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Preface

The purpose of this study was to develop a two-dimensional

general triangle linear characteristic spatial quadrature for discrete

ordinates neutral particle transport. This quadrature will increase the

analyst's capability to model problems with complex geometry. This

method should easily extend to three dimensions.

This work involved extensive theoretical development and

computer modeling. Triangular cell conservation relationships were

derived, a general triangle discrete ordinates computer algorithm was

developed and implemented, and the triangle linear characteristic spatial

quadrature was derived and transformed into computational form.

In this development I have had a great deal of help from others. I

would first and foremost like to thank my faculty advisor, Dr. Kirk A.

Mathews, for his help and great insight and for suggesting the problem

and basic approach. I would like to thank my committee for their time

and advice during this effort. I would also like to thank Wolfram

Research Inc. whose development of the software package Mathematica

was invaluable to this research. Finally, I would like to thank my wife,

Laurie, for her compassion on those long nights when I was a slave to my

computer terminal and my children, Jeremy and Christopher, for their

sacrifice when dad just couldn't be there.

Dennis J. Miller
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Abstract

A new spatial quadrature for tl.e discrete ordinates method for an

arbitrary mesh of triangular cells is derived and compared to the

rectangular cell linear characteristic spatial quadrature. The triangular

mesh is more flexible, allowing curved surfaces and off-axis angles to be

approximated with many fewer spatial cells. The method is consistently

more accurate than rectangular linear characteristic on example

problenms tested here. Arbitrary orientation and size of the triangles

allows non-patterned meshes to be developed which appears to

ameliorate numerical diffusion. Linear characteristic and arbitrary

triangle meshes are a desirable alternative to linear characteristic and

square meshes on many problems.

The general triangle linear characteristic spatial quadrature

achieves nearly the same asymptotic rate of convergence (to the same

result) as rectangular linear characteristic on Lathrop's problem. Mesh

sensitivity measurements indicate that large variations in triangle cell

vertex locations produce less than 1.0 percent variation in results. Test

cases included a rectangular region with a diagonal vacuum duct, and

cylindrical source region with various rotated rings of annular segmented

reflectors. The triangle linear characteristic quadrature is more cost

effective on these problems achieving a relative error of less than 1.0

percent with a factor of anywhere from three to more than a hundred

fewer spatial cells, with less than three times the computational cost per

spatial cell. This spatial cell savings should increase the domain of

practical problems for which the discrete ordinates method is usable.
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LINEAR CHARACTERISTIC SPATIAL QUADRATURE FOR

DISCRETE ORDINATES NEUTRAL PARTICLE TRANSPORT

ON ARBITRARY TRIANGLES

I. Introduction

Rectangle based spatial quadratures are used widely because of

the simplicity of rectangle mesh generation. This simplicity allows a

great deal of flexibility in spatial quadrature development. However,

problem shapes, such as curvilinear boundaries, provide a great deal of

difficulty for rectangular meshes. Rectangle mesh refinement

requirements may be determined by geometry concerns and not by

particle transport. Curvilinear spatial quadratures are an alternative for

some problems. but the complexity involved in their development greatly

limits the types of approximations that can be used. Arbitrary triangle

meshes can approximate nearly any curvilinear boundary with many

fewer cells than rectangle meshes and with less complexity and more

general applicability than curvilinear methods.

The research reported here has developed and tested a new

numerical method for solving the Boltzmann neutral particle transport

equation: the general triangle linear characteristic spatial quadrature

(two-dimensional Cartesian geometry).

1



A. Background

1. Neutral Particle Boltzmann Transport Equation

Neutral particle transport is controlled by a balance equation

known as the Boltzmann transport equation. This equation gives the

neutral particle angular flux, W, at any point in seven-dimensional phase

space. The angular flux is a function of position (F), energy (E) or speed

(v), time (t), and direction of travel (b). The Boltzmann equation is an

integro-differential equation and has the following form

Lp(F, f, E,t) =/-W(F,fl',E',t) + Sxr(if,2,E,t), (1)

where L is known as the streaming and collision operator and accounts

for particle losses from the phase element. The L operator accounts for

the time dependent change in flux, the loss of particles due to streaming,

and scatter/absorption losses. The operator L is given by

L + + . (2)

The integral source operator H accounts for scattering sources into

the phase element, fission sources, and flux independent sources. H is

given by

H = [f dE'J d.C) o,.(i, E' -+ E, h'. h]+ XE (1 -,~ hdfl'f dE'vaf (F, E')](3)

where

1) is a unit vector in the direction of particle motion.

as(,E' --+ E, h'. fl)dE d.Q is the probability per unit path length

that particles at position i with energy E

2



traveling in direction 1' will scatter into

energies in dE about E and into directions of

motion in dMQ about h.

Z(E) vaf(F, E') dE M is the probable of number particles emitted at

position F with energies in dE about E and

directions in dM about h per unit path length

of travel of particles of energy E'.

SFT(i;,, E, t) dE df is the emission rate density of particles from

sources that are independent of the flux distribution

emitted at position F with energies in dE about E and

directions in dfl about h1.

Spatial quadrature development does not require the complexity of

equation (1). The Boltzmann transport equation is simplified using the

following assumptions:

1) the energy distribution can be represented by one energy group

(monoenergetic),

2) the problem is in steady state,

3) particle scatter and sources are isotropic,

4) two-dimensional geometry, and

5) no fission sources.

Using these assumptions, equation (1) simplifies to

•. ~v (•,1•) + ) •,(v)(•,L) = ()(Q)+ sEXT(F). (4)

The scalar flux, 0, is related to the angular flux, W, by

(F)= f (dQ Vh) (5)

and the particle current, J, is related to W by

3



Angular flux by itself is not usually of interest. However when angular

flux is integrated over angle, scalar flux and the vector current j can be

produced. Scalar fluxes are needed to determine reaction rates such as

fission and neutron activation rates. Vector currents are needed to

determine leakage rates through boundaries or to track region to region

particle movements.

Closed-form analytic solutions to equation (1) are known only in

very limited cases. As a result, solutions are obtained by numerical

means such as discrete ordinates or Monte Carlo methods.

2. Discrete Ordinates

The discrete ordinates method is a powerful but flexible numerical

technique for obtaining global solutions to the neutral particle

Boltzmann transport equation. This technique has evolved over several

generations. Discrete ordinates focuses on separate treatment of angular

and spatial variables, approximating each discretely by means of a

numerical quadrature. This treatment provides great flexibility in the

types of approximations used.

Angular dependence is approximated using a set of discrete

directions (thus the name discrete ordinates). Scalar flux is obtained by

performing a weighted sum on angular flux components for these

discrete directions. Spatial dependence is approximated through spatial

differencing or with a quadrature rule. The spatial quadrature effectively

performs an inversion of the operator L of equation (1). A great deal of

4



research has centered on finding spatial differencing techniques that

provide improved speed, accuracy, and stability.

The discrete ordinates method has evolved over the past forty

years, and has become one of the most widely used neutron transport

methods available. It is simple to implement and allows for complexities

such as anisotropic particle scatter and multiple energy group structure.

Its independent treatment of space and angle provide flexibility to tailor

quadratures and differencing to achieve desired speed and accuracy.

Use of discrete ordinates has many advantages but the technique

also suffers from some numeric drawbacks. Discretizing energy, space,

time, and position may require prohibitively large storage requirements.

As a result, the ability to use coarsened spatial meshes is a desired trait.

This dictates development of highly accurate spatial differencing

schemes, as well as development of spatial quadratures that can take

advantage of problem geometries.

Discretizing any variable inevitably produces errors in truncation.

When the errors occur randomly, they reduce the accuracy of the

method. However, when they are systematic in nature they can produce

qualitatively incorrect results. Systematic errors that result from the

discretization of angle are known as "ray effects." Another systematic

error seen in discrete ordinates is known as "numerical diffusion." This

type of error results from the inaccuracies associated with the spatial

quadrature. Ray effects and numerical diffusion can be mitigated to

some extent by refining the spatial and angular meshes.

5



B. Problem Statement

The purpose of this research is to derive, develop, implement, and

evaluate the performance of a linear characteristic spatial quadrature on

an arbitrary triangle. This effort will include choosing the appropriate

coordinate frame, development of conservation relationships, and

development of a triangle spatial mesh discrete ordinates algorithm. This

algorithm will be compatible with the data structure required to handle

triangles with arbitrary shape, orientation, and size, and with particles

streaming in any direction.

C. Scope

The scope of this research is to develop and demonstrate the

triangular linear characteristic spatial quadrature on a general triangle

mesh. This linear characteristic quadrature will be valid for all triangle

orientations and will match zeroth and first order integral moments

exactly. The research will be restricted to two spatial dimensions. In

addition, the following assumptions will be made:

1) flux-independent sources will be uniformly distributed by

region and isotropic,

2) scattering will be isotropic in the lab frame,

3) the medium will be uniform, isotropic, and non-multiplying (no

fission sources),

4) energy dependence will be simplified to one-group

(monoenergetic), and

5) time dependence will be steady state.

6



Since arbitrary triangle meshes destroy the rectangle mesh discrete
ordinates data structure (by not having rows and columns of cells), an

alternative transport algorithm will be presented. A push-down stack

process will replace the row/column cell-to-cell walk that is normally

used. Although the inner structure of the general triangle discrete

ordinates algorithm will change, the extensions of this algorithm to

multi-group energy dependence, time dependence, and anisotropic

scatter would be substantially the same as for its rectangular mesh

counterpart.

D. Sequence of Presentation

Chapter II reviews previous work in two-dimensional Cartesian

geometry. The Boltzmann transport equation is presented and discrete

ordinates methods are discussed. A brief discussion of common angular

quadratures is presented. In addition, common rectangular cell spatial

quadratures are reviewed.

Chapter III presents development specific to the general triangle.

Choice of coordinate frames is discussed. The triangle unit cell is defined

and the case 0 triangle conservation relationships are presented.

General triangle spatial quadratures are discussed. The general triangle

step, step characteristic, and linear characteristic spatial quadratures

are derived. Rotation and translation relationships for transformation of

integral moments between coordinate frames are presented.

Chapter IV presents the algorithm of the TRISN program that was

developed and implemented as a test bed for the triangle linear

characteristic spatial quadrature. TRISN is compared and contrasted

7



with SNXY, a previously validated two-dimensional discrete ordinates

program.

Chapter V provides a series of test cases to demonstrate the linear

characteristic spatial quadrature method. Benchmarks are presented

showing general triangle linear characteristic spatial quadrature

convergence rates using Lathrop's "square-in-a-square" problem. The

asymptotic rate of convergence for triangle linear characteristic is

compared to its rectangular spatial mesh analog as implemented in

SNXY. A series of test cases is presented showing the advantages of

general triangle meshes as opposed to orthogonal rectangle meshes.

Results are presented and discussed. The advantages of general

triangles over rectangles as the fundamental spatial mesh element is

shown for non-square objects.

Chapter VI presents my conclusions and recommendations for

further work.

8



II. Transport with Rectangular Spatial Cells

This chapter reviews the Boltzmann neutral particle transport

equation particular to the simplified Cartesian geometry. It also reviews

the rectangular cell conservation relationships and discrete ordinates

angular quadratures. Finally, common spatial quadratures for the

rectangle spatial cell are presented.

A. Discretizing in Angle for the Transport Equation

Simplifying the Boltzmann neutral particle transport equation to

two-dimensional (x,y) geometry, isotropic scatter, and monoenergetic

energy dependence produces the following

If it is assumed that equation (7) applies to a finite set of angles fIN in

some angle quadrature set, then for the angle 6, equation (7) can be

written as

EPnn + TIn-] Wn(x,y)+Ut(X,Y) n(x,y)= Os(X,Y)4(X,y)+S_(x,y), (8)

where the scalar flux then relates to angular flux by a weighted sum over

all fIN and is given by

N4X YYW. ,,.(x, Y), (9)
n=1

N

wn=l (10)
n=1

9



with (pn, T6) and w,, being the set of direction cosines and associated

weights.

B. Solution Techniques for the Boltzmann Equation

Two common approaches are used for obtaining numerical

solutions to the neutral particle Boltzmann transport equation. These

methods are Monte Carlo and discrete ordinates. The two methods are

briefly discussed below.

1. Monte Carlo

Monte Carlo is a technique by which individual particle paths

(histories) are simulated. These histories are accumulated and statistics

are formed to measure desired processes. One advantage of Monte Carlo

is the ability to handle very complex geometries. Another obvious

advantage of the Monte Carlo technique is the continuous treatment of

space and angle variables which eliminate the discretization errors

associated with discrete ordinates. Monte Carlo errors take the form of

stochastic uncertainties. One disadvantage of the technique is that the

accuracy of the estimators is dependent on statistical variance, which

may at times be expensive to compute [10:2961. Some variance

reduction techniques (splitting, rouletting, absorption suppression, etc.)

are available and improve the accuracy of estimators while reducing the

computational expense. However, effective use of these techniques is as

much an art as it is a science.

10



2. Discrete Ordinates

The method of discrete ordinates, sometimes called Sn, is

substantially different from Monte Carlo. The discrete ordinates

approach solves the Boltzmann transport equation by discretizing

(meshing) the independent variables into phase elements. Since the

angular flux w is implicit on both the left and right sides of the

Boltzmann equation, discrete ordinates uses an iterative approach. One

major advantage of the discrete ordinates method is that it provides

global solutions for scalar fluxes (on the spatial mesh used). However, a

disadvantage is the computational expense involved in performing the

computations. For example, an n 2 increase in computational effort is

expended for a factor of n refinement in a rectangular spatial mesh.

A typical discrete ordinates algorithm starts by establishing an

initial guess for a scalar flux distribution on the spatial mesh. This

guess might be zero throughout or some informed initial guess. The

guess would be used to construct source information on each cell.

Source information is used to construct the right-hand side of the

Boltzmann equation. The source information coupled with boundary

information would be used to perform particle transport from cell to cell

in some sort of organized fashion in the direction of particle motion.

Implicit in the cell-to-cell walk is some spatial quadrature which

produces the angular flux for the cell of interest. The spatial quadrature

effectively performs an inversion of the streaming and collision operator,

L, of equation (1). Once the angular flux is calculated for every cell in

the problem, a new angle would be chosen from the angle set and the

walk would be repeated for all angles. An angular quadrature is

11



performed on the angular flux components in each spatial cell to

construct a scalar flux for each cell. The scalar flux is used to construct

a new source distribution for the right-hand side of the Boltzmann

transport equation and the next iteration. The iterative process is

repeated until the entire problem converges to some predetermined limit.

Discrete ordinates can suffer from some computational problems.

The discretization process invariably introduces error into the

calculations. The errors mainly manifest themselves in two classes.

These are errors associated with discretization in angle and errors

associated with discretization in space.

Discrete representation of the continuous angular dependence

results in truncation error. This type of error shows up as an inaccuracy

in the scalar flux. This error is compounded because it is coupled

through the scattering source to each iteration.

Ray effects are a particular type of systematic error associated with

the angular quadrature that produce qualitatively incorrect results.

These effects appear as unphysical spatial oscillations in the scalar flux.

Ray effects are particularly pronounced in problems of small scattering-

to-total cross-section ratio and in problems of small dimensions

[10:195,6:255]. Ray effects can be mitigated by increasing the order of

accuracy of the angular quadrature and by refining the angular mesh.

As with angle discretization, discretizing the space variable can

produce truncation error. Systematic errors can also occur and are often

hard to distinguish from systematic errors in angle. These errors occur

mainly from inaccurate redistribution of flux from cell-to-cell as a result

of approximations used in the spatial quadrature. These effects are

12



sometimes referred to as numerical diffusion. Numerical diffusion can

also be ninimized by choosing spatial quadratures and mesh

refinements that more accurately distribute the flux in the spatial cell.

C. Conservation in Two-Dimensional Cartesian Geometry

The conservation equations are a set of relationships that provide

rules for relating the input and output information in a unit spatial cell.

They relate integral moments of the angular flux to integral source

moments. Conservation relationships provide necessary but not

sufficient conditions to check the validity of a spatial quadrature. They

also serve as a validity check for some complex spatial quadrature

developments. For compactness of notation, the angular index, n, will be

suppressed in the relationships that follow.

1. Cell-balance for the Rectangular Cell

The cell-balance equation is the lowest order of the conservation

equations. It provides a relationship between cell-edge averages and cell-

averages. A typical rectangle spatial cell can be seen in figure 1. Figure

1 shows the "characteristic line" which is oriented parallel to the

projection of f into the x-y plane. Cell-balance can be derived by

integrating equation (7) across the spatial cell This produces

WR WL + WT WB SWA= (II
EX ey crt

where cell zeroth (average) moments WA and SA are defined as

1 Ay Ax

WIA=AxAy fdy fdx (x,y) (12)
0 0

13



and

A1 AY

SA=Ay fdy fdxS(x,y). (13)
o 0

VL, KR, Y'B, and Y'T are cell-edge zeroth (average) moments, defined as

1 A

YB= Jx fJdx W(x,O), (14)
0

AX

AxWITfdx (x, Ay), (15)

Ay

WL= AY fdy w(O, y), (16)
yo

and

Ay

WR=- -A fdy W(Ax, y), (17)
0

while ex and Ey are optical thicknesses defined as

x at AX (18)

and

- at Ay (19)

The cell zeroth moments are just averages for the appropriate

distribution (flux or source) on the rectangle unit cell. Similarly, edge

zeroth moments are the averages of the angular flux distribution along

the appropriate edge. In this document, the terms "cell-average moment"

and "cell zeroth moment" will be used interchangeably. In addition, the

14



terms "cell edge average" and "cell edge zeroth moment" will also be used

interchangeably.

Cell Diagonal WT

WL Ay

Entering Corner Characteristic Line

Figure 1. The Rectangle Unit Cell.

2. X-moment Conservation

Development of the x -moment conservation equation is very much

like the cell-balance derivation. Equation (7) is multiplied by a linear

15



weight and integrated across the rectangular spatial cell. The linear

weight for the rectangle cell is usually taken as a multiple of the first

order Legendre polynomial. The Legendre polynomials not only provide a

basis for expansion of distributions, but exploit orthogonality on the

rectangle spatial cell. Using 3Pl(x) as the weight, the x-moment

conservation equation becomes

3(WR +WL -2 WA) (oT-B) + X-= (20)
E*X Sy Crt

where the cell x-moments are defined by

1Ay Ax

W fdy fdx 3P1(x) (x,y), (21)

Ay Ax

Sx= • jdy fdx 3P 1(x)S(x,y), (22)AxAy o o

and the Legendre weight is shifted and scaled to give

P 1(x)=2-x-1. (23)
AX

The first order edge-moments are defined by

OB=i fdx3P (x)v(xO) (24)
0

and

Ax

OT=-• Jdx 3 P1 (x) W(x, Ay). (25)
0
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3. Y-moment Conservation

The y-moment conservation equation is derived analogously to x-

moment conservation, by multiplying equation (7) by the y-direction

linear weight 3 PI (y) and integrati-g spatially across the cell domain. The

y-moment equation is given by

3(WT+WB-2WA) +(R-L) + Y, (26)
Fy Y .X cyt

where the cell y-moments are defined as

Ax Ay

=A=x f Jdx fJdy 3 P,(y) w(x, y), (27)
AXY0 0

1 Ax Ay

S= f dx fdy 3Pl(y)S(x,y), (28)
AXY0 0

and the Legendre weight is shifted and scaled to give

P1(y) = 2---1. (29)
AY

D. Angular Quadratures

The angular quadrature provides a technique for discretizing the

angle variable. It can be designed to take advantage of problem

geometries, symmetries, and the level of accuracy desired.

1. Level Symmetric Quadratures

The level symmetric quadrature utilizes the same angle set for all

three cardinal directions. This makes the quadrature invariant to 90

degree rotations. Level symmetric can be well suited to problems when a
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high degree of symmetry exists or when consistent angular differencing

with respect to each axis is required [10: 158]

2. Product Quadratures

Product quadratures are another class of angular quadrature.

These quadratures are very flexible in their application. They can be

designed to take advantage of symmetries in both polar and azimuthal

angles. Several quadratures have been proposed such as the quadruple

range quadrature and the Chebyshev-Gauss double-Gauss quadrature.

Product quadratures can prove computationally cheap while providing a

high degree of accuracy [1:299]. These quadratures can be tailored to

the degree of accuracy required for a particular problem and they can

also be designed to take advantage of unusual problem symmetries.

E. Spatial Quadratures for Rectangular Cells

This is a review of some common two-dimensional Cartesian

spatial quadratures that use a rectangle spatial cell. Figure 1 illustrates

a typical spatial mesh cell. Without loss of generality, figure 1 shows an

angle in the first quadrant where particles flow from the bottom left to

the upper right. This implies that particles enter at the bottom and left

edges and exit the top and right edges. As a result, the bottom and left

cell edges contain input information and top and right edges require

information from the spatial quadrature for output. Any other angle

orientations can be handled through reflections of the cell about the

cardinal axes. In addition, Ax and Ay do not need to be equal. Order of
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convergence discussions that follow assume that if Ax and Ay are not

equal, then Ax is the greater of the two.

The relationships presented in this section use the notation

introduced by Walters [16:193-61 and later expanded by Mathews

112:419-457,13]. Step, step characteristic, and linear characteristic are

presented in detail to allow comparison with their triangle analogs

presented in the next chapter. For completeness, diamond difference

relationships are also presented. Some other higher order spatial

quadrature methods are discussed briefly. The formulae for these

methods are omitted due to their complexity.

1. Rectangular Step Method

The step method is the lowest order and simplest to implement of

the spatial quadrature methods. It assumes that the angular flux is

constant in the interior of the spatial cell. The step method also assumes

that the output edge averages are equal to the cell-average flux. With

these assumptions, the rectangle cell-balance equation reduces to one

unknown. Solving the simplified cell-balance relationship for cell-

average flux within the cell produces the following

(SA +VI'L -- + VB IJ

with

R'R ' WA (31)

and
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WT = WA. (32)

The rectangle step method is a positive method (producing positive

results for positive inputs). However, its low order accuracy limits its

utility.

2. Rectangle Diamond Difference

The diamond difference approximation is one of the most

commonly used spatial quadrature methods. It assumes that the

angular flux within a spatial cell varies linearly across the cell in both x

and y and is continuous at cell boundaries. As a result, the cell-average

angular flux can be approximated by an average of the edge-fluxes in

either direction. This produces two auxiliary relationships:

•VA= (VR + VjL (33)
2

and

(VT +•VB) (34)

2

These relationships can be combined with the cell-balance relationship of

equation (11) to give the following solutions

SA+ 2 VL - +•VB

at(+ 2(•+•y7)

WR= 2 WA-W L, (36)

and

WT= 2 WA-WB. (37)
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Diamond difference provides O(Ax2) convergence [6:781 and

positivity for optically thin spatial meshes. However, if the spatial mesh

becomes too coarse negative fluxes result. These negative fluxes can

affect accuracy 181. Negative flux fix-ups can be implemented to remedy

the negativity problems, but can further degrade accuracy.

3. Rectangle Step Characteristic

The rectangle step characteristic method for two-dimensional

Cartesian geometry was developed by Lathrop 181. This method assumes

the source distribution within the cell and the cell edge angular flux can

be represented by constants.

The rectangle step characteristic method is analytic throughout the

unit cell except along the entering comer characteristic line which marks

a change in input boundary conditions. The piecewise analytic behavior

in the cell allows piecewise integration across the cell. Using the integral

form of equation (7) and applying moments definitions discussed above,

the output moments can be calculated by direct analytic integration and

are given by

(-ER) Y'L N140(-X)+

VIAj ((R(VIL +wB)+(1-CR)qAQM1 (ex)+], (38)

(1-C I e-"x +
VR (-R ,B+(1--R)QA)M-O(-X)+} (39)

( -R qA(39)-X)

and
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WT:-- L -%(.)+qA (40)

where

CR =_x 17 (41)
Cy p Ay

and

qA = SA AX-(42)

In addition, exponential moment functions, Nn, are defined as

1
XJX()= f(1-_t)n e-x' dt. (43)

0

The exponential moment functions are a generalization of the recursively

defined functions introduced by Walters 116:1931 which are given by

(1 -ex)
1% W -(44)

and

_(1 - n- Nn-,(x))
94~n W(x)- (45)

(Walters used the notation Pi(x) which is readily confused with Legendre

polynomial notation. Mathews [12:4311 changed this notation to pi(x) in

an attempt to avoid this confusion.) The exponential moment functions

provide a means for removing the removable singularities that appear

during characteristic type spatial quadrature derivations. The moment

formulae above apply only to angles in the principle octant that project

into the (x,y) plane at angles below the cell diagonal shown in figure 1.

All other relationships can be obtained by reflection or symmetry

arguments.
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The step characteristic spatial quadrature obeys zeroth order

conservation relationships and, like diamond difference, provides O(Ax 2 )

convergence [6:78]. One great advantage of step characteristic is its

positivity. Unlike diamond difference, there is no need for any type of

flux fix-up.

4. Rectangle Linear Char; eristic

The rectangle linear characteristic spatial quadrature was

developed by Larsen [5]. Linear characteristic is similar in development

to step characteristic. The linear characteristic method provides an

improved approximation to the source distribution. It assumes the

source can be represented by an inclined plate. The source distribution

is expanded in Legendre polynomials and given by

S(x, y) = SA Po(X) Po(Y) + Sx P1 (x) Po(Y) + Sy Po(x) P1 (y). (46)

Using the integral form of equation (7) and applying moments

definitions discussed above, the output moments can be calculated by

direct analytic integration. The moments WT and PR are given by

Y/T L -Mo(Cx)+OL (J4O(ex)+2 -R (M1 (ex)-5O(e-x)))+qA M, (--x)+ (47)

and

(l-6R)e"x Y'L - (1-CAR e-"x9L +CRJ (Cs) ~B +

VRB= (2 Ml(eX)-?4(eX))+qA(M(CX)(1-ER)+6R!Ml(CA))+ (48)
qx (%(-x)(-R - 1)+ M1 (x)(2- 3 -R)+ 2 --R -? (-x)) +

qy (JO(-X)(-R - 1)+ M1 (EX) (- 2 -R)+-R - (-X))
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The edge first moments are given by

3 Y'L (j% (--x) -2-M (--x)) + 3qA (!M (--X) - % (--X)) +

O 3 L (%o(cx) (1- 2-R)- 2 M1 (ex) (1- 3CR)- 4CR 1%2 (CX)) +
qx (-3 -M1 (cx)+6%M2 (cx)-2 2M 3 (-x))+

3 qy (.NM' (ex) (1- 26R)+ !M2 (ex) (46R - 1)+ 2 6 R -M3 (Cx))

and

0R =OWL +04B +OOL +OOB +OSA +OSX +6SY (50)
where

R0 L =3 (-R- -1)(-X N(--X) - ol)e- YL (51)

OL=(1-3FR+2cR)cO (52)

0"1 =:3 R Y/ B (-%(-x) (2 --R- 1) -2 --R -MI (--X))(3

9RB = 3 CR OB (Mo(x) (1- 2 CR) + 2 M, (ex) (3 CR - 1)- 4 2 (ex)) (54)

OSA: 3qA R(Mo(SX)(1- CR)+ MI1(6X) (26R-1)-CR-M2(cX)) (55)

Osx =3qX R( M(-X)(--RI- 1)+ -MI(-X) (3-4 -R)
+ -N 2 (X)(5 x R-- )2 R J% (Cx))

s -qy(NzX)(1-3F R+2V-R)+3GRf%(6X)(1-R•)+ (57

6•6R 9M2((x)-2-R3 "%(6X).

The notation used here is that Xij is the contribution to output moment

Xi from input moment Yj.

The cell-average angular flux WA is given by

, = WWL + VB• + WL + W01 +v• +SA S +v• (s8
A4 (58)
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where

= ~1 (!M(Cx(1 -CR)+
6 R M1 (X))(59)

VA6 -CR 0 L(s1(C-X) (C-R-1)+-M1 (ex)(1-2CR)+CR-?M2 (-CX)) (0

VA =-CRB-M1 (CX) (61)

YISA - qA(.9 1 (C-X)(1 -- CR) +--R .M2(--X)) (63)

VIAx qX (.NM(C-X)(C-R -1)+!M 2 (ex)(1 -2 CR)+ 6 R M(CX)) (64)

siý qyeR (M1 (CX)(C-R -1)+Jil 2 (C-x) (1- 2-R)+ 6 R .(eCX)). 65

The cell x -moment is given by

WX =WWL+ WW + OL +wOB+ wS + SX +w~y(66)

where

V4'k -3 'L (-?40(CX)(l-CR)+.M11(ex)(3 CR -2)-26R !MI2 (CX)) (67)

V L=3 RO N (X eR-1 -,(-x 3-4M-)J2 (--X) (5 --R - 2)- 2 -R !M3 (--X)) (8

V'xJ = 3C-R VB(Ml(--X)- JM2 (C-X)) (69)

Y/AP = R OB(-3 -M,(ex) + 6 2 (C-x)- 2 M 3 (C-x)) (70)

~V,( = 3 qA (-VM(--X) (1 -- R) +J% (Cx) (2 --R -1)- CR!M 3 (CX) (71)

,4x= qx (3M (CX) (CR - 1) + 39M2 (x) (2 - 3C-R)+2~x( R1- R& (72)
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~,,x = r yP1(-)(-R-1 ?2e)( - 3 CR) +

!M 3 (e-X)(3 --R-l)6CR!M 4 (5X)). (73)

The cell y-moment is given by

WyW (74)

where

y4 Rtf(~O6)('6+~M(X( R-1)- ER-?Vi2(CX)) (75)

YeL O9 L (.M(ex)(l-36R+243)+3e6R!Ml(ex)(1-2,2)+(6

--X) __3 x)2 q3 (._X))

Y/YB=3 ER~VB(.Ml(Cx)(2 SR-l)-2 CR. 2 (SX)) (77)

V/Oy8 = 3 '6R B (-V (-X) (1 -2 CR) + %(ex) (4CR -1) - 2 -R!M3 (-X)) (78)

sy,= 3 -ORqA (M (EX) (1 - R) + % (ex) (2 CR-1) - R -? 3 (--X)) (79)

qxSx

(naotegysould toqqnot be confusfied wihsy

qx = SxAX (82
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As with the step method, the linear characteristic moment

formulae apply only to angles in the principle octant that project into the

(x,y) plane at angles below the cell diagonal shown in figure 1. All other

relationships can again be obtained by reflection or symmetry

arguments.

Linear characteristic obeys zeroth and first moment conservation

relationships and tends to be more accurate than step characteristic on

similar spatial meshes. The linear characteristic method can be shown

analytically to converge as O(Ax 3 ), but under certain circumstances it

has been observed to super converge at rates as high as O(Ax4) [6:80].

However unlike step characteristic, linear characteristic is not a strictly

positive method. As a result, fix-ups may be needed with coarse spatial

meshes.

5. Other Rectangle Quadratures

Other rectangle spatial quadratures have been developed and

implemented. A class of methods known as the nodal methods [2,16,181

prescribe analytic integration in the spatial variable. The most common

of the nodal methods is linear nodal. Linear nodal is a spatial

quadrature used in some production codes but can suffer from negative

flux problems on coarse spatial meshes.

Another class of methods is the adaptive methods [12,13]. These

methods are a variation of the characteristic methods. Adaptive methods

use adaptive, piecewise-defined source representations to remedy the

need for negative flux fix-ups. These methods allow optically thick
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spatial cells while maintaining high accuracy. The adaptive methods are

particularly well suited to the deep per. .'ation problem.

28



Ill. General Triangle Spatial Quadrature Development

This chapter presents the derivation of a new discrete ordinates

spatial quadrature for solution of the Boltzmann neutral particle

transport equation on an arbitrarily oriented and shaped triangle. The

method is a linear characteristic method using arbitrarily oriented

triangles.

A. The Local Coordinate System

Allowing for an arbitrarily oriented triangle makes the necessary

mathematical manipulations prohibitively complex. A fortuitous

orientation and placement of coordinate axes can greatly simplify the

necessary manipulations. Rectangle spatial quadrature development

focuses on a unit rectangle spatial cell similar to the one depicted in

figure 1. A standardized unit cell greatly simplifies quadrature

development and allows more complicated approximations. A triangle

unit cell is desired. Many different positions and orientations of the local

frame were attempted. The local system chosen is the case 0 system

discussed below. This case 0 system is not the only system that could be

used, but it is most effective in simplifying the characteristic integration

and the integral moment splitting and assembly (discussed later).

Consider the arbitrarily oriented triangle in two-dimensional (x,y)

Cartesian geometry of figure 2. Figure 2 shows that particle streaming

through an arbitrarily oriented triangle can be separated into two cases

dependent on triangle orientation, shape, and direction of particle

streaming. Input information (particle entering boundary) is located
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along the edge(s) where particles enter the cell. Output information is

located on the edge(s) where particles leave the cell.

A degenerate case occurs when particles stream in a direction such

that their travel is exactly parallel to one edge. This would mean one

triangle edge would contain input information, one edge would contain

output information, and one edge would contain neither (no current

crosses this edge). This degenerate case will be referred to as the case 0

orientation. The case 0 orientation is particularly interesting because it

leads to tractable derivations and formulae.

Y (x3,y3)

x case 1

case 2
"V- (xl,yl)

(x2,y21

Figure 2. An Arbitrary "riangle.

Figure 2 shows particles may enter in a direction such that one

edge has input information and two edges have output information. This
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case will be referred to as the case 1 (one input) orientation. Particles

may enter in a direction such that two edges are. inputs and one edge is

an output. This case is referred to as the case 2 (two input) orientation

and is also shown in figure 2. These three cases exhaust all the

possibilities for streaming across a triangle of any orientation and any

streaming direction. The goal is to choose a coordinate system that takes

advantage of the properties of the case 0 triangle.

Local u and v axes can be constructed such that u is oriented

parallel to and in the same direction as particles are traveling and v is

perpendicular to u and maintains a right-hand sense. An origin for the

local (u, v) coordinate system can be assigned to the triangle boundary

using the following rules:

1) If the triangle has a case 0 orientation, the (u,v) origin is placed

at the intersection of the edge parallel to streaming and the input edge

(see figure 3).

2) If the triangle has a case 1 orientation, the (u, v) origin is placed

at the intersection of the input edge and the particle streaming line

through the intersection of the output edges (see figure 4).

3) If the triangle has a case 2 orientation, the (u, v) origin is placed

at the intersection of the input edges (see figure 5).

This choice of coordinates for the local frame accomplishes several

goals. First, case 1 and case 2 orientations degenerate into the sum of

two case 0 oriented triangles (see figures 4 and 5). This implies the

spatial quadratures need only be developed for case 0 orientations. Next,

case 1 and case 2 oriented triangles subdivide into case 0 oriented sub

triangles that share a common origin and axes which make integral
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moment splitting and assembly very simple. In the local (u, v) frame,

transport is reduced to one-dimension and only boundary conditions are

two-dimensional. As a result, the Boltzmann equation takes on a

simpler form and makes the mathematical relationships much simpler.

(ul,h)
Y (x3,y3)

(b,O)

V (x2,y2)

U

(0,0)
(xl,yl)

Figure 3. Case 0 Triangle.
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(u2,h2)
(x3 ,y3)

x

Note: h2 < 0

subtriangle A

subtriangle B Note: hil 0

(x2 ,y2 )

Figure 4. Case 1 Triangle.

y (ui,hi)
(x3 ,y3)

- -m.x

Note: hi > 0

subtriangle A -(b,0)

(x2 ,y2)

Figure 5. Case 2 Triangle.
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Construction of a coordinate frame in which particle travel is

constrained to one direction (along u) changes the form of the Boltzmann

transport equation. The change to the local (u, v) frame simplifies

representation of the Boltzmann form of equation (4) to the following

11+ yt(u, u) W~(u,v,lii)= a,,(u,v)#(u,v) + S=(u, v), (84)

where pt' is the u direction cosine of h and is given by

IL'=k22  (85)

and p., 1q, and k are the x, y, and z direction cosines of 0, respectively

and are given by

h. = h 6X, (86)

fI Y =y -- y, (87)

and

ý=h =.z . (88)

Analytic integration of equation (84) along streaming direction u

produces another form of the Boltzmann neutral particle transport

equation known as the integral form. In the local frame this equation is

given by

W(u, V)= VOL M, v) ex J+ f s(u'(v)eexp[ a (u, (89)
4 PP Iu (U) JUI

where UL(v) is the u -coordinate at which particles enter the triangle

input edge, w(UL(V),v) is the angular flux value at that location and

S(u,v) is given by
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s(u,V)=oS(u,V)*(u,V)+SM(,) (90)

For the case 0 triangle UL(V), is given by

ULh(V)= uh (91)

B. Conservation Equations

Conservation equations are a necessary but not sufficient

condition needed to derive the spatial quadratures discussed later. They

provide a validity check for derivation of the spatial quadratures. These

equations can be obtained by taking integral moments of the Boltzmann

neutral particle transport equation.

1. Case 0 Cell-Balance

For the case 0 orientation, the zeroth order or cell-balance

equation can be derived by taking the neutral particle Boltzmann

transport equation, equation (84), and integrating across the domain of

the triangle as follows
h uR(V) ,dl"u ,,'

hdv Jdu J," v,p') u +at(U, v) w(u, U, p')= as(u, v) O(u, v) + SEXT(uv)] (92)
0 Ul,(V) I

Assuming the area of the triangle is sufficiently small that cross-sections

can be approximated as constants, equation (92) simplifies to
2

at VA + /2'(IOurV- ID)= SA (93)

where
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a8 (u,v)-tra, (94)

and

Cwt (u, V) -- at (95)

The triangle zeroth (average) moments for source and angular flux are

given by

WA =f-!dAW(F) (96)
AA

and

SA =fdA S(F) (97)
AA

where

S() = aS( )M + SEXT() (98)

Wvn and WoUT are angular flux averages along the input and output

edges, respectively, and are defined by

WD Iv = f- ds. V(s.v) (99)

and

'oUrr= 1f dsour W(sour) (100)

where Lov, LoUT, A, and b are the lengths of the input and output

triangle edges, the triangle area, and the triangle base. The variables smV

and souw are contour integration variables which range from zero to the

length of the corresponding triangle edge and whose origins are defined

in counter clockwise fashion, as shown in figure 6. Equation (93) is
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referred to as the case 0 cell-balance equation and is valid only on the

case 0 triangle.

ySin 0Lout

•--4•x I•Sout

0

Lin

Figure 6. Case 0 Triangle Edge-Moment Orientation

2. Case 0 U-moment Conservation

A u-moment equation for the case 0 triangle can be derived in the

same manner as the case 0 cell-balance equation. Equation (84) is

multiplied by a linear weight (in this case u) and integrated over the

triangle domain as follows:

h RLJ() , dW(uv,)

Integrating equation (101) produces the following

.UF[(i!!i.1)(G +~VOUT)+ (H-)(eIN -YIN) +2 yvoir-YA +at~Vu= u7 (102)
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Equation (102) is known as the case 0 u -moment conservation equation

(with respect to u). The first order u -moment equation differs from its

rectangle counterpart in that Legendre polynomial weights were not used

for triangle moments. Legendre polynomials lose their orthogonality

when integrated on triangular spatial domains and thus lose their utility.

The u weight is chosen for simplicity of derivation.

3. Case 0 V-moment Conservation

Similarly, multiplication of equation (84) by the linear weight v and

integration over the triangle produces v-moment conservation for the

case 0 triangle, which, is given by

hx• [(OoUTr + OIN) + (WoUT /- R)] + Ct WV=-SV. (103)

Equation (103) is referred to as the case 0 v-moment conservation

equation (with respect to a weight of v).

In these conservation equations, the cell u -moments are defined as

WU =lfdA u(F) W(f) (104)
AA

and

S= =1fdA u(F) S(F). (105)
AA

Similarly, the cell v-moments are defined by

W v1 f dA v(F) W(F) (106)
A

and
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sv ifdA v(F) S(F) (107)
A

The cell-edge first moments for the input and output edges of the case 0

triangle are given by

ORV = L-L- f dsJ7 Pl(SUV )V(sU ) (108)

RV A

and

OOU% Pj(soT)y1(Sour). (109)
Lou A

4. Orientation for First Order Edge-Moments

Orientation is important for higher order edge-moments (zeroth

order moments are orientation independent), so a direction convention

must be imposed. The triangle edge first moments are defined with a

counter-clockwise orientation as shown in figure 7 and are defined as

0j f.dsi P,(si) W(si), (110)

where

P, (si) =2 1. (111)Li

C. Rotation/Translation between Coordinate Frames

Since the case 0 coordinate system changes with each angle in the

discrete ordinate angle set, a method for moving to and from (u, v) is

needed. This is accomplished through rotation and translation of the

input and output spatial moments.
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0 L43
S1  (ul,hl)

(b,0)
L1

u~S3(0,0) 30

0SL2

Figure 7. Triangle Edge-moment Direction Convention.

1. Cell Zeroth Order (Average) Moments

A cell zeroth order or average moment for the function F(x,y) is

defined by

FA- f A ýF Jfdx fdyqx, y). (112)
A A XAx y

A change of frame by rotation through a counter-clockwise angle 0

produces the following

f dA F(F)= f dy f dx F(u(x,y),v(x,y))IJ1 (113)
A y x

where J is the determinant of the Jacobian matrix and is given by
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J= & 0(114)

The coordinates u and v are functions of x and y given by

u =x cos(O) + y sin(O) (115)

v=-x sin(@)+y cos(O). (116)

Since ký is unity for all rotations in the plane, the cell-average is

unchanged. Similar arguments hold for translations of cell-edge

averages. As a result, all cell and cell edge zeroth moments are rotation

and translation invariant.

2. First Order Moments

The first order integral moments differ from the zeroth order

moments because they introduce a linear weight into the integration of

equation (113). This weight causes changes as these moments are

rotated and translated and make these moments coordinate frame

dependent. In fact, the rotation and translation relationships are unique

to the weight used.

A cell u-moment for the function F(x,y) is defined by

FU =-JdvJdu uF~u,v). (117)
V U

A change of variable to (x,y) by rotating through an angle 0 produces

f dv fdu u F(u,V)= f dy fdx u(x,y) F(u(x,y),v(x,y))IJI. (118)
V U y x
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Using the definitions of u (equation (115)) and v (equation (116)), and

applying the definitions of first moments, the rotation relationship

becomes

Fu= Fx cos(O)+ ty sin(O). (119)

Similarly the v-moment rotation relationship can be obtained by

substituting v for u in equation (118) and is given by

Fv=Fy cos(e)-Fx sin(O). (120)

Translation to another frame can also be achieved by a change of

variables. Let x0 be a distance separating x and x' such that

x=x'-xo. (121)

Perform a change of variable on the moment Fx to produce
1 t

Fx=-1fdy fdx xF(xy)= I fdy fdx' x(x')I'xx(x'),y). (122)
y x y x'

Substituting the definition of x and apply'ng first moments definitions

produces

Fx ,V- xo FA. (123)

Similarly, a translation of the y' by a distance Yo produces

Fy = Fy,- Yo FA. (124)

As a result, counter-clockwise rotations and translations can be

combined and summarized into the following set of relationships.

Movement from the local (u, v) frame to the global (x,y) is given by

Fx = cos(O) Fu - sin(O) Fv + xo FA (125)
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and

Fy = sin(e) Fu + cos(O) Fv + Yo FA (126)

where xo and Yo are the x and y coordinates of the (u,v) origin.

Inversely, the u and v moments can be written in terms of x and y and

are given by

Fu =cos(O)(Fx - xo FA)+ sin(O) (Fy - yo FA) (127)

and

Fv = cos(J) (FY -yo FA)- sin(O) (FX - xo FA). (128)

Equations (125) - (128) are relationships specific to the weights u and v

(x and y) and are not valid if any other weights are used.

Zeroth and first order edge-moments are not coordinate frame

dependent. The integrations which define these moments are

constrained to the triangle edges of interest. Rotations and translations

to and from local frames have no effect on the orientation of the edge

contour variables. As a result, edge-moments are invariant to the

rotations and translations discussed above.

3. Splitting of Edge Zeroth and First Moments

The case 1 triangle orientation has only one triangle edge that

contains input information. However, the requirement to split into two

case 0 triangles to perform transport necessitates a split in the input

edge angular flux moments.
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Splitting the input edge-moments consists of constructing the

angular flux edge distribution for the entire edge and each of the split

edges. The input edge distribution can be approximated by

(Sin) V1,nv + 3 P, (suN) 0nv (129)

where Pl(snv) is the Legendre polynomial shifted and scaled along sZn to

give

P1 (sv) -2 sfv-1.

Similarly, distributions can be constructed on each piece of the input

edge (after splitting) and are given by

yp(snv)2ý V+INp +3Pj(smp)0nvp (130)

and

VIN(SIN) -- VNv. + 3 P1(SDN.N)OON.N (131)

where W'p.p, and W'V.N,. are the edge average moments for the positive

(h >0) and negative (h <0) oriented case 0 triangles, respectively; OV~p,

and 011VN are the edge first moments for the positive and negative

oriented case 0 triangles; and Pl(snN) and P 1(suvp) are shifted and

scaled first order Legendre polynomials on each piece of the input edge.

An input edge for a case 1 triangle is shown in figure 8.
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Figure 8. Input Edge-moment Splitting

The goal is to construct two piecewise linear distributions that

when integrated on their domains can be summed to retrieve the input

edge-moment for the entire input edge. This can be done by applying the

input edge-moment definitions to each piece of the split edge and

summing them. This produces relationships between the input and split

input edge-moments. These relationships are given by

WRV,p = WI -3 (1 - L)0v, (132)

W'NN = WDV +3LOZn, (133)

O17,p= L OIN, (134)

and

0R4,N = (15- L)0, (135)
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where L is the fractional length of the negatively oriented triangle input

edge over the total input edge length.

4. Assembly of Edge Zeroth and First Moments

The case 2 triangle orientation requires assembly of the output

edge angular flux moments. This process is analogous to the moments

splitting procedures discussed above. Angular flux distributions are

formed for the entire output edge and each edge piece. The split edge

pieces are multiplied by the Legendre weights corresponding to the entire

edge and integrated piecewise. This produces relationships between the

split edge angular flux moments and the assembled moments.

The assembly relationships are given by

'YouT =Y wouTr,P•L + VOUT,N (1 - L) (136)

and

OT= L (I - L)(OUT, N-OUTP)+ 12 00UT,P + (- 1)2 OUTN (137)

where VlOuTp and VIoUT,N are the positive and negative oriented triangle

zeroth edge-moments along the output edge. Similarly, OoUTp and

OoUT,N are first moments along the output edge for the positive and

negative oriented triangles.

D. Case 0 Spatial Quadratures

Once a coordinate system is chosen, moments definitions are

established, and a set of conservation equations are developed, the

spatial quadratures can be derived on the case 0 triangle unit cell. For
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completeness, three triangle spatial quadratures are presented. They are

the triangle step, step characteristic, and linear characteristic methods.

1. Case 0 Step Method.

The triangle step method assumes that the average angular flux,

WA, within the triangle is equal to the average angular flux along the

exiting edge, wouT. This assumption is completely analogous to the

rectangle step approximation of last chapter. Using the step assumption

and the case 0 cell-balance relationship, VA can be computed directly

from equation (93) and becomes

2 Wuv+ b S

WA (2+) (138)

and

WOUT = WA (139)

where cu is the optical thickness along the base of the case 0 triangle

given by

Eu = ba(140)
4',

2. Case 0 Step Characteristic.

The triangle step characteristic spatial quadrature assumes that

the source distribution SA is approximately constant throughout the

entire triangle. In addition, it also assumes input and output edge

angular fluxes can be approximated by constants. Using these

approximations, the integral Boltzmann neutral particle transport

47



(equation (89)) can be evaluated analytically over the domain of the

triangle to obtain the case 0 step characteristic results. These results are

given by

VA = 2VNv -M] (-u) +bSA 2 (-) u141)

and

VT = (._U)-+'-SA _M1 (CU) (142)

where 9!M- (x) are the same exponential moment functions defined in the

previous chapter.

3. Case 0 Linear Characteristic.

A general triangle linear-nodal hybrid method was developed by

Paternoster [14:27]. In that work, a linear characteristic spatial

quadrature was performed on case 2 triangles; however, case 1 triangles

used the linear nodal method to avoid discontinuities along the output

edges. Furthermore, finite difference approximations were used to

estimate first order moments for some cases. The finite difference

approximations destroy first order conservation. Also, Paternoster tested

his method only on equilateral and banded triangle meshes. The method

presented here is a pure linear characteristic method that conserves both

zeroth and first order moments for all triangle orientations and is tested

on arbitrary (even randomly designed) triangle meshes.

The triangle linear characteristic spatial quadrature assumes that

the source distribution can be approximated by a linear distribution

throughout the entire triangle. Using the three input source moments
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SA, Sx, and Sy and moment rotation/translation relationships; a linear

source distribution can be constructed as follows

S(u,v)=a'+b'u+c'v (143)

where a', b', and c' are source coefficients dependent on triangle

orientation and the input source moments. These coefficients can be

obtained directly from the definitions of the source moments

(substituting equation (143) into the integral definitions of the moments).

For the case 0 orientation the source coefficients are given by

(6(h(3 b SA-4 SA)-4 S, (b-ul))) , (144)A = A '

b' = [(24 (h (2 Su-+- (Ab) (b-2ul)))] (145)

and

C=[(24 (2 S" (b2-bul+ul2)+h(Su(b-2ul)+SAb(ul-b)))) (146)

where

bh (147)
2

For a case 1 orientation the source coefficients are given by

(3(3A 1
2 -2A, A 2 +3A 2 2)SA) (12 (A 1

2 +A 2
2 )Su)

(A2 ) (A2 b)(148)

a(6 S, (A, A2 b-A 1
2 (b-u)+A2

2 U))(14

L (A 2 A,)
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(12(Al2 +A2 2) SA) +(24 (A2 -A, A2)Su)+

b= (A b) (149)
(6Sv(A,-A 2)Aib-2(A 2 -AA 2 ) Ul) '(19

(A 2 Alb
2)

and

6 (SA(-A, (A, - A 2 )b+(A1
2 + A22)ul )+

(A 2 A, )

(A 2 A6 b)((u(A(A - A2 )b- 2(A2-AIA2ýI)))+ (150)
6

(A 2 A 1 2 )(Sv(A 12 b2 +A1(-A1 +A2)bul+(A2- A1A2) u12))

where A, A1 , and A2 are triangle areas given by

1-, --= --, (151)
2'

A2 =-bh2 (152)2

and

A=A+(A2. (153)

For a case 2 orientation the source coefficients are given by

a' =[(3(3AlbsA -4Alsu-2bsv (b-ul)))]_, (154)

12(-A 2 b SA + 2(A 2 -A, AI2)Su)

b'= ((155)
6Sv(2u (A,1 A 2 - A2) +A(2AA)b)

(A2 A,)
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and

(6(A2 bSA (- + ul)+ SU (A (2•A•-Al b-2(A2 - , A• )))I

(A= AAb) (156)
(6 S~, (A 2 b 2 - A(2 A -Al)bu 1 +(A 2 - A, A 2 ) U1 2))

(A2 A,2)

Calculating source coefficients is advantageous since they are

defined globally over the entire triangle. Even if the general triangle is

split into case 0 sub triangles the coefficients for each sub triangle

remain unchanged. This property eliminates the need to share cell

source moments with sub triangles through splitting.

To derive the zeroth order moments for the case 0 linear

characteristic spatial quadrature, equation (89) is integrated across a

positively oriented case 0 (h>0) triangle. The cell-average flux is given by

1 h UR(V)(

WA =fdvA ()duw(uv) (157)
0 UL,(L)

where

UL(V)=Ul -V (158)h
and

UR(V)=b-(b-ul)h. (159)

Performing the integration produces

2 VI !M, (-U) + 6 On (-MI (-U) -J%12(-u)) +
VA= a' bI 2(cu) b(c'h+b'(b+ul))!M3 (6u) ( (160)

P 3P5
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The linear characteristic u-moment is derived in a similar fashion and is

given by

1h UR (U)

Vu =dv f du u W(uV) (161)
A0ULMV

which produces

Wu= W'" +u +4 ,+' W+ +WV C (162)

where

WVIN = ipN [2 b -M1 (FU) + (u, - 2 b).M(u )], (163)

, 6bM, (su)-3(4b-ul) N22 (cu)+ (164)U =0 2(3b-2u,) (1u)

at (3 b 22(eu)) + (b (u,1- 2 b)MW3 (eu))1
VU= (3[ 0 (165)

b, =b" (2b 2 (b+ul) M 3 (eu))- (b(b2 buU12)?44(u)) (166)

and

CO = c, [4 b2 h '3(cu)+ b h(2u,1- 3 b)'-%14 (--U)(67
12(167)Y/U ~ 12 p'I

Derivation of the linear characteristic v-moment differs from the u-

moment derivation only by the weight change from u to v. The

integration is given by

1 h URMv

= Afdvv fuW() ) (168)
0 UL,(v)
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which produces

- VIN7 h!M.2(eu)+G17hecu(!M4(e-U)-!M 3(e-U))+

Y = (4 a'bh M3(eu) +(2 b clh 2+ bbh(b + 2ul)) _V4 (eu))] (169)

L ~ 12,a' '

Output edge-moments are derived by parameterizing W in terms of the

contour variable, sour, and integrating as follows:

Lour
1 fds N(souTn), (170)

LoUT o

where SouT behaves according to the counter-clockwise convention

discussed earlier and LoUT is the length of the output edge of the case 0

triangle. Performing the integration results in the following
-- T ,W*IN elot + a, +,b' ,c

-OUT +OUT +OUT + o VT, (171)

where

Y10UT VD= 340(su), (172)

OyIN= - [3 'u (M42(Cu)- 341 (-u))], (173)
VOUT-0nV

aVjt =at [(b (9 M (cu) -4 (3 - U) J% (--U) - 4 --u M 3 (-U)))] 14WO' P., (174)

b = b, b(b + ui)(6 M, (CU) -(8- 3 u) 9%2(•u)-3 Cu M3(•u)) (175)

and

Cr =[bh(6Jl (eu)-(8-3cu)J1(cu)-3eu2 3(cu)
VOW(=l 2() (176)
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Similarly, the first moment along the output edge is calculated by

UOUT f dsPi(souT)•V(souT) (177)
LoUT o

which gives
_OT 0,,N +00., N,• + O,'r + Ob'u +0c T 78

OUT =OUT+OUourOUT (178)

where

OUT -v- ,u (M1 (Cu)- g42(eu)), (179)

01-T = 3 Onv (4 (.•M1 (eU-- 2 (eU)) .AMl(.U)), (180)

"(-5 b-4 ul) MI (cu) + (b (1 - 2 eu)+ 2 (5- eu) 1 )M 2 (eu) +

o'uT =at (181)
-2(8-5-u)( b + ul)!M3 (eu)--4 eu(b+ul) !M 4 (eu)

1, (-2 (b2 +U 1 + U1 2 )-_W1 (cU))+ ,(2(5 - CU)U 1
2 +

b(9 - 2eu)(b + ul).M%2 (eu))+ (182)
1• P(b2(7-5eU)+b(6-5u)uj +

(8-5 $U)u I2 ) _. 3(_U)) -3--1,(2 CU (b2 + buI + U1
2 )_M4(CU))

(-h(b+2ul)'M, (CU)) + (b(4-eu)h+2(5-eu)h u 1 ) 2(eu) +

(-b(4-5Cu)h-2(8-5cu)h uj),3(Cu)+ (183)
6 '

(cu h(b+ 2ul) N 4(cu))

35p
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E. Triangle Mesh Development and Refinement

The goal of mesh development was to create triangles that are as

near as possible to equilateral triangles. As a result, all initial triangle

meshes were generated using Mathematica. This product contains a

Delaunay triangulation algorithm. The Delaunay triangulation algorithm

is discussed briefly below.

Let Nij be the set of all points in the plane such that

Nij = (points closer to node i than to node j). (184)

Now define Pi as the intersection of all Nij for j # i given by

Pi =.n. Nij. (185)
I#j

The set Pi is a polygon surrounding node i , containing the points of the

plane for which node i is the closest node. Each edge of this polygon is

a segment of the perpendicular bisector of the line connecting node i

and one of its "nearest neighbor nodes," say node k. The nearest

neighbor nodes are listed in counter-clockwise order around the polygon.

The Mathematica routine generates such lists. For example, the list of

neighbors of node 3 might be ({3),5,9,6,2,4). This is used to produce a

list of triangles, identified by triplets of node indices; for the albove

example, the triangle list would be ((3,5,9),(3,9,6}),3,6,2},{3,2,4),{3,4,5)).

The meshes produced in this way avoid producing long, narrow triangles.

Delaunay triangulation is a workable means of generating course

meshes. Finer meshes were produced by refining the Delaunay meshes

by bisecting each triangle edge and connecting the three new indices.

This technique gives an effective refinement factor of four and produces
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triangles that are similar to the parent triangle. Figure 9 shows an

arbitrary triangle with the dashed line denoting the refinement.

Figure 9. General Triangle Mesh Refinement
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IV. General Triangle Algorithm (TRISN)

To test the general triangle linear characteristic spatial quadrature,

a general triangle algorithm was developed. I hereafter refer to this

algorithm as TRISN. TRISN was implemented in FORTRAN 77 and is

discussed in detail below. TRISN is compared to the rectangle discrete

ordinates algorithm SNXY. SNXY is also discussed below. The TRISN

source code is not provided in this document but a copy is archived at

AFIT.

A. The SNXY Rectangle Discrete Ordinates Algorithm

SNXY is a rectangle spatial mesh discrete ordinates algorithm. It

contains the same angular quadratures as TRISN and has the rectangle

linear characteristic spatial quadrature implemented and benchmarked.

SNXY is used as a comparative tool to demonstrate the similarities and

differences between TRISN and rectangle spatial mesh discrete ordinate

algorithms. The following is a pseudocode outline of the major

components of the SNXY algorithm (quadrant one angle set only).

Read Problem Definition From File

Initialize Problem

Input Angle and Spatial Quadrature Parameters

Initialize Problem Boundaries

Set preuious iteration's scalarflux/ moments to this
iteration

DO
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FOR each angle in the angular quadrature set

Initialize angle angular flux/moments to this
iteration

FOR each column of spatial mesh (in order)

FOR each row of spatial mesh (in order)

Handle input boundary (beginning of row
or column only)

Assign inputs for cell(column, row)

Construct input source moments from
previous iteration's flux

Perform transport across cell

Accumulate angular flux/ moments and
particle current/moments in weighted
sums

Handle output boundary (end of row or
column only)

Assign inputs for neighbor cell(s)

NEXT row

NEXT column

Next angle

LOOP Until converged

Output results

END
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B. The TRISN Triangle Discrete Ordinates Algorithm

To clearly understand the operation of TRI-SN, an explanation of

the different coordinate frames is needed. First, the global (x,y) frame is

the frame to which all mesh nodes are referenced. This frame is

established by input and is invariant. The second frame discussed is

local (x,y) frame. The local (x,y) frame has axes oriented in the same

direction as the global (x,y) frame with origin placement at the centroid

of the triangle of interest. All moments are kept at the local (x,y) origin

to preclude large translations. The last frame is the local (u, v) frame.

The local (u, v) frame is oriented according to the rules established in the

last chapter. This frame changes with triangle shape, size, orientation,

and angle of transport. This frame is where all transport takes place. All

input moments must be rotated and translated to this frame from the

local (x,y) frame and all output moments must be rotated and translated

out of this frame back to the local (x,y) frame.

The TR!SN triangle discrete ordinates algorithm has many

similarities to standard rectangle mesh algorithms. Implementing

features such as additional angle quadratures, multi-group energy

structure, anisotropic scattering, time dependence, etc., are nearly the

same. The significant difference between the triangle approach and

rectangle mesh approaches is in handling the inner structure (cell-to-cell

transport along a given direction). Rectangle algorithms take advantage

of problem symmetries to use looping structures that march across rows

and columns to transport particles. However, the data structures

required to construct spatial meshes with arbitrary triangle orientations

do not support a loop structure. Only banded triangle meshes have
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features that can take advantage of looping structure. TRISN uses a

push-down stack structure which will be discussed later.

The TRISN algorithm starts by reading the spatial grid information.

The following is a list of required information for TRISN:

1) an indexed list (location in the list determines index of

coordinates pair) list of node coordinate locations in global (x,y)

coordinates,

2) an indexed list (location in the list determines triangle index

number) of triangle index triplets (e.g. (1,2,3) denotes that coordinate

pairs 1, 2, and 3 define the triangle of interest),

3) an indexed triangle to region list (position in list denotes

triangle number, value at that location denotes region for triangle),

4) an indexed list of region to material mappings (position denotes

region number, value at that location denotes material number for the

region of interest), and

5) a list of material properties (scatter cross-section, total cross-

section, and flux independent sources).

Once the data is read from the input file, the angular quadrature is

chosen. Using the choice of angular quadrature, direction cosines and

angle weights are constructed. Next, the spatial quadrature is chosen.

Currently implemented choices are the step, step characteristic, and

linear characteristic methods. Also, an iteration-to-iteration convergence

criterion is set to stop the iterative process.

Iteration zero initialization of scalar flux, scalar flux moments,

current, and current moments is accomplished.
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Arrays that contain the previous iteration's scalar flux values are

set to the current iteration's values. If this is the first iteration, the

values are set either to zero or to an initial guess. The current iteration

scalar flux, scalar flux moments, particle current, and particle current

moment arrays are then initialized for the next angle sweep through the

problem. The angular flux and angular flux moment arrays are

reinitialized. An angle is chosen from the angular quadrature set.

Arrays containing the vector dot product between Cl and triangle edge

outward unit normal and input edge flags (one indicating input edge,

zero indicating non-input edge) are calculated for the present angle and

data available flags arrays are initialized for each edge.

Exterior edge data ready flags for the edges with input boundary

data are set to zero (zero indicating data, one indicating no data). Each

triangle along the boundary is queried to check if it has the necessary

input information to perform a transport calculation (all input edges

contain data). This is accomplished by taking the vector dot product of

the input edge array and the data ready array. A value of zero indicates

the triangle has the necessary inputs; anything else indicates it does not.

The index of each triangle that is ready to compute is placed on a stack

and the stack 1-ointer is incremented. Once each triangle containing a

boundary is queried the first transport calculation is performed.

A triangle index number is pulled from the stack of ready triangles

and the stack pointer is decremented. Source moments for the current

triangle are constructed by summing external (flux independent) source

components (all external source moments except zeroth moment are
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assumed equal to zero in this implementation) with the scattering

components. In general, the source components are given by

SA (itn)=CSitri) OA (itri,iter - 1)+ SAExr ((itri), (186)

Sx(itri)= a 8 (itri) gx(itri,iter - 1), (187)

Sy(itri) = as(itri) Oy(itri,iter - 1), (188)

where itri is the current triangle; iter is the current iteration; and as is

the scattering cross-section for triangle itri; SA, SX, and Sy are the

source average, x, and y-moments for triangle itri; and SAExr is the flux

independent average source for triangle itri (dependent on material). 4A,

#X, and 4y are the scalar flux average, x, and y-moments for triangle

itri which are calculated from integrated previous iteration angular flux

moments for triangle itri.

Once the source moments are known, the orientation of irt and

the input and output edges are determined. The results are sorted and

stored in the permutation variables IA, IB, and IC by using the following

rules:

1) If the orientation of triangle itri is case 0, then the variable

ICASE is set to zero. Next, IA is set to the input side index number, IB is

set to the output side index number, and IC remains unchanged

(contains no information).

2) If the orientation of triangle itri is case 1 then the variable

ICASE is set to one, IA is set to the input side index number, and IB and

IC are each set to distinct output side index numbers.
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3) If the orientation of triangle itri is case 2 then the variable

ICASE is set to two, IA and IB are each set to distinct input side index

numbers, and IC is set to the output side index number. Next, source

moments are calculated and transport on the triangle is performed. The

following discussion will center on the linear characteristic spatial

quadrature.

The linear characteristic algorithm follows three distinct paths

dependent on the triangle orientation. If the triangle is a case 0 triangle,

the local axis origin location, (x0 , yo) is found (rules for origin placement

are discussed in the last chapter). Additionally, the height (h), base (b),

and u-location of the off axis apex (u1 ) are found (see figure 3). Then the

source moments SX and Sy are rotated and translated from the local

(x, y) frame to the local (u, u) frame to form new source moments Su, and

Sv. The rotation and translation relationships were derived in the last

chapter. The rotated and translated integral source moments Su and Sv

are given by

SU =(SX- SA Xo) cos(9)+(Sy-SA yo) sin(O) (189)

and

Sv=(Sy-SA yo) cos(O)-(SX-SA xO) sin(8) (190)

where 0 is the counter-clockwise rotation angle in the plane.

Once the source moments are rotated to (u, v), the source

coefficients a', bW, and c'are calculated dependent on the triangle type

and relationships of last chapter.

If the triangle height is negative, then a transformation is

accomplished to flip the triangle across the u -axis by negating the v -
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moment, changing the sign of c', and changing the sign of the edge input

first moment (Owv). This has the net effect of transforming from v to a

new variable v' that has the positive (left to right transport and h >0)

case 0 orientation desired. Transport is then performed on the triangle

using the linear characteristic relationships. Next, the transformation is

made back to the negative orientation by negating the v-moment and

reversing the sign of the output edge first moment, Oorr-. If the triangle

is already positively oriented, then the moments are calculated directly

from the linear characteristic relationships.

Once the output moments are calculated in (u,v) they are rotated

back into the local (x,y) frame by using the following transformations

x= Wu Cos(O)-wv Sin(0)+ x0 WA (191)

and

Wy = 'Mu Sin(O) +%v Cos(O) + YO WPA- (192)

The case 1 orientation differs from the case 0 orientation. The case

1 algorithm starts by splitting the case 1 triangle into one positively

oriented case 0 triangle and one negatively oriented case 0 triangle. Then

sub-triangle parameters for each triangle (i.e. heights, bases, side

lengths, etc.) are calculated. The source coefficients are calculated using

the case definitions of last chapter. The input edge zeroth and first

moments are split.

Transport is performed on the positive-oriented case 0 triangle.

Transformations are performed on the negative-oriented case 0 triangle

to transform it into a positive case 0 triangle. Transport is performed

and the triangle is transformed back into a negative oriented triangle.
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The angular flux cell u, v and zeroth order moments are then assembled

to produce moments defined on the entire case 1 triangle. The case 1

angular flux u and v-moments are then rotated back into the local (x,y)

frame. The edge-moments are stored in the appropriate array locations.

Case 2 oriented triangles are handled by constructing the local

(u, V) frame and calculating the location of the origin. Cell parameters

such as sub-triangle heights, bases, edge lengths, and areas are then

found. The source moments are rotated to (u,v) and source coefficients

are calculated using case 2 relationships of last chapter. Transport is

performed on both sub triangles utilizing the necessary transformations

to accommodate the negative orientation of one of the sub triangles. Sub

triangle angular flux cell-average, u, v, and all output edge-moments are

assembled and scaled back to the entire case 2 triangle. After the edge-

moments are assembled, the angular flux, u, and v-moments are rotated

back to the local (x,y) frame.

Once transport across the whole triangle is performed, the output

moments are stored in the appropriate arrays and the exiting edge data

is passed to the triangle that shares the edge of interest with this triangle

(neighbor triangle) via a cross-reference table (constructed when each

new angle is chosen). Each output edge first moment sign is reversed to

preserve the counter-clockwise direction convention as it becomes an

input edge-moment of the adjacent spatial cell. Next, the input data

flags for the neighbor triangle(s) is (are) set to indicate that data is

present. The neighbor triangle(s) is (are) then queried to check readiness

for transport and the stack and stack pointer are adjusted as necessary.
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The angular flux components for the current triangle are weighted and

accumulated as the scalar flux moments, per equation (9).

The triangle transport process is repeated until the pending

triangle stack is empty (the stack pointer points to zero). At this point,

all the angular flux/moments and edge angular flux/moments are

present for the current angle.

Once all triangles have been used for the present angle, the next

angle in the angle quadrature set is used. The process is repeated,

accumulating angular flux/moments and current/moments, until all the

angles have been done. At that point, the scalar flux zeroth moments are

compared to the previous iteration results. If convergence has not yet

been achieved, the outer loop repeats until convergence is achieved.

The following is pseudocode for the TRISN algorithm:

READ problem information from file

Initialize angular and spatial quadrature

Set convergence criteria

DO

Set previous iteration scalar flux arrays to this iteration's
values

Reinitialize scalar flux/ moments/ current

FOR each angle in the quadrature set

Reinitialize angular flux/ moments

Determine which sides are input and output edges

Update input edge angular flux from boundary data
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Find triangles with boundary data that are ready to

compute and place on the triangle pending stack

IF pointer > 0

Choose triangle, decrement pointer

Construct source moments

Determine the type triangle (which case)

IF case 0

Construct local (u, v) frame

Rotate source moments to (u, v)

Calculate source coefficients a', b', and c'

IF negative case 0 triangle

Flip triangle

Transport across triangle

Flip triangle back

ELSE

Transport across triangle

ENDIF

Rotate output moments back to local (x,y)

ELSEIF case 1

Construct local (u, v) frame

Rotate source moments to (u, v)

Calculate source coefficients a', b', and c'

67



Split input edge-moments

Perform transport across positive case 0
triangle

Invert negative case 0 triangle

Perform transport on case 0 triangle

Invert triangle

Assemble the cell-average and first
moments from the case 0 triangles

Rotate the output moments back to local
(x,y)

ELSEIF case 2

Construct local (u, v) frame

Rotate source moments to (u, v)

Calculate source coefficients a', b', and c'

Perform transport across positive case 0
triangle

Flip negative case 0 triangle

Perform transport on case 0 triangle

Flip triangle back

Assemble the cell-average and first
moments from the case 0 triangles

Assemble output edge zeroth and first
moments

Rotate moments back to local (x,y)
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ENDIF

Update neighbor triangles (adjacent to output
edges)

Accumulate scalar flux and current

ENDIF

NEXT angle

Check convergence

LOOP Until converged

Output results
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V. Testing

The triangle mesh transport methods developed here were tested

on a variety of problems. Although the step and step characteristic

methods were successful, the linear characteristic method wa' most

effective. This section focuses on the testing of the linear characteristic

method for triangle meshes, as implemented in my TRISN code.

TRISN was benchmarked against SNXY on a variation of Lathrop's

square-in-a-square problem [1:312]. Comparisons are made between the

rectangle mesh discrete ordinates transport code, SNXY, and the triangle

code, TRISN. Rate of convergence calculations are performed to compare

the rectar.gle linear characteristic spatial quadrature to the general

triangle linear characteristic quadrature for Lathrop's problem. Mesh

sensitivity calculations are performed to quantify the sensitivity to

random variations in the tniangle spatial mesh. These tests validate the

method and the code. Finally, a series of test cases is analyzed to

demonstrate the flexibility of general triangle spatial meshing on

problems that are not readily represented on rectangular meshes. These

tests show the power of the new method.

A. Benchmarking TRISN with Lathrop's Problem

The benchmark process to validate the operation of the TRISN

algorithm consisted of comparison of average scalar flux results from

SNXY and TRISN on a variation of Lathrop's square-in-a-square problem.

In addition, average current and current distributions are compared at

the top edge of the problem. The particle current comparisons are made
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to ensure that the proper amount of particle flux is being transmitted out

of the problem.

The benchmark problem consisted of a 2 x 2 square source region

centered in a 4 x 4 square. Both regions used a total cross-section of

0.75 and a scattering-to-total cross-section ratio of 2/3. The center

source region contained a source of one. All exterior problem boundaries

were vacuum with no incident currents. The benchmark problem is

shown in figure 10.

(0,4) Vacuum (4,4)

at = 0.75 reflector region at =0.75

as = 0.50 (1,3.) (3.,3.) % = 0.50

SEXT= 1.0 SEXT= 0.0

Vacuum source region Vacuum

(0,0) Vacuum (4,0)

Figure 10. Lathrop's Benchmark Problem for TRISN.

A reference solution was calculated using SNXY on a mesh of

16384-square cells with diamond difference spatial quadrature and S8

level symmetric angular quadrature.
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The initial triangle mesh was generated with Delaunay

triangulation and is shown in figure 11. Triangle mesh refinements were

accomplished using the edge bisection technique discussed earlier.

Average scalar flux for each mesh was compared using various spatial

mesh refinements. If TRISN is operating properly, the average flux must

asymptotically converge to the same result as SNXY as the spatial

meshes are refined. The results of these comparisons are shown in

figure 12. The dashed line in figure 12 denotes the value of the 16384-

cell diamond difference calculation. Figure 12 also shows that as the

square and triangle meshes are refined, the average scalar flux results of

TRISN and SNXY can be driven as close to the same result as desired.

The difference between the flux results of TRISN and SNXY for the most

highly resolved meshes on each is less than 0.003 percent.

Figure 11. Initial Triangle Mesh for Lathrop's Problem
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Figure 12. Lathrop's Problem Benchmark Results for TRISN vs.
SNXY

The top edge currents for SNXY and TRISN are compared using a

16 x 16 cell square mesh. Each square spatial cell was divided on its

diagonal to produce a 512-cell triangle mesh. Figure 13 shows the

TRISN and SNXY calculated average outward partial current for each

spatial cell along the top edge of the benchmark problem. Figure 13

indicates that SNXY and TRISN implementations of the linear

characteristic spatial quadrature are in agreement for the top edge

current distribution. (The triangles are present on the graph, but are

hidden by the superimposed squares).
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Figure 13. Top Edge Partial Current for Benchmark Problem

The relative difference between the partial currents can be seen by

using the following difference ratio

Er = 2ISNXY - TRISNI (193)LiSNxY + jnSNi I
Figure 14 shows the relative difference of outward partial currents

calculations between square and triangle linear characteristic for each

spatial cell. The maximum difference in outward partial current is less

than 0.2 percent for cells on the order of 1/3 of a mean free path in

thickness.
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Figure 14. Top Edge Current Relative Difference of Squares vs.
Triangles for Benchmark Problem

B. Convergence Rate of Triangle Linear Characteristic

Larsen showed analytically that the asymptotic rate of convergence

for rectangle linear characteristic is at least O(Ax 3 ); his numerical

experiments gave convergence rates as high as O(Ax 4 ) 16:801. The

triangle linear characteristic convergence rate was measured numencally

and compared to the rectangle linear characteristic rate using Lathrop's

problem shown in figure 10. Problem scalar flux was calculated for

successive refinements of the rectangle and triangle meshes. The relative

errors are plotted versus total number of cells on a log/log scale in
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figure 15. Plotting the information in this way and calculating the slope

of the line provides the approximate order of convergence. Figure 15

shows that rectangle linear characteristic and triangle linear

characteristic both converge at about O(Ax 3) with squares having a slope

of -3.2 and triangles a slope of about -2.8. (Note that the linear measure

of triangle cell size varies inversely with the square root of the number of

cells, which is used in figure 15 and subsequent similar figures.)

Convergence rate for thin cells is valuable but a more important issue is

method performance in the one mean free path cell regime. Cell

thicknesses much less than one mean free path can cause prohibitively

large memory constraints on large problems and do not exploit the

accuracy of the spatial quadrature method. The test cases that follow

will demonstrate performance in the one mean free path regime.
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Figure 15. Average Scalar Flux Convergence Rate for
Rectangle/Triangle Linear Characteristic.

C. Sensitivity of Linear Characteristic to Triangle Mesh Variation

If the flux and current calculations are sensitive to the spatial

mesh node placements for arbitrary triangle meshes, then the utility of

general triangle meshing is diminished. Modest variations in node

placement should translate to only slight variations in results.

A five mean free path square test problem was used to test the

sensitivity of triangle linear characteristic results to random variations in

the triangle mesh. This square was a pure absorber with total cross-

section 0.75 and a source of 1.0. Triangle meshes were randomly

generated (with fixed exterior nodes) and average scalar fluxes were

compared to rectangle results on a 5 x 5 square mesh.
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Average scalar flux within the square was calculated using an S8

level symmetric angular quadrature. Seven cases were studied. These

cases consisted of the square spatial grid (5 x 5 mesh), a triangle grid

derived by splitting the square grid along each cell's diagonal (from lower

left to upper right in each square), and five cases where the grid interior

nodes were varied randomly by 0.25 units in both x and y (from the

patterned triangle mesh). For the triangle meshes of figure 16, the node

connections were broken by reapplying the Delaunay algorithm on the

nodes. In all cases the same number of spatial cells was used and the

boundary spatial cell nodes remained fixed. Figure 16 shows the mesh

test set. Figure 17 shows the relative difference between each triangle

mesh trial and the square mesh computation. Figure 17 shows that trial

0 gives the largest difference from rectangle computations but remains

less than .04 percent relative difference from the square mesh

computation.
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Figure 16. Mesh Sensitivity Test Set for the Sensitivity Test
Problem for 0.25 Unit Random Variation

79



3.OOE-04 A

, • 2.OOE-04

1.OOE-04

O.OOE+O0 ,
0 1 2 3 4 5

trial number

Figure 17. Relative Difference in Scalar Flux for Triangle Linear
Characteristic

Top edge particle current comparisons by cell were made as

another measure of the sensitivity of the triangle linear characteristic

method. The results are shown in Table 1. The relative difference

between rectangle calculations and each triangle trial is shown for each

spatial cell in figure 18. Figure 18 shows that the maximum relative

difference between the triangle linear characteristic and square linear

characteristic methods is about 0.03 percent.
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Table 1
Top Edge Current for 0.25 Unit Random Variation in Node Placement for

the Sensitivity Test Case

x Squares Trial #0 Trial # 1 Trial #2 Trial #3 Trial #4 Trial #5

0.5 0.20780 0.20785 0.20853 0.20870 0.20798 0.20798 0.20848
1.5 0.24622 0.24632 0.24635 0.24599 0.24619 0.24633 0.24638
2.5 0.25018 0.25021 0.25027 0.25028 0.25032 0.25016 0.25019
3.5 0.24622 0.24639 0.24634 0.24622 0.24625 0.24611 0.24634
4.5 0.20780 0.20899 0.20790 0.20791 0.20799 0.20825 0.20804

0.001

0 IL F -•rl [

.L5 .U 15 [.5

I -0.001

-0.002

-0.003

x-position

Figure 18. Top Edge Current Relative Difference From Square
Calculations for Sensitivity Problem for 0.25 Unit Random

Variation in Node Placement
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The sensitivity analysis was repeated using a 0.50 unit random

variation in internal node placement. These meshes are shown in figure

19. Most of these meshes contain some high aspect ratio (long and

narrow) cells, despite using Delaunay triangulation to minimize these

ratios. One might expect these meshes to give inaccurate results.

Surprisingly, the maximum relative difference in average scalar flux

calculations as compared to the rectangle calculation was still less than

0.3 percent. Top edge current for each case is contained in Table 2.

Current distribution relative difference compared to rectangle

calculations was also insensitive to the spatial meshes. These results are

shown in figure 20.

Table 2
Top Edge Current for 0.50 Unit Random Variation in Node Placement for

the Sensitivity Test Case

x Squares Trial #0 Trial # 1 Trial #2 Trial #3 Trial #4 Trial #5

0.5 0.20780 0.20785 0.20839 0.20856 0.20822 0.20863 0.20793
1.5 0.24622 0.24632 0.24563 0.24587 0.24602 0.24594 0.24635
2.5 0.25018 0.25021 0.25035 0.25027 0.25030 0.25028 0.25034
3.5 0.24622 0.24639 0.24598 0.24602 0.24601 0.24606 0.24599
4.5 0.20780 0.20899 0.20864 0.20856 0.20812 0.20862 0.20805
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Figure 19. Mesh Sensitivity Test Set for the Sensitivity Test
Problem for 0.50 Unit Random Variation
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Figure 20. Top Edge Current Relative Difference for Sensitivity
Problem for 0.50 Unit Random Variation in Node Placement

Modest variations in triangular mesh around one mean free path

change the size and orientation of the triangle spatial cells but produce

relative differences of less than 1.0 percent in top edge currents and

average scalar fluxes. However, the trial 0 mesh with perfectly regular

45-degree right triangles was the worst performer. The trial 0 mesh did

not produce symmetric results. However, the asymmetry is less than one

might expect. Randomizing the triangle mesh appears to avoid

systematic accumulation of errors and improves performance, even

though some long and narrow triangles result. Randomizing the mesh is

not an option with row-column rectangular meshes.
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D. Test Case 1: Source Cylinder with Annular Segment Reflectors

The source cylinder with annular segment reflectors test problem

is designed to show the difficulties with rectangular spatial mesh

generation. This partially reflected cylinder is motivated by space power

reactor designs. The test problem consists of a circular source region of

radius 2.0, with scattering cross-section of 0.5, total cross-section of

0.75, and source strength of 1.0. The source region is surrounded by

two concentric rings with alternating sections of void and scattering

material in each ring. The scattering material has scattering cross-

section of 0.5, total cross-section of 0.75, and no source. Three different

configurations of this problem were observed. First is the fully closed

configuration where the rings are oriented to leave no unobstructed

leakage path from the source region. This configuration is shown in

figure 21.

The second configuration of the partially reflected cylinder test

problem is the half open configuration, which is obtained by a 45-degr.ee

rotation of the outermost ring. The half-open configuration is shown in

figure 22.

The last configuration of the partially reflected cylinder problem

studied is the fully open configuration, which is obtained by rotating the

outermost ring an additional 45 degrees to achieve the maximum

opening for leakage from the source region. The fully open configuration

is shown in figure 23.
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Figure 21. Fully Closed Partially Reflected Cylinder Problem
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Figure 22. Half Open Partially Reflected Cylinder Problem
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Figure 23. Fully Open Partially Reflected Cylinder Problem

1. Spatial Mesh Considerations for the Partially Reflected
Cylinder Problem.

Square and triangle meshes were generated to model the problem

with varying cell thicknesses. Square meshes were particularly difficult

to generate because of the curved boundaries of the problem. Square

meshes were generated by calculating the centroid location of each

square cell and assigning the cell to the region in which the centroid was

located. This scheme was applied each time the square mesh was

refined. As a result, each successive mesh refinement provided a better

approximation to the problem geometry.

Triangle meshes were generated by placing nodes on concentric

rings and using Delaunay triangulation to construct triangles. The

number of nodes on each ring was controlled by visually rejecting
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meshes that allowed overlap between regions of the problem. This

constrained the number of nodes that could be placed on a ring.

General triangle meshes very closely modeled the problem

geometry even for just a few triangles. Figure 24 shows the 80 general

triangle mesh (16 cells for the source region) for the partially reflected

cylinder test problem (fully open case). This mesh very closely

approximates all region areas and problem boundaries. The general

triangle mesh of figure 24 is contrasted by the 208 square (32 cells for

the source region) mesh of figure 25. Even 208 spatial cells do not

resolve the test problem geometry sufficiently to provide valuable results.

The 208 square mesh does model the duct openings, but fails to conserve

region areas. Table 3 shows the areas of the problem regions for the

partially reflected cylinder fully open configuration for various mesh

types and refinements.

a Source Re iion
a Reflector Region
a Void Region

Figure 24. Fully Open Partially Reflected Cylinder Problem (80
triangle mesh)
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Figure 25. Fully Open Partially Reflected Cylinder Problem (208
square mesh)

Table 3
Areas for Regions of Various Meshes for the Fully Open Partially

Reflected Cylinder Problem)

Tpe Mesh Source Inner Outer
Reflector Reflector

Exact 12.5664 7.854 10.9956
52 Squares 12 10 10
208 Squares 13 7.5 11
812 Squares 13 7.75 11
3228 Squares 12.6875 7.75 11
80 Triangles 12.5663 8.1437 11.0462
400 Triangles 12.5664 7.8535 10.9954
1808 Triangles 12.5664 7.8536 10.9956

Figure 26 shows the 80 triangle mesh for the half open

configuration of the partially reflected cylinder test problem. Eighty

triangles accurately describes the problem, very closely approximates
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region areas, and nearly exactly describes the vacuum openings to the

source region. The 208 square cell mesh for the half-open configuration

is shown in figure 27. Figure 27 shows that 208 square cells only gives

the general shape of the test problem.

The fully closed 80 triangle mesh is shown in figure 28. It again

models the features of the test problem very well, while distributing the

materials accurately and nearly conserving their areas. The fully closed

208-celi square mesh is shown in figure 29.

ti Source Region
0 Reflector Region
t3 Void Region

Figure 26. Half Open Partially Reflected Cylinder Problem (80
triangle mesh)
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* Source Region
* Reflector Region
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Figure 27. Half Open Partially Reflected Cylinder Problem (208
square mesh)

"* Source Region
"* Reflector Region
o Void Region

Figure 28. Fully Closed Partially Reflected Cylinder Problem (80
triangle mesh)
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Figure 29. Fully Closed Partially Reflected Cylinder Problem (208
square mesh)

Table 4 shows the specific parameters for the meshes used in the

partially reflected cylinder problem.

Table 4
Spatial Mesh Parameters for Partially Reflected Cylinder Problem

Type Mesh Total # of Cells in Cell Thickness Concentric
Cells Source Region (sguares) Ring Width

(triangles)

Square 64 12 1.000
Square 256 52 0.500
Square 1024 208 0.250
Square 4096 3228 0.125
Triangle 80 16 1.00
Triangle 400 80 0.50
Triangle 1808 391 0.25
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2. Fully Closed Configuration

Average scalar fluxes were calculated for various mesh refinements

of squares and triangles. The square results were corrected for source

area. The area correction was made by dividing the source region scalar

flux by the ratio of the square computational grid to exact area. The

results are shown in figure 30.

Figure 30 shows that a triangle mesh consisting of just 16

triangles in the source region is already within 1.0 percent of the refined

square mesh average scalar flux (area uncorrected) result and by using

80 triangles the difference is reduced to less than 0.6 percent, while it

takes a 52 (area uncorrected) cell square mesh to achieve 1.0 percent

relative difference. Area correcting the source region produces 2.6

percent relative difference.

A better comparison of the performance of these methods are how

well each successive refinement compares with the previous mesh

refinement on the same type mesh. Comparing the uncorrected 208

square mesh to the uncorrected 3228 square mesh shows a relative

differe.nce of nbout 0.7 percent. The relative difference of corrected 208

square mesh and the 3228 corrected square mesh is about 3.4 percent.

In contrast, the 80 triangle and 391 triangle meshes have a relative

difference of less than 0.1 percent. Triangles are a better converged

result. Correcting the square mesh source region area does not increase

the performance of the square meshes, therefore only uncorrected results

are presented for the remaining tests.
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Figure 30. Fully Closed Configuration Source Average Scalar Flux

3. Half Open Configuration

The average scalar flux was calculated for various square and

triangle meshes on the half open configuration for the partially reflected

cylinder problem. The results are shown in figure 31.
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Figure 31. Half Open Configuration Source Average Scalar Flux

Figure 31 also shows that a triangle mesh consisting of just 80 triangles

(16 triangles in the source) is within 0.3 percent of the refined triangle

mesh average scalar flux result and using 400 triangles the difference is

reduced to less than 0.01 percent. Sixty-four squares produce a relative

error of 2.0 percent when compared to the 3228 square mesh, while a

1024 cell square mesh is about 0.2 percent out. Again the triangle result

is b(tter converged by a factor of 20.

4. Fully Open Configuration

The average scalar flux was calculated for various square and

triangle meshes on the fully open configuration for the partially reflected

cylinder problem. The results are shown in figure 32.
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Figure 32. Fully Open Configuration Source Average Scalar Flux

Figure 32 shows that a triangle mesh consisting of just 80 triangles (16

triangles in the source region) is already within 0.8 percent of the refined

triangle mesh average scalar flux result and when using 400 triangles

the difference is reduced to about 0.3 percent, Using a 64 cell square

mesh, the relative difference from the 3228-square mesh is about 2.4

percent. A 256-square mesh produces a relative difference from the

3228-square mesh of 0.3 percent

E. Test Case 2: The Vacuum Duct

The vacuum duct test problem is designed to demonstrate the

failings of a rectangle spatial mesh, even on simple geometries. The

vacuum duct problem consists of a 2 x 2 square cut along the diagonal.

The two triangular pieces of this square are separated to create a vacuum
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duct. Two configurations are observed: the narrow duct configuration

which has a vertical displacement of one unit, and the wide duct

configuration, which has a vertical displacement of two units. These

configurations are discussed in more detail below.

2. Narrow Vacuum Duct

The single width vacuum duct problem consists of a 2 x 3 rectangle

with a vacuum duct cut through it along the rectangle diagonal. The

lower triangle (source region) has a scattering cross-section of 0.5, a total

cross-section of 0.75, and a source strength of 1.0. Two cases for the

upper triangle (scattering region) were observed. The first case used a

material with a scattering cross-section of 0.5, a total cross-section 0.75,

and no source (scatter case). The second case used a pure absorber with

no scattering cross-section, a total cross-section 0.75, and no source

(absorber case). The narrow vacuum duct problem is shown in figure 33.
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Figure 33. Narrow Vacuum Duct Problem

The narrow vacuum duct problem can be described exactly using

as few as four general triangles. Using only four triangles, the source

region, scattering region, and vacuum duct can be modeled exactly. The

four triangle mesh is shown in figure 34. Using a six square mesh (the

minimum), the areas can be modeled exactly but a different problem is

described. This can be seen in figure 35. Further refinements of general

triangle mesh (figure 36) refine the transport of the problem, which may

not be necessary if the problem is optically thin. However, further

square cell refinements are required to adequately resolve the shapes of

the regions (figure 37).

98



* Source Region
* Reflector Region
o Void Region

Figure 34. Narrow Vacuum Duct (4 triangle mesh)
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No

Figure 35. Narrow Vacuum Duct (6 square mesh)
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Figure 36. Narrow Vacuum Duct (12 triangle mesh)

* Source Region
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o Void Region

Figure 37. Narrow Vacuum Duct (96 square mesh)

Table 5 shows the specific mesh parameters for all meshes used in

the narrow vacuum duct problem.
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Table 5
Spatial Mesh Parameters for Narrow Vacuum Duct Problem

Type Mesh Total # of Cells in Duct Cells in Cell
Cells Upper/Lower Thickness

Region (sguares)

Square 6 2 2 1
Square 12 4 4 1/2
Square 54 18 18 1/3
Square 96 32 32 1/4
Square 150 50 s0 1/5
Square 384 128 128 1/8
Square 1536 512 512 1/16
Square 6144 2048 2048 1/32

Triangle 4 2 1
Triangle 10 6 2
Triangle 12 4 4
Triangle 40 24 8
Triangle 160 96 32
Triangle 640 384 128
Triangle 2560 1536 512

Calculations were made using the linear characteristic spatial

quadrature (triangle and rectangle) with S8 level symmetric angular

quadrature and a convergence criterion of no more than 10- 5 relative

change in cell scalar fluxes between iterations. Average top edge

currents and edge current distributions are compared for various square

and triangle spatial meshes.
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Table 6
Average Top Edge Current Narrow Vacuum Duct Problem (scatter case)

Type Mesh No. of Cells J ave Top Rel Error

triangle 4 0.064193 0.051057
triangle 10 0.060937 0.002259
triangle 12 0.060841 0.003831
triangle 40 0.060964 0.001817
triangle 160 0.061035 0.000650
triangle 640 0.061071 6.55E-05
triangle 2560 0.061075

square 6 0.048986 0.197937
square 12 0.056008 0.082964
square 54 0.058135 0.048138
square 96 0.059324 0.028670
square 384 0.059805 0.020794
square 1536 0.060911 0.002685
square 6144 0.061014 0.000999

The average top edge current and the relative error using the 2560

cell triangle case as a reference are listed in table 6; the relative errors

are plotted in figure 38. The 2560-triangle case was used as the

benchmark because the relative change in edge current between 640 and

2560 triangles was about 0.007 percent, while the relative change

between 1536 and 6144 squares was still about 0.2 percent. The

triangle result is the more converged result. General triangle meshes

reach 1.0 percent relative error at ten triangles, while square meshes do

not get to the 1.0 percent relative error level until somewhere between

384 and 1536 squares. This translates into a cell savings of greater than

a factor of thirty. Figure 38 shows savings of factors of from 10 to 100

depending on the error one will tolerate.
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The relative error increases when increasing the number of

triangles from 10 to 12. The 12-triangle mesh has the same pattern of

triangles as the trial 0 sensitivity meshes discussed earlier. This

suggests that truncation errors are accumulating systematically,

constituting numerical diffusion. Figure 39 shows the 10 and 12 triangle

meshes. The 10 cell mesh may perform particularly well, however,

because it puts more effort into refining the vacuum duct.

The general triangle linear characteristic method is in agreement

with refined square calculations; also, it models the particle current

distribution very well. This is seen clearly in figure 40, which shows the

current distribution for various triangle grid refinements and for the

most refined square mesh.
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Figure 38. Relative Error Narrow Vacuum Duct Problem (scatter
case)
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Figure 40. Top Edge Current Narrow Vacuum Duct (scatter case)
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This testing was repeated using a pure absorber for the upper

triangle and using the 2560 cell triangle case as a reference for

calculating the relative error. Table 7 shows the results.

Table 7
Average Top Edge Current Narrow Vacuum Duct Problem

(absorber case)

Tye Mesh No. of Cells J ave Top Rel Error

triangle 4 0.052562 0.089029
triangle 10 0.047990 0.005698
triangle 12 0.048054 0.004372
triangle 40 0.048144 0.002507
triangle 160 0.048225 0.000829
triangle 640 0.048261 8.29E-05
triangle 2560 0.048265

square 6 0.037157 0.230146
square 12 0.044071 0.086895
square 54 0.045728 0.052564
square 96 0.046720 0.032011
square 150 0.047148 0.023143
square 384 0.047833 0.008951
square 1536 0.048130 0.002797
square 6144 0.048217 0.000995

Table 7 shows that triangle meshes are below 1.0 percent relative error at

10 triangles, while squares do not get to the 1.0 percent relative error

level until somewhere after 384 squares. This again translates to a total

spatial cell savings of greater than a factor of 30. The relative error is

plotted in figure 41. Figures 38 and 41 both show as fast or faster

convergence for triangle linear characteristic as for rectangle linear

characteristic.
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Figure 41. Relative Error Narrow Vacuum Duct Problem (absorber
case)

3. Wide Vacuum Duct

The wide vacuum duct problem is a variation of the narrow

vacuum duct problem where the materials remain the same but the

vertical displacement of the upper triangle is doubled, widening the

vacuum duct. The wide vacuum duct problem is shown in figure 42.
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Figure 42. Wide Vacuum Duct Problem

The particle current distribution along the top edge is compared for

various refinements of squares and triangles using an S8 level symmetric

quadrature, linear characteristic spatial quadrature, and converging the

average scalar flux to no more than 10- 5 maximum relative change in

cell scalar fluxes between iterations. Table 8 shows the average top edge

current and relative error using the refined triangle case as the

benchmark.
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Table 8
Average Top Edge Current Wide Vacuum Duct Problem

(scatter case)

Type Mesh No. of Cells J ave ToR Rel Error

triangle 4 0.040227 0.005549
triangle 16 0.039804 0.005549
triangle 32 0.039873 0.003300
triangle 128 0.040000 0.000125
triangle 512 0.039995 0.000250
triangle 2048 0.040005 0.000901

square 8 0.035396 0.115211
square 32 0.037008 0.074916
square 72 0.038273 0.043295
square 128 0.039023 0.024547
square 400 0.039467 0.013448
square 512 0.039715 0.007249
square 2048 0.039907 0.002450
square 8192 0.039969 0.000900

Table 8 indicates that triangle linear characteristic has reached the

1.0 percent relative error with only 4 triangles, while square linear

characteristic reaches the 1.0 percent relative error level at 512 cells.

This is a total cell savings of around a factor of 250 just to resolve the

problem geometry. A different rectangular cell mesh might save cells but

would be complicated to generate. Comparison of the two types of

meshes at the 128 cell level shows that a mesh of 128 triangle cells has a

relative error of about 0.08 percent while 128 square cells gives a relative

error of 2.4 percent. This translates into a factor of thirty times the error

for squares. The average top edge current for various triangle and square
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refinements is shown in figure 43, and the corresponding errors are in

figure 44.
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Figure 43. Top Edge Current Wide Vacuum Duct Problem (scatter
case)
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Figure 44. Relative Error Wide Vacuum Duct Problem (scatter
case)

Substituting a pure absorber for the scatter material in the upper

triangle, the top edge current and relative errors are compared in table 9

and figure 45.
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Table 9
Average Top Edge Current Wide Vacuum Duct Problem

(absorber case)

Type Mesh No. of Cells J ave Top Rel Error

triangle 4 0.032949 0.015221
triangle 16 0.032191 0.008134
triangle 32 0.032246 0.006440
triangle 128 0.032440 0.000462
triangle 512 0.032468 0.000401
triangle 2048 0.032484

square 8 0.027562 0.150763
square 32 0.029884 0.079217
square 72 0.030807 0.050778
square 128 0.031549 0.027916
square 400 0.031980 0.014636
square 512 0.032213 0.007456
square 2048 0.032399 0.001725
square 8192 0.032455

Table 9 shows triangle meshes reach less than 1.0 percent relative

error at 16 triangle cells, while squares reach the same level at about 512

cells. At 512 cells, triangles are at about 0.05 percent relative error and

squares are at 0.7 percent relative using the 8192 square cells case as

the benchmark.
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Figure 45. Top Edge Current Wide Vacuum Duct Problem
(absorber case)

F. Execution Speed

The execution speed per cell of the two codes was compared using

Lathrop's problem. The square method used a 16 x 16 square mesh.

The triangle method used the mesh described in figure 11, twice refined

using the bisected edge refinement technique discussed earlier. This

gives a total of 512 triangular spatial cells. Rectangle and triangle linear

characteristic were compared using a S8 level symmetric quadrature.

The problems were run on a Sun Sparc 2 workstation. For each spatial

mesh, the problem was run five times (to minimize external factors,

number of users, CPU load, etc.) tracking the execution time with a stop

watch. All measurements were less than one percent different from the

average result. The execution times were averaged for all trials on each
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mesh type. The average was then divided by the number of iterations to

convergence (less than 10-5 maximum relative change in scalar flux), the

number of cel1 s in the particular spatial mesh, and the number of

ordinates (forty for S8 level symmetric). The triangle run time per

ordinate per cell per iteration was divided by the corresponding square

result to give a measure of the increased effort for a triangle cell

computation. The average square cell computation time was about 1.6 x

10-4 second. The average triangle cell computation time was about 4.3 x

10-4 second, which is about 2.7 times more effort to compute a

triangular cell with linear characteristic than to compute a rectangular

cell. It is important to note that the square code took advantage of

symmetries to precalculate many of the parameters required (e.g.

exponential moment functions, optical thicknesses, etc.). The triangle

code was implemented in a completely general fashion (no precalculation

of parameters) to allow generalization to three-dimensions. As a result,

the triangle cell computation speed could be increased.

G. Summary of Observations

Lathrop's problem validated the implementation of the general

triangle linear characteristic spatial quadrature. It showed that not only

was the average scalar flux calculated properly, but the average edge

current and edge current distribution also were in agreement with a

validated computer program. Additionally, the grid sensitivity

measurements showed that average scalar flux values were insensitive

(less than one percent) to triangle mesh variations for up to two-thirds of

a mean free path in both x and y directions. Sensitivity measurements
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also showed that the trial 0 right angle meshing with triangles gave the

worst performance indicating that numerical diffusion was a problem.

This was also seen in right triangle meshes of Lathrop's problem and the

vacuum duct problem.

Two families of test cases were investigated: the source cylinder

with annular segment reflectors and the vacuum duct test problem.

Each had geometric features that were difficult to model with rectangle

spatial meshes. General triangle meshes much more easily modeled

these geometric features. In each case, general triangle meshes very

accurately modeled the geometric features of the problem with few

spatial cells.

General triangle meshes provided at least a factor of three savings

in the number of spatial cells required to achieve a one percent relative

error level on the partially reflected cylinder test problems, while

asymptotically converging at a higher rate. For some cases of the

vacuum duct problems, triangles saved more than a factor of 100 in

spatial cells.

Computational speed was measured to quantify the increase in

effort required to use a general triangle mesh. The Lathrop problem was

repeated for both the square and triangle meshes. Total time was

recorded to obtain an average problem execution time. The average time

of execution was divided by the total number of cells in the mesh, the

number of ordinates in the angular quadrature, and the number

iterations to convergence. The triangle linear characteristic method

required about 2.7 times more effort than the rectangle linear

characteristic method to do a cell computation for Lathrop's problem.
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Vl. Conclusions and Recommendations

The general triangle lincar characteristic spatial quadrature was

developed, implemented, and tested. This required construction of a

local coordinate system, new conservation relationships, and a pathway

to and from coordinates systems. Additionally, data structure

restrictions required development of the algorithm to support arbitrary

triangle meshes.

The general triangle linear characteristic spatial quadrature

provides somewhat slower convergence on Lathrop's problem as did the

rectangle linear characteristic spatial quadrature. However, Lathrop's

problem uses square regions and can be modeled exactly (geometrically)

with a square mesh. Most real problems do not have this property.

When curved region boundaries or boundaries that are not perfectly

aligned with one of the cardinal (x,y) axes are introduced, rectangular

spatial meshes have difficulties resolving the problem geometry. This

may be the case even though the particle transport may be sufficiently

resolved to provide accurate results. In fact, geometry may be the

dominant factor in developing the spatial mesh for complicated problems.

Triangle meshes provide an attractive alternative for these problems.

Lathrop's problem validated the derivation and implementation of

the triangle linear characteristic method by showing convergence of

average scalar flux, top edge average current, and the distribution of top

edge current to results from a previously validated rectangle linear

characteristic and diamond difference code.
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Grid sensitivity measurements showed that angular flux and

particle current were relatively insensitive to randomized triangle meshes

even when meshing produced high aspect ratio triangles.

Two families of test cases were developed which demonstrated

some advantages of the new triangle linear characteristic method. They

were the source cylinder with annular segment reflectors problems and

the vacuum duct test problems. For each test problem, triangle meshes

very accurately modeled the geometry of the problem with few cells, while

rectangle meshes required many cells to adequately model the problem.

Triangle meshes were consistently more accurate than square meshes for

the partially reflected cylinder test problems. For the vacuum duct

problems, the triangle method achieved the same accuracy as the square

method, but with 3 to more than a 100 times fewer triangles than

squares. Triangle meshes converged more rapidly than did square

meshes for these problems, obtaining accurate results with only a few

cells. Spatial cell savings were observed even though the problems were

optically thin, demonstrating that geometric considerations can drive the

need for mesh refinement. Because rectangular spatial cells poorly

resolve inclined or curved surfaces, convergence to accurate results is

slowed when such surfaces are present. General triangles accurately

approximate these surfaces with many fewer cells. The savings in spatial

cells can allow more complicated problems to be attempted.

Triangle meshes that contained only right triangles gave less

accurate results than did arbitrary meshes in all instances tested. This

is due to the fact that truncation errors accumulate systematically due to

the repetitive nature of the mesh. These errors can readily be minimized
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with randomized triangle meshes. Rectangular meshes do not have this

flexibility.

There are several potential areas for extension of this work. The

TRISN computer code is a one-energy group, time independent, isotropic

scatter code which is sufficient to test new spatial quadratures.

However, expansion of the code to model more realistic problems would

be extremely useful.

During this effort, the ability to generate general triangle meshes

was extremely limited. The Delaunay triangulation algorithm has

particular difficulty with curved boundaries shared between regions.

(Such boundaries are concave with respect to one of the regions, and the

Delaunay triangulation algorithm often specifies triangles that lie outside

such a boundary, and thus are in the wrong region). Development or

adaptation of an existing general triangle meshing algorithm would

provide the ability to perform calculations on more robust problems. The

TRISN algorithm could be modified to handle boundary conditions other

than vacuum boundaries. This would involve designing and building

angular quadratures that would have reflection symmetry at every

boundary. This capability would allow problems with off-axis symmetries

to be modeled with fewer spatial cells. Extension of the case 0 spatial

quadrature development to other spatial quadratures would be valuable.

Possibly implementing a case 0 linear nodal method or a case 0

exponential characteristic spatial quadrature would be very interesting.

This could allow thicker cells to be used.

Finally, many interesting problems have regions of very high

scatter. A useful extension of this work would be to investigate
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convergence acceleration techniques and their interaction with the

general triangle discrete ordinates algorithm.
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