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Abstract

This paper studies the problem of obtaining depth information from focusing and
defocusing, which have long been noticed as important sources of depth information
for human and machine vision. In depth from focusing, we try to eliminate the local
maxima problem which is the main source of inaccuracy in focusing; in depth from
defocusing, a new computational model is proposed to achieve higher accuracy.

The major contributions of this paper are: (1) In depth from focusing, instead of
the popular Fibonacci search which is often trapped in local maxima, we propose the
combination of Fibonacci search and curve fitting, which leads to an unprecedent-

edly accurate result; (2) New model of the blurring effect which takes the geometric -

blurring as well as the imaging blurring into consideration, and the calibration of
the blurring model; (3) In spectrogram-based depth from defocusing, an iterative
estimation method is proposed to decrease or eliminate the window effect.

This paper reports focus ranging with less than 1/1000 error and the defocus
ranging with about 1/200 error. With this precision, depth from focus ranging is
becoming competitive with stereo vision for reconstructing 3D depth information.




1 Introduction

Obtaining depth information by actively controlling camera parameters is becoming
more and more important in machine vision, because it is passive and monocular.
Compared with the popular stereo method for depth recovery, this focus method
doesn’t have the correspondence problem, therefore it is a valuable method as an
atiernative of the stereo method for depth recovery.

There are two distinct scenarios for using focus information for depth recovery:

e Depth From Focus: We try to determine distance to one point by taking many
images in better and better focus. Also called “autofocus” or “software focus”.
Best reported result is 1/200 depth error at about 1 meter distance [14].

e Depth From Defocus: By taking small number of images under different lens
parameters, we can determine depth at all points in the scene. This is a possible
range image sensor, competing with laser range scanner or stereo vision. Best
reported result is 1.3% RMS error in terms of distance from the camera when
the target is about 0.9 m away [6].

Both methods have been limited in past by low precision hardware and imprecise
mathematical models. In this paper, we will improve both:

e Depth From Focus: We propose a stronger search algorithm with its implemen-
tation on a high precision camera motor system.

e Depth From Defocus: We propose a new estimation method and a more realistic
calibration model for the blurring effect.

With this new results, focus is becoming viable as technique for machine vision ap-
plications such as terrain mapping and object recognition.

2 Depth From Focusing

2.1 Introduction

Focusing has long been considered as one of major depth sources for human and
machine vision. In this section, we will concentrate on the precision problem of
focusing. we will approach high precision from both software and hardware directions,
namely, stronger algorithms and more precise camera system.

Most previous research on depth from focusing concentrated on developments and
evaluations of different focus measures, such as [17, 7, 9, 15]. Among them, [15] pro-
vided a theory for evaluating various focus measures based on OTF(Optical Transfer
Function) instead of experimental evaluations which could be biased by specific scenes
used for experiments. As described by all these researchers, an ideal focus measure
should be unimodal, monotonic, and should reach the maximum only when the im-
age is focused. But as pointed out in [18, 15], the focus measure profile has many
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local maxima due to noises and/or the side-lobe effect ([15]) even after magnification
compensation ([18]). This essentially requires a more complicated peak detection
method compared with the Fibonacci search which is optimal under the unimodal
assumption as in [1, 7). In this paper, we use a recognized focus measure from the
literature, which is the Tenengrad with zero threshold in [7] or M, method in [15].
Our major concern is to discover to what extent the precision of focus ranging can
scale up with more precise camera systems and more sophisticated search algorithms.
We knew the popular Fibonacci search method would not be enough when we learned
that being trapped in local maxima is the major cause of focusing error. Instead, We
propose the combination of Fibonacci search and curve fitting to detect the peak of
focus measure profile precisely and quickly.

To evaluate the results from peak detections, an error analysis method is presented
to analyze the uncertainty of the peak detection in the motor count space, and to
convert the uncertainty in the motor count space into uncertainty in depth. We
compute the variance of motor positions resulted from peak detections over equal
depth targets. The Rayleigh criterion of resolution is applied to the distribution of
motor positions to calculate the minimal differentiable motor displacement. With
the assumption of local linearity of the mapping from the motor count space to focus
depth, the minimal differentiable motor displacement is converted to the minimal
differentiable depth.

The lack of high precision equipment has been a limiting factor to previous imple-
mentations of various focus ranging methods. Many implemented systems, such as
SPARCS, have fairly low motor resolution, which actually prohibits more precise re-
sults. We will give brief description of the motor-driven camera system in Calibrated
Imaging Lab later, and further details can be found in [19].

2.2 Fibonacci Search and Curve Fitting

When the focus motor resolution is high, we usually have a very large parameter
space which prevents us from exhaustively searching all motor positions. Based on
the unimodal assumption of focus measure profile, Fibonacci search was employed to
narrow the parameter space down to the peak [1].

Assume the initial interval is [z,y], and we know the focus measure profile is
unimodal in this interval, if ¢ < z; < 22 < y and F(z;) < F(z;), where F is the
focus measure function, then the peak can not be within interval [z, z;), otherwise the
unimodal assumption will be violated. Therefore, if we can properly choose z, and
x5, the peak can be found optimally. Fibonacci search is the optimal search under
the unimodal assumption.

Figure 1 shows the target used for testing the focus measure, and Figure 2 is the
focus measure profile of the target.

It is clear from Figure 2 that Fibonacci search will fail to detect the peak precisely
because of the jagged profile. Fortunately, those local maxima are small in size, and
therefore can be regarded as disturbances. From previous paragraphs, we know that
the Fibonacci search only evaluates at two points within the interval, which gives

2




Figure 1: Step Edge Image as Target

rise to the hope that when the interval is large, Fibonacci search is still applicable
because it will overlook those small ripples.

As the search goes on, the interval becomes smaller and smaller. Consequently,
Fibonacci search must be aborted at some point when the search might be misleading.
We can experimentally set up a threshold, when the length of the interval is less
than the threshold, Fibonacci search is replaced by an exhaustive search. After the
exhaustive search, a curve is fitted to the part of profile resulting from the exhaustive
search.

In our experiments, we set the threshold to be 5 motor counts. So when the
Fibonacci search narrows down the whole motor space to [a,b], where b —a < 5, an
exhaustive search is fired on the interval [a — ¢, b+ ¢|, where c is a positive constant.
A Gaussian function is fitted to the profile in the interval [a — ¢, b + ¢] using the least
square method described in [11].

Figure 3 shows the result when Fibonacci search alone is applied to the focus
measure profile. Apparently, the search is trapped in a local maximum. Figure 4
shows the result from Gaussian function fitting. Both graphs show only a part of the
whole motor space.

2.3 Error Analysis

The depth error from focus ranging generally results from two sources: error in peak
detection and error in mapping from camera parameters to range. Here, we are
primarily concerned with the error in peak detection, because in our experiments, the
repeatability and accuracy of the camera motor system is so high that the error of
the mapping calibration can be regarded as negligible compared with the error from
the peak detection.

The major sources of error in peak detection are:

e Image Noise: Since the focus criterion is essentially a gradient operator, high

3
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Figure 2: Focus Measure Profile

frequency noise may cause a problem. In our experiments, this is the major
limiting factor.

o Image Shift: Focusing involves changes of camera parameters, which, in turn,
may cause image misregistrations. There are two major kinds of image misreg-
istrations: one is the magnification change due to different effective focal length,
the other one is the image shift caused by the imperfection of the optical system,
for example, if the axes of lenses are not exactly collinear, changing camera pa-
rameters may not only cause a magnification change of the image, but also will
shift the whole image to the extent of several pixels [18].

o Search Strategy: As explained earlier, naive sear~h might be trapped in local
maxima.

o Content of Image: Since the focus measure is essentially a high-pass filter, it re-
quires that the content within the evaluation window have enough high frequency
components. In the extreme case, a uniform intensity pattern will provide no
information about depth at all. Quantitatively, more high frequency components
mean a sharper peak in Figure 2, and therefore, more precise peak detection.

As explained earlier, we are concerned about the error from searching, so other
sources of error should be identified and minimized. Image magnification changes can
be compensated by camera calibration as suggested in [4, 18]. To tolerate the image
shift caused by optic system, we used a fairly large window 40x40. Because we use
a target as in Figure 1, the image magnification change and the image shift can be
ignored if the edge is in the middle of the window. Therefore, in our experiments,
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we didn’t use the magnification compensation. And the content of image certainly
includes enough high frequency components.

Because of the depth accuracy we expected, a direct measurement of absolute
depth is impossible. Instead, we prefer to use the minimal differentiable depth as an
indication of depth accuracy. If we assume the peak motor positions resulting from the
same repeated experiments have a Gaussian distribution, we can define the minimal
differentiable motor displacement as the minimal difference of two motor counts which
have pre-defined probability of representing different peaks. For example, in Figure 5,
the Gaussian distribution is artificially cut at 90% line, so we can say, if we do one
focus ranging experiment on a target at the depth corresponding to the peak a, there
is a 90% of probability the motor count will be within the interval A.

There can be different pre-defined probability for the definition of minimal differ-
entiable motor displacement. Table 1 is a list of probabilities and the corresponding
motor displacements in terms of the Gaussian constant ¢. We define the minimal
differentiable motor displacement based on Rayleigh criterion for resclution [2] which
specifies the saddle-to-peak ratio as 8/7%. In case of the Gaussian distribution, the
cut-off line corresponding to the Rayleigh criterion is about 0.9¢.

There is a mapping from a motor count to an absolute depth value definitely.
Assume d = f(m) where d is the depth, m the motor count and f the mapping, we
have

Ad

m it I(m)’ (1)

where f/(m) is the first order derivative with respect to m. Because what we really
want to know is the minimal differential depth or depth resolution Ad, and we already
have the minimal differentiable motor displacement Am, the only thing need to be
calibrated is f'(m). If we assume f'(m) is a constant in the vicinity of d = D, and
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Table 1: Different Definitions of Minimal Differentiable Motor Displacements

| Cut-off Line of Gaussian | Probability of correctness
0.68¢c 50%
0.840 60%
1.030 70%
1.28¢0 80%
1.640 90%

the motor count distribution has its center at m = M, then when the target is moved
AD, the distribution center moves AM, and we will have the minimal differei:iiable

depth A
m
Ad = mAD (2)

where Am is the minimal differentiable motor displacement.

2.4 Implementation and Result

2.4.1 Hardware

We implemented this focus ranging algorithm in the Calibrated Imaging Laboratory,
using the Fujinon/Photometric camera system [19]. This system consists of a Fujinon
ENG zoom lens mounted on a Photometrics Star I scientific camera. The camera can
provide a 12-bit per pixel greyscale image. Color band can be selected by the filter

wheel mounted in front of the lens.
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Figure 5: Minimal Differentiable Motor Displacement

The focal length can change between 10 mm to 130 mm with 11100 motor steps,
and the focus distance can change from approximately 1 meter to infinity with 5100
motor steps, the aperture can change from F1.7 to completely closed with 2700 motor
steps. The SNR of the camera can be as low as 400/1 because of the pixel by pixel
digitization and the -40°C temperature of the sensor.

2.4.2 Experiments and Results

We put the target of Figure 1 at about 1.2 meters away from the front lens element of
the camera. Maximal focal length and maximal aperture are employed to achieve the
minimal depth of field. The evaluation window is 40x40, while the gradient operator
is a 3x3 Sobel operator.

The distribution of motor positions are sketched in Figure 6 resulting from an
experiment repeated 40 times. With the mean as the center of a Gaussian, and the
standard deviation as o of the Gaussian, we have the minimal differentiable motor
displacement as 2 x 0.9 ¢ = 4.5 motor counts.

Then the target is moved toward the camera 1 centimeter, and we repeated the
above experiments. The center of the motor count distribution moves 38 counts.
Therefore, by Eq. 2, we have the minimal differentiable depth:

Am 4.5
Ad = mAD =35 % lem = 0.118cm. (3)

And the relative depth error is about 0.118 / 120 = 0.098%.
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3 Depth From Defocusing

3.1 Introduction

The depth from defocusing method uses the direct relationships among the depth,
camera parameters aud the amount of blurring in images to derive the depth from
parameters can be directly measured. In this part of the paper, we propose an
iterative method to estimate the amount of defocusing accurately, and a calibration-
based blurring model.

Because the blurring in an image can be caused by either the imaging process or
the scene itself, it generally requires at least two images taken under different camera
configurations to eliminate this ambiguity. Pentland solved this problem by taking one
picture by a pin-hole camera, which can be regarded as the orthographic projection
of the scene with zero imaging blurring, and another one by a wide aperture camera
[10]. In this paper, we intend to employ two images which are defocused to different
extents.

Window effects have largely been ignored in the literature of this field, except
[6, 5], where the author derived a function of RMS depth error in terms of the size
of window. For example, when the window is 4 pixels by 4 pixels, the RMS error
from the window effect can be as large as 65.8%! The iterative method we propose
is capable of eliminating the window effect. It is also noticed that the size of the
window is the decisive factor that limits the resolution of depth maps if we try to
obtain a dense depth map. Therefore if we can use smaller window without reducing
the quality of the results, the resolution of dense depth maps can be much higher.

Previous work has employed oversimplified camera models to derive the relation-
ship between blurring functions and camera configurations. In [10, 13, 3], the radius
of blurring circles are derived from the ideal thin lens model. In this paper, we will
propose a more sophisticated function which directly relates the blurring function




with camera motors. Experimental results are very consistent with this model as to
be shown later.

3.2 Basic Theory

The depth from defocus method is based on the idea that, the amount of blurring
change is directly related to the depth and camera parameters. Since the camera
parameters can be calibrated, the depth can be expressed by the amount of blurring
change correspondingly. To estimate the amount of blurring change, we need a model
of the optical blurring. Traditionally, the blurring effect is modeled as the convolution
of Gaussian in computer vision literature, partly due to its mathematical tractability.
Here we will still assume a Gaussian model, i.e.:

I(z,y) = /_ :o /_ +: Io(€,1)9o(a,c)(z — &,y —1)dédn (4)
9o(2,9) = 5—ze 3 (5)

where I(z,y) is the intensity image, d is the depth of the object, ¢ is the vector of
camera parameters, go(4,c) is the blurring function.

For simplicity, we can instead consider the one dimensional case, in which Eq. 4
and Eq. 5 become

1) = [ 1o()getae(z ~ €)de (6)

:2
e 207 (7)

g,(x) = 2ro

The basic idea of the depth-from-defocus method is that, in Eq. 6, since the I(z)
which is the image and ¢ which results from camera calibration are known, and d and
Io(z) are unknown, we can take two images under different camera settings ¢; and
2, then at least theoretically d can be computed.

But since the Eq. 6 is not a linear equation with respect to unknown d, directly
solving for d is either impossible or numerically unstable. Pentland proposed a method
to solve d by Fourier transforms [10]:

If

h(z) = Io(z) * go, (2) (8)

Ix(z) = Io(z) * 9o, () (9)
then,

Fih@l _, Llf) _\ Do(f)ga(f) _ Goalf) _ 1o 5
In =In In 2f (of —03) (10)

R TS I AT B AT T ST i
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o, =o(d, c;) (11)

o, = o(d, ¢s) (12)
Replacing Eq. 11 and Eq. 12 into Eq. 10, we can get:
L(f) . 1, 2
lnl'z(f) = 2f (6*(d, e1) — 0%(d, c2)) (13)

where the function ¢ can be calibrated.
Obviously, in Eq. 13, the only unknown is d, therefore, depth recovery from two
images is straightforward.

3.3 Gabor Transform and Window Effect

The method explained above is based on F[I(z)], which is the Fourier transform
of the entire image, Thus, only one d can be calculated from the entire image. If
our goal is to obtain a dense depth map d(z,y), we are forced to use the STFT
(Short Time Fourier Transform) to preserve the depth locality. To eliminate the
spurious high frequency components generated by the discontinuity at the window
boundary, people usually multiply the window by a window function. Unfortunately,
the elegant cancellation in Eq. 10 doesn’t hold any more if we introduce the window
function W(z):

FIL@W@) _ T W) _ | (Eolf)0e () * W)
FlL(x)W(z)] — L(f)* W(f) (Z:(£)Gan (£)) * W(F)

The convolutions in Eq. 14 intioduce blurring in both the time (space) and fre-
quency domains. The Gabor transform [12], which uses a Gaussian as the window
function, can minimize the production of spatial uncertainty and spectral uncertainty.

Assuming a Gaussian function is used as W(z) = g,(z), and its Fourier transform is
W(f) = e=°*#/2, we have:

Afzszzlw(f) Pdf _ 1 (15)

In (14)

JIW() 2df 207

g2 [ IWE@) P _ -
[I1W()2df 2

The above equations mean that, in the frequency domain, two frequency compo-
nents Af away can’t be discriminated, and in the space domain, two impulses Az
away can’t be discriminated either. Apparently, one interpretation of why Eq. 10
doesn’t hold is that Af is not zero. As ¢ approaches infinity, Af approachs zero.
In other words, as the window function approaches a constant function, the Gabor
transform becomes more and more accurate in the frequency domain, but on the

other hand, less and less accurate in the space domain as indicated in Eq. 16.
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3.4 Maximal Resemblance Estimation

From observation, we know that when o, is approaching o,, Eq. 14 also approaches
zero, in other words, when ¢; almost equals 0;, the Eq. 10 can be a good approxi-
mation in terms of absolute error. This observation suggests an iterative method in
which the blurring difference A is refined by blurring one image to resemble the other
in the vicinity of one pixel. In symbols: (Assuming Ay is the the kth estimation of

of - 03)

1. 19=70,19=1,and A=0.0,k=0;

2. 7 = FlIPw),
M = FIIPOW).

)
3. Fit a curve to In ?-‘-:7 = —f2A(x)/2. (Refer to Eq. 10)
2

4. A=Yk, Ag).

5. If A > 0, then
I(k+1) = I;

1
Y = L+G,_/x;
else,
L") = L G,o w3
I§k+1) =1,

Note all these convolutions are done very locally because of the window function
multiplication in step 2.

6. If the termination criteria are satisfied, exit.
7. k = k+1, go to step 2.

All above operations involve only local pixels, and don’t require taking new pic-
tures. Therefore, the computation can be done in parallel to all pixels to obtain a
dense depth map.

Let’s trace the above iterations, at the first cycle, we have (Assuming o, > 03):

D) = (of = 03) + Eo)
while Eg) is the error of estimating o7 — o2.
IMN=1=1I%xG,,
L) =L*Gz=1*G /rr—

We can see, after the first iteration, we actually switched to estimate E(g). So after
k iterations, we have

11




k
A=ZA(,') =0’f~0’§+E(k) (17)

=0
Now the problem is whether the sequence E(k = 0,1,2,...) converges to zero.
Unfortunately, there is no way to prove this mathematically because it depends on the
fitting method used in step 3. Notice that if in step 3, we get an estimate of o7 — o3
only based on one particular frequency component, E) may diverge. Previous depth
from defocus methods usually counted on a pre-selected frequency band, such as in
[10], sometimes this may cause a very large error if there is not enough energy of the

image content within the frequency band.

3.5 Fitting Algorithm
2

Common to any frequency analysis, we need a robust algorithm to extract o2 — ¢ in
Eq. 10 in a noisy environment. Ignoring the phase information resulting from Gabor
transform, Eq. 10 becomes:

LGP _ a2 _ o2
READIEL (19)
Assuming an additive white noise model, we have:
| L) P +m1
1 A, = RU L) P 4m) = In(| Z(f)  +n2), (19)

where n; and n, are energy of noises. Because In(z + dz) =~ Inz + %d:z, if we assume
| Zy(f) [2> ny and | Zo(f) |>>> n2, Eq. 19 can be approximated as:

2 2 ~ III(f)I2 ( L3 na )
B e e F A A\ F A F AT
(20)
Therefore, at each frequency, the left hand of Eq. 18 can be approximated by di-
viding corresponding spectral energy of two images at the specific frequency, provided
that the energy values are much larger than the energy of noise. The deviation of

this approximation can be expressed as:

1 1
o = en (I AOTAFAC) P) (21)

where ¢, is a constant related to the noise energy of the camera.

Certainly, Eq. 21 is an approximation to model the error distribution as an Gaus-
sian. As an intuition, when | Z,(f) |? or | Zo(f) |? is large, i.e. the energy within the
frequency is high, the deviation is small, and vice versa.

From Eq. 18, we know this estimation problem is a typical linear regression prob-
lem. With the uncertainty measurement approximated in Eq. 21, o — 0% can be

estimated robustly. More details can be found in [11].
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There is one more problem need to be addressed. Since we obtain images under
different camera configurations, the total energy within the image is different. Usually,
a brightness normalization is performed to every image before Gabor transforms, as
in [16]. But since this normalization will have different effects over the noise in two
images, which will complicate the uncertainty analysis, we prefer not to normalize
the brightness in two images. Instead we assume:

Li(z) = a1lo(z) * g5, (2) (22)
Ix(z) = colo(z) * g0, (2), (23)

where ¢; and C; are two unknown constants. Replacing the two equations into Eq. 18,
we have:

ILOF 2 o2y 4o @
Er AR A 24

which is still a linear problem, while the uncertainty analysis still holds.

In

3.6 Blurring Model

Since the defocus ranging method derives the depth instead of searching for the depth,
it requires a direct modeling of defocusing in terms of camera parameters and depth.
Previous researchers usually derived the relation among lens parameters, the depth
and the blurring radius, such as in [10, 13]. For example, in [10], by simple geometric
optics, Pentland derived the formula:

D_ F‘l)o

—vo-F—akf (25)

where D is the depth, F the focal length, f the f-number of the lens, vy the distance
between lens and image plane, o the blurring circle radius, and & a constant.

The basic limitation of this approach is that those parameters are based on the
ideal thin lens model and in fact, they can never be measured precisely on any camera.
We desire a function which is in terms of motor counts, which are measurable and
controllable. For instance, if we use m, for zoom motor count, m; for focus motor
count, and m, for aperture motor count, we wish to get a function in the form of
D = F(m,,ms,m,,0) or ¢ = F(m,,ms,m,, D). Since there is a depth ambiguity
in the former form ([10], Appendix), we prefer to express the blurring radius o as a
function of motor counts and the depth.

From Eq. 25, we can express o as:

U_'UQ—F_Fvo/kf
T kf D

(26)

Since all the lens parameters can be thought as derived from motor counts, we can
rewrite Eq. 26 as:
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k2(mz7mf7ma)
D + k3(m27 mja ma)

o =ki(mz,mys,m,) + (27)
Notice that there is another term k3 added. Because D is the distance between lens
and object, and the position of lens changes as camera parameters are changed, we
intend to use a fixed plane perpendicular to the optical axis as the depth reference
plane at z = k3. From now on, we always refer to depth as the distance between the
target and the depth reference plane.

Eq. 27 says, at some point, o will drop to zero, which is the best focused point. But
we knew that we can never get a real step edge, because there is always high frequency
loss in the imaging process. It can be attributed to the pixel quantization, diffraction,
etc. Similarly, we can model this as a convolution with a Gaussian independent of
the geometric blurring which we already modeled. We use k4 to model its width.

Since two consecutive convolutions with Gaussians are equivalent with one Gaus-
sian convolution:

G¢71 * Gaz = G\/m’ (28)

we have our final blurring model expression as:

kZ(mz’ my, ma)
D + k3(m,,mys,m,)

2
g = J (kl(mumfsma) + ) + kZ(mZ’mf’ma) (29)

3.7 Implementation and Results
3.7.1 Simulation

Our first simulation examines how precise the estimate of 0 — o2 can be. We use
step function as Ip, and convolve it with two different Gaussian G,, and G,,. The
window function is also a Gaussian with o equal to three pixel widths.! From Eq. 16,
the locality of the window function is about 2 pixel widths.

The result of the iterative method is illustrated in Fig. 7. And we can see that,
when the window function is narrow, how poor the first estimation can be. Experi-
mentally, the final error is lower bounded by the discretization of the functions, that
is, when the o of the Gaussian function is too small with respect to the pixel width,
the discrete Gaussian is no longer a good approximation of the real Gaussian function,
and the results begin to degenerate.

Figure 8 shows the absolute error of the estimating o2 — o2 in the absence of noise.
Generally, the errors are less than 1/1000 of true values. Remember that in those
figures, the blurring radius o due to defocus can be even much larger than the window
size!

1In this report, all ¢ values are in pixel width.
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Figure 9: Edge Bleeding

3.7.2 Variation Measure and Thresholding

Certainly, if there is no texture or little texture within the image, we can not expect
to obtain accurate estimation of depth. Therefore, we need a measure which can
discriminate image patchs with enough texture from those without enough texture.
Another reason why we need a variation measure is because of the so-called edge
bleeding [8]. For example, in Figure 9 case, where there is a step edge blurred by
different amounts, apparently, image No. 1 contains less high frequency components
than image No. 2 does, but if the window is at A, the image variation of A in image
No. 1 is larger that that in image No. 2, and therefore wrong results will be deducted.

Assuming the image patch is f(z,y), we have the variation measure expressed as
in Eq. 30. Applying it to a real image, we have the variation map as in Figure 10,
which properly quantifies the variation content within neighbors of pixel.

V) (1252 e 2 ) g (o (30)

To better illustrate the relation between the variation measure and the result of
estimate of o2 — o2, Figure 11 shows the selection of the threshold to exclude the
effects of the low variation content and the edge bleeding.

3.7.3 Calibration of Blurring Function

First, we tried to confirm our assumption that the blurring function can be approx-
imated by the Gaussian function. Ideally, if we have a point light source, the image
of this light source should be the blurring fuaction because

§(z) * F(z) = F(z). (31)
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Figure 10: Intensity Image and Variation Map
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Figure 11: Variation Measure and Threshold
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Due to the technical difficulty of an ideal point light source, a step edge image is used
instead as shown in Figure 1. Assume the step function is u(z), the image of the step

edge should be

4o(2) # u(z) = /0+oo \/21706-(2—;%& = ¢, + ¢, Erf (—\/%;) (32)

where Erf is the error function, ¢; and ¢; are two constants.
The Figure 12 illustrates the least square fitting results for a blurred step edge.
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Figure 12: Blurring Function Fitting

3.7.4 Blurring Model Calibration

The coefficients k;, k2, k3, k4 are constants in Eq. 29 when motors are fixed. We can
move the calibration target over four different places, and assume at the first place,
the depth of the target is zero (Note the depth is w.r.t. the reference plane), we
will have four non-linear equations with four unknowns. Tc suppress noise, we can
measure at more than four places and fit the blurring model to the results.

Using the rail table in CIL ([19]), the whole process of calibration can be auto-
mated. The target moves from about 1.5 meter from the camera to about 3.5 meters,
and the blurred edges are fed to the least square fitting described in the previous
section, the resulting o’s are, in turn, fitted against the model expressed in Eq. 29.

Experiments have shown very consistent results with the model as illustrated in
Figure 13. The target is moved from far to near, at the furthest distance the rail
motor position is zero. And when it moved through the whole range of the rail, the
blurring circle first becomes smaller and smaller, then after a point, it becomes larger
and larger. It is very clear that the this effect can be well modeled by Eq. 29.
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Figure 13: Blurring Model

3.7.5 o¢?-Map and Shape Recovery

The first step toward a dense depth map is to compute ¢° = o2 — ¢, without loss

of generality we assume o; > o3, for every pixel, using the maximal resemblance
estimation. In Figure 14, we beat a sheet of A4 paper in different directions about
1.0 inchs and took images. The target is about 100 inchs away from the camera. The
focal length is 130mm, the f-number is {/4.7 for (a) and (c), {/8.1 for (b) and (d).

Then we recover o%-map for those two objects. The rectangle in Figure 14 is the
area for o2-map. The o, for Gabor transform is 5.0 pixel size. Figure 15 shows the
o?-map recovery based on the images in Figure 14. The holes within the 0® maps are
those patchs without enough texture.

Compared with the 0> map recovery without iterative maximal reseinblance esti-
mation showed in Figure 16, we can see that results withou! iteration are much more
noisy.

With ¢? map recovered and the coefficients in Eq. 29 calibrated w.r.t. the two
camera configurations, the depth map recovery is straightforward by using the Brent’s
method [11] to numerically solve the nonlinear equation. Figure 17 showed the depth
map of the convex object in Figure 14 (c) and (d), with respect to the depth reference
plane, which is behind the object.

4 Summary

In summary, we have described two sources of depth information—depth from focu-
ing and depth from defocusing—separately. In depth from focusing, we pursued high
accuracy from both the software and hardware directions. and experiments proved
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that a great improvement was obtained. In depth from defocusing, we re-examined
the whole underlying theory, from signal processing to camera calibration, and es-
tablished a new computational model, which has been successfully demonstrated on
both synthesized and real images.

The significance of these works is two-fold. First, there are few previous reports
talking about the shape from defocusing or focusing, and the main reason of the
inefficacy of shape from defocusing or focusing is it low precision. Demonstrated in
this paper, the improvements on precisions of focus ranging and defocus ranging can
lead to efficient shape recovery methods. Second, it has been shown that the iterative
method proposed in this paper is capable of perserving the depth locality, which is
also essential to obtain dense depth map.
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