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1. INTRODUCTION

The research carried out under Grant N00014-89-J-1109, which began 1 October
1988 and is the successor to Contract N00014-84-K-0574, is primarily in the field of
nonlinear acoustics. The broad goal is to determine the laws of behavior of finite-
amplitude sound waves, especially to find generalizations of the known laws of lin-
ear acoustics. This report is the fourth annual report under the Grant and covers
the 12-month period ending 30 September 1992. The previous report (third annual
report1 ) is referred to herein as 91-5.*

The following persons participated in the research:

Graduate students

M. R. Bailey, M.S. student in Mechanical Engineering

C. E. Bradley, Ph.D. student in Mechanical Engineering

P. Li, Ph.D. student in Physics

J. A. Ten Cate, Ph.D. student in Mechanical Engineering; degree awarded May
1992

Y. Yazdi, M.S. student in Electrical and Computer Engineering

Three of these students received only partial support from the Grant. Bradley
won a University Fellowship for the nine-month period beginning 1 September 1991.
Ten Cate was partially supported by ONR Grant N00014-89-J-1003 (for which M. F. Hamil-
ton is principal investigator) and the IR&D program of ARL:UT. Finally, beginning
1 January 1992, Yazdi's support came from the IR&D program of ARL:UT.

Senior personnel

M. F. Hamilton,t Mechanical Engineering Department, The University of Texas
at Austin

"Numbers given in this style refer to items in the Chronological Bibliography given at the end of
this report, e.g., 91-5 means the fifth entry in the list for 1991.

t Hamilton received no direct support from the Grant. However, he was co-supervisor of Ten Cate's
Ph.D. research, which is described in Sec. 2.1 below.
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W. M. Wright, Consultant, Physics Department, Kalamazoo College, Michigan

D. T. Blackstock, Principal Investigator
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2. PROJECTS

The following projects were active during the report period:

* Propagation in a Periodic Waveguide

* Scattering of Sound by Sound

* Finite-Amplitude Waves in a 3-Layer Fluid

* Properties of Sea Water and Fresh Water for Finite-Amplitude Wave Calcula-
tions

"* Finite-Amplitude Propagation in a Medium Having a Distribution of Relaxation
Processes

"• Production of an Isolated Negative Pressure Pulse in Water

"* Miscellaneous

2.1 Propagation in a Periodic Waveguide

Bradley's project is a theoretical and experimental investigation of linear and non-
linear acoustic Bloch wave propagation in a periodic waveguide. The waveguide under
study is a rigid, air-filled, rectangular duct loaded at regular intervals with rigidly ter-
minated rectangular side branches. Previously reported on Bradley's project (89-6,
90-4, 91-5) were results of studies of linear and nonlinear time harmonic Bloch wave
propagation and linear narrowband Bloch wave pulse propagation. This year four
new topics were explored:

1. The propagation of the linear time harmonic Bloch waves that occur in an
anisotropic periodic waveguide (i.e., a waveguide loaded with asymmetric scat-
terers).

2. The asymptotic behavior of linear Bloch wave pulses.

3. The propagation of nonlinear Bloch wave pulses.

4. The near-infinite group velocity of stop band Bloch wave pulses.

3



2.1.1 Anisotropic Periodic Waveguide

Because the side branches in all previously reported work have been symmet-
ric (invariant under axial reversal), the periodic waveguide has been isotropic. To
consider what sorts of Bloch wave solutions are possible in an anisotropic periodic
waveguide, Bradley reduced the theory of Bloch waves in periodic waveguides to a
very "indamental statement. The problem reduces to that of the eigenvalue problem
associated with the unit cell translation operator

TCjo,) = ei~h10,),

where TC is the transmission matrix associated with the scatterer, ]1r) is a column
vector composed of the amplitudes of the conventional waves of which the Bloch wave
is composed, q is the Bloch wave number, and h is the period of the waveguide. The
eigenvalues yield the Bloch wave numbers (the Bloch dispersion relation) and the
eigenvectors determine the conventional wave structure of the Bloch waves. For a
very general class of scatterers, which include boundary deformations (as in the case
of the side branches) and inclusions, the scattering is found to be reciprocal, even
in the presence of thermoviscous acoustic boundary layer losses. It is foL1d that,
in terms of the Bloch wave number q, which accounts for the cell-to-cell structure,
or macrostructure of the Bloch wave functions, the forward and backward traveling
Bloch waves have the same form: q(+) = _q(-) (the (±) superscript denotes the
forward and backward traveling Bloch waves). The analysis shows that this result
is a direct consequence of the reciprocity of the scatterers. In other words, reci-
procity disallows birefringence. In terms of the Bloch wave parameter g/f, which is
derived from 1a) and accounts for the Bloch wave structure within a cell (i.e., the
microstructure), the Bloch waves are asymmetric: g/f(+) M g/f(-). Such asymmetry
in the wave functions causes the Bloch acoustic impedance to be asymmetric as well:
"ZB B+) Z(-). It is also found that the asymmetry resides primarily in the phase of
g/f (in the lossless case =g/f(+)I- jg/f(-)j).

Measurements of q(+) and g/f(+) were made in the anisotropic periodic waveguide
shown in Fig. 2.1(b). The waveguide used in past measurements (89-6, 90-6, 91-5),
shown in Fig. 2.1(a), was made anisotropic by filling every third side branch and half
filling the side branches on one side of the filled side branches. The asymmetric pair of
side branches can be considered to be a single, asymmetric scatterer. The theoretical
and experimental values of Im{q(*)} and Re{g/f(±)} are shown in Fig. 2.2. While
there is some disparity between theory and experiment for Im{q(+)}, it is clear that
q(+) = _q(-) and g/f(+) 0 g/f-), in agreement with theoretical prediction.
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FIGURE 2.1
The (a) isotropic and (b) the anisotropic periodic waveguides.

A.S-93-252
2.1.2 Asymptotic Behavior of Linear Bloch Wave Pulses

Asymptotic solutions of the problem of narrowband Bloch wave pulse propagation
can be found by a stationary phase integratinn technique and use of the theory of
asymptotic evaluation of Fourier integrals. The signal is introduced into the periodic
medium via the boundary condition p(z,t) 0Lo = A(t)e-j"' t . Here A(t) is a narrow-
band envelope function with spectrum Fen,(w) = f A(t)eJ'Otdt. Asymptotic solutions
were found for three cases. In each case the frequency spectrum of the pulse includes
a frequency associated with a different feature of the dispersion, as shown in Fig. 2.3.
The three cases are:

I. The pulse spectrum is confined to a portion of the dispersion curve having
nearly constant curvature. The asymptotic (large values of z) solution is

p(z' 0 t) F., [(t - z/cw)/(qO,,z)] eqoz_,,o t+(t-z/cg,).2 /(2qo z),] (2.1)

where qO = q(wo), qo = d2q/dw2(wo), cg, = 1/Re{q'}, and C is a constant. The
pulse envelope distorts into its Fourier transform. Note that (1) the transformed
envelope propagates at the group velocity, decays as 1/Jv, and spreads accord-
ing to the factor 1/(qoZ), and (2) the carrier undergoes dispersive chirping, as
shown by the (t - z/c,) 2 term.

II. The pulse spectrum includes an inflection point frequency wi. The inflection
frequency, defined by Re{q"(w,)} = 0, has the largest group velocity in the
spectral region. At the inflection, the stationary phase frequency undergoes
a bifurcation, which makes it necessary to consider complex stationary phase
frequencies. Concentrating on the leading edge of the pulse only, we find that
the asymptotic (large values of z) solution is

p(z, t) - CFn,,(Wi)z1-Ai [-(t - zlcpi)l(qo' z/2)1/31 e],, -w,9, (2.2)

where wi is the inflection frequency, cp4 = cgr(wi), q, = q(wi), C is a constant,
and Ai is the Airy function.
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FIGURE 2.3
The relationship between the pulse spectrum and the dispersion curve

for the three asymptotic solutions.
AS-93-254

I11. The pulse spectrum includes a stop band boundary frequency Wb. The asymp-
totic solution at any distance, but long after passage of the leading edge of the
pulse, is

p(z, t) _ Czt-3 / 2F.,v(,b)eJw (2.3)

The pulse has a long tail which oscillates at a frequency of Wb and decays as
t-3/2.

It should be noted that Eqs. 2.1-2.3 are the solutions of the "analogous conventional
wave problem", in which the periodic medium is treated as a conventional wave
medium with the impedance and dispersion of the periodic medium. As was pointed
out in last year's report (91-5), the solution of the periodic medium problem can
be recovered from that of the analogous conventional wave problem via the operator

(z) •* F. (z - nh).

2.1.3 Nonlinear Bloch Wave Pulses

In order to make a simplified first pass at the problem of nonlinear Bloch wave
pulse propagation, we make use of an earlier result fron, the nonlinear time harmonic
Bloch wave propagation problem. It was found that a progressive, time harmonic
fundamental Bloch wave results in a bidirectional excitation of second harmonic Bloch
waves (90-3, 90-4, 90-7). As a first attempt to solve the nonlinear pulse problem, we
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will consider only the second harmonic propagating in the same direction as the
fundamental. While it is expected that the fundamental will generate a uniform
backward traveling second harmonic Bloch wave that will stream steadily off the tail
of the forward traveling fundamental pulse, the amplitude is expected to be very small.
The reason for this is illustrated by the following argument. Consider a nondispersive
wave system in which the fundamental pulse generates P1 watts of forward traveling
second harmonic and P2 watts of backward traveling second harmonic. The generated
forward traveling second harmonic will travel along with the fundamental and the
power will be deposited into the same space-time region as the fundamental. This
resonant deposition of power allows the forward traveling second harmonic to become
quite concentrated. The backward traveling second harmonic, however, is traveling
- 700 m/s relative to the fundamental, so any power will be smeared out over a very

large region of space-time. This relatively diffuse deposition of power results in a very
small wave amplitude.

We consider a semi-infinite periodic waveguide excited at the boundary according
to p(z, t) = = A(t) cos((0wt), where A(t) is the envelope function. Up to the smallest

characteristic envelope distortion distance (which is, as shown in last year's report
(91-5), bandwidth dependent), the fundamental pulse has the form

p(z7,t) = A(t - z/ 0))cos(q 'z -W 1dt).

Again, this solution, as well as the following second harmonic solutions, is that of the
analogous conventional wave problem.

The forward traveling second harmonic solution has been found for a completely
general case but, as usual, more physical insight is to be found in simpler cases. We
consider two:

* Group synchrony case. The group velocities of the fundamental and the second
harmonic are equal (cM) = c•)), but the phase velocities are not (cO) #ý ci or,

equivalently, q6 0 q6 /2). The second harmonic solution is

Pw(1 ) (sin[(q6') - q62)/2)z]\
p2(z, t) -2p0c qO'--- - A2 (t - z/cg) sin[(q () + q62)/2)z -w

where P3 is the coefficient of nonlinearity and co is the free-medium sound speed
associated with the fluid in the periodic waveguide. The second harmonic en-
velope, which propagates with the fundamental envelope, is simply the fun-
damental envelope function squared. The effect of the phase asynchrony is,
as in the time harmonic case, a spatial beating of the envelope at intervals of
21r/(q60- 2q0('). Figure 2.4(a) shows the second harmonic envelope growing
and decaying as the wave propagates.

8



o Phase synchrony case. The phase velocities are equal but the group velocities
are not. The second harmonic solution is

P2(Zt) = ýA! (l) ( •) [t-zl 2 r)d2sin(q(o2)Z_(2)t).2pocz (2 ) ,-) J,- q4:'r) A (t si-; -

The second harmonic envelope is given by the integral term, which is simply the
convolution of A2 with a gradually widening rect function. As seen in Fig. 2.4
for the case c.) > c2), the second harmonic energy is able to "leak out" of the
region the fundamental pulse occupies. This sort of second harmonic behavior,
which is not found in nondispersive systems, allows a second harmonic precursor
to arrive at a receiver prior to the arrival of the fundamental pulse.

group synchrony case phase synchrony case

fundamental fundamental
Zu'O envelope envelope

Z-2z 0  second hamonic second hamonic
envelope . -envelope

z-3z0

z-4z 
17

Z-5z

ZO F * -.. ..... ....'

(a) (b)

FIGURE 2.4
The fundamental and second harmonic envelopes for (a) the phase

synchrony case and (b) group synchrony case.
AS-93-255
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2.1.4 Group Velocity of Bloch Wave Pulses in the Stop Band

It was reported earlier (91-5) that the group velocity and the energy transport
velocity generally differ for Bloch waves. One of the interesting differences occurs in
the stop bands, where the energy transport velocity approaches zero and the group
velocity becomes very large. To investigate, we constructed a system consisting of a
section of uniform waveguide terminated in a section of periodic waveguide. Gaussian
envelope pulses were launched towards the interface from the uniform waveguide side
(see Fig. 2.5) and the acoustic pressure was recorded at various positions along the
uniform waveguide, at the interface, and down the periodic waveguide. The set of
time series shows the incident conventional wave pulse, the reflected conventional
wave pulse, and the transmitted Bloch wave pulse. If the time series are laid out
perpendicular to the z axis, each at the value of z corresponding to the measurement
location, we get the characteristics-plane view illustrated in Fig. 2.5. The group
velocity of the pulse is evident in the angle the pulse makes in the z-t plane. Note
that for the example below, the transmitted Bloch wave pulse has a slower group
velocity than the incident and reflected conventional wave pulses.

incident reflectedi
conventional conventional
wave pulse wave pulse ................ .. .... ..............

.. . ........ ... .. ....... ............

interface0J

.. ............ .•. .. ........
0

.. ....... ...... ........

ransmiUedransitted
Bloch wave z

pulse 0

FIGURE 2.5
A set of time series arranged in characteristics form.

AS-93-256
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Measurements were made at 3200 Hz (passband case) and at 1560 Hz (7r stop
band case). The set of time series from the passband case is shown in Fig. 2.6(a).
The incident and reflected conventional wave pulses and the transmitted Bloch wave
pulse are clearly evident. The group velocity of the transmitted pulse is slightly
smaller than that of the incident and reflected pulses. Figure 2.6(b) shows the set
of time series from the stop band case. While the transmitted pulse decays rapidly,
its group velocity is nearly infinite. Figure 2.7 shows the very nearly simultaneous
arrival of the pulse at all eight post-interface measurement locations.

This measurement graphically illustrates that near-infinite group velocities are in-
deed possible. When the issue is addressed in the literature, it is usually argued that
in spectral regions where the group velocity becomes larger than the free-medium
phase speed, the approximations involved in arriving at a meaningful definition of
group velocity are violated.' That is, in a spectral range associated with large group
velocity, the smallest characteristic pulse distortion distance (91-5) is small compared
to a meaningful propagation distance. Before the pulse can propagate a distance
comparable to its length, it is so badly distorted that the time of arrival of the pulse
becomes ill-defined. Figure 2.7 shows, to the contrary, that very little distortion
occurs. Indeed, at frequencies near the center of the stop band, the smallest char-
acteristic pulse distortion distance can be arbitrarily large. The group velocity is
indeed well-defined and, in some spectral regions, much larger than Co. While they
are intriguing, these supersonic pulses are of purely academic interest as they only
exist at stop band frequencies and therefore attenuate rapidly.

11
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Measured time series arranged in characteristics form for Gaussian
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(b) 1560 Hz (stop band).

AS-93-257

12



0.01 0.014 0.018 0.022 0.026
time - S

FIGURE 2.7
The eight post-interface time series for the 1560 Hz carrier (stop band)

case. AS-93-258

13



2.2 Scattering of Sound by Sound

Except for publication of Ten Cate's dissertation (92-2) as a technical report and
publication of one or more journal articles about the work, this project is now com-
plete. Refer to the previous two annual reports1'3 (91-5, Sec. 2.2, and 90-4, Sec. 2-2)
for figures showing key theoretical and experimental cur-res. The following material
is adapted from Chap. 4 of Ten Cate's dissertation, Summary and Conclusions.

Ten Cate's research, which was primarily experimental, sheds light on a classic,
yet controversial, problem in nonlinear acoustics, the scattering of sound by sound.
No one doubts that secondary sound is produced from the nonlinear interaction of
two sound beams. Whether the secondary sound is scattered or radiated outside the
region of interaction has, however, been the subject of a great deal of controversy.
New theoretical work by the Tjottas and their coworkers resulted in a series of papers
beginning in the mid-1980s 4 8- that provided a fresh perspective on the problem of
scattering of sound by sound. Armed with the insights provided by these papers,
Ten Cate performed a new set of experiments.

Chapter 1 begins with a reexamination of the origin and history of the scattering
of sound by sound. What was meant by "scattering of sound by sound" in the early
1950s is different from what is meant now. Originally the term signified secondary
components resulting from the nonlinear interaction of two crossed sound beams of
different frequency. Recently the "definition" has been expanded to include part of
the nonlinearly generated sound - called fingers - produced in a single beam (single
source excited at a single frequency). Ten Cate thus designed experiments to measure
two types of scattered sound: self-scattering in single beams, and classical crossed-
beam scattering. Chapter 1 concludes with a careful review of earlier experiments,
including both types of scattering, with comments about what can be learned from
them.

The theory necessary to understand the scattering of sound by sound is pre-
sented in Chap. 2. Two theoretical approaches are highlighted: the KZK (Khokhlov-
Zabolotskaya-Kuznetsov) equation for self-scattering, and a generalized Westervelt
equation for classical crossed-beam scattering. A numerical algorithm developed by
the Bergen group9-1 2 for solving the KZK equation is briefly described and explained.
The generalized Westervelt equation, especially its quasilinear version, is then dis-
cussed. A known asymptotic solution,7 for which numerical evaluation is required,8 '13

is given special attention because of its application later to some of the experiments.

The experimental measurements are reported in Chap. 3, for both kinds of scat-
tering. In order to put the measurements into perspective, we begin with some
background information. Self-scattering is taken up first.

14



Scattered sound in the form of fingers (extra sidelobes) in the higher harmonic
beam patterns measured for a uniform piston source (single beam) has been seen be-
fore. In fact, although they were not explained at the time, fingers can be identified
in measured beam patterns published as early as 1966.14 Fingers were not recognized
as scattered sound until the mid-1980s when accurate numerical solutions of the KZK
equation became practical.4 Calculated beam patterns then began to provide a good
explanation of the earlier measurements.4 '10 Until Ten Cate's research, however, no
one had carefully measured beam patterns and compared them with theory, partic-
ularly beyond the second harmonic. Nor had any specific attempt been made to
measure propagation curves for the finger radiation. The first half of Chap. 3 is de-
voted to Ten Cate's experiments on self-scattering. His measurements, which include
beam patterns for the first ten harmonics, are compared in detail with predictions
obtained from numerical solution of the KZK equation. Agreement is excellent. Mea-
sured propagation curves confirm that the fingers decay as 1/r (when thermoviscous
absorption is factored out) whereas the other sidelobes decay more slowly. Taken as
a whole, the measurements clearly identify fingers as scattered sound (91-7).

Crossed-beam scattering of sound by sound experiments have been performed
since the mid-1950s, and arguments about the existence of scattered sound continue
to this day. In contrast to some earlier researchers, the Tjottas and their coworkers
showed that it should be possible to observe scattering of sound by sound in a crossed-
beam experiment.' The Tjottas' predictions were supported by an analytical solution
of the KZK equation by Darvennes and Hamilton"5 for Gaussian beams. After many
numerical simulations, Ten Cate came up with a few rules of thumb for observation
of scattered sound. The rules of thumb were used to design the crossed-beam exper-
iments that are reported in the latter half of Chap. 3. Unfortunately, the results of
these experiments are at best only inconclusive.

The ideal crossed-beam experiment would be done with Gaussian sources because
no ordinary (product pattern) sidelobes would be present to interfere with observation
of the scattered sound. Since only one Gaussian source could be obtained (and it
was really only a shaded source, not truly Gaussian), Ten Cate performed several
experiments with it and an ordinary uniform piston. No scattered sound was observed.
Failure is not deemed significant, however, because the quality of the Gaussian source
was poor. The radiation was neither symmetric nor free of sidelobes. Because of this,
it was impossible to obtain a reliable theoretical prediction of the level of the expected
scattered sound. A second set of crossed-beam experiments was then performed,
this time with two uniform sources. Because the primary beams were replete with
sidelobes, however, a useful theoretical prediction was again impossible. Moreover,
the very large amount of product-pattern sum and difference frequency radiation,
which is due to the sidelobes in the primary radiation and is not scattered sound,
made it very difficult to detect true scattered sound, which is expected to be weak.
Some evidence of scattered sound was nevertheless obtained in the form of deviations

15



from product-pattern radiation at the sum and difference frequencies.

The conclusions from Ten Cate's study are thus as follows. (1) Self-scattering is
now very well understood. Nearfield effects, which are included in the KZK theoretical
model, give rise to finger radiation. Predictions based on the KZK model are in
excellent agreement with experimental data. Fingers have also been shown to fit the
present day "definition" of scattered sound. (2) Classic scattering of sound by sound
is also fairly well understood. Ten Cate's crossed-beam experiments, however, neither
confirm nor deny the presence of scattered sound. Part of the difficulty is theoretical
in that reliable predictions are not yet available for sources as complicated as Ten Cate
had to use. The recommended cure is not, however, to develop a more robust theory
but rather to perform the experiment with two truly Gaussian sources. Only then
will it be possible to avoid competition from product-pattern radiation.

2.3 Finite-Amplitude Waves in a Three-Layer Fluid

The construction and initial testing of the high precision positioning system was
completed early in the report period. Figure 2.8 gives a diagram and sketch of the
system, in this case, as used for an experiment with the water tank in the present
project. The National Instruments LabVIEW interface allows users of the system
to combine data acquisition and position control (just as is done with the system
in the Mechanical Engineering Department on campus). Since its completion, the
system has been used extensively in two experiments: (1) aperture diffraction of a
pulse produced underwater by a spark (see Sec. 2.5 below), and (2) propagation of
airborne N-waves through a turbulent jet (work done under a NASA grant).

Investigation of propagation of sound through multiple media was begun with a
study of finite-amplitude waves incident on a metal plate contained in a water bath.
The study is guided by the work of V. E. Nazarov 16 who describes a novel method
for measuring the acoustical nonlinearity parameter / in a medium.

Figure 2.8 shows the arrangement of the transducer and metal plate used. The
lossless wave equation in Lagrangian coordinates"' is used to describe the wave motion
in terms of the particle displacement ý, the rest position x, the small-signal sound
speed co, and the coefficient of nonlinearity P:

61 - c - -2c • (2.4)

The source pressure is given by

Pource = A sinw•t (2.5)

and the field consists of incident, reflected, and transmitted waves in the water and
a standing wave field in the plate. Because of nonlinear effects in the plate and the
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FIGURE 2.8
Positioning system and tank for three-medium experiment.
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water, second and higher harmonics are present in addition to the fundamental. In
what follows, P, and p2 are the amplitudes of the fundamental and second harmonic,
respectively; po, co, ko, and fo refer to properties of the plate, while unsubscripted
quantities refer to properties of the water.

If the frequency of the source is selected so that the thickness of the plate L0 is
an integral number of half-wavelengths in the plate, i.e.,

Lo = ,r (2.6)ko

then the fundamental and higher harmonic signals incident on the plate should be

L

sou rce/
receiver

PC PO 3O Co
water steel water

FIGURE 2.9
Arrangement of plate in water. AS-93-260

perfectly transmitted through it. Higher harmonics generated in the plate should,
however, be radiated into the left and right half spaces. Using the perturbation
method and applying the boundary conditions at the interfaces, we obtain the fol-
lowing expression for the second harmonic radiated back toward the source:

rn A2 [1- (PC)2]
P2 =  (2.7)8 pcco

Therefore, if A and p2 are measured, the coefficient of nonlinearity 1/o of the plate can
be determined.

A test of the method in the form of an experiment has been started. The po-
sitioning system described above is used to align an ultrasonic transducer (Ultran
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Laborator'es 2.2 MHz, 3 mm radius ) and an aluminum plate (Lo = 1.2 cm) as shown
in Fig. 2.9. The experimental setup is shown in Fig. 2.8. A tone burst of 20 ps is
used in order to resolve the incident and reflected waves. The source voltage is 150 V
p-p. The signal is digitized at 200 MHz using the RTD and transferred to the Lab-
VIEW program. A Hamming filter is used to minimize the effects of the tone gate,
and the Fourier transform (FT) is obtained. The FT is averaged about 100 times to
increase the dynamic range of the measurements. Estimates indicate that the level
of the re-radiated second harmonic should be about 60 dB below that of the source.
Preliminary results show a difference of about 50 dB.

2.4 Finite-Amplitude Propagation in a Medium Having a Distribution of
Relaxation Processes

This research began in 1990 with support from a NIH grant. Although the work
did not become a project under the present ONR grant until 1 September 1991, for
continuity the carlier work is reviewed here along with the progress made during the
current year.

Emphasis during the period of NIH support was on the absorption of high inten-
sity ultrasound by tissue. Nonlinear propagation effects, whether the ultrasound is
used for diagnosis or diathermy, can greatly increase absorption of the ultrasound by
the tissue irradiated."8 The medical consequence is a greater rise in tissue temperature
than would have been expected on the basis of linear theory. The absorption a may
be defined in terms of the intensity I of the ultrasound; for plane waves the relation
is

a dI=dx (2.8)
21

where the subscript f has been used to emphasize our interest in finite-amplitude
absorption (the symbol a0 denotes small-signal absorption). For nonplanar waveb
dIl/dx is replaced by the divergence of the intensity.

Our first approach was to use weak-shock theory and xiake the calulation of a! in
the time domain. The result was a closed form prediction of a! for a variety of different
waves.19 Our work complemented that of Carstensen et al.,18 who used a frequency
domain method, which led to Fourier series that had to be summed numerically. Li's
first work on the problem was to include the effect of ordinary absorption* for a plane
finite-amplitude wave that is sinusoidal (angular frequency w) at its source. He used
Burgers' equation (see Eq. 2.9 below) and applied its known solution2" to calculate
the absorption. This work was completed in 1990 and is reviewed in Sec. 2.4.1 below.

*When weak shock theory is used, the only absorption accounted for is that associated with
shocks in the waveform.
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Although the results were interesting in that they filled in the gaps where weak-
shock theory fails, i.e., before shocks form and after they become very weak, Burgers'
equation is valid only for a thermoviscous fluid, which is not a good model for most
tissues. Thermoviscous fluids have negligible dispersion and a small-signal absorption
ao that varies as w2 . By contrast, experiments show that most tissues at frequencies
in the MHz region are dispersive and have absorption that is proportional to w',
where n has a value very close to unityl (the range is 1 to about 1.2). The derivation
of a generalized Burgers equation, 21 or GBE (Sec. 2.4.2), for tissue thus began to
occupy Li's attention early in 1991. Using the model of tissue as a medium with a
continuous distribution of relaxations, 22 he obtained a nonlinear integro-differential
equation as the GBE for this case (see Sec. 2.4.2). Attempts to obtain solutions came
next. He first developed a stationary solution, that is, the solution for a steady shock
wave (Sec. 2.4.3). More recently he has atLempted a solution for a wave sinusoidal at
the source (Sec. 2.4.4). ONR support of the project began with the results given in
Secs. 2.4.3 and 2.4.4.

2.4.1 Finite-Amplitude Absorption for Thermoviscous Fluids

Propagation of finite-amplitude waves in thermoviscous fluids is described by the
classical Burgers equation,

uX - burr, = (WNc•)uu,, , (2.9)

where u is particle velocity, x is distance from the source, t' = t -X/co is retarded time
(t is actual time), co is small-signal sound speed, P3 is tbh coefficient of nonlinearity,
and b is proportional to the coefficients of viscosity and heat conduction (the small-
signal absorption is given by a 0 = bw2). A convenient dimensionless form of Burgers'
equation is

1

v- VvY = vv , (2.10)

wvhere v = u/uo is the dimensionless particle velocity, u0 is a characteristic particle
velocity of the physical system, say the source amplitude, y = wt' is the dimensionless
retarded time, a = x/xo is distance relative to the shock formation distance x, =
cS//3uow• and F = (aox 8)-1 . The physical significance of F is that it is a measure of
the importance of nonlinearity relative to dissipation. For periodic waves Eq. 2.10
may be used to reduce Eq. 2.8 to

j0 = dy (2.11)

t The absorption characteristic for tissue is thus quite similar to that for porous matter such as
marine sediments. This implies that Li's work may have application to finite-amplitude propagation
in sediments.
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The expression for v is known from the exact solution of Burgers' equation.2 0 Equa-
tion 2.11 may therefore be evaluated, although in practice the evaluation must be
done numerically. Typical curves for finite-amplitude absorption for relatively weak
waves - F = 2,5, 10 - are shown in Fig. 2.10. The small departure of the curve for
r = 2 from the linear theory prediction shows that the wave in this case is very nearly
a small signal. The curves for F = 5 and 10, however, show that nonlinear effects can
cause a substantial increase in the absorption. Put another way, the linear theory
prediction is only adequate (1) very near the source, where harmonic distortion is
still small, and (2) very far from the source, where most of the harmonic distortion
components have damped out and a sinusoidal waveform has been virtually restored.
In between, the birth of shocks and the establishment of a sawtooth (at least for
F - 10) greatly increases the efficiency of the absorption process.

NmnIintarTheory

UA--- LinwaTbemy

at ia. ii

1A

12.

0, 1 l 4 9 10

FIGURE 2.10
Finite-amplitude absorption as a function of distance for a thermoviscous

fluid, F = 2,5, 10. AS-93-261

It is interesting to compare the present results with those obt .,d by using weak-
shock theory, which, as has already been noted, is a theory baw.d ý, .. qfe assumption
that absorption is due solely to whatever shocks are present in the waveform. Fig-
ure 2.11 is a repeat of Fig. 2.10 but with curves for weak-shock theory predictions
added. Several observations may be made. First, because no shocks are present in
the region 0 < o < 1, the weak-shock model gives a! = 0 there. Second, for F = 2
the failure of the weak-shock curve to get even close to the linear theory prediction is
further evidence of the insignificance of nonlinear effects for that case. It is clear that
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as r increases, the predictions based on weak-shock theory become more realistic.
Indeed, one finds that for high values of r, for example, r > 100, the weak-shock
and Burgers equation predictions coincide over a large range. Third, the rather cu-
rious result that the weak-shock curve for r = 10 actually exceeds the corresponding
Burgers equation curve may be explained as follows. Under the weak-shock assump-
tion the wave amplitude does not decay until o, exceeds 7r/2. In the more realistic
Burgers equation model, however, ordinary absorption combined with nonlinear dis-
tortion causes a reduction of the amplitude beginning at the source. Since a! depends
strongly on amplitude, the weak-shock theory overestimate of amplitude in the re-
gion near a = 7r/2 causes the absorption to be overestimated there as well. Finally, it
should be noted that one cannot arrive at the correct prediction for finite-amplitude
absorption (represented by the Burgers equation curves) simply by adding the ab-
sorption due to ordinary losses to that due to shock losses. The interaction between
ordinary dissipation and nonlinear distortion is too complicated to permit superpo-
sition. It should be noted that the method recently proposed by Dalecki et al.23 for
combining the two absorptions does not amount to superposition; some account of
interaction is taken.

2.5 r- 1o ...... Week ShOck Tb"

r- i

oh r-2

N ... ........

FIGURE 2.11
Plot of f aO for IF = 2,5,"10 for three different models:
Burgers' equation (-), weak-shock theory 0and

linear theory (
AS-93-262

Note that the method based on Burgers' equation is not restricted to waves that
are sinusoidal at the source. Calculations may also be made for pulses. Moreover,
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the evaluation of Eq. 2.11 may be done with either time domain or frequency domain
expressions. The main drawback to the use of Burgers' equation is its restriction to
plane waves in thermoviscous fluids. The method is, however, very useful for the
physical insight it provides about the roles of shocks and ordinary losses in producing
the total absorption.

2.4.2 A Generalized Burgers Equation for Tissue

When the medium cannot be characterized as thermoviscous, that is, when the
dispersion is not negligible and ao is not proportional to w2, it is still possible to
develop a Burgers-like equation, called a "generalized Burgers equation," or GBE.21

Li derived a GBE for tissue. Before presenting the results of this derivation, however,
we first give some background.

The form of the generalized Burgers equation given by Blackstock21 is

U, + L[u] , -91  , (2.12)

where L[u] is a linear operator that describes the (small-signal) absorption and dis-
persion properties of the fluid. For example, for a thermoviscous fluid L[u] = -burr.
Let the absorption and dispersion properties be specified in terms of a function C,

C() =ao(w) - j6(w) , (2.13)

where b is the dispersion function

6 (w) w(ICO - 1/Cph)

and it is assumed that both a0 and 6 are known functions, either from experimental
measurements, theoretical considerations (including the Kramers-Kronig relation), or
both. Li developed the following general expression for L[u] in terms of C:

L[u]= 1 Jdt"u(x,t")K(t'-t") (2.14)

where the kernel K is the inverse Fourier transform of the absorption-dispersion
function C,

K(t) = -- 1[' 00 dw.(w)j (2.15)

For example, for a thermoviscous fluid C -= 1j2, and the kernel becomes proportional
to the second derivative of the dirac delta function. Equation 2.14 then reduces to
-butiv and the classical Burgers equation, Eq. 2.9, is recovered. The next task is to
find the kernel function for tissue.
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Propagation in tissue, which is generally dispersive, is quite different from that
in thermoviscous fluids. For a discussion of the complicated mechanisms involved,
see, for example, Jongen et al.,2 4 who concluded that relaxation is the dominant
process. The Carstensen-Schwan model, although originally proposed to describe the
absorption and dispersion characteristics of hemoglobin, 22 has since been applied with
success to a wide variety of tissues. Carstensen and Schwan took hemoglobin to be
a medium having many relaxation processes, each having its own particular relax-
ation (angular) frequency fl. Not having information about each relaxation, they
assumed that the collection of discrete processes could be represented by a contin-
uous distribution of relaxation processes in the range 01 < Q < S2. Accordingly,
the total absorption was expressed as an integral from %II to 0?2 of a0(0), multiplied
by a distribution (or weighting) function. They found that by choosing a distribu-
tion function proportional to 1/f2 they obtained a good fit to the experimental data
(ao proportional to w over a wide band). Evaluation of the integral leads to the
following expression for the total relaxation contribution (we omit here the viscosity
contribution, which was included by Carstensen and Schwan):

ao(w) = Mw(arctanwTL - arctanwTs) , (2.16)

where rL = 1/f• 1 and rs = 1/f1 2 are the largest and smallest relaxation times, re-
spectively, in the distribution, and M is a constant proportional to the strength of
relaxation, which can be determined experimentally. Similar treatment of the disper-
sion leads to

2 = ) (2.17)23 1 + (2.1¢)

Evaluation of Eq. 2.16 shows the following. The distribution of relaxation mechanisms
produces an absorption that is proportional to w 2 for low frequencies (wTL < 1), is
equal to a constant for high frequencies (wTs > 1) and, provided the distribution
is wide enough (1 2 > fj 1), is proportional to w for the broad midfrequency range
f1I < W < f 2 . The corresponding dependence of the dispersion, as given by Eq. 2.17,
is 6 - 0 as w -- 0, while 6 .b- w as w becomes very large. In the midfrequency region
the behavior is 6(w) - w In w.

Substitution of Eqs. 2.16 and 2.17 in Eq. 2.13 leads to the following GBE (written
in dimensionless form) for a medium having a distribution of relaxation processes:

v D, -D a dy'uV,(cT,y')K(y - y') = vvy (2.18)

where the kernel is given by

K(y) = J/, ---fdv (2.19)
Iii W1L V

The important parameter D = Mco/lpeo is a measure of the importance of dispersion
relative to that of nonlinearity and thus plays a role similar to that played by 1/" for
thermoviscous fluids.
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If the range of the distribution is very narrow, that is, if rL --+ TS , Eq. 2.18
reduces to the well known GBE for a medium having a single relaxation process.25

Agreement for this case helps establish the credibility of Eq. 2.18. On the other hand,
the implication is that prospects for an easy solution of Eq. 2.18 are not good. Since
no general analytical solution is known for the single relaxation medium, an analytical
solution of Eq. 2.18 is not to be expected either. Li has, however, attempted to find
asymptotic solutions, a stationamy solution, and some numerical solutions.

This subsection concludes with a brief account of the search for asymptotic so-
lutions. First, Eq. 2.18, a nonlinear integro-differential equation, was converted to
completely differential form. The resulting equation contains a logarithmic differential
operator, which can be expressed as an infinite series of differentiations of increasing
order. In the limit as w < 01, only the lowest term in the series is important, and the
equation reduces to the classical Burgers equation, that is, Eq. 2.9. We thus confirm
that for very low frequency disturbances, the relaxation mechanism is (as expected)
frozen, and the tissue just behaves as a thermoviscous medium. If the source frequency
is a little larger, so that the next term in the series must be included, the so-called
Korteweg-deVries-Burgers equation is obtained. Although Li has not attempted a
solution of this equation, it is known to be a good model for simple absorption and
dispersion of finite-amplitude waves. For example, the effect of relaxation has been
found to be responsible for the formation of weak pulsations occurring at the vertex
of sawtooth waves.26 We now proceed to results obtained during the period covered
by this report.

2.4.3 Stationary Solution

After a wave equation for finite-amplitude disturbances in a new or novel medium
has been developed, usually one of the first tasks is to attempt a steady shock, or sta-
tionary, solution of the equation. The steady shock is physically interesting because it
shows in the most elementary way the balance, if one exists, between finite-amplitude
distortion and dissipation. Moreover, it poses one of the simplest mathematical prob-
lems, since "stationary" means that the wave shape does not change with propagation
distance. In the case of Eq. 2.18, dropping the spatial derivative term allows one to
integrate the equation once with respect to y and obtain

v=-1 02D dy'v,,(y')K(y - y')

where the constant was found by requiring that v --, ±1 as y --+ ±oo. For a steady
shock, therefore, Eq. 2.18 reduces to an ordinary integral equation. Even so, the
reduced equation is not easy to solve. Li has used the method of multiple scales to
obtain a solution in the form of a perturbation series, as follows:

v = Vo + v+pv 2 +... , (2.20)
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where

vo= tanh x

IV = -(1 + r)sech'X In cosh X

V2 = -sech 2X[4a2(tanh X In2 cosh X+tanh X In cosh X-_(x-tanh X))+4a2(X-_ tanh X)]

p = [2D(1 - r)]-'

X = /AY/rWL

a = (1 + r)/2
a2 = (1+ r + r2)/3

r = Tsl/rL = 11/112

The perturbation series converges rapidly if p < 1.
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FIGURE 2.12
Profile of a steady shock in a medium having a distribution of relaxation

processes. D = 2,r = 0.1 (-), and r = 0.0001 (- -).
AS-93-263

Steady shock profiles are shown in Fig. 2.12 for D = 2 (weak nonlinear effects)
and two different bandwidths of the relaxation distribution, r = 0.1 and r = 0.0001."

"For these two cases, although the values of # (0.278 and 0.250, respectively) are not very small,
Eq. 2.20 is still dominated by the first term. Difficulties were encountered for values of p = 0.5 or
Ia.ger.
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A slight asymmetry can be seen, similar to that which occurs when relaxation is due
to just a single process.2 Although solutions for stronger waves have not yet been
obtained, behavior similar to that for single-process relaxation is to be anticipated;
that is, the asymmetry should grow as D decreases. In the single relaxation case the
waveform becomes multivalued for values D < Drain;' in this regime relaxation is
not strong enough to prevent nonlinear steepening from causing the wave to fold over
on itself. Whether distributing the relaxation process over a wide frequency band
strengthens the opposition to steepening, so that multivaluedness is either delayed or
perhaps even prevented, is not yet known (but see the results in the next subsection).
It can be seen from the form of Eq. 2.20, however, that since the rise time of the
shock is proportional to 1/p, and thus to D, the shock is expected to become thinner
as D decreases.

Figure 2.12 shows the shock profile to be relatively insensitive to the value of the
bandwidth parameter r. The reason is that the wave shown is quite weak (D = 2).
Most of the spectral components of the wave undoubtedly lie in the frequency region
well below 01. Opposition to steepening is therefore provided mainly by the lower end
of the distribution band. In this case, the bandwidth of the distribution is practically
irrelevant.

2.4.4 Numerical Solutions

To study the propagation of a wave that is sinusoidal at its source, Li has been
developing numerical solutions of Eq. 2.18. The methods being employed are (1) spec-
tral analysis, and (2) finite difference in the time domain. In the spectral analysis
method, use of the discrete Fourier transform converts Eq. 2.18 to a system of cou-
pled, ordinary, nonlinear, differential equations for the harmonic components. The
system of equations can easily be solved numerically, for example, by a Runge Kutta
algorithm. Spectral analysis works well when the wave is weak. When the wave is
strong, however, a very large number of harmonic components must be retained if the
shocks are to be described faithfully; consequently the computation time is long. The
finite difference method should be suitable in this case, and work on it is in progress.

Figure 2.13 shows waveforms obtained by the spectral analysis method. Each
set of four curves shows the progressive distortion and decay of the wave as a in-
creases from 0 to 5. The first two sets are for a (a) weak wave and (b) a stronger
wave. Comparison shows that, as expected, the stronger wave has shorter shock rise
time and more asymmetry of waveform. The ringing on the a = 3 curve in (b) is
Gibbs' phenomenon and illustrates the difficulty encountered with the spectral anal-
ysis method when the wave is strong. Notice that at a = 5 the ringing has practically
disappeared. At this distance relaxation has gained the upper hand in its battle with
noilinear steepening, and the shock has dispersed to the point that the number of
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harmonic components retained (in this case 100) is enough to give a true picture of
the waveform. The wave shown in (c) has the same strength as the one in (b), but the
bandwidth of the relaxation processes is an order of magnitude greater. The nearly
complete absence of ringing for the profiles in (c) implies that wider bandwidth does
strengthen the absorption capability of the medium.
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2.5 Production of an Isolated Negative-Pressure Pulse in Water

This project was motivated by a desire to produce an isolated negative-pressure
pulse in water. It was felt that such a pulse would be useful in medical ultrasonics
and cavitation research. Preliminary experiments by D. T. Blackstock and E. L.
Carstensen at the University of Rochester in summer 1991 showed that an underwater
spark, a circular aperture, and an irregularly shaped disk can be used to produce
an isolated negative pulse. In September 1991 Bailey began the more careful and
systematic set of experiments that are described here.

Our approach is based on the fact that diffraction by a circular aperture causes
phase reversal of any incident wave. In our experiment the incident wave is the
positive pulse radiated by an underwater spark. Forward scattering by a circular
aperture then yields an on-axis signal that consists of a positive pulse (the incident,
or direct, wave) followed by its time-delayed, inverted replica (the scattered, or edge,
wave). If an irregular disk is then placed in the aperture to block the direct wave,
the axial signal is just the edge wave, a negative pulse. Although the blocking disk
does produce scattering, the scattering is incoherent because of the irregularity of the
disk edge. Compared to the edge wave from the aperture (on axis), therefore, the
disk-scattered signal is negligible.

Bailey's project has had three parts this year:

(1) Design and construct an underwater spark source, and measure the acoustic
radiation.

(2) Carry out the experiment to achieve an isolated negative-pressure pulse.

(3) Investigate the "obliquity factor" that arises when the Helmholtz-Kirchhoff in-
tegral theorem is used to predict diffraction.

The first two parts have been completed, and some work has been done on the third.
In addition, success with part 2 led to several related experiments that have much
promise.

A general sketch of the experiment is shown in Fig. 2.14. The acoustical action
takes place in a 29 x 57 cm plexiglass tank filled to a depth of 25 cm with deionized
water. The underwater spark source is the open end of an RG-58 coaxial cable. The
spark itself is an arc of current from the center anode to the braided annular ground
of the cable. The rather complicated circuit that releases the current is described
as follows. A Glassman EH20P high voltage power supply applies 8 kV to charge a
0.1 pF capacitor, which is in parallel with the series combination of the coaxial-cable
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FIGURE 2.14
Spark source and experimental setup. A-93-265

spark source and a switch. The switch is an open air thyratron, which consists of
two primary electrodes and a third (ignition) electrode located in the air gap between
the primary electrodes. Closure of the switch begins when a trigger circuit and GM
043 automobile coil effectively amplify a (manually initiated) voltage pulse from a
Hewlett Packard 222A pulse generator. Application of the amplified potential to
the ignition electrode stimulates breakdown between the primary electrodes of the
thyratron switch. With the switch closed, the capacitor is free to discharge across the
exposed tip of the RG-58 coaxial cable. To hold the tip fixed, Bailey mounted the
end of the cable in a lucite plate (not shown in Fig. 2.14).

The spark produces a sharp positive pressure spike which, a few centimeters away,
has an amplitude of about 1 MPa and a duration of about 1 ps. Since the waveform
of a spherical wave cannot be truly unipolar, it is assumed that the positive spike is
followed by a long, shallow negative tail, which is masked in the actual measurement
by noise that follows the arrival of the pulse.

The acoustical measuring system begins with an NTR piezoceramic TNU100A
needle hydrophone. The electrical output goes to a Sony-Tektronix RTD-710A (real-
time digitizer), which records the measurement. LabVIEW and Matlab programs run
on a Macintosh II computer are used to analyze the data. In series between the hy-
drophone and the digitizer, Alpha Delta Transi-trap surge protectors and 3.3 V Zener
diodes protect the digitizer and reduce the electromagnetic pulse (EMP) produced
by the spark. A great deal of time and energy was spent in finding a system and
arrangement to prevent the EMP from interfering with the acoustical measurement.
No preamplifier is presently utilized, though one is needed when Bailey uses a NTR
PVDF NP-1000 needle hydrophone.

The circular aperture, on which the positive pulse is incident, is a hole in a flat
baffle. The baffle itself should not transmit sound. We use an aluminum plate,
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thickness 2.29 mm, covered on the incident wave side with a 1.59 mm (1/16 in.) thick
sheet of corprene. The corprene is called a mask in Fig. 2.15. The aluminum, which

Socuicorprene mask on
corprene occlusion "aluminum baffle

FIGURE 2.15
Occlusion and baffle construction. AS-93-266

contributes little transmission loss on its own, functions primarily as a rigid surface
op which to mount the corprene, which is too flexible to use by itself. Corprene, a
gasket material made of cork and neoprene, is well known for its very high acoustical
transmission loss. Corprene is sometimes described as a pressure release material (it
does contain air pockets) and sometimes as a very lossy material. Regardless of its
actual properties, however, it does prevent sound from passing through to the back
side of the baffle. The aperture is a 50 nun diam hole cut in the corprene. The
companion hole in the aluminum is 1 mm larger in diameter in order that the edge
presented to the incident wave be corprene, not alumimum. Moreover, to keep the
apparent thickness of the baffle as small as possible, Bailey beveled the hole cut in the
aluminum (sharp edge next to the corprene). The irregular disk, or occlusion, used
to block the direct wave is also made of 1.59 mm thick corprene and has a diameter
that varies irregularly from about 3 mm to about 4 mm. Since a slight curl of the
corprene surface simply adds to the incoherence of the scattered wave, it was not
necessary to back the occlusion with aluminum. The occlusion was suspended in the
aperture with thread; a "crosshairs" arrangement was used (see Fig. 2.15).

Some preliminary results are shown in Fig. 2.16 for a case in which the spark-
aperture distance was 8 cm and the aperture-receiver distance about 6 cm. On the
left is the axial signal received when the aperture was not occluded. The initial pulse
is the direct wave from the spark, a positive spike followed by some low amplitude
noise that may be due to reverberation around or vibration of the tip of the RG-58
cable. Arriving about 6 ps after the direct wave is the edge wave (the 611s delay is
appropriate for the distances used in this particular experiment). As expected, the
edge wave is a phase-inverted replica of the direct wave. After the corprene occlusion
was inserted in the aperture, the signal became that shown in the right-hand picture.
The edge wave is unchanged, but the direct wave is practically gone. Where the direct
wave used to be is only a little noise, which may represent the incoherent contribution
from the irregular edge of the occlusion. Notice that the noise begins about 1.5 ps
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Date comparison: unoccluded and occluded aperture.

AS-93-267

later than the onset of the direct wave in the left-hand picture. This delay is about
what one would expect for a signal scattered from the nearest edge of the occlusion.

Figure 2.16 demonstrates that the apparatus does produce the desired isolated
negative-pressure pulse. Moreover, the negative pulse exists only locally. It is not
spread over a wide area as it would be if generated by reflection from the water-air
interface. The localized nature of the negative pulse produced by diffraction may be
very advantageous in applications.

The third phase is carrently under study, but measurements so far are inconclu-
sive. Also being investigated are some other phenomena associated with irregular-edge
diffraction. For example, barriers used along roadways to reduce traffic noise might
be more effective if the top of the barrier were irregular rather than straight. An
irregular edge would reduce the coherence of the diffracted wave that penetrates into
the shadow zone behind the barrier.

The results of this project are scheduled to be presented at the New Orleans
Meeting of the Acoustical Society of America, 31 October - 4 November 1992.27
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2.6 Miscellaneous

A paper was given at the Fall 1991 Meeting of the Acoustical Society of America
to report results obtained by Wright and Blackstock on the ellipsoidal focusing project
(91-6).

Last year's report' (91-5, Section 2.4) contains a draft of a letter to the editor
prepared by F. D. Cotaras and C. L. Morfey on properties of sea water and fresh water
for calculations involving finite-amplitude sound. The letter has been submitted to
the Journal of the Acoustical Society of America for publication (92-1).

Bradley attended the Physical Acoustics Summer School, which was sponsored
by ONR and the Acoustical Society of America, in Asilomar, California, 24 June -
1 July 1992.
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3. SUMMARY

Research during the current report period, 1 October 1991 - 30 September 1992,
has been done on the following projects.

1. Propagation in a periodic waveguide

2. S-attering of sound by sound

3. Finite-amplitude waves in a three-layer fluid

4. Finite-amplitude waves in a medium having a distribution of relaxation pro-
cesses

5. Propagation of an isolated negative-pressure pulse in water

Four topics under Project 1 were explored: (1) anisotropic periodic waveguides, (2)
asymptotic behavior of small-signal Bloch wave pulses, (3) nonlinear behavior of Bloch
wave pulses, and (4) group velocity of Bloch wave pulses in the stop band. The work
on Project 2 was completed, except for the conversion of Ten Cate's dissertation
to a technical report and the publication of two journal articles that are planned.
After a high precision positioning system, which will be very useful in a variety of
acoustical experiments, had been completed under Project 3, work was begun on
an experiment to measure backward reradiation of second-harmonic sound from a
steel plate in water. A generalized Burgers equation for tissue was developed under
Project 4, and work was done to obtain some asymptotic and numerical solutions of
the equation. In Project 5 an electrical spark, a circular aperture, and an irregular
blocking disk were used to produced a unipolar negative pressure pulse in water.
Finally, miscellaneous topics included ellipsoidal focusing of N waves and tabulation
of certain useful quantities for making calculations of finite-amplitude sound in water.
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