o e Al

nrnART NOCUMENTATION PAGE | ovie N aroo ,g@

HOIMARION 13 CILMALED (O Averaqe | Riur DO IMDOME, INCILBING the Lime 10 reviewsng —~
v and revie thee cOtlecHnn Vol INIOrMaLION. Send commen o 9 g 4ot Mource,
A D- A 2 6 6 5 ; 1$ tor reducing ths Durden. 10 Washington Headauarter Services, Or e ’1: e inis burgen "“"“':': y sthe? s

-

aeect of
24302, and 10 the Otfice of Management and Budqet, Paperwork Reduction ’WWM‘NOL’V.I"M an m’l‘us‘pnm

>/ L YRR
IMMIMAN g2, ™ T Sommsar [ rieer aeporte o o ooe-26 rebrue

19¢

sseme viremw www s

- J 5. FUNDING . e
Computing Science and Statistics: DML03-9NZU-?-!&S)35, e )

Graphics and Visualization

6.

AUTHOR(S)
H. Joseph Newton

7.

PERFORMING ORGANIZATIQN NAME ND, ADQRE S _—
T erface Fotndation of Rorth Kmérida, Inc. 8. R O oy p \NIZATION.
PO Box 7460

Fairfax Station, VA 22039-7460 Vol. 24

SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

gOSB An;uzrzlﬁsearch Office 10 i%‘é:’&“&'é%:?&‘bﬁ:éﬁ“"
0x .

Research Triangle Park, NC 27709-2211 _
9 ‘ AL 0974Y5.]"MALF

1

. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approvea for public release, distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The 24th Symposium on the Interface: Computing Science and Statistics was held
March 18-21, 1992 in College Station, Texas. The theme was Graphics and Visu.liza-
tion. Sixty invited papers were presented to more than 300 attendees. James Blinn
gave the Keynote Address while Edward Tufte gave the Plenary Address. There were
38 technical sessions, including a poster session. There was also a short Course
Visualization. This report presents papers based on the presentations. Al‘io .

included is a 1ist of attendees. DTEC p

B ECTE Wi
JULO9 1993 ¥
[14. SUBJECT TEAMS txploratory Data AnaTysY 15. NUMBER OF PAGES
Computational Statistics Multivariate Density Estimati
Scientific Visualization Nonparametric Regression 16. PRICE COOE
V7. STCORTY CLASSIFICATION [ 18. SECURTY CLASSIFICATION ] 15 SECORITY fgssm_caﬁwmf-
Unclassified Unclassified Unclassified .

NSN 7540-01-280-5500

S —
Standard Form 298 (Rev. 2-89)
W by ANY Su. D)0

P




ISCLAERNOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




|

ALD  D8548 ) -MmACF

Computing Science
and StatistiCS  Volume 24

INTERFACE

Graphics and Visualization

H. Joseph Newton
Editor

Proceedings of the

24th Symposium on the Interface
College Station, Texas, March 18-21, 1992

INTERFACE
FOUNDATION
OF NORTH AMERICA




Computing Science
and StatisticCS  Volume 24

Graphics and Visualization

Editor
H. Joseph Newton

Texas A & M University, College Station, Texas

Proceedings of the
24th Symposium on the Interface

INTERFACE

INTERFACE FOUNDATION OF NORTH AMERICA

93-15530
T

98 ¢« vo 112




PUBLISHER’S FOREWORD

This volume is the second published by the Interface Foundation of North America. 1In the past the
volumes had been published by commercial publishers, but we had experienced substantial difficulties
with availability, timeliness and cost. The publishing experience is an exciting new venture for the
Interface Foundation. As many reader’s of this volume will already know, the Interface Foundation
has launched on a joint venture with the American Statistical Association and the Institute of
Mathematical Statistics in the publication of the Journal of Computational and Graphical Statistics.
We strongly encourage readership of and subscriptions to the new journal. The Interface series of
meetings has been positioned squarely at the junction of computing science and statistics. Since the
first Interface Proceedings was published in 1971, it has been the periodical of record in documenting
the development of ideas at this junction. In 1987, the proceedings volume was re-titled with the main
title being Computing Science and Statistics and with Proceedings being reserved as a sub-title.
Computing Science and Statistics has had a much more archival nature than fouad in ihe typicai
conference proceedings. In keeping with this more archival nature, we have dropped the Proceedings
subtitle and added a volume number to reflect the periodical character of the publication.
Concomitant with this change, we suggest a change in the nature of the citation. An example of the
recommended citation is as follows:

Eubank, R. L. and Speckman, P. L. (1992), “Practical simultaneous nonparametric regression
confidence bands,” Computing Science and Statistics, 24, 1-9.

Should more details be desired, the editor, the publisher (Interface Foundation of North America, Inc.)
and the city (Fairfax Station, VA) may be added. The 1992 Interface Symposium was the 24th
meeting. There were no proceedings of the first three meetings. We have chosen to number the
volumes according to the meetings, rather than using a strict sequential numbering. This is intended
to make the volume numbering somewhat easier to remember.

The papers and discussions in this volume are reproduced as received from authors. These
presentations are presumed to be essentially as given at the 24th Symposium on the Interface. Volume
24 is not copyrighted by the Interface Foundation of North America. Publication in this volume does
not preclude publication elsewhere.

AVAILABILITY OF PREVIOUS VOLUMES

23 Interface Foundation of North America, Inc.
(1991) P. O. Box 7460

Fairfax Station, VA 22039-7460
22 Springer-Verlag New York, Inc.
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(1986-1989) 1429 Duke Street
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Volumes 20, 21, and 22 are also available from the Interface Foundation of North America, Inc.
Interface, Interface '92, Computing Science and Statistics, and the triangle logo are tradernarks of the
Interface Foundation of North America, Inc.
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PREFACE

1992 Interface Proceedings

The 24th Symposium on the Interface of Computing Science and Statistics was held on March 18-21, 1992
at the College Station Hilton Hotel, College Station, Texas. The conference theme was “Graphics and
Visualization.”

The Department of Statistics at Texas A&M University hosted the meeting with H. Joseph Newton serving
as Program Chair. The members of the program committee were Richard Becker, Mary Ellen Bock, Bar-
bara Buttenfield, Alan Gelfand, James Gentle, James Hardin, Iain Johnstone, Robert Kass, Raoul LePage,
Michael Longnecker, Douglas Martin, Gerald North, Emanuel Parsen, David Scott, Phil Spector, Michael
Tarter, David Thomson, Dag Tjgstheim, Edward Wegman, Forrest Young, and Stuart Zweben.

The symposium theme was much in evidence in a variety of sessions, including the keynote address, “Making
Computer Graphics Animations for Math and Science Education,” by James Blinn of Caltech, a plenary
address “Dequantification in Scientific Visualisation: Is this Science or Television?” by Edward Tufte of
Yale, as well as a short course presented by Tufte based on his highly awarded books, “The Visual Display
of Quantitative Information” and “Envisioning Information.” Because of the highly visual nature of these
talks, they could not be adequately presented in this proceedings.

Much of the success of a conference can be measured in terms of the number of attendees and the number
of contributed talks, which, for this Symposium were approximately 305 and 77, respectively. Another
indication of the lasting enthusiasm of the attendees is that fully 82% of the authors of contributed talks
at the meeting have submitted manuscripts for this proceedings, while 67% of the invited speakers have
submitted manuscripts. Many of the other invited speakers would have liked to submit papers, but their
talks primarily consisted of showing videotapes of animated graphics and thus could not be presented in a
traditional proceedings.

The organizer of an Interface Symposium truly has a number of people to thank. A special thanks goes to
James Hardin for serving on the program committee as well as arranging and overseeing the vast array of
computing and audio/visual equipment that was used during the meeting. Lorie Blackwell helped a great
deal at the beginning of the planning process. Finally, I would like to especially thank Barbara Napoli
Thomason for cheerfully handling a many details before, during, and after the symposium.

H. Josfph Newton, Editor and Organiser hocession For
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SYMPOSIUM SCHEDULE

Wednesday, March 18, 1992

Registration
Board of Directors’ Business Meeting and Dinner (Pecan)
Opening Reception (Ballroom, I-III)

Thursday, March 19, 1992
Keynote Address: “Designing Animations for Mathematics Education” (Ballroom, III-IV)
Break (Ballroom V-VII)

Invited A: Visualization Methods for Science and Statistics (Ballroom, III)
Invited B: Nonparametric Regression (Ballroom, IV)

Contributed A: Algorithms for Multivariate Distributions and Data (Ballroom, I)
Contributed B: Software Design and Quality (Ballroom, II)

Lunch

Invited A: Visualizing Programs (Ballroom, III)
Invited B: Spatial Time Series (Ballroom, IV)

Contributed A: Building on Existing Software (Ballroom, I)
Contributed B: Industrial Statistics (Ballroom, II)

Break (Baliroom V-VII)

Invited A: Visualizing Multivariate Data and Functions (Ballroom, III)
Invited B: Advanced Statistical Techniques for Industry (Ballroom, IV)

Contributed A: Approximating Integrals and Distributions (Ballroom, I)
Contributed B: Stochastic Processes and their Applications (Ballroom, II)

Visualization Short Course—Edward Tufte (Brazos Amphitheater)
Friday, March 20, 1992

Plenary Address: “Dequantification in Scientific Visualization: Is this Science or Televi-
sion?” (Ballroom, III-IV)

Break (Ballroom V-VII)

Invited A: Statistical Visualization Software (Ballroom, III)
Invited B: Wavelets and Nonparametric Modeling (Baliroom, IV)
Contributed A: Linear Statistical Inference (Ballroom, I)
Contributed B: Applications of Graphics (Ballroom, II)
Poster/Video/Demo Session (Ballroom V-VII)

Invited A: Bayesian Computing (Ballroom, III)
Invited B: Statistical Methods in Software Quality Evaluation (Ballroom, IV)
Invited C: Building on S (Brazos Amphitheater)
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Contributed A: Nonparametric Regression and Density Estimation, I (Baliroom, I)
Contributed B: Designing and Teaching Graphics (Ballroom, II)

Break (Ballroom V-VII)

Invited A: Geographic Information Systems (Ballroom, III)
Invited B: Sampling Based Approaches for Bayesian Inference (Ballroom, IV)
Invited C: Unix Tools for Statistical Computing (Brazos Amphitheater)

Contributed A: Nonparametric Regression and Density Estimation,II (Ballroem, I)
Contributed B: Time Series Analysis and Forecasting (Ballroom, II)

Reception (Ballroom, V-VII)
Banquet (Ballroom, III-IV)

Saturday, March 21, 1992
Invited A: Visualization in Climate Research (Ballroom, III)

Invited B: Neural Networks (Ballroom, IV)
Invited C: High Performance Computing (Ballroom, I)

Contributed A: Small Sample Statistical Inference (Ballroom, II)
Break (Ballroom V-VII)

Invited A: Time Series Computing (Ballroom, III)
Invited B: Conditional Methods in Regression and Logistic Regression (Ballroom, IV)

Contributed A: Visualizing High Dimensional Data (Ballroom, I)
Contributed B: Statistical Inference (Ballroom, II)

End of Conference
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Practical Simultaneous Nonparametric Regression Confidence Bands

R. L. Eubank*
Department of Statistics

P. L. Speckman
Department of Statistics

Texas A&M University University of Missouri-Columbia

Abstract

Two proposals for simultaneous confidence bands in
nonparametric regression are examined, one based on
bias-correction and a second using a Bonferroni in-
equality. Both are implemented with data-driven band-
width selection and nonparametric variance estimation.
Asymptotic theory shows both to have suitable coverage
for large samples, and simulation suggests good coverage
properties for samples as small as 50. An application
of the methodology is used to give bounds for coverage
probabilities in nonparametric regression with samples
ranging from 50 to 1000.

1. Introduction

This article reports on progress in confidence bands
associated with nonparametric regression estimation.
There has been a great deal of development of the analyt-
ical properties of nonparametric estimators, but the cor-
responding technology for confidence bands has lagged.
In this paper we outline theoretical and experimental
results aimed at providing users with practical bands.

Consider the situation where responses y;,...,yn are
obtained at equally spaced design points t, = r/a, r =
1,...,n. The y. and ¢, are related under the model

(1.1)

where the ¢, are independent, identically distributed,
random variables having zero means and common vari-
ance 02, and y is an unknown, smooth regression curve.
The problem to be addressed is the construction of con-
fidence bands for u. Specifically, given o € (0,1) and an
estimator i for u, we want to find data-based bounds
La(t) and U,(t), presumably depending on j(t), such
that

P(La(t) < u(t) < Uqa(t) for all t) xl-a,

yr =p(tr)+e,r=1,...,n,

(1.2)

at least in large samples. To be practical, these bounds
(1) should be completely data-driven and (2) should pro-
vide a reasonably good (or at least conservative) approx-
imation to the nominal confidence level.

*Research supported in part by NSF Grant DMS-9024879

To illustrate the problem of nonparametric bands in a
specific setting, consider the case of a second-order kernel
estimator for g of the form

1 o t—t,
,“A(t) = ;xz:ny .A_ )
r=1

where A > 0 is the bandwidth and K is a symmetric
kernel supported on [—1,1]. If u(t) possesses two con-
tinuous derivatives and K is a second order kernel, it is
well known that

E(pA(t)) — (1)

{Q

2,1 1
’\"T(t) / 22K \z)dz (1.3)
-1

2 1
Var((t) & = /_ K(fdr (14

= o2V,()).

Consequently, if the usual smoothing criterion of mini-
mizing

AMSEQ) = = 3" E(ma(tr) - at,))?
r=1

is adopted, the optimal bandwidth Ao will satisfy

Ao ~ kn~1/8 (1.5)

where k is a constant depending only on K and pu. For
clarity of exposition, the rest of this article concentrates
solely on this setting of second order asymptotics with
the related rates of convergence. While we have not ex-
plicitly worked out the details, these results presumably
extend to higher order kernels.

Typical large sample theory for confidence bands is
based on the approximate normality of a pivot statistic
like Ty = [ua(t) — u(t)]/o\/Va()). But at the optimal
smoothing parameter Aq, the bias of g, is not negligible.
Writing

_ () - E(u() | E(m(@) ~ p(t)
"'\/Vn(’\) “\Nn('\) ’

the first term, the stochastic portion, is asymptotically
standard normal under weak conditions, but the second

(1.6)
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term is in general O(1). To use T) as a pivot statistic
directly, we need to choose X in such a way that the
second term goes to zero. Data-driven methods for esti-
mating an optimal A, generally designed to obtain a rate
like (1.5), will not achieve this goal. Thus the dilemma
of nonparametric confidence bounds has been either to
deliberately undersmooth, thereby employing an inferior
estimate of u(t), or to compensate for the unknown bias
term in (1.6) explicitly, thereby changing the presumed
otherwise optimal properties of the estimator.

The first approach, that of deliberately undersmooth-
ing, has been taken by a number of authors beginning
perhaps with Bickel and Rosenblatt (1973) in their study
of kernel density estimation. Extensions to nonpara-
metric regression include results by Johnston (1982) and
Hardle (1989).

Another approach to the bias problem is to incorpo-
rate an a priori bound on the bias in a confidence band.
Knafl, Sacks, and Ylvisaker (1982) showed that it is pos-
sible to obtain conservative bounds on the simultaneous
coverage probability in this fashion. Hall and Tittering-
ton (1988) in related work obtained best possible simul-
taneous confidence band lengths under similar assump-
tions. They showed that the minimum width of uniform
confidence bands of the form (1.2) is

logn 3/s
()
Both of these methods require additional information
and hence are not completely data-driven.

Direct approaches for dealing with the bias term have
also been used. (Hall (1990) used the term explicit bias
estimation to denote such confidence bands.) For ex-
ample, Cox (1986) used an estimate of the the norm of
the bias in constructing simultaneous confidence bands
for smoothing splines. More recently, Hirdle and Bow-
man (1988) and Hardle and Marron (1991) introduced
an explicit bias estimate as part of a bootstrap method
for estimating the distribution of sup, |T)(t)] itself rather
than relying on asymptotic theory. However, the latter
approach requires selection of an auxiliary bandwidth for
bias correction in the bootstrap process, a topic appar-
ently not fully addressed in the literature.

A third alternative is the use of Bonferroni bounds.
Hardle (1990) reports on an application of this idea, but
to our knowledge it has not been explored further.

In the rest of this paper, we examine two methods,
one based on bias-correction and the other a direct ap-
plication of a Bonferroni inequality. We show that it is
possible, asymptotically, to formulate completely data-
driven methods that provide at least guaranteed asymp-
totic simultaneous coverage, and we provide Monte Carlo

(1.7)

evidence that the methods are practical with samples as
small as 50.

2. Bias-corrected bands

In order to have a tractable theory, we make several
simplifying assumptions (c.f. Rice (1984)). For the re-
mainder of this article, we assume that u(t) is periodic
on (0,1) and has two continuous periodic derivatives sat-
isfying ) )

#(0)=p'(1), j=0,1,2.

2.1. Theoretical background

Much of the theoretical development for nonparamet-
ric confidence bands is based on the seminal work of
Bickel and Rosenblatt (1973). The following version of
one of their results holds in the context of fixed-design
nonparametric regression.

(2.1)

Lemma 1 Let

Ba(t) = E(pa(t)
o/ Va(})

Z,\(t) =

and
M, = sup |Zx(t)].
0<i<1

If K is twice continuously differentiable and €, has four
absolute moments, then

C+zq
< V- Mt——=]—1-
P(M,\o__ 2log o+\/:2_m) l-a,
where
z, = -—log|log(l - a)|
C =

1 1 1 1/2
1 2
log (2—” [[-’K(u)zdu//_lk'(u) du] )

(NB the Bickel and Rosenblatt (1975) correction to the

constant C.) This result is proven using a strong ap-

proximation argument in Eubank and Speckman (1992).
Define

C+ 1z,

g = 6\/Vn(z\o) (\/—2 log Ao + .\/Tng\—:) . (2.2)

A direct consequence of Lemma 1 is that the interval

{b: o Wy -noi<e} @
0<t<1

has asymptotic coverage probability 1 — a for E(u,,).
In the absence of bias, or when the bias is asymptot-
ically negligible (for example, as when A = o(n~1/%)),




this constitutes a valid method. (See Johnston (1982)
and Hardle (1989), e.g., for this approach in the ran-
dom design nonparametric regression problem.) With
the more usual O(n~*/%) bandwidth commonly recom-
mended for practical use, an obvious way to attempt to
convert (2.3) into a confidence band for u is to estimate
the bias, E(ux,(t)—u(t), directly, and to incorporate the
estimate into the interval.
Motivated by (1.3), we take

ba(t) = A2Ba"(t)

as an estimate of the bias, where B is a known constant
and ”'(t) is a suitable estimator of u”(t). One possibility

1S

‘ 1 - (t—t)
'"t:-T'E K* — ),
l‘() A3 Yr 3

r=1

(2.4)

where K* is a square integrable kernel supported on
[-1,1] satisfying f_ll wK*(u)du = 0, j = 0,1, and
f_l1 u?K*(u)du = 2, and X is a bandwidth converging
to zero at the rate n~=1/7 (c.f. Miiller (1988)).

Under suitable conditions, pa(t) —~ bx(t) should have
less bias than u,(t) itself. Surprisingly, the variance of
the corrected estimator is not seriously altered. In fact,
any estimator of the type (2.4) is good enough in the fol-
lowing sense, as shown in Eubank and Speckman (1992).

Lemma 2 If u” is Lipschitz conlinuous of order v > 0
and K* is twice continuously differentiable, then

|E(l‘¢\o(t)) _ l"\o(t) - blo(t)l = Op(n—O)

6\/Vn(/\o)

sup
0<1<1

for some 8 > 0.

This result combined with Lemma 1 immediately
shows that the bias-corrected confidence band

{#: sup liae(t) = baalt) — p(t)] < e:.}
0<1<1

has the correct asymptotic simultaneous coverage prob-
ability.

To be practical, this method requires choices or esti-
mates for Ag, A, and o. In what follows, we require that
A be any estimator of Ap with the property

A=
Ao

Rice(1984) and Hardle, Hall and Marron (1988) have
shown that (2.5) is satisfied by many bandwidth estima-
tors including the one obtained from generalized cross-
validation. The auxiliary bandwidth ) for estimating u"

= Op(n-l/m)'

(2.5)
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may not be as critical. We take X = A%/7, a data-driven
bandwidth with the requisite n=1/7 rate. Finally, we
typically must estimate 0. Any /n-consistent estima-
tor can be used such as one of those found in Gasser,
Sroka and Jennen-Steinmetz (1985), Hall, Kay and Tit-
terington (1990) or Hall and Marron (1990). Under these
conditions, let

te=5/Va() (\/—mogi + \/C—%T:_i) . (26)

Then the following result is proven in Eubank and Speck-
man (1992).

Theorem 1 Assume (2.1) and (2.5) hold and that the
€'s possess more than nineteen absolute moments. Under
the conditions of Lemmas 1 and 2,

P (Lsup,lus(®) 4300 - ) < t)~1-a @)

2.2. Practical considerations

Our experience suggests that obtaining accurate cov-
erage rates is a delicate matter. One clue to the problem
may be that the effect of a on the width of the band £,
is of second order. It’s clear from (2.2) that £ /£, — 1
as n — oo for any fixed 0 < a,a’' < 1. This observation,
characteristic of extreme value distributions, points out
a practical problem in obtaining good coverage proba-
bilities. Seemingly minor adjustments to the algorithm
can have a large impact not suggested by the theory,
especially for small samples or large o.

One significant factor is the correct evaluation of the
variance term V;()). According to Lemma 2, the bias
adjustment b, (t) is uniformly negligible, and the result
of the Theorem follows in part by an application of Slut-
sky’s theorem. However, for finite samples, the added
variability from estimating the bias can have substantial
impact on coverage probability. In our current imple-
mentation, we now compute V,(A) as a sum involving
the squared coefficients of the y/s in ua(2) — ba(2).

As mentioned above, we need an auxiliary bandwidth
for estimating u”(t). Among several possibilities we
tried, the choice X = A%/7 seems to work well. There may
be better choices, and the algorithm could undoubtably
be further tuned.

It is interesting to compare the width of confidence
band (2.7) with the theoretical best possible rate (1.7).
From (2.6) and the fact that X = Op(n=1/%), it is evident
that

Ly ~ cn~ Y%, /logn + lower order terms,

giving a rate very close to the theoretical optimum.
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3. Bonferroni bands

The Bonferroni confidence band, constructed by using
a simple Bonferroni inequality to bound the maximum
stochastic deviation in (1.6) and ignoring bias, has the
form

{,, : sup Imaelt) — A < eaa} . @)
0<t<1

£pa = za/2na'v V(X)

and z,/3, the 100(1 — a/2n)th percentile of the standard
normal distribution. To see why (3.1) works, note that

with

P (e luster) — (e < 23 )

is at least as large as
P (Lsup 14308 =550 = W) < oo = sup 50
0<t<1 0<t<1

The Bonferroni bands will have asymptotic coverage at
least 1 — a if

P ([zBa - oss\:glibx(t)i] ,/ &> 1) —1.

But this is true because

lpo ~ oy Va(A)V/2logn = 0,(n~%/5\/log n),

using the standard extreme value approximation for the
standard normal distribution, and

sup [b5(t)] = Op(A?) = Op(n~%/%),
0<1t<1

while £, behaves like o1/ Va(N)/(2/5) logn.

Note that the foregoing discussion implies that
lBa/la _’p Jg ~ 2.24.

This suggests that Bonferroni bands, while asymptoti-
cally considerably larger than the bounds employing the
Bickel-Rosenblatt asymptotic distribution, at least have
the same first-order rate of convergence to zero. This
is somewhat comforting. A curious consequence is that
Lot [la —» V5 as n — oo for any 0 < a,a’ < 1. How-
ever, as seen in simulation evidence below, for finite sam-
ples, the performance of the Bonferroni band may not be
as bad as asymptotic theory predicts. In fact, Bonferroni
bands can be narrower than bias-corrected ones.

n o truth no bias- bias- Bonf.
COIT. COIT.
50 0.20 0.8106 0.6264 0.9112 0.8852
50 0.10 09136 0.7732 0.9682 0.9292
50 0.05 0.9680 0.8724 0.9890 0.9582
50 0.01 0.9970 0.9690 0.9996 0.9826
100 0.20 0.8012 0.5928 0.8192 0.8418
100 0.10 0.9196 0.7730 0.9174 0.8964
100 0.05 0.9676 0.8694 0.9672 0.9342
100 0.01 0.9960 3.9742 0.9966 0.9722
200 0.20 0.7958 0.6018 0.7798 0.8690
200 0.10 0.9118 0.7690 0.9052 0.9082
200 0.05 0.9674 0.8756 0.9610 0.9384
200 0.01 0.9974 0.9706 0.9956 0.9742
300 0.20 0.7982 0.6052 0.7796 0.8932
300 0.10 09118 0.7768 0.9010 0.9338
300 0.05 0.9662 0.8818 0.9624 0.9580
300 0.01 09954 0.9786 0.9952 0.9838

Table 1: Empirical coverage probabilities with o = .10.

4. Finite sample properties

To assess the performance of the two methods, we have
conducted a number of Monte Carlo experiments. In one
example, data were generated from model (1.1) using
normal errors and the regression curve

u(t) = e=320-5)°, (4.1)

Sample sizes n = 50, 100, 200, 300 were employed, and
o was chosen to be .10 and .20. Confidence bands were
then investigated for a = .01, .05, .10 and .20.

A plot for a typical data set from the simulation for
n = 100 and ¢ = .10 is shown in Figure 1 along with
the true regression function and a kernel estimator with
bandwidth selected by generalized cross-validation. Fig-
ure 2 shows the bias-corrected and Bonferroni bounds
with o = .10.

For each experimental setting we generated 5000 repli-
cate samples. Kernel estimates were fit to the data
using the Epanechnikov kernel K(u) = .75(1 — u?),
-1 € u < 1, with X selected by generalized cross-
validation. The Hall et al (1990) estimator of o was used.
The proportion of times that all the u(t,), r=1,...,n,
fell inside the bias-corrected and Bonferroni bands was
recorded as well as the average (over replications) band
half-lengths ¢, and £p,. Standard errors for the half-
lengths over the replications and the average of the es-
timates of o were also recorded. In addition, coverage




probabilities were computed for two other intervals,

w0 - =3 (5 2

r=1 :\

and
pi(t) £ 6.

These represent respectively coverage with no bias when
o is known (“truth”) and coverage when o is known but
bias is ignored (“no bias-correction”). The results of the
simulation are presented in Tables 1 and 2. Note that the
empirical coverage probabilities and interval half-lengths
for a = .01, .05, .10 and .20 were computed on the same
set of replications for each sample size. Thus the re-
sults for each sample size are not independent (and the
average of the estimates of o are identical).

n a  bias-corrected Bonferroni o
50 0.20 0.1252(.0190) 0.1263 (.0167) 0.1157
50 0.10 0.1415(.0202) 0.1356 (.0179) 0.1157
50 0.05 0.1571(.0215) 0.1444 (.0191) 0.1157
50 .01 0.1924(.0243) 0.1632 (.0216) 0.1157
100 0.20 0.0850 (.0107) 0.0912 (.0101) 0.1037
100 0.10 0.0956 (.0114) 0.0971 (.0107) 0.1037
100 0.05 0.1058 (.0121) 0.1027 (.0113) 0.1037
100 0.01 0.1288 (.0137) 0.1148 (.0127) 0.1037
200 0.20 0.0639 (.0079) 0.0720 (.0077) 0.1007
200 0.10 0.0714 (.0084) 0.0762 (.0082) 0.1007
200 0.05 0.0787 (.0089) 0.0802 (.0086) 0.1007
200 0.01 0.0951 (.0099) 0.0888 (.0095) 0.1007
300 0.20 0.0546 (.0065) 0.0633 (.0065) 0.1002
300 0.10 0.0609 (.0068) 0.0667 (.0068) 0.1002
300 0.05 0.0670(.0072) 0.0700 (.0072) 0.1002
300 0.01 0.0807 (.0080) 0.0772 (.0079) 0.1002

Table 2: Average confidence band half-lengths (standard
deviations) and average estimated 0.

Several conclusions can be drawn from this experi-
ment. First, the Bickel-Rosenblatt approximation for
the maximum random error ( “truth”) is quite good, even
when A is chosen from the sample. This observation
remained true for other combinations of @ and ¢ not
reported here. Second, the “no bias-correction” case
demonstrates that bias in yu, is a serious problem and
leads to substantial undercoverage. However the bias
correction technique seems to be effective. Finally, the
Bonferroni method is conservative (or nearly so) in all
cases despite ignoring bias.

Table 2 demonstrates that Bonferroni bands can be
narrower than bias-corrected ones, especially for small
a. Surprisingly, this can be observed even for sample
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sizes as large as 300. Table 2 also demonstrates the bias
in the Hall et al (1990) estimator of o. This bias may
well work to negate the effect of ignoring the bias in u,
for the Bonferroni estimator.

5. Application to a statistical experi-
ment

Monte Carlo simulation is a powerful and frequently
used tool in the study of new statistical methodology.
Simulations are used to assess the performance of a
method whose properties would be otherwise intractable
or to verify asymptotic calculations. Characteristics fre-
quently studied such as type I error rates, power, and
coverage probabilities can often be thought of as de-
pending smoothly on factors such as sample size or
unknown parameters. These smooth relationships are
rarely directly computable, hence the investigator resorts
to a simulation study. Because nonparametric regression
techniques are designed to estimate smooth curves, tools
from the area seem ideally suited to the interpretation of
many kinds of simulation experiments. This approach is
related to the Bayesian analysis of the outcome of com-
puter experiments as outlined in Sacks, Welch, Mitchell
and Wynn (1989). In the context of this paper, sim-
ulations provide an ideal application for nonparametric
regression methodology. Here is one case where it may
be possible to generate the very large samples required
by nonparametric regression.

As a concrete example, consider the problem of esti-
mating coverage probability of bias-corrected confidence
bands under model (1.1) with mean function u(t) given
by (4.1), ¢ = .10, and a = .10. It seems intuitive that
coverage probability is a smooth function of sample size.
How can this information be used to improve the Monte
Carlo estimate of coverage probability and to give con-
fidence bounds on the estimate?

There are a number of interesting design questions for
this simulation experiment. From preliminary work, we
felt that the relationship between coverage probability
and sample size could best be modeled on a log scale
in sample size. One hundred sample sizes r.,,...,n500
were chosen between 50 and 1000 with ny = 50 and
ni4+1/ni = constant subject to the restriction that sam-
ple sizes must be integer. A total of 1,600 replications
at each sample size were made (for a total of 160,000
replications). The proportion of times all the u(t,) fell
within the confidence bands for all t, was recorded at
each sample size. Thus the output from the simulation
consisted of 100 data points. Assuming that the cov-
erage level is approximately constant over sample size,
the sample proportions are approximately normally dis-
tributed with constant variance. Using the log scale for
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sample size meant .liat most of the computing effort was
expended for relatively fast cases, so the project was fea-
sible on a network of four SPARC2 processors.

The raw data from the simulation for the bias-
corrected method with ¢ = .10 and a = .10 are shown
in Figure 3. The fitted curve estimating coverage prob-
ability was calculated by Gasser-Miiller kernel smooth-
ing using the Epachnikov kernel on the interior, bound-
ary kernels at the end points, and bandwidth chosen by
cross-validation. The smooth was computed on the log
scale. To illustrate the kind of application possible with
simultaneous confidence bands, Figure 4 shows a 95%
confidence band computed by the boundary-correction
method for the data in Figure 3. Because the standard
errors were computed from the terms of the boundary
kernels used for ux and ji”, the confidence band widens
at the boundaries.

This simultaneous confidence band is not fully sup-
ported by the results of section 2 because the design is
not exactly equally spaced and because true coverage
probability is not a periodic function of sample size. We
conjecture that the results of section 2 extend to this
situation. At worst, the results can easily be extended
to all of the interval except near the endpoints. In Fig-
ure 4, the boundary regions extend from 0 to approx-
imately 70 and from approximately 700 to 1000. Thus
the confidence band appears valid at least over the range
of sample sizes between 70 and 700. Note that from
approximately 140 on, the band contains the nominal
90% coverage probability, and the width is only about
1% over much of the region. We believe that this graph
with its confidence band gives helpful information on the
uncertainty of the estimated coverage probabilities.
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Figure 1. Data with regression curve and kernel smooth.
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Figure 2. 90% bias-corrected and Bonferroni bands for data in Figure 1.
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Figure 3. Empirical coverage probabilities for alpha = .10 with fitted curve.
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Abstract

A global optimization algorithm which generalizes
Kushner's (1964) univariate search is introduced. It aims to
minimize the number of probes (function evaluations)
required for a given level of certainty in the results. All
known probes contribute to a stochastic model of the
underlying *“score surface”; this model is interrogated for the
location with the highest probability of exceeding the
current result goal. The surface is assumed to be
characterized by Brownian motion, leading to a piecewise
gaussian model, where the local regions are defined by the
Delaunay triangulation o: the probes. The algorithm
balances the competing aims f 1) sampling in the vicinity
of known peaks, and 2) exploring new regions. Preliminary
tests on a standard 2-d search problem are very encouraging.
1. Introdnction

Global search techniques are required o optimize parameters
which nonlinearly affect the output of a model, such as with
logistic regression, or the intermediate weights of an
artificial neural network (ANN), Global search is also called
for when the fitting criterion, or score function, is anything
other than a few special accuracy metrics, such as mean
squared error (MSE, L) or least absolute deviations (LAD,
L1). For instance, the cost of errors can be asymmetric
(e.g., a classification "false alarm” can be much less costly
than a "false dismissal”) or, a range of estimated values
might correctly lead to the same action (e.g., buy/sell), or
the true score function might include objectives (low cost,
high safety, etc.) other than accuracy alone. In fact, the
main reason linear (Lp) models are employed so extensively
in so many fields is their strong mathematical tractability
and the mass of tools, training, and experience available as a
result. The significant benefits of linear models should only
reluctantly be abandoned, but once set aside, the resulting

results become available, in order to home in on the goal as
quickly as possible, and to have some confidence that a
(reasonably) deeper point is not "out there somewhere”.

Figure 1 (after Elder and Finn, 1991):
Globa‘l“Optlmhluon is Like Depth-Sounding;
Choose a location (parameter setting) and probe for the depth
(evaluate the function) looking for the minimum.

The surface model is interrogated for a good location to
probe. Should analytic solutions prove too difficult,
internal model search can be employed; that is, the model (as
a rapid surrogate for the true score function) can be sampled
at various candidate probe locations to determine the most
promising one. New probe results then update the model,
and the cycle continues.

The algorithm introduced here attempts to gencralize the
clegant 1-dimensional stochastic method of Kushner | $o4)
and was inspired by the continuing work toward this end of
Stuckman and colleagues (e.g., Stuckman, 1988). The
refinements of (Perttunen, 1991) and this paper are believed
to lead to a d-dimensional algorithm more theoretically
consistent (i.c., less heuristic) and hence, more efficient.
The new algorithm is designed to require drastically fewer

freedom to design a score function to match the true use of function evaluations than conventional searches. (It can be

the model should be exploited. This requires global search,
2. Model-Based Search

Global optimization of parameters over a database of
example cases can be likened to depth-sounding, as depicted
in Figure 1. One probes for the depth (evaluates the score
function) at a given location (set of parameter values) in
pursuit of the deepest spot (global minimum). Model-based
searches build up a rough picture of the ocean floor as probe

said to "think" more but "run" less than other methods.) It
is capable of discovering multiple extrema whether or not
the function is differentiable and, as it builds on known
results, can be paused and restarted with no waste of probing
effort. Importantly, a confidence measure in the results is
provided. which is an approximation to the probability that
the final answer could be improved upon by continued
probing. Lastly, the algorithm is easily parallelized, with
anticipated speed-up nearly linear in the number of added
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processors. This paper describes Kushner's 1-dimensional
method, the important Stuckman et al. generalizations, and
the enhancements leading to the new algorithm, known as
Global R? Optimization when Probes are Expensive

(GROPE).!
3. Kushner's 1-Dimensional Search

Kushner's optimization method for one dimension models
the score surface, y, as a random walk in x; that is, as a
Brownian motion or Weiner process, where the y value at a
point x is distributed as a gaussian random variable with
respect to neighboring points. An example “drunkard’s
walk” is shown in Figure 2; the path is like that of one
moving forward (in x) at a constant rate, but staggering
random amounts to each side. The stagger distribution is
guassian, and for a time series with discrete steps, y;+1 can
be shown to be N(y;, 02). That is, the mean value for the
next point is the current point; no information about the
direction of the step is available. In particular, knowledge of
earlier y values (i.e., how the curve got to y;) is of no use;
the distribution is memoryless, or Markovian, and the only
values affecting the estimator of an unknown point are those
of its nearest left and/or right neighbors in x.

Figure 2: An Example Random Walk
(Y = Cumulative Sum of N(0,1) X(t))

The random walk is descriptive of many processes,
ranging from the Brownian motion of particles suspended in
a liquid to the price history of the "Standard and Poor 500"
index in the stock market. As a surface model, it has the
advantage of being fractal or locally rough (it is nowhcre
differentiable) but regionally smooth. Thus, it is possible,
though unlikely, for a large jump in y 0 occur between

1Earlier search algorithms by the author with that name are
Guided Random Optimizer of Performance Error (e.g., Elder and
Barron, 1988), and Global Regression of Probe Evaluations
(Elder, 1991). Some acronyms never die!

points close in x; but, most near differences will be small,
and the surface is broadly “rolling” -- a representation
capable of fitting many practically occuring functions.

A further practical advantage of the representation is its
mathematical tractability. In the case of no noise, the
Markovian property implies that the conditional expected
value of y at a position x between two known points a and
b, is the linear interpolant (shown in Figure 3a):

u(x 1 x,y) = ya + p(¥b - Ya) 0y

X-Xg
Xp-Xg
conditioned on all previous results is a quadratic function of
the distance from the interpolating bounds:

w.cre the proportion p is Also, the variance

P(x1x,y) = cp(l - p)(xp - x0) @

for some slope factor, ¢ (the mean squared vaiiation in y as x
changes). (Note that 02 has no other dependernice on the y
values.) As depicted in Figure 3b, this variance grows
linearly with distance when only one neighbor is known
(while the mean remains constant at the edges). When noise
is present (i.e., probes at the same location can return
different values), the representation is only slighly adjusted
(Kushner, 1962): u(x) does not go through the samples

exactly, but shrinks toward neighboring samples, and 0(x)
is positive, not zero, at the probes.

s
»a
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Figure 3a: Expectation of Y Conditioned on Ys and Yb
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Figure 3% Varlance of Y Conditioned on Known Values st Xs and Xb

Kushner (1964) solved for the probe location most
likely to exceed the current best value by a fixed amount




(and suggested this magnitude could change with time,
predating the effectively similar strategy of "temperature
scheduling” which directs simulated annealing.) A slightly
different perspective, proposed by Stuckman and Scannell
(1991), is to seek the point most likely to exceed a given
result goal, yg; that is, to find the x which maximizes

Prlyx> yg Ixyl=1- ¢[1‘j(%’—)1 ®

This is depicted in Figure 4 for a one-dimensional line
segment. Locations, x , close to that of b have the
advantage, in putting probability mass across y,, of starting
closer (closer mean); yet, locations in the middie of the
segment stretch farther (have greater standard deviations).
Thus, the conflicting aims of exploration and exploitation
are balanced. The goal-exceeding objective is also appealing
when a natural bound is available, whether from known or
theoretical limits (e.g., zero error) or, say, a competitor’s
results! When a value is not available however, the
algorithm can employ the usual “carrot on a stick™ approach,
and strive to beat the current best result by a (possibly
dwindling) amount.

Yg

Yb | o———

Ya

Xa \ Xb

X

Figure 4: Maximize Probability of Exceeding Goal, Yg
Given Y(x) ~ N(i1(x),0(x))

As the cumulative normal function, ¢, is monotonic,
we may maximize (3) by minimizing its argument, or
rather, the square of the argument, to accommodate the
variance (2). Substituting, this translates to finding the
proportion p which minimizes

e -0g+plyp - yo) )12
A®) =00 - p)xb - 7a) @

Solving %ﬁ- = 0 reveals that the optimal location depends
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only on the relative distance of the end points to the goal:

P'= aaelb ®)

where Aa = yg - yg, 4b = yg - yp. (Note that the slope
parameter, c, has no influence on p*, and may be dropped.)
The value A(p*) is a distance monotonic with the line
segment’s maximum conditional probability of containing a
probe capable of exceeding the goal.

The 1-dimensional algorithm can be summarized:

1) Probe the two bounds of the search space.2

2) Calculate the best sampling location, p*, for the line
segment, and insert that location, x*, in an ordered
list according to its distance estimate, A(p*).

3) Remove the top member of the list and probe at x,
breaking the line segment (a,b) into (a.x) and (x.b).

4) Repeat steps 2 and 3 (with two segments for step 2)
until the goal is exceeded, resources are exhausted, or
the probability of better results is acceptably low.

A few steps of the algorithm are shown in Figure 5.

After each probe, the list of candidate probe locations
increments in length, as one segment is removed and two
take its place. Unless the goal changes, in which case the
optimal location for each segment must be reevaluated, only
the p* locations for the two new segments must be
computed. (And it can be shown that their two distances are
identical; e.g., Figure 5b. In that example, ties were broken
randomly.) When results are far from the goal (presumably
at the beginning of the search), the variance component of
(4) dominates and locations relatively midway between
known probes are preferred. When the best probes instead
score near the goal, further probes in their vicinities are
called for. This mechanism performs the tradeoff between
the conflicting search aims of 1) homing in on the extreme
of a promising area, and 2) sampling unknown regions.

The search is terminated if either the goal or the probe
limit is reached. Altemately, the slope parameter ¢ (usuall;’
not known) can be estimated from the probe results, and
used to compute the probability, according to the underlying
model, that some probe yet exists which could exceed the
goal. In a similar manner, Stuckman (1988) employs ¢, the
maximum likelihood estimator (MLE) of c, along with the
single closest candidate probe, to calculate the probability
that the next guess will do the job -- stopping when this

~The iniualizing probes can be at locations other than the
hounds (in which case, the algorithm would begin with three
linc segments). However, if the first samples are not close to
the edges of the legal space, the algorithm may later call for
probes there anyway, since the variance grows so rapidly
beyond the outermost probe.
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Figere Sa: Luitial Model

Figere 5: First [toration
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value is very small, e.g. 10°6. However, as each candidate
probe is independent under the random walk model, one may
calculate the joint probability that one of the N current
candidates could exceed the goal,

N

Pr(3i3y(pi) > g 1p. AP =1- || 0VAGH ©

i=1
where £ is used in A (equation 4).

A more reliable analysis of joint probability would be
predictive (Aitchison and Dunsmore, 1975), and employ the

Figurs S4: Third ltaration

Figure Se: Feurth Iurstion

full distribution of c. Such an estimator weights each
possible ¢ value by its relative effect on the likelihood of the

data, L(xIc). In place of A(x) with £, one would use

xlc

A(x, IX)dc, wh Ix) =
CI (x,0)p(clx)dc, where p(cix) IL(xlc)&:
C

This is superior to the estimative technique of (6), which
acts as if all the mass of the likelihood were on the MLE
mode, & = sup(L(xic)). Computations are substantially
facilitated by employing conjugate prior distributions for the
parameters (as described in the above reference).

4. Extension to Multiple Dimensions

The key difficulty in expanding Kushner's algorithm from
R! to R? -- and perhaps the reason the method saw little use
for a generation -- is the extension of the random walk
model into a random field. There are two field definitions in
the literature (e.g., Adler, 1981) and, an approximation to a
third is employed here.

The multi-univariate version of Kushner's method
(Stuckman, 1988) avoids the issue of random fields, and




instead employs the one-dimensional algorithm along the
line segments connecting all pairs of probes (or a subset of
k-nearest neighbors for each probe, where k jumps an order
of magnitude when the probe is the current best). However,
such a technique can ignore a probe intermediate to another
pair and, more importantly, is silent about function values
everywhere except the line segments connecting probes.

To cover the search space, the region within the convex
hull of the probes can be tessellated (divided into space-
filling dlsjomt regions) into a set of simplices. InR4, a
simplex is a convex polyhedron composed of d+1 vertices
(i.e., a triangle in two dimensions; a tetrahedron, in three).
If a simplex subdivision approach is employed (e.g., Groch
et al., 1985), a new probe divides its surrounding simplex
into d+1 smaller simplices (defined by the new point and
each face of the old simplex), leaving all other regions
intact. It would be better, however, to update the entire
tessellation in a manner maintaining some optimality
property, such as local equi-angularity, as proposed by
Lawson (1972), in which small angles in triangles are
avoided. Sibson (1978) proved that the unique set of
connections with this property in the plane is the Delaunay
triangulation. (However, in three and higher dimensions,
this triangulation does not necessarily maximize the
minimum solid angle (Joe, 1989).)

The Delaunay triangulation is the dual of the Voronoi
(or Dirichlet or Thiessen) tessellation, wherein regions are
partitioned according to the nearest neighbor rule. That is,
all the points within a region are closer (by L2) to the same
known probe than they are to any other. Another property
of the triangulation has long been known for low dimension
(Miles, 1970), but only recently proven in general (Rajan,
1991): the circumscribing sphere of each simplex is empty;
i.e., the only triangulation in which the sphere intersecting
the vertices of a given simplex contains no other point, is
the Delaunay (a construction illustrated in Figure 6). (Rajan
further proved that the maximum radius of the smallest of
such spheres is less than that for any other triangulation --
allowing the Delaunay triangulation to be formulated as a
solution to a continuum optimization problem.)

The properties of Delaunay triangulations make them
useful to many disciplines, including (in 2-d): surface
interpolation, geophysical contouring, and the study of the
spread of epidemics; and 3-d modelling of the interface
network of polycrystalline materials. The optimization
algorithm of Perttunen (1991) employs Delaunay
triangulation to tessellate the search space, but scores each
candidate simplex with a heuristic, nonparametric metric:
the product of the ranks of the vertices divided by its
content, or “hypervolume” (Pertunnen and Stuckman, 1990).
The next probe is taken within the winning simplex, at the
weighted average location of its vertices (where the weights
are the inverse relative ranks of the probe scores).
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Figure 6: Delaunay Triangulation of 4 Points
according to Empty Circumsphere Rule

Incorporation of Delaunay triangulation improved the
ranking method, causing the scatter plot of search points to
better correspond to the contour diagram of each objective
function tested (Pertunnen, 1991). However, use of the
ranking, coverage, and weighting heuristics lead to a
technique having little in cominon with Kushner’s
stochastic algorithm. Building on the ideas of tessellation
and goal-direction however, a more straightforward
generalization is possible. One could perform a linear
interpolation of the response values at the Delaunay vertices
to define the conditional expected values inside a simplex,
and use a guadratic polynomial for the conditional variance,
constrained to agree with Kushner’s quadratic variance curve
along each 1-dimensional simplex edge. The expectation is
thus composed of a piecewise planar surface -- resembling
facets of a gem (or, perhaps, the hinging hyperplane
modelling technique recently proposed by Breiman, 1991).
For example, the 2-dimensional Delaunay triangulation of
probes in Figure 7, leads to the interpolation surface
illustrated in Figure 8.

The relative variance “canopy” arches over the simplex
as shown in Figure 9, from lows at locations with known
values, to an interior peak far from the vertices. This
variance can be defined by the (unique) complete quadratic
polynomial in d variables which conforms to Kushner's

equations along the (d;l) edges of the simplex (and is

undefined outside these bounds). These variance constraints
are imposed since a hyperplane defined by the vertex values
is used for the expectation. The variance can be viewed as a
measure of uncertainty about the mean, so their methods of
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estimation must be linked. Along an edge, only the pair of
connected vertices affect the conditional mean value3 (as
with Kushner’s 1-dimensional method); therefore, the edge
constraints on variance are necessary for this generalization
of the algorithm.

Figure 7: Delaunay Triangulation of 28 Probes

(from grid of 25x26 potential sites)
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Figure 8: Triangular Facets Interpolate Function Surface

3This 1-dimensional property can have the side-effect of
ignoring the single nearest known probe, as can happen (for a
“thin” simplex) when estimating the values of an edge segment
near a third vertex. This behavior however, is confined
primarily to the convex hull (i.e., outer edges) of the space.

Figure 9: Example Variance Canopy

(Constrained to agree with Kushner's quadratic equation
along 1-dimensional edges of the simplex)

The edge constraints are also sufficient. There are (d;Z)

parameters in a second-order polynomial in 4 variables. (In
general, the complete polynomial with maximum power p

has (d;p ) terms). Each of the (d;l) edges of the

simplex contributes one constraint -- say, the value of the
variance at the midpoint of the segment (which, for a given
c, is defined by its length (2)). The remaining d+1
constraints are provided by the vertices of the simplex, for
which the variance is a minimum fixed value (zero for
noiseless probing). Since none of the edges are collinear (as
demonstrated by the existence of a circumsphere for the
simplex), the exact match of constraints and degrees of
freedom means the polynomial solution will be unique and
have zero error. (Still, in practice, thin triangles on the
convex hull can lead to nearly collinear edges. Thus, robust
regression techniques (e.g., singular value decomposition)
which remove near-sigularities are required.

The locations and scores of the d+1 probes of each
simplex thus define the equations for the linear expectation,
(x), and quadratic variance, 2(x), of its interior (which
may be solved for using ordinary regression). In one
dimension, the optimal interior location, x°, for each
simplex is known analytically (5). This can also be shown
to be the case for two dimensions, but the solution is
surprisingly complex. For multidimensional applications,
an easier approach is to perform an internal search of the
function to minimized

. 2
A(x) = Q‘;*(‘XL;‘ZL ®




Figure 10: Example A(x) Surface
(with Location of Minimum Noted)

As shown for a 2-dimensional example in Figure 10, this
squared distance function is positive, smooth, and unimodal
-- allowing any of several local minimizers to be employed.
(However, the function is not defined outside the simplex,
and explodes at the vertices, so care must be taken at the
boundaries.)

The GROPE algorithm is initialized by probing d+1
points from the convex hull defining the search space, or by
absorbing previous results. (As all probes contribute to the
model locally, any restart of the program can pick up exactly
where a prior run left off.) Then, until the goal, yg, is
reached, resources run out, or the probability of
improvement is sufficiently slight (see above), iteratively:

1. Construct/Update the Delaunay triangulation,
removing candidate probe locations representing
obsolete simplices from the ordered list.

2. For each pew simplex j:

a) Solve for pj(x) given vertices.
b) Solve for 0%j(x) given vertices and edges.

c) Find the best probe location, x',-, for the simplex
by minimizing Aj(x) (8) (the squared, standardized
distance to the goal).

d) Insert this candidate probe location into a list
ordered by Aj(x).

3. If locations on the intended convex hull remain
unknown, probe there; otherwise, pop the head of the
list, and probe at that location.

Steps 1 and 2c, the re-triangulation and the internal
search of new simplices, are most affected by the number of
probes, N, and problem dimension d. The added overhead is
rather great (compared even to some other model-based
searches). However, whenever probe computations are not
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trivial, that time should be more than compensated for by
the algorithm’s judicious choice of locations. (Time saved
not “running” > Extra time spent *“thinking”). For example,
in this author’s aerospace experience (e.g., Elder and Barron,
1988), each probe for a guidance or control application
consisted in running a full computer simulation with a new
set of parameters. Such a task can easily take minutes per
probe on a workstation (and engender, in the early moming
hours, a visceral distaste for senseless search methods!).

If ¢ processors are available (and if the application
permits) ¢ - 1 probes may be removed from the head of the
list and evaluated in step 3. The last processor could update
the Delaunay triangulation, given the locations of the new
probes, as the triangulation does not depend on their results,
y. Of course, the problem addressed should be reformulated
to: find the best ser of probes such that one is likely to
exceed the goal. However, this simple g-at-a-time mehtod
should provide near-linear speedup for a common type of
hard problem, where many regions of the domain must be
explored (in which case the probes may as well be
simultaneous as sequential).

5. Early Experimental Results

A 2-dimensional prototype of GROPE has been prepared,
which uses Tipper’s (1991) program for planar Voronoi
tessellation (mapped into Delaunay triangles), and the
downhill simplex method of function minimization (Nelder
and Mead, 1965) for the internal model search as
programmed by (Press et al., 1988). The test function was
the bimodal “Hosaki” equation (Bekey and Ung, 1974)

3 x4
(1-8x1+7x12- %l— + %) x22 exp(-x2) ®)

pictured in Figure 11. The global minimum for x € [0,5],
x2 € [0,6] is -2.345 atx =

4.2).

i \\\\\iu"u'n

Figure 11: Hosaki Function
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For testing purposes, nearness to the final answer was
the stopping criterion. This is not usually possible for
“field” applications, but allowed comparison with two
random methods: modified random creep (Bekey and Ung,
1974) and adaptive random search (Ponzato et al., 1984). In
addition, recent results from the sequential design for
optimization, a promising RBF-like model-based technique
of Cox and John (1992) are included in Table 1.

Table 1: Hosaki 2-d Function Results
Method #Probes to Soln, |
Modified Random Creep 451
Adaptive Random Search 830

Sequential Design for Optimization | 55 (constant param.)

36 (linear param.)

GROPE (2nd trial) 11 (goal = -3.0)

The first GROPE run employed the known minimum
as the goal, yg, but crept too cautiously toward the final

location, and was abandoned.* The cautious approach
suggests that local probing is overly preferred to exploration
of new areas; i.e., that the role of variance is too low
relative to that of expectation. Accordingly, a more remote
goal, yg = -3, was set (though, of course, still halting at
Ymin), leading to much improved results: only 11 probes.
The final triangulation of this second run is pictured in
Figure 12, where the vertices of the Delaunay triangulation
are known probes, each “x” represents a candidate probe
location for its triangle, and the *“.” denote discarded candidate
locations (due to dissolution of the surrounding triangle).
The position of the global minimum is noted (*-”), and the
11th probe value was -2.344. Note that the number of
triangles (and thus candidate locations) increases by two after
each probe -- a property of the 2-d Dealaunay triangulation.

6. Potential Improvements

Both GROPE runs in the example problem were initialized
by probing the four corners of the search domain. Such
rectangular bounding requires 24 initial probes, which can be
expensive in problems of high dimension. Furthermore,
these first probes are taken in the regions least expected to
produce useful results: the domain boundaries. A minimum
of d+1 probes (a single initial simplex) can define the
domain; yet, to roughly match the content of the hyper-

4The fractal surface assumed by the algorithm Is unlike the
smoothness exhibited by the “toy” test problem; however, the
main problem encountered was nearly collinear vertex edges,
which will require a robust (intemnal )regression method.

rectangle, these probes would have to be even more extreme
in location. It is convenient for the algorithm to have the
bounds set initially, and always be performing a type of
interpolation operation. But instead, perhaps some type of
Bayesian technique, with distributions reflecting the
desirability of probing in the center of the region, could be
employed. This could restrain, to an adjustable degree, the
otherwise linearly increasing variance beyond the outermost
probe towards the bounds.

A simpler improvement, as suggested by the example
application, would be to adjust the single current parameter
of the algorithm (yg) with time and/or performance -- a
“relaxation” technique similar to other methods. Further
research may show that a good goal scheduling strategy can
be inferred for a problem from metrics of its ongoing results
-- e.g., the distribution of probe results and its extreme, the
(estimated) smoothness of the score surface and its
variability, and the distribution of simplex content.

Also, as experienced in the first trial, regression
singularities can occur when fitting the variance of long
“thin” triangles near the convex hull having nearly collinear
edges. Use of a robust fitting method (e.g. singular value
decomposition with removal of small eigenvalues) is being
investigated to remove this symptom of “overfit”.

Figure 12: Triangulation of Hosaki Function after 11th Probe

7. Conclusions

The GROPE algorithm is a novel, efficient, model-based
stochastic RY optimizer, in large part generalizing Kushner's
elegant 1-dimensional method. For medium-dimensioned
problems (up to a dozen variables, say), the model-based
search technique should provide more accurate results using
(drastically) fewer probes than competing methods, and
provide an interpretable confidence in the outcome.
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Abstract

Stable distributions can be used to model phenom-
ena where the underlying distribution has heavy tails.
A difficulty in using stable distributions in applications
is that, except for a few special cases, there is no ex-
plicit formula for the densities. This paper describes how
an arbitrary stable distribution can be approximated by
a stable distribution with a discrete spectral measure.
Densities of the approximation may be numerically com-
puted by inversion of the characteristic function and a
method is discussed for generating stable random vectors
for simulation purposes.

1. Introduction

Let X = (Xi, ..., X4) be a d-dimensional a-stable ran-
dom vector, 0 < a < 2. The best known examples arc
normal (a = 2) and Cauchy (a = 1) random vectors; for
general definitions and theory see Samorodnitsky and
Taqqu (1992). The distribution of X can be described
in terms of a spectral measure in the following way. Let
(%) = Eexp(i(f, X)) = Eexp(i T}, t; X;) be the joint
characteristic function of X. Kuelbs (1973) showed that
X is a-stable if and only if there exists a finite measure o
on the unit sphere S9-! ¢ R? and a shift vector 7€ R4
such that ¢(f) = exp(~ fsi_s ¥({F, 3))0(d5) + i(F, ),
where

a=1,

[t|*(1 —itan Z2sign(t)) a#1
vo-
It1(1 + i2 sign () In |¢[)

Throughout we assume that X is truely d-dimensional,
which is equivalent to the support of ¢ spanning R¢. We
will also assume that the shift vector f is zero.

2. Approximation

This section will show how to approximate the density
p(£) of X in terms of the spectral measure ¢. Theorem
1 shows we can approximate p(Z) by a computationally

simpler density, one that corresponds to a stable distri-
bution with a discrete spectral measure. To state the
theorem we need a definition. Given a finite partition
Ay, ..., Aq of S9! and points §,...,5, with § € 4;,
define a discrete measure o* based on o by concentrating
mass o(A;) at §j, i.e.
n
o ()= o(A;)65,(")

i=1

(2.1)

Theorem 1 Let X be a truly d-dimensional a-stable
random vector (d > 2,0 < a < 2) with spectral measure
o and density p(Z).

(i) For all € > 0, there is a discrete measure ¢* of form
(2.1) which corresponds to a d-dimensional a-stable ran-
dom vector X* which has a density p*(Z) satisfying

sup |p(Z) —p*(%)| < e
zeR*
(ii) For all € > 0, there is a discrete measure o* of form
(2.1) which corresponds to a d-dimensional a-stable ran-

dom vector X* which satisfies

sup |P(f€ A)-P(z" € A)|<e.
AEBorel(R‘)

The proof of Theorem 1 can be found in Byczkowski,
Nolan and Rajput (1991). It shows that the only require-
ment of the partition used in (2.1) is that the diameter
of the sets is sufficiently small. An explicit value for this
diameter (as a function of ¢, a, d,0), hence a concrete
value for the number of terms in (2.1), is given in the
reference. The method of proof is straightforward: if
o* is “close” to o, then the integrals in the exponents of
¢*(f) and ¢({) will be close. By the inversion formula for
characteristic functions, the densities will be uniformly
close.

3. Numerical Calculation

Theorem 1 above shows that an arbitrary stable den-
sity can be approximated by one with a discrete spectral




density. Thus we can understand the general behavior
of stable densities by examining ones with discrete spec-
tral measures. The characteristic function of a stable
random vector having discrete spectal measure (2.1) is

#(%) = exp(~I(t)), where
I0) =Y $((T.5;))0(4;)).
i=1

Note that since o is discrete, I({) is a finite sum. Hence
the characteristic function is much simpler to evaluate
than it would be if & was arbitrary and the exponent of
#(f) required an evaluation of an integral over S4-1.

The steps necessary to numerically invert th‘= charac-
teristic function are outlined below. T the Lact that
p(-) is real to write

pE) = 2oy [ eeng@ar= [ G0,

where J (I, £) = (27)~ 9 exp(—R I(t)) cos({(z, t) + S I(t)).
To approximate p(Z) to within ¢, first truncate the region
of integration to a disk: Lemma 7 of Nolan and Rajput
(1992) gives and explicit bound for K = K(e¢,a,0,d)
such that

| / J(E, 2)df - / J(E 2)dl] < ¢/2.
R |F<K

What remains is a numerical integration problem: eval-
uate the d-dimensional integral of J(f, £) over the disk
It] < K to within €/2.

Nolan and Rajput (1992) give a program to calcu-
late this integral when d = 2 that uses a 2-dimensional
adaptive integration technique. Figure 1 shows both the
density surface and the level contours of an density com-
puted using this algorithm on a 41 x 41 grid. Clearly
stable densities when a < 2 can be very different from
the elliptically contoured Gaussian densities.

4. Simulation

A method is described for generating stable random
vectors X having discrete spectral measure. One use for
these random vectors is to test the robustness of multi-
variate statistical procedures: generate a data set with
random noise having heavy tails and dependent compo-
nents and evaluate how well a procedure performs. An-
other possible use is in calculating P(X € A) for sets
A CR’. Since the numerical calculation of these prob-
abilities is difficult when d > 2, one can estimate them
by standard Monte Carlo methods once we know how
to generate vectors with the prescribed distribution. A
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Figure 1: Density surface and level contours of a stable
distribution. a = 1.25 and the spectral measure has
3 point masses: oy = 032 = 03 = 0.2 at 5, = (1,0),
§ = (cos z:-,!,sin 35’5), and 53 = (cos %,sin 531).
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third use for such random vectors is in economic simu-
lation, e.g. the stable portfolio analysis of Press (1972).

Let V be a one dimensional a-stable random variable
that is normalized, has zero shift parameter and totally
skewed to the right, i.e. the characteristic function of V
is Eexp(itV) = exp(—¥(t)). The following lemma says
that any a-stable random vector with discrete spectral
measure has the same distribution as a linear combina-
tion of vector multiples of such one dimensional i.i.d.
stable random variables.

Lemmallet0<a<?201,...,0,>0,8,...,5, €
S9-1, and V,...,V, be i.i.d. one dimensional normal-
ized a-stable random variables that are totally skewed
to the right. If X is the a-stable random vector with dis-
crete spectral measure o(d5) = 37, 0;67,(5) and zero
shift vector, then

Py { F=103 V5 a#l

Tpeioi(V; + 2inoy); a=1.

(4.1)

Proof Note that for r > @,

roy(t) a#l
Y(rt) = { (4.2)
rp(t) +iZ(rlnr)t a=1.

First consider the case when a # 1. Using (4.2), inde-
pendence and the characteristic function of the V;’s, the
characteristic function of X is

n
Eexp(i ¥ _(5,0;/°V;5))
j=1

Eexp(i(f, o}/ V;5;))

Il
i=1

= ] exe(-¥((F, 0} *5))
j=1
H exp(~¥((f, 5j))o;)
i=t

= exp(- Z W((F, 5;))o;).

i=1

This is the result when a # 1. The a = 1 case is similar,
using independence and (4.2).

The method of generating stable random vectors is
straightforward: generate the one dimensional stable

-2 -1 0 1 2

Figure 2: Contours of empirical density for randomly
generated stable vectors with the same parameters as
Figure 1.

random variables Vj,...,V,, and substitute into (4.1).
Chambers, Mallows and Stuck (1976) gave an algo-
rithm for generating such one dimensional stable vari-
ates. More details, a discussion of a geometric interpre-
tation of Lemma 1, and the listing of a program that
generates such random vectors is given in Modarres and
Nolan (1992). Figure 1 is a plot of the level contours of
the empirical density function generated by the method
above. It is based on a simulation with 5,000,000 vectors.
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Abstract

Self-validating computations based upon interval arithmetic
can produce computed values having a guaranteed error
bound. Conventional algorithbms based "point” arith-
metic, on the other hand, can lead to ex vglﬁ'poormults.
This paper gives methods for obtaining self-validating results
when computin ilities, illustrated with the bivariate
normal cum e distribution function. The results from this
study assessments of the accuracy studies of classical
"point" algorithms.

1. Introduction

Bivariate normal distribution is one of the most popular
bivariate distributions. The computation of the cumulative
distribution function (CDF) values of this ility has been
of interest to statistician for many years. y conventional
"point” gl_forithms such as Owen (1956), Drezner (1978),
Divig (1979), and Drezner and Wesolowsky (1990) bave been
published to compute these probabilities. Some of the ;lﬁ
rithmgﬁeaowracy problems, for example, Monahan (1
and 1990b) discovered that the Drezner’s algorithm (Drezner
1978) can produce reasonable results for the tand
positive correlation coefficients but delivers doubtful results
for the other cases. Therefore, to develop a self-validating
algorithm to compute the CDF values can provide a solid basis
for studying the accuracy of these competing algorithms.

Sclf-validating numerical method is sometimes called
automatic error analysis, and it can be achieved in man
different ways. We will use interval arithmetic to acoomph'sg
the goal of self-validation. This means that we compute an
interval whichis teed to contain the theoretically correct
CDF value. Then the midpoint of this computed interval is
the "point" approximation and the half-width of this interval
is the teed absolute error bound giving validity to this
midpoint approximation. Since we strive to obtain intervals
having very small width (less than 10™**), the approximations
obtained provide essentially correct values to be used as abasis
for comparing the accuracy of outputs from competing point
algorithms.

Basic elemeats of interval arithmetic and a reference list
can be found in Kennedy (1990). Algebraic properties of
interval arithmetic are given in Moore (1979) and Ratschek
and Rokne (1984). Computations involving intervals do, at
first sight, seem tobe a complicated and inconvenient process.
In fact, this is not the case given today’s computer hardware
which includes standard ﬂoatincg'foint su A few simple
functions give interval arithmetic capabilities. The imple-
mentation of interval arithmetic, and computation of interval
inclusions for various functions are described in Wang and
Kennedy (1990 and to appear). This paper omits the details
of these issues.

In the next section, we will describe a self-validating
numerical method for obtaining interval inclusion of the
bivariate normal CDF. Then some computed results will be
presented in the third section.

2. Self-validating Numerical Method of Evaluating the
Bivariate Normal Integrals

Given a random vector z = (z,,2,)’ having the bivariate
normal distribution with mean vector 0, unit variance, and
correlation p, the probability P of z, less than * ~nd z, less than
k can be expressed as

P(h,kip) = [ jf(zpa) dzdz, @1)

kw(a,b,c,p) = j }f(zl.zo dr,dz,

It is easy to verify kw(a,b,c,p) = kw(-b,-a,c,-p). Using
this equation along with the well known relationship

P(0,0,p) = 025+ %22 (Owen 1956), (2.1) can be written as

sin”p
2x

+sign(hYew(0, | h |k, sign(h)p)

+sign(k¥ow(0, | £ 1,0, sign(k)p) 22)

Our purpose is to find an interval inclusion (an interval
which contains the true value of P) of (2.2), i.c., we need to
obtain interval arithmetic. Therefore, we can focus our
discussion on obtaining interval inclusion for kw(a, b, ¢, p).

Under the transformation Y = T™'Z, where T is the trian-
gular matrix ) )

P(h,k;p) =025+

1 0
(p \/l_;’) '
we have
b <)

kw(a,b,c,p) = I I @) exp (1-12(c + yY) dudy (23)

where c(y) = (¢ - pyW1 -p’. Let us express kw(a, b, c,p)
in(2.3) as

»
twia,b,c.p)= [ hy) dy 24)

where




u(y)=-y'r2
f9) = 2y *exp™®

«(y)
g0 = [ @nyexp (-x*2)dx

h() =f)*8(y)-
We denote the Taylor coefficients of function A(y) at
ma=(a+b)2as
(h(m))g = h(m)
1 d*h(y)

(h(m)), = e

and expand the Taylor polynomial of h(y) at y = m. After we
integrate this Taylor polynomial term by term, we obtain the
integration rule

k=12...

b m)lol

ir, =23, (nom) &7 @5)
lcv-
and the error term
+l
ie, = 2n(e)), L2V 2.6)

of (2.4), where nis a positive even number and ¢ is an unknown
number in the interval (@, b). Let (H), be an interval inclusion
of (h),, X =[a,b], M =[m,m),andD =[b-m, b-m]. We
can form an interval inclusion Ik, = Ir, +Ie, of kw() for each
even number n, where

Dul
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D-ol

ie, = 2(H(X)) (2.8)

is an interval inclusion of (2.6). Now,
KW, = Ik,
KW, =KW, _,NIK, n=2,4,... .

Clearly, kw() contains in KW, for each n and
{KW,: n =0,2,4,...}is ancsted sequence. Therefore, we can
obtain a resulting interval inclusion of (2.2) iteratively. And
this resulting interval can satisfy any specified accuracy
requirement.

The only remaining difficulty is to compute these Taylor
coefficients in the integration rule and error term. Fortunately,
the automatic differentiation techniques can be applied to
overcome this difficulty. Detailed descri 97puous of automatic
differentiation can be found in Moore (1979), Rall (1981), and
Corliss (1988). Implementation of these automatic differen-
tiation using interval arithmetic provides the means for com-
puting intcrval inclusion of the Taylor coefficients over the
interval M or X. We will not give the details of these
computations because they have been provided in Wang and
Kennedy (1990 and to appear).

3. Condusions

Three experiments were constructed to test the perform-
ance of this self-validating algorithm for different p values.
In all the integrals evaluated in each of these experiments, the
width of the interval mclusxon of the computed probability
was not larger than 10, so the middle point of computed
interval inclusion was ncwssanl very close to the theoreti-
cally correct probability. And thc half-width of the computed
interval is the maximum absolute error bound of the middle

point approximation.

Ir,=2 2 (H(M))‘ 2.7 The results from the first two experiment are not present.

The third experiment includes twelve integrals with very large

i correlation. Table I gives the necessary description of these

is an interval inclusion of (2.5) and integrals and the computed interval inclusions.
Table |
Intervai Inclusion of Integrals Used for the Third Experiment
Inclusion of Probability
LD. HH KK RHO Lowerbound Upperbound

1 0.0000 0.0000 -0.9999 0.0022508095471555 0.0022508095476480
2 0.1000 0.0000 0.9999 0.4999999999999994 0.4999999999999995
3 0.1250 0.0000 0.9999 0.4999999999999999 0.5000000000000000
4 4.0000 0.0000 -0.9999 0.4999683287581668 0.4999683287581669
5 0.0000 4.0000 -0.9999 0.4999683287581668 0.4999683287581669
6 8.0000 8.0000 0.9999 0.9999999999999993 0.9999999999999994
7 7.0000 9.0000 -0.9999 0.9999999999987201 0.9999999999987202
8 -3.875 7.6250 -0.9999 0.0000533123497388 0.0000533123497389
9 -5.000 5.0000 0.9999 0.0000002866515718 0.0000002866515619
10 -0.0125 -0.00675 -0.9999 0.0002252159041540 0.0002252159041541
11 -2.500 -3.7500 0.9999 0.0000884172852008 0.0000884172852009
12 5.0000 5.0000 0.9999 0.0000002866515618 0.0000002866515619
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interval arithmetic and automatic .Iferentiation were
used to compute interval inclusions of desired probabilities.
Thelength of computed intervals were made sufficiently small
so that the probabilities guaranteed to be correct essentially to
machine precision were obtained. The cost of our self-
validating algorithm is that is takes about 10 times as much
CPU time as conventional point implementation algorithm.
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Abstract

The multivariate hypergeomtric
distribution is a natural extension of the
hypergeometric distribution. The computation
of the multivariate hypergeometric
distribution is of interest to many researchers
who are working in the computing sciences
and related disciplines. Currently, there are
no software, algorithms, or tables available for
computation or reference. This paper
presents an effective method to compute the
multivariate  hypergeometric ~ probability
function accurately and efficiently.  The
method applies prime number factorization to
all of the factorials, and cancels all the
common factors of the numerator and
denominator to reduce the computational
complexity to a minimum. We use the Ada
programming language for this computation
instead the traditional FORTRAN, because
the predefined features in the Ada language
are suitable for this type computation. This
computation can be done currently availably
machines and time required for the
computation is reasonably small.

1. Introduction

Consider a finite population of M
objects, of which m, are of type 1, m, of type
2, ..., my of type k, with m; + m; + ... + m,
= M. Suppose a sample of size N is chosen,
without replacement, from among these M
objects. Then the joint distribution of the
random variables n;, n,, ... , n, representin
the number+ of objects of types I, 2, ...,
respectively in the sample, is defined by

h(nl, nz. e gy nk; ml, mg, s

- () /a0

y M)

(1.1)

with m; +n; + .. +n, =N, 0<n;, <m
for t=12 ..k

This  distribution is called the
multivariate hypergeometric distribution with
parameters N, m;,, m,, .. , m, [6, 11].
Actually there are only (k - f ) distinct
variables, since

nk — N —(nl + nz + P + nk-l)-

When k=2 it reduces to the ordinary
hypergeometric distribution. In this special
case, we may think that objects can be
classified according to some property into n of
one group and N — n of another. For
example, we might classify a large number of
manufactured products as defective or non-
defective. This special discrete function is
frequently called the  hypergeometric
probability function [2, 11], because the values
h(z; r, n, N) can be expressed as successive
terms of a Gauss hypergeometric series.

In many cases, accurate probabilities
are very important to the application. Today,
the computation of the multivariate
hypergeometric probability function is still
difficult due to the limitation of the computer
systems such as overflow, underflow, and
maximum accuracy. Inaccurate results are
caused by rounding errors that are induced by
many redundant computations in
multiplications and divisions. As a result,
there are no software packages currently
available for the computation of this function
such as the IMSL Library (5], minitab (8] and
other software packages; in fact, currently
there is no effective algorithm available for
dealing with computations. Indeed, we need
an  efficient  algorithm and  better
programming techniques to write a reliable
program to accomplish this computation
within a reasonable amount time. This paper
presents an effective method to compute the
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multivariate hypergeometric function
accurately and efficiently. Section 2 presents
mathematical foundations for solving this
problem. Section 3 develops an effective
algorithm for this computation. Some
computational examples are given in Section
4, and finally, conclusions are given.

2. The Mathematical Foundations

Among the problems of the
computation of the maultivariate
hypergeometric probability function are the
computation of factorials, eliminating all the
redundant computations, handling
multiplicatios, and tminimizing the divisions
without overflow and underflow. Methods of
managing the computation of factorials and to
eliminiating all the redundant computation
belongs to mathematics while the ways of
dealing with multiplications and divisions are
in the programming domain. These are two
separate 1ssues. First to reduce the
computational complexity, we need theorems
from the theory of numbers [3] which are
stated and proved as below:

Theorem 1. Let p be a prime. Then the
exact exponents of p that divides n! is

[Il)‘-] + [é‘i] + {5%] + s

where [x] is the largest integer less than or
equal to x.
Proof: For
nt=1.2.3...(p-1)

pP- (p+1) . (p+2) e 2p -e-
-’ - (p'+1) - (p*42) -

P’ - (p*+1) - (P°+2) -

(p-1)p -

We see that the »u.ut=r of p's factors is [n/p},
the number of p-'. factors is [n/p?], the
number of p3's fitors 1s [n/p?], and so forth.
Then the Theorc. fuilows.

From Theorem 1, we are able to factor
the n!, for all n > 1, as a product of prime
Iéulmbers. The result is given in Theorem 2

elow:

Theorem 2. For any positive integer n > 2,
the n! can be written as a product of prime
numbers.
r . . T
n! = pl'l: pz.z. D3 3 .. Dk k, (21)
for some positive integer k.
Example 1: Consider 20!, we have the
following exponents of prime numbers:
o 120] 4 120] |2
The exponent of 2 is [—2—] + [-2—5] + [210] + [%9]

=10+5+2+1=18.

The exponent of 3 is [%—Q] + {%—g] =6+ 2=8.

4.

Il

The exponent of 5 is [%g]
The exponent of 7 is [%—-] = 2.

The exponents of 11, 13, 17, and 19 are all
equal to 1. Hence,

20!=218 .38 .5¢ .72 .11 .13 .17 -19.

3. The New Algorithm

For simplicity, we may simplify the
equation a&1.1) into a division of two products
of factorials. Hence, we have

h(n,, n,, ..
- () )/

(RN
(N

' "k; my, my, ..., mk)

i’

' (”k)




IS m!- NI (M-N)!
= =3 E ’
ML gt I (m=ny)!

Now, we are able to develop a computational
algorithm for this distribution:

(3.1)

Algorithm 1.

(1) Apply the prime number factorization,
given in identity (2.1), to all the factorials,
NI, M! (M=N)!, m}, nt, (m;—n)! (i =1, 2,
..., k) in equation (3.1).

(2) Cancel the common factors in the
denominator and numerator. Obtain an
irreducible fraction for computation (see
Example 2).

Note that the computation in (1) requires the
use of a sequence of prime numbers that can
be computed either by Eratosthenes’ sieve
algorithm or by an improved algorithm given
by Luo (7]. After (2), all the common factors
in the numerator and denominator are
cancelled and reduced to an irreducible form;
the number of multiplications and divisions is
minimized.

Example 2. A petroleum corporation has 50
gasoline stations in a certain state; it has
classified them according to merit of
geographic location as follows:

Location Excellent GoodFair Poor Disastrous

Stations 10 12 8 15 5

The corporation has a computer program for
drawing random samples, without
replacement, of its stations. The joint
probability of obtaining a sample of 20 of
these stations with 2 excellent, 4 good, 1 fair,
8 poor, and 5 disastrous is given

K2, 4, 1, 8, 5; 10, 12, 8, 15, 5)

_CCE )

(50)
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= 10! 12! 8! 15! 5! 20! 30!
T 2Tglargrir g 7 st or £

After factorization and cancellation, the above
expression is reduced to its simplest form.

- 35521113
72.23.31.37-41.43.47

= 2.433134239681592191426386865530844E-5

4. Some Computational Results

We use the Ada programming language
Ll] to implement the algorithms given in the
ection 3 because the language is an ANSI
standard language; it has special features
called ezception handling and tasks. These
features not only make programming simple,
but also prevent a program crash due to
overflow or underflow. In the actual
implementation, we use three tasks; task one
and task two are employed to perform the
multiplications in the numerator and
denominator respectively; task three is used to
perform a division. When both products in
the numerator and denominator reach a
maximum, both task one and task two stop
temporarily and invoke task three to perform
a division of the products that have been
obtained in the numerator and denominator
before an overflow occurs. After task three
completes its job, task one and task two
resume their computation and repeat this
procedure until the final result is obtained.
These tasks work together and guarantee that
the result of this computation will be the
most accurate.

Some machines allow users to have a
precision of 33 significant digits or a 128 bit
floating point number [10, 12]. For the 128
bits, 1 is used as a sign bit and 15 are used as
the exponent field; the remaining 112 bits
together with a hidden bit gives 113
significant bits or 33 significant digits,
according to the IEEE standard 754 floating-
point number format [4, 9]. The programs
ran on a MicroVax II machine with the VMS
V.4 operating system and the Vax Ada V.1
compiler.
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The following sample results were
obtained from an output of an Ada program;
this program was running on a MicroVax II
machine. The program can compute the
probabilities of the multivariate
hypergeometric distribution with an arbitrary
number of events and no limitation on the
number of occurrences of each event. Some
results and their computation times are given
as follows:

(1) h2.3.5,0; 5.6,7.2)
=2.273268527138496178743856762432613E-2
(0.25 seconds)

(2) Mh(2.4.1.8.5; 10,12,8,15,5)
=2.433134239681592191426386865530844E-5
(1.13 seconds)

(3) h(s.8.12,2,7,10,12,15; 5,20,18,3,9,10,16,21)
=1.814285332418592083659890283423809E-7
(1.66 seconds)

(4) h(r.13,23,5,11,37,47,20,15,50; 10,20,30,40,50,60,
70,80,90,100)
=8.025173894645222350927412268425642E-33
(7.95 seconds)

5. Conclusions

The computation of the multivariate
hypergeometric distribution is in general a
critical problem due to the limitations of
computer  systems and  programming
techniques. The goal of a computation is
accuracy; the time consumed for the
computation must also remain reasonably
small. This research has developed a method
based on theorems from the theory of
numbers and implemented them in the Ada
programming language; the former is to
overcome the limitations of a computer
system, and the latter is to solve the technical
difficulty in programming. The method is
machine independent; precision is arbitrary,
subject to storage limitation. The Ada
language is available for most supercomputers,
mainframes, medium sized computers, and
personal computers. Since this computation
is a number theory problem in nature, the
problem can only be solved with numbler
theory. The results given in Section 4 have
reached the predefined goal.
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INTRODUCTION

This paper presents the framework for the use of a
historical database structure to support evaluative and
predictive judgement in the domain of a major profession-
al sports league, namely the National Hockey League. On
the platform of a Relational Database Management Sys-
tem, value is added to game statistics by keeping true,
non-character literal, temporal attributes and interfacing
the resuiting temporal database management system to a
video representation of a real-time process. This frame-
work allows for the link between image and textual data in
a direct access mode through the compilation of complex
regular and temporal queries.

The paper addresses the physical problem of effi-
ciently recording, storing, and retrieving large amounts of
match related data to create an accurate and complete
description of performance. This information is needed to
form the basis for proper judgement by the NHL decision
maker.

APPLICATION BACKGROUND

We have chosen the domain of professional sports.
Although having high profiles, sports teams can be best
described as medium sized companies, usually having less
than 100 employees, often with revenues not reaching $100
million per year. More specifically, we have implemented
a database solution to the planning and control problems
of the real-time process of playing a professional hockey
game. The game of hockey is an interesting research
domain. In a competitive life span of 60 minutes, a finite
set of events can occur which result in success or failure.
Unlike the longer time span of the "going concern”, in
hockey one gets instant gratification for successful strate-
gies and quick feedback on failures. Our current goal is

to offer the NHL decision maker a means to enhance
team preparation for future performance through the
systematic and complete study of past performances. This
is accomplished by adding meaning to information previ-
ously unused or unknown to the decision maker. Our long-
term research goal is to define the parameters and
implement expert systems that will support decision
making for real-time "stochastic” processes.

Our research has found that current team preparation
revolves around subjective evaluation of performance and
review of game videos. Data capture is primarily limited to
box scores and discrete events such as goals and scoring
chances. These videotaped hockey games through repeated
and systematic visioning, have become de facto executive
support systems for the NHL decision maker. We argue
that a hockey game is made up of more than discrete
events and that these events are all related. Hence, value
can be added to this information and better data can be
captured by a more effective and efficient use of technolo-

The manner in which information is categorized
during a real-time process is a major problem. Firstly,
there is a problem in deciding what information is relevant
and needs to be captured (section 1). Secondly, there is
the physical problem of efficiently recording, storing, and
retrieving large amounts of data (section 2). This paper
discusses solutions for data capture and improved system-
atic observation criteria (section 3) and proposes a
semantically-improved database framework that can best
represent this and other real-time processes (section 4),

1. CATEGORIZATION OF INFORMATION
1.1 Saving All the Bits

In a parallel discussion to that of this paper, Denning
(1990) discusses that it is important to "save all the bits"
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generated by an instrument or computation. He argues
firstly, that the cost of acquiring the bits is so great that we
cannot afford to lose any of them and, secondly, that some
rare event might be recorded in those bits, and to throw
them away would be a great loss for the advancement of
knowledge in the domain.

To counter-balance this paradigm, one must remem-
ber the impossibility of doing this in practical terms. The
rate and volume of information in many real-time applica-
tions can overwhelm our networks, storage devices, and
computers, as well as (and more importantly) the human
capacity for comprehension. Humans have limited infor-
mation-processing capabilities (Hogarth, 1980). These
involve selective perception, sequential processing, limited
processing capacity, limited memory capacity, memory by
association, reconstruction of memory, etc.

The goal is to complement the human processing
limitations by extending it using computer technology
without overpowering the technology. This delicate balance
is often the difference between quality information and
data explosion.

1.2 Systematic Observation

The concept of systematic observation was developed
in the field of education and was introduced to collect data
on teachers in a classroom environment. Systematic
observation instruments consist of a number of predeter-
mined, clearly defined categories of behavior, as well as
definite rules and procedures for their identification and
coding. The focus of the instrument is directed toward a
critical element in the learning process and is based upon
a sound theoretical framework. The usual procedure is for
the recorder to observe cither the teacher or the student
during a learning situation and code the targeted behaviors
in accordance with the procedural rules of the instrument.
These systematic observation techniques provide a method
of obtaining objective, reliable, and valid measurements of
behavior.

We feel that there is an intimate link between the
process described above and that of capturing the events
that occur during real-time processes. In the next section,
we define the "predetermined, clearly defined categories of
behavior”, as well as the "definite rules and procedures for
their identification and coding” of performance during a
hockey game.

1.3 Saving the Appropriate Bits
We have followed an NHL head coach for over two

years and have held regular question and answer sessions
with the team’s coaching staff. We conclude that hockey

performance models are based on the perception that past
behavior is often the best predictor of future behavior and
that through the study of past behavior-one can develop
specialized training, teaching schedules, and game strate-
gies.

The study of past behavior is done by the review of
past game videotapes. Some NHL hockey teams have
incorporated video editing software as "systematic observa-
tion" tools. These video editing packages allow a team to
stamp events while they are watching a videotape of a
game and return to these clips at their convenience. Qur
coach’s systematic observation of performance model is
currently based on the documentation of seven types of
events: scoring chances for, scoring chances against, body
checks, face-offs, minutes played, player rating, and key
game identification fields. All items are discrete on-ice
action except “player rating" which is a subjective after-the-
fact evaluation and "key game identification fields,” which
are key attributes to a hockey game. This setup uses a "flat
files” approach where queries are usually restricted to
within-event type information.

2. RECORDING, STORING, and RETRIEVING

Although rudimentary in nature, the system based on
the current performance model does produce a complete
statistics report that cross-references the 7 “flat files” data
from many angles. The quality of this recurring batch
report has received international attention (Sexton 1990).

Th= current formala for systematic observation solely
stores the on-ice game statistics (primarily data on scoring
chances, face-offs, and minutes played). Benefits of
automating this process includes ad hoc query potential
and the tabulation of numbers for statistical inference. At
this time, there is no link between the video editing
software and the statistical “flat files” system. Coaches
must first watch the game and edit out highlights with the
editing software. Once this process is complete, they then
enter the statistical package and manually re-enter all the
highlights from a statistical perspective -- who was in-
volved, the opponent, and other pertinent information.
Statistical analyses are then performed on these data and
reports are generated. This is all done separate from the
video editing software.

3. IMPROVED IDENTIFICATION AND CODING

The conch’s current model has three major weakness-
es: Firstly, it only addresses a subset of possible occurrenc-
es in a hockey game; secondly, it does not offer a natural
connection or sequence of events between the flat files;
and thirdly, it does not allow for temporal attributes.




These weaknesses are however not inherent to this
application but to all real-time processes. Often a continu-
ous process is simplified to a set of discrete processes
which are often more practical to work with. For example,
taking a patient’s temperature twice a day and defining
between readings mid-points by linear interpolation
represents continuous change as depicted by a finite set of
measurements. Continuous processes are often translated
to a discrete representations in order usually to better
operationalize their capture and retrieval in automated
databases.

But in other circumstances, strategic advantage is
created by building systems that can represent continuous
processes as such. The banking industry capitalizes on this
point by conducting business transactions according to the
generally accepted daily cycle although its internal technol-
ogy updates credits in real-time.

Through a maturing process, today’s systems must
satisfy more sophisticated requirements for information.
Many articles (Cash and McLeod 1985; Parsons 1983)
have focused attention on how developments in informa-
tion systems technology have made many new applications
that have strategic importance feasible. Cash and McLeod
argue that only systems that add value to information will
be used in winner companies. Systems must leave the
"horseless carriage” epoch of automation into what Zuboff
describes as informating (Zuboff 1988).

The remainder of this paper outlines a method for
the systematic observation of real-time data in real-time
through the use of recently available technology and a
generic but exhaustive list of behaviors, rules and proce-
dures of NHL hockey.

3.1 Performance Behaviors of NHL Hockey

We have compiled a list of 24 "recordable” game
occurrences (13 real-time events, 8 stopped time events,
and 3 identification records). We feel that this is an
exhaustive list of events in a hockey game. The use of pen-
based technology will allow for real-time input of all this
information and more with the processor controlled
implicit time-stamping of events. Currently being investi-
gated at the University of Arizona is a character recogniz-
ing writing pad and template developed by a multi-national
high-technology corporation (Briggs 1990). In this new
peripheral, a small radio-signal emitting device is embed-
ded in a stylus (special pen) and detected by a rectangular
(8 X 12) writing pad. The pad senses and recognizes
movements that form characters or commands. It is used
in lieu of the keyboard.
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3.2 Operationalizing Systematic Observation

A typical hockey play can be captured fully with as
little as 1 or 2 pen strokes or at most (full line changes -
both teams) approximately 12. We have estimated that the
most complex hockey play can be captured in less than 3
seconds for the relatively new user. We are now conduct-
ing experiments based on the power law of practice to
estimate capture time for experts. Each registered play
becomes an object occurrence. Data capture will be a
two-pass process: in real-time mode and review mode.
Sequence of events will be captured in real-time. They will
be edited and further described upon review.

Templates for various single-user and networked
DOS based systems have been developed and tested, and
a series of experiments on their usage conducted. Prelimi-
nary results show that top business executives, given 30
minutes to learn the technology, have character recogni-
tion rates surpassing 90%. These experiments and others
(Mahach 1989) have also shown that, in circumstances
where input of data is made up of a small amount of
keystrokes, the writing pad is preferred over traditional
keyboards.

4. SEMANTICALLY-IMPROVED DBMS STRUCTURE
4.1 Time and Databases

Research and development over the last twenty years
has culminated in the widespread use of database manage-
ment systems. As usage has grown, the desire to capture
more data semantics has led to the development of data
models that provide the concepts and corresponding
formalism in which an image of the real world can be
expressed. Classic models do not represent time in a
natural, real-world way. Time is not merely another
dimension, or another data item tagged along with each
tuple, but rather a more fundamental organizing aspect
that human users treat in very special ways. In current
DBMS time is either neglected, treated implicitly, or
explicitly factored out. Most data models presume the
database to represent a single current status (Tsichritzis
and Lochovsky 1982). They provide only state transitions.
However, Schueler noted in 1977 that even simple updates
to databases destroys valuable information (Schueler
1977).

In many cases information seekers are not only
interested in a representation of a current state, but also
in the history of earlier states or a prognosis of future
states. Historically it has been difficult to reconcile infinite
conceptual models with finite machines and finite memo-
ries. Through dramatic increases in processing power and
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the introduction of large-capacity directly accessible
secondary storage devices, the tools now exist to imple-
ment a system that truly represents time.

A widely used DBMS time concept is the event.
Traditionally, time stamping of events is accomplished
using character literals. An event is a change of status,
which is kept until the next event. Events can occur at
integral time points (Breutman 1979), or at real time
points (Bubenko 1977). In other cases, such as the capture
of hockey information which has a pattern of continuous
change and some fragmentary observations, the notion of
event is not a good modeling approach. A hockey game
has a life of 60 timed minutes. In this relatively short
time-span, many hundred (often overlapping) events occur:
plays, line combinations, game situations. A traditional
database using only a character literal time stamped
representation of events does not offer the time granularity
desired to properly record a hockey game. An accurate
representation of systematic observation model must
include events in the traditional sense, time intervals, pre-
events -- behaviors or performance prior to an event, and
post-events -- behaviors or performances after an event.

By recording a sequence of time stamped object
occurrences in a suitable DBMS, new types of entities are
then created: intervals are a structure with a time interpo-
lation that includes all action between two time bound-
aries; pre-events are actions that lead to an event; and post-
events are actions that occur after ar. event. In hockey, one
might want to see the play leading to a goal or one might
want to know what happened in the 30 seconds after a
penalty was called.

This is why the use of a temporal database is recom-
mended. Instead of events, games can be transcribed as
intervals of action. A semantically well-grounded temporal
database will allow for second by second granularity, thus
precise intervals that can capture the essence of hockey.

4.2 Temporal Databases

When discussing temporal databases (TDB's), a
review of the taxonomy is necessary. Conventional databas-
es model an enterprise using snapshots (Bubenko 1977). A
snapshot is a state or an instance of a DBMS with its
current content, which may or may not represent a current
status (Ahn 1986). A rollback database resolves the
snapshot DBMS problems by recording a sequence of past
states, indexed by time (Ariav 1986; Gadia 1988). This
approach requires a representation of transaction time --
a time stamp representing the time of day when the
transaction occurred. In a rollback DBMS changes can be
made only to the latest state. Historical DBMS record a
single historical state per relation. Changes are made and

a new version of the database created. In historical DBMS
previous states are not retained but there is support for
valid time -- a second time stamp that depicts the actual
time an entity is active and not when it was updated
(Laning 1982; Snodgrass 1987). A temporal DBMS sup-
ports both transaction (when action is recorded) and valid
(when action actually occurred) time in the same relation.
A temporal database allows for a relative (virtual) time
frame instead of always dealing with the present (Snod-
grass 1987).

In hockey, time has two dimensions; Firstly, a
sequence of object occurrences in a hockey game and,
secondly, a sequence of completed hockey games. Each
object occurrence is time stamped using two different type
of time attributes: "hockey time" splits into 3 periods of 20
minutes each and assures the capture of data sequence,
and “time of day" which captures image sequence and is
used for synchronization of data with the videotape version
of a match which is often taken directly from a network
"feed" (commercials and all). These two time attributes
work in parallel and are on the same plane. The second
time dimension is required to denote the sequence of
games. A regular NHL season has 80 games per team.

4.3 Schematic Structure of Hockey TDB

The external user’s view is that of building blocks,
each block having the dimensions of time, objects, and
attributes. Individual blocks store the information for a
given game and a regular season would combine 80 such
blocks.

Two time attributes are used in this framework:
actual clock time and game time. Clock time is used to
access the videotaped images of the game. This will allow
for a more flexible use of the videos since it eliminates the
use of video time codes. Video time codes are electric
pulses on videotape that, when applied to a frame by
assigning it a unique frame number, help a technician edit
the images very precisely. In this application, the access to
the video is controlled by the database management
system and not the video editing software. This approach
will however not allow for frame accurate video editing but
does offer a reliable and powerful, second by second,
granularity of image sequence.

IMPROVING JUDGEMENT

The proposed system is both a decision support and an
executive support system. A common and accepted
distinction between an ESS and a DSS is based on their
respective applications: The former, like executives, deals
with unstructured and ambiguous information and circum-




stances; the latter is intended for more structured, repeat-
ed, quantitative model-based decisions. In hockey, goals
and assists, time on the ice, plus and minus statistics, and
a multitude of other generated statistics are repeated and
analyzed. Executive support systems do not easily lend
themselves to the sorts of explicit quantitative models a
typical DSS can provide. Instead, the coach must rely on
his own implicit performance model to manipulate and
interpret this information. For example, coaches often try
to find intangible advantages in non-statistic, often video-
based, information.

Much of our work is thus appropriately addressed to
designing a tool that can not only support the repetitive
statistics but also the performance model. A successful
system must support the coach’s cognitive processes of
how to make decisions and forecasts. Already accom-
plished are the development of a relationship with a sports
team and a detailed investigation of their perceived data
requirements. This has lead us to define a relational model
for data and generic model for the systematic observation
of performance by linking the data to a video representa-
tion.

Our research agenda includes: Firstly, the develop-
ment of a computerized link whereby both data entry and
analysis combines image and textual data. Secondly,
modifying the input and edit device from the standard
keyboard to the stylus/tablet. This will resuit in a more
natural interface for the hockey executive. Thirdly, com-
pleting the model by capturing more of the available data
and incorporating temporal data to better reflect time
relationships (fatigue factors, dependent events, momen-
tum swings) that occur in professional sports. And subse-
quently, applying available technologies (videodiscs, CD-
ROM, multi-media screens, workstation processors) to
enhance the reviewing and analysis of game highlights to
be performed using a shared textual/video screen,
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Abstract: Recently our small group of researchers was
Jfaced with the inadequacy of our computational resources
for our ongoing statistical analyses of large datasets.
Turnaround times on our network of 386/33 PCs were
long, sometimes running 15 to 30 hours. Using a remote
large mainframe also had its own problems. = We needed
a change and a big one, but we didn’t have big dollars.
This paper describes our short (3 month) exploration of
alternatives and our findings.

We firss identified four categories of requirements for our
analysis environment. We then looked at available
technology for possible solutions, identifying relatively
low-cost UNIX RISC workstations as the most-likely
candidate platforms for our statistical work. We then
devised a way to measure the performance of several
different statistical analysis environments with large
datasets. Our results were startling: workstations provided
close to two orders-of-magnitude improvement in
performance at an affordable cost. Qur benchmark
statistical analysis job which took 3 hours on one of our
PCs ran in 12.5 minutes on one workstation and 4.6
minutes on another. Performance for four different types
of statistical analysis was found to vary nearly linearly
with database size, as size ranged from 1,000 to 1,000,000
records. Hardware costs varied from $12,000 to $75,000,
depending on the vendor and the configuration options
chosen. The newer workstations also supported newer
software with a much improved interface and graphics
capabilities.

Introduction

This conference was devoted to the "interface between
computing science and statistics.” Many of the papers
have talked about new directions in one or the other of
these fields, presenting, for instance, research and
prototypes of new data analysis tools and new
computational techniques. This paper is a little different.
The focus is on the state of the marketplace, not the state
of the art or the state of the lab.

This paper reports the results of one group of data analysts
searching for adequate tools to look at large data sets. We

were looking for the right "computational environment” -
the right combination of hardware, system software, and
statistical software (or, perhaps, the right "interface
between computing science and statistics”) to effectively do
our jobs. This paper puts a structure to the process of
gathering requirements for such a computational
environment. It also presents some of our findings when
we matched these requirements to the marketplace. The
intention of the paper is not to single out a particular
solution for all statisticians, but rather to identify an
approach, to point out some things to consider, and to
point out some interesting characteristics of "today’s”
computational environments.

The Setting

Strictly speaking, this paper doesn’t report on the market
of "today", but rather that of the summer of 1991, which
was when we did our analysis. That was when our small
group of about a dozen researchers realized we had a
problem. One of the goals of our interdisciplinary group
(statisticians, programmers, phy-icians, health services
researchers, and a psychologist and economist) is to study
and evaluate patterns in health care quality and utilization.
We have available to us a number of very large databases
describing the operations of the 172 hospitals operated by
the US Department of Veterans Affairs. One database, the
Patient Treatment File (PTF), contains one 140-variable
record for each hospital stay. The PTF has about
1,000,000 records per year, with 11 years of data currently
available. A second database describing outpatient care
has about 20,000,000 records per year. Our problem was
that we felt it was taking an excessive amount of time to
make use of these valuable datasets and interpret them.

We formed a small, ad hoc committee of folks with diverse
backgrounds to come up with a solution. Our meetings
seemed to alternate between proposing solutions and
identifying requirements. Clearly stated requirements are
needed before a good solution can be chosen, but
examining candidate solutions can bring out hidden (but
real) requirements. The following sections describe some
of the requirements and solutions that emerged from our
iterations between the two.
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Requirements

A basic requirement of our group is to have access to a
responsive, easy-to-use, system able to analyze large
datasets. The first two requirements (responsive and easy
to use) translated into the need for a local system.
Accessing a shared facility (such as VA's central data
repository) is fine for occasional use of current data from a
wide variety of sources. On a routine basis, however, it is
awkward, cumbersome and time-consuming, especially
when your research analyses have to compete with higher-
priority, routine work such as processing payroll and
performing financial management.

Initially, our local system was constructed to get away
from that problem. The system consisted of a network of
386 PCs connected via Novell software and ethernet
cabling to a 486 file server with 5 gigabytes of disk. A
tape drive attached to one of the PCs allowed us to import
data from VA’s central data repository. Our data analysis
software was PC SAS, version 6.04. At the time it was
purchased (1990), this system represented the most
powerful micros available, combined with the most widely
used software for sharing data among PCs, and one of the
standards in statistical analysis software,

This system worked fine when handling datasets of 100,
1,000, 10,000, or even 30,000 observations. It gave us
the descriptive and analytic statistics we needed in a
reasonable amount of time - minutes, if not seconds. But
routine sorting and analysis of several hundred thousand
records took hours. Processing of a million records could
take more than 20 or 30 hours. This made it difficult and
time-consuming to look at multi-year trends in VA health
care utilization.

Thirty hours was clearly unacceptable, but it wasn't at first
exactly clear what would be acceptable. After some
thought on research staff productivity, we established an
objective of increasing throughput from one analysis every
day or two (based on 20 to 30 hour response times) to
several analyses every working day (hence 2 to 3 hour
response times). To have a real effect on productivity we
needed an order-of-magnitude improvement in response
time; improvements on the order of 50% or 100% would
not have gotten us out of the once-a-day cycle.

A second drawback of the system was the statistical
software’s outdated interface with the user. The origins of
SAS go back to the '60s - a time of punched cards, when
terminals and interactive system use were rare. The way
one used SAS in the '60s was to study the manual, figure
out the commands, parameters, and syntax that were

needed, key-punch the statements, submit the cards to
SAS, and receive back, hours later, tabular output with
crude-looking, line-printer-produced graphs. This is still
the basic model for using SAS version 6.04 today! It is
awkward, inefficient, dramatically different from interface
technology and standards of the '80s, and inconsistent with
the '70s and *80s push toward exploratory data analysis.

What we needed was the ability to do truly interactive
statistical analysis. At a minimum this entailed being able
to easily select analysis procedures, options, and datasets
from menus, to change minor characteristics of output
without re-running the whole analysis, to quickly see the
effects of omitting one or more potential outliers, to see
and work with the entire dataset in a tabular format, to
look at graphs and the raw dataset simultaneously, to see
and work with multiple datasets simultaneously. What we
needed was the number crunching of SAS coupled with the
user interface of spreadsheets like Excel that run under
Windows on PCs. We also thought it would be great if we
could easily copy output from our statistical analyses
directly into our reports and presentations, again as
supported by some word processors and spreadsheets.

Besides improved response time and usability we also tried
to assess the functionality that we required. We decided
that basically we made use of "standard”, proven statistical
procedures, We really weren't trying to develop new
procedures, and that the statistical functionality of SAS
version 6.04 basically covered our needs. We did however
feel that we wanted better ways to view and display our
data. A key non-statistical function we felt our
environment needed to provide was shared access to data.
A number of people needed to be able to use our large data
sets in parallel - we felt we couldn’t support the storage for
multiple copies, or the time and effort to move the fil-s
among multiple processors.

Our solution space was limited by several constraints.
First, we wanted to avoid as much as possible conversion
effort and training. Staff had PCs and were using various
DOS and Windows tools for preparing reports and
presentations.  The were used to SAS's command
language. We thus sought to provide some continuity with
this environment. Second, we are a small group and
needed to minimize the overhead of recurring operational
support. Though we expected to have a system manger,
we sought to control the complexity of the job as much as
possible. Finally, our most concrete constraint was our
budget. We were told we to keep the solution under
$100,000. When we started our analyses, we really
weren’t sure whether this would be adequate or not.

Figure 1 summarizes this discussion.
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Candidate Solutions

In exploring solutions to our problems we initially
considered two traditional solutions: first, upgrading the
PCs and/or the network, and second, buying a small local
mainframe. The first approach was rejected for several
reasons. Based on the general experience of others and
reviews in the popular PC magazines, upgrading to 486s at
that time would have only achieved at absolute best a
doubling of processing capability - nowhere near the
needed order-of-magnitude improvement. Besides the
limited performance, staying in a DOS environment would
have left us with older, inadequate SAS software with a
poor user interface. We also discovered SAS 6.04 had
significant memory management limitations, making use
only of 2 MB of memory even though our processors had
more. As for upgrading the network, based on our
performance measurements, the network was not the
limiting factor anyway. Response time was essentially the
same whether the data file resided on the server or local
disk.

The second approach, installing a small mainframe locally,
was briefly explored and rejected. Major factors in the
decision were the high initial purchase cost (at least double
the funds available) and the high recurring cost for
maintenance and operations.

The approach we settled on was to maintain our existing
network and to add to it a computational server which
would handle nigh-spved processing of the large datasets,
as conceptualized in Figure 2. The PCs were preserved as-
is to handle word processing, spreadsheets, and normal
presentation graphics without any changes in procedures.
To these functions was to be added the ability to start and
interact with analysis software running on the
computational server. The file server would continue with
the same Novell protocol to handle routine document file
sharing and fairly static data files which were not

frequently used. The ability to move data files between the
computational server and the file server was also to be
provided.

The server was to be selected from the relatively large
group of RISC computers using the UNIX operating
system. These "workstations” have developed a large
presence in the engineering community where they are
used for handling high-volume engineering and image
analyses. Such processors are available from virtually
every large computer maker. These processors were
relatively low priced - significantly less than mainframes
and, in some cases, approaching the cost of large PCs.

A side advantage of a UNIX system was that it would
support SAS’s latest version (6.07), which had an
improved user interface and graphical abilities. A new
SAS product (Insight) would provide some of the
spreadsheet-like data editing and viewing features we
wanted.

A potential complication was the interface between the user
at the PC and the statistical procedures executing on the
UNIX processor. SAS’s user interface in the UNIX
environment uses standard windowing capabilities
provided by the X-Windows protocol and routines. X-
Windows was designed to separate display management
from data generation, with each residing on its own
processor in a network. This characteristic fit right in with
our general concept of using the UNIX box for calculations
and the PCs for displays. But X-Windows initially was
built for use between two UNIX processors using the
TCP/IP protocol for communications across the network.
We wanted one of the processors to be DOS/Windows, not
UNIX, and our network used Novell protocol, not
TCP/IP. We briefly considered switching all the PCs to
the UNIX operating system and dropping the Novell
protocol, but that would have been a drastic change for our
staff and would have locked us out of the popular
DOS/Windows standard office software.
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Fortunately, computing technology seemed to be evolving
along with our requirements. Multiple vendors were just
introducing products that would support multi-protocol
networks. To implement our networking solution all that
we needed was a new version of Novell software on the
file server and some software on the PC. The PC software
allowed us the use the X-windows interface through
Microsoft Windows. Thus PC users would have a
Microsoft Windows environment with perhaps a word
processor open in one window and SAS on the UNIX
processor open in another window.

Benchmark Development and Results

Since our main thrust in buying a new system was
improved response time for large datasets, we needed a
way of measuring the speed of alternative solutions. The
big variable in our conceptual solution was which UNIX
processor we should get. We selected a benchmark set of
four different SAS analysis steps: a sort, a generalized
linear model analysis, a univariate analysis, and an analysis
using PROC FREQ. This mixture of descriptive and
analytic procedures approximated our usual workload. To
establish a baseline, we ran these procedures on our
existing system against five different-sized subsets of one
of our large datafiles. The file sizes used were 1,000
10,000, 20,000, 100,000 and 200,000 records, with 9
variables per record.

We tried to select file sizes and procedures reflecting the
type of work expected. We also wanted to see how the
systems would respond to a range of conditions - would
there be a breaking point? However, we had to limit the
size of the benchmark so that the test files were portable to
another facility and the test was able to be run in a
reasonable amount of time (so as not to disrupt the test
facility). We would have liked to have started out with a
1,000,000 record database - but we didn’t have an easy
way of transporting such a file. As it was, our initial
benchmark set of four procedures and five file sizes took a
total of 3 hours to execute on our existing 386 system (see
figure 3 for times for specific analyses and file sizes.)

We then took our benchmark datasets and analysis
commands and visited one hardware and one software
vendor (who had several different brands of hardware
available for demonstrating his software). Both vendors
were extremely cooperative in supporting us in running the
tests. The response times we measured on the new systems
truly amazed us. Figure 4 shows data for one particular
processor. Note that the longest analysis step has shrunk
from about 62 minutes to about 1 minute. The total
process took only 4.6 minutes on this processor (versus the
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3 hours on the baseline PC). This was not just an order-
of-magnitude improvement, but was approaching two
orders of magnitude!

The improvements we measured on our first set of tests
caused us to go back and generate a more complex
benchmark. The revised benchmark had slightly different
procedures (e.g., adding a multi-key sort) and two
additional file sizes (500,000 and 955,000 records). To
move this amount of data to a test processor, we just
moved our whole PC with its 300 MB disk to the vendor
facility, connected it to their network, and then copied the
data over to the test machine.

Figure 5 shows the results of this revised benchmark on the
same processor tested above. Note that the longest
analysis steps took about 20 minutes to process
approximately 1 million records. Note also the essentially
linear trend in response time as a function of file size.
This linear trend is unexpected with procedures such as
sorting. SAS documentation indicates sorting should
require greatly increasing time as file size increases. No
explanation for our measured behavior is immediately
obvious.
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A Few Last Notes on Benchmarking

e We measured performance on two different
UNIX/RISC vendors’ hardware, not on all possible
candidates. One reason was that certain vendors did not
have cost-effective hardware in the summer of 1991.
There is one standard benchmark set that all UNIX/RISC
vendors use to measure their performance - the SPECmark
- and SPECmark ratings are a standard feature of
advertising brochures. The SPECmark rating of the
processor reported on here was 55. Our measurements on
severa] processors indicated that the SPECmark ratings
reasonably established relative performance. Using the
SPECmark ratings we thus judged it wasn’t worth
considering the remaining candidates.

A second factor limiting testing was the lack of
cooperation from some other vendors, particularly third
party re-sellers. The lack of support and professionalism
on the part of one of these made us appreciate even more
the testing support we got.

® We never were able to run tests duplicating the
eavironment in which we expected to run. All our tests
were run completely within the UNIX/RISC processor.
That is, we never were able to access SAS using X-
Windows from a PC across a TCP/IP network. Our
candidate solution required the products of multiple
manufacturers and would thus be most likely in the
province of a third-party re-seller. In our limited
experience, such folks did not have any demo facilities and
were not interested in working with us to do the testing.
We were lucky that the hardware and software components
we purchased did indeed work reasonably well together.

* The UNIX boxes we tested were multi-user/single
processor systems. We did run a test simulating two
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simultaneous users on the processors. The same script was
run simultaneously against the same files. Not
unexpectedly, the time for each to complete was about
twice as long as for that of one executing alone.

Costs

The cost discussion here is limited not because cost is
unimportant, but because it seems to be always changing.
Our cost analysis was done in the summer of 1991 using
standard vendor prices available through existing
government contracts. All components of the system (e.g.,
processor and disks) were priced according to the vendor’s
published/quoted prices. Since our study, some vendors
have gone through two significant price cuts and others
have released new products.

We found a fairly wide range of costs across vendors, with
vendors who had a recently released product being
significantly lower in costs than those with products one or
two years '}  We also noted some vendors might be
extremely -:uc..apetitive in one component of the system
(e.g., disks) and yet reasonably competitive on the
remaining. In such cases, the buyer has the option of
seeking a third-party supplier for his disks, but we did not
consider this in our analysis.

With all those caveats, today (May, '92) a UNIX/RISC
processor rated at 60 SPECmarks with 32 MB of RAM and
4 GB of disk lists commercially at about $45,000 to
$50,000. The cost of a gigabyte of disk is about $4,500
and 10 megabytes of RAM is about $2,500. Smaller
UNIX/RISC systems are available in the $5,000 to
$15,000 range. Discounts of about 25% off these prices
are reasonable for large institutions. The bottom line was
that we were able to meet our needs within our budget.

Conclusions

QOur small group of data analysts found that UNIX/RISC
processors were a key part of a cost-effective
computational environment for analyzing large data sets.
We were happy to find that this product integrated well
with our existing PC network. Groups seeking to improve
their computational environment should carefully assess
their requirements and then systematically compare them to
what is on the market. Establishing a new environment
requires considering a wide range of issues including not
only the statistical functions needed, but also the user
interface, the anticipated patterns of wuse, system
performance and capacity, networking mechanisms, and
how well statistical and non-statistical tools co-exist and
co-operate.
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Abstract

The existing gap between demand and ability to produce statistical
software cost-effectively calls for a reuse-based software development
approach. The approach proposed in this paper, based on object-
oriented design and programming, maximizes all levels of reuse and
generates reuse-cnabling software products. Three basic concepls
concerning reuse are discussed: (1) domain-oriented software life cycle,
(2) reuse-oriented software development process model, and (3)
experience factory. A reusc-oriented development process approach
derived from these concepts is outlined, and its implementation is
demonstrated in the case of the development of a statistical software
system, RECPAM, for constructing generalized regression trees from
data.

1. Introduction

Owing to the increasingly important role played by
computing in both theoretical and applied Statistics, the
gap between demand for high-quality software and the
ability to produce it cost-effectively and in a reasonably
short time, is often decried. Statistics-specific languages
such as S, are becoming increasingly popular, as are
software packages with built-in programming capabilities.
These tools, however, do not meet the need for
developing certain types of specialized programs
requiring a somewhat "open ended" design, i.e. the
possibility of adding new, complex modules and/or
modifying some portion of the system. What is needed,
is rather an approach to programming that allows for
reuse in a simple, straightforward way.

The concept of software reuse has appealed to
programmers since the creation of the first stored-
program computer [1]. It is behind almost the every
software development. Since Mcllroy 1969 proposal [2]
of establishing a software components catalog, from
which software parts could be assembled, much as is done
with mechanical and electronic components in
engineering, more and more people have started
developing software with reuse particularly in mind. With
the success of the Japanese software industry, a number
of industrial organizations began to focus on reusability.
As a result, various reuse methodologies have been
proposed, and it is predicted that software reuse will
probably be crucial to the evolution of the software
industry towards higher levels of maturity [3).

These developments in software engineering are very

relevant to statistical applications, since in many cases
the following conditions, believed to be decisive factors
to foster successful software reuse (4], are satisfied: (i)
The domain is relatively narrow (it contains a fairly small
number of data types); (ii) The domain is well
understood (it has evolved over hundreds of years); (iii)
the underlying technology is quite static (it has reached
a high level of maturity). It should therefore be clear that
many computer intensive statistical methodologies
provide a fertile ground for comprehensive reuse-based
approaches. Nevertheless, reuse is only exploited to a
limited extent in most statistical software systems. At any
rate, the situation is far from ideal. Ideally, a reusable
software system should be more like hardware. Therc
should be catalog of software modules, which include all
kinds of software-related experience, as there are catalog
of VLSI devices. When building a new system, one
should be able to order components from catalogues and
to assemble them, rather than reinventing the wheel
every time.

The goal of this paper is to provide an introduction to
software reuse concepts for Statistics. After presenting
the motivations for a reuse-oriented approach, we discuss
three technical concepts for supporting reuse, and
develop from them a new reuse-oriented software
development process. As an application of this process,
we illustrate the implementation of a statistical system
for tree-growing, RECPAM.

2. Reuse-oriented approach: Motivation

Software reuse is the reapplication of knowledge about
one system to another similar one in order to reduce the
effort of development and maintenance. This reused
knowledge includes artifacts such as domain knowledge,
development experience, design decisions, architectures,
requirements, design, code, documentation and so forth.
Without a systematic approach, however, several
fundamental technical problems limit software reuse in
practice. We will focus on some of them.

i) Multiorganizational problem

Software systems are not often initially designed for
future reuse, since the emphasis is on meeting specific
project requirements. Optimal pursuit of a specific
project’s objective is rarely compatible with
decomposition into reusable modules and packaging of




relevant programming experience in a generalizable form.
To develop a reuse-enabling system, reusability must be
engineered from the start and the objective of the
development must have a multiplicity of objectives, a
concern known as multiorganizational problem [4].

if) Leverage problem

Leverage refers to the degree to which a reused module
reduces the effort needed to produce new software.
Leverage varies with physical size of the module, level of
module abstraction and level of machine processability of
the module [5]. As abstraction and size of the software
module increases, enhancing reusability, processability
usually decreases.

There are three levels of abstraction in software reuse:
code reuse, design reuse and knowledge reuse. Current
reusable modules, reusable building blocks and reusable
patterns, concern code and, to a limited extent, design
reuse. Their corresponding size is small. Ideally, reuse
should support all levels of abstraction in a richly
machine-processible form.

iii) Qperational problem

Software reuse is not a specific technique, algorithm,
heuristic or set of guidelines. It is many different
mixtures of technologies, process modules and cultures.
This demands a radical departure from the operational
style prevalent in current programming. Much of the
current work in reuse focuses on a particular phase
without addressing the transition and traceability. Most
of the current systems are constrained to apply a few
specific reuse techniques or mechanisms without
synthesizing them into a consistent approach.

The above discussion emphasizes the need for the
systematic approach known as reuse-oriented approach.
Recent enabling methodologies for this approach are
object-oriented design and programming. Object-oriented
design facilitates the integration of analysis, design and
programming within a single framework using common
concepts and (often) notation. It provides a high-level
primitive notion of modularity for directly modelling
application [6]. Object-oriented programming supports
many reuse mechanisms: object class, instantiation,
inheritance, polymorphism, overloading and generic
classes, which promote larger and more abstract reusable
components [7).

3. Reuse-oriented approach: Methodology

The reuse-oriented approach presented in this paper is
based on three technical concepts which arise as mixtures
of technologies, process models and cultures.

3.1 Domain-oriented software life cycle
The single project life cycle is limited to scope and
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abstraction level of reuse modules. In contrast, domain-
oriented software life cycle extends to a "domain", i.e. a
designated collection of existing applications and
anticipated opportunities for future applications with
common functionality in one or more areas. " A domain
life cycle model formalizes typical patterns (of reusable
experience) in the development of a related series of
projects and the persistence of information (on reusable
components) from one application to the next.” [8]. The
muti-project view is an essential foundation for a general
model of reusability, which supports to capture and reuse
domain-specific knowledge and implementation
knowledge across applications. According to the domain-
oriented software life cycle model, reuse-oriented
software development assumes that, given an application
domain, there is a general system experience base. If a
new project in the domain is needed, it can be assembled
by extracting modules from the experience base and
generating some project specific modules, instead of
creating all modules from scratch. Thus, software reuse
fosters informal sharing of software related experience
among people working on similar projects within an
application domain.
3.2 Reuse-oriented software development process model

An evolutionary model is needed that enables
organizations to learn from each individual project, and
incrementally to improve their ability to contribute to the
whole domain. This implies a significant cultural change
among software developers, from a project-oriented
process model to reuse-oriented process model. The
traditional project-oriented development process attempts
to accomplish more with less resources, i.e. deliver the
required systems faster, reduce turn-around time in
maintenance, increase performance, reliability, and
security of systems. The reuse-oriented development
process, on the other hand, aims at improving the
effectiveness of the process, reduces the amount of work,
and reuses life cycle products [9]. Based on the domain-
oriented software life cycle assumption, a model used for
reuse-criented approach splits the traditional life cycle
model into two coordinated organizations: an experience-
packaging organization, and a project-generating
organization. The experience-packaging organization’s
primary concerns are the recognition of potentially
reusable experience appropriate in an application domain
and packaging them in a readily available way. The
project-generating organization develops products taking
advantage of all forms of packaged experience from prior
and current development, while offering its own
experiences to be packaged for other projects.
3.3 Experience factory

The experience factory is a key ingredient to the reuse-
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oriented approach. It is a rich and well-organized
framework. The experience factory functions as a target
which can learn experience from domain analysis and
individual development for the experience-packaging
organization. For the project-integrating organization, it
functions as a source of experience for constructing new
projects. To make software-related experience reusable,
it must satisfy four characteristics: (1) generality, (2)
definiteness, (3) transferability, and (4) retrievability [10].
Packaging reusable experience involves three phases:

i) Abstraction: Abstraction characterizes a class of
entities by their common attributes and ignores, for the
time being, their differences. Every abstraction
determines a set of associated reusable attributes.
Conversely every set of reusable attributes determines an
abstraction - the class of entities that possesses these
attributes [10]. Many different abstraction mechanisms
have been proposed as the basis for a software module
industry, each representing different building modules
from which programs can be constructed and each
resulting in different paradigms for programming. We
adopt three abstraction: (1) function abstraction, (2) data
abstraction and (3) process abstraction.

ii) Classification: Classification is grouping similar
things together. All members of a group produced by
classification share at least one characteristic that
members of other classes do not. The result is a
framework or structure of relationships [11]. Software
development is an iterative refinement process in which
requirements specified in an application domain are
gradually transformed into programs to be executed on a
target computer. Transformation in a single step is
impossible in a larger system. In general, the
transformation is divided into five steps, we classify the
software-related experience into corresponding five levels:
(1) environmental-level information, (2) knowledge of
application domain and development, (3) functional
architectures (external specifications of system functions
and data), (4) logical structures (internal designs of
processes and data structures), and (5) code fragments
(executable subroutines), so that experience factory is
able to support five levels of reuse: application model
reuse, knowledge reuse, specification reuse, design reuse
and code reuse.

iii) Representation: The ideal representation must allow
the specification and storage of such partial architectures,
and it must allow incremental completion of the details
over time. Object-oriented design and programming is
the best candidate, because it supports the following: the
ability to represent knowledge about implementation
structures in factored form; the ability to create partial
specifications of design information that can be

incrementally extended; the ability to allow flexible
couplings between instances of designs and the various
interpretations they can have; and the ability to express
controlled degrees of abstraction and precision.
3.4 Reuse-oriented approach: paradigm

The development scheme is characterized as two
interrelated organizations, the experience-packaging
organization and the project-gencrating organization,
which incorporate the three technical concepts. As
depicted in Fig. 1, the two organizations both have three
basic activities. The experience-packaging organization
includes domain analysis, experience abstraction, and
experience representation.
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i) Domain Analysis
Domain analysis can be conceived of as a knowledge

intensive activity occurring prior to the experience
abstraction phase to identify all kinds of experience
within a domain as reuse candidates, and prior to the
project recognization phase of project-generating
organization to instantiate a domain model t0 a specific
application. As transcending specific applications, it is at
a higher levcl of abstraction than system analysis. In
domain analysis, common characteristics from similar
projects are generalized objects, operations and processes
common to all projects within the same application
domain are identified, and a model and interface are
defined to describe their relationships. The next step is to
define a domain specific language and use it to describe
our domain model.

ii) Experience Abstraction

The objective of abstiacting identified experience is to
make a candidate reuse object useful in a large set of
potential target applications. Function, data and process
abstraction determine different paradigms for
programming associated with different partitioning of a
computation into reusable and varying parts. Function
abstraction emphasizes the reusability of functions of
varying data; data abstraction emphasizes the reusability
of data objects for various operations that may be applied
to them, while process abstraction emphasizes data




objects for various operations that have an independently
executing thread of control that determines the order in
which operations become available for execution.

iif) Experience Representation

The objective of recording experience is to create a
repository of well specified and organized experiences by
encoding them in more precise, better understood ways.
It provides a reuse-enabling product, experience factory.

The project-generating includes project recognization,
component customization, and project integration.

i) Project Recognization

Based on the domain model from domain analysis, the
objects, operations and processes matching the domain
model are recognized for retrieving the reuse candidates.
At the same time, the requirements, objects, operations
and processes specific to a concrete project are
recognized for considering the new experience to be
packaged. It is an extension of domain analysis.

ii) Component Customization

Component customization is intended to bridge the gap
between retrieved reuse candidates and given reuse
requirements. It is the lifeblood of reusability. It includes
two branches: identifying and customizing the reuse
candidates, and adding new experience or refining the
existing experience.

iii) Project Integration

In order to deliver the system, project integration
assembles all customized experience using a few
composition mechanisms, such as, pipe, message-passing,
inheritance and so on. Then it continues as usual with
product quality control and release,

4. Case study: The development of a statistical
application-RECPAM

RECPAM is a tree-growing methodology proposed by
Ciampi er al. [12, 13]. A tree is constructed from a data
set: it represents the knowledge contained in some
variables, called predictors, about a parameter, called
criterion. This parameter is estimated from other
variables, called criterion variables. RECPAM constructs
the tree in three steps: (i) RECursive partition, (ii)
Pruning and (iii) AMalgamation (hence the acronym).
The resulting classes are described by conjunctive and
disjunctive statements involving the predictors, and
represents subpopulations for which a distinct estimate of
the criterion is called for. The classes are represented as
a regression model for the criterion, with class indicator
functions as regressors. It follows that for every
regression model, one can build a RECPAM tree. Indeed,
a corresponding tree approach has been developed for
regression within the Generalized LInear Model (GLIM),
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the Cox model for the analysis of censored survival data
with covariates and, more recently, for multivariate
normal regression.

Since RECPAM is a general methodology with open
ended applicability, it is of interest to develop a program
that the user may wish to modify or extend to include
other regression models. We are developing a new
version of RECPAM by the reuse-oriented software
development approach outlined above. Considering this
approach, we choose BORLAND C+ + as programming
language, which includes most techniques and
mechanisms supported by object-oriented programming,
and use ObjectWindow for supporting user interface
design and M+ + for supporting numerical computations.
These two object libraries are designed as the base of
RECPAM experience factory.

The development starts from domain analysis. The
principle of the RECPAM is seen as recursively
constructing a partition with maximal local information
content to build a large tree, followed by eliminating in
turn "negligible" information with minimum global
information loss respectively to get the honest tree and
the RECPAM partition. The measure of information in
three steps is based on estimating the model parameters
and computing model regression. From the viewpoint of
statistics, different statistical models share the same
RECPAM manipulations and only change the
information measure which comes from the regression. It
is logically and ideally suited to separate the regression
from recursive partitioning, pruning and amalgamation.
Also, we can unify the data formats from different
statistical models to two groups: predictors and criterion.
The RECPAM implementation prototype consists of five
modules, as shown Figure 2. The five modules are ranked
into three domains: regression, RECPAM, and data
handling. Each domain is an independent system which
can be directly executed or reused by other systems as a
subsystem. For example, the regression module is not
specific for the RECPAM approach. According to the
three domains, the experience factory is organized into
three corresponding packages. For each domain, we
identify common behaviours across different models and
specify the interconnection between two domains. The
RECPAM domain is divided into three steps: tree
building, tree pruning and amalgamation.

In experience abstraction, we try to describe the results
of domain analysis by means of data abstraction, function
abstraction and process abstraction. For example, the
RECPAM domain deals with three types of data objects:
data matrices, tree structures and partition structures.
Each data object has operations associated with it. For
example, some operations associated with data matrices
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are maximizing the information content, splitting the data
matrix into two partitions, surrogating the missing data.
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Fig.2 RECPAM Implementation System

In experience representation, three abstractions are
mapped into programming codes, specifications and
documents. Then they are organized into a framework by
describing constraints such as precedence, sequencing and
synchronization on the possible sequence of actions
during the execution of RECPAM.

If a particular statistical model is needed, we recognize
the similarities and differences. The similarities, such as,
RECPAMapproach, Newton-Raphsonmethod, preparing
data can be reused by retrieving and customizing
experience from the experience factory. The differences,
such as, each model’s regression, criterion variables
declaration and stopping rules, need to be created. As
new experience, these new parts are packaged for future
applications. Finally, we assemble and test them to
deliver the new model in the RECPAM family. This
approach significantly decreases duplication of work. It
promotes  productivity, reliability, consistency,
manageability and standardization.

5. Conclusions

We have introduced a reuse-oriented approach,
synthesizing three reuse technical concepts: domain-
oriented software life cycle, multiorganization
development process model and experience factory into
conventional development process, to enhance the reuse
level in developing statistics software. It provides a
systematic approach to maximize reusing all software-
related experience.

We have demonstrated the development of RECPAM,
as an example of the reuse-oriented approach. The
experience confirms the following points:

- Software reuse changes the software development
process.

- Technology is important and infrastructure support is
essential.

- Narrow well understood domains are more effective.

- Domain analysis is at the heart of the reuse-oriented
approach.
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1. Abstract.

Large surveys contain complex skip patterns: 8 reply of
{no} to “ever worked?", for example, would skip over the
entire job data section; similarly, each of the responses to
“how often paid?”, ({by hour}, {by day}, {by week}, etc.),
would skip to appropriate questions on earnings. These skip
patterns can overlap and be nested in complex ways.
Computer Assisted Telephone Interviewing (CATI) systems
contain the necessary logic to implement the skip patterns.
Non-CATI data from surveys with large pre-test and/or field
follow-up require editing of skip pattern violations.

This presentation will describe the relevant theory and the
implementation of a systematic skip pattern editing process
and its application to a survey with 25,000 observations and
over 1,000 variables.

II. Introduction.

Skip patterns are used in survey instruments esseatially for
three purposes: to skip questions which do not apply to the
respondent, to skip questions whose answers can be deduced
from answers to prior questions (though some redundancy
is often used for internal consistency checking), and to elicit
answers to alternate questions for those questions the
respondent refused or did not know the answer.

Large-scale surveys are mow usually administered using
Computer Assisted Telephone Interviewing (CATI). The
survey instrument is encoded in the processing language of
the CATI system, complete with skip pattern control.
Alternate paths through the questionnaire are taken as a
function of the responses the CATI operator enters.

For an employment and training program evaluation study,
a series of large survey instruments were administered to
economically disadvantaged Americans. A substantial
portion of this data collection effort could not be completed
over the telephone and had to be administered in person by
survey field staff using paper booklets. These booklets were
"maximally” key-entered: all responses in the booklet were
entered regardless of context. The data derived from this
process will contain skip pattern violations and will require
data “"cleaning” before analysis commences.

III. An Example of the Problem.

Parts of a survey instrument constructed to illustrate typical
skip patterns is shown in Figure 1.

'A.é ... graduate from High School?
YES, go to A.9 >
NO

TJ ... highest grade attended?

primary h.s.
01 ..08 09 .. 12: __

Ia.8 ... last date attended?
month: ___
year : ___

«

LB.:’» ... employed?
YES
NO, go to C.1

Ta.a ... how often paid?

r——sy Section C

go to 8.6 Pty
by Week, go to B.7 »———

.5 ... hours per day usually work?

.6 ... days per week usually work? <

o7 ... CUrrent Wage? $ XXXXXX.XX  e—J
Refused?
Don' tknow?

YES
NO, goto ... >

r.a: Is B.7 “Refused" or "Don'tKnow" ?

1 = $ 100/week or less

r.9 Probe: Can you give me a renge?
2=8% 101 to 200 / week’

Figure 1: Skip patterns in a survey instrument.

A skip pattern violation exists, for example, in a data record
where A.6 is {YES} and both A.7 and A.8 contain valid
values — a High School graduate who should have skipped
A.7 and A.8. Similarly, a skip pattern failure exists if B.4
is {by hour} and B.5 is {blank} - an hourly employee
should answer the hours per day question.
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1. Traditional Methods.

Traditional methods of cleaning skip patterns consist of
studying multi-dimensional tabulations and/or customized
computer programs to determine the extent and context of
skip pattern errors. Research personnel then determine the
appropriate corrections or imputations for the variables
involved in the patterns, often on a case-by-case basis,

The length and complexity of our follow-up survey instru-
ments (60 pages, 1,200 variables) and the anticipated 25,000
respondents suggested that alternate, more systematic and
automatic processing approaches should be investigated.

An informal literature review and discussions with personal
contacts found only one relevant reference: [Fagan and
Greenberg, 1988].

IV. Systematic Approach to Editing Skip Patterns.

Skip patterns in survey instruments can clearly be modeled
with acyclic directed graphs: Questions are represented by
nodes; values are represented by edges or arcs. The graph
model is acyclic because survey instruments do not have the
potential of unending loops (although the instrument may
repeat a series of questions "for each job"), and the model
is directed because each arc has a distinct, unique, starting
node and a distinct, unique, terminal node. A survey
instrument usually begins with a single starting question (or
node) and, if not terminated with a single terminating
question (“Thank you®), can trivially be made to do so.

We will use the simple graph in Figure 2 to demonstrate our
gystematic approach to skip pattern editing.

The sample graph can be described with an arc adjacency
matrix wherein each cell indicates whether the row arc
connects to the column arc as illustrated in Figure 3.

Fagan and Greenberg proved that, given an adjacency ma-
trix, M, the matrix obtainedby M t 2 gives "2-step” con-
nectivity, the matrix (M ¢ 2) # 2 gives "4-step” connect-
ivity, etc., with the matrix M t ceil(log, N) gives "N-
step” connectivity. "N-step” connectivity, or all possible
paths from the initial to the terminal node is identical to
transitive closure; a simple, yet fast, algorithm for transitive
closure is easily derived, and is credited to [Warshall 1962]
by [Sedgwick 1990].

e

=1,32,53 are responses.
=E Error response.
(i) Absolute arc number.

Figure 2: Skip pattern graph model example.

arcf1 2 3 415 6 7|8 9 0]|*
As1 1|1 1 1
2 2 1 1 11
33 1 1
E 4 t]1 11
B=] 5 1 1 11
2 6 1 111
E 7 111 11
c=1 8 1 1
2 9 1 1
EO mn
D . 1

Figure 3: Arc adjacency matrix.

Fagen and Greenberg, in their paper and in their computer
programs which they kindly shared with me, represented
{blank} implicitly: an absence of any arc for a node
represented a blank value. I found it more convenieat to
eacode {blank} as an explicit arc from the nodes permitting
{blank}.




The transitive closure matrix, T-matrix, for the skip pattern
graph model example in Figure 2 extended with explicit
Blank arcs, is as follows:

erc| 1234|5678 9101112 |*

A=l 111 111 1 11 1
2 2 1 111 11 1
33 1 1 111

E 4 11111 111 1
Bs1 5|1 111 11 1 1
2 6|1 1 1 1 11 1

E 7|1 1 1 1 11 1

8 8 11 11111 11
c=1 9111 1]1111]1 1
210111 111111 1 1
ENMNI11T 111111 1 1

8 12 1 1 1

D *l1111 111111 1 1N

Figure 4: Transitive closure matrix.

Every data record represents a path from the initial node to
the terminal node. Whether that path is a valid path can be
determined from the T-matrix. For example, a record with
values ( A = {2}; B = {blank}; C = {1}; D ) is encoded
as the path ( arcs (2), (8), (9) ). The data path connections
(2) = (8) and (8) -» (9) exist in the T-matrix; Hence the
record "passes”.

Similarly, a record with ( A = {1}; B = {blank}; C =
{2}; D) is encoded as (arcs (1), (8), (10) ). The sample
skip pattern T-matrix from Figure 4 is shown in Figure §
overlaid with the path (arcs (1), (8), (10) ) from this data
record. The connection (1) - (8) in the data does not exist
in the T-matrix and, hence, a skip pattern violation exists.

V. Imputation Heuristics.

The use of the T-matrix provides a mathematically sound
method for determining the correctness of the Node-Arc
path representation of any data record. The second phase
of the systematic editing process, imputation, is invoked
once a record is determined to contain at least one skip
pattern violation.
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arcf(1)23 4 | 56 7(8) 9¢10)11 12 |*

A=1 (D) 1111 (M1 1
2 2 1 111 11 1
33 1 1 111

E 4 11111 111 1
B=1 5 |1 111 111 1
2 6|1 1 1 1 11 1

E 711 1 1 1 11 1

B (8)[()1 M1 1 11
cs1 9111 111111}1 1
2001001 11111 M 1
EM {11 111111 1 1

B 12 1 1 111

D *f111y 11111 11 1N

Figure 5: Sample T-matrix with path overlay.

Fagan and Greenberg note that their skip pattern software
"is not meant to be a compreheasive edit and imputation
package.” The software removes a minimal set of responses
from records with skip pattern violations, distinguishes non-
applicable from missing items, and performs response
imputations for missing--but needed—items. They suggest
that "one can frequently discover deterministic imputations
for selected missing items."”

Whereas Fagan and Greenberg base most of their imputation
stratagy on arc conflict counts, our process determines a
conflict participation count for each node. Based on then
conflict count node structure we apply one of a set of three
imputation schemes to the record.

The imputation schemes were developed heuristically to
satisfy three criteria: 1) to do the least possible damage to
the data, 2) to be extremely conservative in imputing valid
value arcs to nodes (answers to questions), and 3) to match
the imputations which would have been made manually.

The three schemes are as follows:

a. A unary conflict count mode.

When there is a single node with the highest
conflict count, we determine the conflict count for
each of its arcs. If there exists a single arc with
minimal conflict, we impute that arc to the node.
This is the only occasion where we will impute an
actual data value. If there are two or more
minimal conflict count arcs we impute {error}.
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b. A conflict count mode with three or more nodes.
We set each node to {error}.

c. A bi-modal conflict count.

When there are exactly two nodes with the highest
conflict count, the imputation scheme is based on
the range of possible arc states and on the current
arc state of each of the two nodes. The possible
arc states are {value / no-blank, value / blank-ok,
blank, error}, where value / no-blank indicates that
a node has a non-blank valid value and that blank
is not a permitted state, and value / blank-ok
indicates that a node has a non-blank valid value
and that blank is a permitted state.

The imputation scheme is shown in Figure 6 as
state transition matrix.

Value
no {blank)
{blank) ok {Blank} {Error}
A
!
Vv [No |«--0 0------=»]
a |{B)
t Q------ e | 0
u |(B)
elok|l o 0------ 1
) ]
{ { i { -
1 I ] ]
I S i
----- >
{Blank) 0 | 0----- “--
] ] ] 0
! | S
v I v I
(Error) ] l'""r B |
v
0"““';’)' 0"";---- > !S-
1
0 indicates two-node starting state. '
] indicates two-node imputed state.
Note that transition from upper left (value,value)
without (blank} i3 to lower right (error, error).

Figure 6: Bi-variate state transition imputation scheme.

The transitions between the bi-variate starting and imputed
states do not permit imputing (new) valid values to either of
the nodes involved. One could take a much more
permissive view of data imputation and have transitions "up”
and "left” instead of our "down" and "right"; we have not
tested such a scheme.

VI. Implementation.

After implementing a small prototype skip editor to test the
basic approach, the full skip pattern editor was implemented
(in FORTRAN 77) "on top of™ an existing univariate editor:
the skip editor is then assured of valid data arcs including
{blank} and {error} arcs where appropriate. The skip
pattern structure is derived from an existing codebook
management program.

The full production version was much more complex and
took much longer to develop than anticipated. Nevertheless,
it was successfully used on segmented parts of the follow-up
surveys. Editing was done on an (JBM) mainframe and on
various PCs.

The size of the T-matrix, regardless of the degree of "bit-
packing”, is a function of the square the number of unique
arcs (not nodes) in the graph of the skip patterns in a survey
instrument. Other implementation data structures are linear
functions of the number of arcs and of the number of nodes.

The full production version can edit data segments with
approximately 100 nodes (variables) and 500 arcs (values).

Several modifications to the program are being studied,
especially space-conservation changes.

VIII. Results.

Systematic editing of complex skip patterns in survey data
is possible, and it has been implemented for use in a
production environment. The detection of skip pattern
violations is based on the properties of the transitive closure
matrix of the graph model of the skip patterns and a set of
heuristically derived schemes for skip pattern imputation has
been developed. The results of the editing and imputation
process are identical or equivalent to those produced
manually.
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A Program for Identifying Duplicated Code
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ABSTRACT

This paper describes a program called dup that
finds occurrences of duplicated or related code in
large software systems. The motivation is that
duplication may be introduced into a large system
as modifications are made to add new features or
to fix bugs; rather than rewrite working sections of
code, programmers may copy and modify sections
of code. Over time, proliferation of copies can
make the code more complex and more difficult to
maintain. Dup searches such code for all pairs of
duplicated sections. The user may choose to
search either for identical sections of code, or for
sections that match except for substitution of one
set of variable names and constants for another as
if they were corresponding procedure parameters.
Applications of dup could include visualization of
the structural complexity of the whole system,
identifying unusually complex files, identifying
sections of code that should be replaced by
procedures, and debugging,

Introduction.

This paper describes a new software tool, a program
called dup, that finds occurrences of duplicated or related
code in large software systems to aid in software
maintenance and debugging. The program generates
descriptions of the related code sections and statistics about
the extent of duplication found. For visualizing the output,
the output can be plotted in scatter plots and profiles can be
produced to show how many times each line occurs in
matching sections of code.

This work is part of the emerging field of software
visualization [E), whose goal is to display characteristics of
large software systems visually, as an aid in dealing with the
complexity arising in systems of hundreds of thousands or
millions of lines of code created by hundreds or thousands
of programmers. Other examples of software visualization
are the graphical user interfaces seesoft [E] and dotplot
(CH]. Seesoft interactively displays data such as the age or
programmer for each line of code; dotplot allows interactive
manipulation of scatter plots to compare sections of code.

Dup was motivated by the observation that
duplication may be introduced into a large system as
modifications are made to add new features or to fix bugs.
Rather than rewrite working sections of code, programmers
may copy and modify sections of code. It has long been
known that copying sections of code may make the code
larger, more complex, and more difficult to maintain. In
particular, when a bug has been found in one copy, a bug fix
may he made to the place where the bug was found, but not
to the corresponding parts of other copies. Nevertheless,
making a copy and modifying it may be much simpler than
more major revisions and therefore less likely to introduce
new bugs immediately, and hence copying code may seem
preferable to changing a working section of code. This may
especially be true when the programmer making the bug
fixes is not the one who wrote the original code.

The premise underlying dup is that copying is most
often accomplished by means of an editor. Therefore, the
resulting copies will be largely the same line-for-line, or will
be related in some systematic way such as a change of
variables. White space and comments may be ignored since
they do not affect the functionality of the code.

Given these assumptions, the approach taken in dup
is line-based. Two lines of code are considered to be
identical if they contain the same sequence of characters
after removing comments and white space; the semantics of
the program statements are not analyzed. Data structures
are maintained with regard to lines rather than individual
characters to reduce the space requirements.

The output of dup is a set of pairs of longest matches
of sections of code. That is, two sections are a longest
match if they match but the preceding lines do not match
and the following lines do not match. To provide an
example, we rephrase the definition of longest matches in
terms of strings. Two identical substrings are a longest
match if the preceding characters do not match and the
following characters do not match. Thus, in the string
axyzbxyzc, the xyz's are a longest match, but the xy’s and the
yz's are not. Note that the longest match relation is not
transitive. That is, if section A is a longest match for
section B, and section B is a longest match for section C, it
could be that section A is not a longest match for section C,
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Figure 1. Exact matches for a C file,

because these sections are both contained in a longer match.
In practice, when there are several related sections of code,
the various pairs do differ in exactly how much matches.
Therefore, the program reports the longest matches in pairs
rather than looking for larger sets, and the scatter plots make
evident that some of these matches overlap.

Since very short matches may not be interesting, the
user may specify a minimum length match to report. Figure
1 shows a scatter plot produced by the program for a file of
2846 lines, or 1761 lines after pruning white space and
comments, with a minimum match length of 15 lines. Only
line segments below the main diagonal are plotted in this
paper, because in plots of large amounts of code, most of the
line segments are very close to the main diagonal, even
though no line is matched with itself. Thus, each longest
match is represented by exactly one roughly diagonal line in
the plot; the lines are not strictly diagonal because the white
space and comments have been ignored, while the line
numbers are the original line numbers in the file. In this
case, the program found 18 matches involving 419 lines, or
24% of the file.

Rather than looking for just exact matches, the
program can look for parameterized matches, where the
code sections match except for a one-to-one correspondence
between candidates for parameters such as variables,

constants, macro names, and structure member names.
(Keywords and operators are not candidates to be
parameters.) For example, the following two code
fragments taken (with some editing in order to fit) from the
X Window [SG] source code are identical except for the
correspondence between the variable names p£fi/ pfh and
the pairs of structure member names lbearing/ left and
rbearing/ right.

copy_number (&pmin, &pmax,
pfi->min_bounds.lbearing,
pfi->max_bounds.lbearing):
*pmin++ = *pmax++ = ‘,7;
copy_number (épmin, &pmax,
pfi->min_bounds.rbearing,
pfi->max_bounds.rbearing);
*pmint++ = *pmax++ = ‘,7;

copy _number (&pmin, &pmax,
pfh->min_bounds.left,
pfh->max bounds.left);
*pmin++ = *pmax++ = °,’;
copy_number (&pmin, &pmax,
pfh->min_bounds.right,
pfh->max_bounds.right);
*pomin++ = *pmax++ = ' ,7;

For parameterized matches, matching sections are like
expansions of the same macro with different parameters, for
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Fig. 2. Parameterized matches for the same file as Figure 1.

example, £(pl,...,pn) and £(q1,...,qn). Only
pairs of parameters that are not identical need be reported.
When run on the original X source containing the above
code fragments, the output produced by dup is the
following. (The line numbers given are the original line
numbers; "pruned” lines are the ones remaining after
stripping off white space and comments.)

xlsfonts.c:274-309,

faslsfonts.c:384-419,

34 pruned lines match, with parameters:

1: pfi, pfu

2: lbearing, left

3: rbearing, right

Commonly, code will have more parameterized
matches than exact matches. For example, Figure 2 shows
the parameterized matches for the same file as Figure 1. In
this case, the program finds 87 longest parameterized
matches of at least 15 lines, involving 85% of the file. The
longest match found is 182 lines, compared to 37 lines for
the exact matches.

The program makes an estimate of how much more
succinctly the code could have been written, if alternative
programming methods such as procedures had been used
instead of copying. The estimate is based on the simple
assumption that if the same line appears in k sufficiently

long matching sections of code, then k-1 of these
occurrences could have been avoided. For the file of
Figures 1 and 2, the program estimates that the code could
have been shrunk by 14% based on exact matches, but 61%
based on parameterized matches.

The program can also provide other aids such as a
profile of the code showing how many copies of each line
occurred in the matches found.

Other researchers have taken different approaches to
finding common code. Programs aimed at detecting student
plagiarism have typically used statistical comparisons of
style characteristics such as the use of operators, use of
special symbols, frequency of occurrences of references to
variables, or the order in which procedures are referenced
{H,Ja]. Johnson {Jo] has taken a parse-tree based approach
to finding duplicated code. However, a line-based approach
has tw