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The distribution of a sum of binomial random variables

Ken Butler Michael Stephens

Abstract

In this paper we examine the distribution of a sum S of binomial random variables, each with different
success probabilities. The distribution arises in reliability analysis and in survival analysis. An
algorithm is given to calculate the exact distribution of S, and several approximations are examined.
An approximation based on a method of Kolmogorov, and another based on fitting a distribution
from the Pearson family, can be recommended.

KEY WORDS: Kolmogorov-type approximation; Pearson distributions; reliability; survival anal-

ysis.

1 Introduction

The classical binomial distribution requires a set of independent trials in which the probability of success
is constant. However, one may be faced with a situation in which the success probabilities differ. For
example, in a common situation in reliability analysis (see Boland and Proschan, 1983) there may be
n individual components, each of which has a different probability of functioning correctly, and the-—-‘
probability of observing k or more functioning components must be found in order to determine the?’}
overall reliability of the system. Similarly, with survival data, the individual subjects may suffer differing ;; }
influences on their survival probabilities, but the quantity of interest may be an overall survival rate at —

a particular time. —
Let Xi,Xa,..., X, be binomially distributed random variables, with X; having index n; and prob- ;—‘

ability p;. In the type of problem discussed above, we are interested in the distribution of the suin )

- viad
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There exist several approximations for a single binomial distribution; these are described in Johnson
and Kotz (1969), and some numerical comparisons are provided by Gebhardt (1969). One approximation,
due to Bol’shev (1963), exhibits remarkable accuracy, but does not appear to generalize to the distribution
of a sum S of binomial random variables. For S, Boland and Proschan (1983) give bounds for the .
cumulative probabilities, in terms of cumulative probabilities of other sums of binomial random variables
which have the same mean as S.

In this paper, we provide a method for the exact calculation of the distribution of S, and we examine
several approximations to the distribution. These include the well-known normal and Poisson approxi-
mations suitable for large n; and/or small p;. These have limited accuracy, and two other approximations
are considered; one is based on Kolmogorov’s refinement of the Poisson approximation to the binomial,
while the other involves fitting a suitably chosen distribution from the (continuous) Pearson family.

We compare the above approximations for several sets of n; and p;. The Kolmogorov-type approxima-
tion performs well in all cases, while the Pearson-family approximation is particularly effective when S can

take a large number of values. The normal and Poisson approximations perform poorly in comparison.

2 Exact calculation

With modern computing facilities, it is possible to calculate the exact distribution of S. The calculation
depends on the observation that for any two discrete random variables Y and Z taking values 0,1,2,...,
J
PY+Z=j5)=) PY=1i)-P(Z=j-1i). (1)
1=0
This suggests that we may calculate the distribution of S by finding the distribution of X; 4+ X3, and
then adding the remaining X; one at a time. Corresponding to (??), Y is the sum of those X; currently
added, while Z is the next X; to be added.
The binomial distribution has a recurrence relation which is useful in the automatic calculation of its

probabilities. If X denotes a binomial random variable with index n and probability p, then

P(X=0) = (1-p) o -
P(X=j) = {(n=j+1)/i} - (p/0~p)}-P(X=j~1)  ifj21

Use of (??) requires less computation than would the evaluaticn of each probability directly.

We are thus led to the following algorithm for the direct calculation of the distribution of S:
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1. Calculate the distributions of X; and X, using (?7).
2. Let Y = X; and Z = X;, and use (??) tofind P(Y+ Z =j)forallj. Let U=Y + Z.
3. Fork=3,4,...,r:

(a) Calculate the distribution of Xj using (?7).
(b) Let Y = U and Z = Xi, and use (??) to find P(Y + Z = j) for all ;.

(c) Let U=Y + Z.
4. The distribution of S is then that of the U calculated in step 3(c) when k =r.

It is of interest to count the number of arithmetic operations required by this algorithm. Suppose
m is the maximum value of S for which P(S = m) is non-trivial (for example, m might be such that
P(S = j) < 107® if j > m). Then we assume that each probability distribution is calculated for
j=0,1,...,m. |

Formula (??) requires j + 1 multiplications and j + 1 additions for each j, and hence 7. 4(j + 1) =
3(m + 1)(m + 2) of each operation altogether.

Formula (??) requires an exponentiation to start, then three additions and three multiplications for
each use of the recurrence relation, making 3m of each altogether.

In the algorithm, (??) is used r — 1 times, and (??) is used r times. Consequently, the algorithm
requires 3(r — 1)(m + 1)(m + 2) + 3rm additions and multiplications, and r exponentiations. Since m is
likely to be the largest of these quantities, we see that the operation count is of the order of m?. We also

note that storage will be required for three arrays of length m.

3 Kolmogorov-type approximations

Johnson and Kotz (1969) and Dunin—Barkovsky and Smirnov (1955) describe an approximation for a
single binomial distribution, due to Kolmogorov, based on probabilities and (backward) differences of
probabilities from the Poisson distribution. Multiples of the differences are taken so as to match the
moments of the true and approximating distributions. The idea is quite general, allowing any discrete
distribut,un to be approximated by any other more easily calculated distribution. The only requirement

is that the moments v; of the true distribution can be found, at least up to some order r.




Let p() denote the true P(S = i), and let pi(¢) denote the approximation to this probability based on
differences up to order k. The probability py(7) is then taken to be the approximation to P(S = i) taken
directly from the approximating distributicn. The k-th backward difference at i is denoted V*¥)py(i) and
) ;

V®po(i) = VEUpg(i) — VEDpo(i — 1), (3)
where po(i) = 0 for ¢ < 0 and V©py(i) = po(i).

The approximating distribution is improved by adding to it a linear combination of its backward

differences, up to some order k:

k
pi(i) = po(i) + 3 a;VPpy(d), (4)

i=1
where the coefficients a; are chosen to match the first ¥ moments of the true and approximate distribu-
tions. The I-th moment of the k-th order approximation, about some value 4, is
k
B = po + Y_ ajej, (5)
i=1
where

e = 3(i — 6)'Vilpoi)

=0
Note that pj denotes the I-th moment of the original approximating distribution po(3).
After some algebra, we find that

]
el = Y Cljifhii0, (6)

i=j
where c;j; = ()(=1)7 !5, and S is the Stirling number of the second kind (see Abramowitz and
Stegun, 1970, p. 824). As a result, the ¢;j; can be evaluated by using a table such as that of Abramowitz
and Stegun (1970, p. 835). For convenience, we provide a table of the ¢;;; for | < 6 in Table 1. Note that
S,~(j )=0fori< J» which reduces the range of summation required for e;;, and gives e;; = 0 if I < j.

Therefore uy can be written

k 1
Bk = pio + Z a; Ecu'illl-i.o (M

=1 i=j
In practice, it is convenient to match the moments of the true and approximating distributions se-
quentially, starting with the mean. Since ¢;; = 0 if ! < j, any multiple of the k-th differences can be
added to px_;(¢) without changing the moments of order 1,2,...,k — 1. As a result, the coefficients
a1,a3,...,a,- do not change; one simply chooses a; to ensure that u = vg.

The algorithm for computing the Kolmogorov-type approximations follows:




I ;7 i aj l 7 i aj Il 7 1 Clji
1 1 1| -1 5 1 1 -3 6 1 1 -6
2 1 1| -2 5 1 2 -10 6 1 2 -15
21 2} -1 5 1 3| -10 6 1 3 -20
2 2 2 2 5 1 4 -3 6 1 4 -15
3 1 1| -3 5 1 5 -1 6 1 5 -6
3 1 2] -3}15 2 2| 20]|6 1 6 -1
3 1 3| -1]]|5 2 3| 60]|6 2 2 30
3 2 2| 6[]5 2 4} 70]]6 2 3] 120
3 2 3] 6115 2 5| 306 2 4} 210
3 3 3| 6}|5 3 3| 60]|6 2 5| 180
4 1 1| 4|5 3 4|-180| {6 2 6 62
4 1 2| -6 5 3 5(-150 6 3 3| -120
4 1 3| 4 5 4 4/ 120 6 3 4| -540
4 1 4| -1 5 4 5| 240 6 3 5| -900
4 2 2| 12 5 &5 51-120 6 3 6| -540
4 2 3| 24 6 4 4 360
4 2 41 14 6 4 5| 1440
4 3 3|-24 6 4 6| 1560
4 3 4]-36 6 5 5| -720
4 4 4| 24 6 5 6/[-1800

6 6 6| 720

Table 1: Coefficients c;;;




1. Calculate the probabilities of the initial approximating distribution po(z) for all 1.
2. Fork=1,2,...

(a) Find the k-th moment v, of the true distribution about some value 8 (which could be, for

example, 0 or the true mean v).
(b) Find the k-th differences V(*)py(:) for all ¢ using (??).

(c) Calculate pgx—1 from (??). This is the k-th moment about 6 of the current approximating

distribution (which has probabilities px_,(2)).
(d) Let ax = (—=1)*(vi — prp—1)/k'.

(e) Then calculate pi(i) = pr-1(i) + axrV¥py(i), for all i, which forms the “improved” approxi-

mation to the true distribution.

3. Continue until |pe(?) — px-1(2)| is sufficiently small for all ¢, indicating that further differences will

not improve the approximation, or until the desired number of moments has been matched.

In implementing this algorithm, there are two sources of numerical instability. One involves the
choice of 6; we recommend taking 6 equal to the true mean v in order to keep each moment as small
as possible. A more serious problem involves the differences themselves: each difference involves the
subtraction of neighbouring lower-order differences, which may well be approximately equal. If this is
so, several significant digits will be lost. For this reason, we recommend calculating the differences with
extra precision. In fact, even with double precision, this cancellation of significant digits may prevent
improvement of accuracy beyond a certain point. The theoretical convergence of the approximating
probabilities to the true probabilities may not, for this reason, carry over into computational convergence,

although an approximation based on a large number of moments can still be extremely accurate.

4 Approximations using the Pearson family of distributions

An effective technique for approximating sums of continuous random variables is to find the first four
moments of the sum, and then to fit a Pearson curve. In some circumstances this has been shown to
give good results also even for discrete distributions (see Stephens, 1965). Suppose S* is a continuous

random variable with a distribution in the Pearson family, and suppose S* and S have the same first four




moments or cumnulants. Then P(S < s), where s is an integer, is approximated by P(S* < s + 0.5), and
the latter can be calculated using programs to fit Pearson curves.

In order to try this approximation, we need the first four cumulants of S. For a biromial random
variable with index n and probability p, the first four cumulants are x, = np, k2 = npq, k3 = npg(q — p)

and x4 = npq(1 — 6pq), where ¢ =1 — p. The cumulants of S are therefore:

Ky PRI ) 7
Ky = Linipi(l—p)
k3 = i nipi(l —pi)(1 - 2p)

kg = Tiognipi(l —pi){1 —6pi(1 — pi)}

;From the cumulants, the values of the skewness parameter \/B; = x3/ ng/ ? and the kurtosis parameter
B2 = K4/K3 are found, and these are used to fit a Pearson curve (see, e. g., Solomon and Stephens, 1977,
Stephens, 1992) with these parameters, and hence to find P(S* < s+0.5) for the desired (integral) values

of s.

5 Examples

We present several examples to illustrate the accuracy of the approximations. For comparison, we also
compute approximations using the normal distribution (with continuity correction), matching the first two
moments, and the Poisson distribution, matching the mean of S. The Kolmogorov-type approximations
are started with a binomial with n = 3_7_, n; and p chosen so that the means of S and the approximating
dist' ibution are equal. From work of Hoeffding (1956), referred to and extended by Barlow and Proschan
(1983), this choice of initial approximation will produce cumulative probabilities Fs(s) that are too large
when s < E(S) and too small when s > E(S). The examples have small p;, and so the distribution of S
will have a long right-hand tail; we have concentrated on this long tail in assessing the approximations.

In the tables, we have shown the results of the Kolmogorov-type approximations obtained using four
and six moments, denoted by K (4) and K (6) respectively. K (0) denotes the initial approximation
used in each case. The last row of each table shows the maximum absolute error committed by each

approximation over the values given in the table.




True

P(S < s)

[/

Approximate P(S < s)

K (0)

K (4) K (6) Pearson Poisson

Normal

0.551513
0.813946
0.941627
0.985710
0.997203
0.999554
0.999941

- O E W N =

0.552660
0.812895
0.940243
0.984951
0.996936
0.999486
0.999928

0.551284 0.551514 0.553052 0.557825
0.814174 0.813945 0.808411 0.808847
0.941594 0.941628 0.936561 0.934358
0.985665 0.985709 0.983959 0.981424
0.997203 0.997203 0.997033 0.995544
0.999560 0.999554 0.999630 0.999074
0.999943 0.999941 0.999973 0.999830

0.500000
0.801834
0.955093
0.994529
0.999654
0.999989
1.000000

Max. error

0.001384

0.000229 0.000001 0.005535 0.007269

0.051513

Table 2: Exact and approximate probabilities for Example 1.

5.1 Example 1l

Here, S is the sum of five binomials with small values of p. The values of n and p for each X; are:

The mean of S is 1.5, and the variance is 1.39. As a result, we would expect the normal distribution to
give a poor approximation. The initial approximation is here a binomial with n = 25 and p = 0.06.

The actual and approximate cumulative probabilities for the upper tail are shown in Table ??.

In this example, the Kolmogorov-type approximations are clearly superior, with the four-moment
approximation giving almost four accurate decimals and the six-moment almost six. The Pearson family
distribution gives a serviceable two or three accurate decimals, while the Poisson and normal fail to assume .
the correct form in the extreme tail. The Kolmogorov and Pearson procedures, based on matching at
least four moments, capture the tail behaviour of S very well. The Pearson distribution performs very °

creditably, considering that it is a continuous distribution applied to a discrete distribution with a small

number of values.

pi
002
0.04
0.06
0.08

0.10

Immo‘mmlg




Tue Approximate P(S < s)
s| P(§<s) K (0) K (4) K (6) Pearson Poisson Normal
] 275 0.516777 | 0.516451 0.516712 0.516772 0.516772 0.512027 0.515644
283 0.748050 | 0.740862 0.748010 0.748048 0.747995 0.695874 0.747548
. 291 | 0.901928 | 0.894073 0.901959 0.901931 0.901869 0.840129 0.902231
296 0.953696 | 0.947807 0.953738 0.953699 0.953654 0.902598 0.954160
300 0.976850 | 0.972808 0.976881 0.976851 0.976821 0.937940 0.977271
305 0.991358 | 0.989215 0.991368 0.991357 0.991343 0.967059 0.991636
311 0.997782 | 0.996982 0.997776 0.997781 0.997775 0.986133 0.997904
315 | 0.999197 | 0.998832 0.999189 0.999196 0.999193 0.992702 0.999256
320 0.999801 | 0.999682 0.999795 0.999801 0.999798 0.99¢463 0.999821
326 | 0.999969 | 0.999944 0.999966 0.999969 0.999966 0.999050 0.999973
Max. error | 0.007855 0.000065 0.000003 0.000059 0.061799 0.001133

Table 3: Exact and approximate probabilities for Example 2.

5.2 Example 2

Once again, S is the sum of five binomials, but with larger values of n; and p,:

With these larger values of n and p, we would expect the approximations based on continuous distri-

butions (normal and Pearson family) to perform well. This time, we start the Kolmogorov-type approx-

Table ??.

For this example, we notice that the six-moment Kolmogorov approximation is the best, but the
Pearson family approximation is just as good as the four-moment Kolmogorov approximation. The
Poisson approximation is very poor, as we might expect from these larger values of p, while the normal

approximation provides almost three-figure accuracy, which is not as good as the other approximations.

ni | Pi
50 |01
100 | 0.2
150 1 0.3
200104

250 | 0.5

9

imations using a binomial with n = 750 and p = 0.3. The results for selected values of s are shown in




5.3 Example 3

In this example, we take larger values of n and smaller values of p:

On this occasion, we would expect the simple Poisson approximation to work well, since the p; are

so small and the n, are quite large. Starting the Kolmogorov approximation with a binomial having

n; pPi
100 | 0.010

100 | 0.015
100 | 0.020
100 { 0.025
100 | 0.030

n = 500, p = 0.02, we obtain tie results of Table ??.

In this example, the Poisson approximation is, surprisingly, not even as good as the Pearson approx-
imation, while the Kolmogorov approximation using four moments is correct to the six decimals given.

The normal approximation is ineffective because of the considerable skewness in the distribution of S.

10

True Approximate P(S < 3)
s| P(S<s) K (0) K (4) K (6) Pearson Poisson Normal
10 0.583047 | 0.583044 0.583047 0.583047 0.582846 0.583040 0.563529
12 0.793728 | 0.793482 0.793728 0.79.728 0.792788 0.791556 0.788033
14 0.918908 | 0.918643 0.918908 0.918908 0.918030 0.916542 0.924968
15 0.953221 | 0.953003 0.953221 0.953221 0.952557 0.951260 0.960275
16 0.974420 | 0.974259 0.974420 0.974420 0.973981 0.972958 0.981192
17 u.986718 | 0.986609 0.986718 0.986718 0.986462 0.985722 0.991777
19 0.996913 | 0.996874 0.996913 0.996913 0.996856 0.996546 0.998811
21 0.999405 | 0.999394 0.999405 0.999405 0.999400 0.999300 0.999883
23 0.999904 | 0.999901 0.999904 0.999904 0.999904 0.999880 0.999992
25 0.999987 | 0.999986 0.999987 0.999987 0.999585 0.999982 1.000000
Max. error | 0.000265 < 10~ < 10-¢ 0.000940 0.002360 0.019518
Table 4: Exact and approximate probabilities for Example 3.




5.4 Example 4

True Approximate P(S < s)
s| P(§S<59) K (0) K (4) K (6) Pearson Poisson Normal
5 0.615961 | 0.615961 0.615961 0.615961 0.615463 0615961 0.588668
6 0.762519 | 0.762428 0.762519 0.762519 0.760952 0.762183 0.749322
7 0.867107 | 0.866977 0.867107 0.867107 0.865215 0.866628 0.868770
8 0.932354 | 0.932233 0.932354 0.932354 0.930799 0.931906 0.941657
9 0.968503 | 0.968414 0.968503 0.968503 0.967529 0.968172 0.978156
10 0.986511 | 0.986456 0.986511 0.986511 0.986034 0.986305 0.993155
11 0.994659 | 0.994629 0.994659 0.994659 0.994484 0.994547 0.998213
12 0.998036 | 0.998021 0.998036 0.998036 0.997996 0.997981 0.999613
13 0.999326 | 0.999319 0.999326 0.999326 0.999330 0.999302 0.999931
14 0.999783 | 0.999781 0.999783 0.999783 0.999794 0.999774 0.999990
15 0.999935 | 0.999934 0.999935 0.999935 0.999942 0.999931 0.999999
16 0.999981 | 0.999981 0.999981 0.999981 0.999986 0.999980 1.000000
Max. error | 0.000130 <10 <107 0.001892 0.000479 0.027923
Table 5: Exact and approximate probabilities for Example 4.

For our final example, we take still larger values of n; and still smaller values of p;:

We would expect this S to behave like a Poisson random variable with mean 5, since the distribution

of each X; is very close to Poisson with mean 1. We start the Kolmogorov approximations with a binomial

n; Pi
500 | 0.0020
400 | 0.0025
300 | 0.0033
200 | 0.0050
100 { 0.0100

distribution which has n = 1500 and p = ﬁ and obtain the results shown in Table 77.

For these n; and p;, the Poisson approximation does outperform the Pearson curve, although not by a

wide margin. Once again, the Kolmogorov approximations are superior, achieving six-decimal accuracy

with only four moments.
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6 Conclusions

It is clear that, although the normal approximation is generally accepted for large n; and the Poisson
approximation for small p;, greater accuracy can be obtained from the Kolmogorov and Pearson curve °*
approximations. Though the two latter techniques performed well throughout this study, the Pearson
curve approximation was most effective when the n; were large, while the Kolmogorov technique was
most effective when the p; were small. The Pearson curve approximation is easier to use, since the
Kolmogorov technique requires an iterative procedure with highly accurate intermediate computation,

but once suitable programs are available, both methods are very straightforward to apply.
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