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The distribution of a sum of binomial random variables

Ken Butler Michael Stephens

Abstract

In this paper we examine the distribution of a sum S of binomial random variables, each with different

success probabilities. The distribution arises in reliability analysis and in survival analysis. An

algorithm is given to calculate the exact distribution of S, and several approximations are examined.

An approximation based on a method of Kolmogorov, and another based on fitting a distribution

from the Pearson family, can be recommended.

KEY WORDS: Kolmogorov-type approximation; Pearson distributions; reliability; survival anal-

ysis.

1 Introduction

The classical binomial distribution requires a set of independent trials in which the probability of success

is constant. However, one may be faced with a situation in which the success probabilities differ. For

example, in a common situation in reliability analysis (see Boland and Proschan, 1983) there may be

n individual components, each of which has a different probability of functioning correctly, and the

probability of observing k or more functioning components must be found in order to determine the

overall reliability of the system. Similarly, with survival data, the individual subjects may suffer differingj

influences on their survival probabilities, but the quantity of interest may be an overall survival rate at

a particular time.

Let X 1 , X2,... , X, be binomially distributed random variables, with Xi having index ni and prob-

ability pi. In the type of problem discussed above, we are interested in the distribution of the sum
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There exist several approximations for a single binomial distribution; these are described in Johnson

and Kotz (1969), and some numerical comparisons are provided by Gebhardt (1969). One approximation,

due to Bol'shev (1963), exhibits remarkable accuracy, but does not appear to generalize to the distribution

of a sum S of binomial random variables. For S, Boland and Proschan (1983) give bounds for the

cumulative probabilities, in terms of cumulative probabilities of other sums of binomial random variables

which have the same mean as S.

In this paper, we provide a method for the exact calculation of the distribution of S, and we examine

several approximations to the distribution. These include the well-known normal and Poisson approxi-

mations suitable for large ni and/or small pi. These have limited accuracy, and two other approximations

are considered; one is based on Kolmogorov's refinement of the Poisson approximation to the binomial,

while the other involves fitting a suitably chosen distribution from the (continuous) Pearson family.

We compare the above approximations for several sets of ni and pi. The Kolmogorov-type approxima-

tion performs well in all cases, while the Pearson-family approximation is particularly effective when S can

take a large number of values. The normal and Poisson approximations perform poorly in comparison.

2 Exact calculation

With modern computing facilities, it is possible to calculate the exact distribution of S. The calculation

depends on the observation that for any two discrete random variables Y and Z taking values 0, 1,2,...,

j

P(Y + Z = j) = P(Y = i). P(Z= j - i). (1)
i=O

This suggests that we may calculate the distribution of S by finding the distribution of X, + X2 , and

then adding the remaining Xi one at a time. Corresponding to (??), Y is the sum of those Xi currently

added, while Z is the next Xi to be added.

The binomial distribution has a recurrence relation which is useful in the automatic calculation of its

probabilities. If X denotes a binomial random variable with index n and probability p, then

P(X=0) = (l-p)f } (2)

P(X=j) = {(n-j+l)/j}.{p/(1-p)}.P(X=j-1) ifj>_I

Use of (??) requires less computation than would the evaluaticn of each probability directly.

We are thus led to the following algorithm for the direct calculation of the distribution of S:

2



1. Calculate the distributions of X, and X 2 using (??).

2. Let Y = X, and Z = X2, and use (??) to find P(Y + Z = j) for all j. Let U = Y + Z.

3. For k= 3,4,..., r:

(a) Calculate the distribution of Xk using (??).

(b) Let Y = U and Z = Xk, and use (??) to find P(Y + Z = j) for all j.

(c) Let U=Y+Z.

4. The distribution of S is then that of the U calculated in step 3(c) when k = r.

It is of interest to count the number of arithmetic operations required by this algorithm. Suppose

m is the maximum value of S for which P(S = m) is non-trivial (for example, m might be such that

P(S = j) < 10-8 if j > m). Then we assume that each probability distribution is calculated for

j = 0,1, ... ,IM.

Formula (??) requires j + 1 multiplications and j + 1 additions for each j, and hence E= 0 (j + 1) =

'(m + 1)(m + 2) of each operation altogether.

Formula (??) requires an exponentiation to start, then three additions and three multiplications for

each use of the recurrence relation, making 3m of each altogether.

In the algorithm, (??) is used r - 1 times, and (??) is used r times. Consequently, the algorithm

requires 1(r - 1)(m + 1)(m + 2) + 3rm additions and multiplications, and r exponentiations. Since m is

likely to be the largest of these quantities, we see that the operation count is of the order of m2 . We also

note that storage will be required for three arrays of length m.

3 Kolmogorov-type approximations

Johnson and Kotz (1969) and Dunin-Barkovsky and Smirnov (1955) describe an approximation for a

single binomial distribution, due to Kolmogorov, based on probabilities and (backward) differences of

probabilities from the Poisson distribution. Multiples of the differences are taken so as to match the

moments of the true and approximating distributions. The idea is quite general, allowing any discrete

distribution to be approximated by any other more easily calculated distribution. The only requirement

is that the momcnts v• of the true distribution can be found, at least up to some order r.
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Let p(i) denote the true P(S = i), and let pk(i) denote the approximation to this probability based on

differences up to order k. The probability p0 (i) is then taken to be the approximation to P(S = i) taken

directly from the approximating distribution. The k-th backward difference at i is denoted V(k)po(i) and

is

V(k)po(i) = V(k-))po(i) - V(k-1)po(i- 1), (3)

where po(i) = 0 for i < 0 and V(°)p0(i) = po(i).

The approximating distribution is improved by adding to it a linear combination of ;ts backward

differences, up to some order k:
k

pk(i) = p0(i) + E ajV(')po(i), (4)
j=1

where the coefficients aj are chosen to match the first k moments of the true and approximate distribu-

tions. The l-th moment of the k-th order approximation, about some value 0, is

k

11k = yto + E_ ajetj, (5)
j=l

where
00

e = ,(i - 0)1V(J)po(i).
i=0

Note that plo denotes the l-th moment of the original approximating distribution p0 (i).

After some algebra, we find that

ei= CJiPi-i'o, (6)
i=j

where cij, = (()(-1)j j! Sj), and S!j) is the Stirling number of the second kind (see Abramowitz and

Stegun, 1970, p. 824). As a result, the cjij can be evaluated by using a table such as that of Abramowitz

and Stegun (1970, p. 835). For convenience, we provide a table of the ctjj for 1 < 6 in Table 1. Note that

-qJ) = 0 for i < j, which reduces the range of summation required for etj, and gives ejj = 0 if 1 < j.

Therefore P11k can be written
k 1

AM = Pl1 + 1 ai E jii/1...io (7)
j=1 i=j

In practice, it is convenient to match the moments of the true and approximating distributions se-

quentially, starting with the mean. Since ebi = 0 if I < j, any multiple of the k-th differences can be

added to Pk-](i) without changing the moments of order 1,2,..., k - 1. As a result, the coefficients

al, a2,..., ak- do not change; one simply chooses ak to ensure that Itkk = Vk.

The algorithm for computing the Kolmogorov-type approximations follows:
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Iji cl i ji cijI ji ctli

1 1 1 -1 5 1 1 -5 6 1 1 -6

2 1 1 -2 5 1 2 -10 6 1 2 -15

2 1 2 -1 5 1 3 -10 6 I 3 -20

2 2 2 2 5 1 4 -5 6 1 4 -15

3 1 1 -3 5 1 5 -1 6 1 5 -6

3 1 2 -3 5 2 2 20 6 1 6 -1

3 1 3 -1 5 2 3 60 6 2 2 30

3 2 2 6 5 2 4 70 6 2 3 120

3 2 3 6 5 2 5 30 6 2 4 210

3 3 3 -6 5 3 3 -60 6 2 5 180

4 1 1 -4 5 3 4 -180 6 2 6 62

4 1 2 -6 5 3 5 -150 6 3 3 -120

4 1 3 -4 5 4 4 120 6 3 4 -540

4 1 4 -1 5 4 5 240 6 3 5 -900

4 2 2 12 5 5 5 -120 6 3 6 -540

4 2 3 24 6 4 4 360

4 2 4 14 6 4 5 1440

4 3 3 -24 6 4 6 1560

4 3 4 -36 6 5 5 -720

4 4 4 24 6 5 6 -1800

6 6 6 720

Table 1: Coefficients ciii

5



1. Calculate the probabilities of the initial approximating distribution p0 (i) for all i.

2. Fork= 1,2,...

(a) Find the k-th moment vk of the true distribution about some value 0 (which could be, for

example, 0 or the true mean v).

(b) Find the k-th differences V(k)po(i) for all i using (??).

(c) Calculate Pk,k-1 from (??). This is the k-th moment about 0 of the current approximating

distribution (which has probabilities pk-1 (i)).

(d) Let ak = (-1)k(vk -- Ik,k-1)/k!.

(e) Then calculate pk(i) = pk-i(i) + akV (k)po(i), for all i, which forms the "improved" approxi-

mation to the true distribution.

3. Continue until Ipk(i) - Pk-1(i)l is sufficiently small for all i, indicating that further differences will

not improve the approximation, or until the desired number of moments has been matched.

In implementing this algorithm, there are two sources of numerical instability. One involves the

choice of 0; we recommend taking 0 equal to the true mean v in order to keep each moment as small

as possible. A more serious problem involves the differences themselves: each difference involves the

subtraction of neighbouring lower-order differences, which may well be approximately equal. If this is

so, several significant digits will be lost. For this reason, we recommend calculating the differences with

extra precision. In fact, even with double precision, this cancellation of significant digits may prevent

improvement of accuracy beyond a certain point. The theoretical convergence of the approximating

probabilities to the true probabilities may not, for this reason, carry over into computational convergence,

although an approximation based on a large number of moments can still be extremely accurate.

4 Approximations using the Pearson family of distributions

An effective technique for approximating sums of continuous random variables is to find the first four

moments of the sum, and then to fit a Pearson curve. In some circumstances this has been shown to

give good results also even for discrete distributions (see Stephens, 1965). Suppose S° is a continuous

random variable with a distribution in the Pearson family, and suppose S* and S have the same first four

6



moments or cumulants. Then P(S < s), where s is an integer, is approximated by P(S* < s + 0.5), and

the latter can be calculated using programs to fit Pearson curves.

In order to try this approximation, we need the first four cumulants of S. For a biromial random

variable with index n and probability p, the first four cumulants are ic1 = np, X 2 = npq, x3 = npq(q - p)

and X 4 = npq(1 - 6pq), where q = 1 - p. The cumulants of S are therefore:

K2 = np(- p,)

K3 = nipi(1 - pi)(1 - 2pi)

K4 = nipi(1 - pi){1 - 6pi(1 - pi)}

LFrom the cumulants, the values of the skewness parameter V71 = K3 /IC3/2 and the kurtosis parameter

32 = IC4 /K2 are found, and these are used to fit a Pearson curve (see, e. g., Solomon and Stephens, 1977,

Stephens, 1992) with these parameters, and hence to find P(S" < s + 0.5) for the desired (integral) values

of S.

5 Examples

We present several examples to illustrate the accuracy of the approximations. For comparison, we also

compute approximations using the normal distribution (with continuity correction), matching the first two

moments, and the Poisson distribution, matching the mean of S. The Kolmogorov-type approximations

are started with a binomial with n = E,7=1 ni and p chosen so that the means of S and the approximating

dist ibution are equal. From work of Hoeffding (1956), referred to and extended by Barlow and Proschan

(1983), this choice of initial approximation will produce cumulative probabilities Fs(s) that are too large

when s < E(S) and too small when s > E(S). The examples have small pi, and so the distribution of S

will have a long right-hand tail; we have concentrated on this long tail in assessing the approximations.

In the tables, we have shown the results of the Kolmogorov-type approximations obtained using four

and six moments, denoted by K (4) and K (6) respectively. K (0) denotes the initial approximation

used in each case. The last row of each table shows the maximum absolute error committed by edch

approximation over the values given in the table.
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True Approximate P(S < s)

a P(S < S) K (0) K (4) K (6) Pearson Poisson Normal

1 0.551513 0.552660 0.551284 0.551514 0.553052 0.557825 0.500000

2 0.813946 0.812895 0.814174 0.813945 0.808411 0.808847 0.801834

3 0.941627 0.940243 0.941594 0.941628 0.936561 0.934358 0.955093

4 0.985710 0.984951 0.985665 0.985709 0.983959 0.981424 0.994529

5 0.997203 0.996936 0.997203 0.997203 0.997033 0.995544 0.999654

6 0.999554 0.999486 0.999560 0.999554 0.999630 0.999074 0.999989

7 0.999941 0.999928 0.999943 0.999941 0.999973 0.999830 1.000000

Max. error 0.001384 0.000229 0.000001 0.005535 0.007269 0.051513

Table 2: Exact and approximate probabilities for Example 1.

5.1 Example 1

Here, S is the sum of five binomials with small values of p. The values of n and p for each Xi are:

ni Pi

5 0.02

5 0.04

5 0.06

5 0.08

5 0.10

The mean of S is 1.5, and the variance is 1.39. As a result, we would expect the normal distribution to

give a poor approximation. The initial approximation is here a binomial with n = 25 and p = 0.06.

The actual and approximate cumulative probabilities for the upper tail are shown in Table ??.

In this example, the Kolmogorov-type approximations are clearly superior, with the four-moment

approximation giving almost four accurate decimals and the six-moment almost six. The Pearson family

distribution gives a serviceable two or three accurate decimals, while the Poisson and normal fail to assume

the correct form in the extreme tail. The Kolmogorov and Pearson procedures, based on matching at

least four moments, capture the tail behaviour of S very well. The Pearson distribution performs very

creditably, considering that it is a continuous distribution applied to a discrete distribution with a small

number of values.
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,"rue Approximate P(S < a)

S P(S <_ a) K (0) K (4) K (6) Pearson Poisson Normal

275 0.516777 0.516451 0.516712 0.516772 0.516772 0.512027 0.515644

283 0.748050 0.740862 0.748010 0.748048 0.747995 0.695874 0.747548

291 0.901928 0.894073 0.901959 0.901931 0.901869 0.840129 0.902231

296 0.953696 0.947807 0.953738 0.953699 0.953654 0.902598 0.954160

300 0.976850 0.972808 0.976881 0.976851 0.976821 0.937940 0.977271

305 0.991358 0.989215 0.991368 0.991357 0.991343 0.967059 0.991636

311 0.997782 0.996982 0.997776 0.997781 0.997775 0.986133 0.997904

315 0.999197 0.998832 0.999189 0.999196 0.999193 0.992702 0.999256

320 0.999801 0.999682 0.999795 0.999801 0.999798 0.996"63 0.999821

326 0.999969 0.999944 0.999966 0.999969 0.999966 0.999050 0.999973

Max. error 0.007855 0.000065 0.000003 0.000059 0.061799 0.001133

Table 3: Exact and approximate probabilities for Example 2.

5.2 Example 2

Once again, S is the sum of five binomials, but with larger values of ni and p,:

ni PA

50 0.1

100 0.2

150 0.3

200 0.4

250 0.5

With these larger values of n and p, we would expect the approximations based on continuous distri-

butions (normal and Pearson family) to perform well. This time, we start the Kolmogorov-type approx-

imations using a binomial with n = 750 and p = 0.3. The results for selected values of s are shown in

Table ??.

For this example, we notice that the six-moment Kolmogorov approximation is the best, but the

Pearson family approximation is just as good as the four-moment Kolmogorov approximation. The

Poisson approximation is very poor, as we might expect from these larger values of p, while the normal

approximation provides almost three-figure accuracy, which is not as good as the other approximations.
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True Approximate P(S < s)

8 P(S < s) K (0) K (4) K (6) Pearson Poisson Normal

10 0.583047 0.583044 0.583047 0.583047 0.582846 0.583040 0.563529

12 0.793728 0.793482 0.793728 0.79Z"28 0.792788 0.791556 0.788033

14 0.918908 0.918643 0.918908 0.918908 0.918030 0.916542 0.924968

15 0.953221 0.953003 0.953221 0.953221 0.952557 0.951260 0.960275

16 0.974420 0.974259 0.974420 0.974420 0.973981 0.972958 0.981192

17 u.986718 0.986609 0.986718 0.986718 0.986462 0.985722 0.991777

19 0.996913 0.996874 0.996913 0.996913 0.996856 0.996546 0.998811

21 0.999405 0.999394 0.999405 0.999405 0.999400 0.999300 0.999883

23 0.999904 0.999901 0.999904 0.999904 0.999904 0.999880 0.999992

25 0.999987 0.999986 0.999987 0.999987 0.999)85 0.999982 1.000000

Max. error 0.000265 < 10-6 < 10-6 0.000940 0.002360 0.019518

Table 4: Exact and approximate probabilities for Example 3.

5.3 Example 3

In this example, we take larger values of n and smaller values of p:

ni Pi

100 0.010

100 0.015

100 0.020

100 0.025

100 0.030

On this occasion, we would expect the simple Poisson approximation to work well, since the pi are

so small and the n, are quite large. Starting the Kolmogorov approximation with a binomial having

n = 500, p = 0.02, we obtain the results of Table ??.

In this example, the Poisson approximation is, surprisingly, not even as good as the Pearson approx-

imation, while the Kolmogorov approximation using four moments is correct to the six decimals given.

The normal approximation is ineffective because of the considerable skewness in the distribution of S.
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True Approximate P(S < s)

s P(S < s) K (0) K (4) K (6) Pearson Poisson Normal

5 0.615961 0.615961 0.615961 0.615961 0.615463 49 615961 0.588668

6 0.762519 0.762428 0.762519 0.762519 0.760952 0.762183 0.749322

7 0.867107 0.866977 0.867107 0.867107 0.865215 0.866628 0.868770

8 0.932354 0.932233 0.932354 0.932354 0.930799 0.931906 0.941657

9 0.968503 0.968414 0.968503 0.968503 0.967529 0.968172 0.978156

10 0.986511 0.986456 0.986511 0.986511 0.986034 0.986305 0.993155

11 0.994659 0.994629 0.994659 0.994659 0.994484 0.994547 0.998213

12 0.998036 0.998021 0.998036 0.998036 0.997996 0.997981 0.999613

13 0.999326 0.999319 0.999326 0.999326 0.999330 0.999302 0.999931

14 0.999783 0.999781 0.999783 0.999783 0.999794 0.999774 0.999990

15 0.999935 0.999934 0.999935 0.999935 0.999942 0.999931 0.999999

16 0.999981 0.999981 0.999981 0.999981 0.999986 0.999980 1.000000

Max. error 0.000130 < 10-6 < 10-6 0.001892 0.000479 0.027923

Table 5: Exact and approximate probabilities for Example 4.

5.4 Example 4

For our final example, we take still larger values of ni and still smaller values of pi:

ni Pi

500 0.0020

400 0.0025

300 0.0033

200 0.0050

100 0.0100

We would expect this S to behave like a Poisson random variable with mean 5, since the distribution

of each Xi is very close to Poisson with mean 1. We start the Kolmogorov approximations with a binomial

distribution which has n = 1500 and p = --L and obtain the results shown in Table ??.

For these ni and pi, the Poisson approximation does outperform the Pearson curve, although not by a

wide margin. Once again, the Kolmogorov approximations are superior, achieving six-decimal accuracy

with only four moments.

11



6 Conclusions

It is clear that, although the normal approximation is generally accepted for large ni and the Poisson

approximation for small pi, greater accuracy can be obtained from the Kolmogorov and Pearson curve

approximations. Though the two latter techniques performed well throughout this study, the Pearson

curve approximation was most effective when the ni were large, while the Kolmogorov technique was

most effective when the pi were small. The Pearson curve approximation is easier to use, since the

Kolmogorov technique requires an iterative procedure with highly accurate intermediate computation,

but once suitable programs are available, both methods are very straightforward to apply.
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