two paths, one for each On these equivalent segments they are traveling
vehicle, which yield the minimum time of travel, in the same direction. When the two paths have

141

more than one conflict, the resolution of each non sequential nodes on the path have the same
conflict requires the minimal delay given above. NS coordinates but different time coordinate. A
Therefore, imposing the maximal delay of these detour means that two sequential nodes on the
waits on the first node of conflict resolves all the path do not obey the path rule, i.e. Oi+wjt > 6,.
conflicts between these two paths. However, the
path with the delay on it may not be an optimal The space-time representation of the paths

path anymore. depicts the difference between this problem and
the K-disjoint[4] problem. In this problem we

Consider the case where an optimal path of do not know the t-coordinates of the destina-
one vehicle conflicts, at vi with the optimal path tion points. These points are subjected to the
of the other vehicle. Assume that the required searching process.
delay at vi was imposed on one of the vehicles,
its LTM was updated and a new optimal path The complexity of a search for an op-

was traced. Then one of the following will occur: timal solution for multiple vehicles grows
fast with the number of vehicles. For

1. The new path does not conflict with the this reason, other suboptimal methods are
path of the other vehicle, and the are can- investigated, such as neural networks [5,6].
didates for an optimal solution.

2. The new pat' conflicts with the path of the
other vehicle, but it does not pass through 4. Algorithm for the two vehicle naviga-
vi. tor.

3. The new path passes through vi and it con- . The algorithm for the two vehicle naviga-
flicts with the path of the other vehicle. In tor is based on the concepts discussed in the pre-
this case the new conflict is a swap conflict vious section using the cellular automata rules
at the boundary between vi and its pro- of the next section. The idea is to hold LTM
ceeding node on the other vehicle path. and RLTM for each vehicle and to update them

wenever a restriction is set. The need for a
In an optimal solution of the two vehicle RLTM arises whenever a swap conflict occur,

navigator there cannot be an instant when the and a search for a loop or a detour is regarded.
two vehicles are waiting. Therefore, the paths
solving this problem can be of three types: As was already stated: the two vehicles

cannot wait at the same time, and a solution
1. Neither of the vehicles waits. which imposes delays on the two vehicles is ob-

2. One of the vehicles waits. tained only when one of the paths is a loop or a
detour. Therefore, the algorithm finds two sep-

3. The two vehicles have to wait. The last arate solutions. A solution when the delays are
case happens resolving a swap conflict imposed on vehicle 1 only and a solution where
when vehicle k has to wait for vehicle I the delays are imposed only on vehicle 0. When
to step aside letting k to path and then imposing a delay to resolve a swap conflict the
looping or detouring. algorithm checks for loop or a detour. The best

of these solutions is the optimal solution. In
Let us extend the NS by adding to it practice the algorithm will not construct those

the time dimension Fig. 3. The graph two solutions, but to minimize computations, it
fvi,eij(wjj)} on the navigation plane is the will prune the search by always adjusting the
projection of the extended graph on the t = 0 path of the vehicle with the sorter time.
plane. The linking time value ti of a node vi is
its t-coordinate in the extended space. The link- On a binary speed NS the speed of the
ing times ti and tj of two sequential nodes, vi vehicle at each point is either 1 or 0. The two
and vi, on a legal path in the extended space are vehicle navigation problem on this NS is much
restricted to the condition (1). In the extended easier as the rules get simpler form. on this NS
graph delay means that two sequential nodes on a conflict of type (a) is at the node itself and it
a path have the same NS coordinates but dif- needs w = 1 to be resolved. The swap conflict
ferent time coordinate. A loop means that two (of type (b)) needs w=2 to be resolved. Fig. 4

142

presents the two vehicle navigator solution for a process has a propagating nature. The wave
conflict imposing NS. front of the propagating linking signal depend

on the data and the location of the generat-
ing node. Therefore, the scattered decomposi-
tion[7] would be the most appropriate decompo-

5. Cellular automata instruction for the sition approach. The mapping in this approach
navigation algorithm is as follows: The NS is tessellated into N~xNy

congruent templet. Each templet is tessellated
Rule 1: The linking time of the generating point is again to K equal tiles, where K is the number

always t. = 0. of processors. Each processor is assigned to the
same tile of the templet over all the templets,

Rule 2: The linking time t1 of every node Vi • 0 Fig. 5. As the computational graph in our case
is: is very irregular and time dependent, the scat-

ti = Min{ti,tj + wjijVj E nn(i)} tered decomposition will hopefully balance the

,where nn(i) are all vi nearest neighbors. work done in each processor.
As the information propagates from a node

Rule 2': The reversed linking time Oi of every node t s neighorsathe smaller tes in a te

vito its neighbors the smaller the tiles in each teo-
plet are the greater the number of nodes propa-

0i = Min{f1, Oj + wjijVj E nn(i)} gating the correct linking time is. On the other
hand the smaller the tile is the greater the num-

Rule 3: If a node other than the generator does not ber of nodes on the boundary is. Therefore, for
have a source, it set its linking time to in- given number of processors and dimension of the
finity. Namely, if i 6 0, and t, > tjVj E descrete NS there is an optimal size of tile. The
nn(i) then t, = oo. bigger the number of processors is the smaller

the size of the tile.
Rule 3': If i 0 o, and0i > OjVj E nn(i) then Oi =

00. In planning the broadcast of the infor-
mation one has to decide how many inform-

Algorithm for constructing the LTM or ing nodes to accumulate before transmitting the
RLTM: new data. On the one hand accumulating the in-

formation saves transmition time. On the other1. Initialize the linking times of all the nodes hand getting the information as soon as possi-
to "infinity". ble save updating and enables more templets to

2. Set the generator linking time to 0. participate in the propagation process. In our
simulation, we adopt the strategy of broadcast-

3. Apply rule 2 or 2'. ing the new information to the neighboring proý
cessor whenever a node on the boundary was

4. When there is not a node which update its ued. whe n the ondoverhas
value the LTM or RLTM is done. updated. When the communication overhead is

not too large, as in the case of the Meiko trans-

Algorithm for updating the LTM or puter board, the number of updates are kept to
RLTM where a delay W is imposed on vi: a minimum since the information delay is very

small.1. Sett, =t,+W /0i=O,+W
7. Simulation results

2. Apply rule 3 / 3'.
Extensive simulations have been carried

3. Apply rule 2 / 2'. out on an NS which was tessellated into 145 by
145 nodes. Fig. 6, is a plot of the speedup versus
number of processors under different tile sizes.
This plot shows that the 4 processors are the

6.nkig P alpl natural choice for the two-dimensional NS. For
linking map a given patch size, the speedup decreases with

The cellular automata mode of construct- the number of processors. This is expected be-
ing the LTM is asynchronous but the linking cause of the propagated nature of the problem at

143

hand. The simulation shows, as depicted in Fig. [3] Bellman, R., Dynamic Progrram-
6, the optimal sizes of the example simulation. ing Princeton University Press, Princeton,
These sizes are: 19z19 for 4 processors, 13x13 New Jersey, 1957.
for 8 processors, and approximatly 9x9 for 16
processors. It shows the general trend that in- [4] Seymour, P. D., "Disjoint paths in
creasing the number of processors decreases the graphs", Discrete Math. 29, pp. 293-309,
optimal size of the tile. 1980.

[51 Wong, Y. F., and Fox, G. C., " Use of Neu-
ral Network for Path Planning," Technical

7. References Report C3P-784, 1989.

[1] Jones S. T, "Solving Problems involving [6] Fox, G. C., Gurewitz, E., and Wong, Y.

Variable Terrain. Part 1: A General Al- F., "A neural network approach to multi-

gorithm", Byte, Vol. 5, No. 2, February vehicle navigation", SPIE Vol. 1196, pp.

1980. 164-169, 1989.

[2] Mitchell J. S. B and Papadimitriou C. [7] Salmon J., and Goldsmith J., " A hy-

H., " The weighted region problem", percube Ray-Tracer", 3ed Conf. on Hy-

Tech. Rep., Department op Operations percube Concurrent Computers an Appli-

Research, Stanford University, Stanford, cations", pp. 1194-1206, Pasadena, CA

CA, 1985. 1988.

Figure 1. mapping of a terrain onto a graph

* On a leave of absence from NRCN Israel.

144

Figure 2. Autonomous vehicle in uncertain environment. The gray level of an area is proportinal to its cost.
The white lines are the equi-cost contours After a short travel along the optimal path (a) the vehicle
updated its data and determined a new optimal path (b).

145

Legal Path:
COSt cost(vli])-cost(v[j)=w[ijj

Figure 3. Nodes, terrain's directional values (gray level arrows) and a path m the Cast-Terrain space.

cost

Figure 4. The two-vehicle navigator solution for a conflict imposing terrain and a path in the Cost-Terrain space.

146

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 5

0 a 0 1 0 1 0 a

2 3 2 3 2 3 2 3

0 a 0 1 0 a 0 a

2 3 2 3 2 3 2 3

a 1 0 a 0 1 0 a

2 3 2 3 2 3 2 3

Figure 5. Scattered decomposition, the basic template of 4 processors is repeated over the terrain.

16

Processors

U 8 16

8

4

4

1I
4x4 8x8 12x 12 16x 16

block size for decomposition

Figure 6. Speedup for decomposition scheme for different block sizes on 16-node Meiko Computing Surface

147

A Neural Network Approach to Multi-vehicle Navigation

Geoffrey Fox, Eitan Gurewitz*, Yiu-fai Wong

Caltech Concurrent Computation Program
California Institute of Technology

Mail Code 206-49, Pasadena, CA 91125

Abstract last arrival at a destination. When two vehi-
cles or more are involved in the problem, the re-

We develop a neural network formula- quirement of collision avoidance may introduce a
tion for multi-vehicle navigation on a two- conflict between the optimal paths of the various
dimensional surface. here. A time-linking vehicles. In order to resolve these conflicts the
map is generated for each individual vehicle us- data base of possible paths is vastly extended
ing techniques similar to the known shortest and the search for optimal solution is very com-
path algorithms for an isolated vehicle. Neu- plicated. In a different study 3 we have directly
ral networks are then applied to generate non- solved the one- and two-vehicle navigator in a
conflicting paths minimizing the time of travel, multi speed discrete space. However we did not

find a way to extend it as a practical technique

1. Introduction for the general multi-vehicle navigator.

This paper presents a neural network ap- A simple NS terrain is defined with a bi-

proach to the multi-vehicle navigation problem. nary speed. On this NS the speed of a vehicle,
Here we use the term vehicle to refer to a point at each point, is either a positive constant or 0
which travels on a surface of navigation (NS). (for an obstacle). The present study is an at-

Navigation as presented here refers to the de- tempt to construct a multi-vehicle navigator, in

termination of a path in the space-cost (time) binary speed space, using neural networks. By

domain from an origin to a destination point, using neural networks one usually trades an op-
The surface of the navigation usually has a ter- timal solution accomplished in "infinite" time
rain with position dependent velocities and/or with "good" solution accomplished in reason-

hazards which the vehicle has to consider. The able time.
navigator searches for an optimal path on this This study is organized as follows: In sec-
surface. Optimum here may be with regard tion 2 we introduce the cost-surface space and
to minimal length, minimal time, minimal haz- the patas as graphs in this space. The cost-
ards, etc. Each of these parameters when min- linking map is presented and we discuss the dif-
imized acts as the cost parameter. To each el- ference between paths solving a one-vehicle nav-
ement of area dl x dl of the NS is associated igator and those solving multi-vehicle navigator.
the value dt of the cost of traveling the segment In section 3 the neural formulation is presented
length dl on this area. An optimal path between with the mapping of the space into neural vari-
source and destination is the one which yields ables, "neural paths" and equations. Section 4
rain tion dt. contains the results of our simulations and sec-

tion 5 the discussion.
Navigation problems for one vehicle on a

continuous surface as well as on a discrete grid 2. Paths in the cost-surface space
have already been studied and solved 1 2 . In our
paper we consider navigation of more than one A descrete representation of the surface of
vehicle in a two dimensional space, where each navigation is obtained by mapping the surface
vehicle has its own origin and destination. The onto a graph as follows: a set of points v(z, y)is
objective is to navigate the vehicles in a way chosen on the navigation space to be the nodes
which minimizes the cost (time) of travel. The of the graph. Each node is connected by an edge
time of travel is the time passed between the to every other node which can be reached di-
earliest start time of one of the vehicles to the rectly from it. To every edge is assigned a weight

148
0-8186-2113-3/90/0000/0148O01.00 © 1990 IEEE

which reflects the cost of traveling it. The edges value, at stable state, is:
can have two different weights for traveling it
in opposite directions. A path is a sequence of
adjacent directed edges from the origin to the (1, if vehicle i is at position x
destination. (Zt) J at time t;

Let us extend the NS terrain to a time- 0
surface space, as shown in Figure 1. A path in 0, otherwise.
this space is a sequence of edges, monotonic in
t, between the source and destination. However,
a legal path is one which obeys the restrictions A path is a sequence of neural variables with
set by the terrain. In order to get only legal ,i(r, t) = 1 where t ranges from 0 to T and T
paths, we construct a time-linking map3 . This is the time this path is traveled. A neural net-
map assigns to every node the minimal time of work is set up such that the neurons converge
travel needed to reach it from the origin. Using to a stable state which determines the paths as
this map one can construct a graph of all the illustrated in Figure 3. A common practice in
optimal paths from the source to all the nodes. optimization by neural networks is to choose an
This map specifies the t- coordinate of each node energy function. However, finding the shortest
of the graph in the time-NS space. An optimal paths is an iterative process, which makes our
path for one vehicle, in the time-surface space, energy function time-dependent. Therefore, in-
is single-valued in v(x, y) and t. Namely, there stead of minimizing an energy function we di-
is a one to one correspondence between v(x, y) rectly write down the equations relating the in-
on the path and t. When more than one vehi- put "voltage" of the neurons to their output
cle are involved each one of them has its own voltage. These equations impose the desired be-
linking map. However, the optimal paths of two havior of the neurons. Specifically, we have
different vehicles may conflict. To avoid such a
conflict one of the vehicles may be requested to
postpone its arrival to or to detour the point of duil x, t)/dr = C1 + C 2 + C 3 + C 4 + C5
conflict. This imposition introduces paths which
are not single valued in v(x, y) and t as illus-
trated in Figure 2. where the first term evaluates the propaga-

tion of the path from the present position in
3. Neural formulation the forward direction. The second term evalu-

ates it with respect to the backward direction.
Neural networks have been studied as an The third term avoids head-on collision and the

approach to various hard (NP-complete) opti- fourth term avoids swapping which occurs when
mization problems. Various applications have two vehicles adjacent to each other switch posi-
been investigated and explored 4 '5 since the work tions. The fifth term forces one of the neighbors
of Hopfield and Tankh. Here, we explore the of an "on" neuron to be on, i.e. enforces conti-
possibility of using these massively parallel net- nuity of the paths. In terms of neural variables,
works for the multi vehicle navigation problem. the dynamical equations is as follows:

The paths of the vehicles, as discussed
above, are viewed as trajectories in the space-
time. The space-time is mapped into neural dui(x,t)/dr = gate(i)(
variables in the following way: it is divided into
a regular three dimensional lattice (x, y, t). (For - ui(X, t)
notational simplicity, we denote (x, y) by the +A 1 E r,(y,t-1)W,
vector z subsequently.) To each unit cell we as-
sociate a neural variable q/i(x,t) whose desired .E i(+)+ 4 9(y,t + 1Wpsxi

yENb(x)

+ A3 J ?0k(Xt)g(s,(t) - Sk(t)+
k

149

+ A4ZEErJ,(&,t - 1)r/i(y,t - 1)r/k(y,t). for the next w moves. Then we repeat the pro-
k V cedure, calculating the paths piecewise until the

jj (1 - qi,(z',t - 1)(Wb - W.,,)/2). destinations are reached.

x'E Nb(z),r'*y

H (1 - ilk(x',t - 1)(Wb - W,,)/2) 4. Simulation results

X'EMb(y),xrgz We numerically integrated the above dy-

+ A5 E f(Ti (y, t - 1)). namical system, using a simple Euler method, in

yENb(z) which case, synchronization does not have to be
exactly enforced. Recall that an Euler solver for]I (1 - fl(riw(z',t))) a differential equation dz/dt = f(z) is an itera-

X'EMb(y) tive mapping: zi+1 = xi-+ f(Zi). This, together

Where every term Ai... .} corresponds to the with the locality of the computational stencil en-

respective term Ci. %i(z,t) = h(ui(z,t)), h(.) is ables us to parallelize the above algorithm very

a sigmoid function giving the relation between efficiently. If we go back to the equations above,
the input and the output voltage of a neuron. the only global computation is computing si(t),
Nb(z) = neighborhood of z. W1,y is the cost of which can be obtained by locally updating the

travel from x to y with regard to the destina- sum within each processor and combining the

tion of the vehicle. Namely, Wy = T(z) - T(y) result in a binary tree. By iteratively solving

where T(u) is the time-linking map value of the a differential equation, exact synchronization is

node u. If T(y) < T(z), it encourages the for- not needed because the dynamics is continuous.
ward (in time) propagation of the path from z In a similar study", but slightly modified dy-
to y. pasti(x,t) = _ qi (y,t - 1) gates the namic equations, almost a perfect speedup was

YENb(s) obtained when it is implemented on the Meiko
backward propagation. A neuron is affected by Computing Surface, a parallel machine with up
the future information only if it is a continu- to 32 transputer nodes as illustrated in Figure 4.
ation of a path. si(t) = 1_ ri(x, t), and g(.) The differential form also introduces some coop-
is another sigmoid function which says that in eration into the algorithm. This can be observed
case of collision, the vehicles with more possi- in the conflicting regions, like head-on collision
ble paths should give way. The swapping term and swapping, in which case the neurons itera-
is most complicated. We leave out the detailed tively adjust their values, trying to resolve the
explanation except saying that f(.) and f 1(.) are conflict.
appropriately chosen highly nonlinear functions.
Lastly, gate(i) = 17i qi(Xdi, r) which stops the

7 <t 5. Discussion
signal propagation for vehicle i once its destina-
tion Xdi has been reached. The neural net yields paths which slightly

deviate from the optimal one-vehicle paths.
In the equations above, we encourage all This is because it is dominated by two ;ain

possible paths to be stored in the states of the forces: one is the collision avoidance force and
neurons. The redundancy in the formulation the other is the single vehicle optimal paths at-
makes this possible. When the destinations are tractors. These attractors are the graphs deter-
reached, we backtrack and choose one of the best mined by the linking map from a node to the
paths computed by the network. destination. In our study of the two vehicle

It is obvious that in the absence of colli- analytic navigator 3 we are using an algorithm
which updates this map. Applying this idea tosion, the paths obtained are the original optimal the neural net system can improve the solutions

paths for a single vehicle where collisions are not tainedrabove. te nan fovehe na
consiered.obtained above. The neural net four vehicle nav-

considered. igator performs well, see Figure 3. However,

Since the problem is inherently time de- with more vehicles and various possible paths for
pendent, the neuronal states at large t naturally each it may perform less satisfactorily. Clearly
wait for the information from neurons at smaller we only presented a very initial study here. We
t. We may as well solve the equation for a fixed need to look at much more complex problems
time window w, namely we compute the paths includirng three dimensional navigation. We are

I50

also looking into the elastic net ideas of Durbin 4. D. Z. Anderson, "Neural Information Pro-
and Willshaw 7 as interpreted by Simics into cessing Systems," American Institute of
neural networks. There are important analogies Physics, New York, 1988.
between track finding 9, computer vision and
navigation which we are exploring in an inte- 5. "IJCNN Proceedings," Washington D.C.,
grated research program10 . 1989.

6. J. J. Hopfield & D. W. Tank, " Biol. Cy-

6. Acknowledgements bern. 52, pp. 141-152, 1985.

The work reported here is funded by the 7. R. Durbin and D. Willshow, Nature, 326,

Department of Energy under grant DE-FG03- 689-691, 1987.

85ER25009, Program Manager of the Joint Tac- 8. P. Simic, "Statistical Mechanics as the Un-
tical Fusion Program Office and National Sci- derlying Theory of 'Elastic' and 'Neural
ence Foundation under grant EET-8700064. Optimizers'," Technical Report C3P-787,

contribution to 1989 SCS Eastern Confer-

7. References ence, Florida, 1989.

1. M. Sharir & A. Schorr "On Shortest Paths 9. Geoffrey Fox, "A Note on Neural Networks

in Polyhedral Spaces", SIAM J. Comput- for Track finding," Technical Report C3P-

ing, 15,1, pp. 193-215, 1986. 748, 1989.

2. J. S. B. Mitchell and C. H. Papadimitriou, 10. G. C. Fox, W. Furmanski, A. Ho, J. Koller,
"The Weighted Region Problem", Techni- P. Simic, Y. Wong, " Neural Network

cal report, Dept. of Operations Research, and Dynamic Complex Systems," Techni-

Stanford University, 1986. cal Report C3P-695, 1989.

3. E. Gurewitz G. Fox, and Y. F. Wong "Par- 11. Y. F. Wong and G. C. Fox, " Use of Neu-

allel Algorithms for One and Two-vehicle ral Network for Path Planning," Technical

Navigation" in this proceedings. Report C3P-784, 1989.

* On a leave of absence from the Physics D)epartment NRCN Beer-Sheva Israel.

151

Figure 1. A path in the cost-terrain space Figure 3. Four paths in the cost-terrain space calcu-

lated by the neural net

it "eal

yS

8

cost 4

2

I•1t I I I

1 2 4 8 16
Number of Processors

Figure 2. The two-vehicle navigator solution for a Figure 4. Speedup for 4 vehicle navigator running on
conflict imposing terrain and a path in the 16-node Meiko Computing Surface
Cost-Terrain space.

152 2

The Fifth Distributed Memory

Computing Conference

16: Data and Imageý Proce'ssingI

A Connectionist Technique for Data Smoothing

Ron Daniel Jr. and Keith Teague
Oklahoma State University

School of Electrical and Computer Engineering
202 Engineering South
Stillwater, OK 74078

Abstract based on iterative minimization of a non-linear error
measure. The error measure has several components.

Filtering data to remove noise is an important Squared error of the solution from the input data and
operation in image processing. While linear filters are smoothness of the solution are two of the components.
common, they have serious drawbacks since they cannot These are very common [1,21. The unusual portion of
discriminate between large and small discontinuities. the error measure is the introduction of 'breakpoints'
This is especially serious since large discontinuities are across which the smoothing terms have no weight. This
frequently important edges in the scene. However, if the modification of the surface reconstruction problem
smoothing action is reduced to preserve the large appears to have first been used in [3]. These terms
discontinuities, very little noise will be removed from model edges in the image and allow us to smooth noisy
the data. data without blurring the edges of objects in the image.

This paper discusses the parallel implementation of A one-dimensional version of the resulting energy
a connectionist network that attempts to smooth data measure was presented in [4] as:
without blurring edges. The network operates by
iteratively minimizing a non-linear error measure which
explicitly models image edges. We discuss the origin of E(f, h) = (fi+ 1 - fi)2 (1 - hi) (1)
the network and its simulation on an iPSC/2. We also i
discuss its performance versus the number of nodes, the + CDY' (fi - di)2 + CLX hi
SNR of the data, and compare its performance with a i
linear Gaussian filter and a median filter, where fi is the smoothed output value from s#e i, hi is

Introduction a binary variable indicating the presence or absence of a
discontinuity between units i and i+l, di is the input

A common operation in image processing is data to unit i, CD is the cost of getting away from the
filtering to remove noise. One of the simplest methods data relative to the unit weight of the interpolation
is to implement a linear low-pass filter by convolution term, and CL is the cost of inserting a discontinuity. To
with a Gaussian, or other, kernel. The availability of allow for sparse data, the summation is only taken over
dedicated convolution processors makes this option those points where di * 0. CD depends upon the signal
especially attractive for many machine vision systems. to noise ratio of the input data.
Unfortunately, the linear filter has serious drawbacks. It The interpretation of this equation is that if
cannot discriminate between large discontinuities and (fi - fi+i)2 > CL, then it is cheaper to pay the price of
small discontinuities. Nor can it model the structure of inserting the discontinuity than continuing to smooth
the data to discriminate between correlated discon- over the discontinuity in f ontinues. To data
tinuities, such as edges, and random noise. Large correl- over the large disparity in function values. The data
ated discontinuities are frequently edges of objects in the filtering is performed by adjusting the f and hi to
scene, which convey considerable information, minimize E. Since the discontinuity terms introduce

Reducing the amount of smoothing in order to preserve local minima into the cost surface, standard
important discontinuities also reduces the amount of minimization algorithms will not work very well.

noise removed. Thus, linear filtering is a compromise Simulated annealing was used in [3] to perform the

between preserving large discontinuities while still minimization.
removing noise from the data. A good compromise can Koch Network
be very difficult to strike.

As general-purpose parallel processors become Koch, et. al. [4], present another method for
more widely available, and as their cost continues to minimizing (1) based on the work of Hopfield [5,61.
decline, the performance advantage of convolution Hopfield suggested solving optimization problems by
hardware will be reduced. This will allow more changing the binary variable, hi, to a continuous [0,1]
sophisticated filters to be used without an unacceptable variable that is a nonlinear function of an underlying
performance penalty. This paper discusses the parallel state variable. Additional terms are introduced into the
implementation of a 'neural network' approach to the energy function to force the solution toward 0 or 1. The
data smoothing problem. The smoothing technique is

154
0-8186-2113-3/90/0000/0154$01.00 01990 IEEE

minimization is then carried out by having a network of where fij is the interpolated surface and hij and vij are
units, one for each of the fi and the hi, which update the horizontal and vertical line processes. Note that the
their value by the rules: energy expression above is only for hij. The other half

of the expression can be obtained by replacing hij with
fi _ and dmi aE (2) vji, substituting i for j and vice versa. The first term in

(I and dt "i (EL forces hij to either 0 or 1, the second term penalizes
the formation of parallel lines, the third term is the

where mi is the state variable underlying hi. We are not constant price that is paid for introducing
showing the time constants that set the rate of change discontinuities, and the fourth term is an interaction
of the units. The nonlinear function, go, is typically term which favors continuous lines while penalizing
the sigmoid nonlinearity: multiple line intersections, line crossings, or

discontinuous line segments. The line outputs hij and
1 vij are functions of internal state variables. Since the

h + eg2m)mi discontinuity terms are asymtotic to 0 and 1, the update
rules would drive these state variables to ± -c in a futile

Because of the update rule, each site takes a small attempt to drive the visible outputs to 0 or 1. The EG
step down the gradient of the cost function. While each term prevents this by penalizing excessive values for
site must take many steps to reach the minimum of the the state variables. The smoothed data output and the
function, the steps can proceed in parallel. Therefore, for internal state variables are updated according to:
a large number of sites, the total time to perform the
minimization should be reduced. dfi aE dmi DE dni aE

The function used in this study was proposed in dt Yf iit =--i ' Wt -- i (5)

[4]. It is for filtering two-dimensional data, as opposed
to the one-dimensional data smoothing that would be
performed by (1). The presence of a 'horizontal' break, Parallel Implementation
one between fij and fij+l, is indicated by hi. Vertical
breaks, between fij and fi+lj, are indicated by vi. The The network was simulated on an iPSC/2 SX
function used is: (Weitek FPUs) under HIP, the Hypercube Image

Processor [7]. HIP is system for interactive image
E = E[+ ED + EL + EG, (4a) processing, as well as a framework for developing

parallel image processing algorithms. By providing
predefined image decompositions, I/0 procedures, and a

El = '(fij+l - fij)2 (l - hij) , (4b) body of image processing functions, HIP reduces the
ij effort required to develop parallel image processing

algorithms. HIP supports floating-point image buffers
in addition to character and integer types. It also

ED = CDY(fij- dij)2 (4c) supports multi-spectral image buffers. HIP's image
buffers have a simple decomposition. Each image is
divided into Ps many horizontal strips as there are nodes

EL = CV._ hij(l-hij) (4d) and each strip is given to a different node. Each strip is
Uj provided with a border of data to hold initial conditions

for convolutions and similar neighborhood operations.
The top and bottom of the border is updated from the

Cp X hi1 hij+, + Cc X hij active region of the two neighboring nodes. The sides of
Ii Ii the border are updated by replicating the first and last

-2 column.
+ CLX hi1 [(l-hi+lj - vij - vij+l) The network was simulated by using a floating-

ij point image buffer with 5 spectral bands. The first band
holds the state of the smoothed output values, the

+ (1-hi-lj - vi-lj- vi-lj+1)2] second and third hold the horizontal and vertical
discontinuities, while the fourth and fifth hold the state
variables underlying the horizontal and vertical
discontinuities, mi and ni. The input data, di, comes

iC (hij) dhij (4e) from a seperate image buffer. At each iteration, all the
i i sites in the smoothed output layer are updated according

to the update rules in (5). At the end of each iteration,
the border data is updated with the new values from the

155

neighboring nodes. The discontinuities are not updated
every iteration. The frequency of their update is 30.. ----

controlled by a command-line option. For the results 25 12 -8.presented in this paper, they were updated every 4 20'°i 2

iterations. is 25s

The depth layer is initialized with the values of the 10 - 12
image to be smoothed, while the edges and their 10 -o.

underlying state variables are intialized to the middle of 5 Im - kage

their range. The minimization procedure was terminated 0. Size

when the value of the cost function stopped decreasing. 2 4 8 1s 32
The number of iterations this took depends upon the Number of Nodes

data and the settings of the time constants not shown in
equation (2), but was generally between 10 and 20 Figure 1: Time / Iteration vs. Number of Nodes
iterations. and Image Size

Performance 1o&.

There are several facets of the network's OR -0- 128
performance to characterize. We are, of course, interested 10. - - A1 256
in how well it parallelizes. We must also be interested
in the quality of filtering it performs and its ease of use. ---- 512
We will discuss these in order.

Since the filter is iterative, it is impossible to Size
predict in advance how many iterations will be required 0.1
for termination. For this reason we will report the 2 4 8 is 32
execution time in two fashions. When we look at how Number of Nodes

well the network parallelizes, we report the time taken
to complete a single iteration that updates the depth and Figure 2: Time / Iteration vs. Number of Nodes
discontinuity layers. When we compare the filter with and Image Size (Log Scale)
other filters, we will report total times. The timings above were all for a single iteration of

Since each site is updated only as a function of the th e twmrngW also need to know the total time for
sites in a four nearest neighborhood, we would expect t the network. o c nv esed to k no eltotal timef
see nearly linear speedup as we increase the number of the network to converge. These are given below in table
nodes. We would also expect the execution time to be 1 for the 16 node case.directly proportional to the size of the data set. This is The Koch network is not the only non-linear data
justly prt is shownin figures 1 and 2, which report the filter available. We decided to compare its performance
just what is shown in as a funchionpof the with two other filters, a 5x5 linear Gaussian low-pass
time to complete one iteration as a function of the filter and a 5x5 median filter. An artificial image was
number of nodes and the size of the image. Figure 2 fi rted and corruptedith fferen ar tsfifiaoise.uses a log scale, and shows almost perfectly linear generated and corrupted with different amounts of noise.
ueshaior.gT scaleeandu soefs aoare 0.86,f0.91, .ie, The three filters were applied and their execution time
behavior. The speedup coefficients ae08,.9,.4, noted. Finally, the sum of the squared errors wereand 0.97 for the 64 .. 512 image sizes, respectively. coted. the im uaed elow were

Note that the data points missing from figures 1 computed. The image used is shown below in figure 4a.
and 2 are due to insufficient node memory to hold It is 128x128 with the darkest gray level at 25 and the
large images on few nodes. The log scale shows an brightest at 229, with the other 3 levels at 76, 127, and
anomaly for the 64x64 image on 32 nodes, which 178. The noise added was uniformly distributed and 0-
requires some explanation. Recall the border of initial mean. Two magnitudes were used, from -25..25 and -conditions data that HIP provides in its image 12.5.. 12.5. These correspond to SNRs of 13 dB and 20
decomposition. If the border has more lines in it iman dB, respectively. The outputs of the filters for the 13 dB
the neighboring node has in its active region, several SNR are shown in figures 4b..4e. Figure 4f shows the
themneig riong ndehs will be needed to update ver horizontal discontinuities detected by the Koch network,
communication steps wthe vertical discontinuities are similar. The filters were
borders. HIP determines if this is the case and uses a also applied to the uncorrupted image to see what
fast border update if possible, and a slow-but-sure update dagetywolinicupnerctaa.Iesm
if not. A 64x64 image on 32 nodes has only two rows damage they would inflict upon perfect data. The sums
in its active region, so we are seeing a different border of the squared errors (SSE) are plotted below in figure 3.

update procedure. The alert reader may be asking why A perfect filter would be a flat line at the bottom of the

more than a single row in the border is needed. graph. The steepest line is the SSE for the unfiltered,

Actually, it is not. This is a just-discovered coding error noisy, image. Data points above this line show a filter

in HIP which will be corrected before it is released to that is doing more harm than good.

the iSC User Group library.

156

method for determining them. Furthermore, the param-

3E ~~~~~eters are sestv otemagnitude of the data. O..1 dt
E requires different parameters than 0..255.

Lu 3E+_. s5s Figure 4f shows another problem of the network.
2E • e Its small neighborhood size makes it sensitive to tiny
2E A Us regions of correlated noise. This can be overcome by the

'd 1E+ KM

E use of multiresolution techniques [81, which seem to
i SE÷-. sKh give excellent results. We hope to add image pyramid

0 0.1 0.2 buffers to HIP in the future in order to attempt to dup-

Noise Level licate the results in [8].

Figure 3: Sum of Squared Error vs. References
Filter Type and Noise Level [1] Poggio, T., Torre, V., Koch, C. (1985)

This figure shows that the Koch network performs Computational Vision and Regularization Theory,
much better than the linear Gaussian filter, but not as Nature, Vol. 317: 314-319, 26 Sept. 1985.
well as the median filter. It also takes much longer to
execute, as shown below in table 1. These are the times [21 Narayanan, K.A., O'Leary, D.P., Rosenfeld, A.
on 16 nodes for the 13 dB SNR images. (1982) Image Smoothing and Segmentation by

Cost Minimization, IEEE Trans. Sys., Man, and
Table 1: Execution Times of Filters (sec.) Cyber.,SMC-12(1): 91-96, January.

Image Size Gaussian Median Koch
64 .577 .483 10.47 [31 Geman, S., Geman, D. (1984) Stochastic
128 1.1 .883 19.48 Relaxation, Gibbs Distributions, and the Bayesian
256 2.26 4.14 41.91 Restoration of Images, IEEE Trans. Patt. Anal. and
512 3.54 14.18 63.86 Mach. Intell., PAMI-6(6): 721-741, November.

Conclusions [41 Koch, C., Marroquinj., Yuille, A. (1986) Analog
'Neuronal' Networks in Early Vision, Proc. Natl.

Neural network approaches to machine vision tasks Acad. Sci. USA, Vol. 83: 42634267, June.
are the focus of a great deal of research interest. Part of
the reason for this is because of their massive parallel- [5] Hopfield, J.J. (1984) Neurons with Graded
ism. Their fine-grained structure allows them to be Response Have Collective Computational
mapped onto almost any parallel architecture, although Properties Like Those of Two-State Neurons, Proc.
networks that are almost completely interconnected will Natl. Acad. Sci. USA, Vol. 81: 3088-3092, May.
pay a performance penalty. Those networks with res-
tricted interconnections between units, such as the Koch [6] Hopfield, J.J., Tank, D.W. (1986) Computing with
network, are especially easy to implement on distrib- Neural Circuits: A Model, Science, Vol. 233: 625-
uted-memory computers. This is shown by the excellent 6338, August.
speedup as the number of nodes increased and the O(N)
behavior as the data size increased. [7] Daniel, R. Jr., Carter, M.B., and Teague, K.T.

While the Koch network is easily parallelized, so (1989) Design and Implementation of a Parallel
are many standard filters used in image processing. The Image Processing System for the iPSC/2. In
median filter performs better than the Koch network by Proceedings of the Fourth Conf. on Hypercubes,
all the measures we used. It also has the advantage of a Concurrent Computers, and Applications
predictable execution time. Since the Koch network is
iterative, one can never be entirely sure how long it will (HCCA4), Monterey, CA, April.
take to complete. The Koch network does have an [8] Battiti, R. (19°9) Surface Reconstruction and
advantage over the median filter for the case where a Discontinuity Detection: A Fast Hierarchical
dedicated VLSI implementation is considered. The Approach on a Two-Dimensional Mesh. In
update rules in (5) can be implemented by analog com- Proceedings of the Fourth Conf on Hypercubes.
putation, which would offer a tremendous performance Concurrent Computers, and Applications
improvement over the digital multiply and add. Ccurrent C A, Appll.

Another disadvantage to the Koch network is that it (HCCA4), Monterey, CA, April.
is hard to use. There are many parameters that must be
balanced to achieve good performance and no a priori

157

..
6]

(a) Pure Input Image (b) Noisy Input Image

.4 "

It' Filtered with 5x5 Gaussian (d) Filtered with 5x5 Median Filter

.4k

(c) Filtered wilth Koc N•th N (irk 11) 1l ri01eri•1t:l iis ,flltinuitics ITIO 1i Koch Net\l-,x tk

|i iit.e 4: Iinput 1Images and Filleted (O)ulptlts

158

Component Labeling Algorithms

on an Intel iPSC/2 Hypercube *

Babak Falsafi Russ Miller

Graduate Group in Advanced Scientific Computing
226 Bell Hall

State University of New York
Buffalo, NY 14260

miller@cs.buffalo.edu

ABSTRACT

One of the intermediary stages of image analysis effort to develop algorithms that are both time and
in vision is the process of component labeling. Given space efficient, we consider manipulating various data
a digital black/white image distributed throughout structures, using a variety of sequential and paral-
the nodes of an Intel iPSC/2 hypercube, the objec- lel component labeling schemes, and performing load
tive of this research is to develop and implement effi- balancing techniques to maximize parallelism. The
cient parallel algorithms for labeling the (black) con- images currently under experiment range from real
nected components. The basic solution strategy is pictures extracted from scanners, to medical X-rays,
based on divide-and-conquer, in which each node ini- to digital images generated with respect to certain
tially labels the subimage that it is responsible for. constraints. Experimental results, analysis, and in-
The results of the local labeling are then combined us- terpretation of various algorithms are presented.
ing boundary-overlapping resolution strategy. In an

This work was partially supported by NSF

grants IRI-8800514 and ASC-8705104.

159
0-8186-2113-3/90/000010159$01.00 0 1990 IEEE

1. Introduction boundary-overlap resolution. Section 4 discuses an
algorithm for the path resetting problem in a resolu-

A digitized black/white image, also known ar tion table based on a series of union/find operations.a binaryj image, consists of a two-dimensional array Load balancing techniques are presented in section 5,

of pixels with foreground pixels having the value 1 ad fally theimges are givente en of
(blak),andbacgrond ixel haingthevale 0 and finally the timing results are given at the end of

(black), and background pixels having the value 0 the paper.

(white). A (connected) component in an image is de-

fined to be a set of maximally connected foreground
pixels, where two pixels are connected if and only 2. Sequential Algorithm
if they are adjacent. There are two common defi-
nitions of adjacency. In the first definition, known as The sequential labeling algorithm that we use is
4-connectivity, two black pixels are defined to be ad- based on a two-pass labeling scheme similar to [1].
jacent if and only if one pixel is directly above, below, During the first pass the image is examined row by
to the left or to the right of the other pixel. In the row (top-down, left to right) while labeling the fore-
second definition, known as 8-connectivity, two black ground pixels as follows.
pixels are defined to be adjacent if and only if one is
one of the eight closest pixels of the other. The prob- i) Assign a new label to a foreground pixel

lem of component labeling is to assign a unique label that is not connected to any other previ-
to every component in an image so that every pixel is ously labeled foreground pixel.
assigned its component's label. ii) Assign the same label to a foreground pixel

Our goal is to design algorithms for labeling the that is connected to a previously labeled

components of a digitized image on a hypercube. The foreground pixel.

algorithms presented assume that the binary image to iii) If there are two adjacent pixels with differ-
be processed has been partitioned into vertical slices ent labels, create an entry in the resolution
and distributed throughout the nodes so that each table indicating that the~two labels must be
node is responsible for a unique strip as illustrated in resolved during the second pass.
figure 1.

Once the first pass is complete, some of the com-

Nodes: a b c d ponents are not labeled in a consistent fashion (as
discussed in iii above). The reset-paths procedure,
discussed in section 4 takes the resolution table and
resolves the conflict among the labels producing a fi-
nal table which contains a list of the labels resolvedAL and their new values.

During the second pass through the image, as
each foreground pixel is examined a search is per-
formed in the resolution table to see if the label of

Figure 1. Dividing the image and distributing it the pixel should be updated.

amongst the nodes

3. Conflict Resolution
We perform component labeling based on divide- Since the sequential algorithm is applied to each

and-conquer in two major steps; the first step consists subimage independently, it is expected that inconsis-
of a sequential component labeling algorithm that is tencies in the assigned labels exist for objects that lie
applied to each vertical slice (base case), the sec- across the boundaries of subimages.
ond step consists of a strategy for resolving the con-flicts between the boundary labels of the neightboring In this section we describe algorithms to resolve
subimages (conquer). the inconsistencies at the boundaries of subimages.We first turn our attention to a simple approach to

In section 2, we give a brief description of an solve the problem, and later present load balancing
approach to the sequential step. Section 3 covers techniques to speed up the process.
two different algorithms for solving the problem of

Conceptually we arrange the nodes of the hyper-

160

2) In doing step ii, it is necessary to have a list of 3.1.2 Alternative Approach
pixel positions corresponding to a label in a given The alternative approach proceeds by pairing la-
array of boundary pixels. bels of adjacent foreground pixels in the two arrays

The table is therefore initially set up to contain of boundary pixels and forming a table (figure 3).
an entry corresponding to each label and sorted by Next, the table is sent to the path resetting algorithm
incrtasing value of the labels so that adding entries discussed in section 4, whereby a resolution table is
would consist of performing a search on the label and obtained. The advantage of this over the initial ap-
assigning a new value to it. For every array of bound- proach is that the find and union operations used in
ary pixel there is a list of labels created with each label the path resetting algorithm use path compression so
having a list of pixel positions assigned that label, that successive search operations in the forest can be

performed more efficiently.
The above algorithm can then be implemented as

procedure resolve-overlaps. Given a foreground pixel A variation of this algorithm that we have imple-
at position x labeled 1, two arrays of boundary pixels mented avoids making some duplicate entries in the
coil and col2, two lists of labels listl and list2, and table as much as possible so that the input to the
a resolution table T the procedure finds the pixels path resetting algorithm would be smaller. This is
adjacent to it across the boundary and resets their done by comparing the current label pair with the
label in the table to I (we refer to the adjacent pixels most recent entry inserted in the table, and insert the
across the arrays as "neighbors"). current entry only if it is different.

In figure 3 an example of an input to the path
resetting algorithm set up by above scheme is shown.

resolve-overlaps The two boundary pixel arrays of figure 2b are con-

sidered, and the duplicate entries are omitted.
procedure resolve.overlaps (coil, col2,

list l ,list2,T,l,x)
for each i in neighborsof(xcol2) do il 12

k := label of i 5 2
tempk := k 5 3
if (k, newk) E T 6 4

k := newk
if (k $ 1)

add (k,1) to T
setofpixels := seaxch(list2,tempk) Figure 3. Table set up for the path resetting
for each j E setofpixels do algorithm

resolve-overlaps(col2,coil, The conflict resolution table given in figure 2c is
list2, list 1,T,1,j) the result of the path resetting algorithm applied on

end for figure 3.
end if

end for

4. Path Resetting
A complete resolution table can then be formed The sequential algorithm discussed in section 2

by successive calls to resolve -overlaps for all the fore- and the boundary resolution algorithm discussed in
ground pixels in one of the arrays as follows: section 3.1.2 produce tables of the form illustrated in

figure 3. In these tables for every label pair (11,12)
there can be a corresponding label pair (11,13) or

for each black pixel x in coil do (12,13). In either case the labels 11, 12 and 13 are to
1 := label of x be resolved to a unique label by modifying the table
if (1, newl) E T to contain the label pairs (11,11), (12,11) and (13,11)

I := newl instead. Path resetting is the process of grouping the
resolve-overlaps(coil,co02, labels into disjoint sets where an element belongs to

listl ,lis12.T.i,x) aset if and only if there is an entry corresponding to
end for that label and another member of the same set in the

161

cube in a linear array, with each node having a la- runs the boundary-overlap resolution algorithm and
beled slice of the image. The algorithm proceeds by passes the results to nodes a, b, and d.
entering a loop. In each iteration, the nodes in the The boundary-overlap resolution algorithm takeslinear array are paired, the boundary-overlap resolu- Thbonayveaprsltnagrimtks
tion algorithm is applied to each pair, the boundaries as input two arrays of boundary pixel labels and re-tionare goriuthm isappied, teanthen pairs of slices turns a resolution table for updating the boundary
are consequently updated, and thnpiso lcs pixels. An example of arrays of boundary pixel la-are combined into bigger slices, thereby reducing the bels An expre of cof boun is las
number of slices to be processed by 2. Figure 2a illus- trated in figure 2b, where a 0 denotes a background
trates the array of processors for a 4-node hypercube. pixel Tn resulting ere a 0 te s exa mple
In the first step all of the 4 nodes are participating in pixes. The resulting resolution table for this example
the process of conflict resolution, and then groups of
two are formed in the second step, where conflict reso- We present two different approaches for solving
lution only occurs in the nodes lying at the boundaries the problem of boundary-overlap resolution.
of the bigger slices (i.e. b and c).

Iteration: 3.1.1 Initial Approach
Is a-7#-I :#-dInitially, we used a recursive algorithm for re-

(a) solving the inconsistencies in the labels assigned to

2nd I adjacent foreground pixels across the boundary (note
that adjacency is defined by 8-connectivity). The idea
is to take foreground pixels from one array and a ta-

0 0 ble T (initially empty) and perform the following for
0 2 Old New each pixel x:
5 2

i5 0 2 55 3 3 5 i) Let I be the label of z. If there is a (1, newl)
0 0 in T let I := newl.
'0 4, 4 5

6 4 5 5 ii) For each y an adjacent pixel of r:
'6 2, 6 56 0 a) Let k be the label ofy. If there is a

(b) (c) (k, newk) in T let k := newk.

b) If k $ 1, add (k,1) to T, and for all
foreground pixels having the same label

Figure 2. Conflict resolution occurring in each aore pea s in th s labe

iteration (a) linear array of nodes

(b) boundary pixel arrays (c) reso- The labels of the foreground pixels change as
lution table the algorithm proceeds. Therefore whenever labels

of foreground pixels are to be used, there is a search
performed on the label in the resolution table to check

3.1 Boundary Resolution Algorithm if there is a new value associated with it.

In each iteration of the conflict resolution algo- Applying the above strategy to the arrays of fig-
rithm labels are resolved at the boundaries of each ure 2b, we will have I = 5 for the third foreground
pair of slices in the linear array of nodes as discussed pixel from the top in the left array. The adjacent pix-
previously. As the boundary resolution occurs be- els with inconsistent label are both labeled 2. The set
tween two of the nodes located at the boundaries of of indices of all the pixels labeled 2 is {2,3, 101. For
two vertical strips, one of the nodes sends a boundary each of the elements of the set step ii is repeated with
pixel array to the other node, which is in turn respon- I = 5.
sible for performing the boundary-overlap resolution Formulating the above into a procedure, we note that:
and distributing the results to all the nodes in the
two vertical strips. For example, consider the con- 1) If labels are to be searched, the table must be
figuration of the linear array of nodes in the second kept sorted by increasing order of 11 for each
iteration illustrated in figure 2a. Node b sends the (11,12) entry so that binary search could be ap-
rightmost array of boundary pixels to node c. Node c plied.

162

table. a pixel-long overlapping region, (i.e. the last entry in
the arrays sent to one node is the same as the first en-

Given a resolution table T, procedure reserpaths try of the arrays in the neighboring node) so that the
proceeds by sorting the labels in T ascending order diagonally adjacent pixels at the end of each subarray
and placing them in a forest F where each label is be considered in the process of boundary resolution.placed at the root of a tree. Grouping of labels into

disjoint sets can then be achieved by a series of find
and union operations [2]. The end result is then ob-
tained by taking the root of each tree in the forest as

the representative of the tree and create a new table w w w w
by pairing every label in each of the trees with its
root. node a node b

reset-.paths 0 U

init-fIorest
(F. T)

for each (11,12) E T node c node d
rootl find(F,11)

root2 find(F.12) Figure 4. Dividing the boundary pixel arrays
if rootl $ root 2 then into subparts

union(F. rootl ,root2)

end for

tempT:= an empty table 6. Timing Results
for each tree S in F do

root := rootof(F.S)

for each 1E S do
add (1, root) to tempT

end for
end for
return tempT

5. Load Balancing
In order to balance the load on all the processors,

the process of boundary resolution between two ver- (a) Spiral (b) Emblem

tical strips performed by a single processor discussed
in section 3.1 can be divided among all the nodes r
within each vertical strip (figure 2a). By allowing ev- Sm Sim$r W wt
ery node in a group of nodes in a vertical strip to UWn• cff Cmm
perform boundary resolution on a subdivision of the wMICrS
two boundary pixel arrays, intermediary resolution CONSULTANT
tables can be formed which are then merged together
to result a final resolution table. The finale resolu- - _
tion table is then distributed among the nodes in the
group. (c) Snake (d) ID

As an example consider the configuration shown
in figure 2a, where boundary resolution is occuring
between nodes b and c in the second iteration of the
algorithm. We divide the two arrays of boundary pix-
els by the number of nodes and distribute them as in Figure 5. The images for which timing results were
figure 4. The subparts of the boundary arrays have measured.

163

Figure 5 illustrates the images, for which the tim- Table 3. The execution time of the alternative al-
ing results are given in this section. The images are gorithm on 32 nodes.
512x512 matrices of black and white pixels. The algo- There is certain amount of overhead involved
rithms are exnained on an Intel iPSC/2 Hypercube. with the load balancing technique we have used. As

The runtime of the sequential algorithm is pro- the boundary-overlap resolution algorithm is applied
portional to the number of pixels in the image and the to each node in a group of nodes in a vertical slice,
pattern of the image [3]. Therefore the nodes with a resolution table is produced. These intermediary
subimages that have many partial segments of con- resolution tables must be merged to result a final res-
nected components will have a higher load, as there olution table. Distributing the boundary pixel arrays
are more entries in the resolution table to be resolved and merging the intermediary resolution tables are
by the path resetting algorithm. In the case of images the major overhead factors responsible for the non-
such as the ones illustrated in figures 5a and 5c, the linearity of boundary-overlap resolution running time
nodes will have the same amount of load due to the with respect to the number of nodes partaking in the
symmetry of the images except for the leftmost and process of boundary resolution.
rightmost node in the linear array of nodes.

Load Balancing

First Algorithm Picture Elapsed Time(ms)
Picture Elapsed Time(ms) Snake 1042
Snake 1546 Emblem 1356
Emblem 2962 Spiral 1017
Spiral 1859 ID 1370
ID 3215

Table 4. The execution time of the final algorithm
Table 2. The execution time of the initial algo- with load balancing on 32 nodes.

rithm on 32 nodes.

Tables 1, 2 and 3 provide the elapsed execution
time of the code consisting of the sequential and the 7. Future Research
conflict resolution algorithms. Although the load balancing technique we have

The results of the alternative algorithm for con- introduced does show an improvement to the conflict

flict resolution show a considerable improvement over resolution algorithm, the overhead is still considerable

the initial algorithm specially in the case of Emblem and as the number of nodes increases the elapsed time

and ID where the elapsed time using the alternative for the conflict resolution becomes comparable with

algorithm is less than half of that of the initial algo- the execution time of the sequential algorithm. We

rithm. The disadvantage of the initial algorithm is are currently concentrating on reducing the overhead

due to the fact that for every new pair (11, 12) added associated with the load balancing technique.

to the resolution table all (13,11) entries added in the
preceding recursion levels must be reset to (13,12).
Whereas in the case of the alternative algorithm reset- 8. References
ting a set of previously resolved labels consist of per- [1] Kak, Avanish C., Azriel Rosenfeld.
forming a union operation on two disjoint sets which Digital Picture Processing. New York:
has a running time of 0(1). Academic Press, 1982.

[2] Reingold, Edward M., Jurg Nievergelt and

Second Algorithm Narsingh Deo.

Picture Elapsed Time(ms) Combinatorial Algorithms: Theory and Prac.

Snake 1078 ice, Englewood Cliffs: Prentice Hall, 1977.

Emblem 1441 [3] Tarjan, R. E., J. Van Leenwen.
Spiral 1061 Worst-Case analysis of set union algorithms,
ID 1417 J. ACM, 31 (1984).

164

Digital Halftoning by Parallel Simulation of Neural Networks

Robert M. Geist
Roy P. Pargas

Prashant K. Kharnbekar
Department of Computer Science

Clemson University
Clemson, South Carolina 29634-1906

Abstract 4x4 tile is

The digital halftone resolution problem may be stated 1/32 17/32 5/32 21/32
as follows: given an n x n array V of real numbers, D 25/32 9/32 29/32 13/32
Vij E [0, 1], produce an n x n array w of binary in- 7/32 23/32 3/32 19/32
tegers, wij E {0, 1}, such that w, when displayed on a 31/32 15/32 27/32 11/32
binary output device such as a computer monitor or laser
printer, is a "good" representation of the real informa- Note that a uniform intensity of 0.5 would cause 8 of
tion, the intensities contained in V. Standard halftone every 16 pixels (every other one) to be turned on.
resolution algorithms, such as ordered dither, often mask In Figure 1 we show a 1024x 1024 pixel image of a
specular information contained in image data. A new al- ray-traced scene containing two spheres, a checked floor,
gorithm, based on feedback neural networks, is described three walls, and a rectangular mirror (on the back wall).
in detail and shown to provide an enhanced specular in- This image was resolved using ordered dither D, and
formation display. Three parallel implementations and was printed on a conventional 300 pixel per inch laser
one parallel/vector implementation on an Intel iPSC/2 printer.
hypercube are described. The programs are run on two Although this image offers reasonable shading, we
images, one of size (256 x 256), and the other of size contend that the ordered dither, as well as other con-
(1024 x 1024). Parallelism results in a speedup of 7.6,
with an efficiency of 95%, using eight processors. Vec- monly used halftoning algorithms, can mask much of the
torization provides a time improvement of approximately specular information available in the data. For this rea-
2.5 over nonvector implementations. son we have developed an alternative algorithm whose

primary purpose is enhanced specular informr.tion dis-
keywords: digital halftone, neural networks, fixed- play.
point iteration, parallel simulation, iPSC/2 hypercube In section 2 we provide the theoretical founda-

tions of this algorithm, and in section 3 we describe its
1. Introduction. implementation on an Intel iPSC/2 hypercube. Section

4 contains conclusions and current directions.
The digital halftone resolution problem may be stated
as follows: given an n x n array V of real numbers, 2. Algorithm Design.
Vij E [0,1], produce an n x n array w of binary in-
tegers, wij E {0, 1, such that w, when displayed on Our algorithm is based on feedback neural networks [4,6].
a binary output device such as a computer monitor or A neural network is collection of simple analog process-
laser printer, is a "good" representation of the real in- ing elements designed to mimic biological neurons. The
formation, the intensities contained in V. The obvious computational paradigm provided by such networks is
resolution algorithm, round the values in V, fails to sat- a radical departure from that of the classical von Neu-
isfy most interpretations of "good". For instance, if Vij mann architecture. The "input" to such a network is
= .4999999 for all i, j, then wij=0 for all i, j, and a a matrix of interconnections among the processing ele-
desired gray image is displayed as white. Consideration ments, together with an initial voltage that is applied
of neighborhood intensities seems imperative, to each element. The networks are designed so that the

Many halftone resolution algorithms have been stable output voltages of the analog elements are binary.
proposed (see [8]). The most commonly used is probably The collection of all binary output levels is then inter-
the ordered dither [2], in which we tile the image matrix preted as the "result" of the computation.
V with a smaller fixed array D of threshold values, and A four element example, from [9], is shown in
then turn on the pixel (set wi,j=1) if and only if Vj Figure 2. Neurons are represented by amplifiers, each
exceeds the corresponding threshold value. A standard providing both standard and inverted outputs (voltage

165
0-8186-2113-3190/0000/0165$01.00 0 1990 IEEE

Figure 1: Ray-traced image resolved by ordered dither.

Oi E[-1,1]). Synapses are represented by the physical we scale the intensities over [-1,1] by letting vi = 2V1 - 1,
connections between input lines to the amplifiers and, in then our choice is given by
feedback, output lines from the amplifiers. Resistors are
used to make these connections. If the input to amplifier IE = V1 - C Vj3

i is connected to the output of amplifier j by a resistor jEnhbd(i)

with value Rj, then the conductance of the connection Tj = -Kij(2 - Ivi + vI)
is Tij, whose magnitude is 1/1R and whose sign is deter- where C and Kij are non-negative constants. The term
mined by whether the connection to amplifier j is from Kij depends only upon the mod 4 row and column num-
the standard or inverted output. Hopfield [6] showed bers of pixels i and j, and is symmetric in i and j.
that when the matrix T is symmetric with zero diagonal Note that as vi (and hence Ii) becomes larger,
and the amplifiers are operated in "high-gain" mode, the it becomes more important to turn that pixel on (set
stable states of the network are binary ({-1,1}) and are 0i = 1) to reduce E in (1). However, there are some
the local minima of the computational energy, attenuating factors. From (1) we see that (-1/2)Tij

N-1 N-1 N-1 can be viewed as the strength with which we insist that

E(O) = (-1/2) 1 E Ti,,BOj - E Oi.. (1) adjacent pixels assume opposite parity, and this is at a
i=0 j=0 i=0 maximum when the underlying intensities are of equal

magnitude and opposite sign, e.g. one black and one
Here Ii is the external input to amplifier i. white (vi = 1, vj = -1) or both gray (vi = vi = 0).

Such neural networks offer a natural representa- We should also note that some control over av-
tion of a binary display. Each pixel is represented by a erage region intensity is at our disposal. If we let m =
neuron that is connected to and influenced by its neigh- [•iER Vi + 0.5j denote the rounded total intensity over
boring pixels (neurons). A network binary stable state region R, then we can add to E(O) a summand of the
is then a halftone resolution. form

Several authors have considered applications of C(+ 1 M)2

neural nets to digital halftoning [1, 3], but difficulties iER 2
remain. First, there is no natural mapping from the where C > 0, and, to maintain a zero-diagonal T matrix,
desired image intensities, the V matrix, to the network another of the form
parameters, the Tj's and the li's. Reasonable choices 1 0?
abound. In our implementation we have selected a sim- C(E 1 •L)
ple but easily motivated specification for these values. If iER

166

I4 Inputs

T42

1i 2 aOutputs

Figure 2: Four element feedback network.

The result is equivalent to adding C(m - IRI/2) to each that is,
Ii and -C/2 to each Tj (i, i E R), and the net effect ui= Ri(j 7ijig(uj) + Ii)
is to force m of JRj pixels on. Applied on a global scale, j
this modification lends force to providing a resolution
with correct average intensity. or simply

A second difficulty we face is that networks of u =
N = 10242 = 1, 048,576 neurons have not yet been built, where G(u) = diag(R)(Tg(u) + I), diag(R) has
and we must resort to net simulation, which can require Rj's on the diagonal and O's elsewhere, and g(u) =
excessive memory space and execution time. (g(ui), g&a2), ...). Thus we seek a fixed point of a cer-

Net simulation is traditionally approached (e.g. tain N-dimensional function. If I I denotes the max
[9]) as a numerical integration of the system of N differ- norm on Euclidean N-space and II its induced matrix
ential equations describing the operation of the ampli- norm, then since R, < 1/]T,,j2 we have
fiers [6]:

IG(u) - G(ul)l = Idiag(R)T(g(u) - g(ut))l

Cidui/dt = -Tjg(uj) - uj/R, + Ii. (2) < Ildiag(R)TII . jg(u) - g(ul)l
• • < Ig(u) - g(u01

< A, u- ull,
Here the u, are internal input voltages to the amplifiers,
and are related to the desired output voltages, the 6,, where the last inequality follows from a Taylor expansion
by a sigmoidal gain function, g(z). A reasonable choice and bounded derivative of g. Thus, for gain X < 1, con-
for g(z) is a scaled hyperbolic tangent, g(z) = tanh(Az). vergence of the simple iteration scheme, uk+ 1

- G(uk), is
Here A is called the gain. The C, are the input capac- straightforward (see, e.g. [7]). Unfortunately, the Hop-
itances of the amplifiers, and R, = 1/(l/p + rj [•,j1), field result speaks only of high-gain operation, and we
where p is amplifier input resistance, must consider \ > 1, where the simple iteration is likely

We have found numerical integration of large (220 to diverge. Fortunately, there is an intriguing alterna-
neuron) systems of the form (2) to be extremely time tive.
consuming, and therefore have developed an alternative In [5] Hillam established a remarkable result for
approach. Any equilibrium of (2) is given by functions on the real line: if f : [a, b] --+ [a, b] satisfies

If(x) - f(y)l <_ Mlz - yl, then the iteration scheme

0 T•,jg(uj) - u,/R. + I, - 3 ----I Z O)+ M-z (3)
, -M M+ 1 M+ 1

167

converges to a fixed point of f. To our knowledge, the uations of the (computationally costly) function g(u).
conjecture that this result extends to higher dimensions Programs P2 and PV update each pixel's inten-
remains unresolved. sity using only old values of its neighbor's intensities.

Nevertheless, we have found substantial empirical Separate arrays hold the new u and g(u) values. This re-
evidence to support it. Using (3) with M = A, we find quires more memory per node and more iterations (corn-
that convergence to a fixed point of G (that is, average pare P1 and P2). However, because g(u) is evaluated
component error Iui - G(ui)l < 10-10) usually requires only once for each new pixel intensity u, total number
fewer than 200 iterations. We have not found a net for of operations and overall execution time are less for P2.
which this scheme fails to converge. PV is a vectorized version of P2. Additional memory is

In Figure 3 we show the results of application of used by PV to make vectorization more efficient. Vector-
this algorithm to the same data used in Figure 1. We ization is possible because of the use of only old values
note the substantial addition of specular information, of u to compute new values.
Spheres contain reflected images of the floor, the side Note that each complete intermediate iterate,
walls (including the extent of the walls), and even each uk+l, can be regarded as a halftone resolution and dis-
other. The walls also contain marked reflections of the played, thus allowing us to observe the convergence.
floor and the mirror. In Figure 4 we show intermediate resolutions of the

256 x 256 image (a digitized photograph) at iterations

3. Implementation. k = 4,8,12,16,24,28,32,50,100.
The ratio of execution times of versions S and

P1 shows a speedup, due to eight-way parallelism, of
A sequential iteration a floating point vector, u, of 6080/800 = 7.6, with an efficiency of 7.6/8 = 95%.
length 1,048,576 can represent an enormous computa- Comparing PV and P2, the executions times show that
tional expense, and a parallel implementation is highly the improvement factor due to vectorization is approxi-
desirable. We implemented our net simulation algorithm mately 289/114 = 2.5.

on an Intel iPSC/2 hypercube with 16 nodes, each with Table 1, column P3, gives the time required to

Intel 80386/80387 scalar processors and 8 megabytes of g atte 10 x 102 pixel iae si n Fire
memoy. igh ofthehyprcub noes avevecor ro- generate the 1024 x 1024 pixel image shown in Figure

memory. Eight of the hypercube nodes have vector pro- 3. The method, like P2 and PV, computes the new u
c,,ssors and an additional megabyte of vector memory. matrix using old u values. This version is not vector-

.The program was written in C and run on one im- ized because vectors were available only on eight of the
age of size 256 x 256 (Figure 4) and one of size 1024 x 1024 sixteen nodes of the iPSC/2 used. It required approxi-
(Figure 3). Timing results of these runs are summarized mately 176 iterations taking 2579 seconds, or 43.3 min-
in Table 1. utes, of computation, and 110 Mbytes of memory. Had

Four versions of the algorithm were developed: a vectors been available on all nodes, we estimate that a
sequential version (S), a parallel version (P1) running vectorized version would improve by a factor of 2.5, or
on eight scalar nodes, a second parallel version (P2) on require 2579/2.5 ; 1032 seconds or 17.3 minutes. To
eight nodes, a parallel version (P3) on sixteen nodes, and the best of our knowledge, Figure 3 is the only neural
a parallel/vector version (PV) running on eight vector network-generated image of this size.
nodes. The large (1024 x 1024) image (Figure 3) was
produced using P3. All other programs used the the
smaller (256 x 256) image (Figure 4) for data. For P1, 4. Future Work.
P2, and PV, input data are distributed evenly among
eight or sixteen nodes, a node receiving an equal number We are currently working on a vectorized version of P3.
of rows of input data. Program S, of course, holds all We are modifying program PV in an attempt to reduce
the data in a single node's memory. memory requirements. The goal is to fit the data into

Programs S and P1 were versions designed to con- the memory available on eight vector nodes. A paral-
serve memory. Hence, the array containing the pixel lel/vector version should reduce the execution time by a
intensitie'z were updated in place, and functions (such factor of ; 2.5, i.e., down to approximately 34.6 minutes
as g(u)) were reevaluated whenever needed (rather than using eight vector nodes. The ability to view a new im-
saved in temporary arrays). There are two advantages to age every 35 minutes should greatly facilitate the user's
this approach: (a) less memory is used since additional quest for the parameterb that generate the most accurate
arrays to hold new values temporarily are not required, images. We also continue to experiment with different
and (b) the method converges with fewer iterations since parameters K and C, to discover relationships between
new upd.'ted values are used immediately. Two disad- the parameters and the quality of specular information
vantages however are: (a) vectorization of the operations obtained. Finally, we are currently experimenting with
is difficult, and (b) the algorithm requires multiple eval- variations of the neural network algorithm used.

168

Figure 3: Ray-traced image with enhanced specular information.

Version S P1 P2 PV P3
Number of Nodes 1 8 8 8 16
Image Size (N) 256 256 256 256 1024
Execution Time (secs) 6080 800 289 114 2579
Memory Required (Kbytes per node) 5720 755 892 960 6877
Number of Iterations 133 134 154 154 176
Number of Operations (millions) 641 641 319 319 5810
MFLOPS 0.105 0.801 1.105 2.809 2.253

Table 1: Summary of results

[4] S. Grossberg. Nonlinear neural networks: Principles,
mechanisms, and architectures. Neural Networks,

References 1:17-61, 1988.
halftoning [5] B.P. Hillam. A generalization of krasnoselski's theo-

[1] D. Anastassiou. Neural net based digital hafoig rem on the real line. Math. Mag., 48:167-168, 1975.
of images. Proc. IEEE Int. Symp. on Circuits and
Systems, June 1988. [6] J.J. Hopfield. Neurons with graded response have

collective computational properties like those of two-
[2] J. Foley and A. Van Dam. Fundamentals of Interac- state neurons. Proc. Natl. Acad. Sci., 81:3088-3092,

tive Computer Graphics. Addison-Wesley, Reading, 1984.
Massachusetts, 1984. [7] E. Isaacson and H.B. Keller. Analysis of Numerical

[3] R. Geist and R. Reynolds. The most likely steady Methods. John Wiley & Sons, New York, 1966.

state for large numbers of stochastic traveling sales- [8] J. Jarvis, C. Judice, and W. Ninke. A survey of
men. Proc. First Int. Workshop on the Numerical techniques for the display of continuous tone pictures
Solution of Markov Chains, pages 569-581, Raleigh, on bilevel displays. Comp. Graphics Image Process.,
NC, January, 1990. 5:13-40, 1976.

169

F~igure 4: Intermediate R~esolutions of a Digitized P~hoto.

Fl . P~age and G. Tagliarini. Algorithm (developmlent
for neural networks. In Proc. SIPIE Syrup. on In-
nor'atirc Science and Tbc/nology. Los Angeles. CA.
Januiiary I 988.

170

Hypercube Algorithm for Image Decomposition
and Analysis in the Wavelet Representation

Terrance L. Huntsberger Beverly A. Huntsberger
Intelligent Systems Laboratory Parallel Supercomputer Initiative

Department of Computer Science Computer Services Division

University of South Carolina
Columbia, SC 29208

Introduction results of some experimental studies are shown.

The tremendous amount of data contained in an im-
age oftentimes precludes the extraction of useful in-
formation in real-time environments. A multiresolu- Wavelet Representation

tion representation can be used to obtain structural
properties of a single image or sequences of images[8]. An image can be considered to be a member of the

These structural properties are useful for such opera- function space L2(R 2). Expansions of L2 (Rn) func-
tions as texture analysis, image segmentation, object tions are obtained from translations and dilations of
identification and stereo matching[7,12,11]. the wavelet functions O(x)[9], where n is the dimen-

sionality of the vector space. The multiresolution ap-
A number of methods have been sugested to ob- proximation of an image is given by A2V f(x, y), where

taim a multiresolution representation of images. The j < 1 and f(zy) is the two-dimensional gray-scale
pyramidal representation of Burt[1] and Crowley[3], image. The operator A 2V projects the image on a vec-
the morphological filter approach of Chen and Yan[2],
the multiscale Gaussian filter of Marr and Poggio[10], tor space V2 , C L2 (R). This projection space has
the subband coding technique of Woods and O'Neil[14], the properties of causality, translation invariance and

and the wavelet representation of Mallat[9] are some convergence to the original signal as j --* +oo.

examples. The wavelet representation offers the best The orthonormal basis of V2 1 is derived from a
basis for image analysis, since the orthonormal basis scaling function O(z, y), whose Fourier transform is a
guarantees no correlation between image details sam- low pass filter for images. This means that the opera-
pled at different scales. Correlation found in the Burt tor AV, is equivalent to a low pass filtering of the image
and Crowley pyramid structure and the Chen and Yan followed by a uniform sampling at the resolution 2j. If
morphological space hamper pattern recognition op- the Fourier transform of the scaling function is given
erations due to difficulties in selection of appropriate by:
distance metrics. In addition, the wavelet represen- +00 +00

tation has good localization properties in the Fourier 4(w, v) = II 17 H(2-Pw, 2-v),
and spatial domains[9]. p=l q=i

This paper presents a hypercube algorithm for gen- where
erating the wavelet representation of an image or se- +00 +00

quence of images. All of the approximation and detail H(w, v) 1- 1 : h(-n, •k)e•(nw+kv),
images of the representation can be obtained simulta- n=-o k=-0o
neously. An experimental study is performed on im-
ages using the 1024 element NCUBE hypercube at the then A2,f(z,y) can be found by convolving the im-
University of South Carolina. The next section gives age with H and keeping every other row or column
a description of the development of the orthonormal in a two pass algorithm. The convolution filter H is
wavelet representation for images. This is followed by separable which makes it suitable for a parallel imple-
details of the hypercube implementation. Finally, the mentation. Since the function is separable $(z, y) can

171
0-8186-2113-3/90/0000/0171$01.00 0 1990 IEEE

be decomposed as: in Figure 2. The original discrete image f(z, y) can
be reconstructed using the information contained in

-O(zy) = O(z)O(y). the approximation signal A 2-Jf and the three detail

The discrete spatial form of the O(z) scaling function signals (1.25 A J < -1.

can be found using a truncated series approximation.
If the series is truncated at n = 4, a convolution 1.0
filter of size lx9 is generated. This filter is shown in M

Figure 1. An image decomposition on the hypercube A
will have to pass a constant number of four rows across G 0.5
processor boundaries in order to apply this filter. N

S0.0
1.2 T

S-0•.5
M 1.0 D
A 0.e E -1.0
G
N 0.6- -1.5 . . , .

1 0.4 -6 -4 -2 0 2 4 6
T
U 0.2 POSITION
D 0.0 - Figure 2 P (x) scaling function
E

-0.2
-0.4 .. The next section contains details of the hypercube-0.4 1 1 1 1 1 1 1 1 1 r - - -

-6 -5 -4-3 -2 -1 0 1 2 3 4 5 6 implementation of the algorithm.

POSITION
Figure I 0Ox) scaling function Hypercube Wavelet Decomposition

The difference in information between the image The scaling function 4ý(z, y) can be decomposed into
at resolution 2j+' and 2i is called the detail signal. the product O(z)o(y). The same operation can be per-
This detail signal is given by the orthogonal projec- formed on the wavelets, except now instead of a single
tion of the original signal on the orthogonal comple- wavelet as there was in the one-dimensional case, there
ment of V2. in V 2 ,+1. The orthonormal basis for the are now three. These three are given by:
detail signal is given by 02i and is generated by scal- •'(z, y) = O(Z)(Y)
ing the wavelet 'Z(z, y) by 2i and translating to a grid 4 2 (z y) = O(z)O(y)
with a proportional spacing of 2-j. The detail signal qa(, y))
D2,f(z,y) is obtained by convolving the image with
G, where G is the mirror filter of H, followed by keep-
ing every other row or column once again in a two pass This form of the wavelets leads to three detail sig-
algorithm. The mirror filter basis is related through nals given by D'i f(z, y), D1 f(z, y) and D2 f(z, y).
the expansion coefficients of H as The horizontal, vertical and corner structure of the

image can be derived from these detail signals.
g(n) = (-1)'-h(1 - n). Since the wavelet transformation is separable, op-

The wavelet associated with G is generated using: erations on the rows can be done followed by oper-
ations on the columns. In addition, the convolution

= G(2) 2 with/ kcan be done in parallel with the convolution
2 2 using G. The following five step algorithm will gen-

t2), 2 , andDt' from the original unscaled
Application of this wavelet to an image is equivalent to erate AV, DI - D2- 2-o

a band pass filter centered at the origin which passes image A2j+,f(z,y).
signals in the frequency range of -2v to -v and -w to
2w. The spatial version of this wavelet O(z) is shown

172

HYPERCUBE WAVELET ALGORITHM Sensitivity to noise is evident in the center of the cor-

Step 1: Subdivide image into N/4 strips, where N is ner image in the lower right hand window of Figure
4.

the total number of processors. Distribute
these strips to the processors such that the
equivalent of four full images have been sent.

Step 2: Convolve the rows of two of the distributed
images with (G, and the rows of the other two
distributed images with f.

Step 3: Sample resulting images by throwing out ev-
ery other column.

Step 4: Convolve the columns of two of the images
from Step 3 with G, and the columns of the
other two distributed images with t.

Step 5: Sample resulting images by throwing out ev-
ery other row. ...

The algorithm given above is optimal in the sense
of communication in that only shared rows/columns
need be communicated between nodes. A recent study
done by Jones et al has indicated that a rectangular
decomposition with the number of rows a factor of Figure 3 Original image
four times the number of columns is the optimal image
decomposition for the NCUBE system[6].

Experimental Studies

In order to test the efficiency of the hypercube map- -
ping we applied the algorithm to an image of the robot
test area at ORNL. The image resolution was 256 rows
by 256 columns with 256 levels of gray. The image
was mapped to the hypercube using a ring mapping
since at most only four rows of information needed to
be transferred between processors. If the filter size
is enlarged beyond lx9, the added image information A
would have to be transferred. The original image is .
shown in Figure 3.

The hypercube algorithm described above allows . . "
the approximation signal and all of the detail signals to
be derived simultaneously. Results of the application
of the algorithm to the image in Figure 3 are shown "_"._.......
in Figure 4. The display format used here is to place Figure 4 Wavelet decomposition
the approximation image in the upper left hand win-
dow, horizontal component image in the upper right
window, vertical component image in the lower left
window and the corner component image in the lower Since the communication is of constant size, ef-
right hand window in the Figure. Details of the hori- ficiency of the algorithm should be almost constant.

zontal and vertical edges in the machine cabinets are Efficiency is plotted versus dimension of the subcube
preserved, while at the same time the diagonal stripes for the image used in the study in Figure 5. Up to a
on the floor are apparent in all of the detail images. size seven subcube communication will only be with

173

nearest neighbors in the ring. However, since each pro- milliseconds, which indicates that the algorithm can
cessor only contains two rows in the size seven subcube be used for real-time image analysis.
mapping, two transfers are necessary to get the We are presently extending the analysis to a three

dimensional wavelet decomposition of a sequence of
1 .00 e images, where the third dimension is time. Motion

0.90 - analysis using region features has been previously ex-

0.80 amined at the full image scale[13], and the wavelet

S0.70- 1representation offers the possibility of a parallel ex-
amination of the time evolution of multiple features

Q 0.60 derived from a segmentation analysis using a paral-
" 0.50 lel self-organizing feature map[5]. In addition, Mallat

- 0.40 has shown that texture analysis can be done with the
'" 0.30 wavelet representation using the fractal dimension de-0.20 rived from the power function spectral9]. This type

of analysis can be merged with the fractal signature
0.10| , approach[4].
0.00

0 1 234567
Subcube Dimension Acknowledgements

Figure 5 Algorithm performance The authors would like to thank Dr. Bert Still of
the Parallel Supercomputer Initiative at the Univer-
sity of South Carolina for numerous discussions on the

needed four rows of information. This effect is ap- wavelet transform theory. In addition, Judson Jones of
parent in the size seven subcube efficiency of 87%. The ORNL deserves special mention for providing the im-
total time taken for the wavelet transform at this reso- age and image processing framework for this research.
lution subcube was 89.7 milliseconds, giving an equiv- We would also like to thank Jeff Fier of MasPar Cor-
alent double precision floating point rate for all four of poration for the porting of the algorithm and timing
the wavelet image generations of 54.8 Megaflops. This runs on the MP-1 SIMD architecture.
timing bench includes the row transfers as well as the
type casting from char to double and double to char
necessary due to memory limitations on the nodes. References

[1] P. J. Burt and E. H. Adelson, "The Laplacian

Conclusions pyramid as a compact image code". IEEE Trans.
Commun., Vol. 31, 1983, pp. 532-540.

We have presented a parallel version of the wavelet de- [2] M. Chen and P. Yan, "A multisclaing approach
composition algorithm for images. The algorithm ex- based on morphological filtering". IEEE Trans.
ploits the SPMD nature of the NCUBE hypercube and PAMI, Vol. 11, 1989, pp. 694-700.
allows further pattern recognition to be done with the
horizontal, vertical and corner information being resi- [3] J. Crowley, "A representation for visual informa-
dent on the nodes. Efficiency of the algorithm is quite tion". Robotic Inst. CMU, Tech. Rep. CMU-RI-
good up to a size seven subcube, with a performance TR-82-7, 1987.
of 87% at that dimension. The degradation in perfor-
mance at this resolution would be offset by a larger [4] BA. Huntsberger and T. L. Huntsberger, "Hy-
image, since more rows would be contained within the percube algorithms for multi-spectral texture
memory of a single processor. Since the algorithm was analysis". Proc. HCCA4, Monterey, CA, Mar
designed for SPMD mode, it should port quite easily 1989.
to a SIMD machine. The port to the SIMD MP-1 [5] T. L. Huntsberger and P. Ajjimarangsee, "Paral-
machine manufactured by MasPar Corporation was lel self-organizing feature maps for unsupervised
straight-forward and the results of timing runs indi- pattern recognition". Int. Journ. General Sys-
cate a performance of 108 double precision Megaflops tems, Spec. Issue Adv. in Pait. Recog., in press.
on a 4096 node version. The execution time was 31.7

174

[6] J. P. Jones, M. Beckerman and R. C. Mann,
"Concurrent implementation of two multisensor
integration algorithms for mobile robots". Proc.
SPIE Conf. Sensor Fusion II: Human and Mack.
Strategies, Philadelphia, PA, Nov 1989.

[7] B. Julesz, "Textons, the elements of texture per-
ception and their interactions". Nature, Vol. 290,
1981.

[8] J. Koenderink, "The structure of images". Bi-
ological Cybernetics, Springer-Verlag, New York,
1984.

[9] S.G. Mallat, "A theory for multiresolution sig-
nal decomposition: The wavelet representation".
IEEE Thons. PAMI, Vol. 11, 1989, pp. 674-693

[10] D. Marr, Vision, Freeman Press, New York,
1982.

[11i D. Marr and T. Poggio, "A theory of human
stereo vision". Proc. Royal Soc. London", Vol.
B204, 1979, pp. 301-328.

[12] A. Rosenfeld and M. Thurston, "Coarse-fine tem-
plate matching". IEEE Trans. Syst., Man, Cy-
bern., Vol. 7, 1977, pp. 104-107.

[13] Y. Soh and T. L. Huntsberger, "Hypercube
algorithms for dynamic scene analysis". Proc.
HCCA4, Monterey, CA, Mar 1989.

[14] J. Woods and S. O'Neil, "Subband coding of im-
ages". IEEE Trans. ASSP, Vol. 34, 1986, pp.
1278-1288.

175

Parallel Processing Applied to 3D Coronary Arteriography

Alok Sarwal Dennis L. Parker
Jayashree Rarnanathan Jiang Wu

Cornpvng Environments Group Department of Medical Informatics
UtTiv-rs Energy Systems, Inc. LDS Hospital

1'62 Bla2zr Memorial Parkway 325 Eighth Avenue
Dublin, OH 43017 Salt Lake City, UT 84143

Abstract accurate view geometries are realized. The first step
for obtaining these geometries is segmentation of

One important reason for the lack of acceptance of the arteries. This requires an operator to specify the
coronary arteriography techniques is the four hours branch points and other recognizable points, also
(approximate) required for accurate 3D referred to as the node points. This interaction
quantification of an arterial tree, thus making it establishes the original hierarchy and the
prohibitive for the clinician to utilize. Parallel correspondence of node points between views. It
processing techniques can greatly speed up the also divides the original arterial tree into smaller
image processing and analysis of 3D arterial trees. artery segments or branches[4]. The next step is
It has been demonstrated in this project 1 that the the determination of vessel centerline and edges of
reconstruction of the three dimensional image and each segment in each view, which proceeds without
arteriographic measurements can be made close to operator intervention[6]. The 2D geometry
real time using these techniques. coordinates of each segment are mapped onto the

3D reconstructed geometry[3,5,7]. The 3D
1. Problem Description reconstruction becomes more accurate as the

number of views of x-ray angiograms are increased.
Coronary arteriography is currently the standard
technique for evaluating the condition of the The above mentioned operations are very
coronary arteries. This procedure not only computationally expensive. Moreover as the
determines the need for revascularization[l], but number of views increases, the time complexity for
also the degree of success of surgery involving the algorithm increases markedly. The
angioplasty and bypass grafting. Currently, implementation of a multi-processor based
coronary artery reconstruction is performed on workstation utilizing parallel programming
several sets of Digital Substraction Angiography techniques will not only reduce the time for
images from different patients. In each case, the coronary reconstruction, but also make the three
images are obtained from a Siemens Angioscope D and four view reconstruction a reality for even more
interfaced to a Digitron II digital image acquisition accurate results.
system. This system can currently acquire 512 by
512 pixel images at 30 frames per second 2. Description of Existing Algorithms
simultaneously with conventional cine film
acquisition. Reconstruction requires at least two The existing sequential algorithms have been
views of known orientation. For each of the two- implemented on a VAX-780 computer to provide
view images, the arteries are opacified with an 3D reconstruction of coronary arteries. Input
iodonated contrast medium, as a sequence of x-ray images are obtained from two-view ECG correlated
images are acquired. x-ray angiograms. A target structure consisting of

the node points is entered on the first of a sequence
The flow of information is shown in Figure 1. of images[3,4] in one view using the Digitron U.
The 3D reconstruction requires that the view Automatic edge detection is used to detect the
geometries be known as accurately as possible. centerline and edges of the vessels[7]. The edge
Corrections due to geometric misalignment[2], x- detection algorithm represents the computationally
ray scattering, artifacts etc. have to be made before intensive part of the software and is used many

times in the course of the reconstruction. Angle-
corrected densitometric calculations are used to

lPhase I Small Business Innovation Research refine the vessel cross section[5]. 3D
Project supported by National Institute of Health reconstruction is completed by a distance
(NHLBI) under Contract # IR43HL42208-01. minimizing point matching technique.

176
0-8186-2113-3/900000/0176$01.00 0 1990 IEEE

densitometric cross section measurements are
obtained corresponding to each point along the

0 X.My saw" vessel segment.
POIM I

The 3D reconstruction is obtained from each view
using geometry information of the 2D arterial tree

(][or plane tree as shown in Figure 1. For two or
S0. -I 2 more views the problem is reduced to finding the

(10 lng.) intersection of a projection line representing the x-
X-,, Soe* ray path for each element. From the 3D centerlinePackln 2/ the orientation of each vessel segment relative to

£II Z \ /each projection is computed. The area of cross
Viwa I section is computed for all elements of all

(NI image•) segments using the orientation corrected plane tree7 measurements. Flow characteristics of the blood
ing•memwocag are obtained from transit time measurements of the

Meek S,•trfctm leading edge of the iodine bolus passing through
ECG Crelatni the artery bed. The reconstructed image can be

v / View 2 displayed on a high resolution graphics monitor.
(- Image(3. Analysis of the Computation-

Intensive RoutinesSImae2 we Imago

Segmetafion Structure se The convolution and dynamic search algorithms are
4 •invoked multiple times during the course of the

PIM anea complete 3D reconstruction. The convolution

Srut Sruture operation is invoked each time edge or centerline
detection has to be performed. The edges and vessel

• w wwcenterline in 2D have to be calculated before any
o 3D reconstruction can be done. The dynamic search

algorithm is also called as frequently as the
convolution software. For a two-view

30 -Object reconstruction of the coronary artery structure the
rtam number of branches to be calculated will be about

M,34 1200 per second of x-ray image data, assuming that
a total of 30 x-ray images are taken per second.

Figure 1: Information Flow in 3-D Coronary For each such branch to be represented
Artery Reconstruction geometrically, the convolution and dynamic search

has to be applied once for each edge and once for
the centerline. There are instances where the

Based on an operator entered target structure, vessel operator may decide to recalculate the vessel
centerlines and edges are detected in an automated geometry as it may need further refining These
manner throughout the heart cycle in each view. algorithms could be called a total of 3600 times for
This centerline and edge information in 2D is used a total global reconstruction of the plane tree for
to obtain the 3D representations of the arterial bed one heart cycle. It is quite important that the above
throughout the coronary cycle. The extraction of mentioned software is speeded up to provide an
the image information into sub-image is performed overall improvement in performance. The
orthogonal to the idealized search target such that complexity analysis of the above algorithms is
the rows of the extracted matrix consist of image examined for this purpose.
values along this orthogonal path. Edge features
are then enhanced using matched filter convolution Time complexity of sequential convolution
to create a likelihood matrix. The dynamic search
software module is then used to map the optimal Tl(t) = O(n*m*k)
global path through this matrix. This technique is
applied on a segment or a portion of the entire where n is the number of rows and m is the number
image and is repeated to process all the other of columns of the extracted matrix, and k is the
segments in the image. Typically each view will number of elements in the filter (kernel).

have about 20 segments. The resultant data-

structure consists of a set of 2D edges. The

177

Time complexity of sequential dynamic search almost equal number of elements of the matrix.
Each processor then reads its partition of the

T2 (t) = O(n*m*s) complete matrix in its local memory to start with
the convolution. At the end of the convolution the

where s is the step size for the search window for resultant matrices are available for parallel dynamic
dynamic search. search. With this scheme of partitioning of the

data, there is an almost linear speed up in these
algorithms. The overhead of mapping is the matrix

4. Implementation on the distribution before convolution and recombination
Multiprocessor Workstation of the sub-matrices after the dynamic search. This

represents a fine grain approach to parallelism as
The Transputer based system consists of multiple applied to this particular problem.
processing nodes arranged in a hypercube network.
The processor in this case is the INMOS T-800 Each processor will have a partition of size n rows
Transputer [8,9]. These processors, available on a by (mip) columns, where p is the number of
card as a group of four, can be easily installed onto processors in the workstation.
the IBM-AT bus. One very important reason for
selecting the Transputer is that it provides one of Time complexity for the mapping of the data
the best cost vs. performance characteristic of any
other distributed memory parallel processing T3)=O(P)
system. It can also be easily added onto a desktop
personal workstation. Two methods of parallelism Mapping for dynamic search can only be along
were implemented in this feasibility study. vertical strips. In this case, the data partitions have

to be a division of the number of columns only,
"* The first is thefine grain method, where data because the search proceeds vertically and proper

partitioning is done for one branch of the load balancing can only occur if each processor is
extracted data to be processed at a time, kept busy with almost the same work load. The

search starts at the last row and builds up one row
"* The second is the coarse grain method, where at a time, till it reaches the first row. If the

there is segment parallelism and one segment division had been along horizontal strips, then it
being processed per processing node. would result in only one processor executing the

search operation at one time and then passing its
4.1. Fine Grain Method boundary path direction to its neighbor processor.
The first and most important requirement for
parallel processing is to map the algorithms for the 0 mp.,1 m* 2U ,,, 2mi. ftnp.1 (p.1)mp m.1

problem to be solved onto each processor. The _
efficiency and speed up of the solution are enhanced I " I -
sufficiently by selecting a good strategy for
mapping this problem.

4.1.1. Manning. The convolution
algorithm convolutes a matched filter with
elements of the extracted matrix. This operation It Ip
performs the convolution row by row such that
each element of the matched filter is multiplied I II I I
with each element of each row of the extracted
matrix. This algorithm can be parallelized to run
on nonoverlapped subsets of data selected from the
complete extracted matrix and then loaded on the
various processors with no communication during I I I I I
the course of the convolution.

The only communication among processors is for PM. a P,• I PM.2 PM. P-1)

the distribution and subsequent collection of the
convolved sub-matrices. The partitioning of this
data is done in the form of vertical strips as shown Figure 2: Vertical Strip Mapping for m by n
in Figure 2. The number of columns are divided columns on p processors.
equally among all the processors, and each has an

178

4.1.2. Parallel Convolution. T h e repeatedly calculated with these updated elements.
extraction of image information into the sub-image The path is traced in this method for all the
is application dependent but shares the common elements of each row for all the rows. At the end of
feature that pixels are extracted orthogonal to an this operation the top row will have the cumulative
idealized search target. At the present time the magnitude for the path traced for each element in
initial target is a fixed radius circle and the sub- that row, having started at the bottom row. The
image information is extracted orthogonal to this element with the largest magnitude in the top row
circle. The operator specifies a search target along will represent the most likely starting point of the
which the extraction occurs. For coronary artery path. The path traversed by this most likely
tracking the target is specified as a set of node element is traced by following the direction vectors
points that are connected by segments. The through all the rows for an edge of the artery or
individual sub-image matrices have to be convolved organ.
so that the image features are enhanced. The above
mentioned convolution operation produces a The vertical strips are mapped onto the processors
Structure Likelihood Matrix (SLM). The so that the computation envelope is an array of
importance of the algorithm is in the structure processors, orte per partition, as shown in Figure 2.
enhancement of subtracted images using a ID The step size or the search window provides the
gradient density matched filter. The filter elements minimum and maximum limit for the direction
are application specific and are selected on the basis vector of the path for an element. The elements at
of the densitometric profile of the structure being the boundary columns of the partitioned sub-
tracked. One pass of the convolution algorithm matrices on a particular processor need to
enhances the features corresponding to one edge. communicate with the neighboring processor, that
The filter or kernel is reversed left to right for has an overlap of it's search window. For example,
detection of the other edge. Finally a center finding assume that the element at column (mlp) and row
filter is used for finding the vessel centerline. (n-1) as shown in Figure 2, has a step size of 2

elements, such that it has a path extending 2
The convolution algorithm can operate on a subset elements on the left and right directions
of the extracted sub-image data. The matrix is respectively. As this element falls on a partition
partitioned in equal parts so each processor can boundary, it will need to access two elements on
work on its partition independently. This parallel the left adjacent columns which are in the partition
processing technique provides an overall speed up loaded on processor 0. Likewise the right boundary
of this operation. In fact, the speed-up is quite elements of elements on processor 0 will have to
linear and corresponds to the ideal maximum limit, access elements of its search window extending to
over p processors where p > 1, as detailed in the the left hand columns of processor 1. Thus at each
results. iteration there is the overhead of communication

among processors. The total number of elements
Time complexity of parallel convolution that have to be communicated to a neighbor at the

end of each iteration of dynamic search are:
T4 (t) = O(n* m/p * k) Nc =[n * (p-2) *wI

where (mip) columns of the matrix will be
convolved simultaneously where w is the path width of the search window.

4.1.3. Parallel Dynamic Search. The 4.2. Coarse Grain Method
Structure Likelihood Matrix (SLM) represents the An alternate method for parallel implementation is
enhanced image features for the extracted matrix, by adopting a coarse grain approach. The edge
The higher the magnitude of the element of the detection involving convolution and dynamic search
SLM, the greater the probability of it being present operations is performed on multiple branches
in the image. The dynamic search algorithm finds simultaneously. With this approach, p branches
the path through the SLM for the edge of a can be processed at the same time on each of the p
segment and builds up on greater number of such processors, with one branch per processor. The

segments for a global solution. The path direction branch image data corresponding to each segment is

of each element in the bottom row is selected from loaded on each processor, such that there is
a window of size equal to twice the path width. absolutely no interaction between processors during
After the direction for each element in a row is the convolution and dynamic search operations. At
selected, the magnitude of the element is added to the end of the above operations the information

the magnitude of element it points to, for an relating to the two edges and the centerline of the

updated set of row elements. The path direction is vessel is stored in the data structure of the plane

179

tree, to be used in the 3D reconstruction operation. bi-directional communication of elements.
There are about 20 branches per view and so an
array of about 40 processors can be utilized The fine grain method consists of the combination
simultaneously for all the arterial tree data from of parallel convolution and parallel dynamic search
two views. as applied to only one branch at a time. There is

initial overhead in performing the mapping of the
The computation load on each processor is now a various partitions of data on the processors. Due to
function of the size of the branch matrices. The the most efficient method of partitioning selected
processors are performing edge detection algorithms for this method, there is a minimal overhead in
in an asynchronous manner. There can be the comparison to the overall time for solution. This
situation where one processor will complete the method provides a very good load balancing of the
detection before another processor. This processor array of processors. The overall performance with
will not have to wait for computation on all other this method is almost linear for up to 4 processors.
processors to be completed, if there is other
computation like 3D geometry computation to be There is a slight decay in the speed-up characteristic
performed, else it has to let other processors catch curve at p = 4 because of the overhead in
up. Thus, the best performance can be expected in communication in dynamic search as shown in
the condition that the number of branches are equal Figure 3. It is apparent that the performance is
to the number of processors, and each branch quite impressive and closely follows the theoretical
matrix is of the same size. limit. The analysis was performed for a test case of

simulated edge data. The matrix was a 256 by 256
representation of a sinusoid like edge. The

5. Evaluation of Results benchmark was calculated for 1, 2 and 4 processors
respectively. It took 14, 7 and 4 seconds for the 1,

5.1. Fine Grain Method 2 and 4 processor cases respectively. These
The parallel convolution algorithm provides timings do not include the time to read the matrix
performance directly proportional to the number of data from the hard disk-drive, which is 2 seconds..
the processors. There is a linear correlation The results can be extrapolated for more processors
between the number of processors and the relative for almost linear speed up. This method works
speed up, as shown in Figure 3 and Figure 4. well for large sized data sets, but performance
Relative speed up S can be defined as: diminishes as the partition size decreases. There is

communication involved as each row of the matrix
Timetakenon 1 processor is searched. As more processors are added, the size

S = of the partition will be small enough that the time
Timetakenon p processors for computation will be less than the time for

communication and so the solution will be
Figure 3 shows the results of the fine grain communication driven. At this point or close to
method. For parallel convolution in this method, this point, the performance will decrease and not be
there is no interaction among processors after the directly proportional to the number of processors.
sub-matrices are loaded on the processor, and these
matrices have no overlapped elements. Moreover 5.2. Coarse Grain Method
the convolved matrices can be recombined quite This method applies convolution and dynamic
inexpensively. Thus the perfect speed up for this search on a complete extracted matrix corresponding
algorithm is obtained during benchmark studies. to a branch of the arterial tree. This method

provides performance which is linear for a total of p
The parallel dynamic search has the overhead of branches applied to p processors as shown in
communicating the elements corresponding to the Figure 4. The x-ray data is segmented into
path width at the boundaries of the sub-matrices, unrelated subsets. The extraction of these sub-
Typical path width w is I or 2 elements. The matrices and then the subsequent detection of edges
benchmark has been implemented for a path width for one branch is completely disjoint from the next,
of 2 elements. There is some amount of overlap and so can be performed independently on different
between the communication and computation as processors of the system. There could potentially
applied to this case, such that as a processor is be about 800 such segments to be processed over a
communicating to all its neighbors, it starts up the complete coronary cycle. It is apparent that an 800
subsequent computation after some communication processor system can run on 800 segments to
set up time. The performance for parallel dynamic generate the geometry for a plane tree and then
search decays as this communication increases, proceed with this coarse grain approach for 3D
The processors am used as a linear array, so there is reconstructed set of branches.

1I0

The x-ray images were 256 rows by 256 columns References
of data. The arterial tree was segmented into sub-
matrices for separate branches. The size of the [1] Ellis, S.G., Cain, K., Bourassa, M.G.,
largest extracted data matrix for a branch in this test Alderman, E.L., Lad lesion severity as a
was 122 rows by 60 columns, and the rest were predictor of anterior infarction in CASS:

smaller in size. The benchmark analysis was visual vs. computer methodologies.
performed for a maximum of 4 processors and so 4 Proceedings AHA (1985).

branches were selected from the segmented set of [21 Jacques. P., Dibianca. F., Pizer, S.,
branches of the tree. The time taken for detecting Kohout, F., Lifshitz, L. Delany, D..
both edges of this segment was 3 seconds. Thus Quanitive digital fluorography
the time for obtaining the edges for all 4 segments computer vs. human estimation of vascular
was 3 seconds. In comparison a single processor stenoses, Investigative Radiology 2&. 45-
based computer system would have taken about 12 52 (1985).
seconds to perform the same computation. As
another case for observation, consider the [3] Parker, D.L., Wu, J., Pope. D.L., Bree,
computation for edge detection of 32 segments; the R.E., Caputo, G.R., Marshall, H.W.. Three
time taken by the coarse grain method will still be dimensional measurements of coronary

about 3 seconds, while the time taken on a single arteries using multiview digital

processor computer, with same processing power, Quantitative Coronary Arteriography,
will be about 96 seconds. There is a clear (June 1987).
advantage in cost vs. performance in this approach,
as applied to 3D coronary reconstruction. [4] Parker, D.L., Pope D.L., Bree, R.E., Desai,

R., Three dimensional reconstruction of
NoaRarmh(ws vascular beds from digital angiographic

,- projections, SPIE-Vol. §!L 50-59,
7, International Workshop on Physics and

D Engineering of Computerized Multi-$Dat Oeu9W ý OM d•f

tw2' VOM• dimensional Imaging and Processing,
a (1986).

4 1-n-- -[51 Parker, D.L., Pope D.L., Bree, R.E.,
X(Trr %vm Marshall H.: Three dimensional

2 reconstruction and cross-section
measurements of coronary arteries using

o* P . .epier ECG correlated digital coronary
2 2 no3es) arteriography, Progress in Digital

Nwn•, w dfanw(P) Angiocardiography, Ed., P.H. Heintzen,
M.D., Martinus Nijhoff, Dordrecht, The

Figure 3: Fine Grain Method Netherlands, (1987).

[6] Pope, D.L., Parker, D.L, Gustafson, D.E.,
Clayton, P.D., Dynamic search algorithms
in left ventricular border recognition and
analysis of coronary arteries. IEEE
Computers In Cardiology, 71-75, (1984).

4

[7] Parker, D.L., Pope, D.L., White, K.S.,
2 Tarbox, L.R., Marshall, H., Three

dimensional reconstruction of vascular

2 beds, Proceedings of the Conference on
A Trmnputer Information Processing in Medical

Systm I(1985).
(pImaging, Georgetown,

[81 Jesshope, C., Reconfigurable transputer
o systems, 3rd. Conf. on Hypercube

0 2 2 4 Concurrent Computers and Applications,
Numberof Prooeewo (P) 105-114, (1988).

Figure 4: Coarse Grain Method [9] Hey, A.J.G., Practical parallel processing
with transputers, 3rd. Conf. on Hypercube
Concurrent Computers and Applications,
115-121, (1988).

181

The Fifth Distributed Memory

Computing Conference

7: Computer Vso

Surface Reconstruction and Discontinuity Detection: A Fast
Hierarchical Approach on a Two-Dimensional Mesh

Roberto Battiti
105 Via Menguzzato, 38100 Trento, Italy

E-mail: battitigenova.infn.it@iboinfn. bitnet

Abstract time, since the first is hiding evidence used by the sec-
ond [111.

Recently multigrid techniques have been proposed for Psychophysics and practical implementations (see for
solving low-level vision problems in optimal time (i.e. example 11,6,101) show that the early vision step can be
time proportional to the number of pixels). In the done in parallel. Many computational units (neurons or
present work this method is extended to incorporate processors) cooperate to reach the desired solution with
a discontinuity detection process cooperating with the a speed-up roughly proportional to their number.
smoothing phase on all scales. Activation of line el- In the following first the multigrid method with dis-
ement detectors that signal the presence of relevant continuities is briefly described, second the parallelisa-
discontinuities is based on information gathered from tion strategy is outlined and finally some results are
neighboring points at the same and different scales. presented.

Because the required computation is local, paral-
lelism can be profitably used. A mapping of the re-
quired data structure onto a two dimensional mesh 2 Multigrid Method with Dis-
of processors is suggested. Domain decomposition is continuities
shown to be efficient on MIMD computers capable of
containing many individual cells in each processor. Early vision can be considered "inverse optics', since

Some examples of the proposed multiscale solution its purpose is to undo the image formation process, re-
techniques are shown for two different applications. In covering the properties of visible 3-D surfaces from the
the first case a surface is reconstructed from first deriva- 2-D array of image intensities. In general the class of
tive information (extracted from the intensity data), in admissible solutions is restricted by introducing a priori
the second case from noisy depth constraints. knowledge. In the regularization method the desired

or plausible properties are enforced when the inversion

1 Introduction problem is transformed into the minimization of a func-
tional 1121.

In the last years a sound scientific basis has been given The stationary points of the functional are found

to low and intermediate level vision that decodes in- by solving the Euler-Lagrange partial differential equa-

formation about three-dimensional surfaces and their tions.

properties. In standard methods for solving PDEs, the problem

Subsequent visual processing can be facilitated if the is first discretized on a finite dimensional approximation

different constraints are transformed into a visible sur- space. The very large algebraic system obtained is then

face representation that unambiguously specifies sur- solved using for example "relaxation' algorithms, which

face shape at every image point, are local ' and iterative.

It is practically very hard to recognize an object in a By the local nature of the relaxation process, solution
visual scene unless one knows how to choose the subset errors on the scale of the solution grid step are corrected

of evidence that derives from the same object. Hence in a few iterations; on the contrary larger-scale errors

discontinuities are necessary both to avoid washing are corrected very slowly. Intuitively, in order to correct
away important information under the smoothness re- them, information must be spread over a large scale by

quirement, and to provide a primitive perceptual or- the "sluggish" neighbor-neighbor influence. A larger

ganization of the visual input into different elements spread of influence per iteration demands large-scale

loosely related to the human notion of objects. In connections for the processing units, i.e. a solution of

some schemes the smoothing and discontinuity detec- the same problem on a coarser grid.

tion steps are done at different times, but there is a gen- 'The local structure is essential for efficient use of parallel
eral suggestion that both should be done at the same computation.

1840-8186-2113-3/9010000/0184$O1.00 0) 1990 IEEE

The pyramidal structure of the multigrid solution with 0 _ k 5 L, 0 = coarsest) is
grids is illustrated in Figure 1.

A hi, Z h =d (1)

The data on the finest grid define dhy, while for the
coarser grids the right hand side dhk is obtained using

- --the two extension (fine to coarse) and interpolation
- -- (coarse to fine) operators, respectively It and Il in this

/Z'/
way 2

7dh. = Ahk (ITiZhk+) + t (dhk+1 - A h+LZht+1) (2)

Before computation is begun on a grid finer than thez current one, the initial values for z are updated as:

-- Ii

Zh,,Zk+ jI (Z ht 1 _IT~Paa (3)

Instead, before computation is begun on a grid
I mcoarser than the current one, the initial values for x

V A are updated as:

Figure 1: Pyramidal structure for multigrid algorithms. Z hA; ,_ iT~hj.+j (4)

This simple idea and its realization in the multi-grid The switching of control between different grids is
algorithm not only leads to asymptotically optimal so- explained in Figure 2
lution times (i.e. convergence in O(n) operations) but The sequential multigrid algorithm was used for solv-
also dramatically decreases solution times for a variety ing PDE's associated with different early vision prob-
of practical problems, as shown in 13]. lems in [14], obtaining typical speed-up factors of 100.

In the multigrid strategy first relaxation is used to
obtain an approximation with smooth error on a fine
grid. Then, given the smoothness of the error, correc- 2.1 Line Processes
tions to this approximation are calculated on a coarser Even if there are some results in the literature (see [15],
grid, and, in order to do this, first relaxations are ex- 111,7]), up to now it is not clear how to combine in an
ecuted, then correction are calculated recursively on optimal way the surface reconstruction and the discon-
still coarser grids. The nested iteration scheme (use tinuity detection processes.
of coarser grids to provide a good starting point for Various approaches are based on different degrees of
finer grids) is used to speed up the initial part of the cooperativity of the two processes, considering both time
computation. Historically these ideas were developed and scale (see 12] for details).
starting from the sixties by Bakhvalov, Fedorenko and In some cases the discontinuity detection step is as-
others (see Stfiben et al. [13]). signed to a separate preliminary process. Assuming

It is shown in [3] that, with a few modifications in this, in a regularisation approach the smoothness con-
the basic algorithms, the actual solution (not the error) straint will no more be enforced globally, but locally
can be stored in each layer. This method is particularly depending on the presence or absence of line processes.
useful for visual reconstruction, where we are interested In other schemes, discontinuities are detected after
not only in the finest scale result but also in the mul- the smoothing step, for example by taking derivatives 3
tiscale representation developed as a byproduct of the and thresholding them appropriately.
solution process. This is called full approximation stor-age algorithm and it is briefly described in what follows. 2This definition agrees with the idea that coase-scale correc-

tions are a top - down influence. The definition given in *mathe-
The algebraic system, obtained by discretizing the matical" texts is usually the opposite, so beware.

original problem on the different grids (numbered by k 3Error in derivatives will be smaller after regularization.

185

if (layer--coarsest) step (layer);
else(
i-na;while(i--)step(layer);
i-nb;if(i-!0)

(up(layer) ;while(i--)mg(layer-1) ;down(layer-1) ;}
i-nc;while(i--)step(layer);

-II

nam ? tomivsegenmuslw? N void step(layer) int layer;

U Don k, 10 exchange..border..strip (layer);
update-line.processes (layer);

ký k*1 oor4 It , k . I (t cowur •relax.depth.processes (layer);

I
hildlinx anWil kilsib a a gr ItEach step is preceded by an exchange of data on the

border of the assigned domains, as explained in section
3 dedicated to the parallel implementation.

As we will show in the following this scheme not only
greatly improves convergence speed (the typical multi-
grid effect) but also produces a more consistent recon-

Figure 2: Flow of control in sequential multigrid (adapted from struction 'of the surface at different scales.
Brandt).

2.2 Mutual Interaction

Finally other proposals consider cooperation of the During the course of the reconstruction, each LP up-
two processes in time but do not consider the problem dates its value in a manner depending on the values of
of organizing the cooperation in scale, other connected LPs in a neighborhood. It is useful to

In 19] for example a new term is added to the en-
ergy function to favor a good discontinuity structure. Deph Poins Lin.S Placoos

In their hardware implementation, an analog network '-
minimizes the "smoothness and data agreement en- --
ergy" while, in a cyclic way, a digital network updates I
the line processes minimizing the "discontinuity en-
ergy'. .

Summarizing, in the first two approaches one pro-
cess cannot make use of information exchange with the H
"dual" one, while in the last computation tends to be
very slow for large images. SMPLE DSCONTUY NEIGHBORHOOD0

We propose to combine discontinuity detection and
surface reconstruction in time and scale. To do this, 411 0
we introduce line processes at different scales, interact-
ing with neighboring depth processes (henceforth DPs)
at the same scale and with neighboring line processes
(henceforth LPs) on the finer and coarser scale. The
reconstruction assigns equal priority to the two process
types.

The recursive multiscale call mg(lay) is based on
an alternation of relaxation steps and discontinuity de- _ CTnO wIm PARALLEL UN! PROCESSES
tection steps as follows (in C language):

void rag(layer) int layer; Figure 3: LP neighborhood inside a given layer.
{
int i; define three different subsets of this neighborhood: the

186

set of connected LPs at the same scale SSN, its subset
SSN* lacking the two parallel LPs (defined as the LPs . mam

at both sides of the given one and with the same ori-
entation, see Figure 3) and the set DSN containing the
connected LPs at the coarser and finer scales. - z r"/

Considering first the SSN, a LP is connected to other
LPs at the same resolution with the pattern shown in Z z
Figure 3. The influence of the parallel LPs (suggested b a - - -

in 19]) becomes essential in the multi-scale scheme, to

avoid duplication of lines caused by the coarse to fine co0wUM.Iucln= • -d r.s.C

influence.
Considering the choice of the connections between dif-

ferent layers for the grid geometry used (see Figure 4),
it's apparent that there is no immediate definition of
the LPs above or below a given one.

One possible solution is based on this prescription:
if neuron z in scale X is connected to y in scale Y,
then conversely y will be connected to x (symmetry in
scale). In this case the fine to coarse influence is derived
uniquely after defining the coarse to fine one.

Given this, LPs in the coarser scale are connected if
they have minimum distance (in the x - y plane) to
the given LP. With this definition some LPs will have Figure 4: LP neighborhood between different layers.

two LPs above with minimum distance, while others
will have one. This asymmetry can be corrected by
adjusting the connection weights so that the combined
influence of the two minimum distance LPs (defined as Cost = f(LPs E SSN; LPs E DSN
weak influence) will be the same as the influence of the
single LP in the other case (defined as strong influence), The updating rule for a LP is given by
as will be shown in the following section.

2.3 Updating Rule and Look-up Table LP ,- 1 iff Cost < Benefit

Starting from partial "visual" information, the dynam- Because the Cost is a positive quantity LPs will be
ical system of the line and depth processes on the dif. switched on only when there is a difference in nearby z
ferent scales must evolve in time to a state correspond- values. Moreover, since the Cost depends on the LPs
ing to a faithful reconstruction of the three dimensional neighborhood, a good discontinuity structure can be
structure and a perceptual grouping of it into "mean- favored by "discounting" Cost if the local structure is
ingful' pieces. Therefore activation of LPs must be improved by the given LP.
favored either by the presence of a "large" difference in Cost is a function of a limited number of binary vari-
the z values of the nearby DPs or by the presence of ables, therefore to increase simulation speed and to pro-
a partial discontinuity structure that can be improved. vide a convenient way for simulating different heuristi-
Because usually the perceptual grouping corresponds cal proposals, a Look-up table approach was used.
to the underlying physical structure, these two driving As shown in Figure 5, values of nearby LPs are used
forces cooperate to create the desired results, to form an index into the table containing the Cost

Let us define as benefit the square of the derivative at values 4.
a given point (activation of the LP is "beneficial" when
this quantity is large): 2.4 Invariance, Scale and Topology

Segmentation should not depend on the physical scale
Benefit = (8z/az)2 ; (zi+ 1 ,, - zj,) 2 /h• of the structure. If the depth values of a surface are

for a vertical LP, and let's introduce a cost for a line multiplied by a constant, the same distribution of line

process in a given environment 'For 6 neighbors one gets a 256 entry table

187

ou (I) se". Owe,

o,,:~ ~ (O0) "

10.50 __ _ _ _....__,

Inde

Figure 5: Table look-up for line processes. Figure' 6: Rotational invariance and topological classes.

processes must be obtained by scaling the Costs ap- The "inhibitory" influence of parallel lines is de-
propriately. Besides, the "topological" influence (en- scribed by factor ao, with
forcement of good discontinuity structure) should be
independent of scale. Cost(LPs E SSN; 0,...,0

To separate the effects of scale and topology we de-
cided to isolate the scale factor into one parameter dh,
corresponding to the typical size of 8z/ax and az/ 8 y Cost(LPs E SSN*,O,O; 0,...,0) x a1
that we want to be detected by our LPs:

where nil = number of parallel LPs E SSN.
Costo f(o, ..., 0; 0, ...,o0) = dh 2

Last but not least, presence of lines at the coarser or
it would be of little practical use to allow 256 degrees finer scale will reduce Cost by fact.rs r. or rd respec-
of freedom in the definition of Costs for the SSN. Rota- tively, in the strong influence case. In the weak influence
tional invariance must be valid. If a given configuration case the factors become 0 or V r .

is rotated, Cost must remain equal.
We decided to classify all possible SSN* configura- Cost(LPs E SSN; LPs E DSN) =

tions (let's neglect the effect of the parallel LPs for the
moment) into groups, depending on the number of re-
gions in which the surface is divided at the location Cost(LPs E SSN; 0,...,0) x r't X rd

of the discontinuity. For some examples, see Figure 6.
The Cost for a neighborhood with n cuts is multiplied where n T = number of above LPs E DSN
by a parameter an. If the number of cuts is too large
Cost is set to a very large value (to penalize formation (x 1/2 if weak influence).
of "tangled" lines).

Costn E f (LPs E SSN*,O,O; 0,...,0) = Costo x an The parameters an were chosen by trial-and-error.

if local surface patch is cut into n pieces 6Let' s remember that the combined weak influence of two LPs
(equal to x V/-.) must be equal to the svWy influence of a

Cost --- oo if n> _* .single LP (equal to r,,).

198

3 Parallel Implementation

The multigrid algorithm described in the previous sec-
tion can be executed in different ways on a parallel com-
puter. One essential distinction that has to be done is
related to the number of processors available and the .CIMV 0
"size" of a single processor. e- '

If implementation is done on a SIMD parallel com-

puter with a number of processors comparable to the = r
number of computational units, the strategy that as- \
signs one processor to each unit (see [41) obtains the exchange 0
maximum amount of parallelism. The drawback of r__1
this approach is that if the implementation is on a hy- R
percube parallel computer and if the mapping is such PROC 0 ROC 1
that all the communications paths in the pyramid are
mapped into communication paths in the hypercube exchange 1
with length bounded by two [41, a fraction of the nodes ROC 2R 3
is never used (one third for two-dimensional problems
encountered in vision). Furthermore, if the standard
multigrid algorithm is used, when iteration is on a
coarse scale all the nodes in the other scales (i.e. the
majority of nodes) are idle and the efficiency of compu-
tation is in part compromised. To ameliorate this prob- Figure 7: Domain decomposition for multigrid computation.

lem, intrinsically parallel multiscale algorithms must be Processor communication is on a two-dimensional grid, each pro-
considered [51. cessor operates at all levels of the pyramid.

Fortunately, for a MIMD computer with power-
ful processors, sufficient distributed memory and two- Time = a n, where n is the number of pixels and
dimensional internode connections (in particular the mepends n the number of pxl andtm
hypercube contains a two dimensional mesh), the above d o t deailstof the a lgo ithm.To a good approximation the complexity for the par-
problems do not exist. allel version is:

In this case a two-dimensional domain decomposition
can be used efficiently: a slice of the image with its
associated pyramidal structure is assigned to each pro-
cessor. All nodes are working all the time, switching Time = a - + P (5)
between different levels of th pyramid as illustrated in DY

Figure 7. where D is the number of domains (equal to the number
No modification to the sequential algorithm is needed of processors). The communication overhead is a 'sur-

for points in the image belonging to the interior of the face effect' proportional to the linear dimension of the
assigned domain. On the contrary points on the bor- domain. The proportionality factor P depends on the
der need to know values of points assigned to a nearby number of iterations and on the height of the pyramidal
processor. With this purpose the assigned domain is structure.
extended to contain points assigned to nearby proces- Preliminary timing has been done using a board
sors and a communication step before each iteration on with four processors 6 obtaining times of 600-900ms for
a given layer is responsible for updating this strip so 65x65 images. Each node spends approximately 20%
that it contains the correct (most recent) values. Only of its time in internode communication. In addition
two exchanges are necessary, as shown in Figure 8. some time is required to load the data and read results.

Results are illustrated graphically in Figure 9.

3.1 Communication Overhead and
Complexity 4 Results: Shape from Shading

Multigrid algorithms are optimal in the sense that An iterative scheme for solving the shape form shading
they can compute a solution in time proportional to problem has been proposed in 181. A preliminary phase
the number of unknowns. Let's suppose that com-
plexity for the standard algorithm is (asymptotically) sDeflnicom board with Transputers, software from Parasoft

169

xclluunge 0 -.---._-- ,M

PROC 0 PROC I L- -- 1 ,U ~ 1

exchange I.t.

PROC 2 PR OC 3

TIO (.1110II•..s)

Figure 8: Communication strategy: each node contains a strip Figure 9: Timing results. Above: time spent exchanging data

of data assigned to nearby processors. Values are updated before (change) and communicating with the host (read-write).

each iteration using exchanges in the two directions.

recovers information about orientation of the planes
tangent to the surface at each point by minimizing a This case is particularly hard for a standard relax-
functional containing the image irradiance equation and ation approach. The image can be interpreted "legally"
an integrability constraint, as follows: in two possible ways: either as a concave or a convez

hemisphere. Starting from random initial values, some
image patches will "vote" for one or the other interpre-
tation and try to extend the local interpretation to a

E(p,q) = / (I(z,y) - R(p,q))2 + A (p - q,) 2 dzdy global one. This not only takes time (given the local
Jfmage nature of the updating rule) but encounters an endless

(6) struggle in the regions that mark the border between

where p = az/ax, q = az/dy, I= measured intensity, different interpretations. The multigrid approach solves

and R= theoretical reflectance function. this "democratic impasse' on the coarsest grids (much

After the tangent planes are available, the surface z faster because now information spreads over large dis-

is reconstructed minimizing the following functional: tances) and propagates this decision to the finer grids,
that will now concentrate their efforts on refining the
initial approximation.

E(z) = [(z. - p)2 + (zy - q) 2 dxdy (7) Another example is shown in Figure 11, where the
Jimage three dimensional structure of the Mona Lisa face

Figure 10 shows the reconstruction of the shape of painted by Leonardo gji reconstructed.

an hemispherical surface starting from a ray-traced im-
age 7. Above is the result of standard relaxation af-
ter 100 sweeps, below the "minimal multigrid" result a
whose total solution time is equivalent to approximately
four iterations on the finest grid. 9Anticipating the reader's unhappiness with her aesthetic ap.

pearance, let's remember that the Lambertian reflectance model
TA simple Lambertian reflection model is used. is a very naive approximation of the artistic shading used by
sV cycles with one relaxation on each level Leonardo

190

Figure 10: Reconstruction of shape from shading standard

relaxation versus multigrid.

5 Results: Surface Reconstruc-
tion from Depth Constraints

The functional for the surface reconstruction problem
is:

Figure 11: Mona Lisa in three dimensions.

E(z(x, y)) J (z(x, y) - d(x, y)) 2 + A(Z2 + z')dxdy
mage (8) Detailed performance tests have been made using

(8) noisy data for z values corresponding to "Randomville"

A physical analogy is that of fitting the data !(x y) structures. These are obtained by generating random
with a membrane pulled by springs connected to them. coordinates, heights, slants and tilts for quadrangular
A given z value is updated as follows: blocks and placing 'hem in the image plane. The data

are then corrupted by noise and loaded as constraints
in the algorithm.

h2 d(x, y) For 129 x 129 "images" and noise values correspond-
z(z, y) -- z, + h2d (9) ing to 25% of the highest structure, a faithful recon-

nsum + fi h2 struction of the surface (within a few percent of the

where h = grid step. original one) is normally obtained after one single mul-
tiscale sweep (with V cycles) on four layers ".

z,,= 3 -LP(x:+dx, y+dy) z(x+dz, y+dy); The total computational time corresponds approxi-
,z---thdv=±h mately to the time required by 3 relaxations on the

finest grid. Because of the optimality of multiscale
naum = L L-P(z + dz, y + dy); methods, time increases linearly with the number of

dz=±h4d1 =±h image pixels.

The effect of active discontinuities (LP=I) is that oi°n other words, parameters na,nb.ac in xgO are equal to

of inhibiting the smoothing action at their location, one.

191

User interfaces examples and results from some tests Messina, Edoardo Amaldi, Roy Williams and last but
are shown in the last figures. Figure 12 shows the not least the people of Parasoft Inc.
simulation environment on the SUN workstation, Fig- Work supported in part by DOE grant DE-FG-03-
ure 13 and Figure 14 show the reconstruction of a typ- 85ER25009, the Program Manager of the Joint Tacti-
ical "Randomville" image. The original surface , the cal Fusion Office, the National Science Foundation with
surface corrupted by noise (25 %) and reconstruction grant IST-8700064 and by IBM.
on different scales are shown in this order.

References
IlI Battiti, R. (1988) Collective Stereopsis on the Hypercube.

In Proceedings of the III Conference on Hypercube Con-
current Computers and Applications,Pasadena,CA, Vol
11, pp. 1000-1006.

_21 Battiti, R. (1988) Surface Reconstruction and Disconti-
nuity Detection: a Hierarchical Approach. Caltech CSP
Report 676 - B.

1[3 Brandt, A. (1977) Multi-level adaptive solutions to
boundary-value problems, Math. Comput., 31, pp. 333-
390.

14] Chan, T.F. & Saad, Y. (1986) Multigrid Algorithms on the
Hypercube Multiprocessor, IEEE Trans. on Computers,
Vol. C-35, No. 11.

(51 Frederickson, P. & McBryan, 0. A. (1988) Intrinsically
Parallel Multiscale Algorithms for Hypercubes. In Pro-
ceedings of the III Conference on Hypercube Concurrent
Computers and Applications,Pasadena,CA, Vol II, pp.
1726-1734.

[6] Furmanski, W. & Fox, G. C. (1988) Integrated vision
project on the computer network. Caltech C3P report 623.

[7] Geman, S. & Geman, D. (1984) Stochastic Relax-
Figure 12: Simulation environment. ation,Gibbs Distributions, and the Bayesian Restoration

of Images, IEEE Trans. Pattern Analysis Machine Intelli-
gence, 6, pp. 721.

[8[Horn, B.K.P. & Brooks, M.J- (1985) The Variational Ap-
6 Summary and Discussion proach to Shape from Shading, MIT A.!. Memo 813.

The extension of multiscale methods to encorporate dis- [9] Koch, C., Marroquin, J. & Yuille A. (1986) Analog neu-
ronal networks in early vision, Proceedins Natl. Acad. Sci-

continuity detection can be done in an effective way, ence USA, 83, pp. 4263-4267.
combining reconstruction and discontinuity detectioncombintingrecond stn 1101 Marr, D. & Poggio, T. (1976) Cooperative computation of
in time and scale. .stereo disparity, Science, 198, pp. 283-287.

This reduces total computational time by orders of
magnitude with respect to single scale methods and [Dis Marroquin, M.L. (1984)Surface Reconstruction Preserving
provides a better coordination between the two require-
ments of faithful reconstruction and good discontinuity 1121 Poggio ,T., Torre ,V. & Koch,C. (1985) Computational

vision and regularization theory, Nature, 317, pp. 314-structure. 319.

The algorithm can be efficiently executed on a paral-
lel computer and a two-dimensional domain decompo- (131 Stfaben, K. & Trottenberg (1982) Multigrid Methods:

Fundamental Algorithms, Model Problem Analysis and
sition is an effective approach. Applications. In Multigrid Methods Proc., Springer-

Verlag, Berlin, pp. 1-176.

Acknowledgment [141 Terzopoulos, D. (1986) Image analysis using multigrid re-
laxation methods, IEEE Transactions Pattern Analysis

This work was completed while the author was at the Machine Intelligence, 8, pp. 129-139.

California Institute of Technology and benefited from [15] Tersopoulos, D. (1986) Regularisation of inverse visual
problems involving discontinuities, IEEE Transactions

the advice of Dr. Geoffrey Fox and form useful dis- Pattern Analysis Machine Intelligence, 8, pp. 413.
cussions with Christof Koch, Wojtek Furmanski, Paul

192

Figure 13: Reconstruction of "Randomville" landscape: oritti- Figure 14: Reconstruction of "Randomville" landscape: results

nal and noisy images. on different scales.

193

An Adaptive Multiscale Scheme for Real-Time
Motion Field Estimation

Roberto Battiti
105 Via Menguzzato, 38100 Trento, Italy

E-mail: battitigenova.infn.it@iboinfn. bitnet

Abstract In standard reference texts on multiscale and multi-
grid methods (see for example [41) one assumes that the

The problem considered in this work is that of estimat- coefficients and the inhomogeneous term in the p.d.e.
ing the motion field (i.e. the projection of the velocity are known precisely (at the finest scale). The real world
field onto the image plane) from a temporal sequence situation in computer vision is very different. Consid-
of images. ering the estimation of the motion field, the p.d.e. co-

Generic images contain different objects with diverse efficients depend on temporal and spatial derivatives of
spatial frequencies and motion amplitudes. To deal the image brightness pattern. Unfortunately errors are
with this complex environment in a fast and effective introduced in many ways. First the acquisition process
way, biological visual systems use parallel processing, produces quantisation errors (due to the finite number
visual channels at different resolutions and adaptive of gray values) and possibly random noise. In addition
mechanisms. In this paper a new adaptive multiscale the discretized derivative estimation formulas are valid
scheme is proposed, in which the spatial discretisa- when the step size can be considered small with respect
tion scale is based on a local estimate of the errors in- to the dominant wavelengths contained in the Fourier
volved. Considering the constraints for real-time oper- transform of the image and with respect to the move-
ation, flexibility and portability, the scheme can be im- ments in the scene. In general, evaluation at coarse
plemented on MIMD parallel computers with medium spatial scale will suffer from quantization noise (because
size grains with high efficiency. the spatial derivatives will be small), while evaluation

Tests with ray-traced and video-acquired images for at finer scale will tend to be unreliable if short wave-
different motion ranges show that this method produces lengths are present. The appropriate scale for the defi-
a better estimation with respect to the homogeneous nition of the p.d.e. coefficients therefore depends on the
(non-adaptive) multiscale method. estimation errors involved and is in general different for

the different parts of the image.

1 Introduction

Many low- and medium-level computer vision problems 2 Reliable Computation of the
can be formulated in the context of partial differential Motion Field
equations. These in turn are transformed into large al-
gebraic systems (after discretization) that can be solved In particular situations the apparent motion of the
using iterative relaxation methods. Homogeneous mul- brightness pattern, known as the optical flow, provides
tiscale techniques have been proposed as a way to accel- a sufficiently accurate estimate of the motion field. Al-
erate the convergence. Finally parallel computation is a though the adaptive scheme proposed in this paper is
natural way to further reduce the solution time in order applicable to different methods, the discussion will be
to obtain real-time or close-to-real-time performance. based on the scheme proposed by Horn and Schunck

While this framework is now widely popular in com- 1121. They use the assumptions that the image bright-
puter vision, the focus of this work is on an adaptive ness of a given point remains constant over time, and
modification of the previous scheme. Adaptive dis- that the optical flow varies smoothly almost every-
cretization is not introduced to reduce the computa- where. Satisfaction of these two constraints is formu-
tional burden with respect to the homogeneous multi- lated as the problem of minimizing a quadratic en-
scale strategy but to produce a more reliable estimation ergy functional (see also [171). The appropriate Euler-
of the motion field. The adaptive solution grid is neces- Lagrange equations are then discretized on a single or
sary in order to deal with the errors introduced in the multiple grids and solved using for example the Gauss-
definition (not in the solution) of the algebraic system. Seidel 'relaxation" method. The reader interested in

1940-8186-211 3-3/90/0000/0194$01 .00 0 1990 IEEE

the detailed derivation is referred to 112,211. The re-
sulting system of equations (two for every pixel in the 21r 27r
image) is: I(z, t) ot (1 + R + sin(-.-(z - 2t)) + Rsin(T(z - 2t)))

(3)

C2 where R is the ratio of short to long wavelength compo-
(I•Ui + IYv,,j + It)I, - (aj - u~j) (1) nents. Using the brightness constancy assumption [12]

the measured velocity D is given by:

AX2(Izu•,3 "+ i~vi,,i + It)Iv = •-• 2 (v,, - 4vi,,) (2)

where u,, = 7t and vj =it are the optical flow 1=- (4)

variables to be determined, I., 4,, It are the partial
derivatives of the image brightness with respect to where I. and It are the three-point approximations of
space and time, r and V are local averages = the spatial and temporal brightness derivativesi.

(ui+1,j. + uj+ I + u_,i-j + uj-, 1)), Ax is the spa- Now, if one calculates the estimated velocity on two

tial discretization step, and a controls the smoothness different grids, with spatial step Ax equal to 1 and 2,
of the estimated optical flow. as a function of the parameter R one obtains the result

Now, the partial derivatives in equations 1 and 2 need illustrated in Figure. 1. While on the coarser grid the

to be estimated with discretized formulas starting from
brightness values that are quantized (say integers from
0 to n) and noisy. It is easy to show th at, given these
derivative estimation problems, the optimal step for the -- ---------------------------

discretization grid depends on local properties of the
image. Use of a single discretisation step produces large
errors on some images. Use of a homogeneous muitiscale
approach where a set of grids at different resolutions is
used, may in some cases produce a good estimation on
an intermediate grid and a bad one on the final and
finest grid. Enkelmann and Glazer [8,111 encountered
similar problems.

We propose a method for 'tuning" the discretization !
grid to a measure of the reliability of the optical flow
derived at a given scale. This measure will be based -'

on a local estimate of the errors due to noise and dis-
cretization.

The rest of this paper is organized as follows. First
we discuss some fundamental shortcomings of the ho. "' ', , , . .

mogeneous multiscale version and derive a formula for
the error in derivative estimation. Next, we describe
our scheme with adaptive discretization and discuss
the multiprocessor implementation. Finally, we present Figure 1: Measured velocity for superposition of sinusoidalsome experimental results obtained with some imageFire1 Meuedeoitfrsproiinofiuoda
sequences. patters as a function of the ratio of short to long wavelength

components. Dashed line: estimation with Az = 2, continuous

line: estimation with Az = 1, The correct velocity is equal to 2

3 Errors in Derivative Estima- (A' = 4
tion correct velocity is obtained (in this case), on the finer

one the measured velocity depends on the value of R.
The difficulties introduced by erroneous derivative es- In particular, if R is greater than 0.5 a velocity in the
timation can be illustrated with the following one- opposite direction is obtained!
dimensional example. Let's suppose that the intensity
pattern observed is a superposition of two sine waves 'That is/f,= 2-. (l(z + Ax) - I(z - Az)) and analogously
of different wavelengths: for i,.

195

For a general one-dimensional profile I(z - vt) it is without further processing. This is done by setting an

easy to derive (using Taylor expansion) the following inhibition flag contained in the grid points of the pyra-
approximation for the relative velocity error due to dis- midal structure, so that these points do not participate
cretisation: in the relaxation process. On the contrary, if the er-

ror is larger than Te.r, the approximation is relaxed
on a finer scale and the entire process is repeated un-

6v = - V I".(y) 2 til the finest scale is reached. A local inhomogeneous
--V = -v (((VAt) - (A)) (5) approach is thus obtained, where areas of the images

characterized by different spatial frequencies or by dif-
Considering also the errors introduced by quantization ferent motion amplitudes are processed at the appropri-
one obtains (after substitutions and reasonable assump- ate resolutions, avoiding corruption of good estimates
tions described in [2]): by inconsistent information from a different scale (the

effect shown in the previous example). The optimal grid
structure for a given image is translated into a pattern

6v C I/ 1 1 of active and inhibited grid points in the pyramid, as
2 I(A) 2 --(A1)6 1+ (+ illustrated in Figure 2.

v p~n (A1)2 + (AtI)2

(6)

where A4l and AtI, are the spatial and temporal dif-
ferences in intensity values2 . These differences grow lin- -

early with the number of discretization levels n. There-
fore, while the first term of the overall relative error
does not depend on n, the second term, which expresses
the contribution due to the quantization process, de-
creases with n and can be reduced by increasing the
number of quantization levels. C is assumed to be
a constant (with an heuristic value of 2M derived in3
the case of sinusoidal patterns). Finally the param-
eter p (fractional range of intensity values in a given
image) is needed in the case of over- or under-exposed
images. The two-dimensional estimate of the overall
relative error is obtained from eqn. 6 by rotational in- 61
variance, substituting (A2 l) 2 with (A2 1) 2 + (AVI) 2 .
This amounts to measuring the field unreliability ac-

cording to the error in the component of the velocity
that is normal to the brightness gradient. * ACTIVE PO•ITS

4 Adaptive Multiscale Solution
on a M ulticomputer Figure 2: Adaptive grid and activity pattern in the multireso-

lution pyramid.

The previous example and considerations suggest a new
strategy. First a Gaussian pyramid 15] is computed The motivation for freezing the motion field as soon
from the given images. This consists of a hierarchy of as the error is below threshold is that the estimation
images obtained filtering the original ones with Gaus- of the error may itself become incorrect at finer scales
sian filters of progressively larger size3 . and therefore useless in the decision process. It is irm-

Then the optical flow field is computed at the coars- portant to point out that single scale or homogeneous
est scale using relaxation, and the estimated error ac- approaches cannot solve adequately the above problem.
cording to eqn. 6 is calculated for every pixel. If this Intuitively what happens in the adaptive multiscale ap-
quantity is less than a given threshold Tcr, the current proach is that the velocity is frozen as soon as the spa-
value of the flow is interpolated to the finer resolutions tial and temporal differences at a given scale are big

2That is A.! = (I(z + Az) - I(z - Az)) and analogously for enough to avoid quantisation errors but small enough
All. to avoid errors in the use of discretised formulas. The

'Three levels are used for 65x65 images. only assumption made in this scheme is that the largest

196

motion in the scene can be reliably computed at one of the nodes is left unassigned [6]. This stems from the
the used resolutions. If the images contain motion dis- fact that the total number of grid-points in the pyra-
continuities, line processes (indicating the presence of mid is not necessarily close to a power of two. For the
these discontinuities) are necessary to prevent smooth- two-dimensional problem considered, if the number of
ing where it is not desired (see I[l and the contained pixels at the finest resolution is 2n, the total number of
references). grid-points in the complete pyramid is:

The multiscale algorithm described in the previous
section can clearly be executed in different ways on a 1 1

parallel computer (for a pictorial representation see Fig- 2" (+ 1 + (1)2 + ... + (1)) 4 2n
ure 3). 4 4

Because an (n + 1) dimensional hypercube (with 2n+l
nodes) is needed, only 66% of the nodes will be assigned

One-dimensional Pyramid to grid points.

The efficiency of the parallel implementation of the
multiscale algorithm that assigns one processor to each

r pixel (or to each grid-point at the finest resolution) is
furthermore limited by the fact that when relaxation
is executed at coarse resolutions many processors are
inactive. A detailed calculation 16] shows that the ef-
ficiency decreases at the rate of 1j- as the grid size
I increases ". Considering the communication over-
head, the optimal mapping (using hierarchical Gray
code 16,9]) is such that the distance between neighbor-

S.ing points on the coarser grids is equal to two, causing
0 some delays especially on old architectures with direct

010 id-H!0b communication limited to neighboring processors.

The above discussion provides some motivation

0 for the use of large grain-size multicomputers (see
3d-Hyprcube also [10,7] and [20] for a general discussion).

In this case a simple two-dimensional domain decom-
position can be used efficiently: a slice of the image with
its associated pyramidal structure is assigned to each

Figure 3: Mapping between a (one-dimensional) multiscale processor. Implementing the adaptive strategy, more
structure and hypercubes of different "grain sizes". complex schemes with dynamic load balancing are not

needed because a real-time scheme is supposed to pro-

Considering first an implementation on a SIMD par- duce a solution in the given time in the worst possible

allel computer with a large number of processors, the case, when all grid units are active (this situation may

maximum amount of parallelism is obtained assigning correspond to images with fine details in all regions of

one processor to each grid point (6,13]. Unfortunately the scene). All nodes are working all the time, switch-

this scheme presents a serious disadvantage: while re- ing between different levels of the pyramid as illustrated

laxation is executed at a given level of the pyramid all in Figure 4.

processors assigned to different levels are inactive. In No modification of the sequential algorithm is needed
a pyramid with L levels the hardware utilization effi- for points in the image belonging to the interior of the
ciency will therefore be 11L. For example, if an image assigned domain. On the contrary, points on the do-
with 512x512 pixels is analyzed at 6 different resolu- main boundary need to know values of points assigned
tions the efficiency is at most 0.16. to nearby processors. With this purpose the domain

If the pyramidal structure of grid-points cannot be assigned to each processor is extended with an overlap
mapped in a one-to-one manner onto the processing area and a communication step on a given layer is used
nodes of a given architecture, an additional reduction before each iteration, as described in 19,15,1]. Only two
in hardware utilization efficiency is present. For exam- exchanges are necessary (one in the north-south, and
ple, if the implementation is on a fine grain hypercube 4This result is therefore similar to that obtained in the scheme

parallel computer and if the mapping is such that one that assigns one node to each grid point, because log2 1 s L, the
processor is assigned to each grid point, a fraction of number of levels.

197

* IMAGE

I Image dimension at the finest resolution (the
number of pixels is I x I), where I = 2' + 1.

'mmn Image dimension at the coarsest resolution
= 0 considered in the limited coarsening scheme.

R PYRAMID

L Number of levels in the complete pyramid. It
"P easy to derive the relation L = log2 (V- 1) + 1.

exchange 0 The levels are numbered according to: I = 0
(coarsest),,..., L - 1 (finest)./

PROC 0 ROC 1 lcoarseet Level number corresponding to the coars-
est resolution used in a given implementation

;, exchange 1 (equal to log2 (Immn - 1)). lfmeet is always
L- 1.

nlReu.. Number of levels used, equal to Ifinet-

lcoarset + 1.

* PROCESSORS AND COMMUNICATIONS

Figure 4: Domain decomposition for multiscale computation. tCaiCtJ" Time for one floating point operation.

Processor communication is on a two-dimensional grid, each pro- tcaLc4 Time for one integer operation.
cessor operates at all levels of the pyramid. tcomm..A Startup time for message transmission.

tcom,n~t Transfer time for transmitting the status

the other in the east-west direction), as it is shown in of one pixel with the associated line processes
Figure 4. (in the present scheme two line processes are

As it will be shown in the examples, the use of limited associated to each pixel, for example the ones

coarsening 119] is allowed for practical problems in com- to the north and to the east).
puter vision. In this mapping scheme the coarsest level ALGORITHM
of the pyramid contains a number of pixels such that
each processor will contain at least four of them. In this Wrci. Number of operations per pixel during one
case the programming environment is more convenient, relaxation step.
because no exceptions are needed in the relaxation and Wdi,¢ Number of operations per pixel for updating
communication routines, and the efficiency is optimal, the line processes.
because no processor is idle at the coarsest grids. Elim-
inating the coarsest grids in the complete pyramid does Winit Number of operations per pixel for initial-
not affect the solution time in a significant way on the isation.
problems considered. a Number of relaxations executed on each level.

* MAPPING

5 A Model of the Architecture P Number of processors in the multicomputer.

and Algorithm The use of limited coarsening is allowed pro-
vided that the following relation is valid:

The efficiency of the parallel implementation of a mul- I'mmn Ž_ 2 Pf (each processor must contain at
tiscale algorithm depends on characteristics of the al- least 4 pixels at the coarsest resolution).
gorithm and on the performance of the hardware of a E Number of data exchanges per relaxation step.
given multicomputer. The following discussion is lim- T Thickness of the overlap area (see previous sec-
ited to multicomputers with a two-dimensional grid of tion).
connections. We will distinguish parameters related to
the image, multiscale pyramid, processors and commu-
nications, algorithm, and mapping, as follows: Tttr Total startup time for communication.

198

Totan, Total transmission time for communica- 6 Multicomputer Implementa-
tion. tion

For the performance analysis we follow the model The hardware parameters for some commercial MIMD

introduced in 191. The efficiency, or speedup per node, computers are collected in Table 1. Data about commu-
is defined by: nication are for message length greater than 1K bytes,

tcommjbWe is the transfer raLe per byte. These data
have been collected from different sources 13,181, using

T.eq (7) different operating systems 5 and are not exhaustive

P Tconc(P} about the available multicomputers.

where Teq and Teon, are the solution times on the se-
quential and parallel computer. g Machine t..y t o

In order to calculate the computation and commu- I 660 0.- 4.54 (Int. so2s6)

nication times, it is useful to introduce the function --------- !6 10.28 (CustomNU______ 0.4 0.28 Custom)

WUmn,(C*,fleuel,'1), measuring the number of work K288 1.19 0.8 4ansp.

units required by a given multiscale scheme, where one MVarkITIp 136 0.54 0 Wt
work unit is defined as the amount of computation re- Symult S2010 917 0.68 18.t3 TMot.8020H

quired by one relaxation at the finest grid [4]. This
function is defined as: Table 1: Latency, communication time and floating point per-

formance of some multicomputers. Times are in ps.

-1 In the following we present the theoretical speedup

WUmo(Ct,niee°,') = +a E 2'7 (8) that can be expected for machines based on the

Transputer. For our problem Wi"it = 30; W,5 lag =
1 - 2-n'~'" 25; Wdoc = 18. Two relaxations on each level are as-

1- 2-' sumed (a = 2). The minimum image size considered

for a fixed number of nodes is such that at least four
where -I is the tdimension" of the problem (for exam- pixels are assigned to each procesior. The number of
pie -y = 2 for operations on the two-dimensional image levels used in equations 9 - 11 is the maximum compat-
array, -y= 1 for operations on the boundaries). ible with limited coarsening, as described in the previ-

The complete calculation is composed of an initial- ous section. In addition, the number of bytes per pixel
ization part, where preliminary data are calculated on to transfer is 6, and therefore tcomm-t = 6tcot1,mjpe.
each layer, and of the multiscale coarse-to-fine scheme. The thickness of the overlap area and the number of
Assuming the use of limited coarsening, the resulting exchanges per iteration are T = 1 and E = 2, respec-
expression for the total computation time is: tively.

Figure 5 shows the theoretical efficiency calculated
for the cited machine as a function of the image size

2 (9 I, using the parameters defined in Table 1. As it can
T 2 [WPnit WUma(1,nievci.,2)+ be seen, the efficiency for large images (I > 512) is

(Wrelax talc_ + Wdioc tcaicji)WUm(cx, nievel., 2)] greater than 80% if the number of processors is less
than 256, approximately. A lower bounds to the total

The startup time is the same for each level, therefore solution time for the different configurations is illus-
the total is given by: trated in Figure 6. From the graphs it is clear that

real-time multiscale processing is within the reach of

digital multiprocessor technology. The time for loading

Ttart = E tcomm ,t nickel, (10) the image to the different processors and for obtaining
the final results has not been considered and can be a

while the transmission time is serious limiting factor for two-dimensional architectures

'In particular Express from Parasoft has been used on
NCUBE/1, Symult S2010, MarklIl and Meiko.

IInefficiencies caused by the use of high-level languages and

Ttran= E Ttcomm4t WUm,(ot, nleweis, 1) (11) additional overheads caused by the operating systems are not
taken into account.

199

Efficiency for Transputers Solution Time for Transputers
Efficiency Soluti Tme (sac)

le.03 I I I
1.900

0.95 I
0.90 2

0.a5 Ie+02

0.80 5

0.75 2

0.70]e+0!

0.65
5

0.60

0.55 2

0.50 le+0

0.45 5

0.40
2

0.35
Ic-01

0.30
5

0.25 5

0.20 2/-

0.15 le02

0.10 5

0.05
20.00S -. 0 iI I I I Imae Sj" le-03 I I I I mageSim

0 le01 3 le+02 3 le+03 3 IC4-01 3 1c+02 3 [e+03 3

Figure 5: Theoretical speedup for the implementation on the Figure 6: Total solution time for different configurations.

Transputers as a function of the image size. Different curves show

the efficiency for different numbers of processing nodes. operating system's version. The obtained efficiency is

S= 0.87.

(for a review of different image processing architectures
see [16,22]). The total processing time can be reduced
if overlap of communication and calculation is allowed 7 Test: Expanding Sphere
(see for example [31). In this case relaxation could beexecuted first for the grid points on the boundary. Val- These examples show that relaxation per se in the ho-
lies pertaining to these points could then be exchanged mogeneous scheme does not reduce the solution error in
wies perth ningteor s points ae updathed. ball cases. In some cases too many relaxation steps may
while the interior points are updated. increase the error either because of smoothing over re-

A program implementing the multiscale scheme has gions with rapidly varying velocity fields or because of
been written in C language and tested on a commercial propagation of constraints referring to different moving
parallel processor 7 . Because the communication part objects (if appropriate line processes are not activated).

is limited to the exchange step repeated before each it- The fi r opriage cesses o r notraciaed-

eration, the software is easily portable to different mul- T The first set of images consist of ray-traced expand-

tiprocessors. The purpose of this implementation has Ing spheres superimposed onto a fixed 'natural back-
ground 10. These images contain a unique dominant

been that of obtaining some concrete experience and spatial frequency of the order of magnitude given by
not that of benchmarking different machines. In par- the sphere diameter. If we do not consider the ef-
ticular the portability implied by the use of a high-level fect of quantisation and assume that the motion am-
language and a user-friendly communication environ- plitude is very small with respect to the radius, one
ment s has been obtained at the price of slowing down iteration is sufficient to recover the correct optical flow
the theoretical performance by a factor of two-four, de- (this is the special case of a velocity vector parallel to
pending on implementation details, the brightness gradient). The function of relaxation is,

Preliminary timing has been done using a board with in this case, to provide a better estimate by averaging
eight processors 9, and test images of 129x129 pixels. noisy derivative estimations on neighborhoods with a
The total solution time is of the order of one-three size that increases with the number of relaxations ap-
seconds, depending on available memory, compiler and plied.

7 A Transputer board hosted by a Sun workstation. l 0The background is used in order to obtain non-sero deriva-
SProvided by the Express software package from Parasoft. tives in this region. In fact, if they vanish, all motion fields
ODeflnicom board with Transputers, software from Parasoft minimise the Horn and Schunck functional,

200

Unfortunately, this is true only if one assumes that
the occluding boundary is known a priori and if the
correct velocity is given on this boundary, as it is the
case in Tersopoulos' work (21]. In the general case (no
initial information) different results are possible. As
will be shown in the following tests, the r.m.s. error in-
creases for small spheres (because noisy information on
the boundary is propagated in both directions), while (a)
for larger spheres it first decreases (for the averaging
effect) but after a few iterations increases (an average
over very large neighborhoods becomes worse than the
original estimate) with a speed proportional to the pa-
rameter ci in the cited equations.

The graphs in Figure 7 show the behavior of the
r.m.s. error as a function of work units, for two dif-
ferent values of the sphere radius (55 and 95 pixels).
Movement is an expansion (3 pixels per frame on the
border of the sphere). Both the single scale and the
multiscale algorithms are tested. (b)

For the smaller sphere, single scale relaxations make .

the error worse. The multiscale algorithm does not im-
prove the result. The r.m.s. error as a function of work
units in not monotonic (see graph), and the last fine Figure 7: Expanding sphere: r.m.s. error as a function of the

scale iterations show an increasing error. The effect of amount of computation in the multiscale scheme. Fig.(a): small

the boundary is present in particular at the coarsest sphere (radius=55). Fig.(b): larger sphere (radius=95). Single

scale because the ratio boundary / internal points is scale results (o) and multiple scale results (0). Interpolation to

large. finer scales increases temporarily the r.m.s. error. Algorithm is

For the larger sphere (the sphere boundary is now terminated after the given number of work units because r.m.s.

outside the visible window of 129x129 pixels) the situ- error is increasing.

ation is different. Single scale relaxations improve the
r.m.s. error at the beginning. The error reaches its If an exact knowledge of the occluding boundary in-
minimum when 4 work units are completed, then it in- formation is missing, incorporation of the boundary
creases. In this case the multiscale approach reduces detection step described in [1] is essential in order to
the error faster (the minimum is reached after 1.06 work avoid smoothing across regions corresponding to dif-
units). But the minimum value is reached on the mid- ferent moving objects, as it will be shown in the next
dle scale and error becomes larger on the finest scale, section.
another case in favor of the adaptive approach. The
following figure shows the optical field obtained with 7.1 Occluding Objects
the multiscale algorithm in the two cases. These ex-
amples show that the effect of the boundary conditions This test compares the result obtained with or without
on the result is indeed an important one. Going from discontinuity detection. It shows that the optical flow
an exact a priori knowledge of the occluding bound- near an occluding boundary may be reconstructed with
ary with their velocity values to a situation where the large errors unless the smoothing process is blocked by
only boundary conditions are the 'free' boundary con- line processes.
ditions at the border of the image, leads in general to The images contain two spheres of different sizes (ra-
very different results1 1 . dius are 35 and 24 pixels), translating with velocities

"L et al. [141 show that free boundary conditions make the (0.0 , -1.0) and (0.8 , 0.2) against a natural back-

problem ieonditioned It is essential to stress that this occurs ground. Their reflectance patterns are sinusoidal grids

when the spatial derivatives 1. and I, are very small, precisely (L is 13.3) of a different intensity range mapped onto
the case that has to be avoided because it is plagued by large them using polar projection (in order to obtain a wide
errors. If the derivatives are not small, ill-conditioning is not range of Fourier components in the different regions
a problem. Dirichlet boundary conditions, that are apparently of the spheres), while illumination is coming from a
suggested in the cited reference, assume the precise knowledge of
the velocity field on the boundary and this is not the typical case source at infinity orthogonal to the image plane. The
in computer vision, parameters for the discontinuity detection process are

201

IVIA

nOD nn
........... "....[:1 , •

.....

B O B iiiIIIIIII~i~iI...:-:::::...
• i•, I ,,,•-••"::::::.....-.....

...... .h E . -..." .:::.EEh :E~ ~E.I~ E~~

Figure 8: Multiscale optical flow for spheres of different sizes.I

adativ mutisal prces, uing6 elaatins n ech...........
Th fetof thr e scpes herst boun ary so ws the result ivsblforb-

..

tained without discontinuity detection, while the sec- Figure 9: Occluding moving spheres: optical flow obtained

ond one shows the result when a discontinuity detection without (a), and with the concurrent discontinuity detection pro.

step has been done every 2 relaxations. cess (b).

The qualitative results are confirmed considering the
r.m.s, error in the optical field for the two cases 12]_

completely erroneous. This is recognized by the adap- I

tive scheme that freezes the solution obtained at coarser8 Test: Natural Image grids.

The images used for this test show a pine cone moving
in the upward direction. They were acquired with a S-
VHS video camera and a Targa frame grabber. Move-
ment was executed by adjusting a tripod sustaining the Acknowledgement
object by 0.25 cm every frame. Measured velocity in
p ix e ls is 1 .6 p ix e l / fr a m e . T e s t s h a v e b e e n d o n e fo r T h s w r w a d o e s a r s a c h s i t n t o D . G -sets of three images taken every one, two, and three Tiwofrey Foxat done Califrna Instiuea ofsiTecntotog adrGe
frames. The average velocity (on a window centered benfited ion many ways Cifromrnis suggstitueons Iechnooyank
on the pine cone) obtained with the homogeneous mul- beneited Koc mand wdayfrdo m ahis sugetor s vaual tha
tiscale algorithm is compared with that obtained with Chrstiof ohadEoad mlifr aubeag
the adaptive version. While this second version alwaysgetos

produces a better estimate, the difference is particu- Work supported in part by DOE grant DE-FG-03-
larly significant for large motion amplitudes, as shown 85ER25009, the Program Manager of the Joint Tacti-

in Figure 10. cal Fusion Office, the National Science Foundation with

In this case the fine scale derivative information is grant IST-8700064 and by IBM.

202

[6] Chan, T.F. & Saad, Y. (1986) Multigrid Algorithms on the
Hypercube Multiprocessor, IEEE Trans. on Computers,
Vol. C-35, No. 11.

[7] Embrechts, H. & Roose, D. (1989) Efficiency and Load
Balancing Issues for a Parallel Component Labeling Algo-
rithm. In Proceedings of the IV Conference on Hypercube
Concurrent Computers and Applications, Monterey.

[81 Enkelmann, W. (1988) Investigations of multigrid algo-
rithms for the estimation of optical flow fields in image
sequences, Computer Vision, Graphics and Image Process-
ing, 43, pp. 150-177.

& Walker D. (1988) Solving Problems on Concurrent Pro-
cessors, Prentice Hall, New Jersey.

[10] Furmanski, W. & Fox, G. C. (1988) Integrated vision
project on the computer network Caltech C3P report 623.

.I.[11] Glazer, F. (1984) Multilevel relaxation in low-level com-
puter vision. In Rosenfeld A.(ed.) Multiresolution image
processing and analysis, Springer-Verlag, pp. 312-330.

"4 LAYEI.$ [12] Horn, B.K.P. & Schunck, G. (1981) Determining Optical

Flow, Artificial Intelligence, 17, pp. 185-203 .

"[13] Ibrahim, H.A.H., Kendler, J.R. & Shaw, D.E. (1987) Low-
level image analysis tasks on fine-grained tree-structured
"SIMD machines, Journal of Parallel and Distributed Corn-

X 5LA7L[S puting, 4, pp. 546-574.

[14] Lee, D., Papageorgiou, A. & Wasilkowski, G. W. (1989)
, .,-, Computing Optical Flow. In Proceedings Conference on Vi-

I .tua Motion, Irvine.

[15] McBryan, 0. & Van de Velde, E. (1987) Hypercube Algo-
rithms and Implementations, SIAM Journal of Scientific
and Statistical Computing, 8, pp. 227-287.

Figure 10: Test images, motion field at different scales, and

graph of average velocity. Velocities obtained with the homo- [16] Page, I. (ed.), (1988) Prallld Architectures and Computer Vi-

geneous (o) and adaptive (o) methods are compared with the sion, Clarendon Press, Oxford.

correct velocity (dashed line). [17] Poggio ,T., Torre ,V. & Koch,C. (1985) Computational
vision and regularization theory, Nature, 317, pp. 314-
319.

References [18] Salvador, R. (1989) Message passing benchmark for the

[11] Battiti, R. (1989) Surface Reconstruction and Discontinu- NCUBE-1,SYMULT, Mark Ill and MEIKO, Caltech Con-
ity Detection: a Fast Hierarchical Approach on a Two- current Computation Technical Bulletin 19, California In-

Dimensional Mesh. In Proceedings of the IV Conference stitute of Technology.

on Hypercube Concurrent Computers and Applications, [19] Solchenbach, K. (1988) Grid applications on distributed
Monterey CA. memory architectures: implementation and evaluation,

Parallel Computing, 7, pp. 341-356.
[2] Battiti, R. (1990) Multiscale Methods, Paralld Computation

and Neural Networks for Real-Time Computer Vision, Ph.D. [20] Stout, Q.F. (1987) Supporting divide-and-conquer algo-
Dissertation, California Institute of Technology. rithms for image processing, Journal of Parallel and Dis-

tributed Computing, 4, pp. 95-115 .
[3] Bomans, L. & Roose, D. (1989) Benchmarking the iPSC/2

hypercu've multiprocessor, Concurrency: Practice and Ex- [21] Tersopoulos, D. (1986) Image analysis using multigrid re-
perience, 1 (1), pp. 3-18. laxation methods, IEEE Transactions Pattern Analysis

Machine Intelligence, 8, pp. 129-139.
[4] Brandt, A. (1977) Multi-level adaptive solutions to

boundary-value problems, Math. Comput., 31, pp. 333- [22] Uhr L. (ed.), (1987) Paratid Computer Vision, Academic
390. Press, Boston.

[5] Burt, P.J. (1984) The pyramid as a structure for efficient
computation. In Rosenfeld A.(ed.) Multiresolution image
processing and analysis, Springer-Verlag, pp. 6-35.

203

The Fifth Distributed Memory

Computing Conference

8: Ray Tracing

Hypercube Algorithm for Radiosity
in a Ray Tracing Environment

Shirley A. Hermitage Terrance L. Huntsberger
Department of Computer Science Beverly A. Huntsberger

Augusta College Intelligent Systems Laboratory
Augusta, Georgia Department of Computer Science

University of South Carolina
Columbia, South Carolina 29208

Abstract or transmitted, and in most cases, ignores any diffuse
reflection. Radiosity, on the other hand, attempts to
account for a phenomenon that ray tracing ignores,

Two different approaches to realistic image syn- the diffuse inter-reflections of light from surfaces in the
thesis are Ray tracing and radiosity. Each method scene, which may, in fact, provide most of the illumina-
falls short in their attempts to model global illumina- tion. Radiosity methods assume that all surfaces are
tion present in most environments. A more general diffuse reflectors and make no allowances for specular
model includes the specular and diffuse reflection of reflection.
both these methods but the combination requires pro- Recent research has concentrated on different ways
hibitive computation. of combining these two effects to create an even more

The algorithm presented here extends the standard accurate model of global illumination in an environ-
ray tracing algorithm by adding diffuse rays, while ment. Some combination methods add rays of diffusely
eliminating unnecessary radiosity calculations. The reflected light to a ray tracing program, while reduc-
data separation used here is based on the heuristic ing the number of additional rays. Kayija describes
that light rays, as well as shadow rays intersect ob- a method[8] by which the number of rays that need
jects which are nearby more often those that are more to be traced can be reduced by stochastic sampling of
distant. Although that heuristic seems sound, its accu- the rays in the most important directions. Ward et
racy is being tested by monitoring the results of pro- al[13] use a Monte Carlo technique to generate contri-
cessing a large number of different scenes of various bution values of indirect illuminance at certain strate-
complexity. gic points, and the values are averaged to provide val-

ues at other points.

Keywords: Radiosity, Ray tracing, Parallel graph- An alternative to including diffuse reflection in a
ics algorithms ray tracing program is to add a specular component

to the radiosity method. This approach was tried
by Immel[7] using a very large system of equations.

Introduction Wallace[1 1] used a two-pass approach including a first
pass to compute the diffuse component and a second

Early attempts at producing realistic computer gen- pass which is essentially ray tracing. The weakness of
erated images used shading methods to simulate ef- all of these methods is the still the prohibitive amount
fects such as shadows, specular reflections and trans- of computation. In addition, in the approach sug-
parency. Development of more accurate image syn- gested by Immel[7] there is a strong dependence be-
thesis techniques essentially focused on two distinct tween the total number of equations that need to be
methodologies, ray tracing and radiosity. Ray trac- solved and the specular reflectance of the surfaces in
ing is a view dependent approach to image synthesis the scene. This dependence eliminates the essential
which can accurately account for the effects of shad- strength of the radiosity approach, independence of
owing and reflections from neighboring surfaces. The the number of equations from th. surface characteris-
method assumes that all light is specularly reflected tics.

200
O-8186-2113-319010000/0206$01.OO @ 1990 IEEE

The algorithm presented here extends the standard the entire environment, including the enclosure, is sub-
ray tracing algorithm by adding diffuse rays, while divided into small enough "patches", then each patch
eliminating unnecessary radiosity calculations. The can be considered to be of uniform composition, with
technique is based on results obtained by Cohen et uniform illumination, reflection and emission intensi-
al[3] who adapted the radiosity method to provide for ties over the surface. The total radiant energy leaving
faster image generation in an animation environment, a surface (its radiosity) consists of two components -
Cohen's results suggest that light emitting and pri- emitted and reflected radiation. The radiosity of one
mary reflectors probably produce most of the diffuse patch can be expressed by the equation:
illumination in a scene. It is possible to differentiate
between specularly and diffusely reflected rays by ad- B, = E, +pH(
justing the level of recursion of a diffusely reflected ray
so that it will not continue to be propagated. These where:
results suggest a way of adding a diffuse component to
a ray tracing program without making it intractable. B enradgiosity of patch j: the total rate of radiant
The unavoidable increase in computation can be han- energy leaving the surface, in terms of energythe se o paalle prcessng.per unit time and per unit area. (W/m 2)
died effectively by the use of parallel processing. Ej = rate of direct energy emission from

patch j per unit time per unit area.

Ray Tracing Pj = reflectivity of patch j: fraction of
incident light reflected back into enclosure.

Ray tracing programs for the hypercube architecture H, = incident radiant energy arriving at

were previously implemented successfully by Salmon patch j per unit time per unit area.

and Goldsmith[9] and Benner[2]. One of the most time
consuming tasks of a ray tracing program is the com- The reflected light is equal to the light leaving ev-
putation of the points at which a ray intersects objects ery other surface multiplied by both the fraction of
in the scene. One technique that is used to avoid un- that light which reaches the surface in question, and
necessary intersection calculations is to surround each the reflectivity of the receiving surface. Thus H,, the
object in the scene with a tightly fitting, geometrically incident flux on patch j, is the sum of fluxes from all
simple volume. Kay and Kayija[81 suggested enclosing surfaces in the enclosure that "see" j (it may be that
sets of bounding volumes in still larger bounding vol- patch j "sees" itself if it is concave). This means that
umes so that intersection with large parts of the scene
can be ruled out by a simple intersection test with a N

high level bounding volume. H=Z B. F., (2)

where:
Radiosity B, = radiosity of patch i. (W/m 2)

In most environments there may also be illumination Fj = form factor: fraction of radiant energy
present that cannot be directly defined as having orig- leaving patch i, impinging on patch j.
inated from a point source, as is usually the assump-
tion made for ray tracing analysis of a scene. Radiosity These equations can be combined to give:
techniques attempt to determine precisely how diffuse
surfaces act as indirect light sources. This process is N

based on methods used in thermal engineering to de- Bj = Ej + pi BiF., (3)
termine the exchange of radiant energy between sur-
fdces. In order to calculate the amount of light energy where N is the number of surfaces in the enclosure.
arriving at a surface, a hypothetical enclosure is con- Su
structed consisting of surfaces that completely define th ancequatiexist f ea of N pates inthe lluinaing nvionmnt. nsie tis ecloure the enclosure, yielding a set of N simultaneous equa-the illum inating environm ent. Inside this enclosure t o s a h o h a a e e s E , i n j m s
there must be an equilibrium energy balance,.in.Ec fteprmtr ,,, n ,msbe known or calculated for each patch. The Eis are

The early work on radiosity assumed that all sur- nonzero only at surfaces that provide illumination to
faces of the enclosure were ideal diffuse reflectors, ideal the enclosure, such as a diffuse illumination panel, or
diffuse light emitters or a combination of the two[4]. If the first reflection of a directional light source from

a diffuse surface. The number of patches does not

207

depend on viewpoint or resolution and is, therefore, In radiosity methods a hemi-cube or full-cube is
usually less than the number of pixels in the resulting used to determine which other surfaces can be "seen"
image. However, there are no provisions for a specu- from a given point. The same approach is used here.
lar reflection component in the calculation, since this The geometry of two patches with the hemi-cube used
component is view dependent. to determine the fraction of diffusely reflected light

reaching each other is shown in Figure 1. This cube
will henceforth be referred to as the direction cube.

Ray Tracing with a Diffuse Component Each cell on the surface of the direction cube repre-
sents a direction from which light can reach the point

Light that is diffusely reflected into the eye may have at its center.
arrived at the reflecting surface from any direction. A
complete ray tracing solution would require that a ray oftentis the imple wayeto detreweterbe tace in achone f tesediretios an prpa- an object is visible in the direction represented by a
gated if necessary. However, if the light arriving from particular cell is to project the object onto the face ofthe cube that contains that particular cell. If the cella particular direction is not coming from a light source, is contained in the projection, then the ubject must be
it must be the result of emission or reflection from an- isibletin the prection , the th niqueethat is
other surface. If this surface is to contribute illumi- visible in that direction. This is the technique that is
nation of any significance, it will probably be either a usdonment iosity pams wh dive eaenligh emtte ora pimay rflecorit s ulikly hat vironment into planar patches that are relatively easy
it will be diffusely reflecting light that it has received to project. However, if an actual point of intersectionfrom another surface. This means that the rays from with the visible object is also required, a more effi-fromanohersurfce.Thi meas tat he rys rom cient method for computation of both visibility and
the original point of intersection need to be traced only intemethod for c outatin th visibilt an
in those directions in which another surface is visible intersection point can be found in the various fast ray
and, for all except the mirror direction, should not be tracing intersection techniques that have been devel-
propagated beyond the point of intersection with that oped. The fastest algorithm availablneis that develsurface, oped by Kay and Kajiyaf8] and is the one used in our

combined algorithm.
In a regular ray tracing program each ray that is

specularly reflected or transmitted is traced recursively The more accurate lighting model which accountsuntil either the level of recursion reaches a predeter- for both ray tracing and radiosity is expressed as shown
mined depth, or the contribution of the ray is deter- in Equation (4). Optimization of the integral calcula-mine dethor he ontibuton f te ry i deer- tion is accomplished using the recent results for inter-
mined to below a specified minimum. It is possible to suac com s uighrenrslsfitr
differentiate between specularly and diffusely reflected surface projections [l],[10],12].
rays by adjusting the level of recursion of a diffusely
reflected ray so that it will not continue to be propa-
gated. Icd, 0 •,) =

E(e•,) + nP"(Eo)..,,.) Ih.(0(.) cos(E)dw (4)

receiving where:
patch lout = the outgoing intensity for the surface

normal AI., = an intensity arriving at the surface from
square the environment

SE = outgoing intensity due to emission by the
surface

0 ,,,tu = outgoing direction
,I O, = the incoming direction
,f = the sphere of incoming directions
e = the angle between the incoming direction

and the surface normal
Sd = the differential solid angle through which

the incoming intensity arrives
Figure 1. Patch geometry p" = the bidirectional reflectance/transmittance

of the surface

20M

The term p" in the equation is broken into two d = view distance.
components for the specular and diffuse components N = R - C (normalized).
and is given by: V = UP - (N 0 UP)N

(vertical axis in view plane).
p'(0o.t,0.) = kop.(eot,e,,n)+kdpd U = N ®V

where (third axis of viewing coordinate system).
where =f = scalar offset for relative position of I. and I,.

=, fraction of reflectance that is specular

kd = fraction of reflectance that is diffuse
k0 + kd I. 1. Project each corner, E, of the object's bound-

ing volume onto the view plane by solving the
set of three parametric equations:

Hypercube Implementation of the Model E = C + t * d * N + f(I) * U + f(I') * V
for the three unknowns: t, f(4), f(I).

A basic assumption of the approach to image syn-
thesis (that follows) is that the scene is described in 2. Obtain the vertical image coordinate of the
the Haines[5] suggested standard format for a graphics pixel, onto which this corner projects, from
database (nff) and that the program will include code the value of i(1n), which is a linear expression
that can read a scene file of this type. This implies
that the scene must be composed of a combination of 3. Determine the maximum (I,.moz) and the
well defined primitives - spheres, cones, cylinders and minimum (I,.,.,) of these vertical image co-
polygons. Only point light sources are included in the ordinate values for all 8 corners of the bound-
Eric Haines data base. Since light emitting surfaces ing volume.
are to be included, an extra field is added to the ob-
ject description. 4. Assign the object to all processors between

The image is divided into horizontal bands, num- I..iadivJ and I,,,. 0.divJ.

bered from 0 to M - 1, each of which will be assigned Each object in the scene is assigned to one or more
to a different processor. Let a pixel's coordinates be pixel bands, and thus to the processor responsible for
called (I,, I.). Let the number of rows J mapped onto that pixel band, depending on the dimensions of its
each processor be the number of rows in the image, bounding slabs. This mapping process is shown in
Xsize, divided by the number of processors, M. To Figure 2.
determine which processor I, a given row I. is mapped
onto, a ring-mapping is used so that I = I. div J.
If the scene is projected onto the image using a per- Output Image Mapping
spective projection, each pixel band will represent one Onto Processors:
part of the scene. The view volume for the entire im-
age, is thus subdivided into smaller volumes, one for row 0 to J-1 node 0
each band. J to 2J-1 node I

Object assignment depends on the dimensions of node 2
the object's bounding slabs. A di, and al,,. in each
of the x, y and z directions, is computed for each ob- M- J tO M-1 node
ject as the scene file is read. These define the object's
bounding volume which is stored with other object Processors Mapping
data such as shape and surface characteristics. Inter- Onto Bounding Slabs:
section of a band's view volume with the bounding
slabs of an object determines that the object has an
effect on that band. The result is that the object's
data is stored on the processor associated with that
band. Determination of which processor an object is
assigned to, is described below.

C = eye location (also center of projection).
R = view reference point.
UP = view-up direction. Figure 2. Mapping Process

2W9

When more than one object is assigned to a par- they had to implement a system of multi-tasking to
ticular processor, the tree of bounding volumes within accomplish this. We used an alternative method in
bounding volumes that was described earlier is used which a list of rays that need more tracing is collected
for storage. It is constructed in a manner first sug- and then passed as a group to a neighboring procea-
gested by Kay and Kajiya[8] that groups objects by sor. If tracing is completed in some other processor,
nearness as much as possible. that processor needs to know to which pixel this ray

A ray is traced in its processor until no more in- contributes color. Rays not traced to their full depth

tersections with objects occur or a specified maximum of recursion pass information gathered up to point to

depth of recursion is reached. If the maximum is n.,L the next processor as part of the ray description.

reached and the ray passes into the space of another In the modified version of Shade, a color value is
processor, then it is added to a list of rays to be passed initially computed based on the assumption that there
to that processor. The hypercube ray tracing algo- are no shadows. A trial shadow ray is then be created
rithm with radiosity effects included is given below, and tested first for local shadows by intersecting it

with all objects assigned to the current processor. If

Diffuse Ray Tracing Algorithm an intersection is found, the color previously assigned
is removed. If there is no intersection with any local

Level=O object, the shadow ray may be passed to neighboring
Weight = I processors for further testing. Further testing is not
Form ray with origin at eye and direction necessary when the shadow ray reaches the light source

through pixel before it leaves the space of the current processor.
Intersect ray with everything in this processor I
If intersection occurs Computing the point of intersection of the shadow

Find nearest point of intersection P ray with the plane separating the spaces of two dif-

Find Normal N to surface at P ferent processors is done as follows: Given that: P =

Shade(I, Level, Weight,P,N,raydi, ,hit, color) origin of shadow ray, L = direction of shadow ray, and

Mark direction cells at P above or below a general point on the line is Q(t) = P + t * L. Q(t)

For each cell marked as above surface is in the plane separating processor I from processor

Compute direction, celiD I - 1 if the line joining Q to C (center of projection)

Create cube 0ay with: lies entirely in the plane and is therefore perpendicu-

origin = P lar to the plane normal. Therefore: (P + t * L - C) 0

direction = cellD (U ® d * N + KiV) = 0 can be solved to obtain t at

weight = N D cello x Kd intersection. This value of t is compared to the dis-

level = maxlevel - I tance from the shadow ray origin to the light source

label = this pixel in order to determine whether to pass the shadow ray

Trace (I, cubeay , tcol) to processor I - 1.

color = color + tcol x (N 0 cello) x Kd The shadow ray descriptor that is passed to other
EndFor processors for testing will have essentially the same

Else format as the ray descriptors passed for tracing, ex-
color = bgco0 oj cept that its direction is not normalized, and so con-

EndIf tains the essential information about the distance of

The Trace algorithm is modified for the hyper- the light from the intersection point. If it is found in

cube from that described by Heckbert[6]. When a ray subsequent testing that an object assigned to another

is passed to a neighboring processor it takes with it processor blocks the shadow ray, then the contribution
information on ray origin, direction, weight, level and of that light source will be subtracted from the final

image coordinates of the pixel to which this ray con- color value of the pixel.

tributes. After a processor completes its own band of pixels,

Time will be wasted if the processor from which it receives and processes the lists of rays which en-

the ray originated suspends processing until it receives tered its space from neighboring processors. Depend-

a response from the processor to which the ray was ing on the depth of recursion for the diffusely reflected

passed. If multi-tasking were available, the processor rays, further processing may be required in another

could commence processing the next pixel while await- node. Finally all the pixels, having been assigned a

ing a reply. The was the solution chosen by Salmon final value, are merged into a single image file on the

and Goldsmith [9] for their hypercube ray tracer, but host for display.

210

Discussion [5] E. Haines. A proposal for a standard graphics en-
vironment. IEEE Computer Graphics and Appli-

Two different approaches to realistic image synthe- cations, Vol. 7, No. 11, Nov 1987, pp. 3-5.
sis are Ray tracing and radiosity. Each method falls
short in their attempts to model the global illumina- (6] P.S. Heckbert. Writing a ray tracer. SIGGRAPH
tion present in most environments. A more general 88, Atlanta, GA, Aug 1988, Tutorial notes.
model includes the specular and diffuse reflection ofbot thse ethdsbutthecominaio reuirs po- [7] D.S. Immel, M.F. Cohen and D.P. Greenberg.
bath these methods but the combination requires pro- A radiosity method for non-diffuse environments.
hibitive computation. One way to reduce compute Computer Graphics, Proc. SIGGRAPH 86, Vol.
time is to use parallel processing but this alone is not 20, No. 4,1986, pp. 133-142.
enough. The approach suggested here is to add a dif-
fuse component to each light ray while still exploiting [8] T.L. Kay and J.T. Kajiya. Ray tracing complex
the time savings of the progressive refinement tech- scenes. Computer Graphics, Proc. SIGGRAPH 86,
niques of Cohen et al [3]. In addition, a hypercomputer Vol. 20, No. 4, 1986, pp. 269-278.
mapping of the algorithm is presented. [9] J. Salmon and J. Goldsmith. A hypercube ray-

The data separation used here is based on the heuris- tracer. Proc HCCA3, Pasadena, CA, Mar 1988,
tic that light rays, as well as shadow rays intersect ob- pp. 1194-1206.
jects which are nearby more often those that are more
distant. Although that heuristic seems sound, its accu- [10] F. Sillion and C. Puech. A general two-pass
racy is being tested by monitoring the results of pro- method integrating specular and diffuse reflection.
cessing a large number of different scenes of various Computer Graphics, Proc. SIGGRAPH 89, Vol.
complexity. Another aspect of ray tracing on a dis- 23, No. 3, 1989, pp. 335-344.
tributed system is the issue of load balancing. At each
processor, the performance of our combined algorithm [11] JR. Wallace, M.F. Cohen and D.P. Greenberg. A
depends upon the number of diffusely reflected rays two-pass solution to the rendering equation: A syn-
present locally in the scene. Bounding slabs can be thesis of ray tracing and radiosity methods. Cor-
used to balance the number of objects in each proces- puter Graphics, Proc. SIGGRAPH 87, Vol. 21, No.
sor, thus balancing the time needed for the ray tracing. 4, 1987, pp. 311-320.
This approach is currently being pursued. [121 J.R. Wallace, M.A. Elmquist and E.A. Haines.

A ray tracing algorithm for progressive radiosity.
Computer Graphics, Proc. SIGGRAPH 89, Vol.

References 23, No. 3, 1989, pp. 315-324.

[1] D.R. Baum, H.E. Rushmeier and J.M. Winget. [13] G.J. Ward, F.M. Rubenstein and R.D. Clear. A
Improving radiosity solutions through the use of ray tracing solution. Computer Graphics, Proc.
analytically determined form-factors. Computer SIGGRAPH 88, Vol. 22, No. 4, 1988, pp. 85-92.
Graphics, Proc. SIGGRAPH 89, Vol. 23, No. 3,
1989, pp. 325-334.

(2] R. Benner. Parallel graphics algorithms on a 1024-
processor hypercube. to appear in Proc. HCCA4,
Monterey, CA, Mar 1989.

[3] M.F. Cohen, S.E. Chen, J.R. Wallace and D.P.
Greenberg. A progressive refinement approach to
fast radiosity image generation. Computer Graph-
ics, Proc. SIGGRAPH 88, Vol. 22, No. 4,1988, pp.
75-84.

[4] C.M. Goral, K.E. Torrance, D.P. Greenberg and
B. Battaile. Modeling the interaction of light be-
tween diffuse surfaces. Computer Graphics, Proc.
SIGGRAPH 84, Vol. 18, No. 3, 1984, pp. 213-222.

211

The Hypercube Ray Tracer

Michael B. Carter and Keith A. Teague
Department of Electrical and Computer Engineening

Oklahoma State University

the rendering process itself. This observation
Introduction to Ray Tracing makes ray tracing equally attractive to both shared-

Ray tracing is presently the method of choice and distributed memory architectures from an
for generating the most realistic looking synthetic interprocessor communications standpoin. One can
images. Ray tracing works by tracing the paths of envision ray tracing schemes which do perform
many rays of light backwards from the viewpoint, interprocessor communications for one reason or
through pixels on an imaginary viewplane, and into another. Some of these schemes will be discussed
an environment of mathematically defined 3- later in this paper.
dimensional solids (objects) called the "scene". There is one key data structure that drives the
These rays are called primary rays. When a primary ray tracing algorithm: the database describing the
ray's intersection point with the closest object in objects to be rendered. This so called "object
the scene is found, a shading model is applied at database" can become very large if the number of
that point, and the corresponding pixel's brightness objects to be rendered becomes large. Since objects
(color) is calculated. Often, the shading model will can be reflective and refractive, secondary rays and
require that secondary rays be traced due to reflection shadow rays can intersect any object in the scene.
or refraction. Also, the shading model will fire a For this reason, each processor must have access to
ray toward each light source in the scene to see if the entire object database when rendering a given
the intersection point is in that light source's scene. Though this is not usually a problem for
shadow. These rays are called shadow rays. Much shared memory parallel processors, it can be for
work has been done by others to optimize various distributed memory machines because of the
parts of the ray tracing algorithm, such as ray-object generally limited memory available to individual
intersection. [1, 5, 2] processors. This issue, too will be discussed later

in this paper.
Scope and goals of research

Very little work has been done, however, in the Problem decomposition for the iPSC/2
area of parallel ray tracing. Ray tracing, until now, The ray tracing algorithm itself may be
was largely confined to serial machines. Thus, one decomposed in many ways onto the hypercube
purpose of the Hypercube Ray Tracer is to topology of the iPSC/2. One might opt for the
demonstrate that ray tracing is well suited to parallel simplest approach of placing a complete my tracer
architectures, and exhibits excellent speedup. on each node. Each node then ray traces a fixed
Another purpose of the Hypercube ray tracer project portion of the pixels on the viewplane. This
is to select and develop algorithms and data method has the distinct advantage of simplicity. A
structures which lend themselves well to the little thought will reveal that some portions of an
parallel, distributed computing environment of the inage may take longer to calculate than others.
iPSC/2. This will be the case for pixels whose primary rays

intersect complex, mirrored, or refractive objects.
Parallel issues in ray tracing Thus, one node may take much longer to ray trace

A little thought will disclose that the its fixed portion than other nodes. This leads to
brightness of each pixel on the viewplane is poor node utilization and poor load balance.
completely independent of its neighbors. This is In a different scheme one might divide the
not to say there is no correlation among pixels, processing nodes into "intersection processors" and
clearly there is, but merely the calculations "shading processors" with the former doing all ray-
performed for pixels are independent. This fine object intersections and the latter performing all
grained parallelism makes ray tracing suitable for shading calculations on intersection points found by
coarse, medium, and fine grained parallel machines. the intersection processors. [31 Since all iPSC/2

Furthermore, since all pixel calculations are nodes are the same, there is no reason to believe
independent of one another, there need be no that some nodes could perform one function better
communication between processing elements during than others. Furthermore, the intersection process

is far more time consuming than the shading

0-8186-2113-3/90/O000/0212,$1.00 0 1990 IEEE 212

process, so any time saved in shading calculations stores a copy of the database, a tremendous
would make very little difference in overall aggregate amount of memory will be wasted storing
performance. This method has the further these multiple copies. If, on the other hand, a node
disadvantage of requiring a considerable amount of must often or frequently request objects from other
internode communications between intersection nodes, then a tremendous amount of time will be
processors and shading processors. Efficiency wasted waiting for objects to arrive. In the
would suffer because of this communication time. distributed memory environment of the iPSC/2,

The Hypercube Ray Tracer uses a variation on this tradeoff has serious implications: speed must
the first alternative presented above; a complete ray be traded for larger database sizes. In this first
tracer is placed on each node. It solves the load implementation of the Hypercube Ray Tracer, speed
balance problem by dividing the image in such a of execution and ease of implementation are more
way that all nodes are likely to share in the more important than a large database size. This decision
difficult portions of the image. We start at the top is tempered with one proviso, however. All data
raster of the image and move down, assigning structures and algorithms must be suitable for use
rasters to successive nodes. When all nodes have with the distributed database concept so that future
been assigned a raster, then assignment restarts with expansion will be simplified as much as possible.
the first node and continues until all rasters have Finally, we shall consider several antialiasing
been assigned. This is called the "comb" techniques. Aliasing in synthetic images manifests
distribution because the rasters associated with a itself in several forms. First, and best known of all
given node look like the teeth of a comb. aliasing modes, is the "jaggies" -- those jagged
Experiments show this image decomposition to edges at the edges of an object's image or shadow.
produce very low load imbalances in images of Not so well known are the beat patterns and moire'
medium to large size with an arbitrary number of patterns that appear when an area of high spatial
objects in the scene. frequency is sampled by the ray tracing algorithm.

All of these problems are caused by sampling on a
Implementation issues regular pixel grid. Antialiasing is very important to

There are a number of other issues which need realism because it smooths out jagged edges and
attention in the parallel environment of the iPSC/2. other artifacts in the image.
These are the structure and content of the object Again, there are several methods to choose
database, the ray-object intersection method, and from. Statistical pixel subsampling techniques are
antialiasing methods. Several choices are available most attractive in terms of ease of implementation.
for each topic, and are discussed in turn. [6] These methods combat aliasing effects by

First, we turn our attention to the structure of sampling a pixel's area more than once in a
the object database and ray-object intersection nonuniform pattern. Once several samples are taken
methods. These subjects are closely tied together from the pixel, a statistical test such as a variance
and should be considered simultaneously. The way threshold is applied to the samples to determine if
in which the database is organized and queried is of more samples are needed. When enough samples
critical importance to the speed of ray-object are accunulated, they are averaged in some way to
intersection. And since ray-object intersection is produce a representative brightness for the pixel in
the major consumer of time in the ray tracing question. Most statistical subsampling techniques
process, database organization is equally critical in require knowlege of brightness levels in only a one
overall rendering speed. pixel neighborhood. This is attractive in the

There are two general classes of ray-object distributed environment of the iPSC/2 because
intersection acceleration methods, and each dictates a rendered image data is distributed among nodes.
database structure. The two classes am object Thus, any methods which require the brightness of a
subdivision [15 and space subdivision [1, 2]. Object neighboring pixel may have to get it from another
subdivision methods usually organize the database node -- a relatively slow process on the iPSC/2.
into a hierarchy while space subdivision methods Here again, we choose speed and ease of
divide the database into a number of smaller implementation as more important to the
databases. The object subdivision method of [51 has Hypercube Ray Tracer.
the advantage of keeping the database in one piece. Other antialiasing methods rely on filtering,
Since this one-piece structure will aid in later adaptive pixel subsampling, or a combination of
database distribution, we chose it over competing both. [4, 8] All of these methods present problems
object subdivision techniques. because they assume the immediate availability of

Each pixel, and thus each node, must have any pixel's brightness. As stated above, this is not
access to the entire object database. This does not always the case in a distributed computing
mean that each node must have a copy of the environment. These methods are rejected for this
database, just access to it. Indeed, if each node

213

reason in this first implementation of the development, will allow the database to be
Hypercube Ray Tracer. distributed across the nodes with only a modest

One feature of the Hypercube Ray Tracer that performance penalty.
has not received a lot of research is the process of The rather recent development of "distributed
comntructive solid geometry (CSG). [91 This is the ray tracing" [61 adds new and exciting effects to ray
process of defining new object types from traced images such as penumbrae, distributed light
previously existing ones by means of boolean sources, and frosted glass. Note that distributed ray
operations. For example, a box with a hole in it tracing should not be confused with the object
can be constructed by subtracting a cylinder from database distribution proposed above. Rather, it
the box. (Box and not(Cylinder)) The Hypercube refers to the small random perturbations of rays used
Ray Tracer includes an original ray-CSG object to achieve the aforementioned effects. Distributed
intersection scheme which we have developed on ray tracing, too, is well suited to the distributed
top of Kay's intersection scheme. It performs the computing environment for the same reason simple
intersection in linear time with the number of ray tracing is: the ray calculations are independent of
objects defining the CSG object. one another.

Late in the Hypercube Ray Tracer's Relatively simple object models are used in the
construction, a decision had to be made between Hypercube Ray Tracer. They include spheres,
implementing CSG or distributing the object cylinders, cubes, polygonal prisms, and convex
database. After much thought, we decided that CSG superquadric ellipsoids. New shapes such as bicubic
would have a profound impact on the object patches, superquadric toroids, and swept cubic
database organization. It then made sense to curves would greatly add to the usability of the
implement CSG first. This way, any changes in Hypercube Ray Tracer.
the database organization could be easily taken into
account when the time came to distribute it. Summary

Ray tracing is a complex rendering technique
Results which has, until now, been almost exclusively

All test images were calculated at 512 x 512 confined to serial computers. The Hypercube Ray
resolution on 32 scalar-enhanced nodes with no Tracer efficiently takes the rendering technique into
antialiasing. Figures 1 and 2 show the amount of the parallel domain with considerable time savings
time taken to render each test image on different and very nearly linear speedup. Ray tracing is thus
numbers of nodes. Tables 1 and 2 show the same shown to be well suited to distributed memory
data as well as speedup and efficiency for the same parallel architectures.
configurations. Here, efficiency is defined as the Leading object intersection algorithms and data
speedup over the number of nodes used for a given structures are chosen and modified to be efficient and
problem. expandable in the parallel environment.

The Hypercube Ray Tracer's antialiasing Antialiasing techniques are discussed and applied in
strategy greatly increases the visual realism of its parallel to the problem. The ramifications of object
rendered images. Jagged edges and razor sharp lines database duplication are discussed at length and
are no longer a problem. A rather substantial time considerations are made for future distribution across
penalty is paid for antialiasing, though. The final the iPSC/2.
method used casts eight uniformly random rays The problem of load balancing is discussed, and
through each pixel and calculates the variance of the a static load balancing scheme based on the "comb"
average intensity. If the variance is above a image decomposition is offered as a primary
predetermined threshold, groups of four additional solution. Results are presented to confirm that the
rays are traced until the variance drops below the "comb" decomposition is a very effective one with
threshold or until 32 rays have been traced, the current repertoire of object database organization
whichever comes first. Thus, each pixel is 8 to 32 and object intersection algorithms.
times more expensive to compute than without
antialiasing. References

Future Work [1) Arvo, James, and David Kirk (1987) Fast Ray

Many tradeoffs have been made in the design of Tracing by Ray Classification, Computer

the Hypercube Ray Tracer. The most notable of Graphics, 21(4), July 1987, pp. 55-64.

these is the choice to maintain a complete copy of [2] Fujimoto, Akira, T. Tanaka, and K. Iwata
the object database on each node of the iPSC/2. (1986) ARTS: Accelerated Ray Tracing
This one decision greatly sped program development System, IEEE Computer Graphics and
but severely limited the maximum number of Applications, 6(4), April 1986, pp. 16-26.
objects. New techniques, which are already under

214

(3] Gaudet, Severin, Richard Hobson, Pradeep (61 Lee, Mark, Richard A. Redner, Samuel P.
Chilka, and Thomas Calvert (1988) Uselton (1985) Statistically Optimized
Multiprocessor Experiments for High-Speed Sampling for Distributed Ray Tracing,
Ray Tracing, ACM Transactions on Graphics, Computer Graphics, 19(3), July 1985, pp. 61-
7(3), July 1988, pp. 151-179. 67.

[4] Heckbert, Paul S. (1986) Survey of Texture [7] Lee, Mark, Personal Communication.
Mapping, IEEE Computer Graphics andApplications, 6(11), November 1986, a 5n - [8] Michell, Don P. (1986) Generating Antialiased67. Images at Low Sampling Densities, ComputerGraphics, 21(4), pp. 65-72.

[5] Kay, Timothy L., and James T. Kajiya (1986)Ray Tracing Complex Scenes, ACM [91 Yonseef, Saul (1986) A New Algorithm for
SIGGRAPH 1986, 20(4), August 1986, pp. Object Oriented Ray Tracing, Computer269-278. Vision, Graphics, and Image Processing, 34,1986, pp. 125-137.

Table 1: Performance Data for Self Portrait Image

(1381objects)

Nodes Total Time Node Time Speedup Efficiency Load Imbalance (%)
1 13834 13834 1.0 -
2 13884 6900 2.0 100 .14
4 13912 3453 4.0 100 .32
8 14011 1728 8.0 100 .81
16 14806 867 16.0 100 1.73
32 15038 435 31.8 99.4 3.68

Table 2: Performance Data for Superquadric Grid Image
(93 objects)

Nodes Total Time Node Time Speedup Effie Load Imbalance (%
1 11468 11468 1.0 -

2 11462 5736 2.0 100 .19
4 11463 2869 4.0 100 .42
8 11465 1443 8.0 100 1.32

16 11468 725 15.8 98.7 2.21
32 11468 373 30.7 95.9 8.58

215

Time vs. Number of Nodes
for Self Portrait Image

(1381 objects)

100000 - _

100 ---_------------..

1000 16 32t

Time vsMumeNf oe

-sc. -0- -oeTm

10000 - -............................

100-_
1 2 4 8 16 32

Number of Nodes

Figure 1: Time vs. Number of Nodes for Suelfqudadic Image

Tim vs Nuberof2od6

Distributed Object Database Ray Tracing on the Intel
iPSC/2 Hypercube

Michael B. Carter and Keith A. Teague

Department of Electrical and Computer Engineering
Oklahoma State University

202 Engineering South, Stiflwater, OK 74078

a given pixel must have come from the direction along
Abstract a ray from the observer to the pixel in question. If one

traces backward along this line of propagation into the
A medium-grained, distributed-memory parallel scene, the surface from which the light was scattered can

computer is used as a platform from which to research a be discovered.
specific issue in accelerating the ray-tracing process. Since the physical properties of the surface are
The work presented here deals specifically with the known, we can model the way it scatters light. The
problem of distributing large object databases over the mathematical model used is called a shading model.
computing nodes of the Intel iPSC/2. An efficient Although the ray may intersect several objects in the
object database decomposition method is presented scene, only the intersection point closest to the observer
which behaves like a fully-associative cacne. is relevant. Rays cast from the observer through the
Ramifications of the distributed object database forced pixels are called primary rys. Ile brightness of each
the development of an interruptible ray-tracing loop, a pixel on the viewplane is completely independent of its
ray scheduler, and a dynamic viewplane decomposition. neighbors. Clearly, the intensity between adjacent
Performance metrics, such as object database hit ratio, pixels is highly correlated, but the calculations
load-balance, and efficiency are presented. themselves are independent. Pixel independence gives

Introduction ray tracing the fine-grained parallelism that makes it
suitable for implementation on fine-, medium-, and

Ray-tracing is a realistic image synthesis technique coarse-grAined parallel computers.
which produces superior quality images by consuming The intensity correlation between adjacent pixels
superior amounts of computer time! Although much makes a distributed ODB feasible in an indirect way. If
work has been done to speed the ray-tracing process, it primary rays are traced through the viewplane in a

still remains one of the most expensive image synthesis spatially coherent manner, then the ODB references
techniques in terms of computer time used [1, 3, 4, 5, generated will have a high degree of temporal and spatial
8,9]. locality within the ODB. This observation follows

The ray-tracing process, is deceptively simple. naturally from the functioning of the ray-tracing
Parallelizing the ray-tracing process on a distributed- algorithm and the Kay ray-ODB intersection process [9].
memory parallel computer also seems simple at first This high degree of locality is just the property that
glance. It has, however, several pitfalls which are well makes an ODB cache feasible.
hidden. One such pitfall is the problem of distributing Though medium-grained distributed-memory
the object database (ODB) across the nodes of the parallel computers do not have sufficient memory per
computer without seriously affecting the performance of computing node to store very large ODB's, all is not

the already power-hungry algorithm. Both the object lost. The database can be broken up, and the pieces

database decomposition and the problems associated stored on different nodes. Then, during the ray tracing
with it will be discussed in subsequent sections. process, parts of the database may be shuttled between

Before launching into this, however, let us first nodes as needed. Each computing node does not

briefly review the ray tracing algorithm. The ray- necessarily need access to the whole ODB for every ray
tracing milieu consists of an observer, a viewplane, and traced, but there is currently no easy way to predict

a set of objects called the scene. The observer is a point which parts it will need access to. If we could easily

in space from whose perspective the scene is to be predict which parts of the ODB certain rays needed
rendered. The viewplane is an imaginary rectangle access to, then the ODB distribution process could be

through which the observer views the scene. The greatly simplified. As it is, we can only guess at which
viewplane is divided into a grid of pixels. It is the task pieces are needed based on previous accesses. This sort

of the ray-tracing procedure to find the light intensity of guessing is exactly the function that a cache
present at each pixel. The scene is composed of a performs.
(potentially large) number of three-dimensional
geometric figures called primitives. Primitives can be ODD Decomposition
as simple as a sphere or cube, or as complex as a fractal In the Hypercube Ray Tracer, the ODB is organized
mountainside. Any light reaching the observer through into a hierarchy. Primitives are present only at the leaf

2170-8188-2113-3/90/0000/0217$01.O00© 1990 IEEE

level. The body of the hierarchy is composed of Hnodes concept of swapping individual primitives to swapping
whose sole purpose is to impose an efficient all primitives associated with a given Hnode. This is
geometrical structure onto the list of primitives which analogous to the notion of line size in a conventional
facilitates an efficient ray-primitive intersection process cache.
[9]. The structure is that described in [9], and the Hnode A number of special considerations in the hierarchy
structure is generated according to [5]. are required to support this ODB decomposition and

We have chosen a dynamic ODB decomposition swapping scheme. The hierarchy is composed of two
where primitives, rather than rays, are transmitted basic entities: the group of Hnodes which comprise the
between nodes. Initially, the ODB is split evenly across interior of the hierarchy, and the primitives. The
the nodes, just as with Goldsmith's method [6]. The Hnodes are only responsible for about 14.3% of the
similarity ends here. The computing node to which a total number of nodes in the ODB [2]. Further, Hnodes
primitive is initially assigned is called its home node, takes only one third the memory space to store as
and that node will always store a copy of the primitive, primitives. Therefore, the Hnode infrastructure
Once a computing node discovers that it does not have a effectively is responsible for only about 5% of the size
part of the ODB it needs, that primitive is requested of the ODB. Thus, each node can easily store the ODB
from its home node. This is called an OD8 miss. infrastructure and just swap groups of primitives. This

Primitives are retained on the nodes until their also allows the Kay algorithm to go all the way to the
memory is exhausted and space is needed for another leaf level before an ODB miss is possible. This
primitive. In this way, a node stores its share of the requires each Hnode to contain information about
ODB plus some number of transitory primitives, whether or not its child primitives are resident.
Transitory primitives are discarded as needed to Hnodes must also keep track of the LRU reference
accommodate new transitory primitives needed in the word for cache replacement purposes. The Hnode
intersection process. The set of transitory primitives is structure contains the following information.
the cache. The least-recently-used (LRU) cache TABLE I
replacement method is used to select which transitory Fields in the Hnode Data Strcture
primitives are no longer needed. Since only the least
recently used transitory primitives are thrown away, the Field and Description
more heavily used ones remain on the node. This 1. Pointers to sub-hierarchies (max 8).
greatly reduces the ODB miss rate, and hence message 2. A unique ID number.

traffic between nodes. The ideal condition of having the 3. A bounding volume enclosing all sub-hierarchies.
4. LRU reference word.whole ODB resident on each node is thus more closely 5. A flag which is true if this Hnode's child primitives

approached. are not resident.
This method of ODB decomposition has the ability

to distribute a very large number of primitives across a Note that not all Hnodes have child primitives.
number of computing nodes. Moreover, the ODB Some Hnodes will have only other Hnodes as children.
distribution is automatically adjusted to place the proper These interior Hnodes are unswappable, and do not t.ake
primitives just where they are needed. Much better part in the ODB distribution process. The balance of
performance is realized with this strategy than with a the Hnodes are called swappable Hnodes, and do take
static ODB decomposition, and its fully-associative part in the distribution process. Stated another way, an
nature gives it an advantage over a direct mapped Hnode is swappable if and only if at least one of its
caching scheme [7]. children is a primitive.

As stated above, a certain portion of the ODB must
Swapping Policy remain resident on each computing node. Rather than

Sending messages from one hypercube node to thinking of this portion as a set of primitives, we shall

another is a costly process. There is a heavy time think of it as a set of swappable Hnodes. The

penalty to set up a message route plus a modest penalty swappable Hnodes are divided evenly among the

for each byte transferred. In order to defray the high processors rather than the primitives directly. In this

startup cost, long messages are preferred over short way, the child primitives of a swappable Hnode are

ones. A single primitive, the result of an 0DB miss, never split between two computing nodes. In a scene

would make a very short message. It is desirable to with a large number of primitives, the unevenness in

send several primitives at once when swapping is the distribution of primitives caused by this method is

required. But which primitives should be picked? It negligible. Hnodes are assigned to computing nodes in
would be most helpful to send additional primitives a round-robin fashion as their ID numbers order them.

which are likely to be needed in the future. Indeed, the This randomizes the ODB's initial distribution, and

Kay ray-primitive intersection algorithm tests all of the helps to even out the burden of ODB requests.

children of a given Hnode at once. Therefore, it makes Primitives are swapped in and out as groups. The

sense to send all siblings of the requested primitive as LRU replacement algorithm targets the Hnode whose

they will all be tested. Thus, we move from the LRU reference word is smallest for replacement. All

218

child primitives of the target Hnode are freed, and the ODB.
Hnode is marked as swapped. The targeting and freeing TABLE 2
operations are repeated until enough space is available Ray States
for the incoming primitives. State and Description

The Ray Tracing Loop 1. Ready to intersect - A ray is set up and ready be be
intersected against the ODB.

Now that ODB distribution has been addressed, we 2. Pending object from another node - A ray has
must now address the problems this causes in the ray suffered an ODB miss. and is waiting for the required
tracing loop. Since parts of the ODB can be missing primitives to be sent from elsewhere.

on each node, the Kay intersection algorithm may fail. 3. Shadow ray setup - Shadow rays are set up and

When it does fail, a request for the missing primitive spawned from this state. A ray to a different light
source is spawned each time this state is entered.

must be formulated and sent to the primitive's home 4. Pending on shadow ray - Once a shadow ray has
node. (A primitive's home node is based on the unique been spawned, the parent ray must wait for it to
ID number assigned to the Hnode parent of the complete.
primitive.) Once the requested primitive is received and 5. Process shadow ray - The result of the shadow ray
inserted into the ODB, we must restart the intersection intersection are stored and control is passed back to
algorithm from where it stopped. This prevents the "shadow ray setup" state to cast more shadow
thrashing, but requires paying a considerable price in rays.
terms of program complexity. 6. Shading - This step in the shading model performs

Once an ODB miss occurs, what happens while the all operations that depend only on the results of the

node is waiting for primitives from another node? That shadow rays. i.e. ambient, diffuse, and specular
components.

node may do one of two things: wait for the primitive 7. Reflective shading - If the surface of the primitive
to be sent from another node, or work on another ray. in question is reflective, this state spawns a
Considering the cost of sending a message to another reflected ray.
node, and waiting for it to reply, waiting is out of the 8. Pending reflected ray - Control comes here to wait
question. Therefore, the node must occupy its time on a reflected ray to be traced.
doing something constructive; processing another ray is 9. Process reflected ray - The contribution of the
an ideal choice. Therefore, the entire state of the ray reflected ray is added into the overall shading in this
tracing process must be saved when an ODB miss state.
occurs. The ideal place to save this information is in 10. Transmissive shading - If the surface of the

the same data structure as the offending ray so that the primitive in question is transmissive, this state
spawns a refracted ray.

ray's entire context is neary localized. 11. Pending transmitted ray - Control comes here to
Now that intersection may be stopped and restarted, wait on a refracted ray to be traced.

we must consider another step in the ray tracing 12. Process transmitted ray - The contribution of the
process, namely the shading step. The shading model refracted ray is added into the overall shading in this
casts shadow rays every time it is evaluated, and state.
optionally casts reflected and refracted rays. These 13. Forward results - Ray results are ready to be passed
secondary rays must also be ray-traced. Since they may on. Depending on the ray type, the results are either
also cause ODB misses, the shading model evaluation put in the local frame buffer (primary ray). or
must be made interruptible, too! To complicate matters forwarded to the parent ray (shadow or secondary

further, the shading model may be interrupted in no less ray).

than three different locations: once for each light source TABLE 3
when casting a shadow ray, once for the reflected ray, Ray State Transition Events
and once for the refracted ray! Now, the ray tracing loop Tye and Description
has become a very complex choreography of 1. ODB miss - This event is posted by the "ready to
interruptible states, spawning of sub-rays, and intersect" state when an ODB miss occurs.
resumption of control. The following finite-state 2. Object received - This event is posted when
automaton (FSA) is our solution to the control problem primitives arrive from another node as the result of
(Figure 2). In Table 2, we see that rays are divided into an ODB miss.
a number of different types: primary rays, secondary 3. Spawn - Posted whenever a state had to spawn a
rays, and shadow rays. The only difference between the subray. This happens for shadow rays, reflected

types is the way in which the shading model operates. rays, and refracted rays.

For primary rays, the full shading model is evaluated, 4. Complete - This event is posted to a parent ray
when a child ray has completed.

and the result is stored at the appropriate pixel 5. Done - Posted by state action functions, this event
coordinates in the local frame buffer. Secondary rays signals that the state completed successfully, and
execute the full shading model, but pass their intensity the ray is ready to move on to the next state.
to their parent ray rather than the frame buffer. Shadow
rays need not be shaded at all, only intersected with the

219

6. Backtrack - If a shadow ray intersects a transparent keep track of events destined for a particular ray. The
object, it is not necessarily occluded. Used to solution used here is a ray queue to keep the rays, and
restart the intersection process to find the next an event queue to keep track of the events.
intersection point along the shadow ray. As new rays are created, they are pushed onto the

7. Missed - If the intersection process misses all ray queue to begin their journey through the states that
objects in the ODB, this event shortcuts straight to will ray trace them. Similarly, ray-event tuples are
the "Forward Results" state. pushed onto the event queue for evaluation. A scheduler

ODB ois responsible for driving the FSA from the rays and
Red i, to t• events. The scheduler sits at the top of the control

n be Ob=o me• structure for the new node ray-tracing loop. Algorithm 1
Done o0n. gives the pseudocode representation for the node

sh,) (Primaryor SecondaryRay)program. One will notice the striking resemblance
"R o, SSwu Pehdi between Algorithm 1 and any standard round-robin task

Done Done Complete Download 0DB from the host
While there are pixels to ray trace and ray

Dinguse Prcs queue not empty
S/* Service queued events. *1

Done While event queue not empty
Pop event queue

Reflective Spn Pending Determine next state of ray
Shading R2I Ray Endwhile

Sc/* Service prim. requests */
/* from other nodes. */
If ODB request from other node

Pack requested portion
Send it to requesting node

Shading RalS. Ray Endif
/* ODB Request Reply */

. R Compto If there is ODB request reply
Receive the message

•Done Unpack it into local ODB
Notify all rays pending

Forward Prinay Ray: Store pixel in frame buffer. End i f
Resu•lts SecondaryRay: Forward intensity to parent ray.

Shadow Ray: Forwa• intersection status to parent ray. /* Add a new primary ray
If there is room on ray queue

Figure 2: Control Flow forRays Construct a new primary ray
Push it onto the ray queue

Transitions between ray states are caused by events Endi f
posted to a specific ray during the ray-tracing loop /* Execute a ray's state */
(Table 3). These events are based on the result of the /* function.
action associated with each state. Actions perform the Pop a ray from ray queue

various steps in the ray tracing process. For example, Execute its state function

the action associated with the first state in the FSA is Endwhile

to try to intersect the ray with the ODB. If the Send local frame buffer to host

intersection fails, the action function posts an ODB Algorithm 1: Scheduler for State Driven Node Program
miss event for the ray, and terminates. Thu result of
this event is to place the ray in the Pending Object from
Another Node state. If the intersection succeeds, the scheduler. In the ray tracer's case, the analog for a
action function posts a Done event and terminates. The process is the ray.
result of this event is to place the ray into the Shadow Image Decomposition
Ray Setup state. The concept of state driven ray tracing
complicates the classical ray tracing loop, but divides it When the leap is made from a duplicated ODB to a
into an interruptible series of modular operations. distributed ODB (DODB), many things change. The
Although some of the states presented above could be structure of the ODB changes from a fully intact
merged, they are left separate for clarity. hierarchy to a hierarchy missing most of its leaves.

As stated earlier, multiple rays are used so time is The hierarchy nodes themselves become more complex.
not wasted waiting for ODB misses to be resolved. Ray-ODB intersection becomes an interruptible, re-
Since there can be a number of pending rays equal to a entrant process rather than classical straight-line code.
preset maximum recursion depth, a way is needed to Even the ray tracing loop itself changes from a
keep track of all of these rays. A way is also required to

220

regimented and easy-to-understand loop into a complex oDO •,w-ts p Nod. for aOw Iage
scheduler driving a thirteen state FSA. (Cache afz, a 10%)

After such a drastic change to the basic ray tracing
loop, the suitability of the standard image ,0000
decomposition needs to be reassessed. Using the .oo00
"comb" decomposition, the image plane is divided into , 00s0

equal-area pieces, and each piece assigned to a cm, 0 40000.

computing node for ray-tracing [2]. Within the assigned 3000000

area, which is usually rectangular, pixels are ray-traced 10000
from the upper left corner toward the bottom right o
comer by rows. There isone basic problem associated 0 2 4 6 6 10 12 14 16 18 20 22 24 26 26 30

with this decomposition - that of locality. By N,

choosing a different image decomposition, we may Figure 3: ODB Requests
reduce the number of ODB misses considerably. If the
DODB is to perform well, then the rays tested against it
should be fairly localized with respect to their positions
and directions within the scene. This locality of 50000
reference keeps the number of ODB misses down, and 00ooo
the performance up. If widely varying rays are Tota 40000

intersected against the DODB, then there will be a much * 30 000
higher miss rate, and correspondingly lower 1
performance. Experiments verify the lower performance
of the standard decomposition, and show a very poor 10000

load balance. It is therefore desirable to invent a new 0 0 1 7 = : 0 77
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

image decomposition to solve the load balance and C01 0 2 3 4

locality problems simultaneously. pwwn of 009)

The solution used by the Hypercube Ray Tracer is Figure 4: Ray Tracing Time
what is generally called the "block" decomposition.
The image plane is divided into a large number of small
rectangular blocks which are assigned dynamically to 0.65
processors. Each block encloses pixels that one node 0.9

will be responsible for ray tracing. These blocks are 0.85 a .]
small enough such that all rays passing through it can Hit

be considered coheralof When a computing node PAth 0.
finishes ray tracing all of the pixels in its block, then a 0.7:

new block is assigned which is spatially close to the 0.7

previous one. In this method, the dynamic block 0.65

assignment solves the load balancing problem, and new 0.6A
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

blocks are chosen close to old blocks to give heightened Cad,, s•a
locality of reference in the ODB. (Fr-cci of o0B)

Block assignments are managed by a separate Figure 5: Cache Hit Ratio
program running on the iPSC/2's System Resource
Manager (SRM). As computing nodes complete their In Figure 4, we see the effects of reducing the cache
blocks, they send the block's frame buffer to the SRM size for three different images. The "Bar Image"
where is is copied into the final image. After this is contains 4208 primitives, the "Self Portrait" image
done, the SRM assigns a new block to the node as close contains 1410 primitives, and the "Snowman Army
to the old one as possible. This process continues until from Hell" image contains 1310 primitives.
all blocks have been ray-traced. Specifically, Figures 4 shows total ray-tracing time

versus cache size and Figure 5 shows cache hit rate
Results versus cache size. Note that total ray-tracing time is the

sum of the ray-tracing times for all 32 nodes of the
Figure 3 show the number of ODB requests iPSC/2. In all cases, the cache hit rate remains very

received by all 32 nodes during the course of ray-tracing high, and the ray-tracing time remains relatively
a single image of 4208 primitives. In this case, the constant until a cache size of roughly 20% is reached.
cdche size amounted to some 10% of the size of the Below a cache size of 20%, the ray-tracing time
whole ODB. This figure shows the evenness of the increases rapidly with the decreasing cache hit rate. One
ODB distribution across the nodes. No one node, or set will note that the knee of the total ray-tracing time
of nodes, are bearing the brunt of ODB swapping traffic. curve is at a slightly lower cache size than the knee of

the hit rate curve. This effect is caused by the now

221

interruptible nature of the ray-tracing loop. When an restructuring of the entire ODB hierarchy to take more
ODB miss occurs, the offending ray is placed on the ray advantage of ray coherence. Presently, the Kay
queue, and another ray is initiated. Even though the intersection algorithm takes no advantage of ray
cache performance decreases, the ray-tracing speed does coherence since the structure of the ODB is fixed. If a
not! Not shown is the dependence of performance on scheme could be devised to restructure the ODB toward
ray queue size. A slightly larger ray queue makes a the goal of decreasing the number of tests performed by
marked difference in performance for small cache sizes. the Kay algorithm, then the performance of the

As we can see from the performance figures, the distributed ODB cache would be improved as well as
Hypercube Ray Tracer's ODB distribution strategy is absolute ray-primitive intersection time.
very effective for cache sizes down to only 15% of the A short-term goal is to investigate the effect of a
total ODB size. Furthermore, the cache implements a least-frequently-used (LFU) cache replacement policy.
fully-associative, self-balancing structure that requires A longer-term goal might be to include secondary
no preprocessing to set up. The fully-associative nature storage in the ODB distribution scheme. A strategy of
of the cache insures that no heavily-used primitive this sort would make possible the ray-tracing of scenes
groups are replaced just because they happen to lie in of well into the millions of primitives.
the same set as another transitory primitive. We must
not forget that the only reason that such a caching Bibliography
scheme can enjoy any success at all lay in the temporal
coherence with which the ODB is queried by the ray- [1] Arvo, James, and David Kirk (1987) Fast Ray
object intersection process. This temporal coherence is Tracing by Ray Classification, Computer Graphics,
due directly to the fact that rays are traced in close 21(4), July 1987, pp. 55-64.
proximity to one another on the viewplane. If the rays [2] Carter, Michael B. (1989) Ray Tracing Complex
were traced randomly throughout the viewplane, then no Scenes on a MIMD Concurrent Computer,
amount of caching would improve performance. Masters Thesis, Oklahoma State University.

[31 Fujimoto, Akira, T. Tanaka, and K. Iwata (1986)
Conclusions and Future Work ARTS: Accelerated Ray Tracing System, IEEE

Computer Graphics and Applications, 6(4), April
We can also see that this caching scheme scales up 1986, pp. 16-26.

well with the number of nodes, and particularly well [41 Glassner, Andrew S. (1984) Space Subdivision for
with the ODB size. Also, since there are no artificial Fast Ray Tracing, IEEE Computer Graphics and
boundaries imposed on the ODB cache, it takes Applications, 4(10), Oct. 1984, pp. 15-22.
maximum advantage of node memory, duplicating those [5] Goldsmith, Jeff, and John Salmon (1987)
portions of the ODB which are used heavily. Automatic Creation of Object Hierarchies for Ray

As with all things in life, there is a price for such Tracing, IEEE Computer Graphics and
progress, and the Piper's name is Complexity. Since an Applications, 7(5), May 1987, pp. 14-20.
ODB miss can happen at any point during the ray- [6] Goldsmith, Jeff, and John Salmon (1988) A
tracing process, the state of each ray must be saved until Hypercube Ray-tracer, Proceedings of the Third
such time as it can resume. But since the ray-tracing Conference on Hypercube Concurrent Computers
process itself is so time-consuming, this additional and Applications (HCCA3), Vol. 2, Jan. 1988, pp.
complexity imposes little to no performance penalty. 1194-1206.

A number of elements in this distributed ODB [7] Green, S. A., and D. J. Paddon (1989) Exploiting
scheme warrant further investigation. One is the initial Coherence for Multiprocessor Ray Tracing, IEEE
construction of the hierarchy. The ODB hierarchy is the Computer Graphics and Applications, 9(6),
one fixed data structure remaining in the Hypercube Ray November 1989, pp. 12-26.
Tracer. Presently, it is constructed to minimize the [8] Kajiya, James T. (1983) New Techniques for
total surface area of the bounding volumes of all sub- Procedurally Defined Objects, Computer Graphics,
hierarchies. This policy makes a considerable Vol. 17, No. 3, July 1983, pp. 91-102.
performance difference with respect to a blindly [9] Kay, Timothy L., and James T. Kajiya (1986) Ray
constructed hierarchy. However, it leads to primitives Tracing Complex Scenes, ACM SIGGRAPH
being placed near the root of the hierarchy. It is unclear 1986, 20(4), August 1986, pp. 269-278.
just how much this ragged hierarchy structure impacts
the performance of the distributed ODB.

Rays could be swapped across nodes as well as
primitives. This would be more economical in cases
where a large number of ODB misses would occur.
Instead of shipping all of the nonresident primitives to a
node, the node would have the option of shipping the
offending ray to the primitives.

Perhaps most tantalizing would be a dynamic

722

The Fifth Distributed Memory

Computing Conference

I : Sorting j,:,:::::

Parallel Sorting on Symult 2010

P. Peggy Li Yu-Wen Tung*
Jet Propulsion Laboratory USC - Information Science Institute

California Institute of Technology 4676 Admiralty Way

Pasadena, CA 91109 Marina del Rey, CA 90292-6695

Abstract given architecture. For example, it often makes dif-
ference on level of parallelism one could exploit on an

In this paper, three sorting algorithms, Bitonic SIMD and on an MIMD machine. Second, the per-

sort, Shell sort and parallel Quicksort are studied. formance also depends on the speed of certain criti-

We analyze the performance of these algorithms and cal operations the underlying parallel machine could

compare them with the empirical results obtained deliver. For example, interprocessor communica-

from the implementations on the Symult Series 2010, tion could be a dominating operation for distributed-

a distributed-memory, message-passing MIMD ma- memory machines because parallel sorting algorithms

chine. Each sorting algorithm is a combination of often require the same order of magnitude of commu-

a parallel sort component and a sequential sort corn- nication steps as that of computation.

ponent. These algorithms are designed for sorting M In this paper, we focus on only a class of MIMD ma-
elements of random integers on a N-processor ma- chine on which the issue of interconnection network
chine, where M > N. We found that Bitonic sort is not very important, and the communication speed
is the best parallel sorting algorithm for small prob- is nearly balanced with the computation speed. By
lem size, (M/N) < 64, and the parallel Quicksort choosing such seemingly general-purposed, yet real,
is the best for large problem size. The new Paral- machine, we are able to concentrate on finding which
lel Quicksort algorithm with a simple key selection sorting methods, or combinations of sorting methods,
method achieves a decent speed-up comparing with are possibly among the fastest on an MIMD machine.
other versions of parallel Quicksort on similar parallel We shall also confine ourselves to sorting a long list
machines. Although Shell sort has a worse theoret- of ran l a usin g les t o processing
ical time complexity, it does achieve linear speedup of random input data using less number of processing
for large problem size by using a synchronization step elements (or nodes). That is, the sorting problem weare interested in is to sort M elements of random in-
to detect early termination of the sorting steps. tegers on an N-node MIMD machine, where M > N.

Initially, M unsorted elements are evenly distributed

Introduction to each computation node. Each node operates on
its own set of data independently, but can send or

As indicated by Knuth in his famous book on sorting receive data from another node. When all nodes ter-

and searching (1]: minate, each node should hold a chunk of sorted list,
and chunks are stored in consecutive order across all

It would be nice if only one or two of the nodes such that the smallest chunk is stored in the

sorting methods would dominate all of the first node and so on. Chunk size may or may not be

others, regardless of the application or the MIN depending on the algorithm used.

computer being used. But in fact, each Because of the problem nature M > N, each of
method has its own peculiar virtues the three sorting algorithms we have implemented

is a combination of parallel sort (across nodes) and
This remains true, if not more so, for sorting algo- sequential sort (for local list). We used a parallel
rithms on parallel machines for two reasons. First, version of Quicksort [2], Batcher's bitonic sort [4],
the performance of a parallel sorting algorithm de- and a mixture of Shell's sort and odd-even transpo-
pends on the degree of parallelism it can exploit on a sition sort [1] as our parallel sorting strategies, and

the UNIX/BSD qsort routine as the sequential sort-"Supported by NASA Cooperative Agreement NCC-2-539 igmehd Fosmpctywehalalouag-
and RADC contract F30602-88-C-0135 ing method. For simplicity, we shall call our algo-

224O-8186-2113-3/90/O000/0224$01.O00 @1990 IEEE

rithms Bitonic sort, Shell sort and parallel Quicksort, message routing chip - Automatic Message Routing
respectively, in the following text. Device (AMRD) - provides fast fixed-route point-

Quicksort is not only a fast sequential sort method, to-point message routing using "worm-hole" routing

it is also a parallel method by its divide-and-conquer algorithm. The interprocessor communication rate is

nature. The only potential problem with the effi- 13MB/sec regardless of the distance between source

ciency of a parallel Quicksort is the selection of its and destination. This feature makes the S2010 re-

splitting keys. If such keys are randomly selected, semble to a fully-connected machine.

the input list can be divided into uneven sublists and To characterize the machine behavior, we carefully
cause load unbalancing. Carefully calculated splitting measured timing for many computation and commu-
keys will solve this problem but the extra calculation nication instructions. Here are some of the timing
becomes a cost itself. So an efficient implementation results useful for our sorting analysis, where one in-
needs to strike a balance between two extremes, which teger is equivalent to four bytes.
is, fortunately, not very hard to achieve. Impres-
sive results for parallel Quicksort have been reported * copy one integer from one memory location to

for a vector machine CDC STAR [3] and hypercube- another, without taking memory allocation over-

interconnected MIMD machines [5], among others. head into account, takes about 0.45 ps;

Batcher's bitonic sort [4], on the other hand, has * memory allocation overhead per memory copy

been widely used across almost all kinds of parallel function (bcopy) is about 8 ps;

computers - sorting networks, hypercube machines * comparison-exchange for two integers takes
[6], two-dimension mesh machines [9], SIMD ma- about 6.8 As;
chines [7] for its simplicity and stability. It has a time * transmitting one integer in a typed message from
complexity O(log2 M) for sorting M elements, which one node to another, without taking overhead
is reasonably efficient. The less known Shell sort is into account, takes about 0.31 As under low to
also selected because it appears to be a very efficient normal traffic load.
algorithm when implemented on Caltech/JPL's Hy-
percube machine [5]. *average overhead for sending a typed message

from one node to another takes about 251 jus.
In the rest of the paper, we will first introduce

the underlying machine we used in our study, and its In other words, if routing a message with size
computation and performance model; followed by the K (integers) takes time To,,te(K), copying a same
three sorting algorithms and their time complexities. size message locally takes time Tcopv(K), and per-
Then, we will discuss our empirical performance re- forming compare-exchange on K integers takes time
suit, and address a few related issues such as how Teomp_.z(K), then

general our result can be, and what other sorting To.t.(K) = Tote..t...rhead + Trou.-it" K

methods may also be considered. = 251M8s + 0.31us5.K
Tcoy(K) = Tcopr..ad + Tcopy-int " K

Computation and Performance Model = 8jus + 0.45ps. K
Tcom,-e.(K) = 6.8ps -K (1)

The Symult Series 2010 system (S2010) is a So we could conclude that, on S2010, the overhead
distributed-memory message-passing MIMD com- for each message send/receive is very large, but the
puter consists of up to 1024 computational nodes in- transmission speed is comparable to that of memory
terconnected by a high speed message-routing net- access speed. Therefore, in our sorting algorithms,
work (GigaLink). Each computational node has a the interprocess communication is a dominating term
Motorola MC68020 microprocessor as its CPU, op- when M/N is small, and it graduately reduces its
erating at 25 MHz and augmented by the Motorola effect when MIN gets larger. Assuming the number
68881 floating-point co-processor. A SUN-3 worksta- of compare-exchange steps is the same as the number
tion is used as the front-end computer. The operating of messaging, then the communication overhead (i.e.
system on the S2010 nodes is called Reactive Kernel, Troute(K)/Tcomp_ez(K)) is 41.4% for K = 100 and
and the programming environment on the front-end drops to 8.2% for K = 1000.
computer, serving as the interface between the users In the following timing analysis, we shall assume
and the S2010, is called Cosmic Environment [8]. that each element to be sorted is represented as an

S2010 is facilitied with a fast communication net- integer, for simplicity. Thus K means the number of
work, called GigaLink network. A custom-designed elements in each step of computation.

225

The sequential qsort routine takes an important As a result, the total time for Bitonic sort, based on
role in all three algorithms, it has a time complex- our timing equations (1) and (2), can be expressed
ity O(K log K) for a single 52010 node to sort K el- with unit time us as follows:

ements. By experiments, we found that the timing Tst,,• =O(-!(logM))+
equation for qsort with random input data can be N WN
represented as follows: (log]N(logN + 1)/2). (510 + 7.87(N)) +

6.8 log N(- + 2log)
N N

Tqaoi•t(K) =O(KlogK) -- 8.5/sa .KlogK (2) M M

= 8.5M(log v +

(241.4 + 3.94--) log2 N +

Bitonic Sort (13.6 logM + 10.74M + 255)logN (3)

In our implementation of this algorithm, the machine The empirical timing curve for N = 16 is shown in
is configured as a N-node hypercube. Initially each figure 1.

node has MIN unsorted elements. Each node first
sorts its data internally using the qsort routine, and Shell Sort
then performs (log N .(log N + 1))/2 steps of compare-
exchange operation along all dimensions of the cube. As described earlier, here Shell sort means a method
After running the algorithm, every nodes have MIN that combines Shell's method and odd-even transpo-
elements sorted both locally and globally. sition sort as internode sort, and qsort as sequential

Our algorithm for each individual node is shown sort. This algorithm, as well as the parallel Quick-
below, where dim, my..id, and mask are the dimen- sort algorithm, are to be executed on a ring topology
sion of the cube, the node id, and a mask flag for - the sorted data will be stored in the same way as
selection of nodes, respectively: in the Bitonic sort case, but with a slight difference

that node address is arranged in ring topology. Both
1. Sort the (MIN) elements locally in each node hypercube and ring topologies can be easily config-

using a qsort. Sort in ascending order if my.nid ured on the 52010, without significant performance
is even, in descending order if my-nid is odd. difference.

For i := 0 to (dim - 1) step 1 do (2), (3), and (4) This algorithm has three steps:

1. Sort (MIN) elements locally in each node with2. If the (i+l1)-bit of my binary address is 1, qot

mask := 1; otherwise, mask := 0. qsort.

3. For j := i to 0 step -I do 2. Do a compare-exchange operation between pairs

(a). exchange my (MIN) elements with my j- of adjacent nodes along the i-th cube dimension,
th bit neighbor; (b). compare/exchange the two for i log N - 0.

lists and copy the smaller half into the data area 3. Do compare-exchange operations between pairs
if mask = the j-th bit of my binary address; copy of adjacent nodes in the ring topology until no
the larger half into the data area otherwise. exchange is made in all the node.

4. Locate the maximum (or minimum) of the
bitonic sequence in each node and perform a The first part is a Shell's sort except that onlymerge on sublists of length MiN. The sorted one compare-exchange operation is performed in each
sublist is in ascending order if mask = 0; other- hypercube dimension and the result list is partiallywise, it is in descending order. sorted. This part takes log N compare-exchange op-erations in total. The second part is an odd-even

Since each node has MIN elements, the time transposition sort which terminates when no data is
complexity of step (1) is O(M(log •)). Each exchanged in all the node.
compare-exchange iteration in (3) takes time The number of odd-even transposition steps is
2Toutc(-H) + Tcomp_-e(M) + Toopl(M), and there equal to the maximal distance of a mispositioned el-
are (log N(logN + 1))/2 iterations in total. Each ement to its sorted position. After the diminishing-
merge operation in step (4) takes time Tco,,mp-. e(+ increment steps, the worst-case maximal distance is
2log M), and this operation is performed log N times. (N - 2VN + 1), where N is the number of nodes.

226

Given an arbitrary element a, assuming that y and x is determined by the slowest node.
are the addresses of the nodes that a is located after Similar to Bitonic sort and Shell sort, the unsorted
step (1) and after sorting, respectively. Thus, jyi'j is list is stored evenly across the cube initially, i.e., each
the number of odd-even transposition steps required node has MIN elements in arbitrary order. After
to move a to its final position. Let a be such an ele- sorting, the sorted list will be stored in the cube in
ment that has maximal ly-zI and x < y, now we like consecutive order but each node may have different
to find the minimal x for a given y. Let the binary number of elements. The parallel quicksort works as
address of y be (y, ., Yd), where d = log N, i.e., follows: First, (N-i) splitting keys are selected us-
the dimension of the cube. After step (1), all the el- ing a presorting algorithm. Second, the list in each
ements in the nodes whose addresses can be derived ng a prsting alorth Second th l inoea
from y by changing one or more y1's from i to 0 should split int two pats inghto apopebe smaller than the elements in y. If there are k "1,, splitting key and exchanged with its neighbor along

a certain dimension. This splitting process repeats
bits in the binary address of y, there will be at least log N times. At last, each node sorts its local list
(2k - 1) nodes in which the elements are smaller than with a fast sequential sorting algorithm.
those in y after step (1). Thus, the minimal element
that may be located in node y after step (i) is al- The algorithm and its time-performance are de-
ways greater than the elements in the first (2 k - 1) scribed as follows:
nodes after sorting. In other words, the minimal a in 1. Choose k samples randomly from the M-element
node y will be stored in the 2k-th node (z = 2' - 1) sublist of each node. Find the largest and the

after sorting is done. To maximize fy - xj, we shall smallest elements in the sample, let them be

find the maximal y with a proper k. Obviously, the smal, rlin).

maximal y which has k "1" bits is the one having all (max, mi).

's in the most significant bits and y = N - 2 (d-k) 2. Perform the maximum and minimum operations

So (y - x) = (N - 2 (d-k) - 2 k + 1) and the maximal on each node's (ma, min) pair globally across

(y-z) is equal to (N -2d/ 2+I + 1) or (N- 2VNT + 1) the nodes to find the maximum and the mini-

when k = d/2. mum elements, say (gmax, gmin), in the whole
sample. This global operation is done in a bi-

Therefore, in the worst case, there are (N - nary tree manner, and it needs log N + 1 com-
2V'" + 1) compare-exchange operations in step (3). mur~cation steps, i.e., (log N + 1)- (T,..t.(2) +
Each compare-exchange operation in step (2) and (3) Tca, 8 2 (2)).
takes the same time as one iteration in Step (3) ofBitoic orti~e 2Tru~eM/N + Tomp...e(M/) + 3. Equally divide (gina: - grnin) into N - 1 in-
t n . Therefor e, i~e. 2 uthe(N worst Tcasetime com- tervals and use the N boundary elements as theplexity of t heell sort is splitting keys. Since each node only needs log Nsplitting keys, each node can use a binary search

to find all its keys in log N steps.
M MTSh.1L = 8.5-9 log-N+ 4. for i := dim- 1 to 0 step -1 do

SM compare my sublist with the i-th splitting key
(N - 2vr" + log N)(510 + 7.87-g) (4) and divide it into two sublists.

The first term is the time for sequential sort of the if (my-nid < neighbor[i])
local M/N element sublist. The real timing for the exchange the larger sublist with the smaller

case N = 16 is shown in figure 1. sublist of my i-th bit neighbor
else

exchange the smaller sublist with the
Parallel Quicksort larger sublist of my i-th bit neighbor

endif.
The quicksort is a divide-and-conquer sorting algo- 5. Sequential sort the sublist locally.
rithm which is potentially applicable to parallel com-
putation. In order to get the best performance of The main part of the parallel Quick sort, i.e, step
the quicksort, the splitting keys should be selected
with great care so that the list to be sorted can be (4), takes
decomposed into two sublists of equal length. This logN-(2T,. +t) +M
fact is even more important in the parallel quicksort T
because the improper selection of the splitting keys for the best case, assuming each node always hold
results in load imbalance and the computation time MIN elements after each compare-splitting step.

227

With a good set of splitting keys, the parallel
Quicksort has a best/average time performance: 20

M M M .Shell sort
TQUiC, = 8.5"- log - + 7.41-W logN + 767.2 log N (5) 16 "

The sampling time in step 1 is proportional to the Speedup 14/ ksort.

sample size in each node, which is negligible. The first 12 - Z -. .
term of the equation is the sequential sorting time in 10 • / :--
step (5). And the real timing in the case of N 16 .-

is shown in figure 1. 8

6

Performance Comparison and Analysis 4

We have measured execution time for each of the
above three sorting algorithms for N = 8, 16, 32 and 7 8 9 10 11 12 13 14 15 16 17 18 19

64, and M ranges from 21 to 219. Figure 1 shows the log12 M: Problem Size --*
timing curves with the execution time versus log M Figure 2. Speedup curves on a 16-node S2010
for N = 16.

Figures 2 and 3 are speedup curves calculated from
real execution time of the three parallel algorithms for 70Quick sort

N = 16 and 64, respectively. 60

..-Shell sort/

T _o 50"
102 Sequential Speedup ." r

q•ort " itonic s rt

- 40
• .uicksort..- hj0 ,".."

Time.. .
inl sec.

1 20

10

10- Sell sort,.,-

78n9 10 11 12 13 14 15 16 17 18 19

0log 2 M: Problem Size

~Figure 3. Speedup curves on a 64-node 52010
ethe ratio of the communication time to the computa-

7 8 9 10 11 12 13 14 15 16 17 8 19 t
log2 M: Problem Size- intmismrthntofrmalit.

Figure 1. Timing on a 16-node S2010 In the case of Shell sort, the timing equation 4 does

Inpu lits re gnertedby singUNI radom not include the time to broadcast the boolean flag
rnputists are generatontied byisin UNIXerainedmyth which indicates if any exchange has been made in each

srotine the otexctonteist de.Termineodbyt compare-exchange step in (3) of the Shell sort algo-

sortp-oaing time u ofd tes owes ut) nd.thme down-loang rithm. This value may be negligible when M > N,

anerd uplaing (uxeimnptsadotut.ieisntcn but becomes the major overhead when N gets large,
sidredin ur xpeimetsor when M :- N. Broadcasting is done in binary tree

From these speed-up curves, it is observed that manner which requires (log N + 1) steps of message
the increasing communication overhead degrades the transmission after each compare-exchange step. For
sorting speed of small lists (for lists with 1K elements the worst case, the broadcast overhead is as high as

or less) when the machine size increases. In the case 253.3(No-2V +1)(logN+1). Although the parallel
of Bitonic sort, which has the lowest communication sorting part of TSnI has an 0(M) time complexity in
overhead and is the fastest algorithm for small lists, the worst case, the broadcasting step may save a lot of

mn

compare-exchange steps for random data input. The M > N.
empirical result shows that the parallel Shell sort can
achieve linear speed-up for large problem size random on the MsN elements locally on each processor as the
data. See figures 2 and 3. first step in Bitonic sort and Shell sort, or on varied

As to parallel Quicksort, empirical result shows number of elements locally as the last step in parallel
that a presorting procedure as simple as the aboved- Quicksort, has a time complexity O(. log 9).
mentioned splitting key selection mechanism can re- The overall performance of the three algorithms is
sult in very good load balancing, thus a super lin- a combination of this sequential performance and the
ear speedup is observed. A more complicated pre- parallel sort performance. We found from our em-
sorting algorithm based on the bitonic sort has also pirical results, for relatively small size of problems,
been attempted, but it results in a higher overhead, M/N < 64 say, Bitonic sort is the best because it
i.e., O(k log2 N), for k samples each node, and a has the lowest synchronization overhead in the algo-

worse load balancing than the above algorithm. Con- rithm. The parallel Quicksort is the best for large

sequently, we can conclude that for random data, problem size, which agrees with our analysis. It is in-

the simple equally-divided key selection method can tresin ea thatrSel sot ourforms ini
achive he est erfrmace o th paalle Quck- teresting to learn that Shell sort outperforms Bitonic

achieve the best performance of the parallel Quick- sort in the case of large problem size, which is mainly
sort. See figures 2 and 3. due to the fact that the Shell sort often terminates

Unlike the other two sorting algorithms, the sorted the sorting steps earlier. Both the parallel Quicksort
list obtained from this algorithm is not evenly dis- and Shell sort achieve linear speed-up comparing to
tributed in each node. This is not a problem if the sequential qsort for large problem size on 8 to 64 pro-
sorted list is up-loaded to the host machine without cessor machines. Shell sort is the slowest among all
further computation. On the other hand, if sorting for the small problem sizes because of its high syn-
is just a part of the computation and the sorted list chronization overhead.
needs to stay in the cube for later use, the unbalanced
data distribution may not be desirable. In this case,
we may need to rearrange the elements so that each References
node keeps the same number of elements. The cost [1] Knuth, D.E., The Art of Computer Program-
for the redistribution needs further investigation. ming, Vol.3, Sorting and Searching. Reading, NMA:

Addison-Wesley, 1973.
[2] Hoare, C.A.R., "Quicksort," Computer J., vol. 5, no.

Conclusions 1, 1962, pp. 10 -15.
[3] Stone, 1H.S., "Sorting on STAR," IEEE Trans. on

We have implemented three sorting algorithms on Software Engineering, Vol.SE-4, No.2, March 1978.

$2010, a distributed-memory message-passing MIMD [4] Batcher, K.E., "Sorting Networks and Their Appli-
cations," in Proc. AFIPS 1968 SJCC, vol. 32, Mont-

machine. These algorithms are chosen because they vale, NJ, AFIPS Press, pp.307-314.
can be parallelized easily on a mesh or hypercube ar- [5] Felten, E., Karlin, S. and Otto. S., "Sorting on a Hy-
chitecture. Each sorting algorithm is a combination percube," unpublished Caltech report Hm-244, 1986.
of parallel and sequential sorting methods and has a [6] Johnsson, S.L., "Combining Parallel and Sequential
different time complexity. Sorting on a Boolean N-Cube," Proceedings of the

1984 International Conference on Parallel Process-In the parallel sorting component, Bitonic sort ig 94 p 4 4 4 8

takes a fixed number of steps to sort despite of the in- [7] Tung, Y.-W. and Mizell, D.W., "Two Versions of

put data pattern, with time complexity O(-• log2 N). Bitonic Sorting Algorithms on the Connection Ma-
Parallel Quicksort has a performance that depends on chine," Third Annual Parallel Processing Sympo-
how good splitting keys are selected, and it is shown sium, Fullerton, California, March 1989.
that with a little overhead of presorting this algorithm [8] "Programmer's Guide to the Series 2 0 10TM Sys-
can achieve very good load balancing, and thus a best tem - Preliminary," symult Systems Corp., January
time performance O(-9 log N). The performance of 1989.

the Shell sort is constrained by its second part, the [9] Nassimi, D., and Sahni, S. "Parallel Permutation

odd-even transposition sort, which is a slow sequen- and sorting algorithms and a new generalized con-

tial sorting algorithm. Nevertheless, by taking the nection network," JACM 29(3), 642-667, 1982.

advantage of the asynchronous nature of S2010, the
parallel version of the Shell/odd-even transposition
sort can be as good as the parallel Quicksort when

229

Load Balanced Sort on Hypercube Multiprocessors

Bfilent Abah Fisun 6zgfiner and Abdulla Bataineh
IBM T.J. Watson Research Center The Ohio State University

Dept. of Electrical Engineering

Abstract a time complexity of O(p log 2 p log(n/p))
for the same problem.

A parallel algorithm for sorting n elements 3. A communication algorithm used in sort-

evenly distributed over 2d = p nodes of a d di- ing which eliminates the store-and-forward
mensional hypercube is given. The algorithm en- overhead by making use of the distance-

sures that the nodes always receive equal number d communication capability of the iPSC/2

of elements (n/p) at the end, regardless of the hypercube system. This algorithm is sub-

skew in data distribution. stantially faster than the store-and-forward
scheme.

Implementation results show that the sorting
I. Introduction algorithm based on Items 2 and 3 above performs

better than the hyperquicksort algorithm for large
n[2].

This paper addresses the problem of sorting n Parallel sorting algorithms for distributed

elements evenly distributed over 2d = p nodes of Palelsrig loitm frdsrbud
eledimentsievenalydtributed overe n > > n hes of memory hypercube multiprocessors were previ-
a d dimensional hypercube, where n >> p. The nL ously given in [3, 2, 4, 5, 1, 6]. The enumera-

elements are defined as sorted whenever a global tion sorting algorithms given in [2, 5, 4] do not

order is obtained such that for p - 1 > i > j _? 0 tinsrngaoihmgvein[,54]dntorerisobaie schtht orp 1 ~> 7- address the problem of distributing data equally
any element in node i is greater than any element adestepolmo itiuigdt qal
any tin node j withis greatr tanoe any elements across the nodes; nodes do not necessarily finish
in node j, and within each node n/p elements the sort with n/p elements each, but depending

are sorted among themselves. Main contributions tesr ihnpeeet ah u eedn
aresorted aong themsppelres. Mon the skew and initial ordering of data, some
presented in this paper are: nodes may end up with more than n/p elements.

1. An enumeration sorting algorithm which This may lead to two problems: 1) load imbal-

ensures that the nodes always receive equal ance during the sort, since some nodes have to
number of elements (n/p) at the end, process more than n/p elements, 2) insufficient
regardless of the skew in data distribu- amount of memory to complete the sort in some
rega.Rdles ino thme sk tewainodat m d istb nodes. For example, hyperquicksort which is com-
t((n log n)/p + p log2 n) for uniform data monly known as the fastest practical sorting al-
distribution. gorithm performs poorly in some cases such that

nearly all n elements, instead of n/p end up in
2. A parallel selection algorithm which deter- one node, limiting both the speedup and the use-

mines the p - 1 partitioning keys used in ful range for n [2].
sorting in O(plog 2 n) time. Best known In the sorting algorithm described here ele-
previous result on selection [1] would yield ments are evenly distributed across the p nodes

0-8186-2113-3/90/0000/0230$01.00 0 1990 IEEE

such that from start to finish each node processes nodes and one from itself. Each node forms
n/p elements exact. This is accomplished by us- a single sorted list out of these p segments
ing the balanced partition keys for redistribut- in O((nlogp)/p) time using binary tree
ing data among the nodes, contrary to other al- merge.
gorithms which select the partition keys either 5. End of Algorithm.
randomly or by sampling the elements. The bal-
anced partition keys can be determined in the fol- Note that the time complexity of Steps 1, 2, and
lowing manner: Let L[1 ... n] be the final sorted 4 add up to O((n log n)/p +p log 2 n). Time com-
list, the result of the sort. The p - 1 elements plexity of Step 3 depends on global data distri-
L[kn/p] (k = 1,... ,p- 1) correspond to the bal- bution. For uniform distribution, it is O(n/p).
anced partition keys, since any two keys L[kn/p] In the next section we describe Step 3 in more
and L((k + 1)n/p] have exactly n/p elements be- detail. The parallel selection algorithm and im-
tween them in the final sorted list L[1 ... n]. If plementation results are presented in Sections III
p - 1 partitioning keys are available, every node and IV, respectively.

can send all elements greater than or equal to
L[kn/p] and smaller than L[(k + 1)n/p] to node
k, so that the elements are globally ordered and II. Global Exchange
the total number of elements received by node
k is exactly n/p. Therefore, main steps of the
sorting algorithm can be given as follows: Let A" (I = 0, 1,... ,p - 1) denote the p sorted

segments in node i induced by the balanced parti-
1. Qnicksort: Each node independently tion keys. In the global exchange step of the sort,

quicksorts the n/p elements initially resid- segments are exchanged among the nodes suchsegent are exhage memory tho nodrm susrtdcis
ing in its memory to form a sorted list that each node i sends its segment A' to node 1.
A[... n/p-1]. These exchanges must be ordered such that seg-

2. Select Partitioning Keys: Nodes run ments do not collide and block each other on the
a parallel selection algorithm to determine hypercube links. We perform this task as in the
the p - 1 partitioning keys L[kn/p] (k = following: In the iPSC/2 hypercube, each node
1,...,p - 1). This algorithm described in is equipped with a direct connect module (DCM)
Section III runs in O(p log2 n) average time. which allows non-neighboring nodes to communi-

3. Global Exchange: Each node finds the cate directly [7], instead of using the store-and-

insertion point of the p -1 partitioning keys forward scheme [8]. A DCM is basically a (d+ 1)
initsero pist A(0 ... hep-1.Thiswill par-i n e input, (d + 1) output crossbar switch. The d

tition the list into p segments, in general. input-output pairs of the DCM are connected to
Theisegmentoetween the iiste ertsion pine, the d neighbors of the node through hypercubeThe segment between the insertion points links. The remaining input-output pair is con-

of L~kn/p] and L((k+ 1)n/p] is sent to node lns h eann nu-uptpi scn
fk a(k+=1, ,p- 2). /p S isilarlythe segment ton nected to the internal bus of the node, hence to

Ic (Ic = 1,...,p -2). Similarly, the segment its memory. A DCM can be set up so that a mes-

below the insertion point of L[n/p] is sent sage mo ry. A lin can be immediat es-

to node 0, and the segment above the inser- sage coming from one link can be immediately

tion point of L[(p - 1)n/p] is sent to node directed to another link, thereby eliminating the
store-and-forward overhead. Our measurements
on iPSC/2 indicate that this scheme is as fast

4. Binary Tree Merge: Each node has now as near-neighbor communication if all the links
received p - 1 sorted segments from other in the communication path are available. A fixed

231

routing scheme called e-cube algorithm is used for putation in the global exchange and binary tree
routing the messages in iPSC/1 [7], where bit by merge steps using asynchronous communication
bit logical ezclusive-or of the source and destina- primitives; As soon as node z receives its first seg-
tion node numbers gives the routing tag. Nonzero ment A', it begins merging the pair of segments
bit positions in the routing tag, when read from A' and A, while two more segments arrive to
right to left, give the hypercube coordinate direc- the node in parallel with the merge. Merging of
tions a message goes through. For example, if the segment pairs continue in this pipelined fashion
routing tag is r = (r 4 r3 r2 riro) = (01011), mes- until all of the segments are exchanged.
sage first goes in the coordinate direction 0, then
direction 1, then direction 3, and finally arrives
at its destination. III. Selecting the Partition Keys

By making use of the DCMs and the e-cube
scheine, the following global exchange algorithm The partitioning problem here is selecting the
coordinates the exchange of segments so that n/p-th, 2n/p-th ... (p - 1)n/p-th largest keys out
they are delivered to their destinations directly of p sorted lists of size n/p each. A partitioning
and that the communication paths used by the key, namely L [kn/p] (k = 1,c.- ,p- 1), can be de-
segments are always disjoint. Thus, segments termined in a fashion similar to the ordinary bi-
never block each other on the network links. Each re arch. An infon s cripto the aryb-nodedisribtivly xectes he ollwin, were nary search. An informal description of the algo-
node distributively executes the following, where rithm will be given first: Assume, a key X is pro-
9D denotes an exclusive-or operation: posed as the partition key. Each node determines

Let z be this node's id, and let the number of elements smaller than X (referred
Az• _ be the p - 1 segments in node z to as local rank) in its sorted list A[0... n/p - 1].
fork= 1,...,p- 1 Local rank can be determined in log(n/p) com-

send segment A' to node z E k parisons using binary search. Summation of the
receive segment Ak from node z D k p local ranks of X gives its global rank, hence its
wait for receive and send to complete position in the final sorted list L[1 ... n]. If the
sync global rank of X is greater(smaller) than kn/p,

endfor a new candidate smaller(greater) than X is pro-
posed as the partition key, and the procedure is

Processors wait at the sync instruction until it is ie aed un ti n is f nd the numberuof it

executed by all of p them, which ensures that no erationsil be lg fon The avrae, if ite

processor gets ahead and occupy links used by partition keys are chosen properly. This idea is

other processors. It may be verified from Fig. 1 partitionin alor it pres

that the segments follow disjoint paths. An O(n) next. We give only a sketch of the algorithm.

bottleneck can be present in the global exchange Exact details can be found in [6]:

algorithm for some data distributions. For exam-

ple, this will happen for a case where each node 1. Initialize: Let A[0 ... n/p - 1] be the
has to send its entire n/p size list to another node. sorted list of n/p elements in node i (i =
The bottlenecks may be eliminated by removing 0, ... ,p - 1). Let the local variables min[k]
the sync statement or by using different routing and maz[k) (k = 1,... ,p- 1) be the point-
algorithms, but this is a subject of further anal- ers for the sorted list A[0... n/p - 1]. Dur-
ysis and will not be discussed here. ing the iterations, the local search space

An interesting feature of our sorting algorithm for the k-th partition key L[kn/p] will aI-
is the ability to overlap communication and com- ways be between min[k] and maz[k] such

232

that A[min[k]] < L[kn/p] < A[maz[k]]. greater than L[kn/p]. Therefore, each node
Set min[k] = -1, maz[k] = n/p for k = decreases maz[k] pointer to the candidate's
1,.. . ,p - 1. Initially, each node will pro- insertion point in its list A[0.. n/p - 11.
pose A[kn/p 2] as a candidate for the k-th Likewise, if G[k] < kn/p, then each node
partition key L[kn/p] for k = 1,...,p - 1. increases min[k] pointer to the candidate's

2. Transpose: Each node i (i 0 insertion point in its list A[0 .. n/p- i].

1) is now holding a candidate for the k-th 8. Propose New Candidates:
partition key. All p candidates associated For k = 1, ... ,p - 1, each node proposes
with k-th partition key are moved to node A[(maz[k] + minsk])/2J as a candidate and
k for k = 1,... ,p - 1. Node 0 gets only the next iteration begins from Step 2 until
NIL values. This step can be completed in all p - 1 balanced partition keys are found.
O(p log p) time. 9. End of Algorithm.

3. Select Median of the Candidates:
Node k is now holding p candidates asso- Each iteration of the algorithm takes O(plogn)

ciated with the k-th partition key. Node k time, and the number of iterations is log2 n on

quicksorts these keys and then determines the average, giving an average time complexity of

their median in O(plogp) time. (The me- O(plog2 n). Note that the previous result in [1]

dian key will be referred to as the k-th can- yields O(p log 2 p log(n/p)) time complexity for

didate, meaning that it is the candidate for the same problem.

the k-th partition key.) Candidates other The transpose operation in Step 2 is a gen-
than the median are discarded. Node 0 is eral hypercube algorithm for distributing p val-

idle at this step. ues in every node to the rest of the nodes in
in O(plogp) time. Each of the p values in any

4. Broadcast: Each node k (k = -... ,p 1) given node is addressed to a different node. Let
broadcasts the median key to rest of the val in tuple < val, dat, src > denote the value
nodes 0, 1,...,p - 1. This step takes O(p) to be sent from node src to node dst. In any
time. given node z, there are p tuples < vaif,j,z >

5. Local Rank Computation: Every node (j = 0, 1,...,p - 1) initially. Upon completion

now has a copy of the p - 1 candidates. of the algorithm, node z receives the p tuples

Local rank R[kI of the k-th candidate < vali, z, j > (j = 0,1, ... ,p - 1) addressed to it

in each node is determined by a binary from other nodes. For example, assume that the

search in A[O. . . n/p - 1]. This step takes following values are present on a 4 node system

O(plog(n/p)) time total, initially:

6. Global Rank Computation: The p local k Node 0 Node 1 Node 2 Node 3
ranks of the k-th candidate are summed in 0 NIL NIL NIL NIL
log12 p communication and addition steps to 1 12 46 23 19
give its global rank G[k] for k = 1,...,p-1, 2 28 3 35 37
resulting in 0(plogp) overall time for this 3 8 57 18 66
step. If G[k] = kn/p, then k-th candidate
is the balanced partition key L[kn/p]. After transpose, contents of the nodes change as

follows:
7. Reduce the Search Space: If G[k] >

kn/p, it is known that the k-th candidate is Node0 Node1 Node2 Node3

233

NIL 12 28 8 Hyperquicksort reaches its best performance at
NIL 46 3 57 this distribution. Note also that the quicksort
NIL 23 35 18 and merge steps of our algorithm and of hyper-
NIL 19 37 66 quicksort are supposed to take equal time for this

distribution. Table 1, columns 3 and 4 show the
sort times for hyperquicksort and our algorithm,

The transpose algorithm can be described as in respectively. Results show that as n gets large,
the following: Let z = (zd.-.". zo) be the binary our algorithm sorts faster (faster cases are indi-
representation of the node z's id, and T[O ... p-1] cated by *). Thus, just by the virtue of the global
denote the list of p tuples < val, j, z > residing exchange algorithm described in Section II, bet-
in node z. ter results were obtained for large n. The column
for m= 0,1,...,d- 1 Q indicates the quicksort and P indicates the par-

1. split T into two lists B and B' such that tition time of our algorithm, and M indicates the
B contains tuples whose j field agree with global exchange and merge time of our algorithm.
(zd-1 ...zO) in m-th bit position, and B' Number of iterations made by the partitioning al-
contains tuples which do not, gorithm is indicated in the last column. Table 1

dB' to node (ZdI ... F;... Z) on co- shows that the number of iterations is approx-
2. dinsen mimately log 2 n for the BALANCED i'istributionordinate m,

case.
3. receive C from node (Zd-I ... im- zo) on The WORST distribution is adjusted to induce

coordinate m an 0(n) bottleneck in the global exchange step of
4. T +-- B U C our algorithm. All of the n/p elements initially

in node i (i = 0,...,p-- 1) have to move to node
i + 1(mod p) after sorting. Thus, in each node i,

IV. Experimental Results and segment A' has a size n/p if I = i+ 1(mod p), and

Conclusions has a size O ifI : i+ (mod p). Since, exchange of
segments are serialized with the sync instruction,
it will take O(n) time to complete the global ex-

The parallel sorting algorithm was imple- change step for this distribution. Table 2 shows
mented for sorting 32 bit integers on an 8 node that for large n hyperquicksort is slower. This
386 processor based iPSC/2 hypercube multipro- was due to load imbalance in the merge step of
cessor. The hyperquiclcsort algorithm was also hyperquicksort; some nodes had to merge more
implemented for comparison (2]. The global ex- than n/p elements, while every node finished the
change and the binary tree merge steps were im- sort exactly with n/p elements in our algorithm.
plemented to allow communication and compu- In the BEST distribution initially all elements
tation overlap as described earlier. The elements in node i are greater than all elements in node
to be sorted are randomly generated in the nodes. j, if i > j. Since data is already globally or-
Locally in each node, unsorted elements are uni- dered, exchange of segments during the global
formly distributed. To observe the effect of inter- exchange step is eliminated. Table 3 shows that
processor communication during the global ex- for large n our algorithm again performs better
change step, three different global data distribu- due to its smaller communication overhead, and
tions were used. The BALANCED distribution is due to load imbalance in the merge step of hy-
adjusted such that the p - 1 partition keys split perquicksort. For example, for the case of d = 3
each list of size n/p to p equal sized segments. and n = 64,000 (not shown in the table), one

234

node finished the sort with 15,000 elements and the Third Conference on HNypercube Concur-
one other with 1,000 elements in hyperquicksort, rent Computers and Applications, pp. 51-60,
whereas every node finished the sort exactly with January 1988.
8,000 elements in our algorithm. [8] C. L. Seitz, "The cosmic cube," Comm. ACM,

Results show that the sorting algorithm pre- vol. 28, pp. 22-33, Jan. 1985.
sented in this paper obtains very competitive
speedups, and it has the advantage of equally dis-,,z 0
tributing data over the hypircube. Main weak- 17
ness of the algorithm is the relatively high parti- 2
tioning overhead for small n. However, in prac- 0
tice the criteria c > 1kn/p - G[k]I can be used
for terminating the iterations earlier, resulting in 2 2
partitions of size n/p ± 2c at worst.

11

REFERENCES L

Coordinate Directions

[1) C. Plaxton, "Load balancing, selection and
sorting on the hypercube," in Proceedings of . 111
the 1989 A CM Symposium on Parallel Algo.
rithms and Architectures, pp. 64-73, 1989.

[2] B. Wagar, "Hyperquicksort," in Hypercube 100 101

Multiprocessors 1987, SIAM Press., Phila.,
pp. 292-299, 1987. 01 - 011

[3j S. L. Johnsson, "Combining parallel and se-
quential sorting on a boolean n-cube," in Int'l
Conj. on Parallel Processing, pp. 444-448, Z0
1984. K--001

[4] S. R. Seidel and W. L. George, "Binsorting
on hypercubes with d-port communication,"
in Proceedings of the Third Conference on Hy-
percube Concurrent Computers and Applica-
tions, pp. 1455-1461, January 1988.

[5] G.Fox, M.Johnson, G.Lyzenga, S. J.Salmon,
and D.Walker, Solving Problems on Concur-
rent Processors, Vol 1. NJ: Prentice-Hall,
1988.

[6] B. Aba.li, Sorting Algorithms for Hypercube
Multiprocessors. PhD thesis, The Ohio State
University, Columbus, Ohio, 1989.

[7] S. Nugent, "The iPSC/2 direct-connect corn- Figure 1: Some steps of the Global Ezchange on
munications technology," in Proceedings of a 3-cube

235

Table 1: For the BALANCED distribution case, Table 2: For the WORST distribution case, exe-
execution times of Balanced-Partition Sort and cution times of Balanced-Partition Sort and Hy-
Hyperquicksort (msec.) perquicksort (msec.)

Id n•10o II Hyp. 11 Total P M I 1i 3 4 44 185 13 149 23 21
1 4 77 104 56 31 17 13 3 8 78 211 26 150 35 21
1 8 158 178 117 32 29 13 3 16 149 279 55 165 59 23
1 16 325 338 246 33 59 14 3 30 275 388 109 179 100 25
1 30 639 *639 495 37 107 15 3 60 562 617 234 194 189 27
1 60 1320 *1288 1034 38 216 16 3 100 941 *916 400 209 307 29

2 4 51 105 27 58 20 13 3 120 1139 *1069 495 208 366 29

2 8 98 142 55 54 33 12 3 150 1431 *1308 627 226 455 31

2 16 196 236 118 59 59 13
2 30 374 409 234 68 107 15
2 60 771 778 495 74 209 16
2 100 1330 *1294 871 78 345 17
2 120 1583 *1524 1034 78 412 173 4 *152 1034 8 2 17 Table 3: For the BEST distribution case, execu-

3 __ 4 38 132 13s 95 24 13
3 8 64 168 25 109 34 15 tion times of Balanced-Partition Sort and Hyper-
3 16 120 224 54 117 53 16 quicksort (msec.)
3 30 222 317 109 118 90 16
3 60 448 524 234 125 165 17 11d nxl0 3 I Hyp. 11 Total ... P IiM l1 IH
3 100 753 792 401 126 265 17 1 4 75 115 56 54 5 23
3 120 917 943 496 133 314 18 1 8 155 180 117 55 8 23
3 150 1152 *1150 627 133 390 18 1 16 318 322 246 60 16 25
3 200 1522 871 136 515 18 1 30 631 *589 496 64 29 27
3 240 _ _ 1791 1034 143 614 19 1 60 1302 *1161 1033 70 58 29
3 300 2252 1346 14176519 2 4 55 131 26 97 8 22

2 8 107 163 55 97 11 22

2 16 216 243 118 106 19 24
Table 2: For the WORST distribution case, exe- 2 30 414 *381 234 115 32 26
cution times of Balanced-Partition Sort and Hy- 2 60 852 *682 495 125 62 28
perquicksort (msec.) 2 100 1462 *1106 871 135 100 30

L2 120 1723 *1288 1033 135 120 30

d nx1•o 0 Hyp. I1 Total] Q I P I M ll 3 8 79 190 26 149 15 21
1 4 78 119 56 54 9 23 3 16 150 241 55 165 21 23
1 8 159 188 118 55 15 23 3 30 279 318 109 178 31 25
1 16 327 335 246 60 29 25 3 60 566 *480 233 194 53 27
1 30 645 *613 495 65 53 27 3 100 952 *694 400 210 84 29
1 60 1315 *1207 1034 69 104 29J 3 120 1155 *803 495 210 98 29

3 150 1449 *969 626 224 119 312 8 102 194 55 98 41 22 3 200 1251 871 224 156 31
2 16 207 302 117 107 78 24 3 240 1445 1034 224 187 31

3 300 1816 1346 240 230 33
2 30 397 493 234 117 142 26
2 60 803 900 495 126 279 28

236

Parallel Sorting on the Hypercube Concurrent Processor

Tillie Tang

Mission Profile and Sequencing Section
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Dr Pasadena, CA 91109

Abstract
This paper describes a generalized version of a previously
published parallel sort algorithm, "parallel shell node0 Mde node3 uode2
merge".[31 This version was implemented on the
JPL/Caltech Mark III hypercube concurrent processor.
Each node starts out with a sublist of items to be sorted 0000
first internally, and then among the other nodes.
Parallel shell merge is an algorithm used to produce a -6 4 -a -56
whole sorted list across the hypercube once each sublist 0 -3 -54 -25
is sorted internally. This version is general in the sense 10 4 4 0

that it allows sublists of very different sizes to be sorted 19 1 6 1
as well as being able to handle balanced sublists. This 22 1 13 9

general version performs quite well when it is used to 52 78

sort balanced loads of data; however, there are some 67 67 85
efficiency losses due to the generalization, but they are 90 94
acceptable. Figl: Each node has just finished Quck sort.

1. Background
illustrated in Figure 1, shell merge begins. These

A parallel prototype of SEQGEN, the software that sublists lying across the hypercube make up the
verifies and expands high-level activities into low-level complete list. Shell merge manipulates the resulting
command sequences for JPL flight projects, is in the sublists and sorts them in ascending order across the
process of development on the JPL/Caltech Mark III hypercube. In other words, shell merge compares and
hypercube concurrent processor.[1] [21 The purpose of exchanges the items of each pair of the resulting sublists
this prototype is to show that the process of generating such that the node on the left would have the
commands and sending them to the spacecraft, generally lower-valued items while the higher-valued items migrate
called "uplink", can be greatly sped up utilizing parallel to the node on the right. The node order is defined such
computers. Since SEQGEN spends a significant portion that they reflect a map of the hypercube topology onto a
of its time sorting commands in time order, a parallel one-dimensional array, with the lowest order nodes on
sort algorithm is necessary for the best possible parallel the left. For example, in Figure 2 the case of an 8-node
speed up. cube is shown to have the following order- 0, 1, 3, 2, 6,

7, 5, 4. Thus, if node 0 and node I were to perform
II. Parallel Sort compare and exchange as mentioned above, node 0 would

be the node on the left and node 1 is the node on the
The parallel sort works as follows. Each node of the right as depicted in Figure 3.
hypercube starts out containing a sublist of commands in
which there are time fields to be sorted. Each sublist can
be of any arbjradry size. The algorithm to be described is procmso 101 3I~ 16 7 I'
a generalization of shell merge.[3] The algorithm's numbes I I I I I I I I I
prerequisite is that the sublist on each node is sorted; array index 0 1 2 3 4 5 6 7
therefore, the sequential version of quick sort is applied
to each sublist independently using the median-of-three Figure 2: A o e-dimalonl ary contaihe noide ndnumbr whose
method to select a pivot point where partition starts.
Once each sublist is sorted independtndy by quick sort as

0-8186-2113-3/90/0000/0237$01.00 0 1990 IEEE

Figure 4 illustrates the scheme used in shell merge to The generalization of the parallel shell merge algorithm
determine which pair of nodes are to do described in this paper handles the case where the sublists
compare-exchanges with one another. The first part of are of very different sizes, e.g. node 0 has a list with 30
the algorithm accomplishes most of the sorting efforts in elements and node 1 has a list with 5 elements. Since
d (dimension of cube) steps. The algorithm makes large we are using a synchronous, "crystalline" environment,
jumps to get the items to their destinations resulting in it is necessary to avoid deadlocks in communication
an almost-sorted list. The remaining part of the between two nodes, as the node with shorter sublist is
algorithm is the mop-up stage where an algorithm done and well on its way to other tasks while the one
resembling bubble sort is implemented to complete the with the longer sublist waits indefinitely for the other
sort.[3] node to talk back to it. If the data is arranged in such a

way that regardless of the different list lengths, the node
with the longer sublist does not need to communicate
with the other node after the other node is done, then the

d algorithm works fine. Although cases like this where© ~ each node has a very different sublist size than its
-4 neighbor node do not make the best use of parallelism,
4an algorithm should still be general enough to handle

10 5; these cases, especially to fulfill our particular
19 5 application.
22 10
45 48 Shell merge is able to sort sublists of very different

67 sizes. This is accomplished by detecting when the node
with the shorter sublist has just finished comparing and
exchanging data with its partner whose sublist is longer

Figure 3: Exchange process: node 0 will end up with and by stopping the node with the longer sublist from

the__ smallernumbers,_ asking for data from the node with the shorter sublist.
When the node with the shorter sublist has traversed all
of its elements, the sorting between the two nodes are
completed; thus, no further communications should be

1 3 2 6 1 7 1 5 4 attempted by the node with the longer sublist. To detect
P I3 I I I 4 when the two nodes should stop communicating with

one another (when the node with the shorter sublist is
0 1 2 3 4 L 6 7 done), a flag called "end of list" is set. This flag is set

_ tas soon as the number of items read from the other node
is found to be greater than or equal to the length of the
smaller of the two sublists. Since both nodes are always

I 1I3 1216 I7 I 7 1 I checking for the stopping point, once either node's
"end ofjlist" flag is set, the communication ends.

0 1 2 3 4 $ 6 7

When shell merge is completed, node 0 is supposed toL -J I Li LIhave the sublist with the lowest items while the node at
3 1 I 7 4position (n-l) of the array (node 4, in our 8-node

example) should contain the sublist with the highest
items since node 0 is the first node in the

0 1 2 3 4 5 6 7 one-dimensional array of processor numbers and the
(n-l)st node is the las! node in the array (where n =

lol 1 1 3 2 1j6 7~ 5 4 number of nodes). During the mop-up stage, if one
allows node 0 and the (n-l)st node to communicate, the

o 1 2 3 4 5 6 7 higher node would have the low-valued sublist while the
I L i L..IJ lower node would have the high-valued sublist, and hence

Figure 4: The brackets underneath pair up any two the sort would never complete.

nodes to be To avoid this, a nonperiodic boundary bookkeeping

238

scheme was developed: when node 0 is about to In order for a node on the left hand side, e.g. node 3. to
communicate with its neighbor to the left, the channel have a sublist of lower items than those of its
mask of these two nodes must be determined (where the right-hand-side neighbor, e.g. node 2 on a cube of 8
channel mask is a decimal number obtained by nodes, node 3 must send all of its highest items to node
converting the binary number whose individual bits 2 while node 2 must send all of its lowest items to node
represent the communication channels of the cube). 3. When sending items between two nodes for this
However, notice that node 0 does not have a neighbor to purpose, only portions of each sublist are sent at a time.
its left; node 0 is the leftmost node in the array. Hence, The bigger the portions which are sent at once, the less
when node 0 attempts to determine its channel mask time is wasted while a node sits idle waiting for the other
with its left neighbor, the channel mask is set equal to 0 node to send some more items. In addition, the smaller
to prevent it from trying to communicate with the these portions are, the more communication calls are
(n-l)st node. The same is done when the (n-l)st node required. However, if the whole sublist is sent all at
attempts to communicate with its neighbor to the right once, then there is the risk of unnecessary transfer of
since the (n-1)st node is the rightmost node. If this data, depending on the nature of the actual data to be
special case is not handled as described above, node 0 and sorted. Therefore, the size of the buffer is allowed to
the (n-l)st node would communicate with one another vary from case to case depending on the size of the
since the one-dimensional array is treated as a circular smaller sublist of the two nodes communicating.
array by the Crystalline Operating System routine Empirically, 40% of the length of the smaller sublist is
"gridchan" where node 0 is adjacent to the (n- l)st node. a reasonable buffer size. This not only avoids hard

coding, but it also improves the speed as shown below
Figure 5 illustrates how the one-dimensional array can be in Figure 6 for a case with 1024 total items to be sorted.
thought of as circular. Note that in order for the (n- l)st
node to be seen as node O's left neighbor or for node 0 to 100
be seen as the (n-I)st node's right neighbor, one must
look at the circle in Figure 5 always facing the center of
the circle while standing at the position of each array e0
index. In order for the list to be sorted in ascending order J Sim -
from left to right along the array, the node on the left 40

must keep the lowest-valued items to itself while

sending away the highest-valued items to the node on its
right. Therefore, if node 0 and the (n-1)st node were to 0
communicate with each other, node 0 would treat the 1 2 3 5

(n-l)st node as its left neighbor and would try to keep the dim of cube

highest-valued items to itself while sending away the
lowest-valued items to the (n-l)st node. This obviously F'gUre 6: Vae e F ers e nde.Pl, aK
contradicts the intended algorithm, and the same kind of
contradition results when the (n-1)st node is to
communicate with node 0 treating node 0 as its right
neighbor. Because of this circular action, an infinite
loop would result and the list would never be sorted. icc

0 7

0 4 - ea - er
1 6 r.4.

2 4C
5I

2C
3 7

FigutreS$: The numbers inside the slots are processor numbers;
the ones outside are array indices.

239

S .. . -- -- • = . t ~ a t s s n ollti0

100. [2] Horvath, J. C., Tang, T., Perry, L. P., Cole, R.
90• C., Olster, D. B., and Zipse, J. E., "Hypercuhes

so0 •for Critical Space Flight Command Operations."
70• To be presented at DMCC5, Charleston, SC April
o0 1990.
so _9- eneraver [3] Fox, G., Johnson, M., Lyzenga, G., Otto, S.,

, 40 -- ro P1 Salmon, J., Walker, D. Solving Problems on
30o Concurrent Processors. Prentice Hall, Englewood
20 Cliffs, New Jersey 1988.
10
0

1 2 3 4 5

dim of cubs

Figure 8: General version vs. rel. [31,4K, vat buff size

III. Conclusions and Results

The parallel sort described above is a generalized version
that works regardless of the imbalanced sizes of the
sublists to be sorted. Although imbalanced sublists
would not make use of parallelism to its fullest
potential, an algorithm should still be general enough to
withstand the worst input. As shown in Figures 6, 7,
and 8, this general version performs quite well when it is
used to sort balaikced loads of data (relatively constant
sizes of sublists). There are some efficiency losses due
to its generalization. It can be seen from Figures 6, 7,
and 8 that the cost of having a more general algorithm is
about a factor of 10% to 50% loss in efficiency from the
same-list-size algorithm, depending upon problem size.
Interestingly, though, note that the loss is not
monotonic with number of nodes (the general algorithm
has a more linear fall-off).

IV. Acknowledgements

The work described above was completed with invaluable
assistance and guidance from Joan Horvath, Edith Huang,
Nooshin Meshkaty, Barbara Zimmerman, and Bob Cole.
The author would also like to thank the JPL Hypercube
Project and Dave Curkendall for the hypercube time made
available for this application. The work described in this
paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

V. References

[1] Horvath, J. C., and Cole, R. C. "Spacecraft
Sequencing on the Hypercube Concurrent
Processor", Presented at the Fourth Conference on
Hypercube Concurrent Computers and
Applications, Monterey, CA March 1989.

240

The Fifth Distributed Memory
Computing Conference

::10: Mathematical Metho::ds I

Parallel Methods for Solving Polynomial Problems on Distributed Memory
Multicomputers

Xiaodong Zhang e Hao Lu
Division of Mathematics and Computer Science Department of Mathematics

The University of Texas at San Antonio Xian Jiaotong University
San Antonio, Texas 78285-0664 Shanxi, People's Republic of China

Abstract polynomials based on the Horner's rule is discussed in sec-
tion 2. The experimental results on the Intel hypercube are

We give a group of parallel methods for solving polynomial also presented. The parallelism of the polynomial multipli-
related problems and their implementations on a distributed cation is exploited by transferring the problem to a set of
memory multicomputer. These problems are 1. the evalua- special FFT series functions, on which the operations can
tion of polynomials, 2. the multiplication of polynomials, 3. be perfectly distributed among different processors. Sec-
the division of polynomials, and 4. the interpolation of poly- tion 3 gives the mathematical analyses and parallel method
nomials. Mathematical analyses are given for exploiting the of the polynomial multiplication. The polynomial division
parallelisms of these operations. The related parallel meth- problem is solved based on parallel solutions for Toeplitz
ods supporting the solutions of these polynomial problems, triangular linear systems and the parallel polynomial multi-
such as FFT, Toeplitz linear systems and others are also plication, and is discussed in section 4. Section 5 addresses
discussed. We present some experimental results of these a parallel method for the Lagrange piecewise cubic polyno-
parallel methods on the Intel hypercube. mial interpolation. Finally, we give a summary and future

work in the last section.

1 Introduction
2 Parallel evaluation of polynomials

Polynomials are one of the most useful and well known

classes of functions in various applications. A polynomial The evaluation of a polynomial function is a basic operation
function is defined as in polynomial problems:

P,,(x) = ao + aix + ... + az" (1) P,(xo) = ao+aizo+ ... , an-1x• 1 +anx' (2)

where n is an nonnegative integer and ao, ... , an are real where ao,al, ... , an and the indetermin-te zo are the in-
constants. When the degree of a polynomial function, n is put variables, and Pn(zo) is the output solution variable. A
very large, the computations for polynomial problems, such straight forward parallel method for (2) is to partition the
as the interpolation of polynomials, multiplication and di- evaluation operations into a binary tree structure so that
vision of polynomials are intensively required. In addition, the suboperations can be distributed among tiie processors
polynomials represent an important class of expressions in (see e.g. Siva and Murthy [1989]). The drawbacks of this
algebraic manipulation in symbolic computation. The ba- method are that the number of multiplicaticus required is
sic polynomial arithmetic operations such as multiplications not minimized, and large amount of communication are in-
and divisions spend huge execution times in computer al- volved among different layers of the tree processt.-n in the
gebra processing (see e.g. Ponder[1988], Siebert-Roch and
Muller[19891). Thus, such computation problems are good process of evaluation.
candidates for parallel computers both numerically and sym-
bolically. Homer's rule, which evaluate a polynomial by the scheme

We give a group of parallel methods for solving the poly- P.(xo) = (... ((a.z + a.-I)x + a.-2)x + ... + al)x + ao

nomial related problems, and their implementations on a requires exactly n multiplications, and is the optimal
distributed memory multicomputer. These problems are: method to evaluate a polynomial in terms of minimizing the
1. the evaluation of polynomials, 2. the multiplication of operations. The Homer's method may be easily described
polynomials, 3. the division of polynomials, and 4. the in- opera tial Te Hornet
terpolation of polynomials. Parallel evaluation method of as a sequential recurrence:

*This author is supported in part by the University of Texas at bn = an (3)
San Antonio Faculty Research Award. bi-, = bixo + a,-I i = n, n -- 1 ... , 1

0-8186-2113-3/90/0000/0242$01.00 0 1990 IEEE

Based on (3), we develop a parallel Hornet's method to SP
evaluate a polynomial. Let al-, = 0, j = 2, ... , p, where p 32
is number of processors used to evaluate a polynomial. 7

Do j = 1 to p in parallel
begin

bý-j+j = an-j+1 OF

for i=n-(p+j--1) top--$+1 step -p - --

bi = zobs+p + a.; 16 OZ

bl-= X0-Jbp-j+l + ai-j
end

•

Pn(XO) E- b 8 -
3=1

4

The evaluation operations distributed among p processors 2

are independent except the last step to collect and add all 2 4 8 16 32 P
sub-solutions among the p processors. Thus the speedup can
be determined by Figure 1: Performance of the parallel Horner's method on

hypercube

n/p + p - -+ te4
3 Parallel method for the multiplica-

where n is the number of operations (in time unit) for an n'h 3 of methomials

degree polynomial to be evaluated on a sequential machine, tion of polynomials

and n/p+p- 1+tc is the number of operations (in time unit) Let F(z) and G(z) be two n - I th degree polynomial func-
plus the communication time t, to collect the subsolutions tions,
among the p processors for evaluating the same polynomial
on a multicomputer with p processors. The communication F(z) ao + aix + +.. an-i~j (5)
time t, is trivial comparing with other operations since the
operation to add all subsolutions among the p processors and
can be done through a global tree: the subsolutions are G(z) = b0 + bIz + ... + b,-IX"'- (6)
accumulated from the leaf level, then send to the host. (see
Moler [1986)) This method minimizes the communication the multiplication problem is then defined as
times to 1092(p) instead of p in a sequential message transfer.
Thus, when n/p >> p - I + t, we may obtain a close linear F(z) x G(z) = do + dix + ... + d2n- 2Z 2 -2 (7)

speedup Sp t p. However, the worest case is when p = n,
the method become a sequential one and speedup Sp < 1. In where
addition, this parallel algorithm only applies to the situation
when n mod p =-. 0= L s,6 k=,1,. 2n-2

&+jffk

The parallel Horner's method has been implemented on a Given two polynomials pi and p2, the following relations

Intel hypercube multicomputer. Initially, each processor is show how the degree and size of polynomials change under

distributed following coefficients and variables: the operations of multiplication (see e.g. Fateman [1974]):

n: the degree of the polynomial; degree(p1 x pj) = degree(p1) + degree(p2)

p: number of processors used; Size(pI X p2) :5 size(pi) x size(p2).

j: the processor index; The coefficients in polynomials (5) and (6) may be defined

zo: the indeterminate variable; as following two sequences respectively:

a,, i =p+- 1, ... , p - j + 1: the coefficients for the ,th
processor; = a(O< k <n-1

and coefficient an-,,÷. (0 n- I < k < 2n - I

A polynomial of n = 128 is evaluated on different number of
processors on the hypercube. The speedup's with different B(k) = bk 0 < k < n -
number of processors are plotted in Figure 1. 0 n - I < k < 2n - 1.

243

where A(k) and B(k) functions are periodic of period 2n The major operations in (i), (ii), and (iv) can be easily
such that written in the form of matrix vector multiplication:.

A(k + 2nr) = A(k)

and t = Wq (12)

B(k + 2M1) = B(k) where t = (to, h, .. , t 2 n- 2 , t 2 n-a)T,

where k = 0, 1, ... , 2n - 1, and I is an integer. Then

4. W22 00
2n-1 2nf WWn

11
0r

I 0 1 2 2n-1
D(i) = Z A(k)B(i - k) i = 0, ... 2n -1 (8) W W W2n W

h=O -

The coefficients d,, i = 0, ... , 2n - 2 of the multiplication
in (7) can be determined from (8): 2n - W2n W2n -)

d, = D(i), i = 0, 1, ... , ,2n - 2 (9) and q = (qo, .. , qn--1,0, .. ')T. The I vector represents

the z, y or D vector in (i), (ii) or (iv). The q vector rep-
resents the two sequences A or B of period 2n in (8). The

Thus, the major work for the multiplication is to compute complexity of the multiplication in (12) is 0(4n2).

the periodical function of D(i) for i = 0, ... , 2n - I in (8).
We decompose the computation for D(i) in following steps The Fast Fourier Transform (FFT) developed by Cooly
with the aid of the discrete Fourier transform series: and Tukey [1965] has been widely used for computing the

2n-i standard discrete Fourier transform of (10) and (11). The
(i) z(j) = E A(k)w' j = 0. 2n - 1 complexity of the FFT reduces to 0(niog2n). This improve-

k=o ment comes from a reordering of data by taking advantage
of the fact

2n-I Jk jk rod n

(0) YU) = .B(k)) j= ° ...0 , 2n-- IW = W

k=O for j=0, ... , n-- I and k = 0, ..., n-- 1. The FFT

(iii) z(j) = z(j)y(j) j = 0, ... , 2a - I computation structure can also be easily processed in par-
a.llel with some control of synchronization and communi-

and finally, cation. The implementation and experiments of parallel
FFT methods have been done on both distributed memory

2n-i and shared memory multiprocessors (see e.g. Chamberlain
(iv) D(k) = E z(k)w-' k 0, , 2n - 1 [1986], Chan[1986], and Norton and Silberger[1988]).

J=O

The value u; is a complex number, Wn = e-,2, /2n, where We apply FFT to our special series functions in (i), (ii)
i = T, which is also called 2 n"3 primitive root of 1. In and (iv) with slight modifications. Since the functions are
other words, w2

2n = 1, and every other 2n"h root of I can be periodic of period 2n, and the q vector in the multiplication
represented as some power of w. form (12) is only half full, the complexity to compute (0),

(ii) and (iv) reduces to 0(n1092n - n).

The Operations in (iii) can be done perfectly in parallel.
Notice that the functions in (i), (ii) and (iv) are similar The parallel method detailed below fulfills the require-
to the ones in standard discrete Fourier transform and its ment as every processor involved immediately in the com-
inverse (see e.g. Aho, Hopcroft and Ullman [1974]): putation, and no arithmetic operation on the same data se-

n-1 quence terms is ever duplicated on any pair of processors.

1 f Uk The best arrangement of the processors on a distributed
)=0 memory multicomputer is a hypercube topology for this

k=0 FFT type processing in terms of communication efficiency

and since the exchange of values are only required between neigh-
n-i bor processors.

x(k) =F f(i)WJk k = 0, ... , n-1 (11)
J=0 Consider a multiplication of two 3rd degree polynomials,

where to is an n'h primitive root of 1, and f(j) is a real i.e. n = 4 in the polynomial defined in (5) and (6). Substi-

function for j = 0, ... , n - 1. Thus, the transforms defined tute n = 4 to the matrix vector multiplication

for computing polynomial multiplication are special cases of
the standard discrete Fourier transform. t = Wq,

244

we have t = (to,*9, .. , t7)T, qOq2 W0Q =

/WO W80 W80 W.0 P1

wo Wo W. 8 1 q3 we* j)

W 4 2

0 7 14qo, q2 Wa.-- W. - 8 .£w° w5 w6 ' .w
4 9 P2: ql,q3 •.. w• wŽ•~T G: =

P21

and q = (q0, q1, q2, q3,0, 0, 0, 0)T. Using the property of pe- qq2 18 e =

riod 2n qoq2 S 8
1n h 2n q3,q3 0 W2 5., t-

for =0, ... , 2n- I and k = 0, ... , 2n - 1, the W matrix
becomes qo, q2 W3. W'3

o 0 0 0
to5 W i t1o8 P

W2 0 W.27 q), q3 .- 4 W: X-- We =
t 8 We W.7

W=

Figure 2: Operation dependency graph for a polynomial
° 7 6 1 multiplication of order n = 4 on a 4 processor muiticom-

puter.

The matrix vector multiplication for n = 4 may be decom-
posed to its parallel form:

t = W 4 w 2q' 4 Parallel method for the division of

where W 4 is a 4 block diagonal matrix polynomials

Wo0 wo Given a 2n degree polynomial A(z), and a n degree polyno-
t 4 8 mial B(z),

Ws W°2 A(z) = 2o + a z) + ... (14)

S Wo e ,,to

6, 6, 0Ahr (x) =is thequoien poyoma o. f +A 2,Z)- ,ad

t515
and

3 3n
to B)oo(x) = h + poyo ... +bn7 7

W2 is a 2 block diagonal matrix the division problem is then defined as:

WS 0 0 Ww 0 A(z) = B(z)Q(z) + R(z) (14)
0 08W W

0 to 0
8

where Q(z) is the quotient polynomial of A(e) - B(zl, and

(z0,4 0-i... , R(xe is the remainder polynomial.

and q' = (qo, ql, q2,q3, qo, q, q2,q 3)T. In general, the matrix for 2-,..,z) hr ~z steqoietplnma
vector multiplication of order 2n in (12) may be decomposed fo
into the form of z2n = B(z)D(z) + S(z) (15)

W2 0 WS ... W84 W2q (1382

8 8, We. can (13) thaand K(z) is the polynomial formulated from A(z),
where W, is the s block diagonal matrix, for x o
2, 22,23 n, andq' = (qo, .. , q)-.,qo, .. , qnl,)T. K(z) = a, +a,+zz, + ... , a2D) 1z -s +antyz

(see e.g. You[1983]). Thus, the major task in the division of
The formula (13) can be performed perfectly in parallel polynomials is to compute the coefficients of the polynomial

on a p processor multicomputer as long as each processor D(z).
keeps a copy of variables qj, ... , qn-1, and matrix W, for
i = 2,22, ... , n are distributed by rows to the p proces-
sors. Figure 2 gives the operation dependency graph in each In (15), D(z) is defined as
processor for the example of n = 4 on a 4 processor multi-
computer. D(z) = do + di + ... , d.-Iz'- d,,z". (16)

245

Substitute (16) to (15), and compare the coefficients on both 4 . 1
sides of the polynomial, we get b4 b3 62 b b

BD =I (17) 4 b3 -43 2 b
f/ 4/ ---

where b4 4" b3 - 62-

B (b, bN4 b3

b,-, b41b,

is an upper triangular Toeplitz matrix formed from the given
coefficients of polynomial B(z), and Figure 3: Toeplitz triangular system solution dependency

graph

D = , Sum(l) = 1;

d.-i Sum(i) = 0 for i = 2, ... , p;
d. Psum(i) = 0 for i = 1, ..., n - p + 1;

end
is another upper triangular Toeplitz matrix formed from else
the unknown coefficients of polynomial D(z), and I is begin
the identity matrix. From (17), the coefficients of d, for sum(i) = 0 for i = 1, ... , p;
i = 0,1, ... , n may be determined by following triangular Psum(i) = 0 for i = 1, ... , n -p+ I
Toeplitz linear systems of equations: end.

/n bn- 60d
b, The program on each processor:

b- dn-, 0
b. d,))(. 1) for j = n downto 1 do

(18) begin
Several parallel algorithms have been developed for solv- if nodenum = P(j) then

ing the full and upper triangular Toeplitz linear system begin
of equations. (see e.g. Bini[1984], Sai, Li and Xie[19861). receive Sum(i) for i = 1, ..., p - 1 and j < n;
These algorithms are based on the recurrence methods for dj = (Sum(l) + Psum(j))/bn;
solving the Toeplitz linear systems. Parallelisms are ex- Sum(i) = Sum(i + 1) - anidj+
ploited in the vector processing in each step of the recur- +Psum(j - i) for i = 1, ... , p - 2;
rence. Since the computation of each step in the recurrence Sum(p - 1) = a,-,+,d, + Psum(j - p + 1);
is dependent on the results of the previous step, and the sizes Send Sum(i) to node P(j - 1)
of the vector of each step increase as the recurrence steps in- for i = 1, ... , p - I and j > 1;
crease, those algorithms would not be efficient to gain good Psum(i) = an-,+1 for i = 1, ... , n - p
speedups in a distributed memory multicomputer. Li and end
Coleman [1988] (1989] develop a group of parallel methods end.
for solving general triangular linear system on distributed
memory multicomputer. Based on the idea of Li-Coleman's
methods, and the Toeplitz triangular system solution de-
pendency graph in Figure 3, we give a parallel method for The coefficient of quotient polynomial, Q(x) is determined
solving the Toeplitz triangular linear system (18). Assume by K(x) x D(z), in which, a parallel multiplication described
the Toeplitz triangular matrix is distributed in a wrap fash- in the last section is applied. Then the remainder polyno-
ion among the processors: column j is assigned to processor mials R(z) is determined by
(j - 1) mod p, where j = 0, 1 ... , n and p is the number of
processors used. Thus the columns distribution function is R(z) = A(z) - B(z)Q(x),
defined as

P(j) = (j - 1) mod p where B(x) x Q(x) uses the parallel multiplication method
again.

The initial conditions are to set following two vector vari-
ables Sumo, the partial sum results for the solution, and
Psum0 the partial sum results computing in parallel: 5 Parallel method for Lagrange piece-

wise cubic interpolation

if nodenum = P(n) then Given a set of n + I pairs of real values, (xi, ,y) for i =
begin 0,1, ... n with distinct xzs, there exists a unique polynomial

246

Pn(z) of degree n such that P(z,) = y, for i = 0, 1, ... , n. In many practical problems, Lagrange ;--teipolating poly-
This interpolating polynomial Pn(x) can be written in the nomials may not be suitable for use as an approximation.
Lagrangian form This is because polynomials of high degree often have a very

oscillatory behavior, which is not desirable in approximating
n functions that are reasonably smooth. One alternative to in-

Pn= EY(X0,i(X) (19) terpolation is to find a polynomial of a low degree that "best
i=0 fit" the data, in which, piecewise polynomial interpolation

where is an attractive one. In piecewise polynomial interpolation,
n several lower-degree polynomials are joined together in a

li(z) = - (X - Zk) continuous fashion so that the resulting piecewise polyno-
fi. (X, - Xk) mial interpolates the data. One of the most commonly used

piecewise interpolation methods is the Lagrange piecewise
for i#k and i=0,1, ... , n. cubic interpolation.

The Lagrange form of (19) may be decomposed as follows Let y = f(x) be a continuous function in [a, b). The
Lagrange piecewise cubic function interpolates f(x) on the

n-• ni nodes x, =a + jh for j = 0,1 n and h = (b-a)/n.
P, = :Ce. JJ(X - Xi) (20) Thus, we obtain n - 2 cubic polynomials

k=0 k=0 P,(z) = a, + bx + cs 2 + dx 3

where
n for i = 1, ... , n- 2. Substitute (.,p,..-.), (z,,y.),

S y-i) (xi+,, y,+l), and (zi+2, Yi+2) into the Lagrange polynomial
(=k=0 (Xi - k) form, and define

for i # k and i = 0, 1, ... , n. The coefficients Ci can be cal- Ali= 1(X +Xt+1
culated in parallel perfectly on a distributed multicomputer. 6-h
The paralle algorithm on p processors is in following form:

A 1 2 = h-3(Xi-I + Zi+l + Xi+2),
1

Do I = Ito p in parallel A 1 3 = 2-i(Xi-1 + X, + ,i+2),
begin

for i = (j - 1)[n/p] to j[n/p] - 1 do A1 4 = -L(x,_. + Xi + z,+l),
begin 1

h = 1; A62 = 6-(XiXi+l + Xizi+2 + Xi+l,+2),
fork =0 ton and (k # i) 6V

h=h i.--.A
2 2 = 1 + X-i+2 + Xi+,+2),

e=:hy(s,) 1h
end A2 3 = -I(Xi-lXi + Xi-lXi+2 4• ziz+2),

end. 21

624 = _L(X,_tz, + i,-iz,+1 + 4sz,+i),
The polynomial evaluation on x0 point based on the decom- 1
posed Lagrange form (20) can be done in parallel for most A3 1 = h-3 Xii+l i+2,
of the calculation except the sum operations at the end. I

A32 = Th-3X-l- _Xs+l i+2,

I
Do j =1 to p in parallel A 3 3 -T=h-X+ZiXs+i+2,

begin I
'= 0; A34 = jhi1.il

for i = (j - 1)[./p] to j[n/p] do
begin where Ai, for i = 1,2,3,4 and j = 1,2,3, then the coeffi-

h = 1; dents of ao,b,,ci and di for i = 1 ... , n - 2 may be defined
for k = I to n and (k i i) in following matrix multiplication form

hi =h(zo - xi,); A = BY (21)
S, = S, + h,

end where
end (ai a2 . .

0
f-2P bi b2 b,-2

P.(X0) = E•"S. cA cC2 C'-2
di d2 . . d,,.. 2 /

247

S 1 1 1 1

_ h' 2h - 2h- h Fatema, R. [1974], "Polynomial multiplication, powers and
B - A1 2 A 12 A1 3 A1 4 asymptotic analysis: some comments", SIAM J. Comput.,A21 A 22 A23 A 24 Vol. 3, No. 3, pp. 196-213.

A31 A 32 A33 A34

and Li, G. and Coleman [1988], "A parallel triangular solver for
YO 1 91 Y,- a distributed-memory multiprocessor", SIAM J. Sci., Stat.

y 1Y2 Yn-2 Comput., Vol. 9, No. 3, pp. 485-502.
Y2 Y3 Yn-1
13 Y4 Y, Li, G. and Coleman [1989], "A new method for solving trian-

gular systems on distributed-memory message-passing mul-
tiprocessors", SIAM J. Sci. Stat. Comput., Vol. 10, No. 2,

The parallel processing for the matrix multiplication (21) pp... 382-396.
is straight forward. Matrix Y is distributed among p proces-
sors in a multicomputer, and p set of columns of matrix B Lu, H. [1988], "On parallel algorithms for polynomial prob-
are assigned to the each processor. Then the coefficients of lems", manuscript, Xian Jiaotong University, China.
a,, bi, ci and di for i = 1, ... , n - 2 are computed in parallel
on p processors. The evaluation of each cubic function may Moler, C. [1987], "Matrix computation on distributed mem-
also be done on p processors in parallel by Horner's rule ory multiprocessors", Technical Report, Intel Scientific Com-

puters.
S= ((air + b,)x + c1)z + d, Norton, A. and Silberger, A. J. [1982], "Parallelization and

for i= 1, ... ,n - 2. performance analys;3 of the Cooley-Tuke, FFT algorithm
for shared-memory architectures", IEEE Transactions on

6 Conclusions and future work Computers, Vol. C-36, No. 5, pp. 581-591.

We have discussed parallel methods for polynomial eval- Ponder, C [1988], "Evaluation of "performance enhance-
uation, polynomial multiplication and polynomial division ments" in algebraic manipulation systems, Ph. D. Thesis,

and Lagrange piecewise cubic interpolation, and presented University of California at Berkeley.
some of the experimental results on the Intel hypercube. Sai, Y., Li, X. and Xie, T. [1986], Synchronous Parallel Algo-
These methods may be easily implemented on a distributed rithais, Science and Technology University of National De-
memory multicomputer. We expect the methods will gain fense Press, Hunan, China.
good speedups' on a distributed memory multicomputer
with careful data distribution. The next step of the work Siebert-Roch, F. and Muller, J. [1989], "VLSI manipulation
is to implement the rest of the methods on a local mem- of polynomials", Computer Algebra and Parallelism, edited
ory multicomputer to test the performance. We also plan by J. Dora and J. Fitch, Academic Press, pp. 233-256.
to investigate other parallel methods for polynomial related
problems, such as multi-solutions of a polynomial, different Siva, C. and Murthy, R. [1989], "Synchronous and asyn-
polynomial interpolation methods, cubic spline interpola- chronous algorithms for evaluating polynomials on a tree

machine", Proceedings of the Fourth International Confer-
ence on Supercomputing, Vol. II, pp. 177-179.

References
You, Z. [1983], Fast Computing Methods for Linear Algebra

Aho, A., Hopcroft, J., and Ullman, J. [1974], The Design and and Polynomials, Shanghai Science and Technology Press.
Analysis of Computer Algorithms, Addison-Wesley, Read-
ing, MA.

Bini, D. [1984], "Parallel solution of certain Toeplitz linear
systems", SIAM J. Comput., Vol. 13, No. 2, pp. 268-276.

Chamberlain, R. [1986], "Grey codes, Fast Fourier Trans-
form and hypercubes", Technical Report 864502-1, Chr.
Michelsen Institute. Bergen, Norway.

Chan, T. [1986], "On grey code mappings for mesh-FFTs
on binary n-cubes", Technical Report 86.17, RIACS, NASA
Ames Research Center.

Cooley, J. and Tukey, J. [1965], "An algorithm for the ma-
chine computation of complex Fourier series, Math. in Corn-
put., 19, pp. 297-301.

248

Applications of Adaptive Data Distributions *

Eric F. Van de Velde Jens Lorenz
Applied Mathematics 217-50 Department of Mathematics and Statistics

Caltech The University of New Mexico
Pasadena, CA 91125 Albuquerque, NM 87131

Abstract tive. These feasibility studies required machine-dependent
program and problem reformulation. To raise the concur-

Continuation methods compute paths of solutions of non- rent technology from the level of feasible to that of usable,
linear equations that depend on a parameter. This paper much of current research focuses on simplification of the
examines some aspects of the multicomputer implemen- concurrent-programming task.
tation of such methods. The computation is done on the At the heart of most efficient concurrent programs is
Symult Series 2010 multicomputer. data locality: the data is stored in memory locations

One of the main issues in the development of concurrent "near" the processor using the data. To achieve data lo-
programs is load balancing, achieved here by using appro- cality, a data distribution must be introduced. In general,
priate data distributions. In the continuation process, a that is a task the programmer must perform, because the
large number of linear systems have to be solved. For best data distribution is determined by global considera-
nearby points along the solution path, the corresponding tions not accessible to analysis by low-level system corn-
system matrices are closely related to each other. There- ponents (hardware, operating system, and compiler).
fore, pivots which are good for the LU-decomposition of This is illustrated by the following simple example of
one matrix are likely to be acceptable for a whole segment matrix-vector multiplication. Let A be an M x N matrix,
of the solution path. This suggests to choose certain data and x and y vectors of dimension N and M, respectively.
distributions that achieve good load balancing. In addi- The assignment:
tion, if these distributions are used, the resulting code is y (x
easily vectorized.

To test this technique, the invariant manifold of a sys- requires the evaluation of a matrix-vector product. If
tem of two identical nonlinear oscillators is computed as this were a self-contained program, not part of a larger
a function of the coupling between them. This invariant program, the optimal data distribution and correspond-
manifold is determined by the solution of a system of non- ing optimal program is easily derived. The rows of the
linear partial differential equations that depends on the matrix A should be distributed evenly (within divisibility
coupling parameter. A symmetry in the problem reduces constraints) over all concurrent processes. The resulting
this system to one single equation, which is discretized by program is optimal, because it is perfectly load balanced
finite differences. The solution of this discrete nonlinear and it requires no communication. Similarly, for the as-
system is followed as the coupling parameter is changed. signment:

ZT ::yTA (2)

1 Introduction one should distribute the matrix columns. For a compos-

ite program that evaluates both assignments (1) and (2)
Concurrent programming is difficult and needs to be sim- neither distribution is optimal. The best distribution dis-
plified. This simple statement describes a major goal of tributes both rows and columns; moreover, the process
research into concurrent computing. The focus on sim- grid is a function of the ratio of the number of times (1)
plification is justified, because the accumulated experi- versus (2) is evaluated. Only the user can have a reason-
ence of earlier feasibility studies is overwhelmingly posi- able estimate of this last quantity; hence, only the user

can determine the best distribution. (We have ignored"This research is supported in part by Department of Energy the distribution of the vectors for ease of exposition; the
Grant No. DE-ASO3-76ER72012. This material is based upon work
supported by the NSF under Cooperative Agreement No. CCR- conclusion remains valid if one includes them.)
8809615. The government has certain rights in this material. Supplying the data distribution is thus a user task.

2490-8186-2113-3/90/0000/0249$01.00 C 1990 IEEE

Considering our goal to simplify concurrent program- where A is M x M. The matrix A is singular at folds; the
ming, supplying the data distribution should be the only bordered system, however, is well conditioned.
concurrency-related user task. Programming languages We use two concurrent solution methods for such bor-
that allow postponing decisions about data-distribution dered systems. Our first method is a variant of Keller's
are under development, see, e.g., Chen (2]. The concept, bordering algorithm [7] that takes into account the possi-
however, is independent of particular notations or lan- ble singularity of the matrix A. The second method is a
guages, and it can be evaluated within existing concur- variant of Goovaerts [5]. Here, we consider only the first
rent computing systems (although some overheads are to method, which begins by computing an LU-decomposition
be expected as a result). The program discussed in the of A. Because the matrix A may be singular, partial piv-
remainder of this paper is a realistic illustration of such oting is often not sufficient, and a more general pivoting
an approach to concurrent computing, where the data dis- strategy must be used. For simplicity, the only dynamic
tribution is imposed only after the program was fully de- pivoting strategy considered here is complete pivoting, but
veloped. In spite of the restriction that all ideas had to other dynamic strategies are easily substituted. Once the
be implemented at the software level, instead of at the LU-decomposition of A is known, the bordered system is
language or compiler level, excellent performance was ob- solved using slightly modified back-solves and the solution
tained. To obtain the best performance, a dynamic data of a 2 x 2 system.
distribution is introduced, which is periodically adapted Numerical and performance results are given for a -
to achieve global load balance. In this respect, our ap- rather involved - test problem, namely the numerical
proach differs significantly from conventional paralleliza- calculation of the invariant manifold of a parameter de-
tion strategies that break up programs into small "man- pendent dynamical system:
ageable" pieces, typically program loops, and consider dv
each as an independent entity. -- = F(v, A). (6)

An outline of the paper follows. The mathematical as-

pects of continuation and its application to the computa- Here, v(t) E T2 x IF2 and F is a mapping from T2 x
tion of invariant manifolds is discussed in section 2. These 1R2 x [0, Ao] into 1W4. (With T2 we denote the standard
aspects are covered only to the extent necessary for un- 2-torus.) The specific example that we have treated is a
derstanding the algorithmic aspects of the program. For a system of two nonlinear coupled oscillators, where
more detailed treatment, see [121. In section 3, we discuss r
the implementation of the program, and in section 4 its • r0, ruT
performance. and

2 Continuation and Invariant F = ro(1-r2)

Manifolds
r(1 -r)Consdera sste of eqatins:- cos 200 + •o(cos(00 + 01) - sin(00 - 01))

Consider a system of0 M1qain:+r oMea : - cos 20, + 1 (cos(Oo + 01) - sin(01 - 00))

G(u,,\) = 0 (3) + r o (sin(0o0 1 + cos(0o - 00) - ro(l + sin 20o)

for u E IRM, which depends on a parameter A E R. Here, ro (sin(0o + 01) + cos(0o - 01)) - ",(1 + sin 201)

G : IRM x R - IRM (The value ofw is -0.55 in our calculations.) See Aronson,
Doedel, and Othmer [1] for a motivation of this system

is a smooth map. By a solution branch we mean a one and for the study of many interesting bifurcation phe-
parameter family nomena. Also, see Dieci, Lorenz, and Russel [3] for a

sequential calculation of some invariant manifolds.
(u(s),A(s)) C X xI, Sa _< S _ Sb (4) In the uncoupled case, A 0, the system has the at-

of solutions of (3) depending smoothly on some parameter tracting invariant 2-torus

s E Isa, sb]. Because of the importance for applications, M(A = 0) = {(0, 1, 1): 0 E V C T2 x IR2.
many numerical methods have been devised and investi-
gated to compute such branches [6,8]. Assuming that the It follows from general theory (see Fenichel [4] and
branch (4) contains only regular points and folds, one has Sacker [9]) that the torus persists for a sufficiently small
to solve linear systems whose matrices have the form: coupling constant A and that, it can be parameterized in

the form:
T 6] E l (5) M(A) = {(0, R(o, A) : 9 E T2),

250

where 0 -- R(8, A) is a function from T2 -- IR2 . This argument list when calling the routine. We use the LU-
vector function R(., A) is the solution of a first order sys- decomposition described in [11] and its companion back-
tem of partial differential equations, which depends on A. solve algorithm. To achieve independence of the data dis-
These partial differential equations are discretized, and a tribution, the LU-decomposition must do all pivoting im-
symmetry is utilized to obtain a finite dimensional system plicitly (otherwise the data distribution would depend on
of the form (3). the pivots!). In fact, all routines called by our program

From general theory one expects that the tori M(A) must have the property that they are correct indepen-
loose more and more derivatives as A increases. The torus dently of the data distribution. If we consider these rou-
"breaks" in a certain A-region and disappears. The calcu- tines as the components of a library, the necessity for this
lations in [3] show breaking at about A = 0.2527. In [12], property follows from the observation that the writer of
we compute a solution branch of the discretized system the library routines cannot know the global properties of
on a 25 x 25 grid, and we obtain several fold points of this the program in which this routine will be used. Hence, the
discrete system between A = 0.2430 and A = 0.2448. data distribution cannot be fixed at the time of writing

the library. In fact, our LU-decomposition, matrix-vector
operations, and other related linear algebra routines are

3 Implementation packaged in a data-distribution-independent library. Our
continuation program uses this library and imposes a data

The concurrent efficiency of the bordering algorithm is distribution on it at run-time.
determined almost exclusively by the efficiency of the LU- To provide maximum flexibility, our LU-decomposition
decomposition. The latter, in turn, depends crucially on allows pivoting of both rows and columns. Besides allow-
an interplay between the pivot locations and the distribu- ing classical pivoting strategies (row, column, diagonal,
tion of the matrix entries over the concurrent processes. and complete), this flexibility also leads to two intrinsi-
In particular, if the pivots are known in advance, the data cally concurrent pivoting techniques with increased nu-
distribution can be chosen accordingly, and near ideal load merical stability and load balance. For details on those
balance can be achieved. In this case, the algorithm is techniques, we refer to [11]. For the discussion of our con-
also easily vectorized because all active data remain in tinuation program we introduce just one dynamic strat-
contiguous blocks. egy, complete pivoting, and one static strategy, preset piv-

Hence, efficiency can be obtained with preset pivots, oting. Complete pivoting is, in general, overkill since nu-
but numerical stability will, in general, require a different merical stability can be obtained with less expensive piv-
pivoting strategy. In our approach these two requirements oting strategies. However, complete pivoting ensures that
are hardly in conflict, because many highly correlated ma- the pivot locations are highly unpredictable and, hence,
trices are factored in the course of the continuation proce- illustrates best the adaptivity of our program. Moreover,
dure. The reasonable belief that the pivot locations can be complete pivoting is used only occasionally, i.e., when
kept constant along a whole piece of the branch is indeed the growth factor exceeds a set tolerance. For most LU-
confirmed by our experience. Therefore, both numerical decompositions, we use preset pivots, determined by the
stability and load balance can be achieved by using a dy- last LU-decomposition with dynamic pivoting. Hence,
namic pivoting strategy occasionally (when the growth the cost of dynamic pivoting is amortized over many LU-
factor has exceeded some limit), followed by an adapta- decompositions.
tion of the data distribution to the new pivot locations.

This data distribution strategy differs from most others
in two essential aspects. First, it takes into consideration 4 Performance
the global behavior of the program, i.e., the fact that the
matrices result from a continuation procedure. Second, The calculations were performed on a Symult Series 2010
adapting the data distribution to the computation itself multicomputer with up to 64 nodes. We investigate the
is an integral part of the strategy. In section 4, we shall dependence of the execution time on the data distribu-
see that the combination of these two ingredients leads tion for one LU-decomposition. Here, we used 64 nodes
to high efficiency. Here, we considpr the implementation and an 8 x 8 process grid. As expected, the adapted data
aspects of this strategy. distribution turned out to bc superior. We consider also,

Because the data distribution is adaptive and depends for each fixed strategy, the dependence of the execution
on the global nature of the continuation program, coin- time on the number of nodes. We used 2, 4, 8, 16, 32, and
ponent routines like the LU-decomposition and the back- 64 nodes, and obtained excellent speedup for each strat-
solve should be written so that they are correct indepen- egy. For absolute performance, we made a comparison
dently of the data distribution. For such routines, the of the sequential version of our code with a fully opti-
data distribution is part of the input data supplied in the mized C-version of the LINPACK benchmark [10]. Due

251

Pivoting I Distrib. I Time(s) Spdp. Eff.(%) 1.0e+07 I

Complete Linear 75.3 41.4 64.7 complete/ineear

Complete Random 63.7 49.9 78.0 complete/rantom -0--complete/scatter -a--
Complete Scatter 62.8 46.2 72.2 complete/adapted -K--preset/linear "-&-
Complete Adapted 51.3 54.2 84.7 preset/scatter - -••'•'4• .•. preset/adaptive •

Preset Linear 48.9 36.9 57.7 .rfast preset -e--
Preset Scatter 40.3 42.6 66.6 1.0e+06

Preset Adapted 33.8 48.9 76.4
F. Preset Adapted 29.7 50.0 78.2

Table 1: LU-Decomposition times for a 25 x 25 grid

problem on 64 node Symult Series 2010. Number of "
megaFLOPS is based on M 3 /3 floating point operations, 1.0e+" :
where M = 252 is the number of unknowns.

to memory restrictions, this comparison was done with a
random 300 x 300 matrix. A sequential version of our fast
preset pivoting algorithm ran about 5% slower than LIN- .Oe+04

PACK. (These 5% result from the fact that we have not 0 1 2 3 4 5 6 7

implemented a number of low level optimizations used by

LINPACK.)
We consider the example of section 2 with h = 27r/25, Figure 1: LU-Decomposition times for a 25 x 25 grid prob-

i.e., the number of unknowns at every step is M = 625. lem as a function of number of nodes on a Symult Series
In Table 1, we present timings for one (typical) LU- 2010.
decomposition using complete pivoting and preset pivot-
ing in combination with different data distributions for
the factored matrix. The linear and scatter distributions the execution-time plot is almost parallel to the line char-
are static distributions. The linear distribution allocates acterizing ideal speedup. Table 1 can be used to identify
blocks of contiguous rows and columns to processes. The the individual timing plots.
scatter distribution uses a wrap mapping. The adapted The problem was too big to run on a one-node machine.
distribution uses the pivot locations of the previous LU- Precise speedups could thus not be calculated. In Table 1,
decomposition to distribute the current matrix such that we give speedups and efficiencies with respect to two-node
ideal load balance is achieved, if the pivot locations of the timings, i.e., the real speedup is estimated by:
current matrix coincide with those of the previous matrix.
In the version "Fast Preset" of preset pivoting, certain ad- Spq _ 2 * T2 l/TpQ,

ministrative overhead is eliminated using the information
that the pivots are preset and that a particular distri- and the real efficiency is estimated by:

bution is used. All calculations were done on a 64 node cpQ ; 2 * T2 /(PQTpQ).
machine using 64 processes, one process running on each
node. The process grid was partitioned into P = 8 process Here, T2 is the two-node timing and TpQ is the timing
rows and Q = 8 process columns. with P x Q nodes. Speed-up and efficiency are good mea-

To test the concurrent performance of our code, we de- sures for the overhead due to communication and load
termine the execution time as a function of thejnumber of imbalance.
nodes. The same example as in Study 1 is computed suc- When varying the data distribution and keeping the
cessively using 2, 4, 8, 16, 32, and 64 nodes, and always pivoting strategy fixed, it is clear that the adapted data
choosing the number of processes equal to the number distribution is the most efficient. This is easily explained
of nodes, one process running on each node. The num- by the increased load balance of the adapted data distri-
bers P and Q of process rows and columns were chosen bution. This observation holds for both complete pivoting
equal within divisibility constraints. When the logarithm and preset pivoting.
of the execution time is plotted as a function of the log- When comparing efficiencies for the same distribution
arithm of the number of processes, ideal speedup is char- but for different pivoting strategies (i.e., in Table 1 com-
acterized by a straight line with slope -1 if appropriate pare lines 1 and 5, 3 and 6, 4 and 7), it is seen that
scales are used. Figure 1 shows that, for each strategy, complete pivoting is more efficient. This is because the

252

pivot-search cost leads to a higher ratio of computation to [11] E. F. Van de Velde. Experiments with Multicompuier
communication time for complete pivoting than for preset LU-Decomposition. Report CRPC-89-1, Center for
pivoting. Research in Parallel Computing, 1989. To appear in

Another interesting observation, which follows from Ta- Concurrency: Practice and Experience.
ble 1, is that complete pivoting with the random distri-
bution (line 2) is more efficient than complete pivoting [12] E. F. Van de Velde and cu. L. Lorenz. Adaptive
with the scatter distribution (line 3). The execution time, Data Distributions for Concurrent Continuation. Re-
however, is lower for the scatter distribution. The ran- port CRPC-89-4, Center for Research in Parallel
doa distribution is better than the scatter distribution Computing, 1989.
for load balancing, and hence, has higher efficiency. The
random distribution leads to very irregular memory access
patterns, however, and that causes the absolute execution
time to be larger.

References

[1] D. G. Aronson, E. J. Doedel, and H. G. Othmer.
An analytical and numerical study of the bifurcations
in a system of linearly-coupled oscillators. Physica,
25D:20-104, 1987.

[2] M. Chen, Y.-I. Choo, and J. Li. Compiling parallel
programs by optimizing performance. The Journal
of Supercomputing, 2:171-207, 1988.

[3] L. Dieci, J. Lorenz, and R. D. Russel. Numerical cal-
culation of invariant tori. 1989. To appear in SIAM
Journal on Scientific and Statistical Computing.

[4] N. Fenichel. Persistence and smoothness of invariant
manifolds for flows. Indiana University Mathematics
Journal, 21:193-226, 1971.

[5] W. Goovaerts. Stable Solvers and Block Elimination
for Bordered Singular Systems. Report, Rijksuniver-
siteit Gent, Ghent, Belgium, 1989.

[6] H.B. Keller. Numerical Methods in Bifurcation Prob-
lems. Tata Institute of Fundamental Research, Bom-
bay, 1987.

[7] H.B. Keller. Practical procedures in path following
near limit points. In R. Glowinski and J.L. Lions,
editors, Computing Methods in Applied Sciences and
Engineering, North-Holland, 1982.

[8] W.C. Rheinboldt. Numerical Analysis
of Parametrized Nonlinear Equations. Wiley, New
York, NY, 1986.

[91 R. Sacker. A perturbation theorem for invariant
manifolds and Holder continuity. Journal Mathemat-
ical Mechanics, 18:705-762, 1969.

[10] B. Toy. Private Communication.

253

The Quadratic Sieve Factoring Algorithm
on Distributed Memory Multiprocessors

Michel COSNARD - Jean-Laurent PHILIPPE

Laboratoire de l'Informatique du Paralldlisme - IMAG
Ecole Normale Sup~rieure de Lyon

46, allte d'Italie 69364 LYON Cdlex 07 FRANCE

e-mail: cosnard@frensl6l.bitnet

Abstract interesting results on parallel implementations of this
algorithm [PST 881, [CaS 88]. From an algorithmic

The quadratic sieve algorithm is a powerful method point of view, these parallel implementations are%
for factoring large integers up to 100 digits. In this triviah the only part of the algorithm to be parallelized
paper, we study in detail each step of the algorithm, is the sieve itself. Indeed, it is the most consuming
in order to derive efficient parallel implementations step, both in time and space, so that most of the
on distributed memory multiprocessors. Our aim is parallel versions of the quadratic sieve algorithm
to prove, taking the quadratic sieve algorithm as a have been implemented on networks of independent
revealer, that very efficient programming machines [CaS 881, [Sil 88], [LeM 89]. But some
methodologies could be derived in order to take the other versions have been implemented on very
most out of the target architecture. We describe an powerful vector computers, taking advantage of the
implementation of the quadratic sieve algorithm on large memory space and the high power of the
the FPS T40 hypercube. We evaluate the solution processors of the Cray XMP for example [DHS 851,
through the results we obtain, and particularly the [RLW 88]. Only one attempt is known to us to
superlinear speedup. We try to explain these implement this algorithm on a distributed memory
speedups. From these experimental considerations, multiprocessor, by Davis and Holdridge [DaH 88],
we derive more efficient implementations, including on the Ncube.
totally equidistributed tasks among the processors.Some other refinements may be added to the We propose to modelize all the steps of the algorithm
algorithm, for an implementation on distributed memorymultiprocessors: the initialization phase, the

generation of the polynomials, the sieve, the choice
of the w(x) candidates to factorization, the
factorization of these w(x), and the Gaussian

I - Introduction elimination on the w(x) matrix.

The quadratic sieve algorithm [Pom 85], [Sil 87] is a In this paper, we study in detail each step of the

powerful method for factoring large integers up to algorithm, in order to derive efficient parallel
pow00 u d ts. Varios fauthors harge alr eeady publishe implementations on distributed memory100 digits. Various authors have already published multiprocessors. The target architecture is the FPS

T40 hypercube, crudely parameterized in terms of
communication facilities. The FPS T40 is a 32

1 This work has been partially supported by the processors (T414) hypercube with Weitek floating
Coordinated Research Program C3 of the French point coprocessors; the communication is only
CNRS and the DRET. possible between neighbors of a 5-dimensional

0-8186-2113-319010000/0254$01.00 0 1990 IEEE 2A

hypercube topology; communication implies local 3_- Sieve with each element pi of the base and
synchronization since it is done through a "rendez- each power a, such that p¶, < B:
vous" protocol. Initialize the array tabsieve[-M, M[to 0.

Our aim is to prove, taking the quadratic sieve For each pP do
algorithm as a revealer, that very efficient Find the starting index s near -M.
programming methodologies could be derived in Repeat
order to take the most out of the architecture. In the Add [1092 pd to tab-sieve[x].
case of the FPS T40, load balancing the computation
phases, overlapping computation and communication S = s + pf?.
and restricting the message exchanges to neighbors until s > M
are the crucial features. Interconnection topologies of endfor
communicating processes are reduced to _-.,Define a bound V.
subtopologies of the hypercube. For each x in [-M, M[with tabsieve[x]lV do

Compute w(x).
5_-.Try to factor w(x) over the base. Each

II - The quadratic sieve algorithm factored w(x) is stored as a line of the matrix M.
End for

Suppose that an integer N is not a prime number (this End while
can be verified through a Fermat's test), and N has f._..Perform a gaussian elimination on the
no small prime factors (they have been found with a matrix M of the w(x).
sieve of Eratosthenes). Compute the GCD of some dependent lines of

the matrix M. The GCD is a cofactor of N.
Here is the algorithm to factor N, with the quadratic End algorithm.
sieve method:

Figure 1. The MPQS Algorithm.
Begin algorithm
L- Initialization step:

Compute and store: 1 - The initialization step
k (number of elements in the base), The initialization step mainly computes the k
B (the smallest power of 2 greater than each elements of the base of prime numbers to be used in
element of the base), remaining steps. This computation can be achieved in
M (the upper bound of the sieve interval), a full parallel efficiency when using the P

Compute and store the k elements pi of the processors, indexed by i (i=O... P-1), as a farm of
ba(P) =processors. The k elements are statistically lower

base, with P prime and =1 .pi than 2k log(2k). Each processor i is assigned an
Compute and store the solutions of the

equationsx2- N mod p9, with p9 <B. interval i + 1,(i+l) . In this
End initialization phase I P

interval, there are statistically k elements. TheWhile (not enough factored w(x)) do 1-

2-- Compute a polynomial w(x)=a 2x2+2bx+c: processors search for all the elements in their proper
Compute a: a must be prime, a = 4k+3, interval.

'N Once they have completed this step, we gather and
a near ' , and (N) = 1. sum on processor 0 (in log(P) communication steps)

._2 the effective number m of elements that each
Deduce b: b = N2 mod a2, and I bj < a processor has found. Then, processor 1 searches for

2" the (k-m) missing elements to get a distributed base
of k elements, while the other processors equally

(b2 -N) distribute the k elements of the base on the P-1
a2 remaining processors.

255

Balancing the elements between the (P-i) remaining The iPSC has 32 to 64 processors (80286) with
processors can be achieved in log P communication floating point coprocessors; routing VLSI devices
steps using a all to one-type gathering algorithm on a allow for point to point communications between the
spanning tree. Let us describe in more detail the processors of the hypercube; messages are stored in
algorithm for a hypercube topology. The following a FIFO queue for each processor, which implies no
figure shows the second step of this strategy: synchronization although the exchanges must be

done carefully.

0001 This technique is well suited for the FPS T40
computer since it is basically a hypercube. In the case
of the TNode, the network has to be configurated in
such a topology that its diameter be of order of log P.
For example, we could use a perfect shuffle ring
network. In the case of the iPSC hypercube, this
technique works when taking care of the amount of

1000 0100 0010 data transmitted.

"The next step consists in computing the roots of the
1100 1010 1601 0110 0101 0011 x11 q0 1001 0equations x2 N mod p9, for each element pi of the

11 10 1101 1011 0111 base, and each integer a such that p9 < B. Before
1111 computing these roots, we have to distribute the pi's

such that the computation of the roots takes the same
Figure 2. Second step on a a 4-dimensional hypercube time on all the processors. Typically, each pi implies

a equations to be computed. For large pi's, ax = 1.

Consider a spanning tree of the hypercube rooted in But for small pi's, a> 1. So, if each processor has

processor 0, such that processor I is the subtree the same number -k of elements, the processors with
reduced to one element. Isolate processor 1 during its P
computation phase (computation of the (k-m) the smallest values of the pi's have more work to
missing elements in the base). Each leaf of the tree perform than the other processors.
exchanges some elements with its father in order to
get the exact number. Recursively suppress the This is the reason why we slightly modify the step
leaves and repeat the process on a spanning tree of a for the repartition of the k elements of the factor
hypercube of reduced dimension. base. One still computes the total number of

equations to be solved. And instead of balai-.-ing the
After log P communicating steps, all the processors, k elements over the P processors, one distributts the
except processors 0 and 1, have the exact number of elements such that the number of equations is the
elements. As soon as processor 1 has computed the same on each processor. But to solve x2 = N mod
(k-m) missing elements, 0 and 1 load balance their
elements. This algorithm works for any initial p?, with ax 2! 2, one needs the solution of x2 N
distribution of the number of elements we have mod pa 1-. So all the equations for a given pi must be
encountered, thanks to the distribution of primes in solved on the same processor. Otherwise some
intervals, communications occur and waste time. And it is not

efficient anymore. Hence, under the constraint that
Let us present the TNode and the iPSC distributed the equations for a given Pi are solved on a single
memory multiprocessors. The TNode computer has processor, the tasks may not be strictly balanced. But
32 to 128 processors (T800 Transputer) with on chip each processor can perform independently and with
floating point arithmetics; a dedicated network allows maximum efficiency this computation. The roots are
dynamic reconfiguration of the interconnection stored on each processor.
topology (network of maximum degree 4);
reconfiguration implies global synchronization The computation within the initialization phase is all
points; communication implies local synchronization done. Depending on the requirements of the sieving
since it is done through a "rendez-vous" protocol. phase of the algorithm, one has to broadcast the parts

256

of the base from each processor to all the other ones. the sieve interval, because all of them have to
As the amount of data to be broadcast is large, one generate the same polynomials.
can use the broadcast algorithms in an hypercube The polynomials can be generated by a dedicated
given by Ho and Johnsson, to achieve low master processor. This master sends the
communication costs [HoJ 89]. polynomials to the slaves that sieve. We have to

decide whether the slaves have the whole base
2 - The generation of the polynomials and the whole sieve interval, or if one of these
The polynomials in the quadratic sieve are used to entities or both are distributed among the slaves.
generate integers that factor on the base. There are If they have the whole base and the whole
many ways for generating the polynomials on a interval, each slave must sieve with its proper
distributed multiprocessor, depending on the way polynomials. So the master must send different
both the elements of the base and the sieve interval polynomials to each slave (many sequential
are distributed among the processors. communications). In the other cases, the master

must send the same polynomial to each slave (a- The polynomials can be generated before the loop. single one_to_all communication).
In this case, the generation can be done with full
parallelism, such that no communication occurs,
and no processor is idle while other ones are It is not clear to decide which solution needs the
working. The polynomials are present in the minimum execution time (see figure 3 below). In the
network but they are distributed among the farm of independent processors (1), a compensation
processors. They take a large space (680 Mbytes factor may appear. Indeed, the time needed for
for a 100-digit N). This is unrealistic for our computing a new polynomial is the same on all the
examples of distributed memory multiprocessors. processors. But the time needed for sieving may be

- Or they can be generated in the sieving loop. slightly different. And this cannot occur in the
The polynomials can be generated by each Master/Slaves solution (2): of course there is no
processor. But redundant work is done, if the redundant work, but we can see that communications
processors have parts of the base and/or parts of and synchronizations will never let compensation

Master Slaves

Computation of Computation of
a polynomial a polynomial

T- oSend a polynomial
Sieve, It~to all slaves

Factorization Computation o
of w(x) .I__oyom ial Sieve,a polynomial_ Factorization

of w(x)

o-__-Synchronization
-- end a polynomial

Computation Sieve,

Ca polynomial_ Factorization_1_ _of w(x)

Synchronization

Time

(1) Independent processors (2) Master / Slaves
Figure 3. Different timings for the execution with or without a Master

257

play its role... Indeed, with the Master / Slaves interval (sieved with different polynomials on
strategy, the time needed to do all the work with one different processors), this step can be achieved in a
polynomial is the time needed by the slowest total parallel way.It is completed for each new
processor to do its computation. And furthermore, polynomial.
only P-I processors sieve if a processor is dedicated
to the computation of the polynomials, but 5 - The factorization of these w(x)
P processors sieve with the first strategy, because If each processor has the whole base, this step can be
none of them is dedicated to another task. achieved in a parallel manner, without any interaction

between processors. If not, a pipeline algorithm can
3 - The sieve be implemented, such that each w(x) be divided by
This step is high time consuming. Its implementation all the elements of the base (the elements are
depends on the distribution of the elements of the distributed among the processors). This step is done
base, the sieve interval, and the polynomials. For a using a second sieve. A possible implementation is to
100-digit integer, the base takes 1 Mbytes and the use a logical ring and to synchronously rotate the
sieve interval 13 Mbytes. These values are theoretical information from one processor to the other. The
and depend on the target machine. The polynomials smallest amount of data has to be communicated: a
are generated one at a time. choice is necessary between the sub-interval and the

subset of the elements of the base.
The implementation of [CaS 88] is such that each
processor is a workstation and can handle the whole 6 - Gaussian elimination
base and the interval. The idea is to give each The solution of large dense linear systems of
workstation different polynomials on distributed algebraic equations in finite fields appears to be the
memory multiprocessors. We cannot really work this computational kernel of many important algorithms
way, because of memory requirements. But we can of computer algebra. In particular, the large integer
communicate between processors and/or store and factoring routines in their final stage, such as the
recall data on disks. For example, the FPS T40 quadratic sieve algorithm, compute the nullspace of
distributed memory hypercube multiprocessor has the transpose of a matrix A, i.e. the vectors x
32 1-Mbyte nodes. It is impossible to place both the solution of the equation tx.A = 0. The quadratic sieve
base and the interval on each processor. We have to algorithm requires the factorization of a matrix of
distribute them and/or store them on external disks. more than 30,000 rows and columns for a 100-digit
When a processor needs data, it can either initiate a integer. However, gaussian elimination requires an
communication with a neighbor, or read from a disk amount of arithmetic operations proportional to the
if the data is too far in terms of communications. The cube of the order of the matrix, and this leads to
choice depends also on the communication speed serious limitations both on the size of the problems
between processors and the speed between a that can be dealt with, and the speed of the solution,
processor and a disk. when implemented on sequential computers. An

implementation is possible on a linear array of
On the FPS T40, the system and the program use processors [CoR 871.
250 Kbytes on each node. We have 750 Kbytes to be
distributed between a sub-interval and a subset of the
elements of the base. The best theoretical
compromise is to have a large sub-interval and a III - Implementation on the FPS T40
reduced subset of the elements of the base. This hypercube
implies the minimum total communication time.
Whatever the base and the interval divide the The FPS T40 hypercube is viewed as a network of
750 Kbytes, communicating between neighbors is transputers, since we do not use the facilities
always faster than reading data from disks, provided by the Weitek coprocessors. The programs

are written with the C language, allowing for
4 - The choice of the w(x) candidates for a dynamic use of the memory. All the processors have
complete factorization almost the same program code but work on different
This step is a linear search in the interval sieve to find data. The infinite integer precision package is due to
those w(x) that will probably factor on the base. If J.L. Roch [Roc 90]. It is very powerful and we use
the interval is completely distributed among the it during the initialization phase, during the sieve
processors or if each processor has the whole phase for generating new polynomials and factoring

258

some w(x) and for computing gcd's at the end of the lines of the matrix, in order to get k lines among all
execution. the processors. In fact, about 0.96k lines may

suffice. The processors do not need to communicate
We do not implement any of the algorithmic or since they all perform a complete quadratic sieve
mathematical variations that can be found in the factorization, but with a restricted set of polynomials.
literature. Of course each one of them generates a small part of

the whole matrix. All the parts are gathered at the end
1 - Implementation of the execution to build the global matrix M of the
Concerning the initialization phase, we implement the prime decomposition of the factored w(x).
theoretical study presented above. Each processor This matrix is embedded in 7Z/2Z. A gaussian
receives a subinterval of the total interval where the k elimination is performed. And with a probability 0.5,
elements of the base may statistically be. Each each linear dependency leads to a non trivial cofactor
processor searches for all the elements in its set. of N.
Then, a reduction phase occurs in order to count the
number of found elements. On a spanning tree 2 - Results
embedded in the hypercube, all the processors send We have factored small integers in the range 35-41
to their father their elements number. The father decimal digits. The execution times are given on the
sums the numbers and sends them to its father, up to following figure 4.
the root.

1400

The root designates a processor PE (with no sons in 10
the tree) which searches for all the missing elements. 1200
Then each processor sends to or receives from its 1000
father some elements in order to get the right number .8 Wo
of elements. This is necessary to equidistribute the
work for the computation of the square roots of N.
When processor PE has computed all the missing 400
elements, it exchanges some of them with the root 200
and thus both of them get the right number of __
elements. That is why computing the square roots of 0 , , 3 , , , ,34 35 36 37 38 39 40 41 42
N can be then executed with maximum efficiency, Number of digitsbecause it takes the same time for all the processors. Figure 4. Execution time vs size of N

We can say now that the factor base (elements and Figure 4 shows that this algorithm is not linear in
square roots) is completely computed. But it is regard of the number of digits of N. In fact, the
distributed among the processors. Our heuristic run time is [Pom 82]:
implementation requires that each processor knows
the whole base. This means that each processor has exp ((1 + o(1)) Iln N In In N).
to send its part of the base to all the other processors,
and has to receive from all the other processors their Speedup
own part of the base. This can be done through a 150
alltoall communication procedure. Then the whole
factor base is present on each processor. This implies
a strong redundancy, but avoids future 100o
communication steps. Experimental speedup

The sieve phase is implemented as follows. We 501 / equal to the
distribute the polynomials among the processors. ,number of processo
Hence each processor has a proper family of
polynomials, the whole factor base (which is already 0'
the case), and the whole sieve interval. This interval 0 4 8 12 16 20 24 28 32
is viewed as an array indexed on [-M, M[. During Number of processors
this phase, the processors can work independently as
a farm of processors. Each of them has to find k/32 Figure 5. Speedups for a 41-digit integer

259

In order to compute experimental speedups, we tried Time in s
to factor a 41-digit integer. Figure 6 depicts the 18001
experimental speedup curve compared with the linear r__
speedup. The obtained performance is surprising: 1600m
with 32 processors, the speedup (computation timej mm
with one processor compared with computation time 1400I
with 32 processors) is equal to 132. 1 X 1,*

1200 •
U *

Number of processors Speedupm
1 1 1000
2 3.4 8001
4 11.2 0 8 16 14 32
8 28.6 Processor identity

16 60.4 Figure 8. Total execution time per processor
32 131.8

Figure 6. Speedup when factoring a 41-digit integer In order to improve the workload, we have to load

The superlinear speedups come from the growth of balance the computation by letting the processors
memory space when increasing the number of work with the same number of polynomials.
processors. As the dynamic memory space is mainly
used to compute the polynomials, increasing the If we can know a priori how many polynomials,
memory space avoids parts of the management of say G, are required to get the k lines, each processor
this memory, i.e. less "allocate" and "free" procedure may work with G/32 polynomials. Caron and
calls. Silverman [CaS 88] have experimentally studied the

size of the factor base, the size of the sieve interval
3 -and the number of polynomials necessary for the3-Load balancing the computation factorization of a n-digit integer. Using these
We can see on more acurate results that the work is informations, we can compute an approximate value
not equally distributed among the processors. of G (Figure 9).

Indeed, the slowest processor needs twice the time of

the fastest processor to complete its task.
Furthermore, we can see that this time is directly N
linked to the number of polynomials that this 10s
processor has to generate and work with, to get its
k/32 lines. The following figures 7 and 8 show that 10
the ratio of the slowest processor time to the fastest
processor time is close to 2. The workload is 75 %.

10 5

Time in s 104

300' 10
21 10

x 2.67 * 102
l on 30 40 50 60 70 80 90 100

200. a Fgr m N Size of N
mFigure 9. Number of polynomials vs size of N

* U
m U

Hence the improved algorithm computes first the
100 number of polynomials necessary to the factorization

0 8 16 24 32 and then each processor works with G/32
Processor identity polynomials in order to get the desired total number

Figure 7. Time to compute polynomials per processor of rows.

260

IM !m

Using this new strategy, the difference between the Size of N Slowest Fastest Workload
slowest and the fastest processors is drastically _ rocessor rocessor
reduced: each step of the algorithm is well balanced 41 780_ s 836_s_ 96.5 %
on each processor. 45 1,620s 1,700s 97.4%

Figure 10 shows the factorization time for larger 51 6,552s 6,742s 98.6 %

values of N in the range 35-60 decimal digits. 54 18,152 s 18,548 s 99.1%
60 112,284 s 113,613 s 99.5 % _

106 Figure 12. Execution times and workload

.S 104 IV - Comparison FPS T40, iPSC, TNode

F_ 103 Each node of the iPSC/2 hypercube [Arl 88] is a
"80286 processor with a 80287 coprocessor. It can

102 have 4 Mbytes memory per node. Suppose we have
I __ Z m an iPSC with 32 nodes.

101
30 35 40 45 50 55 60 65 To compare an implementation on the iPSC/2 and on

Number of digits of N the FPS T40, one must say that the Transputer T414
Figure 10. Execution time in s vs size of N and T800 are RISC microprocessors (7.5 Mips) and

(For N with about 60 digits, it takes approximately the 80286 is a CISC microprocessor (4 Mips). For

31.5 hours to factor). our application, one can say that the 80286 is more
powerful by a factor approximately 2. But the most

The percentage of the time during which the fastest important feature is the memory space. As the
processor is idle while at least one processor is still generation of the polynomials is high dynamic
working is shown on the following figure 11. memory consuming, we can say that multiplying the

memory space by a factor 4, will allow to speed up
Difference in % the execution by a factor of 6. Both these speedups

20' together will bring a speedup of about 12 on the
iPSC, compared to the FPS T40. This means that we
can factor integers of the same size, 12 times faster

15, on the iPSC/2 than on the FPS T40, or we can factor
a 70-digit integer on the iPSC/2 within the time

10 needed for a 60-digit integer on the FPS T40.

5. The TNode multiprocessor [ChT 89] is not an

hypercube. But with the dynamic reconfiguration
0 ,I facilities, it is possible to use it as a tree, for the

30 35 40 45 50 55 60 65 initialization phase, for example. The TNode is based
Number of digits of N on the T800 Transputer, which has approximately

the same features as the T414 Transputer, for what
Figure 11. Difference of time (%) between concerns integer arithmetic. It is more powerful

the slowe;t and the fastest processors when using floating-point arithmetic. But we do not
need these facilities. So a TNode with 32 nodes and

The workload is better. The following table gives the 1 Mbytes memory per node will not be much faster
execution time of the slowest and fastest processors than the FPS T40. But by using a MegaNode (128
and the workload for integers in the range 41-60 nodes), it is clear that we can reach higher limits,
digits. because of the memory increase.

261

V - Conclusion [CoR 871 Cosnard M., Robert Y., "Implementing the
Nullspace Algorithm over GF(p) on a Ring of Processors",

Siverman [Sil 88] noted that in certain cases, one can Second Int. Symp. on Computer and Information Sciences, E.
obtain better than linear speedup by partitioning an Gelenbe & A. Riza Kaylan eds., Bogazici University, Istanbul,

algorithm among machines due to effects such as 1987, pp. 92-110.
much greater real memory and having multiple data [DaH 88] Davis J. A., Hoidridge D. B., "Fatorization
caches. Indeed even on a tightly coupled MIMD of Large Integers on a Massively Parallel Computer",
massively parallel architecture, such speedups can be Eurocrypt '88 Abstracts, A Workshop on the Theory and
reached. This clearly shows the importance of the Application of Cryptographic Techniques, IACR, 1988.
memory requirements for the MPQS algorithm.
However, with 1 Mbytes of memory per processor, [DHS 85] Davis J. A., Holdridge D. B., G. J.
efficient results can be obtained. Simmons, "Status Report on Factoring", in Advances in

Cryptology, Lecture Notes in Computer Science, 209, 1985,
Our results compare favorably with those obtained pp. 183-215.
by Davis and Holdridge [DaH 881 on the NCube of
1,024 nodes, each with 512 Kbytes of local memory: [HoJ 89] Ho C. T., Johnsson S. L., "Distributedthe difference of time is bounded by a factor of 2. Routing Atlgorithms for Broadcasting and Personalized

Communication in Hypercubes", IEEE Trans. on Computers,

We are implementing a completely parallelized Vol 38, n* 9, 1989.
version of the quadratic sieve algorithm on the [LeM 89] Lenstra A. K., Manasse M. S., "Factoring
FPS T40 target architecture. First experiments show by Electronic Mail", Proceedings Eurocrypt '89.
that this implementation could be done in very
efficient ways. In particular, it is worth noting that [Porn 821 Pomerance C., "Analysis and Comparison of
the bulk of computation work resides in the sieve Some Integer Factoring Algorithms", in "Computational
itself (§ 3). This part must be carefully han21led and Methods in Number Theory", H.W. Lenstra and R. Tijdeman
the most efficiently parallelized. For a 100-digit (eds), Mathematisch Centrum, Amsterdam, 1982, pp 89-140.
integer it seems to represent about 70% of the work.If the polynomials are generated by the processors in [Pom 85] P:omerance C., "The Quadratic Sieve
Ifthe sievolynooias farm ofneratedb h processors c d bFactoring Algorithm", Advances in Cryptology CF. Beth, N.the sieve loop, a farm of processors could be used Cot and I. Ingemarrson, eds), Lecture Notes in Comput. Sc.,with high efficiency and very low redundant work, vol 209, Springer Verlag, 1985, pp. 169-182.
but some redundant data.

[PST 881 Pomerance C., Smith J. W., Tuler R., "A
But some other refinements are possible (algorithmic Pipeline Architecture for Factoring Large Integers with the
and mathematical refinements). They are currently Quadratic Sieve Factoring Algorithm", SIAM J. Comp., vol
under implementation, and will drastically decrease 17, n' 2, April 1988, pp. 387-403.
the total execution time.

[RLW 88] te Riele H. J., Lioen W. M., Winter D.,
"Factoring with the Quadratic Sieve on Large Vector
Computers", Report NM-R8805, Centrum voor Wiskunde en
Informatica, Amsterdam, July 1988.

References [Roc 89] Roch J. L., " Calcul Formel et Paralllisme.

L'Architecture du Systtme PAC et son Arithmdtique

[Arl 88] Arlauskas S., "iPSCJ2 System: A Second Rationnelle", PhD Thesis, Grenoble, december 1989.
Generation Hypercube", Proc. 3rd Conf. on Hypercube [Sil 87] Silverman R. D., "The Multiple Polynomial
Concurrent Computers and Appli-cations, ed. G.C. Fox, Quadratic Sieve", Math. of Comp., vol 48, n' 177, January
ACM, 1988, pp. 38-42. 1987, pp. 329-339.

[CaS 88] Caron T. R., Silverman P., "Parallel [Sil 88] Silverman R. D., "Factoring Large Integers
Implementation of the Quadratic Sieve", The J. of in Parallel", ICS, vol 2, 1988, pp. 488-497.
Supercomputing, 1, 1988, pp. 273-290.

[ChT 891 Champion T., Tourancheau B., "TNode:
document utilisateur", Technical Report 89-02, LIP,
ENS Lyon, 1989.

262

Parallel Quasi-Newton Methods for Unconstrained Optimization

Charles Herbert Still
Parallel Supercomputer Initiative

University of South Carolina
Columbia, SC 29208

Abstract iterate, and H+ is the approximation to the Hessian
at the next iterate, which will be used iii the following

This paper describes work done on the 1024 node step in lieu of recomputing an approximate Hessian of
NCUBE hypercube at the University of South Car- f at z+ (see [2]). The vectors u and v will be chosen
olina in developing methods for efficient local solu- so that H+ will satisfy the secant equation:
tion of unconstrained minimization problems. The
paper begins with a mathematical discussion of quasi- H+sc - - g.
Newton methods for unconstrained optimization, and We will follow the standard convention of denoting
specifically Broyden's Method. Next it presents the yý = g+-gc. Thus the secant equation can be rewritten
parallel methods, and discusses the parallel implemen- as
tation of the most common Broyden method. Finally H+sc = y,. (4)
it lists some numerical results to evaluate the perfor- Initial investigations by Byrd, Schnabel, and
mance of the parallel Broyden methods. Schultz [1] into developing a parallel secant method

]Introduction for unconstrained optimization focus almost entirely
on performing the linear algebra calculations in paral-

Many types of problems have benefited from the lel and using simultaneous function evaluations. While

use of high speed parallel processors. The inherent their approach is appealing for use on a vector proces-

parallelism in these problems has been exploited in sor and the results are good, the inherent parallelism
of the problem is left untapped. One would hope for

order to achieve solutions with the same order of accu- a moe efe iv met u se On a oultpessor

racy (or better), shorter times to solution, and/or solu- As an alternative to the BSS method for mini-
tions to problems that would have been intractable on ng a multi
a conventional computer. Examples of these types of mizing a cultivariate nonlinear function, we consider
problems include fluid dynamics, particle mechanics, fixing the current iterate and decomposing the descent
and linear systems. One type of problem that has not direction into its axial components, then allowing each
been as well studied is nonlinear optimization (or its processor to compute its part of the next iterate and
companion problem nonlinear systems of equations). update. To develop this method we must examine the

Traditionally, quasi-Newton methods have been inverse Broyden method.
employed to find approximate solutions by iteration. Broyden's Method
These methods yield high order accuracy, and provide
superlinear convergence in a neighborhood of the solu- Recall the quasi-Newton method presented above
tion. The most promising quasi-Newton methods are in (1)-(3). As yet, there has been no mention of how to
dubbed "secant" methods since they follow a secant (le A t there and been no menton oho toline through the previous iterate to select the next it- select the vectors u and v used to perform the rank-one
erate te update to the matrix H,. In 1965, Charles Broyden

Let f : fl C R'• -- R be a convex C2 function. As- proposed the update

sume that there is some x. E fQ for which f(z.) <_ f(z) (yc - Hes,)sT

for all z E Q. The usual implementation of a secant = H + STse
method (with rank-one update) to find the minimizer where z+, ze, s., and Y, are as before. Since that time,
z. of the smooth function f is the quasi-Newton methods derived from the use of

Hese - -9= (1) similar updates have become known as Broyden meth-

=+ = Xe + Se (2) ods. Note that the above update gives the least change
H+ V H, + uvT (3) in the affine model while remaining consistent with

the secant equation, (4). If instead of using the ap-

where x, is the current iterate, gc is the gradient of proximate Hessian, we use an approximate inverse of
f at the current iterate, H, is an approximation to the Hessian, we can formulate the inverse Broyden
the Hessian of f at the current iterate, z+ is the next method.

263
0-8186-2113-3/9010000/028$01.00 0 1990 IEEE

The inverse secant method takes the form: that quasi-Newton methods based on a secant approx-
imation provide superlinear convergence on Ar(z,).

z+ = z- A(5) The idea is to develop a secant method which can si-
A+ = A, + u v (6) multaneously work in each of n orthogonal directions

where xz, g, and x+ are as before, but A, and A+ are and still maintain superlinear convergence.

an approximation to the inverse of the Hessian at x, If we let {bj I be an orthonormal basis for Rn, we

and x+, respectively, and u and v are chosen so that can write x+ = E;bj,zx = E bj and gc = E-'bj.

A+ satisfies the inverse secant equation: Premultiplying (5) by bT we get

x+ - x. = A+yc. (7) -- -• Tbaj (8)

Note that this is exactly the secant method when A, =
H;-1 and A+ = H; 1 . If we take where A, = [a',a ... , ae, so that aj is the jh col-

u = s, - Acyý, umn of A.
The next question is how to obtain A+ a non-

and singular approximation to [V'f(z+)]-'. We seek a
rank-one update of the form (6). Since this update
must satisfy the inverse secant equation (7), we sub-

= ATs, (GBU) stitute (6) into (7) to get
v szAs U+ - x, = (A, + uvT)(g+ - g•)

then we obtain the inverse Broyden method's update = A,(g+ - gc) + vT(g+ - ge)u
strategy A~and assuming that vT(g+ - g,) 0 0 we have

A+ = Aý + (se - A•y (14) (- x,) - AvT (g + - .(C -" VT(g+ -- ge)()Sc Ac8e

For computational purposes, there are some sim- Note that we are free to choose the update vector v.
plifications in (14). First, compute Then, using the u from (9), we can satisfy (7) with the

sc - Acyc = X+ - (zx - Acgc) - Acg+ rank one update in (6). We shall combine (9) and (6)
= Acg+. to yield

Furthermore, we can rewrite A+ = A + - a) - A•(g + - 9C) V (10)vT(g+ -- go)
Acyc = Acg+ - Acgc = Acg+ + se. Introducing the usual notation, s = x+ - xc and y =

Thus, we arrive at the serial implementation of the g+ - go, and assuming vT(g+ - g') = 1, the matrix
inverse Broyden method. update becomes

ALGORITHM A+ = Ac + (s - Ady)v T . (10')

The Serial Secant Method Using (GBU) Gerber and Luk [4] discuss generalized secant

Assume that xk, Ak, and gk are given, methods for the solution of linear systems. By consid-
(1) Computes a= -Ak9k ering the linear system as the gradient equation, their
(2) Compute Xk+1 = Zk - s results can be applied to minimization of quadratic
(3) Evaluate 9k+1 functions. They prove that the method generated by
(4) Compute u = Akgk+l (5) and update (9) has superlinear convergence in a

(5) Compute Ak+j = Ak + " neighborhood of the minimizer provided that v is cho-

(6) If not converged I sen to satisfy:

then increment k and go to Step (1). i) vT(g+ - gC) = 1
else set X. = Zk. Ii) v = ATw, for some w such that

iii) wT(X+ - X,) 6 0

Parallel Broyden's Method As an example, the "good" Broyden update vector

Again let f-: -+ C R' - R be a convex C2 func- v C - (GBU)
tion with a local minimum at x.. We know that there sTAy(

is a neighborhood VAI(x.) C Ql of the minimizer such satisfies the three conditions above.

264

Now, we wish to view Ps. bTaý as a scalar, so
that (8) becomes ALGORITHM

The Parallel Secant Method Using (GBU)
(1) Set /o _.- bTa0 where Ao= [a0 ao)

I, JS 1~ nj
for each i,j = 1,... ,n.

-• -tic(12) (2) Compute o, ... to scalars such that zo " j=bi,

ie. to = bTzo.

(3) Do in parallelp- 1 ... ,n
(A) Set k = 0.

In order to implement this iteration on a parallel ma- (B) Evaluate "=p = [g(zk)]p.

chine, we only need the n elements jj,j = 1,.. n (C) vm-concat(Y[.... t')

and not the entire matrix A,. Similarly, we can obtain (D) Repeat
an update strategy for /j by (a) Set += - I I P.

(b) vmconcat(•l+ 1 ,...,t`+').
(c) Evaluate .yP+l = [g(ZX+l)]p.

(d) vmconcat(-lY I,...,n+)

f3+ -" j +vibTu (13) (e) Set rT - 7i(yk+- JP)J ,.
(f) vmconcat(T1 ,..., rn).

()For i = 1,...,n

where v = [v 1,v 2 ,...,zv] and u is defined by (9). Ap- (i Set V1 =
plying (GBU), let us examine the term vi more closely. (ii) Set/3p+ - /3p + vi(4+1 -tp T rp)

First, note that s = x+ - xc -(t+ - Jc)bj. There- (h) Set k =k + 1.
fore, (E) Until stopping criteria satisfied.

(F) Return zt+1 to host as X innI

(4) Set z. = Jj *n'b

sTA:y= E(t - C)(4y - I3)pj- As a note, the vm.concat communication proce-

dure allows data sharing over all of the nodes in the al-
located subcube in logarithmic time. (See [3] for more
information on the vrnconcat procedure.) The stop-

Furthermore, ping criteria to be used can be studied as a subject area
unto itself. As an example, jjx&.+z - zkii < c should be
included in the stopping criteria, where c > 0 is the

allowable error in the solution.

[(A)s- [sT A¢]' -- E(-- •) " Numerical Results

The initial implementation of the above algo-

rithms were done in the C programming language on
Putting these two formulas together yields a formula the 1024 node NCUBE/Ten hypercube. In the parallel
for the (GBU) v: implementation, the standard basis for Rn was used,

and several choices for A0 were tried. The results from
the initial implementation show that the algorithm is
effective on convex functions. As an example, the ta-

E j(+ - ýj) c bles below summarize the results for the quadratic

- n i-1 ,

i=1 j=1 1

using the twos vector as a starting guess, i.e. x0 =
(2,2,...,2). The secant algorithm was stopped if

If we combine all of the above into one procedure, 11g+11 < 0.000001, 11--+ - ,l< 0.000001, or the num-
we produce the following algorithm. ber of iterations exceeded 500. The first column d

265

indicates the dimension of the cube used. It is impor-
tant to note that the timings listed herein include the
time to load data to the nodes of the allocated cube. Table 1 : Quadratic, n = 256

For the first table, we will approximate the initial
Hessian by the n x n identity matrix. This approxima- Using A= In, the identity
tion has the advantage of being easily computed and
positive definite. d Iterations Time(sec) f(X.)

2 2 641.381 7.60e-25

Table 1 : Quadratic, n = 32 3 2 322.750 9.15e-25
4 2 163.485 9.86e-25
5 2 84.073 1.01e-24

Using Ao - In, the identity 6 2 44.681 1.03e-24
7 2 25.130 1.04e-24

d Iterations Time(sec) f(AX) 8 2 16.320 1.05e-24

0 2 5.830 3.15e-27
1 2 3.168 1.86e-27
2 2 1.863 1.30e-27
3 2 1.264 1.05e-27
4 2 1.015 8.65e-28
5 2 1.108 8.34e-28 Table 1 Quadratic, n = 512

Using AO = In, the identity
Table 1: Quadratic, n = 64

d Iterations Time(sec) f(zX)
4 2 1279.737 1.67e-23

Using A 0 = In, the identity 5 2 645.341 1.70e-23
6 2 328.660 1.72e-23

d Iterations Time(sec) f(Z.) 7 2 170.258 1.72e-23
0 2 42.152 4.82e-27 8 2 92.111 1.73e-23
1 2 21.572 6.68e-27 9 2 54.725 1.73e-23
2 2 11.275 8.47e-27
3 2 6.192 1.06e-26
4 2 3.722 1.12e-26 For Table 2, we will use a scaled version of the

5 2 2.637 1.13e-26 Identity matrix as the initial approximation of the Hes-
6 2 2.372 1.14e-26 sian. This approximation has the advantage of being

easy to compute and is positive definite.

Table 1 : Quadratic, n = 128

Table 2 : Quadratic, n = 32
Using Ao = I, the identity

d Iterations Time(sec) f(X°) Using Ao = TfFm , the scaled identity

0 2 323.427 1.15e-24
1 2 162.571 6.00e-25 d Iterations Time(sec) f z,)
2 2 82.171 4.28e-25 0 2 5.841 7.69e-31

3 2 41.945 3.53e-25 1 2 3.178 7.69e-31
4 2 21.916 3.24e-25 2 2 1.863 7.69e-31
5 2 12.000 3.11e-25 3 2 1.251 7.69e-31
6 2 7.438 3.05e-25 4 2 1.009 7.69e-31

7 2 5.298 3.05e-25 5 2 1.036 7.69e-31

266

Table 2 Quadratic, n = 64

Table 2 : Quadratic, n = 512
Using Ao = Ifln the scaled identity

d Iterations Time(sec) f(zA) Using AO - the scaled identity

0 2 42.343 0.00e+00

1 2 21.611 0.00e+00 d Iterations Time(sec) f(z.)
2 2 11.319 0.00e+00 4 2 1289.277 1.23e-29
3 2 6.214 0.00e+00 5 2 650.342 1.23e-29
4 2 3.755 0.00e+00 6 2 330.784 1.23e-29
5 2 2.639 0.00e+00 7 2 171.689 1.23e-29
6 2 2.380 0.00e+00 8 2 98.123 1.23e-29

9 2 62.651 1.23e-29

Table 2 : Quadratic, n = 128 Finally, we will invert a finite difference approx-

imation of the initial Hessian. This approximation is
Using A t cvery close to the actual inverse of the initial Hessian,

U --71n, the scaled identity unless the matrix is poorly conditioned, and hence
should produce more accurate results than the other

d Iterations Time(sec) f(z.) two approximations. However, performing the finite
0 2 325.117 0.00e+00 differences and the matrix inversion is slow, requiring
1 2 163.438 0.00e+00 0(n 3) operations, thereby increasing the start-up time
2 2 82.644 0.00e+00 on the host program. Due to the method of measuring
3 2 42.833 0.00e+00 time (only the time used on the nodes is counted), the
4 2 22.044 0.00e+00 increased start-up time is not reflected in the table.
5 2 12.076 0.00e+00
6 2 7.329 0.00e+00
7 2 5.348 0.00e+00

Table 2: Quadratic, n = 256
Table 3 : Quadratic, n = 32

Using Ao = T• Tln, the scaled identity

Using Ao = IV2 f(zo)J- 1 , the inverted Hessian
d Iterations Time(sec) f(z.)
2 2 646.008 1.57e-27 d Iterations Time(sec) f z*
3 2 325.271 1,57e-27 0 2 6.060 0.00e+00
4 2 164.579 1.57e-27 1 2 3.233 0.00e+00
5 2 84.471 1.57e-27 2 2 1.923 0.00e+00
6 2 44.629 1.57e-27 3 2 1.270 0.00e+00
7 2 25.131 1.57e-27 4 2 1.018 0.00e+00
8 2 16.257 1.57e-27 5 2 1.039 0.00e+00

267

Table 3 : Quadratic, n = 64 Table 3 : Quadratic, n = 512

Using Ao = IV2 f(Xo)l-, the inverted Hessian Using Ao = IV 2 f(Zo)j-, the inverted Hessian

d Iterations Time(sec) f(z,) d Iterations Time(sec) f_(Z.)
0 2 44.473 0.00e+00 4 2 1315.607 0.00e+00
1 2 23.746 0.00e+00 5 2 661.409 0.00e+00
2 2 11.941 0.00e+00 6 2 336.369 0.00e+00

3 2 6.321 0.00e+00 7 2 174.282 0.00e+00
4 2 4.594 0.00e+00 8 2 94.106 0.00e+00
5 2 3.352 0.00e+00 9 2 55.777 0.00e+00
6 2 2.673 0.00e+00

As a second example, the parallel algorithm was
tested on a rather complicated exponential function

(= i?=1e

Table 3 : Quadratic, n = 128 Note that this function takes it minimum at the origin.
The initial guess was the ones vector (1,1, ... , 1), and

Using Ao = IV2 f(zo)1- 1, the inverted Hessian again the three initial Hessian approximations were
the identity matrix, the scaled identity matrix, and

d Iterations Time(sec) f(X-) the inverse of the finite difference approximation to the
0 2 332.325 0.00e+00 Hessian at the initial guess. The results for n = 128

1 2 167.036 0.00e+00 appear below in Table 4. The first table represents

2 2 84.383 0.00e+00 using the identity as the initial Hessian approximation.

3 2 43.223 0.00e+00
4 2 22.542 0.00e+00
5 2 12.387 0.00e+00
6 2 7.739 0.00e+00 Table 4 : Exponential, n = 128
7 2 5.417 0.00e+00

Using Ao - I, the identity matrix

d Iterations Time(sec) f(z.)
0 9 1513.322 3.83e-20
1 9 758.742 3.83e-20

Table 3: Quadratic, n = 256 2 9 380.269 3.83e-20
3 9 191.157 3.83e-20
4 9 96.840 3.83e-20

Using Ao = IV 2f(zO)1•1 , the inverted Hessian 5 9 49.821 3.83e-20

6 9 26.654 3.83e-20
d Iterations Time(sec) f(,) 7 9 15.807 3.83e-20
2 2 657.612 0.00e+00
3 2 330.778 0.OOe+00
4 2 167.724 0.00e+00
5 2 85.927 0.00e+00 The next table represents the same problem with
6 2 45.366 0.OOe+00 the same initial guess, but substituting the scaled iden-
7 2 25.513 0.00e+00 tity for the identity as the initial Hessian approxima-
8 2 16.523 0.00e+00 tion.

268

approximating Ao) is not counted, but that the start-
Table 4 : Exponential, n = 128 up cost incurred by a node (receiving zo,go and the

appropriate section of A 0) is counted in the execution
time. The efficiencies presented in the table below are

Using A0 = If(xo)l-I, the scaled identity surprisingly very high when the gradient is expensive
to evaluate in relation to communication time. This

d Iterations Time(sec) f(z.) is the case for larger values of n. Due to memory
0 9 1511.218 6.92e-17 restrictions on the nodes (roughly 400 kilobytes of user
1 9 757.371 6.92e-17 space is available), running the n = 256 quadratic was
2 9 379.557 6.92e-17 not possible on a cube of dimension 0 or 1. Rather than
3 9 190.966 6.92e-17 extrapolate the timings for the n = 256 problem on 1

4 9 97.919 6.92e-17 or 2 nodes, the efficiency ratings for that problem have

5 9 51.074 6.92e-17 been omitted. Similarly, there are no efficiency results

6 9 28.883 6.92e-17 for the n = 512 problem. The rest of the efficiency

7 9 16.774 6.92e-17 ratings for the quadratic are listed in Table 5 below.
Missing values are indicated by two asterisks in the
field. (These are cases when the number of nodes used

The final table represents the same problem but would exceed the dimension of the problem forcing idle

using the computed inverse of the finite difference ap- time, or unnecessary replication of work.)

proximation to the Hessian at the initial guess.

Table 4 : Exponential, n = 128

Using Ao = IV 2f(xo)- I, the inverted Hessian

d Iterations Time(sec) f(x.)

0 8 1348.612 6.92e-17
1 8 675.449 6.92e-17 Table 5 : Efficiency, Quadratic
2 8 346.618 6.92e-17
3 8 168.983 6.92e-17

4 8 85.201 6.92e-17 Using Ao = IV 2f(zo)1- 1, the inverted Hessian
5 8 43.370 6.92e-17
6 8 22.567 6.92e-17 d 32 64 128
7 8 12.407 6.92e-17 0 1.0000 1.0000 1.0000

1 0.9370 0.9364 0.9948
2 0.7878 0.9311 0.9846

From the timing results, an efficiency rating can 3 0.5964 0.8794 0.9611
be determined for each run of the algorithm. This 0.39 0.604 0.9214

rating is a measure of how much parallelism can be 0.18 0.41 0.8383

exploited by using more nodes on the problem. The

higher the efficiency rating, the more concurrent work 6 0.2599 0.6709

is being performed. Large amounts of communication 7 0.4792

time lowers the efficiency rating considerably. The ef-
ficiency is taken to be the execution time of the algo-
rithm relative to the number of nodes used, ie.

efficiency time

p * timep The results of the efficiencies for quadratic func-

where time1 is the execution time of the algorithm on 1 tion above with n = 128 are summarized in the three
node, and timep is the execution time of the algorithm figures below. The similarities of the efficiencies be-
using p nodes. Note that the start-up cost incurred tween any two of the three cases precludes their com-
by the host processor (reading x0 , evaluating go, and bined presentation in one plot.

269

Figure 3
Quadratic

n - 128, A0 = UTL
Figure 1

Quadratic 1.00-

n - 128, A0 = (V 2f(XO))- 1

1.00 E 0.75f
f

f e
f n

cY 0.25
c 0.50
e
nc 0.00- I I I I I IY 0.25 0 1 2 3 4 5 678

Dimension of cube
0.00 -

0 1 2 3 4 5 6 7 8 Finally, for comparative purposes, the efficiencies
for the exponential function with n = 128 are shown in

Dimension of cube the next three figures (again, one for each of the three
methods for choosing the initial Hessian approxima-
tion). Note that these three plots appear very similar
to the previous plots. In fact, the plots from all of
the test cases used to test the algorithm take the same
form. The small dip in Figure 4 can be attributed to
the inaccuracy of taking measurements while multiple
jobs were running on the NCUBE.

The high efficiencies correspond to ratings of be-
tween 80.0 and 90.0 kiloflops on each of the 128 nodes.
This agrees with the findings of Gustafson, Montry,
and Benner [5] that sustained performance is between
70 and 130 megaflops for the NCUBE/Ten (68.4 to
127.0 kiloflops on a single node, double precision).

Figure 2 Figure 4
Quadratic Exponential

n = 128, AO = I n = 128, Ao - (V 2 f(to))- I

1.00- 1.00-

E 0.75 E 0.75f ff f
i i
c 0.50 c 0.50
1 i
e e
n n
C c
Y 0.25 Y 0.25

0.00- * I I I I I A 0.00 " * * I I I I I I
0 1 2 3 4 5 6 7 8 0123 4 5 6 7 8

Dimension of cube Dimension of cube

270

Figure 5 does not justify the additional start-up penalty in-
Exponential curred. The method works well for convex functions,

n = 128, A0 - I but is subject to the usual limitations of an inverse

1.00- secant method: bad initial approximations or noisy
0 functions can cause the iterates to traver-e infeasi-

ble regions, or to diverge, force conm gence in

E 0.75 these cases, trust regions, lii. earches, or backtrack-
f ing techniques must be added. By adding a "correc-
f
i -tive" technique, the parallel secant method will pro-
c 0.50 vide a very good alternative to other minimization
e methods, particularly when the problem size increases,nc and function evaluation becomes more costly.Y 0.25

References

0.00 -
0 12 3 4 5 6 7 8

Dimension of cube [1] Byrd, R., Schnabel, R., and Shultz, G.
"Parallel Quasi-Newton Methods for Un-

Figure 6 constrained Optimization," Mathematical
Exponential Programming 42 (1988) 273-306.

n = 128, Ao = TT(1I 1 [21 Dennis, J., and Schnabel, R. Numerical
1.00- Methods for Unconstrained Optimization

and Nonlinear Equations. Prentice-Hall,
Englewood Cliffs, NJ (1983).

E 0.75 [3] Fox, G., Johnson, M., Lyzenga, G., Otto,
ff S., Salmon, J. and Walker, D. Solving Prob-f
I -lems on Concurrent Computers, Vol I. Pren-

S0.50- tice-Hall, Englewood Cliffs, NJ (1988).
e [4] Gerber, R., and Luk, F. "A Generalized
c Broyden's Method for Solving Simultane-ous Linear Equations," Technical Report

TR-80-438, Department of Computer Sci-
0.00 - ence, Cornell University, Ithaca, NY (1980).

0 1 2 3 4 5 6 7 8 [5] Gustafson, J. L., Montry, G. R., and Ben-

Dimension of cube ner, R. E. "Development of Parallel Meth-
There were several other test functions used ods for a 1024-Processor Hypercube," SIAM

in evaluating the performance of the parallel secant Journal on Scientific and Statistical Corn-
method, but those that did not diverge did not provide puLing. Volume 9, Number 4, 1988.
as clear an illustration of the performance character-
istics of the method. Hence, they have been omitted. Acknowledgments

Conclusions
I would like to thank the entire staff at the Uni-

These results suggest that the method is efficient versity of South Carolina's Parallel Supercomputer
in the minimization of a multivariate nonlinear func- Initiative for their help and advice in this research
tion, and that while the number of iterations requirea project. In particular, thanks go to Chuck Baldwin
for a solution, and the time required to obtain that so- for providing technical assistance and the communica-
lution, are dependent upon the initial approximation tions routines mentioned herein. Especially, I would
for the inverse of the Hessian, the extra accuracy and like to thank George Johnson for providing ideas, sug-
speed gained by using the finite difference approach gestions and direction.

271

Parallel Nonlinear Optimization

Ron Daniel Jr.
Oklahoma State University

School of Electrical and Computer Engineering
202 Engineering South
Stillwater, OK 74078

Abstract independent of the computations at the other data
points, this phase of the problem is perfectly parallel.

This paper describes the implementation of a Currently, the linear system solution is carried out on
parallel Levenberg-Marquardt algorithm on an iPSC/2. one node.
The Levenberg-Marquardt algorithm is a standard
technique for non-linear least-squares optimization. For Levenberg-Marquardt Technique
a problem with D data points and P parameters to be
estimated, each iteration requires that the objective In this section we will discuss the LM algorithm in
function and its P partials be evaluated at all D data enough detail to see how it is parallelized. A full
points, using the current parameter estimates. Each derivation can be found in [1], [21, or almost any book
iteration also requires the solution of a PxP linear on non-linear optimization. The presentation below
system to obtain the next set of parameter estimates. A follows [2).
simple data-parallel decomposition is used where the The goal of the LM algorithm is to minimize the
data is evenly distributed across the nodes to parallelize objective function:
the evaluations of the objective function and its partial
derivatives. The performance of the method is N
characterized versus the number of nodes, the number of x2()=X (Yi - Y (xi, p)) 2 (1)
data points, and the number of parameters in the

objective function. Further enhancements are also il
discussed, by iteratively adjusting the vector of parameters, p. The

Introduction xi are the independent variables of the data, the Yi are
the measured dependent values, and the function y(xi, p)

Many problems can be cast as the search for a set predicts yi given xi and the current parameter estimates.
of parameters that minimize (or maximize) some The components of the gradient vector and second
function. Such a problem is known as a minimization derivative matrix of X2 are:
or optimization problem. The function to be minimized
is known as the objective function. Classes of N
algorithms exist for cases where the objective function 2_.2• - y(xii)) ay(xip)
is linear vs. non-linear, univariate vs. multivariate, and (Pk - apk
where its derivatives with respect to the adjustable i=l

parameters are known vs. unknown.
The Levenberg-Marquardt (LM) algorithm [1,2] is a N

standard technique for non-linear least-squares, ad - 2Y, [ay(xip) _y(xi,p) (3)
multivariate optimization when the partial derivatives of 0PkaPl P an api
the objective function are known and are not too a2i
inconvenient to compute. For a problem with D data - (Yi - y(xi, p)) l
points and P parameters to be estimated, each iteration alkal
requires that the objective function and its P partials be
evaluated at all D data points using the current We will remove the factors of two by defining the
parameter estimates. Each iteration also requires the components of the vector b and matrix A as
solution of a PxP linear system to obtain the next set
of parameter estimates. P is almost always much less 2'-1 '1ta D. b = [bk] f A -- [akI] is apd (4.5)

This paper describes the implementation of a

parallel LM algorithm on an iPSC/2 SX (Weitek
FPUs). The data is evenly distributed across the nodes If X2 can be accurately approximated by a quadratic
to parallelize the evaluations of the objective function surface, then the correction dp (which when added to the
and its partial derivatives. Since the computation of the current parameter estimates p gives the parameters Pmin
objective function and its partials at one data point is

0-8186-2113-3/90/0000/0272$01.00 0 1990 IEEE

that minimize X2) can be found in a single step by Parallel Decomposition
solving the linear system:

The LM algorithm is quite easy to parallelize usingA ap = b (6) a data-parallel decomposition. At the beginning of the

Note that A is a function of both the first and second process, the x and y data is evenly distributed among the
nodes. At the start of each iteration, the current

derivatives of x2. The second derivatives will be parameter estimates are broadcast to all the nodes. Each
destabilizing when the quadratic is not a good node then computes X2, b, and A for its portion of the
approximation. We will therwore neglect these terms
and redefine A as: data. These are summed and node 0 receives the total X2,

b, and A. It solves the linear system to determine the
N 1 new vector of parameter estimates. This is expressed

A=[a(xiP) y(xip) (7) below in Algorithm 2.

""=i Algorithm 2

This change improves stability and lessens the Pallel Levenberg-Marquardt Technique

computational complexity without seriously degrading 0 distribute x, y data evenly among nodes,
performance of the method. broadcast initial p to all nodes,

If the quadratic approximation is a bad assumption, set X = 0.001
the step of (6) will probably cause j2 to increase rather I compute Z2 (p), b. A in parallel
than decrease. In this case, about the best we can do is 2 if II b II < tol or iteration limit reached,
take a step down the gradient: done

3 solve (A +)Ip= b for d)p
ap = t b, (8) 4 broadcast p + ap to all nodes

5 compute X2(p + 4p), btmp, Atmp in parallel

where t is a constant that sets the size of the step. Even 6 if X2 (p + ap) 2! A2(p)
if the quadratic model is only a fair approximation, A 6 i0
provides some information about the size of t. * 10
Marquardt defined a new matrix A': else

A' = A + XI (9) P =P +ap
b = btmp, A = Atmp7 gore2

When X is small, our update is essentially that of (6).

When X is large, A' becomes diagonally dominant, and It would also be possible to parallelize the linear
our step approaches an infinitesimal step down the system solution in step 3. The advantages and
gradient. As long as our steps are succeeding, we can disadvantages of this are discussed in the conclusions

assume the quadratic approximation to X2 is accurate, section.
Once the data has been distributed, the only

and can decrease) to achieve faster convergence. If a communication that occurs is the broadcast of the new
proposed step fails, we increase X and try again. This is parameter estimates and the summation of X2, b, and
expressed below in Algorithm 1. A. This communication does not increase as the

Algorithm I number of data points increases. The com:lunication
Sa l gorith T e does increase as the log of the number of nodes and the

Serial Levenberg-Marquardt Technique square of the number of parameters.

0 input initial p, data x, y, set X = 0.001
1 compute %2(p). b, A Performance

2 if II b II < tol or iteration limit reached, Several factors make it difficult to characterize the
done performance of the LM algorithm. First, it is an

3 solve (A + Xl) 4p = b for ap iterative algorithm, so the possibility exists that as
4 compute X2(p +o)p), btmp, Atmp more data points are added, enough additional
5 if X2 (p + 4p) a 2 (p) information is obtained to reduce the number of

X = X.* 10 iterations needed to converge to a set of parameter
else estimates. For this reason we report per-iteration times.

X = X /10, p = p + ap, The number of iterations will not be affected by the

b = btmp. A = Atmp number of nodes used.

6 goto2

273

Another problem is that the measures of speedup
and efficiency are influenced by the complexity of the
objective function calculations relative to the linear
system solution. For example, consider the case where
the evaluations of the objective and its partials take very
little time. The computation time will be dominated by
that of the linear system solution, and will show no
dependence upon the number of data points. Further,
performance would be expected to degrade as additional
nodes are added, due to the increased communication
costs. The opposite case, where the evaluation of the
objective function and its partials is quite lengthy,
would exhibit almost perfectly linear speedup. Neither
of these results would accurately predict the performance
for objective functions of moderate complexity. Our
objective function should also allow us to characterize
performance as the number of parameters increases. To
accommodate both these requirements, we will use an
objective function that models the input data as the sum
of K Gaussians. By increasing K, we can increase the Figure 1: Input Data and Underlying Gaussians
compmuai•mal complexity of the objective function.
Eoich Ga•.ssian is characterized by three parameters, its 12

.'I ation Ik-, its amplitude ak, and its spread, Sk. The 120 'IN. -
objective function is then 0 -6- 100

D 500

X2 = (y Y-y(xip))2 (10) 5- - .-- 000

2 - 61O:1• ::r Number of
0 - I Deta Points

where xi is the independent variable(s) of the i'th data 1 2 4 a Is

point, yi is the dependent value, and y(xi,p) is the Number of Node

function value predicted from the current set of Figure 2a. Time / Iteration vs. Number of Nodes and
parameters, p: Number of Data Points, 12 Parameters

K

y (xi,p)= P akexp - (11) 25,-

K is the number of Gaussians, thus the number of Nb of- -

parameters in the model is P = 3K. An example of the 10 Nu Pmetelo
input data and the underlying Gaussians is shown below 5
in figure 1 for the case K=3. o0 m- -lb- =&a

Figure 2a shows the time for a single iteration, 1 2 4
including the linear system solution, versus the number Number of Nodes
of nodes and number of data points for the case of 4
Gaussians (12 parameters). Figure 2b shows the time Figure 2b: Time/Iteration vs. Number of Nodes and
for a single iteration versus the number of parameters Number of Parameters , 5000 Data Points
and number of nodes for the case of 5000 data points.
These times do not include the time to read the data into Conclusions
the nodes. The decision not to include I/O times was
made because I/O times are highly dependent upon the Figure 2a shows that for small data sets, the
presence or absence of the iPSC/2 Concurrent I/O increase in communication as the number of nodes
hardware. increases is not made up for by the reduction in time by

evaluating the objective function and its partials in
parallel. In fact, we see a slowdown as the number of
nodes increases. As can be expected, this problem is
reduced when the data sets become larger, as shown in

274

figure 2a. The same problem is seen for small numbers
of parameters, as shown in figure 2b.

This problem has two causes. Most of the nodes
are sitting idle while one node performs the linear
system solution. This idle time, combined with the
increased communication mentioned above, leads to the
poor speedups noted as the number of nodes increases.

The efficiency of the algorithm could be increased if
we could speed the linear system solution, thus
eliminating the time where all nodes but one are idle.
The obvious solution is to parallelize the linear system
solution, which is the next step we will try. However,
its benefits are doubtful. For small numbers of
parameters more overhead will be incurred than would
be compensated for by parallel execution. In other
words, it will meely aggravate the current problem.
This will be alleviated as the number of parameters
increases, but reasonable efficiencies will probably not
be reached until there are about 10 times as many
parameters as nodes [3]. However, for problems of that
size it is time to see if an algorithm other than LM can
be used. LM is an excellent general purpose algorithm,
but for such large numbers of parameters it is better to
find an algorithm that exploits special, problem-
dependent characteristics of X2, b, or A.

References

[1] Scales, L.E. (1985) Introduction to Non-Linear
Optimization, Springer-Verlag, New York.

[21 Press, W.H., Flannery, B.P., Teukolsky, S.A., and
Vetterling, W.T. (1988) Numerical Recipes in C,
Cambridge University Press, Cambridge.

[3] Juszczak, J.W. and van de Geijn, R.A. (1989) An
Experiment in Coding Portable Parallel Matrix
Algorithms. In Proceedings of the Fourth Conf. on
Hypercubes, Concurrent Computers, and
Applications (HCCA4), Monterey, CA, April,
675-680.

27s

Parallelizing Multiple Linear Regression

for Speed and Redundancy: An Empirical Study,

Mingxian Xu
John J. Miller

Edward J. Wegman

Center for Computational Statistics

George Mason University
Fairfax, VA 22030

ABSTRACT components (either hardware or software) run in
parallel performing the same task. The parallel

The purpose of this paper is to present a processors each process the same data, with a
parallel iplementathion oaper mipltopeetar voting procedure used to determine the reported

regression. We discuss the multiple linear outcome of the computation. The object of the
regression model. Traditionally parallelism has redundancy in this case is fault tolerance. Of

course, this type of parallelism leads to no
been used for either speed-up or redundancy inherent speed-up in the computations.
(hence reliability). With stochastic data, by
clever parsing and algorithm development, it is One may use parallelism in achieving
possible to achieve both speed and reliability speed-up by sending different data to the
enhancement. We demonstrate this with different processors. This can result in
multiple linear regression. Other examples substantial speed-up, depending on
include kernel estimation and bootstrapping. communication overhead and the details of the

implementation of parallelism. However, in this
1. Introduction mode of operation there is no mechanism for

Contemporary statistical computations achieving fault detection. For example, the
often focus the analysis of massive data sets decomposition of an integral and assignment of
often fcusmthe analysiths. ofnssiveq ata, sefts portions of that integral to processors in a
with complex algorithms. Consequently, efforts numerical quadrature algorithm is an illustration
to speed up the calculations are extremely of this sort of parallelism. It would usually be
important even with the impressive impossible to know whether one processor

computational power available today. Parallel returne an knor vletfor ots pron sof
comptaton tchnquesarean iporant returned an incorrect value for its portion of the

computation techniques are an important integral. An interesting question then •is

technology that may be used to achieve speed- whether or not there are situations where we

up and, indeed, are likely to become even more

significant as the physical limits of conventional can use parallelism for speed-up and still
maintain some of the properties of redundancy

serial architectures are reached. Historically in for our rilthe in f tedtheisco
the196s ad erly197s, aralelsm as lso for our reliability checks. In fact, the thesis of

the 1960s and early 1970s, parallelism was also thsperitattsisosblin om
use i te esgnofboh arwae nd this paper is that this is possible in some

used in the design of both hardware and

software to enhance the reliability of systems situations, as will be described below.

through redundancy. In such a design,

1This research was supported by the Army Research Office under contract number
DAAL03-87-K-0087, by the Office of Naval Research under contract number N00014-3-89-1807
and by the Virginia Center for Innovative Technology.

276
0-8186-2113-3/90/0000/0276$01.00 a 1990 IEEE

In a setting in which data may be significant part in the overall effectiveness of
assumed to be generated from some any algorithm. In general, computational
probabilistically homogeneous structure, we are problems which require comparatively little
suggesting the use of statistical hypothesis tests internode communication are the most effective
in place of voting procedures to compare results ones on the message passing architectures.
from different nodes. We assign data to nodes Bootstrapping and kernel smoothing operations
by parsing in an appropriate manner. As a first are examples of computationally intensive tasks
step, we assume that the data may be parsed which fall into this category. While multiple
into random samples. Since we began with linear regression is comparatively
stochastically homogeneous data and parsed it communications intensive, it does admit a very
into random samples, the only variation in the effective parallel implementation and, moreover,
output that we should expect to see from the elegantly illustrates our point that we felt it was
different nodes is stochastic variation. Hence, quite worth developing. Also it allows us to
we can use statistical tests to check the results investigate the effect of varying the
for deviations from homogeneity. These tests communication packet size on the potential
yield a stochastic measure of redundancy for our speed-up.
parallel implementation. We can, thus, use the
tests for fault detection in either of the node 2. The Multiple Linear Regression Model
hardware or software.

To illustrate these ideas, we have We often have the need to study a
selected multiple linear regression as an system in which the changes in several variables
application. We parallelize the computations for may effect the dependent variable. We may
multiple regression and then use the results from know or be willing to assume that the model is
each node as a part of a homogeneity check. expressed as a linear model or we may use a
We have selected multiple regression because the linear model as an approximation to some
procedure is well understood, the computations unknown, more complex model. In either case,
are straightforward, and the statistical tests of least squares estimation yields a computational
homogeneity are easily developed, technique generally known as regression. We
Subsequently, we develop other applications distribute the computations necessary for
such as kernel density estimation and multiple linear regression over several node
bootstrapping. processors. We then use statistical tests for

homogeneity as a redundancy check for
Our implementation of the above hardware and software faults. The tests used indescribed parallel techniques will take place this discussion depend on the assumption of

using an Intel iPSC/2 (referred to in this paper normally distributed residuals for their complete

as the hypercube). Our hypercube is configured validity although, of course, their nonparametric

with 16 nodes, each of which has a 32-bit 80386 aalousmy also be used Becu ouraue of
CPUan 038 mah c-proessr, diect analogues may also be used. Because our use of

CPU, an 80387 math co-processor, a direct these normal tests is as a descriptive statistic to
routing module for communication via message indicate severe deviations from homogeneity, we
passing and an additional vector pipeline co- ar no exeml cnendwhtrte

processor. In addition to the 16 nodes, there is are not extremely concerned whether the

also a host node (referred to by Intel as the assumption of normality is met exactly or not.

system resource manager), which "directs" the The mathematical model for multiple
activity of the other nodes. The hypercube linear regression can be expressed as follows:
system has a distributed, message-passing
architecture. Data passes through the host to Yi :- 80 + /Plxil + f 2xi 2 ± ... +)3pxip + e3,
the nodes and the results are gathered from the
nodes back to the host. Given the message- i = 1, 2, ... , n,
passing nature of the architecture,
communication overhead typically plays a or in matrix formulation:

mn

assume that the slope vector 61, and the
y-l 0 + XI¾ + e, intercept fl0 are the same. For Model 1, we

assume that the node partitions have the same
where y is an (n x 1) vector of observations, 1 slope vector, but different intercepts. For Model
is an (n-x 1) vector of ones, 60 is an unknown 2, we assume that the node partitions have both
parameter, X is an (n x p) matrix of different slope vectors and different intercepts.
nonstochastic variables, 01f is a (p x 1) vector In matrix terms, the three models are given by:
of unknown parameters, and e is an (n x 1)
vector of random errors. The traditional
assumptions are E(e) -0 and Cov(e) = a21. Model 0: Y(k)-f=10 + X-(k)fll + ,(k)-

Thus E(y) = X6 and Cov(y) = oI. It can be
shown t1~at the ofast squares-estimates of •0 and
01, ýO and f1, may be obtained as follows: Model 1:y(k) = 1

#•0(k) + X(k)fi1 + -Z(k).

= (-?X)-.1~I3, ýO (1) Model 2:
Y(k) = 13i0(k) + X(k)/9 Y#l(k) + e£,)•

where Y -= X11 /n is the vector of column means,

X = X - 13O'r is the centered X matrix so that• i x j -• jy = yl / , an y -f A fter aggregating at the host the

xi .= y n a V y information computed at the nodes, we proceed
We will assume that in the model we work with,weh to compute a Sum of Squared Errors for each ofwehv • nosiglarX. mtixinechplc the three models as follows:
where we require (X X)1. We may also obtain
a Sum of Squared Errors, SSE = •1• - •'Di" Model 2: SSE 2 = (k)

To implement multiple linear regression k=1

in a parallel fashion, we partition the whole set m
of the observations and variables into m subsets Model 1: (Q'3r)(1) = M (Qy3yk)~Z(k),
of close to equal size. We then send each of k=- "

these subsets to one of the m nodes. We denote M
data sent to, computed at, or received from (X ()
node k by adding a subscript (k) to the item. k=1

Thus we send to node k: y(k) and X(k) of nk - m .
rows each. We compute at ide k: (Z (Xk) (k))

and SSE(k). We note two things at this point: SSE,= X

1) We center at each node. (We use a one pass
recursive centering algorithm for speed and
accuracy.) 2) We do not compute the slopes Model 0:
and intercepts at each node, although we could m m m
if we wished. We are not going to use the node n = , nk, , = , nkR,(k)/n, Y = -, nky(k)/n,
estimates. We merely wish to use the k=1 k=1 M =

information returned from the nodes to i) ("'r)(o) Q('~3)(j) + E nk(y(k) -

Compute the least squares estimates for all the k=1

data and ii) Assess homogeneity of the results
for fault checking. m

In order to proceed with our (X)() _)(1) + E nkQ()

homogeneity checks, we define three potential
models for our data. Model 0 is the nominal
model. For each node partition of the data, we

278

(0 'X)(i) + • n - - Z)' However, it could also be used to affect a speed-
k=1 up of other kinds of homogeneity checks on

data. For example, suppose that instead of
parsing the data to allocate it to nodes in a

SSE 0 = - (3'•)' 0)(X_'X_)•-(')(o0) manner which creates random samples, weallocated the data to correspond to some
meaningful partition of the data such as

We calculate the regression solutions using orthants of the X space. The parallel algorithm
equation (1) with the summary statistics described above would then yield a speed-up of
computed for Model 0. The degrees of freedom this homogeneity check, but would no longer
associated with the Error Sums of Squares are have any fault detection capability. However, a
given by df0 = n - p - 1, df, = n - p - m, simple modification whereby we split each
df 2 = n - mp - m. partition into two or more subpartitions via

We may now calculate two test random sampling would still give a homogeneity

statistics. We may test for Total Homogeneity check using straightforward extensions of the

(which is the true redundancy test for fault above methodology.

checking) and for Homogeneity of Slopes Only 3. The Timing Results
(which we have included simply because it is so
easy to do and might provide some detail about The timing study is designed to measure
what went wrong if something did). The test the effectiveness of the parallel scheme described
for Total Homogeneity uses the statistics: above, and, in particular, to measure the effect
SS(2,0) = SSE 0 -SSE 2 , df(2,0) = of changing the size of the communications

packets sent between the host and the nodes.
df 0 - df 2 = (m-1)(p+l), MS(2,0) We began by generating data files of similar
SS(2,0)/df(2,0), data. We did this by taking an original data set

with six independent variables and then
F(2.}= MS(2,o)/MSE 2 , where MSE 2 = generating data sets of arbitrary size. We then
SSE 2 /df 2 . matched the covariance structure of the rows of

the X matrix with that of the original problem,
The test for Homogeneity of Slopes Only uses made the regression coefficients the same as in
the statistics: SS(21i) = SSE 1 -SSE 2 , df(2,I) the original problem, and matched the
df1 - df 2 variability of the generated residuals with those

of the original problem. Hence, regardless of the
- (m-l)(p+0), MS(2 1) = SS(2 ,1)/df(2,1), F(21) size of the test data set, we could be assured

that it stochastically agreed with the original
data set. In this sense, our test data sets were

MS(2,1)/MSE 2 , where MSE 2 = SSE 2 /df 2 . If comparable. The sizes selected for this part of
heterogeneity is detected, then further tests may the study were n = 8000 and 16000
be made to isolate the nodes with different and observations. We also used various numbers of
presumed faulty results. We note at this point nodes, so that the speed-up from parallelizifig
that we set the significance level for our could be determined.
homogeneity test very small. This is because we The study also measured the effect of
want a very small false alarm rate. We only differing sizes of communication packets sent
want to detect egregious deviations from from the host to the nodes. The sizes used in
homogeneity, as might be caused by a hardware this study were 125, 250, and 500 observations
or software failure. per node. Since we used a "broadcast"

The methodology described above is transmission of the data for all nodes, with each
designed to isolate potentially catastrophic node picking its data out of the message, the
failures in the node hardware or software, size of packet transmitted also depends on the

279

number of nodes. The size of the actual (again the maximum over nodes) versus sample
transmitted packet is number of nodes times size divided by number of nodes yields an R12 of
package size. It might appear that one should 0.999978. The communication overhead
automatically choose the largest possible size of prevents the speed-up from achieving perfect
packet in order to minimize the effect of linear speed-up.
communications start up overhead. However, We also made some additional runs with
this could lead to nodes remaining idle while larger sample sizes to explore the limiting
transmission is taking place. Hence, it may be behavior of the speed-up. We wished to observe
more effective to use smaller packets, so that where the asymptote, if any was with respect to
the nodes may continue doing productive work. increased speed-up and sample size. Hence, we
We used several sizes to examine the effect of inceasdispeed-und sample sizeencedepackge ize n oeral eficiecy.made additional runs with one and sixteen nodes
package size on overall efficiency. for each package size for sample sizes 32000,

We measured at each node the overall 64000, and 128000. The results of these runs
time for the program, the time waiting for the and some information from Table 1 are
host to read data, the computation time, and presented in Table 2.
data transmission time (both sending and As may be seen from Table 2, the speed-
receiving). Our measure of effective time for the up appears to have an asymptotic value of
computations is the maximum over nodes of approximately 13.8 for sixteen nodes. This
overall time minus time waiting for the host to seems to be the case regardless of the package
read the data. Hence, the computation time size. Nevertheless, for any given sample size,
and the communications overhead time for the the smaller package size gives smaller effective
hypercube are included in our time measure, but times and larger speed-up. Hence, we observe
the time for the host to initially read in the data the phenomenon that the desired efficiency of
is not included. The speed-up for any given the larger package size (namely, the lesser

number of nodes for a particular configuration is number of times the communication startup
given by the ratio of the time for one node nubrotieth cmuiainsatp
divided by the time measure for that number of overhead is involved) is overcome by the fact
divided. bymes t ere measured fr tat inumern that the nodes sit idle waiting for data to arrive
nodes. Times were measured by an internal with the larger package sizes.

clock subroutine on the hypercube and are given

in milliseconds. The results of our simulations We make one final remark with regard
are given in Table 1. Each number is the to effective time. If the time at the host for
average for two runs. reading in the data is included, the time to read

in the data overwhelms the computations for
We osere fom abl 1 hatthe this problem. We conceive of a situation in

effective times indeed decrease as we add more whic the d e acqire om automated
node. W als noe tht te sped-p isnot which the data are acquired in some automated

nodes. We also note that the speed-up is not mode which can bypass the reading step that we
linear in the number of nodes. The speed-ups did here. This is reasonable, since the fault
achieved for the six rows of Table 1 (from one checking feature described above would be
node to sixteen) are respectively: 12.65, 13.55, critical in a situation where the data arrived in
11.79, 13.16, 10.43, and 12.31. The speed-ups huge amounts and was processed in an
are greater for the larger data set and are automated fashion. The effective time as we
greater for package size 125 observations per have measured it gives a fair reading of the
node than for the larger packages. The reasonof
that speed-up is not perfectly linear is that regression. All communication overhead is
communications overhead increases as the included except the reading of the data. This is
number of nodes increases. However, as might
be expected for perfectly parallel computations speed-up.

as we have here, the computation time indeed

decreases as the reciprocal of the number of
nodes. In fact, a regression of computation time

280

4. A Short Example Using Kernel Estimation up in the number of nodes. The communication
and Bootstrapping time is extremely small compared to the large

We note that the increase in efficiency amount of computation time for this

(speed-up) is small for regression calculations application.

when input time is included. Therefore, we have Bootstrapping is another nonparametric
also used the Hypercube to generate speedup for technique which has many applications. It is
a more computationally intensive statistical used to obtain estimates and standard errors for
procedure, namely Kernel Estimation with those estimates, as well as to estimate bias in
Bootstrapping. Density estimation is motivated estimates. Bootstrapping involves repeated
as follows. Suppose that a set of observed data resampling from the original sample of data.
is assumed to be a sample from an unknown We have applied bootstrapping to the density
probability density function. We wish to estimation problem. Preliminary studies show
construct an estimate of the underlying density that parallelizing the resampling portion of the
from the observed data. Kernel density bootstrap will yield significant improvements in
estimation is a nonparametric technique used to processing time. Detailed results of our
accomplish this estimation. bootstrap study will be presented in a

Suppose that the underlying density is forthcoming paper.

f(x). The kernel density estimate f(x) is defined 5. Conclusions
by:

n We have shown that significant gains in
f(x) K(_ - '), efficiency may be had by parallelizing statistical

- computations. We have also presented a
where n is the sample size, h is the width of the method for achieving fault detection in multiple
window of the kernel, the Xi are the observed regression parallelized computations. This
data, and K(.) is the kernel function. K(.) method would be of some importance in
satisfies the following conditions: fK(x) dx = 1, maintaining a "stand-alone" system with
fx K(x) dx = 0, fK 2 (x) dx < 00, f Ix fp K(x) automated input and processing which used
dx < oo, for some p. The limits of integration multiple regression calculations in accomplishing
are selected appropriately for the particular its mission. We plan to extend the fault
kernel function. Use of a kernel density estimate detection to other computations, such as kernel
is similar to use of a weighted average to density estimation and bootstrapping.
estimate a parameter.

We performed a small timing study of
parallelizing kernel density estimation. We used
10000 data points and used four kernel functions
to obtain four different kernel density estimates.
The total processing time to accomplish this
task is the outcome measure. All overhead time
(including time reading the data) is accounted
for in the measure.

Again we use the maximum of the node
times as our measure of the node processing
time. Time is in milliseconds and each time is
for one run. The results for 1, 2, 4, 8, and 16
nodes were respectively: 8,292,879; 4,143,741;
2,082,504; 1,055,863; and 545,479. The speed-
up from one to sixteen nodes was 15.20. The
parallelism achieves close to perfect linear speed-

281

Table 1
Results of Part 1 of the Timing Study

Effective Time
Observations
per node per Sample Number of Nodes

package Size 1 2 4 8 16

125 8000 15337 7722 3931 2058 1212

16000 30703 15458 7854 4088 2266

250 8000 15337 7721 3935 2084 1301

16000 30699 15448 7852 4106 2332

500 8000 15358 7733 3957 2155 1472

16000 30737 15467 7877 4155 2496

Table 2

Results of Part 2 of the Timing Study

Observations Effective Time
per node per Sample Number of Nodes

package Size 1 16 Speed-up

125 8000 15337 1212 12.65

16000 30703 2266 13.55

32000 61471 4460 13.78

64000 122132 8855 13.79

128000 243648 17667 13.79

250 8000 15337 1301 11.79

16000 30699 2332 13.16

32000 61445 4521 13.59

64000 122199 8905 13.72

128000 243714 17685 13.78

500 8000 15358 1472 10.43

16000 30737 2496 12.31

32000 61515 4661 13.20

64000 122309 9043 13.53

128000 244085 17815 13.70

232

REFERENCES

Draper, N. R. and H. Smith (1981), Applied
Regression Analysis, New York: John Wiley and
Sons.

Efron, B. (1982), The Bootstrap, the Jackknife
and Other Resampling Plans, Philadelphia:
Society for Industrial and Applied Mathematics.

Francoise, A. (1985), Parallel Processing,
Cambridge: MIT Press.

Meyer, Gerald G. L. and Howard L. Weinert
(1984), "Parallel algorithms and computational
structures for linear estimation problems," in
Statistical Signal Processing, (E. Wegman and
J. Smith, eds.), New York: Marcel-Dekker, Inc.,
507-516.

Law, A. and K. David (1982), Simulation
Modeling and Analysis, New York: McGraw-
Hill.

Silverman. B. (1986), Density Estimation for
Statistics and Data Analysis, London: Chapman
and Hall.

Wegman, E.J. (1988), "Stochastic load
balancing in parallel computers," Center for
Computational Statistics Technical Report 30,
George Mason University, Fairfax, VA.

283

The Fifth Distributed Memory

Computing Conference

1:Full and Banded Matrix Algorithms

Solving Very Large Dense Systems of Linear Equations on the iPSC®/860

David S. Scott
Enrique Castro-Leon
Edward J. Kushner

Intel Scientific Computers
15201 NW Greenbrier Parkway

Beaverton, Oregon 97006

interface to the Direct-Connect routing hardware.
Abstract Each node injects and removes messages from the

communication system at a rate of 2.8 Mbytes/sec.
Certain engineering problems, such as radar cross
section modeling, must solve systems of linear Since the peak double precision performance of the
equations AX = B, where A is a large, dense, 128-bit i860 on matrix computations is 40 Mflops, a 64 node
complex matrix and B is the matrix of right hand system has a peak performance of 2.56 Gflops. This
sides. Solution to problems as large as 20000x20000 assumes that all message passing and 1/0 required
are needed now with even larger problems by the algorithm is completely overlapped with
anticipated. computation. The actual transfer of bytes between

the FIFO interface and node memory is done by the
This paper describes an implementation of an out of i860 to maintain coherency of the on-chip cache.
core linear system solver on the Intel iPSC/860, a Thus, all message traffic involves some cycle stealing
hypercube with Intel i860 based compute nodes and and peak performance will be unobtainable.
compatible Intel Concurrent i/0 system. Block
Gaussian elimination, with restricted pivoting, is The optional 1/0 system on the iPSC/860 system
used, paging blocks on and off the i/0 system as provides parallel access to a set of SCSI disk drives
needed. Gaussian elimination requires about 21.5 controlled by Intel 80386 microprocessor-based 1/0
(64-bit real) Teraflops to solve the 20K problem, nodes. Messages between 110 nodes and compute
which would take 2.5 days on a 100 Mflop machine, nodes compete for the same wires which node-to-node

messages use. Each 110 node can read or write a disk
At both the cube and node levels, the basic operation, at about 1 Mbyte/sec. The Concurrent File System "
C = C - A*B, has been carefully optimized. A hand automatically spreads files across the available
coded i860 assembler kernel is used at the node level disks. All compute nodes independently open files,
and asynchronous message passing and seek locations, and read data simultaneously. Data
asynchronous disk i/0 overlap almost all data is transferred to and from the 1/0 system in sepaiate
movement with computation. A 64 node iPSC/860 4K byte packets.
with 6 1/0 nodes and 12 disks factors a 20K problem
in about four hours, sustaining 1.4 Gflops. Plans to For a detailed description of the i860 see [I I and for a
extend the algorithm to even larger problems using detailed description of the iPSC/860 see [2].
tape storage will be described.

Block Gaussian Elimination
The iPSC/860 and the Concurrent File System

The Large Out-Of-Core Solver (LOOCS'") code
The iPSC/860, a distributed-memory message- implements a variant of block Gaussian elimination.
passing multicomputer, contains up to 128 separate The matrix is divided into square submatrices called
compute nodes with optional 1/0 nodes and disks. disk sections which are the units that are swapped
Each compute node is an Intel i860 microprocessor off and on the disk. When A is a t x t matrix of disk
with 8 Megabytes of memory and a FIFO-based

0-8186-2113-3/90/0000/0286$01.00 0 1990 IEEE

sections, the factor algorithm can be described as 2. C = ASB
follows: 3. explicitly invert C

for i = 1,t Explicit inversion of diagonal blocks is not
necessary, but a matrix-matrix multiply can be

forj = 1, i-I //do ith row parallelized much more efficiently than repeated
fork = lj-I forward elimination and backsubstitution, so even
Aij = Aij - Aik * Akj though the inversion is expensive in flops, it pays for

endfor itself in the later uses of the diagonal block.
Aij = Aij * Aii /Aii is already inverted

endfor This algorithm is potentially unstable since pivoting
is done only inside diagonal disk sections. Unless the

forj = 1, i-1 //do ith col matrix is diagonally dominant, a diagonal disk
fork = l,j-1 section could be exactly singular causing the

Aji = Aji - Ajk * Aki algorithm to fail. Ill conditioned diagonal disk
endfor sections are an indication of numerical instability.

endfor Unfortunately, the only guaranteed solution is to
pivot down the whole column, which is much too

forj = 1, i-1 i/do ith diagonal expensive since most of the column is not in memory.
Aii = Aij - Aij * Aji However, the explicit inversion of the diagonal

endfor sections makes it easy to compute their condition
Aii = inverse of All numbers. This provides monitoring of the stability of

the algorithm.
endfor

Square disk sections, as large as memory will allow,
The corresponding solve algorithm, for one block minimize 1/0 bandwidth requirements, since the
column of B, appears as: work is proportional to the cube of the disk section

size but the 110 is only proportional to the square.
for i = 1, t I/forward elimination
forj = 1, i-1 Parallel Matrix Multiply
Bi = Bi- Aij* Bj

endfor Both C = C - A*B and C = A*B are implemented
endfor simultaneously, by using the functionality of the

BLAS3, see [31, routine ZGEMM which computes,
for i = t, 1, -I //back substitution
forj = t, i+ 1,-I Equation (1). C = alpha*A*B + beta*C,
Bi = Bi -Aij * Bj

endfor for specially chosen values of alpha and beta. The
Bi = Aii * Bi parallel matrix multiply routine is a folded version of

endfor a systolic algorithm for matrix-matrix product [4).
Assuming a k x k torus of processors, a subset of'the

This variant makes all changes to a particular disk hypercube topology, each disk section is divided into
section at once. This helps minimize 1/0 since disk k2 square node sections. At the beginning of a
sections are written only once and means that the matrix multiply operation, each node in the mesh
algorithm has natural checkpoints. Every section will have one specially selected node section of the A,
written to the disk is finished, except during the B, and C disk sections. Each node will implement
forward solve which can be handled by changing equation (1) on node sections while simultaneously
output files. passing its A section left and its B section up. If node

sections are large enough, messages arrive before the
Only three types of operations arc needed: node computation is finished so that the next node

section multiply need not wait.
1.C = C-A*B

287

The disk section matrix multiply loop consists of k rank one update of the active submatrix in the form
phases in which each node does the following: of equation (1), but with A and B as a single column

and a single row respectively.
Post receive from down
Post receive from right 860 Optimization
Post send to left
Post send to right To obtain optimal performance from the i860, a
Multiply ZGEMM routine was hand coded in assembly
Wait for completion of messages language. The multiplication of the matrix A by a

column of B is implemented as a sequence of complex
In the last (kth) phase no data is sent since there will ZAXPY operations, with the result accumulated in
be no further arithmetic, the data cache and written to the matrix C at the

end. The code takes advantage of pipelined
To obtain the correct answer, it is important that the arithmetic and data reads, dual instruction mode,
node sections of the A and B disk sections be plus 128 bit reads and writes between registers and
carefully allocated to compute nodes. Node sections the data cache. The asymptotic speed of the kernel is
in the first row of A are assigned to their natural 37.5 Mflops per node with an n-half of 10. For a more
processors in the mesh. The next row is circularly detailed description of this kernel see 161.
shifted one position left. Each succeeding row shifts
further left. Similarly, the first column of B is 1/O Optimization
naturally assigned to the first column of processors.
The second column shifts up one position. Each The I/O system must contain enough disks to store
succeeding column of B shifts further up. Assuming the matrix and I/O nodes to provide adequate
a 4x4 processor mesh, Figure 1 shows the assignment transfer rate on and off those disks. When 64 i860
to the mesh of the node sections of an A, B, and C nodes solve a problem with 228x228 node sections, 6
disk section. 1/0 nodes are needed to provide adequate bandwidth.

Ten disks would be enough to hold a 20K matrix, but
Parallel Matrix Inversion since most systems have the same number of disks

per 1/0 node, twelve were used in the benchmark
Parallel matrix inversion is implemented using system.
Gauss-Jordan inversion described in [51. The
computational step between communications is a

N, /, T R\,d/t N", /t T, r\/T
CII =C 1 -A!1 *B1 C 12 = C 12-Ai 2 *B2 2 Ci 3 =C 3 "Ai13*B 33 C14 =C 14 -A 14 "B44

", 't et. .,t*,."
C 2 1 = C 2 1 -A 2 2 *B 2 1 C 2 2 = C 2 2 "A 2 3 *B 3 2 C 2 3 = C 2 3 -A 2 4 "B 4 3 C 2 4 = C 2 4 -A 2 1 *BI4

",, lt N,/f ",•t , '

C 3 1 = C 3 1 -A 3 3 *B 3 1 C 3 2 = C 3 2 -A 3 4 B4 2 C 3 3 = C 3 3 -A 3 1 * B13 C3 4 = C34-A 3 2 *B 2 4

\ / t N, /' T, N ,' /, TNM/t
C 4 1 =C 4 1-A 4 4 *B 4 1 C 4 2 = C 4 2 -A 4 1 *B 1 2 C 4 3 =C 4 3 -A 4 2 *B 2 3 C4 4 = C 4 4 -A 4 3 *B 3 4

t t 1' t

Figure 1. Initial Node Section Assignment For Matrix Multiply

2U

The 1/0 performance was optimized in three ways. The sixty four compute nodes can be arranged in an
First, the required 1/0 was pipelined as much as 8x8 mesh in which nodes in columns differ only in
possible, so that blocks needed during the next their three lowest bits and nodes in rows differ only
multiply were fetched during the previous one. in their three highest bits:
Furthermore, writes of completed blocks were
deferred until the last multiply for the next block 7 15 23 31 39 47 55 63
when no fetch was performed. This allowed 6 14 22 30 38 46 54 62
computation of the next block to begin without 5 13 21 29 37 45 53 61
waiting for the previous block to be written. 4 12 20 28 36 44 52 60

3 11 19 27 35 43 51 59
Second, 1/0 nodes cache certain disk blocks in 2 10 18 26 34 42 50 58
memory. When a compute node is reading a disk file, 1 9 17 25 33 41 49 57
the 1/0 nodes try to preread disk blocks so that when 0 8 16 24 32 40 48 56
a read request actually arrives, the desired block is
already in memory. If too many nodes are reading at 110 nodes should be anchored to compute nodes in the
once, the memory of the 1/0 nodes is insufficient to same row, for example, the top row. Routing of
keep the readahead blocks in ruemory until the messages from 1/0 nodes to compute nodes follows
actual read arrives. Such cache th.rashing, which the hypercube routing down the column and then
seriously degrades the 1/0 performance, was follows the hypercube routing across the row.
eliminated by increasing the size of •he cache and Therefore two columns of nodes can read without any
limiting the number of nodes reading at any one time contention among paths from different 1/0 nodes to
to 16. Similarly, writes were restricted so that only 8 different compute nodes. The paired columns are
nodes write at a time. This was accomplished by (0,56), (8,48), (16,40) and (24,32).
staging the reads and writes during different phases
of the matrix multiply algorithm. When writing, the paths from the compute nodes to

the 1/0 nodes are of interest. These paths go up
Finally, it was important to carefully locate the 1/0 columns followed by routing in the row of anchor
nodes and select which sets of compute nodes are nodes. Nothing can be done about contention in the
reading or writing at the same time. The iPSC/860 row of anchor nodes, but one row of nodes should
uses fixed routing to send messages to avoid write atatime.
deadlock. Dimensions in a 64 node cube are
numbered from 0 to 5. Messages are routed in the Performance
lowest needed dimension first, working up to the
highest needed dimension. Optimum 1/0 Performance of the parallel matrix multiply routine
performance is hampered by contention for wires. is summarized in Table I. There is no
Wire contention for messages headed to the same communication on a single node. That column
compute node is of no import since the messages are measures the performance of the assembly language
serialized at the node anyway. What must be avoided routine. Degradation of performance for small
is wire contention for large messages which are problems on large machines is characteristic of
headed for different nodes. Reads and writes are message passing machines. The performance of 64
asymmetric. When reading, the large messages go nodes for n=2048 is 35.9 Mflops/node which shows
from 1/0 nodes to compute nodes, so these paths need that little is lost to message passing overhead.
to avoid contention. When writing, the large
messages go from compute nodes to 1/O nodes so
these paths are the critical ones.

289

transfer rate of 8mm video tapes, 12 1/0 nodes with
Table 1. Matrix Product Performance (Mflops) twelve disks and 6 1/0 nodes with 12 8mm video tape

drives provide sufficient 1/0 bandwidth from tape-to
Nodes disk-to cube-to disk-to tape to keep a 128 node

iPSC/860 compute bound. Such a machine could
Dimension 1 4 16 64 factor and solve a double precision complex system of

linear equations of size 100,000 in about 8 days.
8 17.1 - -

16 28.4 15 11 - Conclusions
32 34.1 35 53 42
64 36.5 106 113 141 The LOOCS code running on the iPSC/860 obtains

128 37.4 130 207 365 more than half the theoretical peak performance of
256 37.8 141 423 763 the machine. It provides a fast and cost effective
512 - 147 548 1379 platform for solving large dense systems of linear

1024 - 578 2165 equations.
2048 - - 2300

References
The entire LOOCS code was timed on a 64 node
iPSC/860 with 6 110 nodes and 12 disks. Table 2 [1) Intel Corporation (1989), i860 64-bit
shows times and Megaflops obtained on four Microprocessor Programmer Reference Manual,
problems. Intel Corporation, Santa Clara, CA.

Table2. Factorization Performance [21 Lillevik, S. (1990), Touchstone Program
Overview, This Proceedings.

Dimension Seconds Mflops
2500 146 285 (31 Dongarra, J. J., Du Croz, J., Duff, I., &
5000 56o 590 Hammerling, S. (1989), A Set of Level 3 Basic
10000 2700 987 Linear Algebra Subprograms, ACM Trans. on
20000 15300 1394 Math. Soft.

Solve performance depends on the number of right [4) Duncan, K. (1990), A Survey of Parallel
hand sides. One right hand side is completely 1/0 Computer Architectures, Computer, Vol 23, No.
bound. A full disk section of right hand sides can be 2, p. 9.
solved at the same speed as the factorization.

15) Hipes, P. G. & Kupperman, A. (1988), 'lGauss-
Extensions to Tertiary Storage Jordan Inversion with Pivoting on the Caltech

Mark II Hypercube Multiprocessor', Proceedings
Users wish to solve problems of order 100,000. The of the Third Conference on Hupercube
current algorithm requires 160 Gbytes of disk which Multiprocessors, pp 1621-1634.
is not cost effective. It is possible to extend the same
hierarchical decomposition one more level to use a (61 Scott, D. S. (1990), "A Fast i860 Matrix-Mat'ix
tertiary storage medium such as tape. Disk sections Product Routine," Technical Report, Intel
are aggregated into large square tape sections. The Scientific Computers, Beaverton, OR.
block algorithm is now applied to tape sections. The
three types of operations among tape sections are
implemented as a sequence of operations on disk
sections. A total of 6 tape sections must fit on disk:
current A, B, and C sections; one old C being written
to tape; and two new A and B sections being fetched
from tape. The tape sections should be made as large
as possible subject to the constraint that six tape
sections fit on the available disk space. Given the

290

PARALLEL SOLUTION ALGORITHMS FOR THE TRIANGULAR
SYLVESTEIZ EQUATION

Izzy Nelken
Apostolos Gerasoulis* Department of Computer Science
Department of Computer Science University of Toronto
Rutgers University Toronto, Canada M5S 1A4
New Brunswick, NJ 08903 USA

In the first stage, the programmer or the com-

Abstract. piler identifies parallelism at the finest possible grain.

This parallelism is then represented by a data de-
The parallelization problem can be divided into pendency graph. In the second stage, the data de-

three main stages: identification of parallelism which pendency graph is partitioned into tasks appropriate

includes dependency analysis, partitioning the state- for the given granularity level of the target architec-

ments into atomic tasks of granularity suitable to the ture. Under the convexity constraint, Sarkar [14], this
target architecture and scheduling these tasks into the results in a directed acyclic data dependency graph

processors. (DAG) in which all redundant edges have been deleted.

An MIMD coarse grained parallel algorithm is de- For message passing architectures, the data must be
veloped for the triangular Sylvester equation. We distributed amongst the local memory of the proces-

compare well known scheduling heuristics such as the sors. In this case the data must also be partitioned

naive and compute-ahead with the N-cp/misf meth- so that they are compatible with the task partitioning

ods which are described here. These methods trade off and the architecture. In the final stage, the data items

time and space according to the value of the parame- are mapped and the execution of the partitioned graph

ter N. Our conclusion is that the N-cp/misf methods is scheduled in the given multiprocessor. In this pa-

are faster than compute-ahead. per, we consider the problem of static list scheduling

and data mapping for MIMD architectures such as hy-

1 Introduction percubes. For a more detailed description we refer the

reader to Gerasoulis and Nelken (6] and Nelken [12].1.1 Stages of parallelization

As mentioned in the abstract, the parallelization prob- 1.2 The problem
lem consists of three important stages: Consider the matrix equation

"* Identifying parallelism and finding the data de- AX + XB= C
pendencies.

where A, B and C are known m x m, n x n and mx n
" Partitioning the algorithm into indivisible tasks real matrices respectively. The unknown X is also

and and the data into corresponding data items.

The size of the tasks depends on the problem as This equation is solvable if and only if A and -B
well as the target architecture. have no eigenvalues in common, Golub et al. [7]. Hence-

" Scheduling the execution of these tasks and map- forth, we will assume that the given matrix equation is

ping the data items into a given multiprocessor. solvable. A transformational solution method is based
upon the equivalence of the original problem with

*Supported by Grant No. 8706122 from NSF.

(U-1 AU)(U-1 XV) + (U-1 XV)(V-BV) = U-1 CV.

291
0-8186-2113-3W90/0000/0291401.00 0 1990 IEEE

The transformational solution method consists of * To - The parallel program overhead.
four stages, Golub et al. [7]. Thus, the parallel time is given by the following sum

1. Transform A and B into a "simple" form by Tp = TA + Tr + To + TD + To.
Ai U-'1 AU and Bi = V-1 BV.

In the shared memory case, Tc is substituted by TL
2. Compute F = U-ICV. the memory latency time.

3. Solve the transformed system AIY + YBI = F. 2 Identification of parallelism
4. Compute X = UYV-1, the solution to the orig-

inal system. The elements of X can be computed by elementwise

identification:
In particular, the Bartles-Stewart algorithm, see [1], i-i

uses the transformations AI = UT AU and BI = VT BV X - -- =i+ aik Zkj -- • 1k= 1 1 < n.
where U and V are orthogonal matrices which are cho- + b,,
sen so that A1 and B1 are upper quasi-triangular. A If the equation is solvable, aii+bjj 0 0 and the division

quasi-triangular matrix is triangular with possible 2x2 above can be performed. The Zij's must be found in a

blocks along the diagonal. certain order as depicted in the structure in figure 1.

In this paper, we will be concerned only with the Zn,I is found first and is labeled by a 1. Then z., 2 and

third step of this procedure, solving the transformed X,-1,1 can be computed in parallel, they are labeled

system. We will assume that Al and B, are proper by a 2. Afterwards, Xn-2,, Zn-1,2 and zn,s can be

upper triangular matrices. Thus we are faced with the found in parallel and they are labeled by a 3 and so

solution of a triangular Sylvester equation which is of on. Notice that all elements which are on the same

the form AX + XB = C, where A and B are upper diagonal can be computed in parallel.

triangular matrices. For simplicity of presentation and
analysis we also assume that m = n. 4 5 6 7

134561

1.3 Parallel time 2 3 4 5
1 2 3 4

Our aim, of course, is to reduce the parallel time, Tp
which is defined as the elapsed time of the processor Figure 1: A structure which shows the order in which
which finishes last under the assumption that all pro- the elements of X are solved.
cessors begin at the same time.cessrs bginat te sme tme.An algorithm with less arithmetic operations re-

During execution, the processor which finished last An i t w ithe ariteticopetins e-
is either idle or working. The idle time is composed suit if we Te the atrix cafter ach
of: element of X. The resulting algorithm, called AXXBC,

is:
"* T1 - Idle time due to synchronization of the data 1. Compute a matrix element xij

dependencies
"2. Update elements in the j'th column of C accord-* T¢ - Idle time due to communication of dataintoemnsinheihclunfAing to elements in the i'th column of A

"* TD - Idle time due to architectural constraints, ck, = Ckj - aki zii, 1 <k <i - 1.
e.g. bottlenecks and hot spots.

The working time is composed of. 3. Update elements in the i'th row of C according
to elements in the j'th row of B

* TA - The arithmetic time
c2k =ck - bjk zij, j+1 k <n.

292

Let us define the following operations: are possible for the graph in figure 2. Sarkar [14) has

cij imposed the "convexity constraint" on partitionings.

ai, + bjj A convex partitioning is one that satisfies the following

conditions:tsl(k, j) C kj = ck -- aj.i xij

and * A task can begin operating when all its inputs
are available. It operates until completion and
may produce outputs.

The fine grain data dependency graph is given in fig-

ure 2 for the case n = 3. Because of our index-

ing scheme, the symbol ul(k,j) may appear several tion without interruption.

times, each time for a different value of the index The motivation is that non convex partitionings may

i. Similarly, u2(i, k) may appear several times. The lead to arbitrarily large communication and synchro-

lines indicate data dependencies from top to bottom. nization costs. Convex partitionings, on the other
For example, d(3, 1) must be finished before any of hand, have an acyclic coarse grain dependency graph

ul(1, 1), ul(2, 1), u2(3, 2) or u2(3,3) may begin execu- that can be used on the macro-dataflow model.

tion. On the other hand, these four statements can be

executed concurrently. 3.2 According to rows

Many partitionings of the fine grain data dependency
d (3j) graph in figure 2 are possible. For example, algorithm

SYLV.DIAG of Kigstrbm et al. [10] uses a row ori-

ul l 1) U(1) 'f(.) 3) ented partitioning which is depicted in figure 3. Task

I I \(k,k) finds the k'th row of X and task (k,j) use the

d(21) d(3,2") k'th row of X to modify the j'th row of C for j < k.

In the figure, all statements which belong to a task
us I1) u2(2,3) Q (2) ul(ul .2) uQ .3) are circumscribed and the task's name is written next

to them. It is obvious that this partitioning is not
d1)d (3,3) suitable for the macro-datafiow model. For example,

_ý3 utask (3,2) may begin as soon as d(3, 1) has completed.
u2(3) 2(1,2) 2) u2(3) u(3) ul .3) However, under the rules of macro-datafiow, as de-

scribed by Sarkar [14], it will have to wait until (3,3)
d(I 2) dhas completed. Indeed, the SYLV.DIAG algorithm

33of [10], sends z3 ,1 as soon as it has been computedu2, 3) u I(tV.3)
and starts the execution of (3, 2).

d(I, ') The SYLVDIST-B and SYLVDISTWB algorithms
of [101 also use a similar row partitioning. However,

Figure 2: Fine grain data dependency graph, n = 3. in both these algorithms columns of X are mapped

into the processors using the block and wrap mappings
respectively. This means that the tasks of figure 3

3 Partitioning are further divided. Each statement of an original
3.1 General task is to be executed in the processor which stores

that element of X. The difference between the two
In this stage, we partition the fine grain operations partitionings stems from the different mappings. In

into atomic or indivisible tasks whose granularity is SYLV-DIST.B, block mapping is used and L contigu-
p

suitable to the target architecture. Many partitioning ous elements of each row X are solved for by each

293

(k, j) belong to task Vk. For example, the task T11 con-

3 (tains the statement d(3, 1) while the task T2r contains

the statements ul(1, 1), u2(2,2), ul(2,2) and u2(3,3).

ul (t,1) ul (2,1 u2(3,2) a2 (3•3) Note the definition of (3,3). We have lost the poten-

tial parallelism between d(1, 1), d(2, 2) and d(3, 3).
d (3.2)(2,2

U1 (1.1) u2 (23) Q a(2,2) ul1 (2,2) ul (12 id (3,3 LEE,

(11),3)3

u2 (1.3) u2 (1.ý2) ul (1,2) u2 (2Z3) 1(2,3) ul (1,3)

(3.2) (3j)"0,..2d) d (,3) U 2,I3)

(2,(2

Figure 3: Row oriented partitioning which is used by ((3.__(.5

SYLV.DIAG and a finer partitioning used by the other (4,4)
algorithms for n = 3 and p = 3 (data dependency lines
have been removed for clarity). (45)

processor. SYLVDIST-WB, on the other hand, uses (55)

wrap mapping and sends each element of X as soon as Figure 4: Partitioned data dependency graph. All

it has been computed. Therefore, this algorithm uses tasks in a box marked (k, j) belong to task T•.

messages of length 1. For a description of block and
wrap mapping see Ortega (131. The number of diagonals in a full n x n matrix

In our example, n = 3 and p = 3, both block and is 2n - 1. However, A and B are upper-triangular

wrap mappings are identical and so are the partition- matrices and only have n diagonals numbered n, n +

ings of SYLV.DIST.B and SYLVDIST.WB. These 1, 2n - 1. The number of elements in diagonal k is

are depicted in figure 3 by the dashed lines which di- n - In - ki. Task Tkk in figure 4 consists of finding the

vide each original task of SYLV.DIAG. k'th diagonal of matrix X which can overwrite the

The SYLVBLOCK algorithm divides the original k'th diagonal of matrix C, it uses the n'th diagonal

matrix X into blocks and then solves for each block of matrices A and B. Task Tk uses diagonal k of X

using another algorithm such as SYLVDIAG. For our (which is stored and accessed as diagonal k of C) to

example, the blocks are of size I x I and the partition- modify diagonal j of C. It uses the (n + j - k)'th

ing obtained is the same as that of SYLV-DIST.B and diagonals of both A and B.

SYLVDISTWB. Given the above partitioning, we find j and 7-r the
costs of executing tasks TV and Tk respectively. These

3.3 According to diagonals are measured in terms of the god Flops as defined by

We consider the following diagonal partitioning which Golub and Van Loan [8]. The index arithmetic and

groups together all operations performed on the same housekeeping operations are not counted since we are

diagonal. In figure 4 we show the partitioned fine grain only concerned with floating point operations.

data dependency graph. All tasks in a box marked rk = n - In - kI

294

I2k k<j<n7J 2(n -(j -k)) k< n< j
4n--2j n<_k<j.

After rearranging the nodes of the partitioned data

dependency graph shown in figure 4 we obtain the

DAG which is shown in figure 5 for n = 4. In this

figure, each task is represented by a circle. Inside the
circle is its task id. To the right of the circle is the 3 2

weight of the task, ij or rk. To the left of the circle

is the level of the task which is defined in section 4,2.

A geometric comparison of this DAG with that of 31 4 28 4 22 2

GE, see Gerasoulis and Nelken (6], reveals that the

GE graph is wider in the beginning and then loses
width one task at a time until, towards the bottom, 28 3

both graphs become similar. Thus from a geometrical

point of view, the partitioned GE has more potential

parallelism than our DAG.
We can now compute a lower bound on the parallel

time of any scheduling which uses this partitioning.

Any scheduling must require at least the length of the Is
longest path L(s). Also, using p processors, we can
not expect to execute faster than T' where T1 is the

P
sequential time of the algorithm. Thus an obvious

lower bound is: 1

S= max (L(s), T max{3n' - 2n, _."}udp =-a{~),-- -1-.

3.4 Summary

The diagonal oriented partitioning conforms to the

macro-dataflow model. However, the row oriented 4 3 2

partitioning is used in a way which violates it. Sarkar [141
asks whether or not it is better to adhere to the macro-

dataflow model. He mentions that specific experi-

ments will have to be conducted to answer this ques-
tion. The results of this paper can be seen as a step 1 2

in this approach.

4 Scheduling

4.1 General

Under the assumption of zero communication cost we
examine the CP/MISF scheduling of Kasahara and
Narita [11] to the partitioned DAG of figure 5. Then Figure 5: The DAG for n = 4.

295

we assume non-zero communication costs and briefly 0393

describe a four step scheduling methodology. o.,

4.2 CP/MISF

Description

Kasahara and Narita's [11] CP/MISF scheduling o0S7
is one of the best scheduling heuristics of a general

DAG when communication costs are assumed to be

zero. This heuristic has three stages: 03 . • 0.l5 o

1. Determine the level for each node. The level of P%
a node is the longest path length from the node to the Figure 6: The ratio R for CP/MISF assuming Tc = 0
terminal node and a path length is the sum of all the for n = 240.
task weights in the path. In figure 5 the weights and

levels have already been determined, will perform poorly because of its unacceptably high

2. Construct a priority list of the tasks. Under the communication requirements. Even for shared mem-

CP/MISF rules, the tasks are sorted in descending ory architectures, say with a bus and local memory,

order of levels. If two nodes have the same level then its performance could deteriorate because of high data

the task with most immediate successors has a higher movement.

priority. Ties are broken according to lexicographic
ordering. Thus we sort the tasks based of the triad 5 A scheduling methodology
[level I number of successors I lexicographic order].

3. Perform list scheduling on the priority list. The scheduling problem for message passing architec-

Whenever any processor becomes available, it scans tures which include communication cost is very dif-

the priority list from left to right and picks up the ficult. We propose the following four step heuristic

first task which is ready to be executed (i.e. all its approach:

predecessors have completed). A task which has been 1. Clustering:

picked up for execution is marked as taken to avoid Find a "good" schedule for an unbounded number

picking it up again, of virtual processors connected as clique. Because of

Performance the existence of communication cost, this stage will

To measure the performance of a scheduling we generate clusters of tasks that must be executed by the

define R, the ratio of goodness same processor on the target architecture, Sarkar (14].

T bound The locality assumption, Gerasoulis and Nelken [5],
R = -P Twhich specifies that a processor may modify only the

data which is stored in that processor, automatically
In figure 6, we plot the ratio of goodness, R, for determines the clustering. For our example, we obtain

the CP/MISF method assuming that communication the following clusters:

costs are zero.

The performance of the method is indeed remark- MI = {Tl), M 2 = {T2, T2},...

able. It is within 1% of the lower bound, which leads

us to ask the following question: M 2n- 1 = - T+ 1 2,. T

Is CP/MISF an asymptotically optimal method 2. Physical mapping:

for the above problem? The 2n- 1 clusters must be mapped to the p phys-

ical processors. Each processor will be assigned the
It is obvious that for a realistic message passing ar- tasks of several clusters in an attempt to load balance

chitecture with non-zero communication costs, CP/MISF

296

100001

0Q12 pq-TN1c

700- 0.1

gAOW -0A8.0 5M

A 5000 J
3'4000DA

3000.00
C.0 CU ..

0 20 40 O0 so 1W 12D 140 160 180 200 0 005 0&1 0.150G2 0.250.3035 GA OAS50.5
1ooo

Figure 7: Work profile for n = 100. Figure 8: N-cp/misf vs. compute-ahead for AXXBC

with wrap mapping and n = 240.

the arithmetic work. With each cluster M(j), we as-

sociate a work load W(j) where diagonals of C to the processors.

4. Task ordering:
W(j) = arithmetic work in Mj. In this stage, the tasks assigned to each processor

The work-profile of the clusters, George et al. [4], is a are ordered and execution threads are formed. In a

graph of W(j) against j, see figure 7. static scheduler, these threads are determined at com-

It can be seen from the work profile that we can pile time. In the next section, we will describe the

completely load balance the arithmetic provided that N-cp/misf ordering methods and compare them with

we use the wrap mapping which completely load bal- compute-ahead.

ances the arithmetic if 2n - I is a multiple of p. The

wrap mapping also conforms to the proximity assump- 6 The N-cp/misf methods
tion, see Nelken [12], which further reduces communi-

cation costs. In this section we define the N-cp/misf methods. We

3. Storage of data: impose the memory constraint and assume that ai di-

To reduce communication further the data items agonals are mapped to each processor pi and that the
same processor has enough space to store an addi-

that are accessed most by the tasks in each processor

are stored in that processor. All data items must be tional bi diagonals. For simplicity, assume that ai =

stored in the processors before execution begins. Our (2n- 1)lp and bi = N for 0 < i < p- 1. Thus N is the

algorithm has four matrices to be considered: A, B, C number of additional data items that can be stored in

and X. Since matrix X overwrites C, we will only each processor.

consider the three matrices A, B and C. Our approach is to form p priority lists by sorting

We will postpone dealing with the storage of A the tasks assigned to each processor. The tasks as-

and B until the next section on ordering. As for the signed to each processor are sorted according to the

matrix C, we associate data items (i.e. diagonals) of CP/MISF criteria, see section 4.2. We then use a mod-

matrix C with the clusters. Each cluster M is as ified list scheduler (MLS) whose input are the p pri-

sociated with the data item which it accesses most ority lists and the parameter N, and whose output

which is the j'th diagonal of C. The locality assump- is a scheduling which satisfies the DAG dependencies,

tion implies the definition of M(j) and that data item locality assumption and memory constraint.

j should be stored in the same processor which exe- The N-cp/misf methods are derived as follows:

cutes cluster M(j). The data mapping of matrix C 1. Computation of levels: Find the levels for the

is obvious. Since we have used wrap mapping of clus- DAG as in the traditional CP/MISF method.

ters to proces-rors, we also use wrap mapping of the

297

2. Sorting: The p groups of tasks mapped in each the N-cp/misf method. I-cp/misf has the same per-

processor are sorted according to the CP/MISF formance as compute-ahead but "inf"-cp/misf is up to

criteria. Tasks with higher levels are placed in 14% faster.

front of tasks with lower levels. If several tasks

have the same level, then they are sorted accord- 7 Comparing with SYLV.DIAG
ing to the number of outgoing edges. If several
tasks have the same level and the same number KiLgstr6m's algorithms have been implemented on Duni-

of outgoing edges, they are sorted lexicographi- gan's [2] message passing multiprocessor simulator (PP-

cally. Thus our sort is again based on the triad SIM). We have also implemented the naive and compute-

[level I number of successors I lexicographic or- ahead algorithms on PPSIM. All implementations are

der] in each processor. These are the p priority in single precision floating point C. The experimental

lists. results are for the case m = n = 64. Kigstrom's im-

plementations as well as our own, use initial simulator
3. Modified list scheduler: In the MLS each values which correspond to the Intel iPSC cube.

available processor scans its priority list from left

to right and executes the first task that satisfies cube-init(0.1,0.3,0.2,1024);

the following conditions: The speedup of compute-ahead has been plotted in

"* The task is ready to be executed. figure 9. It should be compared with figures 4.a of [10].

" The execution of the task will not result in The speedup of SYLVDIAG has been reproduced in

a scheduling that requires space for more figure 9 from data given to us by Kagstr6m [9] for

than N data items. comparison purposes. There are two versions of the

compute-ahead program:
The first task in the priority list which satisfies
both constraints is scheduled to the processor. If *The first version, compute-ahead with local copies
no such task exists, the processor Id of A and B, is known as the store approach,

copies of all the diagonals of A and B are stored

The MLS could deadlock if the execution of a task in each processor.

is ready but requires N+I- space and a descendant that
could break the deadlock depends on this task. The muTheaseon version, compute-ah th cox

deadlock can be broken by re-receiving the same data. munichtion of A and Bai n asathelmix

We have not observed this situation in our DAGs and approach, only copies of the main diagonals of
A and B are stored in each processor while allconjecture that it does not occur.

Note that there is a range of N-cp/misf methods. other diagonals are communicated as required.

For the 1-cp/misf method each processor needs at the Note the time space trade-off between the two ver-

most space for 1 additional data item to execute. For sions of the compute-ahead program. The store ver-

N = a1 the space requirements for each processor are sion exhibits a better speedup but has higher local
p

doubled. At the extreme is the "inf"-cp/misf method memory requirements. The mix version of the pro-
which assumes that each processor has infinite mem- gram exhibits a poor speedup due to the fact that

ory. diagonals of A and B are also communicated rather
In figure 8, we compare the N-cp/misf methods than just diagonals of C.

with the compute-ahead rdering in terms of TA +Ti for It should be noted that in Dunigan's PPSIM sim-

both approaches. We plot the quantity 1-T(N)/T(ca) ulator [2] the communication delay of a message of

where T(N) is the TA + T1 time for the N-cp/misf length M sent across h hops is

method and T(ca) is the corresponding time for compute-

ahead. The graph represents the savings achieved by sM + hrM

298

to-10

9 the communication strategy used for the naive and

a s- compute-ahead orderings, where each processor sends

S 7 all of its diagonals to its neighbor, might have to be

c changed.
3- -The low speedups of the diagonal algorithms are

4 due in part to the fact that the partitioned graph,
3 which appears in figure 5, has less potential paral-
2 lelism than that of the non-convex partitioning used

" by SYLVoDIAG. This is a partial response to Sarkar's

question [14] about the restrictiveness of the macro-

dataflow model. In this case, the convex partitioning
Figure 9: The s p of cd a does not exhibit enough parallelism and it might be
SYLVDIAG, m = n = 64.

better to use a non-convex one. More accurate analy-

where s is the startup delay value, r is the commu- sis and actual machine tests are needed to determine
which of the alternative approaches is better.

nication delay for a floating point number and M is

rounded up to the nearest packet size. In the compute-

ahead algorithm, h is always I since only nearest neigh- References
bor communication is used. In this case, the PPSIM [11 R.H. Bartles and G.W. Stewart. A Solution of

delay is (s +r)M. the Equation ax + xb = c. Coommunications of

On real hypercubes, such as the NCUBE, the delay the ACM, 15:820-826, 1972.
for a message of size M communicated between neigh-

bors is given by &+,6M, see Dunigan [3], an additional [2) T.H. Dunigan. A Message Passing Multiprocessor

startup factor of a. Usually c > 83 and therefore it Simulator. Technical Report ORNL/TM-9966,

may be that on a real machine, the penalty for sending Mathematical Sciences Division, Oak Ridge Na-

short messages, as is done in Kigstr6m's algorithms, tional Laboratory, Oak Ridge, TN 37831, May
would be worse than it is in the simulator. 1986.

It should be pointed out that the results in figure 9arefo a mal ase ie.n = 64. If n and p are large [3] T.H. Dunigan. Hypercube Performance. In Hg-
are for a small case, i.e. n 4 fnadpaelrepercube Multiprocessors, pages 178-192. SIAM,
the results may be different since the diagonal program 1987.

requires overhead which is of low order. Subroutine

Tk, for example, has index arithmetic which is done [4] A. George, M.T. Heath, and J. Liu. Parallel
once each time it is called. If n is large, the effect of Cholesky Factorization on a Shared Memory Pro-

this overhead will be less noticeable. cessor. Lin. Algebra Appl., 77:165-187, 1986.

8 Further research [5] A. Gerasoulis and I. Nelken. Gaussian Elimina-

tion and Gauss-Jordan on MIMD Type Architec-

Consider the N-cp/misf orderings. Unless we use the tures. Technical Report LCSR-TR-105, Depart-

store version of the program, we would have to com- ment of Computer Science, Rutgers University,

municate the diagonals of A and B. The communi- New-Brunswick, NJ 08903, May 1988.

cation strategy would have to be modified for these [6] A. Gerasoulis and I. Nelken. Scheduling Linear

orderings. For example, in order to determine which Algebra Parallel Algorithms on MIMD Architec-

diagonals of A and B will be needed by each pro- tures. Technical Report LCSR-TR-122, Depart-

cessor when using the "inf"-cp/misf ordering method, ment of Computer Science, Rutgers University,

one needs to know the scheduling explicitly. Further, New-Brunswick, NJ 08903, May 1989.

299

(7] G.H. Golub, S. Nash, and 0.rF. Van Loan. A
Hessenberg-Schur Method for the Problem AX +
XB = C. IEEE Trans. on Automatic Control,

AC-24(6), December 1979.

[8] G.H. Golub and C.F. Van Loan. Matriz Compu-
tations - Second Edition. Johns Hopkins, 1989.

[9] B. Kagstr6m. Private communication.

[10] B. Kigstr6m, L. Nystr6m, and P. Poromaa.

Parallel Algorithms for Solving the Triangular
Sylvester Equation on a Hypercube Multipro-
cessor. Technical Report UMINF-136.87, ISSN-

0348-0542, Institute of Information Processing,
University of Ume&, UmeA, Sweden, December
1987.

[11] H. Kasahara and S. Narita. Practical Multipro-
cessor Scheduling Algorithms for Efficient Paral-

lel Processing. IEEE Trans. on Computers, C-
33:1023-1029, 1984.

[12] 1. Nelken. Parallelization for MIMD Multi-
processors with Applications to Linear Algebra

Algorithms. PhD thesis, Laboratory of Com-
puter Science Research, Rutgers University, New
Brunswick, NJ 08903, October 1989.

[13] J.M. Ortega. Introduction to Parallel and Vector

Solution of Linear Systems. Plenum, New York,

1988.

[14] V. Sarkar. Partitioning and Scheduling Parallel

Programs for Execution on Multiprocessors. PhD
thesis, Department of Electrical Engineering and

Computer Science, Stanford University, Stanford,
CA 94305, 1987. Also a book in the series Re-
search Monographs in Parallel and Distributed

Computing, The MIT Press, 1989, Cambridge
MA.

300

Reducing Inner Product Computation in the
Parallel One-Sided Jacobi Algorithm

Charles Romine*
Mathematical Sciences Section

Oak Ridge National Laboratory

Kermit Sigmont

Department of Mathematics
University of Florida

Abstract 1 Introduction

One drawback of the cyclic one-sided Jacobi algo- It was observed some time ago by Sameh [12] and
rithm is the necessity of computing the inner product Luk [71 that the one-sided Jacobi algorithm was well-
of each column pair to be rotated-indeed, just to suited for singular value and eigenvalue computation
check whether the pair needs to be rotated. How- in a multiprocessor environment. More recently it has
ever, if the orthogonality of a column pair known been observed [1,4,5,6,10] that the one-sided Jacobi
to be orthogonal during a sweep is not subsequently algorithm is especially naturally suited for such corn-
destroyed before being encountered during the next putations on distributed memory and vector archi-
sweep, then the inner product computation in the lat- tectures. In the distributed memory environment, its
ter sweep is unnecessary. The number of such in- natural parallelism permits excellent load balancing
ner products becomes significant as the process nears and the required message passing is relatively small.
convergence. To avoid these unnecessary inner prod- Because of its richness in vector operations, it. is natl-
ucts, the usual algorithm is extended to include a urally suited for vector architectures.
data structure which keeps a record of the current This has led to a renewed interest in the one-sided
orthogonality status of the column pairs. Jacobi algorithm. Berry and Sameli [1] have effec-

In the parallel setting, the reduction during the lat- tively implemented it in a multiprocessor environ-
ter sweeps in both the number of column pairs ro- ment. Eberlein [4,5] and Eberlein and Park [6,8] have
tated and the number of inner product computations done so on distributed memory machines. Rath [9]
in a sweep will not generally be uniformly distributed and de Rijk [10] have given a fast Givens-type varh-
across the processors. Because of the resulting loss of ant of the one-sided Jacobi algorithm which reduces
load balance, the actual improvement in runtimes will the operation count and permits more effective vec-
be less than one would otherwise expect. A statistical torization.
analysis of this phenomenon is given. The Jacobi algorithms have other advantages. It

The performance of the enhanced algorithm is ob- has recently been shown by Demmnel and Veselif [3]
served through implementation on the 128-node Intel that the Jacobi algorithms compute small eigenvalues
iPSC/860 at the Oak Ridge National Laboratory. A and singul-r" vcdtu, and -mAIl conmponents of eigell-
discussion of the correlation of these results with the vectors and singular vectors with higher relative ac-
statistical analysis mentioned above is also given. curacy than either the QR and Golub-Reinsch algo-

*The work of this author was supported by the Applied rithms or the divide and conquer method.
Mathematical Sciences Research Program, Office of Energy Re- One drawback of the cyclic one-sided Jacobi algo-
search, U.S. Department of Energy under contract DE-AC05- rithm is the necessity of computing the inner product
840R21400 with Martin Marietta Energy Systems Inc. of each column pair to be rotated--indeed, just to

tThe work of this author was supported in part by Oak check whether the pair needs to be rotated. flow-
Ridge National Laboratory, contracts 32X-SA783V and 95X-
SC556V, and by Oak Ridge Associated Universities, DOE con- ever, if the orthogonality of a column pair known
tract DE-AC05-76OR00033. to be orthogonal during a sweep is not subsequently

destroyed before being encountered during the next
sweep, then the inner product computation in the lat-
ter sweep is unnecessary. The number of such inner

3010-8188-211 3-3/0/0000/03015$01.00 C 1990 IEEE

products becomes significant as the process nears con- diag(ai,..., an), where ai is the 2-norm of the i-th
vergence. column of U, and scales the columns of 0 by tile C,

We extend the usual algorithm so that most of to form U, then U = UE and hence
these unnecessary inner products are avoided. This
is done by use of a data structure which keeps a A UEVT and UTU - 1
record of the current orthogonality status of the col-
umn pairs. Thus, the SVD is obtained if such a matrix V can be

During the latter sweeps of the one-sided Jacobi computed.
process, there is a reduction in both the number of The matrix V can be computed iteratively as a
column pairs which must be rotated and, as noted product of planar rotation matrices, each of which
above, the number of necessary inner products. In rotates a pair of columns of A, as follows.
the parallel setting, these reductions will not gener- Give n an ordered pair [abea] of columns from At a
ally be uniformly distributed across the processors. plane rotation can be determined such that if
Because of the resulting loss of load balance, the ac- * c -s 1
tual improvement in runtimes will be less than one (ai ,aj 1]:= .ai,aj]f I J
would otherwise expect. A statistical analysis of this
phenomenon is given. then ai" and aj" are orthogonal and 1 Žai'll _> 11aj'1.

The performance of the enhanced algorithm is ob- (Here and in the sequel, 11 " 11 denotes the two-normn).
served through implementation on the 128-node In- An algorithm for rotating a pair of columns ai and aj
tel iPSC/860 at the Oak Ridge National Laboratory. of A is the following. One must first select a tolerance
An analysis of the correlation of these results with (to use in the test for orthogonality.
the statistical analysis mentioned above is also given.
The results indicate that one can expect about a 10- Algorithm Rotate
20% improvement in performance for a small number A. If a, < , then ai and aj are taken to be
of processors, with this improvement degrading as the A 11.1111a,1I
number of processors increases due to the statistical already orthogonal so

loss of load balance mentioned above, set at* ai and aj* := aj provided 11aill > jjajff
set a* := aj and aj" := ai otherwise.

2 The One-Sided Jacobi Algo- B. If ' >-' then

rithm 1. Compute c and t:
Compute t := In + v/1 -+r2,

The singular value decomposition of a real m x n ma- where r := 2.

trix A, m > n, may be given by a t if > 0 and
If I1aiI ? I1afil, set t I ± fr> n

A UEVT t := ifr<0;
otherwise, set t := -t if r > 0.

where Compute c :=

UTU = In = VTV and E = diag(ar,. . n) 2. Rotate ai and aj:
aj" :c(ai + Isa)

with a, > O2 ? ... an > 0. The diagonal entries ai of a c* e(a, - tai).
E are called the singular values of A. The columns of 3. Update Ilaj1l2 and 11a, 112:,
U and V are called the left and right singular vectors ilai:112 := ila,112 + taTai
(respectively) associated with the respective singular ha, 112 :=an,12 _ laTaj.
values of A. Since AA T = UEETUT and ATA =
vETEvT, these singular vectors are orthonormalize I The one-sided Jacobi algorithm is performed in
eigenvectors associated with eigenvalues of AAT and sweeps, each of which consists of rolations of each
ATA, respectively, and the singular values are the of the N := n(n - 1)/2 possible pairs of columns
square roots of the eigenvalues of ATA. performed in some fixed sequence with the order of

The one-sided Jacobi Algorithm for computing the each pair [ai,aj] chosen to ensure a specified order
singular values proceeds as follows.Gin valuen A as follows with m onefirstcoNote that for r,y E Rn, i u = c(x+ty) and v = c(y- tr).Given A E R'•xn with m. > n, one first corn- then uTu = XTX+ jxTy+ tu 'v and vrv = YTY_ tTy _ t Tf,,putes an orthogonal matrix V such that the columns where c = cosO and t = tanO are chosen as in Algorilhim
of U := AV are orthogonal. If one then sets E := Rotate.

3M2

IaIll > Iai1l of the result. The Jacobi algorithm is will contain the squares of the singular values.
characterized by this order, called a Jacobi ordering.

The sweeps are repeated until the columns are pair-
wise orthogonal as measured by c in Algorithm Ro- 1 A2 44

tate. Pairwise orthogonality is usually determined B:B I B3 M
by counting, for each sweep, the number of column
pairs that were already orthogonal when encountered;
when that number is N, convergence is declared (ac- Figure 1: Distribution of columns (p = 4)
tually, N - 1 will suffice; see §5).

To rotate a column pair [ai,aj] one needs to have One begins each sweep by rotating all pairs of
available Iaill, Ilaill, and the inner product aiTaj. columns within each block in a lexiographically cyclic
However, one need not recompute the column norms order. Then, after rotating each colnnin of block A
for each new pair. After initializing an n-vector to with each column of block B in each processor, the
contain the squares of the norms of the columns, this blocks are redistributed among the processors accord-
vector can be easily updated after each rotation as in ing to the communication pattern indicated in Fig-
step B3 of Algorithm Rotate. When convergence is ure 2 for p = 4. The columns of block A are again ro-
achieved, this vector will contain the squares of the tated with the columns of block B in each processor.
singular values of A. The sweep is completed after 2p- 1 such "subsweeps."

Unlike the column norms, the inner product aiT a
must be computed for each rotation. These inner
products form a significant portion of the floating _. n2 A3 '14

point operations in the one-sided Jacobi algorithm. B, B2 B3 84

It is the reduction of these inner product computa-
tions that we address in §4 and §5. Odd time steps

3 The Parallel Algorithm K4

I 132 B3~ R4
Rotations of pairs of columns with disjoint index pairs
are independent. Therefore, if index pairs in a Jacobi Even time steps
ordering are disjoint, the corresponding rotations can
be performed in parallel. Figure 2: Communication pattern

In the parallel Jacobi algorithm the rotations of
a sweep are partitioned into groups of independent Note that under this communication pattern, all
rotations with each group of rotations performed in information for computing the rotation parameters
parallel. There exist many parallel Jacobi orderings is available in the processor containing the coluni
in which the maximum number Ln/21 of rotations is pair so the columns can be rotated locally. Hence,
performed in each of the n - 1 (n, if n is odd) time the amount of communication is small, with only one
steps. It is such optimal orderings that we use in our send required in each subsweep, or 21) - I per sweep.
algorithm. Furthermore, the load balance remains exceptionally

Our interest is in implementation of the parallel uniform.
algorithm on a ring-connected distributed-memory
multiprocessor. The implomentation we use follows
that introduced by Eberlein in [51 and futher dis- 4 Pairwise Decoupling
cussed in Eberlein and Park [6]. For each column pair encountered dtiring a sweep,

The columns of the matrix are partitioned into 2p oreeach compair enner duing a sweep,
blocks of size as uniform as possible, where p is the one f tes the nne produ ofthe columnsnu-ier o prcessrs.The lgoithmassmes hat nd then, if they are not already orthogonal, rotatesn u -ib er o f p ro cesso rs. T h e algo rith m assu m es th a tth co u n . F r a x n m ri , e hp odThe locs ar ditribtedto te pocesors the columns. For an in x n matrix, each ininer prod-2p < n. The blocks are distributed to the processors

- ri*uct costs mn multiplications and the rotation about
in pairs as indicated in Figure 1 for p = 4. Each col- 4 m multiplications 2nd the l at inner
umn is extended by one entry, which will contain the pro multiplications.2 In the latter sweeps, the inner
square of the two-norm of the column. After initial- product computation becomes dominant since many
ization, this entry is updated with each rotation as 2 The count for a rotation is 2m if fast rotations are used

in Algorithm Rotate; upon convergence, these entries (see [9,10])

303

of the column pairs encountered are already orthog- 1. Rotate columns i and j.
onal. A typical count of the number of orthogonal 2. Set the j-th flag of column i and the i-th
pairs encountered in a sweep is illustrated by "Or- flag of column j.
thogonal" in Table 1 for a random 128 x 128 matrix flag of column a.
with p = 4. 3. Clear all the other flags of columns i and j.

Of course, there is some overhead associated with

Table 1: n = m= 128,p= 4 maintaining this data structure. Thus, its implemen-

Sweep Orthogonal Decoupled tation should be delayed until that sweep where the

1 0 0 savings in inner product computation exceeds the cost

2 0 0 of this overhead. Our experience indicates that begin-

3 0 0 ning implementation with the sweep following that in

4 0 0 which "Orthogonal" becomes positive is appropriate.

5 0 0 Clearly there is nothing to be gained by starting its

6 1 0 implementation before this point.

7 1313 0 For reasons given in §7, the actual improvement

8 7252 98 in runtimes due to the reduction during the latter

9 8074 3128 sweeps of either the number of column pairs rotated
10 8128 8069 or the number of inner product computations is likely

to be less that the figures in Table 1 might suggest.

If the orthogonality of a column pair known to be
orthogonal during a given sweep is not destroyed be- 5 Subspace Decoupling
fore being encountered during the next sweep, then
the inner product computation in the latter sweep The reduction of inner products described in the pre-
is unnecessary. To avoid these redundant inner prod- ceding section can be further improved. Suppose If
ucts, we extend the algorithm to include a data struc- and K art disjoint collections of columns for which
ture which keeps a record of the current orthogonality each column in H is orthogonal to each column in K.
status of the column pairs. In the example given in If two columns in H are rotated, then the orthogo-
Table 1, the column "Decoupled" gives the number nality of the resulting columns with the columns in
of such inner products which could be avoided in this K is preserved since K is contained in the orthogonal
manner. complement of the subspace generated oy H, and the

To extend the algorithm, each column is assigned a rotated columns, which are linear combinations of Ihe
column number (this is unecessary in the original al- original columns, remain in this subspace.
gorithm) and extended to include an n-vector of flags. In the preceding section it was assumed that, when
The vector of flags of a column remains with the col- two columns are rotated, the orthogonality of the
umn as it is sent to the various processors. Orthogo- resulting columns with any other column could no
nality of column i with column j is indicated by both longer be assured. However, in view of the subspace
the j-th flag of column i and the i-th flag of column j decoupling noted above, if a column is orthogonal to
being set. Requiring both flags to be set permits one each of a pair of columns to be rotated, then its or-
to avoid additional interprocessor communication. thogonality with the updated pair is assured after ro-

The flag management is as indicated in the follow- tation.
ing extension of Algorithm Rotate. The data structure of the preceding section can be

Algorithm Rotate revised to reflect this preservation of orthogonality.
(with pairwise decoupling) The following further revision of Algorithm Rotate

indicates how the flags can be managed to implement

A. If flags indicate the columns are orthogonal, do this feature.
nothing. Otherwise, Algorithm Rotate

B. If a Ta < ,, then (with subspace decoupling)

1. Interchange columns i and j if I1ailI < IlailI. A. If flags indicate the columns are orthogonal, do

2. Set the j-th flag of column i and the i-th nothing. Otherwise,

flag of column j. B. If a.Tr, < (, then

C. if I,11 11. 1 then 1. Interchange columns i and j if I1a,1I < 11an11.

304

2. Set the j-th flag of column i and the i-th We note, however, that showing that the computed
flag of column j. singular values are ordered is complicated by the fact

C I then that, prior to convergence, the column norms need
. If c, then not be ordered. In particular, when multiple-or

nearly equal-singular values are present, this com-
1. Rotate columns i and -. plication is evident. As an illustration, consider the

2. Set the j-th flag of column i and the i-th matrix
flag of column j. [3 ' 1 -2]

3. For each k other than i and j, A= v3 -2 1

a) If either of the k-th flags of of columns V/3 I I

i and j are clear, clear both of them. If a sweep on A is performed by rotating the column

b) Ifbothofthe k-th flags of columns iand pairs in the order (1,2),(1,3),(2,3), then before the

j are set, sweep the column norms are 3, v6-, V and afterwards

(i) if both the i-tb and j-tb flags of col- they are 3, ViT, 1.
umn k bh se-t, do nothiag. fWe now turn to a description of how to ensure the
umn k are set, do nothing. appropriate choice of rotation angles in the parallel al-

(ii) Otherwise, clear both the i-th and gorithm with the communication pattern given in J3.
j-th flags of column k. This choice of rotation angles is incorporated into our

Implementation of this enhancement in a dis- algorithm.

tributed memory environment appears to be prob- We assume a fixed order of the columns of the ma-
tiuite requires enithero signifcnt ap stionl e in- trix in terms of the initial distribution of blocks tolematic; it requires either significant additional thircsosanflos-ihnblcs h oun

terprocessor communication or, within the existing the processors as follows: Within blocks, the columns

communication pattern, a very large message size. It have the orderg by the orderin

may be more suitable for other environments. The

authors plan to explore the feasibility of the use of A1 , B1 , A2 , B,,A 3 , B 3 ,..., Ap, Bp
subspace decoupling in a subsequent paper.

One interesting consequence of subspace decou- of the blocks, where the blocks are initially dis-
piing is that when N - I (rather than N) of the col- tributed to the processors as indicated in the top half
umn pairs encountered during a sweep are already of Figure 3.
orthogonal, then convergence can be declared. For if We first note that under the communication pat-
all except one pair is orthogonal, when that, pair is tern of §3, after their initial distribution to the pro-
rotated to become orthogonal, its orthogonality with cessors, the blocks of columns do not. return to their
all other columns is preserved because of subspace de- original location until after two sweeps. The location
coupling. Hence, upon completion of the sweep, all of the blocks after each sweep is illustrated in Figure
N pairs are orthogonal. 3 for p = 4.

6 Ordering the Singular Val- A
ues

As noted in §2, when one rotates the column After even-numbered sweeps

pair (ai,ai to produce the orthogonal column pair
faj*,ai,], the angle of rotation can be chosen to en-AB2
sure that IjajiI _> Ila°ll• Hence, for some fixed B4

ordering of the columns, the rotations can always A4

be chosen in the one-sided Jacobi algorithm so that
Ijaij~ _> Ila j*1 whenever i < j. It has been suggested After odd-numbered sweeps
that the rotation angles be chosen in this manner to Figure 3: Location of blocks
cause the computed singular values to be ordered.

This choice of rotation angles does, in fact, cause One must therefore use a different choice of rota-
the singular values, upon convergence, to be ordered. tions during alternate sweeps.
Since we are aware of no proof of this result in the The choice of rotation angles which will ensure or-
literature, we supply a proof in [11]. dering of the computed singular values is as follows.

305

Within blocks, the norm of the column of least in- if there are 8128 total pairs of columns, of which
dex should, of course, be maximized. When rotating 4000 are actually rotated during a sweep, then in the
between blocks, the norms of the columns in the "up- model, the probability of any pair of columns requir-
per" block of processor 1 should be maximized during ing rotation is 4000/8128. Comparison of the model
every sweep; in the other processors, the norms of the results with the empirical results indicates that this
columns in the "upper" block should be maximized simplification is not too extreme. We make a similar
during the even-numbered sweeps and those in the assumption regarding the probability that an inner
"lower" block should be maximized during the odd- product will need to be performed in the pairwise de-
numbered sweeps. coupled algorithm.

We note that our assumption is not the same as
assuming that the number of rotations (resp., inner

7 Statistical Loss of Load Bal- products) performed during a sweep is evenly dis-

ance tributed among the processors. This would be the
optimum distribution (as noted above), but is un-

The most attractive feature of the one-sided Jacobi likely to occur in practice. However, even with the
algorithm for computing the singular value decom- above simplification, a closed-form expression for the
position on a parallel computer is the near-perfect execution time, while obtainable in principle, is too
load balance that is maintained across the processors costly to evaluate. Hence, we resort to a Monte-Carlo
during the computation. This, coupled with the rela- simulation of the behavior of the algorithm. The sim-
tively high ratio of computation to communication in ulation takes three input parameters: n, the number
the algorithm, allows the parallel algorithm to attain of columns in the matrix A; p, the number of pro-
nearly perfect speedup over its serial counterpart, cessors used; and c, the number of pairs of columns

However, as noted in Table 1 of §4 (see "Orthog- that were detected as being already orthogonal (resp.,
onal"), as the process nears convergence an increas- the number of unneeded inner products). The output
ing number of rotations become unnecessary. Since of the simulation is the expected number of parallel
these avoided rotations need not be distributed uni- rotations (resp., inner products) that were avoided
formly among the processors, the total execution time during the algorithm.
of the parallel one-sided Jacobi algorithms depends One iteration of the Monte-Carlo simulation is done
upon how much the load balance has been perturbed. by constructing a p x (N/p) array, where N is the
In the worst case, p- I of the processors have no rota- total number of pairs of columns in a sweep. Each
tions to perform during a sweep, while the remaining row of the array corresponds to the pairs of columns
processor must perform a complete set of rotations. occurring in one of the processors during the sweep.
Despite a drastic reduction in the total work done, no The columns of this array are partitioned into blocks,
decrease in parallel execution time would be realized, representing the subsweep boundaries, when the pro-

Conversely, in the best case, all the processors share cessors must communicate. Initially, the entire array
equally in the reduction in computation, thereby re- is filled with zeroes. If during the given sweep, a total
ducing the total execution time as well. In general, of c of the N rotations (resp., inner products) were
the amount of reduction will be somewhere between unnecessary, then c random locations in the array are
these extremes. Similar remarks apply to the inner set to one, representing the pairs that do not. need
products avoided in the decoupled algorithms (see rotation (resp., inner product). From this table, it
"Decoupled" in Table 1). Thus, eliminating either is easy to calculate how much parallel work hlas been
the unnecessary rotations or the unnecessary inner saved during that sweep. Note that simply adding up
products may adversely affect the load balance, miti- the number of ones in each row is not sufficient, since
gating any gains that might be obtained by reducing the communication done between neighboring proces-
the computation. This section presents a statistical sors after each subsweep affects the total savings, and
analysis of this tradeoff, this must be taken into account.

Clearly, the rotations of pairs of columns do not A series of simulations was carried out for a wide
form independent events. ilowever, determining range of input parameters, and a running calculation
the (highly complex) correlation among the pairs of of the mean and standard deviation of the results was
columns is problem dependent, and therefore beyond made. The assumption is that the ratio of the mean
the scope of the model. Hence, we make the simplify- to the standard deviation will asymptotically have a
ing assumption that, given the total number of rota- normal distribution. After an initial series of 30 tri-
tions performed during a sweep, each pair of columns als (to ensure that the number of samples was large
will need rotation with equal probability. That is, enough for the asymptotic assumption to hold), the

306

1.0 1.0-

0.9r=0.9
r = 0.9 r = 0.8

0 ____8_______n_ 0.9- r = 0.7
r=0.8 0 r = 0,6

0.7- m
a r =0.5

s 0.80 r = 0.4
a
v r=0.6 e
i 0.5 d r = 0.3

g r r=0.5 a_0.7-
s 0.4- 07-

Y r =0.2

0.-g=.
0.2- r r=0.3 .

0.1r 0.
0.10.

0.0- r I 0.1 0.5- 1 1 1 1 r 0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Cube dimension Cube dimension

Figure 4: Savings obtained (r :) Figure 5: Normalized savings obtained (r :=

model was terminated when the standard deviation, greater.
normalized by the appropriate factor to obtain a 95% Figure 4 seems to indicate that the rapidity of the

confidence level, was under 0.25. Since we are inter- degradation as the number of processors increases is

ested in the number of rotations (resp., inner prod- largely independent of r. However, Figure 4 fails to

ucts) that are eliminated, the nearest integer is suffi- take the magnitude of the total savings into account,

cient, permitting a relatively large tolerance. Figure 4 only the parallel savings. Let s(r,p) represent the

displays a typical graph of results for hypercubes of parallel savings on p processors for a given value of

dimension 0 through 7, using 1024 columns and values r. Then Figure 4 plots s(r, p)/(N/p) against log2, p.

of c that yield cfN r 0.1k for k = 1, 2,..., 9. Note Figure 5 uses the same data as Figure 4, but now the

that we compute the numberof rotations (resp., inner ordinate is p x s(r,p)/c. That is, Figure 5 displays

products) avoided, so the length of the columns (i.e., the total useful savings divided by the total savings.

number of rows m in the matrix) is not needed. How- In the serial case all savings are useful, so this has the

ever, the savings in execution time depends directly effect of normalizing the curves to intersect the ordi-

on m. nate axis at 1.0. Note that the curves corresponding

For convenience, we define r := c/N. The graph to small values of c, (i.e., small values of r) fall much

shown in Figure 4 displays the ratio of the number of more rapidly than those corresponding to large values

parallel rotations avoided to the total number of ro- of c. This reveals that, when the number of rotations

tations per processor, for several values of r. We note (resp., inner products) is small, increasing the number

that the nature of the simulation (counting numbers of processors severely degrades the amount of savings

rather than time) means that the same graph dis- obtained by the modified algorithm.

plays the ratio of the number of parallel inner prod- The execution time of the one-sided Jacobi algo-

ucts avoided to the total number of inner products per rithm can be expressed as

processor, where c now represents the total number
of inner products, rather than rotations, that were T [(p- s,)mnt + 4(N - ci)mtj + tComm,
avoided. From the graphs, we can see that as the -P p

number of processors increases, the percentage of the

total possible savings that is actually obtained de. where T is the total execution time, ti is the time for a

creases. This reflects the fact that for larger num- single flop (i.e., multiply-add pair), ro,,,1 is the time

bers of processors, the potential for load imbalance is for the exchange of blocks between subsweeps, s, is

the number of parallel inner products saved, and ci is

307

the number of parallel rotations saved. Both ci and si
are obtained from the Monte-Carlo simulation, given Table 2: Standard (s) vs. modified (n) for n = 128
values of c and s from an actual run of the algorithm. m = 400 800 1200 1600
Note that for the standard algorithm, si = 0 for all i. P = 4 s 17.65 35.01 50.03 70.56

Figure 6 shows a comparison of the model with the m 14.88 29.71 43.59 59.97

execution time of both the standard and modified al- A% 15.7% 15.1% 12.9% 15.0%

gorithms for a problem of size 1600 x 256 with various 8 s 9.65 19.67 31.18 39.31

values of p. Clearly the behavior of the algorithms is m 9.39 18.65 27.90 37.50

modeled with a high degree of accuracy. A% 2.7% 5.2% 10.5% 4.6%
16 s 6.56 12.92 20.89 27.49

300- m 6.43 12.52 18.76 24.98
A% 2.0% 2.9% 10.2% 9.1%

standard 32 s 5.11 10.57 14.58 19.38
250 standard m 5.09 9.59 14.20 18.65

model A% 0.4% 9.3% 2.6% 3.8%
modified 64 s 4.70 8.18 12.00 17.44

200 modified m 5.04 8.41 12.22 17.58
smodel A% -7.2% -2.8% -1.8% -0.8%
e
c
o 150

d coded in i860 assembly language to take advantage
s of the floating point pipelining available on the CPU,

100 and future versions of our codes will incorporate these
routines.

The only potential drawback to using the i860 is
50 that its ratio of communication cost to computation

cost is significantly higher than for the iPSC/2. Hlow-
ever, in the one-sided Jacobi algorithms given here,

0 ,computation dominates communication provided n >
0 2 3 4 5 6 7 2p.

Cube dimension Analyzing the performance data from the parallel
codes is difficult since the convergence of the one-

Figure 6: Comparison of models and execution times sided Jacobi algorithm depends upon the Jacobi or-

dering. That is, the convergence rate depends upon
the order in which the pairs of columns are rotated.

8 Numerical Results However, in the parallel setting, changing the number
of processors used also changes the Jacobi ordering.

Parallel versions of both the standard one-sided Ja- Therefore, one must take an average over several rils

cobi and the pairwise decoupled algorithm were devel- for each size matrix and number of processors to oh-

oped on the Intel iPSC/2 and later moved to the Intel tam meaningful results.
Tables 2 and 3 show the execution time of both tlheiPSC/860 at Oak Ridge National Laboratory. Both stnadndmifealotmswhn= 2ad

machines are hypercubes; the nodes of the iPSC/2 standard and modified algorithms with n = 128 and

are based on the Intel 80386 processor, while the 860 n = 256 (respectively) for various values of i and

nodes are based on the Intel i860 processor. The re- p. The percentage by which the modified algorithm

suits we report here are for the 860, since it is faster is faster than the standard algorithm is listed beside

(the clock rate is 40 MHz), has more nodes, and has the times. Notice that for a large number of pro-

more memory per node than the iPSC/2, thus allow- cessors, the standard algorithm is actually faster for

ing us to solve a wider range of problems. In fact, on some problems. This agrees with the analysis in the

a marixof sze 12 x512 12 nods o the860ran last section, since the potential savings is too smialla matrix of size 512 x 512, 128 nodes of the 860 ran t fstteoeha fmitiigteetadt

the one-sided Jacobi algorithms at over 143 Mflops. to offset the overhead of maintaining the extra data

Higher rates are attainable for larger problems. More- structure. However, for a small number of proces-

over, the core of the floating point calculations in sors, the savings in execution time can reach as high

the algorithm takes the form of inner products and as 20%.

DAXPY's (that is, y = oz + y). These have been

306

Table 3: Standard (s) vs. modified (mn) for n = 256 rithm, when a pair of columns is encountered, if el-
Tmbe 3: 400r 80 1. m d (1 fther column has been modified since their previous
p 4 s 77 1180 12023 2.08 encounter, they are assumed non-orthogonal. In tche

p=4 s 71.87 135.18 202.13 272.08 subspace decoupled algorithm, ifone column of a pair
m 57.63 114.48 171.29 229.04 to be rotated has been modified only by column.s

SA% 19.8% 15.3% 15.3% 15.8% known to lie in the orthogonal complement of the
8 s 39.38 74.16 110.95 156.74 other column, they are still presumed orthogonal.

m 33.57 66.18 98.74 132.37 The potential savings in execution time for the sub-
A% 14.8% 10.8% 11.0% 15.6% space decoupled algorithm is greater than that for

16 s 22.60 44.28 66.55 87.66 the pairwise decoupled algorithm; however, the com-
m 20.11 39.49 58.65 78.78 munication overhead required for its implementation

A% 11.0% 10.8% 11.9% 10.1% in a distributed-memory environment is prohibitive.
32 s 14.79 29.26 43.66 57.66 We are continuing to investigate the implementatioln

m 14.08 27.12 39.90 52.43 of subspace decoupling on shared-memory machines.
A% 4.8% 7.3% 8.6% 9.1%

64 s 11.45 21.68 32.23 42.50
m 12.00 21.89 32.15 38.35 References

A% -4.8% -1.0% 0.2% 9.8%
128 s 9.58 19.75 26.59 35.34 [1] M. Berry and A. II. Sameh. An overview of par-

m 10.46 21.34 27.52 36.03 allel algorithms for the singular value and dens,
A% -9.2% -8.1% -3.5% -2.0% symmetric eigenvalue problems. J. Corn pelal.

Appl Math., vol. 27, pages 191-213, 1989.

9 Conclusions [2] R. P. Brent and F. T. Luk. The solution of
singular-value and symmetric eigenvalue prob-

We have shown that the standard cyclic one-sided Ja- lems on multiprocessor arrays. SIAM J. Scr.
cobi algorithm for the computation of the SVD of a Statist. Comput., vol. 5, pages 69--84, 1985.
rectangular matrix contains a significant amount of [31 J. Demmel and K. Vesei16 .iacohi's metbod i..
unnecessary computation. This computation takes more accurate thain QR. Completer Sciecnce l)•-
the form of inner-products of column vectors known pariment Technical Report No. 468, Courant hl-
to be orthogonal. We have shown that a simple situte, 1989.
modification of the standard algorithm to incorpo-
rate a data structure that monitors such orthogonal- [4] P. J. Eberlein. On one-sided Jacobi inethods for
ity (which we call "pairwise decoupling") can yield parallel computation. SIAM J. Aig. Disc. Mc.Ith.,
a reduction in the total execution time, despite the vol. 8, pages 790-796, 1987.
overhead of maintaining and updating the data struc-
ture. [5] P. J. Eberlein. On using the one-sided Jacohi

The pairwise decoupled algorithm was imple- method on the hypercube. In N1. 1'. Heath, ed-

mented on a distributed-memory parallel computer, itor, Proc. of the Second Conference on H1yipr-
the Intel iPSC/860. The amount of reduction in the cube Multiprocessors, pages 605-611, Society for

execution time over the standard algorithm on the Industrial and Applied Mathematics, Ihliladhl-

860 ranged up to 20% of the total parallel execution phia, 1987.
time. However, many of the problems exhibited less [61 P. J. Eberlein and H. Park. Efficient inplo-
improvement than a simple calculation would indi- mentation of Jacobi algorithk.s and Jacobi sil-
cate. This discrepancy was explained by a statistical on distributed memory architectures. preprait,
model of the execution time of the parallel algorithm, 1989.
using a Monte-Carlo simulation. Results of the simu-
lation agreed remarkably well with the empirical re- [7] F. T. Luk. Computing the singular-value decoii-
suits obtained from the 860. position on the ILLIAC IV. ACM Trans. Math.

A further modification of the Jacobi algorithm was Softw., vol. 6, pages 524-539, 1980.
proposed, based upon "subspace decoupling." Sub-
space decoupling also involves a data structure to [8] IL. Park and P. J. Eberlein. Eigensystem coin-

monitor the orthogonality of pairs of columns. The putation on hypercube architectures. preprint.

difference is that in the pairwise decoupled algo- 1989.

309

[9] W. Rath. Fast Givens rotations for orthogonal
similarity transformations. Numer. Math., vol.
40, pages 47-56, 1982.

[10] P. P. M. de Rijk. A one-sided Jacobi algorithm
for computing the singular value decomposition
on a vector computer. SIAM J. Sci. Stat. Comp.,
vol. 10, pages 359-371, 1989.

(11] C. H. Romine and K. Sigmon. Reducing inner
product computation in the parallel one-sided
Jacobi algorithm. Technical Report TM-1i474,
Oak Ridge National Laboratory, 1990

[121 A. H. Sameh. On Jacobi and Jacobi-like algo-
rithms for a parallel computer. Math. Comp.,
vol. 25, pages 579-590, 1971.

[13] K. Veseli and V. Hari A note on a one-sided
Jacobi algorithm. Num. Math., to appear.

310

Basic Matrix Subprograms for Distributed Memory Systems

Anne C. Elster
Cornell University

School of Electrical Engineering
Ithaca, New York 14853

Abstract not only become easier to implement, but also become
portable. This has previously been done with success

Parallel systems are in general complicated to utilize for serial and vector machines through the Basic Lin-
efficiently. As they evolve in complezity, it hence ear Algebra Subprograms (BLAS) [4,3], which among
becomes increasingly more important to provide Ii- others [6] is based upon.
braries and language features that can spare the users The high-level algorithms may not provide op-
from the knowledge of low-level system details. Our timum performance measures, but our goal is to
effort in this direction is to develop a set of basic ma- trade, say, 5-10% performance for ease of implemen-
triz algorithms for distributed memory systems such tation and portability. Previous efforts in the same
as the hypercube. spirit include the hypercube library developed at Chr.

The goal is to be able to provide for distributed Michelsen in Norway [2] and SCHEDULE, a parallel
memory systems an environment similar to that programming environment for FORTRAN developed
which the Level-S Basic Linear Algebra Subprograms at Argonne (7].
(BLAS3) provide for the sequential and shared mem- To adhere to a familiar standard, we will attempt
ory environments. These subprograms facilitate the to follow the Level-3 BLAS (BLAS3) (3] calling se-
development of efficient and portable algorithms that quences as closely as feasible for our distributed mem-
are rich in matriz-matriz multiplication, on which ory case. Section 2 describes the BLAS in more de-
major software efforts such as LAPACK have been tail, whereas the additional parameters needed in the
built. distributed memory setting, follow in Section 3. The

To demonstrate the concept, some of these Level-3 core routine, general matrix-matrix multiplication, is
algorithms are being developed on the Intel iPSC/2 described in Section 4. Section 5 discusses the other
hypercube. Central to this effort is the General BLAS routines, rank-2k updates (symmetric case),
Matrir-Matrit Multiplication routine PGEMM. The triangular multiplication, and the solution of trian-
symmetric and triangular multiplications as well as, gular systems with multiple right hand sides, respec-
rank-2k updates (symmetric case), and the solution tively. Future work and some of the issues related to
of triangular systems with multiple right hand sides, the iPSC/2 implementation are mentioned in Section
are also discussed. 6. Finally, a summary is given in Section 7.

1 Introduction 2 The BLAS

The goal of this work is to provide a set of basic The advantages of defining a set of basic linear al-
"universal" matrix subprograms for the distributed gebra routines that higher-level linear algebra algo-
memory environment that would allow programmers rithms can be built on top of, were originally dis-
to implement algorithms rich in matrix-matrix oper- cussed by Hanson et al. back in 1979 [12]. The sub-
ations in terms of these basic subprograms. Local programs have later evolved through joint efforts by
communication primitives could hence be hidden in Dongarra et al. (5] The original routines (now dubbed
the low-level routines and the new high-level routines Level-I routines) limited themselves to vector-vector

3110-8186-2113-3/90/O0000/0311$01.00 1990 IEEE

operations, whereas the Level-2 routines [4] handle free structures [9,8] which may be introduced to min-
vector-matrix operations, and the Level-3 routines [3] imize communications costs compared to the more
explore matrix-matrix operations. conventional distributed hypercube algorithms [16,

With their low number of data touches (and hence 13]. The orthogonal structures also makes virtual
less communication needed) compared with number transposes feasible.
of arithmetic operations, the problems the BLAS3 The block-vector structure also maps well to by-
cover, prove very suitable for distributed memory percubes and meshes (through ring structures) and
computers To follow up on this familiar standard is the most common distribution of data in numer-
from the sequential and shared-memory world, we ical problems. Since the individual vectors remain
have decided to follow the BLAS3 conventions for undistributed, it is easier to keep track of the data
calling parameters wherever possible. when doing vector oriented operations.

For example, the GEneral Matrix-Matrix multi- Finally, the wrap-block-vector mapping is consid-
plication routine in BLAS3 has the following calling ered since it provides superior load balancing in for
format: several numerical algorithms [10,14]. As the standard

block-vector approach, it is implemented using a ring
structure. The extra parallel parameters (input-disir,

GEMM(TRANSA, TRANSB, M, N, K, O, A, output-disir, and network), will be added to the end
LDA, B, LDB, #, C, LDC), of the parameter list, and the routines renamed with

a P for Parallel in front of the BLAS3 name (e.g.
where TRANSA, TRANSB describes whether A or PGEMM, for standard general matrix-matrix multi-
B transposed or not; M, N, K, the matrix dimensions; plication).
a, fl, scalars; LDA, LDB, LDC, leading dimensions The most common and useful network topologies
of A, B, C, respectively. The additional parameters include hypercubes, grids (including torus), rings,
needed in the distributed setting, are appended to and trees. This list may, however, be extended as
the BLAS3 calling sequences. novel architectures take on other topologies. This

parameter is, perhaps, the only one that has to be
modified when porting code between different archi-

3 Data Distribution and Other tectures. Efficiency of the code will, however, be

Calling Parameters somewhat linked to the data structures (though the
communication bandwidth of the system is probably
of more importance). For instance, true ring topolo-

In the distributed memory case, extra parameters be- gies do not emulate grid structures, broadcast, and
yond the ones provided in the BLAS are needed for gather, as efficiently as, say, hypercubes.
specifying items such as the topology of the network Useful communication structures include rings,
assumed, the data distribution desired, and possibly trees, and meshes. Rings are commonly used in nu-
also parameters for indexing subclusters of proces- merical algorithms where operations are performed
sors. These parameters open up endless choices. We on block-vectors. They may be embedded on a hyper-will, however, restrict ourselves to some of the most cube network using all nodes by numbering the pro-
fundamental and useful ones. Many more options cessors according to I-D Gray codes. [17,1,9]. The
may be desirable, but too many choices defeat the Gray codes ensure that processors that are next to
purpose of having a few "core" routines that man- eacodes ens ure apso are nex r-

ufacturers may be willing to supply. It is the hope each other in the ring structure also achieves near-

that sometime in the future the ideas behind the neighbor communication between physical hypercube
nodes. This embedding also includes a spanning tree

routines not only provide a standard for parallel li- (Figure 1).

brary builders, but that optimized routines also be-

come standard parts of future languages or operating Meshes (including toroidal connections) may sim-
system kernels, ilarly be embedded on hypercubes using 2-D Gray

Our data distribution choices are: block- codes. This embedding includes a set of orthog-

submatrix, block-vector, and wrap- block-vector. onal tree structures [9]. Whereas tree structures

Block-submatrix distributions facilitates orthogonal provide efficient structures for broadcast and gather

312

(both processor-row/column-wise and network-wide), On a torus, computing the the products aikbkj us-
grids - perhaps the most common parallel network - ing block-submatrix distributions, can be achieved by
are well-suited for block-submatrix data distributions rotating the distributed B matrix east-west through
which are common in applications such as image ans the processor plane as the appropriate data reaches
seismic processing. the processors. Orthogonal structures may then be

used to gather the summations. These structures will
also be used for the AT BT, AT B and ABT cases.

Similarly, in a ring setting, whole block-vectors are
rotated left-right on a ring instead of the submatrices

0 1 3 2 6 7 5 4 for a mesh in the summation phase. Notice that the
ring structure mapping also provides a binary tree
structure when implemented using the binary reflec-
tive Gray code. This allows for efficient broadcasts
and gatherings of data.

For ATB and ABT, which matrix (A or B) to ro-
tate through the processors in order to avoid stride

(Same as Ring Connection) problems, depends on the storage convention of the
matrices. Finally, in the ATBT case, the data needs
to be "transposed" in order to compute the products

Figure 1. Ring embedding hypercube using bi- aikbki. The data may also need to be reordered lo-

nary reflective Gray code. Tree structure for broad- cally to avoid stride problems.

cast/gather also shown. If one of the matrices A or B is symmetric, then,
either A = AT or B = BT. These cases can hence
be viewed as the ATB and ABT cases described

4 Parallel Matrix-Matrix Mul- in the previous section. We are here assuming that
compressing the storage of symmetric matrices is not

tiplication worth while a the distributed memory setting. Al-
though more costly in storage, the cost in increased

The general matrix-matrix multiplication routines algorithmic complexity seems to outweight the bene-
(GEMMs) are the core of the BLAS-3 library. For fits. Also, in the block-submatrix case one would not
real matrices A, B, and C (a and /3 are scalars), the be able to take full advantage of the orthogonality
operations can be described as follows: of the hypercube structure if storage compression is

used.
C i- aAB + OC, where where A and/or B may

be transposed.

The scalar multiplication (a, 3) may simply be per-
formed by broadcasting the scalar value(s) to each 5 Other BLAS Routines
node and then perform the scaling locally. We shall,
however, assume that the scalars a and 3 = 1 in
our discussion for simplicity. Their computation will Following a brief discussion of how the distributed
also not be affected by the data distribution (block- memory setting will affect the rest of the BLAS rou-
column or submatrix-block). A discussion of the ma- tines.
trix product AB follows. Note, that the matrix ad-
dition included in the matrix operations above, gets
performed along with the multiplication as the result
gets added in during the accumulation of the summa- 5.1 Rank-2k Updates of a Symmetric
tion of Zaikbkj. Matrix

Of the four BLAS permutations allowed through
the TRANSA and TRANSB options (see last sec- We here consider the following updates of a symmet-
tion), we will first take a closer look at the AB case. ric matrix C covered by the BLAS3:

313

Here a is a scalar, B E Kmxn , and T a non-singular
C - aABT + aBAT + #3C triangular matrix. Notice how both the inverse (T- 1)

C ,- aATB + aBTA + P9C and inverse transpose (T-T) cases are considered for
T providing both the upper and the lower triangular

The Rank-lk cases are covered by the general cases.
matrix-matrix multiplication routines. In the case Since triangular solves involve either forward or
of the rank-2k updates of symmetric matrices, all backward substitution (both inherently sequential
matrix-matrix products are of the form ATB or operation), parallelization is not as straight-forward
AB T , which, as mentioned, does not require trans- as in the multiplication cases. However, decent par-
positions. Notice that since ABT - (BAT)T and allelization can be achieved by using a "pipelined"
ATB = (BTA)T, only one of the products needs to approach, as described by [14], where the data is
be computed and the remainder of the computation mapped to a ring structure. In this case, a wrap-
reduces to matrix additions (with scaling with a and block-vector data distribution since it provides a bet-

ter processor utilization in the factorization stage
[10].

5.2 Triangular Matrix Multiplication It was recently shown that these other BLAS-3

subprograms can actually be implemented in terms
We here consider permutations of multiplying the of GEMM, at least in the sequential setting [15]
dense matrix B with a triangular matrix T: with reasonable efficiency. This would be desirable

in the parallel setting as well, since it would reduce
B ,- aTB, where T and/or B may be transposed. the machine-depended encodings to that of PGEMM.

Futher investigations of this idea are currently under
Notice that if one considers T upper triangular, then considerations.
the TT case would represent the lower triangular case
and vice versa.

Triangular matrix multiplication may easily be 6 Some Implementation Issues
performed redistributing only data from T. In the and Future Work
ring/block-vector case, the two first multiplications
(TB and TTB) may be comptted rather straight- The Intel iPSC/2 hypercube is currently being used
forwardly (with respect to communication) since the as a test-bed for implementing the PBLAS routines.
B matrix already is distributed in the same block- The ideas behind the routines are not ment to limit
column fashion as used for the general multiplica- themselves to the Intel cube or its topology , but
tion case. For BT and BTT, however, the matrix B the Intel machine is rather used as test environment
is distributed in a block-column fashion whereas the for how the PBLAS may be developed f r common
general method assumes a row-wise access. In this distributed memory systems. As mentioned, It is our
case, redistributing T would hence not be sufficient, hope that the PBLAS can become a standard for how

core matrix algorithms are developed.

5.3 Triangular Systems with Multiple We chose to implement our routine. in C. Fortan

Right-Hand Sides may seem, to many, the most natural language to
implement matrix algorithms in. However, C, with

In this section, orthogonal data structures are intro- its powerful pointer constructs for dynamic memory
duced in the context of solving some basic linear sys- allocation and strong link to UNIX, is rapidly becom-
tems. First, triangular systems with multiple right- ing more popular. Since we wanted to use some of the

hand sides will be considered: C pointer features in the implementation, it became
a natural choice. C also interfaces well with Fortran

B 4--aT-1B and is along with Fortran 77 available in the Intel
B - aT-TB hypercube. (Fortran 90 may provide similar features,

B -- aBT- 1 but is yet not available for the Intel cube.)

B - aBT-T At the present, PGEMM has been partially imple-

314

mented. Current work includes completing most of Cae = C_me + A-me * BEae,me
the PGEMM cases (transpose of A and B, various
data distributions, etc - see Section 3), benchmark- Following the MATLAB notation as described in

ing it, and developing some examples of application. Golub-Van Loan [Il]) we here have (all local sub-

Future work includes the implementation of some of blocks):
the other PBLAS routines cases (quite probably with C-ue = CCI:n(me-l)r:me * r]
call to PGEMM). Since out goal is to demonstrate A-me = AE1:n,(me-I)r:me * r]
the concepts rather than provide production code, B-m..m* = B[(me-1)r:me * rl:rJ
we will, for now limit ourselves to a couple of core
cases rather than provide a full PBLAS implementa- (numnode = no. of nodes in cube (ring))
tion for the Intel hypercube (left as future work for
people providing production code). A-tap = A-me

6.1 PGEMM on the hypercube FOR p = I to numnodes
SEND I-tap to left-neighb

Taking a closer look at the case C -- C + A B in a RCV A-tmp from right-neighb

ring setting, we decided to store the matrices on the C-me = C-ae + A-tap*B-x,me

nodes in one-dimensional arrays. These are then used (X is a function of numnodes and p corresponding to
directly as message-buffers during the communication the above equation)
phases saving valuable storage space and copy-time.
To emulate 2-dimensional array index, index func- Leave result on nodes or SEND to host.
tions where defined: including the leading dimension
of the respective matrix (LDX): END{PGE1M}

Indexing function for A, B and C :ThIsindexing function assumetore AOther cases will be described in future work along
This indexing function assumes matrices stored-by- with a discussion on how to access submatrices (leav-
column starting at array location A[1] (FORTRAN- ing some processor idle rather than redistributing
type). data).

#define AINDEX(X,LDX,i,j) \
XE(j-I)*LDX + i2 7 Conclusions

The block-column version of C +- C + A- B can be
described by the following equation for block-vector In this paper, a basic set of linear algebra algorithms
C,: in the spirit of BLAS [4,31 were proposed to form

Ci = A1 Bjj + A2 B21 + ... + ApBpi, for ij = 1 : p, a basis for algorithmic development also in the dis-
tributed memory environment.

where p is the number ot block-vectors (n = r.- p, tiue eoyevrnet
where r is block-width). Extra parameters needed for the parallel environ-

ment were identified and added to the BLAS3 calling

Assuming a ring embedding using the Binary Re- sequences. These parameters included a parameter
flective Gray Code [17], the above equation leads to to describe the network topology and parameters for
the algorithm: specifying the input and output distribution of the

PGEKN data. Powerful communication structures (such as
the orthogonal data structures involving trees and

Let me = position in ring meshes) could then be hidden within the routines
sparing the users from hardware details.

(As in the equation above where node i holds Ci and It is the hope that sometime in the future the ideas
Ai locally. Also reflects which part of the matrices behind these routines not only will provide a stan-
are stored locally.) dard for parallel library builders, but that similar op-

timized routines also become standard parts of future
Compute on local data: languages or operating system kernels.

315

Acknowledgments The Fourth Conference on Hypercubes, Concur-
rent Computers, and Applications. AMC, March

The author would like to thank Charles F. Van Loan, 1989. - to appear.
her thesis advisor, for his helpful suggestions and sup- [9] A.C. Elster and A.P. Reeves. Block-matrix Op-
port. Thanks are also due the Cornell Theory Center erations Using Orthogonal Trees. In G. Fox,
for providing access to their 32-node Intel IPSC/2 editor, The Third Conference on Hypercube
hypercube system. Concurrent Computers and Applications, pages

This research is supported in part by the U.S. Army 1554-1561, Pasadena, CA, January 1988. ACM.
Research Office through the Mathematical Sciences Vol. H1.
Institute, Cornell University. [10] G.A. Geist and M.T. Heath. Matrix Factoriza-

tion on a Hypercube Multiprocessor. Hypercube

References Multiprocessors 1986, pages 161-180, 1986.

[11] G.H. Golub and C.F. Van Loan. Matriz Compu-
[1] R.M. Chamberlain. Gray codes, Fast Fourier tations. Johns Hopkins, Baltimore, MD, second

Transforms and Hypercubes. Technical Report edition, 1989.
864502-1, Chr. Michelsen Institute, Bergen, Nor-
way, May 1986. [121 R. Hanson, D. Kincaid, F. Krogh, and C. Law-

son. Basic Linear Algebra Subprograms for For-
[2] R.M. Chamberlain, P.O. Frederickson, J. Lind- tan Usage. ACM Transaction on Math. Soft-

heim, and J. Petersen. A High-Level Library for ware, 5:153-165, 1979.
Hypercubes. Hypercube Multiprocessors 1987,
pages 651-655, 1987. [13] S.L. Johnsson. Communication Efficient Basic

Linear Algebra Computations on Hypercube Ar-
[3] J.J. Dongarra, J. Du Croz, I.S. Duff, and chitectures. Journal of Parallel and Distributed

S. Hammarling. A Set of Level 3 Basic Lin- Computing, 4:133-172, 1987.
ear Algebra Subprograms. Technical Report
AERE R 13297, Harwell Laboratory, Oxford- [14] G. Li and T.F. Coleman. A New Method
shire, England, October 1988. Also ANL:TM for Solving Triangular Systems on a Dis-
88 and NaG:TR 14/88. tributed Memory Message-Passing Multipro-

cessor. SIAM Journal of Sci. Stat. Comp.,
[4] J.J. Dongarra, J. Du Croz, S. Hammarling, and 10(2):382-396, March 1989.

R.J. Hanson. An Extended Set of Fortran Basic
Linear Algebra Subprograms. ACM Trans. on [15] C.F. Van Loan and B. Khgstr5m. Poor-Man's
Mathematical Software, 14:1-17, 1988. BLAS for Shared Memory Systems. preliminary

version through personal communications.[5] 3.3. Dongarra and S.3. llammarling. Evolution

of Numerical Software for Dense Linear Algebra. [16] O.A. McBryan and E.F. Van de Velde. Matrix
In M.G. Cox and S.J. Hammarling, editors, Ad- and Vector Operations on Hypercube Parallel
vances in Reliable Numerical Computation, Nor- Processors. Parallel Computing, 5(1 & 2):117-
folk, VA. - to be published. 125, July 1987.

[6] J.J. Dongarra, C.B. Moler, J.R. Bunch, and [17] J. Salmon. Binary Gray Codes and the Mapping
G.W. Stewart. LINPACK User's Guide. SIAM, of Physical Lattice into a Hypercube. Caltech
Philadelphia, 1979. Concurrent Processor Report Hm-51, Caltech,

1983.
[7] J.J. Dongarra and D.C. Sorensen. A Portable

Environment for Developing Parallel FORTRAN
programs. Parallel Computing, 5(1&2):175-186,
July 1987.

[8] A.C. Elster and H. Li. Hypercube Algorithms
on the Polymorphic Torus. In G. Fox, editor,

316

Linear Algebra for Dense Matrices on a Hypercube *

Mark P. Sears

Sandia National Laboratories
Albuquerque, NM 87185

algebra software with good performance. This was
Abstract the object of the work presented here.

The NCITBE/6400 hypercube can be configured

A set of routines has been written for dense ma- with up to 8192 processors (nodes). Sandia cur-

trix operations optimized for the NCUBE/6400 par- rently has two of these systems, one with 8 nodes

allel processor. This work was motivated by a San- and 4MB of memory per node and the other with

dia effort to parallelize certain electronic structure 128 nodes with 1MB of memory per node. The latter

calculations [1]. Routines are included for matrix system is being upgraded to 1024 nodes with 4MB

transpose, multiply, Cholesky decomposition, trian- per node. The NCUBE/6400 uses a second gen-

gular inversion, and Householder tridiagonalization. eration NCUBE CPU chip that has some architec-

The library is written in C and is callable from For- tural differences with the NCUBE/ten CPU chips.

tran. Matrices up to order 1600 can be handled on The measured floating point and communications

128 processors. For each operation, the algorithm parameters of the new NCUBE are described below.

used is presented along with typical timings and es- We use the notation NCUBE-II to refer to this pro-

timates of performance. Performance for order 1600 cessor with the initial software release, clock cycle

on 128 processors varies from 42 MFLOPs (House- time (20MHz), and memory wait states. Later ver-

holder tridiagonalization, triangular inverse) up to sions of the 'NCUBE/6400' might be released with

126 MFLOPs (matrix multiply). We also present rather different properties. We also use the notation
performance results for communications and basic NCUBE-I to refer to processors of the NCUBE/ten

linear algebra operations (saxpy and dot products). and other first generation NCUBE systems.
In the following, we present results for the basic

floating point and communications performance of
Introduction. the NCUBE-II. We then describe the basic opera-

tions such as transpose, mapping, and matrix mul-
This paper describes the implementation of rou- tiply. The performance of the Cholesky factoriza-

tines for dense linear algebra on the NCUBE/6400 tion and inverse of a triangular matrix are presented
hypercube. The primary purpose of these routines next, followed by the results for Householder tridi-
is for electronic structure calculations, and empha- agonalization.
sis has been placed on routines for the generalized
symmetric eigenvalue problem, although we intend
to add routines for linear solutions and SVD. NCUB.•,-II floating point and

A coarse-grain MIMD machine such as the communications parameters.
NCUBE might not be expected to perform partic-
ularly well on linear algebra problems when com- Linear algebra software relies heavily on a few
pared with SIMD machines (e.g. the Connection simple kernels [2] and it is important to optimize
Machine) or vector machines like the CRAY-XMP these carefully for a particular machine architecture.
and its successorn. However, electronic structure The NCUBF-11 has a simple memory hierarchy [4]
programs spend most of their time computing ma- with only main memory and an instruction cache.
trix elements, a task which is very well suited to There are no vector instructions or vector registers.
the MIMD architecture. In order to retain this ad- The C compiler is capable of using only a small num-
vantage, it is important to have a library of linear ber of registers for inner loops and only if explicitly

*This work was performed at Sandia National Laborato- assigned by the user. We therefore chose not to im-

ries which is operated for the U.S. Department of Energy plement any level-2 or level-3 BLAS operations.
under contract number DE-ACO4-76DP00789. Table 1 shows timing results for dot product and

317
0-8186-2113-3/9010000/0317$01.00 01990 IEEE

Table 1: Measured floating point times for dot prod- Table 2: NCUBE-II floating point and communica-
ucts and saxpy operations on a single NCUBE-11 tions parameters. All times are in microseconds.
processor. Times are in microseconds per step for a
vector length of 100. The labels r4,r8 refer to single Single precision flop time rf .84

precision real, double precision real, and c4,c8 refer Double precision flop time r! .77
to single precision complex, double precision corn- Message startup time, rT 151
plex. Single precision is 4 byte IEEE floating point Message time/byte, rc .37
and double precision is 8 byte IEEE floating point.

Function Time/step MFLOPs
dotr4 1.66 1.20 measurement does not distinguish between times for
dot,r4 1.74 1.10 message read and message write, so we take r. = a/2
dot,r8 1.74 1.15 and rc = b/2.
dot,c4 6.13 1.31

dotc8 5.21 1.54 Table 2 summaries the measured floating point

saxpy,r4 1.77 1.13 r! and communicatio i parameters for the NCUBF-

saxpyr8 1.66 1.20 II. Note the rý 'ier '_rge value r. relative to rT or

saxpy,c4 7.06 1.13 r, Independent measurements using Fortran give

saxpy,c8 6.26 1.28 r. = 200 and r, = .4 [51.

Matrix organization.

saxpy operations. The single precision dot product All of the routines described here allocate entire
routine accumulates the result in double precision, columns of the matrix to the processors. Routines
and requires 2 flops and 2 memory references per are provided to map between different matrix orga-
loop step, plus a single to double conversion. The nizations (columns blocked or wrapped, and either
saxpy operation requires 2 flops and 3 memory refer- binary or Gray-code imbedding). Thus, algorithms
ences per step. The saxpy operations are therefore which use any of these organizations can be imple-
a little faster than one might expect based on the mented.
number of memory references. The complex ver- An alternative to column organization is mesh or-
sions of these operations require 8 flops per step. ganization, where the matrix is imbedded in a 2D
Using these loops we can define a floating point op- mesh of processors. Routines have been written to
eration time rf which is an average of the dot or map between column and mesh organizations, but
saxpy times. none of the algorithms presented here use mesh or-

The kernel routines are written in C, with several ganizations.
optimizations which contribute significantly to the
speed. Registers are carefully assigned to loop in-
dices and pointers. Pointer arithmetic is used rather Basic matrix routines.
than array references. The loops are decremented
(n to 1) rather than incremented. There is some Basic routines include matrix setup, mapping rou-loop unrolling. These optimizations generally give tines, matrix transpose, matrix norms, and user
aoop seupofli2-3 tiese opthmizatiofnaivenode.y We e functions (i.e., apply a user defined function to alla speedup of 2-3 tim es that of naive code. W e es- ee e t f t e m ti) i i g o h a p ntimate that future compiler optimimizations and/or elements of the matrix). Timings for the mapping
timassel tadg futuresompler outinesmay ie impand/oro routines are shown in Table 3 for a matrix of sizeassembly c 05ding of these routines may give improve- 1500 on 64 processors. These routines have a typi-
ments of 20%-50%. We note that these C routines clcmlxt fn o I hr stemti
are about 12 times faster than hand coded assembler cal complexity of P 2 log P/P where n is the matrixversions written for the NCUBE_,-!. order and P is the number of processors [6].

Wersions havtten alor measued the cThe matrix transpose has a complexity similar toW e have also m easu red the com m unication pa- th ab v ro in s T m e a e .4 s c nd f r n =
rameters rT for startup time and r, for transfer time the above routines. Times are .48 seconds for n 5 =per yte Thi isdonewit a pogrm whch uns 1024, P = 64 and 1.04 seconds for rn = 1500, P = 64.per byte. This is done with a program which runs

on a pair of nodes which exchange a large number of
messages. Different tests varied the length I of the Matrix multiply.
messages from I to 1000 bytes and the results were
fitted to an expression of the form T = a + lb. Devi- Matrix multiply is implemented as a matrix trans-
ations from the straight line fit were about 5%. The pose followed by column-wise dot products. The

318

Table 3: Timings in seconds for mapping routines. Table 5: Timings in seconds for Cholesky factor-
N refers to natural or binary processor ordering, G ization and triangular inverse. MFLOPs follow in
refers to Gray-code processor ordering, B refers to parentheses and are computed from the serial corn-
columns blocked, and W refers to columns wrapped. plexity of the algorithms, n3 /3 in both cases.
Timings are for 64 processors and matrix size 1500
by 1500. Cholesky factorization.

N P=64 P=128
N, B N, W G, B G, W 128 .15 (4.7) .14 (5.0)

N, B - .42 .041 .8 256 .46 (12.) .40 (14.)
N, W .42 - .78 .001 512 1.87 (24) 1.45 (30)
G, B .041 .78 - 1.2 1024 9.38 (38) 6.45 (56)
G, W .8 .001 1.2 - 1300 17.2 (43) 11.4 (64.2)

1600 18.7 (73)
Triangular inverse.

Table 4: Timings in seconds for matrix multiply. N P=64 P=128
MFLOP rates follow in parentheses and are corn- 128 .10 (7.0) .09 (7.8)
puted from the serial complexity of the algorithm, 256 .41 (14) .27 (21)
2n, flops. 512 2.37 (19) 1.38 (32)

1024 16.25(22) 8.81 (41)
N P=64 P=128 1300 33.4 (22) 18.5 (39.5)
128 .15 (27) .11 (36) 1600 - 32.4 (42)
256 .72 (44) .45 (71)
512 4.70 (57) 2.63 (102)
1024 32.9 (65) 17.37 (123)1300 68.0 (65) 37.42 (117) angular inverse algorithm begins at the last column1600 6. 64.8 (126) by computing a small amount and then sending alarge column to the left. Therefore, without sychro-

nization, the buffer memory of a node down the ring
quickly fills up and the software does not recover

multiply algorithm uses a (Gray,block) organization from this state. A simple fix is to synchronize each
and calls the mapping routine if necessary. The left stage of the ring after some number of bytes (chosen
hand factor is transposed and cycled around the to be a fraction of the available buffer memory) have
imbedded ring of processors. Table 4 shows tim- been passed.
ings and MFLOP rates for P = 64 and P = 128 for Table 5 summarizes the timing results for
various matrix sizes. Cholesky factorization and triangular inverse.

Cholesky factorization and triangular Householder tridiagonalization.
inverse.

Unlike Householder orthogonalization, House-
The Cholesky factorization algorithm is similar to holder tridiagonalization cannot be pipelined [7].

that of Geist, et al. [8]. The algorithm implemented This forces the use of broadcast communications.
here computes the factorization A = UT U where U Moreover, there is a significant serial component to
is upper triangular; it is therefore a column version the algorithm. The algorithm proceeds as follows.
of Geist's row algorithm. The (Gray,wrap) mapping The matrix is distributed using the (natural, block)
is used. mapping. For c = I to n - 2 we then execute the

In contrast to Cholesky factorization, the algo- following:
rithm to compute the inverse of a triangular ma-
trix uses a (Gray,block) mapping. The wrap version 1. On the processor containing column c, compute
of this algorithm incurs very large communication the Householder vector u. This requires about
costs. Even the block version must be modified to 3i flops, where i = n - c - 1, so the time for
prevent the message traffic along the imbedded ring step 1 is T1 = 2nrf. This is part of the serial
from clogging up. The NCUBE software provides overhead.
buffered asynchronous communications, and the tri-

319

2. Broadcast u to all processors. This takes time Table 6: Timings in seconds for Householder tridi-
21og(P)(ro + 4irc) for each step, so T72 =2n log(P)(Tr + 2nrf). agonalization. MFLOPs follow in parentheses andare computed from the serial complexity of the al-

3. Compute w = Au in parallel. Each processor gorithm, !n 3 flops.
computes its share of w using its share of the
columns of A. The total time for this step is N P=64 P=128
T3 = 2nal3 f/P. 128 .414 (6.7) 1.06 (2.6)

3 256 2.88 (7.3) 2.80 (7.5)
4. Compute the inner product of u with u and 512 11.47 (16) 9.28 (19)

u with w. The calculation time for this is 1024 61.8 (23) 41. (35)
small, but the results must be exchanged among 1600 - 128. (43)
all processors. The time is therefore T4 -
2n log(P)r0 .

5. Combine q = au +jfw where a and ft are com- The results for up to 128 processors are encourag-
puted from the inner products above. The cal- ing; for n = 1600 we get performance varying from
culation is done in parallel and is small, but the 42 MFLOPs (Householder tridiagonalization, trian-
resulting q must be combined on all nodes. The gular inverse) up to 126 MFLOPs (matrix multi-
time for this is T5 = 2n log(P)(ro + 2nr,). ply). These results are encouraging for our elec-

6. Compute A(c+') = A(W) + uqT + qu T in paral- tronic structure calculations.

lel. The time for this is 7T6 = -4na•'/P if no
advantage is taken of symmetry. References

Summing the contributions for n - 2 columns, the [1] P. Feibelman, Efficient solution of Poisson's equation in
linear combination of atomic orbital (LCAO) electronic

total time is structure calculations. J. Chein. Phys 1..,12, pp 5864-

3 +3
5872.

77 = ([2] C. Lawson, R. Hanson, D. Kincaid, F. Krogh, Basic Lin-

ear Algebra Subprograms for Fortran Usage. ACM Trans.
for single precision floating point, where we have Math. Soft. §,3, pp 308-323.

kept only the leading terms. Using this expression [31 G. Golub, C. Van Loan, Matrix Computations, (Johns

and the parameters from Table 2, we obtain 11.36 Hopkins University Press, Baltimore, MD, 1989).

seconds for n = 512, P = 64 and 54.6 seconds for
n = 1024, P = 64. The actual results are shown in [4] The NCUBE 6400 Processor Manual, NCUBE, Beaver-

Table 6; agreement is good. The biggest part of the ton, OR, 1989.

overhead is due to communications. A fairly sim- [5] S. Plimpton, private communication.
pie modification of the above algorithm reduces the [6] C. Ho and S. Lennart Johnsson, Matrix Transposition on

terms proportional to log(P) by a factor of 2. This Boolean n-cube Configured Ensemble Architectures. Yale

is done by running the algorithm backwards from University report YALEU/DCS/TR-494 1986.
c = n to 2 and collapsing the broadcast and com-bine operations to smaller subcubes as the calcula- [7] J. Dongarra and D. Sorensen, A Fully Parallel Algorithm

for the Symmetric Eigenvalue Problem.
tion progresses. This modification has been tested
on the NCUBE-I but has not yet been implemented [81 G. Geist and M. Heath, Matrix Factorizationon a Hyper-
on the NCUBE-II. cube Multiprocessor. Hypercube Multiprocessors 1986, pp

161-180.

Conclusions.

This paper has presented algorithms and per-
formance for a library of dense matrix linear al-
gebra routines. The library is optimized for the
NCUBE/6400, a new-generation A.MD hypercube.
Performance for dot products and saxpy operations
varies from 1.1 to 1.5 MFLOPs on a single node.

320

The Fifth Distributed Memory

Computing Conference

j12.2: Sparse Matrix Algor"ithm,

Incremental Condition Estimator for Parallel Sparse Matrix Factorizations

Jesse L. Barlow* and Udaya B. Vemulapatit
Department of Computer Science

The Pennsylvania State University
University Park, PA 16802.

Abstract However, when we consider solving these problems
There is often a trade-off between preserving spar- on a parallel architectures, most of the traditional
sity and numerical stability in sparse matrix factor- approaches fail to be cost effective, especially when

izations. In applications like the direct solution of large and sparse matrices are involved.

Equality Constrained Least Squares problem, the ac- In this paper, we propose an incremental condition
curate detection of the rank of a large and sparse con- estimator, which is quite reliable and is well suited for
straint matrix is a key issue. Column pivoting is not parallel sparse matrix QR factorizations. In section
suitable for distributed memory machines because it 2, we examine the reasons for the failure of traditional
forces the program into a lock-step mode, preventing methods when applied to our problem. In section 3

any overlapping of computations. So factorization al- we discuss the issues in the effective implementation
gorithms on such machines need to use a reliable, yet of solving our problem on a parallel architecture. In
inexpensive incremental condition estimator to decide section 4, we describe the an algorithm that allows

on which columns to be included. We describe an in- us to incrementally estimate the condition number

cremental condition estimator that can be used during of the triangular factor during the factorization. In
a sparse QR factorization. We show that it is quite re- section 5, we discuss the implementation issues on

liable and is well suited for use on parallel machines. a parallel architecture and provide experimental re-

We supply experimental results to support its effec- suits. In section 6, we provide experimental evidence
tiveness as well as suitability for parallel architectures. that suggests that the algorithm is robust enough.

1. Introduction 2. Failure of Traditional Methods

The general strategy for doing a QR factorization of
Choosing a set of linearly independent columns from a sparse matrix C is [6]
a given matrix, within a tolerance of machine preci- 1. Determine the symbolic structure of CTC.
sion, is a common subproblem, among problems in-
volving matrix computations. Subtle variations of 2. Using a heuristic approach, find a permutation
the same problem are "rank detection" and "condi- matrix P, such that pTCTCP has a sparse
tion estimation". cholesky factor.

Traditional methods of rank detection for dense
matrices include QR factorization with column piv- 3. Generate the storage structure for R by doing a
oting [9], Singular Value Decomposition [9] and a symbolic factorization of pTCTCP.
host of condition estimators [11], the most popular 4. Compute R numerically.
among them being the LINPACK 1-norm estimator.
Threshold pivoting [10] strategy is often used in the Although it is known that finding a permutation in
case of sparse matrices, step 2, that produces an optimally sparse Cholesky

factor is a hard problem (in fact NP-hard), many
*Research supported by the National Science Foundation good heuristic approaches such as minimum degree

under grant no. CCR-8700172, the Air Force Office of Scien- and nested dissection give us fill-reducing orderings
tific Research under grant no. AFOSR-88-0161, and the Office [7]. This approach of determining the data structures
of Naval Research under grant no. N0014-80-0517.

t Research supported by the Office of Naval Research under required for the R factor before the actual factoriza-
grant no. N00024-85-C-6041. tion (in other words a static data structure) has some

0-8186-2113-3/90/O000/0322$01.00 01990 IEEE

advantages, compared to dynamically set up storage fact, actual ic(D) s a0).
structures during the factorization. The accessing of
the elements in a static set up is faster and hence I a 0 ..." 0
the factorization step is likely to be faster. Since the 1 a ... 0
static structure does not depend on the numerical D = 0 "'. a 0
values of the original matrix C, the cost involved in 0 ... 1 a
steps 1-3 can be spread over a number of factoriza- ... 0
tions if repeated computations of R are required with
different numerical values of C. If we use static data structures, during the factor-

Most of the known algorithms for rank detection ization, we are only allowed to look at each column
(or condition estimation) are neither cost effective only once in a given sequence and we should be able
nor appropriate for sparse matrix applications. Most to determine whether a new column is linearly in-
of the estimators, surveyed by Higham [11], require dependent of the others already chosen to be in the
O(n 2) units of computation time. This is too expen- factor. This translates to checking whether the re-
sive for sparse matrices, considering that the factor- sulting upper triangular factor is going to be well

ization of a sparse matrix itself requires only O(n 1 5). conditioned.
The QR factorization with column pivoting upsets To this end, Bischof [3] describes an incremental
the sparsity pattern, because the column ordering estimator for the smallest singular value, which is
chosen in step 2 is not used. Moreover the pivoting a modified 2-norm condition estimator suggested by
process requires us to use a dynamic data structure Cline, Conn and Van Loan [4,13]. However this al-
for R. Singular Value Decomposition is too expensive gorithm has two serious drawbacks when it comes
for practical use, even though it is the most accurate to sparse matrices. Firstly the es.'mator requires n2

algorithm for rank detection. flops during the triangularization of an n x n matrix.
Secondly, its estimate of the smallest singular value
differs arbitrarily from the actual value, for matrices

3. Issues in Parallel Factorization with special structure. In particular, if the new row
being added is orthogonal to the current approximate

In this paper, we limit our discussion to distributed singular vector, then the estimate is likely to be very

memory machines, such as Hypercubes, while talking poor. As an example, consider the following 3 x 3

about parallel architectures. If we want to implement matrix.
the factorization in parallel, we need to re-examine 0 01
the validity of the traditional methods on such ma- D 12 1 0

chines. The column pivoting algorithm requires that ft -& 2

the processors have to synchronize to select the next For a specific value of w = 1 - V2, the estimate of
pivot column. This introduces not only delays due to the smallest singular value from Bischof's algorithm
communication overheads but also forces the program is 1, independent of /, while the actual 2-norm of
into a lock-step mode, leaving no room for pipelining D - 2. We are able to construct such trivial 3 x
and / or overlapping of computations. As was ob- 3 examples, because there is no look-ahead in the
served already, any pivoting process results in more estimation algorithm.
fill-in and hence more computation time. Recently Bischof, Lewis and Pierce [2] extended

Dynamic data structures are not easy to distribute the original algorithm to handle the case of general
in a local-memory environment ; even if we manage matrices and showed how this modified approach can
to do that, keeping track of the current state of the be used for nested dissection case.
structure among all processors is not an easy task.
Hence we consider using static data structures. The
threshold strategy described by Heath [10] and imple- 4. Incremental Condition Estimation
mented in SPARISPAK-B [8] allows to deal with the
static data structures for most of the computations. The proposed algorithm is an "incremental oo-norm"
Even though empirical tests show that this strategy estimator that uses look-ahead. It is a modification
rarely fails in practice, dramatic failures in rank de- of LINPACK 1-norm estimator for upper triangular
tection are possible in some cases. A simple exam- matrices [5]. The algorithm looks at each column just
pIe is the following bidiagonal matrix, which will be once and decides whether to include that column in
considered full rank matrix for any value of a, even the factorization or not. It does that by incrementally
though D could be arbitrarily ill-conditioned. (In estimating the oo-norm of the inverse of the partially

323

formed upper triangular factor. There is no column To incorporate a "look-ahead", we consider the
pivoting and hence static data structures can be used. partial sums

We are interested in computing a QR factorization r (k) 1r X(k) I
of the matrix C, with accurate rank detection, so that + = T + and = Z;+ +
the factored matrix has the following form I L t;+ L J

C=Q[FU11 p-12] where
= 0 u "+ = U1+4 1(i2- v4 z(k))

and
Define the sequence of upper triangular matTices T= - v+iz(k))

0•k), k =1,2,... , by
and

U(1) - (u 11) where u1i = Iici1 12 v j , -J

is the jth column of C after H1 ,H 2 , ... ,1-k are ap-
and plied. Note that the last entry of vj is not known

U -([- VI lk+) until after we use column k to form Hm . The Pj can
1 0 7 k+] be accumulated through out the computation. For

where Weights t1 , t2,...,i > 0, we then examine
= (k) ((k)..(k)T, nVk+1 = , l,k+ l k,k+ , (+ = • +I EZ. tj+

C =J (C (k) +1(... c kM)T j=k+Tk , 1,k-I1 M, • lk+1l

is the (k + 1)st column of C after H 1 ,H 2 ,..., H, are andn
applied and i-t=;1 1 + E tj1p-

j=k+l
I IC(k) (k),~

ytk+1 II (Ck+1,).Cm,k+) 112 and choose

.. Ic~~ ,,k j •(k+1) = (X(k), tk-.1)T= V11tC•+11P2- ll,•+1fi
or

Let X(k+l) = (X(k), t-+I)T

L(k) - [U~k)IT according to whether C+ or (- is larger. The choice

and of weights is heuristic. LINPACK chooses tj= u-1

)- 1 However, we have not computed uj,j at this point.
So we choose tj =•"y

&I = 1/Uil = 1/Ic1C112 = 1/71. We now explain how this can be used in column

To choose the (k + I)st column, we let x(k) be such selection. Our algorithm performs the condition es-
that timator on the most recently formed diagonal block

L(k)x(k) = a(k) C,, until

where a(k) is a vector of ±1, chosen to maximize 1. it finds a zero diagonal

IIx(k+l)Ik•. Then compute 2. the estimate of IIC, 1lI exceeds c- 1 where c is a
predefined tolerance and is usually O(p), p being

x(k+1) __ (x(k), k+l)T the machine precision.

where In both cases, we restart the condition estimator
with all p, = 0 (implicitly) and then begin form-

S-k- vT-+l(k))• ing Ci+i,i+i. Of course, in case 2, we must find a

Thus dependent column in C,,. To do this, we solve

C,1 h = ek.
Ck+1 -- max{tbk, I•+iI } = IIX(k+l)lHoo•

Let P be the index such that

This procedure is precisely the LINPACK estimator = max IhjI.
without the "look-ahead" property.

324

And we delete the column v from Cii and re-
triangularize the new matrix by a sequence of Given's
rotations. The general idea of the algorithm is de- Solve Ciih = (0,0 ... ,.)T.

tailed below. Let Ih1,J = max(jhi)

* c p is a tolerance f ./* Break ties arbitrarily in choosing
/n factor. the maximum element */
c'l) denotes the 1h row of C. */ Move the column v to the last column of C,,
1,-0 and re-triangularize Cii.
done .-- false firstl i-- 1
k - 1 firstk .- 1
firstk 1 P... 0 /* starting over a new block */
firstl +- 1 endif
qi 4i, i 1,2 n endif
pi 0",i= 1,2 n k •--k + I
y - C,12, i = 1,2 n done -- (1 > m, or k > n)
a +-0 endwhile
while not done do

7-- l(-sign(pj) - Opk)

& 4--max{a, Ifl) Figure 1: Factorization Algorithm with the Incre-
if & 1 > c then mental Condition Estimator

construct an orthogonal transformation
such that the current column is zeroed As soon as a bad column is encountered, the ma-
/* this column is good */ trix being factored will have the appearance as shown
14-1+1 and q1 *- k below.

for j E Nonz(ctJ)
update the column norms 11j Q 2

4-1 y 1 (- - Po)'

(A. - I +I C22
cm-.. 4-- ItI

for t E Nonz(c(l) update the partial sums Since a back-solve and a re-triangularization is

P i+'P+lct+ done every time a bad column is encountered, we need
PT - Pj + cI+lt- a column which is a full vector. But fortunately, we

+az 4- ma{•+•,P/I} can just reserve one vector (whose size is equal to the

(rna -- max{Crnax•, Ip-/Tj IInumber of rows) to store the intermediate computa-
/* We just looked ahead of the affected columns tions. The typical structure of the matrix after the
and computed both possible values for factorization is shown below.
the partial products *1
if +ax :> (;a. then

v ,- max{u, Iý+J}
Pj --- P+, j E Nonz(c(])

else
o 4- max,,, [i}
P2 i- PT, j E: Nonz(ctfl)

else the column is not good

if ,Ymax < C then
/* no more good columns and we are done */
exit The final upper trapezoidal form of C may have

else the following form.
Let C,, be the submatrix of CC1 C2C3C4
with rows from firstl through I 0 C 22 C 23 C2 4

and columns from firstk through k. 0 0 C 33 C 34

where Cii, i - 1,2,3 have full row rank.

325

5. Issues in Parallel Implementation Table 1: Timing results on a random sparse matrix

The problem is to detect the rank of a large and no. of time
sparse matrix C and obtain a QR factorization of processors (secs)
that matrix. As was described in section 2, the gen- 2 15.20
eral strategy is followed. We use SPARSPAK-B [8] 4 10.78
for doing steps 1-3 as described in section 2. Form 8 7.76
the storage structure provided for R by SPARSPAK, 16 5.54
we generate the static structure required for the fac-
torization. Since this work involves only the symbolic
structure of C and is a well understood problem, we
perform only the numerical factorization part on the Table 2: Results of our condition estimation tests
parallel machine.

We consider issues in implementing this algorithm k2 n = 10 25 50

on a tHypercube architecture. In a rather straightfor- 10 0.36/0.67 1 0.33/ 0.53 J 0.30 6.43
ward way, the columns of the matrix C are wrapped 10

3 0.20/0.58 0.20/0.42 0.22/0.37

around among the processors on the hypercube. For 106 0.11/0.48 0.12/0.36 0.10/0.27

the sake of simplicity, we may assume that the pro- 109 0.12/0.51 0.12/0.33 0.09/0.26

cessors form a ring, although for "broadcast" pur-
poses, other connections of the hypercube are implic-
itly made use of. Each processor makes a decision as
to iniclude the next column in the factorization and a random sparsity structure. The speed-up obtained
sends a message to other processors along with the is by a factor of 1.4 for doubling the number of pro-

necessary transformations(if the column is included). cessors.

The updating of the rest of the columns on the same
processor is done only after sending the information 6. Robustness of the algorithm
to other processors.

There are a couple of obvious bottlenecks to this
algorithm when implemented on a parallel machine To test the effectiveness of this estimator, we used
The "back-solve" process, when a bad column is this algorithm to estimate the condition number of a
found, involves accessing the partially formed upper given matrix. As was suggested by Stewart [12], we
triangular factor. This also causes the algorithm to generated random test matrices of dimension 10, 25
come to a virtual pause, loosing some of the advan- and 50 with a known condition number - the values
tages of the asynchronous behavior of the algorithm, being 1.OEl, 1.0E3, L.0E6 and 1.0E9. For each of
However, this happens only occasionally, so we can the possibilities, we generated two types of matrices
still expect some good speed-ups. - one where there is a sharp break in the singular

The "look-ahead" part of the algorithm, where it value distribution and the other in which the singular
needs to find out which value of p is to be made per- values are exponentially distributed between 1 and
manent, is another bottleneck. There are a couple the condition number.
ways to get around this problem. We can make the The algorithm always estimated correctly (within
look-ahead local to the columns held by that proces- 2 decimal digit accuracy), if there is a sharp break in
sor only. But then, we may be compromising on the the singular value distribution and hence the results
quality of the estimate computed by the algorithm, in Table 2 only illustrate the case where there is a
The other alternative is to maintain a fixed number exponential distribution of singular values. For each
of possibilities(say z = 4) of the values of p and in the dimension n, 50 test matrices were generated. k2 is
steady state, by the time we each processor is ready the actual condition number of the test matrix. The
to process a column y, it would have enough infor- numbers quoted in each entry represent the minimum
mation to fix the value of p corresponding to column / average value of the ratio of the estimated condition
(y - z). number to the actual value. The results are rounded

This algorithm was implemented on a Intel iPSC/2 to two significant digits, so a ratio of 1.0 implies that
ilypercube and the Table I summarizes the speed-ups the estimate had at least 2 correct digits.
that have been obtained. The test matrix with 4000 Comparative results are included in Table 3 for
columns and approximately 30000 non-zero elements LINPACK (taken from Hligham [fll) and in Table 4
in the factored matrix ,was generated randomly with for Bischof's estimator (taken from Bischof [1]).

326

Table 3: Results of LINPACK condition estimation [5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and
G. W. Stewart. LINPACK User's Guide. SIAM

tests Publications, Philadelphia, 1979.
kc2 n=1I0 25 50
10 0.29/0.46 0.24/0.30 0.17/0.23 [6] J. A. George and M. T. Heath. Solution of sparse
10 0.29/0.56 0.20/0330. 6 linear least squares problems using Givens ro-103 0.29/0.56 0.20/0.33 0.19/0.26 tations. Linear Algebra and Its Applications,
106 0.46/0.76 0.20/0.46 0.22/0.35 34:69-83, 1980.109 0.68/0.86 0.24/0.55 0.23/0.40

[7] J. A. George and J. W. H. Liu. Computer Solu-
tion of Large Sparse Positive Definite Systems.

Table 4: Results of Bischof's condition estimation Prentice Hall, Englewood Cliffs, N. J., 1980.

tests [8] J. A. George and Esmond Ng. SPARSPAK:

k2 n = 10 25 50 Waterloo sparse matrix package user's guide

10 0.56/0.77 0.579/0.71 0.63F/0.71 for SPARSPAK-B. Technical Report CS-84-37,
103 0.33/0.53 0.40/0.50 0.31/0.45 Dept. of Computer Science, University of Wa-

106 0.12/0.53 0.16/0.38 0.24/0.36 terloo, Waterloo, Ontario, Canada, November

109 , 0.16/0.45 0.17/0.33 0.19/0.31 1984.

[91 Gene H. Golub and Charles F. Van Loan. Ma-
trizx Computations. The Johns Hopkins Press,

7. Conclusions Baltimore, 1983.

We.proposed an" incremental condition estimation al- [10] M. T. Heath. Some extensions of an algorithm
gorithm that is well suited for parallel sparse matrix for sparse linear least squares problems. SIAM
factorizations. Empirical results provided suggest Journal on Scientific and Statistical Computing,
that the estimator is robust enough. Good speed- 3:223-237, 1982.
ups have been demonstrated on randomly generated [(II Nicholas J. Higham. A survey of condition num-
test problems. ber estimation for triangular matrices. SIAM

Review, 29(4):575-596, 1987.8. Acknowledgement

[12] G. W. Stewart. The efficient generation of ran-
The authtos would like to thank the Oak Ridge Na- dom orthogonal matrices with an application to
tional Laboratory for providing the access to the us- condition estimators. SIAM Journal on Numer-
age of the Intel Hypercube. ical Analysis, 17:403-9, 1980.

References [13] Charles F. Van Loan. On estimating the condi-

[1] C. H. Bischof. QR Factorization Algorithms for tion of eigenvalues and eigenvectors. Linear Al-

Coarse-Grained Distributed Systems. PhD the- gebra and Its Applications, 88/89:715-732, 1987.

sis, Cornell University, August 1988.

[2] C. H. Bischof, John G. Lewis, and Daniel J.
Pierce. Incremental condition estimation for
general matrices. Technical Report MCS-P106-
0989, Mathematics and Computer sciences di-
vision, Argonne National Laboratory, Argonne,
IL, September 1989.

[3] Christan H. Bischof. Incremental condition esti-
mation. SIAM Journal on Matrix Analysis and
Applications, 11(2):312-322, April 1990.

[4] A. K. Cline, A. R. Conn, and Charles F. Van
Loan. Generalizing the LINPACK condition es-
timator, volume 909 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1982.

327

LU Factorization of Sparse, Unsymmetric Jacobian Matrices on Multicomputers:

Experience, Strategies, Performance

STUDENT PAPER

Anthony Skjellum Alvin P. Leung

Advisor: Manfred Morari

California Institute of Technology
Chemical Engineering; mail code 210-41

Pasadena, California 91125
e-mail: tonyiperseus.ccsf.caltech.edu

Abstract related issues relevant to this work are detailed in [7].
Questions of linear-algebra performance are perva-Efficient sparse linear algebra cannot be achieved as sive throughout scientific and engineering computa-

a straightforward extension of the dense case, even tho ugh o r hientific a ineerfoma -

for concurrent implementations. This paper details tion. The need for high-quality, high-performance lin-

a new, general-purpose unsymmetric sparse LU fac- ear algebra algorithms (and libraries) for multicom-
puter systems therefore requires no attempt at justi-torization code built on the philosophy of Harwell's fication. The motivation for the work described here

MA28, with variations. We apply this code in the has a specific origin, however. Our main higher-level
framework of Jacobian-matrix factorizations, arising research goal is the concurrent dynamic simulation of
from Newton iterations in the solution of nonlinearsystms f euatons Seiousattntin hs ben aid systems modelled by ordinary differential and alge-
systems of equations. Serious attention has been paid braic equations; specifically, dynamic flowsheet sim-
to the data-structure eurements, complexity issues ulation of chemical plants (e.g., coupled distillation
and communication features of the algorithm. Key re- columns) [8]. Efficient sequential integration algo-
sults include reduced communication pivoting for both rithms solve staticized nonlinear equations at each
the "analyze" A-mode and repeated B-mode factoriza- time point via modified Newton iteration (cf., [3],
tions, and effective general-purpose data distributions time poi ntlvi m N en i tratin(l[3
useful incrementally to trade-off process-column load Chapter 5). Consequently, a sequence of structurallybalance in factorization against triangular solve perfor- identical linear systems must be solved; the matri-

ces are finite-difference approximations to Jacobians ofmance. Future planned efforts are cited in conclusion, the staticized system of ordinary differential-algebraic

equations. These Jacobians are large, sparse and un-
Introduction symmetric for our application area. In general, they

possess both band and significant off-band structure.
The topic of this paper is the implementation and con- Generic structures are depicted in Figure 0. This
current performance of sparse, unsymmetric LU fac- work should also bear relevance to electric power net-
torization for medium-grain multicomputers. Our tar- work/grid dynamic simulation where sparse, unsym-
get hardware is distributed-memory, message-passing metric Jacobians also arise, and also elsewhere.
concurrent computers such as the Symult s2010 and
Intel iPSC/2 systems. For both of these systems, ef-
ficient cut-through wormhole routing technology pro-
vides pair-wise communication performance essentially We solve the problem Az = b where A is large, and
independent of the spatial location of the comput- includes many zero entries. We assume that A is un-
ers in the ensemble [2]. The Symult s2010 is a two- symmetric both in sparsity pattern and in numerical
dimensional, mesh-connected concurrent computer; all values. In general, the matrix A will be computed in
examples in this paper were run on this variety of hard- a distributed fashion, so we will inherit a distribution
ware. Message-passing performance, portability and of the coefficients of A (cf., Figures 2., 3.). Follow-

328
0-8186-2113-3/90/0000/0328$01.00 0 1990 IEEE

Figure 0. Example Jacobian Matrix Structures. Figure 1. Linked-list Entry Structure of Sparse
Matrix.

ValueValue

LoalColumn _• Local Column J

Next Row Next, w
Net Column Next Column.

Value Value
V = Poa OW IV Local ROW

LAW column lAcal Column

Next ow of Next'Row
t CoumnNext Column

Value
LoAl Row

In chemical-engineering process flowsheets, Jacobians with
main band structure, and lower- triangular structure (feed- A single entry consists of a double-precision value (8 bytes),
forwards), upper-triangular structure (feedbacks), and bor- th lo a r w i an clu n) i de (2 b es ah ,a

the locl row () and clu Local Columnbyeseah)

ders (global or artificially restructured feedforwards and/or "Next Column Pointer" indicating the next current columnfeedbacks) are common. entry (fixed j), and a "Next Row Pointer" indicating the

next current row entry (fixed i), at 4 bytes each. Total: 24

ing the style of Harwell's MA28 code for unsymmetric bytes per entry.
sparse matrices, we use a two-phase approach to this
solution. There is a Lnd upper-triangular factors, respectively. Whereas
mode or "analyze," which builds data structures dy- the pivot sequence is stored (two N-length integer

namically, and uses a user-defined pivoting function. Nextorumn Pointermidatin the ne nt colum
The repeated B-mode factorization uses the existing enr (fixed wit ext R errnindi

nex curete rwietry (iedpli),itly 4ytserangh.g Toal:d 24

data structures statically to factor a new, similarly the orthogonality of the permutation matrices, A =
structured matrix, with the previous pivoting pattern. pTLspC. We factor A with implicit pivoting (no rows
B-mode monitors stability with a simple growth factor fr andupper-triangua factors, resply Whereas
estimate. In practice, A-mode is repeated whenever in- oth pothr sreqenche isg stored (ltw N- rength o int -

stability is detected. The two key contributions of this oting). L Therfor, we do notstre¢ onsdiecuetly, bu insparse concurrent solver are: reduced communication.

pivoting, and new data distributions for better overall PCP,0=PUTadA=LPPR)U. The "un-
performance. ravelling" of the permutation matrices is accomplished

readily (without implication of additional interprocess
Following Van de Velde [11s, we consider the LU fac- communication) during the triangular solves.
torization of a real matrix A, A E pNxN. It is well Fr
known (e.g., [6I , pp. 117-118), that for any such ma- qor coltun tare exchedese case, , a resfult e ofap

stabiity is dete ctd.iThetwon kftey conribuiosoths nting) therefore whe doenot astoe, b, fodrety butmpin-

ptrinA, and n actoadtribtionbanded matrices with bandwidth # can be factored
erApTm=e.v with e (l2N) work; we expect sub-cubic complexity in

N for reasonably sparse matrices, and strive for sub-
exists, where PR, PCL are square, (orthognal) permu- quadratic complexity, for very sparse matrices. The

tation matrices, and L, U are the unit lower-triangular,

329

triangular solves can be accomplished in work pro- Hence, preset pivoting satisfies the requirements of this
portional to the number of entries in the respective correctness mode also.
triangular matrix L or U. The pivoting strategy is For "first row fanout," the universal knowledge of 1
treated as a parameter of the algorithm and is not and knowledge of the pivot matrix row i by the pivot
pre-determined. We can consequently treat the piv- process row, allows the vertical broadcast of this row
oting function as an application-dependent function, (new row of U). In addition, we broadcast 4, j and
and sometimes tailor it to special problem structures the pivot value simultaneously. This extends the cor-
(cf., Section 7 of [9]) for higher performance. As for rect value of q to all processes, as well as j and the
all sparse solvers, we also seek sub-quadratic memory pivot value to the pivot process column. Hence, the
requirements in N, attained by storing matrix entries multiplier (L) column may be correctly computed and
in linked-list fashion, as illustrated in Figure 1. broadcast. Along with the multiplier column broad-
For further discussion of LU factorizations and sparse cast, we include the pivot value. After this broadcast,
matrices, see [6,4]. all processes have the correct indices 0, i, 4, j and the

pivot value. This provides all that's required to com-
Reduced-Communication Pivoting plete the current elimination step.

For the second correctness mode "first column fanout,"
At each stage of the concurrent LU factorization, the the exit conditions for the pivot function are: all pro-
pivot element is chosen by the user-defined pivot func- cesses must know 4, the entire pivot process column
tion. Then, the pivot row (new row of U) must be must know j, the pivot value, and P. The pivot pro-
broadcast, and pivot column (new column of L) must cess in addition knows i. Partial row pivoting can be
be computed and broadcast on the logical process grid setup to satisfy these correctness conditions. The ar-
(cf., Figure 2.), vertically and horizontally, respec- guments are analogous to partial column pivoting and
tively. Note that these are interchangeable operations. are given in [8].
We use this degree-of-freedom to reduce the commu- For "first column fanout," the entire pivot process col-
nication complexity of particular pivoting strategies, unto knows the pivot value, and local column of the
while impacting the effort of the LU factorization it- pivot. Hence, the multiplier column may be computed
self negligibly, by dividing the pivot matrix column by the pivot value.
We define two "correctness modes" of pivoting func- This column of L may then be broadcast horizontally,
tions. In the first correctness mode "first row fanout," including the pivot value, P and i as additional infor-
the exit conditions for the pivot function are: all pro- mation. After this step, the entire ensemble has the
cesses must know 0 (the pivot process row), the pivot correct pivot value, and 0; in addition, the pivot pro-
process row must know 4 (the pivot process column) as cess row has the correct i. Hence, the pivot matrix row
well as i, the f>-local matrix row of the pivot, and the may be identified and broadcast. This second broad-
pivot process must know in addition the pivot value cast completes the needed information in each process
and i-local matrix column j of the pivot. Partial col- for effecting the kth elimination step.
umn pivoting and preset pivoting can be setup to sat- Hence, when using partial row or partial column piv-
isfy these correctness conditions as follows. For partial oting, only local combines of the pivot process column
column pivoting, the kth row is eliminated at the kth (respectively row) are needed. The other processes
step of the factorization. From this fact, each process don't participate in the combine, as they must with-
can derive the process row 0 and 35-local matrix row i out this methodology. Preset pivoting implies no piv-
using the row data distribution function. Having iden- oting communication, except very occasionally (e.g.,
tified the,,belves, the pivot-row processes can look for 1 in 5000 times) as noted in [8] to remove memory
the largest element in local matrix row i and choose the unscalabilities. This pivoting approach is a direct say-
pivot element globally among themselves via a com- ings, gained at a negligible additional broadcast over-
bine. At completion this places 4, j and the pivot head. See also [8].
value in the entire pivot process row. This completes
the requirements for the "first row fanout" correctness New Data Distributions
mode. For preset pivoting, the kth elimination row
and column are both stored as 3, i, 4, j, and each pro- We introduce new closed-form 0(1)-time, 0(1)-
cess knows these values without communication.' Fur- memory data distributions useful for sparse matrix fac-
thermore, the pivot process looks up the pivot value. torizations and the problems that generate such matri-

ces. We quantify evaluation costs in Table 0. Every'Memory unscalabilities can be removed very cheaply; see concurrent data structure is associated with a logi-
[8].

330

Table 0. Data-Distribution Function and Inverse Costs

Distribution: p(W, P, M) p- I (p, i, P, M)

One-Parameter (C) 5.5554 x 101 + 5 x 10-3 4.0024 x 10' ± 7 x 10-3

Two-Parameter (ý) 6.1710 x 101 -1 x 10-2 4.2370 x 101 4l 8 x 10-3

Block-Linear (A) 5.4254 x 101 + 7 x 10-3 3.5404 x 101 ± 5 x 10-3

For the data distributions and inverses described here, evaluation time in ps is quoted for the Symult s2010 multicomputer.
Cardinality function calls are inexpensive, and fall within lower-order work anyway - their timing is hence omitted. The
cheapest distribution function (scatter) costs ; 15#s by way of comparison.

of vectors and matrices are distributed according to
Figure 2. Process Grid Data Distribution of Ax = b. one of several data distributions. Data distributions

are chosen to compromise between load-balancing re-
0 1 2_ 3____ quirements and constraints on where information cano 000 1 1110be calculatedintheensemble.

_ "-" 3 Definition 1 (Data-Distribution Function)01 data- distribution function t maps three integers
p(I,PM) ý- (p,i) where I, 0 < I < M, is the

= global name of a coefficient, P is the number of pro-

2~ c l ~ ~[] esses among which all coefficients are to be parti-2 • • tioned, and M is the total number of coefficients. The

pair (p, i) rep-*sents the process p (0 < p < P)0and local (pr oss-p) name i of the coefficient (0 <
L3J 1111 <PI(p,PM)). The inverse distribution function

II- 1 (p,i,P,M) '-* I transforms the local name i back
to the global coefficient name I.

E iiThe formal requirements for a data distribution func-
tion are as follows. Let IP be the set of global co-
efficient names associated with process p, 0 < p <
P, defined implicitly by a data distribution function
p(., P, M). The following set properties must hold:

Representation of a concurrent matrix, and distributed-
replicated concurrent vectors on a 4x4 logical process grid. rp I"'2f = 0, V P1 0 P2, 0 < P1, P2 < P
The solution of Ax = b first appears in x, a column- P-1
distributed vector, and then is normally "transposed" via U 1P = {0,... ,M - 1}_= I,
a global combine to the row-distributed vector y. P=_

The cardinality of the set tP, is given by , l(p, P, M).
cal process grid at creation (cf., Figure 2. and [7,8]).
Vectors are either row- or column-distributed within a The linear and scatter data-distribution functions are
two-dimensional process grid. Row-distributed vectors most often defined. We generalize these functions
are replicated in each process column, and distributed (by blocking and scattering parameters) to incorpo-
in the process rows. Conversely, column-distributed rate practically important degrees of freedom. These
vectors are replicated in each process row, and dis- generalized distribution functions yield optimal static
tributed in the process columns. Matrices are dis- load balance as do the unmodified functions described
tributed both in rows and columns, so that a single in [11] for unit block size, but differ in coefficient place-
process owns a subset of matrix rows and columns. ment. This distinction is technical, but necessary for
This partitioning follows the ideas proposed by Fox et efficient implementations.
al. [51 and others. Within the process grid, coefficients

331

Definition 2 (Generalized Block-Linear) function) is mainly suited to the clustering of coeffi-
The definitions for the generalized block-linear distri- cients that must not be separated by an interprocess
bution function, inverse, and cardinality function are: boundary (again, see [8] for a definition of general

block-scatter, a). Increasing B worsens the static load
AB(I, P, M) (p, i), balance. Adding a second scaling parameter S (of no

p P- 1 - impact on the static load balance) allows the distribu-

+ directly as a function of this one parameter. The two-

parameter distribution function, inverse and cardinal-

i I - B (pl + E1 (p - (P - r))), ity function are defined below. The one-parameter dis-
tribution function family, (, occurs as the special case

while B = 1, also as noted below:

)\- 8(piPM) i+B((pl+6 1 (p-(P-r))), sPM) (p,i) =-- (po,io) Ao ls

B (\pPPM) B([k.]-O)+ where ,PM (Ai) (pbi,) A0 < Is
P where

(M m od B)O, ISS] ,io

where B denotes the coefficient block size, S BS

ifMrmodB=0 (po, io) B UP,M),

bBS = pols + Ao,

L-51 + 1 otherwise, P1 M IBS mod P,

IB = IJ B =b-I-IB, i1 BS [I.-J+ (io mod BS),

I b (~ r=bmod P, with
CB3,s(I, P, M) - 6,s(l, P, M),0 (O PIs),P,M)

O(M t k t>0, k>0 ,

1 t>0, k =- 0 M(pP,M),

0 = P -- IeO(M mod B) and where r, b, etc. are as defined above. The inverse

I distribution function ý-' is defined as follows:

and where b > P. -15 (-IiPM) IM)

For B = 1, a load-balance-equivalent variant of the f (p,i) A > I=

common linear data-distribution function is recovered. (p*,i*) = (p,) A <Is

The general block-linear distribution function divides (P2,i2) A < Is

coefficients among the P processes p = O,... , P - I i
so that each 1' is a set of coefficients with contigu- A = Q , 1 s = p + AP ,
ous global names, while optimally load-balancing the b BS

blocks among the P sets. Coefficient boundaries be- = t s
tween processes are on multiples of B. The maximum P2 = [isJ'
possible coefficient imbalance between processes is B.
If B mod P :0 , the last block in process P - I will be i2 BS(IJs mod Is) + (i mod BS),

foreshortened. with

Definition 3 (Parametric Functions) (s-1(pi,P,M) = s-p,i,P, M).
To allow greater freedom in the distribution of co-
efficients among processes, we define a new, two- For S = 1, a block-scatter distribution results, while
parameter distribution function family, ý. The B for S > S.ri - Is + 1, the generalized block-linear
blocking parameter (just introduced in the block-linear distribution function is recovered. See also [8].

332

Definition 4 (Data Distributions) - whenever the active process column changes. There
Given a dala-distribution function family (p,p',pl) are at least Wmin E Q - 1 such transmissions (linear
((v,Iv- , vl)), a process list of P (Q), M (N) as the distribution), and at most Wmna:= N - 1 transmis-
number of coefficients, and a row (respectively, col- sions (scatter distribution). The complexity of this
umn) orientation, a row (column) data distribution retransmission is O(WN/P), representing quadratic
grow (geol) is defined as: work in N for W - N.

gro, (, - , Calculation complexity for a sparse triangular solve is{(p, P 1 "P'); P M} proportional to the number of elements in the trian-

respectively, gular matrix, with a low leading coefficient. Often,
there are O(Nl-r) with z < 1 elements in the trian-co__ {(II -1 , vI); Q, N). gular matrices, including fill. This operation is then

O(Nl-z/P), which is less than quadratic in N. Conse-
A two-dimensional data distribution may be identified quently, for large W, the retransmission step is likely
as consisting of a row and column distribution defined of greater cost than the original calculation. This re-
over a two-dimensional process grid of P x Q processes, transmission effect constrains the amount of scattering
as =_ (Grow, Gco) -and size of Q in order to have any chance of concurrent

speedup in the triangular solves.
Further discussion and detailed comparisons on data-

distribution functions are offered in [8]. Figure 3. illus- Using the one-parameter distribution with S> 1 im-
trates the effects of linear and scatter data-distribution plies that W - NIS, so that the retransmission com-
functions on a small rectangular array of coefficients. plexity is O(N 2 /SP). Consequently, we can bound

the amount of retransmission work by picking S suffi-
ciently large. Clearly, S = Srit is a hard upper bound,

Performance vs. Scattering because we reach the linear distribution limit at that
value of the parameter. We suggest picking S ;t 10 as

Consider a fixed logical process grid of R processes, a first guess, and S - 'NI , more optimistically. The
with PzQ = R. For the sake of argument, assume former choice basically reduces retransmission effort
partial row pivoting during LU factorization for the by an order of magnitude. Both examples in the fol-
retention of numerical stability. Then, for the LU fac- lowing section illustrate the effectiveness of choosing
torization, it is well known that a scatter distribution is S by these heuristics.
"good" for the matrix rows, and optimal were there nio The two-parameter ý distribution can be used on the
off-diagonal pivots chosen. Furthermore, the optimal matrix rows to tradeoff load balance in the factoriza-
column distribution is also scatter, because columns tions and triangular solves against the amount of (com-
are chosen in order for partial row pivoting. Corn- munication) effort needed to compute the Jacobian. In
patibly, a scatter distribution of matrix rows is also particular, a greater degree of scattering can dramat-
"good" for the triangular solves. However, for trian- ically increase the time required for a Jacobian com-
gular solves, the best column distribution is linear, be- putation (depending heavily on the underlying equa-
cause this implies less intercolumn communication, as tion structure and problem), but importantly reduce
we detail below. In short, the optimal configurations load imbalance during the linear algebra steps. The
conflict, and because explicit redistribution is expen- communication overhead caused by multiple process
sive, a static compromise must be chosen. We address rows suggests shifting toward smaller P and larger Q
this need to compromise through the one-parameter (a squatter grid), in which case greater concurrency is
distribution function C described in the previous sec- attained in the Jacobian computation, and the addi-
tion, offering a variable degree of scattering via the S- tional communication previously induced is then some-
parameter. To first order, changing S does not affect what mitigated. The one-parameter distribution used
the cost of computing the Jacobian (assuming column- on the matrix columns then proves effective in control-
wise finite-difference computation), because each pro- ling the cost of the triangular solves by choosing the
cess column works independently, minimally allowable amount of column scattering.

It's important to note that triangular solves derive no Let's make explicit the performance objectives we con-
benefit from Q > 1. The standard column-oriented sider when tuning S, and, more generally, when tuning
solve keep one process column active at any given the grid shape PzQ = R. In the modified Newton it-
time. For any column distribution, the updated right- eration, for instance, a Jacobian factorization is reused
hand-side vectors are retransmitted W times (process until convergence slows unacceptably. An "LU Factor-
column-to-process column) during the triangular solve

333

Figure 3. Example of Process-Grid Data Distribution

ao,1 ao,5 ao,2 ao,6 ao,3 ao, 7 ao,o ao,4 ao,s

a1 ,1 al,5 al,2 al,6 al,3 al,7 ai,o al,4 al,8
a 2 ,1 a 2 ,5 a2,2 a 2 ,6 a2,3 a 2 ,7 a2,0 a 2 ,4 a 2 ,8

/A 0 ,0 A0'1 A0'2 A0'3 a3 ,1 a3,5 a3 2 a3-6 a3,3 a3,7 a3,0 a3,4 a3,8
Al"O AI, A 1

,
2 AI,

3 a 4 ,1 a4,5 a4,2 a 4, 6 a4,3 a 4 ,7 a 4 ,0 a 4 ,4 a 4 ,8

SA2.0 A2,1 A2, 2 A2, 3
- a5, 1 a5,5 a5,2 a5,6 a5,3 a5,7 a5,0 a5 ,4 a5,8

A 3 ,
0 A3,1 A3, 2 A3, 3 a6,1 a6,5 a6, 2 a6,s a6,3 a 6 ,7 a6,0 a6,4 a 6 ,80 a7,1 a7,5 a7,2 a7,6 a7.3 a7.7 a7,0 a7,4 a7,8

as, I a8,s as,2 a8,6 a8,3 a8,7 a8,0 a8,4 a8,8

ag,1 ag,5 a9,2 a9,6 a9,3 a9,7 a9,0 a9,4 ag,8
alO, alo,5 a10,2 a10,6 a10,3 a10,7 alo,o a,0,4 a10,8

An 11 x 9 array with block-linear rows (B = 2) and scattered columns on a 4 x 4 logical process
grid. Local arrays are denoted at left by Ap'q where (p, q) is the grid position of the process on -
({(A 2 ,A21 ,A2"); P 4, M = 11) , {(u,, ,);Q = 4, N = 91). Subscripts (i.e., ai,,j) are the global (I, J) indices.

ization + Backsolve" step is followed by q "Forward + S = 30 saves 76% of the triangular solve cost compared
Backsolves," with 7 - 0(1) typically (and varying dy- to S = 1, or approximately 186 seconds, roughly 6 sec-
namically throughout the calculation). Assuming an onds above the linear optimal. Simultaneously, we in-
averaged q, say Y" (perhaps as large as five [31), then cur about 17 seconds additional cost in B-mode, while
our first-level performance goal is a heuristic minimiza- saving about 93 seconds in the Backsolve. Assuming
tion of ,7" = 1 (7" = 0), in the first above-mentioned objective

function, we save about 262 (respectively, 76) seconds.
TLU + (7" + 1)TBact + 7"Tportvrd Based on this example, and other experience, we con-

clude that this is a successful practical technique forover S for fixed P, Q. 7* > 1 more heavily weights the improving overall sparse linear algebra performance.

reduction of triangular solve costs vs. B-mode factor- improving erall furse r algera perfonce.

ization than we might at first have assumed, placing The following example further bolsters this conclusion.

a greater potential gain on the one-parameter distri-
bution for higher overall performance. We generally Order 2500 Example
want heuristically to optimize

Now, we turn to a timing example of an order 2500
Tjac + TLU + (17" + 1)TBack + 7*TForward sparse, random matrix. The matrix has a random

diagonal, plus two-percent random fill of the off-
over S, P, Q, R. Then, the possibility of fine-tuning diagonals; entries have a dynamic range of 0-10,000.
row and column distributions is important, as is the Normally, data is averaged over random matrices for
use of non-power-of-two grid shapes. each grid shape (as noted), and over four repetitive

runs for each random matrix. Partial row pivoting

Performance was used exclusively. Table 2. compiles timings for
various grid shapes of row-scatter/column-scatter, and
row-scatter / column-(S = 10) distributions, for as fewOrder 13040 Example as nine nodes and as many as 128. Memory limitations
set the lower bound on the number of nodes.

We consider an order 13040 banded matrix with a

bandwidth of 326 under partial row pivoting. For this This example demonstrates that speedups are possi-
example, we have compiled timing results for a 16x12 ble for this reasonably small sparse example with this
process grid with random matrices (entries have range general-purpose solver, and that the one-parameter
0-10,000) using different values of S on the column distribution is key to achieving overall better perfor-
distribution (see Table 1). We indicate timing for A- mance even for this random, essentially unstructured
mode, B-mode, Backsolves and Forward- and Back- example. Without the one-parameter distribution, tri-
solves together ("Solve" heading). For this example, angular solver performance is poor, except in grid con-

334

Table 1. Order 13040 Band Matrix Performance

Distribution: (time in seconds)
Row Column A-Mode B-Mode Back-Solve Solve

Scatter S=1 1.140 x 103 1.603 x 102 1.196 x 102 2.426 x 102

S=1O 1.148 x 103 1.696 x 102 3.294 x 10' 6.912 x 101

S=25 1.091 x I03 1.670 x 102 2.713 x 101 5.752 x 101

S=30 1.095 x 103 1.769 x 102 2.653 x 101 5.631 x 101

S=40 1.116 x 103 2.157 x 102 2.573 x 101 5.472 x 101

S=50 1.127 x 103 2.157 x 102 2.764 x 101 5.743 x 101

S=100 1.279 x 103 4.764 x 102 2.520 x 101 5.367 x 101

Linear 2.247 x 103 1.161 x 103 2.333 x 101 4.993 x 101

The above timing data, for the 16x12 grid configuration with scattered rows, indicates the importance of the one-parameter
distribution with S > I for balancing factorization cost vs. triangular-solve cost. The random matrices, of order 13040,
have an upper bandwidth of 164 and a lower bandwidth of 162. "Best" performance occurs in the range S = 25 ... 40.

figurations where the factorization is itself degraded Future Work, Conclusions
(e.g., 2x16). Furthermore, the choice of S = 10 is
universally reasonable for the Q > 1 grid shapes il- There are several classes of future work to be con-
lustrated here, so the distribution proves easy to tune sidered. First, we need to take the A-mode "an-
for this type of matrix. We are able to maintain an alyze" phase to its logical completion, by including
almost constant speed for the triangular solves while pivot-order sorting of the L/U pointer structures to
increasing speed for both the A-mode and B-mode fac- improve performance for systems that should demon-
torizations. We presume, based on experience, that strate sub-quadratic sequential complexity. This will
triangular solve times are comparable to the sequen- require minor modifications to B-mode (that already
tial solution times - further study is needed in this area takes advantage of column-traversing elimination), to
to see if and how performance can be improved. The reduce testing for inactive rows as the elimination pro-
consistent A-mode to B-mode ratio of approximately gresses. We already realize optimal computation work
two is attributed primarily to reduced communication in the triangular solves, and we mitigate the effect of
costs in B-mode, realized through the elimination of Q > 1 quadratic communication work using the one-
essentially all combine operations in B-mode. parameter distribution.

While triangular-solve performance exemplifies se- Second, we need to exploit "timelike" concurrency in
quentialism in the algorithm, it should be noted that linear algebra - multiple pivots. This has been ad-
we do achieve significant overall performance improve- dressed by Alaghband for shared-memory implemen-
ments between 9 nodes and 72 (12x6 grid) nodes, and tations of MA28 with O(N)-complexity heuristics [1].
that the repeatedly used B-mode factorization remains These efforts must be reconsidered in the multicom-
dominant compared to the triangular solves even for puter setting and effective variations must be devised.
128 nodes. Consequently, efforts aimed further to in- This approach should prove an important source of ad-
crease performance of the B-mode factorization (at the ditional speedup for many chemical engineering appli-
expense of additional A-mode work) are interesting to cations, because of the tendency towards extreme spar-
consider. For the factorizations, we also expect that sity, with mainly band and/or block-diagonal struc-
we are achieving non-trivial speedups relative to one ture.
node, but we are unable to quantify this at present Third, we could exploit new communication strate-
because of the memory limitations alluded to above. gies and data redistribution. Within a process grid,

we could incrementally redistribute L/U by utilizing
the inherent broadcasts of L columns and U rows
to improve load balance in the triangular solves at

33S

Table 2. Order 2500 Matrix Performance

Distribution: (time in seconds)

Shape Row Column A-Mode B-Mode Back-Solve Solve Avgs
3x3 Scatter Scatter 3.567 x 102 1.783 x 102 1.997 x 101 4.115 x 10' 1

3x4 Scatter 3.101 x 102 1.303 x 102 2.149 x 101 4.452 x 10' 1

4x3 Scatter 2.778 x 102 1.526 x 102 1.728 x 101 3.537 x 101 1

2x16 Scatter 4.500 x 102 3.350 x 102 3.175 x 100 1.101 x 101 1

12xl Scatter 2.636 x 102 1.206 x 102 4.0188 x 100 8.340 X 100 3

16xl Scatter 2.085 x 102 1.000 x 102 4.856 x 100 9.8744 x 100 3

8x2 Scatter 2.013 x 102 9.41 x 101 1.127 x 101 2.295 x 101 3
S = 10 1.997 x 102 9.63 x 101 4.508 x 100 9.399 x 100 3

4x4 Scatter 2.371 x 102 1.056 x 102 1.225 x 101 3.549 x 101 3
S = 10 2.329 x 102 1.104 x 102 4.192 x 100 9.406 x 100 3

4x6 Scatter 1.456 x 102 7.72 x 101 1.723 x 10' 3.528 x 101 3
S = 10 1.684 x 102 8.85 x 10' 4.206 x 100 9.303 x 100 3

12x2 Scatter 1.490 x 102 6.95 x 10' 9.08 x 100 1.851 x 10' 3
S = 10 1.425 x 102 6.54 x 101 4.557 x 100 9.439 x 100 3

12x3 Scatter 1.0429 x 102 5.39 x 101 9.34 x 100 1.898 x 10' 3
S = 10 1.0382 x 102 5.42 x 101 4.539 x 100 9.390 x 100 3

8x8 Scatter 1.154 x 102 6.16 x 10' 1.1082 x 101 2.2906 x 101 3
S = 10 1.145 x 102 6.64 x 10' 4.4600 x 100 9.651 x 100 3

12x6 Scatter 6.470 x 101 3.527 x 101 9.410 x 100 1.9141 x 101 3
S = 10 6.265 x 10' 3.417 x 101 4.555 x 100 9.495 x 100 3

16x8 Scatter 7.046 x 101 3.879 x 101 8.9535 x 100 1.8243 x 101 3
S = 10 6.70 x 10' 3.854 x 101 5.239 x 100 1.0816 x 101 3

Performance as a function of grid shape and size, and S-parameter. "Best" performance is for the 12x6 grid with S = 10.

the expense of slightly more factorization computa- the pivot row broadcast, and especially for the pivot
tional overhead and significantly more memory over- process, because it must participate in two broadcast
head (nearly a factor of two). Memory overhead could operations.
be reduced at the expense of further communication if We could utilize two process grids. When rows
explicit pivoting were used concommitantly. (columns) of U (L) are broadcast, extra broadcasts to

Fourth, we can develop adaptive broadcast algorithms a secondary process grid could reasonably be included.
that track the known load imbalance in the B-mode The secondary process grid could work on redistribu-
factorization, and shift greater communication empha- tion L/U to an efficient process grid shape and size
sis to nodes with less computational work remaining, for triangular solves while the factorization continues
For example, the pivot column is naturally a "hot on the primary grid. This overlapping of communica-
spot" because the multiplier column (L column) must tion and computation could also be used to reduce the
be computed before broadcast to the awaiting process cost of transposing the solution vector from column-
columns. Allowing the non-pivot columns to handle distributed to row-distributed, which normally follows
the majority of the communication could be benefi- the triangular solves.
cial, even though this implies additional overall corn- The sparse solver supports arbitrary user-defined piv-
munication. Similarly, we might likewise apply this to oting strategies. We have considered but not fully

336

explored issues of fill-reduction vs. minimum time; [2] Athas W. C., and C. L. Seitz, "Multicomputers:
in particular we have implemented a Markowitz-count Message-Passing Concurrent Computers," IEEE
fill-reduction strategy [4]. Study of the usefulness of Computer, August 1988, pp. 9-24.
partial column pivoting and other strategies is alsoneeded. We will report on this in the future. [3] Brenan, K. E., S. L. Campbell, L. R. Petrold,

Numerical Solution of Initial- Value Problems in
Reduced-communication pivoting and parametric dis- Differential-Algebraic Equations, Elsevier, 1989.
tributions can be applied immediately to concurrent
dense solvers with definite improvements in perfor- [4] Duff, I.S., A. M. Erisman and J. K. Reid, Direct
mance. While triangular solves remain lower-order Methods for Sparse Matrices, Oxford University
work in the dense case, and may sensibly admit less Press, 1986.
tuning in 5, the reduction of pivot communication is
certain to improve performance. A new dense solver [5] FoxeG, Vet a., Solving Problems on Concurrent
exploiting these ideas is under construction at present. Processors, Volume 1, Prentice Hall, March 1988.

In closing, we suggest that the algorithms generat- [6] Golub, G. H., C. F. Van Loan, Matrix Compu-
ing the sequences of sparse matrices must themselves tations, 2nd. Edition, John Hopkins University
be reconsidered in the concurrent setting. Changes Press, 1989.
that introduce multiple right-hand sides could help
to amortize linear algebra cost over multiple time- [7] Skjellum, A., A. P. Leung, "Zipcode: A Portable
like steps of the higher-level algorithm. Because of Multicomputer Communication Library atop the
inevitable load imbalance, idle processor time is es- rie K " o Cn
sentially free - algorithms that find ways to use this April 1990.
time by asking for more speculative (partial) solutions [8] Skjellum, A., Concurrent Dynamic Simulation:
appear of merit toward higher performance. Multicomputer Algorithms Research Applied to

Differential-Algebraic Process Systems in Chem-
Acknowledgements ical Engineering, Ph.D. Dissertation, California

Institute of Technology, Chemical Engineering,

The authors acknowledge Prof. Manfred Morari, who 1990.

supervised the work presented in this student paper. [9] Van de Velde, E. F., A Concurrent Direct Solver
We wish to acknowledge the dense concurrent linear for Sparse Unstructured Systems, Caltech C 3 P
algebra library provided by Eric Van de Velde, as well Report #604, March 1988.
as a prototype sparse concurrent linear algebra library,
both of which were useful springboards for this work. [10] Van de Velde, E. F., The Formal Correctness

The first author acknowledges partial support un- of an LU-Decomposition Algorithm, Caltech CP

der DOE grants DE-FG03-85ER25009 and DE-AC03- Report #625, June, 1988.

85ER40050. The second author (presently at the Uni- [11] Van de Velde, E. F., Experiments with Multicom-
versity of California, Santa Cruz) received support puter LU-Decomposition, Caltech / Rice Report
for his 1989 Caltech Summer Undergraduate Research CRPC-89-1. To appear in Concurrency: Practice
Fellowship (SURF) under the same grants, and wishes and Experience.
to thank the Caltech SURF program for the opportu-

nity to pursue the research discussed in part here. [12] Van de Velde, E. F., Adaptive Data Distribution

The software implementation of this research was ac- for Concurrent Continuation, Caltech / Rice Cen-
complished using machine resources made available by ter for Research in Parallel Computation Report

the Caltech Computer Science sub-Micron System Ar- CRPC-89-4. Submitted to Num. Math.

chitectures Project and the Caltech Concurrent Super-
computer Facilities (CCSF).

References

[1] Alaghband, G, "Parallel pivoting combined with
parallel reduction and fill-in control," Parallel
Computing 11, 1989, pp. 201-221.

337

The Fifth Distributed Memory
Computing Conference

Tridiagoa Syt s
• •.'.. ,• '•..•. .•..., . .. "., •.g •• •..!..na . •...•..•. ••` ` ,

A Method to Parallelize Tridiagonal Solvers

Silvia M. Mflller#

Computer Science Department (Bau 36)
University of Saarland

D-6600 Saarbruicken 11 , FRG

Abstract: sequential solver. But how to get all these

parallel algorithms ? A simple method to paralle-
We present a method to parallelize any tridia- lize all the algorithms would be very helpful.

gonal solver, in a very efficient way. The com- In the following sections we describe such a

munication overhead stays small. The parallel method in general and give some results.
algorithms have nearly the same good qualities

as their sequential counterparts, with respect

to vectorization, speed and numerical aspects. Description of the method:

The method is simple and independent of the

sequential solver used. One yields some well Propose that the number of processors p divides
known as well as many new parallel algo- the order n of the system. Partitioning the

rithms, when applied to standard sequential original system A" x - d
solvers.

A c2 a2 b2

Introduction:
cn an

In Numerical Mathematics there is a great in- into p subsystems, each processor works on n/p

terest in solvers for tridiagonal systems. By equations. The k - th system has the following

solving differential equations, tridiagonal sys- form:
tems with more than 10000 unknowns arise. . ..

There are many sequential solvers for such cj ajbJ xJ-
systems, like Gaussian Elimination, LU Factori- Cj-1 ap~bj~l I
zation or Cyclic Reduction , and each solver x [- i
has its preferences. Cr- ar-l br- 1 ":

But often the sequential solvers are not fast Cr ar b1 Xr.L

enough. Parallel solvers are indispensible. It is

desirable to have a parallel counterpart for each j - Ck-1) n/p-. r - kxn/p

Cl" bn" Xo "0 n-l " 0

Research partially funded by DFG, SFB 124

340
0-8186-2113-3/90/000010340$01.00 0 1990 IEEE

aj bj xj c1 0 (1)
cj+I aj+ibj,+ 0

S... : : - xj I : - x1 +I

Cr.1 ar.lbr.1l : 0

_c 1 ar _Xr_ dr 0 br

The subsystems are neither quadratic nor inde-
pendent. Each system. except the first and the ak xk u~k k ~ - x z 3
last one, has two variables more than equations. r *
Introducing these variables as parameters, the a k i the principle diagonal of

disturbing matrix elements vanish and for the transformed system (2).

processor k system (1) results. Solving system
(1) can also be seen as: Before computing the global solution xk the

SSolve one tridiagonal linear system with three parameters, which connect the subsystems.

different right hand sides must be determined. Tak~ing the first and the

k k dk k k fk kzk gk(2) last equation of each system (3") (only theAkuk=d Akyk fk Az k() last one of the first system and the first one

and choose x k as a linear combination of the of the last system) the tridiagonal s~ystem (4)

three partial solutions of order 2p -2 arises. The two equations of

xk uk xyk_ zk 3) processor k are:k k k1k

For each fixed k system (2) is quadratic and a. x.ks u.k -. x zk

C.- a -I, 1- 0 r~

does not depend on other systems. Though each

kk1 k1 k k1 k

processor can solve its system (2) without any ad xr - uk xky k xk zk

transfer, using an optional sequential solver. It

suffices to convert the system into diagonal System (4) can be solved in a sequential or

form and to change equation (3) a little bit: in a parallel way. In order to solve the system

(4)Zn/p arn/p p h I - n/p i

an/p+ 1 Yn/p~l Zn/p~lX/ dn/p +l
Yr2n/p Zarialso oX 2nsp-l d2n/p i

.np-1 X IZn a(p-3)/n(p-1)/p

anesnl)/ppldnoothrsteXsn(p..)/p dTn(p- l)/p÷

341

Zn• an/ Xni di n

in parallel, the above algorithm is used recur- sequential runtime
sively, but with halved number of processors. Efficiency p + pa-raie runtime

For example, Gaussian Elimination could be
used as solver. Each activa processor solves Eff O OR C OM) / C OM * 3 OR :- TP p).

a system of 4 equations with 3 right hand

sides. After (log p --1) recursions only one OM and OR are linear in n and TP is linear
processor is active and solves the remaining in p in the worst case. If the dimension n is
system sequentially. much bigger than the number of processors
Solving system (4) sequentially, data must and the startup time, then eff -- 1/3 (Let

be collected. After that transfer one processor OM : 3n and p ,. 210 then should be p2. n and
computes the solution and sends the results pS n). In reality the efficiency. will be
to all other processors. The transfer can be greater, because we have not used the special
executed in at most 2 log p steps. structure of both new right hand sides. So far

the analysis of our method is independent of
The whole computation consists of three steps: the sequential solver used.
First, each processor solves system (1) inde-

pendent of all others, using an arbitrary
sequential solver. This happens without any Applications

transfer.
Second, all processors together determine the Applying the above method to Gaussian
parameters. They only need O(log p) transfer Elimination yields the well known Wang-

and a little extra computation. Decompositon C 1, 2]. Applying to Cyclic
Third, each processor computes the solution Reduction yields a parallel algorithm presen-
as a linear combination of the three partial ted by GMD in March 1989 [2].
solutions. This is also possible without any Now we want to give two examples and

transfer. compare them with regard to efficiency and

parallel runtime. This will be done not only
Now it is easy, to give a coarse lower bound for solving a tridiagonal system with one
for the efficiency of these parallel algorithms, single right hand side, but as well for a

system with several right hand sides succes-
OM - number of all operations, whose sively fixed.

result only depends on the matrix

(sequential case) As computational model we use p processors

OR - number of all other operations interconnected by a crossbar, to determine
especially those depending on the runtimes. Floating point operations have cost
ight hand side (sequential case) A and a transfer with n data has cost S , n/B.

TP ý number of all operations to solve S stands for startup time (time to build up.a

system (4) and to transfer data connection between the processors) and B for

(parallel case) bandwidth. All other operations cost nothing.

342

Application to Gaussian Elimination: phase:

The Wang - Decomposition is obtained, when dk - dk _ bk/ak dk
applied to Gaussian Elimination. i 1 II i*1

Gaussian Elimination consists of two phases. k - k_ bk/a. I k
During the first phase the entries below the k kbk/ak k bk/ak k

principle diagonal are eliminated and during gi -- i - i + I a1 i 1 g÷,1

the second the remaining system is solved for each i - r-1 ... j .
by backward elimination. It is easy to see Solving system (4) in parallel, each processor

that this can be done with 8n- I floating point therefore needs (46 A + 2 S - 12/B) log p - 21 A

operations. For each new right hand side, operations. The data flow for this step is visua-

which is fixed successively, the same number lized in the following picture for p-- 8.

of operations is necessary.

Together with our method it is better to de- 0 1 2 3 4 5 6 T

compose the second phase of the Gaussian

Elimination into two sepatate parts. During the

first part of thte second phase the entries above
the principle diagonal are eliminated and

during the second part the remaining system

is solved. This means that system (1) is con-

verted into diagonal form and equation (3')

is used to determine the parameters and the
solving system (1) (origional

linear combination. Dor reduced system)
computing linear combination

Solving system (1) each processor has to treat -yi

three right hand sides. Making use of the -recursion on one processor
Stransfer

special structure of the right hand sides pro-

cessor k needs only 12 (n/p - 1) A opera- To determine solution x according to equation

tions, as the following sequence illustrates: (3'). each processor needs 5 (n/p - 2) floating

point operations. The first and the last value

During the first phase processor k computes of xk have already been computed during

the values the previous steps. Altogether we get the

ak . a.k _ ck /ak. bk following parallel runtime :
i i i i-I i-I T p =(17n/p -43) A*Iogp(46A.12/B.2S)

dk = dk- ck /ak dik For each new right hand side fixed succes-
i i i i-I i-1

k =kk ak f k k sively, the operations on the vectors f and g

i i i-I I-1 -I /a I i-1 are the same and can be dropped. Thus only

k k k k k -k (13n/p -39) A+logp(46A.12/B.2S)i gi - c it g - i operations are necessary for a new right hand

for each i j + 1 ... r and during the second side.

343

Application to LU Factorization: Comparison of these both parallel algorithms:
LU Factorization is the quickest direct solver The algorithms are compared with respect to

for tridiagonal system. The algorithm is well runtime and efficiency. We give theoretical

suited for systems with more than one right results as well as measured values. For theory

hand side, even if they are fixed successively, the following parameters are used:

First the matrix is factorized A = L U and A=1, S=4, B=2

then two bidiagonal systems are solved.

Ax= d L (Ux)-- d The parallel computer used is a PARSYTEC

SLyd & U x z- y Megaframe with PAR C. The foating point rate

L is a lower and U an upper bidiagonal matrix, for double precision numbers is very small.

In the sequential case 8n- 7 floating point Therefore the system has the parameters:
operations are necessary to solve a system A-le, S=4e, B-2/e, e =10-5s.

with one right hand side, and only 5n - 4

operations for each additional right hand side. The number of processors and the granularity

Therefore it is interesting to have a look at the are significant for the quality of the algo-

parallel version (this seems to be a new algo- rithms.

rithm). To solve system (1) means now that Granularity (iG n/p

each processor k factorizes Ak and solves the

two bidiagonal systems for its three right hand

sides. The second bidiagonal system is only Considering a system with one single right

converted into diagonal form and for the hand side:

following steps equation (3') is used. For the

factorization each processor needs 3 (n/p - 1) Theoretical results

floating point operations. L has only units on

its principle diagonal. Together with the sparse G P 8 16 32 64

structure of fk and gk, this fact leads to the 2000 ý 34137 34197 34257 34317

amount of 9 (n/p - 1) floating point operations 4000 68137 68197 68257 68317

to solve the factorized system (1). The second parallel runtimes for Wang -

and the third step can be copied from the Decomposition & LU Factorization

Wang Decomposition. Thus the following

parallel runtime results: G P 8 16 32 64

Tp=Ci n/p -43) A+logp(46A.12/B+2S) 2000 46.86 46.78 46.7 46.63

For each new right hand side fixed succes- 4000 46.96 46.92 46.88 46.8

sively, the factorization of the matrix A and efficiency (%) for Wang- Decomposition

the operations on the vectors f and g can be & LU Factorization

dropped. Thus for a new right hand side only

(10n/p -36) A.Iogp(46A÷12/B÷2S)

operations are necessary.

344

Measured results:
P 4 8 16

G PI 4 8 16 par. Ga 783 809 831

2000 45,2 44.9 44.8 par. LU 646 650 653

4000 45.8 45.6 45.3 paiallei ,untimes (unit: I sec)

efficiency (%) for Wang - Decomposition
& LU Factorization _ ._ 4 8 16

par. Ga 70,88 70,8 70.6

Considering a system with several right hand par. LU . 66,0 65,8 65,6

sides: efficiency (%) for "c- 1000

A x t+l - B xt ,t= 0 T

A, B are tridiagonal systems

Conclusion:

Such problems arise e.g. by solving PDE's

by the finite difference method [3]. The method can be applied to any solver and

though we obtain the desired parallel version.

Theoretical results: (G = 4000. t - 1000) It is also possible to generalize the method for

systems with more than three diagonals. For
n__ 32000 64000 128000 m diagonals, m - 1 additional right hand sides

Ga 415989 831989 1663989 are required. If k stays small the algorithms

LU 320088 640184 1280376 are efficient.

sequential runtimes (unit: 1000)

".P 16 32 References:

par. Ga 72175 72235 72295

par. LU 60172 60232 60292 El] Cannon, D. B. & Van Rosendale. J. (1984)

parallel runtimes (unit: 1000) On the Impact of Communication Com-

plexity on the Design of Parallel Numeri-
P 8 16_ 32___ cal Algorithms, In: IEEE TOC, vol. c - 33,

par. Ga 72.04 71.9 71,9 No. 12, pp 1180 - 1194.

par. LU 66.49 66,43 66,36 [2] Krechel, A. Plum, H. 1. & Stuben, K. (1989)

efficiency (%) for T- 1000 Solving Tridiagonal Linear Systems in

Parallel on Local Memory MIMD Ma-

Measured results: (G C- 4000, "t z 1000) chines, Arbeitspapier der GMD 372, Ges-

ellschaft fur Mathematik und Datenver-
n 16000 32000 - 64000 arbeitung, St. Augustin (FRO)

Ga 2220. 4587 9387 [3] Todd, J. (1962) Survey of Numerical

LU 1709 3423 6844 Analysis, Mc Graw - Hill Book Company,

sequential runtimes (unit: Isec) INC, New York , pp. 419.

345

Solution of Periodic Tridiagonal Linear Systems on a Hypercube

Thiab R. Taha

Department of Computer Science
University of Georgia

Athens, Georgia 30602

Abstract 2. The test problem:

Periodic tridiagonal linear systems of As an example a test problem is considered,
equations typically arise from discretizing second namely;
order differential equations with periodic
boundary conditions. Various vector algorithms -y + y =2 Sinx, 0 • x ! 2x (1)
are employed in order to solve such systems,
namely: (i) A sweeping technique, (ii) Cyclic y (0) = y (2n),
reduction, and (iii) LU decomposition methods.
Implementations of the above methods are carried y" (0) = y' (2n).
out on a vector extension board of an Intel iPSCr2
hypercube. Comparisons of the execution times Eq. (1) can be discretized by a finite-difference
of the utilized methods for solving different sizes method. We seek an approximation u, to the
of periodic tridiagonal systems are obtained. y(xi), where xi = (i - l)h, and h is the

increment in x. Eq. (1) may be approximated by

1. Introduction: (ui+l - 2u + ui..1)

Periodic banded systems of equations typically h2

arise from discretizing second or higher order
differential equations subjected to periodic which can be written as
boundary conditions [1,2]. In recent years, there
has been a lot of research in developing -ui- 1 + (2+ h2)ui - uj+1 = Bi (3)
algorithms for solving banded, and in particular
tridiagonal systems on SIMD machines [9]. In where B, = 2h 2 Sinxi, 1 < i 5 N. Using the
this paper, three vector methods are employed in periodic boundary conditions, Eq. (3) can be
order to solve periodic tridiagonal linear systems written in the matrix form as:
which arise from discretizing second order
differential equations with periodic boundary a-I -1 ul B
conditions, namely: (i) a sweeping technique, (ii) -1 a -1 u2 B 2
cyclic odd-even reduction, and (iii) LU
decomposition methods. . . . ,(4)

Implementations of the above methods are -1 a -I uA_ 1 B._1
carried out on a vector extension board of an Intel -1 -U J B.
iPSC/2 hypercube. Comparisons of the execution
time of the utilized methods for solving different where a = 2 + h2 .

sizes of periodic tridiagonal systems are obtained.
The structure of this paper is as follows. We
describe a test problem, the finite difference 3. Numerical methods for solving the test
approximation to it, and the periodic system of problem.
equations which is a result of this approximation. i. A Sweeping Technique:
We give a description of the methods and their
vector implementations. We present the Eq. (3) can be solved by a version of the
numerical results of the implementation on the Crank-Nicolson back and fourth sweep method
iPSC/2 hypercube.

0-8186-2113-3/90/0000/0346$01.00 0 1990 IEEE 346

for the heat equation [1]. We seek an equation of and (8). In this paper, the cyclic reduction
the form method, to be discussed later, is used to solve the

bidiagonal linear systems with a nonzero element
ui+l -,= a ui + bi (5) on the lower left hand comer and a non zero

element on the upper right hand corner generated
suitable for computing u explicitly by sweeping to from Eq.'s (8) and (5) respectively. It is to be
the right. For stability we require I a 1 1. noted that since the boundary conditions are
Repeated substitution of Eq. (5) into Eq. (3) to periodic then bi = bN+l and u1 = UN+I. The
eliminate ui+1 and ui in favor of uj-. gives systems of equations to be solved given in the

matrix forms are:
b i + bi -, (a - (2 + hI))

+ u1i_! [a2 - (2 + h)a + 11 = -Bi (6) 1 -a b2
I

Requiring the ui-I term to drop out determines a
(uniquely since I a I < 1) as a solution of I -a bN-1

-a 1 b

a 2 - (2 + h2)a + I = 0 (7) -b
R2

The two roots of Eq. (7) are R3

h2 h R
i + - T - 4-+

2 2 , R. =aB,, (9)

Requiring ja 1 < 1, we take R

a + h A ,-+ From Eq.'s (6) and RN+1
ai+2 2

(7) we get and

bi-, abi + a Bi (8) 1 --a U2 bi

-a 1 U3 b2
It follows that the b's can be computed explicitly -a I
by sweeping to the left. To obtain the u's, first (10)
solve for the b's from Eq. (8) then use Eq. (5) to
calculate the u 's. In order to calculate the b's we -a 1 bN

use an iteration procedure. We assume UN+i

bNv+l = constant value
ii. Cyclic reduction method 15-81

to start with and then we apply the Gauss-Seidel In this paper, the cyclic odd-even reduction
technique [31 (in which the improved values are method 1 is adapted in order to solve a class of
used as soon as they are computed) to calculate
the rest of the b 's. The calculated value of the penrodic tidiagonal linear systems such as the oneb,(= bN+I) is used to start the new iteration, and given in Eq. (4). This method is related to the
the iteration procedure is repeated until the cyclic reduction algorithm developed for thecondition numerical solution of Possion's equation on a

rectangle by Hockeny [7]. The main idea of this
1b, - bNi.1 < tolerance algorithm is the elimination of the odd-even

unknowns and their eventual recovery through
back substitution, i.e., this algorithm generates a

is satisfied. Then we use the above procedure by sequence of problems A('X 0 = b" such that
sweeping to the right by means of Eq. (5) to X X
obtain the u's. This method is well suited for 1 =X' and then recovers the odd-indexed

serial computers but not for pipeline or vector unknowns of X"O given X"') through back
substitution. For convenience the system in Eq.

computers due to the recursive nature of Eq.'s (5)

347

(4) can be written in a general form asAX =b, e i" -
where

_ - Pau) -"d 1f 1 a
e2 d2 1 2 =-k - 0 ()- eA? b,Ž1,

A = (11) j3= _•fl)

e.-I d.-i f ,-I

e. d. It is to be noted that the reduced system has the
same form as A, and only the even-indexed

" X" b, unknowns appear. The reduction is continued

X2 b2 until we have A(-)X(h) = b(-), a block 2 x 2
system which is solved by Gaussian elimination.

X = b = For the backward substitution step, X() is found

by
. j i = 1 ,Ni+,

Suppose A = (ejdj.fj)Ns. ,eI = fN = 0, and X b- _ Xt(X) - f(S) XY)
N = 2+. Setting Ni = 2m+I, we let
A(') (e .0 dY.x1 = (X?'i)N,,., x._ = b - X _

)= (bj'))N,, with
A(°) =AX(°) =Xb(°) = b, and a(°) = a. f (2-' X(,j 2 2 - ,+j
Then, for i = 0 m - 1 and j = I.. 2j1 2..j,

define
iii. LU decomposition [4,S]

d =it I In this algorithm we assume that the LU
d()2j-1 decomposition of A exists; that is, A = LU

I

f -1 = d4)_, f_,,h 12 1
13 1

b d4_ b•_, L= (12)

i= df) a('~ ,81 92 gn.-2 ga-1 I

andforj = 1 N+ 1- ldefine ufI

u 2 f 2 h2

d =' d - ei• f•- - :••,•. U

+1)= '0-1 f.-2 h.- 2

= - ub - Cwith

348 = d,,h1 = a (12.1)

{•(i+) = .•(1) 34)8

f i-i y
u.=di -e---oi--2,..., n - 1 (12.2) by:

Ui-I
ul = dr, h, = a,

i = 2, (12.3) ti = e f .-. , i =2,....n - 1

hi A kh-- i =2.. n - 1 (12.4) u =d di t s =2,....n-I
ui-lh5.1= h.. =+- • , (12...) -

U = - -i

-1 =(12.6)
U1I

I. =eu .-., i =2,..., n
9i =9- , 2,.. n-1 (2.7) h i= Ihi 2...n-I

li-

fi-I
94-1 = g-1 + 1I, (12.8) h.-I = h.-I + f.-I

x-I g1 = P•ul

u5 = d- g.sh , (12.9)
i=zi = fi-I ui. 2..., n -

The system LUx = b is then solved by the
forward substitution Ly = b, which has the form g8 = -gi-, z; . i = 2..... n - I

Yi = b 1 , -i-1 = gx.- + In

1
y i = hi -Ii y . j 2 n - 1 (13) u-A =

y, = b g - .i -Y I a,
i=1

yl = b,

followed by the back substitution Ux = y, which
gives Eq. (13) is solved by using the Veclib routine

dbid/ on the intel iPSCJ2 and can also be solved
yX by the cyclic reduction method for bidiagonal
U. =systems.

Ygm-I

U5-1

The above algorithm is well suited for serial xj = Y i=1 n I-
machine, but not for vector machines due to the
recursive nature of Eq's. (12.2), (12.7), (13), and fa = fi u , . 2
(14).

A• = x, fj xj +1, i =n - 2 1 (15)
In this paper we consider an implementation

of the / method which is suitable for vector and Eq. (15) is solved by calling the Veclib routine
pipeline computers. This implementation is given dubidi and can also be solved by the cyclic

349

reduction algorithm for bidiagonal systems. (4) pp. 484-496.

[71 Hockney, R.W. (1965) A Fast Direct
4. Numerkal experiments and results Solution of Poisson's Equation Using Fourier

All of the three algorithms are implemented Analysis, J. Assoc. Comput. Mach. 12, pp.

on the vector extension board of an Intel iPSC/2 95-113.

hypercube. It is found that the sweeping (81 Kershaw, D. (1982) Solution of Single
technique, using the cyclic reduction method to Tridiagonal Linear Systems and
solve the bidiagonal systems, is the most efficient Vectorization of the ICCG Algorithm on the
one, followed by the cyclic reduction and finally Cray-1, In: Garry Rodrigue (ed.): Parallel
by the LU decomposition. It is found that the Computations, Academic Press, pp. 85-99.
sweeping technique is about 1.13 times faster than [9] Gallivan, K., Plemmons, R., & Sameh, A.
the cyclic reduction and about 2.2 times faster [9] Paral, K le tms r & Linear
than the LU decomposition. Also, it is found that (1990) Parallel Algorbthms for Dense Linear
the sweeping vector method runs about 10 times Algebra Computations, SIAM, Rev. 32. 1,
faster than its serial version, the cyclic reduction pp. 54-135.
is about 8 times faster than its serial version, and
the LU decomposition is about 3 times faster than
its serial version.

Acknowledgements:

This research has been supported in part by
the U. S. Army Research Office and the National
Science Foundation Grant No. CCR-8717033.

References

[1] Taha, T.R. & Ablowitz, MJ. (1984)
Analytical and Numerical Aspects of Certain
Nonlinear Evolution Equations. II.
Numerical, Nonlinear Schr~dinger Equation,
J. Comput. Phys. 55, pp. 203-230.

[2) Taha, T.R. & Ablowitz, MJ. (1984)
Analytical and Numerical Aspects of Certain
Nonlinear Evolution Equations, III.
Numerical, Korteweg-de Vries Equation, J.
Comput. Phys. 55, pp. 231-253.

[31 Smith, G.D. (1965) Numerical Solution of
Partial Differential Equations. Oxford Univ.
Press, New York.

[4] Lambiotle Jr., JJ. & Voigt, R.G. (1975) The
Solution of Tridiagonal Linear Systems on
the CDC Star-100 Computer, ACM Trans.
Math. Software 1 (4), pp. 308-329,
December.

[5] Zhong, L. (1989) A Comparison of Parallel
Algorithms for the Solution of Tridiagonal
Linear Systems of Equations, MAMS
Technical Report, University of Georgia.

[61 Heller, D. (1976) Some Aspects of the Cyclic
Reduction Algorithm for Block Tridiagonal
Linear Systems, SIAM, J. Numer. Anal. 13

350

THE ERROR ANALYSIS OF A TRIDIAGONAL SOLVER

Hong Zhang

Department of Mathematical Sciences
Clemson University

Clemson, SC 29634-1907

ABSTRACT The PDD algorithm is used to solve the linear sys-
tem of the form

The Parallel Diagonal Dominant (PDD) Algorithm
has been proposed for solving certain types of tridiagonal A x =d, (1.1)
linear systems. The algorithm employ a matrix approxi-
mation. Both theoretical and experimental results have where
shown that the PDD algorithm is a highly efficient paral-
lel algorithm for a variety of architectures. In this paper, A = (ai, bi, ci) (i = 0,..., n-I) (1.2)
the effect of this approximation is studied and a rigorous
error analysis is given. The numerical results are is an n xn tridiagonal matrix satisfying certain conditions.
presented. For convenience we assume that n = pm. A tridiagonal

matrix A is called evenly diagonal dominant if

Introduction Iai 1_<lbi/21, Ici 1: <1b/21 anda,. Ici>0. (1.3)
The Parallel Diagonal Dominant (PDD) Algorithm

has been proposed in [1] for solving tridiagonal linear Suppose matrix A in (1.1) is evenly diagonal dominant.
systems. The algorithm is based on the divide & conquer Scaling both sides of (1.1), without loss of generality, we
model of parallel computation. First, a linear system of assume that matrix A = (aj, bi, ci) satisfies
order n is divided into p subsystems which can be solved
concurrently by p processors. Then the subsolutions are I a, I _< 1, 1 c I < 1i b• -2,
modified by the solution of a conquer system of order and
2(p-l) to obtain the solution of the original system.
Under certain assumptions, the coefficient matrix of this ai.1-ci > 0. (1.4)
2(p-l)-dimensional conquer system converges to a diag-
onal block matrix at least exponentially as n /p -4 -o. This Matrix A can be written as
indicates that we can take this diagonal block matrix
instead if n >> p. It reduces the communication cost and A =AA (1.5)
the algorithm almost reaches ideal p speedup if p proces-
sors are used. Both theoretical and experimental results with
have shown that the PDD algorithm is a highly efficient
parallel algorithm for a variety of architectures. In this
paper we study the accuracy of the results of the PDD A0 .'
algorithm, discuss how the solution of the system is 'A
affected by the matrix approximation and give a rigorous A,_- ---
error analysis. A = I ,

Section 1 briefly describes the PDD algorithm. Sec-
tion 2 derives the error bound. Computational results are
presented in Section 3. ------

1. The parallel diagonal dominant(PDD) algorithm

3510-8188@2113-,3'90/0000/0351601.00 0 1990 IEEE

(j=O,...,v-l). It isproved in [11 that
I | I

-- I~ I 4 rn-i
-- .I=- L -

S, ,4 la, I =I Iai (/det(A,),
4 Ic I

__..- - - - - -- i-0
AA = I a I

I I I n-
I I ,. I -

I c2j~ l -I =njcidet(A), (1.9)

I I I

(j)(j)(,)forj = 1,.....p-2 and
The submatrices A, =(a U), bi U), c)) are mxm

matrices. Let ei be a column vector with its i th
(0!5 i < n-1) entry being I and all the other entries being max(a14 , Ic2j_, I)< (1.10)

zero. The AA can be expressed as AA = VE, with (m + 1)(I +./4)m

v= [a,. e., Cr,,en,,, a e Cle2.,,_] with e = mn (bi -2). When e> 0, the inequality

(1.10) shows that the off-diagonal elements a~,, c 2j_1

r "1 (j = 1,...,p- 2) of Z converge to zero at least exponen-
E= [e._.. em. eI),,l.-, e-,-),,. tially as m =nlp --- ,* From this result, the PDD algo-

rithm uses matrix

both V and E are nx2(p-1) matrices. Based on the
matrix modification formula[2], the solution of(1.1) is # I I''

xA-l d(A+ VE') ld 1 sIL - - - -

-- 1~ -- --- -- --- - - - - -
I I I=Vt-1d-,A,1V(+ Erki.-IV)-fET11,-d. (1.6) b-2 c2

Introducing a permutation matrix P, the band width of the

matrix I+E -Vcan be reduced from 5 to 3. The solu- =0.

tion of (1.1) then becomes

-- -1 -1 T--1I
x=A d-A VPZ-ErA-d, (1.7)

where Z = P + EA ,VP is a 2(p-1)x2(p-1) tridiagonal b -z
matrix. The equation (1.1) is solved in the following , ,P- Z)

steps: L i

1. Solve ,Ai= d, ,Ay = VP.
1.Solv Eid, =VP ~. E .instead of Z when n >> p at step 3. This matrix approxi-

2. Form h = Erk, Z = P f E'Y. mation removes the bottleneck of the computation and
3. Solve Z y = h. makes the algorithm highly parallel. It also reduces the

4. Compute Ax = Yy, x = f - Ax. communication cost into two neighboring communica-

Since matrix A is a diagonal block matrix, step I ran be tions only. Both theoretical and experimental results have
done concurrently. It is equivalent to solve three subsys- shown that, using p processors, the PDD algorithm almostdoneconurretly It s euivaentto slvethre susys reaches p speed-up when the matrix condition is permit-
terns of order m with same coefficient matrx. There is no recspsed-pwnthmaixodtonspri-winsof rderm wth ame oefkien marix Thee i no ted. For the detailed description of the PDD algorithm,

computation at step 2. Due to the special structure of the deraylrefer to [1]i

matrix Y, step 4 can be computed by p processors simul-

taneously. Different ways of solving the system at step 3
result in different algorithms. Let us denote the matrix

2. The accuracy of the PDD algorithm

Z = (al, b:, c) (i = 0,..., 2(p-l)-Il) (1.8) The PDD algorithm uses the approximate matrix 2
instead of Z at step 3. It then raises the question about the

and the determinants of the submatrices A, as det(A,) accuracy of the result. It has been claimed in [1] that ifZ

352

equals Z within machine accuracy, the error between the Proof. Z is a diagonal block matrix. The j th block
approximate and the exact solutions would have the same of Z is
order of magnitude. In this section we study the effect of
the matrix approximation in detail and give a rigorous [.2 C 1j [2j
error analysis. I =

For simplicity we assume that the evenly diagonal a 2/+l b2s+ L b (1 j

dominant matrix A =(a, bi, ci) in (1.1) satisfies (IA)
with The eigenvalues of the j th block are

b'. +b' +± 4(bj+bjl) +4(-'b 1
c= min (b1 -2)>0. (2.1) 2i.=j 2i+b 2•i

o!V-X1 2

Define AZ = Z - Z, i.e., Let a(Z) be the spectrum of Z, then

I It ,-
. -- -+ - - -- --a.2 m r in 1IXI rmin (10()I , I1 _Y)I)

A -- - -- - -)a(i) Otj 9,-2AZ -" la4 1 Z ')
" . I I It is sufficient to find the lower bound of I),K)1. Suppose

I II

I •I submatricesA = (a1 i, bi,) (j--O,....p-l) in (1.5)
- -2i have LDU factorization

I I I

II 2(-

It is easy to verify that

then (see [I, Appendix])

I•II= max (iaz I , Ic',_ I) (2.3)2j.2_-2
b~j -(2.7)

1 -
from (1.10).

(m +1)(l+e/4)" I Co)a

Here and throughout, liii denotes the spectral matrix (-+1÷ + 2 .+ .

norm[3, pg.811. Let y + Ay be the exact solution of the 0 (80,+I))2 81)
system

(j+1) ~+1)~ ~ +1
sys...,,oo-)a'+" +' a!-,+') j
i(y+Ay)=h, (2.4) + (ioi÷.."(.)22(/÷|))ao•÷' . (2.8)

then ZAy = AZy because Z y = h (see step 3 of section
2). t hs ben povedlJ hatZ isinvrtibe, husUsing mathematical induction, equation (1.4) and the fact2). It has been proved[l] that Z is invertible, thus 0 o) W / W/ W) ()0

that8j =bi --a ci+1 /C_ , 6i =bo) weoobtain

IIAyI -II• -' IIIAZIIIyII. (2.5) +i + 2

The relative error for the solution of Zy = h is bounded +- (2.9)byflZ 1 - IIflZ~t An upper bound ofl •-I Z1 lis given by
It then follows that, for any r <m,

Proposition 2.1. Leti be defined in (1.11). Then
8)... 80 2 3 4 r+23(l(+e)+r-)(E+--)(t+-)..-. (E+--) (2.10)

hi_,1 3 , (2.6) 1 2 3 r+l

with c defined by (2.1). > (r +2) + EM (r), (2.11)

353

where r +2 and M (r) are the constant and the coefficient Inequalities (2.13)-(2.16) imply that
of e for the polynomial on the right hand side of (2.10).
M(r) can be written as a finite sum bsjbz +1 < 1 forj--0,..,p-2. (2.17)

3 4 r+2 2 4 5 r+2 From (2.7), (2.8) and (1.4), bz, and bs have the sameM(r)= + - - +.." j 2+
2 3 • +1 1 3 4 •+1 sign. Without loss of generality, they are assumed to be

positive. Using (2.13)-(2,14),
r i

Y=(r +2)7, -+r + 1. (2.12) min (I X.j) I , I X_)I)=

i+1

Using (1.4) and (2.7)-(2.12), it yields 2bi1 +b~1+1)+2i(b'j+b2,~1)'+4(1-b;,b;,,,)
2

1 1
Ib2) I < I <

SU) m +1 2(1-bz;b'2j÷l
M-I e+ -

m (bz2)+b z2,+l)+q•(b;j+b;j+l) 2+4(1-b~ib~i +l

m
- , (2.13) 2(1-M,.M 2)me+m+1 (2.18)

(j+l) (j+1) (M 1 +M2)+-4(M1+M2)2+4

lb ~ 1< 1 Co a,
21÷1 + + + C

(j+l) (j+1) > (>+1)

08)a a(2(+

Co C" .*- 2 1 M" 1 2 + r2-+-4 3(1 +F)

"0 "1-2 8 "2 -1 The lower bound of IX) I then yields the inequality

(2.6). 03
1 2 3

< - + + + Remark. Note that the lower bound (2.18) is much better
2+eM(O) (2+&M(0)) .3 (3+eM(1)) .4 than e/3(1+E) except that the expression in (2.18) is more

complex. Using (2.18) a better upper bound of Z' I is
m

""+ (MI+M2)+N7(MI+M2) +4
(m +eM(m-2)) (m+) ~112-11_ , (2.19)

2(1-M,"M2)

2 + F, (2.14) where MP, M 2 are defined by (2.13)-(2.14) and M(r) is
2i(2 (i +M 0i-2))2(i +1) defined in (2.12).

Let M, M 2 be the expressions on the right hand sides of Suppose n >> p, as we mentioned before, 11 AZ I1 can
(2.13) and (2.14), we obtain be as small as machine accuracy. Without loss of general-

ity, we can assume that IIZ-'1 1 AZIZ< 1. Since

(2.15) Z=Z+AZ=Z(I+Z AZ), matrix Z is invertible and
me+m+1 £+1 IE+ Mz-C' II jj _j= I(1+ i-iAZ)-l•-F I (2 .20)

1 - i

M 2 =- 2 (2.16) II-I1
2+EM(0) i-2(i +EM(i-2)) (i +1)

I -fli -IIIIAZiI
1 *' 1 m

<- + - < . The absolute errorIlYAyJlfor the original system Ax = d
2 i-2 i(i +1) m +1

354

satisfies niques, we may able to find better error bound.

IYAyII= IIA'-VPAYII

< AI:IIIZy 11t 11 II, -'III liftaz 1111 z-' IIII V•-d 11r~•
Table 1

by (2.5) and y = Z-AE ,_-d. Combining (2.20) we IAZI _ -__v__fo__
obtain e

COauPUUA Euimaad COMPuAW~ Esuawawli•-[iA -II ilrI ,L-•II dII le- l.9Xto- 5X~IO-4 g.0XIO- 3.tlx[O

flYAy fl (2.21) 10"4 3.640'" 2.5x10"4 3.2xlO"' 3.6x10I
1 -Ili IIAZIIl Io-" 2-oXto"- 2.340Uý* 3.ix1040 4.Sxl(P

10-2 7.14X|IO" 9.2xI0Or 0.0 3.4XI0°!

The relative error consequently satisfies 1-2 9.2x840- 1.3xio-4 0.0 2.4x1"

II YAy.__I< II,-i' liii-' l~i AZ l lA-'dl. (.22) 1.0 5.5xiltr' 4.3x0-"0 0.0 4.lxlOt"

IIlxll 1I-II•:-,lilllAzll ll -'dl ,II~pt.•.o
lIxil 1 -Ili-' 1111,ZI1I 1 IA~d 11 (222 -6400. p=16. QV=.4O0

Let us assume that hIA -1d',tI and hIA-SdlI have about theIIA dJl i Tabie 2
same magnitude (i.e., I = 0 (1)) which usually is Table_2

IIA-dhI --I ft AZ_ Rcbuve mc
true in practice. Using the fat IIA Ile l/e, an approxi-

mate upper bound for the relative error is Compaac ~umd I Compuwd I_•amaacd

10 -s 4.UxIO-' 6.2x1t"- 1.9X10- 7.7xlO'

IIz-'r (.)0 2..240-0 6.OxILt-" 2.40o-0 X.RXIO
• lAZll (2.23) io-3 6.Sx407' 4.2x40-4 0.0 S.4xI0-'

E (-I - •ZjIAZ I) it-1 6.3x0lo" I.I,0-O 0.0 4.3xlOo

where the bound of IZ 11and IlAZ I1are given by proposi- 10o 6.9x 10-mo 4.3x!0"a 0.0 8.1xI0-1t

tion 2.1 and (2.3) respectively. 1.0 0.0 5.5xIO-" 0.0 5.3xi0("s

The bound (2.23) indicates that if e is not too small n-6400. p-. pnl•1600
and n >> p, the PDD algorithm offers a satisfactory solu-
tion.

3. Numerical Results

The experiments were conducted for the Pstem
Ax=d with A =(1,2+e, 1) and d =(1, 1 -.,. 1) . 71c

computations were done in double precision. The numeri-
cal results and our estimates are listed in Table 1 and
Table 2. We use (2.3) as the estimated I1AZI1 and (2.19),
(2.23) as the estimated relative error for the solution of References

the system. [11 X, Sun, H. 7- Sun, and L. M. Ni. Parallel Algorithms
Both ntm theoretical analysis process and the for Solution of Tridiagonal Systems on Multicomput-numerical results indicate that the real com putational r.P o fth J9 9A MI enai alC f rnc

errors can be much smaller than our estimation. Also as sPrcof the JMne 5-re19n9)
we mentioned in (11 that the assumption on the matrices
is sufficient but not necessary. The algorithm can be [2) I. S. Duff. A. M. Erisman, and J. K. Reid, Direct

applied to any positive definite or diagonal dominant Methods for Sparse Matrices. Calrendon Press,

matrix whose resulting elements la' I c'. I2 I Offord, (1986).
(j=l,...,p-2) become underflow and IIA ii(Z11 iris not 131 J. 11. Wilkinson, Rounding Errors in Algebraic
too large. For the special matrices, using similar tech- Processes. Prentice-I-all, Inc. (1963).

355

The Fifth Distributed Memory
Computing Conference

"14: Basic Algorithms i

An Efficient FFT Algorithm on Multiprocessors
with Distributed Memory

J. P. Zhu *
Department of Applied Mathematics

State University of New York,

Stony Brook, NY 11794, U. S. A.

January 1, 1990

Abstract FFT is highly amenable to vector or SIMD archi-

tectures and significant improvements in perfor-
This paper discusses a parallel FFT algorithm mance have been achieved on this class of com-

and ifs implementation on iPSC/12 hypercube. puters.
Numerical ezperiment and performance model Recently, the problem of implementing FFT
analysis show that parallel FFT algorithm can be algorithm on multi-processor parallel computers
implemented on hypercubes efficiently. The i- with shared memory (MIMD machine) was inves-
ternode communication cost is minimized by elim- tigated by Briggs, et al. (1987) and mathematical
inating fragmentary message passing, overlapping performance models were established to quantify
communication and computation and mapping all the analysis of the algorithm performance. They
data groups that need mutual communication into demonstrated, through numerical experiment and
the closest neighbors on a hypercube, theoretical analysis, that the implementation of

Introduction FFT algorithm on shared memory parallel com-
puters has been quite successful.

FFT is one of the most widely used numerical While discussing general problem solving
method in science and engineering, especially in strategies on parallel computers with distributed
the area of signal and image processing, time se- memory, Fox (1988) and Walker (1988) studied a
ries and spectral analysis, computational mechan- parallel FFT algorithm on hypercube as an exam-
ics and the numerical solution of partial differen- pie. The algorithm is based on a group of general
tial equations (such as solving Poisson's equa- purpose message passing routines for internode
tion by fast direct method)[9]. For sequential communications. Once the communication rou-
FFT algorithm, there have been many develop- tines are implemented on a target machine, the
ments and improvements during the past twenty algorithm can be ported to the new machine with-
years since FFT was first introduced by Cooley out difficult.
and Tukey (1965), see [2],[5j, (6], (71, for details. The purpose of this paper is to investigate the
Along with the development of vector comput- implementation of FFT algorithm on iPSC/2 hy-
ers, FFT algorithm has also been modified and percube and present results of numerical exper-
implemented on computers with vector process- iments and performance model analyses. Both
ing facilities, see [1], [10], [13]-[17]. Theoreti- computation results and theoretical analyses
cal and numerical experiment analysis show that show that the communication cost can be min-

'The author thanks CorneU Theory Center for provid- imized by eliminating fragmentary message pass-
ing access of its iPSC/2 hypercube ing, overlapping communication and computation

358
0-6186-2113-3/90/0000/0358$01.00 0 1990 IEEE

"each step, points can be classified into pairs, the

two points in each pair has input transmission

paths stemming from the same pair of points in
the previous array. We call the two points in such

a pair a dual point pair. Each dual point pair in

X,(k), i = 1, 4 is calculated by using a corre-

sponding dual pair in X,-1 (k) and multiplication

\XXXXX-IZ("'7Lýof a complex exponentiation. For example:

X1 (0) = Xo(0) + w0 Xo(8)

X1 (8) = Xo(O) + wSXo(8) (1)

= Xo(O) - WXo(M)

Other pairs can be obtained in similar manner.
.• The index diffierence between points in dual pair

S..... (originally 8) is halved in every step until it

reaches I in last step, which means the dual pair

Figure 1: Flow chart of FFT now contains adjacent elements. In each inter-
mediate step, the computations for different dual
pairs are independent and can be done in parallel.

aommundimappiong allnatarou th at needhbs mtal This is the point where the parallelism is intro-
communications into the closest neighbors on a dce.Smlryeeensithary cn

hyperube.duced. Similarly, elements in the array Xih can
hypercube, also be cut into segments and the computations

The Algorithm: for different dual segment pairs can be done in
parallel. For example, X,(0 : 3) and X,(8 : 11)

There are many variants of FFT algorithm in form a dual segment pair, while X 1 (4 : 7) and
the references. We started by introducing paral- XI(12 : 15) form another pair.

lelism in the algorithm discussed in [4]. To illus- In general, if there are N elements in Xo(k)
trate the parallel algorithm, we use the following (for simplicity, we consider the case N = 2P, u
example. is an integer), we need 1 steps to finish the com-

For a given array of complex elements putation. In each step, the array X,(k) is cut
Xo(k), k = 0, -.. , 15, the final result of its FFT, into segments and the computations for different
denoted by X 4(k), can be calculated in four steps tdual segment pairs can be done in parallel. From
as shown in Fig. 1. where wl = ezp(21rit/16), Fig.1, it is clear that to obtain a single dual pair

i = vf1-I. Each column in Fig.1 represents the in the final array X4 (0 : 15), say X 4(0) and X 4(1),
array of intermediate result during the computa- one single dual pair in X 3 , A.C. X3 (0) and X 3 (0),
tion. Every point (except points in the first col- is needed for the computation, which in turn re-
umn) is an element in the array of intermediate quests another two dual pairs from X 2 , i.e. X 2(O),
result and is entered by two solid lines represent- X 2 (0), X 2(2) and X2 (3). If Xo(0 : 15) is initially
ing transmission paths from previous points. A distributed over different nodes on a hypercube,
solid line transmits or brings a value from a point the subsequent computations on a node depend
in the previous step, multiplies the value by w', on intermediate result of other nodes. It is this
and inputs the result into the point in the next data dependence that brought up the need for
array. Factor w1 appears near the arrowhead, ab- inter-processor communication.

sence of this factor means to1 =1. Results entering Suppose there are p = 21' nodes on a hyper-
a node from the two transmission paths are coin- cube available for the computation, a most com-
bined additively. It is clear that in the array of monly used way to distribute the data array X 0

359

X0. .. 0 -X XO's. Each node starts work on the dual segment
2 2- l pair to obtain the updated value. Upon finishing

step 1 computation, node I needs X[from node
3 to continue computation, while node 3 needs
X1' from node 1 for the next step. Thus, node
1 exchange information with node 3, as shown

1 D: by the arc in Fig.2b, so does node 2 with nodeX I,. ,0 X3,X ,c," X4,

.\1, o) a 0 t0 b 4. Fig.2c shows the information flow at the last
step. After that step, the computation in each

-_------- node is completely independent because the dis-
tance between nodes in dual node pair is less than
or equal to the data segment length, so all nodes

have the necessary information available in their
local memory for the contin'uing computation. In

3• 4 general, if there are p = 21' nodes on the hy-
.I, C X' X,,- d .X0 percube and N = 21 elements in Xo, (suppose

,u > ul), A steps of computations are needed for
Figure 2: Data exchange FFT and inter-processor communication is neces-

sary only in the first #t1 steps. There is no com-
munication at all for the remaining 1 - #ul steps.

into different nodes is to divide X0 sequentially Fig. 2d shows that if data segments were dis-
into p segments of equal length n and then assign tributed into the nodes in another way, commu-
one segment to each node. In each computing nication between non-adjacent nodes will occur
step that requires communication, a data segment (node I must communicate with node 4 and node
of length n must be exchanged between nodes for 2 must communicate with node 3). To minimize
the next step computation. To reduce the amount communication cost and improve the algorithm
of data transferred during the communication, we performance, the following two points were con-
divide X0 sequentially into 2p segments of equal sidered when implementing the algorithm:
length which form p dual segment pairs initially,
then assign one dual segment pair to each node to 1. Eliminating fragmentary message passing
start the computation. In each intermediate step and overlapping communication with computa-
that needs communication, every node sends half tions. As was discussed previously, in the first jul
of its computed result(length n/2) to the nodes computation steps, each node needs to exchange
which need it for the next step computation, and half of its computed results with another node. If
wait for the information of same length from an- every single data element is exchanged one by one
other node to arrive for continuing computation. with the progress of the computation, communi-
Fig. 2 shows the information flow during the cation cost will be overwhelmingly high due to the
computation in the case of a hypercube with 4 accumulation of start up cost. To overcome this
nodes. Note in each step that needs communi- difficult, each node sends all data items to be ex-
cation, only half of the data stored in a node changed in one package after the computation in
is exchanged with another node. X0 is divided the current step has completed. While waiting for
into 8 segments X, i = 0,- -. , 7. The circles in the data package from the other node to arrive,
Fig.2 represent nodes, the letters outside the cir- the node can start computing complex exponenti-
des indicate the data segments stored in the local ations wh = exp(21rik/N) (including determining
memory. At the first step, X' and X0 are in the k by modular arithmetic and computing complex
same dual segment pair, so are X' and X5 and so exponentiations) for the next step. When the
on. Fig. 2a shows the initial data distribution of data package from the other node arrives, these

360

{ send out Xý orX• }
{ compute complez ezponentiations

02 while waiting for data from

Pn, to arrive }
'..X9 V ."end for

for k= 1'l +1, I do

{compute X', X- fro X~1

end for
{ send result X', " back to the host }

The programming language is Fortran and the

------------- 6 communication subroutines are provided by the

operating system.X%'X13 / x,, XIS

Numerical Experiment and Analysis:

The algorithm was implemented on a 32-node
__iPSC/2 hypercube. Extensive numerical compu-

tations have been carried out to study the perfor-
Figure 3: Data distribution mance of the algorithm. The cube can be parti-

tioned into subcubes. Both the number of data

exponentiations can be used immediately in the points N and the number of nodes p were ad-

multiplications and additions as described by for- justed as parameters during the computational

mula (1). experiment, with N ranging from 1024 to 262144

2. Mapping all dual segment pairs that need (1t from 10 to 18) and p ranging from I to 32 (pl

mutual communication into the closest neighbors from 0 to 5). The algorithm has also been incor-

on a hypercube. The topological connection on porated into a fast PDE solver to solve large scale

a hypercube with p = 20' makes each node con- reservoir simulation problems.

nected directly with 1tA other nodes (the closest Fig. 4 gives the timing curve obtained from nu-

neighbors). It is clear from the previous analysis merical computations for different p values, where

that a specific node holding a dual segment pair N sm p' is the number of data elements to be

needs to exchange intermediate results with thn

other dual segment pairs. These 14, dual segment on the hypercube. The curves show that the

pairs are mapped into the A, closest neighbors of computing time decreases rapidly as the num-

that specific node, thus all pairwise communica- ber of nodes increases, until the optimal number

tions between dual segment pairs can be done di- of nodes has been reached. For example, when

rectly without transferring through intermediate N 213 = 8096, the optimal number of p is

nodes. Fig. 3 gives the mapping of dual segment p - 24 = 16. After that, the extra communi-

pairs into a hypercube with eight nodes. cation cost incurred by increasing the number of

The algorithm for each node can be described nodes will outweigh the gain from the reduced nu-

as follows: merical computation time, so the total executing
time will increase. The optimal number of nodes

(get initial duand srmthent pr increases with N, as indicated in Fig. 4.

{e inidu segfromthenhost pIr For theoretical analysis, we used
X\° and X\' from the host }

for k=1 to tl do t = c+O3r
{kcompute X and X! as communication model,

from Xk_, and X-'h- }
{find next node nP to communicate } T. = 2fNlog3N

361

1. -17

2. p -16
Ci 3. 15 t

4.A 13

2 2K 3.• =3
$"3 2 C; 4. At =4

3

4 8

0.0 1.0 2.0 3.0 4.0 5.0 0.0 5.0 10.0 15.0 20.0

Figure 4: Timing curves Figure 5: Efficiency curves

as serial running time model on one node, and to the result obtained from the numerical compu-
tation. Those curves have been omitted to save

T, = 2f(iog2N)N/p + 10p(a + 3N/p) the space.

The optimal number of nodes pp as a function
+(a +/3N/p)log 2p of N can be obtained by solving the minimum of

as parallel running time model on p nodes. a Tp. If the last communication term is omitted,

is the start-up time for communication, 0 is the the approximate solution will be:

time required to send one word to the closest
neighbors and f is the time needed for one float- P
ing point multiplication. The value of these pa- which indicates ppt oc O(n/ 2(Log02 N)1/ 2).

rameters are the same as used in [8]. There are Fig. 5 gives the algorithm efficiency curves
three terms in the parallel running time model, given 1iy performance models. Different curves
The first term represents the numerical compu- correspond to different number of nodes in the
tations distributed to each node which is a de- computation. The algorithm efficiency is defined
creasing function of p. The second term reflects as:
the communication time for loading program, dis-
tributing data to and collecting the final results e = T./(Tpp)
from all the nodes, this term increases linearly
with the number of nodes p since broadcasting Ideally, if there were no overhead and commu-
can not be used to distribute diffetent data seg- nication, e should be unity, meaning the compu-
ments to all nodes. The last term gives the time tation will finish in i/p the serial running time.
spent on internodes communication during the The figure shows that there is a certain range
computation. This term is usually much smaller of i (N = 2" is the number of data elements
than the second term since the communication to be transformed) in which the efficiency in-
takes place only between the closest neighbors in creases very fast as p increases. The algorithm
the first log~p steps. The timing curves given by is switching quickly from communication dom-
mathematical performance models are very close inance to numerical computation dominance in

362

this range. For a 32 node iPSC/2 hypercube, (81 M. T. Heath et al., Parallel solution of trian-

the algorithm efficiency will be over 80 percent gular systems on distributed-memory multi-
when N is greater than (214). In summary, the processors, SIAM J. Sci. Statist. Comput. 9

algorithm introduced here is very efficient when (1988), pp. 5 5 8 -5 8 7 .

implemented on a hypercube. High efficiency can
be achieved by eliminating fragmentary message [9] equW.ione y Fas rir sion of

passing, overlapping computation and communi- Pson e t by Fueralyi,1

cation and taking advantage of rich connections ACM, 12 (1965), pp.95-113.
available in the cube. The algorithm can also be (10] D. G. Korn and J. J. Lambiotte, Computing

used as a core routine in the time series analy- the fast Fourier transform on a vector com-

sis or spectral analysis algorithm on distributed puter, Math. Comp. 33 (1979), pp. 977-992.
memory computers to speed up the large scale
computation. [11] J. M. Ortega, Introduction to parallel and

Acknowledgment: The author appreciates vector solution of linear systems, Plenum

very much the information about the available Press, New York, 1988.

references provided by Professor D. Walker. [121 Y. Saad and M. Schultz, Data communica-

tion in parallel architectures, dept. of comp.

References sci. rep. RR/461, Yale Univ., 1986.

[13] P. N. Swarztrauber, FFT algorithm for vec-
[1] D. .1. Bailey, A high-performance fast tor computers, Parallel Computing, 1(1984),

Fourier transform algorithm for Cray-2, J. pp.45-63.
of Supercomputing, 1 (1987), pp.4 3 -6 0 .

[14] __ , Vectorizing the FFT's, in Parallel

[2] G. D. Bergland, A fast Fourier transform for Computations, G. Rodrigue, ed., Academic
real-valued series, Comm. ACM, 11 (1968), Press, New York, 1982.

pp. 703-713. [15] C. Temperton, Fast mixed-radix real Fourier

[31 W. L. Briggs, Multiprocessor FFT methods, transforms, J. Comput. Phys., 52 (1983),

SIAM J. Sci. Stati. Computing, 8 (1987), pp.3 4 0 -3 5 0 .

pp.s27-s42. [16] -, Implementation of a self-sorting in-

place prime factor FFT algorithm, J. Com-[4] Brigham, The Fast Fourier Transform, pt hs,5 18) p 2 3 2 9

Prentice-Hall, Englewood Cliffs, NJ, 1974.

[17] __ , A note on the prime factor FFT algo-
[5] W. T. Cochran et as., What is the fast rithm, J. Comput. Phys., 52 (1983), pp.198-

Fourier transform? IEEE Trans. Audio. 204.
Electroacoustics, An-15 (1967), pp.4 5-5 5 .

[18] D. W. Walker, Portable programming within

[6] J. W. Cooley and J. W. Tukey, An algo- a message-passing model: the FFT as an ex-

rithm for the machine calculation of complex ample, Proceedings of the Third Conference
Fourier series, Math. Comp., 19 (1965), pp. on hypercube concurrent computers and ap-

297-301. plications, Ed. G. Fox, ACM Press, 1988.

[7] W. M. Gentleman and G. Sande, Fast

Fourier transforms for fun and profit, 1966
Fall Joint Computer Conference, AFIPS
Proc., 29 (1966), pp. 5 6 3 -5 7 8 .

363

Distributed Evaluation of an Iterative Function for
All Object Pairs on an SIMD Hypercube

Fikret Ergal
Department of Computer Engineering and Information Sciences

Bilkent University, Ankara, TURKEY

players are to be scheduled so that the courts

are maximally utilized and the players do min-
Abstract imal walking between courts.

An efficient distributed algorithm for In an earlier study [4], a distributed solution to

evaluating an iterative function on all the problem for an MIMD hypercube was pre-
pairwise combinations of C objects on sented, and shown to be optimal with respect
an SIMD hypercube is presented. The
algorithm achieves uniform load dis- to processor utilization and communication. In
tribution and minimal, completely lo- this paper, we solve the same problem for an
cal interprocessor communication. SIMD hypercube. Two important constraints

in the iterative application of the function make

1 Introduction the otherwise trivial problem a non-trivial one

: 1) the objects might get modified by the ap-

The problem addressed here is the following: plication of the operation, (i.e. not read-only)

Given a set of C objects uniformly distributed and 2) the result of the current step depends on

auLong the processors of an SIMD hypercube, the state of the objects after the previous step

and an operation on pairs of objects which may (iterative). Since the operation can change the

possibly modify the objects, is there a way to objects, a consisteny problem arises if multiple

efficiently evaluate the operation iteratively on copies of the same object exist simultaneously

all the possible C(C - 1)/2 pairwise combina- in the distributed system. Therefore, only one

tions of the C objects in a distributed fashion copy of an object must be allowed in the sys-

? This problem arises for example in the con- tem.

text of parallel k-way graph partitioning on a The key to an efficient distributed pair-

hypercube [1], and in the scheduling of a round- wise combining algorithm is the appropriate

robin tournament between C players using C/2 scheduling of communication of the objects be-

courts, where the paths between courts form a tween the processors so that all possible pairs

hypercube interconnection. Matches between

0-8186-2113-3/90/0000/0364$01.00 0 1990 IEEE

meet exactly once, and no redundant compu-

tations occur. To achieve this, we require each

processor to communicate with only its near- Pairwise-Evaluation Algorithm listed below

est neighbors, and do some usefull work af- evaluates a given function for all C(C - 1)/2

ter each communication. We present a fully pairwise combinations of C objects using C/2

distributed algorithm which maximally uti- processors. Initially, each processor Pk con-

lizes the system and uses minimal interpro- tains two of the C objects, labeled Clk and

cessor communication. The algorithm com- C2k, with no two processors containing the

prises p + 1 phases, where p is the dimen- same object. The processors alternate between

sion of the hypercube. Each phase consists of computation and communication, with each

two subphases - an object-circulation sub- processor repeatedly performing: 1) a pair-

phase, and a window-fragmentation sub- wise operation on the two locally held objects,

phase. Object-circulation subphase make and, 2) communication of one of the objects

use of the SIMD data circulation algorithm to a neighbor processor, in turn receiving some

given in [2] with a simple modification to han- other object from a neighbor.

dle variable window sizes.

SIMD Distributed Pairwise-Evaluation
The paper is organized as follows : In section Algorithm

2, we present a fully distributed algorithm us-

ing only local inter-processor communication Processor PL executes:

for solving the pairwise-evaluation problem on 1. for d +- p to 0 do

an SIMD hypercube. In section 3, the algo- 2. for s *.- 1 to 2 d - 1 do

rithm is shown to be optimal. Section 4 con- operate on the pair (Clk, C2k;4. send(C'2k, Nh(d")(k));
cludes the paper with a brief discussion. 4. recv(C2k, Nh(d~o)(k));

5. recv(C2k, Nh(d,s)(k));

6. endfor
7. operate on the pair (Clk, C2k);

2 Distributed Pairwise- 8. if (d > 0) then

Evaluation on an SIMD Hy- 9. if (bd-l(k) = 1) then
percube 10. send(Clk, N(d-1)(k));

11. recv(Clk, N(d-1)(k));
12. else

We use the following notation in specifying the 13. send(C2k, NR(d-1)(k));
algorithm: 14. recv(C2k, N(d- 1)(k));

15. endif
Given a processor numbered k, 0 < k < P - 1 16. endif

bd(k) : d-th bit of the binary representation of k 17. endfor
Nd(k) : the neighbor processor whose binary
representation differs from k in only the d-th bit
Clk,C2k : objects assigned to processor k The key requirement is that the objects be
P = 2P : the number of hypercube processors
C = 2 e: the total number of objects moved between the processors in such a way

365

that each possible pair of objects comes to- used to denote the i-th number in the sequence

gether exactly once to enable the application Xd, 1 < i < 2 d. As an example, h(3, 1) = 0,

of the pairwise operation on that pair. The h(3,2) = 1, h(3,3) = 0, and h(3,4) = 2.

algorithm has p + 1 phases (indexed by "d"),

where p is the number of dimensions of the hy- During a phase, corresponding to one iteration

percube. Each phase consists of two subphases of the d-loop of the algorithm, each processor

- an object-circulation subphase where pro- keeps one of its objects (Cl) local, while it

cessors circulate their objects in closed windows repeatedly receives, transforms and passes on

(lines 2-6), and a window-fragmentation the second object (C2). Considering phase p,

subphase where each window subdivides into with all processors communicating in one single

two isolated windows (lines 8-16). The window window, at the end of the 2P - 1 steps in the

structure thus changes from phase to phase, first part (the object-circulation subphase) of

with 2 P-d independent windows of size 2d be- the phase, all objects constituting the various

ing formed during phase d, as illustrated for a Cik'S (denoted C81) would have been matched

4-dimensional hypercube in Fig. 1. up with respect to every object in the CS2
set (and the pairwise operation performed on

For an MIMD hypercube, object-circulation in each such generated pair). Thus the only pair-

a window of size 2d can be easily done by re- ings between objects that have not yet been

peatediy performing, 2 d - 1 times, a circular formed are between the members of the CS1

shift of 1 among the processors belonging to set and likewise, mutually among the mem-

the :ame window. On the other hand, due to bers of CS2. The window-fragmentation sub-

the central control in an SIMD hypercube, op- phase of phase p involves pairwise communica-

timal circulation requires a special exchange se- tion exchanges between each processor and its

quence Xd as described in [3]. This sequence is neighbor whose address differs in the highest

defined recursively as in the following: bit. During this subphase, each processor Pk

with highest address bit of one (bp_1(k)=1),

swaps its Cl object for the C2 object of its

For example, X3 = 0,1,0,2,0,1,0. Using Xd partner processor(PI, with bp_ 1(l)=0). Thus,

sequence, object circulation in a window of after this communication subphase, all proces-

size 2d is achieved by first circulating data in sors Pk with (bp. 1(k)=l), will only have ob-

windows of size 2 d-1 in parallel using Xd-1 jects from the original CS2 set, while all pro-

sequence, then performing a data exchange cessors with (bp_.(k)=0) will have all the ob-

across the two windows (along bit d-1), and fi- jects comprising the original CS1 set. This

nally circulating the exchanged data in the two subphase is labeled the "window-fragmentation

windows again using Xd-1 sequence. In the subphase" because the window gets fragmented

algorithm given above, the notation h(d,i) is into two smaller windows and no communica-

366

CI C2

0110 Ii 1010 11. Poo Am 4--0A BO
o.... . . . ,.....

6O 0 (l O0O 1 1 0 o H l 1 0 1 1 d •p o t A l I *" - - B il l

.

iPI AID B3 1

PH1 All B 11(a) d-4 1 window of size 16

0110 0111 Cl C2 C1 C2
0100 010 1 11101 PPI

W•1 I i l> 101I 1 P ei A s All P H Bil B U0(01 1 d=3 2101 Pw P

C1 C2 CI C2 C1 C2 C1 C2
(b)o d1=3 2= winow ofo size 80 1

0010 1 C0o0 110

-__Z L IZ 7 1011 Figure 2: Illustration of Distributed PC algo-
low Im rithm on a 2-D hypercube (4 processors)

(c) d=2 4 windows of size 4

0110 - o111 1110 - 1111 tion takes place thereafter between the proces-

o0o0 1 Ol 1100 - 1101 sors in the "highest-bit-l" window and those
ODlO 0011 1010 l 1o0 in the "highest-bit-O" window. Thus in phase

0 - 01 I= 1001 (p - 1), two windows of size 2P- 1 are formed

(c) d=1 8 windows of size 2 for the object-circulation subphase and com-

munication occurs between processors differ-

01106 M11 uio. s ill ing in their (p - 2)th bit during the window-

o01 0 90101 01W 6 6110 fragmentation subphase.
0io 10 06011 10100 0•1011

During each phase of the algorithm, new
0 0 0101 ow00 0 61001

object-pairs meet at the processors, for appli-
(d) d=S 16 windows of size I cation of the pairwise operation. The algo-

rithm guarantees that during an outer pass,

Figure i: Illustration of window formation in no pair of objects is ever matched up more

different phases of the Distributed PC algo- than once. Fig. 2 is used to illustrate

rithm this "no-repetition" property of the algo-

367

rithm. In order to focus on the nature of combinations that occur during execution of the

the window-fragmentation subphase, the ef- algorithm is C(C - 1)/2.

fects of the alternating object-circulation sub-

phase are intentionally omitted. Eight ob- Proof: Each processor performs one pairwise

jects are shown, mapped onto four proces- comparison during every step of every phase of

sors, two objects per processor. During phase the algorithm, as is clear from the algorithm

2 (d = 2), the application of the object- specification. The number of steps in phase

circulation subphase results in the generation d is 2d. Hence the total number of pairwise

of all possible pairwise combinations with one combinations tried is:

object from CS1 (Aoo,Ao1,Alo,A11) and the

other from C82 (Boo,Bo1,B1o,B11). Ignoring
0

for now the actual permutation of the C2 ob- 2P * E2d = 2P * (2(P+') - 1)

jects that will result at the end of the object- d=p

circulation subphase, and assuming it to be = P(2P - 1) = C(C - 1)/2

as shown, the window-fragmentation subphase

of phase 2 will result in the state shown for 1

d = 1. Processors P0o and P01 are left with

objects Aoo,Ao1,A1o,A11 , whereas P10 and P11 Lemma 2 Given any objects Ci and Cj, the

now have objects Boo,Boi,Bio,Bn1. After the combination (Ci,Ci) can occur at most once

window-fragmentation phase of phase 2, p0 . during execution of the algorithm.

and P1. do not ever again communicate with

each other. Since no pairwise combinations Proof: Let d be the earliest phase that the

involving two A-objects had occurred during combination (Ci,Ci) occurs. Obviously, at

phase 2, and since none of the B-objects can most one such match can occur during the

any longer meet any of the A-objects, all object-circulation subphase of phase d. For

pairs of objects that align at any processor are such a match to occur, one of them must be-

unique combinations that have not occurred long to the Cl-object-set and the other to the

earlier. The same property clearly holds re- C2-object-set. Since they belong to different

cursively, as illustrated in the figure. object-sets, during the window-fragmentation
subphase of phase d, C1 and C, will necessar-

I n t h e n e x t s e c t io n , w e f o r m a l ly p r o v e t h e c o r - il y n d u i n p r o ce s s o r s P k ,d F 1 , w h er e s sa n k

rectness of the distributed algorithm. iyedu npoesr k 1 hr n
differ at least in bit d - 1, and hence Pk and P1

belong to different windows. Obviously, they

3 Proof of Optimality cannot get matched in any later phase d' < d.

Hence at most one match (Ci,Ci) can occur

Lemma 1 The total number of pairwise object during an outer pass. 0

368

Theorem 1 Given any two objects Ci and Cj, load distribution and minimal, completely local

the pairwise combination (Ci,Ci) occurs ex- inter-processor communication.

actly once during execution of the algorithm. In case that C > 2P, the algorithm can be

extended in a straightforward fashion. ForProof: Theorem 1 follows immediately from
C = MP, M = 2k, k > 1, groups of M/2 ob-

lemma 1 and lemma 2. By lemma 1, a total of

C(C - 1)/2 pairwise combinations occur, and jects should be considered in place of single ob-

jects in the presented algorithm. Now, insteadby lemma 2, no combination (Ci,C,) can occur
of a single pairwise operation, (M/2) 2 pairwisemore than once. Since the number of possible
operations are performed at each step of the al-

distinct combinations of object pairs is C(C - orithm bte me m er at itin of the two

1)/2, all possible matches must occur exactly gorithm bet-groparocssor th

oncedurng xecuionof he agorthm 13(M/2)-ary object-groups in a processor. With
once during execution of the algorithm. 0

such a (M/2) - ary group of objects in place of

Theorem 1 implies that as regards to computa- single objects, the algorithm for distributed PC

tion, the algorithm is optimal since every pro- is essentially the same as above, except for an

cessor is busy during each computational step additional set of operations between the corn-

and no duplicate computations occur. With ponents of each (M/2) - ary group of objects.

respect to communication too, under the con-

straint of computational load balancing and References
uniform data distribution, each processor can

only contain two objects, and after perform- [1] P. Sadayappan, F. Ercal and J. Ramanu-

ing the pairwise operation on its currently held jam, "Parallel Graph Partitioning on a
Hypercube," Proc. of Fourth Conf. on Hy-

pair, it will have to send out at least one ob- percube Concurrent Computers and Appli-

ject and receive one object in order to perform cations, March, 1989.

useful computation at the next step. The algo- [2] S.Ranka and S. Sahni, Hypercube Algo-

rithm causes only one object to be sent and one rithms For Image Processing and Pattern
Recognition, Bilkent University Lecture

object received by each processor at each step, Notes, Springer-Verlag, in press.

i.e., the azlzorithm performs minimal communi-cation.[3] E. Dekel, D. Nassimi, and S. Sahni,

cation. "Parallel Matrix and Graph Algorithms,"

SIAM Journal on Computing, 1981, pp.
657-675.

4 Discussion [4] P. Sadayappan, F. Ercal and J. Ramanu-

jam, "Distributed Generation of Pairwise
An efficient distributed algorithm for evaluat- Combinations on a Hypercube," in Pro-

ceedings of Parallel Computing 89, Leiden,
ing an iterative function on all pairwise combi- The Netherlands, August 1989.
nations of C objects on an SIMD hypercube is

presented, and it is shown to achieve uniform

369

The Complexity of Reshaping Arrays on Boolean Cube

S. Lennart Johnsson* Ching-Tien Hot
Department of Computer Science IBM Almaden Research Center

Yale University 650 Harry Road
New Haven, CT 06520 San Jose, CA 95120

Johnsson@cs.yale.edu, Johnsson@think.com Ho@ibm.com

Abstract the array. Explicit methods for the solution of partial
differential equations are examples thereof. Preserving

Reshaping of arrays is a convenient programming primi- the locality in the Cartesian space when mapped to the
tive. For arrays encoded in a binary-reflected Gray code processor network is important with respect to perfor-
reshaping implies code change. We show that an axis mance. The binary-reflected Gray code is often used to
splitting, or combining of two axes, requires communica- accomplish this task in Boolean cube networks. Succes-
tion in exactly one dimension, and that for multiple axes sive integers in the decimal encoding differ by one bit in
splittings the exchanges in the different dimensions can their Gray code encoding. This property is used in CM-
be ordered arbitrarily. The number of element transfers Fortran [I], Thinking Machines Corp. version of Fortran
in sequence is independent of the number of dimensions 8X [111 for the Connection Machine. In this language
requiring conmmnuication for large local data sets, and implementation, array axes are by default encoded in a
concurrent communication. The lower bound for the binary-reflected Gray code.
number of element transfers in sequence is !3 with K Some important algorithms with a regular communi-
elements per processor. We present algorithms that is cation pattern depend on local references in a Boolean
of this complexity for some cases, and of complexity K space. For instance, the Fast Fourier Transform re-
in the worst case. Conversion between binary code and quires communication in the form of a butterfly net-
binary-reflected Gray code is a special case of reshap- work, which implies communication between adjacent
ing. nodes in a Boolean space with corresponding nodes in

different ranks mapped to the same processor. In many
scientific and engineering applications algorithms that

1 Introduction depend upon both types of access patterns may be used,
and conversion between the two storage forms may be

In computer systems locality of reference has had a sig- important.
nificant impact on performance ever since memory hi- Many recursive algorithms make use of axis split-
erarchies were introduced. In modern computer sys- ting, or combining. An example is the data parallel
tems small memories in MOS technologies may be de- implementation [21 of the divide-and-conquer algorithm
signed for higher speeds than larger memories. In multi- by Dongarra and Sorensen [31 for computing eigenval-
processor systems with processors ax d memory modules ues of symmetric tridiagonal systems. Array manipula-
interconnected via a network, the access time for non- tion through operations such as RESHAPE in Fortran
local information is typically considerably longer than 8X and APL, impacts the encoding for binary-reflected
local access. Moreover, the access time depends upon Gray coded axes. The encoding of binary coded axes is
the network topology, congestion and bandwidth of the unaffected.
conuuunications network. The reference pattern has a Different axes may have different encoding. For in-
significant impact on the optimal data allocation in net- stance, if butterfly computations are performed along
works that have a non-uniform distance between pairs one axis, and nearest-neighbor communications in
of nodes, such as Boolean cube networks. a Cartesian space along the other axis of a two-

In well structured computations the data is conve- dimensional array, then binary encoding of the first axis
niently represented by arrays. Many algorithms require and binary-reflected Gray code encoding of the second
local references in a Cartesian space corresponding to axis is desirable. Furthermore, the encoding of a sin-

"The author is also with Thinking Machines Corp., 245 First gle axis may be mixed. Typically the number of array
Street, Cambridge, MA 02142. This work was supported in part elements along an axis exceeds the number of proces-
by AFOSR-89-0382 and ONR Contract No. N00014-86-K-0310. sors allocated to the axis, forcing several elements along

t Part of the work was done while the author was with the an axis to be allocated to the memory of each proces-
Department of Computer Science, Yale University.

370
0-8186-2113-3/90/0000/0370$01.00 @ 1990 IEEE

sor with the array elements being allocated as evenly as
possible. Cyclic and consecutive [61 allocation are two
common schemes for assigning multiple elements to pro- -"_\

cessors. With local random access memories distance is 0 1 6 7
not an issue in determining the encoding for the local a 2 1I 4
memories. Binary encoding is typically used for the lo-
cal part of an axis, and binary-reflected Gray code for
the processor part.

As an example consider a two-dimensional logic ar- 1 11
ray A of shape P x Q allocated to an N, x No physi'cal
array of processors, where P = 2P, Q = 2f, N1 = 2'-,
No = 2"0, p> n1 and q Ž no. The data allocation is
consecutive, and each array axis is encoded in a binary-
reflected Gray code. Bit m in the address- space is de-
noted g,. if encoded in a binary-reflected Gray code, and Y
b,. if encoded in binary code. Bit zero, or dimension
zero, is the least significant, and the rightmost dimen- -___

sion in our expressions. The symbol 11 denotes concate- 0 15 4
nation of two fields. Axes are also labeled right to left. 3 2 6 7
We illustrate the allocation as follows(1 1 1 1 11

"g"1 2 g-,, gi-,- g,-,-, 2 .ll

paddr' maddr' 15 1 10 1

0 0 0 0 0 o

g .-.gi-2"'g1-0 g-,- Ig,-.• - "g). 12 1 9 8

paddro maddro

The processor address for an element (i,j) of the Figure 1: Reshaping an 1 x 16 array to a 4 x 4 array.
logic array is formed as (paddr'(i)jIpaddr°(j)), and the
local storage address is (maddr'(i)Ilmaddr°(j)), where [4,13,12,15,10,51 in the form of an no step right cyclic
G,(i) (g�-g• " "g) is the binary-reflected Gray shift, or p - n, steps left cyclic shift on the dimensionscode encoding of i, and G,(J) =(o go2..go)ith

e e n oin the field (maddr'Ilpaddr9) is required, in combination
binary-reflected Gray code encoding of j. Reshaping with code conversion.
the logic array into a one-dimensional array such that
(i,j) -4 iQ + j preserving the assignment of bits in the With consecutive allocation of A and a binary encod-
logic array to bits in the physical address space implies ing of local addresses, and a binary-reflected Gray code
a code conversion for axis zero if i is odd, and data mo- encoding of processor addresses, the processor address of
tion within no dimensional subcubes. The result is an element (i, n) is formed by computing the address fromaoation othfrmthe binary-reflected Gray codes of [i/NiJ and li/No].

The local memory address is determined from the bi-

(9p,+*-,,, gp+t-nt-igp+t-n,-2 ... gil nary codes of i mod N, and j mod No. The encoding of
% - the address field is

paddr' maddrt ~b -2 b -bo I
g,-Ig,-2 * . g''-no gf-,fn-'gf-ig o-, .. "go) -(g1 -. " 1

paddx-'=•J mapaddr' maddrtpaddr" mjaddhr"

where, as shown later, gin+, = g,, m E {0, - -,p - I) go .. -b).
and g,, = go, m E {0,.., q - 2). The value of g,_,I I - .,V

depends upon the value of gi. Figure 1 illustrates the pddiz maddr'

data motion. Reconfiguration of the processor array is equivalent to
Note that whereas the initial data allocation was con- changing the assignment of dimensions in the logic ad-

secutive the data allocation after reshaping is not. If dress space to dimensions in the physical address space.
a consistent data allocation is desired, i.e., the same A dimension permutation is required. If the encoding
data allocation scheme before and after reshaping, then of the local address field is different from the proces-
it is in general necessary to change the assignment of sor address field, then a code conversion is required in
dimensions in the logic address space to dimensions in combination with the dimension permutation. Reconfig-
the physical address space. A dimension permutation uration of a processor array may be required to assure

371

that all operands use the same physical machine con- a bit with value one. "11" is the concatenation symbol.
figuration, as for instance in matrix multiplication on For the complexity estimates we assume bi-directional
the Connection Machine [8]. The Connection Machine channels and concurrent communication on all channels.
Fortran compiler allocates logic arrays to the processors The number of elements per node is K. G,. is the sc-
by defining a processor array congruent to the logic ar- quence of n-bit binary-reflected Gray codes for ZN, i.e.,
ray for each array. Hence, in the matrix multiplication G (G.(0),G.(1),... , (2 - 1)).
C -- A x B all three matrices may assume a different
shape of the processor array. Definition 1 [14] The binary-reflected Gray code is de-

In this paper, we show how an axis splitting, or fined recursively as follows.

the combining of two axes into one, can be performed
by a single exchange operation. For multiple axes 01= (G 1 (0), G,(1)), where G1 (0) = 0, Gi(1)= 1.

split/merge operations, the number of element trans-
fers in sequence is independent of the number of axes 0IIGn(0)
created or merged, if the communication system allows 011G3(l)
concurrent conmmunication in all required dimensions.
The number of element transfers in sequence is only a 0IIG.(2" - 2)
function of the size of the local data set, if there is a OIIG.(2" - 1)
large local data set. The nmnimum number of element U'-+1 1IIG.(2" - 1)
transfers in sequence is equal to the number of dimen- 1IG,(2" - 2)
sions requiring communication. The conversion between
binary-reflected Gray code and binary code is equiv,,-
lent to reshaping between a one-dimensional array and 1IIG.(1)
a 2 x 2 x ... x 2 array of dimension n. 1IIG.(O)

The algorithms we give for reshaping and code conver-
sion are either asymptotically optimal, or optimal within In the following we always refer to the binary-reflected
a factor of two with respect to data transfer time. The Gray code defined above.
control information can be computed locally from the
node address. The code conversion can start in any di- Corollary I The highest order bit is the same in the
mension, and the required exchanges can be carried out ba t
in dimensions ordered arbitrarily. This property allows binary code and the oinary reflected Gray code. The

reshaping by concurrent communication in all required fined by G._((b,,_.b. 3 ... bo)). The reeiaining bits

dimensions, if the size of the local data set exceeds the In the encoding of i E ZN - are defined by
number of dimensions requiring communication. Com-
pared to the algorithms in [6,71 the new algorithms avoid G.-.((b.-2b.-3 .6))- Thus,

the pipeline delay. Here we only treat the case with (b 1_Gii((b._ 2 b._3... .o)),

an entire axis encoded in either binary code, or binary- ijbn.- = 0,
reflected Gray code. Furthermore, we assume a fixed Gn((b._lb._b, .. . bo)) - ... be))
assignment of dimensions in the logic address space to i f bn- = 1.
dimensions in the physical address space. Reshaping
combined with dimension permutations is considered in

19]. Proof: From Definition 1.
The paper is organized as follows. Notation and def-

initions are introduced next. Array reshaping is dis-
cussed in Section 3. The conversion between binary- Corollary 2 The integer encoded in the neighbor of
reflected Gray code and binary code is discussed in Sec- node G.(i) in cube dimension j is G.(i 9 i.e.,
tion 4, followed by summary in Section 5. G.(i) 2' = Gn(i a (Vi+I))

Proof: It follows from Corollary 1. I
2 Preliminaries

A Boolean n-cube has N = 2" nodes. Two nodes Definition 2 With binary-reflected Gray code encod-

are adjacent if and only if their addresses differ ing of an N-element one-dimensional array A[i], i E ZN
in exactly one bit. The binary encoding of i is into an n-cube, address G.(i) contains A[i].

B,(i) = (b.-Ib.-..2 . b0) and its binary-reflected Gray
code encoding is G.(i) = (g9,-g.-2 .. ". g0)- Z11 = Lemma 1 [14]b, = _g .- .'"gm, m E Z.
{0, 1,. ., N - 1) and (10) is a string of i instances of Conversely, g,, = bi (b,,+i, m E Zn with bn = 0.

372

(g,- (i)g,-2(i)) . .. go(i)) initially contains element A[iJ.

8 4 Let i = k2" + 1, E Z 2-., k•E ZNv... Af-
ter the reshape operation element i, now (k,l),
should reside in address (G..(k)IIG,.(t)), where

3 12 ' 4 ' 5 ShapeV G,,..n(k) = G,_.((b,,_,,,_(k)b,,_,,_(k) ... bo(k))) =

I (1 1 (g.II(k)g 2 (k)... go(k))
x x x x x x x x x x x x x x and G. (1) = G,.((b,. -_,(t)bm - 2(t)...bo(t))) =
13 12 11 10 9 8 7 6 4 4 3 2 1 o -- cube dim. (g.-1(t)g,.-2(t) ... g0 (t)).

I I I ZFrom the binary encoding as(k) = b,,+i(i), j E
5 2 4 T3 ShapeU Z-., and bi(l) = b,(i), j E Z,.. By Lemma 1, g,(k) =I b(k)@b,+I(k) = b.+j,(i)a)bm+,+I(i) = g+,(i), for an

8 6 2 j E Z. _., and g,(t) = bi(t)b~i+1 (t) bj(i)(Dbj+1 (i) =

g,(i) for all j E Z,._i. But, gn._,(t) = b,._-,1(t) 9

Figure 2: Fes,,ping between two arrays with bi- b,. (t) = b,,,-I(i) and g,,,.-(i) = b,,,- I(i) 0 b,,,(i), i.e.,

nary-reflected 1&4'ay codc encoded on a Boolean cube. ' g,.-I(i), if b,,.(i) = 0,

Definition 3 Let A be an array of shape UE-I X U'-2 X gm-,(:), if b.(i) = 1.

... X Uo, U = (Ud_1, U.. , U ... , Uo), U,, = 2", m E Z, Hence, if b,,(i) = 0 then G.(i) = G._,.(k)IIGr.(e)
V = (V,-'- ,'". , Vo), V., = 2"-, m E Zd, and and no data motion is necessary for reshaping. But,

II= 0 U.. = fl,', V,.. The reshape function p(U, V) if b,,(i) = 1 then an exchange is required in dimension

transforms the shape of the array A from U to V. m- 1, and only in dimension mn- 1, since this dimension
is the only dimension in which the code for i and (k, 1)

Let fik = u -1, it = I I - 1,/I = differs. I
{(ts 10 < k < d- 1},) = fiI 0 < k < d'- 1} and V) =
(0• U P) - (1 1 n). The sets U and V are the sets of most The change in the binary-reflected Gray code caused
significant dimensions for the axes of the shapes U and by an axis splitting, or the merging of two axes, is irn-
V, with the most significant axes excluded. For instance, ited to the most significant dimension of the lower or-

if U = (25, 22, 2', 23) and V = (23, 22, 2, 25), then fi = dered axis in the created pair of axes. The pairs of ad-

{8, 6, 2}, V = {10, 8, 4) and V = {lO, 6, 4, 2), Figure 2. dresses exchanging content in a given dimension depend

To form the shape V from U communication is required upon the order of exchanges in the case of multiple axes
in the set of dimensions defined by a - P for axes being splittings. The control of the exchange is derived from

combined into one, and the set of dimensions defined by b,, in the encoding of i. The index i assigned to an ad-

Vý - 0 for axes being split. V is the set of dimensions dress changes if a more significant controlling dimension
for which communication is required for changing the is one. For example, consider the reshaping of an array

shape U into V. Vpdd, is the subset of dimensions in V of 8 elements encoded in a binary-reflected Gray code

assigned to processor dimensions in the physical address to an array of 2 x 2 x 2 elements (which is equivalent to

space. D,,d& =) - Dppdd, is the set of dimensions in conversion to binary code). Figure 3 shows exchanged

V assigned to local memory dimensions in the physical data in boldface, and two exchange orders: dimension

address space, one then zero, or zero then one. As is apparent from
Figure 3, an exchange is carried out in dimension one
between addresses 110 and 111 if the dimensions are

3 Reshaping Arrays treated in the order one first then zero, but not if the
order is dimension zero first, then dimension one.

Lemma 2 below states the fact that splitting an axis The current value of b,. that is assigned to a given
into two, or merging two axes into one, requires a code address (g,,-ig,.• ... go) is easily determined from the
change in precisely one dimension. address.

Lemma 2 Assume node G,(i) contains element A[i], Lemma 3 If the number of exchanges in dimensions
i E ZN, initially. If all nodes i = (b._Ib,, 2 ... bo) more significant than m is ey-n, then the current value
such that b,. = I exchange data in dimension of logic dimension m assigned to an address G.(i) =

in - 1 for any m E {1,2,,..,n - 1}, then (g.-Ig._2... go) is b,,, otherwise it is b,,.
node Gn_,n((b,,_Sb,, 2_... b.))I•,G.((b,..-i-..o2 bo))
contains element A[i] after the exchange. The lernma Mows directly from Corollary 2.

Half of the total number of elements need to be ex-
Proof: Assume that the reshape operation is U = changed for any split/merge operation. Hence, the num-
(2") -. V = (2---, 2"'), and that address G,,(i) = ber of exchanges in which an element participates falls in

373

Theorem 3 Changing the shape U to shape V presery-
Gasy code c ich h.d . di - E ch. ing the assignment of logic dimensions to Physical dd-
assignment dim. 1 din. 0 dim. 0 dim. I mensions requires at most 6[fi] + I element transfers
I P666! 0 - 4- - 6 6 -o 6 0 in sequence with concurrent communication, if no two
10 001 0 1 0 1 0 1 0 1 elements Of Dipdd, differ by one and K > 26.

2 011 0 2 1 3 1 3 0 3 Proof: Consider the merging of a single pair of axes, or
3 010 0 3 1 2 1 2 0 2 splitting of an axis. Assume the communication occurs
4 110 1 7 1 6 0 4 1 6 in dimension rn-1. Consider a 2-cube formed by dimen-
6 101 1 6 0 5 1 7 1 7 sions m and rn-1. Label the four nodes according to

7 100 1 4 0 4 1 6 _ 1 4 bb,,bm.-. By Lemma 2, communication is only required
-_ between nodes 10 and 11. There exist two edge-disjoint

Figure 3: Reshaping an array of 8 elements into a 2 x 2 x 2 paths between these two nodes of lengths one and three,
array. respectively. By assigning r[K + I elements to the path

of length one and the remaining elements to the path
of length three, ([K] + 1) element transfers in sequence
are required.

the range 0 - IDI, depending upon its binary encoding. If no two elements in Dpadd& differ by one, then the

The total number of element exchanges is DID nd 'i" - for 2-cubes used for different data sets are disjoint. Thus,2K
changing shape U to shape V. We will now d-termine 6([o 1 + 1) element transfers in sequence are required.
the number of element exchanges in sequence when the To reduce the communication complexity to 6[b] + 1,

nt-* _

logic array is allocated to an n-cube, with - = K we slightly overlap the communications on the succes-
elements per processor. sive 2-cubes of a given data set. Without this overlap

no data is sent along the length three path during the

Theorem 1 A lower bound for the number of element last two cycles of the routing of a data set. By send-
transfers in sequence for array reshaping adfecting the ing two elements that have been routed with respect to

encoding of processor dimensions is K/2 with K ele. the first 2-cube to the length-three path of the second

ments per processor. 2-cube during the last two cycles of the routing phase of
the first 2-cube (with one cycle each), the communica-

Proof: Pick a dimension d E 'Dpdr,. There are N/2 tion delay due to the length-three path is only paid once.

processors that need to transfer data across dimension d. Sending elements along the length-three path during the

There are K elements in each processor, and all elements last two cycles of the first 2-cube will not interfere with

need to be exchanged. The available bandwidth per the communication of the data set exchanged in the sec-
dimension is N. | ond 2-cube. The reduced complexity is valid if m•] > 2,i.e., some data set has at least three elements. I

In the following, let 6 = IDpPddr. In the routing used for the proof of the bound, the

number of elements routed along the length-one path
Theorem 2 Changing the shape U to shape V preserv- and the length-three path differ by two only for the first
ing the assignment of logic dimensions to physical di- 2-cube. For subsequent 2-cubes, the same number of
mensions requires at most 6L'1 element transfers in elements are routed along each path, with the length-
sequence with concurrent communication. three path starting two cycles earlier. The first element

on both paths arrives at the same time within the 2-cube
Proof: Let P.,1,1, {d=-I,d- 2 ," ". ,do}. Partition except for the first 2-cube. If 26 divides K and K > 26,
the local data set of size K into 6 sets of size at most then the complexity is K + 1, which is only one element

A I each. Label the data sets from 0 to 6 - 1. Each transfer above the lower bound. For K < 26, there is
such set is assigned a sequence of dimensions including no advantage of using the length-three paths over the
all dimensions in Dp,,,i, once. Different sets are assigned algorithm used in the proof of Theorem 2.
different sequences such that no two sets have the same If the reshape operation requires communication in
first, second, third, etc., dimension. For instance, let dimensions m - 1 and m (by creating an axis of length
data in set m be assigned the sequence of dimensions 2 encoded in dimension m), then dimension m cannot
d"., d(&+ I) idS" d(vn- " I be used for rerouting to access unused communication

links in dimension m - 1. Unused links in dimensions
The upper bound in Theorem 2 differs from the lower lower than m - I cannot be used either, since they do

bound by a factor of two. The upper bound can be not connect to processors with unused links in dimension
improved in some cases. We give upper bounds that are m - 1. However, the following observation can be used
almost identical to the lower bounds for two cases. to reduce the number of element transfers in sequence.

374

Lemma 4 For a reshape operation requiring communi- 4 Conversion between Gray
cation in dimension r-I none of the links in dimension code and binary code
m - I is used in m - 1 dimensional subcubes obtained
through complementing any of the address dimensions Theorem 5 The conversion between a binary-reflected
that are more significant than mn - 1. Gray code and binary code in either direction requires

communication in n - 1 dimensions, and at most (n -
Proof: We need to show that in airy m - 1 dimensional 1)[G!-1 element transfers in sequence.
subcube defined by dimensions m and higher, b,,, = 0 if
the address defining the subcube is obtained by comple- Theorem 5 follows from Theorem 2 and the obser-
menting a single dimension of significance m or higher. vation that conversion from binary-reflected Gray code
But, by Lenuna 1 complementing a single dimension gj, to binary code in an n-cube is equivalent to reshaping
. E {m, m + 1,.. , n - 1} complements b,,. H a one-dimensional array of size 2" to an n-dimensional

array of shape 2 x 2 x ... × 2.

By using a pipelined algorithm instead of the non- In any algorithm according to Lemma 2 and Theo-

pipelined maximally concurrent algorithm used for the rem 5 only half of the communications links in each
uthe properties in Lemma 4 of the n - I dimensions are used in every step of theupper bound in Theorem 3, algritm.rverppahtiiofminmumlenthandal

can be exploited to establish the following bound. algorithm. Every path is of minimum length, and all
minimum length paths are used evenly. The load on the
communications network is minimal.

Theorem 4 Changing the shape U to shape V requires
at most rK] + 26 - 1 element transfers in sequence, if Conjecture 1 For the conversion between binary-
for each dimension requiring communication there exists reflected Gray code and binary code encodings of K el-
one more significant dimension not requiring communi- ements per processor in an n-cube, a lower bound is
cation and K > 26. K .-1

Proof: The problem is equivalent to sending K ele- For n = 2, the conjecture follows from Theorem 3.
ments along a path of length 6 and each edge on the For n > 2 only the most significant dimension requires
path is paired with a length-three path, disjoint with all no communication.
other edges. If 6 is even two edge-disjoint paths of length
26 can be defined by combining length-three and length- Corollary 3 The conversion between binary-reflected
one paths for different dimensions. If 6 is odd, then two Gray code and binary code encoding in an n-cube can be
paths of length 26 - 1 and 26 + 1 can be defined in a performed as an arbitrary sequence of communications
similar way. I in dimensions: {0,1,...,n - 2}.

Several routing schemes yield the same complexity as The corollary follows from the observation that the

the scheme used in the proof. For instance, by creating control is completely determined by the binary encoding

one path of length 6 and one of length 36, and routing of i.

ri] + 6 elements along the short route and [Kj- 6 An algorithm proceeding from dimension n - 2 to di-
elements along the long route the same routing time is mension 0 is depicted in Figure 4. Initially, processor
achieved if K > 26. For K < 26, the latter approach G4(i) contains data of index i. After the conversion, i is

degenerates to using a single path of length b and the assigned to processor B 4 (i). The algorithm is described

required time is K + 6 - 1, which is lower than if two below. Several other algorithms are given in [7].

paths of the same length were used. However, if K < 26
then the time for reshaping by pipelining along one path /* Converting Gray code to binary code
is higher than, or at best the same as if the concurrent starting from the most significant dimension */
exchange algorithm in the proof of Theorem 2 is used.

Lemma 4 cannot be exploited directly for concurrent for d := n - 2 downto 0 do
exchange sequences because an exchange in one dimen- if g1+1 = I then
sion affects the set of edges being used in a subcube. exch. content with the neighbor in dim. d

This property follows from Lenuma 3. For instance, if endif
a 1 x 16 array is reshaped into a 4 x 2 x 2 array, then enddo
if an exchange in dimension one is performed first the
required exchanges in dimension zero are all on corre-
sponding links in different subcubes instead of compli- The control in the above algorithm is particularly sim-
mentary links. ple, since the following corollary follows from Lemma 3.

375

Gray code Exchange Exchange Exchange -- ay Co• . . e'2 S I. . --
dim. 2 dim. I dim. 0 |a6nment Hxchanse dim. chane xcane dim.

S.T . O -- - - -_ ---6--• -6-T -- -
data paddr b3 dat-a b2 datia_ -bi- T Data padilt 2 1 0 1 2 0 2 1

O0 0000 0 0 0 0 0 0 00 - - 0 0
66- -0--- 0 -00_V b 0 00 1 00001 1 1 1 1 1 1 1 1 1

01 0001 0 01 0 01 0 01 2 0011 2 2 3 2 3 3 3 3 s
02 0011 0 02 0 02 1 03 3 0010 3 3 3 3 2 2 2 2 2
03 0010 0 03 0 03 1 02 4 0110 4 7 6 7 6 6 4 4 6
04 0110 0 04 1 07 1 06 5 0111 s a 7 6 7 7 5 5 7

0 6$ 0101 6 5 5 a 5 5 7 7 50,5 0111 0 05 1 0 1 07 7 0100 7 4 4 4 4 4 4 6 4
06 0101 0 06 1 05 0 05 5 1100o 1 12 12 8 8 2 814 12
07 0100 0 07 1 04 0 04 9 1101 14 13 13 9 391 9 i 13
08 1100 1 is 1 12 0 12 10 oiii 13 14 15 10 11 is 11 13 1s
09 1101 1 14 1 I3 0 13 11 1110 12 15 14 11 10 14 10 12 14

1S12 1010 11 11 10 15 I1 10 12 10 10
13 1011 10PO 10 11 14 15 11 13 1 ti

11 1110 1 12 1 is 1 14 14 1001 9 9 9 13 i3s 9 9
12 1010 1 it 0 11 1 10 15 1000 8 8_S 12 12 14 I 8 8
13 1011 1 10 0 10 1 it
14 1001 1 09 0 09 0 09
15 1000 . 1 .0 0 08 0 08 Figure 5: Concurrent conversion of a binary-reflected

Figure 4: Conversion of a binary-reflected Gray code to Gray code to binary code.

binary code

5 Summary

Corollary 4 If the conversion from binary-reflected We have shown that the splitting of a binary-reflected

Gray code to binary code proceeds from the most signi:- Gray code encoded axis into two binary-reflected Gray

Icant dimension to the least significant dimension, then coded axes only requires an exchange in the most signif-

the current value of bm assigned to an address i's equal icant dimension of the lower order axis. The exchanges

to g,., where m is the controlling dimension, required for multiple axis splittings can be performed in

arbitrary order.

Assume concurrent communication on all ports, K el-The algorithm is easy to generalize to an arbitrary ements per processor, and 6 dimensions requiring corn-
starting dimension m, m E Z,,-l with exchanges in slic- emnsprrosoad dininseqrngc -

staring dimensions of mdecreas with ordexchr g in ac csc- munication for the reshape operation. If K is a multiple
cessive dimensions of decreasing order in a cyclic fash- o ,te h ubro lmn rnfr nsqec

of 6, then the number of element transfers in sequence
ion. The first exchange requires the computation of b,,,. is independent of 6. An upper bound is K and a lower
Figure 5 gives an example. Sequence 2 is the same as bound is ý. We present three algorithms: (i) one of
in Figure 4. The figure shows the location of i for each c c

step of the algorithm for each sequence. For concurrent i co cmei + 1 o

exchanges the local data set K is divided into n - 1 ity 6[U] + I for reshape operations for which no two
sets, and set m, m E Z,,-1 is subject to exchange in dimensions requiring conmmunication are adjacent anddiension and st 2 m E -_ is mod ject (o ex2) cngsep in K > 26, and (iii) and one of complexity K + 26 - 1, ifdimension (n - 2 - m - t) rood (n - 2) during step t,

t E ,_- there is one unused processor dimension of higher order
for every processor dimension requiring communication.

/* Converting Gray code to binary code starting from The previously best known algorithm has a complexity

dimension m. Dimensions in decreasing order, cyclically*/ of K + 6 - 1 [61.

if g,,! $g._2 (D - g,,+, = I then The conversion between binary-reflected Gray code

exch. content with the neighbor in dim. m and binary code encodings is a special case of reshaping

endif an array, and can be carried out on an n-cube by n -

for d := m - I downto 0 do 1 exchanges in dimensions 0, 1,... , n - 2 in arbitrary

if gi+ I = 1 then order with a complexity of at most (n - 1) [-9] element

exch. content with the neighbor in dim. d transfers in sequence.

endif
enddo References
for d:= n - 2 downto m + 1 do

if g,+1 = 1 then CM-Foriran Release Notes. Thinkin Machines
exch. content with the neighbor in dim. d Corp., Re89. g

endif Corp., 1989.

enddo [2] Jean-Philippe Brunet, Danny C. Sorensen, and

S. Lennart Johnsson. A Data Parallel Imple-
mentation of the Divide-And-Conquer Algorithm

376

fo, Computing Eigenvalues of Tridiagonal Systems. [15] Paul N. Swarstrauber. Multiprocessor FFTs. Par-

Technical Report , Thinking Machines Corp., 1989. aile1 Computing, 5:197-210, 1987.
in preparation.

[3] J.J. Dongarra and D.C. Sorensen. A fully paral-
lel algorithm for the symmetric eigenvalue prob-
lem. SIAM J. Scientific and Statistical Computing,
8(2):s139-s153, 1987.

[4] Peter M. Flanders. A unified approach to a class
of data movements on an array processor. IEEB
Trans. Computers, 31(9):809-819, September 1982.

[51 Ching-Tien Ho and S. Lennart Johnsson. Stable
Dimension Permutations on Boolean Cubes. Tech-
nical Report YALEU/DCS/RR-617, Department of
Computer Science, Yale University, October 1988.

[6] S. Lennart Johnsson. Communication efficient
basic linear algebra computations on hyper-
cube architectures. J. Parallel Distributed Com-
put., 4(2):133-172, April 1987. (Tech. Rep.
YALEU/DCS/RR-361, Yale Univ., New Haven,
CT, January 1985).

[7] S. Lennart Johnsson. Optimal Communication in
Distributed and Shared Memory Models of Compu-
tation on Network Architectures, page . Morgan
Kaufman, 1989.

[8J S. Lennart Johnsson, Tim Harris, and Kapil K.
Mathur. Matrix multiplication on the connec-
tion machine. In Supercomputing 89, page ,
ACM, November 1989. Department of Com-
puter Science, Yale University, Technical Report
YALEU/DCS/RR-736.

[9] S. Lennart Johnsson and Ching-Tien Ho. Reshap-
ing of Arrays on Boolean Cubes. Technical Report,
Department of Computer Science, Yale University,
1990. in Preparation.

[101 S. Lennart Johnsson and Ching-Tien Ho. Shuf-
fle Permutations on Boolean Cubes. Technical Re-
port YALEU/DCS/RR-653, Department of Com-
puter Science, Yale University, October 1988.

f1il Michael Metcalf and John Reid. Fortran 8X Ex-
plained. Oxford Scientific Publications, 1987.

[12] David Nassimi and Sartaj Sahni. Optimal bpc
permutations on a cube connected simd computer.
IEEE Trans. Computers, C-31(4):338-341, April
1982.

[13] David Nassimi and Sartaj Sahni. An optimal rout-
ing algorithm for mesh-connected parallel comput-
ers. JACM, 27(1):6-29, January 1980.

[14] E M. Reingold, J Nievergelt, and N Deo. Combina-
torial Algorithms. Prentice-Hall, Englewood Cliffs.
NJ, 1977.

377

Random Number Generation in the Parallel Environment

Harry F. Sharp, III and Charles H. Still
Parallel Supercomputer Initiative

University of South Carolina
Columbia, S.C. 29208

Abstract Random numbers are usually the input for these
models since the models are based, for the most part,

By randomly seeding individual processors in a on probabilities. As an example, a splitting atom gives
parallel environment with unique random number gen- off a neutron, which has a probability k of hitting an-
erators it is possible to take full advantage of the other atom and forcing it to split. There is also, how-
economies of scale present in the parallel environment ever, the probability I - k that the neutron will not
to achieve more accurate simulations. While a sin- hit another atom and the reaction may die.
gle random number generator is sufficient for a serial This method of simulation is known as stochas-
computer, the same is not true for a parallel computer. tic simulation but usually referred to as Monte Carlo
Multiple copies of the same generator do not improve simulation. Monte Carlo involves sampling from a spe-
the quality of the simulation as the period may be cific distribution, usually the Uniform (0,1], as these
insufficient to prevent exhaustion or 'banding' of the numbers approximate probabilites. The samples are
variates. Our approach is to provide each processor then used to estimate the value of an integral, even
with its own unique random number generator and in cases where the integral may not be readily appar-
use a common seed value. This ensures each simula- ent. Random numbers must be generated somehow,
tion is unique as each generator is different due to ran- as computers, where most of the simulations are now
dom assignment by the front-end computer. The lin- done, do not have built-in tables of random numbers.
ear congruential method was chosen due to widespread It is for this purpose that the congruential generator
familiarity and acceptance of the technique. By us- methods were developed.
ing a sequence of random numbers generated on the
front-end computer, prime numbers are selected from The Linear Congruential Method
a predefined array of 2048 primes and assigned to pro-
cessors. To provide maximum possible period to the For the purpose of this paper, the Linear Con-
generators, all 2048 primes in the array are six digits gruential Generator method was employed. Moti-
in size. This gives the researcher the ability to run vating our choice of the LCG was ease of program-
simulations involving up to a million random numbers ming, debugging, and understanding. The congruen-
with a high degree of certainty that each processor is tial generation method is probably the most commonly
running a different simulation. By taking advantage of used method for generating random numbers today.
the large periods, the economies of scale available on For a complete explanation of the method see either
a parallel machine can then be expolited to run large Kennedy and Gentle [2] or Rubinstein [4]. For those
scale simulations involving millions of numbers which who may not be acquainted with these methods we
would be prohibitive on a serial machine, shall provide a brief overview.

Congruential methods generate pseudo-random
Random Numbers and Simulation numbers by using a recursive formula. The numbers

generated are called pseudo-random since they are, per
Simulation has achieved a new level of impor- force, deterministic. Given the same formula, the same

tance in the modern era. Many things of interest to seed value will always generate the same sequence of
researchers cannot be directly viewed, experimented "random" numbers. This is not truly unfortunate
upon, or actually done due to prohibitive cost or since it make replicating results possible, which a truly
danger. In these cases, simulation becomes the re- random sequence of numbers would make impossible.
searcher's main tool. The general form of a congruential generator is

Simulations of real world systems are usually
mathematical models. Nuclear plants, national eco- (azi + c) (mod m) for i = 1,2,...
nomies, and plane crashes are only a few of the sys- where
tems which can be modeled by the use of mathematics. x, - the next random in the sequence
However, the formulas themselves are useless without a - the multiplier
some sort of input to drive them. Random numbers c - the increment
drive the equations and produce the results. m - the modulus

378
0-8186-2113-3/90/0000/0378$01.00 0 1990 IEEE

and 0 < xi < m. The value for z at i = 0 is referred would then begin to rerun simulations which had al-
to as the seed and is provided by the user. a,c, and ready been run by other nodes thereby producing iden-
m must all be nonnegative. tical results.

The generator can have a maximal period, the Fox's method does provide a way of generating
interval between repeating values, of m if and only if random numbers for parallel simulations, but it is a
the following conditions are met: [2] method open to needless redundancy of effort.

1. c is relatively prime to m A Second Approach
2. a 1 (mod p) for every prime factor p of m
3. a 1 (mod 4) if 4 is a factor of m As an alternative to the method proposed by Fox

In reality, finding a quadruple (ca, c, p, m) would et. al. we present the following method. Where Fox
take too much time to be justifiable. A reasonable uses the same random number generator on all nodes,
approximation for c can be made by effectively duplicating the same work on all nodes, we

provide each node with its own, unique, random num-
c = (1/2 - 1/6 * V/3) * m ber generator. This has the effect of giving each node

which was proposed by Knuth [3]. a different simulation to run, and consequently, a dif-
ferent answer for the simulation. This avoids uneces-

The Current Approach sary duplication of work and reduces the possibility
of exhausting the period or "banding" of the random
numbers.

Fox et. al. [1] suggest using the linear congru- Implementation is fairly simple. Large primes

ential generator method, but adapting it to the par- are generated and stored on the host computer. By

allel architecture of a hypercube. The approach they large, we mean primes of at least six digits, the ratio-

propose is to load each node with the same generator nale being that the size of the modulus determines the

but have nodes "leapfrog" each other. This staggering maim peiod of the generaoruandewerwis to -

effect is obtained by having each node step into the maximum period of the generator and we wish to pro-

sequence of randoms n variates, where n is the proces- vide a workable period for large simulations. At load
sor's number, starting at zero. Formally, if there are time, the host program selects a prime at random fromp nodes, this means that node 0 gets F o as a random the stored numbers and passes is to the node being
pau, nodes, thIs means t node 0 gets x2, as, anodom p loaded. Selection of the prime is done using a random
value, node 1 gets zl, node 2 gets x2 , ... , node P - 1 number generated by the host program. The method
gets on -. , node 0 gets xp, node 1 gets x,~1 , and so of generation for this random is arbitrary and could be

Whe taccomplished using a builtin random number genera-
While this accomplishes the task of generating tor such as rand(. To ensure reproducibility of results,

random numbers for each node, and parallelizes the the seed used to initialize the prime selection generator

task, it carries some inherent problems. is the same used to seed the individual node random

First, this method uses only one random number ne The prime psd toidha node is
geneato. Whle ome andmizaionof te ndes number generators. The prime passed to the nodes is
geneato. Whle ome andmizaionof te ndes used as the modulus in the LCG, thereby making the

is introduced by the stepping algorithm, the fact that rand numbe gene for n derent m the

only one sequence of numbers is being used is not over-

come. This can have debilitating side effects. If the pe- generator for node j.
riod is not large enough, the nodes might overlap, pro- Results
ducing multiple simulations which are identical. True,
this is a pathological example, but even if the period The method was tested on the NCUBE/Ten here
is large enough to prevent overlap, banding will occur at University of South Carolina. Two different simu-
in the randoms. By banding, we mean that the points lations were run : estimation of 7r and integral estima-
(X0,Zi), (X2,z3),.., when plotted produce bands, in- lainweer:esmtonf rndnegletm-

tion. In both cases, the results from the simulationsdicating a high degree of correlation. produced values which were correct to two decimal

It is possible for a simulation to exhaust the pe- places. Greater precision was not attainable although
riod of the random number generator since the period several attempts were made.
is reduced in size to m/n where n is the number of s evr l ts wre made.Results from the parallel method were obtained
nodes in a simulation. In such cases, the generator using cubes of size 64, 128, 256, and 512 performing
would begin generating the same randoms again, due 10000 simulations each. The seed values were taken
to the deterministic nature of the algorithm. Since the from a table of primes.
nodes are staggered, each node would begin to pro-
gressively exhaust the period of its generator. Nodes

379

Estimation of r

Table 3 - Hit-or-Miss Estimates
This test is the same one detailed in Fox. Two

random variates are generated from the Uniform (0,1] Seed 64 128 256 512
distribution. The values are squared and then summed. 7741 0.3332 0.3324 0.3320 0.3312
If the result is less than one, a success is recorded. At 15017 0.3367 0.3378 0.3383 0.3379

the completion of the simulation, the total number of 20117 0.3336 0.3335 0.3334 0.3328

successes is multiplied by four and divided by the to- 31271 0.3375 0.3382 0.3386 0.3381
tal number of simulations performed. The result is a 92857 0.3324 0.3326 0.3327 0.3327
rough approximation of 7r (3.1-1159).

Table 1 - Estimates of ir Execution Time

Seed 64 128 256 512
7741 3.1379 3.1427 3.1450 3.146215017 3.1379 3.1396 3.1396 3.1395 Execution time was averaged for the first test (es-timation of 7r). The timing results are in the following20117 3.1400 3.1400 3.1405 3.1407 table. Note that the times do not include startup and

31271 3.1457 3.1457 3.1456 3.1456 that there is no node-to-node communication which
92857 3.1393 3.1384 3.1380 3.1377 leads to very high efficiencies. All efficiency estimates

were calculated using

Integral Estimation efficiency = time,

p * timep,

This test consisted of two different methods of in-
tegral estimation : Monte Carlo and ttit-or-Miss. The
target value for both tests in this simulation was 1/3
(.333333).

The Monte Carlo test was done by generating Table 4 - Execution Times
samples of size 200 from the Uniform (0,1] distribution.
Variates from the samples were squared and summed Dimension Time (sec) Efficiency
and then multiplied by the number of variates in each 0 281.8257 1.0000
sample to arrive at the estimation of the integral. 1 140.9265 0.9999

The Hit-or-Miss test used pairs of random vari- 2 70.6814 0.9968

ates from the Uniform (0,1] distribution. For each pair, 3 35.3558 0.9964

if xk is less than x2_ then add one to the success 4 17.7055 0.9948

count. The total number of successes is then divided 5 8.8612 0.9939

by the number of pairs to arrive at the estimate for 6 4.4454 0.9906
the integral. 7 2.2376 0.9840

8 1.1336 0.9712

9 0.5816 0.9464

10 0.3055 0.9m09
Table 2 - Monte Carlo Estimates

Seed 64 128 256 512

7741 0.3339 0.3336 0.3334 0.3327

15017 0.3316 0.3312 0.3310 0.3302 These results are from simulations of size 512,000.

20117 0.3338 0.3338 0.3338 0.3331 Thus in the dimension d case, each node generated
31271 0.3323 0.3320 0.3320 0.3313 512000 dmnm
92857 0.3341 0.3341 0.3341 0.3341 12000 random numbers. The figure below shows the

efficiencies from the above table.

380

Conclusions
Figure 1

Estimation of vr What we have shown with this simple example
is that, while no dramatic improvement is evident in

1.00 0 00• e 0 :accuracy, the parallel method is as good as the serial

method. Since there is no loss of precision due to the
S0.75 parallelization of the simulation, the researcher could

f take advantage of the economies of scale inherent in

f the parallel processor to run truly large simulations
C 0.50 which would be prohibitive on a serial machine. This

technique also provides a method by which the accu-
C racy of simulations can be tested by running multiple
y 0.25_ copies in the time it would take to run a single copy.

- It should be possible to overcome the precision

0.00- threshold and thereby achieve more accurate results
0 1 2 3 4 5 6 7 8 9 10 from the parallel simulations. Even with the thresh-

Dimension of cube old, however, the results indicate that reliably inde-
pendent simulations can be run on parallel machines

Introduction of Shuffling using independent random number generators.

While the LCG method is sufficient, it is not al- Acknowledgements

ways optimal. In many cases, a marginal, or even bad,
random number generator can be improved with the We would like to thank Chuck Baldwin for his
addition of a shuffling algorithm such as that devel- assistance in debugging the code and helping with the
oped by Bays and Durham (see [2]). In this case, the communications problems on the Cube.
LCG method generated variates that were sufficiently
random to produce acceptable, if not outstanding, re- References
suits. After the inclusion of the Bays-Durham shuf-
fling algorithm to further randomize the variates, the [1] Fox, Geffery C., et. al. Solving Problems
results improved. Almost uniformly, the precision of on Concurrent Processors : Volume 1 - Gen-
the results increased. eral Techniques and Regular Problems. Prentice

Hall, Englewood Cliffs, NJ. 1988.
[2] Kennedy, Jr., William J. and James E. Gentle.

Table 5 - Estimates of r with Shuffling Statistical Computing. Marcel Dekker, Inc., New
Seed 6York, NY. 1980.
7741 64 128 256 512 [3] Knuth, Donald E. The Art of Computer Pro-
7741 3.1406 3.1439 3.1454 3.1463 gramming: Seminumerical Algorithms, Vol. 2,
15017 3.1380 3.1387 3.1390 3.1392 Addison-Wesley, Reading, Massachusetts, 1969.
20117 3.1412 3.1408 3.1412 3.1414 [4] Rubinstein, Reuven Y. Simulation and the Monte
31271 3.1434 3.1433 3.1433 3.1432 Carlo Method. John Wiley & Sons, New York.
92857 3.1387 3.1381 3.1379 3.1377 1981.

381

The Fifth Distributed Memory

Computing Conference

15:. Monte Carlo PhysicsI

Cluster Algorithms for Spin Models
on MIMD Parallel Computers

Paul D. Coddington and Clive F. Baillie

Caltech Concurrent Computation Program,
California Institute of Technology,

Pasadena, CA 91125, USA

Abstract are not statistically independent, but rather are cor-

Parallel computers are ideally suited to the related, with some autocorrelation time r between

Monte Carlo simulation of spin models using the effectively independent configurations.

standard Metropolis algorithm, since it is regular A key feature about traditional (Metropolis-

and local. However local algorithms have the ma- like) Monte Carlo algorithms is that the updates

jor drawback that near a phase transition the num- are local, since the procedure to update a given spin
ber of sweeps needed to generate a statistically in- depends only on the values of spins which affect its

dependent configuration increases as the square of contribution to the action, and most spin models

the lattice size. New algorithms have recently been have local (usually nearest neighbor) interactions.

developed which dramatically reduce this 'critical Thus in a ofg a step of the algorithm, information

slowing down' by updating clusters of spins at a about the state of a spin is transmitted only to its

time. The highly irregular and non local nature of near neighbors. In order for the system to reach

these algorithms means that they are much more a new effectively independent configuration, this in-

difficult to parallelize efficiently. Here we introduce formation must travel a distance of order the (static

the new cluster algorithms, explain some sequential or spatial) correlation length f. As the informa-
tion executes a random walk around the lattice, one

algorithms for identifying and labelling connected wou supps a the a laton timelattceCon

clusters of spins, and then outline some parallel al- H ow e in ge eralt- , hre tis c the
gorithms which have been implemented on MIMD However, in general r- -• ý`, where z is called the
machines. dynamical critical exponent. Almost all numerical

simulations of spin models have measured z ; 2 for

local update algorithms.
1. I~ntroduction For a spin model with a phase transition, as the

inverse temperature 0 approaches its critical value,

Computer simulations are extremely useful in t diverges to infinity, so that the computational ef-
the study of spin models in condensed matter ficiency rapidly goes to zero! This behavior is called
physics. In these models the spins are usually set critical slowing down (CSD), and until very recently
up on the sites of a d-dimensional hypercubic lattice it has plagued Monte Carlo simulations of statisti-
of length L. The Ld spins form some configuration. cal mechanical systems, in particular spin models,
The goal of computer simulations is to generate con- at or near their phase transitions. Recently, how-
figurations of spins typical of statistical equilibrium ever, several new 'cluster algorithms' have been in-
and measure physical observables o:i this ensemble troduced which decrease z dramatically by perform-
of configurations. This is traditionally performed ing non-local spin updates, thus reducing (or even
by Monte Carlo methods such as the Metropolis eliminating) CSD and facilitating much more effi-
algorithm [1] , which produce configurations with cient computer simulations.
a probability given by the Boltzmann distribution Parallel computers have been very successfully
e-PS(0), where S(O) is the action, or energy, of the applied to the Monte Carlo simulation of spin mod-
system in configuration 0, and P is the inverse tem- els using the traditional algorithms such as that of
perature. One of the main problems with these Metropolis. These algorithms are easily and effi-
methods in practice is that successive configurations ciently parallelised using domain decomposition of

384
0-8186-2113-3/90/0000/0384$01.00 0 1990 IEEE

the lattice, since they are very regular (and hence ters of spins. This is very similar to an important
perfectly load balanced), and only require a small problem in image processing, that of identifying and
amount of local communication between processors. labeling the connected components in a binary or
The new cluster algorithms, on the other hand, are multi-colored image composed of an array of pixels.
highly irregular and non-local, and are therefore The only real difference is that in the spin model
much more difficult to parallelize efficiently. Here case, neighboring sites of the same spin have a cer-
we introduce the cluster update algorithms, explain tain probability of being in the same cluster, while
some sequential algorithms for identifying and la- for neighboring pixels of the same color that prob-
beling connected clusters of spins, and then outline ability is one. Unfortunately this is a large enough
some parallel algorithms which have been imple- difference so that some algorithms which work in
mented on MIMD machines. image analysis will not work (or require substantial

changes) for spin models.
2. Cluster algorithms First we mention some sequential algorithms

The aim of the cluster update algorithms is for labeling clusters of connected sites. Perhaps the
to find a suitable collection of spins which can be most obvious method for identifying a single clus-
flipped with relatively little cost in energy. We could ter is the so-called 'ants in the labyrinth' algorithm.
obtain non-local updating very simply by using the The reason for its name is that we can visualize the
standard Metropolis Monte Carlo algorithm to flip algorithm as follows [6] . An ant is put somewhere
randomly selected bunches of spinE, but then the on the lattice, and notes which of the neighboring
acceptance would be tiny. We need a method which sites are connected to the site it is on. At the next
picks sensible bunches or clusters of spins to be up- time-step this ant places children on each of these
dated. The first such algorithm was proposed by connected sites which are not already occupied. The
Swendsen and Wang [2], and was based on an equiv- children then proceed to reproduce likewise until the
alence between a Potts spin model [3] and percola- entire cluster is populated. In order to label all the
tion models [4] , for which cluster properties play a clusters, we start by giving every site a negative la-
fundamental role. bel, set the initial cluster label to be zero, and then

The Potts model is a very simple spin model of loop through all the sites in turn. If a site's label
a ferromagnet, in which the spins can take q differ- is negative then the site has not already been as-
ent values. The case q = 2 is just the well-known signed to a cluster, so we place an ant on this site,
Ising model. In the Swendsen and Wang algorithm, give it the current cluster label, and let it repro-
clusters of spins are created by introducing bonds duce, passing the label on to all its offspring. When
between neighboring spins with probability 1 - e-0 this cluster is identified we increment the cluster
if the two spins are the same, and zero if they are label and carry on, repeating the ant-colony birth,
not. All such clusters are created, and then updated growth and death cycle until all the clusters have
by choosing a random new spin value for each clus- been identified.
ter and assigning it to all the spins in that cluster. An alternative method which is commonly used

A slightly different cluster algorithm has been (especially for cluster identification in percolation
proposed by Wolff [5] . In this algorithm, a spin is models) is that of Hoshen and Kopelman [7] . We
chosen at random and a single cluster constructed have found that 'ants' gives slightly better perfor-
around it, using the same bond probabilities as for mance than this algorithm, and so we will not dis-
the Swendsen-Wang algorithm. All the spins in this cuss it further.
cluster are then flipped (i.e. changed to a random Identifying and labeling clusters of connected
new spin different from the old one). Although sites in a lattice is a special case of the more general
Wolff's method is probably the best sequential clus- problem known variously as the set union, union-
ter algorithm, the Swendsen and Wang algorithm find, or equivalence problem, i.e. given a list of
seems to be better suited for parallelisation, since it equivalences between elements, sort the elements
involves the entire lattice rather than just a single into equivalence classes. In the context of cluster al-
cluster. We have therefore concentrated our atten- gorithms, the list of equivalences is just a list of the
tion on the method of Swendsen and Wang, where sites which are connected together, and the equiva-
all the clusters must be identified and labeled. lence classes are just the clusters. There are a mul-

titude of algorithms for this problem [8] . We have
3. Cluster identification used an elegant and easy to code method due to

Cluster algorithms have in common the prob- Galler and Fisher [9] , which goes as follows. Let
lem of identifying and labeling the connected clus- F(j) be the class or 'family' label of element j. We

385

start off with each element in its own family, so A parallel cluster algorithm involves distribut-
that F(j) = j. The array F(j) can be interpreted ing the lattice onto an array of processors using
as a tree structure, where F(j) denotes the parent the usual domain decomposition. Clearly a sequen-
of j. If we arrange for each family to be its own tial algorithm can be used to label the clusters oii
tree, disjoint from all other 'family trees', then we each processor, but we need a procedure for con-
can label each family by its most senior great-great- verting these labels to their correct global values.
...grandparent. Therefore we process each equiva- We need to be able to tell many processors, which
lence of two sites j and k by may be any distance apart, that some of their clus-

ters are actually the same. Thus we need to be
(1) tracking j up to its highest ancestor, able to agree on which of the many different local
(2) tracking k up to its highest ancestor, labels for a given cluster should be assigned to be
(3) giving j to k as a new parent the global cluster label, and to pass this label to all
After processing all the equivalence relations, we go the processors containing a part of that cluster. WeAfterhprocessing all the e qus alence relati , wer gs will discuss two methods for tackling this problem,
through all the elements j and reset their F(l)'s 'self-labeling' and 'global equivalencing', and briefly
to their highest possible ancestors, which then label mention some other algorithms for labeling clusters
the equivalence classes, so that F(j) is the cluster in parallel.
label of site j.

4. Parallel algorithms 4.1. Self-labeling
We shall refer to this algorithm as 'self-labeling',

As with the percolation models upon which the since each site figures out which cluster it is in by
cluster algorithms are based, the phase transition itself from local information. We begin by assigning
in a spin model occurs when the clusters of bonded each site i a unique cluster label Si. In practice this
spins become large enough to span the entire lat- is simply chosen as the position of that site in the
tice [4]. Thus near criticality (whica in most cases lattice. At each step of the algorithm, in parallel,
is where we want to perform the simulation) clus- every site looks in turn at each of its neighbors in
ters come in all sizes, from order N (where N is the the positive directions. If it is bonded to a neigh-
number of sites in the lattice) right down to a sin- boring site n which has a different cluster label S5,
gle site. The highly irregular and non-local nature of then both Si and S are set to the minimum of the
the clusters means that cluster update algorithms do two. This is continued until nothing changes, by
not vectorize, and hence give poor performance on which time all the clusters will have been labeled
vector machines. On this problem a CRAY X-MP with the minimum initial label of all the sites in the
is only about ten times faster than a SUN4 work- cluster. Note that to check termination of the algo-
station. SIMD machines are similarly unsuited to rithm involves each processor sending a termination
this problem, whereas for the Metropolis type algo- flag (finished or not finished) to every other proces-
rithms they are perhaps the best machines available. sor after each step, which can become very costly
It therefore appears that the optimum performance for a large processor array.
for this type of algorithm will come from MIMD We can improve this method by using a faster
parallel computers. sequential algorithm, such as 'ants in the labyrinth',

Using the trivial parallelization technique of to label the clusters in the sublattice on each proces-
running independent Monte Carlo simulations on sor, and then just use self-labeling on the sites at the
different processors, it is possible to do better than edges of each processor to eventually arrive at the
a CRAY on a typical MIMD parallel computer with global cluster labels. The number of steps required
only about 20 nodes. This method works well until to do the self-labeling will depend on the largest
the lattice size gets too big to fit into the memory of cluster, which at the phase transition will generally
each node, and in fact we have used this method to span the entire lattice. The number of self-labeling
calculate the dynamical critical exponents of various steps will therefore be of the order of the maximum
cluster algorithms [101 . However in the case of the distance between processors, which for a square ar-
Potts model, for example, only lattices of size less ray of P processors is just 2VP. Hence the amount
than about 3002 or 503 will fit into 1 Mbyte, and of communication (and calculation) involved in do-
most other spin models are more complicated and ing the self-labeling, which is proportional to the
more memory intensive. We therefore need a paral- number of iterations times the perimeter of the sub-
lel algorithm where a large lattice can be distributed lattice, goes like L for an LxL lattice, whereas the
over many processors. time taken on each processor to do the local cluster

386

labeling goes like the area of the sublattice, which than for self-labeling, although we might still expect
is LV/P. Therefore as long as L is substantially reasonable speedups if the number of nodes is not
greater than the number of processors we can ex- extremely large. The speedups obtained for this al-
pect to obtain a reasonable speedup. gorithm on the Symult 2010 for a variety of lattice

The speedups obtained on the Symult 2010 for sizes are shown in Fig. 2. Global equivalencing gives
a variety of lattice sizes are shown in Fig. 1. The about the same speedups as self-labeling for small
dashed line indicates perfect speedup (i.e. 100% effi- numbers of processors, but as expected self-labeling
ciency). The lattice sizes for which we actually need does much better as the number of nodes increases.
large numbers of processors are of the order of 5122 To get around this sequential bottleneck we
or greater, and we can see that running on 64 nodes need to adopt a hierarchical divide-and-conquer ap-
(or running multiple simulations of 64 nodes each) proach, where the equivalence classes are built up in
gives us quite acceptable efficiencies of about 70% stages. In this approach the processor array is di-
for 5122 and 80% for 10242. In Table 1 we show a vided up into smaller subarrays of, for example, 2x2
comparison of times for one update of a 5122 lattice processors. In each subarray, the processors look
using self-labeling on various MIMD parallel com- at the edges of their neighbors for clusters which
puters, and compare this with results for the fastest are connected across processor boundaries. These
algorithm on a SUN workstation and a CRAY X- equivalences are all passed to one of the nodes of the
MP. The time on the CRAY is taken from Wolff sub-array, which places the cluster labels in equiva-
[11] . Note that using all 512 nodes of Caltech's lence classes as before. The results of these partial
NCUBE, by running multiple 64 node simulations, matchings are similarly combined across the edges
gives a performance approximately five times that of of each 4x4 subarray, and this process is contin-
the CRAY, while all 192 nodes of the Symult S2010 ued until finally all the partial results are merged
is equivalent to about six CRAYs for this problem. together on a single processor to give the global

cluster values, which are then passed back through
Machine Nodes Time (sec) the hierarchy of levels. This type of algorithm has
SUN-4 1 16.0 been implemented on a hypercube for the image pro-

CRAY X-MP 1 1.7 cessing component labeling problem by Embrechts
NCUBE/1 64 2.8 et aL [12] . We are currently implementing the

Symult 64 0.82 hierarchical global equivalencing algorithm for the
Meiko 32 1.2 spin model case, which should do better than self-

labeling for large numbers of processors, since the
Table 1. Times for one update of a 5)22 lattice using number of steps required goes like the logarithm
the Swendsen and Wang cluster algorithm. Self- (rather than the square root) of the number of pro-
labeling is used on the parallel machines. cessors.

4.2. Global equivalencing 4.3 Other algorithms
In this method we again use the fastest sequen- Currently the only other parallel cluster algo-

tial algorithm to identify the clusters in the sublat- rithm implemented for spin models is a parallel ex-
tice on every node. Each node then checks to see tension of the Hoshen and Kopelmann algorithm [7]
which of the edge sites of its sublattice are connected due to Burkitt and Heermann [13] , but it is much
to edge sites on the neighboring nodes in the positive more complicated, and less efficient, than the self-
directions, and are therefore part of the same cluster labeling algorithm. There have been many different
and should be given the same cluster label. These parallel algorithms proposed for the connected com-
lists of 'equivalences' are all passed to one of the ponent labeling problem in image analysis. Some of
nodes, which uses the equivalence class algorithm these algorithms are aimed at shared memory [14]
of Fisher and Galler [9] to match up the connected or SIMD [15] [16] architectures, but could probably
subclusters, and then broadcasts the global cluster be implemented on distributed memory MIMD ma-
labels to all the other nodes. chines also. Others are based on MIMD machines

The problem here is that the cquivalencing is such as hypercubes [17]. These algorithms also need
purely sequential, and is thus a potentially disas- investigation to see if they might be applied to the

trous bottleneck for large numbers of processors. problem of producing a more efficient parallel clus-
The amount of work involved goes like the number ter algorithm for spin models on large numbers of
of processors P times the perimeter of the sublattice processors.
on each node, so that the efficiency should be less

387

References
100 FT fF

[1] N. Metropolis et al., J. Chem. Phys. 21, 1087 x 1282 O
(1953). o 256 /

[2] R.H. Swendsen and J.-S. Wang, Phys. Rev. 80 - 512 2

Lett. 58, 86 (1987)._ 0 1024 E
[3] R.B. Potts, Proc. Camb. Phil. Soc. 48, 106 0 60 /

(1952); F.Y. Wu, Rev. Mod. Phys. 54, 235 -
/0(1982).

[4] D. Stauffer, Phys. Rep. 54, 1 (1978); J.W. Es- 40-
sam, Rep. Prog. Phys. 43, 833 (1980). 4

[5] U. Wolff, Ph3 ,.. Rev. Lett. 62, 361 (1989)./
[6] R. Dewar and C. K. Harris, J. Phys. A 20, 985 20 x

(1987). x
[7] J. Hoshen and R. Kopelman, Phys. Rev. B14, , -

3438 (1976). 0
[8] R.E. Tarjan and J. van Leeuwen, J. ACM 31, 0 50 100

245 (1984). number of nodes
[9] D.E. Knuth, Fundamental Algorithms, vol. 1 of

The Art of Computer Programming (Addison-
Wesley,Reading,1968); W.H. Press et al., Nu- Fig. 1. Speedups for self-labeling on the Symult
merical Recipes in C; The Art of Scientific Pro- S2010.
gramming, (Cambridge University Press, Cam-
bridge, 1988).

[10] C.F. Baillie and P.D. Coddington, "A Compar-
ison of Cluster Algorithms for Potts Models",
Caltech Concurrent Computation Report C3 P- 100
835, October 1989. x 1

[11] U. Wolff, Phys. Lett. B228, 379 (1989). 0 2562 I
[12] H. Embrechts and D. Roose, "Efficiency and 80 3 5122 /

Load Balancing Issues for a Parallel Compo- -
nent Labeling Algorithm", Proc. Fourth Con-
ference on Hypercubes, Concurrent Computers 60 /
and Applications, Monterey, 1989.

[13] A.N. Burkitt and D.W. Heermann, Comp. Phys. • /
Comm. 54, 210 (1989). ' 40

[14] R. Hummel, "Connected component labeling in "13
image processing with MIMD architectures", /-
in Intermediate-Level Image P-ocessing, (Acs- 20 * 0
demic Press, New York, 1986). x

[15] W. Lim, A. Agrawal, L. Nekludova, "A Fast-"
Parallel Algorithm for Labeling Connected 0"
Components in Image Arrays" Thinking Ma- 0 50 100
chines Corporation Technical Report NA86-2. number of nodes

[161 D. Nassimi and S. Sahni, SIAM J. Comput. 9,
744 (1980).

[17] R. Cypher, J.L.C. Sans and L. Snyder, J. Al- Fig. 2. Speedups for global equivalencing on the
gorithms 10, 140 (1989). Symult S2010.

3U

C 3 P-845

QUANTUM SPIN CALCULAI IONS ON A HYPERCUBE PARALLEL SUPERCOMPUTER

lI.-Q. Ding and M. S. Makivic

Concurrent Computation Program and Physics Department

California Institute of Technology, Pasadena, CA 91125

Abstract dimensional magnetism. Magnetic properties are be-

A large scale Quantum Monte r.!arlo simulation lieved to play significant role in the new mechanism

is performed on the Mark lllfp ll,'percube super- for the high-T, superconductivity. These magnetism

computer to systematically study tl~c quantum spin is essentially modeled by the quantum antiferromag-

dynamics of the recently discovered lhigh-T, super- netic Heisenberg model:

conducting mother material. The algorithm is very H =] (s sf + + ss 2)
efficiently implemented on the llyl:ercube. The 3- (ij)

dimensional lattice is partitioned into a ring of pro-

cessor nodes. Parallelism is also a,:hieved by run-

ning several independent sintnulat ions onl several pro- x _ 0 a1 = 0 -i 1 0

cessor rings simultaneously. The local updates are 1 0 1 i 0 - 0 -1

easily handled by the CR10S communication sys- This model is also an limiting case of a much more

tem. Global updates are efliciently implemented by general theory. We have performed a series of large

a "gather - scatter" routines written in CI0S calls, scale quantum Monte Carlo simulations on these

Spins are packed into 32-hit words along the time Fig. 1
direction. Local updates are vectorized along time

direction. We also report a systeniMtic performance 0.04

analysis. The efficiency of the impleieintat ion is over A 0 Simulation

90%. X Experiment
0.03

1. Introduction 0

"Z 0.02
The power of parallel co0p1utes is douhling % 0

each six month in recent years. !-ignificant corn- 001

putations[l] in scientific aiid vigivi,'ig researches Q)24 0.01
are performed on these pa;rallel cotuipliters. Many of W

the applications[2] easily achieved , if Fori,,a,,ce bet- 0 _
ter (in some cases, inuicli better) ih;ui the conven- * I
tional supercomputers and obtained new, iml)ortant 0

results. In this paper, we rport such an application 0 200 400 600

on the MarklIlfp hypercuh,[3'J]. Temperature (K)

The discovery of ligli-'1. siiu,,rcoliductors[5] models and obtained significant results. We only

has led to enormous anioilit of oi' u il the two- mention here that our data agrees with the neutron

3890-6188-2113-3/9010000/0389$01.00 0 1990 IEEE

scattering experiments very well and this calculation (1, 3le-H-1m 11, 4)(1, 4 je-PH0/-i2, 1) ...

is the first to give an accurate first I) Inciples determi-

nation of the exchange coupling J = 1,150±30K and (i, Ie- /mm,2)(m,2Ie-H2Irnm,3)

spin stiffness constant p = 0.199(2). Fig. 1 shows the (m, 3Ie-PH,/3Imw, 4)(m, 4Ie-PH4/m I1, 1)

comparison between our data and I he experiments. This becomes a general classical Ising spin system
More details of the physics result:; is reported in in 3 dimensions. The Boltzmann weight, associated

[6]. On a related quantum XY lnodl, we found[7] a with a 4-spin square configuration is given by the
Kosterlitz-Thouless phase transitioi thus completes following transfer matrix:

more than 20 years investigation iwio an important

problem in statistical physics. W = (S\z, .. Ijl(IJ)'s-is,-I-lsjb,,+l)

In this paper, we will concentrate on the com- more explicitly,
putational aspects of the simulation. WVe first out- K 0 0

0= 0eg Kh(K 0 0h2K 0
line the algorithm. The multi-coding technique is 0 eKch(2K) eKsh(2K) 0
explained next. Parallel implenemntation is then dis- W = 0 e-Ksh(2K) e- Kch(2K) 0

cussed in detail. WVe give a systematic performance 0 0 0 eK

analysis. where K = t3/4m. The zero elements in transfer

matrix are the consequence of the quantum conser-
2. Converting Quantmn Problhai to Classical vation law. To avoid generating trial configuration

Problem with these zero transfer probability thus wasting the

CPU time because these trials will never be accepted,
The Monte Car'lo algorithm w used is a fairly one should have the conservation law built into the

standard one in statistical physics, trthough the de- flipping scheme. We have designed a set of four el-
tails are quite complex due to the quantum conser- ementary updates[6] that can generate all possible

vation laws. Following the Suzuki-'i'rotter approach spin configurations.

we first convert the quantunm prohlhi, into a classical
one. The partition function for tie I leisenberg model 3. The Computational Algorithm

Eq.1 on the 2- dimensional lattice can be rewritten

as: This classical spin system in 3 dimensions is

Z = Tre- 11
-=T(c-iJI/'")''L = simulated using the Metropolis Monte Carlo algo-

lim Tr(e-PH, /fl' e-011
/1-' e -131/C-91t4/tI.)m rithm. Starting with a given initial configuration,

M-.0 we locate a closed loop C of L spins. After check
where 8 = 1/kT and that they satisfy the conservation law if we flip them

H = III + II_, + 113 + 11.1 all together, we compute the probability that the
present configuration remains unchanged:

is a breakup so that each 1li coltadilis only terms tk)

commuting among thenselvehs. hlie integer, II, is Pi = k=Ll /(

set to be a large but finite iiinber, i practIce. After where VV(k) are the diagonal elements of the trans-
inserting complete setIs of .t: :,ts (,'i._i-states of S), fer matrix, and the probability that the configuration

the partition function hraiks do% it ;•to prod ucts of are flipped:

Boltzmann factors associated wit h il.teract inlg '-spin k-L(k)

squares: P1 = -k="Wc(k)h 1

Z= mirno Z llc-"'/'"l)l,) where hW(k)c.,+1 are the off- diagonal elements of the
M=-0.3) whr Ch A.+

({C transfer matrix along the loop C. The Metropolis

390

procedure is to accept the flip according to the prob- move in spatial directions, winding-line, as shown

ability in Fig. 2 by the double line, changes the winding

p =]./pi. numbers. t

If the flip is not accepted, we keep Ihe initial config-

uration and go on to the next loop of -spins.

The classical system is defined on a 3- dimen-

sional lattice. On each grid point, t spin can only

have two states, up or down, which is represented by

0 or 1. An elementary square of 4 s:ins is called an

interacting square if they are conle(led through the

Boltzmann factor. They are denotel by the shaded

square in Fig.2. Note that not all stiuares are inter-

acting.

E

I' nI t I I I wI Fg.

*\X

Two types of local inoves nia locally change

the spin configurations. The time-looI local update

is shown in Fig.3. (Note that the spmis at the lattice

sites in Figs. 3-5 are omitted for silnplicity. Their

presence are same as in Fig.2.) All 8 spins in the Fig.4

loop are either all flipped, or renmainm•i inmichanged de-

pending on whether the prolbahilit. test is success Periodic boundary conditions are imposed in

or failure. Similarly in time space-lo)p local update, all directions to preserve the translation invariance

shown in Fig.4, all 4 spins in the loop are either all and to satisfy the trace requirement. In each Monte

flipped or not. Carlo sweep through the lattice, we apply the all four

A global move in the timie direct ioim, we called it moves to all possible configuration. After enough

time-line, flips all (ihe spins along thi,- t nie-line. This sweeps, the system reaches the equilibrium state, and

update changes time magnetization. Another global we then take measurements.

391

4. The multispin Coding N4. Finally, S1 is XOR-ed with (SI [right-shift] 1) to

obtain C which contains the information about the

We implemented a simple and efficient multi- upper and lower interacting loops (which are shared

spin coding method, which facilitat.s vectorization, with adjacent "time" loops). After masking N1-N6

saves index calculation and inemory7 space. This is and C with appropriate masks, we SHIFT, OR them

possible because each spin only has tkvo states, up (1) together, to obtain Xl and X2 which contain the in-

or down (0), which is represented by a single bit in a formation about the eight interacting loops shared

32-bit integer. Spins along t- direction is packed into by S1 and S2. Notice that N1-N6 are used only once

a 32-bit words, so that the boundary communication for all of the eight "time" loops.

along x or y direction can be handled more easily.

All the necessary checks and updates can be N5 N4

handled by the bitwise logical operations OR, AND, 0

NOT, XOR. Note that this is a natu,'al vectorization t 31

since AND operations for the 32 sins are carried 30

out in the single AND operation by the CPU. The
index calculations to address these individual spins 2_

are also minimized, because one only computes the V_ 27

index once for the 32 spins. The same principles are

applied for both local anl global noves, but it is 25

24
easier to illustrate them for local moves, as shown in

2,3
Fig.5.

A pair of adjacent words contains eight "time"

loops, as indicated by the dotted line in Fig.5. Be- -.

cause every two adjacent "time" loops share an inter- -- - 2

acting square, we update all four odd "time" loops

simultaneously in a vectorized fashion. The other 0
four even "time" loops are updated next. Many of
the useful quantities obtained in ul dating the four

odd ones will also be used for the foer even ones. WVe Fig.5

now briefly illustrate the scheme. WVe want to update To retrieve the information that pertains to the
the odd "time" loops 1, 3, 5 and 7 c" the spin words "time" loop 1, we calculate 11 = XI [AND] MASKi
S1 and S2 in Fig.5. We first conlpute F = S1 [XOR] and 12 = X2 [AND] MASK1. (I1,I2) is a pair of
S2 , and then NV = F [AN I)] \lk1 SKhl. where MASKI small integers in one-to-one correspondence with the

has "P's located at the propr position of the "imne" spin configuration: it uniquely determines the tran-
loop: MASKI=(O..-01111). 'IThe Ilii• of "tinme" loop sition probability. Thus (11,12) is used as an index
1 is allowed if \V [AND] M\SNI = MA\S= and (SI to fetch the transition probability stored in a small
[AND] MASK1) + (S2 [AND] MASK1) = 16 (which lookup table calculated at the beginning. The float-
means that all four spins in S1 imust beI down and ing point operations in the update are the Metropolis
the four spins in S2 must. hc up, or vice versa). S1 accept/reject test. Upon acceptance, the proper four

is also XOR-ed with Nl, NG amd N5 to obtain El, spins in S1 are flipped by S1 = Si [XOR] MASKI,
E6 and E5, the information noeded to compute the and similarly for S2. The update of the "time" loop 3
energy due to the three inter;actingg loops on SI side proceeds in the same manner as for loop 1, after left-

(see Fig.3). Similarly, S2 is XOI-ed vith N2, N3 and shifting MASK1 for 8 bits, and similarly for loops

392

5 and 7. Once "time" loops 1.3,5,7 are completed, node contain a subspace (Nx/M)*Ny*Nt, shown in

we need to recalculate C only, and the entire process Fig.6. The local updates are easily parallelized since

is repeated for even loops. Notice that only floating the connection is at most next-nearest neighbor (for

point operation in these updates is a random number the time-loop update). The needed spin-word ar-

generation[9] and comparison, rays from its neighbor are copied into the the local

Four adjacent words contain *,ight "space" lo storage by the shift routine in CROS communica-

-ops. They can be updated without alternating even tion system[3,4] before doing the update. One of the

and odd ones, since they are decoul led. global update, the time-line, can also be done in the

The global move ill time direc, ion is very easy same fashion. The communication is very efficient in

to implement with this type ofr-piii j..acking. One has the sence that a single communication shift Ny*Nt

to check whether bits are all cilher O's or l's, then to spins instead of Nt spins in the case the lattice is

XOR the word to be flipped with tour neighboring partitioned into 2- dimensional grid. The overhead

words to get the transition probability. The same associated with the communication routine, which

principles are used to implemnci t the global flip in is quite non-negligible, is reduced greatly because it

spatial directions, but the actual procedure is much only occurs once , instead of Ny times. This is one of

more complicated. It is desirable to have the sim- the reasons that a 1-d grid decomposition is bether

plest possible spin interaction in order to minimize than 2-d decomposition for this class of problems.

the complexity of the various tests needed to de-

termine the transition probability. For this reason,

we believe that our "bond-type" decomposition is

preferable due to the simplicity of s:pin interactions, PROCESSOR NODES
although the spin packing could bc done with any

other decomposition, such as "cell-type" breakup,

which leads to more complicated 8-spin interactions.

5. Parallel Impleimentation-

Using the multicoding technique, the spins do H

not occupy large memory spaces, the most simply

way is to run an independent siinhlat.ion on each

node and average them to get the statistical results. Fig.6

However, this naive iinplem ent :;t.ioii does not work

well for this problem. Our hatto ti U, ifairly large The winding-line global update along x- direc-
(128xI28xI92) in the sense t hat a tyofica thermal re- tion is difficult to do in this fashion, because it in-

laxation take about 10,000 sweeps idet ails depends volves spins on all the M nodes. In addition, We need

on the temperature aiid ilihe corr..iatiou leiigth of to compute the correlation functions which have the

the system). Both thermal and ql.iait.uni hiictua- same difficulty. However, since these operations are

tion make the averaging lro(es ye -Y long, ill units not used very often (every 10 sweep, one may call

of 100 hours, to obtain a sullicient c:mnplete sample. the winding-line update and the correlation function

We need to do physical space para lelization to cut measurements), we devised a fairly elegant way to

this CPU time down to more reasorable time. parallelize these global operations.

We partition the 3- dimenional lattice Nx*Ny We have wrote a set of gather-scatter routines

*Nt into a ring of M processor nodes so that each based on the cread and cwrite in CROS. In gather,

393

the subspaces on each node are gat'iered into com- rings, each ring holds an independent simulation, as

plete spaces on a each node, preserx ing the original shown in Fig.6. Typically, for 32x32 lattice, we run

geometric connection. As shown in Fig.7, each node 8 simulations, each using 4 node-ring. For 96x96 lat-

has a copy, but the x-coordinate is rotated accord- tice, we run 2 independent runs, each uses 16 node

ingly so the node's own subspace is in the starting rings. This simple parallelism make the simulation

position. Parallelism is achieved now since the global very flexible and efficient. In the simulation, we used

operations are done on each node jlst as in the se- a parallel version of the Fibonacci additive random

quential computer, with each node oily do the part it numbers generator[9] which has a period larger that

originally covers. In scatter, the updated (changed) 2127.

lattice configuration on a particula, node (number

zero) is scattered (distributed) bacl, to all the node 6. Performance Analysis

in the ring, exactly according the c,'ginal partition.

Note that this scheme differs froth tl;(e earlier decom- We have made a systematic performance anal-

position scheme[8] for the gravitatiol, problem, where ysis, by running the code on different sizes and dif-memory size constraints is the main concern. ferent number of nodes. The timing results for a

realistic situation (20 sweeps of update, 1 measure-

ment) are given in Table 1. The speedup, il/tM,
x-O __-_-__,,___...__ ...___

p.0 30

x- 128

x 6.

'34)

p.1 10

x-M-1 , , I , , I ,

0 10 20 30

nodes

X -M-1 Fig.8

x-0 • where tj (tM) is the time for the same size spins

p.M-i system to run same number operations on 1 (M)
nodes, are listed in Table 1. It is also plotted in

M -2 2Fig.8. One can see that speedup is quite close to the

ideal case denoted by the dashed line in Fig.8 For

the 128x128 quantum spin system, the 32-node hy-
Fig.7 percube speedup the computation by a factor of 26.6,

All of our simulations were do:ie on a 32-node a very good result. However, running the same spin
hypercube. For higher temnperaltimes, no need to system on 16-node is more efficient, because we can

use lattice of sizes of 96ix96, or not. even 61x641. So run two independent systems on the 32-node hyper-

the 32 nodes was divided into scvcial iaidlpcldent cube with a total speedup 2x14.5=29 (each speeds up

394

a factor 14.5). This is better descrit' ,d by efficiency, good example in that parallel computers easily (i.e.,

defined as speedup/nodes, which is :abulated in Ta- at same programming level) outperform the conven-

ble 1. Clearly, the efficiency of the iniplementation tional supercomputers.

is very high, generally over 90%.

7. Conclusion and Acknowlegements

The Exact direct comparison with other super-

computers are not available at prcsent. However, An implementation of the quantum Monte

an very similar multispin spin codcE[10] in calculat- Carlo code for the spin system on the hypercube

ing the elementary excitation energy spectrum of this is described in detail. The multicoding technique

same Heisenberg model is running on both Markllfp is a efficient, vectorized and memory saving scheme.

and on Cray XMP. The Cray speed is approximately Ring decomposition and the gather-scatter make the

equivalent to 2-node Marklllfp. This indicates that parallel version flexible and efficient. The perfor-

our 32-node MarkIIlfp performs better than Cray mance is very good. Efficiency is over 90%. This

XMP about a factor of (32/2)*90% = 14! We note parallel technique can be applied to a general class

that our code is written in "C" and the vectorization of not-so-mernory-restrainted problems. This paral-

is limited to the 32-bit inside the v;)rds. Rewriting lel code on MarkIllfp outperforms the conventional

the code in Fortran (Fortran compi'ers on Cray are supercomputers.

more efficient) and fully vectorize the code, one may We thank M. Cross, G. Fox and P. Weichman

gain a factor about 5 on Cray. But even after such for valuable discussions. This work is supported by

an big programming efforts on the Cray, Marklllfp DOE DE- GF03- 85ER 25009 and NSF DMR-87

will probably run faster than Cray XMIP by a factor 15474. MSM thanks the Shell Foundation for a fel-

of 3. Clearly this quantum Monte carlo code is a lowship.

Table 1. Performance of MarkIIIfp for the Quantum Spin
program. The timing (in seconds) for update 20 sweeps
and 1 measurement, the speedup and the efficiency.

Size Noe 32 16 8 4 2 1

128x128 time 20.7 38.1 74.1 145.4 298 551
128x128 speedup 26.6 14.5 7.44 3.79 1.85 1
128x128 efficiency .832 .904 .930 .948 .925 1

96x96 time -- 21.3 41.3 80.2 160 310
96x96 speedup -- 14.5 7.50 3.86 1.94 1

96x96 efficiency -- .909 .937 .965 .968 1

64x64 time -- 9.86 18.4 35.5 69.8 139
64x64 speedup -- 14.1 7.55 3.91 1.99 1

64x64 efficiency -- .881 .944 .979 .996 1

3"

References and Footnotes Conference on Hypercube Concurrent Comput-

ers and Applications, G. C. Fox, ed., ACM

[1] G.C.Fox, Concurrency: Practice and Experi- Press, New York, 1988.

ence, 1, 63 (1989). [5] J.G. Bednorz and K.A. Miller, Z.Phys. B64,

[2] See, for example, T. Prince and S. Ander- 189 (1986); M.K.Wu et al, Phys.Rev. Lett. 58,

son, Caltech report, for disco.'ery of pulsars; 908 (1987).

P. Hipes, C. Winstead, V. NlcKoy, this pro- [6] H.-Q. Ding and M.S. Makivic, Phys.Rev.Lett,

ceeding, on the electron scattering; .J. Salnan, bf 64, 1449 (1990); M.S. Makivic and H.-Q.

P. Quinn and N1. Warren, Ca:tech report, on Ding, submitted to Phys. Rev.B.

galaxies collision; and I.-Q. Ding, this proceed-

ing, for the QCD calculations. 0 [7] H.-Q. Ding and M.S. Makivic, Caltech Report

[3] G. Fox, M. Johnson, G. Lyze iga, S. Otto, S. CP-851, submitted to Physical Review Let-
ters.

Salman and D. Walker, Solvhng Problems on

Concurrent Processors Vol. 1, Prentice Hall, [8] G. Fox, and S. Otto, Physics Today, 50 (May

Englewood Cliffs, New Jersey, 1988. 1984).

[4] J. Tuazon ei al, "Mark lllflp Ilypercube Con- [9] It.-Q. Ding, Caltech report C3P-629, unpub-

current Processor Architecture", p. 71; P. lished.

Burns et al "The JPL/Caltecl Mark lllfp Ily- [10] G. Chen, H.-Q. Ding and W. Goddard, in

percube", p. 872, in Proceedinigs of The Third preparation.

396

Lattice QCD:
Commercial vs. Home-grown Parallel Computers

Clive F. Baillie

Caltech Concurrent Computation Program,
California Institute of Technology,

Pasadena, CA 91125, USA

Abstract for example. This piece of the Standard Model is
Numerical simulations of Lattice QCD have been now called the electroweak sector. The third part
performed on practically every computer, since its of the Standard Model is the QCD, the theory of
inception almost twenty years ago. Lattice QCD the strong force, which binds quarks together into
is an ideal problem for parallel machines as it can "hadrons", such as protons, neutrons, pions, and
be easily domain decomposed. In fact, the urge to a host of other particles. The strong force is also
simulate QCD has led to the development of several responsible for the fact that protons and neutrons
home-grown parallel UQCD machines", in particular bind together to form the atomic nucleus. Currently
the Caltech Cosmic Cube, the Columbia Machine, we know of five types of quark (referred to as "fia-
IBM's GF11, APE in Rome and the Fermilab Ma- vors"): up, down, strange, charm and bottom; and
chine. These machines were built because, at the expect at least one more (top) to show up soon.
time, there were no commercial parallel comput- In addition to having a "flavor", quarks can carry
ers fast enough. Today however the situation has one of three possible charges known as "color" (this
changed with the advent of computers like the Con- has nothing to do with color in the macroscopic
nection Machine 2 and the Ncube 2. Herein, I shall world!), hence Quantum Chromo-dynamics. The
explain why Lattice QCD is such a parallel prob- strong "color" force is mediated by particles called
lem and compare two large-scale simulations of it - gluons, just as photons mediate light in electromag-
one on the commercial Connection Machine and the netism. Unlike photons, though, gluons themselves
other on the latest Caltech/JPL hypercube. carry a "color" charge and therefore interact with

one another. This means that QCD is an extremely

1. Introduction nonlinear theory which cannot be solved analyti-
cally. Hence we resort to numerical simulations.

Quantum Chrorno-dynamics (QCD) simulations 2
are consuming vast amounts of computer time these
days, and promise to do so for at least the foresee- To put QCD on a computer we proceed as fol-
able future. The background for these calculations lows. The four-dimensional space-time continuum
is two decades of great progress in our understand- is replaced by a four-dimensional hypercubic peri-
ing of the basic particles and forces. Over time, odic lattice, of size N = N, x N, x N. x Nt with the
the particle physics community has developed an quarks living on the sites and the gluons living on
elegant and satisfying theory which is believed to the links of the lattice. N, is the spatial and Nt is
describe all the particles and forces which can be the temporal extent of the lattice. The gluons are
produced in today's high energy accelerators. The represented by 3x3 complex SU(3) matrices associ-
basic components of the so-called "Standard Model" ated with each link in the lattice. This link matrix
are matter particles (quarks and leptons), and the describes how the "color" of a quark changes as it
forces through which they interact (electromagnetic, moves from one site to the next. The action func-
weak and strong). The electromagnetic force is the tional for the purely gluonic part of QCD is
most familiar, and also the first to be understood
in detail. The weak force is less familiar, but man- S. -(1 - 1S0= L(ReTrUp,), (1)
ifests itself in processes such as nuciear beta-decay, p 3

3970-8186-21 13-3/90/0000/0397$01 .00 0 1990 IEEE

where so-called "quenched" or "pure gauge" approxima-
Up = Ui,,Ui+,,,U•+,,,•Ut,, (2) tion. The quenched approximation assumes that the

is the product of link matrices around an elemen- whole effect of quarks on gluons can be absorbed inis te podut o lik mtrics aoun aneleen- a redefinition of the gluon interaction strength. Op-
tary square or plaquette on the lattice - see Figure erationally, one generates gluon field configurations

1. Essentially all of the time in QCD simulations using only the pure gauge part of the action, and

of gluons only is spent multiplying these SU(3) ma- then computes the observables of interest in those

trices together. The code for this, shown in the bacounds. orserqanies thrs ma be
Appedix reeal tht is min ompnen isthe backgrounds. For some quantities this may be a

Appendix, reveals that its main component is the reasonable approximation. It is certainly orders of
a x b + c kernel (which most supercomputers can magnitude cheaper, and for this reason, most all
do very eficiently). The partition function for full simulations to date have been done using it. To
lattice QCD including quarks is investigate the fully realistic theory, though, one

f has to go beyond the quenched approximation and
Z = DfiDIDU exp(-SG - ý(+ m)4), (3) tackle the fermion determinant.

There have been many proposals for dealing
where 0 + m is a large sparse matrix the size of with the determinant. The first algorithms tried
the lattice squared. Unfortunately, since the quark to compute the change in the determinant when a
variables 0S are anticommuting Grassmann numbers, single link variable was updated. This turned out to
there is no simple representation for them on the be prohibitively expensive. Today, the preferred ap-
computer. Instead they must be integrated out, proach is the so-called "Hybrid Monte Carlo" algo-
leaving a highly non-local fermion determinant: rithm [1] . The basic idea is to invent some dynam-

ics for the variables in the system in order to evolve
Z DU det(o + m) exp(-SG), (4) the whole system forward in (simulation) time and

J then do a Metropolis accept/reject for the entire

This is the basic integral one wants to evaluate nu- evolution on the basis of the total energy change.

merically. The great advantage is that the whole system is up-

Note that the lattice is a mathematical con- dated at one fell swoop. The disadvantage is that

struct used to solve the theory-at the end of the if the dynamics is not correct then the acceptance

day, the lattice spacing a must be taken to zero to will be very small. Fortunately (and this one of

get back to the continuum limit. The lattice spac- very few fortuitous happenings where fermions are

ing itself does not show up explicitly in the partition concerned) good dynamics can be found: the Hy-

function Z above. Instead the parameter /3 = 6/g 2 ' brid algorithm [2] . This is a neat combination

which plays the role of an inverse temperature, ends of the deterministic microcanonical method [3] and

up controlling the lattice spacing a(#3). To take the the stochastic Langevin method [4]. which yields a

continuum limit a --+ 0 of lattice QCD one tunes quickly-evolving, ergodic algorithm for both gauge

g -* 0, or P3 -- oo. Typical values used in simula- fields and fermions. The computational kernel of

tions these days range from /3 = 5.3 to O3 = 6.0. This this algorithm is the repeated solution of systems of

corresponds to a ;. .1 Fermi = 10-16 meter. Thus equations of the form

at current values of 03 a lattice with N, = 20 will (M + m)4O = 77, (5)
correspond to a physical box about 2 Fermi on an
edge, which is large enough to hold onie proton with- where 0 and 77 are vectors which live on the sites of
out crushing it too much in the finite volume. Still the lattice. To solve these equations one typically
the spacing a = .1 Fermi is not fine enough that we uses conjugate gradient or one of its cousins, since
are close to the continuum limit. One can estimate the fermion matrix (.0 + m) is sparse. For more
that we still need to shrink the lattice spacing by details, see [5] . Such iterative matrix algorithms
something like a factor of 4, leading to an increase have as their basic component the a x b + c kernel,
of a factor 44 in the number of points in the lattice so again computers which do this efficiently will run
in order to keep the box the same physical volume. QCD both with and without fermions well.

The biggest stumbling block preventing a large However one generates the gauge configurations
increase in the number of lattice points is the pres- U, using the quenched approximation or not, one
ence of the determinant det(0 + m) in the parti- then has to compute the observables of interest. For
tion function. Physically, this determinant arises observables involving quarks one runs into expres-
from closed quark loops. The simple-st way to pro- sions like (40(x)ý(y)) involving pairs of quark fields
ceed is to ignore these quark loops and work in the at different points. Again because of the Grassmann

398

nature of fermions fields, one has to express this Don Weingarten at IBM has been building the
quantity as GF11 since 1984-it is expected he will start run-

ning in production in 1990 [12] . The GF11 is an
= (7 + m)-. (6) SIMD machine comprising 576 Weitek floating point

processors, each performing at 20 Mflops to give the
And again one computes as many columns of the total 11 Gflops peak implied by the name.
inverse as needed by solving systems equations like The APE (Array Processor with Emulator)
(5) above. For simulations of full QCD with quark computer is basically a collection of 3081/E pro-
loops, this phase of the calculation is a small over- cessors (which were developed by CERN and SLAC
head, while for quenched calculations it is the dom- for use in high energy experimental physics) with
inant part. So whether quenched or not, most of Weitek floating point processors attached [13] .
the computer time is spent in applying conjugate However, these floating point processors are at-
gradient to solve large systems of linear equations. tached in a special way-each node has four multi-
3. Home-grown QCD Machines pliers and four adders in order to optimize complex

a x b + c calculations, which form the major compo-

Today the biggest resources of computer time nent of all lattice QCD programs. This means that

for research are the conventional supercomputers at each node has a peak performance of 64 Mflops.

the NSF and DOE centers. The centers are con- The first, small machine-Apetto-was completed

tinually expanding their support for lattice gauge in 1986 and had 4 nodes yielding a peak perfor-
theory, but it may not be long before they are over- mance of 256 Mflops. Currently, they have a second

taken by several dedicated efforts involving con- generation of this with 1 Gflops peak from 16 nodes.

current computers. It is a revealing fact that By 1992, the APE collaboration hopes to have com-

the development of most high performance par- pleted the 100 Gflops 4096-node "Apecento" [14].
allel computers-the Caltech Cosmic Cube, the Not to be outdone, Fermilab is also using its
Columbia Machine, IBM's GF11, APE in Rome, the high energy experimental physics emulators in con-
Fermilab Machine-was actually motivated by the structing a lattice QCD machine for 1991 with 256
desire to simulate lattice QCD. of them arranged as a 2' hypercube of crates, with

Geoffrey Fox and Chuck Seitz at Caltech built 8 nodes communicating through a crossbar in each
the first hypercube computer, the Cosmic Cube or crate [15] . Altogether they expect to get 5 Gflops
Mark I, in 1983 [6] . It had 64 nodes, each of which peak performance.
was an Intel 8086/87 microprocessor with 128 KB of These performance figures are summarized in
memory, giving a total of about 2 Mflops (measured Table 1. The "real" performances are the actual
for QCD). This was quickly upgraded to the Mark performances obtained on QCD codes; in Figure 2
II hypercube with faster chips, twice the memory we plot these as a function of the year the QCD
per node and twice the number of nodes in 1984 [7] machines started to produce physics results. The
. Now QCD is running at 600 Mflops sustained on surprising fact is that the rate of increase is very
the latest Caltech hypercube: the 128-node Mark close to exponential, yielding a factor of ten every
IIIfp (built by JPL) [81 . Each node of the Mark two years! On the same plot we show our estimate
IIIfp hypercube contains two Motorola 68020 mi- of the computer power needed to redo this year's
croprocessors, one for communication and the other quenched calculations on a 128" lattice. This esti-
for calculation, with the latter supplemented by one mate is also a function of time, due to algorithm
68881 coprocessor and a 32-bit Weitek floating point improvements. Extrapolating both lines, we see the
processor. outlook for lattice QCD is rather bright. Reasonable

Norman Christ and Tony Terrano at Columbia results for the "harder" physical observables should
built their first parallel computer for doing lattice be available within the quenched approximation in
QCD calculations in 1984 [9] . It had 16 nodes, the mid-90's. With the same computer power we
each of which was an Intel 80286/87 microproces- will be able to redo today's quenched calculations
sor plus a TRW 22-bit floating point processor with using dynamical fermions (but still on today's size of
1 MB of memory, giving a total peak performance lattice). This will tell us how reliable the quenched
of 256 Mflops. This was improved in 1987 using approximation is. Finally, results for the full theory
Weitek rather than TRW chips so that 64 nodes give with dynamical fermions on a 1284 lattice should fol-
1 Gflops peak [101 . Very recently, Columbia have low early in the next century (!), when computers
finished building their third machine: a 256-node 16 are two or three orders of magnitude more powerful
Gflops lattice QCD computer [11] . again.

399

Table 1 means they are ideally suited to this type of com-
Peak and real performances in Mflops putation since doubling the number of processors

of "homebrew" QCD machines approximately halves the total computational time
required for solution. However, as we shall see,

Computer Year Peak Real the picture changes dramatically when fast floating
I point chips are used; then t =o,, - twc and one

Caltech I 1983 3 2 must take some care in coding to obtain maximum
Caltech II 1984II performance.
Caltech 111 1989 2000 600 QCD simulations have been done on all the Cal-
Columbia I 1984 256 20 tech hypercubes; the most recent being a high statis-
Columbia II 1987 1000 200 tics, large lattice study of the string tension in pure
olumbia III 1990 16000 6000 gauge QCD on the Mark IIIfp [16] . For this the

IBM GF11 1990 11000 10000" 128-node hypercube performs at 0.6 Gflops. As each
APE I 1986 256 20 node runs at 6 Mflops this corresponds to a speedup
APE II 1988 1000 200 of 100, and hence an efficiency of 78%. These figures
APE III 1992 100000 0000* are for the most highly optimized code. The original
Fermilab 1991 5000 1200* version of the code written in C ran on the Motorola

chips at 0.085 Mflops and on the Weitek chips at 1.3

• All real times are measured except these predicted Mflops. The communication time, which is roughly

ones. the same for both, is less than a 2% overhead for
the former but nearly 30% for the latter. When

With this brief review in hand, we now turn to the computationally intensive parts of the calcula-
a comparison of QCD running on one home-grown tion are written in assembly code for the Weitek
computer - the Caltech/JPL Mark IIIfp hypercube this overhead becomes almost 50%. This 0.9 msec
- with the commercially available TMC Connection of communication, shown in lines 2 and 3 in Table
Machine 2. 2, is dominated by the hardware/software message

startup overhead (latency), because for the Mark 11-
4. QCD on the Caltech/JPL Mark IIIfp Ifp the node to node communication time, t is

given by
Decomposing QCD onto a d-dimensional hy-

percube distributed memory computer (with 2 d tcom ý- (150 + 2 * W) psec,
nodes) is particularly simple. One takes the N =
M2d lattice and splits it up into 2d sublattices, each where W is the number of words transmitted. To
containing M sites, one of which is placed in each speed up the communication we update all even (or
node. Due to the locality of the action, eq. (2), it is odd) links (8 in our case) in each node, allowing us
possible to assign the sublattices so that each node to transfer 8 matrix products at a time, instead of
needs only to communicate with others to which it just sending one in each message. This reduces the
is directly connected in hardware. As a result of this 0.9 msec by a factor of
fact the characteristic timescale of the communica-
tion, tCofm, is minimal and corresponds to roughly 8 * (150 + 18 * 2) = 3.4
the time taken to transfer a single SU(3) matrix 150 + 8 * 18 * 2
from one node to its neighbor. Conversely we can to 0.26 msec. On all hypercubes with fast float-
characterize the calculational part of the algorithm ing point chips - and on most hypercubes without
by a timescale, tcac, which is roughly the time taken for less computationally intensive codes - such vec-
to multiply together two SU(3) matrices. For all torization of communication is often important. In
hypercubes built without floating point accelerator Figure 3, the speedups for many different total lat-
chips tconm << tca« and hence QCD simulations tice sizes are shown. For the largest lattice size,
are extremely "efficient", where efficiency is defined the speedup is 100 on the 128-node. The speedup
by the relation is almost linear in number of nodes. As the to-T1

= k - (7)) tal lattice volume increases, the speedup increases,
because the ratio of calculation/communication in-

where Tk is the time taken for k processors to per- creases. For more information on this performance
form the given calculation. Typically such calcula- analysis, see [171 .
tions have efficiencies in the range e > .90 which

400

5. QCD on the TMC Connection Machine 2 tural features much better. In fact, CMIS ignores
the bit-serial processors and thinks of the machine in

The Connection Machine is also very well suited terms of the Weitek chips. Thus data can be stored

for large-scale simulations of QCD. The CM-2 is slice-wise, eliminating all the transposing back and

a distributed-memory, Single-Instruction Multiple- forth. CMIS allows effective use of the Weitek regis-

Data (SIMD) massively-parallel processor compris- ters, creating a memory hierarchy, which combined

ing up to 65536 (64K) processors [18] . Each pro- with the internal buses of the Weiteks offers in-

cessor consists of an arithmetic-logic unit (ALU), creased bandwidth for data motion.

8 or 32 Kbytes of random-access memory (RAM) Currently, the Connection Machine is the most

and a router interface to perform communications powerful commercial QCD machine available: the

among the processors. There are sixteen processors "Los Alamos collaboration" is running full QCD at a

and a router per custom VLSI chip, with the chips sustained rate of almost 2 Gflops on a 64K CM-2 [19]

being interconnected as a twelve-dimensional hyper- . As was the case for the Mark IIIfp hypercube, in

cube. Communications among processors within order to obtain this performance one must resort to

a chip work essentially like a cross-bar intercon- writing assembly code for the Weitek chips and for

nect. The router can do general communications the communication. Our original code, written en-
but we require only local ones for QCD so we use tirely in *Lisp, achieved around 1 Gflops. As shown

the fast nearest-neighbor communication software in Table 3, this code spends 34% doing communi-
called NEWS. The processors deal with one bit at cation. When we rewrote the most computation-
a time, therefore the ALU can compute any two ally intensive part in the assemb))r language CMIS,

boolean functions as output from three inputs, and this rose to 54%. In order tV obtain maximum per-
all data paths are 1-bit wide. In the current version formance we are now rewritiig the communication
of the Connection Machine (the CM-2) groups of part of our code to make use of "multi-wire NEWS"
32 processors (two chips) share a 32-bit (or 64-bit) which will allow us to communicate in all 8 direc-
Weitek floating point chip, and a transposer chip tions on the lattice simultaneously thereby reducing
which changes 32 bits stored bit-serially within 32 the communication time by a factor of 8 and speed-
processors into 32 32-bit words for the Weitek, and ing up the code by another factor of 2.
vice versa.

The high-level languages on the CM, such as 6. Conclusions

*Lisp and CM-Fortran, compile into an assem- It is interesting to note that when the various
bly language called Paris (Parallel Instruction Set). groups began building their "homebrew" QCD ma-
Paris regards the 64K bit-serial processors as the chines it was clear that they would out-perform all
fundamental units in the machine, and so well rep- commercial (traditional) supercomputers; however,
resents the global aspects of the hardware. However, now that commercial parallel supercomputers have
floating point computations are not very efficient in come of age [20] the situation is not so obvious.
the Paris model. This is because in Paris 32-bit On the original versions of both commercial
floating point numbers are stored "field-wise", that and home-grown parallel computers (without fast
is, successive bits of the word are stored at succes- floating point chips) one could get good performance
sive memory locations of each processors memory. from one's favorite high-level language. Now, how-
However, 32 processors share one Weitek chip which
deals with words stored "slice-wise", that is, stored evr aost of these machineso t lo at-ing point iardware, one must resort to lover-level
across the processors, one bit in each. Therefore
to do a floating point operation, Paris loads in the assembly programmiung to obtain maximum perfor-to d a loaingpoit oeraion Pais oad inthe mance. Having done just that, we are running QOD

field-wise operands, transposes them slice-wise for atc0. Havops one Cath Mark inf hpr

the Weitek (using the transposer chip), does the op- cube and at 1.65 Gflops on the TMC Connection

eration and transposes the slice-wise result back to Machine 2.

field-wise for memory storage. Moreover, every op-

eration in Paris is an atomic process, that is, two
operands are brought from memory and one result
is stored back to memory so no use is made of the
Weitek registers for intermediate results. Hence, to
improve the performance of the Weiteks, a new as-
sembly language called CMIS (CM Instruction Set)
has been written, which models th(local architec-

401

References Theory Simulations, Comp. Phys. Commun.
45, 345 (1987).

[1] S. Duane, A.D. Kennedy, B.J. Pendleton and [14] R. Tripiccione, Machines for Theoretical
D. Roweth, Hybrid Monte Carlo, Phys. Lett. Physics, In Proc. of ihe Int. Symp. Lattice
B195, 216 (1987). 89, Capri, September 1989, to appear in Nucl.

[2] S. Duane, Stochastic Quantization versus the Phys. B (Proc. Suppl.) (1990).
Microcanonical Ensemble: Getting the best of [151 T. Nash et al, The Fermilab Advanced Corn-
both worlds, Nucl. Phys. B257, 652 (1985). puter Program Multi-Processor Project, In

[3] D. Callaway and A. Rahman, Lattice Gauge Proc. Conf. Computing in High Energy Physics,
Theory in the Microcanonical Ensemble, Phys. Amsterdam, June 1985 (North-Holland, Amss-
Rev. D28, 1506 (1983); J. Poloyni and H.W. terdam, 1986); M. Fischler, Hardware and Sys-
Wyld, Microcanonical Simulation of Fermionic tem Software Requirements for Algorithm De-
Systems, Phys. Rev. Lett. 51, 2257 (1983). velopment, In Proc. of the Int. Symp. Lattice

[4] G. Parisi and Y. Wu, Perturbation Theory 89, Capri, September 1989, to appear in Nucl.
without Gauge Fixing, Sci. Sin. 24, 483 (1981); Phys. B (Proc. Suppl.) (1990).
G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. [16] H.-Q. Ding, C. F. Baillie and G. C. Fox, Cal-
Lepage, B. Svetitsky and K.G. Wilson, Langevin culation of the heavy quark potential at large
Simulations of Lattice Field Theories, Phys. separation on a hypercube parallel computer,
Rev. D32, 2736 (1985). to appear in Phys. Rev. D. (1990).

[5] R. Gupta, G.W. Kilcup and S.R. Sharpe, Tun- [17] H.-Q. Ding, The Mark IIIfp Hypercube: Per-
ing the Hybrid Monte Carlo Algorithm, Phys. formance of a QCD code, Caltech preprint
Rev. D38, 1278 (1988). C3P-799, submitted to Comp. Phys. Commun.

[6] C. L. Seitz, The Cosmic Cube, Comm. of the (1990).
ACM 28, 22 (1985). [18] W. D. Hillis, The Connection Machine (MIT

[7] J. Tuazon et al, The Caltech/JPL Mark II hy- Press, Cambridge, MA, 1985); Thinking Ma-
percube concurrent processor, In IEEE 1985 chines Corporation, Connection Machine Model
Conference on Parallel Processing, St. Charles, CM-2 Technical Summary, TMC Technical Re-
Illinois, August 1985. port HA87-4, Cambridge, MA, 1987.

[8] J. C. Peterson et al, The Mark III hypercube [19] C. F. Baillie, R. G. Brickner, R. Gupta and
ensemble concurrent computer, In IEEE 1985 S. L. Johnsson, QCD with dynamical fermions
Conference on Parallel Processing, St. Charles, on the Connection Machine, In Proc. of Super-
Illinois, August 1985. computing 89, Reno, Nevada (ACM Press, New

[9] N. H. Christ and A. E. Terrano, A Very Fast York, 1989).
Parallel Processor, IEEE Trans. on Computers [20] G. C. Fox, Parallel Computing Comes of Age:
C-33, 344 (1984). Supercomputer Level Parallel Computations at

[10] F. Butler, Status of the Columbia Parallel Pro- Caltech, Concurrency: Practice and Ezperience
cessors, Nucl. Phys. B (Proc. Suppl.) 9, 557 1, 1 (1989).
(1989).

[11] N. H. Christ, Status of the Columbia 256-
node Parallel Supercomputer, In Proc. of the
Int. Symp. Lattice 89, Capri, September 1989,
to appear in Nucl. Phys B (.roc. Suppl.)
(1990).

[121 J. Beetem, M. Denneau and D. Weingarten,
The GF11 Supercomputer, In IEEE Proc. of
the 12th Annual Int. Symp. on Computer Ar-
chitecture, IEEE Computer Society, Washing-
ton D.C., 1985; D. Weingarten, Progress Re-
port on the GF11 Project, In Proc. of the
Int. Symp. Lattice 89, Capri, September 1989,
to appear in Nuci. Phys. B (Proc. Suppl.)
(1990).

[13] M. Albanese et al, The APE Computer: An
Array Processor Optimized for Lattice Gauge

402

Table 2
Link update time (msec) on Mark IIIfp node

for various levels of programming

Programming level Calc. time Comm. time Total time Mflops

Motorola MC68020/68881 in C 52 0.86 53 0.085
Weitek XL all in C 2.25 0.90 3.15 1.4

Weitek XL parts in Assembly 0.94 0.90 1.84 2.4
Weitek XL Assembly, vec. comm. 0.94 0.26 1.20 3.8
Weitek XL Assembly, no comm. 0.94 0.0 0.94 4.8

Table 3
Fermion update time (sec) on 64K Connection Machine

for various levels of programming

Programming level Calc. time Comm. time Total time Mflops

All in *Lisp 8.7 4.5 13.2 900
Inner loop in CMIS 3.3 3.9 7.2 1650
Multi-wire CMISt < 3.3 0.5 < 3.8 > 3100

t projected numbers

Fig. 1.

Illustration of plaquette calculation

UU.

Ui,.

1i,

403

Fig. 2. Computational power of QCD machines

100000 128

-- ~0-

10000 '-" -

0
r-q

1000

100 - -tooo
El] Caltech
SColumbia

10 " IBM
o Rome
x Fermilab

1 I I I I I

85 90
Year

Fig. 3. Speedup of QCD code on Mark IIIfp

I ' I I I I I I I I I I I

l O0 • 16x323 _
100 1x2 2

16 2x32

16 3x32

164
16 3 x8

8 2 x16 2

Q)
50

83 x16

-0
-0 50 100 150

Nodes

40

The Fifth Distributed Memory

Computing Conference

16: Eectrom~agnetic ScattringPblmj

The Finite Element Solution of Two-Dimensional Transverse
Magnetic Scattering Problems on the Connection Machine

Scott Hutchinson1 Steven Castillo1

Edward Hensel2

Kim Dalton1

1'Department of Electrical and Computer Engineering
2 Department of Mechanical Engineering

scastill@nmsu. edu

Box 3-o
New Mexico State University, Las Cruces, New Mexico 88003

April 6, 1990

Abstract First, the weak form of the continuous governing
equations are given. Second, the mapping of the fi-

A study is conducted of the finite element solution nite element program onto Thinking Machines Corpo-
of the partial differential equations governing two- ration's Connection Machine using nodal assembly is
dimensional electromagnetic field scattering problems described. Third, results are presented for a variety of
on a SIMD computer. A nodal assembly technique is scattering shapes. Lastly, conclusions are drawn and
introduced which maps a single node to a single proces- future research discussed.
sor. The physical domain is first discretized in parallel
to yield the node locations of an O-grid mesh. Next, the
system of equations is assembled and then solved in par- 2 Problem Formulation
allel using a conjugate gradient algorithm for complex-
valued, non-symmetric, non-positive definite systems. The equations of interest are the 2-d scalar and vector
Using this technique and Thinking Machines Corpo- Helmholtz wave equations [1]. The equationsar ap-
ration's Connection Machine-2 (CM-2), problems with plied over an open region artificially truncated with an
more than 250k nodes are solved, absorbing boundary condition [2]. The scalar equation

Results of electromagnetic scattering, governed by 2 E(
the 2-d scalar Helmholtz wave equations are presented V- -VE, + ko 0 (1)/r
for a variety of infinite cylinders and airfoil cross-

sections. Solutions are demonstrated for a wide range governs the transverse magnetic (TM) normal incident
of objects. A summary of performance data is given for case and the vector equation
the set of test problems. 1

V x Vx H- kop, H = 0 (2)
C'.

1 Introduction governs the TM oblique incident case. H represents
the unknown magnetic field and E, represents the z-

The finite element technique is a method which allows component of the unknown electric field. Each case
for the approximate solution of partial differential equa- can be written
tions over some finite domain. Because partial differen-
tial equations govern various physical phenomena, the E, = E' + Es (3)
technique has applications in many disciplines. Here, a H =--- H' + H' (4)
study is conducted of the finite element solution of the
partial differential equations governing two-dimensional where E' and H' represent the known incident fields
electromagnetic field scattering problems on a SIMD while E,' and H' are the unknown scattered fields (Fig-
computer. ure 1).

4060-8186-2113-3/901000010408$01.00 @ 1990 IEEE

3 Nodal Mapping

The SIMD computer used is Thinking Machines Cor-
poration's Connection Machine 2 (CM-2). Briefly, the
CM-2 is described as a SIMD (Sequential Instruction
Multiple Data) or data parallel type of parallel com-

router puter. This means that each computer instruction oper-
ates on data stored in a processor array. Each processor
in the array holds a single data item. The CM-2 may be
configured to have up to 64k (k=1024) physical proces-

k sors each with its own local memory. Computationally,
each physical processor may be subdivided into some
number of virtual processors where the computational

E~ resources of the physical processor are shared among itsvirtual processors. The virtual processor ratio, then, is
r H_ýM the ratio of the number of virtual processors assigned

"to each physical processors and must equal an integer
power of 2. For a more complete description, see [3].

While SIMD computers have been in existence for
a number of years, finite element algorithms for them

Figure 1: Open region scattering problem. have been few. One reason is that, as with all parallel
architectures, techniques which may be mature on serial
computers must be altered and sometimes discarded in

Applying the Galerkin technique, the scalar equation favor of more applicable algorithms. This paper intro-
is written duces a new nodal basis mapping of the finite element

/1 V algorithm onto the CM-2.

i VT. VEn - k2 rTEf dQ One difficulty with implementing finite element algo-
rithms on a SIMD computer is the choice of the data

- T aTEE, -/O-T E. dr item. To achieve a relatively high level of efficiency
r (a O~P80 aas well as to limit communication, a data item which

f [(IVE"' + k2.Eu d] may be maintained throughout the algorithm is desir-
= T . V J EE d)able. Typically, finite element algorithms operate on

an elemental level during the calculation of the system
where the unknown is the scattered electric field and of equations and then assemble these elemental equa-
the vector equation is written tions to a global set of equations which exist on the

1) nodal level. This global set of equations is then solvedJ (jV x T. V x H - k 2prT- H df? to yield results at the nodal level. This may be seen
as having two different data items during different por-

+ [aT. Han - " V x T)(i . V x H)] dr tions of the program and previous implementations of
Jr this mapping on the CM-2 have proved inefficient [4],

= [cT. H'.a - 3f. V x T)(× V x H')] dr [5]. To avoid this inefficiency, an algorithm which uses
Jr a nodal level data set throughout the program has been

-f developed for use on the CM-2. While the solution on
- T- r xV x H' dr (6) the nodal level remains basically the same as previous

finite element algorithms on the CM-2 [6], [7], the cal-
where the unknown is the total magnetic field. In each culation of the system of equations is done on the nodal
case the Bayliss-Turkel radiation condition has been ap- level using what has been termed nodal assembly.
plied to satisfy the Neumann boundary condition on the
outer boundary.

In order to obtain the final finite-element form, these 3.1 Mesh Generation
equations are discretized and presented as a linear sys- The nodal-basis mapping assigns a node to a processor.
tem of equations This mapping is maintained throughout the program,Ku =b (7) from discretization through solution. During discretiza-
for u the unknown. tion, each processor calculates its position in the prob-

409

lem domain based on information which describes the
domain geometry. Each processor also determines its
boundary status. To enhance the speed of the program,
a parallel O-grid mesh generator is used to generate N
meshes. The O-grid meshes allow the use of nearest N
neighbor (NEWS) communication grid while the par-
allel mesh generation means that only geometry data 4 3
need be specified on a front-end preprocessor. N(•) N

A mesh is generated by the set of points formed by
the intersection of the lines of a boundary conforming 2 1
curvilinear coordinate system. The problem of inter- 1 ..
est is a two-dimensional, multiply-connected, arbitrary
region with specified inner and outer boundaries. The 4
boundary values are specified in cartesian coordinates SW(e) SEW
(x, y) and are transformed to curvilinear coordinates
(s,t). In the transformed region, algebraic interpola- 2
tion is used to generate the physical cartesian coordi- 2
nates (z, y). See [8] for a complete description. .

3.2 Nodal Assembly

The nodal assembly technique makes use of the concept
of a nodal region which contains a given node and its Figure 2: Nodal Region of node "D" indicating nearest
neighboring nodes and elements as in Figure 2. Each neighbor nodes and adjacent elements.
processor simply calculates the local interaction coeffi-
cients associated with its row in the global system of
equations as well as the forcing value. Since the in- Initialize:
teractions are local, nearest-neighbor communication
is used. This portion of the algorithm is somewhat r0 = b- Ku0 (8)
inefficient in applying boundary conditions since only P0 = KTro (9)
processors which represent boundary nodes are active Iterate:
during this phase of the program. However, this may
only be slightly detrimental to the overall efficiency of = I K Tri 12
the program if the boundary-condition calculations are aI Kpi 12 (10)
not too laborious. ui+l = ui +aip (11)

ri+l = ri - aiKpi (12)
3.3 System Solution bi = IKTrj+1 12 (13)

Once calculated, the system of equations is solved us- I KTri 12

ing a conjugate-gradient based algorithm [9]. Conju- Pi+i = KTri+i + bipi (14)

gate gradient algorithms have been used previously on where the choice of u0 is arbitrary. Note here that the
the CM-2 for the solution of linear systems [6], [7]. matrix-transpose implies the conjugate-transpose.
This is because they are a collection of various matrix Figure 3 is a flow chart of the finite element program
and vector operations which can be performed with a as implemented on the CM-2.
high level of concurrency. Further, in the case of a
regular grid, all the system coefficients represent local
interactions and so any interprocessor communication 4 Results
will be nearest neighbor. Thus, communication is also
optimized using this solution technique. However, in The method described above has been implemented on
contrast with previous finite element algorithms on the the CM-2 using the C-Paris (PARallel Instruction Set)
CM-2, the conjugate gradient algorithm used here is programming protocol for the Connection Machine [10].
one which must handle a complex-valued, non-positive This program was used to obtain results for the solu-
definite system of equations. It is given as tion of electromagnetic wave scattering from a variety

410

Read Geometry Description
Configure NEWS gridI .. ,,+" 1 7 -

Generate Mesh Data on Processors 146

Calculate System using Nodal Assembly 1.21

.972

FApply Boundary Conditions 729

1.
Solve System using Conjugate Gradients].8

I, .243

Communicate Results to Front End 0607

Output Results to Disk FileI . 0607

Figure 3: Flow chart for CM-2 nodal-basis finite ele-
ment program.

of 2-dimensional objects. Table 1 gives some test prob- Figure 4: Case 1 magnitude: Total field magnitude for

lems for scattering from perfect electric conducting ob- scattering from a perfect electric conducting cylinder
jects. The first 4 cases are all cylindrical shapes for with a = 3A and b = 5A
which a semi-analytical solution is available for accu-
racy verification. The last case is an airfoil with NACA
number 0010. All floating point calculations are done
using 32 bit arithmetic and the floating-point acceler-
ation hardware available on the CM-2. The conjugate 1s'" -_-
gradient algorithm was halted when the following was 140)
satisfied

-4 899.Iri< 1O- (15) .9.

Ib
Figures 4 - 13 represent magnitude and phase plots

20.0of the fields for the cases listed in Table 1. In each case, 2.

the incident plane wave is taken as traveling in the x- -2.

direction. The total field magnitude becomes zero on-6.
the boundary and displays a shadow region behind the
conducting body. The phase plots illustrate that lines _.

of constant phase approach the perfect conducting inner
boundary at normal incidence. This follows from the -140._

boundary condition that

El., = 0

on the boundary.
Table 2 gives timing and Megaflop ratings achieved

on the same problems. All timing results were obtained
using the CM timing facility. As Table 2 illustrates, Figure 5: Case 1 phase: Total field phase for scattering
projected floating point computations from 200-400 from a perfect electric conducting cylinder with a = 3A
MFlops have been achieved during both phases of the and b = 5A
algorithm. Further, the MFlop ratings extrapolated to
the same virtual processor ratio run on a full 64k CM-2

411

1.99 1.99

1.65 1.85

1.72 1.72

1.59 1.69

1.46 1.46

1.32 1.32

1. 19 1.19

1.06 1.06

.927 .926

.794, .7941

Figure 8: Case 3 magnitude: Total field magnitude for
Figure 6: Case 2 magnitude: Total field magnitude for scattering from a perfect electric conducting cylinder
scattering from a perfect electric conducting cylinder with a = 10A and b = 14A. Twice the nodal density was
with a = 10A and b = 14A used in both the radial and circumferential directions

as for Case 2

140. 140..

99.8- -9 .

59.959. 9

19.9 20.0

-20.0 -20.0

-100.. -99.9-140. 0

-140. 0-leO. -140.

Figure 7: Case 2 phase: Total field phase for scattering Figure 9: Case 3 phase: Total field phase for scattering

from a perfect electric conducting cylinder with a = 10A from a perfect electric conducting cylinder with a = 10A

and b = 14A and b = 14A. Twice the nodal density was used in both
the radial and circumferential directions as for Case 2

412

2.00 1.48

1.78 1.31

1.61.15

1.33 .986

1.11 .822

. 689 .6S7

.6 6 74 9 3

.444 .329

.222 .164

0.. 0.

Figure 10: Case 4 magnitude: Total field magnitude for Figure 12: Airfoil magnitude: Total field magnitude

scattering from a perfect electric conducting cylinder for scattering from a perfect electric conducting airfoil

with a = 30A and b = 32A with chord length = 5A and b = 9.5\. NACA number
is 0010

140. 140.

99.9
99.9

60.0
60.0

20.0
20.0

-20.0
2.

-60.0
-69.9

-99. 9-99.9

-140. -140.

- 1eo. -
-160.

Figure 11: Case 4 phase: Total field phase for scattering Figure 13: Airfoil phase: Total field phase for scatter-
from a perfect electric conducting cylinder with a = 30A ing from a perfect electric conducting airfoil with chord
and b = 32A length = 5\ and b = 9.5k. NACA number is 0010

413

show capabilities on the order of 1.5 GFlops for both
portions. The finite element mapping described above
will allow the solution of problems in excess of 4 million
nodes on a fully configured CM-2 with the larger 256-
kbit memory chips. Because of this capability, objects Table 1: Test cases.
of electrical sizes (dimension in terms of wavelengths)
exceeding 100 wavelengths may studied using the finite Num. Nodes V.P.
element method. This has not previously been possible. Case a b Nium. Rai Total Ratio,

Figure 14 shows a plot of the "relative speedup" 1 3 A 5 A 512 32 16384 1
demonstrated by the Fill and Solve portions of the pro- 2 10 A 14 A 1024 64 65536 4
gram. This "relative speedup" is defined as 3 10 A 14 A 2048 128 262144 16

4 30 A 32 A 2048 32 65536 4
5 5 A* 9.5 A 1024 128 131072 8iminp- - ____ __

rap •(16)
tnp * - the chord length of the airfoil was taken as 5A.

where tminp is the execution time of a given problem
on the minimum number of processors possible (highest
virtual processor ratio) and tp is the execution time on
some number of processors. Note that the graph illus-
trates the speedup over the largest possible range of
these ratios for this program using a CM-2 with pro-
cessor memories of 64k-bits. Table 2: Timings and Mflop ratings for the above cases.

Time (s) _MFlops
Case Fill Solve Total Fill Solve

16 ------ -- 1 0.05 33.52 113.25 365 211
2 0.17 137.88 314.65 430 322

..................................... 3 0.78 1811.82 1967.79 375 399
4 0.17 125.24 224.72 430 318

.. .. . 5 0.32 6798 457

-------

................... Su

4 . Table 3: Mflop ratings extrapolated to the virtual pro-

cessor ratio implemented on a full 64k processor CM-2.

2 VP Projected MFlops

Ratio Fill Solve
0 I I I I 1 1461 846
V-'16 V•-I V--4 •:= YR-I 4 1719 1289

16 1500 1596

Figure 14: Relative Speedup.

414

5 Conclusions and Future Re- convergence properties of the conjugate gradient algo-

search rithm when applied to complex geometries.
Also, with respect to mesh generation, several ar-

Using the nodal-assembly technique, a finite element eas require further investigation. These include par-

program is implemented on a data parallel computer allel mesh generation, mesh refinement techniques as

in a manner which allows the use of the same data well as other interpolation schemes. Mesh refinement

structure throughout the program, from discretization techniques allow the program to actively alter the node

through solution. Nodal-assembly mapping provides distribution in the physical domain. This permits more

for a relatively efficient program. nodes to be allocated in regions where the solution is ex-

From the work presented here, conclusions may be pected to vary rapidly and fewer nodes in regions where

drawn. the solution is expected to be relatively constant. Thus,
a better approximation to the exact solution is obtained

" Nodal assembly ailows the mapping of one finite el- for a given number of nodes.
ement node onto one virtual processor. This map-
ping is maintained throughout the program.

" Using first order quadrilaterals and a regular mesh,
the mapping may be configured in a NEWS grid, This work was supported by NSF grant # EET-
allowing nearest-neighbor communication. 8812958.

" The mapping described above will permit a max- Computational resources were provided by Los

imum virtual processor ratio of 16 under the cur- Alamos National Laboratories, Los Alamos, New Mex-

rent CM-2 memory limitations (64k bits per pro- ico and by the Northeast Parallel Architectures Cen-

cessor). On a 64k processor machine, this allows a ter (NPAC) at Syracuse University, which is funded by

maximum of 1048576 nodes. and operates under contract to, DARPA, and the Air
Force Systems command, Rome Air Development Cen-

" Nodal assembly is inefficient when handling bound- ter (RADC), Griffiss AFB, NY, under contract number
ary conditions. This is because only processors on F30602-88-C-0031.
"a given boundary are active during this portion of
"a program. References

"* Nodal basis mapping is well suited for use with a
conjugate-gradient iterative solution. All the ma- [1] R.F. Harrington, Time Harmonic Electromagnetic
trix and vector operations can be computed with a Fields, McGraw-Hill: San Francisco, 1961.
high level of concurrency. Nearest neighbor com-
munication is again used in performing the matrix- [2] A. Bayliss and E. Turkel, "Radiation boundary
vector products. conditions for wave-like equations," Communica-

tions on Pure and Applied Mathematics, 33,707-
With respect to the CM-2, several things need be 725.

said. First, although all these examples were run on

a machine with only a 32 bit floating point accelera- [31 Thinking Machines Corp. Connection Machine
tor, 64 bit accelerators are now available to allow dou- Model CM-2 Technical Summary, Version 5.1,
ble precision floating point calculations in hardware. Thinking Machines Corp., 1989.
Second, the individual processor memory has been in-
creased from 64k bits to 256k bits on some machines. [4] S.A. Hutchinson, S.P. Castillo and E. Hensel, "A
This would effectively allow the solution of problems basic finite element code on the Connection Ma-
with 4 times the number of nodes. The 64k bits of pro- chine," Proceedings of the Fourth Annual Confer-
cessor memory allowed for a maximum virtual processor ence on Hypercubes, Concurrent Computers and
ratio of 16 for 10485760 nodes. The new memory size Applications, to be published, Monterey CA, 1989.
would allow a virtual processor ratio of 64 for 41943040
nodes. [5] S.A. Hutchinson, S.P. Castillo and E. Hensel,

Further research into data parallel techniques and "Solving 2-d electrostatic problems on the Con-
their use in the solution of scattering problems is on- nection Machine using the finite element method,"
going. These include an extension to 3-dimensional fi- Proceedings of the 5th Annual Review of Progress
nite elements, effectiveness of the absorbing boundary in Applied Computational Electromagnetics, Mon-
condition for both 2- and 3-dimensional problems and terey CA, 1989.

415

[6] R.E. Cline et al., "Towards the development of
engineering production codes for the Connection
Machine," Proceedings of the Fourth Annual Con.
ference on Hypercubes, Concurrent Computers and
Applications, to be published, Monterey CA, 1989.

[7] S.L. Johnsson and K. Mathur, Data Structures
and Algorithms for the Finite Element Method on
a Data Parallel Supercomputer, Technical Report
CS89-1, Thinking Machines Corp., 1988.

(8] J.F. Thompson, Z.U.A. Warsi and C.W. Mastin,
Numerical Grid Generation - Foundations and
Applications, North Holland: New York, 1985.

[9] M.R. Hestenes and E. Stiefel, "Methods of con-
jugate gradients for solution of linear systems,"
J. Res. Nat. But. Standards, vol. 49, pp.409-436,
1952.

[10] Thinking Machines Corp. Introduction to Pro.
gramming in C/Paris, Version 5, Thinking Ma-
chines Corp., 1989.

416

Parallel Finite Elements Applied to the Electromagnetic Scattering
Problem

R.D.Ferraro
T.Cwik
N.Jacobi

P.C.Liewer
T.G.Lockhart
G.A.Lyzenga

J.Parker
J.E.Patterson

Jet Propulsion Laboratory/California Institute of Technology

based upon the need to accurately model the scatterers,
Abstract while living with constraints of storage and cpu

performance. A mildly complicated 3D problem :an
An 2D electromagnetic finite element analysis code which easily require the solution of 106 simultaneous equations.
runs on the JPL/Caltech Mark IlIfp Hypercube is being
upgraded to handle fully 3 dimensional scattering
problems. The EM code uses finite elements [1] to model
a finite problem domain which may include regions of
anisotropic or nonuniform dielectric properties. It solves E
the single frequency source driven vector wave equation for
electric or magnetic fields in this domain. The code is B k scatterers
being implemented as a testbed for finite elements as i
applied to EM problems, with several types of elements, illumination
radiation boundary condition strategies, and parallel tm t
solvers.

Introduction problem outer boundary

The general electromagnetic scattering problem is
computationally taxing for even the most powerful Fig. 1. The Canonical Electromagnetic Scattering
present day computers. As depicted in Figure 1, the Problem. An electric or magnetic field solution is
problem may be represented as a set of scatterers contained required for the entire problem domain, which may
within a computational domain. The scatterers may be include several scatterers consisting of many
electrically complicated objects, consisting of various materials.
dielectric materials and conductors. The objects are
illuminated by a known incident field, and the scattered The finite element method decomposes the problem
electromagnetic radiation is to be determined. The domain into a set of contiguous non-overlapping elements
accurate geometric representation of each object is of various shapes which can support a piecewise
necessary in order to correctly compute the field solution continuous function with various degrees of smoothness.
for the interesting case, i.e., when the wavelength of the Linear finite elements can support piecewise linear
incident radiation is comparable in size to the features of functions, while higher order elements can support
the scatterers themselves. There are several methods piecewise quadratic or cubic functions. The elements
capable of solving the problem, each having different themselves can be shaped to conform to the problem
requirements for storage, computation, and geometric geometry, and consist of a set of nodes at which are
complexity. We have implemented a parallel EM analysis defined local orthonormal basis functions. These basis
code which uses the finite element technique [I] to model functions are zero at every other node, and have non-zero
the problem domain. Our choice of finite elements is value only within the elements which contain the given

0-8186-2113-3/90/0000/0417$01.00 0 1990 IEEE 417

node. The problem solution is obtained by solving a set
of linear equations for the coefficients of these basis
functions, which usually represent the values of the
solution at the nodal points. This is exactly like a fourier
decomposition of some function, except that the
orthogonal basis functions are local finite elements instead
of sines and cosines. This has an important advantage for
parallel processing - the basis functions interact only with
their nearest neighbors and only require local knowledge of
the problem domain. This is in sharp contrast to
something like a fourier decomposition, where each basis ",',',',',,
function must sample the entire problem domain. The * -

matrix equation which results from a finite element model ---- ,,
is also extremely sparse, which translates into the ability ,
to meticulously model the scatterer geometry with an . .-. . .

appropriate density of elements, while using a more coarse
mesh in less critical regions.

Code Structure Fig. 2. A sample finite element domain
decomposition. Each processor has a mutually
exclusive subset of the elements. Nodes internal to

Parallelization of a finite element code is best achieved by the subdomains are exclusive to the parent processor,

partitioning the problem domain among the processors. while nodes on the surfaces must be shared.

The local nature of the finite element means that the

matrix of linear equations can be assembled entirely in corresponds to the number of processors. Refinements to
parallel, with each processor constructing the part of the this decomposition can be made using simulated annealing
matrix which corresponds to its subset of elements. The to further minimize the surface areas of the subgrids, but
sparse matrix which results represents couplings among the technique works best with user interaction. In most
nearest neighbors on the finite element grid. These cases, the load balance and communication requirements
interactions can be visualized by looking at a sample which result by just doing the recursive inertial
finite element grid. In Fig. 2, a sample 4 node
quadrilateral finite element grid has been partitioned (not partitioning are sufficient.
optimally) among four processors. Each equation couples The EM analysis code has been designed as a testbed for
1 node to its nearest neighbors through finite elements the finite element technique. To that end, we have
which share that node, so in the grid depicted, a node implemented several types of finite elements, radiation
couples to at most 9 other nodes. For nodes in the boundary conditions, and parallel solvers. The number
interior of the subdomains (shown in black), the equation andary ofdtinearallel set im me rwhih rpreent itinvlve etris wicharelocl t ~ and sparsity of the linear equations set immediately
which represents it involves entries which are local to its suggest an iterative solver such as the Bi-Conjugate
parent processor. Those nodes on the subdomain surfaces Gradient method [2]. This method requires only the
require information which must be obtained from 2 or computation of matrix-vector products and dot products,
more processors. Thus a partitioning strategy for parallel and with exact arithmetic will compute the solution in n
processing must seek to minimize the surface area of these iterations, where n is the rank of the matrix. In practice, a
subdomains while dividing the problem domain into sufficiently accurate solution can often be obtained in
pieces of approximately equal volume. some fraction of n iterations. In our parallel

To satisfy these requirements, we use a Recursive Inertial implementation of the Bi-conjugate gradient algorithm,

Partitioning Algorithm. The algorithm is designed for the matrix is never completely assembled. Each processor

hypcrcube topology, where the number of processors is a computes and retains matrix entries for only those nodes

power of 2. It proceeds as follows. First determine the in its subdomain. Matrix entries corresponding to

"center of mass" of the grid. Then determine the axis subdomain surface nodes are only partially assembled.

through the center of mass with minimum moment of ;Eah processor does a piece of the matrix-vector multiply
or dot product at each iteration step, with results beinginertia. Bisect the grid with a plane through the center of globally assembled only for the surface nodes. Since the

mass which is perpendicular to this axis. Then repeat the comatio requied for a m ai e poduct ornaedt
procdur on achsubgid nti thenumer o pices computation required for a matrix-vector product or a dot

procedure on each subgrid until the number of pieces product scales like the volume of the subdomains, while

418

the communication scales like the surface area, this .. ., - 9313 N16"

algorithm becomes more efficient as problem size 22

increases. 70
I8

We are also investigating a hybrid bi-conjugate gradient /
gaussian elimination algorithm. This method uses
gaussian elimination to remove the interior nodes in favor
of the surface nodes. Bi-conjugate gradients are then used
to complete the solution. The gaussian elimination step
can be done entirely without communication, and has the
advantage of producing a partially inverted matrix. It has ,
the disadvantage of requiring more storage, since sparsity 2

is lost during the gaussian elimination step. ',
a 4 4 2?tl S• 24 1

Results S 01, ,o

The Electromagnetic Finite Element Code (EMFEC)
consists of four major sections. During the input /
initialization phase, the finite element model, hypercube Figure 3. Speedup versus number of processors for a
partitioning information, and excitation parameters are dielectric cylinder test case. The floating point
read. The model is translated into a local node and intensive code sections exhibit uniform speedup with
element numbering scheme, and the communication increasing processor numbers. The I/O related code
routing is determined for the solver. In the current sections show practically no speedup.
implementation, every processor must read the entire
finite element model and partitioning information to host. The input section is completely flat, since each
determine which nodes and elements it requires. Element processor must read the entire input data set. Poor
setup is done next. This consists of computing entries in performance of these two code sections have a devastating
the sparse stiffness matrix and entries in the force vector impact on the overall code performance. The entire code
for all elements The solver is the third phase of has a measured speedup of only 4 on 32 processors.
computation. For the bi-conjugate gradient solver,
iterations on an initial guess are performed until a This effect is illustrated in Fig. 4, where we have plotted
solution with residual error below a specified tolerance is the percentage of execution time spent in each major code
obtained. Finally, the solution is collected from all of the section as a function of the number of processors in use.
processors and written to a file. Running on 1 processor, 65% of the execution time is

spent in the compute phases of the code (element setup
Performance of each of these code sections, as well as the and solver) while the remaining 35% of execution time is
entire code itself, is illustrated in Fig.3. Here we plot spent in reading the model and writing the solution. For
speedup for a fixed test problem, consisting of a 2D finite 32 processors, only 10% of the time is now spent on
element model of a dielectric cylinder with electric computation. The code has become I/O bound. Clearly
permativity e = 2.56, and unit radius. The model contains any performance improvement must come from
2304 quadrilateral elements, and a total of 9313 nodal improving the I/O code sections, since they currently
points. We define speedup s as derive no benefit from the parallel architecture. Part of the

problem is algorithmic in nature. The input phase of the
s = Ts/Tp code requires that each processor look at the entire finite

element model. The poor performance of the output phase
where Ts is the execution time for the problem on one is either operating system or hardware related, however,
processor and Tp is the execution time on multiple since the code does not impose any ordering of the data
processors. The element setup and solver sections of the being written to the output file.

code show almost uniform speedup as the number of
processors is increased, achieving almost 75% efficiency We have also begun work on a 3D version of the code.
on 32 processors. The output code section exhibits Preliminary test results indicate that performance for each
performance saturation almost immediately, due to the code section is unchanged for the larger models associated
hardware bottleneck in transmitting data to the hypercube with 3D finite element problems. Overall code efficiency

419

100 ,• k eW- , d3I 3

9oX References

8oo [1] TJ.R. Hughes, The Finite Element Method, Prentice-
70X Hall, Inc., Englewood Cliffs, New Jersey, 1987
60% [2] D.A.H. Jacobs, "The Exploitation of Sparsity of
50% Iterative Methods", in Sparse Matrices and Their

UV, edit. by I.S. Duff, Academic Press, London,
40%

(1981)

tot

1 2 4 6 16 32

Nunbco tp~e~r

Figure 4. Percentage of execution time spent in each
code section versus number of processors. Executing
on 1 processor, 65% of the execution time is spend in
computation. On 32 processors, the code is
completely 1/0 bound.

is slightly improved, since the computation time for the
solver scalars as n2 , where n is the number of nodes in the
model, while the I/O time scales linearly with n. The
larger finite element models resulting from 3D objects
account for the overall improvement. None the less, a
better system for reading the model is called for. We are
investigating the possibility of assigning node and
element data to processors in a card dealing fashion, then
rearranging the data by using recursive inertial partitioning
in parallel. The absolute bottleneck of transmitting data
to or from the host computer cannot be avoided.
However, by not requiring every processor to examine the
entire model, we expect that we can obtain some
improvement in the efficiency of the input phase of the
code.

Conclusions

We have demonstrated that the computational phase of a
finite element code can be performed efficiently on a
concurrent computer like the Mark IIIfp Hypercube. The
I/O bottleneck in transferring the large datasets to and
from the host computer remains a problem, limiting the
overall efficiency of the code. We are working on ways of
mitigating the effect of this bottleneck, though hardware
constraints will ultimately prevent us from eliminating it.

420

An Examination of Finite Element Formulations and
Parameters for Accurate Parallel Solution

of Electromagnetic Scattering Problems

J. W. Parker, R. D. Ferraro, P. C. Liewer

Jet Propulsion Laboratory/California Institute of Technology

als, and extremely inhomogeneous ma-
Abstract terials. The method is also well suited to

parallel computation: with elements
In conjunction with the development of spatially partitioned among the proces-
a test bed for finite element approaches sors, the filling of a distributed stiffness
for solving three-dimensional electro- matrix, and its iterative solution require
magnetic scattering problems on the very little interprocessor communica-
JPL/Caltech Mark IIIfp Hypercube, we tion. The expanding capacity of parallel
have developed guidelines for choosing computers opens the vista of accurate
parameters which improve accuracy at solution to ever larger problems.
the cost of computational resources. We However, the achievement of accurate
show results of a series of numerical ex- solutions often depends on the adequate
periments through which we can now choice of more than one resource-in-
predict the required mesh density and tensive parameter. Open-region scatter-
the radius of a given type of absorbing ing requires truncation of the domain
boundary which are needed to obtain with some sort of absorbing boundary
virtually any desired degree of accuracy condition. The solution gains accuracy as
for a given finite element type. This type the truncation is placed farther from the
of guideline set is important for three- object, requiring the solution to a larger
dimensional finite element computa- system of equations. This added cost will
tions, because the number of unknowns buy nothing if the accuracy is near the
scales as the cube of both the linear node limits implied by other factors.
density per wavelength, and the radius Assuming sufficient care is taken in
of a spherical absorbing boundary. We modeling the object and performing
examine several finite element formula- numerical integrations, the remaining
tions, including both node- and edge- factors of interest are the formulation of
based elements, and discuss their rela- the finite element, and the element spa-
tive merits for accuracy vs. computa- tial density. The latter is the most re-
tional resources, ease of parallel imple- source-intensive. Ideally, one uses the
mentation, and parallel efficiency. most accurate element formulation for

the problem, then chooses the element
Introduction density and the size of the truncated do-

main such that the accuracy limitations
The finite element method is well suited of each are balanced.
to electromagnetic scattering problems
in which the scattering object is not too Finite Element Formulations
large, but of the most general linear
sort. The method can accurately model Three types of electromagnetic scatter-
EM fields in domains containing conduc- ing problems are addressed by analysis
tors, lossy and lossiess diclectric and codes which run on the JPL/Caltech
magnetic materials, anisotropic materi- Mark llIfp Hypercube. The simplest code

4210-8186-21 13-319010000/04215$01.00 © 1990 IEEE

solves the 2-D scalar Helmholtz equation, modelling the scattered field. This ele-
using finite elements filling a circular ment produced more accurate results
truncated domain. The numerical tech- than the quadratic triangle element and
nique is that used by the sequential code the total field elements, and was a con-
of [1]. The absorbing boundary condition siderable improvement over any linear
used is the second-order condition of [2]. element. The element density is 15.7 per
Several finite element formulations are wavelength, and the domain radius r is
supported, including linear and such that kr = 4.2. The accuracy is such
quadratic elements, triangular and that one relative error measure (the
quadrilateral elements, and total field magnitude of the far-field error at each
and scattered field elements. Another angle divided by the maximum magni-
code solves the 2-D vector Helmholtz tude of the far field) is < 10- 4 - This im-
equation, and is primarily a test-bed for plies an error in the RCS of < 1/10 dB
investigating various element types. The over a 60 dB range. The parametric
vector problem admits several additional study results in curves of the relative
types of element formulation, including error vs. kr and kh, where h is the
analogues of the scalar problem finite minimum finite element side. Note that
element varieties, but also element types in this case k must be interpreted as the
implying different means of represent- wavelength inside the material; for ex-
ing the vector components. Node-based ample, high dielectric materials require
vector elements solve for the two a finer grid, by a factor of the square
orthogonal vector components as two in- root of the relative dielectric. Both
dependent unknowns. Edge-based ele- curves display power-law characteris-
ments solve for the tangential compo- tics. The kh curve goes as (kh) 3 , which
nent of the field along each element matches the theoretical behavior of field
edge. To date, the code supports node and RMS error for quadratic elements. The
edge elements. Even more exotic element kr curve goes approximately as (kr)- 3 ,
types are possible. The final code solves but we know of no justification of this
the full 3-D vector Helmholtz equation, behavior from numerical theory. We
using analogues of the 2-D vector ele- believe the kh behavior represents a
ments. reliable rule for any size and composi-

Parametric Study tion of scattering object, while the k r
behavior may apply only to this prob-
lem. To obtain a rough rule of thumb for

We have performed a parametric study size of the truncation domain, a largeof the solution accuracy for a canonical satrn betwsmdld efc
probem sin the2-Dscaar cde.The scattering object was modeled: a perfect

problem using the 2-D scalar code. The conducting circular cylinder withproblem studied is the scattering from a ka = 50. Good agreement (within 2 dB)

dielectric 2.56 cylinder with radius a and wt t analytic (wa tainedBy
wave number k such that ka = 1. This with the analytic RCS was obtained byusing kr = 62, while kr =56 was not
problem has a well-known analytic so- csider adequate ar at (or
lution, which we used to measure the ac- ceed 4dequat el o accura cy

curacy of the finite element solution.
Through trial and error, we found a represented by the kr = 62 case, using

tformulation, more than 3 or 4 quadratic elements perelement density, and truncated domain wavelength proves wasteful. We conjec-
eleen dhic rensilty, and truaedy dminh ture that with the use of the second-
size which resulted in extremely high order Bayliss Turkel condition, using raccuracy. We then systematically re- about 25% larger than the object half-

duced the element density and the do- amet wilargeran product Raf
main size independently, to determine diameter will generally produce RCS
the accuracy impact of each factor sepa- curves with similarly high quality.
rately. The element type used is the
quadratic, isoparametric (i. e., curved)
9 node (Lagrangian) quadrilaterals

422

Vector Elements

Similar accuracy studies of vector ele-
ments are proceeding, and results will be
reported soon. A comparison has been
made between linear triangular edge
elements and node-based elements for
the ka = 1, dielectric 2.56 circular cylin-
der, using 30 elements per wavelength
and a modified Sommerfeld boundary
condition at kr = 3. The node-based ele-
ments produced a more accurate RCS.
Both types of element are convenient for
parallel partitioning, with the level of
inconvenience depending on the form
of model specification. For mesh genera-
tors which produce a model in the form
of an ordered list of nodal coordinates
and element nodes, the edge elements
require an extra computational step:
compiling a list of numbered edges
owned by each element. With respect to a
given triangular mesh, the edge ele-
ments should imply a slightly faster so-
lution: a mesh node is shared by six ele-
ments, while an edge is shared by only
two, implying both a sparser matrix and
less communication for the edge ele-
ments. However, this advantage may
prove to be outweighed by considera-
tions of accuracy.

References

[I] Peterson, A. F. and S. P. Castillo
(1989), A Frequency-Domain
Differential Equation Formulation
for Electromagnetic Scattering
From Inhomogeneous Cylinders,
IEEE Trans. Antennas Prop., 37,
601-607.

[21 Bayliss, A. and E. Turkel (1980),
"Radiation boundary conditions
for wave-like equations," Comm.
Pure Appl. Math., 33, 707-725.

423

The Fifth Distributed Memory

Computing Conference

1:Plasma Physics Applicationsj

Massively Parallel Fokker-Planck Calculations*

Arthur A. Mirin

National Magnetic Fusion Energy Computer Center
Lawrence Livermore National Laboratory

Livermore, California 94550

Abstract community are beginning to think in terms of their use
as general production machines in the not-too-distant

The Fokker-Planck package FPPAC [1,2], which future.
solves the complete nonlinear multispecies Fokker-
Planck collision operator for a plasma in two- There are fundamentally two different types of mas-
dimensional velocity space, has been rewritten for the sively parallel architectures-single instruction, multi-
Connection Machine 2. This has involved allocation pie data (SIMD) and multiple instruction, multiple data
of variables either to the front end or the CM2, (MIMD). In an SIMD device all of the processors exe-
minimization of data flow, and replacement of Cray- cute the same instruction in lock-step fashion, whereas
optimized algorithms with ones suitable for a in an MIMD device each processor may follow its own
massively parallel architecture. Coding has been set of instructions. Programming an SIMD machine is
done utilizing Connection Machine Fortran. analogous to vectorizing (on a Cray), whereas program-
Calculations have been carried out on various ming an MIMD machine amounts to true multitasking.
Connection Machines throughout the country. Quite naturally, SIMD machines are cheaper per pro-
Results and timings on these machines have been cessor and inherently easier to program. However, they
compared to each other and to those on the static generally demand greater parallelism in the algorithm
memory Cray-2 at the National Magnetic Fusion and offer less flexibility. The most prominent example
Energy Computer Center. For large problem size, the of an SIMD device is the Connection Machine 2
Connection Machine 2 is found to be cost-efficient. (CM2), the computer used in this investigation. Manu-

facturers of MIMD machines include INTEL, NCUBE,
and BBN.

Introduction
This study involves the massive parallelization of a

Over the past several decades there has been a tremen- code known as FPPAC [1,2], which time-integrates the
dous increase in computer power. Most of this increase Fokker-Planck collision operator in a plasma. Codes
has been due to improvements in hardware. Electrical such as FPPAC are used to simulate collisional phe-
components have now become so efficient, however, nomena in magnetically confined plasmas, particularly
that more recently the concentration has been on im- in situations where the charged particle distribution
proving the architecture of the computer. This had led functions depart sufficiently from Maxwellians. Such
to shared memory multiprocessor supermomputtrs such scenarios include the heating of a plasma by radio-
as the Cray-2 and the Cray-YMP. frequency waves or energetic neutral beams, and the

loss of particles from selected areas of velocity space
Although these multiprocessor devices have had a sub- [31. The relevant equation is the Boltzmann equation
stantial impact on high speed computing, it has been with Fokker-Planck collision terms [41, more com-
recognized that a more cost-effective approach might be monly referred to as the Fokker-Planck equation.
to link together very large numbers of slower, cheaper
processors, each with its own local memory. Such The problem is to solve a nonlinear partial differential
massively parallel computers, although not at this time equation for the distribution function of each charged
general purpose, have performed quite impressively in a species in the plasma in terms of six phase space vari-
number of problem areas and are being used selectively ables (plus time). However, certain symmetry and
in production mode. Many members of the computing ordering assumptions can often be made, allowing the

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under
Contract No. W-7405-Eng-48.

0-8186-2113-3/90/000010426$01.00 a 1990 IEEE

dimensionality to be reduced to four-two spatial and
two velocity coordinates. When the magnetic field is 1 (--- 1 Ba(+ ao
uniform or when the particle bounce motion operates on r.- at Ic - v2a fa +

a time scale sufficiently faster than other phenomena of
interest, one spatial variable may be eliminated, reduc- + 1 Dara + Ea1 + F1 •) (4)
ing the dimensionality to three. And when diffusion v2 sin 0 aOe' aa
across flux surfaces is slow relative to velocity space
dynamics, the other spatial coordinate may also be where the coefficients An, Ba, Ca, Da, Ea, and Fa are ex-
eliminated, leaving only two velocity coordinates. pressible as linear combinations of the Rosenbluth po-

tentials ga and ha and their various derivatives. The
FPPAC invokes the above assumptions and solves the quantitiesfa, ga, and ha are then expanded in Legendre
complete nonlinear multispecies Fokker-Planck colli- polynomials P/(cos 0), with the result that the coeffi-
sion operator for a plasma in two-dimensional velocity cients of the series for ga and ha may be written in
space. The operator is expressed in terms of spherical terms of moments of the coefficients of the series for
coordinates [speed (v) and pitch angle (0)] under the as- the various distribution functions. When the dust
sumption of azimuthal symmetry. Provision is made clears, the six coefficients of Eq. (4) are expressed as
for additional physics contributions (e.g., sources and linear combinations of functionals of the type MI(w),
losses, radio-frequency heating, electric field accelera- Ng(w), Rj(w), and El(w), where w is a coefficient of a
tion). The charged species, referred to as general Legendre series for a distribution function; those four
species, are assumed to be in the presence of an arbi- functionals are given in Eqs. (5)-(8) below:
trary number of fixed Maxwellian species. The elec-
trons may be treated either as one of those Maxwellian r,(

species or as a general species. Coulomb interactions Mj(w)(v) =j w(Y) y(-dy

among all charged species are considered.

The Fokker-Planck Collision Operator Nj(w)(v) = J w(y) y(2 +/)dy (6)

The Fokker-Planck collision operator may be expressed
in the form

Rj(w)(v) = w(y) y(3-4)dy (7)

(faC- { = a aha
.at)c favA av,

Ej(w)(v) = J w(y) y(4+1dy (8)I Y2 fa 9.ga'N

2 aviavj (a t "(1

wherefa is the distribution function of species a and ra Further details are given in McCoy, et al. [1].
is a constant [1]. The Rosenbluth potentials [4] ga and
ha are written as

Spatial Representation

ga --)2 In A• b fb (v) Iv- v1 dv' (2) A variably spaced finite-difference grid in v and 0 is

b - employed. Numerical differentiation is carried out us-

ing nearest neighbors. The boundary conditions are
S+ M)expressed in an analogous manner. The resulting

h I (_bZbj) 2 scheme conserves particle density down to round-off.
b t, mb a

IAaf J fb (v) lv - vl-1 dv' (3) Temporal Discretization

Equation (4) is time-integrated using either implicit op-
Under the assumptions stated above, Eq. (1) may be erator splitting, an alternating direction implicit (ADI)
written in the form method, or fully implicit differencing. The former two

427

are appropriate for time-dependent simulations, whereas Table 1. Comparison of Fortran 8X and Fortran 77
the fully implicit method (which has not yet been
implemented for the Connection Machine) is most
optimal for approaching steady state. Fortran 8X

WHERE (D .NE. 0.)
The Connection Machine 2 A=EOSHIFT(B,1,1)+.5*EOSHIFT(C,2,-I)

ELSEWHERE
The CM2 consists of up to 65536 single bit processors, A=D
each with 8 to 32 kbytes of random access memory. ENDWHERE
The processors are stored 16 to a chip, each pair of
chips sharing Weitek Floating point hardware. Alto- Fortran 77
gether there are up to 4096 chips arranged in a 12-
dimensional hypercube. Arithmetic is typically per- DO 1 1=1,100
formed on 32-bit data, although using 64 bits (double DO 1 J=l,100
precision) is allowed. Chips which have actual 64-bit IF (DIQJ) .NE. 0) THEN
arithmetic have recently become available. An impor- A(I,J)=B(I+Ij)+.5*C(I,J-1)
tant feature of the CM2 is its support for virtual proces- ELSE
sors; that is, if one wishes to execute 64K operations in A(IJ)=D(IJ)
parallel on a 16K machine, he may assign 4 virtual pro- ENDIF
cessors (each with one quarter the memory) to an actual I CONTINUE
processor. The most general form of communication
among the processors is the router. Nearest neighbor
communications, however, can be handled much more On the Connection Machine, by default, corresponding
efficiently using a separate communications mechanism elements of arrays of the same shape are stored on the
called the NEWS grid. same processor. The interprocessor communications in

the example above are taken care of by the EOSHIFT
The CM2 is not a stand-alone machine. It is typically intrinsic (which in this case uses high speed nearest
front-ended by a VAX, a SUN-4, or a Symbolics. The neighbor communications), and the WHERE construct
front end, which is a serial machine, stores scalars and (which is analogous to CVMGT in Cray Fortran) allows
short arrays and provides instruction sequencing and parallelization of the loop. The more compact style
some I/O. One may program in either of three higher- makes coding easier to read and debug.
level languages-CM Fortran, C*, or *LISP; these are
extensions of Fortran, C, and Common LISP, respec-
tively. Alternatively, one can use the PARallel Instruc- Conversion of FPPAC to the Connection Machine
tion Set (PARIS) for CM operations together with either
of the above three languages on the front end. (Or for The conversion of FPPAC has involved a number of
that matter, PARIS instructions may be embedded in steps, including the following:
the higher level CM languages.) Of the various CM
languages, CM Fortran is the newest, and it requires the (a) Allocating variables either to the front end or the
VAX front end. CM. As a rule, large arrays are stored on the CM

and everything else is on the front end. To save
communications costs, a number of I-D arrays are

CM Fortran SPREAD into two dimensions [e.g.,XZ(IJ)=X(J)].
(b) Minimizing data flow between the front end and

CM Fortran is one of the first Fortran implementations the CM. Special routines can be used to transfer
using 8X constructs. Of particular importance are the blocks of data.
array constructs, which are designed to generate parallel (c) Converting to 8X constructs. Treating the Cray as
code. For example, the Fortran 8X code block in home base for FPPAC, the use of .IF statements
Table 1 accomplishes the same task as the Fortran 77 (which are processed by the CTSS precompiler)
beneath it. enables the mimicking of 8X constructs with

428

77 counterparts side by side. The Cray version can Time-Integration Procedure
then be debugged prior to testing on the Connec-
tion Machine. Either of the two schemes (implicit operator splitting or

(d) Replacement of Cray-optimized algorithms with ADI) involve the solution of parallel tridiagonal sys-
highly parallel ones. The two principal areas in- tems. On the Cray, vectorization over the direction
volved are the Fokker-Planck coefficient computa- orthogonal to the sweep is carried out. On the CM, a
tion and the time integration procedure. procedure known as parallel cyclic reduction [5] is also

implemented. During each step of the ordinary cyclic
reduction procedure, both odd and even reductions are

Computation of Fokker-Planck Coefficients carried out (in parallel), so that no backfilling is neces-
sary once the reduction procedure is complete. As with

The computation of the Fokker-Planck coefficients in- the moments computation, this takes a greater number
volves the following steps: of arithmetic operations but a smaller number of paral-

lel steps.
(a) Computation of Legendre projections of the distri-

bution functions.
(b) Computation of the moments [Eqs. (5)-(8)). Connection Machine Facilities
(c) Computation of Legendre projections of the coeffi-

cient pieces. The debugging of the Connection Machine version of
(d) Summation of the Legendre series. FPPAC was carried out primarily at the Advanced

Computing Research Facility (ACRF) at Argonne Na-
Steps (a) and (d) (which turn out to be the most time- tional Laboratory. Pre-released features of the Fortran
consuming) are cast in terms of matrix multiplication. compiler were tested on the CMNS computer at Think-
Step (c) involves linear combinations of the various ing Machines Corporation (TMC). Timing compar-
moments. A typical term in step (b) involves comput- isons were carried out on the Connection Machines at
ing a set of quantities of the form the National Aeronautics and Space Administration

i .Ames Research Center (NASA Ames) and the Ad-
= H f(v) dv (9) vanced Computing Laboratory (ACL) at Los Alamos

0o National Laboratory, primarily the former. Timings
presented in this work are for the NASA Ames facility,for j=l ,..J. Using the Cray methodology, this takes ofl unless otherwise stated. An arrangement has just been

the order of J sequential (though partially vectorizable) made to use the Connection Machine at Florida State

operations. On the CM, however, this procedure is re- University (FSU). A comparison of the various Con-

cast into one which takes on the order of log J parallel nection Machines is given in Table 2.

steps, thus saving alot of work. One computes the

numbers

f Vj f(v) dv (10)JV,%1 Table 2. Comparison of Connection

Machine Facilities
and then combines them in an appropriate manner. This
type of procedure is called a "SCAN." The total num- Facility No. of Hardware Vax
ber of arithmetic operations is greater, but due to the in- Processors Upgrade Front End
herent parallelism of the hardware, the number of actual
(parallel) steps is smaller. Furthermore, the communi-
cations steps, which involve meshpoint indices differing TMC 32K no 6250by a power of two, are carried out using either a small TMC 32K no 620
number of nearest neighbor jumps or up to two "hops" ACL 64K in progress 6420
along the router (by virtue of the binary reflected gray
code ordering of NEWS arrays). FSU 64K yes 6420

429

Cray Facility haps for the matrix multiply, in which typically a 128
by 64 matrix multiplies a 64 by 64 matrix. The increase

The Connection Machine calculations are compared to to 64 Legendre polynomials requires parts of the
ones utilizing the Cray-2 "F" machine at the National calculation to be carried out in double precision. More
Magnetic Fusion Energy Computer Center (NMFECC) specifically, the computation of the moments requires
at Lawrence Livermore National Laboratory (LLNL). powers of v; the higher the Legendre polynomial, the
This Cray has a static memory of 128K megawords and higher the power of v. Of critical importance is the
like all others at NMFECC, runs the Cray Time Sharing allowable exponent range available to represent the
System (CTSS). The Cray Research Incorporated powers of v, rather than the accuracy. A time compari-
CFT77 compiler is invoked, son is shown in Table 4.

It can be seen that the coefficients computation now
Coarse Mesh Calculation takes only 48 times as long on the Connection Machine

as on the Cray. Virtually all of the time (over 99%) is
The first case considered has a velocity-space mesh spent in the matrix multiply. The double precision part
consisting of 128 points in v and 64 points in 0. The of the calculation, namely the time it takes to compute
Fokker-Planck coefficients are expanded in a 5-term the moments, is insignificant.
Legendre series. The calculation is run using 8K
processors and 32-bit arithmetic. (Note that 64-bit
arithmetic is mandatory on the Cray-2.) A timing com- Aside: Exponent Range
parison is shown in Table 3. All times are given in
minutes. The headings "CM-total" and "CM-active" re- It is important for users of the Connection Machine to
fer to the total elapsed time and the time the Connection be aware of an inconsistency in double precision repre-
Machine (CM) is active, respectively. sentation. The CM double precision implementation

follows IEEE standards and provides for an 11-bit rep-
It can be seen that the time advancement takes 8 times resentation of the exponent. The double precision rep-
as long on the CM as on the Cray. Assuming a full resentation on the Vax front end, however, provides
Cray to cost four times as much as a full CM, this trans- only 8 bits for the exponent, thereby severely limiting
lates to comparable cost efficiency. Note that the vir- the exponent range on the front end. One must exercise
tual processor (VP) ratio for the CM case is unity. It great care when transferring double precision data be-
may also be observed that the coefficient computation tween the Connection Machine and the Vax and when
takes 200 times as long on the CM as on the Cray. This doing seemingly "harmless" double precision opera-
is due to the fact that the degree of parallelism of the tions. It is of further interest to note that Cray single
calculation is at most 640 and to the fact that the CM precision allocates 15 bits for the exponent, enabling
matrix multiply routine (MATMUL) operates quite in- the Cray to represent a wider range of numbers but at
efficiently on small matrices. Clearly, the Connection less accuracy.
Machine is not suitable for a case having only 5 Legen-
dre polynomials.

Matrix Multiplication

Longer Legendre Series The speed of the CM Fortran matrix multiply
(MATMUL) limits the performance of the Connection

The number of Legendre polynomials is now increased Machine in the above case with 64 Legendre polynomi-
from 5 to 64. This allows the coefficients calculation to als. It is therefore of interest to compare matrix multi-
have a degree of parallelism equal to 8K, except per- ply efficiency as a function of matrix size. Such a

Table 4. Timing Comparison for Coarse

Table 3. Timing Comparison for Coarse Mesh Case Mesh Case with Long Legendre Series

Procedure Cray-2 CM- CM- Procedure Cray-2 CM- CM-
total active total active

Coefficients 6.5 x 10--4 1.3 x 10-1 7.6 x 10-2 Coefficients 6.7 x l0-3 3.2 x 10-1 2.3 x 10-1
Time advancement 3.2 x 10-4 2.5 x 10-3 1.4 x 10-3 Time advancement 3.2 x 10-4 2.5 x 10-3 1.4 x 10-3

430

comparison is shown for square matrices in Table 5. Table 5. Matrix Multiply Performance
The arithmetic uses 32 bits, and 16K processors are
utilized. Order Cray-2 Milops CM2 Mflops

It can be seen that the CM2 matrix multiply perfor- 64 431 10
mance is very strongly dependent on the size of the ma- 128 438 76
trix. At order 1024, the CM (in single precision) out- 256 446 180
performs the Cray. However, at order 128, a case in 512 452 319
which the number of matrix elements equals the number 1024 453 577
of processors, the CM operates 6 times more slowly. 2048 454 too large for 16K

Fine Mesh Calculation Table 6. Timing Comparison for Fine Mesh Case

The mesh is now expanded to 512 points in v and 256 Procedure Cray-2 CM- CM-
in 0. The Legendre series for computing the Fokker- total active
Planck coefficients has 64 terms (the upper limit for a
512-point v-mesh is approximately 111). The Coefficients 1.8 x 10-1 3.0 x 10-2 2.8 x 10-2
Connection Machine calculation is carried out with 16K Time advancement 7.3 x 10-3 1.0 x 10-2 1.0 X 10-2
processors. Thus, the VP ratio of the time-advancement
phase is 8 (instead of 1). A timing comparison is shown
in Table 6.

experiences relatively less idle time; this is due to the
higher VP ratio.

It can be seen that the time-advancement phase now ex-
ecutes almost as fast on the Connection Machine as on There are instances where the precise change in density
the Cray. This is due primarily to the higher VP ratio, will strongly affect the ensuing physics. In such cases
Assuming only 32 bits to be required, this translates to a 64-bit arithmetic is required. A comparison of
factor of 3 cost-effectiveness in favor of the CM. Fur- "standard" and double precision is given in Table 7.
thermore, the coefficients computation executes 6 times Recall that the "standard" calculation uses single preci-
faster on the Connection Machine, due both to the sion almost everywhere, but utilizes double precision
higher VP ratio and to the superior performance of when computing the moments.
MATMUL for larger matrices. In fact the matrix multi-
plication phase, although it still dominates, now is re- It can be seen that the time advancement in double pre-
sponsible for only 85% of the coefficients calculation. cision takes about 9 times longer than the single preci-
It may also be observed that the Connection Machine sion version. That is because the Connection Machines

Table 7. Standard Calculation versus Full Double Precision for Fine Mesh Case.

(The initial density and energy are 6.8 x 10+13 and 49.2228, respectively.)

(a) Procedure CM-total (Std.) CM-active (Std.) CM-total (D.P.) CM-active (D.P.)

Coefficients 3.0 x 10-2 2.8 x 10-2 5.8 x 10+0 5.8 x 10+0
Time advancement 1.0 x 10-2 1.0 x 10-2 9.2 x 10-2 9.2 x 10-2

(b) Precision Final Density Final Energy

Standard 7.65638 x 10+13 45.9036
Double Precision 7.64600 x 10+13 45.9139
Cray 7.64600 x 10+13 45.9139

431

used for these tests have available only a software dou- multiple species should be simple and straight-forward.
ble precision implementation. It is intended to run tests Provision of a fully implicit solver requires a parallel
on a Connection Machine having 64-bit arithmetic as routine to compute the nine-banded operator matrix and
soon as one becomes accessible. The time to compute a routine to solve that matrix (e.g., preconditioned con-
the coefficients increases by a factor of about 200, due jugate gradient). Such a procedure is likely to dominate
to both the software implementation of double precision the calculation, so that the overall code performance
and the lack of a high speed double precision matrix will strongly reflect that of the fully implicit solver.
multiply package.

FPPAC was chosen for conversion because it is simple
It can also be seen that the double precision answers are and because it is representative of more involved plas-
in better agreement with those of the Cray, which is to ma Fokker-Planck models. Present state-of-the-art
be expected. Since this test case is run for only ten Fokker-Planck calculations can treat two spatial dimen-
timesteps, very little inference can be drawn from the sions (one of them averaged over the particle bounce
difference in accuracy. motion) as well as two velocity dimensions and contain

a whole host of other physics as well. Extensions of
this work to more realistic scenarios is under

Timing on the Connection Machine investigation.

Timing Fortran programs on the Connection Machine is
more of an art than a science, at least in comparison to Acknowledgment
timing Cray code blocks. That is because the Vax real
time clock has a very low resolution (milliseconds) and I thank the National Aeronautics and Space Administra-
because it measures the time consumed by all pro- Lion Ames Research Center, Los Alamos National Lab-
cesses, not just the one in question. Furthermore, the oratory, Argonne National Laboratory, and Thinking
CM-active time is computed by subtracting the CM-idle Machines Corporation for use of their Connection Ma-
time from the total elapsed time as measured on the chine facilities. I especially thank Kyra Lowther of
front end. Hence, the active time is no more accurate Thinking Machines Corporation for her very adept and
than the total elapsed time. prompt assistance with the Connection Machine at

NASA Ames.
TMC advises users, when performing timing tests, to
(a) use a lightly loaded front end system, (b) time code
blocks whose duration is 1 to 5 seconds, and (c) run the References
code segment at least 5 times and use the minimum
value reported [6]. [1] McCoy, M.G., Mirin, A.A., & Killeen, J. (1981)

"FPPAC: A Two-Dimensional Multispecies Non-
Because the CM is in essence a slave of the front end, linear Fokker-Planck Package," Comput. Phys.
its overall performance will vary with the front end Commun., 24(l):37-61, September.
model. Generally speaking, the systems at TMC, [21 Mirin, A.A., McCoy, M.G., Tomaschke, G.P.
NASA Ames, and ACL give roughly comparable per- & Killeen, J. (1988) "FPPAC88: A Two-
formance; the Connection Machine at ACRF is not as Dimensional Multispecies Nonlinear Fokker-
robust. Planck Package," Comput. Phys. Commun.,

51(3):373-380, November.
[3] Killeen, J., Kerbel, G.D., McCoy, M.G. & Mirin,

Toward the Future A.A. (1986) Computational Methods for Kinetic
Models of Magnetically Confined Plasmas,

The version of FPPAC running on the Connection Ma- Springer-Verlag, New York.
chine contains most of the important features of the [4] Rosenbluth, M.N., MacDonald, W.M. & Judd, D.L.
Cray version. Yet to be implemented are capability to (1957) "Fokker-Planck Equation for an Inverse-
treat a multiple number of species and a fully implicit Square Force," Phys. Rev., 107(1): 1-6, July.
finite-difference solver. The multispecies capability [51 Hockney, R.W. & Jesshope, C.R. (1988) Parallel
was left out of this version because of compiler limita- Computers 2, Adam Hilger, Bristol.
tions having to due with processor allocation for multi- [61 Thinking Machines Corporation (1990) CM For-
ply dimensioned arrays. These limitations have re- tran Release Notes, Version 5.2-0.7 Beta, Thinking
cently been removed, however, and generalization to Machines Corporation, Cambridge, MA.

432

Implementing Particle-In-Cell Plasma Simulation Code
on the BBN TC2000

Judy E. Sturtevant Arthur B. Maccabet
Mission Research, Inc. Department of Computer Science
1720 Randolph Rd. SE University of New Mexico

Albuquerque, NM 87106 Albuquerque, NM 87131

Abstract mentation of both a 1-D and a 2 1/2-D PIC (particle-
in-cell) plasma simulation code on a BBN TC2000 at

The BBN TC2000 is a multiple instruction, multi- Argonne National Laboratory's Advanced Computing
pie data (MIMD) machine that combines a physically Research Facility. Performance is compared to imple-
distributed memory with a logically shared memory mentations of the same code on the shared memory Se-
programming environment using the unique Butter- quent Balance and distributed memory Intel iPSC hy-
fly switch. Particle-In-Cell (PIC) plasma simulations percube.
model the interaction of charged particles with elec-
tric and magnetic fields. This presentation describes
the implementation of both a 1-D electrostatic and a Architecture Overview
2 1/2-D electromagnetic PIC (particle-in-cell) plasma
simulation code on a BBN TC2000. Performance is The most commonly used classification scheme in par-

compared to implementations of the same code on the allel computing is that of Flynn, which is based on the

shared memory Sequent Balance and distributed mem- concepts of instruction streams and data streams.

ory Intel iPSC hypercube. SISD single instruction, single data
SIMD single instruction, multiple data
MISD multiple instruction, single data

Introduction MIMD multiple instruction, multiple data

In recent years the traditional model of single-processor, The category of MIMD architecture has been subdi-

sequential computer archtecture has become known as vided into the categories of distributed and shared mem-

the von Neumann bottleneck [13]. A single CPU issu- ory [13]. In addition, both distributed and share(] mem-

ing sequential requests over a bus to memory, and the ory may be further categorized by implementation, ac-

memory responding to one request at a time creates tual physical (hardware) implementation or logical (soft-

the bottleneck. In response to this problem, designers, ware) implementation [2]. The BBN TC2000 combines

seeking alternatives to the von Neumann architecture, hardware (the Butterfly switch) with software to im-
have developed a wide variety of parallel architectures plement a logically shared memory programming envi-

and interconnection technologies. The BBN TC2000 is ronment on top of physically distrihuted memory. The
a multiple instruction, multiple data (MIMD) machine logically shared memory model provides ease of pro-

that combines a physically distributed memory with a gramming, while the physical distribution of memory

logically shared memory programming environment us- permits expandability. Physically shared memory sys-

ing the unique Butterfly switch. Processors are con- tems are limited by a single bus with fixed bandwidth

nected through the Butterfly switch network. Data may interconnecting processors and memory. Splitting mem-

be local to a processor, or remote (i.e., fetched through ory into physically disparate modules, and providing

the switching network from another processor). multiple interconnection paths between processors and

This presentation includes a discussion of the imple- memory modules, allows expandability, at least up to
several hundred processors.

"email: Judy~unuvax.cs.unm.edu. This work was supported The nX operating system provides the cluster mech-
in part by the USAF Weapons Laboratory contract F29601-87-C- anism for designating a number of function boards as a
0054. It was completed as a graduate student independent study computing resource. The system cluster includes all
project in the Computer Science Department at the University of
New Mexico. the function boards of a machine. A number of func-

lemail: iaccabetumwax.cs.un-.edu tion boards are allocated to a public cluster, used for

433
0-8186-2113-3/90/0000/0433,$01.00 © 1990 IEEE

is connected to the switch through an interface with
CPU two ports. One port is used to access other function

I Main oards, and the other is used to service requests from
coe a a Memory other boards. A remote memory access is one made

c e cover the switch; a local memory access is one that ac-
cesses its own function board directly. Multiple memory

T Bus accesses in parallel are supported by the bidirectional
SI switch paths. The route a message takes over the net-
I work is determined by the first 9 bits of its physical ad-

I Switch dress. The number of stages in the switching networkInterface is determined by the number of ports to be supported

(i.e., 2-stage switch supports 64 ports, 3-stage supports
512 ports).

Butterfly A message encountering contention within the switch
Switch backs out, releasing resources until it has returned to

the requestor. A rejected message is retransmitted ac-
cording to a backoff algorithm [3]. After a certain num-

Figure 1: Function Board Components ber of rejections and retransmissions, the priority of
a message is promoted to that of an express message,
which will then be successfully delivered to its destina-

compiling, editing, etc., and an I/O cluster contain- tion. Another method for controlling switch contention
ing the nX master function board. The cluster concept is a connection time limit imposed on each path. In ad-
provides a flexible, multi-user environment. dition to software controls, some configurations of the

The main components of the TC2000 architecture are TC2000 switch provide alternate paths. When a con-
function boards (8 to 504), connected by a Butterfly flict occurs, the message returns to its source node and
switch. A function board must include a switch inter- is retransmitted on an alternate path.
face, T-bus and TCS (Test and Control System) slave. This strategy of maintaining redundant paths pre-
To this minimum configuration may be added a proces- vents the message from remaining inside the switch for
sor, 4-32 Mbytes of memory and/or a VMEbus interface a long time and potentially conflicting with other in-
[3]. Processor boards are based on the Motorola 88000, coming traffic. In one survey, Larrabee, Pennick and
which consists of an 88100 RISC CPU and two 88200 Stern calculate switch contention overhead to be one to
cache/memory management units, one for data and an- five per cent of total run time, although it is application
other for instructions. Connecting the components on dependent. They determined that message time is nor-
the function board is the transaction bus, or T-bus, a mally dominated by the time required for the message
32 bit-wide memory bus with 80 Mbytes/sec peak band- to pass through the switch serially, not by contention
width. Figure 1 illustrates the major components of a for switching paths [1].
function board. Similar results have been reported by various re-

Each processor executes an independent sequence of searchers at the University of Rochester on an earlier
instructions, referencing data as needed. Virtual ad- system, the GP1000. LeBlanc reported switch con-
dresses are translated by the memory management unit tention of 2% and memory contention of 3%. Exper-
into physical addresses, which are in turn translated by iments using four times as many memories as proces-
the CPU interface into System Physical addresses. The sors produced performance increases of 30% [9]. Mellor-
interprocessor network allows each processor to share Crummey also noted that increasing data locality can
some or all of the system memory. Memory that is significantly improve performance [12].
physically local to Processor #1 is considered remote
by Processor #2, and vice versa. Code, constants, and
stack variables are stored in local memory, not fetched PIC Codes
across the network. The application data is usually
spread across the memory of the machine by the Uni- Particle-In-Cell (PIG) plasma simulations model the in-
form System, but may be placed more explicitly by the teraction of charged particles with electric and magnetic
programmer. fields. Research problems in three dimensions often in-

The unique component of the TC2000 architecture is volve tens to hundreds of thousands of particles, re-
the Butterfly switch. The Butterfly switch implements quiring hours of CPU time on vector supercomputers.
a packet switching network of 8-bit wide switch paths, Problem size alone has motivated the search for an effi-
with a bandwidth of 38 Mbytes/sec. Each processor cient, multi-processing solution. Previous work on PIC

434

plasma simulation codes on advanced architecture com-
puters has been surveyed by Walker [14]. Development Initia chzation
of an efficient, multi-processing solution has been slowed Fochti, a ssign ti oora tsvelocity, and contribution to overall
by the inhomogeneous nature of the problem. charge density. Electric (and magnetic)

The interaction of particles, which may move fields are initialired on the grid.
throughout the entire simulation space in a non-uniform
manner, with field quantities maintained on a fixed spa- Body of Simulation
tial grid, creates the conflict in problem distribution.
Each particle is defined by its position in space, veloc- particle routine
ity, mass and charge density. Electric and magnetic field Calculate new spatial coordinates
quantities are discretized to each grid point. Each cycle and velocity for each particle, based

in a PIC simulation consists of four main steps: on current coordinates, velocity,
field quantities and charge densities.
Calculate new charge densities at

Assignment Phase Charge and current density for each grid point based on the charge
each particle, at a given position and velocity, are contributed by each particle.
collected at each grid point, based on a weighting
algorithm, field solver

Update the electric (and magnetic)
Field Solve Phase The electric and magnetic field fields at each grid point.

equations are solved at each grid point.
Output Final Results

Interpolation Phase Field quantities are interpo-
lated to each particle's position, again based on
a weighting algorithm. Figure 2: PIC Algorithm

Particle Push Phase Forces on the particles are
found using the electric and magnetic fields in the Implementation
Newton-Lorentz equation of motion, and used to
determine the particle's new position and velocity. Implementation of the 1-D and 2 1/2-D PIC codes was

nearly identical. Both programs follow the basic al-
Previous research has focused on problem decomposi- gorithm shown in Figure 2. The main difference is in

tion. Lubeck and Faber [11] discuss implementation of the solution of equations for the electric and magnetic
a 2-D, electrostatic code with static decomposition of fields. Poisson's equation is solved by successive over-
both particles and fields, on a hypercube. Problems relaxation (SOR) in the 1-D version. The 2 1/2-D ver-
with this approach include the communication time sion implements a time dependent solution to the full
needed to transfer information between the divided grid set of Maxwell's equations for electromagnetic fields.
of the field calculations and the replicated grid of the The primary data structures in this implementation
particle push phase. An early solution by Walker [15] are shown in Table 1. For each particle, position and ve-

was based on static decomposition with quasi-static, locity components are stored in the particle data struc-
global communication routines. A problem with this ture. For each grid point, electric and magnetic field
solution is the large amount of memory required for components are stored in the field data structure. In
the communication tables. Liewer, Decyk, Dawson, and addition, the grid data structure stores momentum, ki-
Fox solve the load balance problem by using separate netic energy and charge density for each grid point.
decompositions for particles and field quantities [10]. Data structures in this implementation consist of large
Two distinct spatial decompositions requires global re- (tens of thousands of elements), multi-dimensional ar-
distribution of data twice during each time step. rays, most of which are stored in (private) common

For this study, a 1-D electrostatic code and a 2 1/2- blocks.
D electromagnetic code were developed based on the Figure 3 illustrates the interaction of the data struc-
widely used 1-D teaching code ESI [5]. In the I-D ver- tures in the algorithm. Current particle data and field
sion, the original FFT Poisson solver was replaced with data are used to calculate new particle data in the parti-
an iterative method, successive over-relaxation (SOR), cle routine. Grid data is generated for the new particle
to treat more general boundary conditions. Static de- data, based on a weighting algorithm for each particle's
composition with grid replication are used in both test contribution to the grid. Current field data is combined
codes to facilitate implementation on both distributed with the new grid data to calculate new values for the
memory and shared memory architectures. field data components.

435

Table 1: Primary Data Structures SUBROUTINE particle
INTEGER lockyar

particle data (for each particle) 1
I-D (x,vz,vy) position and velocity CALL shareblk (%loc(field), fieldsize)

2.-D ((x, y), v., vy, v*) position and velocity PARALLEL REGION, REPLICATE (...)

field data (for each grid point) LOCAL xloc, vxloc, momentum, energy, rho
1-D (ex, bz) electric and magnetic fields

2y-D (eZ,ey,ez) electric fields CALL load (pid, xloc, vxloc)
(bb• z magnetic fieldsgb.d dat (or maeach frids int)calculate new xloc, vxloc, momentum, energy, rhogrid data (for each grid point)

(p, ke, p) momentum, kinetic energy and CALL store (pid, xloc, vxloc)charge density
CALL uslock (lockvar, 0)

CALL update.memory (momentum)
CALL usunlock (lockvar)

field CALL uslock (lockvar, 0)
data CALL update-memory (energy)

CALL usunlock (lockvar)

fiel gri paricleCALL uslock (lockvar, 0)solve grdatarotinle CALL update.memory (rho)
CALL usunlock (Iockvar)

END PARALLELp le END

Figure 3: Data Structure Usage Figure 4: Particle Algorithm

brary routines. The PARALLEL REGION encloses a
In the original algorithm, the particle routine ac- block of code which is executed once by each available

counts for more than 90% of the computation time. processor. The REPLICATE option copies simple var-
Therefore, parallelization was limited to that routine. ables (not arrays) to each processor. The LOCAL dec-
Load balancing is attained by the assignment of equal laration is used to create variables that are private to
numbers of particles to each processor. The set of par- the PARALLEL REGION.
tides assigned to a processor may be located anywhere The particle routine begins by getting current val-
in the grid. Electric and magnetic field information for ues for particle and field data. Electric and magnetic
the entire grid must, therefore, be made available to all field information is copied to each processor in a sin-
processors. gle step using the shareblk mechanism. Particle data

Temporary storage on each processor is used to local- is loaded into local storage on each processor. No syn-
ize data references. At the beginning of each time step, chronization is needed because each processor is loading
particle position and velocity are copied to local stor- a unique block of data (the block is identified by the pid,
age on each processor for fast access. Updated values processor-id, variable). Local data storage is used for
are written to the global data structures at the end of the calculation of momentum, kinetic energy, and cur-
the routine to be available for the next time step. In rent density components. The partial results from each
addition, the largest data structures are distributed in processor are summed into the global storage for each
memory over all available function boards by the scat- component at the end of the particle phase. Uslock and
ter mechanism. Distributing data is done to reduce usunlock routines enforce critical regions that prevent
memory contention, or hot spots, created when multi- data corruption due to race conditions.
pIe processors are trying to access memory on a single
function board concurrently.

Figure 4 details the steps in the particle algorithm. Results
Fortran language extensions provide the constructs used
for parallel programming and memory management. The original implementation for the TC2000 using par-
Synchronization, and additional processor and memory allel FORTRAN extensions produced less than half the
management are provided by the Uniform System hi- expected relative speedup. Additional work to op-

436

2 1
1.8 - 9
1.6 - .8 Sequent -0--

1"61•• / Sequetq"u-n.

1.4 .8 BBN -4-
1.2 relative Intel

steps/sec 1 Sequent - efficiency.8 B- BB NN-- fcec
IA• •/'• ~Intel---.

.4 - .4 -
.3"0I-- i I I .2 __ _ _I_

0 5 10 15 20 25 0 5 10 15 20 25

number of processors number of processors

Figure 5: Steps/Second for the 1-D PIC Code Figure 6: Relative Efficiencies for the 1-D PIC Code

timize both processor and memory management im- with the shared memory Sequent Balance 21000 and the
proved speedup for a small number of processors, but distributed memory Intel iPSC hypercube for the 1-D
did not extend successfully to larger numbers of pro- PIC code. Timing information for the 1-D shared mem-
cessors. Memory management was improved by us- ory version on the Balance is reported by Campbell and
ing Uniform System routines to initialize the configu- Sturtevant [8]. Results for the 1-D distributed memory
ration parameters and allocate space. Processor perfor- version on the iPSC is reported by Campbell [7]. The
mance was improved by reducing overhead and increas- test problem models a two-stream instability with 4096
ing granularity, particles in each of the two beams. The simulation exe-

The shareblk mechanism is an efficient way to copy cutes 100 time steps over 320 grid cells. Test problems
read-only data to all processors. Time required to copy run on the TC2000 used 32768 particles in each of the
the large field data structure in a two-processor test was two beams. The faster processors of the TC2000 re-
25% of the total execution time. An experimental ver- quired a larger granularity for efficient performance.
sion eliminated the shareblk copy by using a shared, The number of steps/second was calculated by di-
global data structure. This version increased execution viding the number of time steps by the total time,
time in a two-processor test by 50% and was not con- in seconds, for the problem. TC2000 steps/second
sidered further. were multiplied again by 65538/8192 to produce

Another major execution cost was the use of steps/second/8192 particles.
lock/unlock routines for synchronization. An experi- The shared memory Balance demonstrates the best
mental version with no lock/unlock routines executed performance. The number of steps/sec on the iPSC
10-25% faster for two to eight processors than the ver- was good for a very small number of processors, but
sion with locks. However, to ensure program correct- decreased rapidly for a larger number of processors.
ness, it is necessary to replace the local data structures Replicating the grid on all the nodes forced global com-
with a shared common block. A dimension is added to munication costs to be prohibitive. The TC2000 per-
each array to store processor specific data. Summing formance also is very good initially, decreasing as the
each processor's contributnon is then done outside the number of processors increases.
parallel region and protected from data corruption. Re- Relative efficiences were calculated as time for I pro-
placing local data storage with shared storage added an cessor / time for N processors / N. In the graph of rela-
execution time cost of 10-25% for two to eight proces- tive efficiences shown in Figure 6, none of the machines
sors. The end result was an unchanged execution time. maintains a good relative efficiency. The Balance again
This version was also not considered further. demonstrates better results than both the TC2000 and

Overhead to set up the parallel region in the code iPSC.
includes the cost of duplicating private common blocks Figure 7 compares performance of the BBN TC2000
for every processor. It was observed that reducing the with the shared memory Sequent Balance 21000 for the
size of arrays in those blocks produced small increases 2 1/2-D PIC code. Timing information for the 2 1/2-D
in efficiency. Increasing the amount of work being done shared memory version on the Sequent is reported by
by each processor by increasing the number of particles Campbell [6]. The test problem models a two-stream
also improved efficiency. instability with 2048 particles in each of the two beams.

Figure 5 compares performance of the BBN TC2000 The simulation executes 100 time steps over a grid of 10

437

x 70 cells. Test problems run on the TC2000 used 32768
particles in each of the two beams for better efficiency.

The number of steps/second was calculated by di-
viding the number of time steps by the total time,
in seconds, for the problem. TC2000 steps/second
were multiplied again by 65538/4096 to produce
steps/second/4096 particles.

TC2000 performance in steps/second is better than
14 .the Sequent. In the graph of relative efficiences shown in
12- -Figure 8, both machines demonstrate better efficiency
10 than in the I-D case. This graph illustrates the impor-

steps/see 8 tance of relative efficiencies. The superior relative effi-
6 ciency of the Balance is not demonstrated in the graph
4 Sequent of steps/second.

0 5 10 15 20 25 Conclusions

number of processors Initial performance of each PIC code on the BBN

TC2000 was somewhat below expected levels. Triv-

Figure 7: Steps/Second for the 2-DPIC Cod ial example problems produced nearly linear, relative
speedup. One such problem is the program to calculate
-Y, originally used as a parallel test case by Babb [1]. A
more complex example is a grid-based algorithm writ-
ten by Dr. W. Jeffrey to solve a fluid-flow problem [4].
However, it is a very small problem (arrays with hun-
dreds of elements), compared to the PIC codes. BBN
suggests that it may help to pack code and data such
that each fits into a cache. The two PIC codes imple-
mented must be much larger than the cache size to solve
physically interesting problems.

The PIC algorithm implemented was based on a
shared-memory model and did not map well to the ar-
chitecture of the TC2000. The high costs of copying
very large blocks of read-only data and sharing very
large global data structures directly affected perfor-

I A, mance. An algorithm based on a message-passing model
.9 with its natural locality of data references may be an
.8 effective solution. Communications between processors

relative .7 could be kept to a minimum. More information could
efficiency .6 be retained on each processor from one time step to

e c .5 Sequent -- the next, decreasing requirements for global data struc-.5 BBN -4"-- tures. Investigation of other models, such as message-
.3 passing, is a subject for future research..3

0 5 10 15 20 25
number of processors Acknowledgments

The authors would like to thank Phil Campbell of Mis-Figure 8: Relative Efficiencies for the 2½-D PlC Code sion Research, Inc. and Capt. Ed Carmonaof the USAF

Weapons Laboratory Computational Research Group
for support and encouragement. David Walker origi-
nally suggested this presentation. The Advanced Com-
puting Research Facility at Argonne National Labora-
tory provided access to the BBN TC2000 used in this
project. The entire support staff, in particular David

438

Levine, were very helpful answering technical questions. [12] J. M. Mellor-Crummey. Experiences with the bbn
Steve Burge at BBN Advanced Computers, Inc. pro- butterfly. In Digest of Papers: COMPCON Spring
vided documentation. 88. Thirty-Third IEEE Computer Society Interna-

tional Conference, Washington, DC, 1988. IEEE
Computer Society Press.

References [13] Andrew S. Tanenbaum. Structured Computer Or-
[1] Robert G. Babb II, editor. Programming Parallel ganization. Prentice-Hall, Inc., Englewood Cliffs,

Processors. Addison-Wesley Publishing Company, New Jersey, third edition, 1990.
Inc., Reading, Massachusetts, 1988. [14] David W. Walker. The parallel implementation of a

large-scale particle-in-cell plasma simulation code.[2] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum.SumtefopblcintoCcrecyPa-

Programming languages for distributed computing tice and Experience.

systems. ACM Computing Surveys, 21(3), 1989.

[151 David W. Walker. The implementation of a three-
[3] BBN Advanced Computers Inc., Cambridge Mas- dimensional pic code on a hypercube concurrent

sachusetts. Inside the TC2000 Computer, August processor. In J. L. Gustafson, editor, Proceedings
1989. Revision: Preliminary. of the fourth conference on hypercubes, concurrent

processors, and applications, 1989.
[4] BBN Advanced Computers Inc., Cambridge Mas-

sachusetts. TC2000 Fortran Reference Manual,
August 1989.

[5] Charles K. Birdsall and A. Bruce Langdon. Plasma
Physics Via Computer Simulation. McGraw-Hill,
New York, N. Y., 1985.

[6] Phil M. Campbell. A 2 1/2d electromagnetic
pie code for multiprocessors. MRC Report
MRC/ABQ-R-1241, 1990.

[7] Phil M. Campbell. Parallel conversion of an elec-
trostatic pic code part ii: Distributed memory.
MRC Report MRC/ABQ-R-1239, 1990.

[8] Phil M. Campbell and Judy E. Sturtevant. Par-
allel conversion of an electrostatic pic code part i:
Shared memory. MRC Report MRC/ABQ-R-1238,
1990.

[9] Thomas J. LeBlanc. Shared memory versus
message-passing in a tightly-coupled multiproces-
sor: A case study. In Proceedings of the 1986 Inter-
national Conference on Parallel Processing, Wash-
ington, DC, 1986. IEEE Computer Society Press.

[10] Paulett C. Liewer, Viktor K. Decyk, John M. Daw-
son, and Geoffrey C. Fox. A universal concur-
rent algorithm for plasma particle-in-cell simula-
tion codes. In Proceeding of the Third Hypercube
Conference, 1988.

[11] Olaf M. Lubeck and V. Faber. Modeling the per-
formance of hypercubes: A case study using the
particle-in-cell application. Parallel Computing, 9,
1988.

439

A 2D Electrostatic PIC Code for the Mark III Hypercube

R.D.Ferraro V.K.Decyk
P.C.Liewer Department of Physics

Jet Propulsion Laboratory I California Institute of University of California, Los Angeles
Technology 405 Hilgard Ave.

4800 Oak Grove Dr. Los Angeles, CA 90024
Pasadena, CA 91109

solve, in which the electric field is updated based upon the
Abstract new particle positions. These two code sections represent

the vast majority of the computation. Additional
We have implemented a 2D electrostatic plasma particle in computation is required for diagnostics which are done
cell (PIC) simulation code on the CaltechIJPL Mark JJlfp periodically throughout the simulation, but represent an
Hypercube. The code simulates plasma effects by ignorable fraction of the total computation time. Thus an
evolving in time the trajectories of thousands to millions efficient implementation of a PIC code requires an
of charged particles subject to their self-consistent fields. efficient implementation of the particle push and field
Each particle's position and velocity is advanced in time solve. Since the particle push represents the major
using a leap frog method for integrating Newton's fraction of the computation time, it is essential on a
equations of motion in electric and magnetic fields. The distributed memory machine to have approximately equal
electric field due to these moving charged particles is numbers of particles in each processor. The field grid
calculated on a spatial grid at each time step by solving must be distributed as well for the purpose of solving for
Poisson's equation in Fourier space. These two tasks the new fields, and in a manner which is not necessarily
represent the largest part of the computation. To obtain the same as that needed to push the particles. We refer to
efficient operation on a distributed memory parallel these two decompositions as the primary (particle) and
computer, we are using the General Concurrent PIC secondary (field) decompositions.
(GCPIC) algorithm [I/ previously developed for a ID
parallel PIC code. Our 2D PIC code is periodic in one dimension and may be

periodic or bounded in the other dimension. As the
Introduction particles are advanced in time, some may traverse the

entire grid space during the course of the simulation. The
In previous work we have demonstrated the efficiency of a simplest primary (particle) decomposition which handles
ID PIC code on the JPL/Caltech Mark III Hypercube [1] this problem is the static decomposition, in which each
We have now extended our work to a 2D implementation processor keeps a copy of the entire field grid and the
of an electrostatic PIC code for plasma simulations, using particles are partitioned at the beginning of the simulation
the General Concurrent PIC (GCPIC) algorithm [2]. The among processors. This technique guarantees that load
GCPIC algorithm is a generalization of the techniques balance is maintained throughout the simulation, at the
employed in the ID parallel PIC code which is applicable expense of redundant copies of the fields in every
to many different parallel architectures. In this paper we processor. Using the static decomposition, we have
describe its application to the implementation of the well obtained efficiencies for the push in excess of 80%. Tiie
benchmarked 2D electrostatic PIC code BEPSJ [3] on the major inefficiency of this method results from the need to
Mark III Hypercube. duplicate the charge array initialization in each processor

and do a sum over processors when the charge array is
A plasma PIC code simulates the self consistent updated.
interactions of thousands to millions of electrons and ions
in a computational box. There are two essential elements The next level of sophistication is to partition the field
to an electrostatic PIC code. The first is the particle push, grid as well as particles, so that each processor has a
in which the positions and velocities of all of the particles unique piece of the simulation space. Because of
are advanced in time subject to any external magnetic field inhomogeneity in the particle density, this partition may
and the self consistent electric, and their charges are in general be irregular in order to maintain load balance
interpolated onto the field grid. The second is the field among the processors. However, there is a large class of

0-8186-2113-3/90/0000/0440$01.000 01990 IEEE 440

2D problems which has the property of being relatively may be repartitioned as the density in the simulation
uniform along one coordinate direction, especially if the evolves so that load balance is maintained.
problem is periodic in that coordinate. In this case, a
regular decomposition of the field grid among processors X
along the coordinate of uniformity (as shown in Fig. 1)
will also result in a load balanced decomposition of
particles. As the simulation progresses, some particles Proc 1
will traverse the entire simulation space. Since each .
processor now has only a part of the entire field grid, it is Proc 2
necessary to migrate particles from one processor to r 2
another as they evolve. This can result in particle load Proc 3
imbalance if the net flux of particles out of each processor
is not zero. A particle load imbalance could develop
during the course of the simulation, even though there is Proc 4
perfect load balance to begin with. Fortunately, for the
class of problems for which this decomposition is
appropriate, significant load imbalance does not develop / dx n(x,y)
due to the physics. Figure 2. Field grid partition based on particle

density distribution. Load balance requires that
n(x~y) particles be distributed evenly among the processors.

Thus each processor may have a different number of
grid points.

The secondary (field) decomposition is made to update the
y field values at each time step. We calculate the new fields

by solving Poisson's equation in Fourier space. For best
.. r.. -_ *.... Proc 1 performance in parallel, we compute the 2D FFT as two

Proc 2 sets of ID FFTs along each coordinate direction. For this

Proc 3 solution method, the decomposition is a straightforward
assignment of slices of the grid along one coordinate

i i 1•41!• I. Proc 4 direction to each processor, as shown in Fig. 3. The
Figure 1. A regular particle partition for 4 processors.
The y direction is the coordinate of relative
uniformity in this case. Space is subdivided evenly
among processors, leading to a load balanced partition y
of particles as well.

If the regular decomposition cannot be used effectively x
(some device physics problems can have large
nonuniformities along all coordinate directions), a free
form decomposition of the field grid may be necessary.
These pieces can be of different size in general, since
nonuniformities may develop during the course of a ,
simulation. To maintain load balance, the distribution of
particles and field grid must also evolve during the course k
of the simulation. We are in the process of implementing x
the same algorithm for dynamic load balancing as has Figure 3. Field grid decomposition for the 2D FFT.
been used for the ID PIC code [4]. The grid space is Each processor has a strip of the field grid initially,
partitioned as shown in Fig. 2 into slices so that each such that it can do ID FFTs in x for its subset of the
processor handles all of the x domain for a particular range y dimension. The results are then redistributed so
of the y domain. Particles migrate between processors as that each processor now has a strip oriented along the
they traverse the computational space. The grid space y coordinate direction. ID FFTs in y may now be

performed for each processor's subset of kx.

441

FFTs in the coordinate direction parallel to the long edge decomposition, no addition grid rearrangement is required
of the slice are performed. Then the grid is repartitioned to begin the push. However, interpolating the field from
into slices along the other coordinate direction, so that the the grid for all of the particles in the regular
second set of FFTs may be done. decomposition requires guard rows on both sides of the

grid, since particles at a decomposition boundary require
Diagnostics are done in parallel, including graphics, by field information which is contained in a neighboring
using one of the field decompositions described above, processor. This guard row information is exchanged
Phase space plots, for example, are parallelized using the between processor neighbors before the push phase
primary decomposition, while contour plots of potential begins. By mapping the processors into a logical ring,
are done using the secondary field decomposition. The only nearest neighbor communication is required for the
graphics software operates in parallel, with each processor exchanges. The push phase of the simulation involves
drawing a separate portion of the graph corresponding to advancing the particles' positions and velocities one time
its part of the diagnostic, step, then interpolating each particle's charge back onto

the field grid using its updated position. Since some
Code Operation with the Regular Particle particle charge will be interpolated onto the guard rows,

Decomposition these rows must be combined with their counterparts in
adjacent processors before the charge deposition is

The main loop of the 2D code proceeds as follows. The complete. Again, only nearest neighbor communication
field solver takes the real space charge distribution which is required.
has been interpolated onto the field grid and transforms it
into k space using the 2D FFT algorithm mentioned Results
above. Poisson's equation is solved in k space, and the x
and y components of the electric field are computed from In Table 1, we present timings for the two major code
its solution. Then the two electric field components are section which are executed at each time step of a
transformed back to real space. Since the x space field simulation run. Two test problems of different size were
grid decomposition is the same as the particle timed. In each test case, the physics problem being
decomposition when using the regular grid primary modeled was the same (a lower hybrid plasma wave

Timings for Critical Code Sections
Mark IIIfp Hypercube

32 x 128 Field Grid
16,128 Particles

Number of Processorsj 1 2 j 4 1 8 16 I 32

Solver (sec) . .742 .427 .275 .205 .183 Note 1
Push (sec) 1.74 .861 .421 .207 .108 Note 1
per particle (msec) 107.9 53.6 26.1 12.8 6.7

64 x 256 Field Grid
235,136 Particles

Number of Processorsj 1 2 j 4 1 8 16 J 32

Solver (sec) Note 2 1.70 .996 .652 .498 .449
ePush (sec) Note 2 13.2 6.66 3.34 1.68 .849

per particle (msec) Note 2 56.1 28.3 14.2 7.1 3.6

Note I - The FFT requires that nx, the number of grid points in the x direction, be at least twice the number of
processors.

Note 2 - The problem was too large to fit on one processor alone.

Table 1. Measured times for the two main code sections in BEPS. Solver and Push times are elapsed times,
including communication. Per particle time is push time divided by the number of particles.

442

traveling along the periodic coordinate was excited by an computation involved in updating the particle positions
antenna). The push phase in each case shows practically and velocities. The efficiencies in excess of 100%
linear speedup as the number of processors are increased, achieved for the smaller test case by the push phase
The solver phase, which is dominated by three 2D FFTs, simply indicate that the algorithm being used in the push
rapidly saturates in speedup. This is caused by an increase is not optimal for one processor. The Mark IIIfp has cash
in the amount of communication required by the grid memory associated with the Weitek Floating Point
redistribution between ID FFTs while the number of ID Processors. As more processors are used, the number of
FFTs done in each processor decreases. This is a problem particles and the size of the field grid each processor
with FFT based solvers in general, since information from handles decreases, resulting in a lower probability of cash
each grid point must ultimately be combined with misses. The increase in performance of the hardware when
information from every other grid point in order to using the cash memory more than makes up for the
compute the transform. addition of communication overhead. The larger test case

never gets subdivided sufficiently for this hardware effect
In Fig. 4 we have plotted the efficiency of each code to be noticed.
section for the two test cases as a function of the number
of processors employed. We define efficiency E as Since the primary (particle) decomposition remains fixed

throughout the simulation, the possibility of particle load
E = N TN/TI imbalance exists. In Fig. 5 we plot the percentage of load

imbalance (%LI) observed in the smaller test case running
where N is the number of processors, TN is the on 16 processors. The physics of the problem was
execution time on N processors, and T1 is the execution changed from a heating simulation to a current drive
time on I processor. The solver efficiency drops simulation, where particles are accelerated along the
dramatically as the number of processors is increased, due periodic coordinate. This number is defined as
to the increasing communication to computation ratio
mentioned above. The push efficiency remains very near %LI = (nmax - nave)/nave

where nmax is the maximum number of particles in any
BEPS Performance on the Mark IlfP p processor and nave is the average number of particles per

Veosu,0£I'o'c,.¢.~,e to' >o,-' ,rfl,, Oto Pus,,

0100 processor. Even though particles are moving (rather

90%]' BEPS Measured Load Imbalance
\r-,O Port-e P3 .t'O-q Pa-*C O.'eclco

I ~ '~*60%

I 50%

3.01,20 .0%

2 6 '0 4 a8 22 26 30
tiur•oro PrOcessOrS 2.0%

O S or-, i. 256 MTT, a Push - 235.136 Po-llce

* Soo' - 32 1 28 F•,T Pugit - 16.28 ParlCr.,

Figure 4. Measured code efficiencies. The push
section of the code always runs close to 100%. The 20 40 SO 8o

solver, which is dominated by 2D FFTs, suffers rapid -. , So,,

efficiency degradation as the number of processors is - Cr-t E)- - 16 128 Part,cl#s - Wo -11

increased.

100%, independent of the number of processors. This Figure 5. Measured particle load imbalance with the
demonstrates that the communication time required for regular particle partition. The imbalance is defined asdemostrtestha th comuniatin tme equredfor the largest percentage deviation of any processor's
migrating particles between processors and exchanging the la d from deviation of stes.

guard row information is negligible compared to the particle load from ideal at a given time step.

443

density appears to be an attractive choice. We are in the
rapidly) between processors, the largest load imbalance process of implementing a dynamic load balancing scheme
observed during the first 100 time steps is about 6.2%. for the 2D code.
The load imbalance continues to oscillate around 3.5% for
the rest of the simulation. This is clearly a simulation Conclusions
from the class where the fixed particle partition works
very well. We believe, however, that the performance of We have implemented a 2D electrostatic PIC code for
the fixed particle partition on this problem is plasma simulation on the Mark IIIfp Hypercube
representative. Since, from a physics standpoint, it is Concurrent Computer. The code is completely
quite difficult to develop and maintain large parallelized, including diagnostics and graphics. We are
inhomogeneities in all coordinate directions in a plasma currently using a regular primary (particle) partition,
simulation, we also believe that the fixed particle partition which is fixed throughout the entire simulation run. This
is applicable to a wide variety of problems of interest to decomposition exhibits very good particle load balance for
the fusion plasma and space plasma communities. a large class of plasma problems. Particle push

efficiencies remain close to 100% with up to 32
Dynamic Load Balancing processors. Solver performance, which is based upon

FFT performance, degrades rapidly as the number of
Of course not all simulation problems of interest are processors is increased.
amenable to the fixed particle partitioning scheme. For
these problems, some kind of irregular partition is Acknowledgements
necessary, and with it, the ability to dynamically balance
the particle load among the processors. Fig. 6 illustrates This work is supported by DARPA, contract # NAS7-918

A LReferences

f dy n(x,y) [1] V.K.Decyk, Supercomputer 27, 33 (1988).
f [2] P.C.Liewer and V.K.Decyk, J. Comp. Phys., 85,302

(1989)
[31 V.K.Decyk and J.M.Dawson, J. Comp. Phys. 30,

407 (1979)
[4] P.C.Liewer, E.W.Leaver, V.K.Decyk, and

J.M.Dawson, "Concurrent PIC Codes and Dynamic
Load Balancing on the JPL/Caltech Mark III

x Hypercube", in Proceedings of the 13th Conference
2 3 4 on the Numerical Simulation of Plasmas

Figure 6. Dynamic load balancing without particle
sorting. The charge density interpolated onto the grid
is used to construct a density function. Partitioning
is done based on this function.

a load balancing scheme which does not require particle
sorting, per se. Assume that an irregular partition already
exists which is load balanced. After the particles are
advanced in time and passed among processors, some load
imbalance may have developed. Rather than sorting the
particles by coordinate to determine the new (load
balanced) partition, the particles are interpolated onto the
charge grid in the current partition. Before the field solve
proceeds, the charge density is used to determine the new
partition positions. The actual method of determining the
new partition locations is not important, since it will
scale with the grid size, rather than the number of
particles. A parallel recursive bisection on the charge

444

The Fifth Distributed Memory

Computing Conference

18: Computational Fluid Dynamics

Massively Parallel Computation of the Euler Equations

C.E. Grosch, M. Ghose, S.N. Gupta, T.L. Jackson, and M. Zubair
Old Dominion University
Norfolk, Virginia 23529

Abstract field, the finite-volume method is slightly altered
to allow an artificial dissipation term, which is

We present a systematic study of the applica- itself second-order. The implementation of this
bility of massively parallel computers, the AMT scheme is then discussed and results were pre-
DAP-510/j10 and the TMC CM-2, to the solu- sented for a specific problem. Among the re-
tion of the two-dimensionl unsteady Euler equa- sults presented, the authors showed that for large
tions using a compact high-order scheme. The problems, the CM-2 was faster than the Cray
performance of these machines is compared to XMP/18.
that of the Cray-2 and the Cray-YMP/832 using In this paper we present a systematic study
the same algorithm and for the same test prob- of the applicability of massively parallel com-
lem. puters, the AMT DAP-510/610 and the CM-

2, to the solution of the two-dimensional un-
Introduction steady Euler equations using a compact high-

order scheme. The performance of these machines
A major computational challenge is to calculate is then compared to that of the Cray-2 and the

time accurate solutions to the continuum equa- Cray-YMP/832 using a vector form of the same
tions for the unsteady flow of compressible fluid algorithm and the same test problem.
in two and three dimensions for very large prob-
lems in a reasonable time. Computational algo- Formulation
rithms have been developed for vector computers
because, until recently, they were the only com- The two-dimensional Euler equations are,
puting engines capable of providing at least a pro-
portion of the necessary computing power. Very Tt + f + gS = 0 (1)

little work seems to have been done to develop with
algorithms for compressible flow calculations on p
a massively parallel SIMD computer. The ma- PU
jor problem in using such massively parallel com- I! PV (2)

puters is to develop fine grained parallel algo- E
rithms, which requires an understanding of the
data communication and synchronization require- (Pu
ments of these algorithms and development of ef- pu 2 + p (3)
ficient techniques to map the computational do- pUv (
main onto the set of processors. u(E + p)

Recently, Agarwal and Richardson (2] devel-
oped an Euler code for the TMC Connection Ma- (PVSpvu) 4
chine. They used a finite-volume discretization = V+ P(4)
scheme coupled with a fourth-order Runge-Kutta v(E + p)
integrator to advance the soiution in time. This

scheme is second-order accurate in space. In ad- where p, u, v, E, and p are respectively the density,
dition, since shocks can develop within the flow velocity components in the z and y directions, the

4460-8188-2113-3/90/0000/0446501.00 © 1990 IEEE

total energy per unit volume and the pressure. In boundary. For vector variables, the component
addition, the equation of state is taken to be that tangential to the boundary is treated in the same
of a perfect gas and is given by, way as the scalar variables. But the boundary

condition for the component normal to the bound-
E = p/(y - 1) + p(u2 + v2)/2 (5) ary is that the component is zero at the boundary.

Here -y is the ratio of specific heats taken to be This requires that the corresponding "ghost" val-

1.4. ues are the negatives of the values just within the

We are interested in simulating the evolution boundary. Application of these boundary condi-
ofWsuperi antered hypersnic sim iing lyer. e tin tions requires special care in the region surround-of su p erso n ic an d h y person ic m ix in g layers. In in a co v x or e . T e t s p ob m s w ch eorder to obtain accurate results in such a simu- ing a convex corner. The test problems which we

ordrtion obne mustcntroathe dserultsive erro an sireport on here are both supersonic. Therefore alllation one must control the dispersive errors and,' values of the variables are set at inflow boundaries
for centered schemes, [1] these are mostly of third (of course these must be consistent) and no values
order hence suggesting the need for a higher than course thesefmus bonsist and nvaues
second order scheme. Thus we chose the com- can be set at outflow boundaries. This requiresfourste forthordr Ruge-utt sceme that one use extrapolation at outflow boundaries.
pact fMore general boundary conditions are briefly dis-
of Abarbanel and Kumar [1]. This explicit algo- cussed below.
rithm has both fourth-order spatial and temporal
accuracy as well as efficiency and ease of imple- Implementation
mentation. The Abarbanel and Kumar algorithm
takes the form (where we drop the sup-arrows in- We have implemented this algorithm on a DAP-
dicating a vector): 510 (at Old Dominion Univ.) and 610 (at Univ.

of Cambridge) and on a CM-2 (at Argonne Natl.

0 un Lab). The DAP-510(610) consists of 1024(4096)
1. single bit processors arranged in a 32 x 32 (64 x 64)

u -_AtR(uo) array. Each processor is provided with connection
4 to its four nearest neighbors. In addition, a bus1

U2
= un - AtR(u1) system connects all the processors in each row and

3 all the processors in each column. Each processor
U3

= un - 1AtR(u 2) has a local memory of 64 Kbits.
2 The CM-2 can have up to 64K physical proces-

u4 = u - AtR(u3) sors. These are 1-bit processors each with 64K
un+1 = u4 (6) bits of local memory. In addition, the CM-2 has

one floating point processor for each set of 32 CM
where R is the compact fourth order spatial op- processors. The CM parallel instruction set pro-
erator vides a virtual processor facility that allows each

S1 2 u.,6b(1 1 physical processor to simulate some number of
= + ')f +' + +- 6)g, (7) virtual processors. To transfer data among vir-

tual processor, the instruction set supports two
with 6 the centered difference operator and p interprocessor communication mechanism: gen-
the averaging operator. When shocks are present eral communication and gridwise communication.
within the flow field the residual R must be mod- The DAP and CM-2 codes were written in For-
ified to include an explicit artificial viscosity term tran Plus and CM-Fortran, respectively. In the
which can be of second or fourth order [I]. case of CM-2, we used gridwise communication

Boundary conditions at solid walls are imposed to transfer data among virtual processors.
by placing the wall between a pair of adjacent The two dimensional space of the problem was
grid points. For scalar variables, such as density, divided into an equi-spaced grid. Each point of
pressure, etc. the boundary condition is that the the grid is mapped onto one processor of the ma-
gradient normal to the boundary is zero at the chine if the number of grid points is less than or
boundary. Thus the values of the "ghost" vari- equal to the number of processors. For a grid size
ables outside the flow domain are set equal to the exceeding the number of physical processors each
values of the corresponding variables inside the processor acts as a virtual processor so long as

"447

0.54r---- a, 1.a

y
0.14 ,- - - - -- - - - - - - -

a.o P
0.01a

0.0 0.85 1.0
x

Figure 1: Shock reflection from a flat plate.

the memory size is not exceeded. Whenever an 0.0 Y 0.5

obstacle is present in the path of flow, the proces-
sors corresponding to the grid points within the Figure 2: Pressure along section (a-a).

obstacle are masked. That is, the values are not
stored at those processors. The geometry of problem (i) is shown in fig-

The implementation of this algorithm to corn- ure (1). The solid lines show the position of the
pute the values of each component of ia at a pro- shocks. The flow at the inflow, below the shock
cessor consists of four similar steps, one for each at x = 0.0, is parallel to the plate and has a Mach
step in the Runge-Kutta algorithm. Each step is number of 1.95. The flow in the region above the
in turn composed mainly of two sub-steps namely shocks has a Mach number of 1.7736 and is in-
(i) acquire, and (ii) combine. In the acquire step dined at an angle of 5 degrees towards the plate.
the values of elements of fand j from eight neigh- This problem has an exact solution, for further
boring processors are fetched. Four of these eight details see [1] who also used this as a test prob-
processors are directly connected to the proces- lem. This test problem was run on a DAP-510
sor concerned and hence values from those are using 64 grid points in the x e1-_c!,),ý and 32 grid
fetched in a single step. The values from the points in the y direction. Tit 3tea.I .ate pres-
other four processors are acquired in two steps. sure distribution along the sect ýn 'n 4), and (b-
The eight values fetched in the acquire step are b) shown in figure 1 are plotted in agures 2, and
then combined to evaluate R. The artificial vis- 3.
cosity term is similarly computed. Subsequently The pressure distributions show that the shocks
il is computed in the same way. The computation are two to three grid points thick and also that
required in the acquire and combine step is done there are small oscillations near the shocks. The
in parallel by all of the processors in the array. solution in the region to the right of the reflected
The boundary conditions are handled by merging shock is that given by theory. These results are
rows and/or columns of data inside and outside very similar to those of Abarbanel and Kumar [1].
the boundary. This is an efficient operation so Results for the second test problem are shown
that there is little deterioration in the speed of in figures 4, 5, 6 and 7, where we plot contours of
computation. the density in the channel flow at four different

dimensionless times, t = 0.25, 0.5, 1.0, and 2.0.
Flow Simulations Here the length scale, L, is the height of the chan-

nel at the inflow boundary and the velocity scale
We report results for two examples: (i) a shock is c, the sound speed of the incoming gas. Thus

reflecting from a flat plate, and (ii) a Mach 3 flow the time scale is L/c. The impulsive start of a
into a channel with a forward facing step. Both Mach 3 flow into a channel with a forward facing
examples are supersonic in character with shocks step is a severe test of the robustness of a nu-
present, with the second example having a small merical algorithm and has been used by Lohner,
recirculation region in front of the step. Morgan, and Zienkiewicz [6], and Glaister [5], for

448

1.8
a Cray-2 and a Cray-YMP/832 to solve problem
(ii). We have run the channel problem with a
variety of grid sizes ranging from 96 x 32 points
to 256 x 64 points on the DAP-510 and 610, on
the CM-2, on a Cray-2, and on a Cray-YMP/832.
Timing results are given in table 1 in terms of

P (a) the number of seconds required to compute
one full time step for each of these grid sizes on
each of these computers,(b) the relative speed of
computation using a 256 x 64 grid, and (c) the

processing rate.
0 IIII ____________

Machine Problem Time Rel. Rate
0.0 1.0 Size Sec. Speed Mfp

CM-2 96 x 32 0.428 3.5
Figure 3: Pressure along section (b-b). CM-2 256 x 64 0.474 0.56 17

DAP-510 96 x 32 0.200 7.4
DAP-510 128 x 32 0.263 7.5

example, as a test problem. DAP-510 256 x 32 0.519 7.6
The results shown here were obtained on a DAP-610 256 x 64 0.263 1.00 30

DAP-510. The grid for these runs was 128 x 32 Cray-2 256 x 64 0.113 2.32 70
points. At t = 0.0 a highly curved bow shock Cray-YMP 256 x 64 0.0617 4.26 128

is generated at the step and begins to propagate
upstream and over the step. At t = 0.25 (fig-
ure 4) the shock is curved around the step and Table 1 Timings and Relative Speed
there is a region of high density and slow circula- T
tion just ahead of the step. Notice that the shock From table 1 one can see that, first, there must
has a thickness of about 2 to 3 grid points. By be a major bottleneck, independent of problem
the time t = 0.50 (figure 5) the shock has moved size, in our CM-2 implementation. Increasing the
slightly upstream of the step but has not yet hit problem size by a factor of 5.3 results in an in-
the top wall of the channel. The shapes of the prbafctro5.reusinni-densty callontor channfigres 4 e dsares of t crease in the execution time per time step of only
density contours in figures 4 and 5 are similar 11 % and a consequent increase in the process-
as would be expected. Figure 6 shows the den- ing rate from 3.5 Mflops to 17 Mflops. We have
sity contours at t = 1.0, after the shock has un- not been able to find this bottleneck; perhaps be-
dergone a reflection from the top wall. The bow cause of our relative lack of experience with the
shock thickness is essentially unchanged but now CM-2. One of our major goals is to determine the
there is a reflected shock moving down from the cause of this bottleneck in order to see whether
upper wall. Finally, in figure 7, at t = 2.0 one can or not it is intrinsic to the algorithm/architecture
see that the shock generated by reflection at the combination.
upper wall has just begun to reflect again from In contrast, the DAP implementation has been
the lower wall. The results of these test problem very successful, perhaps because one of us (CEG)
suggest that the Abarbanel-Kumar algorithm is has had extensive experience in programming
both accurate and robust and can be used with this, and previous, models of the DAP. The pro-
confidence. cessing times and rates scale very nearly linearly

Performance with problem size and are very close to optimum;
that is these rates are about 95 % of the maxi-

Here we report the performance results for the mum one would calculate by counting the num-
DAP-510 and 610 as well as for the CM-2, us- ber of floating point operations and computing
ing only 8K processors, which was the maximum the run time by multiplying the number of oper-
number available to us. We compare our tim- ations by the time per operation. The rates given
ings for these machines with those obtained using in table one do not include the cost of the run

"449

Figure 4: Density contours at t = 0.25.

Figure 5: Density contours at t = 0.50.

Figure 6: Density contours at t = 1.00.

Figure 7: Density contours at t = 2.00.

450

time graphics where we output color contours of general geometries using mapping techniques. Fi-
the density, pressure and velocity components to nally, we plan to develop parallel algorithms for
the monitor every time step. The cost of the run the compressible Navier-Stokes equations suitable
time graphics is less than 6 % of that of the time for massively parallel computers.
step.

The processing rates for the Cray machines, Conclusions
which are substantially less than the theoretical
peak processing rates, are not very surprising in This study has shown that accurate and ef-
view of the results of our previous studies [3,4]. ficient finite difference algorithms for the Euler

It seems that these rather low relative processing equations can be adapted to massively parallel

rates are entirely due to inadequate band width computers. The overall performance of these

to memory and memory bank conflicts. This is a codes are somewhat less than, but comparable

clear example of the "Von Neuman Bottleneck". to that of vector codes for the same algorithms

It seems that massively parallel processors with on the Cray-2 and Cray-YMP. Further work to

a substantial local memory per processor do not study other algorithms, general geometries, and

experience this bottleneck. inflow/outflow boundaries conditions seems war-
ranted.

Future Work
References

One of our major goals, as mentioned above,
is to determine why the performance of the algo-
rithm on the CM-2 is so disappointing. We need [1] S. Abarbanel and A. Kumar, "Compact
to find out whether or not this behavior is intrin- High Order Schemes for the Euler Equa-
sic to the algorithm/architecture combination or tions", J. Sci. Comp., 3, 275-288, 1988.
is an artifact of our implementation. [2] R.K. Agarwal and J.L. Richardson,

We are testing a DAP code for a direct nu- "Development of an Euler Code on a
merical simulation of a two dimensional, spatially Connection Machine", Proceedings of
evolving, unstable, supersonic mixing layer on a the Conference on Scientific Applica-
96 by 736 grid. We are using the Abarbanel and tions of the Connection Machine, Ed-
Kumar [1] algorithm described above. Because itor:Horst D. Simon, 27-37, 1988.
there are subsonic regions in the flow and the flow
is unsteady, the boundary conditions must be ca- [3] R.A. Fatoohi and C.E. Grosch, "Imple-
pable of handling time dependent inflow and out- mentation of an ADI Method on Paral-
flow conditions. We are now implementing char- lel Computers", J. Sci. Comp., 2, 175-
acteristic inflow/outflow boundary conditions, see 190, 1987.
Thompson [7] for details.

We hope that this simulation will give us insight [4] R.A. Fatoohi and C.E. Grosch, "Im-
into the nonlinear evolution and rollup of high plementation and Analysis of a Navier-
Mach number mixing layers. This simulation is a Stokes Algorithm on Parallel Comput-
major computational task and will require very ers", Proceedings of the 1988 Interna-
substantial amounts of computing time on our tional Conference on Parallel Process-

DAP-510. It is hoped that we can upgrade our ing, Vol. III, D.H. Bailey, Ed., Penn.
machine to a 510C. This version, just announced, State Univ. Press, 235-242, 1988.
has an 8 bit coprocessor for each bit processor in [5] P. Glaister, "An Approximate Lin-
the array. It is estimated that this will increase earized Riemann Solver For the Three-
the floating point performance of the DAP by a Dimensional Euler Equations for Real
factor of 5 to 10. Such an increase would be very Gases Using Operator Splitting", J.
welcome. Comp. Physics, 77,361-383, 1988.

Finally, we intend to expand our study of paral-
lel algorithms for Gas Dynamics to include TVD [6] R. Lohner, K. Morgan, and O.C.
arid ENO schemes for the Euler equations. We Zienkiewicz, "Adaptive Finite Element
also will extend the algorithms so as to include Procedure for Compressible Hfigh Speed

451

Flows", Computer Methods in Appl.
Mech. and Eng., 51, 441-465, 1985.

[7] K.W. Thomson, "Time Dependent
Boundary Conditions for Hyperbolic
Systems", J. Comp. Physics, 68, 1-24,
1987.

452

Concurrent implementation of a fast vortex method

Francois Pepin
Anthony Leonard

Graduate Aeronautical Laboratories
California Institute of Technology

Pasadena, CA 91125

Abstract
V2 u =-V x(we2) •(3)

Vortex methods are a powerful toolfor the numeri-

cal simulation of incompressible flows at high Reynolds
number. They are based on a discrete representation of Using complex notation, the velocity induced by an
the vorticity field and in the inviscid limit, the compu- isolated vortex particle,
tational elements, or vortices, are simply advected at
the local fluid velocity. The numerical approximations
transform the vorticity equation, a non-linear PDE, w(z,t) = b(z-z,,(t)) (4)
into a N-body problem. The O(N 2) time complexity
usually associated with these problems has limited the
number of computational elements to a few thousands, is
This paper is concerned with the concurrent implemen-
tation of fast vortex methods that reduce the time com-
plexity to O(NlogN). The fast algorithm that is used
combines a binary tree data structure with high order ot 1
expansions for the induced velocity field. The imple- w(z, t) = u(z, t) + iv(z,t) = 27r(z - z0)* ' (5)
mentation of this particular algorithm on an MIMD

architecture is discussed.

Vortex Methods where z* is the complex conjugate of z. Since Eq.(3)
is linear, superposition is used to determine that the

Vortex methods (see Leonard[l]) are used to sire- velocity field induced by

ulate incompressible flows at high Reynolds number. N

The two-dimensional inviscid vorticity equation, w(z, t) = Za (t) 6(z - zj(t)) (6)

I

Ow
- + .w =O0, (1)+ u Wis

given by

is solved by discretizing the vorticity field into La-
grangian vortex particles, N a

w(z, t) E -(7)N

W(x, t) ct(W) 6 (x - xj(t)) , (2)

The velocity is evaluated at each particle loca-
where a1 is the strength or the circulation of the jth tion and the discrete Lagrangian elements are sim-
particle. For an incompressible flow, the knowledge ply advected at the local fluid velocity. In this way,
of the vorticity is sufficient to reconstruct the velocity the numerical scheme approximately satisfies Kelvin
field. The discrete representation of the vorticity field & Helmholtz theorems that govern the motion of vor-
can be used to solve tex lines.

0-8188-2113-3/90/00000453$01.0 0 1990 IEEE 4"

The numerical approximations have transformed
the original partial differential equation into a set of
2N ordinary differential equations: an N-body prob- z =.
lem. This class of problems is encountered in many WO W 21 (z" - z•)
fields of computational physics, e.g., molecular dynam- (9)
ics, gravitational interactions, plasma physics and of iu
course, vortex dynamics. It involves a summation over - 2w 4 - ,
(N - 1) interactions that has to be evaluated N times. - ZL) - (z - ZL))

Even if symmetry is used to reduce the number of in-
teractions by half, the resulting N 2 time complexity Outside of the group, the velocity field can be rewrit-
makes simulations using more than a few thousands ten as a truncated multipole expansion,
particles prohibitively expensive.

Fast Algorithms L-1

W(z) 1 (1 a0)2vz)_ (z" - zL.) (Z" - '
When each pairwise interaction is considered, dis- -=(

tant and nearby pairs of vortices are treated with the
same care. As a result, a disproportionate amount of which is valid for Iz - zI > r,4 . The coefficients ak
time is spent computing the influence of distant vor- are defined as
tices that have little influence on the velocity of a given
particle. This is not to say that the far-field is to be
totally ignored since the accumulation of small con-
tributions can have a significant effect. The key el- ak aj (z• - zL)k (11)
ement in making the velocity evaluation faster is to J
approximate the influence of the far-field by consider-
ing groups of vortices instead of the individual vortices and in general, they are complex numbers. The con-
themselves. When the collective influence of a distant tribution from the first neglected term drops like
group of vortices is to be evaluated, the very accurate
representation of the group provided by its vortices 1
can be overlooked and a cruder description that re- (Z- zt)L (12)
tains only its most important features can be used.
These would be the group location, circulation, and Therefore, even a truncated series will provide an ac-
possibly, some coarse approximation of its shape and curate velocity estimate far from z,.
vorticity distribution.

It would be possible to build a fast algorithm at
Far-field approximations this stage by evaluating the multipole expansion at the

location of particles that don't belong to the group.A convenient approximate representation is based on Thsibaclyteshmeudby ars&Ht
mulipoe epanion. Cnsier copac grup f J This is basically the scheme used by Barnes & Hut

multipole expansions. Consider a compact group of , [3]. Greengard & Rokhlin [4] went a step further by
point vortices, proposing group to group interactions. In this case,

the multipole expansion is transformed into a Taylor
series around the center of the second group, ZT, where
the influence of the first one is sought. In the neigh-

WO= aj 6(z - zi) , (8) borhood of zT, the induced velocity can be written as

where all vortices are located within a radius rM of the w9(z) - bo + bi(z - zT) + b2 (z - zT) 2 +

group center, zM. As discussed below, zM is chosen in L-1 (13)
such a way to make the group as compact as possible. 1 Z bp (z - z,)'
Other authors, like Appel [2], saw some benefits in 1=0
locating z,4 at the center of vorticity. In any event,
the vortices induce a velocity that can be expressed as where

454

These three quantities are known and an error es-
timate can be found for any pair of groups. If this

b -1 (k + 1) a, estimate is smaller than an arbitrary criterion, Z, the
= - z I (z) z (14) approximation is judged acceptable and the computa-

tion can proceed with that group to group interaction.
If not, at least one group is too large and the approxi-
mation is rejected since it would result in a significant

An interaction between two groups consists of error. In that case, the larger group is subdivided into
finding the coefficients of the Taylor series from the two smaller ones and an error estimate is found for the
knowledge of the relative location of the groups and two new pairs of groups. If the error is still too large,
their respective multipole expansion. The work associ- the procedure is repeated until a valid approximation
ated with this interaction is independent of the number is found or until the smallest groups are reached. In
of vortices in the groups. Consequently, the speedup the latter situation, pairwise interactions between vor-
over the N 2 approach is more interesting when large tices are used to determine the influence of one group
groups are involved. On the other hand, if the groups on another.
are small, it might be cheaper to consider every pair-
wise interactions between vortices. Assuming that the
groups involved in the interaction have the same num-
ber of vortices, J, the critical J for which JP pairwise
interactions of vortices require the same computational
effort as one group to group interaction will be referred
to as Jmin. No group with less than Jmin vortices will
be allowed since they would slow down the simulation.

The threshold Jmin is a function of L, the number
of terms in the expansions. Since the work required
to compute one group to group interaction is of or-
der O(L 2), it might seems preferable to keep L to a ..X
minimum but then a larger error would result from
each approximation. The error, c, is defined as the
difference between the velocities obtained from a given
group to group approximation and the ones resulting
from all the pairwise interactions of the groups' mem-
bers. Greengard & Rokhlin have shown that when the
same number of terms is kept in both expansions, c is
bounded by

<A("max)L (15)

where

dr = Iz, - zTI , (16) FIGURE 1 Fast algorithm's data structure

rmac = max(rT, rM) (17)

and Data structure

One now needs a data structure that is going to fa-
A = • (18) 611itate the search for acceptable approximations. As

proposed by Appel, a binary tree is used.

455

In that framework, a giant cluster sits on top of the Once the data structure is ready, the velocity eval-
data structure; it includes all the vortex particles. It uations can take place. The search for suitable pair of
stores all the information relevant to the group, i.e., its groups is done with the help of recursive subroutines,
location, its radius and the coefficients of the multipole within() and between(), similar to the ones used by
expansion. In addition, it carries the address of its two Appel. The subroutine between() finds the influence
children, each of them responsible for approximately of one group on another while within() computes the
half of the vortices of the parent group. Whenever velocities within a group. It does so by finding the in-
smaller groups are sought, these pointers are used to teraction between its left and right halves, after which
rapidly access the relevant information. The children the subroutine calls itself to compute the interactions
carry the description of their own group of vortices within each half. A within() of an indivisible group
and are themselves pointing at two smaller groups, is simply the N' interaction of all its members.
their own children, the grand-children of the patriar-
chal group. More subgroups are created by equally
dividing the vortices of the parent groups along the When dete ng thecmutua ence otw
"Y' and "y" axis alternatively. This splitting process groups, between() first checks the error estimate as-
"so andwhen all groups have approximately Jming vor- sociated with that pair of groups. If it is acceptable,stops Then a d oupointingppowatwo smaller the Taylor coefficient of each group are immediately
tices. Then, instead of pointing toward two smaller upae.W nthsproitonsrjcedte

groups, the parent node points toward a list of vor- updated. When this approximation is rejected, the

tices. As shown in Fig.(l), the data structure provides largest group is split in two parts and each half in-

a quick way to access groups, from the largest to the teracts with the group that was not subdivided. The

smallest ones, and ultimately to the individual vortices subroutine calls itself with smaller and smaller groups

themselves, until the error estimate is small enough or until the
groups cannot be subdivided anymore. In the latter
case, betweeno does not check the error estimate butVelocity evaluations immediately proceeds with the pairwise interaction of

Once the groups have been identified and hierarchi- the vortices.
cally ordered, the coefficients of the multipole expan-
sion that will represent everyone of them need to be
evaluated. Having access to the vortices belonging to Either alternative concludes the interaction of the
every group, Eq.(1l) could be used for this purpose two groups involved in the last call to between()
but it would be costly, especially for the larger groups. which returns to the subroutine that called it. Be-
This expression is only used to find the coefficients fore the original call to between() returns, all the
of the smallest groups in the data structure, the ones betweeno subroutines called in the process must re-
that have direct access to the vortices. Then, the co- turn as well. For the user, it appears that all velocities
efficients of the children are used to find the multipole are computed by a single call to within(top), then the
expansion of their parent group. The expansions are two subroutines will call themselves thousands of times
constructed from the bottom up. The coefficients of until all interactions have been accounted for.
the left child adequately describe its content with re-
spect to the center of its group, z,. To represent the At the end of this process, some of the velocities
left half of the parent node, that multipole expansion have been directly assigned to the individual vortices
has to be shifted to the center of the parent node, z,' but most of the information about the velocity field lies
and the new coefficients are: in the Taylor coefficients of the groups. Since the quan-

tity that is updated is the location of the particles, the

k information accumulated in these coefficients has to be
=' '•_' P) -z°'•k-p transferred downward to the appropriate vortices. TheaP (k P Taylor series of each group could be evaluated at all

p=O the appropriate locations but instead, shifting opera-
tions are used again. This procedure is similar to the

The same operation is repeated for the right child one that took place to find the multipole coefficients
and its shifted coefficients are added to the ones of the with the distinction that it proceeds from the top to
left child to form the multipole expansion of the parent the bottom of the data structure. The Taylor series of
group. Recursive subroutines are used to repeat this the parent groups, centered around zr, are systemati-
assembling process until the top of the binary tree is cally shifted toward the center of their children group,
reached. z". The shifted coefficients are

456

have to be created artificially and cannot be as coU-
L (k=(pact as the ones obtained in a problem where the vor-

P -- (z -T(20) tices are naturally clustered.
k2p

In any event, the velocities are first computed to

and are simply added to the existing ones. After they double precision accuracy with the N2 method. This

have received the contribution from their parent node, is considered as the exact solution and is used as a ref-

the updated coefficients are shifted downward to their erence against which the approximate velocities can

own children. The process stops when the bottom of compared. The combination of L and Z are chosen

the data structure is reached; the Taylor series of the in such a way that results obtained with the fast al-
smallest groups are then evaluated at each particle Io-. gorithm are indistinguishable from a single precisioncmallesti greengard &tRokhen haaved shoat ea rthe er- accuracy N 2 simulation. This is a very severe restric-cation. Greengard & Rokhlin have shown that the er- tion since the numerical integration of these velocities
ror estimate of Eq.(15) is not affected by these shifting in time is certainly not accurate to one part in a v il-
operations. At this point, the velocity of each vortex lion. However, as pointed out by Barnes & Hut, the
blobs is known and an ODE solver is used to update lion However, a oitdout arne s & outh
its location. New multipole expansions are built from error due to the group to group approximations could
the new locations and the next velocity evaluation can accumulate over any time steps sn cnotake place, allow too large an error at any given time step. In the

proposed scheme, the same data structure is used for

Appel's data structure is Lagrangian since it is many time steps and as a result, the error vectors are

built on top of the vortices and moves with them. It correlated over a few time steps. In any event, it is

can be used for many time steps, but eventually, the preferable that the presence of the fast algorithm be

groups will deform and could even begin to overlap, as inconspicuous as possible.

They would not be as compact as the original groups 5

and the fast algorithm performance would deteriorate. ,
To prevent this, the original data structure is discarded 4

every few time steps (10 is a typical number) and new
groups are identified from scratch by alternatively di- "
viding the vortices along the "x" and "y" axis. 3

Fast

The data structure used by Greengard & Rokhlin 2 -

is based on a spatial decomposition of the computa- -

tional domain and consequently, has an Eulerian na-
ture. The domain is subdivided into four square cells I
of equal area. The cells that contain more than Jminu
vortices are subdivided again and so forth. As the vor- 0
tices move, they have to be sorted again in this set of 2.0 2.5 3.0 3.5 4.0 4.5

rigid boxes. This step requires little work but com-
plicates a parallel implementation as vortices have to FIGURE 2 Performance of the fast algorithm
be exchanged between processors after each time step.
On the other hand, the acceptable pairs of groups are
known a priori when when a rigid data structure is Despite this severe requirement, Fig(2) shows a
used and a parallel implementation can benefit from remarkable speed-up over the classical approach. The
this predictability (see Katzenelson [4]). CPU times are expressed in VAX 750 seconds. The

crossover occurs for as few as 150 vortices; at this
Fast algorithm performance point, the extra cost of maintaining the data structure
To evaluate the performance of the fast algorithm, is balanced by the savings associated with the approx-
velocities are computed for N vortices randomly dis- imate treatment of the far field. When N is increased
tributed over a 1 x 1 square computational domain; further, the savings outweigh the extra bookkeeping
their circulation is also assigned randomly. For fast and the proposed algorithm is faster than its com-
algorithms based on multi-range approximations, this petitor by a margin that increases with the number
problem is actually a worse case scenario. When the of vortices. If it is clear that the computer require-
vortex blobs are spread nearly uniformly, the groups ment of the classical approach grows like the square

457

on the number of vortices, it is not as simple to deter- While load imbalance dominates the overhead for
mine the growth rate for the fast algorithm. Because it the concurrent fast algorithm, it is not a problem for
only involves group to vortex interactions, the Barnes the parallel N 2 method which is known to be very
& Hut scheme can be shown to be O(N log N). Group efficient (see Fox, Johnson et al. [5]). In that frame-
to group interactions, such as presented here, remove work, any pair of vortices represents the same amount
some redundancy present in the Barnes & Hut scheme of work and the load can be perfectly balanced by as-
but at the same time, prevent an analysis based on signing the same number of vortices to each processor.
the behavior of individual particles. While allowing Furthermore, the domain decomposition can be done
these interactions, Greengard & Rokhlin used their without paying any attention to the location of the
rigid data structure to put an upper bound to the vortices. To find the velocities, each processor makes
number of floating point operations. It was deter- a copy of its vortices and sends it to half of the other
mined that their algorithm is actually O(N). In the processors where it interacts with the resident vortices.
proposed algorithm, the flexible data structure pre- The contributions to the velocities of the visiting copy
vents that systematic operation count and the time are accumulated as it is sent from processor to pro-
complexity cannot be determined analytically but is cessor. Ultimately, it is sent back to its original pro-
at most O(N log N). The two decades worth of data cessor where these contributions are added to those of
shown on Fig.(2) are not enough to determine the time the copy that stayed there. A large amount of data
complexity "experimentally". From this, one can only has to be exchanged between processors but this ap-
conclude that the difference between O(N log N) and plication is so computer intensive that the time spent
O(N) makes very little difference in practice. What is computing velocities dwarfs the communication time
really important is the constant multiplying the lead- and efficiencies close to unity can be achieved for large
ing order term. problems. The regularity of the problem also allows

a synchronous implementation which further reduces
The use of recursive subroutines to search through the time spent communicating between the nodes.

the binary tree for acceptable interactions does not
lend itself to vectorization. However, it is still true that
the interactions are independent events. The influence -
of A on B, where A and B can be either vortices or groups A
of vortices, can be determined without any regard to .-. _..-
the vorticity field that surrounds them. That inherent -
parallelism can be exploited to implement the method (,
on concurrent processors.

J
Hypercube implementation (-

/ \ ,. I ,
The fast algorithm discussed in the previous sec- ,. .

tions was implemented on the Caltech-JPL Marklll .' ' r p
hypercube. This MIMD machine is a Motorola 68020- ! •\ \ ' .l '
based multi-processor with 4 Megabytes of memory '' '' i
per node. Up to 128 processors can be connected in j , ' 7l
an hypercube topology. It A, A to11 p ,I

Ig I, Ig 'I

The quality of the parallel implementation is de- , # 4 # 4 # # M M
fined as +4 T oil j 0

I/

the concurrent efficiency, where P is the number of
processors and S is the speed-up obtained over the
same application running on a single processor. FIGURE 3 Data structure assigned to processor 1

458

The global nature of the N 2 approach has made its in the hypercube. That gap is filled using recursive
parallel implementation fairly straightforward. How- doubling to make the description of the largest group
ever, that character was drastically changed by the of every processor known to everybody else. By limit-
fast algorithm as it introduced a strong component of ing the broadcast to one group per processor, a small
locality. Globality is still present since the influence of amount of data is actually exchanged but, as seen on
particle is felt throughout the domain, but more care Fig.(4), this step gives every processor a coarse de-
and computational effort is given to its near field. The scription of its surroundings and helps it find its place
fast parallel algorithm has to reflect that dual nature, in the universe.
otherwise an efficient implementation will never be ob-
tained. Moreover, the domain decomposition can no
longer ignore the spatial distribution of the vortices.
Nearby vortices are strongly coupled computationally.
Hence, it makes sense to assign them to the same pro-
cessor. The binary tree data structure could be used
for that purpose. By dismissing the (P - 1) largest
groups in the data structure, P groups containing ap-
proximately the same number of vortex blobs can be
identified and a different processor is assigned the re- / \ J.
sponsibility of each of these subtrees. For example, I
Fig.(3) shows the portion of the data structure as- . . F,,' % ,,IT.
signed to processor 1 in a four processor environment. \ I \

This strategy ensures that the vortices given to % .J ',

each processor are actually neighbors in the physical F . : :1 F . Y

space. The drawback of this approach is that the ful '' 1
data structure has to be constructed in the host proces- Ir'r'r' t'"r'Y €r
sor before portions of it can be sent to the hypercube. ,1111fffl l (ll l l ll II I |

In practice, binary bisection is used in the host to spa- ÷ , , ,,,,,
tially decompose the domain. Then, only the vortices
are sent to the processors where abinary tree is locally I I I I I

built on top of them. Less data has to be loaded on I ;';;i€ '*' '
the hypercube and the generation of the local binary ,
trees can be done in parallel. I , III

In a fast algorithm context, sending a copy of lo-
cal data structure to half the other processors does
not necessarily result in a load balanced implementa- FIGURE 4 Data structure known to processor 1 after
tion. The work associated with processor to processor broadcast
interactions now depends on their respective location
in physical space. Besides, a processor whose vortices
are located at the center of the domain is involved in If the vortices of processor A are far enough from
more costly interactions than a peripheral processor. those of processor B, it is even possible to use that
To achieve the best possible load balancing, that cen- coarse description to compute the interaction of A and
tral processor could send a copy of its data to more B without an additional exchange of information. The
than half of the other processors and hence, be itself far field of every processor can be quickly disposed of.
responsible for a smaller fraction of the work associ- After thinking globally, one now has to act locally; if
ated with its vortices. the vortices of A are adjacent to those of B, a more

detailed description of their vorticity field is needed to
Before a decision is made on which one is going compute their mutual influence.

to visit and which one is going to receive, the number
of pairs of processors that need to exchange their data This requires a transfer of information from ei-
structure needs to be minimized. Following the do- ther A to B or from B to A. In the latter case, most of
main decomposition, the portion of the data structure the work involved in the A-B interaction takes place in
that sits above the subtrees is not present anywhere processor A. Obviously, processor B should not always

459

send its information away since it would then remains can be filled at the beginning of the process creating
idle while the rest of the hypercube is working. Load a stack of visitors in every processor. Each processor
balancing concerns will dictate the flow of information. receives two or three visitors and gets to work as soon
To do so, a list of all the interactions requiring a fur- as the first one arrives; the other ones are left in the
ther data exchange is drawn in every processor. Since stack. When the first interaction is completed and the
the upper portion of the tree has been duplicated P next request sent, a processor can already start work-
times, an identical copy of that list is created simul- ing on the next visitor in its stack. Memory restric-
taneously in every processor. Then the responsibility tions limit the stack size to two or three visiting data
of each item in the list is assigned to either proces- structures. When all visiting copies have returned to
sors involved while trying to distribute the resulting their origin, the processors consider the interactions
computational load as equally as possible. among their own vortices. Then, the vortices location

and the whole data structure are updated. The process
Since vortices move only slightly during each time starts over again by broadcasting the largest group of

step, the computational work required for the interac- each processor.
tion of two given processors at the previous time step
can be used as an estimate of the work involved for Obviously, this message sending takes place asyn-
the present one. The pairs in the list are examined chronously. Furthermore, the Markill is considered as
sequentially; the processor with the lightest work load a collection of computers loosely connected through an
when the pair is considered is given the responsibility arbitrary network; the hypercube topology is not used
of the interaction and computes the interaction after as such.
receiving the data structure from the other one. The
work load that is used to make that decision is the sum At this point, it should be noted that the data
of the work estimates already assigned to the processor structure used in a parallel implementation differs sig-
plus half of the estimates of the interactions in which nificantly from the one used on a sequential computer.
that processor is involved but have yet to be assigned. In the latter case, the parent group points toward his
Ultimately, every processor knows not only wi,ere to children using memory addresses. On cancurrent com-
send its data but also from which processor it should puters, the local binary trees are exchanged between
expect to receive additional information. The latter processors and addresses that were valid where the tree
will be referred to as the request list of a processor. was constructed are nieaningiesb in a different proces-

sor.
The first round of communication can now take

place. To ensure that processors are not overloaded Instead, the data structure is built inside a one di-
with data, information is sent upon request only. Each mensional array and parent groups refer to their chil-
processor first checks if it is at the top of the request dren by their indices. Two arrays are actually used,
list of any other processors. If so, it immediately sends one for the vortices, V[], and one for the groups,
a copy of its data structure to the proper recipient(s). G[1. When additional information is requested, G[I
Every processor receives one and only one visiting data is sent immediately; then the respective location of the
structure. As soon as it arrives, this structure interacts processors vortices is considered to determine if V[
with the local groups and vortices. Upon completion of should follow. If the processors are adjacent, the full
that operation, the processor which was responsible for description of the vorticity field is needed but if they
the interaction sends a message to the next processor are sufficiently far away, the description provided by
in its own request list to let that processor know that the groups is adequate and V[] can stay home.
a copy of its data is now needed at a specific location.
The updated velocities and Taylor series coefficients Efficiency of parallel implementation
of the visitor are also sent back to their origin where
they are added to the local data structure. Processors Since our objective is to compute the flow around
frequently peek at their message queue to make sure a cylinder, the efficiency of the parallel implementation
that requests get an immediate answer and that the was tested on such a problem. The region for which
returning information is absorbed as quickly as possi- I < r < 1.6 is uniformly covered with N particles. The
ble. This keeps the message queue to a manageable parallel efficiency, as defined in Eq.(21), is shown on
size. The processor that has just sent the request then Fig.(5) as a function of the hypercube size. The paral-
has to wait for the arrival of the next visitor. lel implementation is fairly robust as c remains larger

than 0.7 for a 32-node concurrent computer meaning
To reduce the idle time, more than one request that a typical processor does useful work at least 70%

460

of the time. The number of vortices per processor was the returning information and the work that was du-
kept roughly constant at 1500 even if the parallel effi- plicated in all processors, namely, the search for ac-
ciency is not a strong function of the problem size. ceptable interactions in the upper portion of the tree

and the subsequent creation of the request lists. The
It is, however, much more sensitive to the quality remaining overhead has been lumped under communi-

of the domain decomposition. The fast parallel algo- cation time although most of it is probably idle time
rithm performs better when all the sub-domains have (or synchronization time) that was not included in the
approximately the same squarish shape or in other definition of load imbalance.
words, when the largest group assigned to a proces-
sor is as compact as possible. .3.

1.0 .25

20 .

.6

..10

.05

.2

.00
2.0 2.5 3.0 3.5 4.0 4.5 5.0

.01 Log W O z

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Log,(P) FIGURE 6 Load imbalance (solid), communication &

FIGURE 5 Parallel efficiency of the fast algorithm, synchronization time (dash) and extra work
(dot-dash) as a function of the number of
processors.

The results of Fig.(5) were obtained at early times
when the Lagrangian particles are still distributed
evenly around the cylinder which makes the domain
decomposition an easier task. At later times, the dis- It was originally expected that as P increases, the
tribution of the vortices does not allow the decompo- near field of a processor would eventually contain a
sition of the domain into P groups having approxi- fixed number of neighboring processors. The length of
mately the same radius and the same number of vor- the request lists and the load imbalance would then
tices. Some subdomains cover a larger region of space reach an asymptote and the loss of efficiency would be
and as a result, the efficiency drops to approximately driven by the much smaller communication and extra
0.6. This is mainly due to the fact that more proces- times. However, this has yet to happen at 32 proces-
sors end up in the near field of a processor responsible sors and the communication time is already starting
for a large group; the request lists are longer and more to make an impact. Nevertheless, the fast algorithm,
data has to be moved between processors. its reasonably efficient parallel implementation and the

speed of the MarkIll have made possible simulations
The sources of overhead corresponding to Fig.(5) with as many as 80,000 vortex particles.

are shown on Fig.(6) normalized with the useful work.
Load imbalance, the largest overhead contributor, is Acknowledgments
defined as the difference between the maximum useful
work reported by a processor and the average useful
work per processor. It is a measure of how much faster The authors gracefully acknowledge the support of
the simulation would have been if the load had been fonds F.C.A.R., NSERC and the Department of En-
equally divided among the processors. Secondly, the ergy under the grant #DE-FG03-85ER25009. We also
extra work includes the time spent making a copy of wish to thank Dr Paul Messina for the access to the
one's own data structure, the time required to absorb Caltech Concurrent Supercomputing Facilities.

461

References [4] Greengard, L. & Rokhlin, V. 1987. A fast algo-
rithm for particle simulations. J. Comput. Phys.

[1] Leonard, A. 1980. Vortex methods for flow simu- 73, 325.
lation. J. Comput. Phys. 37, 289.

[5] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Sal-
(2] Appel, A. 1985. An efficient program for many- mon, J. & Walker, D. 1988. Solving problems on

body simulation. SIAM J. Sci. Stat. Comput. 6, concurrent processors. Prentice-Hall.
85.

[61 Katzenelson, J. 1989. Computational structure of
(3] Barnes, J. & Hut, P. 1986. A hierarchical O(N the N-body problem. SIAM J. Sci. Stat. Comput.

log N) force-calculation algorithm. Nature 324, 11, 787.
446.

462

Parallel Computation of the Compressible Navier-Stokes
Equations with a Pressure-Correction Algorithm

Mark E. Braaten
GE Research and Development Center

P. O. Box 8
Schenectady, NY 12301

Abstract In recent years, the pressure correction formula-

A parallel algorithm for the solution of the 2D tion has been extended to handle compressible flow

compressible Navier-Stokes equations has been (see, for example [4,5]). The resulting algorithm has

developed and demonstrated on a distributed the attractive property of being able to address invis-
memoped addemonstraThed alona irithm buepr nted cid, laminar, and turbulent flows at all Machmemory multicomputer. The algorithm represents numbers, making it very widely applicable.

an extension of an earlier parallel incompressible
pressure correction algorithm developed by the In some earlier papers [6,7], the present author
author. The new algorithm features a revised formu- described the development of a parallel pressure
lation of the pressure correction equation that correction algorithm for laminar and turbulent
simultaneously updates both velocity and density to incompressible flows, and its implementation on a
enforce continuity, and uses upwinding of the densi- distributed memory multicomputer. The parallel
ties to allow shock capturing. The parallel imple- algoritihm was based on a stripwise domain decom-
mentation is based on a full two-dimensional position, and the development of an effective paral-
domain decomposition. As in the earlier algorithm, lel block correction procedure which eliminated the
an effective block correction procedure is found to convergence penalty caused by the domain decom-
be the key to high parallel efficiency. Results are position. Speedups in excess of 20 were achieved
obtained on a 32-node Intel iPSC/2VX hypercube with 32 scalar processors on an Intel iPSC/2, and
for inviscid and viscous transonic flows in tur- performance with 8 vector processors using an Intel
bomachinery blade rows. Performance approaching iPSC/2VX approached 1/5th that of a single pro-
1/4 that of a single-processor Cray Y-MP is cessor Cray-XMP.
achieved. The work described in this paper represents an

Introduction extension of the earlier algorithm to a parallel
compressible pressure correction algorithm applica-

Traditionally, different methods have been used ble at all Mach numbers. The original stripwise
to solve compressible and incompressible flows, domain decomposition has been replaced with a full
Time-marching methods such as Jameson's explicit two-dimensional decomposition, to allow for the use
Runge-Kutta scheme [1] and the Beam-Warming of more processors. The paper focuses on the
implicit scheme [2] are commonly used for the solu- highlights of the cempressible formulation and the
tion of compressible flows. These methods treat the implementation of the block correction procedure
continuity equation as an equation for the density, on a two-dimensional mesh of processors. Finally
and then extract the static pressure from the equa- the performance of the algorithm is demonstrated
tion of state. Such methods fail in the incompressi- for two test calculations involving inviscid and
ble limit of zero Mach number since the density viscous transonic flow in a turbomachinery blade
becomes independent of the pressure, and the pres- row.
sure cannot be calculated from the density. Pressure
correction methods, in which the pressure is solved Highlights of the Compressible Formulation
for directly, rather than the density, have proven The compressible pressure correction algorithm
highly successful for incompressible flows [31. The developed here solves the two-dimensional Navier-
pressure ;s calculated via an equation for pressure Stokes equations for viscous flow or the Euler equa-
corrections which is derived by algebraic manipula- tions for inviscid flow. The equations for conserva-
tions of the discrete momentum and continuity tion of x-momentum, y-momentum, and mass areequations. solved, along with the equation of state. For now,

0-8188W2113-3/90/0000/0463$01.00 0 1990 IEEE

the temperature has been calculated from the nonlinear term is retained, since it helps to stabilize
assumption of constant stagnation enthalpy, rather the procedure in the early iterations when neither p
than by solving the compressible form of the energy or U is necessarily small. The nonlinear terms are
equation. For turbulent flows, the standard k- e tur- lagged during the course of the iterative solution of
bulence model is used, along with the wall function the pressure correction equation at each iteration of
treatment for the near-wail regions [8]. the overall procedure.

The governing equations are expressed in Carte- The addition of the compressible terms results in
sian coordinates, and then transformed to a general a nonlinear convection-diffusion equation for the
body-fitted coordinate system C=V(x,y), r7=r1(x,y). In pressure corrections, rather than the linear diffusion
the interest of space, the reader is referred to Refer- equation obtained in the incompressible algorithm.
ences 9 for complete details. Experience has shown that the compressible pres-

In the pressure correction approach, the sure correction equation is more difficult to solve

momentum equations are first solved with a guessed than its incompressible cousin, and that close
prmessum tore fie resulti velcity fd dessed enforcement of continuity at each iteration is evenpressure field p'. The resulting velocity field does more crucial for success of the compressible algo-
not necessarily satisfy continuity. The pressure m cual f c the compressible aago-
correction equation is obtained by substituting rithm than in theincompressiblecase.
simplified forms of the momentum equations into Upwinding of the densities provides the mechan-
the continuity equation to obtain an equation for the ism for shock capturing in transonic and supersoni,.
pressure correction p , defined such that the flows. Although the first-order accurate hybrid
corrected pressure p is given by differencing scheme is still widely used in

incompressible flows, it leads to excessive smearing

+ (1) when shocks are present and excessive total pressure
p= errors. In this work, the hybrid scheme was replaced

by the conservative second-order accurate QUICK
Once the pressure corrections are obtained from the [101 scheme. QUICK was found to capture shocks
solution of this equation, the pressure is updated within 3-4 grid cells and lead to significantly better
and the velocities are corrected to satisfy continuity, total pressure conservation in inviscid flows.

The distinction between the incompressible and Parallel Implementation
compressible pressure correction algorithms stems
from the fact that the density is taken as fixed during The basic parallel implementation of the pres-
the course of the pressure correction in the sure correction algorithm using a stripwise decom-
incompressible algorithm, while it is taken to be a position was described in detail in [6,71, and will not
function of pressure in the compressible algorithm be repeated here. In this work, a full two-
[5]. A density correction p is defined such that dimensional decomposition was used. A 2D decom-

position has the advantage that it allows the use of

c, - (2) more processors than a ID decomposition, which is
= 2 limited to a number of processors no greater than

the number of cells in any one direction.The major
The mass flux terms in the discrete continuity equa- impact of using the 2D decomposition on the paral-
tion can then be decomposed into four parts, i.e. lel algorithm was on the implementation of the

block correction procedure, and on obtaining good

pU = p*U* + p*U" + p'U* + p'U" (3) performance from the vector processors.

The two-dimensional domain decomposition is

The first two terms, which are the only terms done by subdividing the solution domain into over-

present in the incompressible form, represent the lapping rectangular regions (in the transformed

mass flux calculated from the given density and velo- space). Overlapping of the solution domains is

city fields, and the contributions from the velocity required so that each interior cell is computed as an

corrections. The last two terms arc the contribu- interior point by at least one processor. An overlap

tions arising from compressibility, representing the of one cell in each direction at each face was used,
linear contribution from the density corrections, and since this minimizes the redundant storage of quan-

the nonlinear contribution from the compressibility tities in the overlapping regions. The use of a one

effect, respectively. In contrast to earlier works, the cell overlap in conjuction with the second-order
QUICK scheme requires some special treatment,

464

since each cell requires information from two cells coefficients was done over all of the processors.
upstream when QUICK is used. Although the sim- With the 2D decomposition, each processor needs
plest way to implement QUICK would be to use a only to exchange coefficients with the other proces-
two cell overlap on each edge, this leads to very sors that share the same row of grid cells.
inefficient memory utilization as the number of pro- The use of binary reflected gray code (BRGC)
cessors gets large (for a problem of fixed size). The to map the processors onto a two-dimensional mesh
approach adopted here was to utilize four temporary leads to the most efficient communication not only
vectors, one for each interface, to store the extra u
and v values for the cells adjacent to the interface, for the local communication between neighboring
Since QUICK is used only in the discretization of processors, but also for the rowwise and colub nwise
the x- and y- momentum equations, the only penalty exchanges of information required by the block
is the cost of passing four additional messages for correction procedure. Figure 1 shows a BRGC map-each momentum equation and the storage required ping for a 4 x 4 mesh of processors on a four-
by the four temporary vectors, both of which are dimensional hypercube. Note that not only are all ofminimal, the neighboring processors nearest neighbors (theirbinary node numbers differ in only one digit), but

A key finding in the earlier work [71 was that an also that the numbers of all of the processors in a
efficient parallel block correction procedure was the given row share the same first two digits, and all of
key to maintaining high parallel efficiency as the the procesors in a given column share the same last
number of processors was increased. The block two digits. This means that both the columnwise
corrections eliminate the reduction of convergence and rowwise exchanges required by the block
rate of the elliptic pressure correction equation that correction can be performed via global shuffles and
occurs when the solution is done by a parallel global concatenation operations on subeubes of
Schwarz alternating method, rather than by an dimension 2. This is not the case if the processors
implicit solution over the entire domain. In this are mapped onto the mesh in simple lexicographical
work, the same block correction procedure was order.
implemented, and again found to be crucial to Another important consideration in the use of a
achieving convergence rates essentially independent 2D decomposition on a multicomputer with vector
of the number of processors. The switch to a two-dimesioal ecopostio fro th ealie stip- processors is the need to maintain sufficiently long
dimensional decomposition from the earlier strip- vector lengths for good vector performance. The
wise decomposition necessitated significant changes vector length required to reach one-half of the peak
in its implementation, which are described in the performance (the so-called half length) is on the
following paragraphs. order of 50 words on the iPSC/2VX vector proces-

In the block correction procedure [11], a series sor (7]. If two-dimensional data structures are used
of one dimensional corrections are made to the in the code (i.e. A is stored as A(IJ)) then the
solution of the pressure correction equation, first resulting code will contained nested DO loops over I
over rows of the grid, and then over columns. The and J. For such cases, only the innermost DO loop
following discussion will focus on the corrections on will vectorize. For a 128 x 64 mesh on an 8 x 4 mesh
the columns; the row corrections follow similarly. of processors, each processor treats a 16 x 16 prob-
The coefficients for the column corrections are lem. The resulting vector length will be only 16, far
obtained by summing the original discretized below the half length, and vector performance will
coefficients across each column. Since in a 2D be poor. The use of one-dimensional data structures
decomposition, no processor spans an entire column (i.e. A is stored as A(IJ), where IJ=(I-1)*NJ+J)
of grid cells, this summation step requires communi- results in a vector length of 256 for the same loop,
cation among the processors in a given column. and near-peak vector performance will be achieved.
Notice that in the original stripwise decomposition For this reason, the code developed here uses a
reported earlier, the processors did span entire one-dimensional data structure throughout, and util-
columns, and this extra step was not needed. Once izes a single loop over all of the grid cells whenever
the coefficients for each row are summed, they need possible.
to be are exchanged among all of the processors, so One final note regards the choice of the iterative
that each processor can compute the corrections solver used to solve the linearized equations at each
independently. The resulting correction equations stage of sle the inim. Two methods have beenare of tri-diagonal form, and can easily solved using stagemofte a lgrh Two mt d avebeusingimplemented, namely line-by-line TDMA and a vec-
the tri-diagonal matrix algorithm (TDMA). With the torizod point-symmetric Gauss-Seidel method 171.
stripwise decomposition, the exchange of

465

The line-by-line TDMA is found to give faster con- A highly vectorized version of the original serial
vergence due to its superior performance on the code was run on a single processor of a Cray Y-MP.
compressible pressure correction equation. How- The cpu times for 100 iterations were 60.7 seconds
ever, the vectorized point solver leads to better vec- for the line-by-line TDMA, and 30.0 seconds for the
tor performance, resulting in a significantly lower vectorized point solver. Hence, the performance of
cost per iteration, at the price of somewhat slower the 32-node hypercube was about 1/4th that of the
convergence. Since the optimum choice appears to Cray for the line solver, and about 1/5th for the
be problem dependent, both methods have been point solver.
retained. In a transonic blade row of this type, the block-

Test Results age due to the thickness of the viscous boundary
layer can have a significant effect on the shock loca-

The parallel pressure correction algorithm tion and on the resulting total pressure losses. Fig-
described here has been tested on a number of sub- ure 5 shows the computed Mach number and pres-
sonic, transonic, and supersonic flows in inlets, chan- sure contours for the inviscid test problem. Figure 6
nels, and blade row cascades. Inviscid, laminar, and shows the corresponding results for the turbulent
turbulent flows have been computed. Due to space test problem. Reasonably converged solutions were
limitations, this section will focus on two calcula- obtained in 1500 iterations in both cases. The pres-
tions for transonic flow in a hypothetical tur- ence of a shock upstream of the trailing edge of the
bomachinery cascade. The first case solves for the blade is clearly evident. The turbulent solution
inviscid flow through the cascade using the Euler correctly predicts the influence of the boundary
equations, while the second case solves for turbulent layer blockage on the shock location, as the shock
flow in the same cascade using the Navier-Stokes clearly moves upstream from its inviscid location.
equations plus the k-e turbulence model. The inlet The interaction of the shock with the boundary layer
Mach number is 0.7, and the flow enters the cascade causes the boundary layer to separate, leading to a
at a 35 * inlet angle. The computations were per- large region of recirculation near the trailing edge in
formed on an H-grid with 128 x 64 grid cells; a the turbulent case.
closeup view of the mesh in the vicinity of the lead- An interesting result that is observed in the invis-
ing edge is shown in Figure 2. The mesh was con- cid solution regards the apparent glitches in the
structed from a 112 x 48 mesh by subdiving a Mach number contours. The location of these
number of the original cells near the blade surfaces glitches corresponds to the regions of the grid where
and also by adding grid lines in the anticipated vicin- the cell spacing varies abruptly by a factor of two asity of the shock. h elsaigvre brpl yafco ftoa

a result of the manner in which the final grid was
The performance of the parallel algorithm was constructed by adding grid lines to the original grid.

explored by running 100 iterations of the algorithm The second-order QUICK scheme responds to the
on both the scalar and vector processors of a 32- abrupt change in spacing by wiggling. Notice that
node Intel iPSC2/VX. The results for the cpu time the viscous solution shows no such behavior; evi-
and parallel efficiency are shown in Figures 3 and 4. dently there is enough physical dissipation in the
With 8 vector processors, the code runs 1.5 times viscous equations to suppress the wiggles. The wig-
faster with the line solver, and 3.2 times faster with gles in the inviscid case are evidence that the level of
the point solver, than the code with the line solver numerical dissipation in the QUICK scheme is quite
on 8 scalar processors. With 32 vector processors, low. Since any wakes observed in the inviscid solu-
the corresponding values both fall to 1.4, due pri- tion are also evidence of numerical dissipation, the
marily to a reduction in vector lengths as the small size of the inviscid wake is further evidence of
number of processors increases. The parallel the low level of dissipation in the QUICK scheme.
efficiency, estimated based on the procedure The lesson here is that inviscid test problems pro-
described in 171, is found to be reasonably high. vide a demanding challenge for any numerical for-
With 32 processors, efficiencies of 80% are achieved mulation, and therefore are very useful for exploring
with scalar processors, 71% with the line solver on the accuracy of the formulation, even if the ultimate
vector processors, and 45% for the point solver on goal is to analyze viscous flows.
vector processors. Again the shorter vector lengths
that occur when more processors are used are a Concluding Remarks
major factor in reducing the parallel efficiency for
the vector hypercube, particularly when the vector- A parallel compressible pressure correction
ized point solver is used. algorithm applicable at all Mach numbers has been

466

developed and demonstrated on a distributed [9] M. E. Braaten and W. Shyy, "A Study of
memory multicomputer. Reasonable high parallel Recirculating Flow Computation using
efiiciencies have been achieved, and performance up Body-Fitted Coordinates: Consistency
to 1/4th that of a single Cray Y-MP processor has Aspects and Mesh Skewness", Num. Heat
been obtained. Calculations of turbulent transonic Transfer, vol. 9, pp 559-574, 1986.
flow in a turbomachinery cascade correctly predict
the effect of the boundary layer blockage on the [10] B.P. Leonard, "A Stable and Accurate Con-
shock position and the resulting losses. With the vective Modeling Procedure Based on Qua-
advent of the next generation of multicomputers, dratic Upstream Interpolationn, Comput.
with faster processors (such as the Intel i860), and Meths. Appi. Mech. Eng., l9,pp. 59-98, 1979.
faster interprocessor communication, this parallel [111 A. Settari and K. Aziz, "A Generalization of
algorithm should achieve performance beyond that the Additive Correction Methods for the
of existing serial algorithms on conventional super- Iterative Solution of Matrix Equations%
computers and allow larger and more accurate SL4M I. Numer. Anal., vol. 10, pp 506-521,
simulations to be performed. 1973.

References

[1] A. Jameson, W. Schmidt, and E. Turkel, 1000 1001 1011 1010
"Numerical Solution of the Euler Equations
by Finite Volume Methods Using Runge-
Kutta Time Stepping Schemes", AIAA paper
AIAA-81-1259, 1981. 1100 1101 1111 1110

12] R. W. Beam and R. F. Warming, "An Impli-
cit Finite Difference Algorithm for Hyper-
bolic System in Conservation Form", J.
Comp. Phys., vol. 23, pp. 87-110, 1976. 0100 0101 0111 0110

13] S. Patankar, Numerical Heat Transfer and
Fluid Flow, Hemisphere, Washington, DC,
1980. 0000 0001 0011 0010

[4] C. Rhie, "A Pressure Based Navier-Stokes
Solver Using a Multigrid Method", AIAA
Paper 86-0207, 1986. Fig. 1. Gray code mapping for 4 x 4 processor mesh

[51 W. Shyy and M. E. Braaten, "Adaptive Grid
Computation for Inviscid Compressible
Flows Using a Pressure Correction Method",
AIAA paper 88-3566-CP, 1988.

[6] M. E. Braaten, "Solution of Viscous Fluid
Flows on a Distributed Memory Concurrent
Computer", Int. J. Num. Meth. Fluids, in
press, 1990.

17] M. E. Braaten, "Development of a Parallel
Computational Fluid Dynamics Algorithm
on a Hypercube Computer", GE Research
and Development Center Report 89CRD030,
May 1989. Submitted to Int. I. Num. Meth.
Fluids, 1989.

[8] B. E. Launder and D. B. Spalding, "The
Numerical Computation of Turbulent
Flows", Comput. Afeth. Appl. Mech. Engrg.,
vol. 19, pp. 59-98, 1974. Fig. 2. Closeup of grid near blade leading edge

467

1600. 14

- Vwor p.ruý - Ur A,
- *co. prarnw - U"SNWO

JOA

-Vedw p.ý. - U. -W
- *dLo ptw - Pok -&

GAA

0.0 10.0 2U0 30 40.0 00 10. =a. 2010 4".

Fig. 3. Performance of parallel algorithm Fig. 4. Parallel efficiency
-100 iterations, inviscid test case -100 iterations, iuwiscid test case

(a) Fig. 5. Inviscid transonic cascade test case (b)
(a) Mach number contours
(b) Pressure contours

(a) Fig. 6. Turbulent transonic cascade test case(b

(a) Mach number contours
(b) Pressure contours

468

The Fifth Distributed Memory

Computing Conference

19: Other Scientific, Apc I n

Hypercube Simulation of

Electric Fish Potentials

Roy Williams, Brian Rasnow and Christopher Assad

California Institute of Technology

Pasadena, California

Abstract from the object, and extract the potential

We present a simulation of the difference across the fish skin.

electrosensory input of the weakly electric We have created an unstructured triangular
fish Apteronotus leptorhynchus. This fish mesh covering the two-dimensional
senses its environment by producing a manifold of the fish skin, using the
sinusoidal voltage difference between its Distributed Irregular Mesh Environment
body and tail sections, causing an electric (DIME), then used the Boundary Element
field and a current distribution in the Method to solve for the potential derivative
surrounding water. If an object is nearby at the fish skin.
which has different electrical conductivity The computational problem is the solution
from the surrounding water, the current of a full set of simultaneous linear
distribution is disturbed on the skin of the equations, where there is an equation for
fish. The fish senses this difference from the eations we the re isha eqaionlfoeach node of the boundary mesh, typically
usual current distribution, and infers the about 100 - 200. We have used an NCUBE
presence and location of the object. hypercube to calculate the matrix elements

Mathematically, the problem is to solve a and solve these equations, once for each
potential equation in the domain exterior to relative position of the fish and the test
the fish with Cauchy boundary conditions, object. We present some early results from
in the presence of an induced dipole arising the simulation.

4700-8186-21 13-3/9010000/0470501 .00 0 1990 IEEE

1. Biological Background video techniques to be used in combination with highresolution electrode arrays positioned in the fish tank to

All animals are faced with the computationally intense record fish behavior in response to a variety of
task of continuously acquiring and analyzing sensory environmental stimuli.
data from their environment. To enstre maximally useful To study quantitatively how the fish's behavior affects
data, animals appear to use a varnc'y of motor strategies the "electric images" of objects, we are developing three-
or behaviors to optimally po-'ion their sensory dimensional computer simulations of the electric fields
apparatus. In all higher animals, neural structures which that the fish generate and detect. These simulations,
process both sensory and motor information are likely to when calibrated with the measured fields, should allow
exist which car, coordinate this exploratory behavior for us to identify and focus on behaviors that are most
the sake of sensory acquisition. We believe the relevant to the fish's sensory acquisition tasks, and to
cerebc•ilim may be involved in this motor-sensory loop. predict the electrical consequences of the behavior of the

To study this possibility, we have chosen the weakly fish with higher spatial resolution than possible in the
electric fish, which use a unique electrically based means tank.
of exploring their environment' -2. These nocturnal fish, Being able to visualize the electric fields, in false color
found in murky waters of the Congo and Amazon, have on a simulated f's body as it swims, may provide a
developed electrosensory systems to allow them to new level of intuition into how these curious animals
detect objects without relying on vision. In fact, in some sense and respond to their world.
species this electric sense appears to be their primary
sensory modality. In this paper, we discuss a physical model of an electric

fish, then the equivalent mathematical problem, which is
This sensory system relies on an electric organ which a solution of Laplace's equation in the region exterior to
generates a weak electric field surrounding the fish's the fish and the object it is sensing. We give a brief
body that in turn is detected by specialized description of the Boundary Element method for solving
electroreceptor cells in the fish's skin. The presence of this problem, and explain why this method is well suited
animate or inanimate objects in the local environment for a distributed parallel architecture. Finally we describe

causes distortions of this electric field, which are som arlysresuts from the s in.

interpreted by the fish. In some species of weakly electric

fish, the electric organ fires a short pulse and then is 2. Physical Model
silent, in effect gating the electrosensory information
into the nervous system at discrete times rather than We need to reduce the great complexity of a biological
entering as a continuous stream like most other sensory organism to a manageable physical model. The
modalities. Other species sample their environment with ingredients of this model are the fish body, shown in
a pulse in the frequency domain, ie. by generating a Figure 1, the object that the fish is sensing, and the water
nearly sinusoidal electrical discharge. The simplicity of exterior to both the fish and the object.
the sensory signal, in addition to the distributed external
representation of the detecting apparatus, makes the The real fish has some projecting fins, and our first
weakly electric fish an excellent animal with which to approximation is to neglect these because their electrical
study the involvement in sensory discrimination of the properties are essentially the same as those of water.
motor system in general and body position in particular. Our second approximation is to simplify the time-

It is of value experimentally and also interesting to note dependence of the electric field set up by the fish. The
that some of these fish have the largest cerebellum, time constant associated with electric field variations in
relative to their brain and body mass, of any class of a dielectric medium is of order dielectric constant
animals. The experiments we have undertaken are divided by conductivity5 . For water this charactaristic
specifically aimed at understanding to what extent the time is measured in fractions of a microsecond, and for a
exploratory behavior of the fish involves coordinated perfectly conducting object is zero. The time between
positioning of both its electric organ and its pulses of the electric organ is about a millisecond in A.
electroreceptors to resolve objects in its local electric leptorhynchus, so that if the fish is sensing a perfectly
field. conducting object, it is safe to ignore time variation and

model the fields as static. For some plant materials,
Simulations in two dimensions3'4 and our measurements however, this time constant may be large, and the fish
with actual fish have shown that body position, may sense phase information (analogously to humans

especially the tail angle, significantly alter the fields near using the phase difference between the ears to sense the

the fish's skin. We are currently developing freeze-frame

471

direction of a sound). Thickness t

In this paper, we shall concentrate on the staffs
approximation. There is thus an electric field, maintained
by the fish, which causes a current flow proportional to Potential Source
the electric field according to Ohm's law. Potential

We will assume that the fish is exploring a small
conductive object, such as a small metal sphere. First we
reduce the geometrical aspect of the object to being Exterior
pointlike, yet retaining some relevant electrical Potential V(x)
properties. Except when the object is another electric
fish, we expect the object to have no active electrical
properties, but only to be an induced dipole, so that in the
presence of an electric field the object becomes a dipole conductivity as conductivity a,
of strength proportional to the field and oriented opposite
to the field. The proportionality constant is the
polartzab;.ýT" of the object.

TI', the poLIrizability is the only parameter describing Internal Skin Water
the b,ýJcLt. In this first paper, we shall not attempt to Figure 2: A section through the fish skin, with electrical
calibrate experimental measurements and computed potential plotted vertically. The potential is assumed lin-
results, but merely estimate this parameter. Polarizability ear within the skin.
has the dimensions of volume, so we shall model an
object of polarizability I cm 3 , since this is the size of
object used in the experiments, concerned with the details of the internal structure. Thus

We now come to the modelling of the fish body itself. the fish body is modelled as two parts: an internal part
This consists of a skin with electroreceptor cells which with a given voltage distribution on its surface,
can detect potential difference, a.nd. a rather complex surrounded by a skin with variable conductivity.
internal structure. We shall assume that the source Because of the voltage on the internal body, a current
voltage is maintained at the interface between the distribution is set up in the fish skin and water, which
internal structure and the skin, so that we need not be have different conductivities. The signal from the

electroreceptor cells in the skin is assumed to depend on
the potential difference across the skin6 .

We shall simplify the model a little more by assuming
that the skin thickness is small compared to the size of
the fish. This is not equivalent to neglecting the skin
altogether, since it is the combination of skin thickness

S and conductivity which determines its electrical
properties; the zero-skin-thickness approximation
merely removes geometrical complexity from the model
in exchange for a slightly more complex boundary
condition at the surface of the fish body, as discussed
below.

Figure 2 shows a section through the body of the fish,
with a graph of the voltage or potential superimposed.
We define * to be the potential at the interface between

Figure 1. Top, top view of the fish Apteronotus the fish skin and the internal part of the fish, and the
leptorhynchus, Middle, side view of the fish. The fish is scalar field 4V(x) to be the potential field in the water
about 20 cm long.Bottom, modelled voltage profile ý exterior to the skin. The conductivities of the skin and
along the interior of the fish, from -100 mV at the tail water are written oa and cy, respectively.
with a linear ramp to +25 mV at the head. The fins and
tail are not shown. We write the normal derivative of the exterior potential

as iVp, and conservatior of current then implies that the

472

slope of the potential in the skin be V, a, / oa. We shall
now assume that the potential varies linearly from the 1 (p)•A- (p) W I-

inside to the outside of the skin; sufficient justification J (I)nA-p= "qi

for this would be that either the skin is thin compared to where AP(p) is the solid angle around p subtended by Q;
the body thickness, or that the source potential varies for example if Q is a cube, then A is 4n inside the cube,
slowly over the skin compared to the skin thickness. 27c on a face, ic on an edge, and V2 at a comer of the

Using the thickness t of the skin, we find the boundary cube.

condition We can simplify the notation by introducing linear

- (1) operators BP and C&, which can be defined by their
actions on a dummy function u:

where the effective skin thickness • is defined to be • • 1dx'
aw (B'u) (x) = u (x'), x.

This is a Cauchy or mixed boundary condition for the a(x) = - x - dx'

exterior potential.

Conservation of charge is again the guiding physical law so that the Boundary Element Theorem for Laplace's

to obtain the differential equation satisfied by 41 in the equation becomes

water. Mathematically, it means that the divergence of n +
the current density is zero; thus we can use Ohm's law to A av + B w + Cr\,, = 0 (2)
write

V. (aVW) = 0 Notice that if L' = 93\f2, which is the region outside 0,

then A +A = 4n, B +B = 0, and C' = C" .
where a is the conductivity of the water, assumed When the function V is approximated with Finite
uniform, and Ve is the electric field. This equation Elements as discussed below, the operators A, B and C
reduces to V = , Laplace's equation. become matrices, with A diagonal.

3. Mathematical Theory The Boundary Element theorem (2) provides a relation
between Vt and its normal derivative at any point on the

The Boundary Element method7'8 has been used for surface of a so that given another relation between the
many applications where it is necessary to solve a linear two (the boundary condition (1)), we can solve for both.
elliptic partial differential equation. The derivation is We wish to solve for the normal derivative of the
particularly simple for the case of Laplace's equation, potential, so we combine the Boundary Element theorem
which we present with less than complete mathematical and the boundary condition to obtain
rigor. (,A + B + C) = -(A + B) 0 (3)

Green's theorem states that if functions U and V are free
of singularities in a domain !Q, with the normal outward Note that this result is only true if the domain Q is free of
from 91, then singularities.

/ U'U In the case of our model of the fish, the domain of interest
S(UVdq - V-a)d2q is that outside the fish and the object, extending to

(a " a n infinity. We have solved for the normal derivative
because it is this that determines the potential difference

We define V to be the desired solution xV, and for some across the fish skin, which in turn determines the
fixed point p, we set response of the electroreceptor cells.

U (q) - Ip -q The solution of (3) yields the potential derivative for the
fish with no object in its environment. The solution for
the fish with object is obtained by introducing an induced

Since V2, = 0 and V2 U = -4itS(p - q), Green's theorem dipole. Let Y' be the potential in the presence of the
becomes dipole. Without loss of generality, we may assume the

dipole to be at the origin, so that the vector strength d of

473

the dipole is (proportional to) the gradient of v at the Figure 3: A typical mesh covering the surface of the fish,
origin. This gradient may be written as a surface integral containing 190 rodes. The mesh is double-sheeted, for
by differentiating the Boundary Element theorem: the two sides of the fish.

d ocVV(O) = -f(q.' q, -,W a qý)dgq (4)

We now separate out the singular part of 'P, defining 'P,
by subtracting the dipole contribution:

T,1 = • d-__r
3

r

Given that IPt satisfies the Boundary Element equation
(2), because it is free of singularities, and I satisfies the
boundary conditions, we may derive the equation
satisfied by TI

(EA +4B++c , -(A+B)-d- r +cad 'r rf

4. Computational Method
In order to discretize the boundary element method, we
have created a mesh of triangles covering the surface of
the fish, as shown in Figure 3, using the Distributed
Irregular Mesh Environment (DIME)9 , a portable
programming environment designed for calculations
with unstructured triangular meshes on distributed
memory parallel processors.

We discretize the field with linear Finite Elements:

WI(x) = WN, (x)
V

where W, is the value of the field at the node v and
Nv (x) is the piecewise linear function which is unity at
the node v and zero at every other node. The normal
derivative can be similarly discretized.

As observed above, the operators B and C become
matrices, and we define the matrix element BP, to be the element calculation that as the number of Gauss points

value of, increases, the result approaches the analytic resulL

(BtANv) (x,) To solve for the potential in the presence of the object,
the procedure is then as follows. First we solve for the
potential W on the surface of the fish in the absence of the

which is the operator B applied to the nodal basis dipole singularity using (3), then calculate the dipole
function for node v and evaluated at the position of node strength as the gradient of this potential at the position of
gt. Similarly for the operator C. the object using (4). Now we solve for 'P with this dipole,
We can caculate these matrix elements either by using equation (5). One way to visualize the result is to
Gaussian integrationl1 on the triangles neighboring node display Tn - yn, which is proportional to the voltage
Gaussianlintetionlly. on tsausefulhec tringlhes nhring ndifference acros the skin, and thus contains all the

electrosensory information regarding the object which is

474

accessible to the fish. Notice that it is the same matrix to With the Boundary Element method, we discretize only
be solved for both of these calculations, with different the surface of the domain, and again solve a set of linear
right hand sides. Thus it would be computationally equations, except that now they are no longer sparse. The
efficient to decompose the matrix and back-substitute for far-field is no longer a problem, since this is taken care of
each solve, rather than starting afresh each time. analytically.

For distributed memory parallel computation, we have a If it is possible to make a regular grid surrounding the
packaged LU solver11 for full matrices with partial domain of interest, then the Finite Difference method is
pivoting, and the solver is used in three stages as follows, probably more efficient, since multigrid methods or
First the user makes an initialization call, sending the alternating direction methods will be faster than the
matrix size; then an LU decomposition call, where the solution of a full matrix. It is with complex geometries
user passes a function pointer which will calculate any however, that the Boundary Element method can be
required matrix element; then a back-substitution stage, faster and more efficient, on sequential or distributed
where the user passes a function pointer which will memory machines. It is much easier to produce a mesh
calculate an element of the right-hand-side vector, covering a curved two-dimensional manifold than a

three-dimensional mesh filling the space exterior to theThe manipulation of the mesh is done redundantly in manifold. If the manifold is changing from step to step,
each processor, so that before the solve step each mnfl.I h aiodi hnigfo tpt tp
eachprocessor, hso anidenthcatbe f the slestp ac thus the 2D mesh need only be distorted, whereas a 3D mesh
processor has an identical copy of the mesh, and is thus must be completely remade, or at least strongly

capable of calculating any of the matrix elements or sthe completely tade, or t l est isrn ot

right-hand-side elements. When the solver is initialized, smoothed, to prevent tangling. If the 3D mesh is not
the parallel decomposition of the matrix is dealt with by regular, the user faces the not inconsiderable challenge of
the solver; and it automatically balances the matrix explicit load balancing and communication at the

element computation and solving between the processors processor boundaries.

without user input. We feel that the existence of distributed matrix solving

The solution vector is returned in a distributed form to software makes the Boundary Element method

the processors, and a simple combining operation across preferable to conventional Finite Difference methods,

the parallel machine gives the complete solution to each since it is competitive in computation time, and much

processor. We may visualize the solution using a variety easier to program.

of the tools from the DIME environment. 5. Results
This code is an example of distributed memory
programming at its easiest and most efficient: the Figure 4 shows four fish in various unlikely positions.
difficult part of the programming is the sequential part, For this initial investigation we have chosen to set the
which is setting up and manipulating the mesh over the effective skin thickness tobe 2cm, after measurements
fish skin, and the most time-consuming part of the by Scheich and Bullock'2; this figure has significant
computation is the setting up and solution of linear error, and of course the real fish has variable g over its
equations, which happens without any effort from the body.
user. The parallel programming has been done in writing
the matrix solver: when more such tools are available, Figure 5 shows a side view of the fish with the free field
parallel programming will become much easier. V (no object) shown in gray scale, and we can see how

the potential ramp at the skin-body interface has been
Let us compare the Boundary Element method with a smoothed out by the resistivity of the skin. Figure 6
more conventional finite difference approach to solving shows the computed potential contours for the midplane
elliptic problems. around the fish body, showing the dipole field emanating
To implement the finite difference method, we would from the electric organ in the tail.
first make a mesh filling the domain of the problem, thatis thee imesioal es, ten or achmes pontset Figure 7 shows the difference field 'l',~ - •n, for three
is a three dimensional mesh, then for each mesh point s object positions, near the tail (left), at the center (middle)
up a linear equation relating its field value to that of its and near the head of the fish (right). In each case the
neighbors. We would then need to solve a set of sparse object is 3cm above the midplane, and the fish is 21 cm
linear equations. In the case of an exterior problem such long. It can be seen that the difference field, which is also
as ours, we would need to pay special attention to the far- the sensory input for the fish, is greatest when the object
field, making sure the mesh extends out far enough and is close to the head. A better view of the difference
that the proper approximation is made at this outer voltage is shown in Figure 8, which shows the values of
boundary.

475

the difference voltage on the midline of the fish, for
various object positions. Again it may be seen that the
maximum sensory input occurs when the object is close
to the head of the fish, rather than the tail, from which the
dipole field emanates.

References

1. T. H. Bullock and W. Heiligenberg, (eds),
Electroreception, Wiley, New York, 1986.

2. H. W. Lissman, On the Function and Evolution of
Electric Organs in Fish, J. Exp. Biol., 35 (1958) 156.

3. W. Heiligenberg, Theoretical and Experimental
Approaches to Spatial Aspects of Electrolocation, J.
Comp. Physiol., 103 (1975).

4. M. Bacher, A New Method for the Simulation of
Electric Fields, Generated by Electric Fish, and their
Distortions by Objects, Biol. Cybern. 47 (1983) 51.

5. J. D. Jackson, Classical Electrodynamics, Wiley, New
York, 1975, p. 296.

6. J. Bastian, Electrolocation, J. Comp. Physiol., 144
(1981)

7. T. A. Cruse and F. J. Rizzo (eds.), Boundary Integral
Eq,:ation Method: Computational Applications in
Applied Mechanics, ASME Proc. AMD-Vol. 11
(1975). Figure 4: Four fish with simple shading.

8. C. A. Brebbia et al., (eds), Boundary Elements,
Springer-Verlag, Berlin, 1983.

9. R. D. Williams, DIME: A Users Manual, Caltech
Concurrent Computation Project Report C3P-861
(1990).

10. R. W. Cowper, Gaussian Quadrature Formulas for
Triangles, Int. J. Numer. Methods Eng, 7 (1973) 405.

11. P. G. Hipes, Comparison of LU and Gauss-Jordan
System Solvers for Distributed Memory
Multiprocessors, Caltech Concurrent Computation
Project report C3P-652c, To Be Published in
Concurrency, Practice and Experience.

12. H. Scheich and T. H. Bullock, The Detection of
Electric Fields from Electric Organs, in
Electroreceptors and Other Specialized Receptors in
Lower Vertebrates, (A. Fesand, ed.), Springer-Verlag,
Berlin, 1974.

476

Figure 5: Potential distribution on the surface of the fish, Figure 6: Potential contours on the midplane of the fish,
with no external object. showing dipole distribution from the tail.

Figure 7: Gray-scale plots of voltage differences due to Figure 8: Envelope of voltage differences along midline
an object at positions (left) near tail, (middle) at center of the fish, for 20 object postions, each 3cm above mid-
and (right) near head. Each object is 3cm above mid- plane.
plane.

477

Molecular Dynamics Simulations of Short-Range Force Systems
on 1024-Node Hypercubes *

Steven J. Plimpton

Sandia National Laboratories
Albuquerque, NM 87185

Abstract are modeled this way due to electronic screening ef-
fects. Hence the computation required is only O(N)

Two parallel algorithms for classical molecular dy- instead of O(N log 2 N) as in the long-range force
namics are presented. The first assigns each pro- case.
cessor to a subset of particles; the second assigns The second characteristic is that atoms diffuse.
each to a fixed region of 3d space. The algorithms Thus, each atom's neighbors change as the simu-
are implemented on 1024-node hypercubes for prob- lation progresses. While the algorithms we develop
lems characterized by short-range forces, diffusion are relevant to the fixed lattice case (neighbors of an
(so that each particle's neighbors change in time), atom remain the same throughout the simulation),
and problem size ranging from 250 to 10000 parti- it is a harder problem to efficiently maintain a list
cles. Timings for the algorithms on the 1024-node of neighbors. Any liquid simulation and most solid
NCUBE/ten and the newer NCUBE 2 hypercubes simulations where structure is changing require this.
are given. The latter is found to be competitive The third characteristic is problem size. We con-
with a CRAY-XMP, running an optimized serial al- sider problems ranging from a few hundred atoms
gorithm. For smaller problems the NCUBE 2 and to several thousand. The vast majority of work in
CRAY-XMP are roughly the same; for larger ones the field is on systems of this size and many macro-
the NCUBE 2 (with 1024 nodes) is up to twice as scopic features can be accurately modeled by such
fast. Parallel efficiencies of the algorithms and com- systems [1,21. A model is typically designed with N
munication parameters for the two hypercubes are as small as possible to capture the desired macro-
also examined. scopic effects. The goal is then to perform each

timestep as quickly as possible since each step repre-
sents only - 10-1' seconds of "real" time. In prac-
tice tens or hundreds of thousands of timesteps are

Molecular dynamics (MD) simulations are com- needed. Thus it is more interesting to be able to do

monly used to calculate static (thermodynamic) and 100,000 timesteps of a 1000 atom system than 1000

dynamic (transport) properties of liquid and solid timesteps of a 100,000 atom system.
state systems. Each of the N atoms (or molecules) As has been extensively discussed, MD algorithms
is treated as a point mass and Newton's equations of are inherently parallel [3,4]. Previous work on hy-

motionpercubes has demonstrated their potential for MD,

in time. The physics of the model is encompassed in but has typically been done with relatively few pro-
tihe potential energy functional for the system from cessors [5,6]. Our goal in this research was to imple-
thihe potntival enrerg fquntiona for tahe systerom cment the fastest parallel algorithm possible for this
which individual force equations for each atom can class of problem to see if it could perform as well as
be derived.

We are interested in a general class of MD prob- the best serial algorithm on a CRAY-XMP vector
Wen that has three salient characteristics. The first supercomputer. This is a difficult task, since MD

nis thart-hasge thresmesaliengtcharctericshe fminerst algorithms can be vectorized and execute at tens of
is short-range forces, meaning that each atom inter- thousands of timesteps per hour on a CRAY. As we
acts only with other atoms that are less than a cutoff shall see, achieving these speeds with current gener-
distance rc away. Many solid and liquid materials ation hypercubes requires at least 512 processors.

"*This work was performed at Sandia National Laborato- In the next section the model problem is de-
ries which is operated for the U.S. Department of Energy scribed. Then two serial algorithms are discussed
under contract number DE-AC04-76DP00789. along with their corresponding parallel implementa-

0-8186-2113-3/90/000010478$01.00 © 1990 IEEE

tions. Timings of the serial versions on a CRAY- in r2 space and storing velocity and force in units of
XMP and of the parallel algorithms on the hyper- distance. The simplest scheme for integrating equa-
cubes are given. Finally, some comments are made tion (2) is also used, a leapfrog algorithm, since high
with regard to comparing the two architectures and accuracy in the integration is not a concern (due to
conclusions drawn as to the fastest algorithms, the approximations inherent in the potential func-

tion q).

Model problem
Serial Algorithms

The physical system modeled is a block of Al
atoms, periodic in all 3 dimensions so as to simu- The basic kernel of computation required to inte-

late homogeneous bulk material. The block sides grate equation (2) is as follows. At each timestep,
are multiples of the Al lattice constant of 4.04A. each atom calculates its distance r to each of its near

Atoms can be removed from the lattice to study neighbors. If r < r, then the force due to that neigh-

point defects, or arranged differently and given suit- bor is calculated. This is done in turn for every atom

able boundary conditions to study planar defects, and the summed forces used to update velocities and

We model it at a temperature slightly less than the positions. The key to performing these calculations

melting point of Al (9301K) at constant N, V (vol. efficiently is to minimize the number of neighbors

ume), and E (energy). The interaction between that must be checked for possible interactions.

atoms separated by a distance r is assumed to be The first serial algorithm (Si) uses a neighbor list

pairwise and given by the Morse potential to accomplish this. For each atom we create a list of
all its neighbors within a sphere of radius r, > r, by

0k(r) = o (e- 2a(r-ro) - 2e-a(•r•r)) (1) calculating its distance to all the other atoms. This
list is used for a few timesteps to calculate all pair-

with constants 00, a, and r0 defined for Al. The wise interactions; then it is rebuilt before a neighbor
potential function is then cut and shifted so as to could have moved from a distance r > r, to r < r,.
go to zero at a distance r = r,. The computational Building the list requires O(N2) operations, but is
task at each time step is to integrate the set of N amortized over several timesteps.
coupled ODE's given by For N > 2000 atoms it becomes more efficient to

make the neighbor list in the following way. The
nd2 y dO(ri) Zi - atoms are first sorted in one dimension (the ver-

' jdt2 - dr ri(2 tical). Each atom then only need examine neigh-
j;4i bors in the sorted list that are less than a vertical

where the summation is over all atoms within a dis- distance r, away. Hence the entire update requires
tance r, of atom i. The initial conditions are spec- only O(N log2 N) operations due to the sort. The
ifled by choosing a system energy and correspond- sorting algorithm that appears to work best. for this
ing initial velocities for the atoms. As the integra- problem is a shell sort. It is faster than a heap or
tion proceeds, the system equilibrates and various quick sort because the atom list is only partially
effects can be studied and calculated such, as diffu- disordered from its previous state. We note that it
sion, melting, etc. should be possible to construct a variant of the quick

All of the algorithms discussed take advantage of sort which would work in O(N og02 k) time where k
several computational tricks common to MD (see [7] is the maximum distance an atom has moved in the
for example). First and foremost, the force (deriva- list since the last sorting.
tive of equation (1)) is tabulated for 10000 dis- Algorithm SI also takes advantage of Newton's
tances at the beginning of the simulation. When 3rd law so that an atom only need check half ijq
it is needed in a force calculation, a value is simply neighbors. Hence a force is calculated once for each
linearly interpolated from the table. This is a fast pair of atoms, not for each atom in the pair.
operation on the CI{AY-XMP because of its gather- The second serial algorithm (S2) is similar to S1
scatter hardware and is a significant savings because except in the way it calculates the neighbor list. The
energy functionals more complicated than equation atoms are binned into 3d boxes with sides s > r,
(1) (such as pseudopotentials) need only be calcu- and the neighbor list for each atom constructed by
lated once and hence are no more costly to use. The checking atoms in the neighboring 26 boxes (with
hypercubes have ample memory for each processor Newton's 3rd law, only 13 boxes). We note that
to store the full table. Additionally, square roots S2 is a much faster technique than the related algo-
and excess flops are avoided by calculating the forces rithm which bins the atoms at. every time step into

479

boxes of side s > re and does not use a neighbor effective to halve the computation at the expense of
list. This is because the cost of checking all atoms doubling the amount of communication required.
in neighboring boxes every timestep outweighs the The second parallel algorithm (P2) takes more ad-
cost of periodically constructing a neighbor list from vantage of the local nature of the force interactions,
the atoms in larger boxes. similar to S2. Each processor is assigned a fixed re-

gion of space (a small box) and updates the positions
of all atoms within its box in a given timestep. We

Parallel Algorithms require the box side to be s > r, so that each node
need only receive information from its neighboring

The first parallel algorithm (P1) is an adaptation 26 boxes. If r, > s > r, then each node must check
of Si. Each processor is assigned a set of N/Np all the atoms in neighboring boxes at every timestep.
atoms to update for the duration of the simulation, If s > r, then it becomes more effective, as in S2, to
where Np is the number of processors (nodes). Af- construct a neighbor list, use it for a few timesteps,
ter every timestep each node broadcasts its updated and rebuild the list periodically.
atom positions to every other node. This means To insure each box can get information from its
each node receives the current xyz positions of all 26 3d neighbors with only nearest neighbor commu-
N atoms, which it uses to do force calculations for nication between nodes, the hypercube is mapped
the next timestep. Similar to S1, each node builds into a 3d mesh, Gray coded in each dimension. The
a neighbor list for its subset of atoms, so that it can required information can then be acquired by each
efficiently calculate the required forces. As in SI, node with only 6 exchanges. First, each node passes
the neighbor list is rebuilt every few timesteps. its atom positions to its west neighbor, then to its

The communication portion of P1 performs the east. Next, it passes all of its accumulated informa-
following task. Each node has a small unique piece tion to the north, then to the south. Finally, the
of a large vector. We want every node to end up with entire list of atom positions is sent to its upward
a copy of the full vector. This can be done quickly neighbor, then to its downward. In addition, each
using the hypercube's connectivity. Each node first node must pass along special information for atoms
exchanges information with an adjacent node in the that left its box during the previous timestep. This
vector; it now has a contiguous piece of the vec- includes velocities, various flags, and when a neigh-
tor twice as long. It then exchanges this piece with bor list is being kept, the neighbor list for the atom
a node two positions away; then with a node four itself. Each node that receives the extra informa-
away, etc. At the last step each node exchanges half tion checks to see if the atom has moved into its
the vector with a node Np/2 positions away. Thus box. Packing this information into message buffers
the global accumulation of the vector is done in d ex- and reorganizing each node's list of current atoms
changes (read/write pairs) where d is the dimension as atoms move between boxes is all extra overhead
of the hypercube, each exchange being done with a unneeded in P1.
neighboring node (in the hypercube topology). We The computation portion of P2 is similar to S2,
note this method exchanges the same amount of in- except that again Newton's 3rd law is not imple-
formation as the circular ring scheme suggested for mented, since it would require force values to be
the long-range force problem [3], but requires only d exchanged. Also, although the fraction of time
messages to be sent (and read), instead of Np. This spent on communication is not always as high as
offers a large savings on the hypercubes where the in P1, the efficiency of the 6-exchange mechanism
cost of message start-up is significant. It does re- described above would be partially lost if each node
quire each node to have sufficient memory to store only needed information from 13 neighbor boxes in-
the entire position vectors, but this is not a difficulty stead of 26.
on the hypercubes for the problem sizes considered
here.

The computational work required in P1 for each Results
node is not simply that of SI divided by Np, be-
cause Newton's 3rd law is not implemented. To Algorithms S1 and S2 were implemented on a sin-
do so would require the force vectors be globally gle processor of a CRAY-XMP with special atten-
exchanged at each timestep similar to the position tion given to insuring the critical routines (neigh-
vectors. Since, as we shall see, communication costs bor list formation, force calculation, the integra-
are roughly 50% of the total execution time for this tion step itself) vectorized. Algorithms PI and P2
algorithm (on the full NCUBE/ten), it would not be were implemented on both the NCUBE/ten and the

480

NCUBE 2 hypercubes. The NCUBE/ten at San- Table I: CPU time (in seconds) for 100 timesteps
dia has 1024 nodes and the NCUBE 2 currently has of the algorithms on various problem sizes. The
64 nodes; the latter will soon be upgraded to 1024 serial times S1,S2 are for the CRAY-XMP; the
nodes (maximum configuration is 8192 nodes). Both parallel times P1,P2 are for the NCUBE 2 (in-
P1 and P2 ran 3.3-3.5x faster (per node) on the ferred from NCUBE/ten times). The Np and
NCUBE 2 than on the NCUBE/ten for all problem Box columns refer to P2 and are explained in the
sizes and numbers of nodes. As will be discussed text, as are the two special lines at the bottom.
below, this behavior should hold up to 1024 nodes [N Si1 2 S2 P1 P2 [Np I Box
on the NCUBE 2. Hence, the timings given for the 256 0.65 0.80 1.09 4.16 64 A
NCUBE 2 (for more than 64 nodes) are NCUBE/ten 500 1.50 1.65 1.64 10.4 64 A
times divided by 3.3. 864 3.5 2.75 2.23 7.4 64 B

The particular choice of parameters for which tim- 864 3.05 2.75 2.23 7.55 64 B
ings are given is r, = 4.04A1 (2nd nearest neighbor 1372 6.10 4.25 2.90 11.8 64 B

distance in A]) and r, = 5.5A1, with recalculation 2048 11.5 6.25 3.60 4.51 512 A

of the neighbor list done every T,, = 20 timesteps. 2916 19.5 9.20 5.82 8.29 512 A

The choice of r, and T,, is somewhat arbitrary and 4000 31.0 12.0 7.70 10.9 512 A
in fact optimal choices depend on the temperature 5324 46.6 16.2 12.0 6.98 512 B
and other parameters peculiar to a particular run of 6912 70.2 20.8 15.7 9.82 512 B
the simulation. For comparison purposes with other 8788 100 27.1 21.9 13.1 512 B
CRAY timings [8] we chose not to implement an 10976 140 34.0 30.8 15.0 512 B
automated recalculation procedure; instead we use [84096 16x8x8 4.64 1024 A
these choices as representative values. The system 1064 22xllxl I 8.52 { 1024 B
sizes studied were from N = 256 atoms (4x4x4 fcc
lattice) to N = 10976 (14x14x14 fcc lattice).

The timings for the algorithms are listed in Table
I and displayed in Fig. 1. The data shows that 50

for the CRAY, S2 is the fastest algorithm except W
for the tanallebt problems. As the graph shows, the Si
work it requires is linear in N. Algorithm Si has 0 40
the O(N log19 N) sorting dependence that begins to E•
slow it for larger N. S2

The P1 times are all for 1024 processors except 0
for N = 256 and N = 500 which can only use 256 30
nodes and N = 864 which uses 512. As Fig. I shows ý.

(n P1
P1 times increase roughly linearly in N, despite the '0

C
O(N 2) cost of creating the neighbor list. This is be- 20

0 2
cause while the fraction of time spent on the neigh- P2
bor list calculation increases from 3% to 54% (as N
increases from 256 to 10976), the fraction spent on
communication actually decreases from 72% to 39%. F- 10 o

The P2 times reflect the fact that boxes cannot CL
be smaller than the potential cutoff re, so we are 0

restricted to using a small number of nodes for the 0
smaller problems. The number of nodes used by P2 0 2000 4000 6000 8000 10000
is shown in the Np column. The "Box" entry is A if Number of Atoms
P2 used small boxes (r, > s > re). A B entry indi-
cates boxes of size s > r, could be used and hence Fig. 1: Timings on the CRAY-XMP (S1.S2) and
a neighbor list was formed and taken advantage of NCUBE 2 (PI,P2) for all 4 algorithms. Data values
as discussed in the previous section. The changes inA, B an N~as inceass cusethe ink inthe are from Table I. Thle isolated circles are the last twoA , 13, an d N p as N in creases cause the kinks in the ta l en r s. T e i m g s nd c e th C B 2
P2 curve. Nevertheless, P2 is the fastest of all the te
algorithms for problems large enough to use most of (with 1024 nodes) is roughly equal to the CRAY for

the available processors. smaller problems and up to twice as fast on larger

The final two lines in Table I illustrate an impor- ones.

481

tant point about P2. These are two problems with loop overhead. Timing just the communication por-
dimensions somewhat artificially chosen so as to use tion of P1 gave A, = 5 0 0 ps, Ab = 1.5ps for the
all 1024 processors. For example, the 22xlx11 lat- NCUBE/ten and A, = 200ps, Ab = 0 .4 ps for the
tice (10648 atoms) is a near-optimal fit for 1024 NCUBE 2. Hence, there is at least the same factor
boxes with side s = r.. The fast simulation times for of 3.3 speed-up in the Ab term which dominates the
these two cases show the NCUB£ 2 can be consider- time required to pass the large messages used by P1
ably faster than the CRAY if the physical problem and P2. Since both the computation and communi-
size can be tailored to match the power-of-two mesh cation portions of these algorithms are 3.3x faster,
restrictions of the hypercube topology. While this we expect the NCUBE 2 curves in Fig. 2 to follow
is the inverse of the way the experimenter typically the NCUBE/ten curves out to 1024 nodes.
thinks of configuring a simulation, it is a useful trick
if applicable. 103

Data on the parallel efficiencies of these algo- o NCUBE/on
rithms provide a means of predicting timings for C-

runs with larger N or with Np - 1024. Typical (A NCUBE2
timing results for increasing Np are given in Fig. 2 E
for algorithm P1. The data shows that the speed- P
up is nearly linear until Np = 128. For larger Np, o 102

the time spent exchanging atom positions (given by "
the dotted lines) becomes a significant factor and in
fact eventually sets a limit on the speed achievable
by the algorithm. C0

Actual timings from Fig. 2 show that for Np = 0 1
0 101

64 (when there are N/Np = 32 atoms per node), .
the efficiency is 83.3% (speed-up of 53.3). This was E
generally true for all problem sizes with the same
N/Np ratio. Similarly, the efficiency fell to - 55%
on all problem sizes with N/Np • 10. Algorithm P2 ,
uses only local communication, and so its efficiency 100 4,
is also constant for a given N/Np ratio (although 0 1 2 3 4 5 6 7 8 9 10

in practice, the mesh restrictions make it impossible Hypercube Dimension d (N 2 d)
to hold it constant as N increases). We found for p
boxes of size s = r, the fraction of time spent on
communication was 15% and for s = r. it was 50%. Fig. 2: Timings on the hypercubes for the N =

Fig. 2 also illustrates the 3.3x speed-up of the 2048 problem (using algorithm P1) as a function of
NCUBE 2 vs. the NCUBE/ten on this code for up nodes used. The dotted lines are the time spent in
to 64 nodes. We justify our extrapolation of this communication, which becomes a dominating factor
factor to 1024 nodes in the following way. For small
numbers of nodes, computation is the dominating
factor, and the NCUBE 2 is 3.3x faster than the Caveats and Comments
NCUBE/ten (on this code) as the solid lines in Fig.
2 indicate. For larger numbers of nodes, communi- (1) The parallel results are all for single precision
cation effects must be considered. Communication code. The CRAY timings are for double precision
(message passing) between neighboring nodes on the (64 bits) since that is the only option. MD codes do
hypercubes can be modeled by the equation not typically require double precision accuracy. If it

T = A, + nAb (3) were needed, the hypercubes run in double precision
(on this code) about a factor of 1.3 slower.

where T is the time for a message of n bytes to (2) All the CRAY results are for one XMP pro-
be written or read, A, is a start-up time, and Ab cessor. Some of the same techniques used in P1 and
is the per-byte time. The global vector accumu- P2 could be used to adapt the serial algorithms for
late discussed above can be used to determine an multiple XMP processors.
effective A, and Ab where now every node in the (3) Our model problem implemented a constant,
hypercube is communicating simultaneously and so NVE ensemble. Another popular choice is to hold
the derived A, contains some synchronization and N, P (pressure), and T (temperature) constant - the

482

NPT ensemble. This requires rescaling the box di- reduced. Furthermore, there are two issues touched
mensions and velocities at each timestep and would on in this work that merit further research. The first
require a small additional exchange of information is whether a sorting enhancement to algorithm P1
for algorithms P1 and P2. This communication (as is implemented in Si) would increase its speed.
overhead would not be present in the serial versions. A second issue is whether a hybrid version of P1

(4) More sophisticated multi-body forces or ro- and P2 might be faster for some problems. For ex-
tational torques are often used in short-range MD ample, problems that can only use 512 3d boxes
simulations. This increases the amount of computa- might use 2 nodes per physical box to perform the
tion needed relative to communication. Thus, better computational part without losing too much to ad-
parallel performance versus the CRAY could be ex- ditional communication. It is also not clear whether
pected for cases more computation intensive than forcing a power-of-two mesh to fit the problem di-
our simpler pair potential example. mensions (preserving nearest neighbor communica-

(5) Though the force calculation is the key com- tion) is always best. For example, a 10xl0xl0 mesh
putational kernel in the MD problem, the quantities would fit some problems well and could be run on
of interest are often global parameters like pressure, 1024 nodes, with 24 nodes idle. The issue is how to
structure factors, diffusion coefficients, etc. These embed such a mesh into the hypercube with a mini-
are usually calculated once every 50 or 100 timesteps mum communication penalty. The answer might be
and add little to the overall time required for the different on the NCUBE/ten and NCUBE 2 since
simulation in the serial case. The same is true for the latter has cut-through routing for non-nearest
the parallel case; they can typically be calculated neighbor communication. We plan to pursue these
from each node's local information and the value issues in the future.
accumulated quickly as a global sum.

Acknowledgments
Conclusions

The author would like to thank Steve Cook at

In summaiy, we have implemented two parallel Cornell University for tips on vectorizing MD codes

algorithms for a common MD problem, the short- for the CRAY, particularly the use of the sorting

range force system. Algorithm P1 exchanges global technique. lie also thanks Cindy Phillips at Sandia

information in its communication portion, but uses for useful discussions of sorting algorithms relevant

only local information for computation. It has the to the MD problem.

advantage of simplicity and the ability to use more References
processors on small problems. Thus it is a good
choice for small N. Algorithm P2 takes advantage [1] D. K. Chokappa, S. J. Cook and P. Clancy, "Nonequilib-

rium Simulation Method for the Study of Directed Thermal
of locality for both the communication and compu- Processing", Phys. Rev. B, 39, 10075 (1989).

tation, but at the cost of significant overhead and (2] S. J. Plimpton and E. D. Wolf, "Effect of Interatomic
some difficulty in mapping the physical geometry to Potential on Simulated Grain-Boundary and Bulk Diffu-

the hypercube topology. When the 3d mesh fits well, sion: A Molecular-Dynamics Study", Phys. Rev. B, 41, 2712P2 i th faser hoic, prtiulary a N icreses (1990).
P2 is the faster choice, particularly as N increases (3] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon,
so that a large number of processors can be used. and D. Walker, Solving Problems on Concurrent Proces-

On the NCUBE 2 with 1024 nodes these algo- sors, Vol. 1, (Prentice-Hall Inc., Englewood Cliffs, NJ, 1988),
rithms should be faster than vectorized CRAY-XMP chaps. 9, 16.

[4] H L. Nguyen, H-. Khanmohammadbaigi, and E.
algorithms for problems with more than 500 atoms. Clementi "A Parallel Molecular Dynamics Strategy", J.
However, the difference in speed is not great ex- Comput. Chem., 6, 634 (1985).

cept for special cases where the physical geometry (5] P. A. Flinn, "Molecular Dynamics Simulation on an
the hypercube mesh. Nonetheless, we iPSC of Defects in Crystals, in The Third Conference on Hy-

maps nicely to tehpercube Concurrent Compputers and Applications, Vol. 2, (ed.

believe this is the first time hypercubes have been by G. Fox, ACM Press, 1988), p. 1303.

shown to be competitive with a CRAY for this class [6] J. B. Drake, A. K. Hudson, E. Johnson, D. W. Noid,
of MD problem. G. A. Pfeffer, and S. Thompson, "Molecular Dynamics of a

While we are confident our CRAY timings are Model Polymer on a Hypercube Parallel Computer", Coin-
put. Chem., 12, 15 (1988).

close to optimal for this problem [8], we do not [7] M. P. Allen and D. J. Tildesley, Computer Simulation

claim the same for the parallel case. We expect the of Liquids, (Clarendon Press, Oxford, 1987).

NCUBE 2 times to improve by a factor of two as [8] M. Schoen, "Structure of a Simple Molecular Dynamics
FORTRAN Program Optimized for CRAY Vector Processing

its compilers mature and memory wait states are Computers", Comp. Phys. Comm., 52, 175 (1989).

483

Transputer Modelling of Be Star Circumstellar Discs

M. J. Gorrod J. Kastner
M. J. Coe

High Energy Astrophysics Group, Department of Astronomy,
Department of Physics, University of California,

University of Southampton, Los Angeles,
Southampton, CA 990024, USA.

S09 5NH, U.K.

Abstract constant density, temperature and thickness, into an

A model for the infra-red emission from the cir- ensemble. The resulting model can therefore, in princi-

cumstellar disc of a Be star is presented. The structure pie, describe a circumstellar disc with any desired den-

and other physical parameters of this disc can be ad- sity, temperature and/or geometric structure. In Sec-

justed to investigate the infra-red and optical line emis- tions 4 anl 5 we describe how this modeling procedure

sion from such an envelope. The model presently under is well suited to parallel processing, which reduces the

investigation is based on the early work of Drake and computation time to a practical level. We also present

has been computed on a it VAXII and a Meiko Comput- preliminary fits to optical and infra-red observed Be
star spectra obtained contemporaneously in both wave-

ing Surface. The parallel implementation of this model s
allows a more complez and realistic structure to be mod- bands.

elled in a reasonable timescale. Both an algorithmic and
event decomposition of the code have been investigated 2 Transputer Systems
and the two methods are compared. The model has been
applied to several Be stars with good agreement with ob- The transputer is the computer on a chip (processor,
servational data. memory and communications) built by INMOS Ltd.

It implements the communicating sequential processes

1 Introduction (CSP) model [4] of computation of which its native lan-
guage, OCCAM. is an implementation. Memory is local

The spectra of Be stars are characterized by the pres- so the memory handwidth grows in proportion to the

ence of emission lines of hydrogen and, typically, infra- number of transputers (unlike shared mnenmory inultipro-

red excesses. Recent studies have estal)lished a corre- cessor machines). Each transputer also has an external

lation between the line and infra-red intensities, and memory interface which extends the address space into

have attempted to explain this relationship in terms of off-chip memory, although access to this is slower than

models of the emission from all ionized circumstellar en- for the on-chip memory.

velope or disc [1,2]. The optical lines and infra-red con- Transputers use point to point comnmnication

tinuum are generally attributed to recombination and links to communicate with other transputers. Each

free-free emission, respectively. These are treated self- transputer has four of these links which correspond
consistently by Kastner andl Mazzali [2] in that the same to two OCCAM communication channels, one in each

emitting region is responsible for both spectral features, direction. These links are synchronous. bi-directional
The observed shape and intensity of the infra-red con- bit serial links which can sustain a data rate of up

tinuum places constraints on the density and structure to 20Mbits/sec. They can usually be switched (either

of the ionized region [3], which in turn determines the manually or electronically) so as to permit any network

emission line intensity. The predicted line strength may (subject to the restriction of four links per tranisputer)

then be compared with observation in order to test the and as they are only point to point links, the coniuni-

reliability of the model. nications bandwidth does not saturate as more trans-

Here we demonstrate the improvements we are puters are used (unlike with single or multiple shared

making to the approach of Kastner and Mazzali [2] bus systems).

through the use of the enhanced power of parallel pro- The T800 transputer is a 32 bit, 10 MIPS proces-

cessing. The modeling technique, discussed in Section sor with 4 KByte of on-chip memory, a 64 bit floating-
3, consists of combining separate computations of the Point co-processor (which can operate concurrently with
line and continuum spectra of ionized slabs, each with the central processor) and capable of sustaining 1.5

0-8186-2113-3/90/000010484501.00 0 1990 IEEE 484

Mflops. It is based on a RISC (Reduced instruction set) line of sight
architecture and requires little external support logic,
making it an ideal programmable building block for a
concurrent system.

All the work discussed in this paper was devel-
oped on a Meiko M1O Computing Surface containing
T800 transputers (the transputer array) and a T414 ----
(the local host) which communicates via a DR 11 inter- z
face to a 1#VAXII computer (the host machine).

The Meiko compiler generates object code from
standard FORTRAN code which can be linked into a
process that is referenced from OCCAM as a library
routine, communicating with its environment using chan-
nels. System channels can be used by the standard Figure 1 Schematic representation of the (hsc nodl.
FORTRAN READ and WRITE statements to conmmu-
nicate with the filing system and terminal. The proto- Ne,,i = N,,o(ri/ro)-n where N,,i is the electron density
col of these channels is the same as that used by the of the ith ring and ri its inner radius. The overall disc
OCCAM library routines for accessing the filing sys- spectrum is simply a sum of the individual slab mood-
tein and terminal, allowing the interconnection of both els, appropriately weighted by their relative geometric
OCCAM and FORTRAN processes. areas. Thus the relevant parameters which define a

There are also user channels, which can be ref- constant thickness disc model are the inner disc radius.
erenced from FORTRAN code via Meiko supplied rou- electron temperature, density index (n) and emission
tines. These can be used to communicate with other measure (N 2,,oZ, where Z is the disc thickness). Of
parallel processes. In this way FORTRAN code can be these, only the latter two affect the shape of the IR
viewed as a communicating process in the same way as continuum [2]
ail OCCAM process. using the same channel protocols.
Comiiunication via these user channzels is nmnch faster
than conununication via the system channels dui, to the 4 A Parallel Implementation of
simpler protocol and the al)sbence of formatting of the the Model
lata.

The parallel implementation of tie model allows us to

3 A Constant Thickness Disc explore aii(l implicitly combine the Drake models with
only minor modifications to the code by using a iniaster

Model processor to control the overall simulation. The prob-
lenii of parallel decomposition of sinulations have been

Our computational nilethod begins with the FORTRAN extensively documented [7,8]. The two approaches (he-
coded model developed by Drake [5,6] which uses aii scribed here are an event decomposition and an algo-
escape probability approach to calculate the line and rithlnic decomposition. which we have tried to formalize
continuum emission from a static hydrogen slat. The with the mathematics of orderings [9].
imodel takes into account the change in the escape prob- The changes are to some of the I/O code and
ability due to the presence in the line profile of broad provision of a harness and inaster process to support
Stark wings. The atomic transition rate equations in- these changes. InI this way any modifications to the
chide all the collisional and radiative ternis for energy Drake model (do not require major changes in the trans-
levels up to n = 30, with angular mnonientuni 1sublevels puter implementation. Time input of relevant varying
treate(d explicitly for n <4. It has been shown [61 that disc parameters is by user input channels and output
such an approach does not cause appreciable errors for of the required data by user output channels. Ally non-
the density range considered. The slab) mo(lel has uni- essential screen and file output is conulielited out. All
forin thickness, electron temperature and deensity, all of other file input is left unchanged, although keyboard in-
which are input parameters. put unmust be redirected to be either froin a file or fromn

A set of slabt models of given thickness and teni- a user channel. Diagnostic screen ouitl)Ut is sent by the
perature but Inonotonically (lecreasing density may be harness to the supervisor bus, a global low bandwidth
coumbined to create a simplhe model of a cylindrical cir- connumnication bus, where it is echoed to the screen by
cumnstellar disc of uniform temperatuire [2]. The ra- the local host.
dial density structure is a step function of the formn In this way the mininnanimount of niodificationi

4Wi

is required to the original FORTRAN code. To imple- This is due to work being buffered further down the
ment an event paradigm the harness forwards the flu- pipe where it is not accessible to workers earlier in the
ing system using Meiko supplied routines and forwards pipe. The effect of this can be reduced by limiting the
data using a modified OCCAM load balanced pipeline degree of data buffering using buffer handshaking or al-
[10). Forwarding the filing system has the disadvantage ternatively by implementing a work request mechanism.
that each transputer will request a copy of each file, in- Such a mechanism increases communication overheads
creasing communication across the low bandwidth in- and introduces a work request latency time, even if a
terface with the pVAXII and there is also a request more appropriate topology such as a tree is used[II].
latency time which increases as the number of trans- We now consider a simple algorithmic decom-
puters in the pipe increases. However the volume of position based on a data flow network, to reduce the
data is typically low and only loaded initially to define turnaround time and memory required by each trans-
the model. The alternative of replacing all file input puter. This can be incorporated in a load balanced
with user channel input would result in a decrease in pipeline to further increase throughput.
this initial time but a large increase in the amount of The decomposition of code in to parallel comn-
modification to the FORTRAN code and to the master municating processes relies on identifying the data flow
process. within the code and independent sections of computa-

tion. To identify the interdependence of a sequence of
sequential processes we can define a partial order (-<)

Host--'--- puerk C rra,+ on the code in addition to the natural total ordering
HicroVAXII Gra•ihcs Su race 1 (<)[12]. Consider sections of code P. Q. R then

Master P < Q,vaor(P)flcc(Q) $ {} => P -< QI m w "'t I a n d

_ - - - --- -. - .. P -- Q,kQ P R : P -- R

rness assi where rar(P) is the set of variables that P can
assign to and arc(Q) is the set of variables accessed

User written Fortran by Q that it does not initialise (cf. Bernstein's Con-
ditions [13)). Having ordered sections of our code we
have identified the interdependence since P -A Q and

Figure 2: Decomposition of code into a pip~eline. Q -A P implies P and Q can be p)erforined concurrently.
It also indicates how processes can be pipelined.

Figure 2 shows the configuration of the system Clearly this ordering is only applicable to se-
for an event decomposition of the code. The local host quences of CSP processes of the form P: Q. To extend
acts as a local file server, handling all communication it to code embedded in control structures we can either
with the host machine. The master processor generates consider only sections of code for which this is true or
the relevant data to send to each worker. Each worker look at the traces tie. the sequence of possible events)
processor executes its own copy of the Drake model with of the code. Sequences of events can be identified that
tle parameters sent to it from the master and sends the are independent with the above partial order and this
resulting spectrum back to the master. The various can be related to the FORTRAN code. The Hasse di-
slab spectra are combined by the master to produce agram of the partial order on the set of l)rocesses indi-
the composite spectrum. which may be displayed on a cates the topology and interconnection of the processes.
graphics monitor as well as written to disk on the host where each line segment symbolizes a coznnumnication
machine, link over which required shared data must be passed

This form of decomposition suffers from a numi- (cf. Precedence Graphs [14]). It also indicates any sym-
ber of problems. The first is that it requires a large chronization points. The direction of communication is
amiouint of nmemory for each transputer aý.,l secondly; indicated by the partial order. Such a (lecomposition
if we are considering a single model run then there is deadlock free due to the absence of any," circular wait
is a minnimum turnaround time defined by the length condition [4].
of time to comuiute one Drake model. This is a coin- The remaining p)rob)lem is to map this diagrami
1ni1 probleim with event parallelism in that it increases onto the topology of the machine. This will typically
throughput but does not reduce turmiarouid time. A involve the use of either a multipurposc harness [15]
further prol)hem is that there is an overhead in enip- or CS tools [16]. Alternatively the processes can be
tying the pipe, when work will not be load balanced. mapped directly. The problems of mappiing processes

486

Output

.* ' N . . .I.i'" ' "I•'-"-'"r-•'r-""-''-'

-I..* S* C11-,o - 'ht.% °,"

s I

L. L_-126

a a 3.7 3.0 3.9 4 4 1 4.2 43 4.4 4,5

input

, DmiooFigure 4: Preliminary fit to observed continuum of 66
SDecomposition onto tronsputers Ophiuchii.

r-"

L -_ Looped sections of code further refined
ability of Be stars. A Kurucz model stellar atmosphere
[18], computed by the ATLAS6 program on a CRAY,

Figure 3: Hasse diagram for the Drake model which best corresponds to the spectral type of the cen-
tral star is combined with a disc model computed as
described in Section 3, to give the dashed line of to-

onto processors have been documented in [17]. tal emission. A least squares fit has been achieved

Figure 3 shows the decomposition of the 3000 by normalizing the Kurucz model to the bluest opti-

line Drake model code. The processes are mapped so a.s cal continuum point (i.e. assuming that the stellar at-

to minimise execution time and load balance computa- mosphere dominates the spectrum at this wavelength)

tion. We have considered coarse grained decomposition and then varying the disc model parameters. The fit

of the code such that the increased communication time demonstrates clearly that the combination of a stellar

is less than the overlapped computation time. Further atmosphere with free-free emission from an ionized disc

decomposition of each section of code can be performed can well describe the observed continuum (as well as the

to give a finer level of parallelisation and there will ex- Balmer emission; see [2]). However, given a comprehen-

ist an order-preserving mapping between each level of sive sample of Be stars, the model as presently encoded

refinement, is less satisfactory in some cases (In particular, in the

The decomposition of the code has relied heav- case of the X-ray binaries). We feel these cases may

ily on the structure of the code, with most of the dis- be attributed to the present state of sophistication of

tributed processes being FORTRAN subroutines. In the model and a lack of coverage of parameter space.

this way the process of calling and returning from a Both problems we expect to surmount with the use of

subroutine, copying the values of shared variables and transputers.

results is closely matched by the effect of a communi- The time to calculate 50 constant thickness mod-
cation to a CSP process [4]. The algorithmic decompo- els consisting of 6 rings for 200 wavelength points is
sition requires less than 200K per processor, compared shown in Figure 5. The graph is of VAX CPU time
to 350K required for the event. decomposition. against elapsed time on the Computing Surface, so that

an observed speed up of about 50 times can he observed
on a pVAXII, when considering the event decomposi-

5 Results tion. The transputer array has the advantage that fur-

ther transpnters can be used with only minor modifica-A preliminary fit to thle observed optical and near-IR tions to the harness code to provide greater speedlups

continuum of a Be star, (66 Ophiuchii), is shown. The for larger models. This will be required for the fdture

data w ere obtained contem poraneously in M arch 1988 enharger m odel and wo e xpqore ade qu t e

to minimize confusion arising due to the intrinsic vari- the parameter space.

4V

7 Acknowledgments
0 This project is primarily funded by the British National

Space Centre, but support and advice from Miles Ches-
UvAxI- ney and others at Meiko Ltd. as well as Steve Drake

(NASA/Goddard) is also much appreciated. Martin
Gorrod acknowledges an SERC studentship and the
support and use of STARLINK. U.K.

0U 10000

SAlgorithmic Decomposition R eferen ces
E

Event Decomposition [1] Chokshi, A. & Cohen, M. (1987) IR Excess in Be
Stars, Astron. J. 94.123.

"[2] Kastner, J. H. & Mazzali, P. A. (1989) Infrared

1000 I Excess and Ho Luminosity in Be Stars: A Con-

i 2 3 4 5 6 7 83 stant Thickness Disc Mode), Astron. Astrophys.
Nuiiber of "1 ranspuLtei's 210, 295-302.

Figure 5: Timing comparison for 50 ring constant thick- [3] Waters, L. B. F. M. (1986) The Density Structure
ness model. of Discs Around Be Stars Derived from IRAS Ob-

servations, Astron. Astrophys. 162,121.

The efficiency [7] of the implementation is 61% [4] Hoare, C. A. R. (1985) Communicating Sequential
for the algorithmic decomposition and > 98% for the Processes, Prentice-Hall.
event decomposition. This does not include the mas-
ter processor, only the number of workers. For a low [5] Drake, S. A. (1980) The Emission Lines and Con-
number of models the efficiency of the event decomposi- tinuum from a Slab of Hydrogen at Moderate to
tion can drop to below 90% due to work not being load High Electron Densities, Ph.D Thesis, University
balanced while the pipe is being emptied. The effect of California, Los Angeles.
of this on our implementation has been reduced since [6] Drake, S. A. & Ulrich, R. K. (1980) The Emission-
data is not over buffered.

Line Spectrum from a Slab of Hydrogen at Moder-
ate to High Densities, Astrophys. J. Suppl. 42,351.

6 Conclusions [71 Hey, A. J. (1986) Parallel Decomposition of Large

A substantial increase in the performance of running Scale Simulations in Science and Engineering, Ma-

mathematical models can be achieved by using concur- jor Developments in Parallel Processing (UNI-

rent processors. The values given suggest 1-2 orders of COM Seminar), London. December.

magnitude reductions in run times are easily accessible [8] Fox, G. C. (1989), Parallel Computing Comes of
when comparing the performance of a 1,VAXII and an Age: Supercomputer Level Parallel Computations
array of T800 transputers. at Caltechi Concurrency Practice and EzperienceWe note that event parallelisation is an easy Vol. 1. No. 1.

form of parallelisation to implement but has disadvain-

tages in the amount of memory re(luired by each proces- [9] Priestley, H. A. P. (1987) Lattices and Boolean Al-
sor. Algorithmic decomposition requires more effort to gebras, Mathenmatical Institute, Oxford (April).
implement and it can be difficult to obtain high efficien-
cies. although it requires less memory per processor and [10] Bowler, K. C. et al.(1988) An Introduction to OC-

can reduce turnaround timime. The sanme enhalinceients CAM2 Programming. Physics Department, Uni-

may be enjoyed by many other numerically intensive versity of Edinburgh, U.K. Chapter 5.
computational problems. [11] Pritchard, D. J. (1987) Mathematical Models of

Distributed Computation, Proc. 7th OCCAM User
Group Technical Meeting, Grenoble.

488

(12] Lamport, L. (1978) Time, Clocks and the Order-
ing of Events in a Distributed System, Communi-
cations of the A CM Vol. 21, No. 7.

[13] Bernstein, A. J. (1966) Program Analysis for Par-
allel Processing, IEEE Transactions on Electronic
Computers Vol. EC-15, No. 5.

(14] Peterson, J. & Silberschatz, A. (1985) Operating
System Concepts, Addison Wesley.

[15] Clarke, L. J. (1988) Tiny communications Harness
User Manual. Edinburgh Concurrent Supercom-
puter Project.

[16] Meiko Ltd. CS Tools - A Technical Overview

[17] Shen, H. (1989) Self-adjusting Mapping: A Heuris-
tic Mapping For Parallel Programs on to Trans-
puters Networks, Proc. 11th OCCAM U.qer Group
Technical Meeting, Edinburgh.

[18] Kurucz, R. L. (1979) Model Atmospheres for G, F,
A, B, and 0 Stars, Astrophys. J. Suppl. 40,1.

489

A Hypercube Application in Large Scale
Composite Materials Modeling

C. H. Baldwint, S. D. Durhamt , J. D. Lynchl, W. J. Padgettl
t Parallel Supercomputer Initiative

t Department of Statistics
University of South Carolina

Columbia, S.C. 29208

Abstract standard laboratory test procedures and actual appli-

This large scale application combines several areas of re- cations is highly desirable.

search to develop computational models for simulating the The structure of a single unidirectional lamina of

failure mechanisms of composite materials consisting of brittle fibers in a matrix that will be utilized is based

brittle fibers (such as carbon) embedded in a matrix ma- mainly on Rosen's [11] work. The unidirectional lam-

terial (such as epoxy resin). The simulations combine the ina to be treated consists of parallel fibers in an other-

ideas of structural stress analysis, numerical linear alge- wise homogeneous matrix material. There is a bond-

bra, and visualization techniques to model the behavior of ing of the fiber surfaces with the matrix material which

fibrous composites under uniaxial tensile load. This will tends to transfer load to other fibers. Rosen [11] de-

allow laboratory experiments to be extrapolated more ac- scribed the "ineffective length" 6 as the length of seg-

curately to real applications, providing an enhanced ca- ment around a fiber break required to redistribute the

pability to optimize designs of large structures made of load born by the broken fiber. The composite lamina

composite materials with less extensive and costly exper- can be considered as a chain of such segmeuts, each of

imental programs. Further, system performance and re- length 6, referred to as the "chain of bundles" model.

liability may be improved substantially. In this paper a This important feature provides a natural discretiza-

brief discussion of the theory of composite materials as it tion of the composite in the fiber direction which can

relates to the simulations will first be given. Next the pro- be exploited computationally.

cedures used to generate and analyze the structure will be
presented. The computational techniques used to perform Modeling Procedures
the simulation will be given as well as results from selected In this application, a pinned-jointed structure de-
test cases. A summary of results and future directions in picting a unidirectional composite lamina, shown in
this research will be given at the end of the paper. Figure A, is utilized as a stress model.

Introduction

Composite materials consisting of high-strength, Figure A.

high-stiffness fibers embedded in a matrix are lighter
than traditional materials, such as metals or wood, and
are of considerable interest in current engineering prac-
tice. However, composites are not being used as much
as they should be. "The basic reason surely is the un-
certainly that exists in determining their strength and
safe-operating lifetime in service conditions - partic-
ularly when defects could be present " [9]. It is the
fibers, typically of carbon, boron, or Kevlar, that give
the material its uniaxial tensile strength parallel to
the fiber direction. An understanding of the failure
processes of such materials has been pursued for a
number of years by many researchers, including Rosen
[11,12], llarlow and Phoenix [7,8], Wagner, Phoenix,
and Schwartz [16], Smith [13,14], Durham, Lynch, and The fiber centers are represented in the model as ver-
Padgett [3,4], and others. Still a fully satisfactory the- tical line seqments, each of length 6, joined end to
ory of composite failure is yet to be achieved. It is end while the lines of load transfer through the body
clear that a general theory providing a bridge between of the fiber and the matrix material are represented

4900-8188-2113-3/90/000010490$01.00 ©01990 IEEE

as diagonal line segments connected to the fiber seg- in question, each column of A represents a particu-
ments at the joints. Of course, the actual fiber takes lar degree of freedom for the structure while the rows
up most of the space between vertical line segments with non-zero entries in that column correspond to the
which are located at the centers of the fibers. Thus member attached to that node. With a regular order-
the direct forces within the fibers are experienced along ing of nodes and members it is possible to compute, in
the vertical segments and shear forces are transferred parallel, the individual columns of A. Note that the
diagonally across the fibers, through the matrix and maximum number of nonzero entries in any column is
onto the adjacent fibers. The resulting pinned-jointed 6, substantially reducing the memory requirements for
structure appears as a triangular mesh. A tensile load the column data. Likewise, with a regular ordering of
is applied in the fiber direction and the stresses in the members, the individual elements of C can be easily
members computed. computed. The storage structure we chose to use for

The analysis of the structure follows the math- each column is given in Figure C.
ematical methods set forth by Strang [15] for solving
stress equations derived from jointed truss structures.
Basically, an incidence (or in this case elongation) ma- Figure C - Column Storage Structure
trix A is formed from the geometrical nature of the
structure. The matrix A relates displacements at free column-vector:

nodes to elongations in the attached member, while rows = number of nonzero values in column

AT relates internal forces in the members to exter- index= integer values for non-zero member numbers

nal forces at the free nodes. In addition, a materi- value = values of non-zero entries

als matrix C is formed from the elastic constants for
each member. The matrix C relates elongations in Thus, each column will occupy no more than 52 bytes.
the members to internal forces in the members, by the The solution of the equation (ATCA)- 1 f = x is
Youngs' moduli. Once these two matrices are com- the most computationally intensive portion of equa-
puted, the stiffness matrix K for the structure is com- tion 2 and requires the most efficient parallel imple-
puted by mentation. Since A and C are sparse it would be

K =ATCA (1) advantageous to use solution techniques which pre-

and given the displacements at the free nodes x the serve their matrix structure. As the direct factoriza-

force balance (equilibrium equation) at the nodes f tion of the stiffness matrix would necessitate comput-

is computed by ATCAx = f. Figure B outlines this ing K = ATCA and then factoring K by some method

procedure. thereby losing the previously described sparsity struc-
ture, we chose to use an iterative technique and work
directly with A and C. Iterative techniques in gen-

Figure B - The Stiffness Equation eral have been shown to be very efficient when applied
to sparse (as well as full) matrices and implemented

Given on hypercube multiprocessors by Fox, et. al. [5] and
x the displacements at the free nodes Baldwin [1]. Several iterative techniques were tried in

Compute order to solve equation 2. The first method we at-
Ax the elongation of the members tempted to use was the Gauss-Jacobi technique which
C(Ax) the internal forces in the members is easily adapted to the hypercube and shows good
AT(CAx) the external force balance at the convergence properties for a large collection of posi-

nodes tive definite matrices - unfortunately the stress ma-
trix could not be shown to always converge with the
assumptions of this method. Given the generated ma-

The problem we wish to solve is somewhat more trices A and C, using the Gauss-Seidel technique we
computationally complex, given a force balance at the could not efficiently implement the back substitution
free nodes f we wish to find the displacements at the phase of the algorithm.
free nodes x as well as the internal stresses in the merm- Next the conjugate gradient algorithm was ap-
bers s, which amounts to computing the two matrix plied to the problem of solving equation 2. The conju-
equations gate gradient technique is described in Fox et. al. [5]

(ATCA)-lf = x and CAx = s. (2) and has the property that it converges for all positive
definite matrices and it is easy to implement on sparse

Note that the stiffness matrix K = ATCA is posi- matrices. The given composition of the A and C ma-
tive definite and therefore invertible. For the structure trices made the application of the conjugate gradient

491

to the problem very efficient. A number of precondi- rithm such as the on described by Bays and Durham
tioning techniques, such as Jacobi (main diagonal) pre- [2].
conditioning as described in [6], can be applied to the The above techniques define the main computa-
conjugate gradient algorithm to speed convergence of tional techniques used in this simulation, which can be
the iterates but none have as yet been used in this ap- considered standard. In addition, two critical portions
plication. The basic conjugate gradient method used of the simulation are balancing the computational load
to solve Ax = b is given in Figure D. between the processors and visualization of the stresses

within the structure. For this particular application

Figure D - The Conjugate Gradient Algorithm both of these tasks were found to have straight-forward
implementations on the hypercube. With regard to
load balancing, we wish to evenly distribute the work() initial guess (usually zero) involved in solving the system. We first number the

k p(O) = b0 Ax() joints as well as the members starting at the upper
k=0 left hand corner of Figure A and continuing vertically
not-converged = convergencetest(r(°)) down then horizontally to the right and use the stan-
while not-converged dard 2 dimensional coordinate axis centered on the

q(k) Ap(k) upper left joint. In addition each joint has two de-
ak = <P(k),Qc1> grees of freedom, one in the x direction and one in
X(k+l) = X(k) + akqq(k) the y direction. This gives us a regular ordering for
r(k+l) = r(k) _ ctp(k) the starting configuration of the pinned-joints and the

<r(k+0) r(k+')> members. It follows that there is a mathematical rela-rk= <r(k),r(k)>

p(k+l) = r(k+l) + 3k p(k) tionship between the indices of one joint and its neigh-
k =k-+-1 bors, as well as the index of a member connecting two

k =+k)+)Ijoints. Hence each processor computes, independently,
not-converged = convergeiicetest(r(k+l) a portion of the incidence, as well as a portion of the

materials matrix needed to perform the matrix-vector

Note that there is only one matrix vector product in product of the conjugate gradient algorithm. We only
the conjugate gradient algorithm, which makes it ad- require, for reasons to be explained shortly, that both
vantageous for use with matrices which are sparse. degrees of freedom for one joint be assigned to one pro-

cessor. Thus each processor will have the same num-

Once the stresses in the members are computed ber of columns from the incidence matrix ±2. As the

they are to compared with the strengths of that fiber diagonal members represent lines of force transfer we

component obtained from the brittle fracture [4] or the may not need to explicitly include them in the display

well known Weibull distribution for possible breakage. of the specimen, rather only the vertical fiber mem-

The strengths of the fibers are computed using uni- bers are displayed after the stress computation. This

form random numbers generated from the parallel lin- serves to reduce the computations needed for display
ear congruential method as described in Fox, et. al. of the stresses. Since we have assigned both degrees

[5]. The basic sequential linear congruential algorithm of freedom for one joint to a processor we have also

used is given in Figure E. uniquely determined the processor which should draw
the vertical member above the joint. By implement-
ing these techniques we have eliminated the need for

Figure E - The Linear Congruential Method communication between processors in both the matrix
generation and the display portions of the program.m= a modulus t > 0

p aAs an additional note on reducing communica-a an increment 0 <a < m tion overhead, the above ideas can be used to optimizec an iniremnti a 0 < c < m communications in the matrix vector multiply opera-whilean initia valumber0<no<ms tions. The matrix-vector product Ax from Figure Bwhile n + c) nod m results in a vector with a length of exactly the numberof members in the structure. Within each processor
the individual multiplications result in vectors whose

Trhe choice of the values m, a, and c will greatly affect non-zero components represent the contribution to to-
the randomness of the above algorithm, see Knuth [9]. tal member elongation obtained from the deflection of
It may also be necessary, depending upon the desired joints assigned to that particular processor. The to-
randomness of the numbers, to add a shuffling algo- tal elongation in all members is then the sum of the

492

individual processors elongations. However, depend- ronment.
ing upon the size of the hypercube, as well as the
size of the problem, not every node will necessarily
be assigned joints whose deflection directly affects all
members in the structure. Thus, every processor can
calculate the range of members directly affected by as-
signed joint deflections. The processors can then com-
pute, with no communication, those processors which Host Algorithm for Composite Modeling
act upon members within its range. This implies that
even though the columns are mapped into a ring of HI start host timer
processors, it may not be necessary to shift each col- H2 get composite data; size of specimen, and
umn through all processors. In fact, as long as more Youngs' moduli
than one fiber is assigned to each processor, only one H3 load program on nodes
shift in each direction of the ring is required to perform H4 send composite data to nodes via broadcast
the multiplication. H5 send forcing data to nodes

The above is a description of the basic procedures H6 wait for timing information from nodes
which are performed for a force balance applied to the H7 stop host timer
structure. Once the displacements and internal stress H8 display timing data for host and node
in each member are computed, the incidence matrix
should be updated before another force balance is ap-
plied. Also, when a fiber breaks, the incidence matrix
should be updated to reflect one less member in the
structure. In this fashion the mechanics of the struc-
ture can be visualized at each stage until complete
failure is reached.

Computational Techniques

The methods described above were conceived Node Algorithm for Composite Modeling
with the idea of keeping message traffic at a mini-
mum. To this end, collective hypercube communica- NI initialize timers
tions where all processors participate, such as combin- N2 initialize graphic display and load color table
ing partial sums in an inner product or broadcasting N3 receive composite data size of specimen, and
common data, are implemented using cube geodesics Y3 mosi
as described in Fox, et al. [5] and Gustafson, et. al. Youngs' moduli
[6]. Thus collective routines are O(log(P)), where P 4 promcnetonmpigfriDrni] Thnum coflectie proctinessors.fte problemsire is N5 construct elongation and materials matrix, C andis the num ber of processors. If the problem size is A a d fn ai u n i i u u b roA and find maximum and minimum number of
such that one processor has the joints of more than
one fiber then the communications cost in the matrix- prouessors to shift partial results of matrix-vector
vector multiply is 0(1) per iteration. This appears product thru
optimal for this application. The primary area of con- N7 perform conjugate gradient to solve ATCAx = f
cern was that of space in the node processors, which is for displacements x
limited to 512K - of which approximately 48K is used N8 perform matrix-vector multiply CAx s to find
for message buffers, 8K for the node operating system, internal stress s
and 4K for a jump table for operating system traps. In N9 perform plot of stress data s
addition, the graphics libraries expand the executable N1 stop timers
by approximately 50K, which is approximately 20K, Nil send timers to host
this leaves a grand total of about 380K for data. Also,
the graphical display has a maximum size of 1024 by
768 pixels, so that one can not use all 1024 nodes and
achieve maximum efficiency in the matrix-vector prod-
uct as described above. Alternatives will be discussed
in the closing remarks.

The following algorithms outline the code for the The next algorithm details step N5 in the node
host and node programs in the current modeling envi- algorithm above.

493

Matrix Generation Algorithm Conjugate Gradient Algorithm

GI Get processor number and size of cube r = p = f
G2 Compute total numer of joints, number of f = 0

joints per processor, and number of processors rho =< r, r>
which get an extra joint iterations = 0

G3 Find tile position for this processor within a not-converged = convergence-test(rho)
ring while not-converged

G4 Find maximum and minimum member numbers y = Ap
which are affected by joints in this processor y = Cy

G4 For each joint in this processor compute the q - ATy
entries in the incidence matrix A for both degrees &=rho<P,q>

of freedom, as well as the location for the member f = f + aq
above this joint and is breaking strength r = r - ap

G5 For each member this processor affects, compute rhoprev = rho
the entries in the materials matrix C rho =< r, r >

G6 Search processor on the left for processors 4 v
whos joints affect the same members as this p = r + flp
processor noting how far we have to proceed iterations = iterations + 1

G7 Search processor on the right for processors not-converged = convergence-test(rho)
whos joints affect the same members as this
processor noting how far we have to proceed

G8 Combine results of G6 and G7 above to find As of this writing, we are experimenting with
maximum and minimum number of shifts left and visualization of the stress data using several different
right needed to perform matrix-vector product ideas, currently we are mapping the member stresses

to a 4 bit color quantity while using 4 bits of inten-
sity to contrast the ratio of stress to strength. This

Once each node completes the above algorithm generates two visual affects from the data.
all static data structures are set up and all processors
know the length of the pipe used in the matrix-vector
product in both the left and right directions. Although
not specifically cited, algorithm G above uses several The following tables give the runtimes along with
utility routines extensively. These routines are given the speedup and efficiency of some selected specimen
below, however, because of their intuitive nature they sizes. One should note that as processors are added
are not detailed. the runtimes drop until a point is reached where a

processor needs to communicate with more than one
processor on the right and left in the matrix vector

Utility Algorithms for the Generation Algorithm product. This phenomenon occurs at low degrees of
freedom, and as more degrees of freedom are added

node-to-cart the behavior is approximately linear with respect to
maps a joint number to (x,y) coordinates time until memory space is exhausted. In the tables

node-to.neighbors the runtimes are from host timing data which includes
maps a joint number to all neighboring joints the time to load the program, send data and their

nodes-tojnembers associated waiting times. The table for the single node
maps two joint numbers to a member number case has values extrapolated, denoted with a *, from

member.to-stress the known data. This extrapolated value is then used
maps a member number to its Youngs' modulus in subsequent calculations for speedup and efficiency

values. The extrapolating function is one of the form
The general conjugate gradient algorithm was t = Ot0 + QIX + Q2z2 + a3e-'.

presented earlier, but we have modified it so that sub-
routines can be called to perform the matrix vector This function contains contributions, the polynomial
products both within the conjugate gradient algorithm term, from the matrix-vector multiply as well as a
and in the main node algorithm (step N8). Note the damping factor, the exponential term, to take commu-
reuse of f in order to save space. nications into account. To obtain more of a response

494

from the data, logarithms were first applied and the
results were then converted back for listing in the ta-
bles. As a note, dof refers to the degrees of freedom of _ _ _ 16node ties
the structure, and doc refers to the dimension of the dof runtime speedup efficiency
hypercube. 120 12 1.17 7.29

252 13 1.77 11.06

500 16 3.13 19.53

1 node times 1530 27 7.96 49.77

dof runtime 2040 37 9.24 57.77

120 14 5050 94 8.65 54.06

252 23 10000 248 5.43 33.92

500 50 25100 905 2.55 15.91

1530 215

2040 342
5050 813*
10000 1346* 32 node times

25100 2304* dof runtime speedup efficiency

50200 3209* 120 13 1.08 3.37

99448 4258* 252 14 1.64 5.13
500 15 3.33 10.42
1530 21 10.24 31.99

2040 26 13.15 41.11
5050 56 14.52 45.37

2 node times 10000 136 9.90 30.93
dof runtime speedup efficiency 25100 472 4.88 15.25

120 13 1.05 54 50200 1401 2.29 7.16
252 18 1.28 64
500 32 1.56 78
1530 118 1.82 91

2040 184 1.86 93 64 node times

dof runtime speedup efficiency
252 14 1.64 2.57

500 16 3.13 4.88
4 node times 1530 19 11.32 17.68

dof runtime speedup efficiency 2040 23 14.87 23.23

120 12 1.17 29.17 5050 38 21.39 33.43
252 15 1.53 38.33 10000 80 16.83 26.29
500 22 2.27 56.82 25100 257 8.97 14.01

1530 65 3.31 82.69 50200 742 4.32 6.76

2040 98 3.49 87.24 99448 1990 2.14 3.34

5050 219 3.71 92.81

128 node times

8 node times dof runtime speedup efficiency
dof runtime speedup efficiency 500 17 2.94 2.30

120 14 0.00 0.00 1530 19 11.32 8.84

252 14 1.64 20.54 2040 20 17.10 13.36
500 17 2.94 36.76 5050 31 26.23 20.49
1530 40 5.38 67.19 10000 55 24.47 19.12

2040 56 6.11 76.34 25100 143 16.11 12.59
5050 169 4.81 60.13 50200 414 7.75 6.06

10000 473 2.85 35.57 99448 1074 3.96 3.10

495

In this application we have taken the ideas of struc-
tural stress analysis, numerical linear algebra, and visual-

256 node times _ization to produce a model for composite materials research
dof runtime speedup e~fficiency on a hypercube multiprocessor. To date, a great deal of
1530 20 10.75 4.20 work has been done on providing a robust, fast code so
2040 21 16.29 6.36 that future enhancements can easily be incorporated. The
5050 28 29.04 11.34 nature of the problem lends itself well to the hypercube,
10000 44 30.59 11.95 and does provide many points of efficiency, in the decom-
25100 92 25.04 9.78 position stage for example. We believe that the code itself

50200 255 12.58 4.92 will help in providing new insights into the failure pro-
99448 614 6.93 2.71 cesses which occur in composites. The main limiting fac-

tor found in implementing these ideas is that of memory
size, as this ultimately limited the size of problem we could
run. Also, when dealing with this type of simulation the

512 node times ability to graphically visualize the results of the modeling
dof runtime speedup efficiency procedure cannot be understated. We also feel that with
2040 25 13.68 2.67 the new generation of hypercubes being constructed today
5050 31 26.23 5.12 the same ideas can be used with greater success.
10000 45 29.91 5.84
25100 71 32.45 6.34
50200 198 16.21 3.17
99448 421 10.11 1.98 Our next idea in this area of research is to provide

the ability to discretize the loading of the structure in a
natural fashion, that is to iterate the algorithm outlined in

The following table graphically illustrates the runtimes o the node program. This will allow us to better visualize
several cube dimensions, namely the 0-dimensional * or the evolution of the structure up to complete failure. Also,
o, 3-dfuensional *, 6-dimensional o, and 9-dimensional s the ability to display the results of computations graphi-
The function ig(x) is the logarithm base 2. The measured cally on many types of color workstations adds an incentive
values of the 0-dimensional hypercube are denoted with to view the hypercube application as a powerful "number-
a * while the extrapolated values are denoted with a o. cruncher" and allow the data to be spooled and later dis-
Note that the extrapolated values for the runtimes does played on a workstation more suitable for animated visu-
not seem to exactly follow the general pattern of the other alization. In the program itself the future modifications
runtime data; however, given the difficult task of extrap- include, work on the convergence of the conjugate gradient
olating data - the predicted values were generated to be algorithm by adding preconditioners, working with ran-
sufficiently conservative and most likely are greater than dom number generating techniques, and adding the ability
tihe extrapolated values. to discretize the loading. This last item is also of great

Runtimes for 4 hypercube dimensions theoretical interest as the mechanics of the structure will
become very unstable as complete failure is reached.

13
12
11 - References

10-
9

l q(tine) 8 [1] Baldwin, Chuck, (1989), "Hypercube Algorithms
7 for Successive Approximation," Proc. Fourth
6 Conference on Hypercube Concurrent
5 Computers and Applications, Montery, CA.
4 - [2] Bays, C., Durham, S., (1976), "Improving a poor
3 I I I i - I i I I I I random number generator,", ACM Transactions

6 7 8 9 10 11 12 13 14 15 16 17 on Math Software, 2, p. 59.

lg(dof) [3] Durham, S. D., Lynch, J. D., Padgett, W. J.,
(1988), "Inference for Strength Distribution of
Brittle Fibers Under Increasing Failure Rate," J.

Summary Composite Materials, 22, p. 1131.

496

[4] Durham, S. D., Lynch, J. D., Padgett, W. J., [12] Rosen, B. W., (1965), "Mechanics of Composite
(1989), "A New Probability Distribution for the Strengthening," Fiber Composite Materials,
Strength of Brittle Fibers," USC Technical Report American Society of Metals, Metal Park, OH.
No. 138. [13] Smith, R. L., (1980), "A Probability Model for

[5] Fox, G., Johnson, M., Lyzenga, G., Otto, S. Fibrous Composites with Local Load Sharing,"
Salmon, J., Walker, D., (1988), Solving Problems Proc. R. Soc. Lond. A, 372. 539.
on Concurrent Processors, Vol. 1, Prentice Hall, [14] Smith, R. L., (1982), "A Note on a Probability
Englewood Cliffs, N. J. Model for Fibrous Composites," Proc. R. Soc.

[6] Gustafson, J. L., Montry, G. R., Benner, R. E., Lond. A, 382, 179.
(1988), "Development of Parallel Methods for a [15] Strang, Gilbert, (1986), Introduction to
1024-Processor Hypercube," SIAM J. Sci. Stat. Applied Mathematics, Wellesley Cambridge,
Comp., 9, 609. Wellesley MA., 1988.

[7] Harlow, D. G., Phoenix, S. L., (1978), "The Chain- [16] Wagner, H. D., Phoenix, S. L., Schwartz, P.,
of-Bundles Probability Model for the Strength of (1984), "A Study of Statistical Variability in the
Fibrous Materials I: Analysis and Conjectures," Strength of Single Aramid Filaments," J.
J. Composite Materials, 12, 195. Composite Materials, 18, 312.

[8] Harlow, D. G., Phoenix, S. L., (1978), "The Chain-
of-Bundles Probability Model for the Strength of
Fibrous Materials II: A Numerical Study of Con- Acknowledgements
vergence," J. Composite Materials, 12, 314. The authors would like to thank the entire staff

[9] Kanninen, M. F., Popelar C. H., (1985), Advanced of the University of South Carolinas' Parallel Super-
Fracture Mechanics, Oxford University Press, computer Initiative for their help, tolerance, and gen-
New York. eral support. The first author, Baldwin, would espe-

[10] Knuth, D. E., (1973), The Art of Computer cially like to thank Bert Still for his technical advice,
Programming, Vol 2: Seminumerical as well as TEX-nical advice as well as Terrance and
Algorithms. Second Edition. Addison- Beverly ttuntsberger for their help with the visualiza-
Wesley, Reading, Mass. tion aspects of the program. Durham, Lynch, and

[11] Rosen, B. W., (1964), "Tensile Failure of Fibrous Padgett acknowledge support by the Army Research

Composites," AIAA J., 2, 1985. Office from grant DAAL-03-87-K-0101.

497

STUDIES OF ELECTRON-MOLECULE COLLISIONS ON THE MARK IIfp HYPERCUBE

Paul Hipes, Carl Winstead, Marco Lima, and Vincent McKoy
Noyes Laboratory of Chemical Physics

California Institute of Technology
Pasadena, California 91125

tecture. The high-performance and cost-effective
Abstract computing offered by these machines are enhanc-

ing our ability to study cross sections for collisions
of electrons with industrially important gases, e.g.,

We report on a distributed memory implemen- C2 Fe, Si2 He, and CF3 H. Such cross sections play
tation and initial applications of a program for an important role in modelling low-temperature
calculating electron-molecule collision cross sec- plasmas used in plasma-assisted etching and de-
tions. Runs on the Mark IIIfp hypercube show position in microelectronic fabrication.
that large-grain MIMD machines are well suited
for these applications. Some results of studies It. Background
of e--Si2 He and e--SiF4 collisions will be dis-
cussed. The collision of an electron with a molecular tar-

get A may be illustrated schematically as

I. Introduction e- (Em, 4.) + A -- e-(E,, in) + A',

where the electron initially travels with kinetic
We have developed a distributed memory imple- energy E. along the direction specified by the

mentation of a computer code which we have been vector k-,, and, following the collision, leaves the
using to study the collisions of low-energy elec- molecule along direction F with energy E,,. The
trons with molecules. Here we report on our strat- asterisk on A indicates that the molecule may
egy for porting this code to the JPL/Caltech Mark be rotationally, vibrationally, or electronically ex-
IIIfp hypercube, our experiences with the parallel cited by the collision, in which case E. < Em;
conversion, and some initial results which illus- collisions for which E. = Em are referred to as
trate the level of performance achieved. The orig- elastic.
inal FORTRAN program is based on a multichan-
nel extension of the variational principle for colli- The Schwinger multichannel (SMC) procedure
sions originally introduced by Schwinger Ill. This [2,31 is a variational method specifically formu-
code, which currently runs in production mode on lated for obtaining the probabilities, or cros sec-
CRAY machines, has been used extensively in re- tions, for low-energy electron-molecule collision
cent years to study both elastic and inelastic scat- events, including elastic scattering and vibrational
tering of low-energy electrons by molecules such or electronic excitation. The SMC method is ap-
as H2 , N2 , CO, H20, CH4, C2 H4 , and C 2 H1. plicable to molecules of arbitrary geometry, and is

capable of incorporating effects arising from po-
Our motivations for building a hypercube ver- larisation of the target by the incident electron,

sion of our code for studying electron-molecule which are particularly important at the lowest en-
collisions include, on the one hand, the high cost ergies (approximately 0-5 eV).
of cycles on CRAY-type machines and their in-
herent limitations in expected CPU throughput In the SMC procedure, the scattering amplitude
due to the recursive character of the computation- f(4ý,, k-1), whose square modulus is proportional
ally intensive step of the calculations, and on the to the cross section, is obtained in the form
other hand, the potentially high performance of 1-
large-grain MIMD machines such as the NCUBE, (4-,-) = 2" Sm(km VIX
iPSC, or the Mark IIIfp for this application, whose S3
structure lends itself naturally to a MIMD archi- (A- 1)•(xyVIS.(dk)),

498
0-8186-2113-3/90/1000/0498$01.00 0 1990 IEEE

where S i(•-,) is an (N + 1)-electron interaction- for all combinations of Cartesian Gaussians a, f,
free wave function of the form and -y, and for a wide range of k in both mag-

S , =nitude and direction. These integrals are eval-
Sm~k = I,, - uated analytically by an intricate "black box*

V is the interaction potential between the electron comprising approximately two thousand lines of

and the molecular target, and the (N + 1)-electron FORTRAN. A typical calculation might require
function s X re Sllater t eterminanthe which foeron 10 9 to 1010 calls to this integral-evaluation suite,functions xi are Slater determinants which form cnuigruhy8%o h oa optto

a bais et fr aproxmatng te eact cater- consuming roughly 80% of the total computation
a bais set for approximating the exact scatter- time. Once the primitive integrals are obtained,

Ain w are elements of the inverse of the matrix they are assembled in appropriate linear combi-
rep -resentato n ts i the basis ver of the opratori nations to yield the matrix elements appearing in
representation in the basis x. of the operator the expression for f(4w' i,,). The original CRAY

1 (pv + VP)- Vc(+}V- code performs this procedure in two steps: first,
= P a repeated linear transformation to integrals in-

N + 1 Avolving molecular orbitals, followed by a transfor-
-(fp + p4)}, mation from the molecular-orbital integrals to the

N+1 2 physical matrix elements involving Slater deter-

Here P is the projector onto open (energetically minants. The latter step is equivalent to an ex-
accessible) electronic states, tremely sparse linear transformation whose coeffi-

cients are determined in an elaborate subroutine
P -- ~ E l '2,..." , N)) (4(I,2,..., N), with a complicated logical flow.

IDl. Concurrent Implementation

G(+) is the (N + 1)-electron Green's function pro-

jected onto open channels, and f = (E - H),
where E is the total energy of the system and H The nec-uity of evaluating large numbers of
is the full Hamiltonian. 'primitive' two-electron integrals makes the SMC

procedure a natural candidate for parallelisation
In the present implementation, the Slater de- on a MIMD machine such as the Mark IIIfp hy-

terminants Xi are formed from molecular orbitals percube. The large memory and general-purpose
which are, in turn, combinations of Cartesian processors of the Mark Im~p make it feasible to dis-
Gaussian orbitals tribute the 'black box" integral evaluator across

the processors and to divide up the evaluation of
Nt..(z - A.)"(y - Aw)' m (z - A.)^ the primitive integrals among Q the processors.

X exp(-aif_ 111, In planning the decomposition of the set of inte-
grab onto the nodes of the hypercube, two prin-

which are commonly used in molecular electronic- cipal issues must be considered. First, the num-
structure studies. With this choice, all matrix el- ber of integrals required is such that not all can
ements needed in the evaluation of f(kw, k4,) can be stored in memory simultaneously, and certain
be obtained analytically, except those involving indices must therefore be processed sequentially.
the Green's-function term VGF V. These terms Second, the transformation from primitive inte-
are evaluated numerically via a momentum-space grals to physical matrix elements, which necessar-
quadrature procedure (4]. Once all matrix ele- ily involves interprocessor communication, should
ments are calculated, the final step in the calcula- be as efficient and transparent as possible. With
tion is solution of a system of linear equations to both of these considerations in view, the approach
obtain the scattering amplitude f(k,,, j.). chosen was to configure the hypercube as a logi-

cal two-torus, to which is mapped an integral ma-
The computationally intensive step in the above trix whose columns are labeled by Gaussian pairs

formulation is the evaluation of large numbers of (a, P), and whose rows are labeled by momentum
so-called "primitive' two-electron integrals directions k; the indices 1kl and -y are processed

(0a VI-) =
sequentially.

f 1 Given this choice of data decomposition, a design

Jd 3frd 3 f 2 r12 for the parallel transformation procedure must be

499

chosen. Direct emulation of the sequential code-
that is, transformation first to molecular-orbital
integrals and then tc physical matrix elements-is
undesirable, because the latter step would entail
an intricate parallel routine governing the com-
plicated flow of a relatively limited amount of 100'.
data between processors. The potential for cod-
ing errors would be unacceptably high. Instead,
the two transformations are combined into a sin--t=iz9.9 "
gle step by using the logical outline of the origi-
nal molecular-orbital-to-physical-matrix-element
routine in a distributed version of the CRAY se- 101
quential routine which builds a distributed trans- - - - ---

CRAY Y-MPformation matrix. The combined transformations
are then accomplished by a series of large, almost-
full complex-arithmetic matrix multiplications di-
rectly on the primitive-integral data set. The
transformation steps and associated interproces-
sor communication are thus localised and 'hid- i • • s • s 7

den* in large parallel multiplications, which are logs(no. processors)
known to be efficient on hypercube architectures
1131. Besides efficiency, benefits of this approach
include simplicity and enhanced portability of the FIg. 1 Time for computation and transforma-
resulting code. tion of a complete set of two-electron integrals,

for fixed Iki, as a function of the Mark llfp hy-
The remainder of the parallel implementation in- percube dimension (squares). Also shown is an

volves relatively straightforward modifications of exponential best fit (solid line), with parameters
the sequential CRAY code, with the exception of as indicated in the figure, and, for comparison, the
a series of integrations over angles k arising in the single-processor CRAY Y-MP time (dashed line).
evaluation of the VG(*)V matrix elements, and
of the solution of a system of linear equations in
the final phase of the calculation. The angular in- and LU decomposition have been previously as-
tegration, done by Gaus-Legendre quadrature, is esased. However, its performance relative to the
compactly and efficiently coded as a distributed original CRAY code has been asemed through a
matrix multiplication of the form Adiag(w)At. series of calculations on Mark UIp hypercubes of

The integration over [il is essentially accomplished dimensions from 0 (a single processor) to 6 (64
in SIMD fashion. The solution of the linear system processors), the largest currently available. The

will be performed by a distributed LU solver[14j same calculation was also performed on a CRAY

modified for complex arithmetic, implementation Y-MP with the original code. For these compar-

of which is under way. This will make feasible isons, a modest but realistic 'production runs for

solution of systems on the order of 2000 x 2000, the CO molecule using 32 Cartesian Gaussian or-

on current hardware. However, .a applications bitals was chosen. Results are presented in Figs. 1

to date, the eise of the linear systems--less than and 2. Figure 1 shows the time required for a sin-

100 x 100-has allowed use of the original sequen- gle 'quadrature shell* of integrals, i.e., for eval-

tial solver running either on the host or on a single uation and transformation of a complete set of

node. two-electron integrals for a fixed magnitude JEJ,
as a function of the cube dimension. All I/0 and

IV. Performance code loading are included in timings. The Weitek
XL floating point processor performs the primi-
tive integral calculation at roughly 0.85 Mflops per

No attempt has been made to benchmark the processor. The transformation to physical matrix
parallel electron scattering code in detail. Such elements proceeds at 1.5 Mflops/procesor. The
an exercise is irrelevant here, because the integrals data of Fig. I are presented in an alternative fash-
are embarrassingly parallel, and matrix multiplies ion in Fig. 2, which shows speedup as a function

500

too- do-

Ideal, 's0
/ U

/ =60U
QU • 40

// C66

10 / s -30.
to-. c*72S

, c=76S to-

- t=835
5 .0

/

Is i a 30 is0 .20 15o0 ,o0
logs(no. processors) Scattering Angle (deg)

Fig. 2 Speedup as a function of hypercube di- Fig. 8 Differential cross section for elastic scat-
mension for the same casn as Fig. 1. Efficiencies tering of 4eV electrons by the Si2 H6 molecule. The
are indicated for each dimension. For comparison, solid line shows theoretical results obtained on the
ideal 2n speedup is shown by the dashed line. Mark ImIfp; the circles are measured values (Ref.

[7)).
of cube dimension, along with efficiencies (the ra-
tio of achieved to ideal, or 2?, speedup). The
(single-processor) Y-MP time is indicated by the rent SMC code was applied to a number of elas-
dashed line. As seen from the figure, the Mark tic electron-scattering problems, with an emphasis
Sllfp performance surpasses that achieved on the on polyatomic gases of interest in low-temperature
CRAY in going from 16 to 32 processors. The solid plasma applications 161. Some of the systems
line, which is an exponential best fit, evidently de- examined to date are ethylene (C2 H4), ethane
scribes the observed Mark IIfp times well over the (CaHB), disilane (Si2Hs), and tetraluorosilane
range of hypercube dimensions studied, although (SiF4). Illustrative results are presented in Figs.
the fact that the time decreases as 2-°'s07 rather 3-5, along with experimental or other data for
than 2-" indicates that the speedup achieved is comparison (7.111. Figure 3 shows the diferen-
less than ideal. An analogous plot for the total tial cros section- that is, scattering probability
CO computation time on 8 to 64 procemos (not as a function of the angle s between incident and
shown) reveals identical characteristics, reflecting outgoing directions--for 4 eV electrons colliding
the dominance of the two-electron integrals in the elastically with Si2 Hs molecules. Agreement with
calculation. As expected for a problem of fixed recent experimental results (7) is excellent. One
sise, the efficiency declines as the hypercube di- point to observe is the signifcant probability of
mension increases 151, but remains reasonable over scattering in the high-angle, or near-backward, di-
the range studied. Most importantly, on 64 pro- rections, for which experimental data ar unavail-
cessors, we are outperforming the Y-MP by a fac- able. Examination of Fig. 3 suggests that extrapo-
tor of 3 on a small problem. Larger problems will lation of the measured values to this region is likely
provide a greater performance differential, to underestimate the cross section. This fact is sig-

nificant because such backscattering makes a large
V. Selected]anvlts contribution to the transfer of momentum from

the electrons to the gas molecules and is therefore
important in the numerical modeling of plasmas

After development and debugging, the concur- and discharges.

501

70 45*

do '
40 -

35-
•030-

40- 0

030 20-3 0a

Z2 a
0

.. is, 0 0

0 , 20 s30 0 to
Electron Energy (eV) Electron Energy (eV)

Fig. 4 Momentum-transfer or diffusion cross Fig. 5 Elastic electron scattering cram section
sections for low-energy electrons colliding with for SiF4 obtained on the Mark Up (solid line).
Si2 H6. Shown are the present results (solid line), Aso shown are total scattering cros section mea-
estimated values [81 (long dashes), and derived val- surements of Refs. [101 (squares) and fill (circles).
ues [91 (short dashes).

VI. Conclusions and Puture Proepects

The concurrent implementation of a large se-
The large backecattering probability indicated quential code which is in production on CRAY-

in Fig. 3 contributes to the peak in the Si2He type machines is an example of challenges which
momentum-transfer crom section-essentially a are likely to become increasingly frequent as corn-
weighted integral over the diferential crose menial parallel machines proliferate and as more
section-shown in Fig. 4 as a function of elec- and more 'mainstream' computer users are at-
tron energy. The dashed curves in Fig. 4, which tracted by their potential. Several lesons which
represent estimated 161 and indirectly derived [91 emerge from the port of the SMC code may prove
momentum-transfer cro-s sections, appear to be useful to those contemplating similar projects.
the only previously published values for this indus- One is the value of focusing on the concurrent im-
trially important molecule, highlighting the need plementation of the existing code (1i1 and, so far
for calculations of the present type. as possible, maintaining the structure and code

from the sequential program. The development
As a further example of the applications per- of an understanding of the original CRAY code

formed to date, Fig. 5 shows preliminary results and its organisation is a demanding put of such
for the angle-integrated elastic scattering crom a parallelisation. On the other hand, major issues
section of SiF 4 , along with two measurements of structure and organisation which bear directly
110,111 of the total scattering cros section, which on the parallel conversion deserve very careful at-
should of course be larger than the elastic cros tention. In the SMC case, the principal such issue
se.tion. Considering the uncertainties in the me&- was how to implement efficiently the trandorma-
surements and the need for further refinement of tion from primitive integrals to physical matrix
the theoretical result, the agreement in magnitude elements. A poor parallelisation of the trandor-
and overall shape of the cross sections are quite mation could offset the high efficiency of the prim-
encouraging. itive integral calculation. The solution arrived at

5.M

not only implied that a significant departure from (41 M. A. P. Lima, L. M. Brescansin, A. J. R. da
the sequential code was warranted but also sug- Silva, C. Winstead, and V. McKoy, Phys. Rev.
gested the data decomposition. One conclusion A 41, 327 (1990).
is that similar code reorganisation-building and
multiplying large matrices-would improve the ex- [5) G. Fox, M. Johnson, G. Lysenga, S. Otto, J.
ecution on the CRAY. In contrast, the primitive Salmon, and D. Walker, Solving Problems on
integral evaluation could not be significantly im- Concurrent Processors, voL I (Prentice-Had, En-
proved for the CRAY because it is a recursive pro- glewood Cliffs, N. J., 1988), p. 58.
cedure; however, it was easily parallelised for a
large grain machine. A final point worth mention- 161 Plasma Reactions and Their Applications, Japan
ing is that the conversion was greatly facilitated Materials Report by Japan Technical Informa-
by an environment which fostered collaboration tion Service (ASM International, Metals Park,
between workers familiar with the original code Ohio, 1988).
and its application and workers adept at paral-
lel programming practice, and in which there was (7] H. Tanaka, L. Boesten, H. Sato, M. Kimura, M.
ready access both to smaller machines for debug- A. Dillon, and D. Spence, 422"1 Annual Gaseous
ging runs and to larger, production machines. Electronics Conference, Palo Alto, 1989, and pri-

vate communication.
Plans for the near future include the implemen-

tation of the distributed LU solver, already men- 181 M. Hayashi, Proceedings of the VI Dry Process
tioned, and the implementation of portions of the Symposium, Tokyo, 1984.
sequential code necessary for studies of electronic
excitation and for employing molecular symme- 191 M. Hayashi, in Swarm Studies and Inelastic
try to reduce computation. Subsequent steps will Electron-Molecule Collisions, edited by L. Pitch-
probably include optimization of key sequential ford, V. McKoy, A. Chutjian, and S. Mrajmar
subroutines and transer of the code to other par- (Springer, New York, 1985), p. 167.
allel machines as they become available.

110] H.-X. Wan, J. H. Moore, and J. A. Tossell, J.
Acknowledgments Chem. Phys. 91, 7340 (1989).

It is a pleasure to thank the following individuals [ill C. Ma, P. B. Liescheski, and R. A. Bonham, XVI

for their encouragement and support: Don Austin International Conference on the Physics of Elec-

of the Department of Energy; Terry Cole, Dave tronic and Atomic Collisions, New York, 1989:

Curkendall, and Edith Huang of the Jet Propul- Abstracts of Contributed Papers, p. 356, and

sion Laboratory; and Geoffrey Fox, Paul Mesina, private communication.

and Heidi Lorens-Wirsba of the Caltech Concur-
rent Computation Program. Financial support (121 G. Fox, private communication.
by the Applied Mathematical Sciences Program 131 P Hi Mat Multip on the JPL/Caltech
of the Department of Energy, the Innovative Sci- M1 ar P.'p" HMatrix Multply on G. FoxCA.tJ.
ence and Technology Program of SDIO through Mark IHp Hypercube.S C3P-74a . G. Fox, A. 1.
the Army Research Office, the National Science G. Hey, and S. Otto, Parallel Computing 4, 17
Foundation, and the Jet Propulsion Laboratory is (1987).
also gratefully acknowledged. [14) P. Hipes, OComparison of LU and Gauss-Jordan

References System Solvers for Distributed Memory Multi-

computers.* C3P-652b.

[Ii J. Schwinger, Phys. Rev. 72, 742 (1947).

[21 K. Takatsuka and V. McKoy, Phys. Rev. A 24,
2473 (1981).

[3] K. Takatsuka and V. McKoy, Phys. Rev. A 30,
1734 (1984).

| l I503

Modeling High-Temperature Superconductors and
Metallic Alloys on the Intel iPSC/860*

G. A. Geist, B. W. Peyton
Mathematical Sciences Section

Oak Ridge National Laboratory

W. A. Shelton, G. M. Stocks
Metals & Ceramics Division

Oak Ridge National Laboratory

Abstract 1 Introduction

Oak Ridge National Laboratory has embarked on sev- The discovery of high temperature superconductiv-
eral computational "r*nd Challenges, which require ity in 1986 has provided the potential of spectacu-
the close cooperation of physicists, mathematicians, larly energy-efficient power transmission technologies,
and computer scientists. One of these projects is ultra-sensitive instrumentation, and other devices us-
the determination of the material properties of alloys ing phenomena unique to superconductivity. Each
from first principles and, in particular, the electronic year new materials are found to add to the family of
structure of high-temperature superconductors. existing high temperature superconductors. In gen-

The physical basis for high Tc superconductivity eral these materials are difficult to form and use, and
is not well understood. The design of materials with some of the superconducting compounds are unsta-
higher critical temperatures and the ability to carry ble. These difficulties are exacerbated by the lack of
higher current densities can be greatly facilitated by an accepted theory explaining superconductivity at
the modeling and detailed study of the electronic the higher temperatures.
structure of existing superconductors. To further our understanding of the behavior of

While the present focus of the project is on super- solids in general and superconductors in particular,
conductivity, the approach is general enough to per- the quantum mechanical laws have been formulated
mit study of other properties of metallic alloys such into sophisticated computer algorithms which can
as strength and magnetic properties. predict from first principles the structural, vibra-

This paper describes the progress to date on this tional, and electronic properties of matter.
project. We include a description of a self-consistent Present calculations of the electronic structure of
KKR-CPA method, parallelization of the model, and real materials usually employ a mean field approxi-
the incorporation of a dynamic load balancing scheme mation in which each electron is viewed as moving
into the algorithm. We also describe the develop- independently in a self-consistent potential due to
ment and performance of a consolidated KKR-CPA all of the electrons and nuclei. According to den-
code capable of running on CRAYs, workstations, and sity functional theory, it is possible to express the en-
several parallel computers without source code mod- ergy of any system of electrons and nuclei as a unique
ification. functional of the electron density [1,2,3]. Since this

Performance of this code on the Intel iPSC/860 is functional is not known exactly, it is usually approx-
also compared to a CRAY 2, CRAY YMP, and several imated by that appropriate to a homogeneous elec-
workstations. The code runs at over 1.6 Gflops on tron gas. This local density approximation to den-
a 128 processor iPSC/860. Finally, some density of sity functional theory has been very successful when
state calculations of two perovskite superconductors applied to metallic and semiconducting systems, but
are given, it appears inadequate to explain important physical

*This research was supported by the Applied Mathematical phenomena such as optical band gaps and supercon-
Sciences Research Program, Office of Energy Research, U.S. ductivity found in transition metal oxides.
Department of Energy, under contract DF-AC05-84OR21400 More sophisticated treatments of the many electron
with Martin Marietta Energy Systems, Inc. problem are possible but have not been attempted

previously because the Green's function and the sus-

0-8186-2113-3/90/000010504$01.00 0 1990 IEEE

ceptibility function that are needed to construct the date. Moreover, the user interface is identical across
electron self-energy are very difficult to calculate for all the machines the code runs on, which has been an
real systems, especially those with narrow bands such important factor in getting scientist interested in ex-
as transition metal oxides. ecuting this code in a parallel environment. The par-

Our approach is based on theoretical advances allelism is hidden from the user. Even operations like
growing out of work on the Korringa, Kohn, and Ro1- getting a number of processors and loading programs
toker coherent potv,.itial approximation (KKR-CPA) onto these processors is done automatically by the
theory of alloys and magnetism [4,5,6]. The advan- code. If the user wishes to increase the parallelism,
tage in using the KKR-CPA approach is that it di- the input file contains the number of processors the
rectly yields the Green's function for the system and computational experiment will use.
thereby a direct way of calculating susceptibilities. In the next section, we describe the KKR-CPA ap-

The effects of disorder are treated in the CPA, proach and how it has been parallelized for the In-
which is an analytic technique for calculating the tel iPSC/860. In the last section, we present perfor-
configurationally averaged Green's function (7]. The mance results comparing our implementation of this
KKR theory is the natural method for implementing algorithm on several computers, and we present re-
the CPA, because it is a Green's function method and suits from two scientific studies of the effect of alloy-
there is a natural separation between the lattice and ing in perovskite superconductors.
potential.

Over the last couple of years, researchers at
ORNL and their colleagues have developed a non- 2 KKR-CPA Algorithm
self-consistent semi-relativistic KKR-CPA computer Fi
code that can handle multiple atoms per unit cell. igure 1 shows a general schematic of how we orga-
The code has wide applicability to situations in which nized the consolidated KKR-CPA code. Organizing
some form of substitutional disorder plays an im- the code in this way required only a few additional
portant role, including metallic alloys, high tern- tines tolbe written.ione of the adi rou-tines involved calculations, so exactly the same corn-
perature superconducting compounds, metallic mag- putational routines are called in the serial and parallel
netism, and metal-insulator transitions.

There are three primary reasons for parallelizing versions.

this code. First, the KKR-CPA calculations are com-

putationally intensive. It commonly requires 10 hours parallel implementation. In this scheme one proces-

of CPU time on a CRAY 2 to perform a single KKR- sor controls work on the entire problem, and the rest
fCPA c atimon. at C aY 2e eof the processors perform work requested by this mas-CPA calculation. It has been estimated that over

1000 hours of CRAY CPU time would be needed to ter process. The master process in our implementa-
tion is called the pseudo-host and executes on one of

complete a single self-consistent computational exper- ti

iment. The turn-around time for such experiments the iPSC/860 nodes. We avoided using the iPSC/860

makes them prohibitive on existing serial computers. host as the master process because of the computa-

Second, the KKR-CPA algorithm has a few points tional imbalance between this 80386 based processor

of natural parallelism that can be exploited to in- and the more powerful i860 based node. The host is

crease computational throughput. The point we will also over burdened with executing the Unix operating

exploit is the calculation of the Density of States system.

(DOS) at a given energy level. In order to calculate The KKR-CPA algorithm is organized in the fol-

the Fermi level, it is necessary to calculate the DOS at lowing way. We start by inputing the atomic num-

over a hundred energy levels. Each of these DOS can bers of the species and an initial guess for the charge

be calculated independent of the other energy levels. density and potentials.

Third, the availability of a parallel Gflop computer, Since the Green's function for the system at any

iPSC/860, has made it feasible and attractive to de- energy is independent of any other energy, this is a

velop an efficient parallel version of the KKR-CPA natural point in the algorithm for parallelism. In the

code. parallel implementation, the energies to be evaluated
The modifications to the KKR-CPA code were are held in a queue of tasks. The difficulty of eachThde modifichation toat the od CP cobe wren o task is initially unknown, so a heuristic is used to or-

made in such a way that the code could still be run on dethqueinapomtlyecasgdfiut.

CRAYs and scientific workstations. Having only one der the queue in approximately decreasing difficulty.

consolidated code has made the problems of software Each idle processor selects the next task in the queue

changes and data structure interfacing much simpler and returns the density of states to the master pro-

than trying to keep three versions of the code up-to- cess, which computes the integral over all energies.

505

This integrated density of states is used to obtain the subdivided. The result of the tetrahedral integration
Fermi level, which is the highest state occupied by an is the scattering path operator r.
electron. This r is inserted into the Coherent Potential Ap-

Load balancing is achieved naturally since all the proximation (CPA) equations to calculate the next
processors will remain busy as long as there are tasks approximation to t ,.
left in the queue. Each task in the queue performs Once r and t., have converged, the Green's func-
the following operations. tion for the system is calculated by combining r and

It solves the one-electron Schr~linger equation for the wave function solutions to the single scatterer
a single, spherically symmetric muffin-tin potential to Schr6dinger equation. The DOS for this energy is
obtain the wave functions and the scattering phase the imaginary part of the integration of the Green's
shift. The phase shift is used to construct the single function over the Wigner-Seitz cell.
site transfer matrix t, which depends only on energy Self-consistency of the charge density will soon be
and is used in setting up the KKR matrix, incorporated into the KKR-CPA code. This outer it-

The systems we are considering are periodic in eration involves integrating the Green's function over
space, so we work in reciprocal space by applying 3D energy to get the charge density, which is used to
Fourier transforms. A Wigner-Seitz cell in reciprocal obtain the potential for the next iteration. Thus the
space is called a Brillouin zone. Since everything is entire process described so far may be iterated several
periodic in reciprocal space, we do all our CPA cal- times in the self-consistent version of the code. In the
culations within the first Brillouin zone. parallel implementation this will involve the pseudo-

The CPA iteration calculates the coherent single host integrating the density of states it receives from
site transfer matrix tf and the scattering path opera- the nodes over all the energies. A future paper will
tor r for the disordered system. Initially, t, is approx- describe this work.
imated by the average t matrix approximation, which
is the concentrated weighted average of the alloying
components. The next two steps of the CPA iter- 3 Results
ation are the most computationally intensive of our
approach. The processor must form the KKR matrix The code has been written so that it executes on se-
and then integrate its inverse over the first Brillouin rial computers such as workstations or GRAYs as wellzone Ifthee i syiner; wthi th Brlloin one as on parallel computers such as the Intel iPSC/860.zone. If there is sym m etry w ithin the B rillouin zoneTh co e r q i s t at a m n u m f 3 M b es f
this can be exploited to decrease computation. For The code requires that a minimum of 3 Mbytes of
example, materials with cubic symmetry require that memory be available, and for the more complicated
only 1/48 of the Brillouin zone be integrated, materials up to 8 Mbytes of memory is required by in-

To form the KKR matrix (t,-1 - G), it first calcu- dividual processors. Work is underway to reduce the
lates the "structure constants" matrix G. In general, memory requirements for the complicated materials.
the calculation of G is very difficult, but this algo- The Intel iPSC/860 multiprocessor at ORNL has
rithm has been made more efficient by using special 128 RX nodes and 4 t/o nodes. The I/O nodes con-
polynomial fitting technique to evaluate G. A de- nect the RX nodes to the Concurrent File Systemscription of this method of calculating structure con- (CFS), which has 5.2 Gbytes of disk storage. Each
stants can be found in 18]. of the RX nodes contains a 40 Mhz Intel i860 RISCOne problem in inverting the KKR matrix is it will processor and 8 Mbytes of memory. The i860 has ab ne singula in cetinveregions, ad K rit is iths wil- 2 Kbyte on-chip cache and a claimed peak rate of 80be singular in certain regions, and it is thes e singu- f o s(i g e p c s on . W le ur h d c d d a -larities that determine the energy bands. The KKR Mflops (single precision). While our hand coded as-
maies thoan betermie aticll cnuedgy into. The Kom- sembly language BLAS routines execute on one pro-m ethod can be analytically continued into the com - c s o t 1 5 M l p ,t e e r t s a e n t o t i eplex energy plane. By performing these calculations cessor at 19 - 55 Mfiops, these rates are not obtained
in the complex energy plane these singularities obtain inside an application because of memory access de-a Lorentzian broadening and the amount of broad- lays. For example, in the KKR-CPA code we use theening is proportionalnt the imaginary part of the BLAS routine ZAXPY, which executes at approxi-energy. In addition, due to the sensitivity of the cal- mately 18 Mflops inside the application.culation, double precision complex arithmetic is used. The high Tc perovskite superconductors
To evaluate the integral, hundreds or possibly thou- Bal-,,K.BiO3 and BaPbv_.BixOa with critical tem-

sands of complex double precision matrices of order peratures of 30 K and 13 K respectively are attrac-
between 80 and 300 must be formed and inverted. tive systems on which to begin a systematic study
Each matrix corresponds to a different vertex of the of high temperature superconductivity because their
tetrahedrons into which the Brillouin zone has been relatively simple structure (cubic) allows a more thor-

ough treatment of their electronic structure. It is be- calculations to test the appropriateness of this as-
lieved that the superconducting state of these mate- sumption.
rials can be understood by studying their electronic To study the effects of disorder the density of states
structure in their normal state. Even if the mech- (DOS) of the order materials (x=0 and x=l) are cal-
anism for superconductivity is different in the non- culated and compared to the disordered alloy (x=.5).
cuprate superconductors, because of their high tran- At the top and bottom of Figure 3 are the DOS of the
sition temperature the electron-phonon coupling con- ordered compounds BaBiO3 and KBiO 3 respectively
stant would have to be extremely large and a strong and the disordered alloy Ba.5 K.5 BiO3 is in the middle.
coupling of this magnitude would be a very interest- The DOS of these materials near the Fermi-energy
ing phenomenon. (E! = 0.0 Ry.) is dominated by Bi-O states. Corn-

The code has been run successfully on ,everal cum- paring these states we can see that the Bi-O states in
puters using a test problem involving the high tern- the alloy have been slightly broadened by the disor-
perature superconductor (Ba.sK.5)BiO 3 . The test der on the Ba-K sublattice. The broadening is small
problem required the calculation of the density of because Ba-K are on a different sublattice and there-
states for a fixed number of representative energies fore, this is a second order effect. We also found that
without iterating to self-consistency. The average the variation of E1 versus concentration in the CPA
Mflop rate for 5 computers is shown in Figure 2. agrees with the rigid band approximation. Therefore,

Only one processor on the CRAY 2 and CRAY because of the small broadening of the DOS and the
YMP is used. The 130 Mflops shown in the table agreement of the variation of E! with concentration,
is achieved by modifying several routines in the basic we conclude that the use of the rigid-band approxi-
code to further enhance vectorization. The inversion mation is valid for this material.
routines had already been vectorized, but the routines Similarly, Figure 4 displays the results of alloying
to form the KKR matrix had not been vectorized in with Lead, but here the alloying is on the Bi sublattice
the basic code. rather than on the Ba sublattice. At -. 60 Ry and -.50

The rate shown for the iPSC/860 includes the time Ry in the alloy are the Bi-6s and Pb-6s states respec-
to load the problem onto 128 processors, all commu- tively and these show significant disorder. But these
nication, file 1/O (four fairly large output files are states are far from E! and are unimportant. The
generated), and dynamic load balancing overhead, states near E] are Bi-O and Pb-O and these show
The rate of 660 Mflops corresponds to compiled FOR- almost no broadening. Even though the DOS show
TRAN on a machine running at 32 Mhz. This rate very little disorder, the variation of E! with concen-
was increased to 1.3 Gflops by using an assembly lan- tration does not satisfy the rigid-band approximation
guage BLAS routine ZAXPY in the '-version routine, and this is the most stringent criteria that must be
When the iPSC/860 was upgraded to 40 Mhz, the satisfied. Therefore, we conclude that the rigid-band
ZAXPY version of the superconductor code executed approximation used previously by other authors to
at an aggregate rate of 1.6 Gflops on 128 processors. study the effects of alloying, is not valid for this sys-

The calculation of electronic states of alloys over tern.
a large energy spectrum is not feasible on most of The iPSC/860 required about one hour to gener-
the computers listed in Figure 2. But these calcu- ate the data used in each of these figures. The results
lations have been performed on the Intel. The first show that the superconductivity is affected in differ-
research question we asked was: What are the effects ent ways by each of these alloys. The alloying with
of alloying on the density of states for the two per- Potassium leaves the band structure essentially un-
ovskite superconducting compounds Baj_.K.BiO3 changed but decreases the Fermi energy On the other
and BaPbl-.Bi.O 3 ? hand, alloying with Lead causes a softening of the

The rigid-band approximation has been used previ- band structure.
ously to study the effects of disorder in the perovskite The use of parallel computation and the iPSC/860
superconductors [9,10]. In the rigid-band approxima- has led to over an order of magnitude improvement
tion it is assumed that the difference in the phase in computational speed compared to the CRAY su-
shifts of the alloying components is negligible and percomputers for our KKR-CPA code. From a re-
therefore, the effect of alloying is to rigidly shift the search standpoint the turnaround time for computa-
Fermi-energy up or down depending on whether the tional experiments is closer to two orders of magni-
alloying component's atomic number is greater than tude. This greater computational power allows us to
or less than the original component's atomic num- begin investigation of many unanswered questions in
ber. The rigid-band approximation is valid only in superconductivity and material science.
the weak scattering limit. It is the purpose of these

'U?

References
[1] P. Hohenberg, W. Kohn, Inhomogeneous Elec-

tron Gas. Phys. Rev. Vol. 864, B864 (1964).

[2] W. Kohn and L. J. Sham, Self-consistent equa-
tions including exchange and correlation effects.
Phys. Rev., Vol. 140, A1133 (1965).

[3] U. Von Barth, Density Functional Theory for
Solids. In P. Phariseau and W. M. Temmerman,
editors, The Electronic Structure of Complex Sys-
tems, pages 67-140, Plenum Press, New York,
NY, 1984.

[4] J. Korringa, On the calculation of the energy of a
Bloch wave in metal. Physica, Vol. 13, 392 (1947).

[5] W. Kohn, N. Rostoker, Solution of the
Schr6dinger equation in periodic lattices with an
application to metallic lithium. Phys. Rev. Vol.
94, 1111 (1954).

[6] G. M. Stocks, W. M. Temmerman, and B. L.
Gyorffy, Aspects of the Numerical Solution of the
KKR-CPA Equations. In P. Phariseau and B. L.
Gy6rfly and L. Scleire, editors, Electrons in dis-
ordered metals and metallic surfaces., pages 193-
221, Plenum Press, New York, NY, 1979.

[7] P. Soven, Application of the Coherent Potential
Approximation to a system of muffin-tin poten-
tials. Phys. Rev. Vol. 156, 809 (1967).

[8] W. A. Shelton. Jr., The n-atom per unit
cell KKR-CPA applied to the electronic struc-
ture of Bal-.,KBiO3. PhD. Thesis unpublished
pages 38-57 (1989)

[9] L. F. Mattheiss and D. R. Hamann, Elec-
tronic structure of the high Tc superconductor
Baj_.K..,BiO3 . Phys. Rev. Lett., Vol. 60, 2681
(1988).

[10] L. F. Mattheiss and D. R. Hamann, Electronic
structure of BaPbj_.,Bi..O3. Phys. Rev. B, Vol.
28, 4227 (1983).

Shost

getcube
load nodes
load pseudo-host

-pseudo-host_ ' node

Fread input datal read input data

calculations send data to nodes recv data

set-up

for each energy while energies left calculations

compute DOS send e to idle node recv energy

[compute DOSI

recv DOS from idle node send DOS backi

calculate calculate
charge density charge density

write resultsi write results

Figure 1: Schematic of parallel implementation of KKR-CPA code.

Sc0?

1633

1500

1302

1000

Mflops 40
M

660 hz

32
M
hz

500-

98 130

2 18 49 -- "] (c) '
0- - "= E3 ((c)

Dec 3100 IBM 530 Cray 2 Cray YMP iPSC/860

Figure 2: Performance in Mflops of KKR-CPA Code on various computers.(a) extra vec-
torization employed.(b) fortran only. (c) using assembly zaxpy.

510

I0

JI

Density Bi..KEO

Of 0I
States=O

(states/Ry)

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Energy (Ry)

Figure 3: Affects of alloying on the density of states for Bal-,KKBiO3

of •511

Density BaBii...,PbO,3

of XI
States

(states/Ry)

I z=O

-1.2 -1.0 -0.8 -0.6 -0'.4 -0.2 0.0 0.2

Energy (Ry)

Figure 4: Effects of alloying on the density of states for BaBil-.Pb.O3 ,

512

Parallel Solutions to the Phase Problem in X-Ray
Crystallography

N. Bashirl M. Crovella 2 G. DeTitta3 ,
5 F. Han6

H. Hauptman'' 7 J. Horvath4 H. King5 D. Langs3

R. Miller' T. Sabin' P. ThumanI D. Velmurugan 3

Graduate Group in Advanced Scientific Computing
226 Bell Hall

University at Buffalo
Buffalo, NY 14260

miller@cs.buffalo.edu

Department of Computer Science, University at Buffalo, Buffalo, NY 14260
2Work performed while at Department of Computer Science, University at Buffalo.

(Current address is Department of Computer Science, University of Rochester,
Rochester, NY 14627.)

a Medical Foundation of Buffalo, 73 High Street, Buffalo, NY 14203

4 Work performed while at Department of Computer Science, University at Buffalo.

(Current address is Department of Computer Science, University of Wisconsin,

Madison, WI 53706.)
' Department of Chemistry, University at Buffalo, Buffalo, NY 14214

6 The Upjohn Company, Kalamazoo, MI 49001

7 School of Medicine and Biophysical Sciences, University at Buffalo, Buffalo, NY 14214

Abstract an Intel iPSC/2 hypercube, the Connection Machine CM-
2, and a network of Sun workstations.

The central problem of single crystal molecular structure
determination via X-ray diffraction is the "phase prob-
lem." Associated with each diffraction maximum (a re-
flection) are a magnitude, which can be experimentally de- 1 Introduction
termined, and a phase angle, which is lost in the experi-
ment. The goal of "direct methods" is to mathematically A mainstay of modern structural chemistry is the sin-

reconstruct the phase information from the magnitude in- gle crystal X-ray diffraction technique of structure de-
formation alone. termination. This technique provides a three dimen-

Traditional direct methods are capable of determining sional mapping of the positions of atoms in crystals,

structures of moderate complexity, but to extend them to thereby securing unambiguous information about the

problems of the size of macromolecules (proteins, etc.) re- architecture of molecules. The technique is robust in
quires developing new techniques that appear to be comn- the sense that solids as diverse as silicon and virus

putationally intensive. Recently, a new formulation of the crystals can be, and are, subjects fit for study. The
phasing process, dependent on a minimal function, has three stages of an X-ray diffraction experiment are

been proposed. Here we explore a number of different

implementations of the principle to the solution of small 1. the growth of suitable single crystals of the sub-

molecular structures. The machines that we use include stance to be studied,

0-8186-2113-3/90/0000/0513$01.00 0 1990 IEEE

2. the measurement of X-ray diffraction data, and the problem was in principle unsolvable. An infinity
of Fourier transformation maps could be had that fit

3. the unraveling of the molecular structure that the experimental results; they would differ only in the
agrees with the diffraction data. set of phases used to reconstruct the atomic arrange-

The last step is frequently computationally intensive. ment. On the other hand, common sense held that

In the experiment, a beam of X-rays of well de- since a small number of structural arrangements had
been ascertained by a trial and error method therefined wavelength, say 1 Angstrom, is trained on thle ms easlto otepaepolm w hs
must be a solution to the phase problem. Two phys-

crystal. The crystal is oriented so that an individual ical constraints make the problem not only solvable
diffracting plane is brought into the Bragg condition but in principle greatly overdetermined. One is the
and diffracted photons are counted either electroni- hard constraint that for a Fourier transformation to
cally or recorded photographically. The process is re- be physically meaningful it must lead to a map in
peated anywhere from a few hundred to a few million which the calculated ele-tron density (electrons per cu-
times, depending on the size of the structure to be de- bic Angstrom) is everywhere non-negative. The other
termined, as individual diffracting planes are brought is a softer constraint that electron density about atoms
into the Bragg condition. Each condition for diffrac- in molecules (whether in crystals or in the gas phase)
tion, called a reflection, is characterized by a location is strongly concentrated about the atomic centers (the
on a three-dimensional grid, or reciprocal lattice, cor- nuclei). "Non-negativity" and "atomicity" were two
responding to the orientation of the crystal and the important principles in Lhe earliest formulations of di-
angle which the diffracting plane makes with the in- rect methods.
coming X-ray beam. As the grid constitutes a true In a direct methods attack on tie phase problem,
lattice, each reflection can be labeled by three inte- probabilistic theories are used to relate the phases, or
gers, the Miller indices, that denote the location of more precisely certain linear relationships among the
the reflection on the reciprocal lattice relative to a phases, to the measured intensity data. For example,
common origin. Each reflection is additionally char- it can be shown that the sum of three phases
acterized by a diffraction intensity related simply to
the number of counts recorded electronically or to the OH + OK + 0-H-K = -T,

blackness of film recorded photographically. The in- where H and K are reciprocal vectors with distinct
tensity is related to the efficiency with which a Bragg Miller indices, e.g., H = {3,1,2}, K = {-4,3,-8},
plane diffracts X-rays. As electrons are the media that and -H - K = { 1, -4,6}, has a most probable value
diffract X-rays, and atoms are made up of electrons of 0 mod 27r radians and that probability increases as
centered about their nuclei, the intensity of an indi- the product of the magnitudes of the intensities of
vidual reflection is related to the density of electrons the reflections {3, 1,2}, {-4, 3, -81 and {1, -4, 6) in-
in the near vicinity of the Bragg plane. The mathemat- creases. Such a relationship among three phases is
ics that relates the underlying atomic arrangement in called, in the trade, a "triple" relationship. Analo-
a crystal to the intensities and locations of the Bragg gously, a "quartet" of the form
reflections is a three-dimensional Fourier transforma-
tion. OL + OM + ON + O-L-M-N =

It would seem that all the tools necessary to unravel where the main terms L, M, N, and -L - M - N are
the structure of molecules in crystals are assembled associated with large intenmties and the cross-terms
once the diffraction experiment is concluded. Nature, L + M, M + N, and N + L are associated with small
however, has its own agenda. Missing, and presumably intensities has a most probable value of ir mod 27r and
lost, in the experiment are the phases of the Fourier that probability increases as the main terms become
coefficients relative to a common reciprocal lattice ori- larger and/or the cross-terms become smaller. With
gin. That is, the experiment yields the amplitudes and these tools in hand a number of strategies evolved to
orientations of the Fourier components but not their "solve the phase problem" for small to moderate sized
phases. What nature conceals, the direct methods of (up to 315 atoms at last count) structures. It is the
structure determination seek to supply. extension of these methods to larger structures that

we direct our attention.

2 The Phase Problem
3 The Minimal Function

It is the determination of the set of phases, one for
each reflection, that constitutes the phase problem. As structures become larger, estimates for the phase
Early analyses of the problem led some to believe that sums (the "triples" and "quartets") become increas-

514

ingly less reliable. Consequently, a direct attack that is the quartet,
is promising for small structures becomes untenable
for large structures. On the other hand, whereas the AHK = 2--EHEKEH+KI, (4)
number of reflections grows more or less linearly with Ni
the size of the structures, the number of phase sums
explodes catastrophically. A global procedure to make B = 2 IE E E E ' (IEL+M12
the sheer numbers of phase sums work for the crystal- NILMNL+M+N E
lographer exploits the probabilistic nature of the esti-
mates of the phase sums in the following way. As the 2 2

structure gets ever larger the estimate for any individ- + IEM+NI + JEN+LI - 2), (5)
ual triple or quartet becomes less and less reliable, but
averaged over the ever increasing number of such phase N is the number of atoms, assumed identical, in the

relationships, the estimates as a whole get better. A unit cell, and Ii and 10 are the Modified Bessel Func-
breakthrough in the use of the estimates came when it tions. In view of Eq (2) and (3), Eq. (1) also defines
was realized that a particularly simple function of the R as a function, R(4' of the phases 0. Since the mag-
phases, defined below, is a minimum when the correct nitudes JEJ art -amed to be known, the functions

set of phases is used to compute the function. It was R(I) and R(4) are known.
quickly realized that the conceptual problem of phas- Next, the phases 4 are themselves functions, for

ing procedure was replaced by one of computational fixed choice of origin, of structures T,
strategy. N

EH1 = IEHlxP (i4H) = - exp(27riH-rj) (6)
3.1 Theory N

We assume a crystal structure S in the space group G where rj is the position vector of the atom labeled
to be fixed, but unknown. The normalized structure j. Since the structure invariants THK and QLMN
factor magnitudes IEI are also assumed to be known. are uniquely determined by the structure T, indepen-
The function to be minimized is defined initially as a dently of the choice of origin, it follows that Eq. 1 also
function, R(I), of the structure invariants: defines a function, R(T), of structures T. Further-

more, since the magnitude of any structure invariant
I1 2 is the same for T and its enantiomorph, but has op-

R(I) AHK cSTHK I(AHK) + posite signs for the enantiomorphs, and since only the
HF Io(AHK) J cosines of the structure invariants appear in Eq. (1), it

follows that R has the same value for T and its enan-
tiomorph.

- I1(BLMN) }2} The minimal principle states thatZ BLMN tc°SQLMN -0(BMN) , (1)

L,M,N Io(BLMN) R(S) < R(T) if T t S. (7)

where Since, in general, the number of phases exceeds

by far the number of independent atomic coordinates
D AHK + needed to fix the crystal structure, a large number of

11,K BLMN" identities must be satisfied by the phases. Thus the
phases are not independent variables and the mini-

It should be noted that BLMN can take on nega- mum of R($), regarded now as a function of indepen-
tive values (see below) when the cross-terms are very dent phases, will in general be less than R(S) but will
small, so it sums into the denominator D as its abso- yield values of the phases somewhat different from the

lute value, true phases corresponding to the structure S. What
is needed then is the global minimum of R(4) subject
to the constraint that all identities among the phases,

THK = OH + O'K + 0-HK (2) which must of necessity be fulfilled, are in fact satis-
fied.

is the triplet, One may go back to Eq. (1) and observe that, since
the number of structure invariants exceeds by far the

QLMN = OL + OM + 'ON + 4 '-L-M-N (3) number of phases, and since the phases themselves are

515

not indepeadent, a large number of identities among Miller Indices
the structure invariants THK and QLMN must also when Mk = {-4, 3,-8)
be satisfied. Thus the minimal principle may be re- 3 M = -- 38

formulated as follows: Among all structure invariants 3 1 2 -# MN

THK and QLMN which satisfy the necessary identi- " and M, = {1, -4,6)
ties, those invariants which correspond to the struc- 4 3 8 -Mk

ture S minimize the function R(T). Alternatively,
among all phases 0 which satisfy the necessary identi- Mh + Mk + Mt 0
ties, those corresponding to the true structure S mini- 1 4 6 -- M

mize R(4'); or finally, the (N atom) structure T which forming a triplet t = (h, k, 1)
minimizes R(T) coincides with S.

Figure 1: Example Formation of a Triplet

4 Computational Initialization where

4.1 Invariant Generation IT = Ii (AHK)
Io(AHK)'

The triplets and quartets which serve as input to our
program are defined as follows. Suppose we are given n I1(BLMN)
sets of Miller indices, M, ... M,, where each set consists IQ = Io(BL)'
of three integers (X,y,z) which refer to the location
of the reflection on the reciprocal lattice relative to a WT = AHK,
common origin. Associated with each Miller index Mi,
1 < i < n, is a diffraction intensity jEg1. Let a triplet WQ = iBLMNI,
t = (h, k, 1) refer to the hth, kth and Ith sets of Miller I is the (known) expectation value of the cosine of the
indices such that Mh + Mk + MI = 0. Similarly, let corresponding structure invariant averaged over the
a quartet be defined as Q = (h, k, 1, m), where Mh + conditional probability distribution of triplets, W is
Mk + M1 + Mm = 0 a weight factor inversely proportional to the variance,

For the molecular structure that we are currently A and B are as defined previously, and T and Q rep-
working with, we generate the triplets and quartets as resent the set of triplets and quartets, respectively.
follows. Sort the sets of Miller indices that were ex- Notice that each term of ET and 1" can be com-
perimently determined into decreasing order by their puted independently. Thus, R can be efficiently com-
intensity values and select the top n sets, where n puted in parallel by computing partial sums and then
refers to the number of phases to be determined. For combining them with a global sum operation. The
each Miller index Mh, consider Mk = (X, y, z), where denominator, ET WT + EQ WQ, is a constant which
1 < h < k < n, for all permutations of (+x,±y,±z). is computed during the initialization of the data set.
Determine if there exists a Miller index MI, k < I _< n, This initialization, which is performed once per data
such that MI, or any permutation of MI, is equal to set, also calculates the constants WT, WQ, IT and IQ.
-MN -Mk. Such an M1 may not exist if its associated
intensity value, 1E11, is too small. If such an M, does
exist then the triplet t = (h, k, I) is formed. See Figure 5 Simulated Annealing
1. A similar process is followed for the quartets.

Our initial search for the global minimum focused on

4.2 Computing R the use of simulated annealing[31. Simulated annealing
is a probabilistic optimization technique designed to

Using the above definitions of triplets and quartets we escape local minima in search of the global minimum.
can define Ot as Since preliminary studies indicated that the minimal

function contained a vast number of local minima, the

't = OHK = Oh + Ok + 01, use of simulated annealing seemed well suited to our
needs.

where t is a triplet equal to (h, k, 1). Using this nota- Given an optimization function f(x), where r is a
tion the calculation of R can be described as follows: configuration of the optimization problem, simulated

S2 + Q O -annealing begins by first choosing a random config-

R ET WT(COS OT - I7) + LQ Wq(cos q - 'Q) 2 uration Co of the optimization problem, and an ini-
ET WT + EQ WQ tial cooling parameter c. At iteration i of the algo-

516

Procedure Simulated Annealing; * The length of the Markov Chain.

{ * The number of cooling steps.
Initialize(c, present-config); e The rate of cooling, a.
for (cooling.step = I to NumberCooling.Steps)

{ We implemented a wide variety of such perturbation
for (chain = 1 to Markov.Chain-Length) schemes, as described below.
{ In selecting the number of phases to perturb we con-
Perturb(present-config,new-config); sidered choosing both a random number and a con-
Delta = Cost(new-config) - Cost(present.config); stant number of phases. Since the amount of pertur-
if (Delta < 0) bation is to be chosen such that the next configuration
present-config = new-config; 1* accept */ is within a neighborhood of the previous configuration,

else if (exp(-Delta/c)) > (randomo) and since we had limited knowledge of the function, we
present-config = new.config; /* accept */ allowed the amount of the perturbations to range from

else; /* reject new-configuration */ 0 to 2r radians. That is, the amount of perturbation,
} r, for a given perturbation scheme was chosen such
c = c*a; that 0 < r < 27r.

} We considered both a constant and a conditional
I number of cooling steps. When implementing the

conditional cooling scheme, termination of the cool-
ing loop occurred when the present configuration (ie.,
the set of phases) remained unchanged for 10 cooling

Figure 2: Simulated Annealing Algorithm steps. A variety of constant Markov chain lengths were
considered based on experimentation. We allowed a,

rithm, configuration C1 is perturbed to produce con- the rate of cooling, to vary between .8 and .99, as the

figuration Ci+1 such that Cj+1 lies within the neigh- length of the Markov chain varied.

borhood of Ci. Let A = f(Ci+1) - f(Ci). If (A < 0) The most promising results we obtained were with
-1 a very slow cooling rate, a = .99, combined with a

or (e--- > random(O, 1)), then configuration Ci+J is small Markov chain length, and a small perturbation
accepted as the next configuration, otherwise configu- amount for a random subset of the phases.
ration Ci is used as the next configuration. Notice that We consider this process successful if the set of
in order to allow the optimization function to escape phases produced are within 300 to 40' of the true set.
a local minimum, configuration Ci+1 may be accepted Unfortunately, simulated annealing in phase space was
even though it has a higher cost than C1 . This process not producing such results. Our next approach was to
is continued for a number of iterations (the length of use simulated annealing in atom space. Our rational
the Markov Chain) before c is decremented by multi- for this is that working in atom space allows us to
plying it by a parameter a, where a < 1. Thus, as the impart chemical knowledge of the structure, such as
algorithm progresses it becomes more difficult to climb restricting the distance between two atoms to be no
out of a minimum. Hopefully, this allows the function closer than 1.2A, on the problem. In addition, the
to eventually settle into the global minimum. number of variables for the minimal function is re-

As can be seen from Figure 2, the process of simu- duced from approximately ION to N, where N is the
lated annealing involves the following parameters: the total number of atoms in the structure and ION is the
colling rate (a), the Markov chain length, the num- approximate number of phases being considered.
ber of cooling steps, and the amount of perturbation. In order to use atom space we must transform the
These parameters form what is commonly called a per- atomic coordinates to a set of phases, since the phases
turbation scheme [1]. are needed to calculate R. This calculation is called

Our first attempt to minimize R focused on ex- the structure factor calculation and is computationally
ploring the reciprocal space, which is commonly called expensive. The structure factor for each phase p is
phase space. A perturbation scheme requires us to de- determined as follows
termine the following:

Ap= Z Ia cos 2w(z4,j + 14'Y, + zp.j

"* The number of phases to be perturbed at each NA
iteration.

Bp = f f. sin 21r(zp±j + ypj + •zpl)
"* The amount to perturb each phase. NA

517

Triplets method moved the atom in the same fashion but did
Miller Indices h k I not utilize chemical information about the structure.

X y z IEI 1, 1 The second method generally gave lower R values but
1 EL--]-]2 the structures produced were not necessarily feasible.
2 3 We also used two main methods for determining the
3 length of the Markov chains. The first determined

: ithe length of each Markov chain by looking at the

-- Hmost recent R values within the chain. If these values
SITI did not vary by more than some c, then the Markov

Quartets chain was terminated [1]. The second method set the

h k I m Atoms length of each Markov chain as a function of the cool-
1 • •ing value, a. This was accomplished by allowing a

2 Markov chain to terminate after z transitions had been

3 2 accepted. Since as cooling progresses the number of
3 acceptances decreases, the length of the Markov chain

became an increasing function of the cooling value. For
this reason an upper bound was placed on the length
of the Markov chain [1]. The most promising results
were obtained when the chain length was a function of

N the cooling value. Although these results were more

IQI promising than simulated annealing in phase space, we
still were unable to minimize R.

Figure 3: Data Structures

6 Grid Method

4=arctan (BPp It is conjectured [2] that the minimal R value of a
structure with N atoms can be found by first min-
imizing the R value for a single atom, and then se-

where xp, yp and zp are the pth Miller indices, tj, qj quentially minimizing the R value of the set consisting
and ij are coordinates of atom j, and NA is the set of of the previous atom(s) and one additional atom, until
atoms including the set of symmetry elements for each all N atoms have been placed. Our current strategy
atom. Thus, as can be seen in Figure 3 each Miller in- exploits this conjecture.
dex, Mi, has associated with it an intensity value JEiJ In order to gain insight into the behavior of the mini-
and a (unknown) phase, Oi. Given p active processors mal function, we performed an exhaustive search of the
and P phases, the calculation of the structure factor three dimensional unit cell at lattice point intervals of
can be performed efficiently in parallel by assigning .25k. This showed a function which varied extremely
each active processor the calculation of P/p phases. rapidly, leading us to believe the function was much

Once again a variety of perturbation schemes were wilder than originally suspected. We then performed
attempted. We continued the use of conditional cool- an exhaustive search of the three dimensional unit cell
ing lengths and allowed the cooling rate, a, to vary at lattice point intervals of .A. This search verified the
between .8 < a < .99. Our attention then focused on unpredictability of the function. For example, within
determining a suitable Markov Chain length and on a a distance of .3, the values of R change from the high-
method of perturbing the atoms. est to near the lowest. This rapid fluctuation explains

Due to the nature of the structure factor calcula- why attempts to utilize simulated annealing on this
tion, the movement of one atom changes the entire set function were unsuccessful.
of phases. Since minimizing R is a function of the As discussed previously, the data used for the above
phases, we restricted the number of atoms that were methods consisted of choosing the top n Miller in-
perturbed at each iteration. Two main methods were dices by intensity and using these Miller indices to
implemented for perturbing an atom. In the first, we determine the corresponding sets of triplets and quar-
restricted the perturbation to be within a cube of edge tets. This data, which can be termed "high" resolution
size e, where .5A < e < 6A. Chemical information data, was originally chosen since the estimates for IT
was used by requiring that the perturbed atom not be and IQ are more reliable. In hopes that the minimal
closer than 1.2A from any other atom. The second function would become smoother we are currently us-

SIB

ing a "low" resolution data set. Our "low" resolution
data set was obtained by taking the j lowest d* val-
ues, where j is arbitrarily chosen to be greater than n.
Given reciprocal lattice axes a*, b, c* and Miller index
Mi = (z, y, z) d*, the length of the reciprocal vector, 2-
is equal to a*z + 6*y + c*z. These j Miller indices are
then sorted in increasing order by their IEJ values. The
first n Miller indices of this sorted list are then used to
generate the appropriate triplets and quartets. Using
this "low" resolution data set we performed exhaus-
tive searches on the three dimensional unit cell. These
searches at .25A and .AA lattice point intervals showed
the function to be much smoother than it was with the 0-
high resolution data. 4 8 16 32

For the molecular structure that we are currently Number of Nodes
working with the first atom is believed to be critical, as
it selects the origin for the structure. Some structures, Figure 4: Time of R Calculation for a 29 Atom Struc-
in different space groups, require more than one atom
to be placed before the origin is determined. There-
fore, we are confident that if we can determine the ing, after which node 0 performs the final division by
first atom of the structure, then we can determine the ET WT + T-Q WQ, which is a constant that is com-
entire structure using the grid method on each suc- puted during the initialization of the data set. Notice
cessive atom. Thus, we plan on spending the bulk of that the calculation of any partial sum of the mini-
our time minimizing R with respect to a single atom. mal function may require the use of the entire set of
We are currently focusing our attention on the ques- phases which is why each active node must contain a
tion of how fine a grid is needed in order to obtain the consistent copy of the entire set of phases.
minimum. We are also considering "grid refinement" This implementation evenly distributes the work
methods that consist of multiple stages of grid applica- and the data set among the processors. Therefore,
tions with successively smaller grid intervals. After the increasing the number of processors not only allows
grid method has been refined sufficiently for a single for a faster solution, but for much larger problems to
atom minimum, we plan on generalizing the method be solved. As can be seen from Figure 4, a near per-
to larger subsets of the structure. fect linear speed up is observed in tests ranging from

4 (the minimum number of nodes required to hold all
of the data) to 32 (the maximum number of nodes on

7 Intel iPSC/2 Implementation our machine) nodes.
The calculation of the structure factor for n phases,

On our 32 node Intel iPSC/2 hypercube, we have im- given P active processors and a atoms, is divided into
plemented the minimization techniques previously de- P subsets of phases. Each processor computes n/P
scribed in serial while the structure factor and R value structure factors. Since the computation of any one
calculations are performed in parallel. The reason for structure factor requires the use of all a atoms, each
this is that the calculation of both the structure factor processor must maintain a consistent copy of all a
and R are computationally expensive relative to the atoms. In addition, all processors must maintain a
overhead of the minimization techniques. Thus the complete set of phases for the calculation of R. To
implementation focuses on exploiting multiple proces- achieve this, the subsets of phases produced by the
sors to efficiently compute the structure factor and R structure factor calculation are combined by recursive
value. Once we have obtained satisfactory solutions, halving to node 0. Although the order of the phases
we will consider parallelizing the minimization tech- within each subset will remain the same during recur-
niques. sive halving, the order of the subsets will not. There-

The data is initially distributed so that each of fore, node 0 (the master) must order the subsets of
the P processors have TIP triplets and Q/P quar- phases prior to distributing the entire set of phases to
tets, plus consistent copies of all of the remaining the slaves (all active processors) by recursive doubling.
data structures. Each processor then computes its This implementation of the structure factor calcu-
set of TIP triplets and Q/P quartets. These partial lation has produced near linear speed-up, as can be
sums are then summed to node 0 by recursive halv- seen in Figure 5. However, the speed-up of the struc-

519

.1 At each iteration of the simulated annealing process
LO- a subset of atoms are perturbed. A copy of the en-
0.9- tire set of atoms on all processors must be maintained

so that the structure factor calculation may be per-
07turbed in parallel, as previously described. Therefore,v0.7- to reduce the amount of message passing, we chose to

4.0.6l- perform the perturbation in serial, concurrently by all
0.5- processors. We insure the perturbed set of atoms are
OA- consistent through out all processors by broadcasting

0.3- the current seed to all nodes.

02-

0.1- 7.3 Grid Method
48 16 82 The grid method is also implemented using a mas-
Number of Nodes ter/slave model. The calculation of the structure fac-

Figure 5: Time of Structure Factor Calculation for 29 tor and R are the same as in the simulated annealing

Atom Structure with 300 Phases implementations. Again each node contains the cur-
rent structure and set of phases. Since we are per-
forming a systematic exhaustive search of the three

ture factor calculation is not as efficient as that of the dimensional unit cell the current structure is easily
R value calculation, since the structure factor calcu- maintained on all nodes.
lation has the additional overhead of re-ordering and
broadcasting the phases.

8 Additional Architectures
7.1 Phase Space Simulated Annealing In addition to the hypercube, we have implemented all

For the implementation of simulated annealing in three methods on the Connection Machine CM-2 at
phase space on P active processors, node 0 performs NPAC. Our current implementation requires approxi-
simulated annealing, with each active processor coop- mately 0.2 sec. to calculate R and 0.35 sec. to calcu-
erating in the calculation of R. This can be viewed as late the structure factor for a 29 atom structure with
a master/slave implementation. At each iteration of 300 phases on 16K processors of the Connection Ma-
the simulated annealing process a subset of the phases chine. We have also recently begun using a network
is perturbed in serial, concurrently by all processors. of 12 Sun 4 workstations. On one workstation we can
To insure that all processors maintain identical sets compute, in serial, R in approximately 4.3 seconds for
of phases, a message is broadcast to all processors, 300 phases. We plan on using the network to divide
by recursive doubling, with the current random num- the unit cell into 12 cells and have each workstation
ber generator seed. Since the same random number perform an exhaustive search of its subcell.
generator is used on all processors we know all pro-
cessors will perturb the phases in the same manner.
The master determines, by the properties of simulated 9 Acknowledgments
annealing, whether to accept or reject the perturbed
set of phases. This decision is then broadcast to the This work was partially supported by NSF grants IRI-
slaves by recursive doubling. To reduce the amount 8800514, ASC-8705104 and CIIE-8508724, and by NIH
of message passing, the accept/reject decision and the grant DK-19856.
current seed are sent in the same message. We would like to thank the Northeast Parallel Ar-

chitectures Center (NPAC) at Syracuse University for

7.2 Atom Space Simulated Annealing allowing us to use their Connection Machine CM-2.

A master/slave model is also used for the atom space
simulated annealing implementation. Although theo- References
retically very different, the implementations of phase
space and atom space are very similar. The master [1] Aarts, E.II.L. and P.J.M. van Laarhoven, Simu-
performs simulated annealing, while the slaves coop- lated Annealing: Theory and Applications, D. Rei-
erate in the calculation of R and the structure factor. del Publishing Company, New York, 1988

520

[2] Hauptman, H.A. (1990) Acta Crystallographica A,
in preparation

[3] Kirkpatrick, S., C.D. Gelatt Jr. and M.P. Vec-
chi, Optimization by Simulated Annealing, Sci-
ence, 220 pp. 671-680 (1983)

[4] Stout, George H. and Lyle E. Jensen, X-Ray Struc-
ture Determination: A Practical Guide, John Wi-
ley & Sons, New York, 1989

521

An Automata Model of Granular Materials

G. M. Gutt
Jet Propulsion Laboratory, Pasadena, CA 91109

P. K. Haff
Department of Civil and Environmental Engineering, Duke University, Durham, NC 27706

will occur. Soil mechanics is a macroscopic continuum
Abstract model requiring an explicit constitutive law relating,

say, stress and strain; and while very successful for the
A new modeling technique (the Lattice Grain low-strain quasi-static applications for which it is in-

Model) is presented for the simulation of two-dimen- tended, it is not clear how it can be generalized to deal
sional granular systems involving large numbers (- with the high-strain, explicitly time-dependent phe-
10i to 108) of grains. These granular systems (e.g., nomena which characterize a great many other granu-
rock slides, planetary rings, industrial powders, etc.) lar systems of interest. Attempts at obtaining a gen-
may include both high shear rate regions as well as eralized theory of granular systems using a differential
static plugs of grains and cannot easily be handled equation formalism [1] have met with limited success.
within the framework of existing continuum theories An alternate approach to formulating physical
such as soil mechanics. theories can be found in the concept of cellular au-

The Lattice Grain Model (LGrM) is similar to tomata, which was first proposed by Von Neumann in
the Lattice Gas Model (LGM), which was introduced 1948. In this approach, the space of a physical prob-
as a discrete model of fluids, in that the computation lem would be divided up into many small, identical
is carried out by means of cellular automata which cells each of which would be in one of a finite number
evolve according to a simple set of rules based on lo- of states. The state of a cell would evolve according to
cal interactions. This allows large simulations to be a rule which is both local (involves only the cell itself
programmed onto a hypercube concurrent processor and nearby cells) and universal (all cells are updated
in a straightforward manner. However, it differs from simultaneously using the same rule).
LGMi in that it includes the inelastic collisions and The Lattice Grain Model [2] (LGrM) we discuss
volume-filling properties of macroscopic grains, here is a microscopic, explicitly time-dependent, cel-

Examples to be presented will include Couette lular automata model, and can be applied naturally
flow, flow through an hourglass, and gravity-driven to high-strain events. LGrM carries some attributes
flows around obstacles. of both particle dynamics models [3, 41 (PDM), which

are based explicitly on Newton's second law, and lat-
Introduction tice gas models [5] (LGM), in that its fundamental

element is a discrete particle, but differs from these
Physical systems comprised of discrete, macro- substantially in detail. Here we describe the essential

scopic particles or grains which are not bonded to one features of LGrM, compare the model with both PDM
another occur importantly in civil, chemical, and agri- and LGM, and finally discuss some applications.
cultural engineering, as well as in natural geological
and planetary environments. Granular systems are Comparison to Particle Dynamics Models
observed in rock slides, sand dunes, clastic sediments,
snow avalanches, and planetary rings, while in engi- The purpose of the lattice grain model is to pre-
neering and industry they are found in connection with dict the behavior of large numbers of grains (10,000 to
the processing of cereal grains, coal, gravel, oil shale, 1,000,000) on scales much larger than a grain diameter.
and powders, and are well-known to pose important In this respect, it goes beyond particle dynamics cal-
problems associated with the movement of sediments culations which are limited to no more than -, 10, 000
by streams, rivers, waves, and the wind. grains by currently available computing resources [3,

The standard approach to the theoretical mod- 4]. The particle dynamics models follow the motion of
eling of multiparticle systems in physics has been to each individual grain exactly, and may be formulated
treat the system as a continuum and to formulate the in one of two ways depending upon the model adopted
model in terms of differential equations. As an ex- for particle-particle interactions.
ample, the science of soil mechanics has traditionally In one formulation, the interparticle contact times
focussed mainly on quasi-static granular systems, a are assumed to be of finite duration, and each parti-
prime objective being to define and predict the con- cle may be in simultaneous contact with several others
ditions under which failure of the granular soil system [3]. Each particle obeys Newton's law, F = ma, and a

522
0-8186-2113-3/90/0100/0522$01.00 0 1990 IEEE

detailed integration of the equations of motion of each maintained in which no two pa,4ticles of the same ve-
particle is performed. In this form, while useful for locity may occupy one lattice point. Thus each lattice
applications involving a much smaller number of par- point may have no more than six particles, and the
ticles than LGrM allows, PDM cannot compete with state of a lattice point can be recorded using only six
LGrM for systems involving large numbers of grains bits.
because of the complexity of PDM "automatae. LGrM differs from LGM in having many possible

In the second, simpler formulation, the interpar- velocity states, not just six. In particular, in LGrM
ticle contact times are assumed to be of infinitesimal not only the direction but the magnitude of the ve-
duration, and particles undergo only binary collisions locity can change in each collision. This is a necessary
(the hard-sphere collisional models) [4]. Hard-sphere condition because the collision of two macroscopic par-
models usually rely upon a collision-list ordering of col- tides is always inelastic, so that mechanical energy is
lision events to avoid the necessity of checking all pairs not conserved. The LGrM particles satisfy a somewhat
of particles for overlaps at each time step. In regions different exclusion principle: no more than one parti-
of high particle number density, collisions are very fre- cle at a time may occupy a single site. This exclusion
quent; and thus in problems where such high density principle allows LGrM to captuce some of the volume-
zones appear, hard-sphere models spend most of their filling properties of granular material, in particular to
time moving particles through very small distances us- be able to approximate the behavior of static granular
ing very small time steps. In granular flow, zones of masses.
stagnation where particles are very nearly in contact The determination of the time step is more crit-
much of the time are common, and the hard-sphere ical in LGrM than in LGM. If the time step is long
model is therefore unsuitable, at least in its simplest enough that some particles travel several lattice spac-
form, as a model of these systems. LGrM avoids these ings in one clock tick, there arises the problem of find-
difficulties because its time-stepping is controlled notby acolisio lit bu bya san fequncy hic in ing the intersection of particle trajectories. This in-
by a collision list but by a scan frequency which in volves much computation and defeats the purpose ofturn is a function of the speed of the fastest particle an automata approach. A very short time step would
and is independent of number density. Furthermore, imply that most particles would not move even a single
although fundamentally a collisional model, LGrM can lattice spacing. Here we choose a time step such that
also mimic the behavior of consolidated or stagnated the fastest particle will move exactly one lattice spac-zones of granular material in a manner which will bedescribed below. ing. A "position offset" is stored for each of the slowerparticles, which are moved accordingly when the offset

Comparison to Lattice Gas Models exceeds one-half lattice spacing. These extra require-
ments for LGrM automata imply a slower computa-

LGrM closely resembles LCM [51 in some respects. tion speed than expected in LGM simulations; but,
First, for 2D applications, the region of space in which as a dividend, we can compute inelastic grain flows of
the particles are to move is discretized into a triangu- potential engineering and geophysical interest.

lar lattice-work, upon each node of which can reside a
particle. The particles are capable of moving to neigh- The Rules for the Lattice Grain Model
boring cells at each tick of the clock, subject to cer-
tain simple rules. Finally, two particles arriving at the In order to keep the particle-particle interaction
same cell (LGM) or adjacent cells (LGrM) at the same rules as simple as possible, all interparticle contacts,
time may undergo a "collision" in which their outgoing whether enduring contacts or true collisions, will be
velocities are determined according to specified rules modeled as collisions. Those collisions which model en-
chosen to conserve momentum, during contacts will transmit in each time step an im-

Each of the particles in LGM has the same mag- pulse equal to the force of the enduring contact times
nitude of velocity and is allowed to move in one of the time step. The fact that collisions take place be-
six directions along the lattice, so that each particle tween particles on adjacent lattice nodes means that
travels exactly one lattice spacing in each time step. some particles may undergo up to six collisions in a
The single velocity magnitude means that all colli- time step. For simplicity, these collisions will be re-
sions between particles are perfectly elastic and that solved as a series of binary collisions. The order in
energy conservation is maintained simply through par- which these collisions are calculated at each lattice
ticle number conservation. It also means that the tem- node, as well as the order in which the lattice nodes
perature of the gas is uniform throughout time and are scanned, is now an important consideration.
space, thus limiting the application of LGM to prob- The rules of the Lattice Grain Model may be sum-
lems of low Mach number. An exclusion principle is marized as follows:

523

1. The particles reside on the nodes of a 2D trian- lattice point of every third row, with this pattern
gular lattice, obeying the exclusion principle that being repeated nine times so as to cover all lattice
no node may have more than one particle, sites.

2. Each particle has two components of velocity, 6. Particle collisions are calculated assuming that
which may take on any value. At the beginning they are smooth, hard disks with a given coef-
of each time step, each particle's velocity is incre- ficient of restitution. Particles on adjacent nodes
mented due to the acceleration of gravity, are assumed to collide if their relative velocity is

3. The size of each time step is set so that the fastest bringing them together. The following order has
particle will travel one lattice spacing in that time been adopted for evaluating possible collisions on
step. odd time steps: 3b, 3c, 3f, 2f, 2c, 2b, 4b, 4c, 4f, lf,

4. Two components of a "position offset" are main- Ic, lb; and for even time steps: lb, 1c, 1f, 4f, 4c,
tained for each particle. This offset is incremented 4b, 2b, 2c, 2f, 3f, 3c, 3b (where the lattice num-
after the velocities in each time step according to bers and collision directions are defined in Figure
gravitational acceleration and the particle's veloc- 1).
ity: 7. In order to incorporate a container, wall, or other

Ii = vi~t 2 barrier within these rules, a second type of parti-
2- cle is introduced: the wall particle. This particle

where: is similar to the movable particles, and interacts

S= 1,2, with them through binary collisions (with a sepa-
rately defined inelasticity), but is regarded as hav-

Aqi= ith component of increment in position offset, ing infinite mass. To allow for the introduction of

vi= ith component of particle velocity, shearing motion from a wall (as in a Couette flow

gi= ith component of gravitational acceleration, problem), the particles making up the wall are

At =current time step. given a common constant velocity, which is used
in the usual fashion for calculating the results of

Once the offset exceeds half the distance to the collisions. However, the position of the wall par-
nearest lattice node, and that node is empty, the tices in the lattice remains fixed throughout the
particle is moved to that node, and its offset is simulation.
decremented appropriately. Also, in a collision, 8. Even though a single particle does not accu-
the component of the offset along the line con- rately predict the trajectory of a single grain,
necting the centers of the colliding particles is set we nonetheless regard each particle as represent-
to zero. ing one grain when we are extracting informa-

5. The order in which the lattice is scanned is cho- tion from the simulation regarding the behavior
sen so as not to create a coupling between the of groups of grains. Thus, the size of one particle,
scan pattern and the particle motions. Thus the as well as the spacing between lattice points, is
particle position updates are done on every third taken to be one grain diameter.

a b
4 3 4

20 3 o 2o 3C 0 * d

3. 4. 3o 0 •I

e f

1. 2o 10 . 0 0

Figure 1: Definition of lattice numbers and collision directions

524

The transmission of "static" contact forces within For the purpose of dividing up the problem, the hyper-
a mass of grains (as in grains at rest in a gravitational cube architecture is unfolded into a two-dimensional
field) is handled naturally within the above framework. array, and each processor is given a roughly equal-area
Even though a particle in a static mass of grains may section of the lattice. The only interaction between
be nominally at rest, its velocity may be nonzero (due sections will be along their common boundaries, thus
to gravitational or pressure forces); and it will transmit each processor will only need to exchange information
the appropriate force (in the form of an impulse) to with its eight immediate neighbors. The program itself
the particles under it by means of collisions. When was written in C under the Cubix/CrOSIII operating
these impulses are averaged over several time steps, system. With Cubix, only a program for the nodes of
the proper weights and pressures will emerge. the hypercube needs be written; no separate program

for the host computer is required.
Implementation on a

Parallel Processor Computer Simulations

When implementing this algorithm on a com- The LGrM simulations performed so far have in-
puter, what is stored in the computer's memory is volved from -, 104 to 106 automata. Trial applica-
information concerning each point in the lattice, re- tion runs included 2D, vertical, time-dependent flows
gardless of whether or not there is a particle at that in several geometries - Couette flow, flow out of an
lattice point. This allows for very efficient checking of hourglass-shaped hopper, and flow down vertical chan-
the space around each particle for the presence of other nels with embedded obstacles.
particles (i.e., information concerning the six adjacent The standard Couette flow configuration consists
points in a triangular lattice will be found at certain of a fluid confined between two, flat, parallel plates
known locations in memory). The need to keep infor- of infinite extent, without any gravitational acceler-
mation on empty lattice points in memory does not ations. The plates move in opposite directions with
entail as great a penalty as might be thought; many velocities that are equal and that are parallel to their
lattice grain model problems involve a high density of surfaces, which results in the establishment of a veloc-
particles, typically one for every one to four lattice ity gradient and a shear stress in the fluid. For flu-
points, and the memory cost per lattice point is not ids which obey the Navier-Stokes equation, an analyt-
large. The memory requirements for the implemen- ical solution is possible in which the velocity gradient
tation of LGrM as described here are 5 variables per and shear stress are constant across the channel. If,
"ittice site: two components of position, two compo- however, we replace the fluid by a system of inelastic
nents of velocity, and one status variable which denotes grains, the velocity gradient will no longer necessarily
an empty site, an occupied site, or a bounding "wall" be constant across the channel. Typically, stagnation
particle. If each variable is stored using 4 bytes of zones or plugs form in the center of the channel with
memory, then each lattice point requires 20 bytes. thin shear-bands near the walls. Shear-band forma-

The standard configuration for a simulation con- tion in flowing granular materials has been analyzed
sists of a lattice with a specified number of rows and earlier by Haff and others [6] based on kinetic theory
columns, bounded at the top and bottom by two rows models.
of wall particles (thus forming the top and bottom The simulation was carried out with 5760 grains,
walls of the problem space), and with left and right located in a channel 60 lattice points wide by 192 long.
edges connected together to form periodic boundary Due to the periodic boundary conditions at the left
conditions. Thus the boundaries of the lattice are and right ends, the problem is effectively infinite in
handled naturally within the normal position updat- length. The first simulation is intended to reproduce
ing and collision rules, with very little additional pro- the standard Couette flow for a fluid; consequently
gramming. (Note: since the gravitational acceleration the particle-particle collisions were given a coefficient
can point in an arbitrary direction, the top and bot- of restitution of 1.0 (i.e., perfectly elastic collisions)
tom walls can become side walls for chute flow. Also, and the particle-wall collisions were given a .75 coef-
the periodic boundary conditions can be broken by the ficient of restitution. The inelasticity of the particle-
placement of an additional wall, if so desired.) wall collisions is needed to simulate the conduction of

Because of the nearest-neighbor type interactions heat (which is being generated within the fluid) from
involved in the model, the computational scheme the fluid to the walls. The simulation was run until
was well suited to an NCUBE parallel processor. an equilibrium was established in the channel (Figure
This machine consists of 512 processors, each with 2a). The average x- and y-components of velocity and
512 kilobytes of memory, connected together as a 9- the second moment of velocity, as functions of distance
dimensional hypercube, along with a host computer. across the channel are plotted in Figure 2b.

525

1 2 3

-4096 -3872 -2848 -1804 0 1824 2848 3072 44%

Figure 2a: Elastic particle Couette flow. Figure 2b: X-component (1), y-component (2),
and second moment (3) of velocity.

The second simulation used a coefficient of resti- shearing motion occurs. Note the increase in value of
tution of .75 for both the particle-particle and particle- the second moment of velocity (the granular "thermal
wall collisions. The equilibrium results are shown in velocity") near the walls, indicating that grains in this
Figures 3a and 3b. As can be seen from the plots, area are being "heated" by the high rate of shear. It
the flow consists of a central region of particles com-
pacted into a plug, with each particle having almost is interesting to note that these flows are turbulent in
no velocity. Near each of the moving walls, a region of the sense that shear stress is a quadratic, not a linear,
much lower density has formed in which most of the function of shear rate.

I I ,

...I

:1 2E3

-4996 -3872 -2848 -1864 8 1824 2848 3872 408
W I"ity

Figure 3a: Inelastic particle Couette flow. Figure 3b: X-component (1), y-component (2),
and second moment (3) of velocity.

526

In the second problem, the flow of grains through that it is often easier to configure the simulation to re-

a hopper or an hourglass, with an opening only a few semble a real experiment - in this case by explicitly

grain diameters wide, was studied; the driving force "catching" spent grains - than by reprogramming the
was gravity. This is an example of a granular system basic code to erase such particles.
which contains a wide range of densities, from groups The hourglass flow, Figure 4b, showed internal

of grains in static contact with one another to groups shear zones, regions of stagnation, free-surface evolu-
of highly agitated grains undergoing true binary col-
lisions. Here, the number of particles used was 8310; n towr indang e of pose, ad an ei owa
and the lattice was 240 points long by 122 wide. Addi- approximately-independent ofspressure head, as ob-
tional walls were added to form the sloped sides of the served experimentally [7]. It is hard to imagine that

bin and to close off the bottom of the lattice so as to one could solve a partial differential equation describ-

prevent the periodic boundary conditions from reintro- ing such a complex, multiple-domain, time-dependent

ducing the falling particles back into the bin (Figure problem, even if the right equation were known (which

4a). This is a typical feature of automata modeling: is not the case).

11, J,,Iv II 111 1I i i i . . ' 1 "'iI IIi ' li,:i'i I. I,'; Ii II I I I II I I. 1,•*. " :: .ii :i!~iii~••ik !I!Ui II I: I -'I' I"Ii2• ;';,,: . . : ". " ••

-I-: I:!:'1 I•:i I I.•. I : :1 illiE.I 1 1 ': :1 : . I •'., ". I . .., '. . I.,• , , ;1 i/ :: II

";:l~ ~k :l ! I iI ' I :' I- I I 1'I

Figure 4a: Initial condition of hourglass. Figure 4b Hourglass flow after 2048 time steps.

527

Another class of problems studied involve the flow Conclusion
of grains around obstacles of different shapes. These
flows were observed experimentally by Nedderman, These exploratory numerical experiments show
Davies, and Horton [81 using a channel width of 20 that an automata approach to granular dynamics
cm and mustard seeds of .228 cm diameter confined problems can be implemented on parallel computing
between two glass plates spaced 2.3 cm apart, giving machines. Further work remains to be done to assess
a nearly two-dimensional system. The simulation con- more quantitatively how well such calculations reflect
tained 16,384 particles in a lattice of 288 points by the real world, but the prospects are intriguing.
130 points. The diameter of the circular obstacle and
the side of the square obstacle were each one-half the Acknowledgments
width of the channel. Two simulations, Figures 5a and
5b, showed features qualitatively similar to those ob- This work was supported in part by USDOE [DE-
served in the laboratory studies [8], including stagna- FG22-86-PC90959] and by USARO [DAAL03-86-K-
tion zones upstream of an obstacle, and void formation 01231 and [DAAL03-89-K-0089]. We thank Geoffrey
downstream. Fox for making available to us the resources of the

Caltech Concurrent Computation Project and Tom
Tombrello for his interest and support.

. 1: 1 t :1 1 :+ ,= +

I IL II LI It', ,..4;. I. It•I LI lii LI' i~i,l

1 I I I I, , I I 1 • I I I • 'I'I Ih ,I I ' '1 I I,,1 I, 1,.4 I I 1h1~.1 II
I-I ''llI +I i~ I I i l'.• I.I,•~';+' I I I I!I 1 I i ' IS.: .. i..... I lilt'.

I ' I ' I +. I I , I.,

I I II . .. I:'P 1 I.... .. . ~ ::l l l :
: :,I ' +l,+;l+ :, ;;+!++, '",lt I,; 1;+I, ,~ + I II t.I + ,I •
,I:l 11 tti!:;Ii' !;;1+i: ! lii;;lil;l, :I;.: I,,,4, •I'4, 'I+'•!+ ,:I :• l ~ l •;! I'1

Figur 5a:.. Flo arun a cirula obtale Fiur 5b: Flwaon•,qurbtce

.I .II . ; I I 1 , i , i I : I

. I i I I

.I '+:h:, i ',!'::; ,, ,•+I' :II ;'4 .!i.I;i:~ 111+:+"; I' . i...+;l!];' .I..

I,.. . I I * , I: 1 I :•lI! ''. . .I : , |i~i I Il Ii+ !

.14I Ii 41,!' ':.+! ; I it

+. , , :: ,.:v ~iiil+, !l+: I+4.,..,

FIgue. Flow+l:1. around a .cicua obstacl.FiueS Flwaonasqrebtce

•'• . ;:i t• ,: , ." .-'- ' :Y ; . .1i: 1 i ;i i t t ;i•+[!:,152 !:1 !

References Multiphase Processes, editors T. Ariman and
T.N. Verziroglu, Hemisphere, Washington, DC,

[1] Johnson, P.C. and Jackson, R. (1987) "Frictional- 483.
Collisional Constitutive Relations for Granular [51 Frisch, U., Hasslacher, B., and Pomeau, Y. (1986)
Materials, with Application to Plane Shearing," "Lattice-Gas Automata for the Navier-Stokes E-
Journal of Fluid Mechanics, 176 67-93. quation," Physical Review Letters, 56 (14) 1505-

[2] Gutt, G.M. (1989) The Physics of Granular Sys- 1508.
tems, Ph.D. thesis, Caltech, May, 18 5 p, unpub- Margolis, N., Tommaso, T., and Vichniac, G.
lished. (1986) "Cellular-Automata Supercomputers for

[31] Cundall, P.A. and Strack, O.D.L. (1979) "A Dis- Fluid-Dynamics Modeling," Physical Review Let-
crete Numerical Model for Granular Assemblies," ters, 56 (16) 1694-1696.
Geotechnique, 29 (1) 47-65. [61 Haf, P.K. (1983) "Grain Flow as a Fluid-Mech-
Walton, O.R. (1984) "Computer Simulation of anical Phenomena," Journal of Fluid Mechanics,
Particulate Flow," Energy and Technology Re- 134 401n430.
view (Lawrence Livermore National Laboratory), 134 401-430.
May, 24-36. Hui, K., Ha(f, P.K., Ungar, J.E., and Jackson,
Werner, B.T. (1987) A Physical Model of Wind- R. (1984) "Boundary Conditions for High Shear
Blown Sand Transport, Ph.D. thesis, Caltech, Rate Grain Flows," Journal of Fluid Mechanics,
April, 442p, unpublished. 145 223-233.
Haff, P.K. (1987) "Micromechanical Aspects of [7] Tuzun, U. and Nedderman, R.M. (1982) "An In-
Sound Waves in Granular Materials," Proceedings vestigation of the Flow Boundary During Steady-
of Solids Transport Contractor's Review Meeting, State Discharge from a Funnel-Flow Bunker,"
(September 17-18, 1987) Pittsburgh, DOE, 41- Powder Technology, 31 27-43.
67. [8] Nedderman, R.M., Davies, S.T., and Horton, D.J.

[4] Haff, P.K. and Werner, B.T. (1987) in Colloidal (1980) "The Flow of Granular Materials Around
and Interfacial Phenomena, 3, Particulate and Obstacles," Powder Technology, 25 215-223.

529

Seismic Modeling and Inversion On The NCUBE

J. Sochacki1 , P. O'Leary 2 , C. Bennett 3 , R. E. Ewing2,3 , and R. C. Sharpley3

1Department of Mathematics and Computer Science, James Madison University
2 lnstitute for Scientific Computation, University of Wyoming
'Department of Mathematics, University of South Carolina

Many of the inherent problems encountered in nu-
merically approximating the wave equations to sim-

Introduction ulate the propagation of sound waves in the earth's

interior have been well documented and analyzed in
The uncovering of the earth's interior encompasses the literature. In this paper, we only discuss a few

two important procedures. The first step is to make of the major difficulties. One of the most commonly
a prediction of the earth's interior based on scien- mentioned problems is related to the vastness of the
tific data collected from geophones and a knowledge earth's interior. The numerical solution of the wave
of the geology of the area in which the data is being equation requires the placing of grid blocks over a
collected. The second step is to improve this predic- finite region and therefore requires boundary condi-
tion by numerical simulation of the wave equations. tions for the computational domain. However, the

The former step is referred to as the inverse problem earth's interior (for the problem of interest) has no
and the latter as the forward problem. Both problems subsurface boundaries. Therefore, the boundary con-
are difficult and interconnected. Once there is scien- ditions imposed must model a 'void' boundary result-
tific confidence that the structure of the interior of ing in what are known in the literature as absorb-
the earth is adequately known, this structure is en- ing or radiating boundary conditions. We incorporate
coded and analyzed under various stresses, strains, absorbing boundary conditions and load-balancing
and pressures. Using wave equations to simulate in the distributed memory setting of computation.
these types of problems involves an immense number Since memory is limited, the sizes for the grid blocks
of calculations, overburdening the largest available are bounded from below. The hyperbolic nature of
vector and parallel computers. In this paper, we dis- the model equations requires that a correspondingly
cuss these aspects and indicate how the distributed small time step be used to avoid dispersion and nu-

memory computations can be used to solve them in merical instabilities. The limit on the grid size also
an efficient manner. restricts how accurately the interfaces of the complex

The inverse problem in which we are interested is structures can be represented. In this paper, we con-
to determine not only the depth, but also the shape, sider all these problems in the forward model using
of complex structures below the surface of the earth. finite differences and distributed memory computing,

That is, given a known disturbance of the earth and and strongly argue that the improper treatment of
the record of the geophones caused by this distur- any of the above-mentioned topics can lead to gross

bance, we wish to accurately describe the structure. misinterpretations in the inverse problem.
The forward problem then takes this structure and The equations that we model for the pressure dis-
the disturbances as its data and produces the wave tribution are the acoustic wave equations
field over time, testing for comparison with surface
waves and geophone readings. In an iterative manner,

the inverse solver utilizes these results to improve the Pt + c2• • (p9) = 0

initial guess of the underlying structure of the earth. Vt + p-'tP = F(it),

This process is repeated until convergence to the true
structure is obtained to within a specified degree of where = = (X1 , V?., n3), P is the pressure distribution,
accuracy. Once this accurate structure is obtained, " = (vj, v2, V3) is the velocity, p is the density, and
the forward solver is used to test how this section c is the speed of sound in the medium. However, we
of the earth reacts to various pressures, stresses, and actually solve the equivalent potential equation
strains. Ut + A(i) Ut - c 2 V- (PU) = g(i, t),

530O-8188-2113-3/90/0000/0530501.O00 1990 JI:EEE

where g = c2V - (pG) and Gt = F, noting that done on the parallel processing machine or the data
P = -Ut (cf. Sochacki et al., 1990). The param- sets for the graphics can be transferred to a graphics
eters p and c are determined by the structure of the workstation that has greater visualization capabili-
earth's interior and are thus obtained from the inverse ties.
problem. The graphics produced by the NCUBE/ten are a

For measuring the displacement at the earth's sur- result of information on the nodes being dumped to
face, we use the elastic wave equations an 8-bit or 24-bit graphics board. The viewpoint of

these snapshots would be fixed. Hence, one can only
analyze a given data set until this data is replaced by

pUtt +A(i)Ut- '0 $1 = FS(it) an updated set. The interactive capabilities would
pVt +A(i)Vt- - -. 92 = F 2(F,t) be acheived only through a sequence of runs. On

the other hand, if data sets are passed through the

pWgt + A(i)W, - t- 93 = F3 (i, t), Sun4 to a high performance graphics workstation via
efficient data compression techniques, the process of

where §i = (Si1,Si2, Si3) and Sij = bij + 2meij, interactive analysis is enhanced.

and bij is the Kronecker function. Moreover, ei =

'+) and ul = U, u 2 = V, u 3 = W,

p = ý2 is the p-wave velocity and o, = /'• The Interface Problems

is the s-wave velocity. (cf. Ewing, Jardetzky, and The model considered is 1600 meters by 1600 me-
Press(1957)). The parameters p, o,, and p are also ters and contains a complicated interface at an aver-
determined by the earth's structure. age depth of 800 meters (see Figure 1). The interface

The term A(i) is used for the absorbing bound- is actually at a depth of 800 meters at each horizontal
ary conditions rather than dissipation. This term is 8 meter interval. Between these points, the interface
equal to zero in the interior, since we are modeling has a complicated and random shape. The purpose
nondissipative waves, and is assigned values on the of this choice of interface configuration is to show
boundary of the model so that waves are sufficiently that extremely different surface seismograms are gen-
decayed to reduce the amplitude of the spurious ref- erated by using different grid sizes. The simulations
elected waves off of the boundary (cf. Sochacki et al., (Table 1) are run for constant size square grids vary-
1987). The source terms are localized disturbances ing from h=8 meters down to 2 meter. The p-wave
occuring either in the interior or at the surface, velocity above the interface is 2000 rn/s and the den-

Although the problems discussed above occur sity is 3200 kg/rn3 . Below the interface, the p-wave
in both two- and three-dimensional wave propaga- velocity is 6000 in/s with a density of 2600 kg/mr3 .
tion, we address two dimensions in this paper be- In all cases, the source is located at a depth of 400
cause of the simplicity of visualization. Also, since meters and a horizontal distance of 800 meters. The
the problems discussed above are similar in acous- source is the derivative of the Gaussian and has the
tic and elastic wave propagation, we only consider form
two-dimensional acoustic wave equations. How-
ever, we also discuss the problems specific to three-
dimensional wave propagation and elastic waves as f(t) = A (t -to)e-st-io) 2 .
they arise. Also, a single complicated interface can il-
lustrate all the problems that occur with a region con-
taining many complicated interfaces; thus the model For stability, the time step At must be chosen to

we analyze deals with a single interface. The tech- satisfy the CFL condition: At < where c is

nique used to handle the numerical calculations re- the maximum p-wave velocity. To minimize disper-

quired at an interface is taken from Sochacki et al. sion, the source should act for t = 2t 0 seconds and

(1990). The distributed memory computation allows h should be no larger than 1L, where a is the min-

two different programming strategies to be consid- imum p-wave velocity, and ar should be no smaller

ered when solving the finite difference equations. We than 20 ln(10)/12 . In Table 1, we give the parameters

discuss the pros and cons of these two strategies and used in the model runs to show the discrepancies of

present timings for each. surface seismograms. The time shown is the number

Of course, all the considerations discussed above of time steps it takes for the wave to reflect off the

must be displayed visually in order to allow proper interface and create a reasonable surface seismogram;

analysis and interpretation. The graphics can be this is approximately .5 seconds.

531

Of course, the memory needed and the number grid point. The two different strategies arise when at-
of calculations done are directly proportional to the tempting to pass these parameters to the equations
number of grids and time steps. For h < 4 it is clearly being calculated in the most efficient manner for the
seen that a supercomputer is needed to carry out the distributed memory. One method (Method A) is to
calculations. Therefore, the parallel computer is an create a matrix that contains an integer for each grid
excellent machine to display the importance of repre- point indicating its region. Each p-wave velocity and
senting an interface accurately for the inverse prob- density is assigned the corresponding integer. This
lem. means that we need a matrix equal in size to the

In the field, seismologists use source frequencies number of grid points and two vectors equal in size
from 2 Hz to 100 Hz. In these models, a derivative to the number of structures. This strategy leads to
of a Gaussian source provides a frequency equal to a load balancing problem at the interfaces, since for
2 As illustrated in Table 1, a higher frequency is this scheme the number of calculations away fromt"

possible as smaller values of h are allowed. A parallel an interface is much smaller than at the interface.
distributed memory architecture provides the mem- For models that are not too complicated, this prob-
ory and computational power needed to decrease h lem can be alleviated by strategic assignment of the
to realistic physical values. In addition, with the de- nodes to the interfaces. Also, each grid point must
crease in h, a is used to maintain continuity in time be tested to see if it lies on an interface at each time
and not for dispersion. step. This, however, does not cause load balancing

All the above models use a single interior source problems; it just increases the number of operations.
which requires that the node whose grid points con- The second method (Method B) is to create two
tain the source information does substantially more matrices both of which are equal in size to the number
computations on startup than the other nodes, re- of grid points. One matrix contains the p-wave ve-

*sulting in load imbalance. This increased load is in- locity at each grid point while the other contains the
significant, however, compared with the total number density at each grid point. This strategy eliminates
of computations that must be done for large prob- load balancing problems, because at each grid point
lems, i.e. small h. Also, to highlight the differences the same calculations are being performed. How-
in the seismograms and snapshots, the data is com- ever, this scheme increases the amount of memory
pressed to be outputted every 8 meters so that the needed and the total number of calculations done sig-
sizes remain the same in all three runs. Currently, the nificantly. However, if there is a large number of in-
damping (or ABC) term A(x) is nonzero only for the terfaces the number of calculations is balanced by the
30 outer grid points of the bottom and edges. Hence, testing of each grid point in the former scheme.
in the interior of the model, there is a memory drain We have presented timings for both of these
in our algorithms. One could-play off memory versus schemes applied to the model with the single interface
performance on this aspect, but we do not address for three grid sizes. In Table 2 we see that Method
this in the current investigation. B is much more efficient for smaller matrices. This is

In both the seismograms and the snapshot for the due to the fact that the extra number of calculations
entire wavefield it is easily seen that completely differ- in this method for smaller problems does not over-
ent information is given by using the finer grid sizes. take the grid point checking of Method A and that
It is also worth noting that the reflections off the ran- the memory requirements are still minimal. However,
dom interfaces shows up clearly in the seismograms we see that as the model size increases the calculation
(Figure 2) and on the interface in the snapshots (Fig- times for Method A and Method B approach the same
ure 1) . Initially, however, it appears that the seis- magnitude. In addition, we present timings for both
mograms are similar. Therefore, the importance of schemes applied to a model containing seven struc-
having accurate forward solvers to test for interfaces tures with relatively complicated interfaces to test
in the inverse problem is highlighted in the seismo- for the trade-off in this situation between performing
grams. The memory capabilities and computational conditional and computational instructions (see Fig-
speed of the NCUBE/ten were necessary for carrying ure 3). The data for the various p-wave speeds (m/s)
out this numerical experiment, and corresponding densities (kg/rn3) of the structures

Computing Strategies are provided in Table 3.
The time increment At is .00047 and a source

There are two basic methods for locating the inter- is used which has a duration of I = .126 and a
faces using the finite difference scheme presented in spread a = 3143. We have presented timings for
Sochacki et al. (1990). The strategies depend on how this medium comparing both Methods A and B in
one describes the p-wave velocity and density at each Tables 4-5. Table 4 gives the timings which include

532

the initial startup computations, including the source tic wave analysis and 3D in a similar manner. The
calculations, while Table 5 gives the timings for later main problem in 3D is that the structures become
time only. more complicated and the number of calcmlations is

These two tables provide a test for the trade-off greatly increased. However, the work done here is
between performing conditional and computational currently being extended to 3D, and the major dif-
instructions in this situation. Here again, we see ferences are in visualization and the fact that all the
that the calculation times are of the same magnitude. nodes of the NCUBE/ten must be used.
However, in all the cases Method B is faster than
Method A, and this suggests that a clever method Acknowledgments
for assigning the nodes to the interface calculations
is appropriate. The authors would like to thank Chuck Baldwin,

We also note that in three dimensions, the sizes of Bill Nestlerode, and Mark Oliver for all their help in
the matrices for these strategies are increased in size porting the codes to the NCUBE and in producing

by a factor of the number of grid points in the extra the figures and graphs. This work was supported
dimension; additionally, for elastic wave simulation, a in part by Westinghouse, by Office of Naval Re-
matrix for the s-wave velocity is needed in the latter search Contract No. 0014-88-K-0370, by the Pitts-

strategy. burgh and Minnesota Supercomputer Centers, and
by the Institute for Scientific Computation through

Conclusions NSF Grant No. RII-8610680.

The locating of interior structures in the earth's in- References

terior is one of the important challenges of geophysics. [1] Ewing W.M., Jardetzky W.S., and Press F.
One method of attacking this problem is using the [1] Ewing Waret in and Pess F.
acoustic and elastic wave equations in two and three Graw Hill.
dimensions on distributed memory machines. In this
paper we have presented two methods for accom- [2] Sochacki J., Kubichek R., George J., Fletcher
plishing this and have presented data from these two R.W., and Smithson S. (1987),Absorbing Bound-
methods performed on an NCUBE/ten. There are ary Conditions and Surface Waves, Geophysics,
many more tests that can be run on the two strate- 52, 60-71.
gies presented here, and these need to be carried out;
however, the groundwork has been layed. [3 1 Sochacki J., George J., Ewing R., and Smithson

The data we have presented are for 2D acoustic S. (1990), Interface Conditions for Acoustic and
wave analysis, but the ideas can be carried to 2D elas- Elastic Wave Propagation, Geophysics, in press.

Table 1. Media Parameters

h A t number of t a source total
grid points frequency time steps

8 .00094 200 x 200 .252 3,131 7.95 Hz. 725
4 .00047 400 x 400 .126 12,415 15.87 Hz. 1700
2 .00024 800 x 800 .063 48,500 31.74 Hz. 2400

Table 2. Single Processor Timings Table 3. Subregion parameters

grid pts. Method A Method B structure: I 2&4 3&7 5&6
lOx 10 .018 s. .0038s. p-wave velocity: 1000 2000 3000 6000
25x 25 .377 s. .020 s. density: 1000 2800 2500 5800
50x 50 1.472 s. 1.033 s.

533

Table 4. Timings (including startup time) Table 5. Timings (excluding startup time)

Method A Method B ________Method A Method B

Sequential 94.214 66.1071 Sequential 94.214 66.1071
Concurrent 3.0331 2.3214 Concurrent 2.7386 2.3021
Speedup 31.0678 28.4772 Speedup 34.4084 28.7160
Percent Speedup 48.5% 44.5% Percent Speedup 53.8% 44.9%

0.0

'2000 NI/S
p 3200I Kg/N1'

4000 . SOURCE 7

~80o0.

7..-

li=8 A;4V

__________________________________ 1600.0

WX 1A00.0

5344

h=4

h= 2

Figure 2.

490 0

0 SOUNICE

200. ______ 2

4)o

Figure

The Fifth Distributed Memory

Computing Conference

20.: Structural Analyi1

Implementation of JAC3D on the NCUBE/ten *

Courtenay T. Vaughan

Sandia National Laboratories
Albuquerque, NM 87185

Abstract Two major implementation issues are discussed
below. The first is the development of routines to

An implementation is presented for JAC3D on a communicate information between the node proces-
massively parallel hypercube computer. JAC3D, a sors and between the host and the node processors.
three dimensional finite element code developed at The reason these are nontrivial is that the finite el-
Sandia, uses several hundred hours of Cray time ement mesh is not necessarily regular or regularly
each year in solving structural analysis problems. numbered. Routines are included that determine
Two major areas of investigation are discussed: (1) what information each processor sends or receives
the development of general methods, data struc- at each communication step and with which proces-
tures, and routines to communicate information be- sors it is communicating. The second area is the de-
tween processors, and (2) the implementation and velopment of algorithms to map a problem onto the
evaluation of four algorithms to map problems onto node processors of the hypercube in a load-balanced
the node processors of the hypercube in a load- fashion. We will present and compare several map-
balanced fashion. The performance of JAC3D on ping methods that, to date, have been executed on
the NCUBE/ten is compared with that on a Cray a SUN workstation.
X-MP: the NCUBE/ten version presently takes 20% Compute times are within 20% of the Cray X-MP
more compute time than the Cray. On a larger sim- for a production simulation with 89,043 equations.
ulation which used more of the NCUBE's memory, The NCUBE/ten can easily handle a problem four
the NCUBE/ten would take less compute time than times larger; such a simulation would be faster on
the Cray. Current activity on the newer NCUBE the NCUBE/ten relative to the Cray. Preliminary
2 hypercube is summarized which should lead to an benchmarks c,1 the NCUBE 2 indicate that the SUN
order of magnitude improvement in run-time perfor- front end reduces 1/0 time by at least a factor of ten
mance for the massively parallel solution of struc- and that NCUBE 2 processors are currently a factor
tural analysis problems. of four faster than the first-generation processors.

Introduction Therefore, the code should run several times faster
on the NCUBE 2 than on the Cray X-MP. We are

In this paper we discuss the implementation of also working on parallelization of selected mapping
JAC3D, a three dimensional finite element code methods and on a system to display JAC3D results
which uses a nonlinear Jacobi preconditioned con- from the NCUBE 2 hypercube on a Stellar graphics
jugate gradient method to solve large displacement, workstation.
large strain, temperature dependent, and nonlinear
material structural analysis problems, on a mas- Implementation Issues
sively parallel computer, the NCUBE/ten hyper-
cube. This code was developed at Sandia National
Laboratories where it uses several hundred hours of OverviewCraytim eac yer. e noe tat he hperube JAC3D is a three dimensional finite element code
implementation is complete in that a user has the which uses a nonlinear Jacobi preconditioned conju-
same user interface and simulation options on the gate gradient (PCG) method to solve large displace-
Cray and the hypercube. ment, large strain, temperature dependent, and non-
Crayndth_________ linear material structural analysis problems [2). The

"This work was partially supported by the Applied Mathe- serial version of the code reads in three data files: a
matical Sciences program, U.S. Department of Energy, Office control file containing material constants and num-
of Energy Research, and was performed at Sandia National
Laboratories which is operated for the U.S. Department of bers such as the maximum number of iterations,
Energy under contract number DE-ACO4-76DPOO789. an input file which contains the finite element de-

0-8186-2113-3/9010000/0538$01.00 0 1990 IEEE 538

scription of the problem, and a file which gives the such as the calculation of the residual vector, are
temperature at each node point for each load step. done element by element [6]. In order for the pro-
JAC3D then creates an output file and an additional cessors to update the unknowns associated with an
file used for plotting the output. element, some values of other variables at the asso-

In implementing JAC3D on our hypercube, an ciated nodes need to be communicated to that pro-
NCUBE/ten, we have added a third input file which cessor. As each element is used, the unknowns at
contains the order of the hypercube being used and the nodes associated with that element are updated.
a mapping of the elements and nodes of the prob- Since each element appears in only one processor,
lem onto the node processors. The NCUBE/ten is a several processors will generate updates to shared
1024 node hypercube which has 0.5 MBytes of mem- variables, which requires communication of partial
ory on each processor. results so these updates can be combined to form

It was necessary on the NCUBE/ten to divide the the final result.
original code into a host processor code and a node The second way that unknowns at a node get up-
processor code. (This code division can be avoided dated is by the processor which to which that node
on the newer NCUBE 2 hypercube.) The node pro- is assigned. An example of this is the calculation of
cessor code corresponds to the call to the solver in the new direction vector from a linear combination
the original code, while the host code handles the of the previous direction vector and the residual vec-
input and output. The host code begins by reading tor.
the input files and doing the preprocessing that is
necessary on the data. When it is ready to call the Initial host-to-node Communication
solver, it allocates a hypercube of the desired dimen- The host processor communicates with the node
sion and starts the solver on the node processors. In processors by communicating only with node 0. Any
this way, running the solver on the node processors data that the host sends to the node processors is
is similar to calling the solver as a subroutine with sent to processor 0 which then broadcasts the infor-
the passed variables now being communicated be- mation to the rest of the processors by means of a
tween the host and node processors. fanout algorithm using a minimal spanning tree of

the hypercube rooted at node processor 0 [4]. In
PCG and Finite Element Methods the fanout algorithm, successive dimensions of the

The iteration matrix is calculated at each itera- hypercube are used. In each stage, all of the active
tion as it is needed, which avoids using the mem- processors send information to their neighbor in that
ory which would be required to store the entire ma- dimension. As those processors receive information,
trix. The matrix is calculated element by element, they become active and will send information in the
so some information about each of the elements has next stage.
to be kept. This is done by dividing the elements The host processor starts by sending the node
among the processors such that each element is as- processors a message which contains startup infor-
signed to one processor. In this way, there are no mation such as the total number of elements and
duplicate calculations, nodes in the problem and the maximum number of

Each element has a list of nodes which are associ- iterations. The node processors then use this in-
ated with it and allocates storage for all of these formation to set up some temporary arrays. The
nodes. In this way each node may be allocated host processor then reads in the problem mapping
space in more than one processor but the node will of the elements and sends that information to the
be assigned to only one processor. That processor node processors. This allows the node processors to
is responsible for maintaining the correct value of determine how many elements they have and allo-
the variables associated with the node by collecting cate space for some arrays. The host processor then
partial values of the variables associated with that sends the list of nodes which are associated with
node from other processors and providing these cor- each of the elements and the mapping of the nodes
rect values to the other processors when needed. On to the node processors. The node processors store
each processor, the nodes which are assigned to it the portion of the list of nodes which are associated
are numbered first, followed by the nodes for which with their elements and then use that with the map-
the processor needs values but which are assigned to ping of the nodes to determine the number of nodes
other processors. In this way, each processor locally they need storage for and to set up communication
numbers the nodes and elements that it has. with other nodes.

In the solution algorithm, the unknowns at the
nodes are updated in two ways. Some calculations,

539

Data Structures for Interprocessor Communication of nodes to be communicated to each processor is
Next, the node processors set up the communica- stored, that many nodes numbers are used to take

tion which they do during the calculations. Using information from the array to be sent and put into
the list of which processor has each node, a processor a message array. This process uses all of the data
constructs a list of nodes for which it needs values of structure as illustrated in Figure 1 except for the
variables but which are assigned to other processors. array of indexes into the list of nodes to be corn-
This receive list of nodes is then sorted by processor municated. The message array is then sent and the
and the processor builds an index to this list con- index is incremented by the number of nodes which
sisting of the processor to communicate with, the were sent.
number of nodes which have to be communicated, When a processor receives a message, it looks up
and a starting index into the list. This is illustrated the processor number in its receive array and the
in Figure 1. When the list is sorted by processor, number of nodes that are being communicated and
it is ordered by placing the processors in descending the starting position in the array. It uses that in-
order of their distance from the processor in terms formation to put the values in the message into the
of message hops. In this way, messages which will variable array in the right places. Since it can be
take the longest time to be communicated will be seen that the communication involved with the pro-
sent first. In our experiments, this message order cess of communicating correct values of variables at
cut down the execution time of the algorithm, a node between the processors is the inverse of the

the process of communicating partial values of vari-
ables at a node between processors, the receive list

PL-ssor Number . . " is used to send partial results to other processors

Nume- Of Nodes and the send list is then used to receive those re-
to C'mmur:'ate .[I"'"sults which are added to the local results to get the

correct value. In the case of communicating partial

!nd x in Aryav .. . values, the final result does not necessarily need to
be sent to the other processors involved since they
may not need this value.

Nodes o AThe other case in which interprocessor communi-

Communicatu [J cation has to be done is the case of inner-products.
This is done by the standard bidirectional exchanges

Figure 1. Communication Data Structure of partial information along successive dimensions of
the hypercube with the addition of partial results af-
ter each exchange [6].

Each processor sends the processors which it
needs information from the list of nodes it needs Input: Large Vectors
from that processor. Each processor uses this infor- After the node processors have allocated space for
mation it receives to construct a list similar to its the vectors that they store and have set up their
receive list, a send list which is used to send correct communication schemes, the host processor can send
values of variables. The communication routines use them the initial vector information(e.g. temper-
this general data structure since the problems to be atures). This information is sent to processor 0
solved are generally irregular and have an irregular which then broadcasts it to the other node proces-
numbering of the nodes. sors. Each processor then takes the part of the vec-

When the processors need to communicate the tor which it needs and stores it in its memory. The
value of a variable, they use the send list to send maximum size of a message, the size of the message
messages to other processors and the receive list to buffers on the node processors, and the size of an ar-
receive messages from other processors. When the ray on the host processor are each limited, so large
values of an array need to be communicated, each messages have to be read in to the host and sent
processor sends a message to each of the processors to the node processors in pieces. After each piece
in its send list of processors. The processor numbers of the message is received by the node processors,
in the send list are used successively and an index node processor 0 sends a message back to the host
into the node numbers being sent is maintained. For to allow the host to send the next piece. This proce-
each processor in the list, the node numbers to be dure prevents message buffer overflow on the node
sent are determined by taking them from the list processors.
of nodes starting at the index. Since the number

540

Host Activity During Node Computation lar regions in three dimensions. The first step is to
At this point the node processors start calculating sort the nodes of the grid in the x, y, and z direc-

and the host processor waits. Since the node proces- tions. At each stage of the mapping, a direction is
sors have to output results and read additional input chosen and each set in the mapping is divided into
such as the temperature of the nodes at the begin- two equal or nearly equal sets based on the index in
ning of each load step, the host processor has to be the sorted list for the given direction of each node
able to call the appropriate subroutine to interact in the set. For example, given a set S with n nodes
with the node processors. It does this by waiting which is being divided into sets SI and S2 along the
to receive a message and, based on the type of the x direction, the first n/2 nodes of set S in the sorted
message received, either calls the appropriate sub- list of nodes for the x direction are placed in set SI
routine, prints out the appropriate error message, with the remainder put in set S2. In this way, the
or deallocates the hypercube and quits. Since node sets at the final stage of the mapping will have an
0 has a copy of any scalar data which has to be approximately equal number of nodes.
communicated back to the host processor to run the The third algorithm was developed by Kernighan
subroutine, this information is included in the mes- and Lin [8). It is a iterative graph-based algorithm
sage which tells the host processor which subroutine which starts with a set which has been arbitrarily
to run. In summary, execution is controlled by the divided into two equal sized pieces and exchanges
node processors in this part of the calculation. nodes in order to minimize the number of edges con-

necting the two pieces of the set. At each iteration,
Output it looks at all of the unmarked nodes in each of the

The output from the node processors is handled two pieces of the set and marks the pair which, if ex-
by a fanin algorithm, in which the information to be changed, would minimize the number of edges con-
output is sent to node processor 0 which, in turn, necting the two pieces. After all of the nodes are
sends the information to the host. The fanin algo- marked, then the minimum number of pairs to cre-
rithm is the inverse of the fanout algorithm. At each ate the maximum change are exchanged. The pro-
stage, half of the active processors send a message cess is repeated until nothing further can be gained
to the other half. The processors which receive a by swapping nodes.
message are the active processors for the next stage. The fourth algorithm that we used is a graph-
As with input, output of large messages is also done based algorithm developed by Vaughan [9]. At each
in pieces. In order to output arrays in the proper stage, each set is divided into two equal parts by
order, each processor has a list of the global order the use of level sets. The first step to divide a
number of the nodes which are assigned to it. Each set into two pieces is to find a pseudo-diameter of
piece of the array is assembled in the global order the graph of the grid [5]. A rooted level structure
and sent to the host processor. is constructed from each endpoint of the pseudo-

diameter. The nodes are divided into two sets ac-
Problem Mapping cording to which endpoint they are closer to. Each

rooted level structure will have a set of level sets and

In order to implement JAC3D on the hypercube, the number of the level set a node is in is a measure
we had to provide for the automated mapping of of its distance from the root of the level structure.
large problems onto the hypercube. We have used Points which are equidistant from both endpoints
four mapping methods. The first is a recursive bisec- are assigned to a set so that the sizes of the sets are
tion method developed for problems on rectangular equalized.
grids by Berger and Bokhari [1]. In this method, the By using the endpoints of a pseudo-diameter as
problem grid is divided into two rectangles along a starting points, we seek to construct level structures
line of the grid. This division is repeated recursively with small level sets thus providing a smaller set
to each of the rectangles until the desired number of of nodes on the boundary when the set is divided
sets of unknowns is created. This method is eas- into two pieces. This is similar to the motivation
ily adapted for three-dimensional rectangular grids for using level structures in reordering equations for
[3]. This method has the disadvantage that it has solution by direct methods.
the potential for load imbalance, since each set is For the two graph-based algorithms, the number
divided along a line of the grid and, therefore, the of sets at each stage of the division is doubled from
two resulting sets may not be the same size. n to 2n and the sets are divided according to their

From this algorithm, we have developed a second set number in a gray code fashion. When the first
algorithm which uses recursive bisection for irregu- set, set 0, is divided into two sets, these sets are

541

numbered 0 and n arbitrarily. After set i is divided,
with 0 < i < n, the two resulting sets are numbered i
and i+n. The choice of which set is to be numbered i
is determined by which numbering gives the smallest
cost for communication with the sets which have
already been divided.

For each of the algorithms, the nodes are divided
among the processors. However, with our solution
method, the elements also have to be mapped to
the processors. Each of the mappings above work
by doubling the number of processors in the map-
ping at each stage. At each stage, half of the nodes
and half of the elements assigned to a processor are
assigned to a new processor. Each element stays in
its processor or moves to the new processor based on
which of the two processors has more of its nodes.
Ties are settled in such a way as to keep the number
of elements assigned to the two processors even. Figure 2. Solder Analysis Problem

Results Table 1.
Execution time for small problem

We solved two problems with JAC3D on the by- (seconds)

percube. The first is a rectilinear block with three csion Meh

materials, 450 elements, and 810 nodes. The second dim hand iv sh 1 bb M rb

is a solder analysis problem of a 28 pin integrated dim hand graph I __ Ib___

circuit on a PC board. It has four materials, 22932 1 1747 1751 1751 - 1752

elements, and 29681 nodes and is very irregular (Fig- 2 885 910 911 1003 909

ure 2). Since we are solving for the displacements in 3 463 473 468 562 486
three directions, there are 89043 unknowns in this 4 252 254 258 313 271

problem. Symmetry is used in the x and y direc- 5 139 141 150 192 145
tions to decrease problem size. Note that most of 6 86.8 84.1 108 117 85.3
the elements and nodes are in the pins connecting 7 - 60.9 65.5 82.9 57.8
the PC board to the integrated circuit. 8 - 45.9 48.0 55.8 42.9

Table I shows the execution times for the pro-
gram on the first problem using the four mapping
methods as well as a mapping constructed by hand. onpone n etpossor of e NC ile the two
The problem would not fit on one processor, or even graph-based methods are slowest while the Berger
two processors in the case of the Berger and Bokhari and Bokhari algorithm is the fastest. Note that a
mapping. In the tables, hand is the hand mapping, large portion of time for the Kernighan and bin al-
graph is the graph-based method by Vaughan, kl is gorithm is spent in the first division.the Kernighan and bin algorithm, bb is the Berger Table 3 shows the execution time for the solder
and Bokhari algorithm, and rb is the recursive bisec- analysis problem on the NCUBE. The time includes
tind mthod basdonithm, and modifci o there se biserr all of the node time from the time the host communi-

cates the problem to the nodes and does not include
and Bokhari algorithm. The execution times only the host preprocessing time. The Kernighan and
include the node processor time and do not include Lin algorithm produces the mapping which executes
the preprocessing time for the host. In the best case, the fastest while the other two methods are about
we got a speedup of 41 on going from two to 256 pro- equal. As Table 4 shows, however, construction of
cessors. This is encouraging considering that, on 256 the Kernighan and bLin mapping is the slowest by at
processors, each processor had two or fewer elements least a factor of ten.
and four or fewer nodes. le 5 cores ten.

Table 2 shows the time to construct the mappings Table 5 compares the solder analysis problem run
on a SUN 3. These times are smaller by a factor of on both the NCUBE and the Cray X-MP. Here,
two or three than the time the division would take compute time for the NCUBE is just the node pro-

542

Table 2. Table 5.
Mapping time for small problem NCUBE vs. Cray X-MP

(seconds on a SUN 3) (seconds)
cube Division Method 11 Compute Time
dim graph I kl Ibb I rb NCUBE/te.i D 2197

1 3.0 30.3 2.0 2.4 Cray X-MP 1661
2 4.3 40.8 2.0 2.5
3 6.6 46.4 2.1 2.8
4 10.4 52.5 2.1 3.1 host processor I/O). Compute times are within 20%
5 14.5 58.0 2.1 4.0 of the Cray X-MP for a production simulation with
6 21.5 66.3 2.2 5.4 89,043 equations. The NCUBE/ten can easily han-
7 29.1 74.9 2.3 7.9 die a problem four times larger; such a simulation
8 40.0 84.0 2.4 14.3 would be faster on the NCUBE/ten relative to the

Cray. The hypercube code is complete: a user sees
Table 3. the same user interface and simulation options on

Execution time for large problem the Cray and the hypercube.
(seconds) We are now implementing this code on the

cube Division Method NCUBE 2 and its SUN front end. Preliminary
dim kl I graph (rb benchmarks indicate that the SUN front end reduces

8 8243 9098 9089 I/O time by at least a factor of ten and that NCUBE
825543 98 61 2 processors are currently a factor of four faster than

9 5541 6021 144 the first-generation processors. Therefore, the code
should run several times faster on the NCUBE 2

than on the Cray X-MP. We are also working on a

cessor time without any of the overhead of commu- system to display JAC3D results from the NCUBE
nicating with the host between load steps, while the 2 on a Stellar graphics workstation.
total time is the time from start to finish on the Several promising methods have been imple-
host. The total execution time for the NCUBE/ten mented and compared for mapping general problems
including all of the host time was 6100 seconds. This onto a hypercube. Clearly, the methods should be

shows that the processing time on the NCUBE/ten judged by both the quality of their mappings and
is comparable to that on the Cray X-MP but the the time it takes to do the mapping. We plan to
I/O time which is a result of the host processor of implement selected mapping algorithms, including
the NCUBE/ten causes the total execution time on the simple graph method and the recursive bisec-
the NCUBE/ten to be much larger than that of the tion method, in parallel on the NCUBE 2. We ex-

Cray. When we implement this code on the NCUBE pect that some of the mapping algorithms will par-
2 with the SUN front end, the ratio of the total time allelize well and that the time used for mapping will
to compute time should improve dramatically. ultimately be a small part of the overall execution

time.

Discussion and Conclusions References

[1] Berger, M. J. and Bokhari, S. H. (1985) "A PartitioningWe have implemented a large 3D finite element Strategy for PDEs Across Multiprocessors",in Proceedings of
code on the NCUBE/ten hypercube and have ob- 1985 Int. Conf. Par. Proc., pp. 166-170.
tained supercomputer-class performance (except for

[2] BillIe, J. H. (1984) "JAC - A Two-Dimensional Finite

Element Computer Program for the Non-Linear Quasistatic

Table 4. Response of Solids with the Conjugate Gradient Method",
SAND81-0998, Sandia National Laboratories, Albuquerque,

Mapping time for large problem NM.
(seconds on a SUN 3)

cube D Division Method [3] DeVries, R. C. (1990) "Static Load Balancing on a Hy-

dim kI kI graph rb percube: Concepts, Programs, and Results", SAND9O-0338,
-_uSandia National Laboratories, Albuquerque, NM.

8 49193 2995 684
9 50072 3751 1242 (4] Geist, G. A. and Heath, M. T. (1986) "Matrix Factoriza-

10 U 50775 4894 2283 tion on a Hypercube Multiprocessor", in Hyperctibe Mihti-
processors 1986 (M. T. Heath, ed.), SIAM, Philadelphia, PA,

543

pp. 161-180.

[51 Gibbs, N. E., Poole, W. G., and Stockmeyer, P. K. (1976)
"An Algorithm for Reducing the Bandwidth and Profile of a
Sparse Matrix", SIAM J. Numer. Anal. 13, 1976, pp. 236-250.

[6] Gustafson, J. L., Montry, G. R., and Benner, R. E. (1988)
"Development of Parallel Methods for a 1024-Processor Hy-

)ercube", SIAM J. Sci. Stat. Comp. 9, 1988, pp. 609-638.

[7] Jiang, B-N. and Carey, G. F. (1984) "Subcritical Flow
Computation Using an Element-By-Elen. int Conjugate Gra-
dient Method", in Proc. 5th Int'l. Symp. Finite Elements and
Flow Problems, Univ. of Texas, Austin, Jan. 23-26, pp. 103-
106.

[8] Kernighan, B. W. and Lin, S. (1970) "An Efficient Ileuris-
tic Procedure for Partitioning Graphs", Bell System Techni-
cal Journal, 49, pp. 291-307.

[9] Vaughan, C. T. (1989) "The SSOR Preconditioned Con-
jugate Gradient Method on Parallel Computers", Ph.D. Dis-
sertation, University of Virginia.

544

Porting the ABAQUS Structural Analysis Code To Run On the iPSC/2

Michael L. Barton
Edward J. Kushner

Intel Scientific Computers
15201 NW Greenbrier Parkway

Beaverton, Oregon 97006

only with the availability of the Concurrent I/O
Abstract Facility as a feature of the iPSC/2 that such a

conversion could be considered.
This paper describes initial efforts to convert the
structural analysis program, ABAQUS, to run on the The solution of a structural analysis problem with
iPSC/2. Efforts were limited to the main program ABAQUS is typically a three-stage process with
since it is much more demanding of computational successive execution of a pre-processor, main
resources than either the pre- or post-processor. The program and a post-processor. By far the most
main program, in turn, can be viewed, from the demanding in terms of computational resources is
perspective of parallel processing, as consisting of two the main program, and it is this program that was
steps with separate domain decompositions: the modified to run in parallel.
generation of submatrix data and the solution of a
large system of linear equations (typically, out of An initial examination of the main program
core). ix, ý.cated that two separate decompositions would be

- -•, isary to achieve efficient performance. The first
Parallel generation of submatrix data was achieved d. ..omposition supports parallel generation of
by distributing the individual finite elements among submatrix data, while the second is needed to solve
the processing nodes. the resulting system of linear equations. Such an

approach is possible since matrix generation and
The equation solver used by ABAQUS is an matrix solution are decoupled processes within
implementation of the wave-front method. The ABAQUS.
complex nature of factorization for the wave-front
method and the frequent need to do disk I/0 dictated Parallel ABAQUS Assembly
the use of a hybrid decomposition where one processor
executed non-numerical operations associated with The generation of element stiffness matrices is the
factorization while the other processors assisted the most intrinsically parallel part of any finite element
manager by performing all calculations associated code. The local matrix associated with each element
with Gaussian elimination, is calculated based on data entirely local to that

Introduction element, and the potential parallelism is limited
only by the access the processor has to the data

ABAQUS [11 is a large commercial finite element associated with a given element. The element type,
number of degrees of freedom, material data,

code extensively used for structural analysis. It is elmen onnetivityeadode datamsal be
written and developed for sequential computers and kno tontecessor in ode to c all te

known to the processor in order to calculate the
presents major challenges to parallel processors. In element stiffness matrix and right-hand-side
addition to the usual problems of load balancing and contribution.
minimization of communication between processors,
a conversion of ABAQUS must contend with an
extensive file system and significant disk [/0. It is

54508186-2113-3/0/000/054e5$01.O00 1990 IEEE

In ABAQUS these data are initially generated by the
pre-processor and transmitted to the main program # Time (sec.) Speed up
through a communication file. Since ABAQUS Processors
imposes no upper limit on problem size, none of this
information is kept entirely in data arrays in the 1 1500.1 1.0
main routine. Rather, the data for a particular data 2 746.0 2.0
base starts in an array in memory and, if it is too
large to fit entirely, spills over into a data base file. 4 374.0 4.0
In addition, a portion of memory is devoted to a pool
of software controlled cache pages so that frequently- 8 188.7 7.9
used data from the data base files may be accessed 16 95.2 15.8
with minimum latency.

32 53.0 28.3

This data base for finite element analysis has been

carefully designed for performance on a wide variety Table I Performance Results for
of single memory machines. To properly parallelize Submatrix Generation
ABAQUS, the domain decomposition requires the
partitioning of those data bases. The element and
element operator data bases, for example, are readily by better utilizing processor memory. Additional 1/0
split so that each processor has a data base of its own nodes would also improve performance.
elements. The node data base is more complicated
since nodes on the boundary between regions
belonging to different processors must be shared. Parallelization of the Equation Solver
This is probably best implemented by assigning two
node data bases to each processor, one for nodes In order to determine the feasibility of executing the
internal to that processor's region, and one for shared equation solver in parallel, only a subset of the
nodes. Shared nodes would then require special software from ABAQUS that addresses linear
processing to update the displacements after each systems was modified. In particular, attention was
iteration. limited to the subroutine that factors symmetric

stiffness matrices. The method used by ABAQUS for
For the effort described in the paper, only the matrix factorization is an implementation of the

element and element operator data bases have been wave-front algorithm [2]. An initial examination of

split. All others are replicated on each processor, the implementation suggested the use of a hybrid

with a special procedure required at the end of the decomposition sugge s

run to bring one copy of the node data base up to decomposition where:

date. 1. One processor (the manager) executes the

Parallel Assembly Performance factorization routine except for numerically-

Since assembly is intrinsically parallel, linear ed intensive calculations. The other processorsSine asemly s itrisicllyparlle, lnea sped-(the workers) then assist the manager by
up is expected as more processors are employed. This performing the num eri antensiv

speed-up should be reduced only by contention for /O perfomio ng the taslly-it0e

bandwidth in reading the communication file and calculations. Among the tasks left to the
manager are bookkeeping, stability checks

writing to the element operator files. Table I shows and disk b/O.

the speed ups for the Submatrix Generation on a

very large statics problem. These tests are run on an 2. The allocation of work among the workers is
iPSC/2-SX with 8 [/0 nodes and 8 disks. via a domain decomposition of the coefficient

matrix of the wave-front. The domain
decomposition is the standard decompositionEven better speed up would be expected when the that has been used elsewhere to solve systems

data base files are properly decomposed as suggested of linear equations on the iPSC/2 (e.g.

above. This improved decomposition will reduce [/O linPar th ons of the coefie

traffic by reducing needless replication of data and UNPACK); the columns of the coefficient

546

matrix are distributed in a round robin
fashion to participating processors.

As an example to illustrate the allocation, consider a # Time (see.) Speed up
four processor system. The first processor (node #0 Processors
in the numbering scheme of the iPSC/2) executes the I
factorization subroutine except for numerically 1 38070 1.0
intensive operations. Node #1 then performs all 2.8
numerical calculations associated with columns 1, 4,
7, 10... of the coefficient matrix, node #2 performs 8 7183 5.3
the same calculations for columns 2, 5, 8, 11... and
node #3 performs in the same fashion for columns 3, 16 4368 8.1
6, 9, 12.... The result is two separate programs; a 8.6
manager program that runs on node 0 and a worker 34
program that runs on nodes 1, 2, and 3. Table 2 Performance Results for

The numerical calculations that have been Matrix Factorization
transferred from the manager to the workers are all
DO loops that involve two specific arrays. The first
array (GPA) contains the coefficients of the Concluding Remarks
equations in the wave front while the second
(BBAXO) is a two-dimensional array of all equations Results presented herein indicate excellent parallel
that become fully assembled when a submatrix is performance for the generation of submatrix data
added to the wave front. and acceptable performance for matrix factorization.

With the availability of the iPSC/860, absolute
The division of work and transfer of data between the performance will be improved significantly. Some
manager and worker programs are depicted in Fig. 1. initial results bear this out. Execution of submatrix
This division results in six communication points in generation on two i860 nodes improved the
the application, of which four involve communication applicable results of Table I by a factor of 11. It is
between the manager and worker nodes. anticipated that performance for matrix

factorization will be improved by a factor at least as
Results for Matrix Factorization large as this.

All benchmarks were run on an iPSC/2 with SX References
nodes and 8 MBytes of memory per node. SX
configurations can deliver as much as .5 MFLOPS [1] ABAQUS Manual (1987) Hibbitt, Karlsson &
per processor of computational power in double Sorensen, Inc. Providence, R.I.
precision floating point operations. The concurrent
1/0 facility consisted of two 1/0 nodes with 2 disks on [21 Hinton, E. and Owen, D.R.J. (1977) Finite
each node. Element Programming, Academic Press, San

Francisco.
Benchmarking was done on the same large problem
that was the basis of the results that were presented
for the generation of submatrix data. This problem
creates a linear system consisting of 39000 equations
with half bandwidth of 440. Execution times are
presented in Table 2.

547

1.

be
6I 2

M jqCI

000
>4,

0) Q 44)- o

2 00,-
41.

4.0 U'm 5 0 V

ca r-

a .-

VV

> >

00 V

V 6 0 0w

s z W.0 a 0 '

4v- U- &c

A Wa .0 arA t-
~~ ~~~ Ow~f~.~0

6P

The Fifth Distributed Memory

Computing Conference

21: PDE Methods

Conjugate Gradient Methods
for Spline Collocation Equations

Christina C. Christara
Department of Computer Sciences

University of Toronto
Toronto, CANADA, M5S IA4

Abstract lions on the iPSC/2 hypercube and present performance
We study the parallel computation of linear second order evaluation results for up to 32 processors configurations.
elliptic Partial Differential Equation (PDE) problems in The implementation can be straightforward extended to
rectangular domains. We discuss the application of Con- several other MIMD architectures, including linear array,
jugate Gradient (CG) and Preconditioned Conjugate Gra- 2-dimensional grid of processors, as well as shared
dient (PCG) methods to the linear system arising from the memory machines.
discretisation of such problems using quadratic splines The methods for the parallel computation of PDEs
and the collocation discretisation methodology. Our can be classified in 3 general groups: the domain decom-
experiments show that the number of iterations required position or subsructuring methods, in which we assume
for convergence of CG-QSC (Conjugate Gradient applied the decomposition of the domain of problem definition
to Quadratic Spline Collocation equations) grows linearly into non-overlapping subdomains, the domain splitting
with the square root of the number of equations. We methods, in which the domain is decomposed into over-
implemented the CG and PCG methods for the solution of lapping subdomains, and those methods that directly use
the Quadratic Spline Collocation (QSC) equations on the the parallelism involved in the process of solving the
iPSC/2 hypercube and present performance evaluation linear system arising from the discretisation of the PDE
results for up to 32 processors configurations. Our exper- problemi.
iments show efficiencies of the order of 90%, for both the In [Chri9Oal [Chri89l, [Chri88al we have studied
fixed and scaled speedups. domain decomposition methods for solving the above

1. Introduction. PDE problem and presented the results from the imple-
mentation of those on the iPSC/2, NCUBE/7 and

We study the parallel solution of the Partial Dif- SEQUENT BALANCE 21000 parallel machines. In
ferential Equation (PDE) problem [Hous88b] domain splitting methods are integrated with

Lu-aDx2u+bD1 uDu+cD2u+dDxu+eDyu+fu=g (1.1) cubic spline collocation and implemented on theNCUBE/7 hypercube. This paper falls in the third
in 0=- (axbx) x (ayby) category of methods for the parallel computation of

Bu _ a + PD. u = go on =- boundary of Q (1.2) PDEs.
TePDE problem (1.1)-(1.2) ae Many researchers have studied the convergence

assumed to be functions of x and y in Ctheil, while D. and/or parallel implementation of CG and PCG methods
denotes the normal derivative of u on C[]. applied to systems arising from the discretisation of ellip-

tic problems by other Finite Element Methods (FEMs), or
In this paper we discuss the application of Conju- to the Schur complement systems arising from domain

gate Gradient (CG) and Preconditioned Conjugate Gra- decomposition methods and appropriate reordering
dient (PCG) methods to the linear system arising from the [Keye87J, [Dryj84I, [Bram861, {Bjorb6J, (Dryj861. Oth-
discretisation of the above problem using quadratic ers [Rodr86], [Tang871 experiment with domain splitting
splines and the collocation discretisation methodology, methods. The study of the solution of SC equations is
The fact that we have used quadratic splines does not limited due to the fact that the development of optimal
limit the importance of our results, since the use of other schemes for two-dimensional problems is very recent
degree splines gives rise to linear systems with similar [Hous87], [Irod87I, [Chri88b], and due to the lack of
properties to those of the quadratic spline equations. some nice properties, such as symmetry and positive
Discretisation methods other than Spline Collocation (SC) definiteness, which are often standard properties for other
are known to give rise to similar structure linear systems. FEM equations. This paper is the first successful study of

We implemented the CG and PCG methods for the the application of CG methods to SC equations.
solution of the Quadratic Spline Collocation (QSC) equa-

550
0-8186-2113-3/90/000/0550$01.00 0 1990 IEEE

2. The Quadratic Spline Collocation method. 3. The Preconditioned Conjugate Gradient (PCG)

Spline collocation methods have been proven an method for solving linear systems.

efficient alternative for solving elliptic PDEs [HousS8a]. In this section our aim is to recall some issues in the
The general formulation of these methods for the discreti- parallel implementation of the PCG method. For later
sation of (1.1)-(1.2) was briefly presented in [Chri89] so reference we include here the steps of the PCG algorithm
we do not include it here. We include though for later for solving a linear system Ax = b with preconditioner M,
reference the formulation of the QSC method for the as described in [Golu87]. The superscripts on vectors or
discretisation of(1.1)-(l.2) in the case thatc•w--=0,ie. the scalars denote the iteration number of the algorithm at
boundary operator is either Dirichlet or Neumann. We which the vectors or scalars are computed.
assume a uniform rectangular mesh A w ((xiyj): i = 0 to PCG algori for Ax = b
and j = 0 to m) in Q, on which we define a tensor product 1. x0 = initial guess
of one-dimensional quadratic splines 2. r° = b - AxO

S 2A M S2 A 0 S2 A, M P2• () C I Q) fork = 1 , m axit
3. if I rt-1 l <I •(or I rt-l II •1re1 I)exit

with P2A, denoting the space of piecewise biquadratic else

polynomials with respect to A. The one-dimensional qua- 4. solve Mzk-k = rk-t
dratic splines are constructed so that the boundary opera- 5. V = Z-t rrk-i/zk-2 rk-2

tor equation (1.2) is satisfied exactly at any point on i£.. 6. pk = z k-1 + Okp,-1

We define the set of collocation points T& to be the 7. cer = zk-t'rk-r/peApk
set of midpoints of all subrectangles of A. Note that all 8. xk = xk-x + epk

the collocation points lie in the interior of Q. We deter- 9. rk = rk-1 - ,.Apk
mine the quadratic spline approximation vC-S2. to u in 1 endif
two steps by the following equations: endfor

Step 1: Lv =gonT% (2.1) x=x _1

Step 2: Lu a = g - PLv on TA (2.2) The computational requirements of every PCG

where PL is appropriate perturbation operator, defined in iteration are discussed in detail in [Orte88]. From the

[Chri88b], [Chri90b]. The first step solution v is a second above it is clear that the parallel implementation of the
order approximation to u and u1 is a fourth order one. PCG method depends very much on the implementation

The QSC equations (2.1) or (2.2) form a block tridi- of the linked triad operation (scalar-vector multiplication

agonal linear system, of n-m equations. If we assume that and vector addition), the inner product operation, the
the ordering of the collocation points is bottom-up and matrix-vector multiplication, the back-and-forward sub-
then left-to-right every block is of order m, the upper and stitutions and the computation of the norm. There are
lower bandwidth is m+1 and there are n blocks on the numerous ways to implement the above operations on a
diagonal. Figure 2.1 shows the pattern of non-zero parallel machine [Orte88]. They mainly reflect the assign-
entries in the QSC matrix. ment of the elements of the matrices A and M and the vec-

tors r, z, p and x to the processors.

"The CG method without preconditioner follows
similar steps, with the exception that M is assumed to be

the identity matrix, so the back-and-forward substitutions
are avoided. Also, the computation of an inner product

............: .: ...i can be avoided, when using the Euclidean norm in line 3
..... of the algorithm..

. ,
...•o l

4. The CG and PCG methods for the QSC equations.

We first experimented with the convergence of the
S... CG iterations applied to the QSC equations. The results
. . i " "-show that the number of CG iterations required to satisfy

a stopping criterion as in line 3 of the PCG algorithm

Figure 2.1. Structure of the matrix of QSC equations for grows linearly with the square root of the order of the sys-
n = m = 7. x denotes a non-zero off-diagonal tern. In the case where n = m the order of the system is
element. d a non-zero diagonal one. while all 0 W2), so the number of iterations grows linearly with n.
zero entres are represented by character Table (4.1) shows the number of iterations required for

the CG-QSC method (CG method applied to QSC equa-

551

tions) when applied to the problem method grows proportionally with n, we consider a
f i1la) Helmholtz problem (b = d = e = 0) with constant

U+ u,=f in+ =(0,1)x0,1) coefficients (a, c, f constants) and Dirichlet boundary

u g in iQ. (4.1b) conditions (0 = 0) and state a theorem which is proved in

f and g are chosen so that the solution to the problem is [Chri90b].

u (x,y) = xl 3a'(x-)y1"(y-l). The initial guess that was Theorem, Under the assumptions that a,c>0 and
used for step 1 of the QSC method was the zero vector, e U
while in step 2 we use the already computed solution vec- 0((bx -aa)2 + (by _Cay)2) > f the spectral norC of
tor from step 1. The relative Euclidean norm of the resi- the inverse of the matrix of QSC equations in the case of a
dual was used for the stopping criterion in line 3 of the Helmholtz problem with constant coefficients and Dir-
PCG algorithm. The desired precision e was set to 10-5. chlet boundary conditions is bounded, as n -4 o, m -* o.
Figure 4.1 shows graphically the data of Table 4.1.

Table 4.1. Number of iterations required for the conver- A similar theorem holds in the case of Neumann boun-
gence of the CG method applied to the QSC dary conditions. Taking in account that the norm of the
equations (2.1)-(2.2) for several grid sizes. matrix of QSC equations grows proportionally with n2 ,

we conclude that the condition number of the matrix of
grid size number of number of iterations QSC equations also grows proportionally with n2 . For a

n+1 equations step' I step2 symmetric positive definite system Ax = b we know

5 16 5 5 [Axe1841 that the number of CG iterations required for

9 64 11 10 convergence grows proportionally with the square root of

17 256 24 19 the condition number of A. For the case of a Helmholtz

25 576 36 26 problem with constant coefficients and Dirichlet boundary

33 1024 49 34 conditions the matrix of QSC equations is symmetric and

41 1600 63 42 positive definite, so the number of iterations required for

49 2304 77 50 the convergence of the CG-QSC method grows propor-

57 3136 91 58 tionally with n. Figure 4.2 shows the behaviour of the

65 4096 105 66 residual of the QSC system as the CG iterations proceed.
It is interesting to note that for PDE problems other than

It is interesting to note that the number of iterations the Helmholtz problem, for which the QSC equations are
required for convergence of step 2 is exactly n+l (or not symmetric we have successfully applied the CG
n +2) while the slope of the number of iterations curve method and its asymptotic behaviour was not extremely
required for convergence of step 1 is about 1.6875. different from the one for Problem 4.1.

1-
100- __ step 1 I-0 step 1

-.--- step 2 .1 "- . 65x65 grid

number - - residual 4x gi -of 50- 0.001- '\

iterations 0 N-.. " 0.0001 -

Ic-05 -
-0 I; I I

20 40 60 -0 50 100

grid size n +1 iterations

Figure 4.1. Plot of the number of iterations required for Figure 4.2. Plot of the residual of the QSC system versus
the convergence of the CG method when ap- the iteration number of the CG algorithm for
plied to QSC equations for Problem 4.1 Problem 4.1, for several grid sizes and for
versus the grid size in one dimension, for both steps of the QSC method. The residual
both steps of the QSC method. is in log scale.

In an attempt to explain why the number of itera- We also experimented with the performance of the
tions required for the convcrgence of the CG-QSC CG-QSC method as compared with solving the QSC

532

equations with standard banded LU factorisation (Band- 5. Implementation of the CG-QSC method on hyper-
LU). Figure 4.3 shows graphically the results. The slope cube architectures.
of the curve of the solution time versus the grid size In this section we discuss in more detail how the
corresponding to the CG-QSC method is clearly lower computation involved in the CG-QSC method is mapped
than the one for Band-LU. This agrees with the theoreti- on hypercube architectures. Although we limit tis dis-
cally expected performance of the two methods, since cussion in a specific MIMD architecture, most of the
Band-LU is 0(n 4), while CG-QSC is 0(n 3), where we ideas presented are straightforward implemented on other
have again assumed that n = m. Note that this holds for type of local memory machines as well as shared memory
step I of the QSC method. For step 2 both Band-LU and ones.
CG methods are 0 (n3), assuming the factorisation of the
matrix of QSC equations is saved from step 1. 5.1. Distribution of the data to processors.

The CG method is not the only iterative solver that The first thing in the implementation of an algo-
is faster than direct band solvers for the QSC equations. rithm, in which certain parallelism is identified, on a
In [Hous88a] we experiment with several iterative specific local memory machine, is to distribute the data in
solvers, that outperform the direct ones in both time and the local memory of the processors, so that communica-
memory requirements. tion is "mninimised" and as little as possible data is dupli-

cated. In the case of CG-QSC method the distribution of

100000B data is motivated by the parallel implementation of the
1-----. CG, individual steps of the PCG algorithm as described in

"Section 3. Although this distribution of data holds only
10000_ for local memory machines in the case of shared memory

solution machines this distribution reflects the way the processors
time are going to address the shared memory.

1000- The matrix A of QSC equations is stored by rows in

a sparse matrix storage scheme, so that only the non-zero
- elements of every row are stored. Every processor holds

I 2 5 the rows corresponding to one or more blocks in the block
10i 2 z 5 +notation of the matrix. For simplicity we assume the

grid size n+l number of processors P divides n exactly. So every pro-
nm

Figure 4.3. Log-log scale plot of the time in milliseconds cessor will store M equations. Also every processor will
for the solution of step 1 of the QSC equa- store the respective rows of the vectors r, z and x. As far
tions with the CG and Band-LU methods as the direction vector p is concerned a processor will
versus the grid size in one dimension. The update those components corresponding to the rows of A
computation was carried out on one proces- it stores, but will have storage for the "neighbouring"
sor of the iPSC/2 hypercube. components, more specifically m positions on the top of

For matrices of block tridiagonal structure it is the part it is going to update and m positions at the bot-
quite common to choose as preconditioner the tridiagonal tom.
part of the original matrix, in order to accelerate the con-
vergence rate of the CG method. In the case of QSC 5.2. Parallel discretisation of the PDE problem.
equations the tridiagonal part T of the matrix is also The discretisation process of a PDE problem with
block-diagonal. When the CG method is applied to the the collocation methodology is by definition pointwise, so
QSC equations arising from the discretisation of a PDE it is totally asynchronous, assuming a distribution of the
problem with operator other than the Laplace operator, collocation points to the processors. In our case of QSC
our experiments show that using T as preconditioner with the midpoints as collocation points, and a bottom-up
accelerated the convergence of the CG method. In left-to-right numbering of them, the parallel generation of
[Chri9Oc] we study the construction of appropriate the matrix A can be viewed as a line collocation method.
preconditioners for the QSC equations. In the rest of the Every processor generates the rows of A it is assigned to,
paper any reference to the CG-QSC method will assume that is, the equations corresponding to one or more verti-
that an appropriate prdconditioner is used whenever cal grid lines, with no need to communicate with any
necessary. other processor.

553

5.3. Computing the product of A by a vector, the CG-QSC method, the problem size, that is, the opera-

According to the above assignment of the elements tion counts, is 0 (n 3), while for each iteration it is 0 (n 2),
of A and p to the processors, a processor will compute the as it is for the discretisation process. More specifically,
inner product of the rows of A it holds with the vector p. we scale the problem size as follows: Let n be the number

Due to the block-tridiagonal structure of the matrix A any of grid points in one dimension, for which we let the CG-
processor needs to receive at most 2m components of p by QSC program to run on a single processor. We then
other processors, the rest reside already in the local choose np to be such that n3 = Pn3 and let the CG-QSC
memory of the processor. This fact has two nice effects: program to run on P processors for a grid size hp. Then
First, that only neighbour communication is necessary, if the scaled speedup for the (solution process of the) CG-
we assume that the assignment of blocks of rows of A to QSC algorithm is 11(n) .P where ti(j) is the time
the processors is done according to the standard gray code t(nPp)
ordering of the processors. Second, that the amount of elapsed for the execution of the program on i processors
data transfer per processor does not grow with the number and grid size j in one dimension. Similarly for the discre-
of processors. It only grows with m, the grid size in one tisation process and the per iteration computation we
direction. This helps so that the speedup does not degrade choose np such that n2 = Pn2 . Alternatively, we can
much as the number of processors increases. compute the scaled s eedup for 2 different grid sizes n11(n) flp

and np as 1(np) n3 "for the solution process of the
5.4. Preconditioning. tp(flp) n 3

11(n) 4The assignment of the blocks of T to the processors CG-QSC algorithm and as -L, for the discretisa-
is similar to that of A. Since T is block diagonal, every tp(f•p) n2 '
processor can work independently for the back-and- tion and per iteration processes.
forward substitutions of the blocks of T it is assigned to. In Figure 6.1 we plot the estimated scaled speedup
So preconditioning with T does not increase the commun- for the discretisation, solution and per iteration processes
ication overhead, of the CG-QSC algorithm. The grid sizes for this plot

vary from 25 for a single processor to 97 for 32 proces-
5.5. Computation of inner product of vectors and sors. The discretisation process does not suffer from any
norms. communication overhead and the slight degradation of the

For the inner products in fines 5 and 7 of the PCG speedup away from the linear one is due to duplicate
algorithm the well known fan-in technique is used. More computations done in all processors, in order to initialise
specifically, we use global fan-in so that the final result certain parameters of the problem, as well as to a few
resides in all processors, instead of a fan-in in one proces- differences in the code for a single processor from that for
sor and a fan-out broadcast of the final result to all other multiple processors. The speedup curves for the solution
processors. The parallel computation of the norm of the and per iteration processes look very similar. The degra-
vector depends on the norm used. For the infinity norm a dation of speedup in these cases is mainly due to com-
global fan-in comparison scheme is used, while for the munication overhead as well as synchronisation and load
Euclidean norm a global fan-in summation. balancing. We would like to point out that the CG-QSC

algorithm is perfectly load balanced as far as computation
6. Performance results. is concerned. Communication is also well load balanced

with the exception of the nearest neighbour conmmunica-
In this section we discuss the performance of the wioh th

CG-QSC method on various processor configurations of , that is required for the computation of the matrix-

the iPSC/2 hypercube. We refer to the basic computa- vector product Ap, in which the first and last processors

tional constructs of the CG-QSC method as discretisation remain idle, during the time the others exchange m com-

process, solution process and per iteration process. The ponents of a vector. Also, the unreliability of the
hardware might cause some load imbalance.

per iteration process includes the computation of one

(P)CG iteration, while the solution process incoides the Based on the speedups plotted in Figure 6.1 the
factorisation of the preconditioner (if there is one) and the efficiency of the discretisation process ranges from 90%
computation of all iterations. to 98%, while the efficiency of the solution and per itera-

tion processes range from 79% to 93%.
6.1. Speedup and efficiency.

We first measure the so called scaled speedup
lGust881, lOrtc88l. According to the definition of scaled
speedup we need to choose a different size problem for
each processor configuration. For [he solution process of

S54

30.....er4 40-

30ptsaio linearS........... so7m~tiaton .- "u.......dartsto
---- SO Iution. discretisation

- per iteration . 30 Band LU soL •
20- .-----...... so lution

-----. per iterationtscaled fixed0"

speedup sed~

10- 10-

-0- -0-i I 'J i 1 I I I

-0 10 20 30 -0 10 20 30
number of processors number of processors

Figure 6.1. Measured speedup for the discretisation, Figure 6.3. Measured speedup for the discretisation,
solution and per iteration times of CG-QSC solution and per iteration times of CG-QSC
on the iPSC/2 for up to 32 processors on the iPSC2 for up to 32 processors
configurations. configurations and fixed 65x65 grid.

We next plot the fixed speedup for grid sizes 97 and It is interesting to note that the efficiencies of the
65 in Figures 6.2 and 6.3 respectively. This turns out to processors based on the fixed speedups are 100% for 2
be better than the scaled one for small number of proces- processors for both the grid sizes shown in the two
sors, but degrades faster for large number of processors. figures. More specifically, the efficiency based on fixed
This comes from the fact that the fixed speedup suffers speedup varies from 94% (91%) to 100% for the discreti-
from the overhead of carrying out small amount of corn- sation process and grid size 97 (65), and from 83% (69%)
putation in each processor. It is clear that the slope of the to 100% for the solution and per iteration processes for
fixed speedup curve for large number of processors is the same grid size(s).
lower than that of the scaled one, and that the 65 grid size In Figure 6.3 we also plot the "speedup" of the
speedup is worse than the 97 grid size one. CG-QSC solution process with respect to the Band-LU

solution process carried out in a single processor. This is30 -. -1retiatin -. clearly superlinear, due to the merits of the CG-QSC
30 ------- solution method. We were unable to run the Band-LU algorithm

----- per iteration for larger than 65 grid sizes, due to the limit in the local

fixed20 memory)f a processor.
speu Finally, in Table 6.1 we include some of the numer-speedup .~ ical data that was used to draw Figures 6.1, 6.2 and 6.3.

10- This table has also a column for the r-meorn reqwirements
of the two methods/solvers. The memory requirements of
the CG-QSC method are far less than those for Band-LU.

-0- __ The memory requirements of CG-QSC decrease almostTII linearly with the number of processors.
-0 10 20 30

number of processors

Figure 6.2. Measured speedup for the discretisation,
solution and per iteration times of CG-QSC
on the iPSC/2 for up to 32 processors
configurations and fixed 97x97 grid.

555

Table 6.1. Time in milliseconds on the iPSC/2 for the several iterations and then take the average of the time
discretisation, solution and iteration elapsed. It is our understanding that in this way we
processes of the Band LU factorisation and include in our measurements the computation time
CG-QSC algorithms for various grid sizes required for addressing the message buffers and the over-
and processor configurations. A "-" means head spent in synchronisation and load balancing. Table
not applicable. The memory requirements 6.2 lists the average communication time measured in this
are in floating-point numbers. way, for several problem sizes and number of processors.

Table 6.2. Communication time in milliseconds on the
method n +I discret. solution per iteration memory P iPSC/2 during the computation of the

Band-LU 25 8460 5048 - 35712 1 matrix-vector multiplication for various grid
CG-QSC 8446 5716 141.30 10944 1 sizes and processors configurations.

4234 2958 73.10 5496 2
2156 1664 41.20 2784 4 P 2 4 8 16 32
1120 1028 25.50 1416 8 n+l

Band-LU 33 14952 14228 - 79872 1 25 0.64 1.28 1.28 1.28 1.28
CG-QSC 14948 13762 252.70 19456 1 49 1.28 2.56 2.88 2.88 2.88

7492 7040 129.26 9760 2 81 1.28 2.88 2.88 2.88 2.88
3792 3827 70.27 4930 4
1952 2222 40.86 2498 8 From the results of Table 6.2 it is clear that the
1020 1452 26.74 1282 16 communication overhead of our implementation is not
560 1130 20.78 674 32 affected by the number of processors, except in the case

Band-LU 41 23268 32960 - 150400 1 of 2 processors, in which there is only one-way communi-
CG-QSC 5892 7164 106.27 7680 4 cation. We find these timings quite consistent with our
Band-LU 49 33360 65464 - 253440 1 theoretical statements taking in account the factors of
CG-QSC 4296 6617 81.25 5568 8 clock accuracy and unreliability of the hardware. We
Band-LU 65 59028 197712 - 581632 1 also note that the communication overhead is affected
CG-QSC 59020 110876 1022.37 77824 1 (not necessarily linearly) by the size of the problem. This

29560 55748 514.06 38976 2 agrees quite well with the communication performance
14876 28425 262.12 19584 4 report for the iPSC/2 hypercube [Inte88], where it is
7556 14926 137.65 9856 8 stated that the time for node-to-node communication is
3848 8210 75.76 4992 16 about the same for 0-100 bytes messages (up to 25x25
2024 5022 46.35 2560 32 grid), it is about double for a message of 104 bytes length,

97 132504 349274 2306.25 175104 1 than for one of 100 bytes length, and varies slightly for
66432 175340 1157.76 87648 2 messages of 104-1024 bytes length (this includes the larg-
33292 88472 584.16 43968 4 est grid size, for which the CG-QSC method was tested).
16820 45314 299.22 22080 8 We have carried out similar experiments in order to
8504 23624 156.00 11136 16 measure the time spent in communication during the com-
4400 13217 87.29 5664 32 putation of the inner products and norms in every iteration

of the PCG algorithm. Our experiments show that this
time increases linearly with the dimension of the hyper-

6.2. Communication time. cube (log(P)), as expected. Based on our experiments the
As explained before, the communication overhead global fan-in summation of the partial inner products

of the CG-QSC algorithm is due to the matrix-vector mul- takes 2-4 milliseconds for 2-32 processors configurations.
tiplication (neighbour communication) and the inner pro- Taking in account that every PCG iteration requires 3
duct and norm computation (global communication). In times this type of global communication and once the
order to verify the theoretically obtained result of Section neighbour communication for the matrix-vector multipli-
5.3, that the communication overhead for computing the cation we conclude that the time spent in communication
product of A by a vector does not increase with the is less than 1% of the total time for the case of 97x97 grid
number of processors, we attempt to measure the time and 2 processors, while it is about 16% of the total time
spent in communication, during the computation of the for the same grid size and 32 processors. This means that
product of A by a vector in the following way. We let our almost all what is lost in efficiency is due to conmmunica-
code ran, skipping all the computation statements and tion overhead, and it leads us to suggest (once again!) that
executing only the send/receive operations of the iPSC/2 in order to benefit from the use of a lot of processors, we
hypercube. For a belier accuracy wc let it carry out have to solve proh'cnis of aplroprialely large size-

556

7. References. [Conc76] Concus, P., G. H. Golub and D. O'Leary, A gen-

(Ahlb75] Ahlberg, I. H. and T. Ito, A collocation method for eralised Conjugate Gradient method for the numeri-
two-point boundary value problems, Math. Comp., cal solution of elliptic Partial Differential Equa-

29 (1975), pp. 129-131,761-776. tions, Sparse Matrix Computations, Bunch J. and D.
Rose (eds.), Academic Press, New York 1976, pp.

[Arch73] Archer, D. A., Some collocation methods for dif- R,9-322.

ferential equations, Rice University, Houston, TX,

Ph.D. thesis, 1973. [Conc85] Concus, P., G. H. Golub and G. Meurant, Block
Preconditioning for the Conjugate Gradient method,[AxeI84] Axeisson, 0. and V. A. Barker, Finite element StIA . Sci. Statist. Comput., 6 (1985), pp.

solution of boundary value problems, Academic 220--252.

Press, 1984.
PBIterative Dani75] Daniel, J. W. and B. K. Swartz, Extrapolated col-[Bjor86] Bjorstand, P. E. and 0. B. WidlundL, teaielocation for two point boundary value problems

methods for the solution of elliptic problems on usin corlti o poine bounsar Maths pplcs

regions partitioned into substructures, SIAM J. (1ing pp. 16

Numer. Anal., 23 (1986), pp. 1097-1120.
[Dryj84] Dryja, M., A finite element - capacitance methodIBram86] Bramble, J. H., 3. E. Pasciak and A. H. Schatz• for elliptic problems on regions partitioned into

The construction of preconditioners for elliptic subregions, Numer. Math., 44, 1984), pp. 153-168.

problems by substructuring 1, Math. Comp., 47

(1986), pp. 103-134. [Dryj86] Dryja, M. and W. Proskurowski, Iterative methods
[Bram881 Brainley, R. and A. Sameh, A robust parallel in subspaces for solving elliptic problems using

solver] forable, cR. t nand systemeh, Proceedingst pa e domain decomposition, University of Southern Cali-solver for block tridiagonal systems, Proceedings of fornia, Tech. Rep. CRI-86-10 (1986).

the 1988 International Conference on Supercomput- friTc.Rp R-61 18)

ing (ICS88), July 1988, St. Malo, France. [Fyfe68] Fyfe, D. J, The use of cubic splines in the solutiontofetwo-pointeboundary valueeproblemsSComput.pJ.-

[Cave72] Cavendish, J. C., A collocation method for elliptic of to-point boundary value problems1 Comput. J.,

and parabolic boundary value problems, using cubic 17 (1968), pp. 188-192.

splines, Univ. of Pittsburgh, PA, Ph.D. thesis, 1972. [Golu85] Golub, G. H. and C. F. van Loan, Matrix computa-

[Chan87] Chan, T. F., Analysis of preconditioners for domain tions, John Hopkins University Press, 1985 (476
pgs).

decomposition, SIAM J. Numer. Anal., (1987), pp. 8 8 san

382-390. [Gust88) Gustafson, J. L., G. R. Montry and R. L Benner,
Deveiopment of Parallel Methods for a 1024-[Chri88a] Christara, C. C., E. N. Houstis and J. R. Rice, A Processor Hypercube, SIAM J. Sci. Statist. Corn-

Parallel Spline Collocation - Capacitance Method 9,4(1988) pp. 609-63.

for Elliptic PDEs, Proceedings of the 1988 Interna-

tional Conference on Supercomputing (ICS88), July [Hage81] Hageman, L. A. and D. M. Young, Applied Itera-

1988, St. Malo, France. tive Methods, Academic Press 1981.

[Chri88b] Christara, C. C., Spline collocation methods, [Hest52J Hestenes, M. and E. Stiefel, Methods of Conjugate
software and architectures for linear elliptic boun- Gradients for solving linear systems, J. Res. Natl.
dary value problems, Ph.D. thesis, Purdue Univer- Bur. Stand. Sect B, 49 (1952), pp. 409-436.
sity, IN, U.S.A., 1988. [Hous87] Houstis, E. N., E. A. Vavalis and J. R. Rice, Con-

[Chri89] Christara, C. C. and E. N. Houstis, A domain vergence of an 0 (h 4) cubic spline collocation
decomposition spline collocation method for elliptic method for elliptic partial differential equations,
partial differential equations, Proceedings of the SIAM J. Numer. Anal., 25 (1988), pp. 54-74.
fourth Conference on Hypercubes, Concurrent Com- [Hous88a] Houstis, E. N., J. R. Rice, C. C. Christara and E.
puters and Applications (HCCA4), March 1989, A. Vavalis, Performance of scientific software.
Monterey, CA, U.S.A. Mathematical Aspects of Scientific Software, (J. R.

[Chri9Oa] Christara, C. C., Schur complement preconditioned Rice, ed.), Springer Vcrlag, 1988, pp. 123-156.
conjugate gradient methods for spline collocation [Ilous88b] Houstis, E. N., J. R. Rice and E. A. Vavalis, A
equations, to appear in Proceedings of the 1990 Schwartz Splitting variant of Cubic Spline Colloca-
International Conference on Supercomputing tion Methods for Elliptic PDEs, Proceedings of the
(ICS90), June 1990, Amsterdam, the Netherlands. third Conference on Ilypercubes, Concurrent Com-

IChri90bl Christara, C. C., Quadratic Spline Collocation puters and Applications, January 1988, Pasadena.
Methods for Elliptic Partial Differential Equations. CA, U.S.A.
Univ. of Toronto, I)CS Tech. Rep. (1990), submit- 1Intc88] Intel Scientific Computers, iPSCI2 Performance
ted for publication, report, Intel Scientific Computers, January 1986,

[Chri9Oc] Christara, C. C., Iterative Solution of Spline Collo- lIcavcrton, OR, U.S.A.
cation Flquations. Univ. of Toronto, IlCS Tech.

Rcp.. in prcparalion.

557

[Irod87] Irodotou-Ellina, M, Spline collocation mehodr for
high order elliptic boundary value problems, Aristo-
tle University of Thesaloniki, Greece, Ph.D. thesis,
1987.

rlrod8s 1lrodotou-Ellima, M. and E. N. Houstis, An 0 (h6)
quintic spline collocation method for foihu-order
two-point boundary value problems BIT, 28 (1988).
pp. 288-301.

[Kamm74] Kammener, W. J., G. W. Reddien and R. S.
Varga, Quadrat interpolatory splines. Numer.
Math., 22 (1974), pp. 241-259.

[Keye87] Keyes, D. E. and W. D. Gropp, A comparison of
domain decomposition techniques for elliptic partial
differential equations and their parallel implementa-
tion, SIAM J. Sci. Statist. Comput., 8 (1987). pp.
sl66-s02.

[Khal2] Khalfa!, A. K. and J. C. Elibeck, Collocation with
quadratic and cubic splines, IMA J. Numer. Anal., 2
(1982), pp. 111-121.

[OLea87] O'Leary, D., Parallel Implementation of Block
Conjugate Gradient Algorithm. Parallel Comput., 5
(1987), pp. 127-140.

[Orte88] Ortega, J. M., Introduction to Parallel and Vector
Solution of Linear Systems, Plenum Press, 1988 (305
pgs).

[Rodr86] Rodrigue, G., Some ideas for decomposing the
domain of elliptic Partial Differential Equations in
the Schwarz process, Commun. Appl. Numer.
Method, 2 (1986), pp. 245-249.

[Russ72] Russell, R. D. and L. F. Shampine, A collocation
method for boundary value problems, Numer.
Math., 19 (1972), pp. 1-28.

[Saka83J Sakai, M. and I. Usmani, Quadratic spline solu-
tions and two-point boundary value problems, Publ.
RIMS, Kyoto University, 19 (1983), pp. 7-13.

[Tang87] Tang, Wet-Pal, Schwartz Splitting and Template
Operators, Stanford University, Ph.D thesis, 1987.

[Varg62] Varga, R. S, Matrix iterative analysis, Prentice
Hall, 1962.

[Youn7 1] Young, D. M., Iterative Solution of Large Linear
Systems, Academic Press 1971.

Acknowledgements

I wish to thank Elias N. Houstis for his suggestions for
improving this manuscript. I also wish to thank the Cornell
Theory Center for letting me use their iPSC/2 hypercube for
free!

558

Multigrid on Massively Parallel Computers *

David E. Womble Brenton C. Young

Sandia National Laboratories Stanford University
Albuquerque, NM 87185 Stanford, CA 94305

memory computers with 4 to 16 processors and for
distributed memory machines with 16 to 256 pro-

Ab3tract cessors. The best of these implementations have

achieved overall efficiencies between 75% and 85%
Multigrid is a fast iterative method used to solve when solving the largest problem possible on their

linear partial differential equations. However, be- computer. Higher efficiencies are very difficult to at-
cause the solution of very small problems is inher- tain because of the serial nature of standard multi-
ent in the multigrid iteration, it is difficult to imple- grid algorithms and the small number of unknowns
ment efficiently on a massively parallel computer. on coarse grids.
In this paper, we present an implementation of the Several variants of the standard multigrid algo-
multigrid v-cycle that has achieved 84% efficiency on rithm for parallel computers have also been devel-
the 1,024 processor NCUBE/ten. We also present a oped. These include algorithms based on multiple
model for the efficiency of multigrid on a parallel coarse grids [5], algorithms based on simultaneous

computer that depends only on the efficiency of the smoothing on several grids [6], and algorithms for
smoother at each level. This model can be used to residual splitting to allow the simultaneous reduc-
verify that it is indeed difficult to obtain extremely tion of different frequency erorrs [3]. These variants
high efficiencies (95% to 100%), but that it is rel- are not always effective as the increased efficiency
atively easy to obtain moderately high efficiencies is offset by increased computational requirements,
(70% to 85%). communication requirements and program complex-

ity.

Introduction In this paper, we present an implementation of
multigrid for the NCUBE/ten that achieves 84% effi-

Multigrid methods are popular iterative method ciency when using 1,024 processors. We also present

for solving partial differential equations (PDEs) nu- a model of the efficiency of multigrid algorithms that

merically. These methods make use of multiple grids distiguishes between the efficiency of multigrid and

of unknowns to reduce the dependence of the num- the efficiency of the smoother. Finally, we compare

ber of iterations required for convergence on the our implementation of multigrid on the NCUBE/ten

problem size, in contrast to iterative techniques such to the predictions of the model.

as Jacobi, Gauss-Seidel and finite precision conju-
gate gradient iterations. Also, unlike other fast el- Implementation
liptic solvers, multigrid methods are applicable to a
wide range of problems, although their implementa- Our multigrid implementation is the v-cycle, in
tion becomes more difficult for irregular domains or which the iteration begins on the finest grid, pro-
irregular grids. gresses sequentially to the coarsest grid, and then

Because of its usefulness as an iterative solver for returns to the fine grid (Figure 1).
PDEs, there have been many attempts to implement In a parallel implementation of multigrid, proces-
multigrid efficiently on parallel computers [1,3,4,7]. sors can be idle on the coarsest levels while the com-
These have generally been carried out for shared putations proceed at a small number of points. This

*This work was supported by the Applied Mathematical problem is particluarly severe on massively parallel
Sciences program, U.S. Department of Energy, Office of En- machines, such as the NCUBE/ten and the Connec-
ergy Research, and was performed at Sandia National Labo- tion Machine. While this problem cannot be elimi-
ratories, operated for the U.S. Department of Energy under nated for the v-cycle, its effects can be minimized by
contract No. DE-AC04-76DP00789.

0-8186-2113-3/90/0000105659$01.00 a 1990 IEEE

striction operator requires one more communication
step than injection, which is another commonly used
restriction operator. However, because the the full

•• - level 4 weighting operator is the transpose of the bilinear
S/_ correction operator, convergence is guaranteed for a

level 3 wide range of problems.

S/ level 2 Numerical Results
S/ leel 1The muitigrid algorithm described in the previous

* .level section was implemented on the NCUBE/ten and

tested by solving the following problem:
0level 02U 02 u

- jX2 - =ýy = (1 + C)Tr2 sin(rx) sin(7ry),
Figure 1. The multigrid v-cycle with five levels (z, y) E (0, 1) X (0, 1),

using a process known as agglomeration [7]. When- with the boundary conditions
ever a processor is responsible for a computational
domain with too few unknowns, the domain is com- u(x, 0) = u(x, 1) = 0 z E [0, 11
bined with that of a neighboring processor. If the u(O,y) = u(1,y) = 0 y E [0, 1].
fine-grid computations are load balanced, many of
these combinations can be done in parallel. On a
hypercube, this is equivalent to having half of the We discretize this equation by setting Az = Ay =
cube duplicate the computations of the other half. l/n, n > 0 and replacing the partial derivatives
Because each half of the hypercube is also a hyper- with second-order finite differences. The mesh is
cube, and because the processors that are combin- distributed over a p x p grid of processors by assign-
ing work are connected, nearest neighbor commu- ing a (n/p) x (n/p) mesh to each processor. For each
nications are maintained. While agglomeration im- run of the program, we set c = .1, smooth once on
proves the efficiency at a given level only slightly, it each level, and consider the iterations to have con-
reduces the communication required for the transfer verged when the relative residual is less than 10-9.
between levels significantly. As a measure of the performance of the algorithm,

Thoý ontirrum number of unknowns at which ag- we use efficiency and scaled efficiency. If T(n, p) is
glomeration will occur is a function of the machine the time per iteration for the v-cycle with an n x n
architecture. On the NCUBE/ten, we found that mesh on a px p grid of processors, then the efficiency
two processors should be combined when they are is defined to be
each responsible for two unknowns along any di- T(n, 1)
mension of the problem. The model developed in e(n, p = p2 T(n, p)'
the next section can be used to verify this and to
determine the exact dependence on the hardware which is equivalent to the speedup divided by the
parameters. number of processors. In our implementation, a 64 x

In our implementation of multigrid, we use a red- 64 grid of unknowns is the largest allowed on one
black Gauss-Seidel smoother on each level. While processor. Hence, for n > 64 we define the scaled
this smoother is not as easily parallelized as a Jacobi efficiency
smoother, the improvement in the multigrid conver- _ T(nfp, 1)
gence rate is sufficient to justify its use. On the se(n'P) - T(n,p)
other hand, the use of an SOR smoother results in which is equivalent to the scaled speedup [8] divided
a comparable convergence rate, but does not paral- by the number of processors. We note that because
lelize easily n the serial run time for one v-cycle is proportional to

To transfer information between the grids, wehave e(np) s(np).
use full weighting restriction and bilinear correction Efficiencies and scaled efficiencies for the model
(prolongation) operators [2]. The full weighting re- problem are shown in Table 1.

560

We see in Table 1 that the degradation in per- tion yields
formance due to idle processors as n/p decreases is
quite severe. For the cases n = 4 and n = 8, we ei-,1 (I,p) Aei(n,p) 1+ & -(')
have efficiencies less than 1/p2 , which corresponds 2s I("))=

to a speedup of less than one. We also note that by Aej(np) + c,() -1
scaling the problem with the number of processors, c.((

we obtain relatively good efficiencies, even on 1,024 Td s
processors. We conclude that the multigrid v-cycle 2

has a relatively high serial content, and that scaling computational work in the serial algorithm and

the problem size with the number of processors is can be approximated. The work required by the

more important than with more parallelizable algo- smoother on level j can be written in terms of the

rithms such as Jacobi relaxation.

,Ac, (n 1..in)

Model of Multigrid Efficiency A . = (22-).

Now
In this section, we develop an expresgion for effi-

ciency of the multigrid v-cycle in terms of the effi- ci(n) = Acj (2j-'n)

ciency of the smoother used at each level. Although j=1

the model is developed only for the v-cycle, the tech- Thus, for a v-cycle, we have
niques are applicable to any cycle [9].

We suppose that we are approximating the solu- (n) (1_ \
tion to a d-dimensional PDE at nd evenly spaced ci 2 --) Aci(n) (2d - .I

mesh points distributed among pd processors. We
use using a k-level, k < log 2 n multigrid algorithm, Substituting this relationship into (1) yields the re-
where level 1 is the coarsest grid, and level k is cursion
the finest grid. For i = 1,2,... ,k, we let ei(n,p), 2d
oi(n,p) and ci(n) denote the efficiency, the parallel ei(n,p) 1- 1) 1 i > 1.

overhead and the computational work for the i-level e +(P) Ae.(,p)

multigrid algorithm. We note that the computa- (2)
tional work ci(n) does not depend on the number of The initial condition,
processors p. Similarly, we let Aei(n,p), Aoi(n,p)
and Aci(n) denote the corresponding quantities for el(2 1 k-n,p) = Ael(2 1 -n,P),
the smoother at level i. Our goal is to develop an
expression for ek(n,p) in terms of ek-l(j,p) and where k is the number of levels, simply states that
Aek(n,p). the efficiency of multigrid is the same as the effi-

The definition of efficiency is ciency of the smoother when only one level is used.
To actually predict the efficiencies of a multigrid

ci(n) v-cycle, we need to be able to predict the efficiency
e,(n,p) = oi(n,p) + ci(n)" of the smoother, Aei(n,p). For red-black Gauss-

Seidel, we use
Because

c,(n) = ci,.(n) + Ac:(n), ()

Ae,(n, p) =
and n, CI() +C(I) 2+C2 (a) +C 3 1og02 p2 +C 4

odn,p) = oj(2, p) + Ao (n, p),
we can write the efficiency as with

1 C, = 2.13 x 10-4 - 7.2 x 10"
e(n,p)(,p)+do,(,p) "-C 2 = 4.23 x 10-4 4.8 x 10-6

1+ c,_(A)+4c,(n) C3 = 8.23 x 0- -1.2 x 10--
C4 = 9.73 x l010 - 9.5 x 0-.

Eliminating oi-l(n, p) and Aoi(n,p) from this equa-

This equation is based on operation counts
and a least squares fit to timing data for the

561

1.0 •inequality yields

3C. 3C1 + C2 (- 4C3 < 0.o
C

-50.6 Solving, we find that agglomeration should occur

when -2.62 < n/p < 1.96 s 2.
U)

0.4

Conclusions
-0.2

Our implementation of the multigrid v-cycle on

0.. the 1,024 processors NCUBE/ten achieved 84% effi-
0. 6. 4 6. 1.0 ciency, demonstrating that multigrid algorithms can

Coarse grid efficiency be implemented on massively parallel computers ef-

ficiently. We note that the algorithm chosen for par-
Figure 2. The efficiency of an i-level multigrid v-cycle as a allelization is one of the most effective serial algo-
function of the efficiency of an (i - 2)-level mnltigrid v-cycle. rithms for the solution of partial differential equa-
If the efficiency of the smoother on the finest level is greater tions. It was not chosen because of any inherent
than 95% and on the second finest level is greater than 90%, parallelism.
then the i-level mnultigrid efficiency must lie between the two We also developed a model for the efficiency of
curves. the multigrid v-cycle that depends only on the effi-

ciency of the smoother at each level and the dimen-

NCUBE/ten [9]. Conbining (2) and (3) yields the sion of the problem. Using this model, we showed

predictions of multigrid efficiency shown in Table 2. that with an efficient fine-grid smoother, relatively

We see from the multigrid efficiency model (2) high efficiencies are relatively easy to obtain. In par-

that the coefficient of the fine-grid efficiency is much ticular, multigrid efficiencies of 75% to 95% should

larger than that of the coarse-grid efficiency. We be attainable on most parallel computers. We also

conclude that the efficiency of the fine-grid smoother concluded that similar multigrid efficiencies can be

influences the efficiency of multigrid more strongly attained for higher dimensional problems.

than the coarse-grid smoothing. Thus, if an efficient References
smoother, such as Jacobi or red-black Gauss-Seidel,
is used, moderately high efficiencies for multigrid [1] A. Brandt. Multigrid solvers on parallel com-
can be achieved easily. Figure 2 demonstrates this. puters. In M. H. Schultz, editor, Elliptic Prob-

We also note from (2) that as the dimension, d, lem Solvers, pages 39-84, Academic Press, New
increases, the weighting of the fine-grid efficiency York, 1981.
increases. Thus, even though the number of points
per processor on coarse grids decreases more rapidly [2] W. L. Briggs. A Multigrid Tutorial. SIAM,
in higher dimensional problems, it should be possi- Philadelphia, PA, 1987.
ble to maintain good efficiencies for multigrid algo-
rithms in higher dimensions. [3] T. F. Chan and R. S. Tuminaro. Design and

Finally, we can verify that agglomeration should implementation of parallel multigrid algorithms.
occur when a processor is responsible for two un- In S. F. McCormick, editor, Multigrid Meth-

knowns along any dimension. In particular, for the ods: Theory, Applications, and Supercomputing,
two dimensional problem, agglomeration should oc- pages 101-115, Marcel Dekker, Inc., 1988.

cur at level i when [4] T. F. Chan and R. S. Tuminaro. A survey of
1 p parallel multigrid algorithms. In A. K. Noor,

Ae4(n,p) < 2Ae,+i(n,) editor, Parallel Computations and Their Impact
on Mechanics, AMD-86, pages 155-17'0, ASME,

That is, agglomeration should occur when the loss of 1988.

efficiency due to communication is more than that

due to idle processors. Substituting the efficiency [5] P. 0. Frederickson and 0. A. McBryan. Par-
of the red-black Gauss-Seidel smoother (3) into this allcl Supcrconvcrgcnt Multigrid. Technical Re-

port CTC87TR12, Cornell Theory Center, 1987.

(6] D. Gannon and J. van Rosendale. On the struc- (8] J. L. Gustafson, G. R. Montry, and R. E. Ben-
ture of parallelism in a highly concurrent PDE ner. Development of parallel methods for a 1024-
solver. J. Par. Dist. Comp., 3:106-135, 1986. processor hypercube. SIAM J. Sci. Stat. Comp.,

[7] U. Gairtel. Parallel Multigrid Solver for 3D 9(4):609-638, 1988.

Anisotropic Elliptic Ploblems. Technical Re- [9] D. E. Womble and B. C. Young. A Model and
port 390, Gesellschaft FUr Mathematik und Implementation of Multigrid for Massiveli Par-
Datenverarbeitung, 1989. allel Comuputers. Technical Report SAND89-

2781, Sandia National Laboratories, 1990.

Table I. Efficiency and and scaled efficiency for the maltigrid v-cycle oa tie NCUBE/tes whes solving an n X n problem on

a p X p grid of processors. Dashes (-) correspond to cases for which so timing data exists. Eficiescies appear below the line

in the tale; scaled efficiencies appear above Ike line.

pxp
nxn lx1 2x2 4x4 8x8 16x16 32x32
4 x 4 1.00 0.125 - - - -

8 x 8 1.00 0.215 0.047 - - -
16 x 16 1.00 0.392 0.104 0.027 - -

32 x 32 1.00 0.630 0.244 0.075 0.019 -

64 x 64 1.00 0.818 0.449 0.200 0.059 0.015
128 x 128 - 0.915 0.725 0.434 0.169 0.049
256 x 256 - - 0.869 0.694 0.395 0.146
512 x 512 - - - 0.858 0.668 0.362

1024 x 1024 - - - - 0.844 0.642
2048 x 2048 - - - - - 0.835

Table 2. Predicted efficiencies for the multigrid v-cycle solving an n X n prolem on a p x p grid of processors %sig thke

red-Riack Gauss.Seidel smoother.

pxp

nxn lx1 2x2 4x4 8x8 16x16 32x32
8 x 8 1.00 0.235 0.049 0.012 0.003 0.001

16 x 16 1.00 0.433 0.110 0.029 .0.007 0.002
32 x 32 1.00 0.667 0.254 0.077 0.020 0.005
64 x 64 1.00 0.840 0.499 0.200 0.057 0.015

128 x 128 1.00 0.929 0.745 0.435 0.162 0.045
256 x 256 1.00 0.969 0.893 0.704 0.383 0.134
512 x 512 1.00 0.986 0.957 0.876 0.664 0.339

1024 x 1024 1.00 0.994 0.983 0.952 0.859 0.627
2048 x 2048 1.00 0.997 0.993 0.981 0.947 0.842

563

A Parallel Algorithm for Solving Higher
KdV Equations on a Hypercube

Thiab R. Taha
Department of Computer Science

The University of Georgia
Athens, Georgia 30602

Abstract Recently, there has been a lot of theoretical

Taha and Ablowitz derived n l and numerical research in order to investigate this
phenomenon (see Bona et al. [31, and the

schemes by methods related to the inverse references there in). Numerical simulations of
scattering transform (sST) for phyically solutions of Eq. (2) (see Fomberg & Whitham [4],
impoant equations such as the Korteweg-de Bona et al [51) confirm that its solitary-wave
Vrles (KdV) and modified Korteweg-de Vries solutions are unstable if p > 4, and in fact, that
(MKdV) equations. Experiments have shown that neighbouring solutions emanating from smooth
the rST numerical schemes compare very initial data appear to form singularities in finite
favorably with other numerical methods. In this time. This paper deals with a numerical
paper an accurate numerical scheme based on the
IST is used to solve non-integrable higher KdV Investigation of the blow-up for the higher KdV

equations, for instance: equation

Ur + u4 S1 + u,= = 0 us + u4 Uz + U' = 0 (3)

It has been conjectured that the above equation using an accurate numerical scheme based on the
It hs ben cnjeture tht th abve euaton ST. The proposed numerical scheme is based on

admits a self-focusing singularity. The proposed an IST numerical scheme derived by Taha and

numerical scheme is used to investigate this Ablowitz for the KdV and MKdV equations.

phenomenon. The implementation of the IST Experits h o a the KST numeical

scheme leads to a huge periodic banded system of Experiments have shown that the IST numerical

equations to be solved at each time step, which schemes compare very favorably with other

requires a large amount of computing time if a

serial computer is used. A vector and parallel In order for the singularity to be properly
implementation of the proposed scheme on an resolved, the mesh sizes in the directions of x and
Intel iPSC/2 hypercube is carried out, and the t have to be taken very small. Therefore the
numerical results are discussed. implementation of the proposed numerical scheme

on a serial computer requires a large amount of

1. Introduction computing time.

It has been shown that the higher nonlinear In this paper a parallel algorithm for the above
Ithasbeen shown thuation tehscheme is designed and implemented on an Intel

Schr6dinger (NLS) equation iPSC/2 hypercube, and the numerical results are

iq, + q. + A Iq Iq = 0, p 2 () discussed.

under certain conditions admits a self-focusing 2. The proposed numerical scheme
singularity [11, which means that the solution of The proposed numerical scheme which is
Eq. (1) blows up in finite time. This suggests that based on the IST for Eq. (3) is (6]
the higher nonlinear KdV equation

u..t - u' 1 r€. 2. 3 u*÷

u, + A u'u. + u, = 0, p > 3 (2) -U. =- -7

has a self-focusing singularity [2].

564
0-8186-2113-3/90/0000/0564$01.00 @ 1990 IEEE

One way to implement this scheme is to solve a
-+3 - u"+2 + u1-2 - 3u•t- periodic banded system of equations at each time

step:
+ 3u." - u.nl I - I-- [(U.o)2

. 2jA ~ -3 1 -
-la-•3 I U 4 6
-1a 3-1 a -3 1U
0 -1 a -3 1 U-,+2

-3 +

+.• + 4.++2) U- u. (U-7 1 -1 -3 uN-2
-3 1 -I I

U., + U.+l

+ 4-1 + U. -2)1](A)3(4)2B_

B.-N+I
The truncation error of this scheme is B-s+2
o ((At)) + O ((Ax) 2). This scheme is applied to
Eq. (3) subject to a Gaussian profile of the form (8)

-(A B N -3

U(x,O) = 'n e Y (5) BN-2

with qI = 3, and y = 8 as an initial condition, and BN..1
periodic boundary conditions on the interval [-40, where a = 3 + F-. The above system can be
401 are imposed. solved on a hypercube by using a modified

version of an efficient parallel algorithm for
3. A parallel implementation of the proposed banded systems [8,91.
scheme. Another way to implement the scheme on the

Eq. (4) can be written as iPSC/2 system is to use the sweeping/iteration
technique presented in (6]. To explain the

-+ (3_+)u-' - 3u' sweeping/iteration technique, we seek an equation
of the form

+ u .-+2 = B., (6) U3 +1 = GmL3 b+t

where which is suitable for computing u"+' explicitly by

2(Ax)3 sweeping to the right. For stability I a 1 • 1.
At Repeated substitution of Eq. (9) into Eq. (6) to

eliminate u- ,,+' _,, and u.'+ in favor of u.-+'
and gives

B. =-u*1 + (3 +e)u,"' - 3ul + u:-.2 b.-++ + (a- 3)b.- +' + (a2
- 3a + 3 + e)btI

-(A)2[(Um)2 - (,un+1)2 + (a3 - 3a 2 + 3a - ea - 04-1

+ (Ui"+' (U:'1 + u'I +u= B, (10)
+ "X, + M+Iu + + " •n

Requiring the uA'm+ij term to drop out determines a

u.r, + (uniquely since Ia I :5 1) as a solution of
-I u (U." + u-t +u47-2M/ (- "2)a ()

so5

(a - 1W + •a = 0 (11) Figure 1. Displays the evolution under Eq. (3) of
a Gaussian profile given in Eq. (5) as an initial

and leaves for b, (at the new time step) a second condition on the interval [-40, 401. Ax = 0.0391
order difference equation given by and At = 0.0001. (a) t = 0.0, (b) t 0.0999, (c)

t=0.1145,(d) t=0.1156.
S= (3a - a2)b, - ab, + a8. (12)

(where Eq. (12) is obtained from Eq.'s (10) and
(11)), which is suitable for computing the b's
explicitly by sweeping to the left. This method is
well suited for serial computers but not for
pipeline or vector systems due to the recursive
nature of Eq.'s (9) and (12). To implement the -

scheme on the extension board of an intel iPSC/2
hypercube the cyclic reduction method [10] is
used to solve the bidiagonal linear system with a -

non zero element on the upper right hand comer
generated from Eq. (9). On the other hand, the
cyclic reduction method for the periodic
tridiagonal system generated from Eq. (12) proved
to be unstable. An efficient vector algorithm such
as a modified LU decomposition for tridiagonal
systems with partial pivoting is suggested. It is to
be noted that the rest of the computations of the
sweeping technique are well suited for vector
operations. To implement the sweeping technique
on a parallel system such as the hypercube, the .- . . N.0 .0

systems generated from Eq.'s (9) and (12) should
be solved by modified parallel algorithms for Fit. I() t 0.0o.

bidiagonal and tridiagonal systems respectively
[8,9].

4. Numerical Experiments

The proposed numerical scheme is
implemented on the iPSC/2 system. The system
given in Eq. (8) is solved by an iterative SOR
parallel algorithm, and it is found that this method
does not converge. Then the proposed scheme is
implemented on the extension vector board of an
intel iPSC/2 system by using a cyclic reduction
method for Eq. (9), properly vectorizing Eq. (7) in
order to calculate the B's (otherwise it will not
vectorize properly and it will give wrong results),
and leaving Eq. (12) unvectorized. My
preliminary experiments indicate that the above
algorithm is four times faster than its serial
version. It is to be noted that more work has to be
done in order to vectorize Eq. (12). Also, more
work has to be done in order to parallelize the
sweeping algorithm. According to my
preliminary experiments the solution of the higher .3. .ZC.00 .

KdV equation (3) blows up at t = 0.1157 (see rFi eb) t-0 :'.
Fig. I).

566

This research has been supported in part by
the U. S. Army Research Office and the National
Science Foundation Grants No. CCR-8717033
and No. CDA-8920953.

References

[1] Zakharor, V.E. & Synakh, V.S. (1976) The
nature of the self-focusing singularity, Soy.
Phys. JETP., 41, pp. 465-468.

[2] Ablowitz, M. & Segur, H1, (1981) Solitons
= and the inverse scattering transform, SIAM,

Philadelphia.

[3] Boan, UL., Souganidis, P.E., & Strauss, W.A.
(1987) Stability and instability of solitary
waves of Korteweg-de Vries type, Proc. R.
Soc. Land. A 411, pp. 395-412.

[4] Fornberg, B. & Whitham, G. (1978) A
numerical and theoretical study of certain
nonlinear wave phenomena, PhiL Trans. R.

-30.0 -20.0 -10.0 0 10.0 20.0 Soc. Land. A 289, pp. 373-404.

rig. i(c) t 0114S. [5] Bona, J.L. Dougalis, V.A. & Karakashiam,
O.A. (1986) Fully discrete Galerkin methods
for the Korteweg-de Vries equation,
Computat. Math. Appl. 12A, pp. 859-884.

[6] Taha, T.R., & Ablowitz, M. (1984)
Analytical and Numerical Aspects of Certain
Nonlinear Evolution Equations. Il.
Numerical, Korteweg-de Vries Equation, J.
CompuL Phys. 55, 2, pp. 231-253.

o [7] Taha, T.R. & Ablowitz, MJ. (1988)
Analytical and Numerical Aspects of Certain

SNonlinear Evolution Equations. IV.
Numerical, Modified Korteweg-de Vries
Equation, J. CompuL Phys. 77, 2, pp. 540-
548.

[8] Gallivan, K.A., Plemmons, Ri. & Sameh,
A.H. (1990) Parallel algorithms for dense

0 linear algebra computations, SIAM Rev., 32,

1, pp. 54-135.

[9] Ortega, J. (1988) Introduction to Parallel and
-30.0 .20.0 -10.0 0 Vector Solution of Linear Systems, Plenum,

Fig.)(4) • t 0.116. New York.

[10] Taha, T.R. (1990) Solution of Periodic
Tridiagonal Linear systems on a Hypercube,

Acknowledgements: in the Proceedings of the Fifth Distributed
Memory Computing Conference, Charleston,

The author would like to thank E. R. Canfield SC, to appear.
for his careful reading of this paper.

567

The Triangle Method for Saving Startup Time in Parallel Computers
(preliminary version)

Horst Eissfeller
Silvia Melitta Muller +

Computer Science Department
University of Saarland

D-6600 Saarbruicken ii , F. R. G.

Abstract: runtime / parallel runtime + number of proces-
sors). Therefore the amount of communication

We present a new parallel implementation of should be small. Communication consists of

explicit time stepping methods for time depen- the startup time and the time to transfer data.

dent equations in one or two spatial dimen- The startup time is the time to build up a

sions. The aim is to minimize the number of connection between the processors. For real

data transfers, to get faster aigorthms. In one parallel computers this time is very large,

spatial dimension, E explicit time steps on p due to software protocol. The following

processors using a grid of size n need Ot t n/p examples illustrate this:

arithmetical operations and O(&) startup oper- PARSYTEC Super Cluster : 750

ations. The triangle method also requires INTEL iPSC 2 :2000

O t n / p , arithmetical operations but only SUPRENUM 1 : 3000

0,, t p/n startup operations. In two spatial C startup time measured in multiples of the

dimensions, using a grid of size n n and time needed for 1 floating point operation;

given the same algorithm, the startup time of SUPRENUM supports asynchronous transfer of

0(t) operations using the conventional ap- data, which is more general and harder to

proach is considerably reduced to 0(t •.p / n implement than sychronous transfer).

startup operations. All constants regarding the As a model of computation we use p proces-

O-notation are less than 5. sors interconnected by a crossbar. A hyper-

cube or a reconfigurable two dimensional
mesh would also suffices. One floating point

Introduction: operation has cost A. A transfer of n numbers

costs S. n/B, where S stands for startup and

The efficiency of parallel numerical algorithms B for bandwidth. All other operations have

should be maximal (efficiency sequential cost 0.

Research partially funded by DFG. SFB 124

0-8186-2113-3/90/0000/0568$01.00 0 1990 IEEE

Implementation for one spatial dimension: q .'k - q ÷n/p .
During the first step processor x computes

Solving the following initial boundary value Ui*j k - 1.jý_m, q÷j] k-q+n/p-j This can
problem , compare [13i] also be seen as building up a triangle over

t, k t. x)a t. the processors domain.

t > 0 , x l- [0, 1] iterations i

u tO,x -c-p(x) , x ý I irM 0

uwt,x O, t> , X 'B o, 000
one often getsexplicit iter•,.ive formulas like 00000 grid-

.. e _points k
Ui.1 k ' U Atir;Ax / .l- q q-n/p- 1

i k + iik1q

2 u + Ui k I values computed during tine first
k ik1 0 step (processor x)

i -, 0 k n, n-i/LAx

u 0 k -(k x) , Uio ' ui n= 0 During the second step data are exchanged
in the following way. Processor x sends the

The oL__ is the computation of uik , 1- values ui.jk , 1 -j - m-1, q+j - k - q +j+1

0 - k n. This will be done by explicit time and ui q-1 ' Uijm q'm to processor x-1.
stepping as the above formula suggests. During During the third step they complete the last
one such step one computes the values ui. 1 k, m time steps: processor x computes the values
0 k n, using the results of the last iteration Uij k , 1 - j - m, q.n/p- j - k q-n/p .j
uik 1 0-k -n.

iterations i

Standard method:

Initially one distributes the gridpoints over
00000000the processors (O.. p-1). During a time step i1 00000000

processor x sends ui nx/p to processor x-1 ---------- grid

and uin(x~l)/p 1 to processor x-1. After that . .. /e.J_1 points kinX1/ 1q-rm q-3 rn +1

it computes the values u,+ 1 r , nx/p -- r -

n(x+l)/p 1. Thus T time steps have the cost: @ values computed during the third
step (processor x)

0 values computed during the first

step

Triangle method:
Starting with the same distribution the t For the next m steps processor x updates the
iterations are computed in blocks of Ln/(2p) values ui mq'm"' Uimq,3m. Thus "t iterations

iterations, without changing the data aepend- cost:

ence. The computation of one block consists c 4n/p A. 12Cp/nJ (S n/(p B).
of three steps. Suppose that n/p -2m I and The amount of data transferred and of

processor x updates the values ui k, arithmetic performed remains the same, but

569

the number of startup operations is consider- area is a rectangle with lengh n and width

abely reduced. For example, for p - 32, S - 750, m m i-<< n) it is better to use bands. During

n - c -04, A-1, B-1/28 one gets the efficien- each step the processors exchange their

cies: borders and update their whole area. For t

effoonV - 44,55% , eff, ,,g,,- 95,4% iterations one gets:
using squares:

- (6n2/p A ÷ 4S÷4n/(-vrpB)) (1)

using bands:

Implementation for two spatial dimensions: c (6 nm/p A + 2 S+ 2 m/B) (2)

Now we consider the two dimensional problem Triangle method:

compare El[: Dividing the area into bands (m << n), it is

easy to reduce our method to the one dimensi-
t > 0, ' x, y ,- 0 - R2, onal case. During each round of computation

10, x'-1 0.11 the processors build up a prism over their

) I. . I 0. , 1 domain. They exchange their borders and
u 0, x,y -cp x~y. x,y -0

u t, x, y '5 X, > 0 . X, during the next round they complete the last

iterations and build up new prisms and so

Using step sizes .. x, .. y and .t , the usual on.

5 point star to approximate .",u and the

forward differential quotient to approximate

ut, one gets ,

- U1 o A I 4UE ii plane, transfered to the neighbour
U k i k 2. "x. y ik

•Ur ,U r Ur Ur"
+ 1k ilk i k I1 1 k* -' I

0<i<n, n- V/:1 x , O<k<m, m-1/,iy, r 1,
E] prism of the last computation step

U ik - q(i AxkAy) ,

O<i<n, O<km, Now t iterations cost only:

ik - r At ,i Ax, k Ay t6rn /pA .2 1 p/n I S ÷ 1 2m/B.

r -- 1, i , k. t0, 11. Comparing this with (2), the number of

To update a point one needs the values of its startup operations is reduced without increa-

4 direct neighbours as well as its own. sing other operations.

Standard method: If m n it is better to use squares, but then

Conventionally, to assign processors, one the method is more difficult. One needs

covers the area with squares or bands; if the 3 rounds of computation and 4 of communica-

570

tion to compute n/ 2 -'p time steps. First each fig 3b insert the pyramid

processor builds up a pyramid over its domain.
The height of the pyramid is n/2 ip time

7 -~ ~.. >*
steps. We refer to fig. 1 . To carry on, the .".-

borders must be exchanged. Each processor
sends the two upper levels of face F1 of its

pyramid to the neighbour in front of it and After the transfer the remaining pyramid can
the two upper levels of face F2 to its right be computed. For T iterations one needs:

neighbour. Thus one needs two transfers with c 6 n 2/p A + 2 z '/p/n (4S - 2n 2/Cp B)).

[n/2-v'ý]- 1 The number of startups is much smaller than
2 t. 2 i ÷1 n n2/2p in (l) . The number of all other operations

i= 0 remains unchanged. For example, for p ý 32,

data per transfer. After the communication S 750, T n m - 102, A7 1, B :1/28 one

each processor completes the last n/ 2V)-p gets the efficiencies:
iterations as far as possible. Then the fig. 2 eff n 27,2 %. eftf tnangle 44,1%.

arises locally:

fig .• The new implementation has one disadvantage

in the two dimensional case. Because different

iterations are computed together, more data
have to be stored at the same time. The

fig 2 conventional implementation gets problematic

with regard to the efficiency only for small

amounts of data per processor (n 2 /p _ s)3

In this case our method is more efficient and
practicable. With a trick it is possible to use

Only the pyramid shown in fig. 3 remains to only 4.5 times more memory than the

be computed. The planes F5 and F6 are in standard method and a little extra administra-

the same processor. Thus only two planes must tion. The pyramids are discrete ones, which

be transferred. This can be done by two are stored in planes. From plane to plane they

transfers with n2/2p data each. lose one ring. With respect to the algorithm

only the two upper levels of each face of the

fig 3a . F3 A aed pyramid are necessary, to continue the compu-

a -- b.b F4 -,',dec tation. Therefore it is enough to store the two

F5 ber- most outside rings of each plane. Allocating

F6 Aaeb two matrices of size 13n/2-,p I !3n/21p I

per processor all data can be stored, as we

show now. The planes with even numbers

are stored in the first matrix and the others in

571

the second one. During the first round of

computation each processor works on its -0.5n O.5n n/iP

original domain (fig. 4). 1.I nI-II

new __ 1 1
r 1.5 n/-p domain

space for the

-- data received -:In/Vp
0. nhA$

I ~II
I ~I
I ~II

"original domain -----------------

I fig. 6 : the original domain
-o.Sn I n/ Ap for the next iterations

fig. 4: dimension of the matrix

During the next block of iterations the

The data received during transfer are stored processor transfers its borders in the other

in a simular manner in the remaining parts direction. Therefore all iteration can be

of both matrices (fig. 5). computed on the two matrices. In the con-

vential implementation n 2 /p space is neces-
,space sary to store the domain of a processor and, - I J for F1II I

4 n/-vp space to store the borders exchanged.
2The Triangle Method needs 4.5 n /p space

per processor, that is no more then 4.5 - fold

space.

space for F2

fig. 5 a data received during References:
the first transfer

[1] Todd, J. (1962) Survey of Numerical
4 fAnalysis, Mc Craw Hill Book Company,

INC, New York , pp. 419.

fig. 5 b: data received during
the second transfer

After n/ 2 "lp iterations are computed, the pro-

cessor works over a different part of the

matrices (fig. 6).

•mn~u N •I i R RB • 57i

The Fifth Distributed Memory
Computing Conference

2:Concurrent Simulation ParadigmsJ

A MINI-SYMPOSIUM ORGANIZED BY:
Anthony Skjellum and Manfred Morari

California Institute of Technology
and

Sven Mattisson and Lena Peterson
Lund Institute of Technology

Concurrent Simulation Paradigms Mini-Symposium

The Concurrent Simulation Paradigms Mini- Traditional numerical methods are considered in two
symposium addressed the use of distributed memory of the papers. The Concurrent DASSL and ESACAP
computers in the solution of large-scale systems of or- efforts utilize parallelized sequential numerical analy-
dinary differential and differential-algebraic equations sis. A novel numerical method, Waveform Relaxation,
(ODE's and DAE's). The solution of large-scale sys- is considered by four papers and realized, for instance,
tems of parabolic partial differential equations is also in the CONCISE VLSI circuit simulator. Speedups
considered in the paper by Vandewalle. Applications achievable on medium-grain multicomputers are com-
from electrical and chemical engineering are presented pared and discussed. The paper of Nevanlinna centers
here, specifically the transient response of VLSI cir- on more theoretical aspects of Waveform Relaxation
cuits and a dynamic flowsheet simulation used on net- for high performance circuit simulation.
works of distillation columns. Actual implementations of the algorithms described

The key characteristics shared by these problems are here are discussed for the iPSC/2 and Symult s2010
their large-scale and inhomogeneous nature, sparse multicomputers.
connectivity, stiffness, and widely varying timescales.
It is not meaningful to "scale" these problems.

I
Best oncurnt

Algorithm's Overhead

Parallelized "Best"
S. Sequential Algorithm

" - - - - Performance

Z -
Algorithm of ultimately

higher concurrent

I performance

-401G og: Ndes > Perormance

log N / G :Nodes normalized by Computational Grains

The Concurrency Diagram illustrates the trade-offs between the "best" parallelized sequential algorithm and the "best"
concurrent algorithm. The former has a higher sequential fraction, but lower overhead compared to the latter. The
"best" concurrent algorithm has additional (parallelizable) overhead, but a smaller sequential fraction, allowing it to
achieve higher speedups when many nodes are used (large-resource limit, beyond p*).

574

Waveform Relaxation Methods
for Solving Parabolic Partial Differential Equations

Stefan Vandewalle'

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A. B-3030 Heverlee. Belgium

Abstract * In the semi-implicit methods, the problem of
solving one very large system of equations for each

The numerical solution of a parabolic partial time step is reduced to the problem of solving
differential equation is usually calculated by a many decoupled tridiagonal systems. Various
time stepping method. This precludes the efficient parallel algorithms are based on substructuring
use of vectorization and parallelism, if the problem and cyclic reduction. Their arithmetic complexity
to be solved on each time level is not very large. is approximately twice that of the best sequential
In this paper we present an algorithm which over- algorithm. This limits their parallel efficiency.
comes the limitations of the standard marching Each of the methods can be parallelized
schemes by solving for the solution on all the time efficiently for problems that are large enough. In
levels simultaneously. The method is applicable to that case the best sequential algorithm is also the
linear and nonlinear problems on arbitrary best parallel one. For (relatively) small problems.
domains. It can be used to solve initial-boundary only the explicit methods retain their parallel
value problems as well as time-periodic equations. efficiency. However, they are limited by the stabil-

ity constraint and therefore not competitive. The

1. Introduction best standard methods, which are of second order
implicit type. perform unsatisfactorily. They

Standard parabolic marching schemes are gen- suffer from a high communication complexity and

erally classified as either explicit, implicit or semi- hardly take advantage of the available parallel

implicit, depending on the discretization of the time computing power.

derivative. We have compared the parallel charac- New algorithms are therefore needed for solv-
teristics of several classical techniques in [13]. The ing parabolic problems on large scale parallel
results can be summarized as follows. machines. These algorithms should either improve

9 The explicit methods are highly parallel. Parallel the numerical quality of the explicit methods or
c cincrease the parallel efficiency of the fast implicitefficiencies close to optimal can easily be obtained, mtos h atrcnb bandb acltn

They suffer however from a severe stability con- mtos h atrcnb bandb acltn
Theysufer hwevr frm asevee sabilty on- the solution on several or all time levels at once.

straint, which necessitates the use of very small the wautefor relaxation tiqe tonbe

time steps and makes them less attractive for solv- The wai eform relaxation technique, to be
ing argeprobems.presented in section 2, belongs to this class. We

ing large problems. will discuss its application for solving initial-

* The implicit methods transform the problem into boundary value problems in section 3. In section 4
an elliptic partial differential equation that has to we will consider the solution of time-periodic par-
be solved on each time level. The multigrid abolic equations. We have implemented the
method can be used to solve these equations very method on an Intel hypercube. Some implementa-
rapidly, see (3]. This method uses a hierarchy of tion aspects will be discussed in section 5. In sec-
fine and coarse grids. The fine grid operations can tion 6 we will illustrate the method by two exam-
be performed very efficiently on a multiprocesser. ples and compare its performance to that of a
It is much more difficult to parallelize the coarse parallel implementation of the best standard
grid operations since parallel overheads cannot be method.
neglected. see e.g. [11].

Research assistant, National Science Foundation (Belgium)

575
0-8186-2113-3/90/0000/0575$01.00 0 1990 IEEE

2. The waveform relaxation method u(xto) = Uo x E 11 (3.1.c)

Waveform relaxation (WR), also called where £1 C 1R'. L is an elliptic, possibly non-
dynamic iteration or Picard-Lindel6f iteration [8]. linear operator and B is the boundary operator.
is a technique for solving large systems of ordinary After spatial discretization and incorporation of
differential equations. We will explain the method the boundary conditions, the parabolic problem is
by its application to the following system. transformed into a system of ordinary differential

d = y N) (2.1) equations with one equation at each grid point.

- f(t.y. dU + L(U) = F, U(to) = Uo. (3.2)
with y1(to) = y1o. i-1.....N for t E [totf]. dt

The Jacobi variant of the WR algorithm can be for- U is the vector of unknown functions defined at
mulated as follows. the grid points. L is the operator derived from L

by discretization and F is the vector of functions

n:- 0 determined by f1 and f 2 .

choose y1o)(t) for t E [t0 ,tj] and i=l ,...,N The standard WR algorithm may be applied to

repeat solve (3.2). For instance, in the case of a five-point
finite difference discretization of the heat equation.

for each i: and with use of the Jacobi algorithm. the equation

dolve ,,(+ 1 _f Ct ,,(n),,,,,(afl..<u+1) ,,y•)) ,to be solved at each grid point (xi,yj) is written assolve "1'11 ... I• ' ' ' • '-- , ' J • " YN

with d ,((to) = Y1 dt) ,&(X) .,1 j.. l).,,) ,(I)wit y~~t)te)--- y••-.,jUj -- Xi-•-,,+l.j ,,-,j--,~ _, ,,lUj-il -- f,,.

n1:= n+1

until convergence. This is a simple first order differential equation
which can be solved using any standard, stiff ODE
integrator.

The adaptation of the algorithm to obtain a Attempts to use WR in the way described
Gauss-Seidel or SOR type iteration is straightfor- above, to solve parabolic problems have not been
ward. In the iteration step each differential equa-tionis olve asan euaton i on unkown As very successful. This is due to the slow conver-
tion i metod as an equation in one unknown. As gence of the method. Indeed, as was shown in [8],
such the method is very similar to the iterative the convergence rates for the Jacobi and Gauss-
techniques for solving algebraic systems. Seidel scheme are of order 1-O(h2), where h is the

The theoretical foundations of the WR method mesh size parameter. In contrast to the case of a
have been discussed in a number of papers. In [14] linear system of equations arising from a discre-
convergence is proven for nonlinear systems. The tized elliptic equation. overrelaxation in a SOR
authors concentrate on the systems of ordinary fashion does not lead to significantly improved
differential equations that arise in the problem of convergence characteristics.
simulating VLSI devices. For these systems the
method has shown to be very effective. An 3.2 Multigrid Waveform Relaxation
analysis for linear systems is given by Miekkala
and Nevanlinna in [8]. Further convergence results 3.2.1 General Idea. The convergence can be
are given in [5], in which the relation is established accelerated if WR is combined with the multigrid
between the number of iterations and the accuracy idea [7,10,12]. For a description of the standard
order of a partially converged solution. multigrid method we refer to [3]. The method

differs from the other iterative techniques in that it
3. Initial boundary value problems uses a set of nested grids, with the finest one

corresponding to the one on which the solution is
3.1 Standard waveform relaxation desired. Its superior convergence characteristics are

We consider the following parabolic equation based on the interplay of fine grid smoothing.
which annihilates high frequency errors, and

"'u + L(u) = fI (x.t) E a x [to,tt] (3.1.a) coarse grid correction, which is applied to reduce
at the low frequency errors.

B(u) = f2 (x,t) E ail x [to,tr] (3.1.b) The method is extended to time dependent
problems in the following way. Each of the

576

multigrid operations is adapted to operate on the algorithm to an initial approximation of Uk.
entire functions uij(t) instead of on single scalar
values.

procedure mgm (kFk,Uk)
9 The smoothing is performed by applying one or

more Gauss-Seidel or damped Jacobi waveform if (k = 0): solve dU0 + It UO = F0 exactly
relaxations. Smoothing rates for these relaxations else dt

have been given in [7]. - perform v, smoothing operations
d

The defect of an approximation U is defined as - dompue h d D + Ik Uk - Fk

D = d-U + L(U) - F. (3.3) - project the defect on Gk_.: Fk_1 s1= Ik-1 Dk

dt - solve on Gk-1: d + 4-1 U1-= F1_1dt kz-

The calculation of the derivative in the computa-
tion of the defect can be avoided. The application repeat a • times mgm (k-0,Fk.-,Uk-.),
of a standard WR step to an approximation U() ing with Uk_. :-0.
resulting in an improved approximation U('+'), - interpolate the correction to Gk and correct U1:
corresponds to a calculation of the following type. Uk '= Uk - I'k-l Uk_.

d-u(n+l) + N U(n+l) = M U(n) + F. (3.4) - perfiorm V2 smoothing operations

dt endif
where N and M satisfy L - N - M. The defect,

D = .4 U(n+1) + LU(n+-) - F, (3.5) The algorithm is completely defined by specify-
dt ing the grid sequence G1, i=O.....k. the discretized

can then be calculated easily as. operators L1 . the inter-grid transfer operations I!-,
and I-1, the nature of the smoothing relaxations.

- M U - U (3.6) and by assigning a value to the constants v, -'2 and
Vi. So-called V- and W-multigrid-cycles are

* The restriction and prolongation are calculated obtained with the values 1 and 2 for yi. Another
using identical formulae as in the elliptic case. choice leads to the F-cycle. The algorithm can be
However these formulae now operate on functions combined with the idea of nested iteration. The
instead of on single values. As an example. we for- initial approximation to the problem on Gi is then
mulate the two-dimensional WR full-weighting derived from the solution obtained on GI1.. This
restriction operator, in stencil notation, leads to the waveform equivalent of the full nud-

l 112 1 uijt),tigrid method.

16 2 3.2.3 Full approximation scheme. The algorithm
12 was extended to nonlinear parabolic problems in

where uuj(t) and uij(t) are corresponding grid [10]. The nonlinear algorithm is easily derived
point functions on the coarse and the fine grid. from the well-known multigrid full approxima-

We will first state the equivalent algorithm of tion scheme and is presented at the end of this sec-

the multigrid correction scheme, which is used for tion.

solving linear problems. The equivalent of the full The derivative calculation in the determination
approximation scheme for solving nonlinear prob- of the coarse grid problem right hand side can be
lems will be given afterwards. avoided. Indeed. when the two restriction operators

Ik-1 and Ik are equal. the two derivatives cancel.
3.2.2 Multigrid correction scheme. Let Gi. The right hand side of the problem on the coarse
i 0, O, 1. - - •, k be the hierarchy of grids with Gk grid may then be calculated by the following for-
the finest grid and Go the coarsest grid. Equation mula,
(3.2) or equivalently, Fk-k '= Lk-.(Uk-1) - Ik-(Lk(Uk) - Fk). (3.9)

dUkd~k + Lk Uk = Fk, Uk(to) = UkO (3.8)

it-

is solved by iteratively applying the following

577

nonlinear algorithm is very similar.
procedure las (k,Fk,Uk)

if (k = 0): solve " Uq + 4o(U9) = F8 exactly 4.2 Multigrid method of the second kind
else 0 d The solution of the linear initial-boundary

- perform P smoothing operations value problem (3.1.a-c). restricted to t1 . can be
- prorm U1, oo o:-perations written as the outcome of an affine mapping

-project Uk onto Gki Ukis Ii- Uk applied to the initial condition uo,

- calculate the coarse problem right hand side:

- uU = K uo + f. (4.2)
-= L- -- I-t(+Lk(Uk)-F) K is a linear integral operator, such that K uo

equals u(x.tj), the solution to (3.1.a-c) with homo-
- solve on Gk- 1: Uk-l + Lk1(Ukl) = FIL-1 geneous right hand sides (f1=0 and f2=0). while

rtimeslas (k-l,F.. 1 ,Uk1), f(x) equals u(x,tf), the solution to (3.1.a-c) with
repeat tims zero initial condition (uo=O). With this notation.
starting with UL-I - Uk-IL. the periodicity condition (4.1) becomes

- interpolate the correction to Gk and correct U1: y= K y +, (4.3)
U, 1= U1k + Ik~i(kl klUpe +or oohn -oeain where y(x) is a function on R. The determination

- perform P2 smoothing opverations of a function y satisfying (4.3) is equivalent to the

endif problem of finding a function u that satisfies
(3.1.a-b) and (4.1). Indeed, if y fulfills (4.3). then
the solution u of the initial boundary value prob-

4. Time-periodic parabolic problems lem (3.1.a-c) with uo = y. is the solution of the

4.1 The standard algorithms time-periodic problem.

(4.3) is a Fredholm integral equation of the
In this section we will consider the parabolic second kind and may be solved by the very fast

problem (3.1a-c) where the initial condition (3.1.c) multigrid method of the second kind. We refer to
is replaced by the periodicity condition [3] for an in depth analysis of this technique and

u(x,t 0) = u(x,t1). (4.1) for a discussion of various applications. In a simi-
lar way as in the multigrid method for elliptic

This problem is of considerable importance in vari- equations. (4.3) is discretized on a set of grids, Gi.
ous areas of practical interest, such as wing flutter, i =0 k, resulting in a set of discrete equations.
ferro-conductor eddy currents, chemical reactor
theory. pulsating stars, and fluid dynamics. Vari- - K1 Y, + F, on Gi. (4.4)
ous algorithms have been proposed to compute the The problem on the fine grid is solved by itera-
stable periodic solutions. One approach is a time- tively applying the following algorithm to an ini-
integration of the studied system, starting from an tial approximation of Yk.
arbitrary initial condition, until a stable periodic
orbit is reached. This brute force method may how-
ever be prohibitively expensive in the case of procedure mgm_,2nd (k,Fk,Yk)
slowly decaying transients. A second approach if(k =0): solve Yo = K0 Y0 + Fo exactly
consists of using difference methods where a large else
system of nonlinear algebraic equations is obtained - smoothing: Y, '1= K, Yk + FI
after discretization. This system may be solved - compute the defect: D, ,= Yk - K, Yk - Fk
with direct or iterative sparse solvers, (9]. A third - project the defect on Ok-it Fk-I 1= 1 Dk
and commonly used approach is based on the p

shooting method [4]. Finally, a very fast algo- - solve on Gk-1: Yk-1 = Kk-1 YL-i + Fk-1

rithm was presented by Wolfgang Hackbush in [2], repeat 2 times mgm...2nd (k-I,Fk-I,YYk-,
in which the periodic problem is reformulated as starting with Yk- :_ 0.
an integral equation and solved by the multigrid - interpolate the correction to GI and correct Uk:
method of the second kind. We will briefly review
this algorithm. In section 6. it will be used to com- Yk3= Y-- I•-I Y4-i
pare a new, WR based algorithm with. We will endif
restrict our attention to the linear case as the

578

No explicit representation of the discretized 5. Implementation aspects
integral operator Ki is required. Indeed, applica-
tion of K1 to a function Y, is equivalent to calcu- 5.1 Parallelization
lating the solution of one discrete initial-boundary We have implemented the WR algorithms on an
value problem defined on Gi. Ki Y1 may thus be Intel iPSC/2-VX hypercube. For a description of
computed by using standard parabolic solvers, this multiprocessor. its hardware characteristics
such as a time-stepping method. or by using the and various performance benchmarks, we refer to
waveform relaxation algorithm of section 3. (1]. The implementation is discussed in great detail

In [3] the convergence rate of the algorithm is in our studies [11.12.13]. In this paper we will
shown to be of the order O((Axk) 2), where Axk is only go over some of the main issues.
the fine grid mesh size. As such, one iteration step A classical data decomposition is used to evenly
is usually sufficient to solve (4.3) to discretization distribute the computational workload. The pro-
accuracy. (To obtain this result, some mild res-
trictions on the size of time increment, cessors are arranged in a rctangul artiray and areAt1. i-0....k, have to be taken into account, in mapped onto the domain of the partial differential
order to guarantee a sufficient smoothing behavior equation. Each processor is responsible for doing all
ofrte time discretization formula.) It can easily computations on the grid points in its part of the
be show that theariteticn orm plex)Ity ofn oeasy physical domain. During the computation, com-
be shown that the arithmetic complexity f rdone munication with neighboring processors is needed
iteration of the algorithm is of the same order as to update local boundary values. Various other
the complexity of solving an initial-boundary communications strategies may further be used to
value problem on the fine grid. improve the parallel performance. We want to

4.3 A waveform relaxation algorithm mention in particular the use of an agglomeration

Spatial discretization of (3.1.a-b) and (4.1) strategy to reduce the communication complexity

leads to the following system of ordinary of the coarse grid operations, [11].

differential equations, In the WR method each grid point is associated

dU Lwith an unknown function. uji(t). In our imple-

dt + LM = F, U(to) = U(tf (4.5) mentation, such a function is represented as a vec-
tor of function values evaluated at equidistant time

This system may be solved with a waveform levels. We denote the vector length by nt (number
relaxation algorithm that is only slightly different of time intervals). The arithmetic complexity
from the algorithm discussed in section 2. Instead increases linearly with the value of nt. In the same
of repeatedly solving an ordinary differential equa- way, the total length of the messages exchanged
tion of initial value type at each grid point, one during the computation is proportional to the vec-
repeatedly solves the following periodic differential tor length. The number of message exchanges,
equation however, and the sequential overhead due to pro-

duij gram control are independent of nt. From the high
d + + (L(U))ij = fij, uij(to) = uij(tf). (4.6) message startup time on most parallel machines

(and in particular on the iPSC/2). it is clear that
This problem may be solved e.g. by a discretization the communication time to calculation time ratio
method, resulting in a sparse matrix equation. will decrease with increasing function length and
Application of a implicit one-step discretization that the parallel efficiency will improve.
method leads to an easily solvable, almost bidiago-
nal matrix equation. In figure 3.2, we present typical speedup values

(Sp) measured on a 16 processor machine. Two
The modified waveform relaxation can be used curves are drawn, one for a waveform multigrid

as such. or can be integrated as a smoother into any cycle, with nt = 50. and one for a standard mul-
of the multigrid schemes of section 3. Numerical tigrid cycle, as it is used for solving elliptic prob-
evidence shows that the latter leads to a rapidly lems. (The particular problem that is solved, is
converging iteration, with typical multigrid con- discussed in [12].) The substantial performance
vergence rates. difference is due to the very different calculation to

communication ratios.

579

possible gain through vectorization. It can be
S11 shown that the non-vectorizable part of the calcu-

WR multigrid V-Cycle lation makes out at most 10% of the total compu-
14- tation. This leads to a possible vector speedup of
12 - 10. or more.

10- 6. Numerical examples

8- 6.1 An initial-boundary value problem

6- We consider the solution of the following

44- initial-boundary value problem.
leaa -u u- "+- xy 2U + I-- + f (6.1)

2 stnad multigrid V-Cycle Eu = AL +~ +f 61
___________________a t aX2 y xay 8y 2

0 0 0 70 9 1 1 defined on (I = [0,1]x[0,1] for t E [0,0.5]. withDirichlet conditions on the northern, eastern andnumber of grid lines southern boundary and a Neumann condition on

Figure 5.1. Typical speedups for waveform mul- the boundary to the west. The right hand side
Figure .Ty an standa ord waeormd cycles function f is chosen in such a way that the solution
tigrid and standard multigrid cycles equal to

5.2 Vectorization u(t.x,y) = sin(5x+y+10t) e"4t.

The use of a vector processor in each computer For this problem we will compare the perfor-Thde mayresuse of a vec stntol po estion ea compe mance of the WR method with a parallel imple-
node may result in a substantial reduction of corn- mentation of the "best" sequential method, the
puting time. Indeed, most of the waveform mul- Crank-Nicolson method. Our implementations of
tigrid operations can be expressed as simple arith- both methods are highly optimized and are of simi-metic operations on functions. i.e. on vectors, see lar complexity. In both cases multigrid is used

e.g. the restriction operator (3.7). In contrast to l a cour-.Ilot case-poin isused

the standard approach we do not vectorize in the with a four-color nine-point Gauss-Seidel

spatial direction but we vectorize in the time direc- smoother, standard coarsening to a 3 by 3 coarse

tion. The vector speedup of the arithmetic part of grid, full weighting restriction, bilinear interpola-
the computation will mainly depend on the value tion and a coarse grid solver that performs 2
ofthe vcmputatior le h pmeterynt.pendwillhe vitu- Gauss-Seidel iterations. A constant time step, At.
of the vector length parameter nt. It will be virtu- is chosen for the Crank-Nicolson method, similar
ally independent of the size of the spatial grid, the to the time step used to represent the functions in
number of multigrid levels, the multigrid cycle the WR method. In this example. At was set to
used and the number of processors. This is in 0.01, independent of the spatial discretization. This
sharp contrast with standard multigrid vectoriza- leads to a vector length of 50. In the WR methodtion results, see e.g. [6]. Standard vectorization we use the trapezoidal rule to solve the differential

does not lead to a performance improvement unless equations.

the number of grid points per processor is very

large. Its application is therefore of very limited Some results, obtained on a 16 processor
use on large scale parallel processors. machine, are depicted in figure 6.1. The graphs

show the accuracy of the solution (largest error at
As a second advantage of our approach we may the grid-points) versus execution time. The figures

mention the ease of implementation. As the vector show smooth curves for the WR method. The error
operations at a each grid point involve the vectors of the initial waveform approximation gradually
at neighboring grid points only. no complex grid decreases as more and more multigrid cycles are
restructuring (as in the standard approach) is applied. The Crank-Nicolson results show up as

discrete points. The Crank-Nicolson solution pro-

The only operation which is not perfectly vec- cess is advanced time step per time step in a total
torizable is the core of the ODE integrator. which is of t seconds. The accuracy of the result is
used in the smoothing step. and which is represented by a "+* -sign at position (terror) in
inherently sequential. It will therefore reduce the the figure.

580

error
discretization: 65 by 65

SA : WR, V(1,1) with FMG
B : WR, F(1,I) with PMG
C : WR, V(1,1)
D : WR, (1,1)

a : C-N, 2 V(1,1)
b : C-N, 1 V(1,1) with FMG
c : C-N, 3 V(I,1)

10-2- d : C-N, 1 F(0,l) with FMG
e : C-N, 2F(0,)

1' \

1O-3 " "- \ \ A + ++
''A B C D abd

AC D a+
i B C I D I I I I I

0 5 10 15 20 25 30 35 40 45 50 55

1 - discretization: 33 by 33
A : WR, V(1,1) with FMG
B :B WR, F(1,I) with FMG
1 : WR, 1(1,1)

, %
: C-N, 2 V(.1)

ab : C-N, 1 V(1,1) with FMG
c : C-N, 3 V(1,1)
d : C-N, 1 F(1,1) with FMG

10-2 e. \ : C-N,2 P(,1)
SI

S\" + + + + +
A CB DA BC D a b c d e

I I I I I I I I I
0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

I- discretization: 17 by 17

A : WR, V(1,1) with FMG
B : Wi, F(I,I) with FMG
C : WR, V(1,1)
D : WR, F(I,1)

10-1 a : C-N, 2 V(1,)
b : C-N, 1V(1,1) with FMG
c : C-N, 3 V(1,I)
d : C-N, 1 F(1,i) with FMG
e : C-N, 2 F(,1)

10-2 _g. + + +

AC BD AC BD b a d c e
I I I l I I I l I II

0 1 2 3 4 5 6 7 8 9 10 11 12

time (seconds)

Figure 6.1. Comparison of Crank-Nicolson and WR Multigrid execution times

581

Table 6.1 : Execution time, in seconds, of the full multigrid solver on 1 and 16 processors

17 by 17 problem 33 by 33 problem

method 1 proc. 16 proc. Sp 1 proc. 16 proc. Sp

Waveform Relaxation 9.53 1.91 5.0 36.00 4.30 8.4
Crank-Nicolson 15.89 7.34 2.2 58.72 14.23 4.1

Table 6.2 : Execution time. in seconds, of the WR FMG V(1.1) solver (on 16 processors)

17 by 17 problem 33 by 33 problem 65 by 65 problem

nt scalar vector Sp scalar vector Sp scalar vector Sp

100 3.54 1.12 3.16 8.20 2.42 3.39 (na) (na) (na)
50 1.91 0.76 2.51 4.34 1.59 2.73 11.88 4.02 2.96
25 1.10 0.59 1.86 2.43 1.20 2.03 6.53 2.91 2.24
10 0.62 0.49 1.27 1.29 0.97 1.33 3.21 2.25 1.43

Depending on the cycle type used, different exe- overheads associated with program control (loop
cution times are needed. As such several results overhead, indexing overhead, procedure call over-
are presented for each technique. They are anno- head, etc.). An additional factor of 2. and higher,
tated in figure 6.1 in the following way: with "WR results from the better parallel characteristics of
F(1,1) with FMG" we mean "waveform relaxation WR method. This is easily seen from the speedup
using F-cycles with 1 pre- and 1 post-smoothing figures.
step and the full multigrid technique with 1 cycle The remaining performance difference is due to
at each grid level"; with "C-N, 2 F(1,1)" we mean vectorization. In table 6.2 we give the execution
"Crank-Nicolson method with 2 F(1,1) cycles per times of the WR full multigrid solver. The depen-
time step". Two sets of curves are given for the dence of the vector speedup on the vector length is
WR method. The dashed lines represent the results obvious. It should be noted that for problems of
obtained with vectorization, while the solid lines this size on a 16 processor machine, standard vec-
represent the results obtained in scalar execution torization in the Crank-Nicolson method would

not lead to any speedup [6].
On 16 processors. WR turns out to be faster

than the Crank-Nicolson method by a factor of 8 6.2 A time-periodic problem
(for the 65 by 65 problem) up to a factor of 10 We consider the parabolic partial differential
(for the 17 by 17 problem). This is due to the
smaller arithmetic complexity of the waveform equation.
method, its superior parallel characteristics and the U -. U + 62. + f (6.2)
use of vectorization. at ax2 8y2

In table 6.1 we have tabulated the execution with the following time periodicity condition,
time of the full multigrid solver with one "(1.i) u(0,xy) - u(1,x.y), defined on the unit square
cycle on each grid level, on I and on 16 processors. with four Dirichlet boundary conditions. The
We have also added the parallel speedup. Sp. function f is chosen such that the solution of the
Waveform relaxation outperforms the standard PDE equals
method by a factor of approximately 1.7, on a sin- u(t.x.y) = (x-x 2)2(y-y 2)2sin(2vrt)
gle processor. This is due to the smaller arithmetic
complexities of the smoothing and the defect calcu- In figure (6.2) we represent the timing results
lation steps (which account for a factor of approxi- obtained on a 16 processor hypercube. (No vector-
mately 1.5). a reduced initialization cost (some ization was used for this example.)
intermediate results may be retained when setting
up system (3.2)) and the lower computational

582

error-1 discretization: 65 by 65. nt - 65A R, V 1,1 with FMG

10-1_ B WR,V(1,1)
a : MGRID 2nd kind, WR 2 V(1,2)

10-2 a : MGRID 2nd kind, BDF(2) 12 Výi,I1
b MGRID 2nd kind, BDF(2) 1 V(1,1) with FMG

10-3 - B

10 4 I i i I i I i I I i I I
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

1 - discretization: 33 by 33, nt-33

10-1_ B WR, V(1,1)
a : MGRID 2nd kind, WR 2 V(1,2)

10-2 _a : MGRID 2nd kind, BDF(2) 2 V(1,1)
-2 b : MGRID 2nd kind, BDF(2) 1 V(1,1) with FMG

B
S_ + ++-0 • a b

I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

1 discretization: 17 by 17. nt=17

B : WR, V(1,1)
10-1- a : MGRID 2nd kind, WR 2 V(1,1)

a : MGRID 2nd kind, BDF(2) 2 V(1,1)
b : MGRID 2nd kind, BDF(2) 1 V(1,1) with FMG

10--2 B + + +

a b a
I I I I I I I i I I I

0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

time (seconds)

Figure 6.2. Comparison of waveform relaxation method and multigrid method of the second kind

Three methods are compared. The first method method is sufficient to solve the problem to discret-
is a parallel implementation of the multigrid ization accuracy.
method of the second kind, as proposed by Hack-
bush. The second order backward differentiation
method (BDF(2)) is used for time integration. It optimize the parallel performance of the imple-

has excellent smoothing properties and is of high mentation. In particular. an agglomeration tech-

accuracy. The mesh size on each grid G1, Axi. is nique is used to reduce th.. parallel overhead of the

determined by standard coarsening from a fine coarse grid operations. [Il].

grid, Gk, with 65, 33. or 17 grid lines in x- and y- A related method is obtained if the multigrid
direction. The time increment, Ati. is chosen equal WR algorithm is used as the smoother inside the
to the mesh size. The linear systems obtained by multigrid method of the second kind. The result-
the BDF(2) scheme on each time-level are solved ing algorithm is between 2 and 3 times as fast the
by using the standard multigrid method, with the method with time stepping, as can been seen in fig.
2 V(1,1) cycles or full multigrid. Thanks to its 6.2. This was to be expected. from the results of
0((Ax) 2) convergence rate, one iteration of the section 6.1.

583

The periodic multigrid WR method shows to be pp. 198-206.
faster than the best standard algorithm, by a fac- [3] Hackbush, W., Multi-grid methods and Applica-
tor of 7 to 10. This is in part due to its lower arith- tions, Springer Series in Comp. Math. 4,
metic complexity. If the complexity of solving the Springer-Verlag, Berlin, 1985.
initial-value problem (3.1.a-c) on the fine grid Gk (4] Holodniok, M. and Kubicek, M., DERPER - an

algorithm for continuation of periodic solutions in
is denoted by Wk. it may be shown that the cost of ordinary differential equations J. Comput. Phys.
the multigrid algorithm of the second kind is 55, 1984, pp. 254-267.
approximately 2.5 Wk. whereas the execution of a [5] Juang, F., Accuracy increase in waveform relaxa-
full multigrid WR step is only 1 Wk. The remain- tion, Report No. UIUCDCS-R-88-1466, depart-
ing performance difference results from the better ment of computer science, university of Illinois at
parallel characteristics of the WR method. As was Urbana-Champaign, Urbana, Illinois, Oct. 1988.
noted in the introduction, it is difficult to [6] Lemke, M., Experiments with a vectorized mul-

efficiently parallelize coarse grid operations. The tigrid Poisson solver on the CDC 205, Cray X-MP

multigrid method of the second kind visits the and Fujitsu VP200, Arbeitspapiere der GMD 179,
" gd oubls e GMD, Sankt Augustin, Nov. 1985.

coarse grid very frequently, because of its "double [7] Lubich, Ch. and Ostermann, A., Multi-Grid
multigrid" nature. It is basically a multigrid W- Dynamic Iteration for Parabolic Equations, BIT,
cycle, where, in each smoothing step. a large 27 (1987), pp. 216-234.
number of elliptic problems are solved by standard [8] Miekkala, U. and Nevanlinna, 0., Convergence of
multigrid. Consequently, the algorithm is not well Dynamic Iteration Methods for Initial Value Prob-

suited for parallel implementation. lems, SIAM J. Sci. Stat. Comput., Vol. 8, No. 4,
1987, pp. 459-482.

We should also note that vectorization will lead [9] Tee, G.J., An Application of p-Cyclic Matrices, for
to an additional speedup, in the case of the WR Solving Periodic Parabolic Equations, Num. Math.
algorithm only. The performance difference on the 6, 1964, pp. 142-159.
16 processor machine will then be in the range of [10] Vandewalle, S. and Roose, D., The Parallel
25 to 50. depending on the problem size. Waveform Relaxation Multigrid Method, in:

Rodrigue, G., (ed.), Parallel Processing for

7. Concluding remarks Scientific Computing, SIAM, Philadelphia, 1989,
pp. 152-156.

The transformation of the parabolic problem [11] Vandewalle, S. and Piessens, R., A Comparison of
into the sequential process of solving small prob- Parallel Multigrid Strategies, in: Andre, F. and

lems on successive time levels, seriously degrades Verjus, J.P., (eds.), Hypercube and distributed
parllel o uccsiven o tim e scomputers, North-Holland, Amsterdam, 1989, pp.
parallel efficiency of the standard marching 65-79.
schemes. While they can be used efficiently for [12] Vandewalle, S. and Piessens, R., A Comparison of
problems with a very large number of grid points the Crank-Nicolson and Waveform, Relaxation
per processor, they perform totally unsatisfac- Multigrid Methods on the Intel Hypercube, in:
torily for small problems and large numbers of Proceedings of the Fourth Copper Mountain
processors. Conference on Multigrid Methods, J. Mandel, S.

McCormick, J. Dendy, C. Farhat, G. Lonsdale, S.
We have presented several methods based on Parter, J. Ruge and K. Stuben (eds), SIAM, Phi-

waveform relaxation. They show multigrid con- ladelphia, 1990, pp. 417-434.
vergence speeds and can be efficiently implemented [13] Vandewalle, S., Van Driessche, R. and Piessens,
on parallel machines. As an added advantage they R., The Parallel Implementation of Standard Para-

can be straightforwardly vectorized even if the bolic Marching Schemes, report TW125, Katho-
number of grid points per processor is very small. lieke Universiteit Leuven, Dec. 1989.

As such they are perfectly fit for implementation [14] White, J., Odeh, F., Sangiovanni-Vincentelli, A.S.
and Ruehli, A., Waveform Relaxation: Theory and

on massively parallel machines. Practice, Memorandum No. UCB/ERL M85/65,

Electronics Research Laboratory, College of

References Engineering, University of California, Berkeley,
1985.

(11 Bomans, L., and Roose, D., Benchmarking the
iPSC/2 hypercube multiprocessor, Concurrency:
Practice and Experience, 1 (1) 1989, pp. 3-18.

[21 Hackbush, W., Fast numerical solution of time-
periodic parabolic problems by a multigrid method,
SIAM J. Sci. Stat. Comput., Vol. 2., No. 2, 1981,

564

A Parallel Implementation of ESACAP

Stig Skelboe
Department of Computer Science

University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen

Abstract equations, f(t, y, y') = 0 (1)
The DC analysis and transient analysis parts N

of the general electrical circuit analysis pro- where f : R x RJv x RN R . When

gram ESACAP are parallelized to run on the discretized by the simple backward Euler for-

Intel iPSC. Most of the program runs un- mula, the following nonlinear algebraic system

changed on the cube manager. Only the solu- is obtained,

tion of the systems of nonlinear algebraic equa- fn, Yn, On - Yn- 1)/h) - 0 (2)
tions is parallelized to run on the hypercube
parallel computer. The nonlinear equations where h is the stepsize in time, h = t, - tn-1

arise either from the DC problem or from the and yn - y(tn).
discretization of the differential equations by The solution of (2) is obtained by some it-
backward differentiation formulas. erative method, usually of Newton type,

Circuit equations are allocated to processors (m+1 y(=) - , (3)
to balance the load of function evaluation and n n n

LU-factorization algorithm used by the New- where fn(y) = f(ti,y,(y - yn-,)/h) and
ton iteration algorithm. Using p processors, Fn(y) = 8fn(y)/8y.
a speed-up of approximately p/2 can be ob- The main computational task involved in
tained. The performance of the parallel pro- the Newton iteration is the evaluation of the
gram is demonstrated by simulating a 4 x 4 bit nonlinear vector function f and the nonlinear
digital multiplier circuit leading to 180 circuit matrix function F'. The matrix F' is generally
equations. sparse, and this is exploited in the solution of

the linear equations indicated by the matrix
inverse. The computational complexity of the

1 Techniques for Parallel linear equation solution is proportional to Nk
Circuit Analysis where k is in the interval from 2 to 3 and N is

the dimension of the problem (1). The solu-
The time domain analysis of analogue circuits tion of the linear equations therefore becomes
or digital circuits at the circuit level involves relatively larger compared with the evaluation
the numerical solution of systems of nonlinear of f and F' when N increases.
ordinary differential equations. The differen- The obvious approach to a parallel version
tial equations are usually stiff which implies called direct parallelization is to compute f
that implicit numerical integration formulas and F' in parallel and solve the linear equa-
must be used. Besides, models of electrical tions in parallel. This simply amounts to a
circuits often lead to coupled systems of dif- parallel version of the Newton iteration (3).
ferential and algebraic equations, and conse- The vector and matrix functions parallelize
quently each time step involves the solution well, but the general sparse system of linear
of a system of nonlinear algebraic equations equations is hard to solve efficiently on a par-
including the discretization of the differential allel computer.
equations. An alternative approach to a parallel nu-

Let a circuit be described by the following merical solution of (1) is the so called wave-
implicitly given system of differential algebraic form relaxation [11,[2]. In this approach,

0-8186-2113-3/90/0000/0585$01.00 0 1990 IEEE

the system (1) is decomposed into a number specification.
of loosely coupled subsystems of differential The circuit description is transformed into
equations, and each subsystem is solved inde- modified nodal equations [4] which are re-
pendently over the same time window. The ordered to fill diagonal zeros. Then the Ja-
process is repeated a number of times, and cobian FP is reordered to reduce fill-ins dur-
after each iteration, information is exchanged ing LU-factorization. The DC problem is
between the subsystems. solved by a hybrid method [5], and the dif-

Waveform relaxation was not intended pri- ferential equations are integrated numerically
marily for parallel computers, but it was ob- by backward differentiation formulas automat-
served in [2] that the method maps well on ically selected from orders 1 to 6.
medium grain distributed memory computers, Figure 1 shows an example of input for
like the Intel iPSC Hypercube. Waveform re- ESACAP, a full adder realized with transmis-
laxation is very efficient for the simulation sion gates [6]. The circuit description is hierar-
of digital MOS circuits, and it has been at- chical with the transistor model at the lowest
tempted for a broader class of problems. How- level, then the gates and finally the adder. The
ever, the same gain in efficiency is not always transistors can be modelled according to the
obtained and there may be problems with con- needs, but usually a suitable model is found
vergence. in a library.

In the parallel version of waveform relax- The problem used for benchmarks through-
ation, one or several subsystems are allocated out this paper is a corrected version of the mul-
to each processor. For certain problems, the tiplier found on p. 345 in [6]. It is composed of
subsystems become so large that it is neces- full adders as specified in Figure 1, half adders
sary to apply several processors to solve one trivially derived from the full adder and simple
subsystem. Otherwise, the result would be C-MOS gates.
very poor load balance. In this case, the di-
rect parallelization approach can be applied to 3 Parallel ESACAP - Out-
a subsystem.

This paper exploits the possibilities of di- line
rect parallelization for the following reasons.
If an efficient approach can be devised, it can In this project, only the numerical solution
be used in the parallelization of numerous ex- of ordinary differential equations (transient
isting simulation programs like ESACAP. The analysis) has been chosen for parallelization.
balance between computations which paral- The backward differentiation formulas used in
lelize well and computations which do not par- ESACAP do not permit parallelization "across
allelize well may turn out to be favourable, the method" but only parallelization "across
leading to a good overall speed-up. Last, di- the system" [7]. This means that the system
rect parallelization of large blocks in a wave- of equations (1) is partitioned into groups of
form relaxation program can extend the class equations where each group is assigned to a
of problems for which this very powerful ap- different processor.
proach is useful. The original version of ESACAP runs on the

iPSC Cube Manager. In order to simplify the
modifications, it was decided to confine the

2 ESACAP parallelization to the subroutine implementing
Newton iteration (3). The original Newton it-

ESACAP [3] is a general purpose circuit analy- eration performed for each time step of the
sis program primarily developed for DC, tran- numerical integration is substituted by a sub-
sient and periodic steady-state analysis of routine providing data for the 32 node iPSC
nonlinear electrical circuits. For linear cir- which runs a parallel Newton iteration loop.
cuits, it also offers frequency response and The iteration scheme (3) is implemented in
zero/pole computation. The circuits are de- three different versions. The first version is a
scribed in a flexible input language which per- true Newton iteration as specified by (3). The
mits the specification of general nonlinear rela- second version is a pseudo Newton iteration
tionships. The Jacobian F' is computed ana- where F'(y(°)) is used through all iterations
lytically by ESACAP on the basis of the input

586

$$DES IPTYP*VCGATE, SOURCE) -UTR,
* AUXILIARY FUNCTIONS NPTYP*V(DRAIN,SOURCE) ,BETA,LAMBD);
$FUNCTION: RAMP(XA,B,G,E); * CAPACITANCES

ARG=EXP(A*(X-G)); CGADR(GATE,DRAIN)=CGD3(
RAMP=B*CCARG-1)/CARG+1))+E; NPTYP*V(GATE,SOURCE),

END; IPTYP*V(DRAIN,SOURCE) ,UTR,COX,CGDO);
$FUNCTION: AF1(UGS,UT,APHI); CGASO(GATE,SOURCE)=
AFI=RAMP(UGS,8/APHI,1/3, CGS3CIPTYP*VCGATE,SOURCE),
UT-APHI/4, 1/3); NPTYP*VCDRAIN,SOURCE),

END; UTR,COX,APHI ,CGSO)4.
$FUNCTION: AF2Gl(UGS,UT); CGB3(NPTYP*(V(GATESOURCE)-BS),
AF2Gl=RAMP(UGS,10,1/4,UT,1/4); UTR,COX,APHICGBO);

END; END;
$FUNCTION: # C-MOS INVERTER
CGS3CUGS,UDS,UT,COX,APHI,CGSO); $NODEL:INV(IN,OUT,REF,UDD);
CGS3=CGSO+COX*IFGT(UDS,O, X1COUT,IN,REF)=MOS2U3(UT=0.9,BETA=40U,
AFI(UGS,UT,APHI),AF2Gi(UGS,UT)); GAMMA=O.3,LAEBD=0.05,APHI=0.6,

IFGT: CGDO=9F,CGSO9gF,CGBO9gF,COX=16F);
IF UDS>0 THEN AF1(.. ELSE AF2Gl(.. X2(OUT,IN,UDD)=M052U3(NPTYP=-1,UT=--O.9,
END; BETA=40UGAMNA= .4,LAMBD= .05,APEI=-0 .6,
$FUNCTION: CGD3(UGS .UDS,UT,COX,CGDO); CGDO=9F,CGSO=9F,CGBO=9F,COX=16F);
CGD3=CGDO+COX*IFLT(UDS,0, END;
AF2G1CUGS,UT),O); # C-HaS TRANSMISSION GATE

IFLT: $MODEL: TGATE(IN,OUT,T,IT);
* IF UDS<O THEN AF2Gl(.. ELSE 0 XI(IN,T,OUT)=NOS2U3(UT=0.Q,BETA=40U,
END; GAMMAO0.3,LAMBD=O.05,APHI=0.6,
$FUNCTION: CGB3(UGB,UT,COX,APHI ,CGBO); CGDO9gF,CGSO=9F,CGBO=9F,COX=16F);
U1=UT-APHI/2; X2CIN,NT,OUT)=MOS2U3CNPTYP=-1 ,UTh-0.9,
CGB3=CGBO+ BETA=40U, GANMA= .4, LAMBD= .05,APHI=-0 .6,
COX*RAMP(UGB,-1 ,O.425,U1 ,O.42S); CGDO=gF,CGSO9gF,CGBO=9F,COXI16F);

END; END;
C-NOS FULL ADDER
$FUNCTION: $MODEL: ADDERCA,B,C,SUMCARRY,UDD);
IDS2U3CGSEFF,DS,BETA,LAMBD); X1(A,NA,NREF,UDD)=INV;
IDS2U3=IFLT(GSEFF,0,0,IFLTCDS,GSEFF, X2(B,APB,NA,A)=INV;
2*BETA*(GSEFF-DSI2)*DS, X3(B,NAPB,A.NA)=INV;
BETA*GSEFF*GSEFF)*(1+LAMBD*DS)); X4(B,APB,NA,A)=TGATE;

END; XS(B,NAPB,A,IA)=TGATE;
MOS TRANSISTOR MODEL X6CC,NC,NREF,UDD)=INV;
FIRST LEVEL SPICE MODEL X7CNC,NSUN,NAPB,APE)=TGATE;
$MODEL: MOS2U3CDRAIN,GATESOURCE): XS(C.NSUM,APB,NAPB)=TGATE;
NPTYP,UT,BETA,GAMMA,LAMBD,APHI,BS, X9CNSUM,SUM,NREFUDD)=INV;
CGD0,CGSO,CGBO,COX; XIOCNB,NCARRY,NAPB,APB)=TGATE;
DEFAULT PARAMETERS XllCNC,NCARRY,APB, NAPB)=TGATE;
DEF(NPTYP=1,UT=I.O.BETA=4.8U, X12(NCARRY,CARRYNREFUDD)=INV;
GAMMA=0.205,LAMBDO0.03,APHI=0.536, X13(B,EB,NREF,UDD)=INV;
BS=0,CGD1=F,CGSO=1F,CGBO1F,COX=1F); END;
THRESHOLD VOLTAGE $$STOP
UTR=UT*NPTYP+
GAMMA*(SQRT(NPTYP*APHI-NPTYP*BS)- Figure 1: ESACAP description of a transmnis-
SEQRT(NPTYP*APHI)); sion gate adder.
DRAIN-SOURCE CURRENT
JDS(DRAI , SOURCE)=NPTYP*IDS2U3(

537

for y,. The last version tries to use F.(yn(°)) mented as Fortran subroutines. However, it
for the computation of Yn,yn+i,.. as far as gives the user the ultimate freedom in spec-
possible. ifying nonlinear relations, and besides it im-

If the Newton type iterations fail to con- proves the potential of speed-up from paral-
verge, the program falls back on a parallel lelization, because it shifts the computational
version uf the hybrid method [5] primarily de- complexity from the solution of linear equa-
signed for DC analysis. This means that par- tions towards the computation of nonlinear
allel DC analysis comes "free". functions.

A number of circuit equations (components The fundamental building blocks in the in-
of the vector function f) and the correspond- put language of ESACAP are two terminal el-
ing rows of the Jacobian FP are allocated to ements, and the circuit modelled by these el-
each processor. The factorization of the lin- ements is represented by modified node equa-
ear equations is based on the same processor tions [4]. This means that each two termi-
allocation. The pivot rows are broadcast to nal element in general appears in two equa-
all processors one by one, and the elimination tions, or if one terminal is grounded in only
takes place in parallel, one equation. If two node equations includ-

The parallelization of ESACAP served three ing the same nonlinear two terminal element
purposes. First, to gain experience with the are allocated to two different processors, this
porting of large sequential programs to a par- results in a duplicate computation of the cor-
allel computer. Only a small part of ESACAP responding function. The minimization of du-
had to be modified and other parts rearranged, plicate computation is one of the objectives of
and this is believed to be a typical situation. processor allocation.
The parallelization also involved the splitting A serious problem of duplicate computation
of data structures, and in the case of ESACAP of nonlinear functions and poor load balance
this task was nontrivial. Second, to measure may be caused by the modelling of the power
the overall speed-up of a parallel nonlinear in- supply of a digital circuit. Approximately
tegration routine for stiff systems of ordinary half of the transistors may be connected to
differential equations. It is very difficult to the voltage source modelling the power sup-
solve sparse linear equations efficiently in par- ply leading to a node equation containing half
allel, but the overall speed-up is still accept- of the nonlinear functions of the total circuit.
able when this part is non-dominant. The problem is not handled automatically

Finally, the purpose was to get a test vehicle in the present parallel version of ESACAP.
for testing various parallel sparse linear equa- However, it is easily solved manually by du-
tion solvers. The powerful input language of plicating the power supply voltage source suf-
ESACAP permits the specification of models ficiently many times to reduce the the maxi-
of problems from a variety of areas to generate mum number of functions of the node equa-
test problems for the equation solver. tions of the voltage sources. The penalty is

a larger number of node equations which is a

4 Functions and Jacobian low penalty in this connection.

The functions specified in the input language 5 Sparse Matrix Solver
of ESACAP are converted into an internal
form based on reverse Polish notation. The The parallel sparse matrix solver is based on
vector function f,, of(3) is computed from this the original sparse matrix solver of ESACAP.
internal representation, and also the deriva- Electrical circuits will in general lead to non-
tives required for F,, are computed analyti- symmetric matrices, but since they are close to
cally from the same representation. being structurally symmetric, they are treated

The derivatives are computed for the ac- as such by ESACAP. This leads to simpler and
tual ys vector; no symbolic representation of more efficient processing of the sparse matri-
the derivatives exists. This approach leads to ces. The reordering to reduce fill-ins is based
less efficient evaluation of the nonlinear mod- on the third scheme of Tinney and Walker [8].
els than the traditional approach where the It is a symmetric row and column reordering
nonlinear functions and derivatives are imple- which preserves diagonal elements in the diag-

'su

onal. The average fraction of nonzero elements of
The reordered matrix is distributed to the a row of the sparse matrix is denoted by 7.

processors according to a row interleaved The floating point execution time is denoted
scheme. With p processors, rows k, k + p, k + by TF and the start-up time of communication
2p,.. are allocated to processor k for k = by To. B denotes communication bandwidth
1,2, ..,p. This is a standard scheme which as- (words/sec) and d is the dimension of the hy-
sures as uniform load distribution as possible percube parallel computer (p = 2d).
during LU-factorization. The analogous execution time model for Al-

The basic LU-factorization of an N x N ma- gorithm 1 is
trix A can be outlined as follows, 2
for i:=1 to N do TSLU = 7 r
for i:=1~ to N do
for j:=i+n to N do If the communication term of (4) could be

begin ignored, the speed-up, SLU = TSLU/TPLU,

eliminate column i would be equal to p. Unfortunately, this is
in row j using row i; rarely the case since To - 24TF on the iPSC.
save pivot element in A j Therefore the opposite situation, where com-

munication time dominates over computation

Algorithm I time, is more likely to arise, especially when
the matrix is very sparse (y <« 1). In this

The algorithm of processor k executing a situation, speed-up decreases when more pro-

parallel LU-factorization based on row inter- cessors are applied (d increases).

leaved processor allocation has the following When the coefficient matrix of a system of

outline, linear equations is factored into an LU prod-
uct,

for i:=1 to N do LUx = b
begin the solution is computed by a forward sub-

fif row i is on processor k stitution, y = L-'b, followed by a backward
if i in [kk+pk+2p,..] then substitution, x = U-'y. A parallel version of

broadcast row i the forward substitution is outlined in the fol-
else receive row ir lowing algorithm running on processor k. L is
{row j is the first row on stored in the lower half triangular part of A.
processor k where j>i}
j:=((i+p-k) div p)*p+k; for i:=1 to N do
while j<=N do begin

begin {if row i is on processor k .}

eliminate column i if i in [k,k+p,k+2p,..] then
in row j using row i; begin
save pivot element in A[j,i]; y[i]:=b[i];
J :=j+p broadcast y~iJ

end end
end else receive y[i];

{row j is the first row on
Algorithm 2 processor k where j>i}

j:--((i+p-k) div p)*p+k;
The parallel LU-factorization involves both whie j<1 do

calculation and communication, and the exe-

cution time using p processors can be modelled begin
b~j) :b[j]-L[j ,i]*y[i]J;

as follows, ignoring terms in lower orders of N, j3:=j +p

2 end
TPLU = -72 N 3 TF/p + end

3

(N - 1)d(To + 2-N/B) (4) Algorithm 3

539

The backward substitution is very similar cations is increased by a factor of b.
and will not be shown. The execution time The general step of the block LU-
model of the complete parallel solution algo- factorization on processor k can be described
rithm is as follows, informally as follows. Receive a block of b

pivot rows and perform elimination. The to-
Tps = 27 N 2 /p + 2(N - 1)d(To + 1/B) (5) tal time for this step is TB. If processor k is

going to supply the next block of pivot rows,
The parallel solution algorithm is dominated the pivot rows are first applied to this block
by communication cost to even larger extent (total time Tb). Then elimination within the
than the LU-factorization. Because the num- block of pivot rows is performed (total time
ber of broadcasts of the solution algorithm is TT), and the block of pivot rows are broad-
twice the number of broadcasts of the factor- cast (total time Tc). Finally, the elimination
ization algorithm, the execution time of the with the block of pivot rows last received is
solution algorithm may exceed the execution completed.
time of the factorization algorithm. This is The execution time models of the elimina-
most unsatisfactory since the complexity of so- tion steps are a3 follows,
lution is O(N 2) while the complexity of factor-
ization is O(N 3). TB = 2 Y2N3T/P (6)

A significant improvement is obtained by in- 3
cluding forward substitution, Algorithm 3, in Tb = b72N 2TF (7)
the LU-factorization Algorithm 2. This is ac- 1
tually the classical Gaussian elimination, and TT 2(b- 1)Y 2 N 2 TF (8)
the improvement is obtained by including the 1
y[iJ values in the pivot rows which are broad- Tc = dTo(N/b - 1) + 2dTN 2/B (9)

cast. This way, half of the communications
of the solution algorithm is saved. The full The resulting execution time of the block ver-
advantage of this is gained in the true New- sion of the parallel LU-factorization algorithm
ton iteration version of (3). The advantage is is therefore,
less for the pseudo Newton iteration where the
Gaussian elimination is only used in the first TbLU = TB + Tb + TT + TC (10)

iteration where the Jacobian is computed and The limitations of this rather crude model
LU-factorized. are discussed in Section 7.

The execution time model (4) includes the The execution time of the solution algo-
factor i/p to reflect the parallel work per- rithm Tps given in (5) is composed of a com-
formed by p processors. Each processor is putation and a communication term. The
responsible for the elimination of N/p rows, communication term is divided by the num-
but if the number of non-zero elements of a ober of rows in a block b when blocking is intro-
column is less than the number of processors duced, and the computation term is essentially
(yN < p), some processors will be idle. There- unchanged.

fore the effective number of processors may be howevn
However, the blocking introduces a substan-

less than p. This phenomenon together with tia amount of overhead in terms of buffer ad-
the relatively high cost of the start-up of a tion, id o mputatin e tc. which

communication, To, motivates a modification
reduces the gain of blocking. The overhead is

of e Aloritmsnor allockaverion .ofthero not related to the floating point operations of
The processor allocation of the rows is the solution algorithm in a simple way, and a

changed such that blocks of b consecutive rows detailed modelling is not attempted.

are allocated in an interleaved scheme. Proces-

sor k will therefore hold rows (k - 1)b + 1, (k -
1)b + 2,.., kb, (k - 1 + p)b + 1,(k - 1 + p)b + 6 Processor Allocation
2, .., (k + p)b,.. Algorithm 2 is modified to re-
ceive and broadcast, respectively, blocks of b The allocation of node equations (matrix
rows in stead of single rows. The number of rows) to processors was discussed in the pre-
communications is then reduced by a factor of vious section. The basic principle is the row
b, and the amount of work between communi- interleaved scheme where runs of p consecutive

590

node equations (rows) are allocated to p dif- The initial processor allocation is recorded
ferent processors and p is the number of avail- and the following Monte Carlo algorithm is
able processors. This principle is modified to used to improve the allocation by interchang-
the block row interleaved scheme where b con- ing rows within a run of p consecutive rows,
secutive rows are lumped together and treated
as one in the allocation scheme. for run:=1 to r do

The purpose of row interleaving is to bal- for it:=1 to maxit do

ance load on the processors during the LU- begin

factorization and solution. In this respect it is improvement:=true;

important that a run of p consecutive rows are while improvement do

allocated to p different processors. However, it begin

is not important where the rows are allocated, chose randomly two different

In other words, two rows in a run of p rows are rows, s and t from run;

allocated to two different processors, and they {rows s and t are on proces-

can be interchanged freely. This freedom in sors ps and pt, respectively}

allocating node equations (rows) within a run evaluate the effect on Fps and

is exploited to reduce the number of duplicate Fpt of interchanging them;

function calculations mentioned in Section 4 {Algoritlm 4}

and to improve the load balance during com- improvement:=

putation of nonlinear functions. {reduced work load}

Based on the circuit description input to ((Fps is not increased) and

ESACAP, an N x N array M is constructed (Fpt is not increased)) or

where M[ij] contains the number of nonlin- {improved load balance}

ear two terminal elements between node i and ((Fps decreases) and Fpt<=Fps)

node j. The matrix is symmetric and the di- or

agonal M[i, i] contains the number of two ter- ((Fpt decreases) and Fps<=Fpt);

minal elements from node i to ground. If the if improvement then

node equations i and j both are on processor k, interchange rows s and t

the nonlinear two terminal elements between end
nodes i and j only have to be evaluated once, end

i. e. only processor k has to evaluate these Algorithm 5
Mfi, j] functions. If node equations i and j are
on processors k and 1, respectively, both these Algorithm 5 is repeated until no more im-
processors must compute the M[i, j] functions. provements are obtained. When several con-

Let r denote the number of rows on a pro- secutive rows are allocated to a processor as a
cessor (r = Nlp), and let the array Rk contain block they are treated as one long row by the
row numbers for the rows on processor k. The algorithm. The first version of the processor
number of functions, Fk, to be computed by allocation algorithm was based on simulated
processor k, can be evaluated by the following annealing, but it turned out to be much more
algorithm, expensive and only marginally better than the

simple Monte Carlo algorithm.
for i:=1 to r do Tables 1-3 show the results obtained by the

begin Monte Carlo reallocation algorithm applied to
"{add gross number of functions}
for j:=1 to N do

Fk:=Fk+N[Rkli [,jJ; functions initial reallocated
{subtract number of functions max F 94 66
counted twice}
for j:=1 to i-i do F 63.2 61.7

Fk:=Fk-M[Rk[i),Rk~jJ) a 14.4 3.0

end

Table 1: Nonlinear functions per processor.
Algorithm 4 Rows per block b = 1.

591

functions initial reallocated p b T F F1 /F, T 1 /TI,
max F 98 71 1 - 133,200 1118 -

P 62.5 61.3 8 3 29,870 231 4.84 4.46
0 17.1 6.7 16 3 17,892 129 8.67 7.44

32 2 12,124 71 15.75 11.0

Table 2: Nonlinear functions per processor.
Rows per block b = 2. Table 4: Execution time and speed-up figures

for parallel ESACAP

functions initial reallocated
max F 92 78 The main performance figures are given in

P 61.4 61.0 Table 4 which lists the total execution time
01 16.6 11.3 (T) in seconds in column 3 and the speed-up

over one processor (TI/Tp) in column 6. The

Cube Manager and the sequential ESACAP
Table 3: Nonlinear functions per processor. was used for p = 1 because one node processor
Rows per block b = 3. with only 512KB memory is too small to hold

the problem. At least 8 processors are required
to simulate the multiplier which explains whythe model of the 4 x 4 bit multiplier. TheTal4dosnthvetrsfr2<p .

total number of nonlinear functions of the

180 node equations modelling the multiplier is The number of rows in a block (b) is chosen
to minimize the execution time. F denotes

1118. When the node equations are allocated th maximum nme ofcnoninea Functis
to 2 pocssos, ppoxiatly 000fuctinsthe maximum number of nonlinear functionsto 32 processors, approximately 2000 functions to be computed in any processor, and F1 /Fv is

must be computed because of the need for du- tob .optdi n rcsoadFIpi
pliatbe computatedn. bthe ratio of nonlinear functions in the sequen-plicate computation. tial version over maximum number of nonlin-

The main effect of the Monte Carlo algo- erfntoso n rcso nteprle
rithm is to reduce the maximum number of ear functions on one processor in the parallel
functions allocated to one processor (max F) version. This ratio is seen to be strongly corre-
functions allroated toad oaanecesTisor (max Flated with the speed-up, T 1 /Tp. However, the
and thus improve load balance. This is also discrepancy increases with increasing value of
clearly reflected by the standard deviation a p since the solution of linear equations, which
of the number of functions while the average does not parallelize well, then becomes rela-
number of functions F' to be computed by a tvl oeiprat(e al)
processor is only reduced little. tively more important (see Table 5).

pro o isnlyreednucbed lte rowsinablo The speed-up obtained for less than 32 pro-

With increased number of rows in a blck cessors is satisfactory. For 32 processors the
the freedom to reallocate is reduced, and thus problem which has 180 equations is too small
the efficiency of the Monte Carlo algorithm, to maintain a speed-up value of approximately

This is reflected by the maximum number of

functions and by the standard deviation. p/2.

Table 5 shows a break down of the execu-

7 Results
p b TF+j TLU Ts

The performance of the parallel implementa- 8 1 26,912 1,594 2,140
tion of ESACAP is evaluated using a 4 x 4 bit 8 3 26,854 1,545 1,210
version of the multiplier described in Section 16 1 14,579 1,451 2,568
2. The input of the multiplier is a sequence of 16 3 14,752 1,488 1,350
binary numbers, 0000 x 0000, 0010 x 0010, 32 1 8,316 1,480 3,015
1100 x 1100, 1011 x 1011, 0100 x 0100 and 32 2 8,432 1,389 1,841
1111 x 1111. The duration of each digit is 20
nsec and the transition from one level to an-
other takes 10 nsec. The total simulated time Table 5: Break down of execution time figures
is 170 nsec. for parallel ESACAP

592

p b 7 TB Tc Tb TT TbLU T
8 1 0.19 866 644 - - 1,511 1,511
8 2 - 866 322 175 45 1,408 1,394
8 3 - 866 215 264 90 1,435 1,415
8 4 - 866 161 351 135 1,513 1,574
8 5 - 866 130 440 175 1,610 1,745
16 1 0.20 492 859 - - 1,351 1,351
16 2 - 492 430 195 48 1,165 1,276
16 3 - 492 287 293 96 1,168 1,361
32 1 0.23 316 1,073 - - 1,389 1,389
32 2 - 316 536 257 64 1,173 1,272

Table 6: Execution time break down of one LU-factorization given in msec. The times TB-TbLU
refer to formulas (6) - (10). T is measured execution time.

tion times for the parallel simulations given timated for b = 1. Therefore TbLU = T for
in Table 4. TF+j denotes the time spent com- b = 1. The increase in 7 with increasing p
puting the nonlinear functions off,3 and F,, as reflects the decrease in processor utilization.
defined in connection with (3), i. e. the non- The remaining parameters of the model are as
linear functions of the node equations and the follows: N = 180, TF = 50fpsec, To = 1.2msec
corresponding derivatives. TLU and Ts denote and B = 250words/msec. Because of the sub-
the time spent doing LU-factorization and so- stantial overhead involved in the operations
lution, respectively. The execution times of modelled by (7) and (8), an increased value
Table 5 do not quite add up to the execution of the floating point execution time is used,
times of Table 4 because the latter includes TF = 75psec.
some additional overhead. The execution time model is quite accurate

The influence of blocking rows is displayed for p = 8 and b < 4. For larger values of
in Table 5 which includes execution times for b, the blocking leads to poor load distribution
b = 1 and for block sizes giving minimum which is not modelled. This probably also ac-
execution times. The blocking reduces the counts for the less accurate values for p = 16
freedom in the processor allocation algorithm, and p = 32. However, the model still explains
and this leads to a slight increase in TF+., for satisfactorily why the execution time of LU-
p = 16 and p = 32 (cf. Tables 1-3). factorization is not reduced by the full amount

The LU-factorization only benefits from of saving in communication (TC) when block-
blocking for p = 32, and this phenomenon is ing is introduced.

probably due to better processor utilization.
With 180 node equations, the average number 8 Conclusion
of rows per processor is less than 6, and with
an average density of the Jacobi matrix of 0.1 The DC and transient analysis part of the
(different from 7 which is a model parameter), general circuit analysis program ESACAP was
several processors will be idle during an elim- parallelized for the Intel iPSC with a modest
ination stage if pivot rows are broadcast one effort relative to the size and complexity of the
by one. original sequential version.

The solution algorithm gains most from A speed-up of the parallel version over a se-
blocking although the expected reduction of quential version of approximately p/2 can be
l/b is not quite obtained, expected when certain conditions are fulfilled:

Table 6 shows execution times based on the the problem must be highly nonlinear (e. g.
model, formulas (6) - (10). The times are in a digital electrical circuit) and the amount of
milliseconds and refer to one LU-factorization. work per processor must be adequate.
The parameter 7 which is an average row den- The present parallel LU-factorization is
sity used in the execution time model, is es- straightforward and not very efficient. This

593

part leaves room for substantial improvement, [8] W. F. Tinney and J. W. Walker, "Di-
and the parallel version of ESACAP will be rect solution of sparse network equations
used in the future as a test vehicle in connec- by optimally ordered triangular factoriza-
tion with research in sparse matrix parallel al- tion", Proc. IEEE, Vol. 55, pp. 1801-1809,
gorithms. 1967.

9 Acknowledgement

The programming involved in parallelizing
ESACAP for the Intel iPSC was done by
Bjarne Hansen. His effort was made possible
through a grant from Danish Natural Science
Research Council.

References

[1] E. Lelarasmee, A. E. Ruehli and A. L.
Sangiovanni-Vincentelli, "The waveform
relaxation method for time-domain anal-
ysis of large scale integrated circuits",
IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol.
CAD-I, pp. 131-145, 1982.

[2] S. Mattisson, CONCISE a Concurrent
Circuit Simulation Program, Ph. D. The-
sis, Department of Applied Electron-
ics, Lund Institute of Technology, Lund,
1986.

[3] P. Stangerup, "ESACAP - A PC-
implemented general-purpose circuit sim-
ulator", IEEE Circuits and Devices Mag-
azine, Vol. 4, No. 4, pp. 20-25, 1988.

[4] C. W. Ho, A. E. Ruehli and P. A. Brenan,
"The modified nodal approach to network
analysis", IEEE Trans. Circuits and Sys-
tems, Vol. CAS-22, pp. 504-509, 1975.

[5] M. J. D. Powell, "A hybrid method for
nonlinear equations" in Numerical Meth-
ods for Non-linear Algebraic Equations,
(Ed. P. Rabinowitz), Gordon&Breach,
pp. 87-161, 1970.

[6] N. H. E. Weste and K. Eshraghian, Prin-
ciples of CMOS VLSI Design, Addison-
Wesley, 1985.

[7] C. W. Gear, "The potential for paral-
lelism in ordinary differential equations",
Report No. UIUCDCS-R-86-1246, Dept.
Computer Science, University of Illinois
at Urbana-Champaign, 1986.

594

Concurrent DASSL Applied to Dynamic Distillation Column Simulation

Anthony Skjellum Manfred Morari

California Institute of Technology
Chemical Engineering; mail code 210-41

Pasadena, California 91125
e-mail: tony@perseus. ccsf. caltech. edu

Abstract [11,4], and based on a loosely synchronous model of
communicating sequential processes [9]. Concurrent

The accurate, high-speed solution of systems of or- DASSL retains the same numerical properties as the
dinary differential-algebraic equations (DAE's) of low sequential algorithm, but introduces important new
index is of great importance in chemical, electrical and degrees of freedom compared to it. We identify the
other engineering disciplines. Petzold's Fortran-based main computational steps in the integration process;
DASSL is the most widely used sequential code for for each of these steps, we specify algorithms that have
solving DAE's. We have devised and implemented a correctness independent of data distribution.
completely new C code, Concurrent DASSL, specifi- We cover the computational aspects of the major
cally for multicomputers and patterned on DASSL. Inthis work, we address the issues of data distribution computational steps, and their data distribution pref-
andthes peormweanres theissues ove aall a risth rauth erences for highest performance. We indicate the

thanju tha oefo indvua the overall algorithm, rather properties of the concurrent sparse linear algebra as
than just that of individual steps. Concurrent DASSL it relates to the rest of the calculation. We de-is designed as an open, application-independent envi- scribe the proto-Cdyn simulation layer, a distillation-
ronment below which linear algebra algorithms may be simulation-oriented Concurrent DASSL driver which,
added in addition to standard support for dense and despite specificity, exposes important requirements for
sparse algorithms. The user may furthermore attach concurrent solution of ordinary DAE's; the ideas be-
explicit data interconversions between the main com- hind a template formulation for simulation are, for ex-
putational steps, or choose compromise distributions. ample, expressed.
A "problem formulator" (simulation layer) must be
constructed above Concurrent DASSL, for any specific We indicate formulation issues and specific features of
problem domain. We indicate performance for a par- the chemical engineering problem - dynamic distilla-
ticular chemical engineering application, a sequence of tion simulation. We indicate results for an example
coupled distillation columns. Future efforts are cited in this area, which demonstrates the feasibility of this
in conclusion, method, but the need for additional future work, both

on the sparse linear algebra, and on modifying the
DASSL algorithm to reveal more concurrency, thereby

Introduction amortizing the cost of linear algebra over more time
steps in the algorithm.

In this paper, we discuss the design of a general-

purpose integration system for ordinary differential-
algebraic equations of low index, following up on Mathematical Formulation
our more preliminary discussion in [16]. The new
solver, Concurrent DASSL, is a parallel, C-language We address the following initial-value problem consist-
implementation of the algorithm codified in Petzold's ing of combinations of N linear and nonlinear coupled,
DASSL, a widely used Fortran-based solver for DAE's ordinary differential-algebraic equations over the inter-

val t E [To, Ti1]:

59,
0-8186-2113-3/90/0000/0595$01.00 0 1990 IEEE

rVP(F, u, Z0 , [To, Tj]; N, P): is imposed; a further stopping criterion of the form
JIZý+' - Zejj < (is also incorporated (see Brenan et

F(Z,Z,u;t) =0, t E [To,T 1], (1) aL [4, pages 121-124)).

Z(t = To) =_ Z0 , Z(i = To) = Z0 , Following Brenan el al., the approximation VDZ is

with unknown state vector Z(t) E R~N, known ex- replaced by a BDF-generated linear approximation,

ternal inputs u(t) E RP, where F(o;t) _ RN and aZ-+-fl, and the Jacobian

Z0 , Z0 E RN are the given initial-value, derivative vec- oF OF
tors, respectively. We will refer to Equation l's devi- VzF(Z, aZ + i, u; = + a -. (4)

ation from 0 as the residuals or residual vector. Eval-

uating the residuals means computing F(Z, Z,u t) From this approximation, we define F0 ,,(Z; ri) in the
("model evaluation") for specified arguments Z, Z, u intuitive way. We then consider Taylor's Theorem with
and t. remainder, from which we can easily express a forward

DASSL's integration algorithm can be used to solve finite-difference approximation for each Jacobian col-

systems fully implicit in Z and Z and of index zero or umn (assuming sufficient smoothness of F,,) with a

one, and specially structured forms of index two (and scaled difference of two residual vectors:

higher) [4, Chapter 5], where the index is the minimum F.,a,(Z + 6j; ri) - F.,p(Z; r1) =
number of times that part or all of Equation 1 must { + (b)
be differentiated with respect to I in order to express VzFaO(M ri) 2

Z as a continuous function of Z and t [4, page 1711. By picking 63 proportional to ej, the jth unit vector in

By substituting a finite-difference approximation VZ the natural basis for RN, namely bj = djej, Equation 5
for Z, we obtain: yields a first-order-accurate approximation in dj of the

Fr(Zi; Ti) - F(Zi, Di Zi, ux; t = T1) = 0, (2) jth column of the Jacobian matrix:

a set of (in general) nonlinear staticized equations. A Fd,0 (Z + 6j; r1) - Fa,(Z; r,) =
sequence of Equation 2's will have to be solved, one
at each discrete time t = ri, i = 1,2,...,M 1, in the {VZF ,6(Z;r0)1e. + 0(d),
numerical approximation scheme; neither M nor the
ri's need be pre-determined. In DASSL, the variable j = 1,..., N (6)
step-size integration algorithm picks the ri's as the in-
tegration progresses, based on its assessment of the lo- Each of these N Jacobian-column computations is in-
cal error. The discretization operator for Z, V, varies dependent and trivially parallelizable. It's well known,
luring the numerical integration process and hence is however, that for special structures such as banded and
subscripted as Di. block n-diagonal matrices, and even for general sparse

matrices, a single residual can be used to generate mul-
The usual way to solve an instance of the staticized tiple Jacobian columns [4,8]. We discuss these issues
equations, Equation 2, is via the familiar Newton- as part of the concurrent formulation section below.
Raphson iterative method (yielding Z1 = Zý': The solution of the Jacobian linear system of equa-

Zý 1 = Zý -c{ VZFV(Z ;ri)} 1 Fv(ZV;r), tions is required for each k-iteration, either through
k = 0,1,.. (3) a direct (e.g., LU-factorization) or iterative (e.g.,

preconditioned-conjugate-gradient) method. The
given an initial, sufficiently good approximation Z°. most advantageous solution approach depends on N as
The classical method is recovered for mL = k and well as special mathemat :al properties and/or struc-
c = 1, whereas a modified (damped) Newton-Raphson ture of the Jacobian matrix VzFV. Together, the
method results for mk < k (respectively, c < 1). inner (linear equation solution) and outer (Newton-
In the original DASSL algorithm and in Concurrent Raphson iteration) loops solve a single time point;
DASSL, the Jacobian VzFv(Z) is computed by fi- the overall algorithm generates a sequence of solution
nite differences rather than analytically; this departure points Zi, i = 0, 1, ... ,M.
leads in another sense to a modified Newton-Raphson In the present work, we restrict our attention to di-
method even though Mk = k and c = I might al- rect, sparse linear algebra as described in [13], al-
ways be satisfied. For termination, a limit k < kV though future versions of Concurrent DASSL will sup-

land more at trial timepoints which are discarded by the port the iterative linear algebra approaches by Ashby,
integration algorithm. Lee, Brown, Hindmarsh et al. [3,5]. For the sparse

596

LU factorization, the factors are stored and reused in straightforward to the user.
the modified Newton scenario. Then, repeated use of Importantly, the use of a template-based methodology
the old Jacobian implies just a forward and back-solve does not imply a degradation in the numerical qual-
step using the triangular factors L and U. Practically, ity of the model equations or solution method used.
we can use the Jacobian for up to about five steps [41. We are not obliged to tear equations based on tem-
The useful lifetime of a single Jacobian evidently de- plates or groups of templates as is done in sequential-
pends somewhat strongly on details of the integration modular simulators [19,6], where "sequential" refers
procedure [4]. in this sense to the stepwise updating of equation sub-

sets, without connection to the number of computers

proto-Cdyn - Simulation Layer assigned to the problem solution.

Ideally, the simulation layer could be made universal.

To use the Concurrent DASSL system on other than That is, a generic layer of high flexibility and structural
toy problems, a simulation layer must be constructed elegance would be created once and for all (and with-
above it. The purpose of this layer is to accept a out predilection for a specific computational engine).
problem specification from within a specific problem Thereafter, appropriate templates would be added to
domain, and formulate that specification for concur- articulate the simulator for a given problem domain.

rent solution as a set of differential-algebraic equa- This is certainly possible with high-quality simulators
tions, including any needed data. On one hand, such such as ASCEND H and Chemsim (a recent Fortran-
a layer could explicitly construct the subset of equa- based simulator driving DASSL and MA28 [2,11,7]).

tions needed for each processor, generate the appro- Even so, we have chosen to restrict our efforts to

priate code representing the residual functions, and a more modest simulation layer, called proto-Cdyn,
create a set of node programs for effecting the sim- which can create arbitrary networks of coupled distil-
ulation. This is the most flexible approach, allowing lation columns. This restricted effort has required sig-
the user to specify arbitrary nonlinear DAE's. It has nificant effort, and already allows us to explore many
the disadvantage of requiring a lot of compiling and of the important issues of concurrent dynamic simu-
linking for each run in which the problem is changed lation. General-purpose simulators are for future con-
in any significant respect (including but not limited sideration. They must address significant questions of
to data distribution), although with sophisticated tac- user-interface in addition to concurrency-formulation
tics, parametric variations within equations could be issues.
permitted without re-compiling from scratch, and in- In the next paragraphs, we describe the important fea-
cremental linking could be supported. tures of proto-Cdyn. In doing so, we indicate impor-

We utilize a template-based approach here, as we do tant issues for any Concurrent DASSL driver.
in the Waveform-Relaxation paradigm for concurrent Template Structure
dynamic simulation [15]. This is akin to the ASCEND
II methodology utilized by Kuru and many others [101. A template is a prototype for a sequence of DAE's
It is a compromise approach from the perspective of which can be used repeatedly in different instantia-
flexibility; interesting physical prototype subsystems tions. Normally, but not always, the template cor-
are encapsulated into compiled code as templates. A responds to some subsystem of a physical-model de-
template is a conceptual building block with states, scription of a system, like a tank or distillation tray.
non-states, parameters, inputs and outputs (see be- The key characteristics of a template are: the number
low). A general network made from instantiations of integration states it incorporates (typically fixed),
of templates can be constructed at runtime without the number of non-state variables it incorporates (typ-
changing any executable code. User input specifies the ically fixed), its input and output connections to other
number and type of each template, their interconnec- templates, and external sources (forcing functions) and
tion pattern, and the initial value of systemic states sinks. State variables participate in the overall DASSL
and extraneous (non-state) variables, plus the value of integration process. Non-states are defined as vari-
adjustable parameters and more elaborate data, such ables which, given the states of a template alone, may
as physical properties. The addition of templates re- be computed uniquely. They are essentially local tear
quires new subroutines for the evaluation of the resid- variables. It is up to the template designer whether or
uals of their associated DAE's, and also for interfac- not to use such local tear variables: They impact the
ing to the remainder of the system (e.g., parsing of numerical quality of the solution, in principle. Alter-
user input, interconnectivity issues). With suitable native formulations, where all variables of a template
automated tools, this addition process can be made are treated as states, can be posed, and comparisons

597

made. Because of the superlinear growth of linear al- utilize a single process grid for the entire Concurrent
gebra complexity, the introduction of extra integra- DASSL calculation. That is, we don't currently ex-
tion states must be justified on the basis of numerical ploit the Concurrent DASSL feature which allows ex-
accuracy. Otherwise, they artificially slow down the plicit transformations between the main calculational
problem solution, perhaps significantly. Non-states phases (see below). In each process column, the en-
are extremely convenient, and practically useful; they tire set of equations is to be reproduced, so that any
appear in all the dynamic simulators we have come process column can compute not only the entire resid-
across. ual vector for a prediction calculation, but also, any

The template state and non-state structure implies a column of the Jacobian matrix.

two-phase residual computation. First, given a state A mapping between the global equations and local
Z, the non-states of each template are updated on equations must be created. In the general case, it will
a template-by-template basis. Then, given its states be difficult to generate a closed-form expression for ei-
and non-states, inputs from other templates and ex- ther the global-to-local mapping or its inverse (that
ternal inputs, each template's residuals may be corn- also require < O(N) storage). At most, we will have
puted. In the sequential implementation, this poses no on a hand a partial (or weak) inverse in each process, so
particular nuisances, other than two evaluation loops that the corresponding global index of each local index
over all templates. However, in concurrent evaluation, will be available. Furthermore, in each node, a partial
a communication phase intervenes between non-state global-to-local list of indices associated with the given
updates and residual updates. This communication node will be stored in global sort order. Then, by bi-
phase transmits all states and non-:tates appearing as nary search, a weak global-to-local mapping will be
outputs of templates to their corresponding inputs at possible in each process. That is, each process will
other templates. This transmissioi, mechanism is con- be able to identify if a global index resides within it,
sidered further below under concurrent formulation. and the corresponding local index. A strong mapping

for row (column) indices will require communication

Problem Preformulation between all the processes in a process row (respec-
tively, column). In the foregoing, we make the tacit

In general, the "optimal" ordering for the equations of assumption that is is an unreasonable practice to use

a dynamic simulation will in general be too difficult to storage proportional to the entire problem size N in

establish2 , because of the NP-hard issues involved in each node, except if this unscalability can be removed

structure selection. However, many important heuris- cheaply when necessary for large problems.

tics can be applied, such as those that precedence or- The proto-Cdyn simulator works with templates of
der the nonlinear equations, and those that permute specific structure - each template is a form of a dis-
the Jacobian structure to a more nearly triangular or tillation tray and generates the same number of inte-
banded form [8]. For the proto-Cdyn simulator, we gration states. It therefore skirts the need for weak
skirt these issues entirely, because it proves easy to ar- distributions. Consequently, the entire row mapping
range a network of columns to produce a "good struc- procedure can be accomplished using the closed-form
ture" - a main block tri-diagonal Jacobian structure general two-parameter distribution function family ý
with off-block-diagonal structure for the intercolumn described in (131, where the block size B is chosen as
connections, simply by taking the distillation columns the number of integration states per template. The
with their states in tray-by-tray, top-down (or bottom- column mapping procedure is accomplished with the
up) order. one-parameter distribution function family C also de-

Given a set of DAE's, and an ordering for the equa- scribed in [13]. The effects of row and column degree-

tions and states (i.e., rows and columns of the Jaco- of-scattering are described in [131 with attention to

bian, respectively), we need to partition these equa- linear algebra performance.

tions between the multicomputer nodes, according to
a two-dimensional process grid of shape PxQ = R. Concurrent Formulation
The partitioning of the equations forms, in main part,
the so-called "concurrent database." This grid struc- Overview
ture is illustrated in [13, Figure 2.]. In proto-Cdyn, we

2 Optimaity per se hinges on what our objective is. If, for Next, we turn to Equation l's (that is, IVP's) concur-
instance, we want minimum time for LU factorization, still the rent numerical solution via the DASSL algorithm. We
objective of minimum fill-in does not guarantee minimum time cover the major computational steps in abstract, and
in a concurrent setting. we also describe the generic aspects of proto-Cdyn in

59'

this connection. In the subsequent section, we discuss outlined in [11]. Concurrent DASSL faithfully imple-
issues peculiar to the distillation simulation. ments this numerical method, with no significant dif-

Broadly, the concurrent solution of IVP consists of ferences. Test problems run with the DASSL Fortran

three block operations: startup, dynamic simulation, code and the new C code (on one and multiple com-

and a cleanup phase. Significant concurrency is appar- puters) certify this degree of compatibility.

ent only in the dynamic simulation phase. We will as- The sequential time complexity of the integration com-
sume that the simulation interval requested generates putations is O(N), if considered separately from the
enough work so that the startup and cleanup phases residual calculation called in turn, which is also nor-
prove insignificant by comparison and consequently mally O(N) (see below). We pose these operations
pose no serious Amdahl's-law bottleneck. Given this on a PxQ = R grid, where we assume that each pro-
assumption, we can restrict our attention to a single cess column can compute complete residual vectors.
step of IVP as illustrated schematically in Figure 0. Each process column repeats the entire prediction op-

In the startup phase, a sequential host program inter- erations: there is no speedup associated with Q > 1,

prets the user specification for the simulation. From and we replicate all DASSL BDF and predictor vec-

this it generates the concurrent database: the tern- tors in each process column. Taller, narrower grids are

plates and their mutual interconnections, data needed likely to provide the overall greatest speedup, though

by particular templates, and a distribution of this in- the residual calculation may saturate (and slow down

formation among the processes that are to participate. again) because of excessive vertical communication re-

The processes are themselves spawned and fed their re- quirements - It's definitely not true that the Rxl

spective databases. Once they receive their input in- shape is optimal in all cases.

formation, the processes re-build the data structures The distribution of coefficients in the rows has no im-
for interfacing with Concurrent DASSL, and for gener- pact on the integration operations, and is dictated
ating the residuals. Tolerances, and initial derivatives largely by the requirements of the residual calculation
must be computed and/or estimated. Furthermore, in itself. In practical problems, the concurrent database
each process column, the processes must rendezvous to cannot be reproduced in each process (cf., [18]), so a
finalize their communication labeling for the transmis- given process will only be able to compute some of the
sion of states and non-states to be performed during residuals. Furthermore, we may not have complete
the residual calculation. This provides the basis for freedom in scattering these equations, because there
a reactive, deadlock-free update procedure described will often be a tradeoff between the degree of scatter-
below. ing and the amount of communication needed to form

The cleanup phase basically retrieves appropriate state the entire residual vector.

values and returns them to the host for propagation The amount of O(N) integration-computation work is
to the user. Cleanup may actually be interspersed in- not terribly large - there is consequently a non-trivial
termittently with the actual dynamic simulation. It but not tremendous effort involved in the integration
provides simple bookkeeping of the results of simula- computations. (Residual computations dominate in
tion and terminates the concurrent processes at the many if not most circumstances.) Integration oper-
simulation's conclusion. ations consist mainly of vector-vector operations not

The dynamic simulation phase consists of repetitive requiring any interprocess communication and, in ad-

prediction and correction steps, and marches in time. dition, fixed startup costs. Operations include predic-

Each successful time step requires the solution of one tion of the solution at the time point, initiation and

or more instances of Equation 2 - additional timesteps control of the Newton iteration that "correct? the so-

that converge but fail to satisfy error tolerances, or fail lution, convergence and error-tolerance checking, and

to converge quickly enough, are necessarily discarded. so forth. For example, the approximation Di is cho-d. sen within this block using the BDF formulas. For
In the next section, we cover the aspects of these op- se witins bl ockss the BFfrmula oreratonsin mre etal, fr asinge sep.these operations, each process column currently oper-

ates independently, and repetitively forms the results.
Alternatively, each process column could stride with

Single Integration Step step Q, and row-combines could be used to propagate
information across the columns [14]. This alternative

The Integration Computations of DASSL are a would increase speed for sufficiently large problems,
fixed leading-coefficient, variable-stepsize and order, and can easily be implemented. However, because of
backward-differentiation-formula (BDF) implicit inte- load-imbalance in other stages of the calculation, we
gration scheme, described clearly in [4, Chapter 5] and are convinced that including this type of synchroniza-

599

tion could be an overall negative rather than positive than for the single residual and integration operations,
to performance. This alternative will nevertheless be since, for finite differencing, N independent residual
a future user-selectable option. computations are apparently required, each of which

Included in these operations are a handful of norm is a single-state perturbation of Z. Based on our

operations, which constitute the main interprocess overview of the residual computation, we might naively

communication required by the integration computa- expect to use K x N processes effectively; however,

tions step; norms are implemented concurrently via the simple perturbations can actually require much

recursive doubling (combine) [17,141. Actually, the less model evaluation effort because of latency [8,10],

weighted norm used by DASSL requires two recur- which is directly a function of the sparsity structure of

sive doubling operations, each combines a scalar: first the model equations, Equation 1. In short, we can at-

to obtain the vector coefficient of maximum absolute tain the same performance with much less than K x N

value, then to sum the weighted norm itself. Each can processors.

be implemented as Q independent column combines, In general, we'd like to consider the Jacobian compu-
each producing the same repetitive result, or a single tation on a rectangular grid. For this, we can con-
Q-striding norm, that takes advantage of the repeti- sider using P x Q = R to accomplish the calculation.
tion of information, but utilizes two combines over the With a general grid shape, we exploit some concur-
entire process grid. Both are supported in Concurrent rency in both the column evaluations and in the resid-
DASSL, although the former is the default norm. As ual computations, with Tjc,PQ=R the time for this
with the original DASSL, the norm function can be step, SJac,PxQ=R the corresponding speedup, Tre,,p

replaced, if desired. the residual evaluation time with P row processes, and
Sres,p the apparent speedup compared to one row pro-

Single Residuals are computed in prediction, and cess:

as needed during correction. Multiple residuals are TJOc,P.Q=R ;Z: [N/Q1 x Tres,p
computed when forming the finite-difference Jacobian. N

Single residuals are computed repetitively in each pro- SJacpzQ=R •.)N/Q- X SresP

cess column, whereas the multiple residuals of a Jaco- aNrs u
bian computation are computed uniquely in the pro- assuming no shortcuts are available as a result of la-

cessre lumns. tency. This timing is exemplified in the example below,which does not take advantage of latency.
Here, we consider the single residual computation re-
quired by the integration computations just described. There is additional work whenever the Jacobian
Given a state vector Z, and approximation for Z, we structure is rebuilt for better numerical stability in
need to evaluate F(Z,Z,ri) =Fv(Z,ni). The ex- the subsequent LU factorization (A-mode). Then,ploitable concurrency available in this step is strictly O(N 2 /PQ) work is involved in each process in the fill-a function of the model equations. As defined, there ing of the initial Jacobian. In the normal case, work
are N equations in this system, so we expect to use proportional to the number of local non-zeroes plusat best N computers for this step. Practically, there fill elements is incurred in each pro-cess for re-fillingat bst coputrs or his tep Prctiall, tere the sparse Jacobian structure.
will be interprocess communication between the pro-
cess rows, corresponding to the connectivity among the
equations. This will place an upper limit on P < K Exploitation of Latency has been considered in

(the number of row processes) that can be used before the Concurrent DASSL framework. We currently
the speed will again decrease: we can expect efficient have experimental versions of two mechanisms, both
speedup for this step provided that the cost of the of which are designed to work with the sparse-matrix
interprocess communication is insignificant compared structures associated with direct, sparse LU factoriza-
to the single-equation grain size. As estimated in [14], tion (see [13]). The first is called "bandlike" Jacobian
the granularity Tcom,/Teatc for the Symult s2010 mul- evaluation. For a banded Jacobian matrix of band-
ticomputer is about fifty, so this implies about four width b, only b residuals are needed to evaluate the
hundred and fifty floating point operations per commu- Jacobian. This feature is incorporated into the origi-
nication in order to achieve 90% concurrent efficiency nal DASSL, along with a LINPACK banded solver. In

in this phase. Concurrent DASSL, collections of Jacobian columns

are placed in each process column, according to the col-

Jacobian Computation There is evidently much umn data distribution, which thus far is picked solely

more available concurrency in this computational step to balance LU factorization and triangular-solve per-
formance [13]. In each process column, there will be

600

"compatible" columns that can be evaluated using a with L unit lower-triangular, & upper-triangular, and
single, composite perturbation. Identification of these permutation matrices PR, Pc, and solve Az = b, us-
compatible columns is accomplished by checks on the ing the implicit pivoting approach described in [13].
bandwidth overlap condition. Columns that possess Sequentially, the triangular solves each require work
off-band structure are stricken from the list and eval- proportional to the number of entries in the respec-
uated separately. Presumably, a heuristic algorithm tive triangular factor, including fill-in. We have yet to
could be employed further to increase the size of the find an example of sufficient size for which we actually
compatible sets, but this is yet to be implemented. attain speedup for these operations, at least for the
The same algorithm "greedy" algorithm of Curtis et sparse case. At most, we try to prevent these opera-
al used for the sequential reduction of Jacobian corn- tions from becoming competitive in cost to the B-mode
putation effort would be applied independently to each factorization; we detail these efforts in [13]. In brief,
process column (see comments by [8, Section 12.3]). the optimum grid shape for the triangular solves has
Then, clearly, the column distribution effects the per- Q = 1, and P somewhat reduced than what we can
formance of the Jacobian computation, and the linear- use in all the other steps. As stated, P small seems
algebra performance can no longer be viewed so readily better thus far, though for many examples, the in-
in isolation. creasing overhead as a function of increasing P is not

We have also devised a "blocklike" format, which will unacceptable (see [13] and the example below).

be applied to block n-diagonal matrices that include
some off-block entries as well. Optimally, fewer resid- Residual Communication is an important aspect
ual computations will be needed than for the banded of the proto-Cdyn layer. As indicated in the startup-
case. The same column-by-column compatible sets will phase discussion, the members of a process column
be created, and the Curtis algorithm can also be ap- initially share information about the groups of states
plied. Hopefully, because of the less restrictive corn- and non-states they will exchange during a residual
patibility requirement, the "blocklike" case will pro- computation. For residual communication, a reactive
duce higher concurrent speedups than that attained transmission mechanism is employed, to avoid dead-
using the conservative bandlike assumption for Jaco- locks. Each process transmits its next group of states
bians possessing blocklike structure. Comparative re- to the appropriate process and then looks for any re-
sults will be presented in a future paper. ceipt of state information. Along with the state val-

ues are indices that directly drive the destinations for

The LU Factorization Following the philosophy these values. This index information is shared during

of Harwell's MA28, we have interfaced a new con- the startup phase and allows the messages to drive the

current sparse solver to Concurrent DASSL, the de- operation. Through non-blocking receives, this proce-

tails of which are quoted elsewhere in this proceedings dure avoids problems of transmission ordering. Re-

[13]. In short, there is a two-step factorization proce- gardless of the template structure, at most one send

dure: A-mode, which chooses stable pivots according and receive is needed between any pair of column pro-

to a user-specified function, and builds the sparse data cesses.

structures dynamically; and B-mode, which re-uses the
data structures and pivot sequence on a similar ma- Chemical Engineering Example
trix, but monitors stability with a growth-factor test.
A-mode is repeated whenever necessary to avoid in- T
stability. We expect sub-cubic time complexity and he alorithms and formalinee o r thiscex-
sub-quadratic space complexity in N for the sparse ample amuntto abu7, lines of C code incld
solver. We attain acceptable factorization speedups ing the simulation layer, Concurrent DASSL, the linear
for systems that are not narrow banded, and of suf- algebra packages, and support functions [14,13,12].
ficient size. We intend to incorporate multiple pivot- In this simulation, we consider seven distillation
ing heuristic stategies, following [1], further to improve columns arranged in a tree-sequence [121, work-
performance of future versions of the solver. This may ing on the distillation of eight alcohols: methanol,
also contribute to better performance of the triangular ethanol, propan-l-ol, propan-2-ol, butan-l-ol, 2-
solves, methyl propan-1-ol, butan-2-ol, and 2-methyl propan-

2-ol. Each column has 143 trays. Each tray is ini-
tialized to a non-steady condition, and the system is

Forward- and Back-solving Steps take the fac- relaxed to the steady state governed by a single feed

PRAPT = stream to the first column in the sequence. This setup

601

generates suitable dynamic activity for illustrating the prove it. For example, introducing flow dynamics, en-
cost of a single "transient" integration step. thalpy balances and vapor holdups makes the model

We note the performance in Table 0. Because we more difficult to solve numerically (higher index). It

have not exploited latency in the Jacobian computa- also increases the chance for a wide range of step-sizes,

tion, this calculation is quite expensive, as seen for and the possible need for additional A-mode factoriza-

the sequential times on a Sun 3/260 depicted there. tions to maintain stability in the integration process.

(The timing for the Sun 3/260 is quite comparable Such operations are more costly, but also have a higher

to a single Symult s2010 node and was lightly loaded speedup. Furthermore, the more complex models will

during this test run.) As expected, Jacobian calcula- be less likely to have near diagonal dominance; con-

tions speedup efficiently, and we are able to get ap- sequently more pivoting is to be expected, again in-

proximately a speedup of 100 for this step using 128 crea.ing the chance for overall speedup compared to

nodes. The A-mode linear algebra also speeds up sig- the sequential case. Mainly, we plan to consider the

nificantly. The B-mode factorization speeds up negli- Waveform-Relaxation approach more heavily, and also

gibly and quickly slows down again for more than 16 to consider new classes of dynamic distillation simula-

nodes. Likewise, the triangular solves are significantly tions with Concurrent DASSL [12].

slower than the sequential time. It should be noted
that B-mode reflects two orders of magnitude speed Conclusions
improvement over A-mode. This reflects the fact that
we are seeing almost linear time complexity in B-mode, We have developed a high-quality concurrent code,
since this example has a narrow block tri-diagonal Ja- Concurrent DASSL, for the solution of ordinary
cobian with too little off-diagonal coupling to gener- o 9'erential-algebraic equations of low index. This
ate much fill-in. It seems hard to imagine speeding code, together with appropriate linear algebra and
up B-mode for such an example, unless we can exploit simulation layers, allows us to explore the achievable
multiple pivots. We expect multiple-pivot heuristics concurrent performance of non-trivial problems. In
to do reasonably well for this case, because of its nar- chemical engineering, we have applied it thus far to
row structure, and nearly block tri-diagonal structure, a reasonably large, simple model of coupled distilla-
We have used Wilson Equation Vapor-Liquid Equilib- tion columns. We are able to solve this large problem,
rium with the Antoine Vapor equation. We have found which is quite demanding on even a large mainframe
that the thermodynamic calculations were much less because of huge memory requirements and non-trivial
demanding than we expected, with bubble-point coin- computational requirements; the speedups achieved
putations requiring "l+e" iterations to converge. Con- thus far are legitimately at least five, when compared
sequently, there was not the greater weight of Jacobian to an efficient sequential implementation. This illus-
calculations we expected beforehand. Our model as- trates the need for improvements to the linear algebra
sumes constant pressure, and no enthalpy balances, code, which are feasible because sparse matrices will
We include no flow dynamics and include liquid and admit multiple pivots heuristically. It also illustrates
vapor flows as states, because of the possibility of feed- the need to consider hidden sources of additional time-
backs. like concurrency in Concurrent DASSL, perhaps allow-

Were we to utilize latency in the Jacobian calcula- ing multiple right-hand sides to be attacked simultane-
tion, we could reduce the sequential time by a fac- ously by the linear algebra codes, and amortizing their
tor of about 100. This improvement would also carry cost more efficiently. Furthermore, the performance
through to the concurrent times for Jacobian solution. points up the need for detailed research into the novel
At that ratio, Jacobian computation to B-mode fac- numerical techniques, such as Waveform Relaxation,
torization has a sequential ratio of about 10:1. As is, which we have begun to do as well (15].
we achieve legitimate speedups of about five. We ex-
pect to improve these results using the ideas quoted Acknowledgements
elsewhere here and in [13].

From a modeling point-of-view, two things are im- The first author acknowledges the kind assistance and
portant to note. First, the introduction of more helpful cooperation of Lionel F. Laroche and Hen-
non-ideal thermodynamics would improve speedup, rik W. Andersen in the area of dynamic simulation
because these calculations fall within the Jacobian for chemical process flowsheets. We have spent many
computation phase and Single-Residual Computation. hours together over the last twenty months in the dis-
Furthermore, the introduction of a more realistic cussion of design goals, features, algorithms, on re-
model will likewise bear on concurrency, and likely im- alizations, post-mortems and re-designs, and in over-

S• m nmm nmunn uum I mn NINNNI N N 6M[nm m

Table 0. Order 9009 Dynamic Simulation Data

(time in seconds)

Grid Shape Jacobian A-mode B-mode Back-Solve Solve

Ix1 64672.2 5089.96 61.82 2.5 4.7

8x1 6870.82 1024.41 47.827 15.619 30.825

16xl 3505.13 547.625 52.402 19.937 39.491

32xl 182993 316.544 56.713 24.383 47.692

64xi 1060.40 219.148 77.302 39.942 59.553

32x4 491.526 181.082 71.482 57.049 101.994

64x2 520.029 161.052 82.696 46.013 86.935

128x1 608.946 170.022 90.905 37.498 67.982

Key single-step calculation times with the lxl case run an unloaded Sun 3/260 (similar performance-wise to a single
Symult s2010 node) for comparison. The Jacobian rows were distributed in block-linear form, with B = 9, reflecting the
distillation-tray structure. The Jacobian columns were scattered. This is an seven column simulation of eight alcohols,
with a total of 1,001 trays. See [13] for more on data distributions.

coming the stumbling blocks in our respective simula- Iterative DASSL.
tion codes. Thanks also to Prof. A. W. Westerberg of
CMU, who offered helpful suggestions when he visited [4) K. E. Brenan, S. L. Campbell, and L. R. Petzold.
Caltech in 1989. Numerical Solution of Initial-Value Problems in

Differential-Algebraic Equations. North Holland
Thanks to Drs. K. E. Brenan, S. L. Campbell and Elsevier, 1989.
Linda Petzold, for sharing advance drafts of their
monograph Numerical Solution of Initial-Value Prob- [5] P. N. Brown and A. C. Hindmarsh. Reduced
lems in Differential-Algebraic Equations, which proved storage matrix methods in stiff ODE systems. J.
very helpful in the creation of Concurrent DASSL. Appi. Math. & Comp., (to appear).

The first author acknowledges partial support un- [6] W. J. Cook. A modular dynamic simulator for
der DOE grants DE-FG03-85ER25009 and DE-AC03- distillation systems. Master's thesis, Case West-
85ER40050. ern Reserve University, 1980. Chemical Engineer-
Concurrent DASSL was developed using machine re- ing.
sources made available by the Caltech Computer Sci-
ence sub-Micron System Architectures Project and the [7] I. S. Duff. MA28 - a set of fortran subroutines for
Caltech Concurrent Supercomputer Facilities (CCSF). sparse unsymmetric linear equations. TechnicalReport 18730, AERE, HMSO, London, 1977.

[8] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct
References Methods for Sparse Matrices. Oxford University

Press, 1986.
[1] G. Alaghband. Parallel pivoting combined with

parallel reduction and fill-in control. Parallel [9] C. A. R. Hoare. Communicating sequential pro-
Computing, 11:201-221, 1989. cesses. CACM, 21(8):666-677, August 1978.

[2] H. W. Andersen and L. F. Laroche, 1988-1990. [10] S. Kuru. Dynamic Simulation with an Equation

- Private Communications on Chemsim. Based Flowsheeting System. PhD thesis, Carnegie
Mellon University, 1981. Chemical Engineering

[3] S. Ashby, 1990. - Private Communication on Department.

6th

[11] L. R. Petzold. DASSL: Differential algebraic sys-
tem solver. Technical Report Category #D2A2,
Sandia National Laboratories - Livermore, 1983.

(12] A. Skjellum. Concurrent Dynamic Simulation: Figure 0. Major computational blocks of a
Multicomputer Algorithms Research Applied to Single Integration Step.
Differential-Algebraic Process Systems in Chemi-
cal Engineering. PhD thesis, California Institute
of Technology, May 1990. Chemical Engineering. Integration Computations:

BDF Coefficients / Prediction
[13] A. Skjellum and A. P. Leung. LU factorization of Error Estimates / Convergence Tests

sparse, unsymmetric jacobian matrices on multi- Step-size Selection, etc.

computers: Experience, Strategies, Performance.
In Proceedings of the Fifth Distributed Memory
Computing Conference (DMCC5). in press, April One Residual
1990. Computation

(14] A. Skjellum and A. P. Leung. Zipcode: a
portable multicomputer communication library
atop the reactive kernel. In Proceedings of the Finite-Difference
Fifth Distributed Memory Computing Conference Iteration Matrix I
(DMCC5). in press, April 1990. Computation

[15] A. Skjellum, M. Morari, and S. Mattisson. Wave-
form Relaxation for Concurrent Dynamic Simula-
tion of Distillation Columns. In Proceedings of the
Third Conference on Hypercube Concurrent Com- -N Residual
puters and Applications (HCCA3), pages 1062- Computations
1071. ACM Press, January 1988.

[16] A. Skjellum, M. Morari, S. Mattisson, and L. Pe-
terson. Concurrent DASSL: Structure, Applica- LU Factorization
tion, and Performance. In Proceedings of theL Procedurei

Fourth Conference on Hypercubes, Concurrent

Computers and Applications (HCCA4), pages
1321-1328. Golden Gate Enterprises, March 1989.
Simulation Minisymposium. Forward / Back

Solution Step
[17] H. S. Stone. High-Performance Computer Archi-

tecture. Addison-Wesley, 1987.

[18] E. F. Van de Velde and J. Lorenz. Adaptive data A single step in the integration begins with a number of
distribution for concurrent continuation. Tech- BDF-related computations, including the solution "predic-
nical Report CRPC-89-4, California Institute of tion" step. Then, "correction" is achieved through New-
Technology, 1989. Caltech/Rice Center for Re- ton iteration steps, each involving a Jacobian computation,
search in Parallel Computation. and linear-system solution (LU factorization plus forward-

/ back-solves). The computation of the Jacobian in turn
[19] A. W. Westerberg, H. P. Hutchison, R. L. Motard, relies upon multiple independent residual calculations, as

and P. Winter. Process flo7sheeting. Cambridge shown. The three items enclosed in the dashed oval (Ja-
University Press, 1979. cobian computation (through at-most N Residual compu-

tations), and LU factorization) are, in practice, computed
less often than the others - the old Jacobian matrix is used
in the iteration loop until convergence slows intolerably.

604

CONVERGENCE AND CIRCUIT PARTITIONING ASPECTS FOR WAVEFORM RELAXATION

Ulla Miekkala Olavi Nevanlinna Albert Ruehli

Helsinki University of Technology IBM T. J. Watson Research Center
Institute of Mathematics Yorktown Heights
02150 Espoo, Finland NY 10598, U.S.A

ABSTRACT C2

This paper gives a mathematical investigation of the con-
vergence properties of a model problem which, at first
sight, seems to be unsuitable for waveform relaxation. + +
The model circuit represents a limiting case for capaci- I R D R

five coupling where the capacitances to ground are zero.
We show that the WR approach converges. Since the
convergence is generally slow we discuss appropriate
techniques for accelerating convergence.

Figure 1.

1. INTRODUCTION
cases that the partitioning is performed even for situa-
tions where the convergence cannot be achieved in only

A substantial speed-up can be achieved in the analysis a few iterations. The connections among the subcircuits
of large circuits by using the waveform relaxation (WR) may simply lead to very large subcircuits. It is in most
method [4] rather than the conventional direct, incremen- cases desirable to partition into subcircuits of a similar
tal time (IT) methods. Another speed improvement can size. Non-uniform scheduling schemes, like the C-sched-
be obtained by applying the WR method to parallel pro- uling, can take advantage of partitioning schemes with
cessors since the approach is based on partitioning the widely varying convergence rates at the subcircuit level
circuit into small subcircuits which are assigned to the [1].
different processors. Hence, a central problem in the ap-
proach is the partitioning into the "best" possible subcir- hewe are invesitera'interes
cuits. Our experience has been that the gain of the WR shown in Figure 1. The iteration becomes
over the IT method is a function of the partitioning. 0 + = I n +

In this short paper, we consider convergence for linear + 1 (C1 1)

model circuits. For any RC-circuit, independently i + _Z5 = 3 -
whether the index is one or two, geometric convergence
can be proved if the partitioning can be performed across It is a limiting case, where a coupling capacitor is present,
the resistors only [3]. However, this restriction will in whi!c the capacitors to ground are missing. This example
many cases lead to large subcircuits. This is especially represents a worst case situation which is somewhat non
the case for MOSFET transistor circuits where the gate physical since each node has a capacitance to ground in
to drain capacitance plays a key role in the partitioning. a VLSI environment. Earlier convergence proofs show
Partitioning must be performed across capacitances in that the WR approach converges, if we partition this cir-
this case since partitioning across resistors only would cuit into two subcircuits across the capacitor, provided
lead to unduly large subcircuits. It is essential in some that a capacitor to ground is present [4], [10].

0-818B-2113-3g0/W000010605051.oo 0 1990 IEEE

Intuitively, one assumes that the absence of grounded does notconverge geometrically, say, in L2 . However, as
capacitors will prevent convergence since the nodes are p(K(iO)) < 1 for all I[< oo there is still convergence,
coupled together when f -+ on. Here, we show that the slower and such that it depends on the smoothness of the
WR solution for the circuit in Fig. I will indeed converge initial error. As large values of jIf correspond to fast time
but that the speed of convergence is quite slow. This is scales we may expect the convergence speed to depend
included in Theorem 1 in Section 2. The result shows on the smoothness of the initial error. the smoother the
that the speed of convergence depends on the number of initial error the faster the convergence. We shall make
correct derivatives at t = 0. In Section 3 we discuss this precise.
the discretized iteration. One can show that for a fixed
time step h the convergence is geometric, ie of the form Consider the following iteration

p" with p of the form 1/(1 + ch). For the second order
BDF-formula this is obtained if the coupling derivatives R&" + My" = Se' + Ny"' (2.5)
are read through a "filter". In Section 4 we shortly men-
tion some possibilities for accelerating the convergence, with yo given and y'(0) = 0 for all n. Here R, M, S

and N are square matrices such that

2. CONVERGENCE zR + M is nonsingular for Rez > 0. (2.6)

The model problem (1.1) - without iteration index n - is Then the symbol of the iteration (2.5)

an index one differential-algebraic equation (DAE). This
can be seen by adding the two equations: we get an alge- K(z) = (zR+ M -1 (zS+ N)
braic equation for the voltages. This means in particular i a
that only one of the initial values can be freely chosen. is an analytic matrix-valued function in Rez > 0. Wemake the following mode) ass umption:

The iteration in(1. 1) is of the form 3 nonnegative constants C, a, b with a < 1 such that

d+ xI = o- I + f, for all n+-+ 2 z 2 = + f2. (2.1)

This is now an ODE system for (x4, x4), but unless the IIK(i)lt < C +2 b2 C2 J(.
initial values satisfy the extra restriction we cannot ex-
pect convergence, where 1111 denotes the matrix norm induced by the usual

Euclidean length. In the example we have N = 0 and
If we denote by y0 the iteration error y" = x - x*, then (2.7) holds with a = 0.
we may assume y*(O) = 0 for all 7. Thus

Next we need the Sobolev norms.
(2.2) u E H1 iffeZ + \,2 Y2" = , •

Taking the Laplace transform of (2.2) yields (@(z) = :1-1,:= f(1 + ý2).lII(iE)II2j<</
2

fo e-y(t)d*))l 2r <00

(2.8)
P*(z) = K(z).P" (z), (2.3) Observe that Hn = L 2 .

where From (2.5) and the definition of the symbol K(z) we
K (O (2.4) see that

0 .. (z) = K(z)"j,(z)
According to the basic approach [5], [61 one then looks and by Parseval's identity
at the spectral radius of K(z) along z = if:

f2~i) =1/ 11y,,112 ,1K2+E)lD (it)II 11 d (2.9)

In particular p K(if)) < 1 for ifI < oo but near in- Now we make the smoothness assumptioir

finity Jim p(K(if)) = 1. This means that the process 0 e H', for some s >0. (2.10)

606

Using (2.6) and (2.7) in (2.8) we have On the other hand, think y0 to be given on the whole R
and vanishing identically for t < 0. Then it is clear that

0IYiI[the continuity at origin shows up in the Sobolev exponent
1 f provided that the initial error is otherwise smooth. Recall

< J IIK()'t12(1 + Q)-N(+ - 2)iIr 0(iOII2d that if y° E H, then by the Sobolev embedding lemnma
<p2InmIYO12 YO0 has continuous derivatives up to La - 'J. Therefore,

if(2.12) holds but DVy 0 (0) 9f 0 then [s- J <1- 1,

where and necessarily a < I + T.

p2 (n) := Sup C2 (a2 + b2 \C2 Although Theorem 1 is quite sharp as such, the smooth-
4' ' 1+ b2f2'(1) ness assumption in form of Sobolev norm 11y0ll. does

not contain information on where yo is spectrally large.
A simple calculation yields As typically we would expect (2.12) only to hold with

I= 1, Theorem 1 only says that eventually the conver-
IF (n) = (y(1)/2). gence is likely tobe ofthe form with r -~3/4. To cap-

ni ture the decay in the early sweeps, we can look first again

the example (2.1). For simplicity, let X] = \2 = 1,
X0 f2 =_ 0 and x -= fl. Then, for the iteration error,

Theorem 1 Under the model assumptions (2.6), (2.7) we have
and under the smoothness assumption (2.10) we have P0 =4) __

11yulo(o I) a/2)• =1O1. 2z + I

n If now, e.g. f 1 (t) = (1 - e-'), then

c o(z -C 7 -
The actual exponent a in (2.10) depends strongly on the (2z + 1)(z + y)

preparation of initial guess att = 0. If only yo0(0) = 0 Notice that IP°(z)I - C for small Izi and for large Izi
is assumed, then by partial integration we have Jl(z)j _ C7/

POW(z) = l/e-tv0(t)dt. We model the general case in the same way

Ifwe set z = a + if then this implies as a > 0 I- rain{1,- •}, (2.14)

Const and again consider the iteration (2.5). Suppose that we
j•°(z~j I)< - would like to stop the iteration when II1i'lo _< C- Of

course, we expect to see that n depends on I /f and that
If o (z) is analytic at infinity then for small -y we have rapid convergence. We present a

simple-minded approach which shows this qualitatively,

1P0(zI = 0(Iz 1 . while for each special case the computation should be
°(z = O(, J .carried out in more detail. In estimating {[Iy"{{o we break

the integral into two parts:
If we, however, prepare the initial guess so that

1 f= I1-i.(i2 d<'

Dip°(0)=0 for j=0,...,1-l, (2.12) 2 7J I>T

then, performing I partial integrations and assuming as 12 = [<' d.
before that 0° (z) is analytic at infinity, we have 2ir '15T

I ((For I, we require I, .9' f _ E2 which is theIp°(wl = o(0•,,. (2.13)2/ 2 f

case if T := . Now consider all other constants

Thus, integrating this along z = if (or along z = a + if to be fixed (i.e. C, a, b) and think e and -1 as variables.
with a moderate ar > 0 if needed) we obtain We want 12 -

2 , hence we approximate

0 0 H ol <_2C2 (a2 + Ib ,T) 2

EH forall <L+ + b2T 2

607

Here we have a geometric rate and accuracy level e is After discretization and C-transformation we namely get
reached with n - log(1/f) sweeps (assuming the ini-
tial accuracy level 1) provided T2 stays bounded, i.e. (O(W + hb(O)W/' = amP(-) , (3.4)
7/E <const. We summarize whose transfer function

Theorem 2 Assume themodelassumptions(2.6),(2.7) Kh(C = X(O (3.5)
and initial error in the form (2.14). There exist con- a(C) + hb()
stantscl andc2 only depending on C, a, b in (2.7) such gives the essential information about the rate of conver-
that for all small e and y with, / e < cl Ithe a rracy re- gece efor (3. 1), too.
quirement II "I o < e is rached with n - c2 log(1 ft)
sweeps. As shown in [7] the convergence rate is given by

sup IK&(C)I. (3.6)
Ktl'

3. DISCRETIZATION
As we know that p(K(i()) --# 1 for the time continuous
iteration when I(I -- oo, we here want to study (3.6) as

We consider the time discretization of (2.1) with con- a function of time step h.
stant time step h and multistep (k-step) method defined
through its generating polynomials a(C) = k •ti(J and Example 3.1 Let us use backward Euler in (3.1) andb(C) = •t cy•. There are several possibilities to dis choose a = a. Then the discrete equation, where y,, k

cretize the right hand side of the equations. Since it con- p(jh), becomes
tains derivative terms one could use simply the method 1 , y.7)
defined by a((). On the other hand, it can be treated as a i'7 1- - + . -'ji), 1/o =0 VnL (3.7)
source term since it is known from previous iteration. As
we will see, discretization using a multiple of time step h For the first step we get iteration
and thus having a "filtering" effect is particularly interest- 1
ing in our model problem. We denote the discretization 1Y" = h77-h •
of the RHS here defined by a(() = rk 1, &jj where lo
may be positive so that a uses more steps than k. Equa- It converges to zero with the rate j-, which approaches
tions for the iteration error become 1 as h --+ 1. Thus mesh refinement would slow down

k k convergence. The maximum in (3.6) for backward Eu-

2 j' h2E/, 4 +• = a ler can be easily computed as maxe{a(e')/ (a(ei°) +o o -= hb(ei'))} I 1 - h/2, and is reached at 0 = 7r.
h k k (3.1) U

ty2j, + h j~j. ,n--l

e2 d~ + h2,j1+, = + Let us now study Kh(C) given in (3.5). If a = a we can
o 0 -0 write (assuming a(C) 1 0)
=0, 1,.... Y"1/l0 = Y12",0 = 0.

In 12-space (3.1) can be analyzed by using the C-tns- K(= + hb/a(

formation (discrete Laplace tansformation) because of
Parseval's identity. With similar derivation as in [7] we One sees immediately that for instance with trapezoidal
obtain rule IK(()I reaches the value I since b(eI) = 0 for this

method. As the connection between the Laplace variable
(a(() + hb(C)X 1) DI(C) = a(Oc) 2

1 (o (3.2) ifandCis C = eh, wemayconsiderthetermhb/a(esfh)

(a(() + hb(()• 2) D2% = W) P M (3 for small values of (Ch) using the usual order conditions
for multistep methods, see e.g. [2]

where O(C) = E-O:O '(,-j for the sequence {yj}•. As

h- = I(e(h) (P + cpI(ith)P+ + .")

i a + hb) + hb"---- (3.8)where p is the order of the method (a, b) and c the error
it is clearly sufficient to study the simpler (although non- constant. Inverting (3.8) we get
physical) model iteration

on + -(3.3) h(a e - (l+6j(ifh)P+6 2 (ifh)P+'+...). (3.9)

6W8

If a /ý a is used then it may be possible to improve the - -and 61 > 0 since the method is A-stable. We get gain
rate of convergence since K4(C) now becomes in speed from I - h/2 to 1 - h but we lose in the error

constant respectively.Kh(¢) = /a(C)3.0
) + hb/a(C)" Second order methods p = 2

If such a can be chosen that IO(e0h)I is smaller than Here (3.11) and (3.9) become

1 then the absolute value of K: can be diminished. In
addition, i must be such that the order of the multistep -(e(h) = I - -t(h) 2 + --- + i(--y3 (fh)3 + -"h)

method is preserved, i.e. for small values of (fh) a

h a(eh) = -6 3 f
2 h 3

+.-- i(_- + 1 2fh2 +
a 1 + ,yj(if h)P + 02(ifh)+' + (3.11)
a where -63 is nonnegative for A-stable methods. So we

Let us now approximate (3.10) for first order methods. have

First order methods p = I IKh(efh) 12 12'72(h)2 +
I -- 263 2 h3 + 1+ (h 2)

The real and imaginary parts of (3.9) and (3.11) be-
come and IKJ grows from 0 to 1/(I + ch) as C grows from 0

to 1/,Vh provided 72 > 0. Again what happens for largea
a(eIfh) =(1 -- (Ch) 2 + --+i(-11(Qh) + ... values of fdepends on stability region and a. We give
a some examples which show that it is possible to choose
a 2h (eh) = (6 1h+ ..) + i(- +62h + ..) in such a way that I • 1/(I + ch).

Example 3.2 Let us use BDF2 method and 4-step BDF2
Noticethat for A-stable methods 61 must be nonnegative. as the filter: &z(C) = y-a((2)/(2 , where a(() = 32_

So letting c denote a positive constant we can approxi- 2C + - and b(C) (
2 The discrete iteration is now

mate

I +O((Y2)
4) = 1 2 y1 2

S1 + (iqh)12 1 - 2-n)(f h)2 + C)((f h) Y7 = 3/ 2 Y -- +- Y)•-2/2
I + 26 1h+ + 0(h 2) / + +3hy(1 "/4 - -- yj _/ý-1

12- +Yj/4).

1+ ch' It is straightforward to compute that

where the last inequality holds if 61 > 0, '11 - 2-2 < 1•eD)2 = 1a sin2 0
0 and I _ •. What happens for large values of Ea 1 + 4 sin 2O
depends then on stability region and a. For example for
backward Euler (with a = a) we have which implies that 1 4- (e') I _ 1 always and especially

for small (Ch)
1

iKh(e 0h) 1 < +h/2 for all . I•(e")I • I - (Eh) 2 .

a
If one combines the filter a = ((- • C•') with backward We may also compute that
Euler then the constant multiplying h can be improved.
The discrete iteration (3.7) is modified to max 1

1 2+hb/a(e') I+ch

" I= + h -1 + (y,1 - v7-)/2), y = 0 VYL so that we may conclude that

Maximization in (3.6) gives now IKI'(e •t)• I 1 I

max(e -- e)/2, 1
ma '- I + heif T + h' holds for all 0. As without the filter we have at - = h3 /2

and the maximum is obtained at a small value of 0 with 1 1
cosOf • Theconstantsin(3.11) satisfyy2 - 2,n = I+ hb/a(e•() 1 + ch3/2,

609

the acceleration is now of qualitative nature. (i) It was demonstrated at the end of Section 2 that if one
can prepare the initial guess in such a way that its deriva-

Example 3.3 A natural choice for a filter to be used i ith tives are correct up to order I - 1, then we can expect
the trapezoidal rule would be derivative approximation the convergence of the form O(;L) with r ,.- 1/2 + 1/4.
over 3 time steps symmetrically with respect to the point So all one has to do is to "solve" the problem over a tiny
h0 - 1/2): interval and then extend this solution smoothly for larger

13 time values.
•. (•()/ 3= (ii) There are several ways to regularize a "nearly sin-

gular" problem. For the present example a natural trick
where a() = •- 1 and b(C = •(+ 1) for the trape- would be to include an extra capacitor C1 , see Figure 2,
zoidal rule. Here the discrete equation would be in the early iterations and let gradually C1 --+ 0.

1 , (iii) A "tolerance game" has been analyzed in [9] for
7 1 + h/2((1 - h/2)p7..i + (1i,+' - -)/3) "short window - superlinear convergence" and in [81 for

"long window - geometric convergence". The basic idea
One can compute the approximation is to balance the discretization error and the iteration er-

ror while computing. Here this is rather easy as the con-e(e'e) 60 2 + O(01) vergence is slow (i.e. p -1 - h) and as we proceed, the
a step size reductions occur less and less frequently. When

p ; const < 1, the step size reductions take place re-
for small 0 so that this filter would seem to improve con- peatedly and the problem arises whether one can reliably
ergence for small (Qh). Also make decisions on step size reductions without effecting

the actual rate of convergence. This has been analyzed
a 3

I 1,e'o I le"2 + e'o + I _ in [8] in detail.

The actual problem shows up in the interpolation of
However, since Kh(() is here coarse mesh couplings. It has been shown that there are

stable and reliable ways to interpolate at any order. Here
K(C2 -C')/3 we can omit this problem.

C-- 1 +h(C+ 1)/2' Let us first estimate the amount of work needed to solve
we notice that Kh(C) is not bounded as C -- oo. The a model problem with fixed time step h, when the order
reason is that the filter & is here such that when computing of the method is p and we assume the model p - I - h.
the value y s-, y"(hj) we use the value yý-,' from the Let e denote the tolerance we are interested in. Then one
previous iteration. In practice this leads to difficulties in sweep takes h- ,,- (-) 1/P time points. Now, as p
determining the initial values for the sweeps. I - h, we have with h-1 sweeps the error down in 1-

Thus
One may, of course, consider other methods and con- log 1- 1 1
struct filters to them, e.g. Example 3.2. suggests that the V ý • h log ()'/P

filter a(C) = _-a(C 2) /(k would work for BDF methods,
but we have here considered only the A-stable methods sweeps will take the initial error of order 1 down to level

which have order p _< 2.

Total amount of work Wo is proportional to v,/h and thus:

4. ACCELERATION W1' ()2/Plog 1_
E

As the convergence is quite slow, acceleration is impor- Let us compute a similar estimate with the mesh refine-
tant. The following possibilities, at least in in principle, ment. Assume that (e.g.) we use the scale hi = e-).
can be used. As the method is of the order p the discretization error is

proportional to hP and thus with step size h. we iterate
(i) preprocess the inital guess so long that the iteration error gets reduced by the factor
(ii) regularize the problem e-P. As, by then, p ,- 1 - e-j, this means ,-, ej sweeps

and the total work with step size hi is proportional to
(iii) play a game with gradual mesh refinement. pe2j. We get down to tolerance level when h, ,. ,i.e.

610

for N ,,- 1 log 1. Thus the total amount of work, say
W2, satisfies C2

W 2 pe2 NV{l+e- 2 + e-4 +...1

- e 2 f + +

which means that the gain is a factor log / over I I V1 R C1 R3 V3
Wo. This is the same gain as what one obtains in the
geometrically converging case (8].

REFERENCES
Figure 2.

[1] P. Defebve, F. Odeh, A. E. Ruehli, Waveform Tech-
niques, in Circuit Analysis, Simulation and Design,
Part 2, edited by A. E. Ruehli, Elsevier, North-Holland
1987.

12] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary
Differential Equations I, Springer 1987.

[31 B. Leimkuhler, U. Miekkala, 0. Nevanlinna, Wave-
form Relaxation for Linear RC-Circuits, Helsinki Uni-
versity of Technology, Institute of Mathematics, Re-
search Reports A272, November 1989.

[41 E. Lelarasmee, A.E. Ruehli, A.L. Sangiovanni-Vin-
centelli The Waveform Relaxation Method for Time-
Domain Analysis of Large Scale Integrated Circuits,
IEEE Trans. Computer-Aided Design of ICAS, vol.
CAD-i, no.3, pp.131-145, 1982.

[5] U. Miekkala, 0. Nevanlinna, Convergence of Dy-
namic Iteration Methods for Initial Value Problems,
SIAM J. Sci. Stat. Comp., Vol. 8, No. 4, 1987.

[6] U. Miekkala, 0. Nevanlinna, Convergence of Wave-
form Relaxation Method, Proceedings of 1988 IEEE
International Symposium on Circuits and Systems,
Helsinki, June 7-9, 1988, pp. 1643-1646.

[7] U. Miekkala, 0. Nevanlinna, Sets of Convergence and
Stability Regions, BIT 27 (1987), 554-584.

[81 0. Nevanlinna, Power Bounded Prolongations and
Picard-Lindelof Iteration, Helsinki University of
Technology, Institute of Mathematics, Research Re-
ports A271, October 1989.

[91 0. Nevanlinna, Remarks on Picard-Lindelof iteration,
part I, BIT 29 (1989), pp. 328-346, part 11, BIT 29
(1989), pp. 535-562.

[10] J. White, A. Sangiovanni-Vincentelli, Relaxation
Techniques for the Simulation of VLSI Circuits,
Kluwer Academic Publishers, 1987.

611

Partitioning Tradeoffs for Waveform Relaxation
in Transient Analysis Circuit Simulation

Lena Peterson
Sven Mattisson

Department of Applied Electronics
Lund University PO Box 118

S-22100 Lund, SWEDEN
email: lena@tde.lth.se sven@tde.lth.se

Abstract and is not easily parallelizable. Thus, when we want to
use more than 4 - 10 processors efficiently (according

In this paper we present a study of static circuit par- to Amdahl's law) we have to turn to alternative algo-
titioning algorithms for waveform relaxation used for rithms.
circuit simulation on a multicomputer. We investigate One highly promising algorithm, which is used for cir-
the important tradeoff between the irregularity of the cuit simulation and also for other applications, is the
partitioning and the achievable parallelism. Also, the waveform relaxation (WR) method [4, 2]. This algo-
importance of the accuracy in certain steps in the par- rithm requires that the equation system to be solved
titioning calculation has been studied. Purely topolog- is partitioned into subsystems. For circuit simulation,
ical methods are compared with methods that try to to partition the equation system is really the same as
quantitatively estimate the convergence factor of the to partition the circuit to be simulated. The objec-
WR iterations. For digital CMOS circuits we find that tive of this study is to investigate several partition-
only the close neighborhood of a circuit node (nearest ing algorithms and specially their impact on run times
neighbors) influences the value of the worst-case cou- and achievable parallelism for WR run on a multi-
pling. The conductive coupling is the essential part to computer. By multicomputer we mean a concurrent
take into account for the partitioning. For a few circuits message-passing computer that has a local memory
(mostly circuits with cross-coupling) the capacitive cou- space for each processing node.
pling must also be included in the partitioning. It is,
however, hard to find an exact limit for the convergence
factor estimate.

2 Waveform Relaxation

1 Introduction Waveform relaxation is an iterative method that can be

used for performing transient analysis. That is, it is a
It is extremely CPU-time consuming to perform accu- method that can solve the equations formed by applying
rate timing verification for the large integrated circuits Kirchoffs current law (or Kirchoffs voltage low, or both)
that are possible to fabricate today. For many cir- to the description of a circuit. These equations, repre-
cuits the simulation run times have been reduced by senting the circuit dynamics, form a system of ordinary
the use of logic simulators and switch-level simulators. differential equations (ODEs). Such a system can be
However, circuit designers still need circuit simulation partitioned into several subsystems each containing at
programs that do not trade their accuracy for speed, least one ODE. Using the waveform relaxation method,
both to simulate digital and analog circuits. One way one can solve these subsystems with only little interac-
to shortening the circuit simulation run times, without tion between the subsystems. When solving one of the
sacrificing the accuracy, is to use concurrent comput- subsystems all the other ones are relaxed, that is, the so-
ers. The traditional aigorithms used for circuit simu- lutions from these subsystems are assumed to be static.
lation a, include the solving of a large linear system. This way, it is possible to solve for the state variables of
This part of the s~mulation program accounts for 10 - one subsystem over the total simulation interval with-
25 % of the totai runtime, depending on the circuit size, out interacting with the other subsystems. Thus, one

0-8186-2113-3/90/0000/0612$01.00 01990 IEEE 612

start
I $source

equation formulation & Gacroas
circuit partitioning

next timewindow

*oI~ed -- r I1
I 2-_ -~bl. bt-.. bt.7 Fb-9

all subnetworks converged? Figure 2: Electrical examples of coupling. The MOS tran-
yes no -sistor on the left exhibits unidirectional coupling from gate

to source whereas the conductor on the right is an example
last timewindow? of bidirectional coupling.

yes no

I
done the couplings between the resulting subsystems will be

loose. The couplings between neighbor circuit nodes in
Figure 1: Program flow for the waveform relaxation method. the circuits are of two types, unidirectional and bidi-

rectional couplings. In MOS circuits, the unidirectional
couplings are the ones from gate to drain and gate to

obtains functional approximations of all the state vari- source. The main bidirectional couplings are the ones
ables over the simulation interval, that is, waveforms between drain and source. Furthermore, there are ca-
for the state variables. Each global WR iteration con- pacitive bidirectional couplings between the terminals
sists of one such solution round for all the subsystems, of the MOS transistor. Parasitic capacitors and con-
Different iteration schemes may be used for the WR it- ductors, which are due to the the internal structures
erations, the most common ones are Gauss-Seidel and in the integrated circuits, also cause bidirectional cou-
Jacobi iterations. The partitioning of the ODE system pling.
is extremely important for the convergence speed of the
WR method and is thus important for the successful Widening our view to the entire circuit, we find that
use of the method. there is yet another way to characterize coupling - the

coupling may be either local or global. Local coupling is
In a practical implementation of the WR method one bidirectional coupling between neighbor circuit nodes.
does not solve for the total simulation interval in one The local coupling usually stems from the bidirectional
iteration. Such an approach is extremely memory con- coupling as described above, but it could also be due
suming. Furthermore, much effort is spent on comput- to two unidirectional couplings, one in each direction.
ing the end of the waveforms which do not contain any In an MOS circuit the latter type would correspond to
information during the first iterations. Instead, the to- a pair of cross-coupled transistors. Global coupling is
tal simulation interval is divided into shorter time win- due to a closed loop of unidirectional couplings. There
dows. Each such time window is then solved using the is also the less severe case of an non-closed loop of uni-
WR method. In our program, CONCISE, the time win- directional couplings.
dows are precomputed from the input waveforms. This
approach helps the integration algorithm to home in on In this study we have concentrated on the local coupling
discontinuities in the state variable waveforms [5]. The stemming from bidirectional couplings between circuit
program flow for the WR method is shown in Figure 1. nodes. The local coupling due to unidirectional cou-

pling is easily taken care of by a routine that scans the
circuit for cross-coupled transistors.

3 Coupling in an MOS Circuit The global coupling need an entirely different approach

from the local. Usually the closed loops are found by
The objective of the partitioning methods used for the dataflow or graph algorithms [2]. Such a method is not
WR relaxation method is to cluster equations that yet included in our program CONCISE. The nonclosed
are strongly coupled into the same subsystem. Thus, chains of unidirectional couplings are usually taken into

613

account when iteration schemes of Gauss-Seidel type GCr0ss
are used. The equations are then ordered according to
the directions of these unidirectional couplings. For the
experiments described in this paper we have used Jacobi
iterations and thus we have not considered this type of G, G2
coupling.

4 Partitioning Methods
Figure 3: Simple 2-node circuit that exhibits bidirectional

The partitioning methods used for circuit simulation coupling.

applications can be divided into two groups. The
first group contains purely topological methods, that is holds. For such a contraction map the rate of conver-
methods that only take the structure of the circuit into gence is defined as
account when partitioning the circuit. In addition to
the structure of the circuit, the methods in the second]1 - 1*5< 7 1130 - * II,
group also consider quantitative information, for exam- where y0 is the initial waveform and y* is the fixed point
pIe the values and sizes of components in the circuit, of the iteration (that is the solution). Consequently, -
when partitioning the circuit. is called the convergence factor.

Topological Methods For the methods in the second group the goal is to com-
pute an estimate of the resulting convergence factor for

Most of the methods in the first group are rather sim- each pair of circuit nodes if these nodes were limiting
ilar. The idea behind these methods is to cluster cir- for the convergence factor for the total circuit. The two
cuit nodes which at DC have a conducting path be- circuit nodes are clustered if the estimate is higher than
tween them. For purely digital circuits without para- a user-specified threshold value. Usually, the estimate
sitic conductances this partitioning strategy is equiva- of the convergence factor is computed for the worst case
lent to clustering circuit nodes connected by the source circuit state since it impossible to know what the the
and drain of an MOS transistor. Thus, in this paper internal state of the circuit will be during the simula-
we call our version of this method the source-drain par- tion. Thus, these methods are often overly pessimistic.
titioning method. Methods of this DC-path type for A typical-case estimate would probably be a more ap-
the WR algorithm have been described in [2, 3] and propriate for concurrent implementation of WR where
the circuit partitioning method used in the switch-level the price for large subsystems is high. However, such
simulator MOSSIM [1] is also similar. These methods an estimate is hard to calculate since it is impossible to
are motivated by the unidirectionality of the MOS tran- know what the typical state for the circuit is. Thus, we
sistor and are therefore mainly suited for MOS circuits. have remained at the worst-case estimate in this inves-

tigation.

Quantitative Methods 5 Calculation of the

The methods of the second group try to estimate how Convergence Factor Estimate
fast the WR iterations will converge. To explain how
to arrive at such an estimate we must take a closer look Each pair of circuit nodes that exhibit bidirectional cou-

at the WR method. The convergence proofs for the pling may be viewed as a 2x2-system. The coupling of
WR method prove the method to be a contraction map the circuit nodes is modeled as a nonlinear admittance
in waveform space under certain fairly easily-full-filled connecting the circuit nodes. The impact of the rest of
conditions. That is, WR is shown to be a map F in a the circuit at each of the circuit nodes is lumped in the
waveform space Y so that F(Y) E Y and for some norm Norton equivalent admittance, that is the same as the

driving point admittance.

11 F(y) - F(x) II - - x - y 1 for all Z, y E Y For linear systems the convergence constant is the spec-

y' E [0, If tral radius of the iteration matrix. For both the Gauss-

614

Seidel and the Jacobi iteration schemes this expression where the only conductive elements are source-drain
is of the same form, only differing in the square root connections, the coupling when conductance is domi-
present in the Jacobi case. Thus, we get the following nating (at DC) will be identical to one. Subsequently,
expression as an estimate for the coupling the conductance part of the DDN algorithm is iden-

tical to the topological S-D method for circuits where
+ Ya...o, I Yacro 1) the only conductances are those of the MOS transistors.

tcoup =Y1 + Y.ro,, "I Y2 + Y,,cros I" Thus, the DDN method adds the effect of the capacitive

By using the largest possible value for the admittance coupling to the S-D method for such circuits.

between the nodes and the smallest for the two driving
point admittances one obtains a worst-case value for the
convergence factor. 7 The Admittance Matrix

Method
6 The Diagonal Dominance

Norton Method As noted in [11], the DDN algorithm is pessimistic and
may give unnecessarily large subnetworks. We have al-
ready discussed the problem of using the worst-case con-

The above method of estimating the convergence factor vergence factor. One way of finding a more realistic
was first described as the diagonal dominance Norton value for this worst-case coupling is to use the small-
(DDN) partitioning in [11). When one uses a differ- est and largest time step permitted by the simulation
ence approximation for the derivative, the approxima- program for the two extremes. This change has been
tion used in the Jacobian matrix for a linear admittance suggested in [2]. Another approach is to use the intrin-
is a0 sic time constant of the components to find the highest

G + sC z G + -LoC, (2) possible time constant of the signals inside the circuit.

where jý is the derivative operator consisting of h, the We have chosen the latter approach for our admittance

current time step and a0 the zeroth coefficient of the matrix method.

integration formula. At DC (h large), the conductance
part is dominating but at transients (h small) the capac-
itance will dominate the coupling. Thus, in [11] the cou- 8 Computing the Driving Point
pling is estimated for the two extremes, firstly when the Admittance
conductance is totally dominant (frequency is 0), and
secondly when the capacitances are totally dominant
(frequency is high). This way, the capacitive coupling The computationally most expensive part of all meth-
and the capacitive coupling are computed separately as ods that use the convergence factor estimate from equa-

Gacross Gacross tion I is to calculate the driving point admittance val-
7cond - Gacros G 2 + Gacro,, ' (3) ues, that is G, and G2in Figure 1. In [11] a recursive

G, + Gdepth-first algorithm for this calculation is given. For a

and ladder-type circuit this algorithm computes the correct
"rap = C1acro~s 2 Cacro,, " (4) admittance, but for other topologies it only gives an ap-

C1 + Cacros C2 + Cacros (4) proximation since it includes each node only once. The
The conductive and capacitive clusterings are per- authors note in [11] that the recursion will not be deep
formed separately. The compound partitioning is the since the minimum conductance of the source drain con-

union of the both partitionings such that two nodes nection is zero. This observation holds for the purely
that belong to the same subnetwork in either of the two conductive case, but when capacitances are included the
partitionings has to belong to the same subnetwork in recursion will continue throughout the circuit.
the compound partitioning. For the admittance method (AM) we have implemented

As mentioned above, the internode admittance should an algorithm that gives the correct driving admittance
be maximized and the node-to-ground admittance min- for a node in an arbitrary linear circuit. The circuit con-
imized to find the worst-case coupling. Let us consider sidered is the original one with the across-admittance
the pure conductance coupling as in equation (3). The removed and all other connections replaced by their
minimum conductance between source and drain of an minimum admittance. When Y denotes the admittance
MOS transistor is identical to zero. Thus, for circuits matrix formulated by nodal analysis the driving point

615

admittance can be computed as

det(Y) (5) Table 1: Description of the circuits used for the

det(YW) experiments.

___Circuits used for the experiments
where YW is the first-order cofactor of Y with respect circuit trans nodes description
to row and column j [6]. adder 262 105 4-bit-wide slice of an

In our implementation the matrix size can be limited by NMOS multiplier using
only including circuit nodes a limited number of neigh- the Booth algorithm.
bor hops from the original circuit node. We denote the contr 701 355 Control part of signal
resulting methods AMO (0 hops), AMI (1 hop), and so processing chip. This cir-
on to AMoo (the entire circuit). The matrix method cuit is comprised of the
is computationally highly expensive when the matrix is circuits proc, inblock
large but by using this method we can get an impres- and sign.
sion of how important distant circuit nodes are to the dram 793 535 Dynamic RAM with 7-bit
resulting admittance value. address and 3-bit data.

One interesting observation is that by taking more delay 2844 1944 4 shift register delay lines

nodes into account (deeper recursion or larger matrix) of 128 stages each and 16

when computing the driving point admittance this ad- 8-to-1 demultiplexers and

mittance can only increase, not decrease. That is, the 1 2-to-4 demultiplexer.

coupling will always decrease when we look further into inblock 221 119 Mixed parts for the con-

the circuit. Thus, we can start our coupling calcula- troller. A small PLA (3

tion by computing an approximate value for the cou- inputs, 2 outputs), 2 full-

pling. This we do by taking only the admittances con- adders, 5 latches, and 12

nected directly to the node in question into account. AND gates.

If this appro.xiniate coupling is lower than the thresh- mult 3134 1739 8 x 8 multiplier using the
old for clustering a thorough calculation of the driving Booth algorithm.
point admittance is unnecessary. This way the com- pla 1428 170 Pseudo-NMOS PLA with
putational requirements can be lowered both for the 5 inputs, 64 outputs, and
matrix method and the depth-first algorithm. 32 rows.

proc 240 92 Finite state machine us-
ing pseudo-NMOS PLA

9 The Program with 10 inputs, 6 outputs,
and 23 rows. 5 latches for
the state.

The program used for the test, called CONCISE, is reg 1920 1152 Two 64-bit wide shift reg-
a circuit simulator for transient analysis of CMOS isters with 64 latches be-
circuits. It is written in C and uses the Cosmic tween.
Environment/Reactive Kernel message-passing primi- regpla 3348 1322 The circuits reg and pla
tives [10). These primitives support the programming combined.
model where each process has its own memory-space. ram 209 122 4-bit NMOS RAM. De-
This model makes dynamic partitioning and load bal- signed with hot-clock
ancing CPU-time expensive and thus the study was lim- techniques.
ited to static schemes where the partitioning and place- ram2 1153 625 7-bit RAM with 7-bit ad-
ment remain fixed throughout the computation. It is dress and 3-bit data.
important to notice that the requirements on the par- rom 414 240 ROM with 7-bit address
titioning algorithms in this case differ from the "tra- and 3-bit data.
ditional" parallelization where only a few processing sign 240 144 Two 8-bit wide shift reg-
nodes are used. The load balancing considerations be- isters (with parallel load)
come much more difficult when the number of process- with 8 latches between
ing nodes are about the same as the number of circuit them.
nodes. The computer used in the study was a 64-node
Symult s2010.

616

17000 r-

lowoo Table 2: The convergence factor threshold at which the

capacitive partitioning starts merging nodes for various
methods of computing the driving point admittance. DDN

tN2ooo - is the method proposed in [11] and AM is the admittance
matrix method.

1000 Value for " for capacitive partitioning

Soo _ ddn0 ddnoo amO am I am2

300 - adder 0.13 0.12 0.13 0.11 0.11
contr 0.02 0.02 0.02 0.02 0.02
dram 0.08 0.07 0.08 0.08 0.08

1 2 4 8 16 32 64 delay 0.04 0.04 0.04 0.03 0.03

N (number of nodes) inblock 0.02 0.02 0.02 0.02 0.02
mult 0.10 0.09 0.10 0.10 0.10
pla 0.001 0.001 0.001 0.001 0.001

Figure 4: Runs for adder circuit. The partitionings are proc 0.009 0.009 0.009 0.009 0.009

pointwise partitioning (+), source-drain partitioning (X), reg 0.01 0.01 0.01 0.01 0.01

and DDN partitioning depth 0 with 'y 0.1 (). regpla 0.01 0.01 0.01 0.01 0.01

ram 0.09 0.09 0.09 0.09 0.09
4000 ram2 0.07 0.07 0.07 0.07 0.07

rom 0.08 C.07 0.08 0.08 0.08
2000 sign 0.01 0.01 0.01 0.01 0.01

1000

tN 110 Experiments
500

The circuits used in the experiments are all digital MOS
200 circuits. All in all there are 14 circuits. Two of them,

adder and ram, are 4p NMOS circuits that employ hot-
100 .clock techniques [9]. The other twelve test examples are

1 2 4 8 16 32 64 2p CMOS circuits. All fourteen of them come from re-
N (number of nodes) search chips designed either in Lund or at Caltech. The

circuits are described in table 1. The netlists for all

Figure 5: Runs for inblock circuit. The partitionings are the circuits were extracted from the chip layouts by the

pointwise partitioning (+), source-drain partitioning (X), built-in extractor in the chip-design system Magic [8].
and DDN partitioning depth 0 with -t 0.02 (.). This extractor extracts internode capacitances, but not

internode resistances. Furthermore, the extractor does
not extract the size of the source and drain areas of the

5000 - MOS transistors. These areas are needed since they de-
fine the sizes of the source-bulk and drain-bulk diodes.

2000 For our test circuits we have used the same size for all
these diodes.

1000 All the circuits have been simulated using CONCISE
t N with pointwise partitioning (one ODE per subnetwork),

Soo source-drain partitioning, and with the different meth-

ods that also consider the capacitive coupling.
200

100 . Capacitive Coupling
1 2 4 8 16 32 64

N (number of nodes) We would like to investigate the difference between the

coupling values computed by the various methods whichFigure 6: Runs for sign circuit. The partitionings are point- consider the capacitive coupling. To get a picture of the

wise partitioning (+), source-drain partitioning (X), and

DDN partitioning depth 0 with y = 0.01 (0).

617

Table 3: Comparison between pointwise, source-drain(conductive), and DDN(conductive and capacitive) partitioning. The
CPU time is the for the transient analysis part run in 1 node except where stated otherwise.

pointwise source-drain DDN0
circuit CPU iter/ ckt CPU iter/ # of max It CPU iter/ # of max

time wind nds time wind subs size time wind subs size

adder 8987 19.41 105 9550 9.55 50 20 0.07 4890 4.20 26 24
contr 2294 13.12 355 6744 4.07 175 7 0.01 8929 3.57 141 11
delay' 39636 15.43 1944 16886 3.07 632 9 0.04 14908 2.71 600 21
dram 5838 10.0i 535 15223 5.74 118 50 0.07 13211 6.00 116 50
inblock 3659 9.69 119 1399 3.60 67 7 0.02 1389 3.51 66 8
mult 2 138852 18.06 1739 65998 7.12 700 11 0.04 75851 6.54 537 13
pla 2622 4.00 170 2622 4.00 170 1 0.001 5272 4.00 115 2
proc 3949 10.31 92 1888 3.75 68 3 0.009 2649 3.38 62 6
ram 14539 22.79 122 2255 4.07 64 7 0.09 2310 4.04 62 7
ram24 32654 19.47 625 41311 8.50 119 72 0.05 36969 8.00 117 72
reg3 23512 11.80 1152 10438 2.86 325 5 0.01 12432 2.52 197 8
regpla' 72590 19.64 1322 23019 4.58 428 5 0.01 44949 5.30 300 8
rom 12400 19.45 240 4488 8.46 103 8 0.08 4245 7.92 102 8
sign 4431 11.88 144 2263 3.15 40 5 0.01 2896 2.18 10 64
1. CPU time is total for run in 8 nodes.
2. CPU time is total for run in 16 nodes.
3. CPU time is total for run in 4 nodes.
4. CPU time is total for run in 2 nodes.

size of the capacitive couplings we decreased the con- the circuit nodes in these circuits where merging due
vergence factor threshold in small steps (usually 0.01) to capacitive coupling occurred. The exact admittance
until nodes were merged due to the capacitive coupling values where calculated using the admittance matrix
for these various methods. The resulting convergence method with infinite matrix size (that is including all
factor thresholds are shown in Table 2. Comparing the of the circuit), this we call AMoo. The approximate
resulting partitionings from the methods that consider values where computed usiiig the AM method but with
the capacitive couping, we find only small differencies limited matrix size (AMO, AMI, and AM2). In all cases
when we use the same -t. The major differencies that we came within 0.1depth 1 was used. This means one
can be found when different capacitive methods are used needs only include the circuit node itself and its nearest
is due to the - threshold used. Only minor differencies neighbors in the driving point admittance calculation.
are found due to the partitioning method used when
the same threshold is used. Thus, we will only consider
one method when investigating the capacitive coupling Run Times and Convergence Rate
methods compared to the source-drain and pointwise
partitioning methods. We would like to experimentally verify the positive ef-

fects on the convergence rates of the more sophisticated
partitioning methods. There is no way to directly mea-

Computing the Driving Point Admit- sure the convergence rate. However, it is still possible to

tance get an approximate value of the convergence rate from
the mean number of WR iterations needed per window
which is a fairly good estimate of the convergence rate*.

From Table 2 is seems probable that the impact of far- From Table 3 we find that the S-D partitioning increases
away circuit nodes on the calculated coupling is small, the convergence speed with a factor 2-5.5 over pointwise

To further investigate the the impact of such distant tcnr es d haco2.v___

circuit nodes on the calculated coupling we compared *When convergence is slow time windows are split to try to
the exact values for the driving point admittance with improve convergence. Thus, the convergence rate estimate is too

low in these cases. This incorrectness will make the improvementsapproximate values. This we did for the circuits which due to better partitioning methods look smaller than they really

we had found to have severe capacitive coupling and for are.

618

1.000 partitioning. As expected, an increase in convergence

0.500 speed gives a decrease in runtime. The run time is, how-
ever, not always decreased with as large a factor since
the larger subnetworks resulting from source-drain par-
titioning take longer to evaluate than the trivial ones

0.100 from the pointwise partitioning. This effect is even more
0...50.pronounced when the capacitive effect is also taken into

account (DDN method). Then the only substantial irn-
"provement in execution time is for the adder circuit.

0.010

1 2 4 8 16 32 64 Parallelism
N (number of nodes)

In Table 3 we find that for some circuits large subnet-

Figure 7: Parallelism, that is inverted speedup for all the works are obtained when S-D or DDN partitioning is

circuits for pointwise partitioning. The dotted line is the used. The achievable parallelism is severely limited for

theoretical limit, these circuits as can be seen when comparing the dia-
grams in Figures 7, 8, and 9. In these figures we show
curves for all the test circuits together in order to be

1.000 •able to show all the data in limited space. The addition

0.500 of the part that takes the capacitive coupling into ac-
t N count does increase the convergence speed slightly for
__ most of the circuits but the parallelism is reduced due

to large subnetworks in some cases. In Table 3 we find
0.100 " that only for adder does the the inclusion of the capac-

itive partitioning significantly improve the convergence
speed and the execution time. To get a better under-
"standing of the behavior we take a closer look at the

S""-. curves for three of the circuits in Figures 4, 5, and 6.

0.010 We also consult Table 3 to see the convergence rate.
1 2 4 8 16 32 64 For adder we find that the S-D partitioning increases

N (number of nodes) the convergence rate but spoils the parallelism. The ad-

dition of the capacitive part increases the convergence
rate further and reduces the runtime, but of course thc

Figure 8: Inverted speedup, for all the circuits for source-e

drain partitioning. The dotted line is the theoretical limit. parallelism is still poor. It is worth noticing that we had
to try several 7 thresholds to find the one (0.07) which
gives this increase in convergence rate. For inblock

1.000 the conductive part is the important one. The addition
of the capacitive part makes no difference. For sign

0the addition the capacitive part both increases the run-
t N time anl' ruins the parallelism. Due to lack of space we
ti. -have left out the diagrams for the other circuits. These

0.100 diagrams can be found in [7).

0.050

Speedup

0.010 One interesting figure for programs like this one is

1 2 4 8 16 32 64 speedup. The parallelism curves may look discouraging

N (number of nodes) for the more sophisticated partitioning methods. We
have compared CONCISE running the traditional di-
rect circuit simulation method, where all the circuit is

Figure 9: Inverted speedup, for all the circuits for DDN treated as one large subnetwork, with CONCISE run-
partitioning. The dotted line is the theoretical limit. ning the WR method. These comparisons may be seen

619

in Figures 10 and 11. In these diagrams all the execu-
tion times for the WR method are normalized to the
execution time of the the direct method, that is "the
best sequential algorithm". Thus, we find that the S-D
method is not a bad choice even if we could gain even
more if the parallelism was not limited by large subnet-
works for some of the circuits.

5.000

1.000 ---------- ------------ 11 Conclusions and Discussion
0.500

t
N0.100 The WR method using pointwise partitioning converges

__ . "•-..for all our test circuits. However, the convergence is
ti 0.050 slow for several of them. When the source-drain method

S-- - or other methods that partition due to conductive cou-
0.010 - pling is used, the convergence speed is increased for all
0.005 the test circuits. For a few of the circuits the capacitive

coupling is also strong and partitioning that considers

1 2 4 8 16 32 64 capacitive coupling is needed. Thus, we conclude that
N (number of nodes) we need to employ both conductive and capacitive par-

titioning to get a reasonable convergence speed. For

Figure 10: Inverted speedup for CONCISE using the point- some circuits the partitioning will create large subnet-

wise partitioning normalized to the execution time for CON- works, which severely reduce the achievable parallelism.
CISE's direct method (the horizontal dotted line). The For some circuits dynamic partitioning, which can use
sloping dotted line is the ideal parallelization of the direct information about the current state of the circuit, will
method. help in reducing the size of large subnetworks, but for

others it will not. Thus, wc need to be able to assign
more than one node to perform the calculations for a

5.000 .large subnetwork.

1.000 ------------ ---------- Furthermore, the experiments show the difficulty in
0.500 finding one fixed convergence constant threshold that is

the optimal for all circuits. It is obvious, however, that
t N0. 10 0 the admittance calculation need not be extended fur-
ti 0.050 ther than one hop, that is, it should include the circuit

... node in question and its neighbor circuit nodes. Thus,
0.010 - one can skip the deep recursions in the admittance cal-
0.005 culations and use the saved CPU-time for trying sev-

eral threshold values when considering the capacitive
0.0011. coupling. This can prove useful when running on mul-

l 2 4 8 16 32 64 ticomputers where an iextremely large subnetwork may
N (number of nodes) entirely spoil the achievable parallelism.

Figure I1: Inverted speedup for CONCISE using the source-
drain partitioning normalized to the execution time for
CONCISE's direct method (the horizontal dotted line). Acknowledgements

We would like to thank Chuck Seitz for his continuous
encouragement and support of this work. Thanks also
to Wen-King Su for his help in dealing with the Sy-
mult s2010. This research is supported in part by the
Swedish Board of Technical Development (STU) under
grant Dnr 87-3768 and in part by the Defense Advanced
Research Projects Agency, ARPA Order number 6202,

620

and monitored by the Office of Naval Research under [11] J. White and A. Sangiovanni-Vincentelli, Relax-
contract number N00014-87-K-0745. ation Techniques for the Simulation of VLSI Cir-

cuits. Boston Dordrecht Lancaster: Kluwer Aca-
References demic Publishers, 1987.

[1] R. E. Bryant, "A switch-level model and simu-
lator for MOS digital systems," Technical report
5065:TR:83, Computer Science Department, Cali-
fornia Institute of Technology, Pasadena, 1984.

[2] P. Debefve, F. Odeh, and A. E. Ruehli, Circuit
Analysis, Simulation and Design, vol. 3 part 2 of
Advances in CAD for VLSI, ch. 8 Waveform Tech-
niques. Amsterdam, the Netherlands: Elsevier Sci-
ence Publishers, 1988.

[3] D. Dumlug6l, The segmented waveform relaxation
method for mixed-mode simulation of digital MOS
VLSI circuits. PhD thesis, Katholieke Universiteit
Leuven, Leuven Belgium, 1986.

[4] E. Lelarasmee, A. E. Ruehli, and A. L.
Sangiovanni-Vincentelli, "The waveform relaxation
method for time-domain analysis of large scale inte-
grated circuits," IEEE Transactions of Computer-
Aided Design of Integrated Circuits and Systems,
vol. CAD-i, pp. 131-145, July 1982.

[5] S. Mattisson, CONCISE a Concurrent Circuit
Simulation Program. PhD thesis, Department of
Applied Electronics, Lund Institute of Technology,
Lund, 1986. LUTEDX/TETE-1003/1-116 (1986).

[6] G. Moschytz, Linear Integrated Networks, funda-
mentals. New York: Van Nostrand Reinhold, 1975.

[7] L. Peterson and S. Mattisson, "A Study of Cir-
cuit Partitioning Algorithms for Concurrent Wave-
form Relaxation," Tech. Rep. LUTEDX TETE-
7040 1-88 (1989), Department of Applied Electron-
ics, Lund University, Lund, 1989.

[8] W. S. Scott, R. N. Mayo, G. Hamachi, and J. K.
Ousterhout, "1986 VLSI tools: Still more works by
the original artists," Tech. Rep. UCB/USD 86/272,
Computer Science Division (EECS), University of
California, Berkeley, December 1985.

[9] C. L. Seitz, A. H. Frey, S. Mattisson, S. D. Rabin,
D. A. Speck, and J. L. A. van de Snepscheut, "Hot-
clock nmos," in 1985 Chapel Hill Conference on
Very Large Scale Integration, pp. 1-17, 1985.

[101 C. L. Seitz, J. Seizovic, and W.-K. Su, "The C
programmer's abbreviated guide to multicomputer
programming," Tech. Rep. CS-TR-88-01, Com-
puter Science Department, California Institute of
Technology, 1988. Revised May 1989.

621

Distributed Model Evaluation
for the Waveform Relaxation Method

Leif Olsson
Lena Peterson
Sven Mattisson

Department of Applied Electronics
Lund University PO Box 118

S-22100 Lund, SWEDEN
email: leif@tde.lth.se lena@tde.lth.se sven@tde.lth.se

Abstract

The most time consuming operation in a circuit simu-
lation program is the model evaluation, i.e. the compu-
tation of the coefficients for the Jacobian matrix. Since
these coefficients only depend on the node voltages and start
the derivative operator, they can easily be computed
in parallel. In this study some methods for computing
the Jacobian matrix are discussed. The applicability of network
the methods with the concurrent waveform relaxation formulation
method is also discussed. New results on the complex- iý
ity of row-wise and column-wise model evaluation, and i
related stability problems are presented. Experimen-
tal results, with respect to efficiency and stability of i

the coefficient evaluation as well as parallel execution, linearization
are given. These experiments have been carried out
with the CONCISE circuit simulation program on a Sy- solve matrix
mult s2010 and on a Sequent Symmetry. equation

1 Introduction root found? no --yes

A circuit simulation program solves a system of nonlin-I
ear ordinary differential equations (ODEs). Each ODE integration done? no

is derived by means of nodal analysis. Thus, the sum yes
of the device currents entering and leaving each circuit
node is equated to zero. Each current contribution is stop
computed by evaluating device model equations. By
using the node voltages one can compute current con- Figure 1: Program flow for transient analysis.
tributions from resistors, capacitors, transistors etc.

The system of nonlinear ODEs is traditionally solved by
means of a difference approximation of the time deriva-
tive, Newton-Raphson iterations for linearization, and
LU-factorization for solving the matrix equation in the
innermost loop. This scheme is often referred to as a

622O-6186-2113-3/9010000/0622$O1.OO © 1990 IEEE

start start

formulation of formulation of
equations equations

next time window next time window
solved in parallel solved in pa:!rallel-,,

- - --- --- ------ --- --- --- ---

...-.-.---.-

all circ es one? no...... -..

all circuit enoesone
yes

last time window? no
yes last time window? no

yes
done

done
Figure 2: Program flow for the waveform relaxation method. Figure 3: Program flow for the hierarchical waveform relax-

ation method.

direct method or a method with global time-step [6], rate of the waveform iterations and the size of the sub-
see figure 1. systems as slow convergence may lead to excessively

Concurrent circuit simulation programs often use an it- long execution times and large subsystems limits the
erative method to split the simulation task into sub- concurrency.
tasks, or subsystems. With such a splitting, all sub- Ideally a subsystem should correspond to one circuit
systems become decoupled during an iteration and can equation, that is a circuit node. In this case, as have
all be solved in parallel. After each iteration, results been demonstrated with the circuit simulation program
are exchanged between subsystems. The iterations con- CONCISE [2, 3], the available speedup is a fair fraction
tinue until consecutive results are sufficiently close, see of the number of circuit nodes. However, if some circuit
figure 2. nodes are strongly coupled, the corresponding equations

Compared to the direct method, the iterative method have to be solved together with a direct method or con-

solves the system many times, one for each iteration. vergence will be slow [4]. When some smaller subsys-

However, with the iterative method the matrix inversion tems are gathered into one larger subsystem, an equa-

becomes very simple and some CPU-time is gained this tion block, such a subsystem may become much larger

way. A further enhancement of the iterative method than the others. This will result in load imbalance as

is to use waveform relaxations rather than time-point only one computing node is used per equation block.

relaxations [1]. With the former method all iterations It is not always possible to avoid large subsystems. In
are performed on the functional level, that is each ODE order to prevent a large subsystem to become a bottle-
subsystem is solved for the entire simulation interval, neck, it is desirable to be able to allocate several com-
or a time window, during an iteration. The result of puting nodes to the solution of such a large subsystem,
such an iteration is a set of node voltage waveforms, see figure 3. This problem is similar to the problem of
Within each subsystem the integration method can op- solving the entire ODE system with a concurrent direct
timize the time steps for its set of ODEs which saves method. The difference is that the largest subsystem
CPU-time. Thus the waveform relaxation method is a typically is much smaller than the entire system if the
multirate integration method. system itself is large. As have been pointed out ear-

lier [3], there is much less concurrency in a distributed
The combination of multirate integration and simple direct method compared to the waveform relaxation
matrix inversion makes the iterative method compara- method. However, for solving subtasks a distributed
ble in performance to the direct method [4]. In addi- direct method may be attractive.
tion it is fairly straightforward to modify the waveform
relaxation method to run on a multicomputer [2]. How- When augmenting the concurrent waveform relaxation
ever, special attention has to be paid to the convergence method to use two levels of concurrency - parallel evalu-

623

ation of subsystems and parallel evaluation within sub- Then we define m as the number of nonzero entries
systems - one must address the partitioning problem as in the Jacobian matrix per row. As devices may be
well as decide how much of the direct subsystem solver connected in parallel it is clear that m < d.
should be distributed. This study deals with the lat- For electrical circuits, each device only has a limited
ter problem, the first problem will be the subject of a
future study. Furthermore, as we only consider subsys- nme of term i thermoegmor nodestemsof imied ize sa belw 10 euatons weare are only connected with a few neighbor nodes - local
tents of limited size, say below 100 equations, we are interaction. Thus the Jacobian is typically very sparse,
primarily interested in an efficient device model eval- and b is in the range of 3 - 5 for large subsystems. It
uation scheme and not a distributed LU-factorization also follows that k is proportional to n.
algorithm.

2 Computing the Jacobian Row-wise calculation

Matrix Let Crow be the number of device model evaluations
for the row-wise calculation used in CONCISE. Then

When a subsystem, or block, is evaluated, the compu- we need
tation of the Jacobian matrix coefficients dominates the
CPU usage. By parallelizing the device model evalua- Crow = n(1 + m)d (2)
tion, one may obtain a better overall speedup. model evaluations to compute the Jacobian matrix.

The coefficients of the Jacobian are partial derivatives First n - d evaluations to calculate the nominal values
of node currents (function values) with respect to node for all the circuit nodes. Then, to get all the partial
voltages. These derivatives can be computed by means derivatives we need to displace each of the other circuit
of a difference approximation, with row-wise or column- node voltages for each row and recalculate them. Each
wise perturbations, or they can be derived analytically. such calculation costs d and there are m of them per

row and we have n rows.
When the function values (node currents) stem from
a multivalued function, that is, when all function val- Co,0 = n(1 + m)d
ues are computed in a single routine, the column-wise
perturbation requires fewer function calls than the row-
wise method. The former is 0(n) and the later is 0(n 2). The above expression can be simplified by inserting the

However, in a circuit simulation program, the Jacobian definition of d and using the worst-case value for rn

matrix is derived by computing device transfer admit- kb kb kb
tances. Thus, the coefficients are computed by summing Crow < n(1 + -)-- = kb(1 + -) (3)
contributions from devices. If a single coefficient is to
be computed, only the devices connected to the circuit
node corresponding to the coefficient in question need Column-wise calculation
to be evaluated. Thus, row-wise perturbation cannot
be discarded without further analysis. With a general column-wise calculation method, the

number of device evaluations becomesDefinitions and derivations
Croi = k(1 +n). (4)

Let n be the rank of the Jacobian matrix, that is the
number of circuit nodes in a particular subsystem. Also, First k device evaluations are performed to get the nora-
let k be the number of devices connected to circuit nodes inal values. Then we need one function evaluation per
in this particular subsystem. Finally, let b be the aver- circuit node (n) to get the displaced values for the par-
age number of terminals each device has connected to tial derivatives. For each of these function evaluations
other circuit nodes inside the subsystem. we need k device evaluations.

From these three basic parameters we can derive two However, to get each displaced circuit node value we
additional interesting characteristics. First we define only need to evaluate the components which are con-
the density d, that is the average number of devices per nected directly to the circuit node in question and to
circuit node, as its neighbor circuit nodes*. Thus, firstly we get n times

kb *The neighbor devices contribute to the totl current in the

d = -n. (1) present node.

624

the cost for each circuit node. Secondly, for each circuit Circuit Row Col An
node we take all its neighbors, m - 1, and evaluate all
their device models, which are d each. This is obviously #N-R 565 574 574
the worst case since some of these components gener- jc.two #t-p 67 65 65
ally are the same and these components only need to rank = 7 CPU (s) 6.6 6.9 5.1
be evaluated once. In addition to these components we
also need to evaluate the components which only con- #N-R 619 619 649
tribute to the diagonal for the circuit node in question. two #t-p 82 82 80
The number of these "diagonal-only" elements per cir- rank = 7 CPU (s) 24.4 21.7 15.2
cuit node is called j, with j _< d - m. Thus, we get a
worst-case expression for the number of circuit evalua- #N-R 649 649 643
tions in this node as jc..add #t-p 76 76 75

rank = 105 CPU (s) 388 485 203
C~,= k + ((m - 1)d +j) (5)

#N-R 878 884 2016
After insertion of the worst-case value for j and simpli- add #t-p 120 128 136
fication we get rank =106 CPU (s) 2449 2219 1899

Cool < k + nm(d - 1) (6) Table 1: Jacobian coefficient computation method
comparison

Comparison of row-wise and column-wise Experimental comparison
schemes

The row-wise and column-wise perturbation methods
As previously mentioned an electrical device only has a foroefficent ev luation h b t doCs

small number of terminals. Thus, a device typically has whr co mparion wase in a in COmuIng
I where the comparison was done in a single computing

I-3 ungrounded terminals, and consequently there are node On a variety of circuits, both methods perform
2-3 three devices per circuit node. By letting the num- roughly the same, see table 1.
ber of devices depend on the number of circuit nodes,

k = an, we can compare Crow with Col. Thus, by Differences between the methods in terms of Newton-
using the worst-case expressions for Crow and C,., we Raphson iterations and time-points are due to the
get fact that the perturbation is computed row-wise and

C~0 _ n((ab)2 + a(l - b)) _column-wise, yielding slightly different Jacobian matri-
_ o _ __ _+_ -_ _)) ces.

crow n((ab)2 + ab) It is clear from the experimental data, that row-wise

= 1 b(1 (7) and column-wise coefficient evaluation perform roughly
b(1 + ab) the same. The row-wise evaluation scheme has a great

advantage in that the data structure is much simpler.
As 26»> 1 we can simplify this further to With this method it is only necessary to know which

Co1 2 devices are connected to each node, and not to keep

cr 11 ab (8) track of neighbor nodes as in the column-wise scheme.

Both coefficient evaluation schemes are now 0(n).
However, it is clear that the column-wise perturba- 3 Stability problems
tion scheme still requires fewer device model evalua-
tions, typically 70 - 85% of the number of row-wise Because of symmetry in some device models, a differ-
evaluations. On the other hand, with the column-wise ence approximation of the device derivatives sometimes
method, each device model evaluation is more complex yields a singular device Jacobiant. This is, for exam-
as all terminal currents must be computed. With the pie, true for the MOS transistor. The MOS device is
row-wise scheme, only the currents for the terminal con- symmetrical with respect to drain and source. For an
nected to the node in question need to be evaluated, n-channel device the most positive, highest voltage, one
Thus, the performance of both methods should be com-
parable. t Or near singular because of the limited numerical accuracy.

625

Circuit Row Col An CPU (s) Number of coeff. eval.
Circuit rank 1 2 4 8

fifo2 #N-R 6758 7124 9551 add 106 4500 2380 1300 1140
#t-p 2254 2403 1975 bufhot 8 80.0 45.0 35.7 37.8

rank=136 CPU (s) 80000 106000 3730 dflip 19 280 147 83.1 83.5

jc-add 105 1540 981 982 987

Table 2: Convergence for the H62 circuit jc.dflip 19 40.6 28.3 28.8 29.8
jc-ram 122 1460 1150 1160 1160
jctwo 7 33.5 27.2 28.2 30.1

Circuit Row Col An

Table 4: Run time with distributed Jacobian computationfifo2 #rej N-R [30156 45383 135

#rej t-p 1212 1827 15
device is evaluated once for each entry in the Jacobian,
and once for each entry in the right hand side of the
equation system. Thus, more, and smaller, tasks are
available for parallel evaluation with the perturbation

of the drain and the source terminals becomes the "de methods.

facto" drain terminal. Thus, if the drain to source volt- In the above tables a column for analytical derivatives
age is smaller than the perturbation in the difference has been added. Although the number of device evalua-
approximation, the source and drain of the device may tions is smaller than for the other methods, the required
change place during the derivative computation. When CPU-time is not much less. This is due to the fact that
the terminals are changed, the same equations are used one device evaluation is much more complex than with
for both the source and the drain, yielding a singular the other schemes. In fact, for the MOS device the code
device Jacobian. In the scalar case, when the rank of is 5-10 times longer with analytical derivatives. Thus
the Jacobian is I and only one device terminal is eval- numerical derivation would be preferable if the stability
uated, the symmetry of the device causes no problem. problems mentioned above could be avoided.

This stability problem has been experimentally verified A second problem with an analytical derivative compu-
on a CMOS circuit. In table 2 results are shown from tation is the fact that the results of the device evalua-
a run with a test circuit causing sever problems for tions have to be communicated in messages containing
both perturbation methods. The number of Newton- the entire device Jacobian. This Jacobian can have a
Raphson iterations and time-points are comparable, but rank from one to four for electrical circuits, and much
the CPU-times differ, higher for chemical "devices" [5]. Since the packi.g and

In table 2, the problem only shows up in the CPU-time unpacking of this data adds to the sequential fraction [3]
column. By tabulating the rejected number of Newton- of the subsystem evaluation, this scheme appears to be

Raphson iterations and time-points, table 3, and corn- less attractive than, especially, the row-wise perturba-
paring these with the number of accepted iterations and tion methodl.
steps, the stability problems are more obvious.

It is interesting to note that, in spite of the problems
with a near singular Jacobian, the waveform relaxation 4 Experimental results and
still converged, if slowly, further work

Analytical derivatives Row-wise difference approximation of the subsystem
Jacobian matrix has been implemented in CONCISE.

Analytical derivatives require the fewest number of de- This version does not include the entire hierarchical

vice model evaluations, but make device uquations more waveform relaxation as depicted in figure 3 as we can-

complex and the unpacking of data more difficult. The not partition circuits hierarchically presently. The test

number of parallelizable operations is also smaller com- program is however ready to perform a hierarchical sim-

pared to the perturbation methods. With analytical ulation once the partitioning part is ready.

derivatives, a device is evaluated only once per iter- I Given that the stability problems of the perturbation method
ation. With row-wise or column-wise computation, a can be eliminated.

626

1.0 Results of runs on a Symult s2010 are shown in table 4.
The table shows the CPU-time for various test circuits

tli when 1,2,4, and, 8 computing nodes have been used for
evaluating the Jacobian matrix.

"The data in table 4 and figure 4 shows that a speedup
of four can be achieved. This result is with accurate de-
vice models (complex MOS model and diffusion diodes),
with very simple models (simple MOS model and lin-
ear capacitors, circuits with jc. prefix) the speedup is
limited to less than a factor of two. This confirms pre-

0.1 , dictions in, e.g. [3].

1 2 4 8 The speedup does not depend strongly on the rank of
N (number of nodes) the Jacobian, but more on what device models are be-

ing used. Thus, the speedup is limited by coefficient
Figure 4: Inverted speedup with distributed Jaobian cor- unpacking, matrix inversion, and the numerical inte-
putation gration in this case.

To verify this, the node voltage prediction, companion
source computation, and integration error estimation

CPU (s) CPU (s) Number of coeff. eval. was also distributed. These computations were spread
Circuit rank 1 2 4 8 out evenly over all the evaluation nodes. Thus a node

add 106 3680 1940 1090 810 program is responsible for solving the matrix equation,
bufhot 8 60.0 38.6 31.3 32.2 sending tasks to the device model evaluation nodes, and

dflip 19 274 157 95.1 71.2 for controlling the integration algorithm.
ram 123 2480 1350 854 667
two 7 24.3 15.3 12.0 1 With this approach data distribution is rather simple,

7 406 333 but all nodes need to exchange node voltages and com-
jc.add 105 963 579 1406 343 panion source values. The local truncation error es-
jcdram 122 860 539 434 440 timations are sent to the computing node responsible
jctwo 7 19.7 1 4.5 14.4 4 for the integration error control and step length com-

No result as rank < number of nodes putation. A more efficient Jacobian matrix unpacking
scheme, using precomputed pointers rather than search
methods was also employed.

Table 5: Run time with distributed integration algorithm Somewhat better speedups are achieved by these mod-
and Jacobian computation ifications as can be seen in table 5 and figure 5. With

the dfHip circuit, some 15% of the total CPU-time of
1.0 the node program was spent doing matrix inversions

!and another 15% to compute the Newton-Raphson iter-
ation errors. Approximately 30% of the CPU-time was
spent on packing and unpacking data. At this stage it
seems to be more important to minimize the amount of
data that has to be sent around than to distribute the
LU-factorization.

"Our results show that it is possible to combine a dis-
tributed direct ODE-solver and the waveform relaxation
method. The speedup from the subsystem solver is not

0.1 I as good as for the waveform relaxation part. Thus,
1 2 4 8 although being useful, the direct method is final solu-

N (number of nodes) tion to the waveform relaxation load imbalance prob-
lem. Dynamic partitioning is probably needed to fur-

Figure 5: Inverted speedup with distributed integration al- ther enhance performance.
gorithm and Jacobian computation

627

References

[1] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-
Vincentelli, "The Waveform Relaxation Method
for Time-Domain Analysis of Large Scale Inte-
grated Circuits," IEEE Transactions of Computer-
Aided Design of Integrated Circuits and Systems,
vol. CAD-i, pp. 131-145, July 1982.

[2] S. Mattisson, CONCISE a Concurrent Circuit Sim-
ulation Program. PhD thesis, Department of Ap-
plied Electronics, Lund University, Lund, 1986.

[31 S. Mattisson, L. Peterson, A. Skjellum, and C. L.
Seitz, "Circuit Simulation on a Hypercube," in The
Fourth Conference on Hypercube Concurrent Com-
puters and Applications, March 1989.

[4] L. Peterson and S. Mattisson, "Partitioning Trade-
offs for Waveform Relaxation in Transient Analysis
Circuit Simulation," in The Fifth Distributed Mem-
ory Computing Conference, April 1990.

[5] A. Skjellum, M. Morari, and S. Mattisson, "Wave-
form Relaxation for Concurrent Dynamic Simula-
tion of Distillation Columns," in Proceedings of the
Third Conference on Hypercube Concurrent Com-
puters and Applications, Pasadena, ACM, January
1988.

[6] J. Vlach and K. Singhal, Computer Methods for Cir-
cuit Analysis and Design. New York: Van Nostrand
Reinhold, 1983.

628

