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SUMMARY

This document serves as the final report of the research program, "Acoustic

Waves in Complicated Geometries and Their Interactions with Liquid-Propellant

Droplet Combustion," sponsored by the Air Force Office of Scientific Research,

Grant No. 91-0171. The major purpose of this research is to develop a com-

prehensive theoretical analysis within which multi-dimensional acoustic waves in

baffled combustors and their mutual coupling with liquid-propellant combustion

can be properly treated.

During this report period from March 14, 1991 to May 14, 1993, a unified linear

and nonlinear acoustic analysis for baffled combustion chambers has been developed.

The linear investigation proceeds by solving a generalized wave equation derived

from the conservation equation for a two-phase mixture, utilizing perturbation

expansions of flow variables. Nonlinear acoustic study of baffled chambers is

conducted by means of an approximate analysis which takes into account second-

and third-order nonlinear gas dynamics and combustion response. Results suggest

three important effects of baffles on transverse modes of combustion instability.

First, transverse waves can be longitudinalized inside baffle compartments. This

may decouple combustion response from oscillatory motions if the processes near

the injector face are sensitive to transverse variations in pressure. Second, severe

restriction of the transverse component of acoustic velocity fluctuations is observed

in baffle compartments. This may be key in stabilizing systems with velocity-

sensitive combustion. Third, the frequency of oscillation is decreased with the

addition of baffles, in agreement with experiments. One potentially destabilizing

effect of baffles is the observed pressure concentration at the injector face. Pressure
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sensitive processes in this region may enhance instability. Limit cycles are observed

for both two- and three-dimensional baffled chambers. Their most remarkable

characteristic is high-frequency modulation of the limit cycle amplitude. In

addition, the conditions for the existence of spinning oscillations are treated in

depth.

Some of the results obtained from this research have led to the following two

publications.

1. Yang, V., Yoon, M.W., and Wicker, J.M., "Nonlinear Pressure Oscillations in

Baffled Combustion Chambers," AIAA Paper 93-0233, presented at the 31st

AIAA Aerospace Sciences Meeting, January 1993.

2. Yang, V., Yoon, M.W., and Wicker, J.M., "Linear and Nonlinear Acoustic

Waves in Liquid-Propellant Rocket Engines," presented at the First Interna-

tional Symposium on Liquid-Rocket Combustion Instability, January 1993.
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CHAPTER 1

INTRODUCTION

Combustion instabilities have long plagued liquid-propellant rocket engine

designers and developers. The essential cause of this problem is the high rate

of oscillatory energy release within a volume in which energy losses are relatively

small. If compensating influences acting to attenuate the oscillations are weak,

then unsteady motions in a combustor may give rise to excessive chamber pressures

and heat transfer rates, resulting in decreased performance at best, or catastrophic

failure of the engine at worst. Table 1 (assembled from Refs. 1-8) presents some

practical examples in which pressure oscillations have had serious impact on specific

engine development programs. As this table shows, high frequency instabilities

have remained an insidious problem throughout the entire history of U.S. rocket

programs, particularly in liquid oxygen (LOX)/RP-1 and chemical storable systems.

Because instabilities arise from sources entirely internal to the system, an

external observer perceives the result as the dynamical behavior of a self-excited

system capable of exciting and sustaining oscillations over a broad range of

frequencies. Typically, the oscillations grow out of a reinforcement between the

inherent noise of the combustion process and the numerous characteristic acoustic

modes of the feed-system/combustion chamber combination, rather than from any

external influence.

Three inherent characteristics of the combustion chamber environment provide

ideal conditions for the initiation of instability. First, combustion chambers are
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almost entirely closed. This condition favors excitation of unsteady motions

over a broad range of frequencies. Second, the internal processes tending to

attenuate unsteady motions are weak relative to the driving energy, thus providing

circumstances that allow sustained modes of instability. Third, and perhaps most

important, the energy required to drive unsteady motions is an exceedingly small

fraction of the heat released by combustion. In typical instances, less than 0.1

percent of the heat release is sufficient to initiate and sustain the severe pressure

oscillation.
9

1.1 General Features of Combustion Instability in Liquid-Propellant

Rocket Engines

Compared with solid rocket motors and other liquid-fueled propulsion systems,

the combustion processes within a liquid rocket engine have several characteristics

that produce distinctive differences in the pressure oscillations observed. First,

except for highly volatile fuels, such as hydrogen and methane, most propellants

are injected into the chamber as a spray of liquid droplets and undergo a sequence

of atomization, vaporization, mixing, and combustion processes. Each process may

serve as either a driving or damping mechanism, depending on its sensitivity to the

local flow oscillations. Second, the combustion chamber is directly connected to the

propellant supply system through the injectors. Interactions between the unsteady

motions in the chamber and the oscillatory behavior of the feedlines may affect

the stability characteristics of the engine. Third, the occurrence of instabilities

depends intimately on the operating sequence of the engine. For example, the

sudden liquefaction or gasification of liquid propellant in the feedline during the
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transient start-up and shut-down phases may trigger instabilities;10 hence, design

criteria must make provision for transient as well as steady-state mechanisms for

initiating combustion instabilities. Fourth, the propellant also frequently serves as

the coolant for a regeneratively cooled system. The heat transfer and other engine

performance requirements may have a strong impact on the stability characteristics

through their influences on the propellant flow conditions in the injection system. A

well known example is the triggering of instabilities in the J-2 engine by decreasing

the gaseous hydrogen injection temperature. 11

Combustion instabilities are a particularly complex phenomenon for which

several modes of oscillations have been commonly observed. They are often

classified according to their spatial structures and driving mechanisms as low,

intermediate, and high frequency instabilities. Low frequency instabilities, also

known as 'chugging' or POGO instabilities, received much attention during the

1950s and 1960s as a serious problem with the Jupiter, Thor, Atlas, and Titan

launch vehicles. The underlying mechanism lies in the coupling between the fluid

dynamics in the combustion chamber and the propellant supply system. Other

effects such as propellant pump cavitation and gas entrapment in the feedline

may also contribute to driving POGO instabilities. Characteristically, this mode

corresponds to the vibrations of a Helmholtz resonator, with a frequency range

between a few and several hundred Hz. Since techniques for preventing their

occurrence are now well established, 12 ,13 'chugging' instabilities are no longer a

serious design problem.

Intermediate frequency instabilities, also known as 'buzz', are more prevalent in

medium size engines (25,000 to 250,000 N thrust) than in large engines. They are



evidenced by a growing coherence of combustion noise at a particular frequency.

Two sources may give rise to their occurrence. The first is associated with the

interactions between the unsteady combustion in the chamber and a specific portion

of the propellant feed system. The second arises from the coupling between entropy

waves and acoustic motions in the chamber. It is well established that for bi-

propellant rocket engines, fluctuations of the reactant mixture ratio may lead to

entropy waves, which then interact with the nonuniform mean velocity field in the

nozzle to generate acoustic waves. In general, the 'buzz' instabilities are more noisy

than damaging, with the amplitude of pressure oscillation rarely greater than 5

percent of the mean chamber pressure, although in some cases detrimental high

frequency oscillations can be triggered by this mode. Comprehensive discussions of

'buzz' instabilities and entropy waves are given in Refs. 14 and 15.

High frequency instabilities, often called 'screeching' or 'screaming,' are the

most common and vexatious, and are characterized by reinforcing the interactions

between acoustic oscillations and combustion processes inside the thrust chamber.

Depending upon the response of combustion processes to chamber oscillations,

energy can be fed into acoustic waves such that their amplitude grows. The most

destructive result of these large amplitude pressure excursions is the increased heat

transfer to the chamber walls and injector face. Burn-throughs can occur in a few

seconds or less, causing complete failure of the engine.

This type of instability is usually characterized by well defined frequencies

and mode shapes that correspond closely to the classical acoustic modes of the

chamber. Fundamental modes of high frequency instabilities are thus categorized

as longitudinal and transverse, according to the spatial character of unsteady
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motions within the combustion chamber. Longitudinal modes propagate along in

the axial direction of the chamber, with no variation in the transverse plane and

are usually observed in chambers with large length-to-diameter ratios. Transverse

modes exhibit no axial variation in oscillatory behavior, but propagate radially and

tangentially along planes perpendicular to the chamber axis. For contemporary

rocket engine designs in which the chamber aspect ratio and nozzle contraction ratio

are relatively small, pure transverse modes of oscillations dominate because of the

effective damping of the longitudinal oscillations by the nozzle and the distribution

of the combustion along the chamber. For this reason, combined modes comprised

of the superposition of longitudinal and transverse modes are also rarely observed

in typical liquid rocket engines. Furthermore, longitudinal modes are usually less

destructive than transverse modes, so theoretical studies such as this one should

fully address transverse modes of combustion instability.

Each transverse mode may exist in three forms: radial, standing tangential,

and spinning tangential waves. The differences between standing and spinning

tangential modes can be clearly seen in Fig. 1.1, which shows the particle trajectories

for the standing and the spinning modes of oscillations in a simulated F-1 engine

combustion chamber. 6 Particles move back and forth for the standing mode of

oscillation, but have an epicyclic trajectory around the chamber in the tangential

direction for the spinning mode of oscillation. The standing mode particle trajectory

can be explained by the fact that the acoustic velocity varies oppositely in

consecutive cycles with respect to the fixed pressure nodal surface. The situation is

similar for the spinning modes of oscillation, except now the pressure nodal surfaces

rotate with angular frequency corresponding to the modal frequency; therefore,
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Standing Tangential Mode Spinning Tangential Mode

Figure 1.1 Particle Trajectories for Standing and

Spinning Tangential Modes

particles move in a net circular fashion as time elapses. Spinning wave motions

seem to be usually more detrimental because of their effectiveness in agitating gas

molecules in transverse directions, thus enhancing heat transfer to the chamber

walls. However, spinning waves may also be accompanied by an increase in

combustion efficiency, presumably due to accelerated mixing processes. This

phenomenon of increased efficiency accompanied by decreased stability is a common

trade-off in rocket engine designs, and the ability to design for both efficiency and

stability simultaneously represents one potential payoff for instability research.

Several possible mechanisms have been proposed that may be responsible for
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driving the spinning mode of corr.uustion instability. Of the various intermediate

processes occurring during the combustion, atomization, vaporization, droplet

interaction, mixing of the vaporized propellants and chemical kinetics are the most

sensitive processes to the oscillations of velocity and pressure. For discussion

purposes, the non-steady effects considered here can be divided into two groups:

effects associated with atomization and vaporization, and effects related to the

mixing process.

The atomization and jet breakup process, and its relationship to spray

formation through pressure, temperature and velocity perturbations, can affect

the energy release characteristics of the gas phase, and thus the stability of the

combustor. The vaporization process that is directly related to the local pressure,

temperature, and velocity, will be affected by oscillations in these quantities.

Furthermore, there can be mixture ratio gradients in the vapor because of the

stratification of the liquid spray in the liquid propellant injector. If the transverse

acoustic field is imposed on such a spray, the vapor will be displaced relative to the

droplet, causing mixture ratio oscillations in the vicinity of each vaporizing droplet.

Hence, there will be an oscillation in the burning rate, which can couple with the

acoustic field to produce a spinning mode of combustion instability.

When the vaporization rate becomes extremely high, it is possible that a droplet

is heated rapidly through its critical temperature. With droplet shattering, clouds

of the very fine secondary droplets are rapidly gasified. In such cases, the burning

rate could be controlled by the rate of gas-phase mixing. Again, this oscillation

of the burning rate is coupled with the transverse acoustic fields to generate the

spinning mode of instability.
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1.2 Mechanisms of Baffle Operation

To provide a cure for combustion instabilities, or to at least limit the amplitudes

to acceptable values, passive control devices (such as injector-face baffles, acoustic

absorbers, liners, cavities, and quarter-wave tubes) can be used. In particular,

baffles can provide significant stabilizing effects on pressure oscillations, especially

on spinning transverse modes of instability in liquid rocket engines, and have been

widely used since 1954.'1 A typical configuration consists of flat plates extending

into the chamber perpendicularly from the injector face, arranged in a radial and/or

circumferential pattern, as shown in Fig. 1.2.

Three mechanisms have been proposed to explain successful elimination of

instabilities by baffles. These are (1) the modification of acoustic properties, such

as oscillation frequency and waveform, in combustion chambers; (2) the restriction

of unsteady motions between baffle blades, and the subsequent protection of the

sensitive mechanisms for instabilities; and (3) the damping of oscillations by vortex

shedding, flow separation, and viscous dissipation. Specific examples of the first

mechanism include reduction of the transverse pressure gradient near the injector

face and the blocking of wave paths associated with certain modes. Spinning modes,

for instance, are practically unheard of in baffled combustion chambers due to

the baffle blade boundary conditions. The shielding function of baffles mentioned

above helps to minimize coupling between parts of the combustion processes from

oscillatory motions. This is important where velocity sensitivity is a concern, or

where triggering of an instability in the baffle region is a possibility. The third

mechanism of baffle operation-energy damping-can either attenuate the oscillations
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inetnjector

Baffle Blade

eombustiona Chamber

Baffle Hub

Figure 1.2 Schematic of a Liquid- Propellant Rocket

Engine with Injector-Face Baffles

to within acceptable levels, or extract enough energy so that the reinforcing feedback

between combustion and chamber acoustics is destroyed. It should be noted that

it is possible that more than one mechanism operates at the same time in a baffled

chamber, but some may dominate, depending on the specific engine parameters.
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1.3 Research Objective

At a recent JANNAF workshop,18 it was suggested that acoustic wave

interactior in the baffled region is one of the most important parts in the study

of combustion instability for liquid-propellant rocket engines. Because combustion

instability is a consequence of the sensitivity of combustion processes to ambient

flow oscillation, any realistic investigation into the engine stability behavior must

accommodate a thorough treatment of the wave structure within the baffled

combustion chamber. However, because of the complex nature of acoustic flow

in the baffled region, the effects of baffles on wave motions have never been

completely understood quantiat•-vely. At present, there are no well-defined criteria

for the selection of baffle configurations that will lead to the stable operation

of an engine. As a result, most designs in use today are based on experiences

with similar combustor configurations, propellant combinations, and operating

conditions, thereby making the development of a new system a costly trial-and-error

process.' 9 Since injector-face baffles provide the most significant stabilization effects

on pressure oscillations, a basic understanding of the oscillatory flow structure in

that region appears to be a prerequisite in treating combustion instabilities in baffled

liquid rocket engines.

The primary purpose of this work is to develop a theoretical analysis within

which multi-dimensional acoustic waves in a baffled combustion chamber can be

properly treated. Emphasis is placed on the combustion instability behavior of a

baffled combustion chamber and the damping mechanisms of the baffle as described

in the previous section.
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Two other focuses in this study are the examination of nonlinear spinning

wave motions in the unbaffled chamber, and the development of a nonlinear

baffle analysis. The treatment of nonlinear spinning oscillations is crucial due to

their relevance to baffle analysis and their frequent occurrence in practical rocket

systems. Since no analytical work capable of treating nonlinear instabilty in baffled

combustion chambers exists, introduction of such a methodology is highly desired

and necessary if questions regarding nonlinear oscillations in physical chambers are

to be addressed.

1.4 Early Works on Experimental and Theoretical Investigation

of Baffles

Several experimental investigations have furnished results which lend valuable

insight into the physical mechanisms of baffles. Experiments using non-reacting or

'cold' flow allow detailed research of fluid dynamic phenomena. Such a study was

conducted by Wieber, 20 who examined the acoustic behavior of a 6-inch diameter

cylindrical chamber under the influence of various baffle patterns, as well as different

injector shapes, chamber lengths, and nozzle contraction angles. Decay coefficients

of pressure oscillations corresponding to the first transverse mode were measured for

unbaffled configurations and compared with internal surface area-to-volume ratios

of the chamber. A positive correlation was discovered, suggesting that viscous wall

losses were responsible for acoustic wave attenuation. When baffles were added,

however, acoustic attenuation increased, but no correlation with the internal surface

area was found. A more complicated damping mechanism thdn simple skin friction

alone is required to fully explain the functions of baffles. Wieber further observed
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that transverse modes were not only damped much more effectively by baffles than

were longitudinal modes, but that the reduction in frequency from the unbaffled

case was also much stronger, presumably due to relatively longer acoustic particle

paths. Another cold flow investigation into the workings of baffles was initiated by

Torda and Patel;2 1 their experimental set-up elucidated vortical motion within a

baffle cavity as a result of transverse flow across the open end of the cavity. The

presence of circulating flow was clearly observed. Viscous damping within these

vortices are thought to be a possible mechanism of baffle operation.

Empirical efforts based on reacting or 'hot' flow tests can yield data more

readily applicable to actual rocket systems. Hannum et al.22 experimented 17

different baffle designs for a hydrogen-oxygen engine with a 20,000 lbf thrust. In

tests with at least a 2-inch baffle, stability was improved from the unbaffled chamber

cases. For baffle compartments above a certain size,* longer blade lengths were

required for stability as the cavity dimension was increased. Below this size, all

baffle configurations required the same blade length for stability, independent of

compartment measurement. Interpretation of these data is not conclusive, but

one possible explanation is that baffles protect the sensitive combustion zone from

pressure and velocity fluctuations. Specifically, a certain blade length corresponding

to the extent of the sensitive combustion zone could be required in all cases

as a minimum for stability. For larger baffle cavities, a r biade would be

needed to impede the influence of the main chamber oscilla i',• t,- ;icoustic waves

* Compartment size was defined as the maximum compartment dimension

measured parallel to the injector face. For cases of noncongruent cavities, an average

weighted according to the number of each cavity style was used.
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propagate more easily through larger areas. Although no relation between stability

and internal surface area was presented, speculation of skin friction as a damping

mechanism is prompted by some results. In one case, a 2-inch 3-blade radial baffle

became unstable when it was burned and eroded back to 1.6 inches in length.

An egg-crate configuration was stable for only 0.5 inch blades, perhaps due to

the greater amount of surface area per length available for viscous loss. This

conclusion is difficult to substantiate, since similar behavior is not consistently

observed throughout the data.

Vincent et al. conducted tests similar to those of Ref. 22, but used a smaller

engine with storable propellants. Trends were found that mirrored the findings of

Ref. 22 in spite of the differences in the experimental engine itself. A sweeping

summary of important outcomes from several experimental baffle programs was

completed by Hefner.24 Among those surveyed were the Apollo Service Module

Engine, First Stage and Second Stage Titan/Gemini, Transtage, and the Gemini

Stability Improvement Program (GEMSIP). Specific findings are too numerous to

mention here, but clearly illustrate the labyrinthine nature of baffle data reduction,

as well as the dearth of fundamental interpretive understanding regarding baffles.

Hence, it is essential to formulate a theoretical framework suitable for systematic

treatment of baffles and appropriate deciphering of experimental baffle test results.

The first analytical treatment of acoustic motions in baffled chambers was

undertaken by Reardon25 in an effort to explain stability data from the GEMSIP

program. The model considered three-dimensional oscillations in the main

chamber with only one-dimensional longitudinal oscillations allowed in the baffle

compartments. Combustion was assumed to be concentrated at the injector
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face and modeled with a time-lag theory."6 Matching of acoustic admittances in

both regions at the interface provided sufficient conditions for determining the

linear characteristics of the entire oscillatory field. This approximation yielded

a moderately good estimate of the normal-mode frequency reduction caused by the

baffles. However, since none of the continuity requirements on acoustic pressure,

velocity, and energy flux across the interface were fulfilled, no accurate results

of acoustic wave structures can be obtained. Implementation of this model in

predicting engine stability is subject to question.

Oberg et al. 27 ,28 developed a more elaborate model that takes into account

multi-dimensional wave motions in baffled cavities. The homogeneous Helmholtz

equation for linear acoustic waves in the entire chamber formed the backbone

of the analysis. The effect of mean flow was ignored, with the combustion

response and nozzle damping treated as boundary conditions. Separate solutions

were constructed using Green's functions for baffle compartments and the main

chamber. The acoustic pressure and axial velocity in each region were then matched

at the interface by means of a variational-iteration technique to determine the

complex wave numbers of unsteady motions. Reasonable results were obtained

for frequencies in two-dimensional chambers, but no solutions for cylindrical and

annular chambers were reported due to some numerical difficulties. The major

limitation of this theory is its erroneous prediction of engine stability behavior

rendered by oversimplification of the physical processes. Essentially, this model

treats an inviscid flowfield with concentrated combustion at the injector face. The

resulting solution predicts a pressure rise in the forward region of the chamber,

leading to a destabilizing influence of baffles in accordance with the Rayleigh
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criterion. 29 A worsening of stability with increasing baffle length is obtained,

rather than improvement as found experimentally. To circumvent this problem,

an empirical modification that allows spatial variation of the combustion response

factor along the injector face was later incorporated in the analysis to match

experimental observations.3 0

In light of Oberg's findings, it is evident that alteration of acoustic wave

structure by baffles alone can not explain the mechanisms responsible for baffle

damping. The stabilizing influence must be associated with other means, such as

viscous dissipation, vortex shedding, and distributed combustion response, which

can override the driving effect of wave alteration. Baer and Mitchell31 established

a linear acoustic analysis, with emphasis placed on the fluid dynamic losses along

the baffle blades. The formulation assumes concentrated combustion at the injector

face within the confines of the time-lag theory, and solves for the acoustic velocity

potential using an eigenfunction-expansion technique. The strong flow variations

near the baffle tips are treated analytically by means of a matched asymptotic

expansion method. A turbulent boundary layer is then ascertained in the vicinity

of a finite thickness baffle. Although results considering viscous loss within this

boundary layer yielded realistic acoustic decay rates, the conclusion that such

dissipation is the dominant influence of baffles may be unjustified. For instance,

vortical structures induced by acoustic motions along baffle blades and convected

downstream into the main chamber may play an important role in dissipating energy

and deserve a systematic investigation. Thorough investigation of these vortices

using information gained from an acoustic study of baffled chambers is done by

Wicker.
32
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1.5 Early Works on Nonlinear Combustion Instability

Spinning transverse modes of instability have very often been seen in the com-

bustion chambers and it has been found to be related to the coupling of combustion

processes with the oscillations in flow variables. Several analytical and experimental

studies14,2 6' 33' 34 have confirmed that the pressure-sensitive time lag concept (n -,r

model) can be applied to the analysis of transverse as well as longitudinal mode of

high frequency instability. According to Reardon's experiment, 35 it is not sufficient

to explain transverse modes of instability completely by the pressure sensitivity

theory only. An additional combustion rate sensitivity must be considered for the

transverse pressure oscillations. He found that the perturbations of radial and

tangential velocity components have a strong influence on the combustion process

rates in a manner analogous to that of pressure perturbations for the n - r model.

Reardon et al.36 predicted that the tangential velocity perturbation had a strong

destabilizing effect on the spinning mode but had no effect on the standing mode of

instability. Oberg et al.37 also reached this conclusion-that simple pressure coupling

cannot describe the spinning wave motions in the baffled combustion chamber and

that some means of including the velocity coupling effect are necessary. Several

investigators38 ,39 addressed the importance of this mechanism. Thus, a conclusion

can be drawn that velocity coupling as well as pressure coupling plays an important

role in the spinning tangential mode of oscillations; therefore, the effects of velocity

perturbation must be taken into account separately from the effect of pressure

coupling in the nonlinear spinning analysis.

The analysis of nonlinear instability behavior in baffled combustion chambers is
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another part of this work. Although studies that have been conducted in the pursuit

of understanding nonlinear phenomena have not specifically addressed baffled

combustion chambers, valuable building blocks have been laid in a foundation

used in the current study. For instance, Sirignano and Crocco40 first treated

nonlinear wave motions in a combustor in 1964. Using a perturbation scheme with

characteristic coordinates, they found that shock waves are the source of nonlinear

losses responsible for the existence of the limit cycle. Crocco and Mitchell41 treated

the pure transverse mode in an annular chamber of very small radial extent using

a nonlinear perturbation method with stretched coordinates. In their study, the

unsteady combustion processes were represented by the sensitive time-lag (n - r)

model.

Zinn and co-workers 42'41 took a different approach to the problem of nonlinear

transverse oscillations in a liquid-propellant rocket engine. Using Galerkin's

method, with the expression of nonlinear solutions as an expansion of classical

acoustic modes, they were able to derive a system of second-order ordinary

differential equations governing the time-dependent amplitude of each acoustic

mode. This system was then solved numerically to find the amplitudes and thus to

predict the existence and behavior of limit cycles. Owing to certain assumptions,

including the form assumed for the mean flow field, the extent to which the

results may be valid for the other combustion systems could not be addressed.

Furthermore, conclusions were based on numerical calculations of special problems,

thereby obscuring possible generality.

Independent of the works cited above, the approximate analysis for nonlinear

unsteady motion was developed by Culick44 and allows expression of the compli-
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cated nonlinear problem in terms of simpler equations. In addition to using the

Galerkin's method and spatial averaging, the method of time-averaging developed

by Krylov and Bogoliubov45 was incorporated to produce a system of first-order

ordinary differential equations for the time-varying modal amplitudes. This allowed

for a more convenient analysis than the second-order equations provided by spatial

averaging alone. By expanding the pressure field in terms of normal acoustic modes

of the chamber, Culick showed that the nonlinear behavior could be equivalently

represented by the equations for a system of nonlinear oscillators. Application of

this work to motions in combustion chambers was discussed further by Culick,4

with special emphasis on problems related to solid-propellant rocket motors. These

general ideas have recently been summarized in Yang and Culick,47 Kim,4 8 and

Culick and Yang.9 This methodology is an invaluable tool for studying the effect of

nonlinear gas dynamics on the formation of limit cycles, and is an important part

of the present work.

1.6 Thesis Outline

In Chapter 2, a generalized wave equation for a two-phase mixture is derived

utilizing perturbation expansions of flow variables to study the oscillatory flowfield

in a baffled combustor. The formulation allows for acoustic wave motion,

droplet vaporization and combustion, mean-flow/acoustics coupling, and two-phase

interaction.

In Chapter 3, linear acoustic behavior is studied for two-dimensional rectangu-

lar and three-dimensional cylindrical baffled combustion chambers. The unsteady

motions are expressed as a synthesis of transverse eigenfunctions of the acoustic



20

wave equation in the baffle compartments and the main chamber separately. The

oscillatory fields in these two regions are matched at the interface by requiring

continuity of acoustic pressure and axial velocity. This procedure eventually leads to

solutions characterizing the unsteady flow structures in the entire chamber. Strong

effects of baffles on the wave forms in a combustion chamber are clearly shown, and

the effects of the baffles on stability are explained from these results.

In Chapter 4, nonlinear spinning transverse oscillations in a cylindrical

unbaffled chamber are studied. Velocity effects are taken into consideration through

a linear combustion response function. Using this approach, linear coupling between

modes due to the combustion response is found to exist and to play an important

role in the spinning modes of instability. The conditions for the existence and the

stability of the limit cycle are also examined for several combinations of the spinning

modes.

In Chapter 5, nonlinear acoustic analysis is performed for two-dimensional

rectangular and three-dimensional cylindrical baffled combustion chambers. The

full nonlinear solution for the baffled combustors is formulated in a manner

analogous to Culick's approximate method. By expressing the nonlinear solution

;-s a series of the linear modes obtained from the linear acoustic analysis, time-

varying amplitudes can be assigned as coefficients in the series. When the entire

expansion is substituted into the original nonlinear equation, integration over the

chamber volume yields a set of second order ordinary differential equations in terms

of the time-varying amplitudes. The solution of these equations gives information

regarding nonlinear phenomenon such as limit cycles.
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CHAPTER 2

THEORETICAL FORMULATION

Probably the most important fundamental characteristic of combustion insta-

bilities is that for a first approximation they may be viewed as perturbations of

classical acoustic motions. The principal nrvrtur' .ions are due to the combustion

processes, the associated mean flow, and t- , boundary conditions imposed at the

inlet and exhaust planes. Treating these perturbations within the framework of

classical acoustics has been successful because the main departures, while crucial in

defining the real problems, are often small perturbations in some sense. Therefore, it

is desirable to seek the theoretical formulation that, when all perturbations vanish,

reduces directly to a representation of classical wave motion in an enclosure. The

analysis, therefore, starts with the establishment of a generalized wave equation

for a two-phase mixture, with emphasis placed on the behavior of the liquid phase

and its interaction with the gas flow, matters that are common to all liquid-fueled

systems.

2.1 Conservation Equations for a Two-Phase Flow

Analysis of flows in liquid rocket engines must be based on the conservation

equations for a gas containing liquid droplets. A proper analysis must account for

the differences between fuel and oxidizer and for a broad range of sizes of liquid

droplets. However, because of uncertainties in the actual flow properties, it is



22

inappropriate to use a completely general formulation. To simplify the analysis, a

two-phase mixture in the combustion chamber is assumed, with a mass-averaged gas

comprising all gaseous species, including inert species, reactants, and combustior.

products. The liquid phase is treated as a mass-averaged fluid comprising fuel

and/or oxidizer droplets. The complete set of conservation equations thus comprises

those for the gas and those for the liquid; then, the equations are combined to form

a set that governs the motions of a single medium. This idea was first applied to

solid propellant rocket systems by Culick and Yang, 9 and this analysis follows their

approach. The conservation equations for this two-phase mixture are given below.

Conservation of Mass (gas)

9p9. + V. (pgug) = &I (2.1)at

Conservation of Mass (liquid)

9- + V -(piul) = -C (2.2)

Conservation of Momentum

S(pgug + plu,) + V- (pgugug + pIulul) + Vp = V. (2.3)

Conservation of Energy

a5- (pgego + p1hjo) + V. (pqu gego + plulh1o) + V. (pug) = Q + V- q (2.4)

where the subscripts g and 1 refer to mass-averaged quantities for gas and liquid

phases, respectively. Evaporative and reactive conversion of mass from liquid to
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the gas phase occurs at the rate dq (mass/sec-vol.). The viscous stress tensor

is symbolized by r, and specific totai internal energy of the gas and the liquid

stagnation enthalpy axe represented by ego and h10, respectively. Furthermore, Q is

the rate of energy released by homogeneous reactions in the gas phase (energy/sec-

vol.), and q represents the heat flux (conduction) vector.

With simple manipulations, the momentum and energy equations can be

written

pg-N- + pgUg " VUg V-p -•V.• F+ - (Ug - Ui)di1 (2.5)

PgC 8,+PgCvu9 * VTg + pV ug =Q + Q1 + V q+i

+ (h10 - ego)ýJg (2.6)

+ Ug. (ug - u1 )wt + (ui - u9 ) - F1

where 1P is tbe dissipation function. The force of interaction between the gas and

liquid, F1 , is defined as

IF, = pt +0111 Vu1 ] (2.7)

and the heat release associated with chemical reactions and heat transfer between

the phases, Qi, is

Q= I + U vhI] (2.8)

The enthalpy of the liquid hl includes the heat release associated with the

transformation from liquid to gas.
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The density p for the mixture is defined as

p= Pg + PI = P'(1 + C.) (2.9)

and the liquid phase to the gas phase density ratio is given as Cm = P1/Pg. Mass-

averaged specific heats for the mixture are defined in the usual fashion. 49 ,5 0

'V= C,, + C.CI Cp + CCI (2.10)- 1+C,.'mP 1+C,.

The system of governing equations is completed by introducing the perfect-gas law

for the mixture,

p = pRTg (2.11a)

where R is the gas constant for the mixture

R• = Cp - C,, (2.11b)

Strictly, C,,, must be treated as a dependent variable, since any nonuniformity in the

mean flowfield, or unsteady motions, will cause the liquid droplets to slip relative

to the gas. However, if the droplets are dispersed uniformly in the gas, Cm is

approximately constant throughout the chamber. This assumption is true in the

solid propellant rocket, but not as valid in liquid-fueled systems. But even thcg-'g

C,, may vary significantly, the mass-averaged thermodynamic properties are not

greatly affected. Based on this assumption, therefore, the momentum and energy

equations may be written in a more convenient form involving the mass-averaged

properties of the two-phase mixture.

Paul + pug • Vug + Vp = V. r,, + 6FI + bulb1 (2.12)
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pv[-- + ug - VTg] + pV- ug = Q + 6Qi + V. q + ! + (hio - ego)L (.at (2.13)
- ug * bu1W1 + 6ut • F,

where

r96u,
bFI = -pi -'9-6- + but ' Vug + 6ut" Vuj + ug • Vul] (2.14)

bQ, = -PI -&- + 6ut.- Vhi + but. V(CT.9 ) + ug. Vbh1 ] (2.15)

and but = ul - ug, bhM = h - CITg. The energy equation (2.13) is combined with

Eqs. (2.1) and (2.2) to give the equation for the pressure:

i +ug- Vp+-pVug = [Q + VQI+V q+i

+ [(h1o - ego) - ug e- u-]w + ut.- F1] (2.16)

- &T, [fV. (pug) + V. (piu,)]

+ RfTgug. Vp + pRT gV , ug

The chief purpose of the preceding exercise is to establish the forms of the

equations that account for the presence of liquid, and that will provide a good

first approximation for the speed of sound for the unperturbed motions, namely,

P= (2.17)

This formula explicitly shows that the propagation of small disturbances is governed

by the elasticity of the gas (related to the pressure), and by the inertia of the

two-phase mixture, represented by the factor (1 + C,,.)pg. Now the conservation

equations can be expressed in a form emphasizing the view that combustion
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instabilities are unsteady motions best regarded as perturbations of classical

acoustics. The framework for the analysis is based on the sum of the continuity

equations (2.1) and (2.2), the momentum equation (2.12), and the energy equation

(2.16) written in terms of the pressure, with the source terms in a general form.

Continuity Equation
OP

S+ U g . V P = W (2.18)

Momentum Equation

P-'R- + PU9• VUg - -VP +. (2.19)

Energy Equation

op5T + 7pV Ug = -Ug Vp + P (2.20)at

For the circumstances treated above,

W = -pV . - V . (pibui) (2.21)

=V.,, + F + u&j (2.22)

P= -? Q + ,Qt + b . q + ( + [(hio - ego) - ug . uj]Cb
(2.23)

+ 6u,. F1 - CTgV - (plu1))]
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2.2 Nonlinear Wave Equation

To derive a nonlinear wave equation governing the unsteady motions in the

chamber, the dependent variables are first decomposed into mean and fluctuating

parts,
p(r,t) pi(r) + p'(r,t)

u.(r,t) = ii.(r) + u' (r, t)
(2.24)

p(r, t) p/(r) + p'(r, t)

It is assumed that the mean quantities are time-invariant and the fluctuating parts

are small perturbations. Although variation of the mean quantities is typically small

in actual rocket engines, spatial dependence is allowed for in the general formulation.

To the second order in fluctuations, Eqs. (2.11a), (2.18), (2.19) and (2.20) can

be rewritten in their perturbed forms, giving a complete set of equations for the six

unknowns: p', p', T,, and the three velocity components.

- t- + op 9 Vp' + U, • VP + U, VP' = W,' (2.25)

Ou,
- + VP'= U[g. Vu + U• V (fig + U,)]

(2.26)

,-u; .v•.,
0-7 + ýPv • U, = Pl - -' (uag + U',) (ii + U'). VP'

at 9 9 9(2.27)
1u • 1 P
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p' = R(p',T + PT) + Rp'T• (2.28)

Since acoustic waves manifest themselves by the presence of pressure oscillations,

and pressure signals are easily measured and processed, the wave equation can be

most conveniently written in terms of pressure fluctuation p'. Consequently, taking

the time derivative of Eq. (2.27) and substituting Eq. (2.26) for au'/Ot yields

1 (92p,2pt &2p- t h = h, + h 2 + h3  (2.29)V2ta 2 0f2

where

h - V [g(-fi. VU, + U,. Vfi2 ) + Pg'. V ]ig

(9p, a011'9p+• T2 at -Fag + &--•- Vp+ tig. VW (2.30a)

h2 = -V [(uP. Vu' ) + p'ffi . Vul + p'-

+a2 [(u, Vp') + • (Pp'V. ug) (2.30b)

1 = O..P I (2.30c)

Here, the subscripts 1, 2 and 3 represent the linear effects, second order nonlinear gas

dynamics, and the effect of source terms such as combustion and viscous dissipation,

respectively.

Boundary conditions set on the gradient of p' are found by taking the scalar

product of the outward normal vector with the perturbed momentum equation, and
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then applying appropriate acoustic admittance functions along the surface of the

field.

n. Vp' = -n. f = -n. (f, + f 2 + f3 ) (2.31)

where

f _u= ' viig (2.32a)

f2  - + P(U'g VuD] (2.32b)

f3 =-- zýF (2.32c)

If all perturbations are absent, functions h and f vanish, and the wave equation

for the pressure in classical acoustics with the boundary condition for a rigid wall,

n. Vp' = 0, is recovered.
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CHAPTER 3

LINEAR ACOUSTIC WAVES IN BAFFLED CHAMBERS

The effects of baffles on acoustic motions in combustion chambers have not

been understood quantitatively due to the complicated chamber geometry and

associated difficulty of analyzing the flowfield in the baffle region. Since the

elimination of combustion instabilities is the most important but least understood

aspect of baffle design, this chapter deals with the linear stability behavior of

baffled combustion chambers as well as the actual physical processes responsible

for suppressing unsteady motions. The wave equation derived in Chapter 2 is

applied to the baffled combustion chamber domain to investigate the acoustic wave

characteristics for both two- and three-dimensional chambers.

3.1 Linear Acoustic Oscillations

For a three-dimensional cylindrical baffled combustion chamber as shown in

Fig. 3.1, a direct treatment of the wave equation, subject to the appropriate

boundary conditions, appears to be formidable because of the geometric complexity

imposed by the baffles. To facilitate the formulation, the form of the acoustic field

solution is constructed in two parts: the baffle compartments and the main chamber.

Since the spatial variations of acoustic motions are quite different in the baffle

compartments and the main chamber, the oscillatory fields in these two regions are

best treated separately. The eigenfunction expansion technique is adopted to solve
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baffle 
LLb---

Figure 3.1 Schematic of a Three-Dimensional Baffled

Combustion Chamber

the wave equation, since the standard separation of variables method cannot be

used due to the boundary shape of the domain.

The fluctuating pressure in each region is synthesized as a Fourier-type

expansion in terms of eigenfunctions for the cross section, but allows for temporal

and axial variations through the series coefficients.

00
p'(r, t) = E C. .(x, t)O. (r, 0) (3.1)

n=O

where the eigenfunction t, satisfies the Helmholtz equation in the transverse plane:

V2 2WTP + k,,•, = 0 (3.2)
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subject to the boundary condition

n. V,, = 0 (3.3)

The transverse Laplacian operators V2 in the Cartesian and cylindrical coordinates

are respectively defined as

a2 92 
(3.4a)T -y 2  jZ 2

and
V2 1 (r0'\ 102

V 2 a= r +q) 1 a (3.4b)
T r ýr' } r r a

Then, the complete Laplacian operator V 2 becomes

V2=V 2 (3.5)

The subscript n stands for the doublet of indices (m, s) defined below. Due to

the azimuthal degeneracy in the cylindrical chamber, O, has two possible forms:
On•- Jm(Nmar) costmO (3.6)

'-sin m6

The transverse eigenvalues, represented by the wave number 1C, 8, are determined

by the roots of the derivative of the mth Bessel function at the chamber wall. That

is,
"dJm (Kinr ) 1[ dr - 0 (3.7)

.1r= R

Now multiply the wave equation (2.29) by On and Eq. (3.2) by p', subtract the

results, and integrate over the cross section to find

IJ On 2 •kP kp, ddSJOnUS + f ,,fr " ndl (3.8)

19X &2 ( ! t2 n I !f i
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where the line integration on the right hand side is conducted along the baffle blades

and/or the circumference of the chamber wall at each cross section, and the function

f, is defined in the transverse plane as

f," n = V1 p'. n (3.9)

Substitute Eq. (3.1) into Eq. (3.8) and rearrange the result to get the following

differential equation for C,(x, t).

a2 (n 2 22 [2C 2 1
'+ W (n Ox2 .hdS + p [" - ndl (3.10)

where w. is the frequency of the normal transverse mode On, defined as

W .= aki, (3.11)

The Euclidean norm of the mode function, En is defined as

En =J/k2dS (3.12)

For linear acoustic problems, all the property functions and variables are

assumed to vary in a time-harmonic fashion,

p'(r,t) = -(r)efl

u,(r,t) = fi_(r)eint

Cn(X,t) = ýn(x)eint (3.13)

h(r,t) = h(r)ein't

fT(r,0,t) = fT(r,O)e't
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where 11 is the complex frequency of oscillation and is defined as

Q} = W - ia, (3.14)

The primary purpose of linear stability analysis, then, is to determine the radian

frequency w and the growth constant a.

The ordinary differential equation for the axial distribution function (,n is

obtained from the substitution of Eq. (3.13) into Eq. (3.10).

where the modified wave number On is defined as

o (3.16)

Combustion is often assumed to be concentrated at the injector face, an

assumption that is based on the experimental observation that the majority of

the combustion processes are completed near the injector of the chamber. 51 Given

this condition, the mean flow Mach number is considered as constant. That is,

i = Mie (3.17)

where M is the constant Mach number and e, is the unit vector in the axial

direction. However, this assumption consequently limits the range of mean flow

Mach number. For example, if the Mach number of the average flow is larger than

roughly 0.4, the approximation of classical acoustics deteriorates since the Doppler

effect and refraction may cause substantial distortions of the acoustic field. But the



35

mean flow Mach number is generally small enough over most physical combustiorn

chambers. With this assumption the linear mean flow effect h, in the wave equation

can be expressed as

h, -=V iig 1 (3.18)

Within first order accuracy, the acoustic velocity u' in Eq. (3.18) can be expressed

in terms of the acoustic pressure p' using the classical acoustic momentum equation.

aU _1 (3.19)
at

Substitution of Eq. (3.19) into Eq. (3.18) yields the final expression for the linear

effects of the wave equation.

]tiin a- ifpg + isl_410g (0T +, -d2 V1  (3.20)

Substitution of expression (3.20) into Eq. (3.15) leads to a second-order ordinary

differential equation for the axial distribution function ,.

ad2 ,, 2Mf~i dC•,
&n+0, 2 0 -(3.21)

dx 2  a da=

The major task at this point is to determine the complex frequency character-

izing linear pressure oscillations. Two cases are treated separately: two- and three-

dimensional baffled chambers. For both cases, the acoustic wave characteristics are

investigated systematically to give a basic understanding of the wave structures in

the chambers.
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3.2 Two-Dimensional Baffled Chamber

Although the configurations of most practical baffled combustion chambers

are three-dimensional, it is beneficial to first achieve the basic understanding of the

oscillatory fields in a two-dimensional chamber. This model simplifies the geometric

complexity of the problem, and clearly presents some important mechanisms of

baffles for modifying the characteristics of unsteady motions. Fig. 3.2 shows

the schematic of a two-dimensional baffled combustion chamber. The acoustic

fields in the baffle compartments and the main chamber are linked together by

requiring continuity of acoustic pressure and axial velocity at the interface. This

procedure eventually leads to a transcendental equation for the complex wave

number. Results provide explicit information about the acoustic wave structure

and complex frequency.

3.2.1 Acoustic Field in Baffle Compartments

Because Eq. (3.21) is a second-order ordinary differential equation with

constant coefficients, the solution in a two-dimensional model takes the form

nb(x) A.-Abmblz - + Bmbeiq,,6,2x (3.22)

where

qmb,=7+ [• !] 2 + Ob (3.23a)

qm=, -= +mOrb (3.23b)

~~~~~ a. .
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Figure 3.2 Schematic of a Two-Dimensional Baffled

Combustion Chamber

The subscript b stands for baffle compartments. The acoustic boundary condition

at the injector face is characterized by an acoustic admittance defined as

A I = (3.24)
.=O

This leads to a relationship between the coefficients Arab and Em6 .

MR + V[_l]'+ 02
Crmb = mb - qmb,,,-,, +-[- + rab +A 1  (3.25)

.0-Am 6  qm, MR V[M,, 2 +9. (3.25
a + mb + yAi

For two-dimensional transverse oscillations, the normal mode shape ;km is a

function of y only. Thus Eq. (3.2) reduces to

d 2 2m + km2 ;b = 0 (3.26)
dy

2
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The solution for the 11th baffle compartment becomes

01' =Acosk"y+Bsink Jy (3.27)

The assumption of rigid surfaces gives the following conditions for baffle blades and

t chamber wall.

dOM {y P_H_Hdk= 0  at N = 1,2,.-N (3.28)
dy Y=- N

where N denotes the number of baffle blades. Thus, the normal transverse mode

shape, 0,m, for the !sth baffle compartment is determined with the boundary

conditions set by Eq. (3.28), such that

0" (y) = A cos (m y) (3.29)

If the baffle blades are assumed to be equally spaced in the chamber and have rigid

surfaces, then the mode shape of the acoustic pressure in the pth baffle compartment

is shown to be

Lo (m~rN Y)[eq~._ + C,,beiqb"
P A,'becos b, -H ( 3.30)

The constant denominator within the square bracket is added in this expression

to facilitate the matching at the interface. This constant denominator does not

affect the solution, since the amplitude of linear oscillations is arbitrary anyway.

An extension of the above expression to cases involving a non-uniform distribution

of baffle blades is straightforward, only at the expense of more mathematical

manipulations.
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3.2.2 Acoustic Field in Main Combustion Chamber

The solution to Eq. (3.21) for the axial part of the acoustic field in the main

chamber takes the form

nc(X) -Ance. (z-L) + Bnce iq (z-L) (3.31)

where

qrn,, + I= + 02 (3.32a)

q2 = = + 02 (3.32b)

Here, the subscript c denotes quantities associated with the main chamber. The

acoustic boundary condition provided by the exhaust nozzle may be represented by

a nozzle admittance defined below. Although this is a simplistic representation of

the effect of the nozzle, the ease of application allows for a focus of attention on

the effect of baffles. Furthermore, for short nozzles, this representation can be quite

accurate.
52

AN / (3.33)AN IP' x=L

This nozzle admittance function leads to the following relationship for the coeffi-

cients An, and Bn.

_ _c -Anr qn2+ QPAd M _ A [M,] 2 ±+ 2 ±~A (3.34)

An + fIAd _n- t ]2 + ±g AN

The transverse mode function On for the main chamber, based on the

assumption of a rigid chamber wall, can be expressed as

ns(On(Y)-= A cos( -y) (3.35)
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Substitution of Eqs. (3.31) and (3.35) into Eq. (3.1) yields the expression for the

mode shape of the acoustic pressure in the main chamber.

1C =iiB o(nr7y) [ e n~(r-L) + Cn~ isq. ý 2 (xL

n= nqBo. (Lb-L) + ' Cno<c,,,,-L)J (3.36)

Again the denominator in the big bracket is added for the convenience of matching

at the interface in the following section.

3.2.3 Matching of Acoustic Fields in Baffle Compartments

and Main Chamber

Together, Eqs. (3.30) and (3.36) represent the acoustic pressure fields in the

whole chamber in terms of the transvcrse eigenfunctions. Once the coefficients A'M'

and Bc and frequency Q are known, the pressure distribution in the entire chamber

can be easily determined. The next step, therefore, is to get these coefficients, using

the matching of the acoustic fields in the baffle compartments with that of the main

chamber at the interface. This matching requires continuity of acoustic pressure

and axial velocity.

PI =Lb = PC I.=L, (3.37)

UI"-U LX -- = 'jIC.I (3.38)

From Eqs. (3.30) and (3.36), the pressure distributions of the baffle compartments

and the main chamber at the interface (i.e. x = Lb) are, respectively

P" = *Z A cos m.rNY) (y-1)H yH
m=0 (3.39)

00

/C = EBc cosjy (3.40)

n 

nY0
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Note that indices m and n are used for the acoustic fields in the baffle compartments

and the main chamber, respectively, to avoid confusion. Substitution of the abov'e

two expressions into the pressure matching condition (3.37), gives an expression for

the baffle compartment coefficients, A-", in terms of the main chamber coefficients,

B .
S fM  cos(!!i, Y) cos(, )dy

At', n.B. ] (3.41)
f H--

With the aid of the acoustic momentum equation, the second matching condition

(3.38) can be simplified to the continuity of the gradient of acoustic pressures.

Op "'I - PCI (3.42)

Now taking the spatial derivatives of (3.30) and (3.36) with respect to x, and

evaluating ti.e results at x = Lb yields

8P 0 A' o [ m~rN\
-O Z HAc ~iY)X =L~, m--0 L O

* •q Lb L- 1

2limbCq mb, I Lmb2 Cmbe q,. bLb

, + Crnbeiqmb,. L J (3.43)

Oq & LL b ei'( LL) q, C2 3
ec, + 1~

SIeq, (Lb-L) +ierc, nce q(Lb-L)

XI elqc (i-)+ cn~inc ,( L (344

Substitution of Eqs. (3.43) and (3.44) into Eq. (3.42) yields an explicit expression

for the coefficients B, in terms of A", independent of Eq. (3.41).

00 r fj _cos(- l y) cos(3 11ry) dy
C IA =a H Gm(Q2)I

n cos2(!jy)dy H H•( ) J(3.45)
m=O #&=I f0 H
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where

Gm( ) - iq" e i Lb + iq '2C.e'.Iq,'2 Lb

G.Q+e qb, Lb + Crbeiq b'2 Lb (3.46a)

SHn(Q) =ieiq ,l(Lb-L) + iq,,Cne4.2(Lb -L) (3.46b)
e iq ''.I (Lb -L) + Cnceiq. 2 (Lb -L)

Since the amplitude is arbitrary for linear analyses, a normalization of the acoustic

pressure to a particular mode within the main chamber helps to determine

the complex frequency of acoustic oscillations. This condition can be formally

expressed, from Eq. (3.45), as

oo N
Hnj(Q) = c x Gs×d (Q) (3.47)

M=0,~ It--- f Cos 2(h'• y) dy

where fh is the specific mode of concern in the main chamber. For example, if a first

transverse mode is of interest, ii would equal one. Note that this normalization is

not a necessary step in solving the problem, but it is only a convenience used to aid

in the numerical computation of the complex frequency and mode shapes. If this

normalization is not specified, inversion of a rather large matrix would be required.

This matrix contains the coefficients of Eqs. (3.41) and (3.45), with eigenvalues

corresponding to the complex frequency, as shown in the Appendix. Arbitrarily

setting the dominant mode amplitude equal to one allows a simpler iterative solution

to the system of equations, and will not change the value of frequency or mode

shapes, since the arbitrary amplitude cancels out, anyway.

Because of the transcendental nature of Eq. (3.47), an iteration scheme is

used to determine the complex frequency. The overall numerical procedure is
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conducted as follows. First, Eq. (3.41) is substituted into Eqs. (3.45) and (3.47) for

simplification,

B 0 N or f C cos(-,rN.yy) cos(..l- yy)dy

mn=O p=1 f =0 2(!!m'ydy(348
H (3.48)

f cosmrN y) cos(-y)dy

X 0a (HH XIf ,2-(--N y)dy.(n)

and

S r f cos(N y)Cos(M!-`y)dy

"Hn()=ZZZ B/•,
E~ ý~ i'=LI V ml 7rN- -"

7=(P=1lm_=I f COS 2 (Hfy) dy (3.49)

f o cos( -! -y) cos(]y)dy

The second step involves the application of the Newton-Raphson technique to

determine the complex frequency from Eq. (3.49). As a first approximation,

Bern, = 6 m,', and Q= wn are used to initiate the iteration procedure. The

calculated f1 is used to update Bc from Eq. (3.48), which is then substituted back

into Eq. (3.49) to calculate the complex frequency. This procedure repeats itself

until the converged solutions for 9 and Bc are obtained. Finally, the coefficient A"

is determined from Eq. (3.41). The iteration scheme functions quite effectively and

provides reasonable results within only a few iterations.
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3.3 Three-Dimensional Baffled Chamber

In this section, a three-dimensional cylindrical baffled chamber, which is more

representative of actual rocket systems, is investigated. Usually two types of baffle

configurations are used to suppress the transverse modes of oscillation in such

chambers: radial baffle blades and hub-type blades. The radial baffle blade is

utilized to control tangential modes of oscillation, while the hub-type affects the

radial modes. But in order to concentrate attention on the effect of baffles on

the tangential mode of oscillation, only problems involving simple configurations of

radial baffles are considered here. The acoustic field can be treated following the

general approach described in the preceding section.

3.3.1 Acoustic Field in Baffle Compartments

The solution of Eq. (3.21) for the three-dimensional chambers takes the form

ýb( x ) -" Ambe'-b.1 X -+ Bm.b eiq b,2 -'(3.50)

where q,,b,, and are defined in the same way as in Eqs. (3.23a) and (3.23b).

However, the transverse mode shape 0,, for a cylindrical chamber with radial baffle

blades is a function of r and 0 only, taking the form

0,, = (A cos mt + B sin mO)Jm(mnr) (3.51)

Baffle blades are assumed to be rigid surfaces, which gives the following conditions

in the pth baffle compartment.

0• =0 at{ N 14=1,2,.-.N (3.52)ao• 0 2WA P

S... . . . .• ., ,,.,,= mmm nnnannnnll n = nNmm~l nN
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where N is the number of radial baffle blades. These boundary conditions are

applied to Eq. (3.51) to yield

B=0
nN (3.53)

M= -5- (n = 0,1,2,...)
2

In most actual cases, a baffle configuration has an odd number of radial baffle blades

with the exception of a one-blade case, which is practically never observed. It would

offer protection from modes that are of an order less than the number of blades and,

to some degree, protection from modes of an order higher than the number of blades

if the order of the mode divided by the number of blades is not equal to an integer.

With the odd number N, then,

N0, N 3N 2
2 2

Since half-mode waves do not exist physically, the only values of m considered in

this analysis are those for which

m=Nl (1=0,1,2,...) (3.54)

Thus, the transverse normal mode shape for the Mth baffle compartment becomes

0A = Acos(NgO)J 5 (K.N,.r) Is = 0, 1, 2,3- (3.55)

Here, 0,, is replaced by ON1, in Eq. (3.55) to distinguish between the main chamber

and the baffle compartment indices.

Substitution of Eqs. (3.51) and (3.55) into Eq. (3.1) yields the mode shape of

the acoustic pressure for the pth baffle compartment.

0 0 0 0 O e 'qr nb'l + C1be iq m b ,2 (

= ANis Nis e iqnt, I Lb+._ C+ beiq(b32L.6
1=0 i=1 +
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The coefficient Cmb represents the boundary condition at the injector face and is

defined in the same way as in Eq. (3.25). The denominator in the bracket is again

added for convenience of matching in the following section.

3.3.2 Acoustic Field in Main Combustion Chamber

The solution to Eq. (3.21) for the acoustic field within the main chamber takes

the form

=(x) = A iq., (-L) + Bnc (3.57)

where q,,, and q,, 2 are defined in the same way as in Eqs. (3.32a) and (3.32b).

The normal mode shape, On, for standing transverse motion in the main chamber

takes the form

2kct = Acosn6J,,(r-nr) (3.58)

To avoid confusion of the main chamber solution with the solution in the baffle

compartments, the index nt is used for the acoustic field in the main chamber.

Now, combine Eqs. (3.57) and (3.58) to obtain the mode shape of the acoustic

pressure in the main chamber.

c 000 C(x-L) + C~Inc (~)(.9= Z [7 ]- (3.59+
n=O t=1 n Ln e'nI(bL ne 'qc2( L I

The coefficient Cnc incorporates the effect of the nozzle admittance boundary

condition and is determined in the same way as in Eq. (3.34). Again the

denominator in the bracket is added to this expression to facilitate the matching in

the following section.
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3.3.3 Matching of Acoustic Fields in Baffle Compartments

and Main Chamber

Together, Eqs. (3.56) and (3.59) express the acoustic pressure distributions

in the whole chamber in terms of eigenfunctions. Once the coefficients Ak,, and

Bet and the frequency are found, the acoustic fields in the entire chamber can be

easily computed. The matching of the acoustic fields in the baffle compartments

and the main chamber at the interface gives sufficient equations for determining

the coefficients and, thus, the wave characteristics of the baffled chambers. The

matching requires continuity of acoustic pressure and axial velocity.

PPIz=Lb Pc.=LbC (3.60)

fil--L, fic- (3.61)

From Eqs. (3.56) and (3.59), the pressure distributions of the baffle compartments

and the main chamber at the interface (i.e. x = Lb) are, respectively

00 0 A 2r ( y - 1) < 0 < 2r u (3.62)
E= A . , < <-(3.6)N N

1=0 8=1
00 00

C= ZZ Bct4c (3.63)

n=O t=1

Substitution of Eqs. (3.62) and (3.63) into the pressure matching condition (3.60),

yields an explicit expression for the baffle compartment coefficients, AP,, in terms

of the main chamber coefficients, B,•t.

00 00r £ fw -1 N rrd
= E E[Bný t 1°Pr2 (3.64)

Sfo (ON,.) rdrdf
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With the aid of the acoustic momentum equation, the second matching condition,

Eq. (3.61), can be interpreted as the continuity of the axial gradient of acoustic

pressure.
' i _ (3 .6 5 )

ax =Lb ax =Lb

Differentiation of Eqs. (3.56) and (3.59) with respect to x and subsequent evaluation

at x = Lb give

p 00Q mb 0 e iq'b*' Lb +iq Cbei'q, 6 2 Lb]

o =L E Nis ZAZI.= A "Z'" I Lb + C ~1,.b,2 L(

ar 1 =1=
O~el = ZZit¢ ,,, *q e""'(Lb -L) +itq..,' C"e 41"='2(Lh-L) (.7

-X -z=Lb n=0 t=i1 I sqn"I (Lb-L) + Cnce iqJ("(L3--Z)

Substitution of Eqs. (3.66) and (3.67) into Eq. (3.65) gives an expression for the

Fourier coefficients of the main chamber, Bct, in terms of those coefficients for the

baffle compartments, AA,

oc oo N f f° 'k ,"Pc"rdrdO Gm°(•) (3.68)

B =0 = 1 )A.=] f0' f (Oct) rdrdO IHntQ)
where

G., (R)= + Zq.7IL q C e9m2 (3.69a)

eiq,.b, I Lb +• Cmbetqm6,24L

e = q. ,i, (Lb-L) + iqn ,2 Cncei"n,2(L,-L)

eiqnc,, (Lb-L) + Cnce ,2(LL) (3.69b)

As was done for the two-dimensional case, a normalization of the acoustic pressure

to a particular mode within the main chamber is made in determining the complex
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frequency of the acoustic oscillations. This normalization can be expressed, from

Eq. (3.68), as

o 00 0N[ f f, 0  ,O',rdrdO 3.0

HZiZ[n) AIA 2w R( 2  x G N.(11) (3.70)
i=0 s--=1 11=l

where hi and i are specific tangential and radial modes of concern, respectively, in

the main chamber. For example, if a first tangential mode is under consideration,

both fi and t" would equal one.

An iteration scheme is again used to determine the complex frequency, and

the numerical iteration proceeds as follows. First, substitution of Eq. (3.64) into

Eqs. (3.68) and (3.70) gives
2* R

00 00 N oo oo r fN f t 1 cC rdrdO

1=0 i= /4= 1=o. 8= 1 f foR (T¢4•" 5)2rdrd9 (3.71)

J. fo ¢ /,)A ,rdrdO

X iZV-U Nis t XGNI(Q)]f:" 4 n .(•

and

oo oo N oo o0 [ V) fo A .Vc,rdrdO
1=0 = Z &= Z,=0 81=1 N -R , rdrdO

f f ) (3.72)

f fo 7k,/pPc rdrdO
AiAt

X 2w R 2x NI. A~d

fo fo (Oc4,) rdrdO L7Ni.(fL)

Second, a Newton-Raphson iteration scheme is applied to determine the complex

frequency Q from Eq. (3.72). As a first approximation, Bc., = b,, b., and Ql = w,'Si
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are used to initiate the iteration procedure. The calculated f? is used to update

,t from Eq. (3.71), which is then substituted back into Eq. (3.72) to compute the

complex frequency. This procedure is repeated until converged solutions for fQ and

Bct are obtained. Finally, the coefficients, A," are determined from Eq. (3.64).

Like the two-dimensional solution, this method gives reasonable values for complex

frequency Q in a few iterations.

3.4 Results and Discussion of Linear Acoustic Analysis

The analysis described in the previous sections has been applied to the study

of acoustic wave characteristics in baffled combustion chambers, and the results

have provided useful information about the effect of baffles on the detailed flow

structure. The consequences for the two cases are presented separately: two- and

three-dimensional baffled chambers.

3.4.1 Acoustic Field in Two-Dimensional Baffled Chamber

To gain confidence in the accuracy of this analysis, calculated acoustic fields

of normal modes are first validated with numerical solutions obtained from a

well-established finite element code, ANSYS.5 3 The ANSYS code uses a 3-D iso-

parametric acoustic fluid element and has been successfully used to study sound

propagation and submerged structure dynamics.

Figure 3.3 shows the acoustic pressure fields of the first transverse mode in

chambers containing one and two baffle blades. The aspect ratio (L/H) of the

chamber is 1.25, similar to that of the two-dimensional 'equivalent' combustion
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chamber of the F-1 engine. Zero acoustic admittance is specified at the injector

and nozzle entrance to ensure normal mode solutions. Because of the limitation

of the wave-front number in the ANSYS code, small kinks can be observed in the

numerically calculated pressure contours. The analytical solutions are in excellent

agreement with these finite element calculations, so this analytical approach can be

applied to acoustic problems in the baffled combustion chamber with confidence.

Figure 3.4 presents the effect of baffle length on the osv-illatory pressure fields of

the first transverse mode in a one-baffle chamber, and shows that the baffle exerts

significant influence on the acoustic field. For long baffles (e.g., Lb = O.4H), the

acoustic motion inside the baffle compartments very much resembles a longitudinal

wave and transits to a transverse oscillation downstream of the baffle. This is seen

clearly by noticing that the pressure nodal line for the first transverse mode in the

unbaffled chamber lies at the center of the chamber parallel to the chamber wall. But

once the baffle is added to the chamber, it must move to satisfy the acoustic velocity

boundary conditions set by the baffle blades, such that the pressure contour lines

are normal to the baffle surface. By shifting the mode of oscillation from transverse

to longitudinal inside the baffle compartments, baffles can decrease the prevalence

of the transverse modes, which have historically been most troublesome in liquid

rocket combustion instability problems, whereas longitudinal modes have not. As

a result, however, regions of high amplitude pressure fluctuatior s are concentrated

near the injector face. If pressure sensitive combustion processes are responsible for

the instability, the addition of a baffle might, therefore, worsen the problem, since

the region sensitive to the variation of acoustic motion is usually close to the injector.
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The concentration of large amplitude pressure fluctuations in this region thus has

the potential to release large amounts of energy. However, in an unbaffied chamber,

the pressure variation associated with a transverse mode can change the orientation

of the propellant jets issuing from the injector. This can have a significant influence

on the atomization and spray characteristics neas the injector face that may be

coupled with the chamber acoustics to generate instability. With the addition of

a baffle, however, the longitudinal nature of pressure oscillations near the injector

face might have no effect, or at least a substantially different effect on this type of

combustion process near the injector face.

Figure 3.5 shows the acoustic pressure contours of the first transverse mode

in a two-baffled chamber. For a short baffle length (e.g., Lb = O.1H), transverse

oscillations exist in almost the entire chamber except for regions near the baffle tips,

but the degree of wave distortion increases with increased baffle length. As with the

one-baffle case, longitudinal oscillations become conspicuous in the upper and lower

baffle compartments for Lb > 0.2H, which might mean enhanced stability, as argued

previously. Note that the acoustic pressure is almost uniformly distributed in the

center baffle compartment, with its magnitude at a minimal level. This suggests

that the center compartment may be the most effective in separating the acoustic

waves from sensitive combustion processes, and thus might be able to overcome any

possible destabilizing influences from the adjacent compartments.

However, the situation for the second transverse mode is quite different. Figure

3.6 shows the oscillatory pressure fields, which indicates that the wave motion

exhibits longitudinal motion in the top and bottom baffle compartments, similar
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to the first mode case. However, large-amplitude bulk oscillations now exist in the

center region. If pressure sensitive processes are responsible for the instability,

this concentrated pressure fluctuation could promote instability. The effect of

acoustic velocity on unsteady combustion, however, is quite limited in the baffle

compartments, especially in the center one. According to the experiments of Levine

and Bambanek3 s and Reardon,35 transverse components of the acoustic velocity

have a strong effect on the combustion process. For instance, atomization, local

mixture ratio, and adjacent injector element interactions can all be affected by

acoustic velocity fluctuations in the transverse direction. Near the injector face,

where large temperature and concentration gradients are found, this effect can

be especially pronounced. From Fig. 3.7, however, it is clear that the transverse

components are very small near the injector face inside the baffle compartments.

Figure 3.7 shows the acoustic pressure and velocity vector together for the first

transverse mode in a two-baffle chamber.

So for an unbaffled chamber in which a transverse mode of instability arises

from velocity sensitive processes, addition of baffles will likely have a stabilizing

effect. Thus, the longitudinalization of transverse oscillations brought about by

the baffle can be supposed to have stabilizing or destabilizing effects, depending

primarily on the relative importance of pressure sensitive and velocity sensitive

combustion processes.

The second transverse mode for the one-baffle chamber and the third transverse

mode for the two-baffle chamber are also examined, as shown in Fig. 3.8. The

acoustic fields are almost identical to those in an unbaffled chamber, showing
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that the baffles have little effect on these transverse modes because the boundary

conditions imposed by the baffle blades are automatically satisfied if they are located

at the acoustic pressure anti-nodal (or the velocity nodal) lines.

The effect of baffle length on the oscillation frequency is also studied.

Comparison with the numerical (ANSYS) results is made again, since no appropriate

experimental data was found. Figure 3.9 presents the results for the first transverse

mode in a one-baffle chamber, where the frequency is normalized with respect to

the natural frequency of an unbaffled chamber. Excellent agreement is observed

between the analytical predictions and the finite-element calculations, with relative

errors of less than one percent. The frequency decreases persistently with increased

baffle length, perhaps due to an increase in the effective path length of the gas

particles, as caused by the baffle blade. This same trend can also be observed in

actual three-dimensional engine tests. For a baffle length of O.4H, the reduction

of frequency from that of the unbaffled chamber is greater than 25%. The ensuing

influence on the liquid-propellant combustion response can be significant and must

be taken into account in a realistic treatment of combustion instabilities in baffled

combustors. Since combustion instability depends on a specific relationship between

the acoustic frequency and the characteristic response time of combustion processes,

sufficient modification of the oscillation frequency will probably lessen the amount

of acoustic/combustion coupling, and might terminate the instability altogether.

Thus decreasing oscillation frequency is another potential stabilizing effect of the

baffles on the chamber.

It should be noted that numerical calculations using ANSYS takes several hours
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on the VAX-8700 system, but only a few minutes is required to get analytical results

with 40 terms in the eigenfunction expansion. This suggests that this analysis has

many strong features.

As mentioned before, a critical issue in the study of liquid rocket combustion

instability is the effect of acoustic velocity on propellant combustion. In considera-

tion of this point, the acoustic velocity field is calculated in detail, giving the result

shown in Fig. 3.10. The acoustic velocity reaches its maximum amplitude due to

the large pressure gradient near the baffle tip, then decreases in the far field. The

transverse components of the acoustic velocity are generally much larger than the

axial components just downstream of the baffle tip, since the acoustic wave front

must turn 180 degrees around the baffle. Figure 3.10(b) shows the distributions of

transverse acoustic velocity at various axial locations, where (v')* stands for the

velocity normalized with respect to its maximum value in the transverse plane at

the given axial location. In the baffle compartment (x < O.4H), the requirement

for transverse acoustic velocity to vanish at the baffle blade causes two peaks in

the velocity profile. The profile then becomes a simpler distribution downstream

of the baffle, with a single peak at the centerline. Note that the magnitude of the

transverse velocity components near the injector face is negligibly small due to the

longitudinalization of the wave there.

Near the baffle tip, however, large magnitudes and a rapid variation in the

velocity profile are observed. Furthermore, the large gradients of acoustic pressure

observed near the baffle tip provide sizable centripetal forces as the wave turns

180 degrees around the baffle tip in satisfaction of the geometric condition set by
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the baffle. Baer and Mitchell31 claimed that viscous dissipation of acoustic energy

due to these rapid variations of acoustic velocity is crucial in stabilizing the baffled

rocket engine. It is worth noting here that the drastic change of acoustic velocity

near the baffle tip should lead to the formation of vortices, which are convected

downstream in the presence of mean flow. In the case of oscillatory flow past

a baffle compartment, it might be expected that vortices are also created in the

compartments, with the direction of rotation alternating in response to the flow

past the baffle. 25 Such creation and destruction of vortices may provide for energy

dissipation that is significant in certain cases. However, the longitudinalization of

flow in the compartments suggests that downstream shedding of vortices is more

important, especially in the case of the longer baffles. The subsequent influence of

these vortices on the mean flowfield may also significantly alter the combustion

distribution and instability characteristics, and is addressed by Wicker32 in a

systematic fashion.

3.4.2 Acoustic Field in Three-Dimensional Baffled Chamber

Calculations are also carried out for acoustic fields in three-dimensional

cylindrical chambers with radial baffles, thereby simulating more realistic rocket

engine configurations.

Figure 3.11 presents the normalized frequency of the first tangential mode

as a function of the baffle length and the number of blades. Good agreement

with experimental data 20,22,54,55 was obtained. As with the two-dimensional case,

the oscillation frequency decreases with baffle length due to the increased acoustic
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path length around the baffle blades. This depression of the oscillation frequencies

can eliminate acoustic/combustion coupling in the chamber, or perhaps alter the

chamber mode so that the instability may be avoided. This phenomenon might

serve as one of the stabilizing effects of the baffles. It is also interesting to mention

that the number of baffle blades plays a minor role in determining the frequency.

Increasing the number of blades from three to seven only slightly decreases the

frequency, a phenomenon also supported by experimental data. This aspect is

understandable considering that when more than three baffle blades are used, the

first tangential mode is always affected, regardless of the number of blades.

Figure 3.12 shows the acoustic pressure contours at various cross sections in

a chamber with three radial baffle blades. This baffle configuration is the simplest

one that can get rid of first tangential mode instability, which is the most often

seen and the most troublesome in the actual rocket systems. The wave resembles a

classical tangential mode in the downstream end of the chamber (i.e. x/L = 1.0),

but the pressure contours become distorted near the baffle tips, and finally reach

a symmetric pattern dictated by the geometric constraints of the baffle blades. As

seen for the two-dimensional case, unsteady motions in the injector end of the baffle

compartments have a more longitudinal or even bulk type oscillation, with a quite

uniform transverse spatial distribution.

Also important is that the pressure amplitude is higher than that in the main

chamber. This peculiar phenomenon suggests that the baffle tends to redistribute

the acoustic energy in the chamber from the downstream to the upstream region.

Usually most of the energy release from liquid propellant occurs in the upstream
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region. The high-amplitude acoustic pressure in that region has the potential to

release larger amounts of energy, and could have a net destabilizing effect on the

engine. This mechanism is formalized in terms of Rayleigh's criterion, 29 which

states that if a pulse of heat is added at a time and location where the acoustic

pressure is increasing, the pressure rise is encouraged and hence the heat addition

has a destabilizing effect. However, as was already noted in two-dimensional

results, the characteristics of the wave motions in the baffle ;ompartments are

significantly changed. Under further considerations, this pressure concentration

may not destabilize the engines.

Figure 3.13 presents the transverse acoustic velocity vectors at various cross

sections. The acoustic velocities in the baffle compartments have very small ampli-

tudes, especially near the injector face, where large temperature and concentration

gradients exist. Since the transverse components of acoustic velocity would be

expected to have little effect on the combustion processes in that region, addition

of baffle blades in the chamber could yield a stabilizing effect, especially if velocity

sensitive combustion processes are of primary concern. Large-amplitude velocity

oscillations exist immediately downstream of the baffles, which is similar to the

two-dimensional case. The large acoustic velocity gradients in this region lead

to the formation of vortices, which are convected downstream by the mean flow.

Viscous dissipation within each vortex and convection of energy associated with

the vortical structure out of the chamber may be a significant mechanism of energy

dissipation.3 2 Also, the influences of these vortices on the mean flowfield might

change the combustion distribution and instability characteristics.
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CHAPTER 4

NONLINEAR SPINNING TRANSVERSE OSCILLATIONS

Before dealing with the nonlinear acoustic analysis in the baffled combustion

chamber, this chapter addresses the characteristics of spinning wave motions in

a cylindrical unbaffled chamber. Spinning transverse oscillations are quite often

observed in many types of combustion chambers and are known to be detrimental

due to the increasing combustion efficiency through the acceleration of mixing

processes. The purpose of this chapter is to examine how the spinning wave motions

axe related to the velocity coupling, and the conditions for which stable limit cycles

exist for the special cases of combinations of spinning modes.

4.1 Problem Formulation

The solution of the wave equation (2.29) in a cylindrical unbaffled chamber is

approximated by a synthesis of the normal modes of the chamber, with unknown

time-varying amplitudes i1n(t),

0o

p= E rS.(t)0(r) (4.1a)
n=1

The corresponding velocity field is
00

u =, = 0 M V> (r) (4.1b)
n=1 n

where On (r) is a normal mode function satisfying

V2n + k2. = 0 (4.2a)

n VtJ',. = 0 (4.2b)
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A set of second-order ordinary differential equations for the time-varying

amplitude of each mode can be obtained by averaging the conservation equations

over the volume of the chamber using Galerkin's method. Now multiply Eq. (2.29)

by ¢,. and Eq. (4.2a) by p', subtract the results, integrate over the volume, and

apply Green's theorem to find

f( k2t + k20,,p'l)dV =-ff ,,hdV - jf " ndS (4.3)
dj 2 &j2 nj j

Substitution of Eq. (4.1) into Eq. (4.3) and some rearrangements of the results lead

to a system of second-order ordinary differential equations for the time-dependent

amplitudes.
2

/j, + wnrj, = Fn (4.4)

where the forcing function Fn can be expressed

[JJJ ?PhdV + ff -ndS] (4.5a)

and

En= 2 JNiOn 2dV (4.5b)

The next step is to represent the forcing function F,, in terms of time-varying

amplitudes t7,(t). In this chapter, the main focus is on the influence of the linear

interactions between modes on the spinning wave motions within the chamber, so

that only the linear part of the forcing function is taken into consideration. The

linear approximation of h 3 in Eq. (2.30c) is

h3,,, R A_, a (4.6)
, 0, at-'
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where AH• is the heat of combustion of the liquid propellant per unit mass. This

expression is not complete until the burning rate is represented in terms of flow

variables. Such closure of the solution is conveniently accomplished through the

use of the combustion response function concept. The original definition of the

combustion response function uses only pressure for representing the burning rate,

but according to Reardon,35 the transverse velocity components play an important

role on the burning rate fluctuation for the spinning mode of oscillations. In this

analysis, the velocity coupling effect, as well as the pressure coupling, is incorporated

with the combustion response function to express the burning rate. The unsteady

combustion is modeled as

=P- + Iv- + TZw= (4.7)
di P a a

where v' and w' are acoustic velocity perturbations in the radial and tangential

directions, respectively; the pressure-coupled, radial and tangential velocity-coupled

response functions are symbolized by RPI, Rv and Rw, respectively. For the linear

acoustic problems, all variables are assumed to vary in a time-harmonic fashion,

e.g.,

p'(r,t) = h3(r)eit
(4.8)

Since the combustion response function should account for both the amplitude and

the phase relationship between flow variables and burning rate perturbation, the

complex expressions for IZP, IZ, and 1Z,, are required, thus, Eq. (4.7) is rewritten
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as the sum of its real and imaginary parts.

__ (R ! p+ 1 MIP''

+Te(TZ) v"+ 1 1V' (4.9)
a a)+ Om(n) 5-

1- _-8m T,, w'
+ 1Ze(7?w) + -Im-7-

Then, the linear approximation of the combustion response related source term

(h3,.fl)cR takes the form,

(h3,,,,)cR G= -aL5"- + G2. 22-e

r'3v'v
"+ Hi. - + H 2 . & (4.10a)

Ow' 8 2w' 1
"+ I,.-&- + I2. 2-j

where,
R C-,TIe(IZ,)AH,,

G1. --

C",
R ý;Ilrn(Rp)AH,,G2, = -,:.-.

R Lý1?Te(T?,,)AH,,

'in = ý--_

C,,
Rl cý11m('Rw)AH,,(41b

C,• Q

Because the combustion response function is a function of frequency, all coefficients

in Eq. (4.10b) are also functions of the frequency and have different values for each

mode of oscillations.
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If the series expansions for u' and p' in Eq. (4.1) and the linear approximation

of combustion response related source term (h 3,. )cR in Eq. (4.10a) are substituted

into Eq. (4.5), the linear part of the forcing function then becomes

cc

(Fn)inear = J- (Dni~i/ + Eni71i) (4.11)
i= 1

where the linear coefficients Dni and En, are given by,

=n A JJJ[[ + Ln OnUg *Vo

- 1j [Vei X (VX fig)]. reV. + ¢,¢.nV. fi

H 2- 04'i 12n 1 O90i 1
-e,.¢,¢.+ - On + ---- On dV (4.12a)

~3Or jrO jq

1 (f 20,0.a2 + 1~ 4 In, 1 i= • G +,- -EIn---O- j dV (4.12b)

Here, the linear interaction effects between modes represented by the coefficients in

Eq. (It 10b) are incorporated with the linear parameters in Eq. (4.12).

For the standing mode of oscillations, each tangential motion has only one mode

shape in the azimuthal direction. Therefore, the linear coupling between modes

cannot exist, even though the linear contribution of the combustion response is

considered. For the spinning mode of oscillations, however, two periodic motions in

a tangential direction are possible. That is, the combination of /'=cos mOJm(mn',r)

and ?ki= sin mrJ,m(cmsr) is possible for the spinning transverse oscillations. For

the first three modes, the wave numbers and mode shapes are given by,
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First Tangential Mode (IT)

K1lR = 1.8412; l = cosOJl(cllr), 0" 4 = sinOJl(tcllr) (4.13a)

First Radial Mode (1R)

.01R = 3.8317; 0 2 = Jo(nolr) (4.13b)

Second Tangential Mode (2T)

r 2 1R = 3.0542; 03 = cos20J 2(t 2,r), Os = sin 20J 2(t 2 ir) (4.13c)

The linear coefficients Dni and Eni can be computed from Eq. (4.12) for the first

three modes. Unlike Yang and Culick's standing mode analysis, 47 the linear coupling

coefficients, D 14 , E 14 , D4 1, and E 41 appear for the first tangential mode and D35 ,

E 35, D5 3 and E5 3 for the second tangential mode, with the following values.

Dil = D44= -0 1 1 + -- Ap

H122
D2= -G 12 + -- A2

P

D33= D55 = -G 13 +H2-A 3
p

D4=-4 = I"LA

D3 5 = -D5 3 -= 23A 5  (4.14a)

And

2Ell = E44= G21W, + - A,P

2 11
E = G22W2 + -----A 2

p
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2 H13 A
E33 -E5 = G23wO + -A 3

E14= -E41 = _iA4

E35 = -E53 1-3 A5 (4.14b)

where

A,- = - K) (IS )2] rJ1 (,l.r) [Jo(K,.r) - J2(,or)]dr (4.15a)
(1 - KR) [J (r.1.R) 0n

A2 = -R2o2KoR)2 RrJo(ror)J (Kor)dr (4.15b)
R2 (Jo(tCoR)]2 JO 0  OrJ(ord

A 3 -= _ 2- 2'R rJ 2 (K2,r)[JI('- 2.r) - J 3(r-2.r)]dr (4.15c)
(1 - R)[J2(NK2R) fo

A4 = 2 )R [2 J,(Il,.r)] 2dr (4.15d)
R2 (1 - [IKR 1

A 5 = R2(1R4)2 J2(K2,r)] dr (4.15e)
rR2 . R2

An approximate solution technique using the method of time-averaging gives

the temporal behavior of the amplitude. First of all, time-varying amplitudes i7,(t)

are assumed to have the form,

77,(t) = r,(t)sin[w~t + . (t)] (4.16)

where r,(t) and 0,,(t) are the amplitude and phase of the limit cycle, respectively.

Using the linear coupling coefficients in Eq. (4.14) and applying the time-averaging

method, the equations for time-varying amplitudes due to the combustion response

are given by,
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First Tangential Mode (IT)

4drl 4r4 cos() 1 - 04) - 0 14 r 4 sin(0, - ¢4) (4.17a)
dr =
rr )dr cos(- 1 ,4) + 04 1,r sin(, 1 ¢4) (4.17b),da4O r =•,r --(0-4

dt)

(r1 ---d )cR = - a•1 4 r 4 sin(el - 04) - 0 14 r 4 Cos(4 1 - 04) (4.17c)

dt)

(r4-0--)•R =a 41r, sin(C1 - q4) - 041 r, cos(0 1 - 04) (4.17d)

Second Tangential Mode (2T)

dr3

( -r )CR =a 35r 5 cos(0 3 - Os ) - 035r 5 sin(0 3 - 05 ) (4.18a)

dr5
(r-)CR =a5 3r3 cos(€ 3 - 05) + 053r 3 sin(0 3 - 0 5) (4.18b)

dt, =

(r3-ý3)CR a 35r5 sin(0 3 - ¢5) - 635r5 cos(0 -5 )  (4.18c)
dt) =

(rs ---d )CR =a.5 3 r 3 sin(0 3 - 0-5) - 0 53 r 3 cos(0 3 - 05) (4.18d)

where,

ani = -Dni/2 Oni = -Eni/2w. (4.19)

4.2 Nonlinear Spinning Oscillations

Equations for time-varying amplitudes due to the combustion response in

Section 4.1 are combined with those in Ref. 47 to investigate the nonlinear

spinning transverse oscillations. For simplicity, only the first three modes (1T,

1R and 2T)-the most commonly observed in practical systems-are considered here.
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Four simple combinations of modes are examined for the spinning wave motions:

the first tangential mode, the first tangential/first radial modes, and the first

tangential/second tangential modes. After this, the combination of three modes

is discussed. The conditions for which the limit cycles exist are studied for each

case, and the influence of linear coupling parameters on the spinning wave motions

is also investigated.

4.2.1 First Tangential Mode

The first tangential mode alone can exhibit the spinning wave motion if the

linear coupling terms are taken into account. Equations of time-varying amplitudes

and phases due to the combustion response (Section 4.1) are added to those of

transverse oscillations in Ref. 47.

d-t= a-r 1 + a•14 r 4 cosX - 0 14 r 4 sinX (4.20)
dt

d- -- 4 r 4 + Ck4 1 ri cosX + 04 1 r1 sinX (4.21)

dXd--- = -(0' - o4)

- 014r4 04 1 r1 ] cosX- a1 4r4 + a 4 lrl sinX (4.22)
1rl r4 rl r4

where,

X = 01 - 04 (4.23)

The relations between linear parameters are easily found as follows,

al = a4, 01 = 04
(4.24)

a14 - -a41, 014 = -- 941
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Similar to the standing mode analysis,4" the limiting values of amplitude rn and

phase 0n are given in the following form,

r,o = constant (4.25a)

OnO = Vnt + ýn (4.25b)

The subscript 0 denotes the value in the limit cycle. Comr',ining Eqs. (4.23) and

(4.25) gives

VI - V4 (4.26a)

Xo = 6 - ý4 (4.26b)

At the limit cycle, then, Eqs. (4.20)-(4.22) become

0 = ario + al 4r 4o cosXo - 014 r 40 sinX 0  (4.27)

0 o a 4 r 40 + a 4 1r 10 cosXo + 04 1 r10 sinX 0  (4.28)

0 = -(01 - 04)

"-O4r4o 041rjo COSXo " a4r4o + 141r.o sinXo (4.29)
rio r40 J r]O r 4 0

The practical assumption in a reasonable sense is taken for the limiting amplitudes.

rio = r 40  (4.30)

After some manipulations of Eqs. (4.27)-(4.29), the relation between frequency

modulations is obtained as,

(2n + 1)7r (n = 1,2,3...) (4.31)
2
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This means that mode 1 and mode 4 have a phase difference of either 2 or L at2 2

the limit cycle. On the other hand, acoustic pressure for the first tangential mode

is
p'(r,t)/ji= rjosin(wLt+ ¢,o)cos6J1(,jr)

(4.32)
+ r 40 sin(w4t + ¢40) sin 9JI(rr)

Equation (4.32) can be further simplified using Eqs. (4.30) and (4.31),

p'(r,t)/p = ri0 sin[(L,, + vI)t + ýj ±l 0] J,(icir) (4.33)

Equation (4.33) shows that the spatial- and time-dependent parts of the first

tangential mode are combined together, representing the spinning wave motion.

Therefore, the first tangential mode alone may exhibit a spinning mode of

oscillations if the linear coupling due to the combustion response is considered.

Next, check the condition for which the limit cycles exist. From Eqs. (4.27)

and (4.28)

a, = (-1)n 014 (n = 1,2,3-...) (4.34)

This is the necessary and sufficient condition for the existence of limit cycles. The

remalning task is to determine the conditions for which the limit cycle is stable.

The procedure consists of examining small perturbations in the vicinity of the limit

cycle. Substituting the relation r, = ro + r', X = Xo + X', into the Eqs. (4.20)-

(4.22) and neglecting the higher order terms yield a system of linearized equations.

The solutions are assumed to vary exponentially in time and may be written in the

form, r' = ,Flexp(At), etc. This leads to a system of linear algebraic equations for
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n,, and X in matrix form.

a, - A (- 1 )+io"14  (-1)-+l al4 rjo r

(_l)n+1014 ef I - \ (-l)nai 4rjo = 0 (4.35)

(--1)n2a-- (--1)n+l 2a,4 (-1)"20,4 - A fc

For the non-trivial solutions, the determinant of the 3 x 3 square matrix in Eq. (4.35)

is eoual to zero, giving the characteristic equation for A.

P(\) = A3 - 4aA 2 + [5024 + (-1)"+9414 + a1 4 ] A=0 (4.36)

Application of Routh-Hurwitz criteria gives the necessary and sufficient condition

for the stable limit cycle.

a, < 0 (4.37)

Figure 4.1 shows the limit cycle of the first tangential mode with the condition

(4.37) satisfied.

Let's examine this case from the acoustic energy conservation point of view at

the limit cycle. Acoustic energy density is defined as

1 p'2  
1 ,2+E = + (4.38)

2 pa2  2

The total time-averaged energy of the combustion chamber is obtained using

Eqs. (4.1) and (4.13).

En = constant • rn (4.39)

Then, the rate of energy change of the system is

d__ dr.dt - constant, rn- (4.40)
dt dt
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Substituting Eqs. (4.20) and (4.21) into Eq. (4.40) and adding two equations using

the relation (4.24) yield

dt

In the limit cycle, X approaches Xo, therefore, the right hand side of Eq. (4.41)

vanishes due to the condition (4.34), which means that the acoustic energy is

conserved. Since a, is negative, the first term of Eq. (4.41) represents the energy

dissipated. And then, energy is supplied by the second term, which represents the

linear coupling mechanism. Careful examination of linear coupling coefficient 014

reveals that the second term in Eq. (4.41) is closely related to the tangential velocity

effect by the Eqs. (4.10b), (4.14) and (4.19). This means that the velocity-coupled

response function (especially in the tangential direction) plays an essential role for

the spinning mode of oscillations. This observation is consistent with Reardon's

experiment3 5 whereby the velocity effect has the strong destabilizing effects on the

spinning mode of transverse oscillations.

4.2.2 First Tangential/First Radial Modes

Next, the combination of the first tangential and first radial modes is studied.

The mode shapes ¢1, 04 and 02 are taken into account. The equations governing

the wave amplitudes and phases of each mode can be given by,

First Tangential Mode

dr1t - lrl +airlr2 cosX
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+C•l4r4 cos(01 - 04) - 014 r 4 sin(01 - 04) (4.42)

dr4 - 4 r 4 +ar 2 r 4cosY

dt

+ak41ri cos(1)1 - 04) + 64 1 ri sin(4) 1 - 04) (4.43)

First Radial Mode

dr 2  2d-t a 2 r 2 + bi [rl cos X + r4 cos Y] (4.44)

and

dX _1

dt 0 - 26 0 -2 + P12 - 2ar 2 sinX - - [r sinX + r4 sinY]dt r2

S2r4 [614 cos(€1 - 04) + a14 sin(01 - 04)] (4.45)
rl

dY 204 -64 2 + Q12 - 2 air2 sinY - -- [r2 sinX + r42 sinY]dt r

2r, [041 cos(01 - 04) - a4l sin(01 - 04)] (4.46)
r4

where,
X(t) = 20, - 42 + Q12t

Y(t) = 204 - 02 + 11 2 t

(4.47a)
Q12 = 2W1 - W2

)1 -- )4 • (X - Y)/2

And the same values of a,, a 2 , b, and b2 as those of Ref. 47 are used in this chapter

as,

a, =0.1570(a a2 -0.0521( a
R (4.47b)

b= -0.1054(), b2= 0.1873(R)

RI
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The following relations are valid for the limit cycle.

VI = V4

Xo = 2ý1 - (4.48)

Yo = 2C4 -- 2

The reasonable assumption (4.30) is used again; hence, at the limit cycle,

Eqs. (4.42)-(4.46) become

0 = c + a, r2 0 COS + a14 COS(X 0 - Y0) - 14 sin (Xo - Y0) (4.49)
0 - 1 ar2 osXo"(X 04 o -2 2__

0=a 4 +ar 2 COSYO+ 4 COS(Xo - Yo) +04 (Xo - Y0 ) (4.50)
2 2

o = a 2r 20 + bir2o[cosXo + cos YO] (4.51)

0 = -20, - 02 + f 12 - 2alr 2o sinX 0 - r2[iXo +sinYo)

2r4o 014 cos (XO - YO) + 014 sin (X. - YO) (4.52)
rjo 2 2

0 = -204 - 02 + Q12 - 2a1 r 20 sin Yo - Lr 2 [sin-o + sin Yo

Spinning wave motion exists only when the phase difference should be (2n+lfr

2

Rom Eqs. (4.49)-(4.53), only the condition r2 0  0 makes the system a spinning

mode. When r 20 approaches 0,

S (2n + 1)7r (n =1,2,3...) (4.54)
2
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Now check the condition for which the limit cycles exist. From Eqs. (4.49) and

(4.50), the same condition as (4.34) in Section 4.2.1 is obtained.

a l = (-l)n 014 (n = 1,2,3...) (4.55)

This is the necessary and sufficient condition for the existence of limit cycles. The

remaining task is to determine the conditions for which the limit cycle is stable.

However, the peculiar structure of the r20 equation does not make it possible to get

the conditions for which the limit cycle is stable. Figure 4.2 shows the limit cycle of

the 1T/1R modes, in which the pattern r 20 --" 0 can obviously be seen at the limit

cycle.

Next, check this case from the energy conservation point of view. From

Eqs. (4.42)-(4.44), the rate of energy change for the 1T/1R modes becomes

d 
2 2

t [£1 + £4 + £2] = al(r• + r )- 20 14 rlr 4 sin( -64) (4.56)

+ a2r2 + blr 2 (r cosX + r2 cosY)

It can easily be shown that the right hand side of Eq. (4.56) vanishes at the limit

cycle by substituting condition (4.55). Therefore, the conclusion is reached that

there is no contribution of the first radial mode to the spinning mode of oscillations

after the limit cycle is attained for the combination of 1T/1R modes. That is, the

contribution of the first radial mode is limited in the initial stages, but its effect

disappears once the limit cycle is obtained, as can be clearly seen in Fig. 4.2.
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4.2.3 First Tangential/Second Tangential Modes

Mode shapes ikj, 04, 0 3 and 0,5 are considered for the combination of the

first and second tangential modes. The analysis of 1T/2T modes follows the same

approach as that of the 1T/1R modes for the spinning mode of oscillations. The

following relations for the linear parameters and linear coupling parameters are

already found in Section 4.1.

SI a4, 1 - 04

a3= a 5, 3 = 05 (4.57a)

C14 - -41, 014 = -41

a35 =-a53, 035 =-053 (4.57b)

The approximate equations governing the amplitudes and phases of each mode are

given by,

First Tangential Mode

dr1 _dt - air1 +a 2rjr 3 cosX-+-a 2r 4 rscosZdt

"+ a 14 r4 cos(01 - 04) - 014 r 4 sin(0 1 - ¢4) (4.58)
dr4 _dt - a 4 r 4 - a 2 r 3 r 4 cosY + a2rir5 Cos Zdt

"+ a 4 1ri cos(01 - 04) + 8 41r, sin(0 1 - 04) (4.59)

Second Tangential Mode

dr3 -- = 3 r 3 + b2 [r 2 cosX - r2 cos Y]dt14
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"+ a35r 5 cOs(6 3 - 65) - 035r5 sin(0 3 - 05) (4.60)
dr5 -=asr5 + 2b2 rr 4 cosZdt

+ a53r3 cOs(4 3 - 5) J+ 05 3 r 3 sin(0 3 - 05) (4.61)

and

dX 1 2 ]
d__ = +2 1" 03 +Q 1 3 - - [2a 2 r3 + b2rf] sinX + b2r4 sinY

dr3 r3

_2a 2 r4r5  2r4
2a-r-r sin Z - -2 [14 sin(0 1 - 04) + 014 cos(01 - 04)]

rl r,

+ !_- [a35 sin(4 3 - 05) + 035 cos(q 3 - 05)1 (4.62)
r3

d _ 204 + 03 + S113 + 1- [2a2r 2 + b r2 i ~ lsn
dtr3 3 4r3

2a2 rlr5  2r,
-ar4 sinZ + -r [41 sin(4 1 - 04) - 041 COS(q1 -0 q4)]74 r

+ I- [a53 sin(4 3 - 05 ) + 053 cos(0 3 - 0-s)] (4.63)
r3

dZ
_ 01 - 04 + 05 + "•13 - a 2 r 3 [sinX - sinY]

- a2 r2 ( + r 5) + 2b2 rr 4 sin Z

r 4 [al 4 sin(¢1 - 04) + 014 COS(01 - 04)]

+ r1 [a4l sin(0 1 - 04) - 041 cos(01 - 04)]
r4

r-3 [Ca53 sin(0 3 - 05) - 053 coS(0 3 - 05)] (4.64)
r-5
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where,
X = 20, - 03 + Q 13t

Y = 204 - 03 + Q1 3 t

Z =- 1 + "4- - 05 + Q•1 3 t

(4.65)
Q13 = 2W1 - W3

01 - 04 = (X - Y)/2

03- 05 = Z - (X + Y)/2

At the limit cycle, the same procedure as that in Section 4.2.2 is followed to find

VI V 4• iV3 = V/5

Xo= 21 - C3

(4.66)
Yo =264 -

Zo= 6 + G4 - G

The Following assumption for the limit cycle is used, which is practical in a

reasonable sense.

rio = r 40 , r30 = r5o (4.67)

Considerable manipulations of Eqs. (4.58)-(4.64) yield the following relationship.

X0 = YO + (2n + 1)7r (n = 1,2,3...) (4.68a)

Z_ = (XO + YO) + (2k + 1)7r (k = 1,2,3 ... ) (4.68b)
2 2

Then, the relations between frequency modulations are

(2n + 1)7r (n = 1,2,3...) (4.69a)
2

(2k + 1)7r (k = 1,2,3 39b),•3 =•5 + 2
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This means that the phase differences between mode 1 and mode 4, and between

mode 3 and mode 5 are 1 or 11 at the limit cycle. On the other hand, acoustic

pressure for the combination of the first and second tangential modes is

p'(r,t)/p = rio sin(wit + 0,o)cos6JI(Kir)

+ r 40 sin(wt + €40) sin 9J,(,cIr)

"+ r30 sin(w3t + 030) cos 20J2 (K3,r) (4.70)

"+ r50 sin(w3t + 05o) sin 29J 2 (K3r)

Eq. (4.70) can be further simplified using Eqs. (4.67) and (4.69) to give

(r, t)/P = rio sin [(w, + vi)t + ýi + 0] J1(.1 r)
(4.71)

+ r 30 sin[( W3 + v3)t + 6 + 20] J2 (K3 r)

Equation (4.71) shows that the spatial- and time-dependent parts of the first and

second tangential modes are combined together, resulting in the spinning wave

motion. Therefore, the combination of IT/2T modes exhibits the spinning mode

of oscillations within the chamber if the linear coupling, due to the combustion

response, is taken into account. Some manipulations of the Eqs. (4.58)-(4.61) give

the solution for the amplitude of each mode at the limit cycle.

= [al - (-1)"0,4] [a3 - (-1)k 9 ss] (4.72)
4a 2 b2 cos 2 X0

r30 a (-1)_014 (4.73)

2a 2 cos X0

According to the definitions of a 2 and b2 in Eq. (4.47), a 2b2 is negative; hence, for

the real value of rio, the following relation should be satisfied.

[al - (-1)"014] [a3 - (-1)k0 35 ] <0 (n,k = 1,2,3-..) (4.74)
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This is the necessary and sufficient condition for the existence of the limit cycle.

The next step is to determine the conditions for which the limit cycle is stable.

Substituting the relations r, = r, 0 + r~' X = X0 + X', etc. into the Eqs. (4.58)-

(4.64) and neglecting higher-order terms, the system of the linearized equations is

given by.

-dr'l [, ~+ (-1)n 014 a, - + (-1)n 014

"1r 2 J 4  2

+r' (a2riO cosXO) + r' (a2r1o cos Xo)

+X' [-a 2 rior 3o sinX 0 + (-l)n+l al 4 ro]
1) 1

+ [? [_-1nal 4rlo] + Z'(-a 2 rlor3 o sin XO) (4.75)+'(1) 2

dr!4 r--a + (--1) 014 + r4 (-)n14
dt 2 r4  2

+r' (a 2 rlo cos Xo) + r' (a 2 rjo cos Xo)

+X' [(_1)n"a 4 rjo + Z'(-a 2 rior3 o sinXo)

+Y' -a 2 riorao sin Xo + (-1)n+l Cl 4 rlo] (4.76)

dr4 r' (2b 2rio cosXo) + r' (2b 2 ro cosXo) + r(a 3 )r ((- 1 )k+l03)
dt r1 43

+X' -b 2r2osinXo + (-1)k•35r3o

+y1 _b2 r2o sin Xo + (l)k, 3 .r3o + Z' [(- 1)n+ Ia 3 5r3O] (4.77)

dr- r' (2b 2ro cosXo) + r (2b 2ro cosXo) + r' ((_,)k+1035) + ,'(,k3)
dt 1435
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+k+l a 3 52 30 ] +±y[+l_ a +o323o]

+ Z' [-2b2r o sinXo + (_1)k 0 3 5r 3o] (4.78)

and

dX' r 2 a2r3O sinX -2b2ro sinXo + _2a14
t I rio r3 rio J

, [- 2 a2r3O sin-Xo 2b2 r10 sinXo _ 1
'[4 2b- -•----- sin Xo -( 1 )' k& Il30

+r'a -a2 + sin br a 3 5

+r' [-2a2 sinXo + +(-1)ka3o1

1 30 J

+ X' I-2aio c - cosXo + (-1)"014 + (1)k0
I - a2 30 OS 0 - r3o

+Y, -[b2r203 cOsXo - (-1)nO14 + (-1)k035]

+ Z' [-2a2r 3o cos Xo - (_ 1 )k 03 5 ] (4.79)

dY' , [-2a2r 3o 2b2 ro sinXo±+ )2a 14

d'- [2a2r3l sinXo _ 2b2r10 sinXo + (- 1 )n2a14 1
rio r30 J
[ror302 3"-ir -c iX 2b2 r•° sinXo- (-1)k-a35]

+r. -2a 2 sinXo + +(-1)k a35

30 ]

+X' [b 2ni0 OS cXo 1- ( 0Y'14 + (_,)k03
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+Y' [2a2r30 cosX 0  b2r 1° cosXo + (-1)'014 + (_1)k03

I- tr30 2

+Z' [-2a2 r3O cos XO - (I)k 3 5 ] (4.S0)

dZ' = 2b2 r sinX +r4 -2 b2r~ o sinxo

dt r3 r 30

+r [-2a2 sinXo + +(-1)k

+r' [-2a2 sinX 0 + br- 0 sinXo - (-1)k 30

+x' [-r3r 3 0 cosX 0  -

+Y' -a 2 r 3o cosXo - (_1)k 0]

+Z' -2a 2r 3o cosXo - 2b2 r2°0 cosX 0 + (-1)k+ 035 (4.81)
I. r 30

If these equations are expressed in matrix form, it gives a 7x7 matrix which is

impossible to handle analytically. For the analytical tractability, let us take the

assumption that r' = r' and r' = r', and X' = Y'= Z' which means the initial

phase differences between mode 1 and mode 4, and between mode 3 and mode 5

are 1 or '. The system is then reduced to a 3x3 matrix that can be handled

analytically; then, the characteristic equation for A is given by,

A3 + PIA 2 + P 2A + P3 = 0 (4.82)

where,
P, = -2(ai + a')

P2  a' [ - (4a - a') tan2 X 0 ] (4.83)

- 2aa! [(2a' + a,)(1 + tan2 Xo)]
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Application of Routh-Hurwitz stability analysis yields the following conditio1 ,s for

the stable limit cycles.
I

a, + a' < 0
3

21'I + &3 <0 (4.84)

-Ikl -X 2 + 2 X+2 i 2log > 25- :h~- if a, < 0

where,

al al - -1

a3 a3 - (1'3

1 (4.85)

k - 2(01 + (-1)na14 ) - (03 + ( 1 )ka35)- (2W 1 -W3)

The linear coupling parameters are incorporated with the linear parameters. Figure

4.3 shows the overall result of Eq. (4.84) for the special case of k=0.025, where the

shaded regions represent the conditions for the stable limit cycles.

Figure 4.4 shows the time history of the limiting amplitudes of 1T/2T modes with

parameters which satisfy the conditions in Fig. 4.3. The stable limit cycles can be

clearly seen.

4.2.4 First Tangential/First Radial/Second Tangential Modes

Spinning oscillations of the combination of the first three modes are also

investigated using the same analysis as that of the two-mode combination cases.

The approximate equations governing the amplitudes and phases of each mode are

as follows,
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First Tangential Mode

dr1

dt = air, + alrlr 2 cosX + a 2rlr 3 cosY + a2 r 4 r 5 cosZ

+ al1 4 r 4 COS(€ 1 - 04) - 6 1 4 r 4 sin(C1 - ¢4) (4.86)

dr 4dt = a4r 4 + alr 2 r 4 cos X1 - a2r 3r 4 cos Y1 + a2 rlr 5 cos Z

+ a 41r, cos(0 1 - 04) + 04,r, sin(C1 - ¢4) (4.87)

d€~1
r• d = - t 1 ri - aI r Ir 2 sin X - a 2 r, r 3 sin Y - a2r 4 r5 sin Z

- 1 4 r 4 sin(0 1 - q4 ) - 0 1 4 r 4 COS(01 - 04) (4.88)

d€b4
4 = - 4 r4 - a r 2r 4 sin X1 + a2r 3r 4 sin Y1 - a2 rlr5 sin Z

+ a 41r, sin(C1 - ¢4) - 04 1ri cos(€ 1 - ¢4) (4.89)

First Radial Mode

dr2 _dt - a 2 r 2 + b, [rl cosX + r4 cosX ] (4.90)
dr!'2 = - 0 2r 2 + bi [r2 sinX + r2 sinX,] (4.91)

Second Tangential Mode

drs
dt- a 3 r 3 + b2[r cosY- r cosY]
dt 14CO l

+ a 35r5 cos(q 3 - 05) - 035r 5 sin(0 3 - 05) (4.92)

dr5 _dt - a 5 r5 + 2b2 ri r 4 cos Z

+ a53r3 cos(¢ 3 - C5) + 653r 3 sin(0 3 - ¢5) (4.93)
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d03 =- _ 3r 3 + b2 [r sin Y - r sin Y1]

- a3 5r5 sin(0 3 - 05) - 635r5 cos(0 3 - 05) (4.94)

d5- = - 65r5 + 2b2r, r 4 sinZ
dt

+ a5 3r 3 cos(,/ 3 - , )s) - ,53 r3 sin(,)3 - 05) (4.95)

where,
X = 20, - 02 + Ql1 2 t

Y = 20, - 03 + Q13t

X, 20)4 -- 02 + 912t (4.96)

Y= 204 - 03 + P 13 t

Z = 4 )1 + 04 - 05 + S113t

There are ten independent equations for ten unknowns, but the algebra is much

more complicated than that for the two-mode combination cases. Direct numerical

integration of Eqs. (4.86)-(4.95) is performed with various combinations of linear

and linear coupling parameters. Similar to the result of the 1T/1R modes, the

amplitude of the first radial mode r20 goes to zero for the spinning wave motions.

Figure 4.5 shows the time history of the amplitudes for the 1T/1R/2T modes case,

in which the pattern r20 -- 0 can be clearly seen. Therefore, the first radial mode

in the combination of the 1T/1R/2T modes has no contribution after the limit

cycle is reached. But in the initial stages, it helps the system reach the limit cycle

regardless of the initial phase differences and once the limit cycle is attained, its
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effect disappears. The phase difference of the first tangential modes and that of

the second tangential modes always become odd number multiples of 2" That is,

the system always degenerates to the spinning wave motion regardless of the initial

phase differences.
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CHAPTER 5

NONLINEAR ACOUSTIC WAVES IN BAFFLED CHAMBERS

This task represents an outgrowth of the linear acoustic analysis described

in Chapter 3. A linear acoustic analysis provides a means for assessing whether

a particular system is stable or unstable with respect to small perturbations, but

gives no information about the ultimate amplitudes that unstable motions reach. In

practical systems, constant amplitude oscillations (i.e. limit cycles) have often been

observed. Since the occurrence of a limit cycle in a dynamical system requires the

influence of nonlinear interactions, modeling of this phenomenon within a chamber

requires appropriate consideration of the nonlinear terms in the governing equations.

There have been many studies4 7' 4 ,' 56 addressing nonlinear analysis in the perfect

(unbaffled) cylindrical chambers but none exists for the baffled combustors. This

chapter deals with the nonlinear acoustic analysis in baffled environments.

5.1 Nonlinear Acoustic Oscillations

The wave equation derived in Chapter 2 contains various nonlinear processes

of concern. Among all nonlinear processes, the effect of second order nonlinear gas

dynamics is examined systematically here.

Unlike the linear acoustic analysis, the simple assumption of time-harmonic

behavior of all the acoustic variables is no longer valid. However, for a typical rocket

engine, the mean-flow Mach number and the variation of mean pressure are small.
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Under such conditions, the frequencies and the spatial variation of the unsteady

motions deviate only slightly from the classical acoustic field obtained for the same

geometry, but without any source terms (h = n. f=0). Thus, the solution to the

wave equation can be faithfully approximated by a synthesis of the linear normal

acoustic modes 3n(r), with unknown time-varying amplitudes 77n(t) as coefficients:

p' = •l n(t)3n(r) (5.1)
n

Correspondingly, the acoustic velocity field is written as

u' (r,t) = S ?)ný Vl~n(r) (5.2)
nIn

where the linear mode shape P3n(r) satisfies the Helmholtz equation throughout the

chamber, subject to rigid surface boundary conditions.

V23,n + knpi = 0 (5.3a)

n. V13n = 0 (5.3b)

The time-varying amplitudes 77n(t) give the temporal nonlinear behavior of the

system. Eqs. (5.1) and (5.2) are not exact representations of the true fields, for the

boundary conditions are not satisfied; Eq. (5.1) gives n. Vp' = 0 because the nin

satisfies Eq. (5.3b) and according to Eq. (5.2), the velocity fluctuation vanishes on

the boundary. This means that Eqs. (5.1) and (5.2) do not accurately reproduce

the spatial structure of the unsteady motions near the boundary. Nevertheless, the

errors are small when the perturbations contained in h and f of Eqs. (2.30) and

(2.32) are small. Furthermore, due to subsequent spatial averaging, the equations

found for the amplitudes will provide a satisfactory basis for studying real problems.
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Note that, owing to the geometric discontinuity set by the baffles, the linear

mode shape P,, is not the same as its counterpart for a perfect cylinder. Rather, it

is expressed as a series of transverse normal modes.

P.n(r) = Z ni(x)Oj (r,6) (5.4)

Here, Oi(r,0) is the transverse normal mode function for a cylinder. The axial

distribution function ýni(x) can be determined using the eigenfunction-expansion

technique discussed in Chapter 3. Thus, the nonlinear solution found in this chapter

is constructed using the linear acoustic solutions found in Chapter 3.

A system of ordinary differential equations in terms of the time-varying

amplitudes of Eq. (5.1) can be obtained. This is done by averaging the conservation

equations over the volume of the chamber using a version of the method of least

residuals, which is equivalent to Galerkin's method with the linear mode shape as

a weighting function. Now multiply Eq. (2.29) by P,, and Eq. (5.3a) by p', subtract

the results, integrate over the entire volume, and apply Green's theorem to get

JJ J 2p + k2 ,p')dV = - J ,hdV - j-f. ndS (5.5)

Substitution of Eqs. (5.1) and (5.4) into Eq. (5.5) and some rearrangement of

the result leads to a system of second-order ordinary differential equations for the

temporal behavior of nonlinear oscillations.

ZCnmm +Wn77m) = Fn (5.6)

where the amplitude coefficients, C,,,, and forcing function, F,, are defined as,

C.mZ E f ýJ~n(x)mj(X)dx (5.7)
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F.= -_P [N ,hdv + ,f . lndS] (5.8)

where

S= JJ ?k¢ (r,O)rdrdO (5.9)

Equation (5.6) represents the time-dependent motions of a collection of nonlinear

oscillators, one oscillator being associated with each linear mode. The principal

difference between the present analysis and the unbaffled cases 47,48 lies in the

structure of the ordinary differential equation (5.6), in which strong coupling among

modes occurs on both sides of the equation. Now, the problem is reduced to solving

this system of second-order ordinary differential equations for the time-varying

amplitude, given a specified initial condition.

The forcing function, F, represents the deviation from unperturbed acoustic

modes and, therefore, provides the mechanism that allows for initial finite

oscillations to grow or decay. As a result, the various components of Fn are essential

to the study of combustion instabilities in the baffled combustion chambers. It is

convenient to classify these components of F, according to the orders of p' and u'

in each term. Substitution of Eqs. (2.30) and (2.32) into Eq. (5.8) yields the explicit

expression of the forcing function F,. After some straightforward manipulations,

F,, can be written as

F,=-_= [ JJJ23n(i,.ug')dV JJ [ug'×(V X i)]iV1 .dY

[a] [b]

-2-- &2 nL P, V+a--Y , V . lag dVJ ii,- [d]P
[c] [d]
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+iJJJ(Ug'VUg'). VPndV -A-JJ -ug' • Vn, dV

[e] [f

+1-11 A, LPf V ug'dV +L JJJ 1p'V. -OI dV (5.10)

[g] [h]

+ Pn a-(agP + Ug'P + Ugp') ndS

[i]

f/ f 1]~
- -•V1 ) + ( n- -)dV

[i]

The first four terms, [a] - [d], are referred to as the linear acoustics, and the

next four terms, [e] - [h], the second order nonlinear acoustics. The last two terms,

[i] - [j], are related to the combustion response and other sources such as particle

damping. If only the nonlinear contribution from the gasdynamics of the unsteady

flow is taken into account in this study, the forcing function can be expressed in

terms of the wave amplitude 77n, with the form

00 
00 00

Fn= -Z [Dn,? + Enili] - ZZ [Anijiiji + Bijr7li7l] (5.11)
t=l :=l j=1

Note that the cross coupling term ý,q does not appear in the formulation

of Eq. (5.11) since nonlinear combustion responses and the interactions between

mean flow and nonlinear acoustics are not included in this analysis. The explicit

forms of the above coefficients are given by,

D.= N[(1 + * V1P, - p-(Vi, X (V X fg)). VP.
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+ 1P(.)PnV .i g] dV (5.12a)

E.i = -e2 f.pVpi " ndS (5.12b)

and

= = i~ij (kI2n- + kj2)(2k+i2 2kj 2 - kn 2 )

- kn"4 - 81•k2 kj2] (5.12c)

~2 IniF 2 2
Bn = ý j 12(k 2 + k j 2 )(1-)- knJ2 (5.12d)

I.ij = JJ J ,f dV (5.12e)

The linear coefi-cients D1,i and En arise from all linear processes in Eq. (5.10),

and the nonlinear coefficients Anij and B,,ij represent the second order nonlinear

acoustics part of Eq. (5.10). Note that all coefficients depend on the linear mode

shapes and frequencies of the chamber.

After the forcing function F,, Eq. (5.11) is substituted in Eq. (5.6), this can

be rewritten in a matrix form:

[c]{i} i{f} (5.13)

where

O0[C]{irj} ZCmqm (5.14a)

{fl = - + (E,,, + CniWn)7,i]

- : [Ani 3 mii, + B,,11t7ivi,] (5. . b)
t=1 j=1
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Now the problem is reduced to solving a set of simultaneous differential equations

(5.13). But unlike the unbaffled case, the wave motion can no longer be viewed

as a weakly coupled system. Consequently, the method of time-averaging used by

Culick," which can replace a system of second-order ordinary differential equations

by an equivalent system of first-order equations, cannot be practically applied to

solving Eq. (5.13) due to this strong coupling among modes. Therefore, numerical

integration of Eq. (5.13) is performed using a fourth-order Runge-Kutta scheme to

get the time history of the amplitudes t77(t). Howtver, a similar format as used in

the method of time averaging is employed for the representation of the a- -.plitude

of the limit cycle. Namely, the time-varying amplitudes, 77,(t) are transformed to

two variables, rn(t) and 0,(t) as follows,

77.(t) = r.(t) sin jw~t + 0.(t)] (5.15)

where rn(t) and 0C,(t) are the amplitude and phase of the limit cycle, respectively.

Then the amplitude of the limit cycle, r,(t), takes the form,

r,(t) = 2  [ ](5.16)

This expression is used to represent the temporal variation of the amplitude of the

limit cycle. The major task at this point is to determii±e the limiting amplitude

r,(t) characterizing the nonlinear oscillations.

For the two-dimensional rectangular baffled chamber, the results from the

two-dimensional linear acoustic analysis are used to determine the coefficients

Cnto characterizing the baffled system. In calculating the coefficients C,,n, the
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assumption of no mean flow is made to allow concentration upon the nonlinear

behavior itself. The calculation is performed in two regions separately (i.e. baffle

compartments and the main chamber) and then combined to give the final

expression for the coefficients. That is,

Cnm E? I[EJni~midx]

+ [2 f
= ý'[~ ni~midx] + E C ni~mjdxJ (5.17a)

where

E= J ?(y)dy (5.17b)

Here, the B and C subscripts denote integration in the baffle compartsments and

the main chamber regions, respectively.

The calculation of Inij in Eq. (5.12e) is also treated separately,

Iin, N JJ~i~nsjdV

= ZZY _,[jLbna'ib¢jcdb ftbbcdy (5.18)
a 6 CJI

+ L(na(ib(jcdx J Oa12b~bcdY]

Equation (5.18) is used to calculate nonlinear parameters A,,j and B,, j from (5.12c)

and (5.12d), respectively.

For the three-dimensional cylindrical baffled chamber, the same procedure as

the two-dimensional chamber case is followed. Then, the cO'4il,,w11 Cnm are
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determined as

Cnm EE? [J

[E? 1  I] + b nismidx] (5.19a)

where

2= JIf ?(rO)rdrdO (5.19b)

For the determination of nonlinear parameters Anis and Bni, the coefficient Ini

in Eq. (5.12e) is calculated first as

I'fu=NJ~inM~ijdV

~.rLb

2~f 1 ýnaaib~jcdx' Ota'IkblcrdrdO (5.20)
a I = CJB

+ j na~ib~jcdX JJ .Oaiboicrdrd8]

5.2 Results and Discussion of Nonlinear Acoustic Analysis

From the energy point of view, linear oscillations can be visualized as having

completely uncoupled modes of energy storage in the oscillating fields. However, it

is highly unlikely that a real system, certainly a system as complicated as a liquid

rocket engine, will be completely linear with all modes uncoupled. If the different

modes are coupled with each other, it is quite possible that draining energy from

one mode will also drain energy from other modes through the nonlinear processes.
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//mode 1
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gasdynamics
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Figure 5.1 Block Diagram Showing the Energy Transfer

Relation among Modes

Therefore, given the circumstances that instabilities are likely, it is necessary to pay

attention to nonlinear behavior. The overall energy transfer relationship among

modes through nonlinear interactions, and how this is related with linear processes,

are conveniently outlined in the block diagram in Fig. 5.1.

Useful analytical results from the nonlinear analysis described in the previous

section can fully describe the time-varying amplitudes in finite oscillations for a

baffled chamber. The complexity of the problem depends on how many nonlinear
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modes are to be considered in the analysis. Unfortunately, but as is expected, the

analysis becomes more and more complicated as the number of modes considered

in the nonlinear synthesis is increased. Because of the complexity of the actual

analysis, only the case of the first two modes combination (i.e. n = 1 and n = 2) is

treated for the two-dimensional analysis. This case represents the simplest possible

situation and can serve as a basis for analyzing more complicated problems. Culick

and Yang9 showed that the two mode expansion is valid over a broad range of

linear and nonlinear parameters that govern the global quantitative behavior for

unbaffled chambers. Although higher modes have the capability to modify the

stability domain, the amplitudes of higher modes for many practical systems are

negligibly small due to the efficierit viscous damping at high frequencies. Thus,

the description of nonlinear acoustic fields in the baffled chambers by the first two

modes may be justified.

The coefficients Cnm, which represent the major distinction between the baffled

and the unbaffled chamber nonlinear analysis, are functions of both baffle length

and chamber oscillation frequency. Although the combinations using only the first

two nonlinear modes are under examination (n = 1 and n = 2), the number of

simultaneous equations to be solved increases by a factor of 2m, where m is the

number of linear modes considered in one nonlinear mode. However, m should take

on as many values as possible. This makes the analysis complicated to a great

extent, since even a few modes in the expansion mean a large set of equations to

be solved. For this analysis, the chamber with baffle length Lb = 0.2H is used and

the frequencies obtained from the linear acoustic analysis are employed to estimate
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these coefficients from Eqs. (5.17) and (5.19) for the two-dimensional and three-

dimensional chambers, respectively. Values of Cnm are tabulated for the first three

modes in Table 2 and Table 3 for two-dimensional and three-dimensional cases,

respectively.

Table 2 Values of Cnm for Two-Dimensional Chamber

Cnm m=1 mn=2 m=3

n = 1 0.386 0.0 0.204

n = 2 0.0 0.363 0.0

n = 3 0.204 0.0 0.286

Table 3 Values of Cnm for Three-Dimensional Chamber

Cnm m=1 m=2 m=3

n = 1 0.72 0.78 -0.13

n = 2 0.78 1.43 0.0

n = 3 -0.13 0.0 0.37

Using these coefficients, the direct numerical integration of Eq. (5.13) for the first

two modes is performed for the investigation of limit cycle behavior in a system.

A limit cycle behavior is found to exist even though there is complicated

coupling among modes in the baffled system. The result for two-dimensional

rectangular chamber is shown in Fig. 5.2, for the first two transverse modes
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combination; note that the radian frequency of each mode is normalized with

respect to the fundamental mode of an unbaffled chamber. For a system with

a positive growth constant of the first mode, the stability of the system can be

improved if the growth constant of the second mode is negative. Although this

condition corresponds to a decrease of the limit cycle amplitude of the second mode,

it may result in an amplitude increase of the first mode, since a higher first mode

amplitude would be required to balance the stronger damping effect of the second

mode and thus produce the stable limit cycle. It is interesting to mention that

the amplitude histories of limit cycles observed in this study have different shapes

from those for unbaffled chambers. The limit cycle amplitudes are fluctuating with

respect to constant values, possibly due to the strong coupling between modes.

From energy considerations, a mode with a positive growth constant can be

directly interpreted as unstable if there is no nonlinear coupling. Therefore, such a

mode can serve as an effective source of energy for the nonlinear acoustic system.

In a similar manner, a mode with a negative growth constant can be regarded as a

sink of energy. The nonlinear coupling allows for inter-modal energy exchange and

can thus channel net energy from the unstable to the stable modes. When the limit

cycle is reached, the sink and source effects of the individual mode balance each

other and the energy of the system remains constant in time. For the two-mode

combination considered here, energy is supplied through the first mode by linear

processes because its growth constant is positive. This energy is then transferred to

the second mode through the second order nonlinear gasdynamics coupling, where
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it is dissipated by a linear decay process acting on the second mode with its negative

growth constant. In general, nonlinear processes associated with gasdynamics have

a natural tendency to cause energy flow from lower to higher modes.

For a three-dimensional cylindrical baffled combustion chamber, only three

cases of nonlinear mode combinations are treated here. Investigated are: (1)

the first tangential and the first radial modes, (2) the first tangential and the

second tangential modes and (3) the first tangential, the first radial and the second

tangential modes. These three situations represent the most commonly observed

modes in actual rocket engines, without presenting a formidable calculational task.

Limit cycles are reached for all cases and the results are shown in Fig. 5.3-5.5

for 1T/1R mode, 1T/2T mode and 1T/1R/2T mode combinations, respectively.

For all three cases, the limiting amplitudes fluctuate in a manner similar to the

results for the two-dimensional baffled chamber, due to the complicated coupling

among modes. This fluctuation can be equivalently stated as a vertical shift of the

envelope of the time-varying amplitude as seen in Fig. 5.6, thus making the limit

cycle fluctuate with respect to constant value.

The overall trends are the same as the two-dimensional case, but it is interesting

to observe that the intensity of the fluctuation for the three-dimensional case is

stronger. The fluctuation is more than 30 percent of the average amplitude for

all three-dimensional cases. This means a larger shifting of the envelopes of the

time-varying amplitudes. Coupling among modes allows a cascade of energy from

lower modes to higher modes, as evidenced by the limit cycle growth for the first

tangential mode. Figure 5.5 shows that the amplitude of the first radial mode is
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similar to that of the second tangential mode. Thus, both the first tangential and

the first radial modes are important in dissipating the energy of the first tangential

mode for the creation of a stable limit cycle in this scenario.

In summary, the typical nonlinear behavic.s-limit cycles are observed in

combustion chambers even though there are strong couplings among modes in

baffled environments. And energy cascade through the nonlinear gasdynamics

processes is also predicted for several mode combinations. But unlike the unbaffied

case, the limit cycle amplitudes show the fluctuating characteristics due to the

complicated inter-modal coupling in the baffled system.
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CHAPTLb. 6

CONCLUSIONS AND FUTURE WORK

Linear and nonlinear acoustic wave analyses have been developed for two- and

three-dimensional baffled combustion chambers. A wave equation governing flow

oscillations is derived from the conservation equations for a two-phase mixture.

To solve this wave equation in baffled environments, the eigenfunction expansion

technique is used to express solutions in the baffle compartments and the main

chamber, separately. With appropriate matching of the acoiistic fields at the

interface between the baffle compartments and the main chamber, unsteady flow

structures in the entire chamber can be obtained. The major advantage of this

approach is that it alleviates the computational burden associated with conventional

numerical methods, and provides more sweeping results in a much more efficient

manner. Furthermore, it provides an analytical framework for studying mechanisms

proposed as the causes of unsteady motions in baffled rocket engines.

From the linear acoustic analysis, the detailed wave structures inside the baffled

combustion chambers, including distributions of acoustic pressure and velocity, have

been investigated. Three stabilizing effects of the baffle on transverse modes of

instability have been observed. First, transverse waves can be longitudinalized

inside baffle compartments. This effect is more conspicuous for chambers with

longer baffle lengths. Longitudinal waves are rarely a problem in most liquid

rocket engines, so the longitudinalization of the waves seems to be a sensible
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way for causing stability. Physically, this longitudinalization may act to decouple

combustion from oscillatory effects if the processes near the injector face are

sensitive to transverse variations in pressure. However, there is also a potentially

destabilizing concentration of pressure amplitude near the injector face associated

with longitudinalization of the wave. Second, a severe restriction of the transverse

component of the acoustic velocity fluctuation is observed. If processes sensitive

to acoustic velocity are responsible for instability, this restriction could be the key

in stabilizing the system. Third, the normal mode frequency is decreased with the

addition of baffles. Acoustic pressure oscillations that might have induced instability

without the baffles might fail to interact constructively due to the shift of frequency.

From the nonlinear spinning mode analysis in a cylindrical unbaffied chamber,

linear couplings between modes are found to exist and to play an important role on

the spinning transverse mode of oscillations. Limit cycle histories are also calculated

and presented. Nonlinear acoustic solutions for baffled combustion chambers

are found by using a series of linear modes, with time-dependent amplitudes as

coefficients to express the nonlinear behavior. A system of second-order ordinary

differential equations in terms of the time-varying amplitudes is solved to yield

information regarding nonlinear phenomenon such as limit cycles, whose behaviors

are observed for several mode combinations. Unlike the unbaffled chamber, however,

the envelope of the time-varying amplitude is shifted, causing fluctuations of the

limi' cycle due to the strong inter-modal coupling in the baffled system.

While this research offers investigation of the detailed wave structures, and
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some nonlinear behaviors within the baffled combustion chambers, some aspects

require further attention in future research. First of all, the mean flow Mach number

is considered to be constant throughout the chamber since concentrated combustion

is assumed in this analysis. Consideration of distributed combustion may provide

a more accurate and realistic solution for this problem. Second, the study of

vortical structures by Wicker3 2 shows that considerable amounts of vorticity can be

generated by the acoustic wave from the baffle blade. Viscous energy dissipation and

kinetic energy convection by these vortices are plausible explanations of the other

stabilizing effects of baffles and are worthy of continued pursuit. Third, flow turning

effects may be important in the baffled chamber analysis, since this is a mechanism

of acoustic energy loss due to the turning of flow by the acoustic wave. Placing

baffle blades inside the chamber can change the direction of the flow to generate

energy loss in a chamber. Fourth, present nonlinear analysis considers only the

second-order nonlinear gasdynamics terms in the formulation. An extension to the

higher-order terms may be able to handle more realistic situations. The further

consideration of these four points can aid in the construction of a more realistic and

complete model of actual baffled systems.
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APPENDIX

CHARACTERISTIC EQUATION FOR THE FREQUENCY

In Eq. (3.48), coefficients qm6,1 , qmb,2, Cmb, qn,. 1, qc, 2 and Cc are all functions

of frequency. Therefore, Eq. (3.48) can berewritten as

0

where

o, )Cos ('Ny) cos( 7y)dy
Gn.,m(Q) = [Gf() cos ( f H HH

E= =1: Hn (92) f_____S2( '7

M~ J= (xp-• --i)H -- y)

N (A.2)

x N _H cos2(-L-y) dyo H

If M + 1 terms are expanded in Eq. (A.1),

n = 0 Bo = GooBo + GolB 1 + ..... + GOMBM

n = 1 B 1 = GloB1 + GilB 1 + ...... + GIMBM

n=M BM = GMoBM + GM1BM . ...... + GMMBM

In matrix form,

Goo - 1 Go1  G02 ... GoM Bo
Go Gil - 1 G12  ... G1M B1
G20 G21  G 2 2 - 1 ... GOM B 2  0

GMO GM1 GM2 ... GMM - 1 BM
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That is,

[G] [B] = 0 (A.3)

For the non-trivial solution, the determinant of the matrix G should be zero.

IGI =0 (A.4)

All elements of matrix G are functions of frequency. Therefore, frequency can be

determined from the frequency characteristic equation Eq. (A.4).


