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PUBLISHER'S FOREWORD

This volume is the second published by the Interface Foundation of North America. In the past the
volumes had been published by commercial publishers, but we had experienced substantial difficulties
with availability, timeliness and cost. The publishing experience is an exciting new venture for the
Interface Foundation. As many reader's of this volume will already know, the Interface Foundation
has launched on a joint venture with the American Statistical Association and the Institute of
Mathematical Statistics in the publication of the Journal of Computational and Graphical Statistics.
We strongly encourage readership of and subscriptions to the new journal. The Interface series of
meetings has been positioned squarely at the junction of computing science and statistics. Since the
first Interface Proceedings was published in 1971, it has been the periodical of record in documenting
the development of ideas at this junction. In 1987, the proceedings volume was re-titled with the main
title being Computing Science and Statistics and with Proceedings being reserved as a sub-title.
Computing Science and Statistics has had a much more archival nature than fuutid in L.he typical
cznference proceedings. In keeping with this more archival nature, we have dropped the Proceedings
subtitle and added a volume number to reflect the periodical character of the publication.
Concomitant with this change, we suggest a change in the nature of the citation. An example of the
recommended citation is as follows:

Eubank, R. L. and Speckman, P. L. (1992), "Practical simultaneous nonparametric regression
confidence bands," Computing Science and Statistics, 24, 1-9.

Should more details be desired, the editor, the publisher (Interface Foundation of North America, Inc.)
and the city (Fairfax Station, VA) may be added. The 1992 Interface Symposium was the 24th
meeting. There were no proceedings of the first three meetings. We have chosen to number the
volumes according to the meetings, rather than using a strict sequential numbering. This is intended
to make the volume numbering somewhat easier to remember.

The papers and discussions in this volume are reproduced as received from authors. These
presentations are presumed to be essentially as given at the 24th Symposium on the Interface. Volume
24 is not copyrighted by the Interface Foundation of North America. Publication in this volume does
not preclude publication elsewhere.
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PREFACE

1992 Interface Proceedings

The 24th Symposium on the Interface of Computing Science and Statistics was held on March 18-21, 1992
at the College Station Hilton Hotel, College Station, Texas. The conference theme was "Graphics and
Visualization."

The Department of Statistics at Texas A&M University hosted the meeting with H. Joseph Newton serving
as Program Chair. The members of the program committee were Richard Becker, Mary Ellen Bock, Bar-
bara Buttenfield, Alan Gelfand, James Gentle, James Hardin, lain Johnstone, Robert Kass, Raoul LePage,
Michael Longnecker, Douglas Martin, Gerald North, Emanuel Parsen, David Scott, Phil Spector, Michael
Tarter, David Thomson, Dag Tjostheim, Edward Wegman, Forrest Young, and Stuart Zweben.

The symposium theme was much in evidence in a variety of sessions, including the keynote address, "Making
Computer Graphics Animations for Math and Science Education," by James Blinn of Caltech, a plenary
address "Dequantification in Scientific Visualization: Is this Science or Television?" by Edward Tufte of
Yale, as well as a short course presented by Tufte based on his highly awarded books, "The Visual Display
of Quantitative Information" and "Envisioning Information." Because of the highly visual nature of these
talks, they could not be adequately presented in this proceedings.

Much of the success of a conference can be measured in terms of the number of attendees and the number
of contributed talks, which, for this Symposium were approximately 305 and 77, respectively. Another
indication of the lasting enthusiasm of the attendees is that fully 82% of the authors of contributed talks
at the meeting have submitted manuscripts for this proceedings, while 67% of the invited speakers have
submitted manuscripts. Many of the other invited speakers would have liked to submit papers, but their
talks primarily consisted of showing videotapes of animated graphics and thus could not be presented in a
traditional proceedings.

The organizer of an Interface Symposium truly has a number of people to thank. A special thanks goes to
James Hardin for serving on the program committee as well as arranging and overseeing the vast array of
computing and audio/visual equipment that was used during the meeting. Lone Blackwell helped a great
deal at the beginning of the planning process. Finally, I would like to especially thank Barbara Napoli
Thomason for cheerfully handling a many details before, during, and after the symposium.

H. Jo , Editor and Organizer Accession For
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SYMPOSIUM SCHEDULE

Wednesday, March 18, 1992

5:00 p.m.-8:00 p.m. Registration
5:00 p.m.-8:00 p.m. Board of Directors' Business Meeting and Dinner (Pecan)

8:00 p.m.-10:00 p.m. Opening Reception (Ballroom, I-III)

Thursday, March 19, 1992

8:15 a.m.-9:45 a.m. Keynote Address: "Designing Animations for Mathematics Education" (Ballroom, III-IV)

9:45 a.m.-10:00 a.m. Break (Ballroom V-VII)

10:00 a.m.-12:00 a.m. Invited A: Visualization Methods for Science and Statistics (Ballroom, III)
Invited B: Nonparametric Regression (Ballroom, IV)

Contributed A: Algorithms for Multivariate Distributions and Data (Ballroom, I)
Contributed B: Software Design and Quality (Ballroom, II)

12:00 p.m.-1:30 p.m. Lunch

1:30 p.m.-3:30 p.m. Invited A: Visualizing Programs (Ballroom, III)
Invited B: Spatial Time Series (Ballroom, IV)

Contributed A: Building on Existing Software (Ballroom, I)
Contributed B: Industrial Statistics (Ballroom, II)

3:30 p.m.-4:00 p.m. Break (Ballroom V-VII)

4:00 p.m.-6:00 p.m. Invited A: Visualizing Multivariate Data and Functions (Ballroom, III)
Invited B: Advanced Statistical Techniques for Industry (Ballroom, IV)

Contributed A: Approximating Integrals and Distributions (Ballroom, I)
Contributed B: Stochastic Processes and their Applications (Ballroom, II)

7:30 p.m.-10:30 p.m. Visualization Short Course-Edward Tufte (Brazos Amphitheater)

Friday, March 20, 1992

8:15 p.m.-9:45 p.m. Plenary Address: "Dequantification in Scientific Visualization: Is this Science or Televi-
sion?" (Ballroom, Ill-IV)

9:45 a.m.-10:00 a.m. Break (Ballroom V-VII)

10:00 a.m.-12:00 p.m. Invited A: Statistical Visualization Software (Ballroom, III)
Invited B: Wavelets and Nonparametric Modeling (Ballroom, IV)

Contributed A: Linear Statistical Inference (Ballroom, I)
Contributed B: Applications of Graphics (Ballroom, II)

12:00 p.m.-1:30 p.m. Poster/Video/Demo Session (Ballroom V-VII)

1:30 p.m.-3:30 p.m. Invited A: Bayesian Computing (Ballroom, III)
Invited B: Statistical Methods in Software Quality Evaluation (Ballroom, IV)
Invited C: Building on S (Brazos Amphitheater)
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Contributed A: Nonparametric Regression and Density Estimation, I (Ballroom, I)
Contributed B: Designing and Teaching Graphics (Ballroom, II)

3:30 p.m.-4:00 p.m. Break (Ballroom V-VII)

4:00 p.m.-6:00 p.m. Invited A: Geographic Information Systems (Ballroom, III)
Invited B: Sampling Based Approaches for Bayesian Inference (Ballroom, IV)
Invited C: Unix Tools for Statistical Computing (Brazos Amphitheater)

Contributed A: Nonparametric Regression and Density Estimation,II (Ballroom, I)
Contributed B: Time Series Analysis and Forecasting (Ballroom, II)

6:30 p.m.-7:30 p.m. Reception (Ballroom, V-VII)

7:30 p.m.-10:00 p.m. Banquet (Ballroom, III-IV)

Saturday, March 21, 1992

8:00 a.m.-10:00 a.m. Invited A: Visualization in Climate Research (Ballroom, III)
Invited B: Neural Networks (Ballroom, IV)
Invited C: High Performance Computing (Ballroom, I)

Contributed A: Small Sample Statistical Inference (Ballroom, II)

10:00 a.m.-10:30 a.m. Break (Ballroom V-VII)

10:30 a.m.-12:30 p.m. Invited A: Time Series Computing (Ballroom, III)
Invited B: Conditional Methods in Regression and Logistic Regression (Ballroom, IV)

Contributed A: Visualizing High Dimensional Data (Ballroom, I)
Contributed B: Statistical Inference (Ballroom, II)

12:30 p.m. End of Conference
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Practical Simultaneous Nonparametric Regression Confidence Bands

R. L. Eubank* P. L. Speckman
Department of Statistics Department of Statistics
Texas A&M University University of Missouri-Columbia

Abstract To illustrate the problem of nonparametric bands in a

Two proposals for simultaneous confidence bands in specific setting, consider the case of a second-order kernelTwo ropsal fo simltaeou cofidece and in estimator for p of the form

nonparametric regression are examined, one based on

bias-correction and a second using a Bonferroni in- 1 n ft t'

equality. Both are implemented with data-driven band- AA(t) = -LY7K ,
width selection and nonparametric variance estimation. r=1

Asymptotic theory shows both to have suitable coverage where A > 0 is the bandwidth and K is a symmetric
for large samples, and simulation suggests good coverage kernel supported on [-1, 1]. If p(t) possesses two con-
properties for samples as small as 50. An application tinuous derivatives and K is a second order kernel, it is
of the methodology is used to give bounds for coverage well known that
probabilities in nonparametric regression with samples A2 1 1 (t) 1

ranging from 50 to 1000. E(px(t)) - p(t) A X 2 Kkz)dx (1.3)
1. Inroducion .2 jfl

1. Introduction Var(/pA(t)) 2 - - K(z) 2dx (1.4)
This article reports on progress in confidence bands nA

associated with nonparametric regression estimation. = p).
There has been a great deal of development of the analyt- Consequently, if the usual smoothing criterion of mini-
ical properties of nonparametric estimators, but the cor- moning
responding technology for confidence bands has lagged. miz
In this paper we outline theoretical and experimental 1
results aimed at providing users with practical bands. AMSE(A) = n E (P.(tX) -0 (t0)) 2

Consider the situation where responses yl, . . , yn are r=1
obtained at equally spaced design points tr = r/n, r = is adopted, the optimal bandwidth A0 will satisfy
1,..., n. The y, and t. are related under the model

y=p(tr)+,,r-,..., n, (1.1) A0 - kn-i/ 5  (1.5)

where k is a constant depending only on K and p. For
where the c, are independent, identically distributed, clarity of exposition, the rest of this article concentrates
random variables having zero means and common vari- solely on this setting of second order asymptotics with

2ance or , and p is an unknown, smooth regression curve, the related rates of convergence. While we have not ex-
The problem to be addressed is the construction of con- plicitly worked out the details, these results presumably
fidence bands for p. Specifically, given a E (0, 1) and an extend to higher order kernels.
estimator / for p, we want to find data-based bounds Typical large sample theory for confidence bands is
Lo(t) and U,(t), presumably depending on A(t), such based on the approximate normality of a pivot statistic
that like TA = [px(t) - p(t)]//i( . But at the optimal

P(L.(t) < p(t) < U.(t) for all t) • 1 - a, (1.2) smoothing parameter A0 , the bias of pA is not negligible.

Writing

at least in large samples. To be practical, these bounds I•(t) - E(pN(t)) E(px(t)) - p(t)
(1) should be completely data-driven and (2) should pro- TA = + -( (1.6)
vide a reasonably good (or at least conservative) approx- (1.) X ' '
imation to the nominal confidence level, the first term, the stochastic portion, is asymptotically

*Research supported in part by NSF Grant DMS-9024879 standard normal under weak conditions, but the second
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term is in general 0(1). To use TA as a pivot statistic evidence that the methods are practical with samples as
directly, we need to choose A in such a way that the small as 50.
second term goes to zero. Data-driven methods for esti-
mating an optimal A, generally designed to obtain a rate 2. Bias-corrected bands
like (1.5), will not achieve this goal. Thus the dilemma
of nonparametric confidence bounds has been either to In order to have a tractable theory, we make several

deliberately undersmooth, thereby employing an inferior simplifying assumptions (c.f. Rice (1984)). For the re-

estimate of p(t), or to compensate for the unknown bias mainder of this article, we assume that p(t) is periodic

term in (1.6) explicitly, thereby changing the presumed on (0,1) and has two continuous periodic derivatives sat-

otherwise optimal properties of the estimator. isfying

The first approach, that of deliberately undersmooth- /4 (0) -- '(1), j = 0, 1, 2. (2.1)

ing, has been taken by a number of authors beginning 2.1. Theoretical background
perhaps with Bickel and Rosenblatt (1973) in their study
of kernel density estimation. Extensions to nonpara- Much of the theoretical development for nonparamet-
metric regression include results by Johnston (1982) and ric confidence bands is based on the seminal work of
Hardle (1989). Bickel and Rosenblatt (1973). The following version of

Another approach to the bias problem is to incorpo- one of their results holds in the context of fixed-design
rate an a priori bound on the bias in a confidence band. nonparametric regression.
Knafl, Sacks, and Ylvisaker (1982) showed that it is pos- Lemma 1 Let
sible to obtain conservative bounds on the simultaneous
coverage probability in this fashion. Hall and Tittering- ZA(t) = PA(t) - E(IL(t))
ton (1988) in related work obtained best possible simul-
taneous confidence band lengths under similar assump-
tions. They showed that the minimum width of uniform and
confidence bands of the form (1.2) is MX = sup IZX(t)I.

O<t<l

(lon\ 21 5  If K is twice continuously differentiable and c, has four

n (1.7) absolute moments, then

Both of these methods require additional information P (Mx. _ V/-2 -log,• 0 + C + -* 1.-c,
and hence are not completely data-driven.

Direct approaches for dealing with the bias term have where
also been used. (Hall (1990) used the term explicit bias
estimation to denote such confidence bands.) For ex- zO = - log Ilog(1 - c)j
ample, Cox (1986) used an estimate of the the norm of ( 1 1/2\

the bias in constructing simultaneous confidence bands C = log if K(U)2d

for smoothing splines. More recently, Hairdle and Bow- 2v [J, Ad 1  u
man (1988) and Hardle and Marron (1991) introduced
an explicit bias estimate as part of a bootstrap method (NB the Bickel and Rosenblatt (1975) correction to the
for estimating the distribution of sup, jTx(t)I itself rather constant C.) This result is proven using a strong ap-
than relying on asymptotic theory. However, the latter proximation argument in Eubank and Speckman (1992).
approach requires selection of an auxiliary bandwidth for Define
bias correction in the bootstrap process, a topic appar-
ently not fully addressed in the literature. 4 = ar 0 (\r-2 log \0 + - log,-0 (2.'

A third alternative is the use of Bonferroni bounds. /-2 -logAo
Hardle (1990) reports on an application of this idea, but A direct consequence of Lemma 1 is that the interval
to our knowledge it has not been explored further.

In the rest of this paper, we examine two methods, (" 3
one based on bias-correction and the other a direct ap- tP : sup IP.\(t) - p(t)I _0<t<l
plication of a Bonferroni inequality. We show that it is
possible, asymptotically, to formulate completely data- has asymptotic coverage probability I - a for E(px.).
driven methods that provide at least guaranteed asymp- In the absence of bias, or when the bias is asymptot-
totic simultaneous coverage, and we provide Monte Carlo ically negligible (for example, as when \ = o(n-1/5)),
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this constitutes a valid method. (See Johnston (1982) may not be as critical. We take A = )5/7, a data-driven
and Hiirdle (1989), e.g., for this approach in the ran- bandwidth with the requisite n-1/ 7 rate. Finally, we
dom design nonparametric regression problem.) With typically must estimate a. Any v/'n-consistent estima-
the more usual O(n-1/5) bandwidth commonly recom- tor can be used such as one of those found in Gasser,
mended for practical use, an obvious way to attempt to Sroka and Jennen-Steinmetz (1985), Hall, Kay and Tit-
convert (2.3) into a confidence band for p is to estimate terington (1990) or Hall and Marron (1990). Under these
the bias, E(,uo(t)-p(t), directly, and to incorporate the conditions, let
estimate into the interval.

Motivated by (1.3), we take --- 'log + . (6

bA(t) = A2B/A"(t) 
-log) (

as an estimate of the bias, where B is a known constant Then the following result is proven in Eubank and Speck-

and A"(t) is a suitable estimator of p"(t). One possibility man (1992).

is Theorem 1 Assume (2.1) and (2.5) hold and that the
1(t) = _L- E 1 K*,t t") (2.4) 's possess more than nineteen absolute moments. Under

ji"(i r=1~.~r ( 2.4 the conditions of Lemmas 1 and 2,
r=1l

where K* is a square integrable kernel supported on P ( sup lpl(t)- bi(t) - p(t)1 <a ) . 1 -a. (2.7)
t-1, 1] satisfying fl' K°(u)du = 0, j = 0, 1, and 0<,<.

f I u2 K'(u)du = 2, and A is a bandwidth converging 2.2. Practical considerations

to zero at the rate n-'/ 7 (c.f. Mfiller (1988)). Our experience suggests that obtaining accurate coy-
Under suitable conditions, px(t) - bx(t) should have erage rates is a delicate matter. One clue to the problem

less bias than px(t) itself. Surprisingly, the variance of may be that the effect of a on the width of the band t.
the corrected estimator is not seriously altered. In fact, is of second order. It's clear from (2.2) that t/t, -+ 1
any estimator of the type (2.4) is good enough in the fol- as n -- oo for any fixed 0 < a, a' < 1. This observation,
lowing sense, as shown in Eubank and Speckman (1992). characteristic of extreme value distributions, points out

Lemma 2 If p" is Lipschitz continuous of order Y > 0 a practical problem in obtaining good coverage proba-
and K" is twice continuously differentiable, then bilities. Seemingly minor adjustments to the algorithm

can have a large impact not suggested by the theory,

sup IE(pp\(t)) - pA0(t) - bx,(t)l = OP(n*) especially for small samples or large Oor_<t_<l O'Vr 00 One significant factor is the correct evaluation of the
variance term Vn(A\). According to Lemma 2, the bias

for some 6 > 0. adjustment bA(t) is uniformly negligible, and the result

This result combined with Lemma 1 immediately of the Theorem follows in part by an application of Slut-

shows that the bias-corrected confidence band sky's theorem. However, for finite samples, the added
variability from estimating the bias can have substantial

yp: sup Ip.o(t) - bxo(t) - p(t)l <e impact on coverage probability. In our current imple-
1 o<t<- mentation, we now compute Vn(A) as a sum involving

the squared coefficients of the y s in ;s.\(t) - b.(t).
has the correct asymptotic simultaneous coverage prob- As mentioned above, we need an auxiliary bandwidth
ability. for estimating p"(t). Among several possibilities we

To be practical, this method requires choices or esti- tried, the choice i = -5/7 seems to work well. There may
mates for A,, ,, and a. In what follows, we require that be better choices, and the algorithm could undoubtably
A be any estimator of A0 with the property be further tuned.

It is interesting to compare the width of confidence
o- = Op(n 1 /lo). (2.5) band (2.7) with the theoretical best possible rate (1.7).

A0  From (2.6) and the fact that i = OQ(n-ll), it is evident

Rice(1984) and Hiirdle, Hall and Marron (1988) have that

shown that (2.5) is satisfied by many bandwidth estima- t4 - cn-2/51v/i- + lower order terms,
tors including the one obtained from generalized cross-
validation. The auxiliary bandwidth A for estimating p" giving a rate very close to the theoretical optimum.
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3. Bonferroni bands n a truth no bias- bias- Bonf.

The Bonferroni confidence band, constructed by using corr. corr.

a simple Bonferroni inequality to bound the maximum 50 0.20 0.8106 0.6264 0.9112 0.8852

stochastic deviation in (1.6) and ignoring bias, has the 50 0.10 0.9136 0.7732 0.9682 0.9292

form 50 0.05 0.9680 0.8724 0.9890 0.9582
eE} 50 0.01 0.9970 0.9690 0.9996 0.9826

p: sup Ip,%o(t) - p()I _1D , (3.1) 100 0.20 0.8012 0.5928 0.8192 0.8418
f O<t<1 100 0.10 0.9196 0.7730 0.9174 0.8964

with 100 0.05 0.9676 0.8694 0.9672 0.9342
1Z= '100 0.01 0.9960 3.9742 0.9966 0.9722
200 0.20 0.7958 0.6018 0.7798 0.8690

and z0,/2n the 100(1 - c/2n)th percentile of the standard 200 0.10 0.9118 0.7690 0.9052 0.9082
normal distribution. To see why (3.1) works, note that 200 0.05 0.9674 0.8756 0.9610 0.9384

200 0.01 0.9974 0.9706 0.9956 0.9742

(max JIPtr) 300 0.20 0.7982 0.6052 0.7796 0.8932
<_r<nt ) P(tr)j < tBJ 300 0.10 0.9118 0.7768 0.9010 0.9338

300 0.05 0.9662 0.8818 0.9624 0.9580
is at least as large as 300 0.01 0.9954 0.9786 0.9952 0.9838

P ( sup Ipj(t) - bi,(t) - P(t)l < t1B - sup Ibj(t)I) . Table 1: Empirical coverage probabilities with o, = .10.

The Bonferroni bands will have asymptotic coverage at 4. Finite sample properties
least 1 - a if

r 1/To assess the performance of the two methods, we have
P tB. - SUP Jb,(t)l /a > 1) - . conducted a number of Monte Carlo experiments. In one

0_<t<l example, data were generated from model (1.1) using
But this is true because normal errors and the regression curve

1Ba ~ oV'•r• 2_1 = Op(n-2/5 NIV ), p(t) = e-32(-s)2. (4.1)

using the standard extreme value approximation for the Sample sizes n = 50, 100, 200, 300 were employed, and
standard normal distribution, and a' was chosen to be .10 and .20. Confidence bands were

SUP jbX(t)j = Op(-2) = Op(n-2/5), then investigated for a = .01, .05, .10 and .20.
s<t<l A plot for a typical data set from the simulation for

n = 100 and a = .10 is shown in Figure 1 along with

while behaves like (2/5) og n. the true regression function and a kernel estimator with

Note that the foregoing discussion implies that bandwidth selected by generalized cross-validation. Fig-
ure 2 shows the bias-corrected and Bonferroni bounds

tBa/4. -p V5' z 2.24. with a = .10.
For each experimental setting we generated 5000 repli-

This suggests that Bonferroni bands, while asymptoti- cate samples. Kernel estimates were fit to the data
cally considerably larger than the bounds employing the using the Epanechnikov kernel K(u) = .75(1 - U2),
Bickel-Rosenblatt asymptotic distribution, at least have -1 < u < 1, with A selected by generalized cross-
the same first-order rate of convergence to zero. This validation. The Hall et al (1990) estimator of a was used.
is somewhat comforting. A curious consequence is that The proportion of times that all the p(t,), r = 1,...., n,
t4.,/1. -- p v15 as n --. oo for any 0 < a, a' < 1. How- fell inside the bias-corrected and Bonferroni bands was
ever, as seen in simulation evidence below, for finite sam- recorded as well as the average (over replications) band
ples, the performance of the Bonferroni band may not be half-lengths 4. and t B.. Standard errors for the half-
as bad as asymptotic theory predicts. In fact, Bonferroni lengths over the replications and the average of the es-
bands can be narrower than bias-corrected ones. timates of a were also recorded. In addition, coverage
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probabilities were computed for two other intervals, sizes as large as 300. Table 2 also demonstrates the bias
in the Hall et al (1990) estimator of a*. This bias may

- " p (t _ rwell work to negate the effect of ignoring the bias in p,
n,\ r=1 for the Bonferroni estimator.

and 5. Application to a statistical experi-
Pi W) ± t" ment

These represent respectively coverage with no bias whenSis known ("truth") and coverage when o is known but Monte Carlo simulation is a powerful and frequently
ias is ignored ("nruh"ian-coeraeti" when r ls knon buth used tool in the study of new statistical methodology.

bias is ignored ("no bias-correction"). The results of the Simulations are used to assess the performance of a
simulation are presented in Tables 1 and 2. Note that the method whose properties would be otherwise intractable
empirical coverage probabilities and interval half-lengths o
for a = .01, .05, .10 and .20 were computed on the same or todver sy c alutIon ratesticswfre-set f rpliatins fr ech ampe sie. husthere- quently studied such as type I error rates, power, and
suets for each sample size are not independent (and the coverage probabilities can often be thought of as de-suls of the estimates of s are identical). pending smoothly on factors such as sample size oraverage ounknown parameters. These smooth relationships are

rarely directly computable, hence the investigator resorts
n a bias-corrected Bonferroni Ur to a simulation study. Because nonparametric regression

50 0.20 0.1252 (.0190) 0.1263 (.0167) 0.1157 techniques are designed to estimate smooth curves, tools
50 0.10 0.1415 (.0202) 0.1356 (.0179) 0.1157 from the area seem ideally suited to the interpretation of
50 0.05 0.1571 (.0215) 0.1444 (.0191) 0.1157 many kinds of simulation experiments. This approach is
r, 0.01 0.1924 (.0243) 0.1632 (.0216) 0.1157 related to the Bayesian analysis of the outcome of com-

100 0.20 0.0850 (.0107) 0.0912 (.0101) 0.1037 puter experiments as outlined in Sacks, Welch, Mitchell
100 0.10 0.0956 (.0114) 0.0971 (.0107) 0.1037 and Wynn (1989). In the context of this paper, sim-
100 0.05 0.1058 (.0121) 0.1027 (.0113) 0.1037 ulations provide an ideal application for nonparametric
100 0.01 0.1288 (.0137) 0.1148 (.0127) 0.1037 regression methodology. Here is one case where it may
200 0.20 0.0639 (.0079) 0.0720 (.0077) 0.1007 be possible to generate the very large samples required
200 0.10 0.0714 (.0084) 0.0762 (.0082) 0.1007 by nonparametric regression.
200 0.05 0.0787 (.0089) 0.0802 (.0086) 0.1007 As a concrete example, consider the problem of esti-
200 0.01 0.0951 (.0099) 0.0888 (.0095) 0.1007 mating coverage probability of bias-corrected confidence
300 0.20 0.0546 (.0065) 0.0633 (.0065) 0.1002 bands under model (1.1) with mean function p(t) given
300 0.10 0.0609 (.0068) 0.0667 (.0068) 0.1002 by (4.1), o = .10, and a = .10. It seems intuitive that
300 0.05 0.0670 (.0072) 0.0700 (.0072) 0.1002 coverage probability is a smooth function of sample size.
300 0.01 0.0807 (.0080) 0.0772 (.0079) 0.1002 How can this information be used to improve the Monte

Carlo estimate of coverage probability and to give con-
Table 2: Average confidence band half-lengths (standard fidence bounds on the estimate?
deviations) and average estimated a. There are a number of interesting design questions for

this simulation experiment. From preliminary work, we
Several conclusions can be drawn from this experi- felt that the relationship between coverage probability

ment. First, the Bickel-Rosenblatt approximation for and sample size could best be modeled on a log scale
the maximum random error ("truth") is quite good, even in sample size. One hundred sample sizes r.,,..., nloo
when A is chosen from the sample. This observation were chosen between 50 and 1000 with ni = 50 and
remained true for other combinations of a and a not ni+l/ni ; constant subject to the restriction that sam-
reported here. Second, the "no bias-correction" case ple sizes must be integer. A total of 1,600 replications
demonstrates that bias in ph is a serious problem and at each sample size were made (for a total of 160,000
leads to substantial undercoverage. However the bias replications). The proportion of times all the p(t,) fell
correction technique seems to be effective. Finally, the within the confidence bands for all t, was recorded at
Bonferroni method is conservative (or nearly so) in all each sample size. Thus the output from the simulation
cases despite ignoring bias. consisted of 100 data points. Assuming that the coy-

Table 2 demonstrates that Bonferroni bands can be erage level is approximately constant over sample size,
narrower than bias-corrected ones, especially for small the sample proportions are approximately normally dis-
a. Surprisingly, this can be observed even for sample tributed with constant variance. Using the log scale for
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sample size meant .'iat most of the computing effort was the Interface, C. Page and R. LePage, ed., Springer-
expended for relatively fast cases, so the project was fea- Verlag: New York, 1-15.
sible on a network of four SPARC2 processors.

The raw data from the simulation for the bias- Hall, P., Kay, J. W. and Titterington, D. M. (1990),corrected method with or - .10 and ca - .10 are shown "Asymptotically Optimal Difference Based Esti-
corrcte metod ith - =.10and = 10 ae sownmation of Variance in Nonparametric Regression,"

in Figure 3. The fitted curve estimating coverage prob- mat rian in N p1tce so
ability was calculated by Gasser-Muiller kernel smooth- Biometrika, 77, 521-528.
ing using the Epachnikov kernel on the interior, bound- Hall, P. and Marron, S. (1990), "On Variance Estima-
ary kernels at the end points, and bandwidth chosen by tion in Nonparametric Regression," Biometrika, 77,
cross-validation. The smooth was computed on the log 415-419.
scale. To illustrate the kind of application possible with Hall P. and Titterington, D. M. (1988), "On Confi-
simultaneous confidence bands, Figure 4 shows a 95% dence Band ington, D. Estimation
confidence band computed by the boundary-correction dence Bands in Nonparametric Density Estimation
method for the data in Figure 3. Because the standard and Regression," Journal of Multivariatc Analysis,
errors were computed from the terms of the boundary 27, 228-254.

kernels used for px and A", the confidence band widens Hirdle, W. (1989), "Asymptotic Maximal Deviation
at the boundaries. of M-Smoothers," Journal of Multivariate Analysis,

This simultaneous confidence band is not fully sup- 29, 163-179.
ported by the results of section 2 because the design is
not exactly equally spaced and because true coverage Hardle, W. (1990), Applied Nonparametric Regression,
probability is not a periodic function of sample size. We Cambridge University Press: Cambridge.

conjecture that the results of section 2 extend to this Hardle, W. and Bowman, A. W. (1988), "Bootstrap-
situation. At worst, the results can easily be extended ping in Nonparametric Regression: Local Adaptive
to all of the interval except near the endpoints. In Fig- Smoothing and Confidence Bands," Journal of the
ure 4, the boundary regions extend from 0 to approx- American Statistical Association, 83, 102-110.
imately 70 and from approximately 700 to 1000. Thus
the confidence band appears valid at least over the range Hirdle, W., Hall, P. and Marron, J. S. (1988), "How
of sample sizes between 70 and 700. Note that from Far Are Automatically Chosen Regression Smooth-
approximately 140 on, the band contains the nominal ing Parameters From Their Optimum?" (with dis-
90% coverage probability, and the width is only about cussion), Journal of the American Statistical Asso-
1% over much of the region. We believe that this graph ciation, 83, 86-99.
with its confidence band gives helpful information on the Hardle, W. and Marron, S. (1991), "Bootstrap Simul-
uncertainty of the estimated coverage probabilities. taneous Error Bars for Nonparametric Regression,"
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Figure 1. Data with regression curve and kernel smooth.
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Nonparametric Confidence Bands
Figure 3. Empirical coverage probabilities for alpha = .10 with fitted curve.
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Abstract results become available, in order to home in on the goal as
quickly as possible, and to have some confidence that a

A global optimization algorithm which generalizes (reasonably) deeper point is not "out there somewhere".
Kushner's (1964) univariate search is introduced. It aims to
minimize the number of probes (function evaluations) i
required for a given level of certainty in the results. All
known probes contribute to a stochastic model of the
underlying "score surface"; this model is interrogated for the
location with the highest probability of exceeding the
current result goal. The surface is assumed to be
characterized by Brownian motion, leading to a piecewise
gaussian model, where the local regions are defined by the
Delaunay triangulation o the probes. The algorithm
balances the competing aims vf 1) sampling in the vicinity
of known peaks, and 2) explorin3 new regions. Preliminary
tests on a standard 2-d search problem are very encouraging.

1. Introduction gupre I (after Elder and Finn, 1991):
Gol Optimizatio Is LUke Depth-Sounding;

Choose a location (paramneter setting) and probe for the depth
Global search techniques are required to optimize parameters (evaluate the function) looking for the minnium.
which nonlinearly affect the output of a model, such as with
logistic regression, or the intermediate weights of an The surface model is interrogated for a good location to
artificial neural network (ANN). Global search is also called probe. Should analytic solutions prove too difficult,
for when the fitting criterion, or score function, is anything internal model search can be employed; that is, the model (as
other than a few special accuracy metrics, such as mean a rapid surrogate for the true score function) can be sampled
squared eor (MSE, L2) or least absolute deviations (LAD. at various candidate probe locations to determine the most
LI). For instance, the cost of errors can be asymmetric promising one. New probe results then update the model,
(e.g., a classification "false alarm" can be much less costly and the cycle continues.
than a "false dismissal") or, a range of estimated values
might correctly lead to the same action (e.g., buy/sell), or The algorithm introduced hcre attempts to genelize the
the true score function might include objectives (low cost, elegant 1-dimensional stochastic method of Kushner ,, e4)
high safety, etc.) other than accuracy alone. In fact, the and was inspired by the continuing work toward this end of
main reason linear (L2 ) models are employed so extensively Stuckman and colleagues (e.g., Stuckman, 1988). The
in so many fields is their strong mathematical tractability refinements of (Pemunen, 1991) and this paper are believed
and the mass of tools, training, and experience available as a to lead to a d-dimensioital algorithm more theoretically
result. The significant benefits of linear models should only consistent (i.e., less heuristic) and hence, more efficient.
reluctantly be abandoned, but once set aside, the resulting The new algorithm is designed to require drastically fewer
freedom to design a score function to match the true use of function evaluations than conventional searches. (It can be

the model should be exploited. This requires global search. said to "think" more but "run" less than other methods.) It
is capable of discovering multiple extrema whether or not

2. Model-Based Search the function is differentiable and, as it builds on known
results, can be paused and restarted with no waste of probing

Global optimization of parameters over a database of effort. Importantly, a confidence measure in the results is
example cases can be likened to depth-sounding, as depicted provided, which is an approximation to the probability that
in Figure 1. One probes for the depth (evaluates the score the final answer could be improved upon by continued
function) at a given location (set of parameter values) in probing. Lastly, the algorithm is easily parallelized. with
pursuit of the deepest spot (global minimum). Model.based anticipated speed-up nearly linear in the number of added
searches build up a rough picture of the ocean floor as probe
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processors. This paper describes Kushner's 1-dimensional points close in x; but, most near differences will be small,
method, the important Stuckman et al. generalizations, and and the surface is broadly "rolling" -- a representation
the enhancements leading to the new algorithm, known as capable of fitting many practically occuring functions.
Global Rd Optimization when Probes are Expensive
(GROPE).I A further practical advantage of the representation is its

mathematical tractability. In the case of no noise, the
3. Kushner's 1-Dimensional Search Markovian property implies that the conditional expected

value of y at a position x between two known points a and

Kushner's optimization method for one dimension models b, is the linear interpolant (shown in Figure 3a):
the score surface, y, as a random walk in x; that is, as a
Brownian motion or Weiner process, where the y value at a p(x I x,y) = Ya + P(Yb - Ya) (1)
point x is distributed as a gaussian random variable with
respect to neighboring points. An example "drunkard's x-xa
walk" is shown in Figure 2; the path is like that of one xb-xa A
moving forward (in x) at a constant rate, but staggering conditioned on all previous results is a quadratic function of
random amounts to each side. The stagger distribution is the distance from the interpolating bounds:
guassian, and for a time series with discrete steps, Yt+1 can
be shown to be N(yt, a2). That is, the mean value for the 02(x Ix,y) = cp(1 - p)(xb - Xa) (2)
next point is the current point; no information about the
direction of the step is available. In particular, knowledge of for some slope factor, c (the mean squared vaiiation in y as x
earlier y values (i.e., how the curve got to Yi) is of no use; changes). (Note that a2 has no other dependence on the y
the distribution is memoryless, or Markovian, and the only values.) As depicted in Figure 3b, this variance grows
values affecting the estimator of an unknown point are those linearly with distance when only one neighbor is known
of its nearest left and/or right neighbors in x. (while the mean remains constant at the edges). When noise

is present (i.e., probes at the same location can return
_ _ __different values), the representation is only slightly adjusted

(Kushner, 1962): g(x) does not go through the samples
______ ____ vexactly, but shrinks toward neighboring samples, and o2 (x)

10, is positive, not zero, at the probes.

-10- TV

0 1;0 200 04W0
T

FIgure 2: An Example Random Walk X x
(Y = Cumulative Sum of N(0,1) X(t)) uthur 3a: Mxplaetloof sY Codifdoeed Ya Va nd Yb

The random walk is descriptive of many processes, "o
ranging from the Brownian motion of particles suspended in __,_/

a liquid to the price history of the "Standard and Poor 500" \
index in the stock market. As a surface model, it has the
advantage of being fractal or locally rough (it is nowhcrc /
differentiable) but regionally smooth. Thus, it is possible,
though unlikely, for a large jump in y to occur between

X. x 1

1Earlier search algorithms by the author with that name are Vqare 3c Varlm e o VCA doeedea K m" ah a t Xs nd Xb

Guided Random Optimizer of Performance Error (e.g., Elder and Kushner (1964) solved for the probe location most
Barron, 1988), and Global Regression of Probe Evaluations likely to exceed the current best value by a fixed amount
(Elder, 1991). Some acronyms never die!
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(and suggested this magnitude could change with time, only on the relative distance of the end points to the goal:
predating the effectively similar strategy of "temperature
scheduling" which directs simulated annealing.) A slightly A(
different perspective, proposed by Stuckman and Scannell P* = Aa+Adb (5)
(1991), is to seek the point most likely to exceed a given
result goal, yg; that is, to find the x which maximizes where Aa = yg - Ya, Ab = Yg - Yb. (Note that the slope

parameter, c, has no influence on p*, and may be dropped.)
Pr[yx > yg I x,y] = I - 0[ pg -/z(xlx,y) The value A(p*) is a distance monotonic with the line

r(xlx,y)y]xO1 segment's maximum conditional probability of containing a
probe capable of exceeding the goal.

This is depicted in Figure 4 for a one-dimensional line
segment. Locations, x , close to that of b have the The 1-dimensional algorithm can be summarized:
advantage, in putting probability mass across yq, of starting 1) Probe the two bounds of the search space.2

closer (closer mean); yet, locations in the middle of the 2) Calculate the best sampling location, p*, for the line
segment stretch farther (have greater standard deviations), segment, and insert that location, x*, in an ordered
Thus, the conflicting aims of exploration and exploitation list according to its distance estimate, A(p*).
are balanced. The goal-exceeding objective is also appealing 3) Remove the top member of the list and probe at x,
when a natural bound is available, whether from known or breaking the line segment (ab) into (ax) and (xb).
theoretical limits (e.g., zero error) or, say, a competitor's 4) Repeat steps 2 and 3 (with two segments for step 2)
results! When a value is not available however, the until the goal is exceeded, resources are exhausted, or
algorithm can employ the usual "carrot on a stick" approach, the probability of better results is acceptably low.
and strive to beat the current best result by a (possibly
dwindling) amount. A few steps of the algorithm are shown in Figure 5.

After each probe, the list of candidate probe locations
increments in length, as one segment is removed and two

Yg take its place. Unless the goal changes, in which case the
optimal location for each segment must be reevaluated, only
the p* locations for the two new segments must be

Yb computed. (And it can be shown that their two distances are
identical; e.g., Figure 5b. In that example, ties were broken
randomly.) When results are far from the goal (presumably
at the beginning of the search), the variance component of

Ya (4) dominates and locations relatively midway between
known probes are preferred. When the best probes instead
score near the goal, further probes in their vicinities are
called for. This mechanism performs the tradeoff between
the conflicting search aims of 1) homing in on the extreme
of a promising area, and 2) sampling unknown regions.

X

Figure 4: Maximize Probability of Exceeding Goal, Yg The search is terminated if either the goal or the probe
G:iven Proailit of Ex eeding oimit is reached. Alternately, the slope parameter c (usuall,-
Given Y(x) -not known) can be estimated from the probe results, and

used to compute the probability, according to the underlying
As the cumulative normal function, 0, is monotonic, model, that some probe yet exists which could exceed the

we may maximize (3) by minimizing its argument, or goal. In a similar manner, Stuckman (1988) employs c. the
rather, the square of the argument, to accommodate the maximum likelihood estimator (MLE) of c, along with the
variance (2). Substituting, this translates to finding the single closest candidate probe, to calculate the probability
proportion p which minimizes that the next guess will do the job -- stopping when this

A(p) - [ya - (Ya + P(Yb - Ya) )]2 (4) E'h. initializing probes can be at locations other than the
cp(l - P)(Xb - Xa) N)unds (in which case, the algorithm would begin with three

line segments). However, if the first samples are not close to
S oi A the edges of the legal space, the algorithm may later call for

Solving -- = 0 reveals that the optimal location depends probes there anyway, since the variance grows so rapidly
"OV beyond the outermost probe.
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"U =full distribution of c. Such an estimator weights each
possible c value by its relative effect on the likelihood of the

S "-data, L(x1Lc). In place of A(x) with t, one would use

fA(xc)p(clx)c, where p(clx) = L(xpc) (7)/C fL(xlc)&-
C

value is very small, e.g. 10-6. However, as each candidate parameters (as described in the above reference).
probe is independTst under the random walk model, one may
calculate the joint probability that one of the N current 4. Extension to Multiple Dimensions
candidates could exceed the goal,

N The key difficulty in expanding Kushner's algorithm from
Pr[3iy(pi)>yg Ip, A(p)]= I - rJI0[fA•? )] (6) RltoRd--andperhapsthereasonthemethodsawliuleuse

i = 1for a generation -- is the extension of the random walk
model into a random field. There are two field definitions in

A the literature (e.g., Adler, 1981) and, an approximation to awhere c is used in A (equation 4). thid is employed here.

A more reliable analysis of joint probability would be The multi-univariate version of Kushner's method
predictive (Aitchison and Dunsmore, 1975), and employ the (Stuckman, 1988) avoids the issue of random fields, and
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instead employs the one-dimensional algorithm along the
line segments connecting all pairs of probes (or a subset of
k-nearest neighbors for each probe, where k jumps an order 0
of magnitude when the probe is the current best). However,
such a technique can ignore a probe intermediate to another
pair and, more importantly, is silent about function values
everywhere except the line segments connecting probes.

To cover the search space, the region within the convex
hull of the probes can be tessellated (divided into space-
filling disjoint regions) into a set of simplices. In Rd. a
simplex is a convex polyhedron composed of d+1 vertices
(i.e., a triangle in two dimensions; a tetrahedron, in three).
If a simplex subdivision approach is employed (e.g., Groch
et al., 1985), a new probe divides its surrounding simplex.
into d+ 1 smaller simplices (defined by the new point and
each face of the old simplex), leaving all other regions
intact. It would be better, however, to update the entire
tessellation in a manner maintaining some optimality
property, such as local equi-angularity, as proposed by
Lawson (1972), in which small angles in triangles are
avoided. Sibson (1978) proved that the unique set of Figure 6: Delaunay Triangulation of 4 Points
connections with this property in the plane is the Delaunay according to Empty Circunsphere Rule

triangulation. (However, in three and higher dimensions,
this triangulation does not necessarily maximize the Incorporation of Delaunay triangulation improved the
minimum solid angle (Joe, 1989).) ranking method, causing the scatter plot of search points to

better correspond to the contour diagram of each objective
The Delaunay triangulation is the dual of the Voronoi function tested (Pertunnen, 1991). However, use of the

(or Dirichlet or Thiessen) tessellation, wherein regions are ranking, coverage, and weighting heuristics lead to a
partitioned according to the nearest neighbor rule. That is, technique having little in common with Kushner's
all the points within a region are closer (by L2 ) to the same stochastic algorithm. Building on the ideas of tessellation
known probe than they are to any other. Another property and goal-direction however, a more straightforward
of the triangulation has long been known for low dimension generalization is possible. One could perform a line
(Miles, 1970), but only recently proven in general (Rajan, inte~ation of the response values at the Delaunay vertices
1991): the circumscribing sphere of each simplex is empty; to define the conditional expected values inside a simplex,
i.e., the only triangulation in which the sphere intersecting and use a quadratic polynomial for the conditional variance,
the vertices of a given simplex contains no other point, is constrained to agree with Kushner's quadratic variance curve
the Delaunay (a construction illustrated in Figure 6). (Rajan along each I-dimensional simplex edge. The expectation is
further proved that the maximum radius of the smallest of thus composed of a piecewise planar surface -- resembling
such spheres is less than that for any other triangulation -- facets of a gem (or, perhaps, the hinging hyperplane
allowing the Delaunay triangulation to be formulated as a modelling technique recently proposed by Breiman, 1991).
solution to a continuum optimization problem.) For example, the 2-dimensional Delaunay triangulation of

probes in Figure 7, leads to the interpolation surface
The properties of Delaunay triangulations make them illustrated in Figure 8.

useful to many disciplines, including (in 2-d): surface
interpolation, geophysical contouring, and the study of the The relative variance "canopy" arches over the simplex
spread of epidemics; and 3-d modelling of the interface as shown in Figure 9, from lows at locations with known
network of polycrystalline materials. The optimization values, to an interior peak far from the vertices. This
algorithm of Perttunen (1991) employs Delaunay variance can be defined by the (unique) complete quadratic
triangulation to tessellate the search space, but scores each polynomial in d variables which conforms to Kushner's
candidate simplex with a heuristic, nonparametric metric: d-l
the product of the ranks of the vertices divided by its equations along the I2 edges of the simplex (and is
content, or "hypervolume" (Pertunnen and Stuckman, 1990). undefined outside these bounds). These variance constraints
The next probe is taken within the winning simplex, at the are imposed since a hyperplane defined by the vertex values
weighted average location of its vertices (where the weights is used for the expectation. The variance can be viewed as a
are the inverse relative ranks of the probe scores). measure of uncertainty about the mean, so their methods of
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estimation must be linked. Along an edge, only the pair of
connected vertices affect the conditional mean value3 (as
with Kushner's 1-dimensional method); therefore, the edge
constraints on variance are necessary for this generalization
of the algorithm.

• ..
Figure 9: Example Variance Canopy

(Constrained to agree with Kusimer's quadratic equation
along 1-dimensional edges of the simplex)

The edge constraints are also suffcient. There are ( 2

parameters in a second-order polynomial in d variables. (Ingeneral, the complete polynomial with maximum power p
h (d+p) terms). Each of the (d+) edges of the

Figure 7: Deiaunay Triangulation of 28 Probes simplex contributes one constraint -- say, the value of the
(from grid of 25x26 potential sites) variance at the midpoint of the segment (which, for a given

c, is defined by its length (2)). The remaining d+ I
constraints are provided by the vertices of the simplex, for
which the variance is a minimum fixed value (zero for
noiseless probing). Since none of the edges are collinear (as
demonstrated by the existence of a circumsphere for the
simplex), the exact match of constraints and degrees of
freedom means the polynomial solution will be unique and
have zero error. (Still, in practice, thin triangles on the
convex hull can lead to nearly collinear edges. Thus, robust
regression techniques (e.g., singular value decomposition)
which remove near-sigularities are required.

The locations and scores of the d+l probes of each
simplex thus define the equations for the linear expectation,
gL(x), and quadratic variance, o2(x), of its interior (which
may be solved for using ordinary regression). In one
dimension, the optimal interior location, x*, for each
simplex is known analytically (5). This can also be shown

Figure 8: Triangular Facets Interpolate Function Surface to be the case for two dimensions, but the solution is
surprisingly complex. For multidimensional applications,3Tiis 1ycan have the side-effect of an easier approach is to perform an internal search of theThsl-dimensional property anhvtesd-fetoffunction tO minimized

ignoring the single nearest known probe, as can happen (for a fucintmnmze
"iothin" simplex) when estimating the values of an edge segment A(x) -(yg -"(x))2

near a third vertex. This behavior however, is confined 02(x)
primarily to the convex hull (i.e., outer edges) of the space.
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trivial, that time should be more than compensated for by
the algorithm's judicious choice of locations. (Time saved
not "running" > Extra time spent "thinking"). For example,
in this author's aerospace experience (e.g., Elder and Barron,
1988), each probe for a guidance or control application
consisted in running a full computer simulation with a new
set of parameters. Such a task can easily take minutes per
probe on a workstation (and engender, in the early morning
hours, a visceral distaste for senseless search methods!).

If q processors are available (and if the application
permits) q - 1 probes may be removed from the head of the
list and evaluated in step 3. The last processor could update
the Delaunay triangulation, given the locations of the new
probes, as the triangulation does not depend on their results,
y. Of course, the problem addressed should be reformulated
to: find the best set of probes such that one is likely to

Figure 10: Example A(x) Surface exceed the goal. However, this simple q-at-a-time mehtod
(with Location of Minimum Noted) should provide near-linear speedup for a common type of

hard problem, where many regions of the domain must be
As shown for a 2-dimensional example in Figure 10, this explored (in which case the probes may as well be
squared distance function is positive, smooth, and unimodal simultaneous as sequential).
-- allowing any of several local minimizers to be employed.
(However, the function is not defined outside the simplex, 5. Early Experimental Results
and explodes at the vertices, so care must be taken at the
boundaries.) A 2-dimensional prototype of GROPE has been prepared,

which uses Tipper's (1991) program for planar Voronoi
The GROPE algorithm is initialized by probing d+I tessellation (mapped into Delaunay triangles), and the

points from the convex hull defining the search space, or by downhill simplex method of function minimization (Nelder
absorbing previous results. (As all probes contribute to the and Mead, 1965) for the internal model search as
model locally, any restart of the program can pick up exactly programmed by (Press et al., 1988). The test function was
where a prior run left off.) Then, until the goal, yg, is the bimodal "Hosaki" equation (Bekey and Ung, 1974)
reached, resources run out, or the probability of
improvement is sufficiently slight (see above), iteratively: ( - 8xl + 7xl2 1 +x 4) x22 exp(-x2) (9)

3 4
1. Construct/Update the Delaunay triangulation,

removing candidate probe locations representing pictured in Figure 11. The global minimum for xI e [0,5],
obsolete simplices from the ordered list.

2. For each na simplex j: x2 E [0,6] is -2.345 at x = (4,2).

a) Solve for g#j(x) given vertices.
b) Solve for ( 9j(x) given vertices and edges.
c) Find the best probe location, x*,- for the simplex

by minimizing Aj(x) (8) (the squared, standardized
distance to the goal).

4) Insert this candidate probe location into a list
ordered by Ajfx).

3. If locations on the intended convex hull remain
unknown, probe there; otherwise, pop the head of the
list, and probe at that location.

Steps 1 and 2c, the re-triangulation and the internal
search of new simplices, are most affected by the number of
probes, N, and problem dimension d. The added overhead is
rather great (compared even to some other model-based Figure 11: Hosaki Function
searches). However, whenever probe computations are not
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For testing purposes, nearness to the final answer was rectangle, these probes would have to be even more extreme
the stopping criterion. This is not usually possible for in location. It is convenient for the algorithm to have the
"field" applications, but allowed comparison with two bounds set initially, and always be performing a type of
random methods: modified random creep (Bekey and Ung, interpolation operation. But instead, perhaps some type of
1974) and adaptive random search (Ponzato et al., 1984). In Bayesian technique, with distributions reflecting the
addition, recent results from the sequential design for desirability of probing in the center of the region, could be
optimization, a promising RBF-like model-based technique employed. This could restrain, to an adjustable degree, the
of Cox and John (1992) are included in Table 1. otherwise linearly increasing variance beyond the outermost

probe towards the bounds.

Table 1: Hosaki 2-d Function Results A simpler improvement, as suggested by the example
application, would be to adjust the single current parameter

Method #Probes to Soln. of the algorithm (yg) with time and/or performance -- a
"relaxation" technique similar to other methods. Further

Modified Random Creep 451 research may show that a good goal scheduling strategy can
be inferred for a problem from metrics of its ongoing results
-- e.g., the distribution of probe results and its extreme, the

Sequential Design for Optimization 55 (constant param.) (estimated) smoothness of the score surface and its
36 (linear param.) variability, and the distribution of simplex content.

GROPE (2nd trial) 11 (goal = -3.0) Also, as experienced in the first trial, regression
singularities can occur when fitting the variance of long

The first GROPE run employed the known minimum "thin" triangles near the convex hull having nearly collinear
as the goal, yg, but crept too cautiously toward the final edges. Use of a robust fitting method (e.g. singular value
location, and was abandoned.4 The cautious approach decomposition with removal of small eigenvalues) is being
suggests that local probing is overly preferred to exploration investigated to remove this symptom of "overfit".
of new areas; i.e., that the role of variance is too low
relative to that of expectation. Accordingly, a more remote
goal, yg = -3, was set (though, of course, still halting at
Ymin), leading to much improved results: only IpI robes.
The final triangulation of this second run is pictured in
Figure 12, where the vertices of the Delaunay triangulation
are known probes, each "x" represents a candidate probe
location for its triangle, and the "." denote discarded candidate
locations (due to dissolution of the surrounding triangle).
The position of the global minimum is noted ("-'), and the
11th probe value was -2.344. Note that the number of
triangles (and thus candidate locations) increases by two after
each probe -- a property of the 2-d Dealaunay triangulation.

6. Potential Improvements

Both GROPE runs in the example problem were initialized
by probing the four corners of the search domain. Such
rectangular bounding requires 2d initial probes, which can be Figure 12: Triangulation of Hosaki Functionafter 1Ith Probe
expensive in problems of high dimension. Furthermore,
these first probes are taken in the regions least expected to
produce useful results: the domain boundaries. A minimum 7. Conclusions
of d+l probes (a single initial simplex) can define the
domain; yet, to roughly match the content of the hyper- The GROPE algorithm is a novel, efficient, model-based

stochastic Rd optimizer, in large part generalizing Kushner's
elegant 1-dimensional method. For medium-dimensioned

4The fractal surface assumed by the algorithm Is unlike the problems (up to a dozen variables, say), the model-based
smoothness exhibited by the "toy" test problem; however, the search technique should provide more accurate results using
main problem encountered was nearly collinear vertex edges, (drastically) fewer probes than competing methods, and
which will require a robust (internal )regression method, provide an interpretable confidence in the outcome.
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Abstract simpler density, one that corresponds to a stable distri-
bution with a discrete spectral measure. To state the

Stable distributions can be used to model phenom- theorem we need a definition. Given a finite partition
ena where the underlying distribution has heavy tails. A1,...,AA of Sd-1 and points sX,...,g, with ii E Aj,
A difficulty in using stable distributions in applications define a discrete measure oa based on a by concentrating
is that, except for a few special cases, there is no ex- mass a(Ai) at 9, i.e.
plicit formula for the densities. This paper describes how
an arbitrary stable distribution can be approximated by 0* E a(Aj)6b.(.) (2.1)
a stable distribution with a discrete spectral measure. =(
Densities of the approximation may be numerically com- = 1
puted by inversion of the characteristic function and a Theorem 1 Let X be a truly d-dimensional a-stable
method is discussed for generating stable random vectors random vector (d > 2,0 < a < 2) with spectral measure
for simulation purposes. a and density p(i).

(i) For all c > 0, there is a discrete measure oa of form
1. Introduction (2.1) which corresponds to a d-dimensional a-stable ran-

dom vector )?* which has a density p (i) satisfying
Let 9= (XI, ... , Xd) be a d-dimensional a-stable ran-

dom vector, 0 < a < 2. The best known examples arc sup Ip(M) - P() I < E.

normal (a = 2) and Cauchy (a = 1) random vectors; for fER'

general definitions and theory see Samorodnitsky and (ii) For all c > 0, there is a discrete measure a' of form
Taqqu (1992). The distribution of X can be described (2.1) which corresponds to a d-dimensional a-stable ran-
in terms of a spectral measure in the following way. Let dom vector X* which satisfies
O(t) = E exp(i(r, 9)) = Eexp(i s'.=. tjXj) be the joint sup IP( E A) -P(rE •A)I•< .

characteristic function of )f. Kuelbs (1973) showed that AEBorel(R')

)9 is a-stable if and only if there exists a finite measure a
on the unit sphere Sd-I C Rd and a shift vector 9 E Rd
such that qO(t) = exp(- fs.-, i((F, a)a(di") + i(i fi)),
where The proof of Theorem 1 can be found in Byczkowski,

Nolan and Rajput (1991). It shows that the only require-
ment of the partition used in (2.1) is that the diameter

2 sign (t)) of the sets is sufficiently small. An explicit value for this
=() + il sign (t) In It=) a = 1, diameter (as a function of c, a, d,a), hence a concrete

It(1+ value for the number of terms in (2.1), is given in the
reference. The method of proof is straightforward: if

Throughout we assume that ) is truely d-dimensional, o* is "close" to a', then the integrals in the exponents of
which is equivalent to the support of a spanning Rd. We 0*(t) and 0(t) will be close. By the inversion formula for
will also assume that the shift vector #7 is zero. characteristic functions, the densities will be uniformly

close.
2. Approximation

This section will show how to approximate the density 3. Numerical Calculation

p(i) of ) in terms of the spectral measure or. Theorem Theorem 1 above shows that an arbitrary stable den-
I shows we can approximate p(E) by a computationally sity can be approximated by one with a discrete spectral
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density. Thus we can understand the general behavior
of stable densities by examining ones with discrete spec-
tral measures. The characteristic function of a stable
random vector having discrete spectal measure (2.1) is
0(t) = exp(-I(t)), where

j=14

Note that since or is discrete, l(t) is a finite sum. Hence 0. 2

the characteristic function is much simpler to evaluate 0.2

than it would be if o was arbitrary and the exponent of 0
0(t) required an evaluation of an integral over S". --2 0

The steps necessary to numerically invert tl.:- charac- -1
teristic function are outlined below. T the ,"t that 0
p(.) is real to write

2--2

p(i) = (2 7r)-dJR e_'(")O(tidr= JR d J(,i~)df,

where J(i, i) = (27r)-d exp(-_ 1(t)) cos((z, t) + ! 1(t)).
To approximate p(g) to within e, first truncate the region
of integration to a disk: Lemma 7 of Nolan and Rajput
(1992) gives and explicit bound for K = K(c, c, a, d)
such that

' J(,)df- J(f, i)dtl < e12.d K 2 / ,,"

What remains is a numerical integration problem: eval-
uate the d-dimensional integral of J(i, E) over the disk
Iti < K to within e/2. 1

Nolan and Rajput (1992) give a program to calcu-
late this integral when d = 2 that uses a 2-dimensional
adaptive integration technique. Figure 1 shows both the
density surface and the level contours of an density com- 0
puted using this algorithm on a 41 x 41 grid. Clearly
stable densities when a < 2 can be very different from
the elliptically contoured Gaussian densities.

-1

4. Simulation

A method is described for generating stable random
vectors X having discrete spectral measure. One use for -2 x
these random vectors is to test the robustness of multi- -2 -1 0 1 2
variate statistical procedures: generate a data set with
random noise having heavy tails and dependent compo-
nents and evaluate how well a procedure performs. An-
other possible use is in calculating P(9 E A) for sets
A C R'. Since the numerical calculation of these prob- Figure 1: Density surface and level contours of a stable
abilities is difficult when d > 2, one can estimate them distribution. a = 1.25 and the spectral measure has
by standard Monte Carlo methods once we know how 3 point masses: 1l = 02 = 03 = 0.2 at il = (1, 0),
to generate vectors with the prescribed distribution. A i2 = (cos 2, sin 2-), and X3 = (cos I, sin I).
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third use for such random vectors is in economic simu-
lation, e.g. the stable portfolio analysis of Press (1972). y

Let V be a one dimensional a-stable random variable 2
that is normalized, has zero shift parameter and totally
skewed to the right, i.e. the characteristic function of V
is Eexp(itV) = exp(-O(t)). The following lemma says
that any a-stable random vector with discrete spectral
measure has the same distribution as a linear combina-
tion of vector multiples of such one dimensional i.i.d.
stable random variables.

0

Lemma 1 Let 0 < a < 2, al, ... ,on > 0, A,. .-. ,in' E
Sd-1, and V1,..., V, be i.i.d. one dimensional normal-
ized o-stable random variables that are totally skewed 1
to the right. If g is the a-stable random vector with dis-
crete spectral measure o'(da) = " orj.,(i) and zero

shift vector, then

n a 2 1.i l/ovj; aV 1 -2 1 0 1 2
(4.1)FnI= In+~ 1.

Figure 2: Contours of empirical density for randomly
generated stable vectors with the same parameters as

Figure 1.

Proof Note that for r > 0,

(raoo(t) a #1 random variables Vl,..., V, and substitute into (4.1).
02(rt) = (4.2) Chambers, Mallows and Stuck (1976) gave an algo-

ro(t) +i)(rlnr)t a= 1. rithm for generating such one dimensional stable vari-
"I rates. More details, a discussion of a geometric interpre-

First consider the case when a $ 1. Using (4.2), inde- tation of Lemma 1, and the listing of a program that

pendence and the characteristic function of the V 's, the generates such random vectors is given in Modarres and

characteristic function of .9 is Nolan (1992). Figure 1 is a plot of the level contours of
the empirical density function generated by the methodn I)

Eexp(ij"(f( 'o/Vjij)) = E Eexp(i(r, o 1J/ai)) above. It is based on a simulation with 5,000,000 vectors.
J=ll j=1n 5. References

- --exp(-O((fo./iai))) Byczkowski, T., Nolan, J. P. and Rajput, B. (1991),
j=1 "Approximation of Multidimensional Stable Densi-

nt ties." UNC Center for Stochastic Processes Techni-
- i exp(-O'((t, i))o.) cal Report 351.

j=t

"Chambers, J. M., Mallows, C. L. and Stuck, B. W.
- exp(.- E~p((t', ij))o.). (1976), "A method for simulating stable random

21l variables." JASA 71,340-344. Correction JASA 82,

704 (1987).
This is the result when a $ 1. The a = 1 case is similar,
using independence and (4.2). Kuelbs, J. (1973), "A representation theorem for sym-

metric stable processes and stable measures on H."
Z. Wahr. verw. Geb. 26, 259-271.

The method of generating stable random vectors is Modarres, R. and Nolan, J. P. (1992), "A method for
straightforward: generate the one dimensional stable simulating stable random vectors." Preprint.
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Nolan, J. P. and Rajput, B. S. (1992), "Numerical
calculation of multidimensional stable densities."
Preprint.

Press, S. James (1972), Applied Multivariale Analysis,
Holt, Rinehart and Winston, N. Y.

Samorodnitsky, G. and Taqqu, M. S. (1992),Stable
Non-Gaussian Random Processes, Preprint.
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Self.Valdatn Comnputations of
Bivariate Normal Cumuative Distributio Function

Morgan C. Wang
Department of Statistics

University of Central Florida

Abstract 2. Self-validating Numerical Method of Evaluating the
Self-validating computations based upon interval arithmetic Bivariate Normal Integralscan pouce compute values haig a guaranteed error

can rodue cmputd vlueshavng aguaanted ~Given a random vector z - (z1,z,4 having the bivariate
bound. Conventioal algorithms based upon "point" arith-
metic, on the other hand, can lead to exceedingly poor results. normal distribution with mean vector 0, unit variance, and
This paper gives methods for obtaining self- dating results correlation p, the probability p ofz, less ifth !- nd zi less than
when computing probabilities, Illustrated with the bivariate
normal amulatfve distribution function. The results from this k a be cpr5e as
study provide assessments of the accuracy studies of classical h a
"point. algorithms. P(h,k;p)- f f(ziz) dzidr (2.1)1. Introduction //

Bivariate normal distribution is one of the most popular
bivariate distributions. The computation of the cumulative Let
distribution function (CDF) values of this probability has been b C

of interest to statistician for many years. Many conventional f( d
"point" algorithms such as Owen (1956), Drezner (1978), kw(a,b,c,p) J fj-f(ziz.) dzdzr
Divii (19M9), and Drezrier and Wesolowsky (1990) have been a
published to compute these probabilities. Some of the algo- It is easy to verify kw(a,b,c,p) mkw(-b,.-a,c,-p). Using
rithms pose accuracy problems, for example, Monahan (1990a
and 1990b) discovered that the Drem er'sal thm(Drezner this equation along with the well known relationship

197) anprdue lereuli fr hefistqudrntand P(,Pp-.2+-(Owen 1956), (2. 1) cam be written aspositive correlation coefficients but delivers doubtful results

for the other cases. Therefore, to develop a self-validating
algorithm to compute the CDFvalues can provide a solid basis P(h,k;p) - 0.25 + -
for studying the accuracy of these competing algorithms. 2n

Self-validating numerical method is sometimes called + (h~kw(0, h I~ksign(h)p)
automatic error analysis, and it can be achieved in many
different ways. We will use interval arithmetic to accomplish +sign(k)kw(0, I k 1,0sign(k)p) (2.2)
the goal of self-validation. This means that we compute an
intervalwhichisguaranteedtocontainthetheoreticallycorrect Our purpose is to find an interval inclusion (an interval
CDF value. Then the midpoint of this computed interval is
the "point" approximation and the half-width of this interval which contains the true value of P) of (2.2), Ie., we need to
is the uaranteed absolute error bound giving validity to this obtain interval arithmetic. Therefore, we can focus our
midpoint approximation. Since we strive to obtain intervals discussion on obtaining I-terval inclusion for kw(a, b, c, p).
having very small width (less than 10i), the approximations Under the transformation Y - 7'Z, where T is the (nan-
obtained provide essentially correct values tobe used as a basis
for comparing the accuracy of outputs from competing point gular matrix
algorithms. 10

Basic elements of interval arithmetic and a reference list
can be found in Kennedy (1990). Algebraic properties of P

interval arithmetic are given in Moore (1979) and Ratschek we have
and Rokne (1984). Computations involving intervals do, at
first sight, seem tobe a complicated and inconvenient process. b e(P)
In fact, this is not the case given today's computer hardware kw(a,b,c,p) - JJ(2xy'exp (1- 1/2(x'+ y)) drdy (2.3)
which includes standard floating point support. A few simple
functions give interval arithmetic capabilities. The Imple-
mentation of interval arithmetic, and computation of interval wherec(y),-(c-py)MiC-'. Let us express kw(a,b,c,p)
inclusions for various functions are described in Wang and
Kennedy (1990 and to appear). This paper omits the details in (2.3) as
of these issues.

In the next section, we will describe a self-validating kw(a,b,c,p)m f h(y) dy (2.4)
numerical method for obtaining interval inclusion of the
bivariate normal CDF. Then some computed results will be
presented in the third section. where
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U(Y)__y2 t2 ie. - 2(H(Y). (2.8)

Ib') -"(2a)Y exiP'€ is an interval inclusion of (2.6). Now, let

g&O)- (2n)-exp (-x
2t2)dr

IKw. - Kw._:nIK. n-2,4 ....

h(y)-f(y)*g(y). Clearly, kw() contains in KW. for each n and

We denote the Taylor coefficients of function h(y) at {KW.. n -0,2,4,...} isanestedsequence. Therefore, wecan

m -(a + b)/2 as obtain a resulting interval inclusion of (2.2) iteratively. And
this resulting interval can satisfy any specified accuracy

(h(m)),= h(m) requirement.
1dLh(y)g k- The only remaining difficulty is to compute these Taylor

coefficients in the integration rule and error term. Fortunately,
(hn))k k! dy ],_ "" the automatic differentiation techniques can be applied to

overcome this difficulty. Detailed descriptions of automatic
and expand the Taylor polynomial of h(y) at y - m. After we differentiation can be found in Moore (1979), Rail (1981), and
integrate this Taylor polynomial term by term, we obtain the Corliss (1988). Implementation of these automatic differen-
integration rule tiation using interval arithmetic provides the means for com-

ir -2 X(h(M))(b -m y" i2 puting interval inclusion of the Taylor coefficients over the

i-+1 (2.5) interval M or X. We will not give the details of these
computations because they have been provided in Wang and

and the term Kennedy (1990 and to appear).
3. Condiclons

(e. -h)e)) (2.6) Three experiments were con~structed to test the perfor'm.
2 ) n+1 ance of this self-validating algorithm for different p values.

of(2.4), wheren isapositive even number and a is an unkown In all the integrals evaluated in each of these experiments, the

number in the interval (a, b). Let (H). be an interval inclusion width of the interval inclusion of the computed probability
was not larger than l0 , so the middle point of computed

of (h),, X - [a,bl M - [m,mrl andD - [b -m, b-m]. We interval inclusion was necessarily very close to the theoreti-
can form an interval inclusion Ak, - r, + Je, of kw() for each cally correct probability. And the half-width of the computed
even number n, where interval is the maximum absolute error bound of the middle

a -i Di+ point approximation.
Ir, - 2 .9(H(M)) (2.7) The results from the first two experiment are not present.

- l The third experiment includes twelve integrals with very large
correlation. Table I gives the necessary description of these

is an interval inclusion of (2.5) and integrals and the computed interval inclusions.

Table I
Interval Inclusion of Integrals Used for the Third Experiment

Inclusion of Probability

I.D. HH KK RHO Lowerbound Upperbound

1 0.0000 0.0000 -0.9999 0.0022508095471555 0.0022508095476480
2 0.1000 0.0000 0.9999 0.409999999999 0.4E9 99 99995
3 0.1250 0.0000 0.9999 0.499999999999999 0.5000000000000000
4 4.0000 0.0000 -0.9999 0.4999683287581668 0.4999683287581669
5 0.0000 4.0000 -0.9999 0.4999683287581668 0.4999683287581669
6 8.0000 8.0000 0.9999 0. 9999999999999 0.
7 7.0000 9.0000 -0.9999 0.9999999999987201 0. 202
8 -3.875 7.6250 -0.9999 0.0000533123497388 0.0000533123497389
9 -5.000 5.0000 0.9999 0.0000002866515718 0.0000002866515619
10 -0.0125 -0.00675 -0.9999 0.0002252159041540 0.0002252159041541
11 -2.500 -3.7500 0.9999 0.0000884172852008 0.0000884172852009
12 5.0000 5.0000 0.9999 0.0000002866515618 0.0000002866515619
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Interval arithmetic and automatic cfferentiation were Kennedy, W. J. (1990), Statistical Computing Feature: Special
used to compute interval inclusions of desired probabilities. Purpose Numerical Tools for AppM.ximating Functions,
The length of computed intervals were made sufficiently small Statistical Computing and Statistical Graphics Newsletter,
so that the probabilities guaranteed to be correct essentially to 1,3-6.
machine precision were obtained. The cost of our self- Monahan, J. (1990a), Quips and Queries, Statistical Corn-
validating algorithm is that is takes about 10 times as much puting and Statistical Graphics Newsletter, 1, 16-17.
CPU time as conventional point implementation algorithm. Monahan, J. (1990b), Quips and Queries, Statistical Com-

puting and Statistical Graphics Newsletter, 2, 13-14.
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Computation of the Multivariate Hypergeometric Distribution

Trong Wu
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Edwardsville, Illinois 62026

Abstract with nl + n 2 +...+ nk = N; 0 _< ni < mi

The multivariate hypergeorntrc for i = 1 2 ... , k.

distribution is a natural extension of the This distribution is called the
hypergeometric distribution. The computation multivariate hypergeometric distribution with
of the multivariate hypergeometric parameters N, in, Mn2 , ... I M [6, 11].
distribution is of interest to many researchers Actually there are only (k __) distinct
who are working in the computing sciences variables, since
and related disciplines. Currently, there are
no software, algorithms, or tables available for nk = N -(n, + n2 + ... + nk.-).
computation or reference. This paper
presents an effective method to compute the When k=2 it reduces to the ordinary
multivariate hypergeometric probability hypergeometric distribution. In this special
function accurately and efficiently. The case, we may think that objects can be
method applies prime number factorization to classified according to some property into n of
all of the factorials, and cancels all the classifie ac d t som propert i oocommon factors of the numerator and one group and N - n of another. For
denominator to reduce the computational example, we might classify a large number of
cenompleity to arminium.e the omputadl manufactured products as defective or non-
complexity tc a minimum. We use the Ada defective. This special discrete function is
programming language for this computation frequently called the hypergeometric
instead the traditional FORTRAN, because probability function [2, 11], because the values
the predefined features in the Ada language h(x; r, n, N) can be expressed as successive
are suitable for this type computation. This term nf a cans b eressed as suess
computation can be done currently availably terms of a Gauss hypergeometric series.
machines and time required for the In many cases, accurate probabilities
computation is reasonably small. are very important to the application. Today,

the computation of the multivariate
hypergeometric probability function is still

1. Introduction difficult due to the limitation of the computer

Consider a finite population of M systems such as overflow, underflow, and
cowhich m are of type 1, Yt of type maximum accuracy. Inaccurate results are

objects, of w i caused by rounding errors that are induced by
2, ... , m• of type k, with m, + in2 + ... + mn many redundant computations in
= M. Suppose a sample of size N is chosen, mua tionsdnd computatio sultwitoutrepaceen, fom mon thse m uitiplications and divisions. As a result,
without replacement, from among these M there are no software packages currently
objects. Then the joint distribution of the available for the computation of this function
random variables n1 , n2, ... I nk representin• such as the IMSL Library [5], minitab [8] and
the number, of objects of types 1, 2, ... other software packages; in fact, currently
respectively in the sample, is defined by there is no effective algorithm available for

dealing with computations. Indeed, we need
h(ni, n2, ...2 nk; mlm2, I mk) an efficient algorithm and better

programming techniques to write a reliable
/(1.1) program to accomplish this computation

-' within a reasonable amount time. This paper

presents an effective method to compute the
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multivariate hypergeometric function From Theorem 1, we are able to factor
accurately and efficiently. Section 2 presents the n!, for all n > 1, as a product of prime
mathematical foundations for solving this numbers. The result is given in Theorem 2
problem. Section 3 develops an effective below:
algorithm for this computation. Some
computational examples are given in Section Theorem 2. For any positive integer n > 2,
4, and finally, conclusions are given, the n! can be written as a product of prime

numbers.

2. The Mathematical Foundations n!=P 1 rP r 2 *Pr3 rk (2.1)

Among the problems of the for some positive integer k.
computation of the multivariate
hypergeometric probability function are the Example 1: Consider 20!, we have the
computation of factorials, eliminating all the following exponents of prime numbers:
redundant computations, handling 20. + [A1 + 40]
multiplicatios, and tminimizing the divisions The exponent of 2 is + + +
without overflow and underflow. Methods of
managing the computation of factorials and to
eliminiating all the redundant computation - 10 + 5 + 2 + 1 = 18.
belongs to mathematics while the ways of
dealing with multiplications and divisions are 20
in the programming domain. These are two The exponent of 3 is = 6 + 2= 8.
separate issues. First to reduce the
computational complexity, we need theorems 20
from the theory of numbers [31 which are The exponent of 5 is[SL = 4.
stated and proved as below:

Theorem 1. Let p be a prime. Then the The exponent of 7 is [20] = 2.

exact exponents of p that divides n! is L7 j

nI rn+. n +.,The exponents of 11, 13, 17, and 19 are all
Fp] Ppj [pl equal to 1. Hence,

where [x] is the largest integer less than or 20!=218 .38 .54 .72 .11 .13 .17 .19.
equal to x.

Proof: For 3. The New Algorithm

For simplicity, we may simplify the
S1 •2 •3 -(p - 1) equation (1.1) into a division of two products

p (p+l) (p+2) . .(p-1) p . of factorials. Hence, we have

p . (p 2+1). (p 2+2) ... h (7h, ni2, n,; Mi i, ... ,M )

p. (p3 +1)• (p 3 +2) ... n N"P" (Pa~l)' pa+2,''"(I~i_.lMni )/ M)

. (n-l) . n.

We see that the '2.,Lur of p's factors is [n/pJ, m1, i, 2  ( n,
the number of p'. factors is In/p 2], the _ n2/ ' ,k
number of p3 's f-t.-ria is [n/p 3], and so forth.
Then the Theorc. fillows. N )
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nk M, I N!. (M-N)! 10! 12! 8! 15! 5! 20! 30!

S i= n- (3.1) 8 8! 4! 8! 1! 7! 8! 7! 5! 0! z.J

After factorization and cancellation, the above
Now, we are able to develop a computational expression is reduced to its simplest form.
algorithm for this distribution:

S 36.52.11.13

Algorithm 1. 72.23.31"37"41"43"47

(1) Apply the prime number factorization, 2.433134239681592191426386865530844E-5
given in identity (2.1), to all the factorials,
N!, M! (M-N)!, mi!, n,!, (m.-n.)! (i = 1, 2,

k) in equation (3.1). 4. Some Computational Results
We use the Ada programming language

(2) Cancel the common factors in the [1] to implement the algorithms given in the
denominator and numerator. Obtain an Section 3 because the language is an ANSI
irreducible fraction for computation (see standard language; it has special features
Example 2). called exception handling and tasks. These

features not only make programming simple,
Note that the computation in (1) requires the but also prevent a program crash due to
use of a sequence of prime numbers that can overflow or underflow. In the actual
be computed either by Eratosthenes' sieve implementation, we use three tasks; task one
adgorithm or by an improved algorithm given and task two are employed to perform the
by Luo [7]. After (2), all the common factors multiplications in the numerator and
in the numerator and denominator are denominator respectively; task three is used to
cancelled and reduced to an irreducible form; perform a division. When both products in
the number of multiplications and divisions is the numerator and denominator reach a
minimized. maximum, both task one and task two stop

temporarily and invoke task three to performExample 2. A petroleum corporation has 50 a division of the products that have been
gasoline stations in a certain state; it has obtained in the numerator and denominator
classified them according to merit of before an overflow occurs. After task three
geographic location as follows: completes its job, task one and task two

resume their computation and repeat this
Location Excellent GoodFair Poor Disastrous procedure until the final result is obtained.

These tasks work together and guarantee that
Stations 10 12 8 15 5 the result of this computation will be the

The corporation has a computer program for most accurate.

drawing random samples, without Some machines allow users to have a
replacement, of its stations. The joint precision of 33 significant digits or a 128 bit
probability of obtaining a sample of 20 of floating point number [10, 12). For the 128
these stations with 2 excellent, 4 good, 1 fair, bits, 1 is used as a sign bit and 15 are used as
8 poor, and 5 disastrous is given the exponent field; the remaining 112 bits

together with a hidden bit gives 113
h(2, 4, 1, 8, 5; 10, 12, 8, 15, 5) significant bits or 33 significant digits,

according to the IEEE standard 754 floating-
10 v12 ( 8 5( point number format [4, 9]. The programs

(20) 841 )(A14 1 )8 5 ) ran on a MicroVax II machine with the VMS
50 V.4 operating system and the Vax Ada V.1
20 ) compiler.
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The following sample results were References
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to offer the NHL decision maker a means to enhance
INTRODUCTION team preparation for future performance through the

systematic and complete study of past performances. This
This paper presents the framework for the use of a is accomplished by adding meaning to information previ-

historical database structure to support evaluative and ously unused or unknown to the decision maker. Our long-
predictive judgement in the domain of a major profession- term research goal is to define the parameters and
al sports league, namely the National Hockey League. On implement expert systems that will support decision
the platform of a Relational Database Management Sys- making for real-time "stochastic" processes.
tem, value is added to game statistics by keeping true, Our research has found that current team preparation
non-character literal, temporal attributes and interfacing revolves around subjective evaluation of performance and
the resulting temporal database management system to a review of game videos. Data capture is primarily limited to
video representation of a real-time process. This frame- box scores and discrete events such as goals and scoring
work allows for the link between image and textual data in chances. These videotaped hockey games through repeated
a direct access mode through the compilation of complex and systematic visioning, have become de facto executive
regular and temporal queries, support systems for the NHL decision maker. We argue

The paper addresses the physical problem of effi- that a hockey game is made up of more than discrete
ciently recording, storing, and retrieving large amounts of events and that these events are all related. Hence, value
match related data to create an accurate and complete can be added to this information and better data can be
description of performance. This information is needed to captured by a more effective and efficient use of technolo-
form the basis for proper judgement by the NHL decision gy.
maker. The manner in which information is categorized

during a real-time process is a major problem. Firstly,
APPLICATION BACKGROUND there is a problem in deciding what information is relevant

and needs to be captured (section 1). Secondly, there is
We have chosen the domain of professional sports. the physical problem of efficiently recording, storing, and

Although having high profiles, sports teams can be best retrieving large amounts of data (section 2). This paper
described as medium sized companies, usually having less discusses solutions for data capture and improved system-
than 100 employees, often with revenues not reaching $100 atic observation criteria (section 3) and proposes a
million per year. More specifically, we have implemented semantically-improved database framework that can best
a database solution to the plannipg and control problems represent this and other real-time processes (section 4).
of the real-time process of playing a professional hockey
game. The game of hockey is an interesting research 1. CATEGORIZATION OF INFORMATION
domain. In a competitive life span of 60 minutes, a finite
set of events can occur which result in success or failure. 1.1 Saving All the Bits
Unlike the longer time span of the "going concern", in
hockey one gets instant gratification for successful strate- In a parallel discussion to that of this paper, Denning
gies and quick feedback on failures. Our current goal is (1990) discusses that it is important to "save all the bits"
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generated by an instrument or computation. He argues performance models are based on the perception that past
firstly, that the cost of acquiring the bits is so great that we behavior is often the best predictor of future behavior and
cannot afford to lose any of them and, secondly, that some that through the study of past behavior one can develop
rare event might be recorded in those bits, and to throw specialized training, teaching schedules, and game strate-
them away would be a great loss for the advancement of gies.
knowledge in the domain. The study of past behavior is done by the review of

To counter-balance this paradigm, one must remem- past game videotapes. Some NHL hockey teams have
ber the impossibility of doing this in practical terms. The incorporated video editing software as "systematic observa-
rate and volume of information in many real-time applica- tion" tools. These video editing packages allow a team to
tions can overwhelm our networks, storage devices, and stamp events while they are watching a videotape of a
computers, as well as (and more importantly) the human game and return to these clips at their convenience. Our
capacity for comprehension. Humans have limited infor- coach's systematic observation of performance model is
mation-processing capabilities (Hogarth, 1980). These currently based on the documentation of seven types of
involve selective perception, sequential processing, limited events: scoring chances for, scoring chances against, body
processing capacity, limited memory capacity, memory by checks, face-offs, minutes played, player rating, and key
association, reconstruction of memory, etc. game identification fields. All items are discrete on-ice

The goal is to complement the human processing action except "player rating" which is a subjective after-the-
limitations by extending it using computer technology fact evaluation and "key game identification fields," which
without overpowering the technology. This delicate balance are key attributes to a hockey game. This setup uses a "flat
is often the difference between quality information and files" approach where queries are usually restricted to
data explosion, within-event type information.

1.2 Systematic Observation 2. RECORDING, STORING, and RETRIEVING

The concept of systematic observation was developed Although rudimentary in nature, the system based on
in the field of education and was introduced to collect data the current performance model does produce a complete
on teachers in a classroom environment. Systematic statistics report that cross-references the 7 "flat files" data
observation instruments consist of a number of predeter- from many angles. The quality of this recurring batch
mined, clearly defined categories of behavior, as well as report has received international attention (Sexton 1990).
definite rules and procedures for their identification and Tb- current formala for systematic observation solely
coding. The focus of the instrument is directed toward a stores the on-ice game statistics (primarily data on scoring
critical element in the learning process and is based upon chances, face-offs, and minutes played). Benefits of
a sound theoretical framework. The usual procedure is for automating this process includes ad hoc query potential
the recorder to observe either the teacher or the student and the tabulation of numbers for statistical inference. At
during a learning situation and code the targeted behaviors this time, there is no link between the video editing
in accordance with the procedural rules of the instrument, software and the statistical "flat files" system. Coaches
These systematic observation techniques provide a method must first watch the game and edit out highlights with the
of obtaining objective, reliable, and valid measurements of editing software. Once this process is complete, they then
behavior. enter the statistical package and manually re-enter all the

We feel that there is an intimate link between the highlights from a statistical perspective -- who was in-
process described above and that of capturing the events volved, the opponent, and other pertinent information.
that occur during real-time processes. In the next section, Statistical analyses are then performed on these data and
we define the "predetermined, clearly defined categories of reports are generated. This is all done separate from the
behavior", as well as the "definite rules and procedures for video editing software.
their identification and coding" of performance during a
hockey game. 3. IMPROVED IDENTIFICATION AND CODING

1.3 Saving the Appropriate Bits The co'4ch's current model has three major weakness-
es: Firstly, it only addresses a subset of possible occurrenc-

We have followed an NHL head coach for over two es in a hockey game; secondly, it does not offer a natural
years and have held regular question and answer sessions connection or sequence of events between the flat files;
with the team's coaching staff. We conclude that hockey and thirdly, it does not allow for temporal attributes.
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These weaknesses are however not inherent to this 3.2 Operationalizing Systematic Observation
application but to all real-time processes. Often a continu-
ous process is simplified to a set of discrete processes A typical hockey play can be captured fully with as
which are often more practical to work with. For example, little as 1 or 2 pen strokes or at most (full line changes -
taking a patient's temperature twice a day and defining both teams) approximately 12. We have estimated that the
between readings mid-points by linear interpolation most complex hockey play can be captured in less than 3
represents continuous change as depicted by a finite set of seconds for the relatively new user. We are now conduct-
measurements. Continuous processes are often translated ing experiments based on the power law of practice to
to a discrete representations in order usually to better estimate capture time for experts. Each registered play
operationalize their capture and retrieval in automated becomes an object occurrence. Data capture will be a
databases. two-pass process: in real-time mode and review mode.

But in other circumstances, strategic advantage is Sequence of events will be captured in real-time. They will
created by building systems that can represent continuous be edited and further described upon review.
processes as such. The banking industry capitalizes on this Templates for various single-user and networked
point by conducting business transactions according to the DOS based systems have been developed and tested, and
generally accepted daily cycle although its internal technol- a series of experiments on their usage conducted. Prelimi-
ogy updates credits in real-time. nary results show that top business executives, given 30

Through a maturing process, today's systems must minutes to learn the technology, have character recogni-
satisfy more sophisticated requirements for information. tion rates surpassing 90%. These experiments and others
Many articles (Cash and McLeod 1985; Parsons 1983) (Mahach 1989) have also shown that, in circumstances
have focused attention on how developments in informa- where input of data is made up of a small amount of
tion systems technology have made many new applications keystrokes, the writing pad is preferred over traditional
that have strategic importance feasible. Cash and McLeod keyboards.
argue that only systems that add value to information will
be used in winner companies. Systems must leave the 4. SEMANTICALLY-IMPROVED DBMS STRUCTURE
"horseless carriage" epoch of automation into what Zuboff
describes as infonnating (Zuboff 1988). 41 Time and Databases

The remainder of this paper outlines a method for
the systematic observation of real-time data in real-time Research and development over the last twenty years
through the use of recently available technology and a has culminated in the widespread use of database manage-
generic but exhaustive list of behaviors, rules and proce- ment systems. As usage has grown, the desire to capture
dures of NHL hockey. more data semantics has led to the development of data

models that provide the concepts and corresponding
3.1 Performance Behaviors of NHL Hockey formalism in which an image of the real world can be

expressed. Classic models do not represent time in a
We have compiled a list of 24 "recordable" game natural, real-world way. Time is not merely another

occurrences (13 real-time events, 8 stopped time events, dimension, or another data item tagged along with each
and 3 identification records). We feel that this is an tuple, but rather a more fundamental organizing aspect
exhaustive list of events in a hockey game. The use of pen- that human users treat in very special ways. In current
based technology will allow for real-time input of all this DBMS time is either neglected, treated implicitly, or
information and more with the processor controlled explicitly factored out. Most data models presume the
implicit time-stamping of events. Currently being investi- database to represent a single current status (Tsichritzis
gated at the University of Arizona is a character recogniz- and Lochovsky 1982). They provide only state transitions.
ing writing pad and template developed by a multi-national However, Schueler noted in 1977 that even simple updates
high-technology corporation (Briggs 1990). In this new to databases destroys valuable information (Schueler
peripheral, a small radio-signal emitting device is embed- 1977).
ded in a stylus (special pen) and detected by a rectangular In many cases information seekers are not only
(8 X 12) writing pad. The pad senses and recognizes interested in a representation of a current state, but also
movements that form characters or commands. It is used in the history of earlier states or a prognosis of future
in lieu of the keyboard. states. Historically it has been difficult to reconcile infinite

conceptual models with finite machines and finite memo-
ries. Through dramatic increases in processing power and
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the introduction of large-capacity directly accessible a new version of the database created. In historical DBMS
secondary storage devices, the tools now exist to imple- previous states are not retained but there is support for
ment a system that truly represents time. valid time -- a second time stamp that depicts the actual

A widely used DBMS time concept is the event, time an entity is active and not when it was updated
Traditionally, time stamping of events is accomplished (Laning 1982; Snodgrass 1987). A temporal DBMS sup-
using character literals. An event is a change of status, ports both transaction (when action is recorded) and valid
which is kept until the next event. Events can occur at (when action actually occurred) time in the same relation.
integral time points (Breutman 1979), or at real time A temporal database allows for a relative (virtual) time
points (Bubenko 1977). In other cases, such as the capture frame instead of always dealing with the present (Snod-
of hockey information which has a pattern of continuous grass 1987).
change and some fragmentary observations, the notion of In hockey, time has two dimensions: Firstly, a
event is not a good modeling approach. A hockey game sequence of object occurrences in a hockey game and,
has a life of 60 timed minutes. In this relatively short secondly, a sequence of completed hockey games. Each
time-span, many hundred (often overlapping) events occur: object occurrence is time stamped using two different type
plays, line combinations, game situations. A traditional of time attributes: "hockey time" splits into 3 periods of 20
database using only a character literal time stamped minutes each and assures the capture of data sequence,
representation of events does not offer the time granularity and "time of day" which captures image sequence and is
desired to properly record a hockey game. An accurate used for synchronization of data with the videotape version
representation of systematic observation model must of a match which is often taken directly from a network
include events in the traditional sense, time intervals, pre- "feed" (commercials and all). These two time attributes
events -- behaviors or performance prior to an event, and work in parallel and are on the same plane. The second
post-events -- behaviors or performances after an event, time dimension is required to denote the sequence of

By recording a sequence of time stamped object games. A regular NHL season has 80 games per team.
occurrences in a suitable DBMS, new types of entities are
then created: intervals are a structure with a time interpo- 4.3 Schematic Structure of Hockey TDB
lation that includes all action between two time bound-
aries; pre-events are actions that lead to an event; and post- The external user's view is that of building blocks,
events are actions that occur after ar. event. In hockey, one each block having the dimensions of time, objects, and
might want to see the play leading to a goal or one might attributes. Individual blocks store the information for a
want to know what happened in the 30 seconds after a given game and a regular season would combine 80 such
penalty was called. blocks.

This is why the use of a temporal database is recom- Two time attributes are used in this framework:
mended. Instead of events, games can be transcribed as actual clock time and game time. Clock time is used to
intervals of action. A semantically well-grounded temporal access the videotaped images of the game. This will allow
database will allow for second by second granularity, thus for a more flexible use of the videos since it eliminates the
precise intervals that can capture the essence of hockey. use of video time codes. Video time codes are electric

pulses on videotape that, when applied to a frame by
4.2 Temporal Databases assigning it a unique frame number, help a technician edit

the images very precisely. In this application, the access to
When discussing temporal databases (TDB's), a the video is controlled by the database management

review of the taxonomy is necessary. Conventional databas- system and not the video editing software. This approach
es model an enterprise using snapshots (Bubenko 1977). A will however not allow for frame accurate video editing but
snapshot is a state or an instance of a DBMS with its does offer a reliable and powerful, second by second,
current content, which may or may not represent a current granularity of image sequence.
status (Ahn 1986). A rollback database resolves the
snapshot DBMS problems by recording a sequence of past IMPROVING JUDGEMENT
states, indexed by time (Ariav 1986; Gadia 1988). This
approach requires a representation of transaction time -- The proposed system is both a decision support and an
a time stamp representing the time of day when the executive support system. A common and accepted
transaction occurred. In a rollback DBMS changes can be distinction between an ESS and a DSS is based on their
made only to the latest state. Historical DBMS record a respective applications: The former, like executives, deals
single historical state per relation. Changes are made and with unstructured and ambiguous information and circum-
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stances; the latter is intended for more structured, repeat- Briggs, R. "Testing Managers' Acceptance of Notebook
ed, quantitative model-based decisions. In hockey, goals Technology over Keyboard Technology: An Interim
and assists, time on the ice, plus and minus statistics, and Report," University of Arizona (MIS) Working Paper Series,
a multitude of other generated statistics are repeated and December 1990.
analyzed. Executive support systems do not easily lend
themselves to the sorts of explicit quantitative models a Bubenko, JA., "The Temporal Dimension in Information
typical DSS can provide. Instead, the coach must rely on Modeling," Architecture and models in Data Base Manage-
his own implicit performance model to manipulate and ment Systems, North-Holland, Amsterdam, 1977, 93-118.
interpret this information. For example, coaches often try
to find intangible advantages in non-statistic, often video- Cash, J.1., and McLeod, P.L., "Managing the Introduction
based, information. of Information Systems Technology in Strategically

Much of our work is thus appropriately addressed to Dependent Companies," Journal of Management Informa-
designing a tool that can not only support the repetitive tion Systems, Vol. 1, No. 4, Spring 1985, 9-25.
statistics but also the performance model. A successful
system must support the coach's cognitive processes of Clifford J., and Tansel, A.U., "On an Algebra for Histori-
how to make decisions and forecasts. Already accom- cal Relational Databases: Two Views," Proceedings of
plished are the development of a relationship with a sports ACM-SIGMOD 1985 International Conference on Manage-
team and a detailed investigation of their perceived data nient of Data (Austin), ACM, New York, 1985, 247-267.
requirements. This has lead us to define a relational model
for data and generic model for the systematic observation Denning, P., "Saving All the Bits," in American Scientist,
of performance by linking the data to a video representa- Volume 78, Sept-Oct. 1990, pp. 402-405
tion.

Our research agenda includes: Firstly, the develop- Gadia, S.K., "A Homogeneous Relational Model and
ment of a computerized link whereby both data entry and Query Languages for Temporal Databases," ACM Trans-
analysis combines image and textual data. Secondly, actions on Database Systems, Vol. 13, No. 4, December
modifying the input and edit device from the standard 1988, 418-448.
keyboard to the stylus/tablet. This will result in a more
natural interface for the hockey executive. Thirdly, corn- Hogarth, R., Judgement and Choice. John Wiley: Chiches-
pleting the model by capturing more of the available data ter, England, 1980.
and incorporating temporal data to better reflect time
relationships (fatigue factors, dependent events, momen- Kuklinski, T.T., "A Case for Digitizer Tablets: The Inher-
turn swings) that occur in professional sports. And subse- ent Advantages are Many," Computer Graphic World, May
quently, applying available technologies (videodiscs, CD- 1985, 45-52.
ROM, multi-media screens, workstation processors) to
enhance the reviewing and analysis of game highlights to Laning, L.J. "A DSS Oversight--Historical Databases,"
be performed using a shared textual/video screen. DSS-82 Transactions, G.W. Dickson Editor, June 1982,

87-95.
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Abstact: Recently our small group of rs ws were looking for the right "computational environment" -
f tacdwith theinadequacyof our s camputro iof res ourcers w the right combination of hardware, system software, andfaced with the inadequacy of our computational re~sourcerstiscasowre(,prhsheigtinrfe
for our ongoing statistical analyses of large datasets, statistical software (or, perhaps, the right 'interface

between computing science and statistics") to effectively do
Turnaround timesr on our network of 386/33 PCs wereTurnroud tmeson or ntwok o 38633 ~s ere our jobs. This paper puts a structure to the process of
long, sometimes running 15 to 30 hours. Using a remote gathering requirements for such a computational
large mainframe also had its own problems. We g irf ho.frae aso hd is on prbles. W neded environment. It also presents some of our findings when
a change and a big one, but we didn't have big dollars. matched these resents gote marketplace. wheThi paer escibe ou shrt 3 mnth erlortio of we matched these requirements to the marketplace. The
This paper describes our short (3 month) exploration of intention of the paper is not to single out a particular
alternatives and our findings, solution for all statisticians, but rather to identify an
We first identified four categories of requirements for our approach, to point out some things to consider, and to
analysis environment. We then looked at available point out some interesting characteristics of "today's"
technology for possible solutions, identifying relatively computational environments.
low-cost UNIX RISC workstations as the most-likely
candidate platforms for our statistical work We then The Setting
devised a way to measure the performance of several
different statistical analysis environments with large Strictly speaking, this paper doesn't report on the market

datasets. Our results were startling: workstations provided of "today"', but rather that of the summer of 1991, which

close to two orders-of-magnitude improvement in was when we did our analysis. That was when our small

performance at an affordable cost. Our benchmark group of about a dozen researchers realized we had a

statistical analysis job which took 3 hours on one of our problem. One of the goals of our interdisciplinary group

PCs ran in 12.5 minutes on one workstation and 4.6 (statisticians, programmers, phy':ciaus, health services
minutes on another. Performance for four different types researchers, and a psychologist and economist) is to study

of statistical analysis was found to vary nearly linearly and evaluate patterns in health care quality and utilization.

with database size, as size ranged from 1,000 to 1,000,000 We have available to us a number of very large databases

records. Hardware costs varied from $12,000 to $75,000, describing the operations of the 172 hospitals operated by

depending on the vendor and the configuration options the US Department of Veterans Affairs. One database, the

chosen. The newer workstations also supported newer Patient Treatment File (PTF), contains one 140-variable

software with a much improved interface and graphics record for each hospital stay. The PTF has about

capabilities. 1,000,000 records per year, with 11 years of data currently
available. A second database describing outpatient care

Introduction has about 20,000,000 records per year. Our problem was
that we felt it was taking an excessive amount of time to

This conference was devoted to the "interface between make use of these valuable datasets and interpret them.
computing science and statistics." Many of the papers We formed a small, ad hoc committee of folks with diverse
have talked about new directions in one or the other of
these fields, presenting, for instance, research and backgrounds to come up with a solution. Our meetingsprootyesof new data analysis tools and new seemed to alternate between proposing solutions and
prototypes ofcnew ta aperyis ttls difew identifying requirements. Clearly stated requirements are
computational techniques. This paper is a little different. needed before a good solution can be chosen, but

the focus is on the state of the marketplace, not the state examining candidate solutions can bring out hidden (but
of the art or the state of the lab. real) requirements. The following sections describe some

This paper reports the results of one group of data analysts of the requirements and solutions that emerged from our
searching for adequate tools to look at large data sets. We iterations between the two.
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needed, key-punch the statements, submit the cards to

Requirements SAS, and receive back, hours later, tabular output with
crude-looking, line-printer-produced graphs. This is still

A basic requirement of our group is to have access to a the basic model for using SAS version 6.04 today! It is
responsive, easy-to-use, system able to analyze large awkward, inefficient, dramatically different from interface
datasets. The first two requirements (responsive and easy technology and standards of the '80s, and inconsistent with
to use) translated into the need for a local system. the '70s and '80s push toward exploratory data analysis.
Accessing a shared facility (such as VA's central data
repository) is fine for occasional use of current data from a What we needed was the ability to do truly interactive

wide variety of sources. On a routine basis, however, it is statistical analysis. At a minimum this entailed being able

awkward, cumbersome and time-consuming, especially to easily select analysis procedures, options, and datasets

when your research analyses have to compete with higher- from menus, to change minor characteristics of output

priority, routine work such as processing payroll and without re-running the whole analysis, to quickly see the

performing financial management. effects of omitting one or more potential outliers, to see
and work with the entire dataset in a tabular format, to

Initially, our local system was constructed to get away look at graphs and the raw dataset simultaneously, to see
from that problem. The system consisted of a network of and work with multiple datasets simultaneously. What we
386 PCs connected via Novell software and ethernet needed was the number crunching of SAS coupled with the
cabling to a 486 file server with 5 gigabytes of disk. A user interface of spreadsheets like Excel that run under
tape drive attached to one of the PCs allowed us to import Windows on PCs. We also thought it would be great if we

data from VA's central data repository. Our data analysis could easily copy output from our statistical analyses
software was PC SAS, version 6.04. At the time it was directly into our reports and presentations, again as
purchased (1990), this system represented the most supported by some word processors and spreadsheets.
powerful micros available, combined with the most widely
used software for sharing data among PCs, and one of the Besides improved response time and usability we also tried

standards in statistical analysis software. to assess the functionality that we required. We decided
that basically we made use of "standard", proven statistical

This system worked fine when handling datasets of 100, procedures. We really weren't trying to develop new
1,000, 10,000, or even 30,000 observations. It gave us procedures, and that the statistical functionality of SAS
the descriptive and analytic statistics we needed in a version 6.04 basically covered our needs. We did however
reasonable amount of time - minutes, if not seconds. But feel that we wanted better ways to view and display our
routine sorting and analysis of several hundred thousand data. A key non-statistical function we felt our
records took hours. Processing of a million records could environment needed to provide was shared access to data.
take more than 20 or 30 hours. This made it difficult and A number of people needed to be able to use our large data
time-consuming to look at multi-year trends in VA health sets in parallel - we felt we couldn't support the storage for
care utilization, multiple copies, or the time and effort to move the fiI'-s

Thirty hours was clearly unacceptable, but it wasn't at first among multiple processors.

exactly clear what would be acceptable. After some Our solution space was limited by several constraints.
thought on research staff productivity, we established an First, we wanted to avoid as much as possible conversion

objective of increasing throughput from one analysis every effort and training. Staff had PCs and wen! using various
day or two (based on 20 to 30 hour response times) to DOS and Windows tools for preparing reports and

several analyses every working day (hence 2 to 3 hour presentations. The were used to SAS's command
response times). To have a real effect on productivity we language. We thus sought to provide some continuity with
needed an order-of-magnitude improvement in response this environment. Second, we are a small group and
time; improvements on the order of 50% or 100% would needed to minimize the overhead of recurring operational
not have gotten us out of the once-a-day cycle. support. Though we expected to have a system manger,

A second drawback of the system was the statistical we sought to control the complexity of the job as much as

software's outdated interface with the user. The origins of possible. Finally, our most concrete constraint was our

SAS go back to the '60s - a time of punched cards, when budget. We were told we to keep the solution under

terminals and interactive system use were rare. The way $100,000. When we started our analyses, we really

one used SAS in the '60s was to study the manual, figure weren't sure whether this would be adequate or not.

out the commands, parameters, and syntax that were Figure 1 summarizes this discussion.
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Figure 1. Requirements for Our Computational Figure 2. Conceptual System Configuration of Solution
Environment

frequently used. The ability to move data files between the

Candidate Solutions computational server and the file server was also to be
provided.

In exploring solutions to our problems we initially
considered two traditional solutions: first, upgrading the The server was to be selected from the relatively large
PCs and/or the network, and second, buying a small local group of RISC computers using the UNIX operating
mainframe. The first approach was rejected for several system. These "workstations" have developed a large
reasons. Based on the general experience of others and presence in the engineering community where they are
reviews in the popular PC magazines, upgrading to 486s at used for handling high-volume engineering and image

that time would have only achieved at absolute best a analyses. Such processors are available from virtually

doubling of processing capability - nowhere near the every large computer maker. These processors were

needed order-of-magnitude improvement. Besides the relatively low priced - significantly less than mainframes

limited performance, staying in a DOS environment would and, in some cases, approaching the cost of large PCs.

have left us with older, inadequate SAS software with a A side advantage of a UNIX system was that it would
poor user interface. We also discovered SAS 6.04 had support SAS's latest version (6.07), which had an
significant memory management limitations, making use improved user interface and graphical abilities. A new
only of 2 MB of memory even though our processors had SAS product (Insight) would provide some of the
more. As for upgrading the network, based on our spreadsheet-like data editing and viewing features we
performance measurements, the network was not the wanted.
limiting factor anyway. Response time was essentially thesame whether the data file resided on the server or locl A potential complication was the interface between the user
disk. at the PC and the statistical procedures executing on theUNIX processor. SAS's user interface in the UNIX
The second approach, installing a small mainframe locally, environment uses standard windowing capabilities
was briefly explored and rejected. Major factors in the provided by the X-Windows protocol and routines. X-
decision were the high initial purchase cost (at least double Windows was designed to separate display management
the funds available) and the high recurring cost for from data generation, with each residing on its own
maintenance and operations. processor in a network. This characteristic fit right in with

The approach we settled on was to maintain our existing our general concept of using the UNIX box for calculations

network and to add to it a computational server which and the PCs for displays. But X-Windows initially was

would handle nigh-sp|ed processing of the large datasets, built for use between two UNIX processors using the
TCP/IPpooolo omnctin costentok

as conceptualized in Figure 2. The PCs were preserved as- P protocol for communications across the network.

is to handle word processing, spreadsheets, and normal We wanted one of the processors to be DOS/Windows, not

presentation graphics without any changes in procedures. UNIX, and our network used Novell protocol, not

To these functions was to be added the ability to start and TCP/IP. We briefly considered switching all the PCs to

interact with analysis software running on the the UNIX operating system and dropping the Novell

computational server. The file server would continue with protocol, but that would have been a drastic change for our

the same Novell protocol to handle routine document file staff and would have locked us out of the popular

sharing and fairly static data files which were not DOS/Windows standard office software.
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Fortunately, computing technology seemed to be evolving 70 - 11"t

along with our requirements. Multiple vendors were just -M -o. .W 1
introducing products that would support multi-protocol M so
networks. To implement our networking solution all that . 40,•

we needed was a new version of Novell software on the U so.
file server and some software on the PC. The PC software 2 11o, "
allowed us the use the X-windows interfact through 0.
Microsoft Windows. Thus PC users would have a 10 -.....
Microsoft Windows environment with perhaps a word a - " -

processor open in one window and SAS on the UNIX 0 50.000 100.000 150.000 200.000 210.000

processor open in another window. & 0iemons

Figure 3. Results on PC with DOS
Benchmark Development and Results 1.25

Since our main thrust in buying a new system was 1.00 .. .a
improved response time for large datasets, we needed a M - " .

way of measuring the speed of alternative solutions. The nO.7S

big variable in our conceptual solution was which UNIX U
processor we should get. We selected a benchmark set of . 0.o0 50

four different SAS analysis steps: a sort, a generalized " de
linear model analysis, a univariate analysis, and an analysis 0.25 ,

using PROC FREQ. This mixture of descriptive and 0.00
analytic procedures approximated our usual workload. To 0 o0.000 100.000 150.000 200.000 250.000

establish a baseline, we ran these procedures on our E0Obwdom

existing system against five different-sized subsets of one Figure 4. Results on HP 720 with Unix
of our large datafiles. The file sizes used were 1,000 F
10,000, 20,000, 100,000 and 200,000 records, with 9 3 hours on the baseline PC). This was not just an order-
variables per record. of-magnitude improvement, but was approaching two

We tried to select file sizes and procedures reflecting the orders of magnitude!
type of work expected. We also wanted to see how the The improvements we measured on our first set of tests
systems would respond to a range of conditions - would caused us to go back and generate a more complex
there be a breaking point? However, we had to limit the benchmark. The revised benchmark had slightly different
size of the benchmark so that the test files were portable to procedures (e.g., adding a multi-key sort) and two
another facility and the test was able to be run in a additional file sizes (500,000 and 955,000 records). To
reasonable amount of time (so as not to disrupt the test move this amount of data to a test processor, we just
facility). We would have liked to have started out with a moved our whole PC with its 300 MB disk to the vendor
1,000,000 record database - but we didn't have an easy facility, connected it to their network, and then copied the
way of transporting such a file. As it was, our initial data over to the test machine.
benchmark set of four procedures and five file sizes took a
total of 3 hours to execute on our existing 386 system (see Figure 5 shows the results of this revised benchmark on the
figure 3 for times for specific analyses and file sizes.) analysis steps took about 20 minutes to process

We then took our benchmark datasets and analysis approximately I million records. Note also the essentially
commands and visited one hardware and one software linear trend in response time as a function of file size.
vendor (who had several different brands of hardware This linear trend is unexpected with procedures such as
available for demonstrating his software). Both vendors sorting. SAS documentation indicates sorting should
were extremely cooperative in supporting us in running the require greatly increasing time as file size increases. No
tests. The response times we measured on the new systems explanation for our measured behavior is immediately
truly amazed us. Figure 4 shows data for one particular obvious.
processor. Note that the longest analysis step has shrunk
from about 62 minutes to about 1 minute. The total
process took only 4.6 minutes on this processor (versus the
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simultaneous users on the processors. The same script was

2o (•run simultaneously against the same files. Not

20 80t 0 1 unexpectedly, the time for each to complete was about

M -, ouw twice as long as for that of one executing alone.
I 16_______________

n1 -R Costs
t10-

10 - The cost discussion here is limited not because cost is

s .... unimportant, but because it seems to be always changing.
Our cost analysis was done in the summer of 1991 using

o standard vendor prices available through existing
0 200.000 400.000 600.000 300.000 1.000,000 government contracts. All components of the system (e.g.,

8 Obnmdo processor and disks) were priced according to the vendor's

Figure 5. Results on HP 720 with Unix published/quoted prices. Since our study, some vendors
o have gone through two significant price cuts and others

for revised benchmark have released new products.

A Few Last Notes on Benchmarking We found a fairly wide range of costs across vendors, with
vendors who had a recently released product being

* We measured performance on two different significantly lower in costs than those with products one or
UNIX/RISC vendors' hardware, not on all possible two year- -'"I We also noted some vendors might be
candidates. One reason was that certain vendors did not extremely .-*:.,iapetitive in one component of the system
have cost-effective hardware in the summer of 1991. (e.g., disks) and yet reasonably competitive on the
There is one standard benchmark set that all UNIX/RISC remaining. In such cases, the buyer has the option of
vendors use to measure their performance - the SPECmark seeking a 'hird-party supplier for his disks, but we did not
- and SPECmark ratings are a standard feature of consider this in our analysis.
advertising brochures. The SPECmark rating of the With all those caveats, today (May, '92) a UNIX/RISC
processor reported on here was 55. Our measurements on With ate at 60 (Ma y, w 92 a ofXRA aC
several processors indicated that the SPECmark ratings processor rated at 60 SPECmarks with 32 MB of RAM and
reasonably established relative performance. Using the 4 GB of disk lists commercially at about $4, 500 to
SPECmark ratings we thus judged it wasn't worth $50,000. The cost of a gigabyte of disk is about $4,500considering the remaining candidates, and 10 megabytes of RAM is about $2,500. Smaller

UNIX/RISC systems are available in the $5,000 to
A second factor limiting testing was the lack of $15,000 range. Discounts of about 25% off these prices
cooperation from some other vendors, particularly third are reasonable for large institutions. The bottom line was
party re-sellers. The lack of support and professionalism that we were able to meet our needs within our budget.
on the part of one of these made us appreciate even more
the testing support we got. Conclusions

* We never were able to run tests duplicating the Our small group of data analysts found that UNIX/RISC
environment in which we expected to run. All our tests processors were a key part of a cost-effective
were run completely within the UNIX/RISC processor. computational environment for analyzing large data sets.
That is, we never were able to access SAS using X- We were happy to find that this product integrated well
Windows from a PC across a TCP/IP network. Our with our existing PC network. Groups seeking to improve
candidate solution required the products of multiple their computational environment should carefully assess
manufacturers and would thus be most likely in the their requirements and then systematically compare them to
province of a third-party re-seller. In our limited what is on the market. Establishing a new environment
experience, such folks did not have any demo facilities and requires considering a wide range of issues including not
were not interested in working with us to do the testing. only the statistical functions needed, but also the user
We were lucky that the hardware and software components interface, the anticipated patterns of use, system
we purchased did indeed work reasonably well together. performance and capacity, networking mechanisms, and

0 The UNIX boxes we tested were multi-user/single how well statistical and non-statistical tools co-exist and
processor systems. We did run a test simulating two co-operate.
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Abstract relevant to statistical applications, since in many cases
the following conditions, believed to be decisive factors

The existing gap between demand and ability to produce statistical to foster successful software reuse [4], are satisfied: (i)
software cost-effectively calls for a reuse-based software development The domain is relatively narrow (it contains a fairly small
approach. The approach proposed in this paper, based on object- number of data types); (ii) The domain is well
oriented design and programming, maximizes all levels of reuse and understood (it has evolved over hundreds of years); (iii)
generates reuse-enabling software products. Three basic concepts
concerning reuse are discussed: (1) domain-oriented software life cycle, the underlying technology is quite static (it has reached
(2) reuse-oriented software development process model, and (3) a high level of maturity). It should therefore be clear that
experience factory. A reuse-oriented development process approach many computer intensive statistical methodologies
derived from these concepts is outlined, and its implementation is provide a fertile ground for comprehensive reuse-based
demonstrated in the case of the development of a statistical software approaches. Nevertheless, reuse is only exploited to a
system, RECPAM, for constructing generalized regression trees from
data. limited extent in most statistical software systems. At any

rate, the situation is far from ideal. Ideally, a reusable
software system should be more like hardware. Therc

1. Introduction should be catalog of software modules, which include all
kinds of software-related experience, as there are catalog

Owing to the increasingly important role played by of VLSI devices. When building a new system, one
computing in both theoretical and applied Statistics, the should be able to order components from catalogues and
gap between demand for high-quality software drnd the to assemble them, rather than reinventing the wheel
ability to produce it cost-effectively and in a reasonably every time.
short time, is often decried. Statistics-specific languages The goal of this paper is to provide an introduction to
such as S, are becoming increasingly popular, as are software reuse concepts for Statistics. After presenting
software packages with built-in programming capabilities, the motivations for a reuse-oriented approach, we discuss
These tools, however, do not meet the need for three technical concepts for supporting reuse, and
developing certain types of specialized programs develop from them a new reuse-oriented software
requiring a somewhat "open ended" design, i.e. the development process. As an application of this process,
possibility of adding new, complex modules and/or we illustrate the implementation of a statistical system
modi1t4ng some portion of the system. What is needed, for tree-growing, RECPAM.
is rather an approach to programming that allows for
reuse in a simple, straightforward way. 2. Reuse-oriented approach: Motivation

The concept of software reuse has appealed to
programmers since the creation of the first stored- Software reuse is the reapplication of knowledge about
program computer [1]. It is behind almost the every one system to another similar one in order to reduce the
software development. Since Mcllroy 1969 proposal [21 effort of development and maintenance. This reused
of establishing a software components catalog, from knowledge includes artifacts such as domain knowledge,
which software parts could be assembled, much as is done development experience, design decisions, architectures,
with mechanical and electronic components in requirements, design, code, documentation and so forth.
engineering, more and more people have started Without a systematic approach, however, several
developing software with reuse particularly in mind. With fundamental technical problems limit software reuse in
the success of the Japanese software industry, a number practice. We will focus on some of them.
of industrial organizations began to focus on reusability. i) Multiorganizational problem
As a result, various reuse methodologies have been Software systems are not often initially designed for
proposed, and it is predicted that software reuse will future reuse, since the emphasis is on meeting specific
probably be crucial to the evolution of the software project requirements. Optimal pursuit of a specific
industry towards higher levels of maturity [3]. project's objective is rarely compatible with

These developments in software engineering are very decomposition into reusable modules and packaging of
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relevant programming experience in a generalizable form. abstraction level of reuse modules. In contrast, domain-
To develop a reuse-enabling system, reusability must be oriented software life cycle extends to a "domain", i.e. a
engineered from the start and the objective of the designated collection of existing applications and
development must have a multiplicity of objectives, a anticipated opportunities for future applications with
concern known as multiorganizational problem [4]. common functionality in one or more areas. " A domain

ii) Leverage problem life cycle model formalizes typical patterns (of reusable
Leverage refers to the degree to which a reused module experience) in the development of a related series of

reduces the effort needed to produce new software. projects and the persistence of information (on reusable
Leverage varies with physical size of the module, level of components) from one application to the next." [8]. The
module abstraction and level of machine processability of muti-project view is an essential foundation for a general
the module [5]. As abstraction and size of the software model of reusability, which supports to capture and reuse
module increases, enhancing reusability, processability domain-specific knowledge and implementation
usually decreases. knowledge across applications. According to the domain-

There are three levels of abstraction in software reuse: oriented software life cycle model, reuse-oriented
code reuse, design reuse and knowledge reuse. Current software development assumes that, given an application
reusable modules, reusable building blocks and reusable domain, there is a general system experience base. If a
patterns, concern code and, to a limited extent, design new project in the domain is needed, it can be assembled
reuse. Their corresponding size is small. Ideally, reuse by extracting modules from the experience base and
should support all levels of abstraction in a richly generating some project specific modules, instead of
machine-processible form. creating all modules from scratch. Thus, software reuse

iii) Operational problem fosters informal sharing of software related experience
Software reuse is not a specific technique, algorithm, among people working on similar projects within an

heuristic or set of guidelines. It is many different application domain.
mixtures of technologies, process modules and cultures. 3.2 Reuse-oriented software development process model
This demands a radical departure from the operational An evolutionary model is needed that enables
style prevalent in current programming. Much of the organizations to learn from each individual project, and
current work in reuse focuses on a particular phase incrementally to improve their ability to contribute to the
without addressing the transition and traceability. Most whole domain. This implies a significant cultural change
of the current systems are constrained to apply a few among software developers, from a project-oriented
specific reuse techniques or mechanisms without process model to reuse-oriented process model. The
synthesizing them into a consistent approach. traditional project-oriented development process attempts

The above discussion emphasizes the need for the to accomplish more with less resources, i.e. deliver the
systematic approach known as reuse-oriented approach. required systems faster, reduce turn-around time in
Recent enabling methodologies for this approach are maintenance, increase performance, reliability, and
object-oriented design and programming. Object-oriented security of systems. The reuse-oriented development
design facilitates the integration of analysis, design and process, on the other hand, aims at improving the
programming within a single framework using common effectiveness of the process, reduces the amount of work,
concepts and (often) notation. It provides a high-level and reuses life cycle products [9]. Based on the domain-
primitive notion of modularity for directly modelling oriented software life cycle assumption, a model used for
application [6]. Object-oriented programming supports reuse-criented approach splits the traditional life cycle
many reuse mechanisms: object class, instantiation, model into two coordinated organizations: an experience-
inheritance, polymorphism, overloading and generic packaging organization, and a project-generating
classes, which promote larger and more abstract reusable organization. The experience-packaging organization's
components [7]. primary concerns are the recognition of potentially

reusable experience appropriate in an application domain
3. Reuse-oriented approach: Methodology and packaging them in a readily available way. The

project-generating organization develops products taking
The reuse-oriented approach presented in this paper is advantage of all forms of packaged experience from prior

based on three technical concepts which arise as mixtures and current development, while offering its own
of technologies, process models and cultures. experiences to be packaged for other projects.
3.1 Domain-oriented software life cycle 3.3 Experience factory

The single project life cycle is limited to scope and The experience factory is a key ingredient to the reuse-
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oriented approach. It is a rich and well-organized incrementally extended; the ability to allow flexible
framework. The experience factory functions as a target couplings between instances of designs and the various
which can learn experience from domain analysis and interpretations they can have; and the ability to express
individual development for the experience-packaging controlled degrees of abstraction and precision.
organization. For the project-integrating organization, it 3.4 Reuse-oriented approach: paradigm
functions as a source of experience for constructing new The development scheme is characterized as two
projects. To make software-related experience reusable, interrelated organizations, the experience-packaging
it must satisfy four characteristics: (1) generality, (2) organization and the project-generating organization,
definiteness, (3) transferability, and (4) retrievability [101. which incorporate the three technical concepts. As
Packaging reusable experience involves three phases: depicted in Fig. 1, the two organizations both have three

i) Abstraction: Abstraction characterizes a class of basic activities. The experience-packaging organization
entities by their common attributes and ignores, for the includes domain analysis, experience abstraction, and
time being, their differences. Every abstraction experience representation.
determines a set of associated reusable attributes.
Conversely every set of reusable attributes determines an
abstraction - the class of entities that possesses these > .as.. Exper I Ie ExptI. . .

attributes [10]. Many different abstraction mechanisms Abel "" .A *l R

have been proposed as the basis for a software module
industry, each representing different building modules
from which programs can be constructed and each *o,,o, co., I, Joel
resulting in different paradigms for programming. We ,,e.,,, zag,,, Cus IOnoIat,,. | ,t .,,,,, *I1l._*
adopt three abstraction: (1) function abstraction, (2) data
abstraction and (3) process abstraction.

ii) Classification: Classification is grouping similar Fig.1 Reuse-Oriented Approach Paradigm
things together. All members of a group produced by
classification share at least one characteristic that i) Domain Analysis
members of other classes do not. The result is a Domain analysis can be conceived of as a knowledge
framework or structure of relationships [11]. Software intensive activity occurring prior to the experience
development is an iterative refinement process in which abstraction phase to identify all kinds of experience
requirements specified in an application domain are within a domain as reuse candidates, and prior to the
gradually transformed into programs to be executed on a project recognization phase of project-generating
target computer. Transformation in a single step is organization to instantiate a domain model to a specific
impossible in a larger system. In general, the application. As transcending specific applications, it is at
transformation is divided into five steps, we classify the a higher level of abstraction than system analysis. In
software-related experience into corresponding five levels: domain analysis, common characteristics from similar
(1) environmental-level information, (2) knowledge of projects are generalized objects, operations and processes
application domain and development, (3) functional common to all projects within the same application
architectures (external specifications of system functions domain are identified, and a model and interface are
and data), (4) logical structures (internal designs of defined to describe their relationships. The next step is to
processes and data structures), and (5) code fragments define a domain specific language and use it to describe
(executable subroutines), so that experience factory is our domain model.
able to support five levels of reuse: application model ii) Experience Abstraction
reuse, knowledge reuse, specification reuse, design reuse The objective of abstiacting identified experience is to
and code reuse. make a candidate reuse object useful in a large set of

iii) Representation: The ideal representation must allow potential target applications. Function, data and process
the specification and storage of such partial architectures, abstraction determine different paradigms for
and it must allow incremental completion of the details programming associated with different partitioning of a
over time. Object-oriented design and programming is computation into reusable and varying parts. Function
the best candidate, because it supports the following: the abstraction emphasizes the reusability of functions of
ability to represent knowledge about implementation varying data; data abstraction emphasizes the reusability
structures in factored form; the ability to create partial of data objects for various operations that may be applied
specifications of design information that can be to them, while process abstraction emphasizes data
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objects for various operations that have an independently the Cox model for the analysis of censored survival data
executing thread of control that determines the order in with covariates and, more recently, for multivariate
which operations become available for execution. normal regression.

iii) Experience Representation Since RECPAM is a general methodology with open
The objective of recording experience is to create a ended applicability, it is of interest to develop a program

repository of well specified and organized experiences by that the user may wish to modify or extend to include
encoding them in more precise, better understood ways. other regression models. We are developing a new
It provides a reuse-enabling product, experience factory. version of RECPAM by the reuse-oriented software

The project-generating includes project recognization, development approach outlined above. Considering this
component customization, and project integration, approach, we choose BORLAND C+ + as programming

i) Project Recognization language, which includes most techniques and
Based on the domain model from domain analysis, the mechanisms supported by object-oriented programming,

objects, operations and processes matching the domain and use ObjectWindow for supporting user interface
model are recognized for retrieving the reuse candidates. design and M+ + for supporting numerical computations.
At the same time, the requirements, objects, operations These two object libraries are designed as the base of
and processes specific to a concrete project are RECPAM experience factory.
recognized for considering the new experience to be The development starts from domain analysis. The
packaged. It is an extension of domain analysis. principle of the RECPAM is seen as recursively

ii) Component Customization constructing a partition with maximal local information
Component customization is intended to bridge the gap content to build a large tree, followed by eliminating in

between retrieved reuse candidates and given reuse turn "negligible" information with minimum global
requirements. It is the lifeblood of reusability. It includes information loss respectively to get the honest tree and
two branches: identifying and customizing the reuse the RECPAM partition. The measure of information in
candidates, and adding new experience or refining the three steps is based on estimating the model parameters
existing experience. and computing model regression. From the viewpoint of

iii) Project Integration statistics, different statistical models share the same
In order to deliver the system, project integration RECPAM manipulations and only change the

assembles all customized experience using a few information measure which comes from the regression. It
composition mechanisms, such as, pipe, message-passing, is logically and ideally suited to separate the regression
inheritance and so on. Then it continues as usual with from recursive partitioning, pruning and amalgamation.
product quality control and release. Also, we can unify the data formats from different

statistical models to two groups: predictors and criterion.
4. Case study: The development of a statistical The RECPAM implementation prototype consists of five

application-RECPAM modules, as shown Figure 2. The five modules are ranked
into three domains: regression, RECPAM, and data

RECPAM is a tree-growing methodology proposed by handling. Each domain is an independent system which
Ciampi et al. [12, 13]. A tree is constructed from a data can be directly executed or reused by other systems as a
set: it represents the knowledge contained in some subsystem. For example, the regression module is not
variables, called predictors, about a parameter, called specific for the RECPAM approach. According to the
criterion. This parameter is estimated from other three domains, the experience factory is organized into
variables, called criterion variables. RECPAM constructs three corresponding packages. For each domain, we
the tree in three steps: (i) RECursive partition, (ii) identify common behaviours across different models and
Pruning and (iii) AMalgamation (hence the acronym). specify the interconnection between two domains. The
The resulting classes are described by conjunctive and RECPAM domain is divided into three steps: tree
disjunctive statements involving the predictors, and building, tree pruning and amalgamation.
represents subpopulations for which a distinct estimate of In experience abstraction, we try to describe the results
the criterion is called for. The classes are represented as of domain analysis by means of data abstraction, function
a regression model for the criterion, with class indicator abstraction and process abstraction. For example, the
functions as regressors. It follows that for every RECPAM domain deals with three types of data objects:
regression model, one can build a RECPAM tree. Indeed, data matrices, tree structures and partition structures.
a corresponding tree approach has been developed for Each data object has operations associated with it. For
regression within the Generalized Linear Model (GLIM), example, some operations associated with data matrices
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are maximizing the information content, splitting the data - Technology is important and infrastructure support is
matrix into two partitions, surrogating the missing data. essential.

- Narrow well understood domains are more effective.
£ - Domain analysis is at the heart of the reuse-oriented
, approach.
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5. Conclusions

We have introduced a reuse-oriented approach,
synthesizing three reuse technical concepts: domain-
oriented software life cycle, multiorganization
development process model and experience factory into
conventional development process, to enhance the reuse
level in developing statistics software. It provides a
systematic approach to maximize reusing all software-
related experience.

We have demonstrated the development of RECPAM,
as an example of the reuse-oriented approach. The
experience confirms the following points:
- Software reuse changes the software development
process.
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I. Abstract. I11. An Example of the Problem.

Large surveys contain complex skip patterns: a reply of Parts of a survey instrument constructed to illustrate typical
{no} to "ever worked?", for example, would skip over the skip patterns is shown in Figure 1.
entire job data section; similarly, each of the responses to
"how often paid?*, ((by hour}, (by day), (by week), etc.),
would slcdp to appropriate questions on earnings. These skip A.6 ... graduate from High School?

YES, go to A.9
patterns can overlap and be nested in complex ways. No
Computer Assisted Telephone Interviewing (CATI) systems .7 ... highest grade attended?
contain the necessary logic to implement the skip patterns. primary h.s.
Non-CATI data from surveys with large pre-test and/or field 01 .. 08 09 .. 12:
follow-up require editing of skip pattern violations. .8 ... last date attended?

month:
This presentation will describe the relevant theory and the year :
implementation of a systematic skip pattern editing process ""

and its application to a survey with 25,000 observations and
over 1,000 variables. Y.3 ... Epoyed?YES

NO, go to C.1 - Section C

IB. Introduction. A. ... how often paid?11. ntrducton.by Hour

by Day, go to B.6

Skip patterns are used in survey instruments essentially for by Week, go to 3.7 P

three purposes: to skip questions which do not apply to the
respondent, to skip questions whose answers can be deduced 6.5 ... hours per day usually work?

from answers to prior questions (though some redundancy 8.6 ... days per week usually work?
is often used for internal consistency checking), and to elicit
answers to alternate questions for those questions the ... current uage? $ xxxxxanswersRefused?

respondent refused or did not know the answer. Don' tKnow?
B.8: Is B.7 "Refused" or "Don'tKnowu" ?

Large-scale surveys are now usually administered using YES
Computer Assisted Telephone Interviewing (CATI). The NO, goto
survey instrument is encoded in the processing language of 8.9 Probe: Can you give me a rane?
the CATI system, complete with skip pattern control. ¶ z S 100/week or tess
Alternate paths through the questionnaire are taken as a 2 a S 101 to 200 / week'

function of the responses the CATI operator enters.

For an employment and training program evaluation study,
a series of large survey instruments were administered to Fgure 1: Skip patterns in a survey instrument.
economically disadvantaged Americans. A substantial
portion of this data collection effort could not be completed
over the telephone and had to be administered in person by A skip pattern violation exists, for example, in a data record
survey field staff using paper booklets. These booklets were where A.6 is (YES) and both A.7 and A.8 contain valid
"maximally" key-entered: all responses in the booklet were values - a High School graduate who should have skipped
entered regardless of context. The data derived from this A.7 and A.8. Similarly, a skip pattern failure exists ifB.4
process will contain skip pattern violations and will require is {by hour) and B.5 is {blank) - an hourly employee
data "cleaning" before analysis commences. should answer the hours per day question.
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M. Traditional Methods.

Traditional methods of cleaning skip patterns consist of A
studying multi-dimensional tabulations and/or customized --'- i22 1
computer programs to determine the extent and context of
skip pattern errors. Research personnel then determine the
appropriate corrections or imputations for the variables )
involved in the patterns, often on a case-by-case basis. 1 , '1

The length and complexity of our follow-up survey instru-_ J
ments (60 pages, 1,200 variables) and the anticipated 25,000
respondents suggested that alternate, more systematic and I )
automatic processing approaches should be investigated.

An informal literature review and discussions with personal -1 IE[
contacts found only one relevant reference: [Fagan and [-- --
Greenberg, 1988]. (0 )

IV. Systematic Approach to Editing Skip Patterns. P Node'D

Skip patterns in survey instruments can clearly be modeled -1,-2,=3 are responses.
zE Error response.with acyclic directed graphs: Questions are represented by CI) Absolute arc soner.

nodes; values are represented by edges or arcs. The graph
model is acyclic because survey instruments do not have the
potential of unending loops (although the instrument may
repeat a series of questions 'for each job), and the model Figure 2: Skip pattern graph model example.
is directed because each arc has a distinct, unique, starting
node and a distinct, unique, terminal node. A survey
instrument usually begins with a single starting question (or
node) and, if not terminated with a single terminating r 1_6_ 9
question ('Thank you"), can trivially be made to do so. A 2 1 1 1 12 2 11 1

3 3 1 1
We will use the simple graph in Figure 2 to demonstrate our E 4 1 1 1 1

systematic approach to skip pattern editing. 2-1 5 1 1 1 1
E 7 1 1 1 1

The sample graph can be described with an arc adjacency cal 8 1 1
matrix wherein each ceU indicates whether the row are 2 9 1 1
connects to the column arc as illustrated in Figure 3. E 0

D *
Fagan and Greenberg proved that, given an adjacency ma-
trix, M, the matrix obtained by M t 2 gives "2-step" con-
nectivity, the matrix (M f 2) t 2 gives "4-step" connect-
ivity, etc., with the matrix M t ceil(log, N) gives "N- Figure 3: Arc adjacency matrix.
step' connectivity. "N-step" connectivity, or all possible
paths from the initial to the terminal node is identical to Fagen and Greenberg, in their paper and in their computer
transitive closure; a simple, yet fast, algorithm for transitive rograms which they kindly shared with me, represented
closure is easily derived, and is credited to [Wars hall 1962] (blank) implicitly: an absence of any arc for a node

by [Sedgwick 1990]. represented a blank value. I found it more convenient to

encode (blank) as an explicit arc from the nodes permitting
{blank).
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The transitive closure matrix, T-matrix, for the skip pattern
graph model example in Figure 2 extended with explicit
Blank arcs, is as follows: arc (1)2 3 4 5 6 7(8) 9(10)11 12 *

A-i (1) (1) 1 1 1( ) 1 (1) 1 1
2 2 1 1 1 1 1 1
3 3 1 1 1 1

arc 1234 5678 9101112 * E4 1 1 11 1 1 1 1

A 11 B-1 5 1 1 1 1 11 1
Al 1 1 11 1112 6 1 1 1 1 11 1

22 1 1 1 1 1 1 E 7 1 1 1 1 11 1
33 1 1 1 1 B (8) ( )11 (1) 1 (1) 1 1 1
E 4 1 111 1 1 1 1 1 1 1

Ca1 9 1 1 1 1 1 1 1 1 1
B-1 5 1 1 11 1 1 1 2(10) (1)1 1 111(1) (1) 1

26 1 1 1 111 1 Eli 111 111 1 1 1
E7 1 1 1 111 1 812 1 1 11
B8 11 1 1 1 1 1 1

C-1 9 11 111 1 1 1 0 * 111 111111111

210 11 1 1111 1 1
Ell 11 1 1111 1 1
B 12 1 1 1 1

D 1Figure 5: Sample T-matrix with path overlay.

Pagan and Greenberg note that their skip pattern software
Figure 4: Transitive closure matrix. "is not meant to be a comprehensive edit and imputation

package." The software removes a minimal set of responses
from records with skip pattern violations, distinguishes non-

Every data record represents a path from the initial node to applicable from missing items, and performs response
the terminal node. Whether that path is a valid path can be imputations for missing--but needed-items. They suggest
determined from the T-matrix. For example, a record with that "one can frequently discover deterministic imputations
values ( A - {2); B - {blank}; C - (1); D ) is encoded for selected missing items."
as the path ( arcs (2), (8), (9)). The data path connections
(2) -. (8) and (8) -. (9) exist in the T-matrix; Hence the Whereas Fagan and Greenberg base most of their imputation
record "passesa. stratagy on arc conflict counts, our process determines a

conflict participation count for each node. Based on then
Similarly, a record with ( A = {1}; B = {blank}; C = conflict count node structure we apply one of a set of three
{2}; D ) is encoded as (arcs (1), (8), (10)). The sample imputation schemes to the record.
skip pattern T-matrix from Figure 4 is shown in Figure 5
overlaid with the path (arcs (1), (8), (10)) from this data The imputation schemes were developed heuristically to
record. The connection (1) - (8) in the data does not exist satisfy three criteria: 1) to do the least possible damage to
in the T-matrix and, hence, a skip pattern violation exists. the data, 2) to be extremely conservative in imputing valid

value arcs to nodes (answers to questions), and 3) to match
the imputations which would have been made manually.

V. Imputation Heuristics.
The three schemes are as follows:

The use of the T-matrix provides a mathematically sound
method for determining the correctness of the Node-Arc A. A unary conflict count mode.
path representation of any data record. The second phase When there is a single node with the highest
of the systematic editing process, imputation, is invoked conflict count, we determine the conflict count for
once a record is determined to contain at least one skip each of its arcs. If there exists a single arc with
pattern violation, minimal conflict, we impute that arc to the node.

This is the only occasion where we will impute an
actual data value. If there are two or more
minimal conflict count arcs we impute {error).
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b. A conflict count mode with three or more nodes.

We set each node to (error). VI. Implementation.

C. A bi-modal conflict count. After implementing a small prototype skip editor to test the
When there are exactly two nodes with the highest basic approach, the full skip pattern editor was implemented
conflict count, the imputation scheme is based on (in FORTRAN 77) "on top of" an existing univariate editor:
the range of possible arc states and on the current the skip editor is then assured of valid data arcs including
arc state of each of the two nodes. The possible {blank} and (error) arcs where appropriate. The skip
arc states are (value / no-blank, value / blank-ok, pattern structure is derived from an existing codebook
blank, error), where value / no-blank indicates that management program.
a node has a non-blank valid value and that blank
is not a permitted state, and value / blank-ok The full production version was much more complex and
indicates that a node has a non-blank valid value took much longer to develop than anticipated. Nevertheless,
and that blank is a permitted state. it was successfully used on segmented parts of the follow-up

surveys. Editing was done on an (IBM) mainframe and on
The imputation scheme is shown in Figure 6 as various PCs.
state transition matrix.

The size of the T-matrix, regardless of the degree of "bit-
packing", is a function of the square the number of unique

Value arcs (not nodes) in the graph of the skip patterns in a survey

no (blank) instrument. Other implementation data structures are linear
(blank) ok (Stank) (Error) functions of the number of arcs and of the number of nodes.

V No 4--o o .1 The full production version can edit data segments with
a (a) Iapproximately 100 nodes (variables) and 500 arcs (values).I o .. .. .--I- -3. 0
u (B)
• Ok 0 0 ------ Several modifications to the program are being studied,

-__I_/iespecially space-conservation changes.

(S tank) 1 0 4 10 -----
I ..... ___

o VIII. Results.

(Error) L .,. Systematic editing of complex skip patterns in survey data
- --I is possible, and it has been implemented for use in a

0 .. production environment. The detection of skip pattern
violations is based on the properties of the transitive closure

0 indicates two-node starting state. matrix of the graph model of the skip patterns and a set of

I inoicates two-node inputed state, heuristically derived schemes for skip pattern imputation has
been developed. The results of the editing and imputation

without (btank) is to tower right (error,error). process are identical or equivalent to those produced
manually.

Figure 6: Bi-variate state transition imputation scheme.

IX. References.

Fagan, Jim, and Greenberg, Brian, Using GraRh Theory to
Analyze Skip Patterns in Questionnaires, SRD Research

The transitions between the bi-variate starting and imputed Report Number Census/SRD/RR-88/06, Bureau of the
states do not permit imputing (new) valid values to either of Census, Washingon, DC, 1988.
the nodes involved. One could take a much more
permissive view of data imputation and have transitions "up" Sedgewich, Robert, Alz•i~h= in C, Addison-Wesley,
and "left" instead of our "down" and "right"; we have not Reading, MA, 1990.
tested such a scheme.
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A Program for Identifying Duplicated Code

Brenda S. Baker
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT Dup was motivated by the observation that
duplication may be introduced into a large system as

This paper describes a program called dup that modifications are made to add new features or to fix bugs.
finds occurrences of duplicated or related code in Rather than rewrite working sections of code, programmers
large software systems. The motivation is that may copy and modify sections of code. It has long been
duplication may be introduced into a large system known that copying sections of code may make the code
as modifications are made to add new features or larger, more complex, and more difficult to maintain. In
to fix bugs; rather than rewrite working sections of particular, when a bug has been found in one copy, a bug fix
code, programmers may copy and modify sections may be made to the place where the bug was found, but not
of code. Over time, proliferation of copies can to the corresponding parts of other copies. Nevertheless,
make the code more complex and more difficult to making a copy and modifying it may be much simpler than
maintain. Dup searches such code for all pairs of more major revisions and therefore less likely to introduce
duplicated sections. The user may choose to new bugs immediately, and hence copying code may seem
search either for identical sections of code, or for preferable to changing a working section of code. This may
sections that match except for substitution of one especially be true when the programmer making the bug
set of variable names and constants for another as fixes is not the one who wrote the original code.
if they were corresponding procedure parameters.
Applications of dup could include visualization of The premise underlying dup is that copying is most
the structural complexity of the whole system, often accomplished by means of an editor. Therefore, the
identifying unusually complex files, identifying resulting copies will be largely the same line-for-line, or will
sections of code that should be replaced by be related in some systematic way such as a change of
procedures, and debugging. variables. White space and comments may be ignored since

they do not affect the functionality of the code.
Introduction. Given these assumptions, the approach taken in dup

This paper describes a new software tool, a program is line-based. Two lines of code are considered to be
called dup, that finds occurrences of duplicated or related identical if they contain the same sequence of characters
code in large software systems to aid in software after removing comments and white space; the semantics of
maintenance and debugging. The program generates the program statements are not analyzed. Data structures
descriptions of the related code sections and statistics about are maintained with regard to lines rather than individual
the extent of duplication found. For visualizing the output, characters to reduce the space requirements.
the output can be plotted in scatter plots and profiles can be The output of dup is a set of pairs of longest matches
produced to show how many times each line occurs in of sections of code. That is, two sections are a longest
matching sections of code. match if they match but the preceding lines do not match

This work is part of the emerging field of software and the following lines do not match. To provide an
visualization [E), whose goal is to display characteristics of example, we rephrase the definition of longest matches in
large software systems visually, as an aid in dealing with the terms of strings. Two identical substrings are a longest
complexity arising in systems of hundreds of thousands or match if the preceding characters do not match and the
millions of lines of code created by hundreds or thousands following characters do not match. Thus, in the string
of programmers. Other examples of software visualization axyzbxyzc, the xyz's are a longest match, but the xy's and the
are the graphical user interfaces seesoft [El and dotplot yz's are not. Note that the longest match relation is not
[CH]. Seesoft interactively displays data such as the age or transitive. That is, if section A is a longest match for
programmer for each line of code; dotplot allows interactive section B, and section B is a longest match for section C, it
manipulation of scatter plots to compare sections of code. could be that section A is not a longest match for section C,
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Figure 1. Exact matches for a C file.

because these sections are both contained in a longer match. constants, macro names, and structure member names.
In practice, when there are several related sections of code, (Keywords and operators are not candidates to be
the various pairs do differ in exactly how much matches. parameters.) For example, the following two code
Therefore, the program reports the longest matches in pairs fragments taken (with some editing in order to fit) from the
rather than looking for larger sets, and the scatter plots make X Window [SG] source code are identical except for the
evident that some of these matches overlap, correspondence between the variable names pfi/ pfh and

the pairs of structure member names lbearing/ left andSince very short matches may not be interesting, the rbearing/right.
user may specify a minimum length match to report. Figure
1 shows a scatter plot produced by the program for a file of copynumber (&ppmin, &pmax,

pfi->minbounds. Ibearing,2846 lines, or 1761 lines after pruning white space and pfi->maxbounds. ibearing);
comments, with a minimum match length of 15 lines. Only *pmin++ - *pmax++ - ',;
line segments below the main diagonal are plotted in this copynumber (&pmin, &pmax,
paper, because in plots of large amounts of code, most of the pfi->minbounds. rbearing,
line segments are very close to the main diagonal, even pfi->max_bounds. rbearing);
though no line is matched with itself. Thus, each longest *pmin++ - *pmax++ -

match is represented by exactly one roughly diagonal line in
the plot; the lines are not strictly diagonal because the white copy_nunber(&pmin, &pmax,
space and comments have been ignored, while the line pfh->min boundsleft,

numbers are the original line numbers in the file. In this pfh->max_bounds.left);
case, the program found 18 matches involving 419 lines, or *pmin++ - *pmax++ - ',';
24% of the file. copynumber (&pmin, &pmax,

pfh->minbounds, right,
Rather than looking for just exact matches, the pfh->maxbounds.right);

program can look for parameterized matches, where the *pmin++ - *pmax++ - ',1;

code sections match except for a one-to-one correspondence For parameterized matches, matching sections are like
between candidates for parameters such as variables, expansions of the same macro with different parameters, for
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Fig. 2. Parameterized matches for the same Mie as Figure 1.

example, f (pl, ... ,phi and f (ql, .. . ,qn) . Only long matching sections of code, then k-1I of these
pairs of parameters that are not identical need be reported. occurrences could have been avoided. For the file of
When run on the original X source containing the above Figures I and 2, the program estimates that the code could
code fragments, the output produced by dup is the have been shrunk by 14% based on exact matches, but 61 %
following. (The line numbers given are the original line based on parameterized matches.
num bers; "Pruned " lines are the ones rem aining afterTh pr g a c n al o r vi e t er id su h s a

stripingoffwhit spce ad cmmens.)profile of the code showing how many copies of each line
xlsfonts, c: 274-309, occurred in the matches found.
fsl sfont s. c: 384-419,
34 pruned lines match, with parameters: Other researchers have taken different approaches to

I:earin, left finding common code. Programs aimed at detecting student
3: rbearing, right plagiarism have typically used statistical comparisons of

style characteristics such as the use of operators, use of
Commonly, code will have more parameterized special symbols, frequency of occurrences of references to

matches than exact matches. For example, Figure 2 shows variables, or the order in which procedures are referenced
the parameterized matches for the same file as Figure 1. In [HJa]. Johnson [Jo] has taken a parse-tree based approach
this case, the program finds 87 longest parameterized to finding duplicated code. However, a line-based approach
matches of at least 15 lines, involving 85% of the file. The has two advantages compared to a tree-based approach.
longest match found is 182 lines, compared to 37 lines for First, the line-based approach allows for use of data
the exact matches. structures and efficient algorithms developed for string

The program makes an estimate of how much more pattern matching, notably the suffix tre [McC]. Moreover,
succinctly the code could have been written, if alternative if the code contains macros, and some of these have, for
programming methods such as procedures had been used example, unbalanced parentheses, it may be necessary to
instead of copying. The estimate is based on the simple expand the macros to obtain a valid parse tre for the tree-
assumption that if the same line appears in k sufficiently based approach. However, the macros need not be

I I II I I I I I : i•
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expanded for a line-based approach; thus, there is no need to braces that usually appear alone on a line.) The second
rematch expansions of the same macros, and the resulting algorithm, based on the suffix tree data structure [McC],
output is more easily related to the original code. runs much faster; on a fixed alphabet, it runs in time

Church and Helfman [CHI have combined signal 0(n+m), where m is the number of matches found
processing techniques with a graphical user interface (ordinarily small compared to the size of the input). In
dotplot enabling easy manipulation of scatter plots to aid in practice, the alphabet is very large, but hashing is used to
visually scanning for similarities between sections of code. avoid a blowup in running time. Both algorithms use space
By running dup and dotplot on the same input and linear in the size of the input, but the suffix-tree-based
overlaying the plots, it was found that some duplication may algorithm currently consumes three times as much space as
be found by means of both programs, while each program the slower one, although further tuning may bring this
finds features that are not found by the other. Dup finds down. Since the space consumption for millions of lines of
parameterized matches not noticeable in dotplot and code may be in the vicinity of main memory sizes, both
eliminates the noise that appears in dotplot plots, while algorithms are potentially of interest.
patterns prominent in dotplot plots may reflect The first, more space-efficient, algorithm creates an
characteristics such as repetitive control flow structure rather array in which all identical lines are linked in lists, from the
than duplication in the sense of dup. end of the file toward the front. Starting at the last line of

Other related work has been done in the areas of file the file, and working through the preceding lines, it "grows"
comparison, genome sequencing, and data compression. matches through the file by following the linked lists and
The UNIX diff program for file comparison [KPI and accumulating longer and longer matches. Two additional
algorithms for genome sequencing [SK,LMW] have been arrays are needed to keep track of the current lengths and the
based on finding a best match (longest common subsequence previous lengths computed. Thus, the algorithm requires
or smallest edit distance) between two sets of data, from three words per line of input.
start to end, whereas dup looks for pairs of shorter related The suffix-tree-based algorithm is more interesting. A
sections that could appear in any order. Data compression suffix tree is a multiway Patricia i-ie; an example is given in
algorithms such as [RPE,ZL] have been based on finding Figure 3. Suppose the input is bI b2 ... b.; without loss of
copies of substrings, but for data compression, one copy is generality, we assume that the last symbol, b,, occurs only
sufficient, as opposed to this work, in which the goal is to once in the input. Each leaf of the suffix tree represents a
find all sufficiently long copies. distinct suffix of the input, where a suffix is a substring

bi ... b, for some i. Thus, there are exactly n leaves. Each
Exact Matching arc of the tree is labelled with a nonempty substring of the

This section describes how dup finds the set of pairs input; the sequence of arcs from the root to a leaf yielris the
that are longest exact matches. suffix represented by the leaf. For readabitity, in Figure 3,

each leaf is labelled with the position of the start of the
First, a lexical analysis phase hashes the lines in order corresponding suffix and the substring representing the

to assign each line an identifying integer such that two lines suffix, and each branching node is labelled with the
are the same if and only if their ids are the same. The output sequence of labels on the path from the root to the branching
from the lexical analysis phase can be considered a string of node. Each node otheýr than a leaf has at least two children;
symbols over an alphabet of integers, hence the number of nodes is linear in n. To make the size

Given this string, a brute force method of finding of the whole tree linear in the size of the input, the arc labels
longest matches would be to do the equivalent of scanning are stored as pointers into the input string. (Node labels
along diagonals of a scatter plot for longest matches, using need not be stored.) A suffix tree can be built in time linear
time 0(n 2) and space 0(n), where n is the number of lines in the size of the input, for a fixed alphabet [McC].
of input. No algorithm can avoid quadratic behavior in the Now, two substrings of the input are a longest match
worst case, since the number of longest exact matches can if they are identical, but the preceding characters are
be quadratic in the size of the input. However, an exact different and the following characters are different. If two
matching algorithm need not exhibit quadratic behavior for leaves are reached by different branches from a common
every input. ancestor B, their suffixes agree on the path from the root to

In particular, two algorithms have been implemented, B and then diverge. For example, the suffixes bc% and
with a time-space tradeoff. The first algorithm runs in time bcbcabc% agree on the initial bc, which is the label on the
0(n + p), where p is the number of distinct pairs of identical edge from the root to their lowest common ancestor,
lines. (For typical C code, p is dominated by the closing labelled bc. Thus, the labels on the path from the root to a
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7: bc%

Fig 3. A suffix tree for the string abcbcabc%.

branching node B in the suffix tree represent asubstring that c, a list c:p I,P2,.....Pk will be created, where P 1P2 .... ,P&
occurs in at least two places in the input, and their right are the starting positions for suffixes with left context c that
contexts, i.e. the characters following the two occurrences, correspond to leaves in the subtree for N. Identification of
are different. However, the left contexts, i.e. the characters longest matches is by checking each pair of elements in the
preceding the two occurrences, may be the same. Therefore, cross-product of each pair of lists from distinct subtrees with
the program must do more work to determiine which such distinct left contexts. For example, at the branching node
pairs also have distinct left contexts, resulting in a longest corresponding to bc, the occurrence of bc starting at position
match. 4 (with left context c) has a longest match with the

occurrences of bc starting at positions 2 and 7, because each
To do this, the program recurses over the suffix tree. of them has left context a. In order to get the desired

It has two jobs to do: to build up lists of suffixes grouped by O(n .- r) running time, the above computations are only
left context, and to compare the lists found for its subtrees to performed for branching nodes representing substrings that
identify longest matches. Thus, for a node N and a symbol are long enough to be reportable.
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Parameterized Matching. correspondence, the pairs from the new line are added to it,
The program to find parameterized matches has Om and the line after the last conflict with the new one-to-one

phases. First, the lexical analyzer copies each line while correspondence is taken as the beginning of a new
replacing each token name that is a candidate for a parameterized match. When all the lines have been
parameter into a P, while creating a separate list of all such processed, the last parameterized match is reported if it is
token names. For example, x-3*y; is turned into sufficiently long. The algorithm runs in time linear in the
P=P*P;. Next, the transformed lines are passed to one of length of the exact match.
the exact matching algorithms described in the previous
section. Exact matches that are sufficiently long are then Discussion
analyzed for parameterized matches. Dup was implemented in about 2500 lines of C and

In such an exact match of transformed lines, the lex [LS], and runs under UNIXTM. It has been applied to the
corresponding lines match exactly, including the P's that source for the X Window System [SG] (minus some table
replaced parameter candidates. Therefore, the ith lines of initializations) and part of a larger AT&T software system.
the two segments must have the same number of parameter The parameterized matches for the X source and some of the
candidates in the same positions, for all i. If the original AT&T system are plotted in Figures 4 and 5, respectively,
lines of the entire exact match have a parameterized match, where the minimum match length is 30 lines.
then a one-to-one correspondence can be found that pairs the The parameterized matches include a substantial
jth parameter name in the ith line of the first code segment amount of the code in each case, namely 15% (1136
with the jth parameter name in the ith line of the second matches) for the X system, and 23% (596 matches), for the
code segment, for all i andj. AT&T system. These numbers increase dramatically for

In general, it will not be possible to find a one-to-one smaller minimum match lengths; for example, if the
correspondence for the entire exact match. Nevertheless, minimum match length is reduced to 15 lines, ihe number of
there may be parts of the exact match that have a sufficiently matches for the AT&T system increases to 4174 and the
long parameterized match to report. For example, consider percentage of lines involved increases to 38%.
the following two code fragments. The plots are dense near the main diagonal, implying

x-y-z; that most copies tend to occur fairly locally, e.g. w-i 'tn the
if (y>z) same file or module. However, certain line segments occur

rn-1; away from the main diagonal; it would be interesting to
h-f (x); investigate why the corresponding sections of code are
Y-x; duplicated.

x-b-c; When individual matches are examined, the matches
if (b>c) for C code usually look reasonable. In particular, the one-

n-i; to-one correspondence between parameters usually finds
h-f (x); pairings of similar tokens, i.e. small integers with small
c-x; integers or variables with other variables with related

Pairings y-b, z-c, and m-n (and the identity on other names.
parameter candidates) yield a parameterized match for the When conflicts are found by the algorithm that
first four lines. However, the fifth line requires a pairing generates parameterized matches from the exact matches for
y=c, which conflicts with both y-b and z=c. Pairings transformed lines, the conflicts frequently involve small
y=c and m-n (and the identity on other parameter integer constants, especially zero, used differently in two
candidates) yield a parameterized match for the last three places.
lines. There are two situations in which the program has

Therefore, the algorithm scans the exact match line by produced output that did not appear reasonable. One
line, keeping track of the start of the current match. If a situation is the initializations of large tables, with one value
conflict occurs between the one-to-one correspondence per line, where many matches may be found even for
needed for a new pair of lines and the one-to-one random values. These should probably be filtered out
correspondence that has already been established, then the automatically. The other situation involves case
current parameterized match is terminated, and if it is statements, where a succession of statements of the form
sufficiently long, reported as a longest parameterized match. case name: allow a parameterized match to be found for a
The conflicting pairs are removed from the old one-to-one long list of probably unrelated cases. A reasonable solution
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Fig. 4. Parameterized matches for X source (minus some tables).

for avoiding such output was found to be to limit However, the plots of large amounts of code should
parameterized matches so that the number of parameters is be useful to managers in visualizing the complexity and
restricted to be at most half the number of lines, interrelationships of a whole software system. This paper

In practice, many of the parameters found are related includes plots of hundreds of thousands of lines of code.

to error checking and handling, in both of the systems that However, the program has been applied to a subsystem of

were studied. The existence of unique constants used for over a million lines of code, and could be applied to still

error handling is one reason that many more parameterized larger amounts of code.

matches are found than exact matches. Moreover, zooming in on smaller sections can be

An obvious question is whether the output could be useful for finding anomalies in the scatter plot that reflect
used to generate parameterized procedures automatically anomalies in the code. Three types of interesting features
from the input to reduce the size of the code. Regretfully, that have been found in casual browsing have been
the code segments identified in matches usually do not unusually complex files, an obsolete file, and a place where
correspond exactly to subtrees in the parse tree for the a bug fix was apparently applied to one copy of some code
program, or to any obvious semantic unit. A programmer but not to another other copy. The obsolete file was found
would need to rewrite most files by hand, although the by noticing rather extensive duplication between two files in
output from dup would undoubtedly be helpful. a module. Figure 6 shows a scatter plot with a gap between



56 Identifying Duplicated Code

150000- '

/"

100000 .5
.4 •

50000-

A•. " A ,
a€ • .. .:

O - .. ' "

0-

I I I I

0 50000 100000 150000

Fig. 5. Parameterized matches for some code from a production system.
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ABSTRACT 1. Introduction

An interactive program, dotplot, has been developed for Most work in the interface between computer science and
browsing millions of lines of text and source code, using an statistics uses computational techniques in support of statis-
approach borrowed from biology for studying homology tics. This paper attempts the reverse. We describe a graphi-
(self-similarity) in DNA sequences. With conventional cal tool for browsing millions of lines of text and source
browsing tools such as a screen editor, it is difficult to iden- code. It is hard to use a screen editor to conceptualize input
tify structures that are too big to fit on the screen. In con- that is much larger than the size of a screen. Following Eick
trast, with dotplots we find that many of these structures (1992), who advocates the use of interactive graphical tools
show up as diagonals, squares, textures and other visually to help understand large software systems, we have
recognizable features, as will be illustrated in examples developed a browser that can display millions of lines of
selected from biology and two new application domains: input using a dotplot, a plot very much like those used in
text (AP news, Canadian Hansards) and source code molecular biology for studying homology (not to be con-
(5ESS®). In an attempt to isolate the mechanisms that pro- fused with Tukey's "dot plot" (1977, p.50)). We believe
duce these features, we have synthesized similar features in the tool may be useful for discovering large-scale structures
dotplots of artificial sequences. We also introduce an that may be hard to spot with conventional tools such as a
approximation that makes the calculation of dotplots practi- screen editor: conventional tools may be too myopic to
cal for use in an interactive browser. show the big picture.

Fig. 1 shows the browser in action. Three views of a source
code file are presented: a) a global overview of the file in
the upper right, b) a magnified view of a small portion of

___l lthe file in the upper left, and c) a text view along the bot-
tom. The views are linked together so that clicking and
scrolling in one view updates the others appropriately.

Notice the fascinating diagonals, squares, and textures in
Fig. 1. The texture labeled D vill be discussed in more

, - -detail in Section 4.2. What mechanisms could be responsi-
" Z "'ble for these features? What do the features tell us about the
............ input sequence? This paper uses two approaches to investi-

gate such questions. In addition to the browser, which
allows us to analyze naturally occurring sequences, we also
synthesize artificial sequences in an attempt to replicate
features found with the browser. Both methods, analysis
and synthesis, are used to study the mechanisms that might
be responsible for the features.

Fig. 2 shows several synthesized dotplots. Fig. 2a, for
example, was generated from the artificial sequence:
"zyxwvutsrqponmlkjl". A dot is placed in position i. j if
the iPh input token is the same as the jh. In this case, dots
appear along the main diagonal and nowhere else, because

Fig. 1. Dotplot Browser all of the input tokens are distinct. (Since the main diagonal
is uninteresting, it will be omitted from subsequent
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dotplots.) In contrast with Fig 2a, there are two interesting 2. Dotplots of DNA Sequences
diagonals in Fig. 2b, indicating that the subsequence
"abcdefghi" is repeated. We have found that diagonals, The features in Figs. 2b-f can also be found in dotplots of
and other features, are often symptomatic of certain poten- real sequences. For example, diagonals are found in Fig. 3, a
dally important patterns in the input sequence. dotplot of two concatenated DNA sequences: (A) the

plasmid pBR322 (Balbas et al. 1986), and (B), the plasmid
pUC19 (Yanisch-Perron et. al. 1985). Dotplots are a well-

zyxwvutsrqponmlkj I abcdefghlabcdefghi known technique in biology for studying homology (e.g.,
Z Maizel & Lenk 1981, Pustell & Kafatos 1982). Biologists

* *are very interested in diagonals which indicate, in this case,

V that both pBR322 and pUC19 carry the P-lactamase gene
S•,* that confers ampicillin resistance. Biologists have also usedr

*• • dotplots to look at how sequences fold into three-
n go • dimensional structures (e.g., Quax-Jeuken et al. 1983, Blun-

• •* dell et al. 1987, Carrington & Morris 1987), and to investi-
gate evolutionary questions (e.g., Laver et al. 1980, Doolit-
tle 1981, Lake et al. 1988). A brief description of the value

a. No Features b. Diagonals of this approach can be found in Argos (1987). See Vingron

abcdef habcZYde fh aaaaaaabbbbbbb (1991) for a recent thesis on genetic sequence alignment.

" :::::A B
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tokens that repeat; raising the baseline (as in Fig 2c) is used to indicate the boundaries between sequence A and sequence
to emphasize tokens that do not repeat. In general, letters B. In addition, the grid box in the upper left comer will be
from the beginning of the alphabet are used to denote called "AA," the grid box in the upper right will be called
repeating tokens, and letters from the end of the alphabet are "AB," and so on. Grid box AA compares sequence A with
used to denote non-repeating tokens. In order to save space, itself, while grid box AB compares sequence A with
labels along the left margin are often omitted. Finally, the sequence B. In general, the grid boxes along the main diag-
somewhat unusual convention of placing the origin in the onal compare two identical sequences, while the other grid
upper left corner was chosen in order to conform with the boxes compare a pair of different sequences.
fact that English text is read left to right and top to bottom.
The interaction of the text views and dotplot views is more Note that the diagonals are broken. What does this mean?

natural when the location of the origin is consistent. Fig. 2c (above) shows, by synthesis, that broken diagonals
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are caused by the insertion of non-repeating tokens (zy) into Dotplots may have practical ramifications for Information
an otherwise matching subsequence (abcdefgh). In the Retrieval (IR) (Salton 1989). There are a number of IR sys-
case of Fig. 3, the breaks probably indicate that some non- tems that provide rapid access to documents in large elec-
repeating nucleotides have been inserted near the beginning tronic libraries. Experience with such systems has shown
of B, interrupting the match between the second half of A that users find it difficult to construct queries that cover
and most of B. most of the documents of interest and not too many others.

This problem could be alleviated, in part, if document
retrieval systems had a more effective way of handling

3. Dotplots of Text rewrites. In particular, the user is probably only interested
in one of the rewrites, e.g. story D. To date, most retrieval

3.1 AP News: Broken Diagonals in Text systems consider each document one at a time, and conse-
quently, they would usually return either all of the rewrites

Broken diagonals can also be found in dotplots of text, as or none of them. There is generally no easy way to retrieve
illustrated in Fig. 4, a dotplot of four Associated Press (AP) just one of the rewrites, along with an indication that there
news stories, labeled A-D. The four stories, about Ryan are a few more that are nearly the same.
White's death from AIDS, were sent over the AP wire
within a few days of each other in early April of 1990. For Thus far we have seen two examples of broken diagonals.
text applications, we usually choose to tokenize the input The next section shows how diagonals can be combined
into words. with squares.

Date Time Lead Title 3.2 Hansards: Combinations of Sparse Features
A 040390 19:54 RyazWhite-Chro
B 040990 02:47 White-Chronolo White's struggle wi... Fig. 5 is a dotplot of 37 million words of Canadian Han-
C 040390 14:03 RyanWhite Ryan White, AIDS Be... sards, parliamentary debates, which are available in both
D 040390 04:1e Ryanwhitechron English and French. The input is constructed by concatenat-

ing 3 years of debates in English (37/2 million words) fol-
A B C D lowed by the French equivalent (the remaining 37/2 million

words). Consequently, there is a lag of approximately 37/2
A . .million words between an English sentence and its French

"translation.

.Note the diagonals and large dark squares in Fig. 5. We
., have seen examples of these features in isolation, but what

mechanism could explain the combination? Figs. 6 and 7
present a two step solution: first, sparse versions of the diag-
onals and squares are synthesized, as illustrated in Figs. 6b

c.. and 6d, and then the interesting halves of Figs. 6b and 6d are
.- , , . . interleaved to produced the desired combination in Fig. 7.

How does the synthetic sequence in Fig. 7 relate to the Han-
. ., sards? Let the a's denote English words, e.g. government,

the b's'denote French words, e.g. gouvernement, and the C-";:i'".. ••.................

D . .... .. k's denote words that are the same in both English and
"' '" ."..'... .-.-- '" .French, e.g. proper nouns, dates, times, numbers, etc. We

L ..... ........ '" . hypothesize that the square in the upper left is formed
because there are many a's matching a's or English words
matching English words. Similarly, the square in the lower

Fig. 4. Four AP News Stories (3000 Words) right is probably formed because there are many b's match-
ing b's or French words matching French words. We

What do the broken diagonals tell us about these AP news suspect that the diagonals indicate how the English text
stories? We suspect that the diagonals are broken when a should be aligned with the French. There is a good chance
news story is updated with a tew additional facts. Stories A, of a dot contributing to the diagonal when the two texts are
B, and D appear to be related in this way, as evidenced by so aligned because there are a fair number of proper nouns,
the broken diagonals in grid boxes: AB, BA, AD, DA, BD, dates, times, numbers, etc. that will match when text is
DB. In contrast, story C is probably not a rewrite of the oth- compared with its translation. There is also an additional
ers, as evidenced by the absence of the broken diagonals in: pattern in the input that is responsible for the main diagonal.
AC, CA, BC, CB, DC, CD.
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Tosummarizers we havntd oeta ole seen twwiape o eth aopo

abcde f h I abce fglh aZbYclldWeaVbUct dSa AP news and Hansards, and two types of features, diagonals

". " and squares. Diagonals indicate matches and alignments,
•. " while squares indicate regions of local similarity. We have

".. " •also seen how features can be preserved despite changes in
• . . density, and how this property allows us to interleave corn

". • binations of sparse features. These ideas will be further
• developed in the next section which introduces the source

• code application.

a. Dense Diagonals b. Sparse Diagonals 4. Dotplots of Source Code

aaaaaaaaabbbbbbbbb aZaYaXaWabVbUbt bSb 4.1 Diagonals in Source Code

• .. .The source code examples in this paper are taken from the
•, ,,•, • • •5ESS® switch, a large program that handles much of the

•,'°*** • •• ,world's long distance telephone service. For source code

OS.OOOO00

• • • " •"• •• •applications, we usually choose to tokenize the input into
• ,,o~olines of code.

OSOOOO gOO

"" • •• • • • Fig. 8 shows a dotplot of eight source code files labeled A-
o,•,,,, " • •H. Two features are of interest: (1) a long broken diagonal

c. Dense Squares d. Sparse Squares starting at AE and extending down to DH (and, by sym-
metry, another long broken diagonal starting at EA and

Fig. 6. Dense vs. Sparse Features extending down to HD), and (2) 56 short diagonals, each
starting in the upper left corner of a different grid box.
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A B C D E F G H a largo number of diagonals that they form a texture. A
good example can be found in Fig. la (near the label D),

. "* "shown in more detail in Fig. 9.

,Inog, -%,, .,.'l, .. This texture consists of a large number of diagonals of vary-
ing lengths. Consider the upper left comer where diagonals

B ..:... * *. are shrinking. Fig. 10 shows, by synthesis, that diagonals
. . V .. . shrink as a repeating subsequence is diluted with increasing

-,..... . ,,, \, " u & re etn
C' - . . :. numbers of non-repeating tokens.
D " ~ i t . Ii ... .\\\\,.... \\\\ll" ...

E X.• "*''"": " "•st; ....

H .. . .. .. ... .. , " . -• , , .•.,.. .,.. .. .•....,,, • \\\\ x,, ... . %. \\',,\\,,,,,, % .

•"...€•,•.~~~~~~~ , , , .• . .... ..\N\\ ,• . .\\%\. .\ .,• . .

similar to files E, F, G, and H, respectively. This observa- , %
tion is further supported by the striking pattern in the names %"• " \" "\\ % "

of the files, as shown below. Perhaps these files were ....... .'''\ \. ..

B P. ISqf 3. ..old..c F P.ISqf,4_hold.c:
C P.ISqf3...hr.c G P.ISqf4_hr.c bdfyco
D P.ISqf3...rr.c H P.ISqf4_rr.c

The second feature, the 56 short diagonals, has a different
explanation. Each of the eight files starts with a highly S

structured comment of the form:

File: .... ,

*\Data: ... • .

*Name: ..

The comments also include a number of additional fields: * *

Abstract, Loadable Package, Usage, Parame-
ters, Externals, etc. We believe the 56 short diagonals* * * *

are caused by similarities in the eight comments. heon ,_,_,_,,,_,,,. .,,,,_,,,,__ ,,,,.

4.2 Textures in Source Code Fig. 10. Shrinking Diagonals

A relatively small number of comments in Fig. 8 generate a How does the artificial sequence in Fig. 10 relate to the
relatively large number of diagonals. In general, n Copies Of actual input sequence for Fig. 9? We believe the texture in
a subsequence generate n(n - ) diagonals. Consequently, Fig. 9 is generated by two clauses of an if statement. Each
even a relatively small number of copies will generate such clause consists of 16 groups of 18 lines of code. The first
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group initializes all but the first field of a structure to 0; the
second initializes all but the first two fields to 0; the third .
initializes all but the first three fields to 0; etc. The repeat- -.. '.
ing sequence of initializations to 0 is diluted with increasing .. . .
numbers of non-zero initializations resulting in the "shrink- '.: .
ing diagonals" texture. There is also another pattern in the i...
code that causes diagonals to grow longer toward the lower
right corner of the texture... Ail ;4? !k, =,

This example shows that dotplots highlight a level of struc- av. V.. , - . .

ture that would have been very difficult to discover using . -.i.t. 'ts 'o " . 4
traditional tools, such as a screen editor, because the pattern 7. "0.
extends over several hundred lines of code, much more than .. . -
could possibly fit on a screen. In addition, this structure ' • ........-... '- .
would also be difficult to appreciate with a dynamic pro- . • ' -- .... "
gramming approach such as the UNIX'7" diff program. .. -- u . "' : . ' ,
Such programs attempt to find a single match, and are there- .I.. r- '.:' I . . ;
fore unable, in principle, to find the rich texture of multiple ' * . • " .- . . 'r,• .
overlapping matches. In addition, the diff program would Z.." "". " "; '. ."
have trouble in this case because many of the matches aren't . ,. .. ;: ... .

exact. To handle cases like this, Baker (1992) introduced an .. .....
inexact matching criterion, parameterized match, which Fig. 11. 3400 Lines of Code
overcomes this difficulty by equating two lines that are the
same up to the names of the parameters and the values of the " -" .

constants. But unfortunately this equivalence relation ' . .
would also miss the pattern of "shrinking diagonals," ;. . ..... ,
because it depends crucially on the names of the parameters .'.'"

and the values of the constants... *:\ :
I I I. 1IM. _1 .. .. it e g!E ! i,

However, in other cases, equivalence relations have proved '- : . • ... : • :.
to be extremely powerful. Consider, Fig. 11, for example,
where it appears that several large sections of code were " I -' " .'

copied verbatim (white space and all), as evidenced by the . "." • ." ". .
long diagonals. Suppose we wanted to understand more . . .. - -.

about the copied code: Who copied it? When? Why? I ,

4.3 Attributes T * t~! InII.. 6! ! l - ..!V" F. i.9 , !!,11im 11

Author Attributes I I f it I ifit It'llm 1
Author Code : 1 W: .. .:. '" !!! .. " !' ' i'!1..

carlson / "" ' " - . .
carl on * Name: RTgeninit "

kedzieriki
veach #feature ( 5E2_2G -* a "

martin * Module: RTmain
martin " Fig. 12. 3400 Author Attributes

ahmad *endfeature ( 5E2_2G)

A dotplot can be generated from any input. Fig. 12, for
One approach to answering these kinds of questions makes example, is just like Fig. 11 except that it uses the author
use of an equivalence relation we call attributes. Large attributes (column 1) as input instead of the code (column
software development projects typically maintain a database 2). It is interesting to compare Figs. 11 and 12 in order to
that associates each line of code with various attributes such see if there might be a pattern between the code and the
as the author's name, modification dates, etc. The table authors. In this case, at least, it appears that many of the
above illustrates the author attributes for the first few lines diagonals in Fig. 11 coincide with squares in Fig. 12.1
of code that were used to generate Fig. II.

1. This observation will be easier to see in a forthcoming version of the
browser, which will enable users to overlay multiple dotplot.
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Why? We suspect that the copies were created by the same 5. Software Design
author, at the same time, and for the same reason. This con-
jecture can be further tested by looking at a dotplot of The next three subsections describe the implementation of
modification dates, and seeing if the features in that dotplot the browser. First, the input data is tokenized into a
line up with those in Figs. 11 and 12. sequence of N tokens. Secondly, this sequence is used to

construct the f-image, an array of floating point values.
4.4 Summary Finally, these values are quantized into the q-image, an

array which is suitable for displaying on a color or grey-
In summary, we have explored the properties of a variety of scale monitor.
features, primarily diagonals, but also squares and textures
(Fig. 2). We have seen that features can appear in many tokens -+ f-image -+ q-image
variations: they can be broken (Fig. 2c), dense or sparse
(Fig. 6), and they can appear in various combinations (Fig 5.1 Tokenization
7). We have also seen applications of dotplots in biology
(Fig. 3), as well as the two new applications: text (Fig. 4-7) The program begins by tokenizing the input and applying
and source code (Fig. 8-12). Both analysis and synthesis the appropriate equivalence relations, if any. Equivalence
have been used to learn more about the relationship between relations were discussed briefly in sections 4.2 and 4.3; they
features and corresponding patterns in input sequences. can be used to remove white space, simulate a parameter-

ized match, replace a token with one of its attributes, etc.
Dotplots may have a number of practical ramifications for The details of the tokenizer depend on the particular applica-
source code applications. First, dotplots might be useful for tion. In the text application, for example, we have tended to
identifying large structures in a program, especially during tokenize the input text into words, whereas in the source
discovery, the process of reading code for the first time. code application, we have tended to tokenize the input code
Secondly, dotplots might help developers find undesirable into lines.
duplication so that it can be removed. In some cases, for
example, it is possible to replace multiple copies with a sin- Before discussing the next topic, the calculation of the f-
gle subroutine, as suggested in Baker (1992). In other cases, image, it might be worthwhile to clarify a potential source
the ability to identify multiple copies can be useful for of confusion between the term type and the term token.
maintenance. In particular, if a bug is found in one of the Consider, for example, the English phrase, "to be or not to
copies, then there is a good chance that the others might be," which contains 6 words, but only 4 of them are dis-
require attention, as well. Thus, dotplots appear to be useful tinct. We say that the sentence contains 6 tokens, but only 4
for identifying large structures, removing undesirable dupli- types. By convention, we denote the number of tokens in
cation when possible, and coping more effectively with the input data with the variable N, and we denote the
duplication that cannot be removed, number of types in the input data with the variable V (for

"vocabulary size").
Some users might believe that redundancy is always indica-
tive of a weakness of some kind. For example, one user has One might normally choose to represent types as strings.
started using the browser to identify C constructions, such That is, it would be nat'.ral to represent the word, to, as the
as switch statements, which are often associated with a string "to", and the line of code, "for (i=l; i<N;
texture generated by repeated break statements. In this i++) ", as the string "for(i=l; i<N; i++)". For computa-
way, dotplots have been used to help design a new program- tional convenience, we have decided not to represent types
ming language that avoids many of these "wordy" con- as strings, but rather as contiguous integers in the range of 0
structions. to V-1. The strings are converted to numbers using stan-

dard hashing techniques. Representing tokens as integers
Should redundancy be considered "harmful"? Following a has several advantages. In particular, it makes it easy to test
policy like Dijkstra's stand on gotos, one might suggest whether or not the type of the iPh token is the same as the
that redundancy should be eliminated, whenever possible. type of the j1h token: if(tokens i] ==
Unfortunately, such a policy would also remove a number of tokens [ j ] ). If we had used strings instead of integers,
very useful structures such as the structured comments in then we would have had to use strcmp instead of ==,
Fig. 8. Carried to its logical extreme, such a policy would which would have been much less efficient.
reduce a structured program to a random string, a string
whose shortest description is itself. As in good writing, 5.2 Computing the F-image
repetition cap be a powerful rhetorical device for conveying
emphasis, parallelism, etc. It would be a mistake to After the input data has been parsed into a sequence of
discourage such practices in a futile attempt to eliminate tokens, the token are then converted into a floating point
"wordiness" and other forms of "bad" writing. image, the f-image. In the simplest case, this is
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accomplished by placing a dot in f image [i] I j] if the some way. Suppose that we wanted to compress the f-
type of the i'h token is the same as the type of the j4' token. image from N by N, down to n by n, for some n << N.
In other words: Then we could simply aggregate values that fall into the

same n by n cell as shown below. Of course, it is recom-
float fimage[N] [N]; mended that the signal be filtered appropriately before

compression in order to avoid aliasing (Gonzalez & Wintz
for(i=O; i<N; i++) 1987, p.94). Filtering may also be useful if there are too

for(j=O; j<N; j++) many dots in the f-image as is well known in the biology
if (tokens [i] == tokens [J]) application (Maizel & Lenk 1981, Pustell & Kafatos 1982).

fimage [i] [J] = 1; In general, various well-known signal processing techniques
else f image [i ] [j] = 0; might be useful for enhancing features of interest.

In order to compute dotplots more quickly and effectively, /* Initialize f-image */
we make use of three observations: (1) Weighting: tokens float fimageln] [n] = (0);
should be weighted to adjust for the fact that some matches /* Map x from token coordinates
are more interesting than others; (2) Compression: if N is into f-image coordinates */
large, it becomes impractical to allocate N2 storage, and #define CELL x) ((Mx) * n) / N)
therefore it becomes necessary to compress the image in
some way; (3) Approximation: if N is large, the time to com- for(i=O; i<N; i++)

pare all N 2 pairs of tokens also becomes impractical, and for(i=0; j<N; j++)

therefore it becomes necessary to introduce certain approxi- if (tokens [i ] == tokens [f])

mations. fimage[CELL(i)] [CELL(j)] +=
weight ([tokens [i]]);

5.2.1 Weighting

The calculation above can be improved by replacing 5.2.3 Approximation

"fimagefii [jj = 1;" with "fimage[i] [j] =
weight (tokens( i ] ) ; ", where the function weight In practice, if N is very large, it becomes impractical to per-
returns a value between 0 and 1, depending on how surpris- form the N 2 comparisons and it is therefore useful to intro-
ing it is to find that tokens [i] == tokens i]. There duct an approximation. In particular, we assume that
are quite a number of reasonable functions to use for extremely frequent tokens will have vanishingly small
weight. The weighting concept is illustrated below, using weights, which can be approximated as zero. Consequently,
the natural suggestion of weighting each match inversely by it becomes unnecessary to compute their contributions to the
the frequency of the type. In this way, frequent types (e.g., f-image, producing a significant savings in time.
the English word the or the line of C-code "1 ") do not con-tribte erymuc to he -imge ecaue mtchs aong Before presenting the approximation, it is convenient totribute very m uch to the f-im age because m atches am ong i t o u e t e c n e t o o tn , a p e o p t d d t
such frequent types are not very surprising. The literature introduce the concept of a posting, a precomputed dataon IR contains considerable discussion of weighting, where structure that indicates where a particular type can be found

on I cotais cnsidrabe dscusio of eigtin, were in the input sequence. Thus, for the input sequence, "to be
it is called term weighting or indexing. See Salton (1989) in th eqence thus, for the tyse "to befor a recent secondary source on the subject, or not to be," there are two postings for the type "to": one

at position 0 and the other at position 4. One can compute
the dots for the type "to" in this example by placing a dot

/* Initialize freq */ in positions: (0, 0), (0, 4), (4, 0), and (4, 4). In general, for a
float freq [V] = (0); word with frequency f, there aref 2 combinations of postings
for(i=O; i<N; i++) that need to be considered. The algorithm below simply

freq C tokens [i]] ++; iterates through all f 2 combinations for each of the V types

for(i=O; i<N; i++) in the vocabulary.
for(j=O; j<N; j++)

if(tokens~i] == tokens[j]) for(type=O; type<V; type++) (
fimageli] [i] = 1/freq[tokens[i]]; w = weight(type);

else fimagei]([j] = 0; f = freq[type];
postings = get._postings(type);
for(pl=O; pl < f; pl++) {

5.2.2 Compression i = postings(pl];
for(p2=O; p2 < f; p2++) {

If N is large, it becomes impractical to allocate N2 storage, J = postings [p2];

and therefore it becomes necessary to compress the image in fimage [CELL (i)] [CELL (j)] += w; )))



66 Dotplot

We now come to the key approximation. If we assume that We have had more success with a non-parametric approach:
types with large frequencies (f > T, for some threshold 7) histogram equalization (Gonzalez & Wintz 1987, pp. 146-
have negligible weights, then we don't need to iterate over 152), which quantizes the values in the f-image into C quan-
their postings. This approximation produces significant say- tiles, one for each color. Unfortunately, even histogram
ings since it allows us to ignore just those types with large equalization has difficulties when the input is highly quan-
numbers of postings. In fact, the resulting computation tized. We have found empirically that many of the f-image
takes less than V T2 iterations. In practice, we have found values are small integers and ratios of small integers. This
that T can often be set quite small. Fig. 5, for example, was might be expected in the tex.t application where Zipf's Law
computed with T = 20, so that the entire calculation took would predict most word frequencies to be small integers; it
less than 400V = 52,000,000 steps. If we had tried to use also appears to hold in the other applications, as well. In
the N 2 algorithm, the calculation would have required order to avoid assigning multiple colors to the same integer,
37,000,0002 steps, which is utterly impractical. we have found it useful to remove duplicate values before

applying histogram equalization.

for(type=O; type<V; type++) 5
w = weight(type); 5.4 User Interface
f = freq(type];
/* the key approximation */ Finally, the q-image is converted into an image suitable for
if(f < T) { displaying in a window as a component of the interactive

postings = get..postings (type); dotplot browser (see Fig. 1). In a color X Windows imple-
for(pl=0; pl < f; pl++) ( mentation (Scheifler & Gettys 1986), this final step estab-

i = postings [pl); lishes a mapping from values in the q-image to cells in the
for (p2=0; p2 < f; p2++) { X server's default colormap. In a monochrome implementa-

j = postings [p2]; tion, the q-image step is unnecessary since the f-image can
fimage [CELL(i)] [CELL(j)] += w;) }) be converted directly into black and white using various

standard techniques such as thresholding, dithering, error

5.3 Computing the Q-image diffusion, etc.

In addition to the dotplot views discussed thus far, there areAfter d.omputing the f-image, the floating point values are also text views, as shown in Fig. lc. A text view consists of
quantized to conform to the available display hardware. two panes so that two subsequences of the input can be
Suppose, for example, that the hardware is designed to han- presented side-by-side. The text view is linked to a dotplot
dle at most C colors, where C = 256. An obvious quantiza- view, so that clicking the mouse on a point in the dotplot
tion technique is linear interpolation. Unfortunately, we corresponding to the pair of tokens xy causes the left pane
have found that the values in the f-image often belong to an to be centered around x and the right pane to be centered
extremely skewed distribution, as shown in Fig. 13. Using around y.
linear interpolation on such a highly skewed distribution
would introduce serious quantization errors. 6. Conclusion

Dotplots, which have been used to study homology in biol-
ogy, are also useful for discovering potentially important
patterns in text and source code. In the software application,
for example, we have seen that dotplots can be used to dis-
cover large-scale structures, remove undesirable duplication

p when possible, and cope more effectively with duplications
than cannot be removed. Similarly, there are also a number
of practical ramifications of these patterns in the text appli-
cation, as well.

We have seen that many of these potentially important pat-
terns are often associated with certain features in the dc.-
plot: diagonals, squares, textures and combinations thereof.
There was a considerable discussion of a number of
mechanisms that explain some of these associations. Much

F . " V s in Fg ' of the discussion used the browser to analyze a feature in a
FIg. 13, Histogram of Values in Fig. 8's F-image real sequence, and then tried to replicate the feature in a syn-

thesized dotplot. For example, the browser was used to find
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broken diagonals in AP stories (Fig. 4), a combination of Thornton. March, 1987. Knowledge-Based Prediction
squares and diagonals in the Hansards (Fig. 5), and "shrink- of Protein Structures and the Design of Novel

ing diagonals" in a large program (Fig. 9). Each of these Molecules. Nature 326:26.347-352.

features were replicated in a synthesized dotplot: broken Carrington, J. C., and T. J. Morris. 1987. St.ructure and
diagonals in Fig. 2c, the combination of squares and diago- Assembly of Turnip Crinkle Virus IV. Analysis of the

nals in Figs. 6 and 7, and "shrinking diagonals" in Fig. 10. Coat Protein Gene and Implications of the Subunit Pri-

The discussion then concluded with a speculation of the mary Structure. Journal of Molecular Biology 194.265-

underlying mechanism. In the AP news, for example, we 276.

believe the diagonals were probably broken by the insertion Doolittle, R. F. October 1981. Similar Amino Acid

of a few extra facts into a rewrite. Similarly, we believe the Sequences: Chance or Common Ancestry?. Science

shrinking diagonals in the software example were probably 214:9.149-159.

caused by a repeating sequence of initializations to 0 being Eick, S. G. March 1992. Dynamic Graphics for Software

diluted with increasing numbers of non-zero initializations. Visualization. INTERFACE '92. Interface Foundation
of North America.

In many cases, the patterns are much easier to find with a Gonzalez, R. C., and P. Wintz. 1987. Digital Image Process-

dotplot than with an alternative such as a text editor or the ing. Addison-Wesley. Second Edition.

UNIX diff program. A text editor, for example, is ill- Lake, J. A.; V. F. de la Cruz; P. C. G. Ferreira; C. Morel; and
suited for identifying structures that extend well beyond the L. Simpson. July 1988. Evolution of Parasitism: Kine-

size of the screen. Similarly, the di f f program is ill-suited toplastid Protozoan History Reconstructed from Mito-

for identifying a texture such as the "shrinking diagonals" chondrial rRNA Gene Sequences. Proceedings of the

pattern discussed in Section 4.2, because the di f f program National Academy of Science, USA 85.4779-4783.

attempts to find a single alignment path and therefore can't Evolution.

deal effectively with the rich structure of multiple overlap- Laver, W. G.; G. M. Air; T. A. Dopheide; and C. W. Ward.

ping matches. January 1980. Amino Acid Sequence Changes in the
Haemagglutinin of A/Hung Kong (H3N2) Influenza
Virus During the Period 1968-77. Nature 283:31.454-

The final section of the paper described the implementation 457.
of dotplots, with an emphasis on weighting, compression Maize], J. V., and R. P. Lenk. December 1981. Enhar'ed
and approximation. These steps make it possible compute Graphic Matrix Analysis of Nucleic Acid and Protein
dotplots quickly enough for use in an interactive browser. Sequences. Proceedings of the National Academy of

Science, USA 78:12.7665-7669. Genetics.
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SUMMARY
One of the biggest challenges in computing is understanding the source code in large software systems.
The source code listing for even a moderate sized system of 10,000 lines runs to hundreds of pages. The
volume of code makes it difficult for programmers to understand the underlying structure. For
programmers to make even small changes may require several weeks of detailed study. To help understand
code I have developed a software tool, Seesoft , that applies dynamic graphics techniques to the problem
of visualizing software.

Seesoft displays a directory of source code by showing each file in the directory as a rectangle whose height
corresponds to the size of the file. Each line in the file is shown as a row within the rectangle whose length
and indentation correspond to the actual code. The lines are colored (running through a spectrum from red
to blue) according to a statistic obtained from the version control history such as age, programmer, or
feature. The visual impression is that of a miniature picture of all the source code with the indentation
showing the control structure and the color showing the age.

A key idea in Seesoft is to enable the user to manipulate the display to gain insight into the code. Seesoft
uses high-interaction, dynamic graphics techniques to enable the user to interact with the code and discover
previously unknown characteristics. Using Seesoft it is possible to view up to 50,000 lines of code on a
high-resolution 19 inch color monitor.

1. INTRODUCTION unwanted side effects. Votta (1992) estimates that

One of the biggest challenges in computing is that on large old projects as much as 90% of a new

of software productivity. Nowhere is this more programmer's time and 70% of an experienced

important than in large multi-programmer, multi- programmer's is used to study code before

year projects, where hundreds or thousands of changing it. The studying is often done by
looking at code listings and by viewing the codeprogrammers work together on huge systems. A with editors on terminals.

big problem in these systems is understanding the

source code, its history, and how it all fits The source code listing for eve, a moderately
together. This is particularly difficult when the sized system can be huge. The listing for a system
programmers who maintain the code are different containing 10,000 to 100,000 lines, printed 50
from those who wrote it, perhaps due to staff lines per page, would run 200 to 2,000 pages and
turnover or new project assignments. the listing for a large system with 1 million lines
Programmers, given requests for additional would require 20,000 pages. Because of the
functionality, must study the current code to volume of code it is difficult for programmers to
determine which files contain the existing gain insight into the code's structure using editors
functionality and which lines to change within that can display at most a couple hundred lines or
these files. This task is often difficult and time looking at code listings. Better methods are
consuming. In fact, it may take several weeks of needed.
detailed study to change a few lines with no



S. G. Eick 69

Z43

ii -

7in

M U. S24f=

Fiur 1. SapeSesf ipa

A Seesoft display of a directory with 20 files and 9,365 lines of code. Each file is
represented as a column and each line of code as a row within the column. The files are
either C code, C header files, or configuration management files. The color of each line is
determined by its age. On the right there is a color scale showing the the oldest code in
blue and the newest in red.

I decided to study the problem of understanding date, reason for the change, responsible
source code from a data analysis perspective. My programmer, affected feature, whether the change
motivation comes from studing code for a large fixes a bug or adds a new feature, etc. The change
real-time telephone switch. The source code for history is a rich, underutilized, resource of
this system, as well as aUl production software information about the system.
systems, is placed in a change management To analyze this class of data I apply dynamic
system. The common change management graphics methods (Becker and Cleveland 1987)
systems widely used include the Revision Control and have invented a new software tool, SeesoftTm,
System (Tichy 1985), Source Code Control (Eick, Steffen, and Sumner 1992), embodying the
System (Rochkind 1975), Change Management method. I call the emerging field devoted to
System (Rowland and W elsch 1983), Extendedvi uly ds ain sot re Sf w e
Change Management System (Tuscany 1987), Visualization. The visualization technique is to
and SABLE (Cichinski and Fowler 1988). These rp eet ec ie a ou n w oe hih
systems maintain a complete change history of the corresponds to the size of d.h file. Within each
source code and can recreate it as it existed at any column rows represent each line in the file. The
point in time. The change managem ent systemle gh adi en ton fechr w orsp ds oused by the switching system also stores related lnthand of ndenatualtione ofEach row orreoporedstvriacco f the a stualilic as chaew1it to line
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such as the age of the line, programmer who 2. THE SEESOFT TOOL FOR SOFTWARE
created it, the feature that it is for, or the type of VISUALIZATION
line. The statistic may be obtained from the An important idea in dynamic graphics is to
change management system or from the code display statistical data graphically and then to
itself. manipulate the display, parameters describing the

Figure 1 I shows a sample Seesoft display for a display, or animate, to gain insight into the data.
directory containing 20 source code files with Becker, Eick, and Wilks (1990) call this
9,365 total lines of code, colored according to age. "parameter focusing." To apply this technique to
From the figure the first observations concern the software change history it is necessary to represent
sizes of the files, locations of the control software graphically. This is particularly difficult
structures, and age of the code. The length of for software because of the large volume of source
each column tells how large each file is. Files code.
longer than one column are continued over to the 2.1 Graphical Data Representation and Screen
next column. The indentation and length of each Layout
line looks the same as in the source file, thus
showing information about C language As shown in Figure 1, Seesoft displays source
(Kernighan and Ritchie 1988) control structures. code by representing each file as a rectangle and
The color of each line 2 shows its age. The newest every line in the file as a row within the rectangle.
lines are in red (black) and the oldest in blue (light This display is similar to that of Baeker and
gray). On the right there is a scale showing the Markus (1990, p. 235) who show a reduced
color for each change to this directory. In total representation of code that has been typeset. This
there have been 324 changes. The visual compact representation can comfortably display
impression is that of a miniature picture of all the 20 files, 1,000 lines each, on a standard high
source code with the indentation showing the resolution workstation color monitor and has
usual C control structure and the color showing displayed 50 files. The file names are shown on
the age. an angle above each rectangle. The indentation

and length of the rows corresponds to lines of
A key idea in Seesoft is direct display code. The representation is reduced as much as
enables the user to manipulate the display to gain possible so that the C control structures, case, ýf,
enasightinto the u der to mn ipulae be deisy tain and, function calls, are clearly visible on a high
insight into the code. As will be described in resolution monitor, although they may be difficult

more detail below, using the mouse a programmer to sw nr to fithon thes paper.

may activate or deactivate individual changes, to see when reduced to fit in this paper.

lines, files, date ranges, or even types of changes. The color of each row is determined by a
To view the code text a programmer may open categorical statistic associated with the line. In
code reader windows. Seesoft increases the Figure 1 the statistic is the age. On the right-hand
effectiveness of these operations by using side of the display there is a mouse sensitive color
techniques from high-interaction graphics in scale coded with a discrete color for each statistic
which the manipulations are performed in real- value. At the bottom of the color scale the
time. number of active and total number of statistic

The remainder of this paper describes the values is shown, 324 out of 324, in Figure 1.

techniques in more detail. Section 2 describes the At the bottom of the screen are buttons and
Seesoft tool and its application of dynamic toggles that control the display mode. To the left
graphics methods. Section 3 discusses its use for of the buttons there are two rows for displaying
analyzing software change history. Section 4 tells text. On these two lines I print an abstract for the
how I implemented Seesoft. And finally, change associated with the current mouse position
Section 5 concludes, and the actual line of code if the mouse is inside

one of the rectangles.

I. The display techniques am optimized for color monitors. For this display approach to be effective the initial
2. In the black and white figures in this paper "color" is to be display must be clear and informative. With the

interpreted as gray level. Seesoft display programmers immediately
recognize the files and lines of code because
Seesoft looks like a code listing viewed from a
distance. The initial view shows the relative sizes



S. G. Eick 71

,.:,:,.-100 

93

Figue 2.Sequnce f Ch6ge

400 6

4700

700

302

Code: W*fJuurdo .mepn-A"Wood; D3M slows
MN: ,W24U0W00s lhatktWn RTpdbl Ow tuI kd&i~yIlp 9=~3119ISM=Z3 Added *Rmd

Figure 2. Sequence Of Changes
As the user positions the mouse over a change, the lines of code that change created are
activated. Two Reader windows are shown. The code underneath the magnifying boxes
appears in the windows.

of the files, the longest files span multiple 2.2 Brushing
columns. The spatial distribution of the colors Seesoft uses the brushing technique invented by
shows how the statistic is distributed in the code. Becker and Cleveland (1987). The color scale,

There must be easy and intuitive human interface file names, and lines on the Seesoft screen are
techniques for the user to manipulate the display. mouse sensitive. As the mouse is moved around
I find that using direct manipulation techniques the screen the object currently under the mouse is
from dynamic graphics, in particular "brushing," activated and deactivated after the mouse moves
and "linking," allow the programmers to find away. The left mouse button causes the activation
interesting patterns in the data. Programmers need to be permanent and the middle mouse button
to be able to see the actual source code and not deactivates previously activated entities. For
just a representation of it. For this purpose different entities activation has different
Seesoft users may open up Reader windows to meanings.
display the text underneath "magnifying" boxes Activating the color corresponding to a date tr
that track mouse movement (shown in Figure 2). on its color and also turns on any code associated
This technique is particularly effective because the with that date. In Figure I all dates have been
programmer has both an overview of the code and activated and correspondingly all lines of code are
also can see parts of the code in detail, visible. Activating a line of code turns on its

color, the color of its corresponding date, and any
other lines associated with this date. Activating a
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file activates all lines in the file and so on. When the Seesoft display to select and deselect entities
the mouse is over a date, the abstract for that thereby changing their color, the color of the code
change made on that day is displayed on bottom in the reader windows is continuously updated to
display line and when the mouse is over a line of reflect the current display state.
code both the code and abstract are displayed on The lines of code and changes are also linked. As
the bottom two lines. Figure 2 shows an example the mouse touches a change, the affected lines are
where three dates have been activated and there activated. Similarly, when the mouse touches a
are two reader windows. line, the change associated with that line is

Brushing is most effective when the manipulations activated along with all other lines associated with
are performed in real-time. It is difficult to that change.
illustrate this technique in a static medium such as IS Dilay Modes
this paper. But the brushing technique is
particularly good for scanning through lots of In the lower right-hand corner of the Seesoft
dates and changes. display are buttons and toggles that modify the
2.3 Code Reading current display mode. By default, Seesoft's line

representation tracks the indentation of the text
Programmers, upon discovering interesting lines. The programmer may turn off indentation
patterns, need to see the actual code. When the using the Indent button. This is useful for
programmer depresses the Reader window button displaying lots of code when the files are close
two actions occur. A new window for displaying together.
code using a 10 point font is created and small It is possible to display two statistics for each line
colored "magnifying" box appears on the using the "split column" feature. Programmers
graphical display. As the magnifying box is might use the feature to display the dates that lines
movedwere added and deleted. The AddedlDeletedlBoth
displayed in the window. The size of the wr de n eee.TeAddDltdBtdisplagyeding te wisnrop l the size of the toggle has three modes. Added associates eachmagnifying box is proportional to the size of the line with the first statistic, Deleted with the
reader window. This enables the programmer to second, and Both causes each column to be split
understand what fraction of the total is visible, down the middle with the first statistic on the left
where the code is in the file, and which file in the and second on the right.
directory.
Multiple reader windows may be created and The Blink button is used to study the spatialMultplereaer wndos my becretedand distribution of another binary statistic. When
independently positioned. The border on each activated lines associated with this binary statistic

reader window has a unique color that is tied to its blink.

corresponding magnifying box. The programmer

manipulates and positions the boxes 3. APPLICATIONS IN SOFTWARE
independently using the mouse and right mouse ENGINEERING
button. Depressing the right mouse button
positions the active reader window and depressing The motivation for this research comes from
the right mouse button again grabs the closest studying the source code and software structure in
reader window if all are positioned. a very large real-time switching system. The

2.4 Linking analysis techniques embodied in Seesoft have
application in several areas of software

Linking between displays is a powerful technique engireering including, code discovery, project
for understanding data (Stutzle, 1987) and management, new programmer training, and code
(Haslett, Bradley, Craig, Unwin, and Wills 1991). archaeology studies. To illustrate the use of
In Seesoft the code reader windows are linked to Seesoft I will analyze data from a sampk.
the base display in two ways. First, as the directory. This directory includes about 20 C
magnifying box is moved around the display the source code files ending in .c, C header include
code in the window changes. This enables the files ending in .h, and a configuration file ending
programmer to have a "birds eye" view of all the in .md.
code and yet see the particular lines of interest. Figure 1 shows all of the files in this directory
Second, the colors of the text lines in L'ie reader with the color of each line tied to its age. There
windows are linked to the colors of their line have been 324 changes to the code in this
representations. As the programmer manipulates
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Figure 3. Source Code With No Indentation
By turning off indentation it is easier to see the age of the code. The oldest lines are
displayed in dark blue and the newest in red. The display shows the relative size of the
files, age of the code, and how many times each file has been changed.

directory since 1984. From the length of the Herman 1992). The age patterns in the files are
columns, the largest file, RTmsgproc.c, has about striking. Much of the code in files RTmsgrpoc.c,
1,500 lines and the smallest, RTmsqinit.c, has RTcallproc.c, RTgeniniLC, RTmainrtgo.c and
about 50. The indenting patterns show the RTginit.c is blue indicating that it dates to 1984-
locations of the C control structures. Ile 1985. It is difficult to relate the colors from the
sawtooth blocks in RTup lamps.c are the cases in spectrum to calendar dates, but the exact date and
a large C switch statement 'Me scalloping are time code was added is encoded in the change
indentation for the C if'statements and C for loops. abstract that is printed below when changes are

Figue 3is he ameas igue Iexcpt he ode activated. These f~les are interesting because

indenting has been turned off. Turning off aogwt h lecd hydslymn te
indenting makes it easier to see the age of the colors indicating that they have been changed
code. T",,e most recently added lines are shown in many times, including recently". 'mere is another

red (black) 3 and the oldest in blue (light)
according to a rainbow scale (Levkowitz and 3. In the black and white rendering of this display I use a gray

scale instead of a color sp.ctrum. My printer unfortunately
uses half-tones to produce the gray scale that makes it

2. The indenting is difficult to wee in the figures, but shows difficult to read.

clearly on standard 19 inch high-resolution color monitors. 4. An expert on this software explained that dhese files ame the
main control for this process.
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Figure 4. A Significant New Feature
A new feature was put into the code in 1987. This code is primarily in 4 files and has
been stable since its introduction.

set of small yellow files dating to 1985, and a set times. This file is called a "rainbow" file after
of green files dating to 1987. The yellow and the spectrum of colors it contains.
green files have been relatively stable since they By activating files created on common dates, I
were created with a few recent changes. discover that there are three different sets of files

A good strategy for enhancing software is to add a in this directory. Each set was created by the
few lines to the main part of a system and put the same class of changes. Figure 4 shows one of the
new code in its own file. Figure 2 shows this type sets, a major enhancement done in 1987. The
of modular enhancement. File RTmhgxprc.c was functionality in these four files is self contained
created with a single change (the middle change except for a few function calls in the other files.
on the color spectrum in Figure 2) and is a C Which files have bugs? Figure 5 shows the
function that is shown in the first reader window. locations of the bugs by deactivating code added
The code to execute this function was added in the to fix them. It is interesting in that comparing
same change to RTmsgproc.c and is shown in the Figures 3 and 5, the bug fixes are more
second reader window. concentrated in the heavily changed files. These

Files that have been frequently changed are often files might be candidates to be rewritten. By using
difficult to maintain and are candidates to be the split-column mode, it is possible to show the
rewritten. Although not illustrated in a figure, by bug fixes that were added to fix previous bug fixes
deactivating all changes and sequentially brushing or "fix-on-fixes."
each of the file names, RTmsgproc.c is the most From this data analysis session what have I
frequently modified and has been changed 65 learned? I know the sizes of the files, which are
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Figure 5. Locations of Bug Fixes
Changes to fix bugs have been deactivated. The bug fixes are concentrated in a few of the
files.

stable and which have been changed. I have about 2,500 lines. Seesoft uses C++'s object
discovered several modular enhancements and oriented capabilities (Coplien 1992) to simplify
also a major feature enhancement. I know which the coding. All entities on the screen are
code has been recently added, which code is old, represented as C++ classes and inherited from a
and what files have been recently changed. I have base entity class. The redrawing and mouse
discovered that there are three distinct classes of manipulation is accomplished by executing the
files in this directory, each class created at virtual member function for the appropriate entity
different times with different maintenance on the screen.
characteristics. If this directory ever got too big, For high graphics performance much of the user
these would be natural candidates for splitting. I interface is done using color map manipulation
also found that bug fixes are more concentrated in (Foley, van Dan, Feiner, Hughes 1990). Seesoft
certain files that have been frequently changed. draws each line and associated date with its own

4. IMPLEMENTATION color. Then activating, deactivating, and linking
is done by manipulating the color map. The

Seesoft is written in C++ (Stroustrup 1987), and colors for the activated MRs are turned on and for
currently runs on Silicon Graphics Iris the deactivated MRs are turned off. Color map
workstations and other workstations supporting manipulation is fast because it is done in
GL (Silicon Graphics 1990) graphics library such hardware. Standard color maps often have 256
as IBM's RS6000. Eventually, I plan to port different colors and so to display more than 256
Seesoft to the X Window System (Quercia and changes requires a large color map.
O'Reilly 1987). The total code for Seesoft is
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Silicon Graphics Iris workstations come with 19 code text (in the active colors). The visual
inch color monitors with 1280x1024 screen representation of code allows a programmer to
resolution. Using the columns and rows gain the insight and understanding that goes with
representation of files and lines I can easily visualization and the reader window allows the
display 20 columns and have displayed 50 user to see the actual code.
columns on a single monitor. With more than 50 Besides software, the display and manipulation
columns the lines displayed by the row techniques have application to other ordered
representation become too thin. Each column may databases. The approach is applicable to
represent 1,000 lines. databases where there is interest in understanding

For static graphics and preliminary analysis I use the overall structure and querying the database
the S language (Becker, Chambers, Wilks 1988). based on particular attributes uniquely associated
S provides a computational environment, static with each entity. For example, I could display a
graphics, and data management that support the text corpus such as the Bible. Each book could be
interactive manipulations. I link Seesoft into the S represented as a column and each verse as a row.
executive, perform all data manipulation in S, and I could order the database using a subject index.
then launch Seesoft from S. Other applications include legal writings and

The figures in this paper were created by including software documentation. Another possible

PostScrpt (Adobe Systems, 1987) files into troff application would be to use each column in

input. The technique Seesoft uses to produce Seesoft as a sophisticated scroll bar in a text editor

PostScript images of the current display is due to (Hill, Hollan, Wroblewski, McCandless, 1991).

Wilks. When Seesoft's PostScript option is My motivation for developing these techniques
selected, Seesoft redraws the display and comes from studying the change history in a large
simultaneously writes color PostScript code into a software system. The change management
file for each GL graphics call. Then, by systems allow me to recreate the code as it existed
prepending a PostScript preamble, I create an at any point in time. With Seesoft I can
encapsulated PostScript file that is an exact replica comfortably display 20,000 lines of code and have
of the current Seesoft display for printing. I displayed 50,000 lines. By displaying this volume
produce black and white PostScript files by of code I obtain insights and a perspective on the
manipulating the color map. system and its evolution that would otherwise be

impossible.
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Abstract this effect have led to concern in the scientific commu-
nity about increases in temperature and the resulting

In this paper we develop a random field model for climatic effects.
the mean temperature over the region in the northern There appears to be no clear cut consensus on the ex-
United States covering eastern Montana through the tent of global warming over the last century. Most esti-
Dakotas and northern Nebraska up to the Canadian bor- mates run from O.5*F to 1.00F. The difficulty is the lack
der. The readings are the temperatures at the stations of good long-term data over large regions. The global
in the United States historical climatological network re- temperature constantly changes on time scales of tens of
ported in Quinlan, Karl & Williams (1987). thousands of years. In fact there have been times in the

The stochastic structure is modeled by a stationary past millennium when it has been much warmer than
spatial-temporal Gaussian random field. For this region, the majority of global warming scenarios. The question
we find little evidence of temporal dependence while the here is a rapid change over the next century that will
spatial structure is temporally stable. The approach have enormous impact on the environment.
strives to incorporate the uncertainty in estimating the Much of the evidence for a global warming effect has
covariance structure into the predictive distributions and be-n based on large-scale Global Circulation Modelsthe final inference. enbsdo ag-cl lblCruainMdl

the finapplinferncan o(GCMs). These use multi-level mathematical represen-
tations of the atmosphere for weather prediction. Given

distributions of the areal mean over time. A posterior the complexity of the environment and the relative sim-
distribution for the static areal mean is presented as a plicity of the models there is much controversy concern-
basis for calibrating temperature shifts by the histori- ing the v odity.therelts much fourost widely
cal record. For this region and season, it indicates that ing their validity. Results from the four most widelyunde th scnari ofa gadua inreae of5°Fove 50 cited GCMs (1) the National Center for Atmospheric Re-
under the scenario of a gradual increase of 5*F over 50 search (NCAR), (2) Geophysical Fluid Dynamics Labo-
years, it will take 20-30 years of data before the change ratory (GFDL) of the National Oceanographic and At-
will be discernible from the natural variation in temper- mospheric Administration, (3) the Goddard Institute of
atures. Space (4 H Center
Key words: Gaussian random fields; Bayesian statistics; Studies ( and, ( the HadeCnt for

Climatic change. Climate Prediction and Research at Bracknell, England,
are still far from being in agreement, although all models
predict higher winter temperatures at the higher north-
ern altitudes as a function of increasing greenhouse gases.

1. INTRODUCTION Significant global warming would have an enormous

There has been much interest recently in climatic effect on the environment and the world economy. Alter-
change and potential global warming. Of central focus ing the economies of the world Io reduce the production
is the phenomenon popularly called the "greenhouse ef- ol +he gases suspected of increasing the greenhouse effect
fect": the heating of the earth via the entrapment, by would be very costly and/or drastically alter our way of
certain gases, of long-wave radiation emitted from the life. If the political decision is to be postponed until the
earth's surface. This effect produces a global mean tem- empirical evidence is in, this paper sheds light on how
perature of about 59*F rather than an estimated -6*F long must we wait to detect a global warming with high
in the absence of atmosphere (Mitchell (1989)). Increas- confidence.
ing concentrations of the gases thought to contribute to In this paper we develop spatial-temporal models for
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temperature fields over a region in the northern United structure and their effect on the quality, both real and
States covering eastern Montana through the Dakotas perceived, of the prediction.
(90' - 1070 in longitude) and northern Nebraska up to Our approach is to use posterior distributions for the
the Canadian border (410 - 490 in latitude). We choose static areal quantities as a basis for calibrating temper-
the winter months and this region as our study area be- ature shifts by the historical record. In particular, the
cause GCM predictions of climatic change (4*F - 100 F) objective is to understand how soon gradual increases in
induced by increased greenhouse gases are expected to temperature over this region would be discernible from
be at maximum for high latitudes during the winter the year-to-year variation.
months (Mitchell (1989), IPCC (1990)). The observed
lack of temporal trend for this region and period was 1.1 United States Historical Climatology Network
somewhat of a surprise. However, this finding has been Recently the U. S. Carbon Dioxide Information Anal-
confirmed using different statistical approaches (Letten- ysis Center established a network of 1219 stations (the
maier, Wood and Wallis (1992)). It is also evident from HCN network) for the contiguous United States "with
this later study that, had other regions or periods been the objective of compiling a data-set suitable for the de-
picked, the results would have been quite different. In tection of climatic change" (Quinlan, Karl & Williams
addition the relatively stable and simple topography of (1987)). The network record includes maximum, min-
the region help to ensure homogeneity and the minimiza- imum, mean monthly temperatures and total monthly
tion of localized effects. Data from the United States his- precipitation since 1890s.
torical climatological network reported in Quinlan, Karl As part of a study to improve the land surface pa-

& Williams (1987) is being used to explore long term rameterization of the GFDL-GyM (Geophysical Fluid

changes and potential effects of increased concentrations Dynamics Laboratory - Global Climate Model), a 41

of the greenhouse gases. year daily value database was prepared and made avail-
There is much interest in empirical studies of climatic able in CDROM format. (Wallis, Lettenmaier and Wood

change. Jones, et al (1986) considers station data to in- (1991)). The study used 1036 of the original HCN sta-
vestigate long-term variation in the surface temperature tions, with missing days flagged and then estimated by
of the northern hemisphere. Karl (1984, 1985) considers correlation to nearby stations. There are differences be-
climate variation and change in North America. These tween the unadjusted monthly mean values reported by
studies emphasize the dynamic nature of the climate sys- Quinlan et al and those reported by Wallis et al. Some of
tem, and the existence of abnormal winter temperatures these differences can be accounted for by a difference in
within the climate system. Other empirical work is re- the treatment of missing days; Quinlan et al summed the
ported in Diaz & Quayle (1978, 1980). A hindrance to observed days in any given month and divided by thfir
these and earlier studies has been the dearth of quality number to calculate the average monthly value; miss-
data with both spatial and temporal extent. ing days were not estimated. However, Wallis et a) en-

Karl, Heim and Quayle (1991) consider a similar re- -ountered many cases where even the number of missing
gion with the objective of identifying greenhouse effects. days in a given month did not agree between the daily
They construct a pure time-series model for the averages and monthly NCDC data bases. Sites used in our study
of the stations enclosed in the region and do not address were chosen so as to minimize the effect of these data
the spatial aspects of the temperature field. This paper peculiarities. If the National Climate Data Center ever
develops a comprehensive model for the spatial dimen- prepares a cleaned-up data base, then the calculations
sion in conjunction with the temporal component. In ad- reported here could easily be seen. In the interim, we do
dition the model is for the meteorological field as a whole, not believe that data errors for the stations and periods
rather than just a particular characteristic. This is im- used in this study are large enough to invalidate any of
portant as it facilitates direct comparison with GCMs our results or conclusions.
and prediction of derived quantities throughout the re-
gion and over time. In particular, it allows the prediction
of the meteorological field at each location (e.g. city or 2. ANALYSIS OF SPATIAL STRUCTURE
county) with an associated assessment of the quality of In this section we discuss a spatial model appropriate
prediction. for a meteorological field over a single time period. The

The traditional best linear unbiased prediction pro- field discussed here is the average winter temperature.
cedure ("Kriging") is used in this paper for inference, The daily average temperature at a location is defined
but within a Bayesian framework. Particular attention to be the mean of the daily maximum and the daily min-
is paid to the treatment of parameters in the covariance imum at that location. The average winter temperature
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is defined to be the average daily average temperature
over the months December, January and February. The
generalization to include a temporal component is the
subject of the following section.

Figure 1 represents the region under study. The lo-
cations of the 88 U. S. historical climatological network
stations in the region are marked with '+'. The elevation
of the stations, in feet, are represented by the overlaying
gray-scale image.

FIGURE 2: Graylevel image of the mean winter temper-
atures for the winter of 1983-84. The temperature range,
in Fahrenheit, is given in the legend.

We observe, from a single realization of the field,
{Z(xi),..., Z(x,.)}' = Z where x,..., z, are the spa-
tial locations of the stations in the network. We will
focus on the prediction of Z(xo), where xO is a new lo-
cation in the region of interest.

The Kriging predictor is the best linear unbiased pre-
dictor of the form Ze(xo) = A'(O)Z, that is, the unbiased

FIGURE 1: Locations and elevations of the U. S. histori- linear combination of the observations that minimizes
cal climatological network stations. The gray-level image the variance of the prediction error. The quality of the
is for the elevation above sea-level over the region. prediction is determined by the distribution of the )re-

Note that the elevation increases from east to west and diction error, e(xo) = Z(xo) - Ze(xo). Note that the
also from north to south. As expected, the elevation of underlying Kriging procedure is motivated by sampling
the station has a marked impact on temperature and it is considerations, producing point predictions and associ-
essential that the model reflect this relationship. Figure ated measures of uncertainty for those predictions both
2 is a gray-level image of the mean winter temperatures based on sampling distributions unconditional on the ob-
for the winter of 1983-84. The winter of 1983-84 is the served Z. However it is well known that Kriging, when
bisis for the examples in this section. the mean is of known regression form, can be given

Suppose Z(x) is a real-valued stationary Gaussian ran- a Bayesian interpretation (see e.g., Omre & Halvarsen
dom field on the region under study (R) with mean (1989), Handcock & Stein (1989), Hastie and Tibshirani

(1990)).
E Z(x)} = f'(x),3, The implementation of this model requires the spec-

where f(x) = {fi(z),..., fq(x)}' is a known vector func- ification of the regression function f(x) and thE spatial
tion, and 3 is a vector of unknown regression coefficients. covariance structure Ko(., .). The regression function is
Furthermore, the covariance function is represented by composed of easily measurable spatial characteristics of

the station such a latitude, longitude, elevation and dis-
cov{Z(x), Z(y)} = aKe(x, y) for x, y E R tance to the closest urban area. We shall explore these

where a > 0 is a scale parameter, 0 E E is a q x 1 vector choices in §3. The specification of the covariance struc-
of structural parameters and E is an open set in IR9. The ture is dealt with in the following section.
division is purely formal as 0 may also determine aspects
of scale. This formulation is standard for meteorological
networks (Gandin (1963)).
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2.1 Spatial Correlation Structure 3. ANALYSIS OF TEMPORAL STRUCTURE

In this section we describe a general class of isotropic In this section we consider the temporal component of
and homogeneous covariance functions that we feel pro- the model, generalizing the random field to Zt(x) where
vides a sound foundation for the parametric model- t = 1937,... represents the winter of observation. We
ing of Gaussian random fields. An isotropic and ho- consider the time-series of data from each station, inde-
mogeneous covariance function can be represented as pendent of the spatial information.
K(x,y) =_ K(Jx - yi), Vx,y E R, so that the class is The time-series of a single site exhibits little short-
usually written as a function of a single scalar variable term or long-term dependence. Figure 3 presents the
K(z),z E IR. The class is motivated by the smooth na- time-series and empirical autocorrelation functions for
ture of the spectral density, the wide range of behaviors four spatially separate stations. Individually the time-
covered and the interpretability of the parameters (See series are quite variable overtime. The right hand side
Handcock & Stein (1989), Mat6rn (1986)). The isotropic figures are the sample autocorrelation functions corre-
covariance functions have the form sponding to the time-series. The dashed boundaries rep-

resent approximate 95% confidence limits. Note the sim-
1 (2v z) 'C82 (2V2 - ilar patterns in the series over time and the lack of first

Ke(x) 170 2 0 K 01 lag autocorrelation. The median cross-correlation is 0.78

with quantiles 0.64 and 0.87, indicating a tendency to
where 01 > 0 is a spatial scale parameter controlling the move in conjunction with each other over time and re-
range of correlation and 02 > 0 is the parameter con- flecting the influence of the spatial correlation modeled
trolling the smoothness of the field. A field with this in the previous section.
covariance function is r02 - I times (mean-square) dif- WMR ThRE MRRELAW N FOR
ferentiable (Cram~r & Leadbetter (1967)). Here r is the
gamma function, r is the integer ceiling function and '
K. 2 is the modified Bessel function of the third kind and -,------- ----- ..-.....
order 02 discussed in Abramowitz & Stegun (1964), §9. __"_'_______ __ ..

The well known "Exponentialr class corresponds to
the sub-class with smoothness parameter 02 = 1/2, that -,!"

KE(x) = 01 exp(-x/0 1 ). _________

We call this class the Mat6rn class because of the general
treatment given in the seminal work of Mat~rn (1986). F

The application in this paper has only two spatial di- :.... ......... --- -....... .-.............
mensions (d = 2) leading to some simplification. V \ J --...........

2.2 Model Development and Validation
In traditional Kriging, one estimates a and 0 by either -, -, -........................ ------........likelihood methods or various ad hoc approaches. The . , ___.._______._

likelihood approach to the estimation of the covariance
structure was first applied in the hydrological and geolog-
ical fields following Kitanidis (1983), Kitanidis & Lane
(1985) and Hoeksema & Kitanidis (1985). See also Mar- FIGURE 3: Time series and empirical autocorrelation
dia & Marshall (1984), Handcock & Stein (1989), and functions for four typical sites.
Handcock (1989). Usually the predictor and the behav- Our analysis indicates that there is little evidence of
ior of the prediction error are themselves estimated by either short-memory or long-memory dependency in the
'plugging-in' the .stimates to the expressions for known time-series of the stations. There is little evidence that
o and P. the spatial structure changes over the time scale con-

The values of ar, 0 and #3 that maximize this log- sidered here. The substance of the analysis is given in
likelihood at., denoted by, 6, 0 and i, respectively. Handcock & Wallis (1990).
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4. MEASURING AREAL MEAN TEMPERATURE The base line model is that the means are temporally

In the previous sections we found a complex spatial stable: j, =_ p. Here p will be called the static areal

structure to the mean winter temperatures, little tempo- mean temperature. The details of the model are given
ral dependence structure and little evidence for changing in Handcock & Wallis (1991).
spatial structure over time. In this section we focus in-
terest in a measure of the areal mean temperature over
the region of interest. The time-series of areal mean

temperatures is defined by:

2t= - Zt(z)dz t = 1937,...,1986,... .

where IRLis the area of the region R. Thus at each point
in time, Zt represents the average temperature over the j
region and is a function of the field Z(z). Zt provides a
natural measure for the detection of changing climatic ,,, r

patterns over the region. As the region is devoid of gross
topographic features, it provides a convenient measure of 0
overall temperature during the winter. It is important tu * u

note that Z2 is a characteristic of the temperature field. .. . .... .... .. , urn
itself, and not a characteristic of the stations in the net-
work. The behavior of the areal mean temperature will
provide an indication of the overall changes in climate
over the region independent of the individual stations. FIGURE 4: This is the time-series of (the MAP estimates

Based on our model, we can summarize the avail- for the) areal mean temperature. There is little short or
able information for 2t from the predictive density long term persistence. The least square line, which has
P(A, I Z1937 , Z1938 , .. ., Z1986 ), that is, the posterior a non-significant slope, is marked.
density of 2 given the complete spatial-temporal infor-
mation available.

How can we further summarize the areal mean tern- 5. CALIBRATING CHANGES IN MEAN
perature? The distributions are symmetric and have a AREAL TEMPERATURE
similar t-like distributional shape. The ratio of largest The primary motivation for developing these models is
to smallest variance is 2.6. To further explore the tern- as a tool to calibrate changes in the mean areal temper-
poral changes in Z, we will consider the time-series of ature. The model in the previous section allows this to
maximum a posteriori (MAP) values. While this clearly be done. Many scenarios have been proposed for future
represents a reduction in information relative to the full global warming. Typically their basis is mathematical
distribution, it facilitates examination, rather than empirical.

Figure 4 represents the MAP values for the last half Consider the distributions in Figure 5 . The solid line
century. Note the lack of a clear trend over time. Some is the posterior distribution for the static areal mean
interesting years have been indicated. The last year for temperature from 1937-86, this should be compared to
which data are available (1986) also has the highest tem- Figure 6. It summarizes our uncertainty about the static
perature. areal mean temperature by a distribution with mean

A reasonable model for the mean areal temperature about 19.7*F and a standard deviation of 0.51*F.
over the last half century is How soon could a 5*F gradual increase in static areal

mean temperature in this region over half a century be
Zt = Pt + Ct t = 1937,...,1986,... (4.1) discernible?

where f is an independent, and identically di- Suppose we collected data from the network in this
,=937 iaiennaregion for the next ten years, as the underlying static

tributed Gaussian sequence with zero mean and variance temperature gradually increases. Suppose that, besides
198. tepeatr graduence inrass Suppos reprsent besidaeseeor'. The sequence { ¶t},=7 represents the mean level, the creep in level, the stochastic structure remained sta-

The motivation is the absence of strong temporal depen- ble, as is supported by the analysis in §4. The dashed
dence (§4.1) and the approximate constant variances. posterior (marked by '10') represents a hypothetical pos-

terior for the static areal mean temperature based on
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that 10 years of data. Note that there is still marked hence address the central issue of the evaluation of water
overlap with the summary from the last 50 years (solid resources.
line). This indicates that it would be extremely difficult
to discern such a gradual increase after only ten years.
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Space-Time Models for the Analysis of Satellite
Temperature and Ozone Data*

Xufeng Niu George C. Tiao
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Tallahassee, FL 32306 Chicago, IL 60637

Abstract Besides the satellite measurements, there are more
than 100 ground stations that observe daily total col-

A class of space-time bilateral models is develope-l umn ozone and over 200 stations around the world that
for satellite ozone and temperature data. In the spatial collect temperature data. For the ground-based ozone
direction, both latitudinai and longitudinal interactions and temperature data, one of the widely used models is
are considered. It is shown that after some appropriate the regression-time series model. Letting y(t) denote the
transformations, the space-time bilateral models can be monthly average of total ozone at time t over a particular
expressed as temporal vector processes with asmallnum- station, Reinsel et. al. (1981) described the regression-
ber of natural parameters. Covariance structures and time series model as follows:stationarity conditions of the error terms in the models fyt ~)+w~)+ýtare studied. Using properties of circular matrices, like- (1.1)

lihood functions for the parameters in the models are W --) = E o - 0) + 40t),

derived. Applications of the space-time bilateral models where p is an overall level, S(t) is a seasonal compo-
to TOMS ( Total Ozone Mapping Spectrometer) ozone nent, adequately represented by a linear combination of
data are discussed. sinusoidal curves of fundamental period 12 and their har-

monics (e.g., 6 months), and wR(t) represents a linear

1 Introduction trend with

In recent years, a decline in column ozone over much of R(t) = (t - to)/12 if t > t0 ,
the earth and the possibility of global greenhouse warm- . 0 if t < to,
ing due to the rapid increase in radiatively active at- where to corresponds to January 1970. The residual
mospheric trace gases are receiving increased attention. series ý(t) was modeled as an autoregressive process
Satellite ozone and temperature data, measured by theTotal Ozone Mapping Spectrometer (TOMS) and the AR(p), where p usually is equal to 1, and e(t) is a pro-

cess of independent random variables with mean zero
Solar Backscattered Ultraviolet (SBUV) instruments, re- and possibly different variance for different months of
spectively, play an important role in assessing the global the year. Some other covariates, such as solar flux se-
changes. For instance, the GRIDTOMS ozone tapes pro- ries, may be included in the model. Reinsel et al. (1988)
cessed by the National Aeronautics and Space Adminis- also used model (1.1) to analyze the 7-year record of
tration (NASA) provide daily total column ozone data SBUV satellite ozone data on 100 latitude by 20' longi-
on each of 1V latitude by 1.25* longitude cells, which en- tude cells.
able us to estimate the changes in ozone as a function of
geographical location. Satellite data form space-time dependent lattice sys-

*Computations for this paper were performed using computer tems since the observations on the cells are related to
facilities in the Department of Statistics and Statistical Consulting one another and the time. Understanding and de~qcrib-
Center at the Florida State University. Wo thank tho Ozone Pro- ing the stat-istical structures of these space-time lattice
cessing Team of NASA/Goddard Space Flight Center for providing systems are very important. Spatial lattice systems have
us with the GRIDTOMS data. The second author was supported
by National Aeronautics and Space Administration grant number been studied by many researchers, since the analysis of
NAGW-2057. spatial series is of interest in a number of fields such
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as geography, econometrics, geology and ecology. Whit- a white noise innovation series where (i, j) varies over
tle (1954), a fundamental paper on this topic, discussed a regular cartesian lattice. Then Tjostheim's first-order
some bilateral models for the processes in a plane. For unilateral autoregressive and moving-average (ARMA)
the one dimensional case, denoting observations along a spatial series model can be written as
line by ýj (i = ... ,-2,-1,0,1,2,...) and error terms
by ci (i = .. ., -2, -1,0, 1,2,...), respectively, Whittle's &ij + 0i-oj~ij + a1i~j-1 + ii-lj-i =
first-order bilateral autoregressive model has the form Caj + 0 10oi-ij + 001(ij-1 + 011€i-ij-1- (1.2)

al&= I + a26,+1 + 'E. Similar to time series analysis, Tjostheim (19Th) studicd
the stability and invertibihty conditions for the unilat-

In a sense this model may be regarded as a simple gen- eral ARMA spatial series models, and presented a Yule-
eralization of a first-order autoregressive AR(1) model, Walker type estimates for the parameters in a unilateral
but it presents some peculiarities which makes its anal- AR spatial series model. He also pointed out in the
ysis more difficult. The essential difference is that in a paper that under mild conditions the estimates are con-
time series we have the natural distinction of past and sistent and asymptotically normal. As a continuation of
future, and the value of the current observation depends this paper, Tjostheim (1981) considered some possible
only upon the past values. However, for a spatial line applications of these models; then (1983) showed that
process, there is no such distinction between the two di- the asymptotic results for the unilateral causal models
rections, and dependence should naturally extend both are also valid for the half space spatial lattice models.
ways. Suppose that the error term ci are independently
and identically normally distributed. Then unlike the A basic feature of satellite temperature and ozone data
time series AR(1) case, an attempt to estimate the coeffi- is their circular property, i.e., for a fixed latitude and
cients a, and a 2 by minimizing Zi(Ci-al&-l -026+1)2 a fixed time t, the data are observed along a circle.
leads to nonsensical results (see Whittle (1954) for de- Niu (1991) introduced a class of space-time bilateral au-
tails). For an infinite two dimensional spatial lattice sys- toregressive and moving average models for the satellite
tem, it is usually not possible to find a simple formula ozone data on a fixed latitude, and discussed some basic
for the likelihood function for the parameters in a bilat- properties of the models. For a fixed latitude, let yj(t)
eral lattice model, since the Jacobian of the transforma- be the monthly average ozone observations at longitude
tion from the error terms to the observations will depend j. Niu considered an additive model:
upon the unknown parameters in a complicated way. In
order to find a sensible way to estimate the parameters y,(t) = S3(t) + Rj(t) + ,(t) (1.3)
in a bilateral lattice system, Whittle (1954) constructed where Sj (t) is a seasonal component, Rj (t) a trend com-
a unilateral representation of a bilateral lattice model ponent, and ýj(t) a noise component. For the noise term
such that the unilateral model and the bilateral model Cj(t), he modeled it in the following space-time form:
generate the same spectral function. For the one di-
mensional case, the unilateral representation of a finite P1

bilateral autoregressive model is also a finite autoregres- C.(i) = -[ak.-L(t) + Ok~j+k(t)]
sion, and the estimates of the parameters in a bilateral k= 2

model can be calculated from the estimates of the pa- - + - +
rameters in its unilateral representation. However, for + L Ilj l / t
the two dimensional case, most of the finite-order bi- q/
lateral lattice models have infinite half-space unilateral - Z[V'kEj-k(t) + Pkqj+k(t)], (1.4)
representations, which are so complicated that nothing k=1

is gained by performing the transformation.

Due to the difficulties of estimating the parameters in J=1,2. n; t=1,2.T
a bilateral model, a great deal of efforts have been made where cj(t)'s are assumed to be independent and nor-
to develop unilateral models for spatial lattice systems. mally distributed random variables with mean zero and
Besag (1972) discussed the correlation structure of half- variance a'(t) = a2(t- 12). The model in (1.3) and (1.4)
space unilateral autoregressive stationary processes for var ie t- t he mode in (. a nds(1.4)were applied to the TOMS ozone data to assess the long
the two dimensional case. Tjostheim (1978) introduced term trends.
unilateral causal (quadrant-type) models for high dimen-
sional lattice systems. For the two dimensional case, In this study, we extend the space-time models for
suppose that } is a random spatial series and {f ,i} satellite ozone and temperature data introduced by Niu
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(1991). Instead of modeling the data for each latitude To describe the covariance structure of this model, we
separately, both latitudinal and longitudinal interactions first introduce the definition of block circular matrices.
are considered. Specifically, let yji (t) be the monthly
average ozone or temperature observations at latitude 2.1 Block circular matrices
I and longitude j. We consider an additive model for The definition of circular matrices was given by Good
{yj (t), t = 1,2,.. .,T} similar to the model in (1.3). (1954).

yj(t) = Sij(t) + Rij(t) + ýjj(t) (1.5) Definition 2.1 An n x n real matrix C is called a cir-

The noise term ýjj (t) is modeled in the following space- culix if it has the form

time form:C tim fom:C={c,...}, i=O, 1,...,n-1; j=0,1,..., n-i1

P1

tj (t) = Zcalki:,6j-k(t) + CiUk26ij+k(t) where the suffices are reduced mod n, i. e. , c-k = Cn-k.

k=1

+ Ot-16-ij + 0 16+1ij For example, a symmetrical circular matrix with n = 5
P2 has the form+ E jt~j (it - k) + li (t) (1-6)

k=1 CO C1 C2 c 2 C1

C1 CO C1 C 2 C2C -c2  el co c, c2I
I=1,....m; j=1,2,...,n; t=1,2,...,T. c C2  c1 CO c C

Again, cg (t)'s are assumed to be independent and nor- Cl C2 C2 C1  CO J
mally distributed random variables with mean zero and
variance al2(t) = o,2(t - 12). We call this model a space- Good (1954) studied properties of circulices in detail.
time autoregressive (STAR(pi, 1 , P2)) model. One of the main properties of the circulices is the follow-

In section 2, we discuss some basic properties of the ing:

space-time models. A definition of block circular ma-
trices will be introduced, , which will be used to de- Lemma 2.1 If C and D are circulices, then so are C+
scribe the covariance structures of the error term ýj. D, C-D, CD and any polynomial in C. Furthermore, if
The stationarity conditions of the spatial process are ex- C` exists, then C-I is also a circulix. Let {v,(C) : s =
amined, and the likelihood function for the parameters in 1,...,n} and {v,(D) : s = 1,...,n} be the elgenvalues
some specific space-time models is derived. In section 3, of the matrices C and D, then the eigenvalues of C + D,
the space-time models are applied to TOMS ozone data. C - D and CD are respr,!tively
The statistical structure of the de-seasonalized and de-
trended series will be studied. Finally, conclusions are v,(C) + v3 (D), v,(C)- v,(D), v5 (C)v.(D)
summarized in section 4.

Now let us examine some special circulices. Define an

2 Some basic properties of the n x n matrix

models 0 0 0 ...... 0 0 1
1 0 0 ... ... 0 0 0

In this section, we discuss basic properties of the W = ............
space-time models in (1.6). For simplicity, we consider ... .........
only the first order space-time model for the error term, 0 0 0 ...... 0 1 0
i.e.,

Then W is orthogonal and circular. Notice that premul-
•tj(t) = Ct1j-1(t) + a12•tdj+(t) tiplying an n x n matrix A by W causes changing the

+ 01- 16-lj + 0 1•t+1 j last row of A into its first row, the first row of A into

+016j(t- 1) + Ij(t) (2.1) its second row, and so on. Hence it is easy to see that
= I,. Since Wn-kWk = In, we have W'-k = W-k.

Furthermore, the matrices {Wk, k = 0, ±1, ±2,..., } are
i = 1,...,m; j = 1,2 ... n; t = 1,2,..., T. commutative. Since the eigenvalues of W, {e123w/n •, =
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1,2,.... n}, are distinct, there exists a nonsingular ma- Lemma 2.2 Suppose that C0 , C1,..., Cp and
trix P, such that D1 , D2 ,..., Dp are some m x m matrices, and

e° 0 0... 0 P

0 e i2v/n 0 ... 0 C =I, ®Co + L(Wk ® Ck + W-k ® Dk).
A = P,,'W Pn = ... ... k=1

S... ... Then

0 0 0 ... ei 2(n-1 )w/n Th n
Thus, (Pal ® Im)C(P; ® Imn)' =

P

P,-lwkp,= A k k ±n. I.&In ®Co+ Z(Ak ®Ck +A -k ® Dk).
k=1

Similar to the definition of circular matrix, we give the i.e., the block circular matrix C is similar to a diagonal

definition for a block circular matrix, block matrix with diagonal block elements
p

Definition 2.2 Suppose that an mn x mn matrix C is Co + s (ei2skr/nCk + e -i2skr/nDk

composed of an n x n matrix of m x m submatrices. We '=o +
call C a block circular matrix if it has the form s = 0, n 1.

C={C,..}, i=O, 1,...,n-1; j=O, 1,....,n-1
2.2 Stationarity conditions for the noise

where Ck's are m x m matrices and the suffices are re- term
duced mod n, i.e., C-k = C.-k.

In order to derive the stationarity conditions for the noise
Notice that in this definition, the submatrices - term in model (2.1), we now express the model of { 1j (t)}

(i = 0,1,..., n - 1; j = 0, 1,.. ., n - 1), themselves may in terms of a vector temporal process. Define
not be circulices. If C and D are block circulices, it is
easy to see that so are C+D and C-D. Let A = (ajk) ýj(t) = [•ij(t),• 2j(t)...,•mj(t)]',
and B = (bjk) be m x m and n x n matrices, respectively. (j(t) = [C1j(t),(2j(t),...,fmj(t)]',
We denote the Kronecker product of A and B by j 1, t 1, T.

A ® B = (ajkB). 1 -01 0 ... 0 0

A general block circular matrix C can be expressed in -01 1 -02 ... 0 0
terms of W as B= 0 -02 1 ... 0 0

C = In®C 0 +(W®Cn-1 +W-1®C1) 0 0 0 ... 1 -Om-1

+ (W2 & Cn_ + W-2 C2) + ... 0 0 0 ... -I,_ 1

.- I _and

for n odd (2.2) A1 = Diag(aii), A2 = Diag(a12), 1 = Diag(¢1).

and Here B, A,, A2 and 4 are all m x m matrices. Now the

model in (2.1) can be written as:

C = In®C0o+(W0Cn-1 +W-'®C) Btj(t) = Ajtj_.(t)+At +l(t) + i(t-1)

+ (W 2 ® Cn- 2 + W-2 ® C 2) +... +j(t). (2.4)

+ (w'' ®OC + (' Cc ) Futher, let

) forneven. (2.3) (BW) = I 0®B-(W A, +W- 1 ®A 2),

From this expression, we can show that if C and D are '(t) = [•(t),•(t),...
block circulices, then so are CD and any polynomial in e(i) = [c'l(t), c(t) .... ,

C. Furthermore, we have the following result:
t =1,2,...,T.
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Then both Q(t) and c(t) are n x m random vectors, and Then

the model in (2.4) can further be written in a form: Aim = A,!m - O(Um + U,).

v(B, W).(t) = (In ® 'D)t(t - 1) + c(t). (2.5) The determinan' of Am is

By Lemma 2.2, the matrix jo(B, W) is similar to a diag- 20+ -(x'4-+

onal block matrix with the diagonal block elements 2-+' ,/X2.-402

A.. = B- e i2slnAl_ - eOshr/nA 2 , det(A,m) = if A,2 #402

Al. -01 0 ... 0 0

-01 A2 , -02 ... 0 0 (m + 1)(A,/2) m

0 -02 A 3, -.. 0 0 
if A2 -= 402

= . . (2.7)

0 0 0 ... Am- 2 ,, -mm-1 and the determinant of ýp(B, W) is

0 0 0 ... AM-. n--

det(Wo(B, W)) = rj det(Am).
s = a, 1,r a fWn 1 ,(o

where i2.3 Likelihood function for the parame-
Al, = 1- alei2uwln- a12e-C2S7ln ters in space-time model

1 1,2,. ,m; s 0,1, n 1. In this section, we derive the likelihood function for the

Therefore if all the matrices {Am, q = 0, 1,. . ., n - 1} parameters in the space-time model (2.1). Define

are invertible, then so is the matrix po(B, W). It is easy w(1) = (p(B, W)C(1) - c(l).
to see that

Furthermore, assume that w(1) is independent of
" -=A- 1 {-(t),t = 1,2,...,T} and normally distributed with

When the matrix W(B, W) is invertible, then the model mean zero and covariance matrix Eo. Let

(2.5) can be written as = [ý(I), (2)',. . (T)']',

(t) = p 1-(B, W)(I, 9 '4b)ý(t - 1) = [(1)'+ w(1)', c(2)', ... ,(T)'',

+•-'(B, W)E(t). (2.6) a = [all, a2,. ... ,amJ',

Therefore {•(t)} is a temporal vector AR(1) process. De- 0 = [O1, 02,.. - 1,

fine T) = [01,02 . . l',
T = -1 (B, W)(I. @4'). E(t) = Diag(u?(t))

Then this vector AR(1) process is stationary if all the and

eigenvalues of of T lie inside the unit circle and 0,1(t) =

Or2. A=IT 9o(B,W), D=UT9(In94b).

In model (2.1), if an =a 1 , a12 -E a2, and 01 =_ 0, Then the model (2.5) can be written as

i.e., the spatial parameters do not depend on latitude, (A D)=

we call the model a homogeneous space-time model. In

this case, define Since the covariance matrix of f(t) is

A, = 1 - ale-2sr/n _ a 2 e-i2su/n Cov(C(t), C'(t)) = In 9 EM,

s = 0, 1,.. .,n - 1 the covariance matrix of c is

and E = Cov(CC')

0 0 0 ... 0 [ E.'(1) 0 0 ... 0
1 0 0 ... 0 0 0 In®0E(2) 0 ... 0

UT 0 10 0 .. ...

0 0 0... 1 0 TxT 0 0 0 ... In (& (T)
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where E*(1) = In ® (E(1) + Eo). Therefore the determi- there are some missing values since the satellite could
nant of E is not observe data over the polar region in the night. For

m T this study, we consider only the ozone data in latitudes

det(E) = det((r(1)) J1[ 171 65S-65N. Our main purpose here is to examine the statis-d d 1 1 tical structure of the TOMS ozone data. The long-term
trend analysis based on this data set will be discussed in

Furthermore, when W(B, W) is invertible, we have another paper.

V = Cov(,ý,') = (A - D)-IE(A' - D')-' For the additive model (1.5), we model the seasonal
component Stj(t) and the trend component R1 2(t) as fol-

and lows.
(A -D)''(A -D). Sj(t) = 3ijo + 3,jl sin(27rt/12) + j2 cos(2rt/12)

Since +01j3 sin(47rt/12) + flj4 cos(4rt/12)

(A- D)'(A- D)j = IJ'(B, W)I 2T and

= Rn[det(Aim)]2 Ri(t)= I.j-I2 t-=1,2. T.

{=0[ For the monthly average TOMS ozone data, we first fit

Hence the additive model (1.5) to the series in each block by the
least squares method. Then using the de-seasonalized

m T and de-trended series
det(V-1 ) = {det[2E*(1)]}- JI ajn(t)j {•(t),I= 1,2,...,;j = 1,2,...,n;t= 1,2, T),

n-det(A )]2IT i.e., the residuals from the simple regreression model
x .( (1.5), we calculate the sampe temporal autocorrelations,

3=0 the sample longitudinal correlations and the sample lat-

The log-l;kelihood function for the parameters in the itudinal correlations for the error terms Rij(t)) in the

model (2.1) 3northern hemisphere and the southern hemisphere, re-
spectively. For a fixed time t, the longitudinal and lat-

i(c=, 0, 0, Elt) itudinal neighbor schemes of {J1j (t), I = 1,2,..., m; j =

n- 1  1, 2 .... , n}, are shown in Figure la and Figure lb. Fig-
T loT(2 T log1det(AT )12  ure 2a and Figure 2b present the sample autocorrelations-2 + 1 = from order I to order 10, where the first order autocorre-

,m T lations appear around 0.5. In fact, the sample autocor-
_ 1 log{det[E,(1)]}_ n E 1 logau2(t) relations of {ftj(t)) decrease toward the high latitudes.

2 2=1 t=2 The iargest first order autocorrelations occur for the se-
1 ries in latitudes 05N and 05S with values around 0.8. The

- •'V-•. (2.8) sample longitudinal correlations for the series {•tj(t)} in

the two hemispheres, also from order 1 to order 10, are
3 Applications of the shown in Figure 3a and Figure 3b, respectively. From

the plots, we can see that the first order longitudinal
space-time models correlations are around 0.9, and the order 10 longitudi-

nal correlations are still very positive. For the sample
In this section, the space-time models are applied to latitudinal correlations in the two hemispheres, we cal-

the TOMS satellite column ozone data, which are over culate only from order 1 to order 5 and present them
the period November 1978 to May 1990, Similar to the in Figure 4a and Figure 4b, respectively. The first and
analysis performed by Niu (1991), we divide the globe second order latitudinal correlations are all around 0.7.
into 101 latitude by 100 longitude blocks, and label the
zonal range 0*N-10*N as latitude 05N, 10*N-20*N as lat- Since the sample autocorrelations, the sample longi-
itude 15N, and so on. The monthly averages for total tudinal and latitudinal correlations are all very positive,
column ozone are formed for each geographic block. In we consider the the following STAR(2,1,1) model for the
each latitude zone, we have 36 longitudinal monthly av- error series {ftj(t)} in the northern hemisphere and in
erage ozone series. For latitudes 75S, 85S, 75N and 85N, the southern hemisphere, separately.
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Figure 1. Longitudinal and Latitudinal Neighbor Scheme

(a). Longitudinal Neighbor Scheme (b). Latitudinal Neighbor Scheme
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Figure 3. Sample Longitudina! Correlations of the Residuals

(a). From Simple Regression (b). From Simple Regression
(Northern Hemisphare) (Southern Hemisphere)
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Figure 4. Sample Latitudinal Correlations of the Residuals
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Table 1: Estimated Coefficients in the STAR(2,1,1) Table 2: Estimated Coefficients in the STAR(2,1,1)
Model (Northern Hemisphere) Model (Southern Hemisphere)

Lat. Estimated Coefficients Lat. Estimated Coefficients

all = 0.402 a 12 = 0.065 all = 0.392 a 12 = 0.068
(0.0048) (0.0048) (0.0049) (0.0050)

05N 01 = 0.055 01 = 0.024 05S 01 = 0.070 01 = 0.036
(0.0021) (0.0010) (0.0024) (0.0012)

a2l = 0.453 a 22 = -0.012 oa21 = 0.443 0 22 = -0.016
(0.0043) (0.0044) (0.0044) (0.0045)

15N 02 = 0.031 02 = 0.067 15S 02 = 0.033 02 = 0.082
(0.0023) (0.0016) (0.0026) (0.0018)

a 31 = 0.487 a 32 = -0.067 a 3 1 = 0.494 a 32 = -0.079
(0.0037) (0.0038) (0.0036) (0.0036)

25N 03 = 0.023 03 = 0.084 25S 03 = 0.023 03 = 0.085
(0.0025) (0.0017) (0.0026) (0.0016)

0 4 1 = 0.536 a 42 = -0.124 a 41 = 0.553 a 42 = -0.132
(0.0028) (0.U029) (0.0025) (0.0026)

35N 04 = 0.013 04 = 0.094 35S 04 = 0.007 04 = 0.078
(0.0023) (0.0016) (0.0019) (0.0013)

a 5 1 = 0.569 a 5 2 = -0.148 a 51 = 0.543 a 52 = -0.107
(0.0022) (0.0023) (0.0024) (0.0025)

45N 05 = 0.002 05 = 0.087 45S 05 = -0.003 05 = 0.070
(0.0017) (0.0013) (0.0013) (0.0012)

a6I = 0.564 a 62 = -0.129 a 61 = 0.522 a62 = -0.060
(0.0022) (0.0023) (0.0028) (0.0029)

55N 46 = 0.001 06 = 0.071 55S 46 = -0.006 06 = 0.037
(0.0012) (0.0011) (0.0010) (0.0010)

a7 1 = 0.558 a72 = -0.084 a71 = 0.516 a7 2 = -0.029
(0.0024) (0.0026) (0.0031) (0.0032)

65N 07 = 0.001 65S 07 = 0.003
(0.0010) (0.0006)

Using the maximum likelihood method, we estimate

ý00 = al1[tj-1(t) + ý,j+i(t)] the parameters in the STAR(2,1,1) model for both hemi-

+ Ck12 [ýI,..- 2 (t) + 1j +2 (t)] spheres, and calculate the residual series {ji,(f)}. The

+91- 1 ,-J,(t) + 0týt+1'j parameter estimates and their estimated standard er-

+ 0),tj (t - 1) + c13(t) (3.1) rors, for the northern hemisphere and the southern hemi-
sphere, are presented in Table 1 and Table 2, respec-

1=1,2,...,7; j = 1,2,...,36; t = 1,2,.. .,T. tively Except for the temporal coefficients in latitudes
45N-65N, all other parameter estimates are statistically

In fact, we have tried to use a STAR(1,1,1) model to fit significant. The longitudinal correlations for the de-
the de-seasonalized and de-trended serics, but found the seasonalized and de-trended series are much stronger
STAR(1,1,1) model could not remove the longitudinal than the latitudinal and temporal correlations.
correlations completely.
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Finally, the sample autocorrelations, the sample longi- Reinsel, G. C., G. C. Tiao, S. K. Ahn, P. Marian, S.
tudinal and latitudinal correlations for the residual series Basu, J. J. DeLuisi, C. L. Mateer, A. J. Miller, P. S.
{ijj(t)} are calculated and presented in Figure 2c, Fig- Connell, and D. J. Wuebbles, An Analysis of the 7-Year
ure 2d, Figure 3c, Figure 3d, Figure 4c and Figure 4d, Record of SBUV Satellite Ozone Data: Global Profile
respectively. From these plots, we see that all the sample Features and Trends in Total Ozone, J. Geophys. Res.,
correlations are around zero. 93, 1689-1703, 1988.

Tjostheim, D., Statistical spatial series modeling, Adv.

4 Conclusions Appl. Prob., 10, 130-154, 1978.

Tjostheim, D., Autoregressive modeling and spectral
Satellite temperature and ozone data have global coy- analysis of array data in the plane, IEEE Transactions

erage, which enable us to assess changes in temperature on Geoscience and Remote Sensing, GE19, 15-24, 1981.
and ozone as a function of location. In this paper, we
extend the space-time models for satellite ozone and tern- Tjcstheim, D.) Statistical spatial series modeling II:
perature data introduced by Niu (1991). In the spatial some further results on Unilateral Processes, Adv. App1.
direction, both the longitudinal and latitudinal interac- Prob., 15) 562-584) 1983.
tions are considered. The space-time models are par- Whittle, P., On stationary processes in the plane,
simonious and the parameters in the models are intu- biometrika, 41, 434-449, 1954.
itively meaningful. After some appropriate transforma-
tions, the space-time models can be expressed as special
vector AR processes. The covariance matrices of the
error terms in the models have a block circular struc-
ture. The stationarity conditions for the error processes
are studied, and the likelihood function for the parame-
ters in the models are obtained. The space-time models
are applied to the de-seasonalized and de-trended TOMS
ozone data. After fitting a STAR(2,1,1) model to the
the de-seasonalized and de-trended series in the northern
hemisphere and the southern hemisphere, respectively,
diagnostic plots show that temporal, longitudinal and
latitudinal correlations are all successfully removed.
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Space-time modeling of simply connected objects:
An application to detection of left ventricular cardiac boundaries

from ultrasound images

Geir Storvik* Paul Switzer
Norwegian Computing Center, Dept. of Statistics

Box 114 Blindern, Stanford University
N-0314 Oslo, Norway California 94305

Abstract acteristics. This can lead to large-scale characteristics of
the model that are undesirable.

Simply connected objects varying over time often oc- th mode pre und e sirailn -

cur n mdicl iagig pobles. tyica exmpl is In some problems of image analysis, a priori infor-cur in medical imaging problems. A typical example is mation is available on the content in the images. An
left ventricular cavity in ultrasound images. Much a pri example that will be used throughout the paper is the
ori information is available both about the shape and the exmlthtwlbeudtrogutheperite
moinformation i s availablthe obecth. aonsructin th an ti problem of automatic detection of left ventricular cavity
motion in time of the objects. Construction of a priorn boundaries from sequential ultrasound images. Informa-
models that take this information into consideration in to nsae ieadmto saalbeadsol

a sutabe frm s achalengng robem.tion on shape, size and motion is available and should
a suitable form is a challenging problem. be taken into consideration.

In this paper we propose the use of a chain representa- There are several ways of building global information

tion of nodes for describing the boundary of simply con- To a model T ovs wa toid o so insideathe

nected objects. Similar representations are widely used into a model. The obvious way to do so inside the

in the recognition part of image analysis (i.e. recognition MRF modely b s to increase the neighborhood system suf-

of handwritten symbols). Use of the chain representation ficiently, but as noted above this may not be practical.

in the image segmentation step makes it possible to han- Representation of objects in an image by a chain (or

dle more global models than what is possible for Markov vector) of nodes that together represent the boundaries

Random Field models without making any strong re- of the objects is commonly used in the recognition step

strictions on the shape of the boundary. Furthermore, of an image analysis. This is usually called a polygon-

the timeaspect may be incorporated by matching succes- representation of an object. In this paper we will discuss

sive boundaries in time. The approach is applied to the the possibilities of using such a representation also in

problem of detecting left ventricular cardiac boundaries the boundary identification (or segmentation) step. We

from ultrasound images. will show that such a representation makes the modeling
easier, and computation easier.

The next section will present the example that will
1. Introduction be used as an illustration throughout the paper. In sec-

tion 3. we discuss the boundaryrepresentation of objects
The Bayesian approach has been widely used to incorpo- in an image. In section 4. we discuss how prior knowledge
rate prior knowledge into the analysis of images (see Be- may be modeled. The computational and algorithmic
sag [2]). Markov random fields (MRF) has been popular aspects of the approach are discussed in section 5.. In
for describing both the prior and posterior distribution section 6. we show results for boundarydetection of the
on the original images. The equivalence between MRF left ventricular cavity. A summary is given in section 7..
and Gibbs fields makes modeling with MRF easy, but the
popularity of MRF models is also due to their generality
and the existence of algorithms like simulated annealing 2. Example
(SA) (Geman and Geman (4]) for finding maximum a
posteriori (MAP) estimates. The example that will be used throughout the paper is a

Although in principle any characteristic may be in- sequence of noisy ultrasound images containing left ven-
cluded in the MRF models, computational considera- tricular cavity. The aim with these images is to identify
tions make it necessary to restrict oneself to local char- the boundaries of the ventricle. The images are taken so

*Supported by Royal Norwegian Council for Scientific and hI- frequently in time that models containing both spatial
dustrial Research, Grant ST.10.12.220289. and time-dynamic aspects should be considered.
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where U(.) = {U(.), ... , Up(-)} is called the energy func-
tion and T is the "temperature". /3 is a vector contain-
ing the parameters in the model while Z is a normalizing
constant, usually unknown because of the huge number
of possible configurations z.

Most of the energy functions we will considered may
be written as

Uq(X) V= (1X;i) (4.2)
iES

where V,(x;i) is a potential assigned to node xi (that
could however depend on other nodes than node xi) and

S". where xIl is the number of nodes in x. Breaking the
Figure 2: Chain-representation of the boundary for a energy-function down to potentials makes the modeling
simply connected object. step easier. Written in this form, the models look similar

to the Gibbs distribution. Note however that the number
of nodes Ilx is stochastic.

in this manner has been considered widely in the object A priori models that have been used for incorporating
recognition literature (Persoon and Fu [11], Zahn and spatial aspects have mainly been concerned about some
Roskies [13]). kinds of local smoothness. However, smoothness may be

Use of such representations in the segmentation step scale-dependent. Figure 3 shows two curves where the
of image analysis appears in the recent literature. For second one is the one that is most smooth at small scale,
a fixed number of nodes, Grenander and Keenan [6] de- but the first one may in many cases fit better to our a
scribes a global, pattern-theoretic model of shape. Fur- priori assumption of the shape of the curve. This simple
thermore, in the active contour approach (Kass et.al [8], example shows that use of smoothness at different scales
Amini et.al [1]) a similar representation is used although may be important.
the shape modeling is quite different. For short-scale smoothness, a natural measure to use

Fixing the number of nodes on the boundary limits is the curvature of the boundary. Since we are assuming
the set of possible configurations. To utilize the resolu- the boundary to follow the pixel-edges, the curvature
tion of the observed image, we would like the boundary may be defined by the angles at the node-points. For
to follow the edges of the pixels. In order to do so, we square pixels, only two angles are possible, 900 or 1800.
will use a representation where the number of nodes are The potential describing the small-scale smoothness is
stochastic. In this representation each node contain, in then defined to be
addition to its localization, two pointers, one to the pre-
vious node, another to the succeeding node. Figure 2 V(X; i) = ae, (4.3)
illustrate this representation, which will be called the
chain-representation. The nodes will be assumed to be where Oi is the angle at node xi while the &'s are parame-
located at the corner of the pixels with distance between ters giving the weights for the different angles. Figure 4
succeeding nodes being equal to the length of a pixel- shows a simulation from a model using this potential
edge. In section 5. we will see that this representation function. We see that the boundary tends to consist of
also makes it easy to calculate shape characteristics and straight lines in the same direction as the edges of the
perform changes on the boundary. pixels. Furthermore it consists of many thin or narrow

tails.
For larger scale smoothness the measure will depend

4. Models on several nodes. In particular, it will depend on
xi-,..•.,I xi. .•., xi+m where xi-k is defined to be the

Energy-functions are usually easier to formalize than kt node before node x and similarly for xi+k. Note
uan that m in this case will be a parameter of the model.

probabilities. We will therefore assume that the a priorf We will propose different measures for large scale as-
model is of the form pects, although better choices exist.

I 1 Boundaries consisting of extended straight lines may,
Tr(z) e- , (4.1) in some cases, be desirable. A measure for straight lines
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Figure 3" Curves with different smoothness and convex-
ity.

Figure 5: Simulation from an a priori model based on
potentials (4.4).

Figure 4: Simulation from an a priori model with small-
scale smoothness (equation (4.3)).

that is directional independent is the correlation coeffi-cient, which is defined by Figure 6: Simulation from an a priori model based on
Fourier descriptors.

V(X;i) = 1 - (4.4)
2m (XT- - ')(xy - y) 4 space. A measure for this could be

where superscript x and y indicate the x- and y- coordi- V(z; i) = d(Zi-.m, xi+m) (4.5)
nates of a node and i" is the average value of the nodes. de(x-m, xi+.)'

Figure 5 shows simulations from this model. In this case where da is a measure of the distance between two nodes
we see that straight lines occur in any direction. on the boundary (i.e the arc length) while de is a measure

Smoothness at larger scales could be defined of the distance between two nodes in the euclidian space.
through Fourier descriptors calculated from Xi-m, Figure 7 shows a simulation from this model.
.•, xi, . , xi+ra. Coefficients corresponding to different The algorithms used for simulation and restoration us-

frequencies characterize curves on different scales. Large ing the chain-representation is described in section 5.. A
scale frequencies may then be used to model large scale crucial aspect in these algorithms is however that the
characteristics. We refer to Storvik [12] for further de- ratio 7r(x')/7r(x) is possible to calculate in reasonable
tails on this measure. Figure 6 shows a simulation based time for configurations x and x' only differing at a small
on this model. In this case more complicated structures part of the boundary. So far the energy-functions we
occur with smoothness perhaps more appealing, have considered have been built up by local measures,

All the above models produce images with narrow fea- although on a larger scale than usually used. This makes
tures. The next measure we will propose is motivated by the above ratio easy to calculate. Global measures could
avoidance of narrow features. A property of narrow fea- however be considered if either 7r(x) or 7r(x')ir(x) is eas-
tures is that nodes having a large distance between them ily calculated. A measure falling in this class is one that
on the boundary can be near each other in the euclidian compares the length of the boundary with the volume of
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Figure 7: 'imulalzon from an a prior: model avoiding Figure 8: Simulation from the a priori ?modcl c,,uparzny
narrow tails, length of boundary with volume.

the object: A variant of model (4.8) that gave good res•ults• iii the.

U~)=(length of boundary)A 46 experiments was

U~) Volume of object (6

For A =2, this energy-function is minimized for the V(xi) =max(O. d(zd~t);t - I) - K) -t

object being a circle. Figure 8 shows a simulation from rnax(O, d(x2(t); t+ 1) - K) ti9)

this model with A = 2. We see that in this case the fosmevlefK. iinlagwihttohsp-

shae wlnof unt the obet tsmuhmorpe-yaing globally. Co- tential, this model essentially gives the rest riction of the.

We illnowtur tothetim-dyami asect. Cn- distance between the boundaries at each point to, be, je.-
secutive images containing the same object taken over ta <
tilie, should indicate some smoothness of motion. First Soemtnishwvrnonohepee. otr

of al, inc itis he ameobjet tat s oseredone model could therefore be that motion should he smooth
would expect it to look quite similar in all the images. I htcs h oeta ol eseiidb
Secondly, assuming the curve is moving continuously
over time, small intervals be2ween recording of the im-
ages should indicate small changes in the curve. For the I~i
time-dynamic models that will considered, we will as-
sume that no translation or rotation has occurred be- I~d(x,(t);t - 1) -
tween the recordings. The motion is assumred to be 1 )±dx+~)t-l]I-
increase/decrease of the object and/or motion of small-i 2tdz~~,tI ~zlt; )[
parts of the curve. IId(xi(t); I + 1) -

The time-dynamic models that will be considered, will1
be based on potential functions depending on the dis-_tdztjr +1)+dxlt; +)]!410
tarnce from points at one boundary to another boundary. whr .1 ad retepviuanluceig
Definewhr - adx+arthprvosatsuceig

d(~r(t);1') 4.7) node of x,, respectively.
A further possibility could be that motion should he

as the distance from node x, on the boundary at time t at an approximately constant speed. This could be, mod-
to the boundary at time I'. A simple model could be eled by

V(x,) = d(z 1(t);t- 1)+Vz)=
d(z,(t);tI + 1). (4.8) IId(z,(t); I - 1) - d(x,(t);tI + 1)11. (4.11)

This potential will try to minimize the distance between There are however some problems concerning this ap-
succeeding boundaries. proach. First of all it is not obvious how to define the
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t 5. Computational and algorith-
mic aspects

Given the model and the data, simulating from the pos-
terior distribution or finding the Maximum A Posterior
(MAP) solution is usually desirable. The huge number
of possible configurations makes it however impossible
to search through all possibilities for finding the MAP
solution, while the constant Z makes it difficult to sim-
ulate from the distribution. For MRF-models, iterative
algorithms based on the Gibbs sampler or the Metropo-
lis approach (Geman and Geman [4]) has been used for

t solving this problem. The use of these algorithms de-
n mini- pend much on the simplicity of calculating the ratios

Figure 9: Example of matching nodes defined by 7r(x')/lr(z) or similarly U(z') - U(x) when x' is similar
mization of distance without restrictions, to z.

We will follow a similar approach by constructing an
distance d(xi(t); t'). Secondly, if the distance is prop- algorithm based on simulated annealing where at each
erly defined, it has to be easy to calculate in order to be step, x may be changed to an z' which is "similar" to
practical to use in the iterative segmentation algorithm. x. For MRF-models, x' being similar to x meant that x'

We have chosen an approach where each node on the and x only differed in one (or a few) pixels. In our case,
boundary have a corresponding or matching node on the we will define z' and x to be similar if they only differ in
other boundary. Assume zi(t), i E St are the nodes on a small part of the boundary. Note that by only consider
boundary t. Let mi(t'; t) be the index for the matching such changes, changes of pixels giving configurations that
node on boundary t'. Then the distance could be defined are not simply connected, will not be considered. This
by makes the algorithm much more efficient than algorithms

d(xi(t);t') = (Izxt) - mi(t';t)II. (4.12) searching through all pixels in the image.

There is still however the problem of how mi(t'; t) should Using energy-functions built up by locally dependent

be defined. One choice could be to define it as the node potentials, the potentials in the two configurations will

on boundary t' which minimize (4.12). There are how- be equal for most of the nodes. Since by (4.2), the

ever some drawbacks with this definition as illustrated energy-function is the average of the potentials and the

in Figure 9. We see that if xj(t) is a node between zx(t) number of nodes are stochastic, the feature of MRF's

and Xk(t) on boundary t, this will not necessary imply that most of the potentials will vanish in the differ-

that m,(t';t) is a node between m(t';t) and rnk(t';t) on ence U(z') - U(x) will not apply in our case. How-

boundary t'. Such a feature would however be natural ever, utilizing recursive formula's for calculating means,
assumption. We will therefore define matching nodes as U(x') - U(x) is easily computed.

follows: Simulation or optimization is then performed by using

{mi(t'; t), i E St} are defined to be the matching nodes a Markov chain having as its stationary distribution the
on boundary t' corresponding to the nodes on boundary desired solution. The specification of the transition ma-
t if {mi(t'; t), i E St } minimize trix P for the Markov chain is done by first specifying

a transition matrix Q which gives the possible transiti-
Ejj II(t) - mi(t'; t)jj (4.13) ons from a configuration x. We have chosen Q such
iIs, that a transition from x to z' is possible if the bound-

ary is moved such that a limited number of pixels have
subject to changed from being inside to outside of the boundary or

mi-I(t';t) < mi(t';t) < mi+I(t';t). (4.14) vice versa. Furthermore, the pixels that have changed
are assumed to be connected.

where < in this context means before or equal to on the If the position on the boundary at which the change
boundary. can occur is selected at random, use of transition-
The matching nodes then has to be found by an ap- probabilities as suggested in Hastings [7] for simulation
propriate optimization algorithm. Such an algorithm is resu!t in that the reversibility condition 7r(x)PP,., =
described in Storvik [12]. ir(z')P.,,. holds, implying convergence is ensured. Fur-
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thermore, simulated annealing techniques can be used ,

for optimizations.
Similar to the visiting-scheme used by Geman and Ge-

man [4], a more appealing scheme would be where the
changes on the boundary is done in a cyclic order along
the boundary. In this case, the time-reversibility condi-

tion is no longer fulfilled, however convergence is possible
to show also for this approach, see Storvik [12].

The time-dynamic models considered in section 4. cre- Figure 10: Restoration of first image using an a priorz

ates a problem. The matching nodes are found by mini- mnodel with small scale smoothness.

mizing a global measure. When a boundary is changed,
new matching nodes should therefore in principle be cal- part of the left ventricle and also with the right ventricle.
culated. Such an approach would however be too time- All the images have problems with the artery at the top
consuming. We have therefore applied an approxima- of the images, which is not surprising since the bound-
tive algorithm where for each change matching nodes ary between the left ventricle and the artery is almost
are updated only for the nodes that are affected by the invisible.
change. A global updating of the matching nodes are The use of the global measure comparing boundary
then done after every, say, N iterations. Of coarse, us- length and the volume with A = 3 (equation (4.6)) gave
ing such an approximative algorithm, convergence is no the result shown in Figure 12. We see that the restora-
longer guaranteed, but experiments have shown the ap- tions are quite similar to the ones given in Figure 11.
proach to work quite satisfactory. Finally, Figure 13 shows the restoration using a model

incorporating both the spatial and temporal aspects. For

6. Results the spatial aspect, the model comparing length of bound-
ary with volume (equation (4.6)) was used, while for the

We will show results for restoration of the images given in temporal aspect, the potential given in (4.9) with K = 3

Figure 1. All the energy-functions described in section 4. was chosen. These two energyfunctions were combined

were tried, linearly (see equation (4.2)). A much better result is ob-

For all the results shown, a simple energy-function for tained with no confusion of the inside muscles or from

the data was used: the right ventricle. Some confusion is still present at the
upper part of the images due to the artery but is much
less than that for the restorations based only on spatial

f N(tti,o'i) for pixel i inside boundary (6.1) aspects.
Y' I N(p0o, o,,) for pixel i outside boundary

The parameters ui, ai,,Ao, 00 were estimated from an- 7. Summary and discussion
other image from the same sequence as those shown in
Figure 1. We introduced an approach to boundary detection of

The model incorporating small scale smoothness is the images consisting of simply connected objects. The ap-
most simple and requires least computation time. Fig- proach is based on a polygon representation of the ob-
ure 10 shows the best result from a selection of different ject, which makes it possible to model aspects on a larger
parameter sets using the small scale smoothness model. scale.
Only the restoration of the first image in the sequence By defining distance between boundaries at succeed-
given in Figure 1 is given. The boundary has characteris- ing images through matching nodes, the temporal aspect
tics much like the one given in Figure 4 with many thin was also incorporated into the approach. This approach
features. The result is far from satisfactory and large could also be used for images recorded at the same time
scale models were therefore necessary. but at different levels (i.e. MR-images).

Among the more large scale models, the model avoid- Simulation experiments and restoration of ultrasound
ing narrow featurs performed best. Figure 11 shows the images containing left ventricular cavity show promising
result for this model with m = 15. Large improvements results. Further work should however be done on finding
are made compared to the result in Figure 10, but the suitable energy-functions. The algorithm we used con-
boundaries still have some unappealing characteristics siders only small changes at each iteration step. Algo-
at the top of the images. Furthermore, the first images rithms allowing larger changes are expected to converge
have some problems with the muscle at the lower right faster.
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Tools for managing the S object
0. Cherkaoui* and R. Ferland

Ddpartement de mathdmatiques et d'infonnatique,
UniversitW du Qu6bec k Montreal

environment. The paradigm of the object-oriented
Abstract programming is presented in the section 3. Two

main advantages of the object-oriented
Like most object-oriented frameworks, New programming, the reusability and the persistence

S allows: (1) a natural decomposition of are illustrated for the S environment. Section 4
applications, (2) software modularity, (3) easy reuse describes the tools that have been developped to
of software components written for previous manage the S objects. Section 5 presents the
applications. One of the advantages that the object- conclusion and discussion on further work.
oriented framework of S offers is a high portability
of code and reusability of object in other 2 Motivation
environments. To help the task of users in the
development of systems, we have built a set of We start with the justification and the
tools for managing S objects. From a basic object, motivation for this work.
we construct a hierarchical library of others objects.
In order to manage any object, we have to deal with 2.1 First motivation
its library. The tools for managing the S objects
allow portability between systems and the creation The S approach is useful for orgarizing
and archiving of object libraries, functions and data objects by projects. But this

approach takes less organization on the part of the1 Introduction user and it can waste space by saving unneeded
objects. For each project, the designer builds a lot

In the recent years, new software systems of objects. Most of the time, he has to reuse part of
have been developped on a new programming an object which he already developped for other
paradigm: the object-oriented approach. S (Becker, projects. One solution is to create a library of
Chambers and Wilks,1988) was the fisrt interactive objects. It is important to create a coherent library
program for data manipulation and display and for for a designer to share objects between projects.
performance of a number of statistical calculations
which use the object-oriented approach. Lisp-Stat
system (Tiemey,1990) is also a new effective Project A Project B
platform for a large number of statistical
computing tasks and is strongly influenced by S.

The object-oriented programming promises
far-reaching improvements in how people design,
develop, and maintain software by offering long- Dkeawy

term solutions to the problem of lack of portability D, o
and reusability. In an object-oriented enironment, unction - rum•n
like New S, objects are generated by the users. Inaccordance to the reusability and the portability, we
will address the questions:

How to manage an object from the Fig. I: Managing object by project

developers to users? 2.2 Second motivation

* How to make a library from an object? The designer builds a model and generates a

library of functions S. When creating its own
This paper is organized as follows. In section application, a user bases his application-oriented

2, the motivation of the work is illustrated by two model on the general model and reuses objects from
examples of practical situation in a programming the library already created by the designer. It is

* Work supported by NSREC Grant
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important to export a library of objects from the
desioner to the user. Classes can be organized into a hierarchical

inheritance structure. A subclass inherits attributes
Designer User and methods from a superclass. This is the ability

to pass along class properties from one class to
another. The resulting subclass has all the

Model Application properties of its parent, wl.ich is the superclass.

4 Reusability and persistence

Software model • Software One of the goal of the object-oriented
application programming is to reuse objects. Reusability is the

ability of software products to be reused, in whole
or in part, for a new application (Biggerstaff and

library of librtaryof Perlis ,1989).
functions~~ Sr~'ctin One of the dreams of the statistical designer

community is to have widely used libraries of
Fig. 2: Portability between the designer and the user reusable software. Object-oriented programming

systems, languages, and architectures have brought
3 0this dream closer. Common-sense organizational

Object-Orinted Programming principles like reusability and interchangeability are
still exception rather than the rule. Indeed, it is

Object-oriented programming is often difficult to extract element of software from one
referred to a new programming paradigm (Budd project that can be easily used in an unrelated
,1991). Other programming paradigms sometimes project, because each portion of the code has
mentionned include: logical programming (Prolog) interdependency with all other portions of the code.
or functionnal programming. Object-oriented This interdependency may result of data defining or
programming views a program as a collection of may be functionnal dependency. It is important to
largely autonomous agents called objects. Each be able to manage the objects by taking into
object is responsible for a specific task. An object account this functionnal dependency. One of the
is an encapsulation of the Data values (Objects S) dreams of the statistical designer community is to
and Operation (Methods, Object Function). Some have a wildly used libraries of reusable software.
important features in object-oriented programing are Object-oriented programming systems, languages,
described below. Two of these features, reusability and architectures have brought this dream closer.
and persistency will be described in the next Common-sense organizational principles like
section. reusability and iTterchangeability are still exception

rather than the rule.
Messages and methods

Persistency is the ability of an object to
An action is initiated in obiect-oriented continue to exist outside of the execution time of

programming by the transmission of a message to programs that manipulate the objects.
an object responsible for the action. The object to
whom the message is sent perform some method to During a S session, the designer creates and
satisfy the request. manipulates object. It may be necessary to keep

these objects between sessions. The idea of the S
Classes and instance approach is that objects assigned at the top level

become permaner, and can be accessed during later
A class is a template used to create new sessions. S allows multiple directories in a search

objects. A class uncompasses both data and path. This is useful for organizing functions and
methods. All objects are instances of a class. All data objects by projects. The S approach takes less
objects belonging to the same class use the same organization on the part of the user and also
methcds in response to similar messages. The prevents important values from being lost by
definition of the class determines for which mistake. However, it can waste space by saving
messages the object has a method. unnecessary objects. Ideally, programs would just

create objects as they please and little by little,
Inheritance objects that are not used would vanish into far-away

abysses. But it isn't so. Therefore, we need a
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storage and retrieval facility for the objecL displayed on the screen.

Since the call of the different object functions We now describe the commands. There are
is hierarchical, the most suitable and natural way to eight commands that a user can call within a S
store the objects in S is to use a hierarchical session. In the description below, fun and dir are
structure. The hierarchy of a S function is the list character strings giving the name of a function or a
of all the other functions called directly or indirectly directory while list is a character vector containing
by the S function. the names of S functions or directories.

Object-oriented systems also need an efficient 1. Commands to organize
garbage collector. A functionality of such garbage
collector is the dynamic allocation of data * mkdirfun(fun,dir)
objects(Hayes,1991). Those few objects which
survive for a while, however, are likely to survive mkdi rfun creates a function subdirectory
considerably longer. dir within the current S . Data directory to

contain the S function fun and its hierarchy.
5 Commands The directory is added to the S search list.

We now describe some commands which * rmdirfun(list)
partially solve the problems addressed above. The
commands may be divided into three groups For each directory in list, rrmdirfun
depending on whether they: checks for its existence and if so, the directory

is deleted along with its content. The directory
1. help the user to organize his S functions, is also removed from the S search list.

2. allow users to exchange S functions, or • mvfun (fun, dir)

3. perform some cleaning tasks. mv fun moves the S function fun and its
hierarchy to the function subdirectory di r.

The commands are mainly based on a When di r does not exist, it is created.
program called mnklist which gives the hierarchy
of a S function. By that, we mean the list of all the lsdir (list)
other functions called directly or indirectly by the S
function. The kind of list produced by mklist lsdir perform a task similar to the standard
depends on whether it is used by the user to S ' iction is. For each function directory in
understand the function structure or by another list, the names of the functions in the
command to perform a specific task. mklist may directory are put in a character vector. The
be called from the Unix shell or in a S session but value returned by lsdir is the list of all the
the syntax is different as the case may be. When character vectors. When 1 sdi r is called
mklist is called from the shell, the synopsis is: without arguments, it produces a character

vector of all the function subdirectory names
mrklist -LaIdlhlw -o S function ne within the current S . Data. This is useful

if one wants to add these directories to the S
The option a, d, h or s refers to the kind of search list.

list the user wants: alphabetical (a), without
redundancy (s) or showing the structure of the 2. Exchange commands
hierarchy in depth (d) or horizontally (h). The list
is written on standard output. In a S session, the * export (fun, archive,type="t")
calling sequence is:

export creates an archive file for S
mklist (fun, type="d'') function fun. The archive contains the

source code of fun and its hierarchy. Each
If type is "w" or "a", the value returned by function of the hierarchy has its source in a

mnklist is a character vector containing the separate file/of the archive. The lattemr may be
names of the functions in the hierarchy of fun. of type tar (type="t") or cpi o

(type="c"). The archive file is created in
In the other cases, the hierarchy's structure is the current Unix directory from which S is
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called. A user can retreive its contents using of software systems is that they are used for a
the import command below, specific application and in a particuliar context but

they cannot easily be reused in another context.
import (archive, dir) Considering the time it takes to build an entire

system from scratch, the approach presented
import opens an archive file previously provides a good solution to the problem of code
created by export and puts its content in the that are used only once and then discarded when the
function subdirectory di r. application becomes obsolete.

3. Commands to clean The libraries of objects and the associated
tools for managing the objects is an infrastructure

"* drop (list) which can be used by organizations to help them
structure software and to reuse software within a

Each function in list is deleted along with project or between projects. In large organizations,
its hierarchy. there may be several libraries of reusable software.

" keep (list) We plan to enhance the various tools that
were developed for managing S objects and provide

Every function of the current S .Data is an efficient real-time garbage collector for the
devter fucettiossn o th crent S archiving system based on the lifetime of objects.
deleted except those lied d in list which are We will also extend the tools for managing New

New S objects (Chambers and Hastie, 1991).
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A Selection of Utilities to Facilitate Data Analysis Under UNIX

Lionel Galway and Daniel Relies,
RAND, Santa Monica, CA.

include classics such as grep, awk, and sed, and newer
Abstract programs such as perl. These programs provide powerful
The steadily increasing power of desktop UNIX 1  capabilities for manipulating textual data. However, most
workstations and the vast improvements in local mass of these utilities have the drawback that they are designed for
storage capacity have made it feasible and inexpensive for free-format data, i.e. the fields within a record are delimited
researchers to locally store and analyze large data sets. In the by a specified character, whitespace (tab or space) by default.
course of several policy analysis projects at RAND which Most of them can handle column-oriented data, but at the
required substantial data analysis of a variety of data sets, we expense of somewhat clumsy syntax and only by column
developed a set of utilities which work well with standard number. This puts the burden on the analyst of being forced
UNIX utilities to facilitate such analyses. to translate variable names into column numbers whenever

The first set of tools supports operations on column- any manipulations need to be done on the data. In addition,
oriented data. Such data sets are very common, particularly different UNIX utilities use different conventions for
as extracts from other data systems. UNIX tools such as counting columns and specifying column ranges.
awk, grep, sed, etc. do not handle such data gracefully, since Unfortunately, many data sets (particularly those which
they are oriented toward data with specific field separators. are extracts of data maintained on mainframes) are column-
We describe three simple filters which, together with a oriented. We built a set of utilities which are called from
simple text dictionary describing the data, provide a the command line, and allow the user to perform operations
researcher with convenient, easily-used facilities for sorting, on fields denoted by names, rather than numbers.
subsetting, and extracting specified fields from column- The cornerstone of these programs is a dictionary (an
oriented data sets. ASCII file) that maps field names into column positions.

We also present two tools which are useful for Such a dictionary can be prepared with a simple text editor
exploratory data analysis. One provides a succinct picture of when a data set is acquired and then provides an error-free
the values taken by each variable in a single data set, while way of translating a field name into the corresponding
the other provides a useful way of comparing two related columns. This dictionary provides the foundation for all of
data sets (e.g. successive years of data). the utilities discussed in this paper.

An example of such a dictionary is shown below for a
Introduction set of repair data from a U.S. Navy depot.

RAND conducts policy research in a wide variety of
areas: military logistics, health care economics, date i 1 5 date of action
demographics, etc. Much of this work makes heavy use of nsn C 6 17 ntl stock num
data analysis. Like most of the rest of the statistical fsc i 6 9 fed stock id
community, we have moved most of the analysis that was niin i 10 17 ntl inven num
previously done on mainframes to desktop workstations acttyp i 21 22 action type
running UNIX. In the process we have developed a number qtytrans i 40 46 quantity
of utilities to make our work easier in the new environment
and to take advantage of low-cost, abundant computer power. The first entry in each line of the dictionary contains the

In this paper we present two sets of utilities. The name of the field, followed by the field's starting and ending
utilities in the first set are designed to manipulate column- columns, counting from one. (The "i" or "c" indicates
oriented data in the UNIX environment (column-oriented data whether the field is numeric or character, and is used by
defines variables by column position in each record). The some other programs which also access this dictionary).
second set of utilities is useful for exploring new data sets. Any characters beyond the ending column on each line are
Our aim has been to make tools which are simple and easy ignored and can be used for comments. Note that the
to use, but which can also be combined to be very powerful. definition of fields may overlap: the national stock number
In this paper we will emphasize the functional aspects of the (nsn) may be accessed as a whole or as the federal stock class
utilities, not implementation details. (fsc) and national item inventory number (nin).

We have found that three simple utilities provide great
Column-oriented data in UNIX flexibility and power. Stawk extracts the contents of a

Most users of UNIX are familiar with the powerful set group of selected fields for each record and writes them to
of text utilities which have been developed in UNIX. These standard output separated by a single space. The output of

slawk is therefore in an appropriate form to be used by the
usual field-oriented UNIX utilities.

1 UNIX is a trademark of AT&T/Bell Laboratories.
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The syntax of the command is illustrated below:
Note that stawk is informed that the data set is standard

stawk navy.dct navy.dat fsc date acttyp input by using "-" as the data file argument (a standard
UNIX convention).

The first two arguments are the dictionary and data file, These three utilities are written in C and use only the
while the remaining arguments are the selected field names. standard C libraries. Stawk and stgrep can therefore be
This syntax is common to all of the utilities, ported to almost any computer with a C compiler. Stsort is

In addition to explicit field names, stawk interprets an similarly portable, but calls the UNIX sort command to do
argument of "#" as indicating the selection of the entire the actual sorting. If it were to be used on another platform
original record. To allow more flexibility in the output of an appropriate sort command would have to be constructed
stawk, the whitespace between fields can be suppressed by from the arguments.
appending a "-" to individual field names.

Stgrep selects or excludes records based on the value of Exploring Data Files: One-digit Frequencies
a single field After acquiring a data set, an analyst usually wants to

check out the variables of interest, for example to make sure
stgrep {-v} navy.dct navy.dat fsc that the codes are the ones expected, and that there are no
goodfsc coding problems or extraneous characters. Typically, a list

of all values for each field is not useful; for continuous
The argument after the data file indicates the field whose variables such as income the list could be very lengthy.

values are to be specified; only one field can be so Instead, a rough idea of the distribution of values for each
designated. The fourth argument is taken to be a file of field is needed.
possible values for fsc, or, if no such file exists, is One-digit frequencies offer a useful tradeoff between
interpreted as a single value for fsc. The optional "-v" detail and conciseness. The idea is simple: first, for each
switch is used to indicate that stgrep should exclude records. field within each record, replace the actual value by a code
All records meeting the criterion are written out (or excluded) which retains only the most significant digit (e.g. 01025
in their entirety to standard output (logical ands can thus be becomes 01xxx, 00203 becomes 002xx). Then, for each
constructed by piping several stgreps together). field, count the number of times each coded value appears in

Stsort sorts a data set by field: the data. For numeric fields, this gives a rough histogram
of the values with breaks that are evenly spaced on a

stsort navy.dct navy.dat niin+ date+ logarithmicscale.
acttyp- The implementation of one-digit frequencies is also

simple:
Stsort is an interface to the UNIX sort command and

simply translates the field names into appropriate column fdigit navy.dct navy.dat I sort luniq -c
arguments for sort. "+" (optional) means that fields should
be sorted in ascending order, "-" denotes descending order. For each field, in each record, fdigit writes out a single
Note that if fields overlap in the dictionary the stsort line consisting of the field name, and its coded value:
command may be nonsensical.

The primary use of these commands is to assist ir. the ...
preparation of data sets for further work. In addition, they transtyp lx
can also allow some simple computations to be performed qtytrans 0 lxxx
quickly. For example, the following command uses stawk ....
to count the number of times each part appears in the Navy transtyp 2x
database, after stgrep has selected a subset of records by qtytrans 02xxx
federal stock class (fsc): ...

stgrep navy.dct navy.at fsc goodfsc I The sorting and counting are done by the UNIX sort and
stawk navy.dct - niin I sort I uniq -c uniq commands to produce (with a little followup

formatting) a one-digit frequency table. Displayed next is a
The result: part of the one-digit frequency table for the variable qtytrans

from the Navy data:
49 00719403

4 00719404
18 00751999
48 00752227
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qtyt rans 40. columns have the form of a 2 x K contingency table, where
qtytrans 00000 127. K is the number of different levels of outlier in both files.
qtytrans 00001 47115. Now we can formulate the question "Is there a change?" in a
qtytrans 00002 4213. slightly different way: "Are the proportions equal?" This
... new question is easily addressed by adapting standard
qtytrans O001x 3752. methods from contingency table analysis.

We construct our measure of change in three steps:
Qtytrans indicates how many parts were requested by (1) For each of M variables in the data set, construct a 2

repair workers in a single order. Somewhat surprisingly, x Km contingency table of counts (Km varies from field to
most of the orders are for only a single unit. We also note field) and calculate Pearson's chi-square statistic for the
that some of the orders have blank or zero quantities; these model of equal proportions (independence). 1

records should be examined more closely. (2) Normalize each chi-square statistic by its "degrees
One-digit frequencies are most useful for numeric of freedom", Km-i. This is done to avoid "overvaluing"

variables such as qtytrans which have many different values, variables with many different codes.
However, for alphanumeric codes with relatively few values (3) Rank the variables in descending order by the chi-
they can also be informative, square statistic. The variables which deviate most from

equal proportions will be at the top of the list.
Exploring Data Files: Statistical File In the Medicare data outlier ranks number two in the list
Differencing of variables ordered by chi-square statistic, with a chi-square

Research projects often find themselves in the .ituation of 257616 (number one was a year variable, with a value of
of receiving several sets of similar data. In multi-year 475178, while number three had a value of only 35380). To
research projects, for example, data may become available better illustrate just how much the distribution across codes
quarterly or annually. In other cases a corrected data set may had changed for outlier from 1988 to 1989, the table below
be provided some time after the original one is obtained. In reproduces the one-digit frequencies from the table above,
all of these situations the question arises of how the new with the addition of the fraction of records in each year
data set differs from the old one. Dates should certainly be which fall into each code category, expressed as a percentage
different in an update data set but coding conventions might of the total records within each year:.
also change or new features of the data may reflect
exogenous events such as the introduction of new var 1988 1989 9
regulations. When a data set consists of tens or hundreds of
variables, it becomes important to rank the variables by outlier 30162 2 1342105 65
their amount of change and then focus attention on the ones outlier 0 1677259 86 593796 29
which have changed the most. outlier 1 57387 3 38061 2

One approach to this problem is to compare one-digit outlier 2 21444 1 10975 1
frequencies. Below, segments of the one-digit frequency
outputs for the variable "outlier" from two successive years
of Medicare payment data are combined in a single table: Further investigation of the data and its sources revealed

that there was a change in the usage of the first two values
var code 1988 1989 of outlier (blank and 0) and also that new Medicare policies

reduced the number of patients for whom various types of
outlier 30162 1342105 outlier payments were made.
outlier 0 1677259 593796
outlier 1 57387 38061 Summary
outlier 2 21444 10975 Researchers at RAND have made use of all of these

utilities. Stgrep, stawk and stsort have been used for data
preparation by a number of projects and with a wide range of

Outlier indicates whether or not Medicare paid more data set sizes. One-digit frequencies and statistical file
than the "standard" cost for a patient's condition. It is a one- differencing take advantage of very cheap workstation-based
digit code and so the one-digit frequency codes are just the computing to compute exploratory statistics that help
value of the code itself. The counts certainly appear different researchers get insight into their data at the beginning of
from 1988 to 1989, but we should take into account such analyses.
things as the relative number of patients in each file. Also, All of these programs are simple in concept. Stgrep,
we have no way of knowing whether outlier has changed stawk and stsort are written in C; one-digit frequencies and
more or less than other variables in the data.

The key to measuring the change for outlier between
1989 and 1990 is the recognition that the two right-hand 1See, e.g. Fienberg, S.E., The Analysis of Cross-classified

Categorical Data, MIT Press, 1981, p. 40.
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statistical file differencing are implemented by FORTRAN-
77 programs and UNIX shell scripts. Source code and
scripts are available from the authors via email to
LioneLGalway@randorg.
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Design of an S Function for Robust Regression
Using Iteratively Reweighted Least Squares

Richard M. Heiberger Richard A. Becker
Temple University AT&T Bell Laboratories

Philadelphia, PA 19122-2585 Murray Hill, NJ 07974
rmh@astro.ocis.temple.edu rabOresearch.att.com

Abstract tion. The weight functions most commonly used in the
literature are listed in Table 1. The definitive weight

We develop a set of S functions for robust regres- function has yet to be determined. Computational tech-
sion using the technique of Iteratively Reweighted Least niques and weight functions for robust regression are dis-
Squares (IRLS). Together with a set of weight functions, cussed in Coleman, et al (1980), and in UREDA Chapter
function rreg is simple to understand and provides great 11 (Hoaglin, Mosteller, and Tukey 1983).
flexibility for IRLS methods. The discussion focuses on To begin, we show a simplified version of rreg:
the programming strategies adopted to achieve the twin
goals of power and simplicity. rreg.1 -- function( x. y, w-rep(1. nrow(x)),

init-lasit(x, y, w. int-FALSE)$coef,
method-wt .bisquare, iter=20,

1. Introduction acc'10*. Machine$single. eps .5

Least squares regression is sensitive to outlier points.
A single point that appears to be different from the oth- irls.delta -- function(old, new)
ers in a data set may have an inordinate influence on sqrt( sum((old - new)-2)/ sum(old'2) )
the estimated regression coefficients. Techniques that at-
tempt to minimize the effect of outlier points are called
robust (Huber, 1972, 1981). Section 2 describes one im-
portant class of techniques, Iteratively Reweighted Least coef *- mit
Squares (IRLS). Section 3 presents a very general S func- coe - -xinit
tion, rreg, for IRLS that allows the user complete flex- resid 4- y - x %*• coef
ibility in the choice of weight function. The rreg func- for(iiter in 1:iter)
tion permits an unlimited number of functional forms previous - resid
with an unlimited number of tuning constants. Section scale 4- median(abs(resid))/0.6745
4 discusses some of the programming strategies adopted w - method(resid/scale)
to achieve the twin goals of power and simplicity. temp l1fit(x, y, w, int-FALSE)

resid temp$residuals
2. Iteratively Reweighted Least Squares coef 4- temp$coef

convi -- irls.delta(previous, resid)
The method of Iteratively Reweighted Least Squares if(convi <- acc) break

is composed of an underlying weighted least squares }
fit placed inside an iteration loop. At each iteration if(convi > acc)
we carry out a least-squares fit using a set of weights, warning(paste("failed to converge in",
one weight per observation, constructed by a specified iter, "steps"))
weighting function from the current residuals. (Initial list(coef-coef, residuals-resid, w"w)
weights are based on residuals from an initial fit, gener. }
ally unweighted least squares.) The iterative process ter-
minates when the residuals are unchanged on two succes- This executable S code is very similar to the infor-
sive passes. Several alternate convergence criteria may mal description at the start of the section. It defines a
be used instead. local function, iris.delta, to determine convergence,

IRLS depends heavily on the choice of a weight func- computes initial coefficients and residuals, and then re-
peatedly computes new weights, uses them to perform a
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weighted regression and tests for convergence, frame - fr)
We will initially use rreg. 1 with the bisquare weight if (converged 11 method.doing.bisquare)

function defined by {
w 4-- wt.bisquare(u)
if (methd.-doing.bisquare)

W(u) 1 < {ull 1 <_1 assign("method.exit". TRUE.
frame - fr)

and the S function else
assign("method.doing.bisquare",

wt.bisquare 4- function( u, c-4.685 ) TRUE, frame - fr)

U - abs(u/c) else w -- wt.huber(u)

w ((M+ U) * (1 -U))'2 w
w[U > i] - 0
w Allowing the weight function to influence convergence

} decisions requires mild cooperation from the rreg func-
tion. We arrange for this cooperation by having rreg
use two objects to control convergence checking. Each
of these objects exists in the frame (set of local objects)

We now generalize rreg. 1 into the function rreg dis- owned by rreg. The weight function can create objects
played in the appendix. A more extensive discussion in rreg's frame by using the assign function rather than

appears in Heiberger and Becker (1992). The complete the normal assignment arrow operator.

function is distributed with the August 1991 and later A weighting method can force iterations to continue

releases of S. after rreg has determined convergence by placing a log-
ical object named method, in. control in rreg's frame.
As long as method. in. control is TRUE, iterations will

3.1 Convergence Control continue (up to the maximum number specified in rreg's

The first step of generalization is to introduce more iter argument).
complicated weighting functions. The default weight A method can also decide by itself that convergence

function, wt . default, is defined as Huber weights until has occurred-rreg terminates execution if the method
convergence, then two steps of bisquare weights. The sets object method. exit to TRUE in rreg's frame.

major complication in the construction of the default The default weight function, wt. default, uses both
weight function is that we must allow the weight func- of these objects: method. in. control is set TRUE so

tion to have control over final convergence decisions. that iterations continue beyond the initial convergence
with Huber weights; method.exit is set TRUE to ter-

wt.default 4- function (u) minate iterations after two steps of bisquare weighting.
{ # huber till convergence, In addition, wt.default uses the object converged in

# then two steps of bisquare rreg's frame to determine when to switch from Huber
fr -- sys.parent(l) to bisquare weighting.
if(lexists("method.doing.bisquare". A weight function may need persistent storage in

frame - fr)) which to keep values from one call of the function to

{ the next. For example, wt. default stores an indicator,
assign("method.doing.bisquare", FALSE. method.doing.bisquare, of whether it is currently do-

frame - fr) ing the Huber or bisquare weight functions. It arranges
assign("method.in.control" TRUE, for persistent storage by using the same technology as

frame - fr) was used for taking control of convergence, by creating

} objects in rreg's frame. Any values stored in the rreg
converged -- get ("converged", frame - fr) frame will persist over several calls to the weight func-

* from rreg tion, and will vanish when the rreg function completes
method.doing.bisquare +- execution. We have adopted the convention that all ob-

get ("method. doing. bisquare". jects to be assigned into the parent's frame have names
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of the form "method. *1. 3.5 Multiple Tuning Constants

Since the weight functions are written in the S lan.
guage, it is easy to construct new weight functions with

Another generalization allows rreg to have several al- more than one tuning constant. Thus, we now have a
ternate convergence criteria. In rreg. 1, we defined con- function for the Hampel weights
vergence as a test on the relative change of the residual at wt.hampel -- function(u. a-2, b-4, c-8)
each iteration step. This default in rreg is specified by {
the optional argument test.vec-"resid". Other rea- U 4- abs(u)
sonable criteria are relative change in the coefficients A - (U <- a) # increasing
test.vec-'Ocoef" or in the weights test.vec-"w", or B 4- (U > a) & (U <- b) # flat
an orthogonality test of the residuals and x (specified by C 4- (U > b) & (U <- c) # descending
test. vec-NULL). The function used to evaluate conver- D 4- (U > c) # zero
gence depends on which convergence criterion is chosen. - u
We use the get and assign functions to store the ap- w[A] I- 1
propriate vectors in a common name, previous, so that w [B] 4- a/U [B]
the same S expression, using function iris. delta can w [C] -- a* ((c-U [C]) / (c-b))/U [C]
be used for all three vector convergence techniques. A w [D] 0-
different function, iris. rrxwr, is used for the orthogo- w
nality test. Both convergence functions are defined local }
to the rreg frame.

with three parameters. As with the single tuning con-
3.3 Detecting and Reporting Convergence Sta- stant functions, it is easy to modify the values of multiple

tus tuning constants:

The rreg function reports its convergence status by > rreg(x. y. method-function(r)
including two elements in its value list: a vector cony + wt.hanpel(r, a-.l, b-.3. c-.8))
containing the values of the convergence criterion at
each iteration and a character string status telling how 4. Programming Strategies
the iterations ended. The status indicator can be
"converged", "ran out of iterations", or "could When we designed rreg, we based many of our pro-
not compute scale of residuals" . The latter sit- gramming decisions upon general goals of simplicity and
uation comes up when the median absolute residual is power. In particular:
zero; iterations cannot continue because the scaled resid- We wanted rreg to be simple to understand. Because
uals cannot be computed. S provides very high level operations, the entire function

is reasonably short and easy to read. It is easy for users

3.4 Standard Weight Functions to modify rreg to accommodate special needs.
While retaining simplicity, we still wanted rreg to be

There are several commonly used weighting methods powerful enough to allow arbitrarily complicated weight
listed in Table 1. They are used with their default tuning functions such as wt. default. This is especially im-
constants by calls of the form portant since there is no one weight function for ro-

bust regression that is universally accepted. Because
> rreg(x, y, method-iv,, biaquar.) S functions are first class objects, they were a natural
They are used with other tuning constants by either way to express the weight computations. The ability of

the weight functions to encapsulate their own parame-
> rreg(x, y, ters (tuning constants, etc.) further simplified the basic
+ method-function(r) wt.bisquare(rc-3)) rreg arguments.

A subsidiary goal for the weight functions was to make
it simple to express a simple weight function. The ex-

> bi.3 4- function(r) wt. bisquare(r, c-3) amples of wt .bisquare and wt .hampel illustrate this.
> rreg(x. y. method-bi.3)
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4.1 Persistent Storage default value for argument init is evaluated.

The mild cooperation of providing a restricted part of
rreg's name space (all names of the form "method. 0) References
to the weighting method gives the method the maximum
amount of control with the least work on the part of Becker, R. A.,J. M. Chambers, and A. R. Wilks (1988),
rreg. The rreg function needs to know who is in charge The New S Language: A Programming Environment
of convergence, nothing more. It guarantees not use any for Data Analysis and Graphics, Wadsworth, Mon-

object names in the restricted name space. terey, CA.

leman, D., Holland, P., Kaden, N., Klema, V., and
4.2 Scaling of Residuals Peters, S. C. (1980), 'A system of subroutines for

iteratively re-weighted least-squares computationsU,We have defined the weight functions to work on scaled ACM Trans. Math. Soft., Vol. 6, pp. 327-336.

variables with location parameter 0 and scale param-

eter 1. For many weighting functions changes in this Heiberger, Richard M., and Richard A. Becker (1992, to
assumption can be made by adjusting the tuning con- appear). "An S Function for Iteratively Reweighted
stants. Otherwise, new weight functions can be defined Least Squares,* Journal of Computational and
with different assumptions. Graphical Statistics.

4.3 Local Functions Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (1983),
Understanding Robust and Exploratory Data Anal-

We have defined the convergence functions in the ysis, Wiley, New York.
frame of rreg. They do not seem general enough to Huber, P. J. (1972), "Robust Statistics: a Review',
make part of the public name space of objects, and yet Annals of Mathematical Statistics, 43, 1041-1067.
they do carry out a specific computation that is appro-
priate to encapsulate in a function. By isolating the Huber, P. J. (1981), Robust Statistics, Wiley, New York.
convergence computations in functions, we simplify the
main loop of rreg, making it easier to understand and
modify. Table 1: Weight functions provided as part of the S im-

plementation of rreg.
4.4 Protection from Division by Zero

Estimator S function
The irls. delta function introduced in rreg. I is aim- andrews wt. andrews (u. c - 1.339)

ple and straightforward. A substantially more compli- bisquare wt.bisquare(u. c - 4.685)
cated version is required in rreg in order C~o provide cauchy wt.cauchy(u. c - 2.385)
protection against exponential overflow and division by default wt.default(u)
zero. fair wt.fair(u. c - 1.4)

A third version, tailored for machines that support hampel wt .hampel(u, a - 2, b = 4. c . 8)
IEEE arithmetic, provides the same protection more nat- huber wt .huber(u. c = 1.346)
urally: logistic wt.logietic(u. a = 1.205)

median wt.uedian(u)
irls.delta.ieee +-- function(old, new) { taiworth wt.talworth(u. c - 2.796)

result 4- welach wt.welsch(u, c - 2.985)

sqrt(sum((old - new)-2)/sum(old'2))
if(is.na(result)) 0 else result

}

4.5 Lazy Evaluation

FRom a first reading of the rreg code, it seems that
the argument w of rreg is first referenced in the body of
the function when it is assigned a value in the loop. The
subtlety of lasy evaluation is that the initial value of w
is referenced in the call to lsf it that occurs when the
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Appendix: The rreg Function for~iiter in i:itsr){

rreg 4-function~x. y. w - rep(1. nrow(x)). ifClis.null(test.vec))

int - TRUE, previous ~- get~teut.vec)
init - 1sf it(x. y. v. int - FALSE)*coef. scale +- madian(abs(resid))/0.6745
method - vt.deiault. if (scale - 0) {
wx. iter -20. convi +- 0

&cc - 10 * .achino$single.eps- .6, msthod.exit .- TRUE
test.vec u residu) status +- "could not

{ compute scale of

irls.delta 4-function~old, new) residuals"

at4 suJECCold - new)-2) e1se w{ -mto~rsdsas
b 4-sum(old'2) V 4- *ethod(weidscle
if(b >- 1 11~CIisigv)

a < b * .Machine~double.xnax) V +- V*wx

aqrt (&/b) temp 4- lfit (x. y. V.

else X)achine~double.xmax mt - FALSE)
coef 4-temp~coef

irls.rrxwr +- function~x. w. r) {resid 4-temp~residuals

V 4- sqrt~v) if(lie.null(test .vec))
aax(absC(as.vector(r * w) X*% x) /convi 4- irls.deltaC

sqrt(as.vector(w) %*% (x-2)))) previous,
/sqrt(sum(v * r-2)) get~test vec))

I else convi ~-
if CI (ny~test.vec -- irls.rrxwr(x, w. resid)

c("resid","coef","wU."NULLN)) IIv+ ~on.cni
is .null(test .vec))) conyege -c conv. <-nvi)

stop("invalid test.vecu) convred 4- ethvd. exi acc
if(int) x 4- bind~i. x) donvre d 4- a !tod*itho 11 otr
else x 4-as.matrix~x) i(conve)rgedakk nto~ncnr
if~lmisuing~wx)) ( fCoe ra

if(length~wx) I- nrow(x)) f!oe
stop("Length of wx must equal if an~sau C paste(

nfumberw 0)) "bevtinmfailed to converge in",
if~an~wx 0))iter, "steps"l))

4-Vstop(Olegative vi value") if C'miosing~wx)) {
w +- * WXtap 4- (wx 1-0)

coef +- mnit v (tap] +- w (tap]lvi [tap]

if Cncol~x) I- length(coef)) ls~of-ce.rsdas-rsd
stop("ldust have same number of witce - w.oef reidualso -reuid,

initial values as coefficients") statwus -s tat cnyuscny

resid - y-x%*% coef
converged 4-FALSE
status 4- Oconverged"
cony 4- NULL
nethod.ln.control +- method.exit 4- FALSE
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STATISTICAL COMPUTATION USING GAUSS:
EXAMPLES IN PROCESS CAPABILITY RESEARCH

Ken Hung and Daniel Hagen
College of Business and Economics

Western Washington University
Bellingham, WA 98225

Abstract A-n! p' ,n-i

Examples are given which demonstrate that numerical
computations in statistical research can be executed and _-A/• "' r(-2/+
efficiently using GAUSS. 8 \= 1 . i r((n-2)/2+I)

1. Introduction 1=0

The process capability index, Cp, is defined as follows: where A=(i(n-i)/n)a.

Cp = (USL - LSL)/6a (1) In the case when p=1, (6) reduces to C11 defined in
Chou and Owen (1989). Also

where USL = upper specification limit, LSL = lower
specification limit and 6a = natural tolerance. See L2) = B- (

Kane(1986). The natural estimator, Cp, is: i=o2 A B" (7)

ýp = (USL - LSL)/6s (2) where

where s, a sample standard deviation, is an estimator B'= e- r((n-3)22+()
for o,. The mean of Cp is given by Chan et al. (1988):

E(Cp) = C1l Cp (3) Two special cases of interest arise that (7) reduces to
(n-1)/(n-3) when p = 1 and (7) reduces to Cp2 when n

where C11 = n-1 r((n-2)/2) 
- 00.

- r((n-1)/2) A generalization of (6) and (7) can be given below by

as defined in Chou and Owen (1989). It can be shown (8) and (9). See Kotz and Johnson (1991).
by direct integration that

E(C 24) (n-i) 2(4) E C D (8)=n-3) where i=0j-0

Thus, the variance of C is given by

V(Cp)= (7-i) - C11
2 ) Cp2 (5) C-= !ni'! P2 I -'P 2 ,-t

See Chou and Owen (1989). These are derived under
the assumption of normality, and

D = e A/2 ~ r ((n-2)/2+I)
The effect of nonnormality on the expectation and - A/ 2 )'/ l T((n-1)/2+I)
variance of CP can be studied via

n and where At-((i+j)-(i-j)2 /n)a,4t 1: AB (6) also
E(Cp) iiEA2 n n-i

where F=0 E(tP 2)= -CD•' (9)
i=Oj=O
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part2=exp(-(.5*tl ))*partL;
where ezs=((((n- 1)/2)'.5) *partl1)*part2;

D' = -A/2' A,/ I r((n-3)/2÷I) print ilezs; i~i+1;
F 9-T!r ((n-i1)2+1) if i le n; ezv=ezv Iezs; goto starti;/=O elseif (i eq (n+ 1)); ez = sumc(ezv);

end if;,

2. GAUSS Programs nrow = n-a-pez; resmat = resmat I nrow:

The effect of norniormality is measured through the evO z20 =;j0 ~eaO13 )
parameters p and a = (p, - P 2 )2/0, where /p,1 -P"2/ -Z=;ev=;iO =;Lsq(,,0)

=Iiao'. The programs are written with specified values sat2
of n, p and a for (6) and (8). (7) and (9) differ from ptart I=n/i (2:!)( *(-)^ni)

(6) ad (8)tl=(i*(n-i)/n)*a;

by a factor of ". A gamma function of (n-2)12 in gdenom=gamma(((n-l)/2)+L);
TL2  partL=sumc(((tl/2). L).*(1./L!).*((gamma(((n-

(6) and (8) is replaced by (n-3)/2 in (7) and (9). 3)/2)+L))./gdenom));
part2=exp(-(.5*tl))*partL;

V'C' -,,an be obtained from E/C 2) _-Eýp) ezs=((((n-l)/2))*partl)*part2;
P print i I ezs; i=i+1;

A special case is treated in (8) and (9) where p 1=-45 a if i le n; ezv=ezv I ezs; goto starti2;
P2= 0 P3{~OP1P an P3=-P1P2.elseif (i eq (n+l)); ez2 = sumc(ezv);
P2=0 103 faff Pl P2 a d P3 '-PIP2'endif;,

The program listing for (6) and (7) is as follows: nrow2 = nia-pez2; resmat2 = resmat2 I nrow2:

g= 1; print "DONE WITH PARAMETER SET" g;

resmat=O O-0 0; resmat2=resmat; g~g+ 1
goto begynne;

begynne:botm

if g le 6; n=10; else; n=30; endif;, Iprint "Results for E(G~p): n-ap-ez";

if g==1 or g==7; a=.01; p=.l; Iprint resmat;2
elseif g==2 or g==8; a=.01; p=.5; Iprint "Results for E(0ýp ): nia-pez2";
elseif g==3 or g==9; &=.25; p=.l; Iprint resmat2;
elseif g==4 or g== 10; a=.25; p=.5; Iprint "DONE!";
elseif g==5 or g==11; a=l; p=.l;
elseif g==6 or g==12; a=1; p=.5; The program listing for (8) and (9) is printed below:
elseif g eq 13; goto bottom;
endif;g=1

ezv=0; ezv2=O; i=0; j=0; L=seqa(0, 1,301); resmat=0-0-00; resmat2=resmat;

starti: begynne:

part I=(n!/(i!* (n-i)!))*(p ^ i*(1-p) ^ (n-i)); if g le 6; n=10; else; n=30; endif;
tl=(i*(n-i)/n)*a; if g==1 or g==7; a=.005; pl=.O5; p2 =pl;
gdenom=gamma(((n-1)/2)+L); elseif g==2 or g==8; a=.005; pl=.25;p2=pl;
part L=sumc(((tl1/2). ^L). * (./L!). *((gam;na(((n- elseif g==3 or g==9; a-. 125; pl=.O5;p2=pl;
2)/2)-fL))./gdenom)); elseif g==4 or g==10; a=.125; pl=.25;p2=pl;
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elseif g==5 or g==11; a-.5; pl=.05;p2 -pl;
elseif g==6 or g==12; a=.5; pl=.25;p2=pl; 3. Numerical Outputs
elseif g eq 13; goto bottom;
endif:

The numerical outputs for (6) and (7) are tabulated
ezv=O; ezv2=0; i=O; j=O; L=seqa(0,1,301); below with the reference vlaue under normality.
startj:
part l=(n!/(i!*j!(n-i-j)!))*(pl i*p2 j*(1-pl-p2) (n-i-j)); _n a 9 2 EWp) YV&P)
tl=((i+j)-(i-j) 2/n)*a; 10 Normal 1.094 .0884

gdenom=gamma(((n- 1)/2)+L); .01 .1 1.09375 .08827

partL=sumc(((t1/2). ^L).*(1./L!).*((gamma(((n- .01 .5 1.091807 .0892076

2)/2)+L))./gdenom)); .25 .1 1.0822188 .086484

part2=exp(-(.5*t1))*partL; .25 .5 1.0602702 .0839479

ezs=((((n-1)/2)'.5)*partl)*part2; 1 .1 1.0492831 .0821736

print i I j I ezs; j=j+l; 1 .5 0.9,90284 .0691651
if j le (n-i); ezv=ezv I ezs; goto startj;

elseif (j gt (n-i)) and (i It n); i=i+l; j=O; goto startj; 30 Normal 1.027 .0197

elseif (j gt (n-i)) and (i eq n); ez = sumc(ezv); .01 .1 1.0263641 .0196851

nrow = n a pl-ez; resmat = resmat I nrow: .01 .5 1.0255446 .0196574

endif; .25 .1 1.0154950 .0192908
.25 .5 0.99608587 .0184851

ezv=O; ezv2=O; i=O; j=O; L=seqa(0,1,301); 1 .1 0.98393207 .0183716
1 .5 0.91753086 .01516154

startj2:
part 1 =(n!/(i!*j!(n-i-j)!))*(pl -i*p2 j*(1-pl-p2)" (n-i-j));
tl=((i+j)-(i-j)'2/n)*a; The numerical outputs for (8) and (9) are tabulated
gdenom=gamma(((n-1)/2)+L); below with the reference value under normality.
partL=sumc(((tl/2). -L).*(1./L!).*((gamma(((n-

3)/2)+L))./gdenom)); .! i aEp) __p)
part2=exp(-(.5*tl))*partL; 10 Normal 1.094 .0884

ezs=((((n-1 )/2))*part 1)*part2; .005 .05 1.093968 .08830537
print i I j I ezs; j=j+1; .005 .25 1.091810 .08920817
if j le (n-i); ezv2=ezv2l ezs; goto startj2; .125 .05 1.087501 .08729213

elseif (j gt (n-i)) and (i It n); i=i+l; j-O; goto .125 .25 1.060449 .08406916
startj2; .5 .05 1.068395 .08462937

elseif (j gt (n-i)) and (i eq n); ez2= sumc(ezv2); .5 .25 0.976603 .07046849
nrow2= n-a-pl-ez2; resmat2= resmat2l nrow2:
endif; 30 Normal 1.027 .0197

.005 .05 1.0265693 .01969287

.005 .25 1.0255446 .01965367
print "DONE WITH PARAMETER SET" g; .125 .05 1.0204805 .01946875

g=g+1; .125 25 0.99612686 .01851467
goto begynne; .5 .05 1.0022662 .01889906

bottom: .5 .25 0.91798395 .01547120
Iprint "Results for E(Cp): n-a-p'ez";
Iprint resmat;
lprint "Results for E(Cp 2 ): n-a-p-ez2";
Iprint resmat2;

lprint "DONE!";
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Abstract nonempty subsets. The set of responses and a corre-

The structure diagram described by Taylor and Hilton sponding set of factors are said to form a response
(American Statist iciaran, 1 crvides a viaylor andHislt structure. A response structure in which every pos-

(American Statistician, 1981) provides a visual display sible combination of the set of factors is nonempty and
of the relationships between factors for balanced com- all combinations of every subset of factors contain the
plete experimental designs. Using the idea of factor sets same number of responses, is called a balanced com-
one can obtain the model and the ANOVA table, includ- plete response structure. Here a combination of a
ing expected mean squares, from the structure diagram. set of factors means the set of responses formed by the
This procedure has been implemented in LISP-STAT us- intersection of levels of each factor involved.
ing a software representation of the experimental design. Given two factors A and B of a response structure, if

1. Introduction the partition of responses generated by B is a refinement
of the partition given by A, then factor B is said to be

This paper describes a system for visualizing balanced nested in A. More formally, factor B is said to be nested
experimental designs. Given information about the fac- in A if each level of B appears with one, and only one,
tors in a design, the system will produce: level of A. Throckmorton (1961) shows that, by consid-

ering the nesting relationship among the factors as a
"* A Hasse diagram of the nesting relationships among partial ordering relation on the set of responses, a bal-

the factors. anced complete response structure can be represented
by a lattice. A lattice is a partially ordered set in which

"* The terms in an appropriate linear model, every pair of elements has a least upper bound and a

"• An outline of the ANOVA table. greatest lower bound. It can be shown that the set of
factors of a response structure and the nesting relation-

"* Formulas for the expected mean square of each term ship satisfy this definition.

in the model. A lattice structure can be represented visually by a
diagram, called a Hasse diagram, by placing elements

The system uses rules presented in Taylor & Hilton which cover other elements immediately above them in
and the object-oriented and dynamic graphics program- the diagram and connecting the elements and those el-
ming features available in LISP-STAT (Tierney, 1990). ements which cover them with line segments. These
Section two describes response structures and their re- are discussed extensively by Throckmorton (1961) and
lationship with structure (or Hasse) diagrams. Section Kempthorne (1982). Thus balanced complete response
three summarizes factor sets from Taylor & Hilton, and structures can be represented by Hasse diagrams in
section four describes the system and the underlying which the nodes correspond to the factors and line seg-
software rep-esentation. ments denote nesting relationships. In the Hasse dia-

gram of figure 1, u represents the grand mean and E
2. Response Structures and Structure represents the error term. The factor E corresponds to

Diagrams the finest factor partition. All factors are nested in u,
and E is nested in all other factors. In addition, C is

Responses that are outcomes of a designed experiment nested in A. If two factors are not connected by an up-
can be classified by factors of the experiment. The fac- ward link, they are crossed. Thus, B is crossed with
tors may consist of experimental treatments, or may cor- A and C. The number in parentheses after each factor
respond to various spatial or temporal arrangements of is the range, or number of levels. For a nested factor,
the experimental units, such as plots and blocks. Lev- say C, this number indicates that C has three levels for
els of factors partition the set of responses into disjoint, each level of A. Finally, fixed factors are underlined while
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The final ingredient is the notion of formal interaction.
U( The formal interaction of two effects is found by first

juxtaposing all factors in the effects and then removing

duplicates and factors that nest any other factors. The
result is always an allowable effect. We now describe

A(5) Bour system, beginning with an overview of LISP-STAT
()(4) objects.

4. Representation

C (3) The LISP-STAT environment provides an excellent
platform for object-oriented programming and cus-
tomized dynamic graphics. The symbolic processing
power of LISP is also available. We make use of these

E ( 1) features to manipulate factor sets and to draw the struc-
ture diagram.

Object-oriented programming involves the use of com-
puting rntities, called objects, that contain both data

Figure 1: A Hasse diagram. and the procedures for processing that data. The famil-
iar procudure call of other languages is accomplished by

random factors are not. sending a message to an object to execute one of its
methods. For example, if reg-model is a LISP-STAT

3. Factor Sets regression-model object, we could ask it to plot its resid-
uals with the expression

Factors sets are defined in terms of the nesting rela- (send reg-model :plot-residuals)
tionship and factor type (fixed or random). They play
a central role in determing the ANOVA table and exthe LISP-STAT object system, there exist certain
pected mean squares, and are easily obtained with refer- objects called prototypes. A prototype object contains
ence to the Hasse diagram. We call the set of all factors the blueprint for creating new objects, called instances.
in an experimental design the design set (DS), and de- Each instance has its own slots to hold data, but looks to
fine an effect as any single factor or any combination of its prototype fr te code to execute methods. However,
2 or more crossed factors. Every effect defines a different an instance may also have its own methods that either
partition of the design set. The breakdown of the design add to, or override, the prototype methods. Thus, code
set into factor sets is shown in table 1. The following can be shared by many objects. In addition, prototypes
relationships among the factor sets should be noted: may be arranged in an inheritance hierarchy, that

allows prototypes to inherit, i.e. reuse, code from other

DS = SFUCF prototypes.

SF = LF U DF Three new prototype objects are now intro-

CF = RCFU FCF duced: balanced-anova-proto, factor-proto, and

RCF = SRCF U NRCF structure-diagram-proto. The first two prototypes
inherit from the LISP-STAT root object *object*,

Two numerical quantities associated with each effect ;.nd structure-diagram-prot o inherits from the LISP-

and required for the ANOVA table are obtained from the STAT prototype graph-window-proto. The main ob-

factor sets. First we define the range of a factor as its ject of interest here is balanced-anova-proto; one of

number of levels and the diminished range as one less its slots will contain a list of factor objects (created from

than the range. The symbolic product of an effect is factor-proto) and another will contain a pointer to an

computed as the product of the dirn u._;,id ranges of its instance of structure-diagram-proto.

live factors and the ranges of its dc.da i , .rs. The sym- 4 1
bolic product generates the degrc-3 of fcedom for the . Input
given effect. The complement p- . . tit of an effect is The balanced experimental design is implemented as
the product of the diminished ranges of its complement balanced-anova-proto. Thus it contains slots to hold
factors and generates the expected mean square coeffi- data and routines to process that data. The user begins
cient for the given effect. by calling the function balanced-anova-model:



P. W. Iversen and M.G. Marasinghe 123

Symbolic Live Factors: factors that appear in the effect name (LF).
Factors (SF) Dead Factors: factors that nest the live factors (DF).
Complement Random Complement Simple RCF: not nested in
Factors (CF) Factors (RCF) any other RCFs (SRCF).

Non-simple RCF (NRCF).
Fixed Complement Facto-r-s(F-C-F.

Table 1: Factor Sets. The partition becomes finer as one moves from left to right.

(def ba (balanced-anova-model)) e :draw-structure C) draws the structure diagram.

which returns a new instance of balanced-anova-proto Each node in the diagram corresponds to a factor

in the variable ba. in the design. The vertical positioning of the nodes
This function also prompts the user to select a design is determined by the nesting relationships, but in
file.Ithis func tti alsone p rompts re ur toeseflet aleden general it is hard to compute horizontal positions

file. It is assumed that one or more of these files already that result in a nice-looking graph. Thus, the user is
exist. Design files are plain text files that might look like able to rearrange the nodes by dragging them to the

(A 5 fixed nil) left or right with a mouse. One special node is added
(C 3 random (A)) to complete the diagram: the grand mean which has
(B 4 fixed nil) one level, is fixed and nests all other factors.
CE 1 random CA C B)) :linear-model C) writes the list of effects as a lin-
This design file generated the Hasse diagram in figure 1. ear model.

There is one line for each factor in the design. Each
factor is represented as a list of four elements: the factor : show-table C) displays the ANOVA table, which

name (or letter designation), number of levels, type (ei- has columns for sources of variation, degrees of free-
ther fixed or random) and a list of all factors in which the dom, and mean square ratios. Each allowable effect
given factor is nested. An empty list, nil, in the fourth produces a line in the ANOVA. The value for the de-

position indicates that the given factor is not nested in grees of freedom comes from the symbolic product,
any other factors. Characters may be entered in upper- and the F-test formula is derived via the following

or lowercase, but LISP-STAT converts them to upper- procedure. Form two sets of effects, S, and S., de-

case. fined as

Each factor is read into a new instance of
factor-proto, and the slots name, range, type and S8  = {ele is a formal interaction of LF with an
nested-in are initialized to the values in the input list. even-way (0, 2, 4,...) interaction of
These factor objects are gathered into a list and stored factors in SRCF}
in a slot, factors, in the balanced-anova object. Next, S. = {olo is a formal interaction of LF with an
a list of all allowable effects in the model is determined S- ( 3, i a f interaction of
and stored in another slot, effects. Finally, a menu odd-way (1,3,5,...) interaction of
is installed that allows access to the structure diagram, factors in SRCF}
ANOVA table, expected mean square formulas, and fac-
tor sets. The user may also load another design from the All n-way, n = (0, 1, 2,...), formal interactions of
menu to replace the current design. factors in SRCF are computed at once using the

:allowable-effects method, which when given
4.2. Menu selections the set, SRCF, returns the list of effects, S. U So.

The following balanced-anova-proto methods corre- Then the even-way and odd-way interactions are ex-

spond to items in the menu. Method names always begin tracted according as the number of factors in the

with a colon (:) and are followed by an argument list, effect is even or odd. Finally, the numerator of the

where C) means that no arguments are required. F-test is the sum of the mean squares of the effects in
S,, and the denominator is similarly obtained from

e :load-design () loads a design file. This S.
method executes automatically when the function The sets, S, and S. always have the same size, say
(balanced-anova-model) is called. m. If m = 1, we have an exact F-test; otherwise
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the ratio represents an approximate test of the Sat- : complement-factors (effect) returns the set of
terthwaite type. complement factors for effect.

a :ems-list () displays formulas for the expected * : complement-prod (effect) returns the comple-
mean square of each effect in the model. Expected ment product of effect.
mean squares are computed by first forming the set

* :dead-factors (effect) returns the set of deadS = {sis is a formal interaction of LF with an atosfr fet
factors for of fe ct.

m-way interaction of factors in RCF,

m=- (0, 1, 2,....}* :effect-string (effect fkey extended)
returns a string that writes the effect in the usual

This set contains the effects that appear in the ex- notation, e.g. B*C. if :extended is t then the fac-
pected mean square with coefficients given by the tors in which the effect is nested are included in
complement product. Thus for a given effect, Q, parentheses, e.g. B*C(A).

EMS(Q) = Zk(s)o', * :F-test (this-effect) displays the F-test for-
,sE mula for this-effect.

where k(s) is the complement product of the effect, e :gfi (effect-list effect) computes the formal
s, and ais a variance component ifs is random, or interaction of effect with each item in effect-list
a mean squared deviation from the treatment mean and returns a list of the results. This method is
if s is fixed. An effect is random if any one of its used when computing the F-test and expected mean
live factors, LF, is random. square formulas.

S: factor-sets 0) displays the important factor sets
(SF, LF, DF, CF, RCF, and SRCF) for a user- :Ma-string (effect fkey expected maxlen)
selected subset of effects, writes the effect name as a mean square name or ex-

pected mean square name (if :expected is t), e.g.
4.3. Other methods MS-B*C or EMS-B*C. the argument maxlen can be

used to control the width of the printed text.The following balanced-anova-proto methods are

used by the methods described above and are available
for investigating the balanced-anova object. :random-CF (effect) returns the set of randomcomplement factors for effect.

"* :factors (&optional factors) returns the list of
factors stored in the factors slot. If an argument * :simple-RCF (effect) returns the set of simple
is supplied, it will become the new slot value. The random complement factors for effect.
argument should be a list whose items are instances
of factor-proto (see section 4.4). 9 :symbolic-factors (effect) returns the set of

symbolic factors for effect.
"* :effects (&optional effects) returns the list of

effects stored in the effects slot. If an argument e :symbolic-product (effect) returns the sym-
is supplied, it will become the new slot value. This bolic product of effect.
slot can be reset with the following expression:

o:write-ems (this-effect) displays the expected
(send ba :effects mean square formula for this-effect, in which a

(send ba :allowable-effects variance component is denoted by the effect name
(send ba :factors))) in parentheses, and a mean squared deviation from

a treatment mean is denoted by the effect name in
" :allowable-effects (factor-list) square brackets. For example,

computes all allowable effects that can be derived
from the list of factors and their nesting relation-
ships. An effect is allowable if no factor in the effect ENS-B = i5.[B) + 1*(C.B) + 1*CE)
is nested in another factor in the effect, i.e., if all of
the factors in the effect are crossed with each other. since B is fixed, but C*B and E are random effects.
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4.4. Factor-proto o An initial location, (x, y), is computed for each fac-

The prototype factor-proto is used to create factor tor and stored in the x and y slots of the factor.

objects. Each factor object contains the following slots, e The diagram is drawn in a LISP-STAT graphics
which can be accessed and changed using a method that window, and its memory address is stored in the
matches the name of the slot, e.g., :name. structure-diagram slot of the balanced-anova ob-

"* name contains the name, or letter designation, of ject.

the factor. The user is now able to drag nodes horizontally to pro-
"duce a "cleaner" diagram. Given LISP-STAT's dynamic

* range contains the number of levels of the factor. graphics tools, it was much easier to let the user rear-

"* type contains the symbol 'FIXED or 'RANDOM. range the final shape of the diagram than try to compute
it up front.

"* nested-in contains a list of factor objects in which The program is available from the statlib archive by
the factor is nested. sending an e-mail message to

statlib~lib, stat .cu. edu
"* parents contains a list of factor objects that are di-

rect parents of the factor. See structure-diagram- that contains the line:
-proto for more details. send hasse from xlispstat

"* x contains the x-coordinate of the factor in the The archive contains the program, several design files

structure diagram. Used by structure-diagram- and instructions for getting started.

-proto. 5. References

"* y contains the y-coordinate of the factor in thestructure diagram. Used by structure-diagram- Kempthorne, 0. (1982). Classificatory Data Structures
-ptroto. and Associated Linear Models, in Essays in Honorof C. R. Rao, 0. Killianpur, P. R. Krishnaiah, J. K.

"* depth contains the depth of the factor in the struc- Ghosh, eds. New York: North Holland, 397-410.
ture diagram. Used by structure-diagram-proto. Searle, S. R. (1971). Linear Models. New York: Wiley.

The only other method for factor-proto is :print Tanimoto, S. (1990). The Elements of Artificial Intelli-
which overrides the default method in the LISP-STAT gence: Using Common Lisp. New York: Computer
object, *object*. The result of this is seen, for example, Science Press.
when evaluating the expression (send ba :factors).

Taylor, W. H. and Hilton, H. G. (1981). A Structure Di-
4.5. Structure-diagram-proto agram Symbolization for Analysis of Variance. The

The structure-diagram prototype contains the American Statistican, 35, 2, 85-93.
methods for drawing the structure diagram. When the Throckmorton, T. N. (1961). Structures of Classification
:draw-structure message is sent to a balanced-anova Data, unpublished Ph.D. dissertation. Iowa State
object, the following actions take place: University, Dept. of Statistics.

"* A new structure-diagram instance is created. It re- Tierney, L. (1990). LISP-STAT: An Object-Oriented
ceives the list of factors from the balanced-anova Environment for Statistical Computing and Dy-
object and stores it in the slot, nodes. namic Graphics. New York: Wiley.

"* A root node is added to represent the grand mean.
All other nodes will be nested in this node.

"* For each factor, the direct parents are computed and
stored in the parents slot of the factor.

"* For each factor, the depth is computed and stored
in the depth slot of the factor. The grand mean has
depth zero; its children have depth one, and so on.
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Abstract The Effect of Data Organization on Analysis

The manufacturing of very-large-scale integrated circuits The way that the data values are organized into columns in
involves the generation of large amounts of data which may the relational tables can significantly effect the ease by
be useful to isolate and solve manufacturing problems. which the data can be retrieved and used by commonly avail-
In this paper graphical methods are presented which provide able data analysis software products.
a means to discover patterns in high-dimensional data and The tables can be organized in two basic formats which will
identify potential causes of manufacturing yield problems. be referred to as Long-Thin, and Short-Wide.
Data values are extracted from a large relational database An example of a Long-Thin table appears in Table 1.
containing information obtained at a number of processing
steps, which are performed on the product at different loca- Table 1:
tions. The relationship between data organization and the
ease of executing specific analyses is discussed. Id_1 Id2 ... Idp Name Value

Introduction A1234 30 ... 1 r-pbase 0.34128

This paper describes a set of graphical methods which are A1234 30 ... 1 r_nbase 0.67754
part of a sequence of steps which can be used to isolate the
cause of failure of integrated circuit (IC) chips. The process A1234 30 ... 1 v_offset 0.34253
will be illustrated by two examples.

The use of a relational database is critical in the process due In this format, p + 1 columns are required to uniquely iden-

to the large amounts of data, and the need to join data from tify a row (Id-l to Icdp and 'Name'). For a semiconductor

several parts of the manufacturing process in order to draw manufacturing test data table, the identifiers would typically

reasonable conclusions with respect to the source of a shift in be Lot, Wafer, and Part (i.e. chip or die). 'Name' contains the

product yield, data 'tag', which is the name of a parameter, and 'Value' is
the location of the data itself. This format requires p+2 col-

There are several data sources; first, the wafer fabrication unins in the table.

process steps, where information on what equipment was The Short-Wide table format is illustrated in Table 2.

used, who performed the operation, and possibly a measure Table 2:
of the result of the operation. At wafer acceptance test
(WAT), electrical testing is performed on individual transis- 1d- . d-p r-pbase rnbase voffset
tors, and then final testing is performed on the chips them-
selves, prior to shipment to the customer. The data sources A1234 1 1 0.34128 0.67754 0.34253
are often different physical locations many miles apart. The
original format of the data varies widely. Wafer fab data is A1234 1 2 0.39760 0.51059 0.34253
usually obtained from factory control software, while the
WAT and test data is obtained from automated test equip- A1234 1 3 0,44157 0.82183 0.41497
ment.

For this format, k+p columns are required for the table when
The relational database provides a unified environment for k data values are associated with each row of the table. All
data access. The data stored in the database may be used for data values associated with a unit are stored in the same row,
a variety of purposes, including cost accounting, production and specifying a unit identifier returns all data values for that
scheduling or yield improvement, unit.



A.J. Black 127

The Advantages of the Long-Thin structure are: The following major types of yield changes are seen:

"• Easy to add new parameters to the tables without chang- • An occasional isolated lot which exhibits high failure rate
ing the number of columns. ('bad' lot).

"• Data on sets of related parameters can be extracted using * Clusters of bad lots.
pattern matching in SQL statements. * Major identifiable shift in the number of bad circuits for

The Disadvantages of the Long-Thin structure: all lots on a particular process.

"• Domain of the Parameter_name column is undefined. Within the lot the yield shift can be characterized by consis-
Errors in data loading programs could install incorrect tently elevated failure rates on all wafers in the lot, or by ele-
parameter names. vated failure rates occurring only on certain wafers within

"* It is difficult to obtain data values which have a com- otherwise good lots.

pound where restriction on the 'Name' attribute. A Case Study in the use of Graphics to Address

Advantages of Short-Wide format: Yield Fluctuation
"* Minimizes the size of the table. Table is third normal

form. A certain type of chip began to show unstable yields as

"• Allows indexing on columns which may be frequently determined by the count of saleable chips per wafer. The
accessed. time-ordered boxplot of the distribution of the number of

good circuits per wafer provides the capability to simulta-
Disadvantages of Short-Wide format: neously determine the category of yield fluctuation at both

"• Table must be redefined when a new column is added. the lot and wafer level. In Figure I it can be seen that lots
which exhibit large amount of yield variability within the lot

"* Several SQL commands are required to combine data are interspersed with good lots. Each box represents a lot
from multiple columns into a single output column. comprised of 15 to 30 wafers.

Several factors point to the use of the Short-Wide table struc- Figure 1
ture to facilitate data extraction for subsequent analysis. Yid, January-March 1992
Many common analyses such as scatterplots require pare
vectors as input. Most ANOVA and boxplot functions are m " ..

designed to receive a vector of data and a vector of classifi- I~'~ *cation values. Both of these data structures are cumbersome I!": i. ",•
to construct using SQL commands against Long-Thin tables. • ,

When Short-Wide tables are used such paired vectors can " .
nearly always be obtained with a single SQL statement. I' .. ,

Yield Resolution using Graphical Methods

IC chips are subjected to a number of electrical tests to quan-
tify their performance in relation to published specifications ---
for the device type. The result of the tests dictate whether the
individual chip is suitable for sale under the published speci- Once the general form of the shift in yield has been deter-
fications for that part. If a chip passes all tests, it is accept- mined, the process of determining the source of the change is
able for sale. made easier by finding if there has been a shift in the relative

rates of failure for the various electrical tests.
When a yield degradation is discovered, it is important to
identify the nature of the change in process yield. IC chips Similar electrical tests are commonly grouped into 'bins'. A
are built on wafers made of silicon or other material, and the pareto diagram of the count of bins can illustrate if a change
wafers are collected into lots, which are generally processed in the relative failure rates has occurred for any of a set of
together. Various types of yield changes can occur due to the 'bins'.
complexity of the manufacturing process.

Figure 2 is a pareto diagram of the count of the number of
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chips falling in each bin category for lots which exhibit a the plot. For this example, the standardized boxplot was not
median yield of less than 250 dice/wafer or contain wafers useful to identify a subset of the 35 WAT parameters which
yielding less than 200 dice/wafer (bad lots). Figure 3 shows might have contributed to the yield fluctuation. Virtually all
the same data for the other lots from that period (good lots). WAT test structures fell within 'acceptable' limits.
Note the relative increase in the Bin 2 and Bin 3 circuits for
the bad lots. For this circuit, it is known that Bin 2 and Bin 3 In this case, prior knowledge of the potential relationship
failures are often due to problems in the supply current of the between supply current failures and certain transistor param-
device. eters was used to create comparisons between good and bad
Figure 2 lots.

Failure Mode for Bad Lots The boxplot with confidence intervals [McGill, Tukey and

Larsen, 1978] (Figure 4) illustrates a difference in npnhfe
between good and bad lots. Similar differences were found
for the pbase and nplus resistors, which are known to be
related to npnhfe. No differences between the good and bad
lots were observed for any of the other 30 WAT parameters.
Two sample t-tests indicate a significant difference in mean
npnhfe, pbase and nplus at the p= 0.02 level or less.

This result adds weight to the hypothesis that the likely cause
Dt MA*I - skW of failure is associated with the npn transistor on the device.

Since the only detectable difference in transistor parameters
Figure 3 is in the npn device, the investigation will concentrate on

Faire Mode for Good Lots process steps which are important for determining the per-
formance of the npn transistor.
Figure 4

Comparison of NPNHFE for Bad vs Good Lots

0'

Since the kind of electrical test which has contributed to the
yield fluctuation has been identified, it is beneficial to deter- BdLuGo o
mine if differences in wafer acceptance test (WAT) parame-
ters are detectable between the good and bad lots. WAT is
testing which is performed on transistors similar to those in When clusters of sub-standard lots are observed, it is useful
the chip, but which have been specially constructed so they to answer the question of whether the poor-yielding lots have
may be tested individually, some segment of processing in common. If so, that particular

processing step may bear closer scrutiny as the possible
One way to bring out these differences is to look at a 'stan- cause of the yield degradation. It would be desirable to be
dardized' boxplot [Bahrami, et.al., 1989]. This type of able to visually compare the process flow for selected lots, or
graphic allows the simultaneous comparison of several to look for lots which were processed using the same equip-
parameters on a unit-less scale which may contain a set of ment at a particular step.
limits, usually the process specification limits. The boxplot is
created by scaling the values in each distribution with If one wishes to test the hypothesis that a particular piece of
respect to its specification limits. However, if the entire dis- equipment is responsible for causing the poor yield for the
tribution is contained within the limits for most or all of the product, the distribution of yield for each of the parallel
parameters, it is difficult to gain any useful information from equipments at a processing step must be looked at individu-
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ally. While this is potentially a laborious operation, consider- Figure 5
ing there may be over one hundred steps, it is sometimes Yield b Npls Diffusion Tube
possible to narrow the search considerably.

For the current example, the base diffusion and the emitter
diffusion are processing steps which are considered impor- .
tant for determining the characteristics of the transistor.
Defects in the crystal structure of the silicon which are intro-
duced during processing can cause supply current failures in
the finished device. This can happen through the introduc- 8
tion of a contaminant during the emitter diffusion. At this
step, two different diffusion tubes were valid for use during Z

the time period in which the lots in question were processed. D-ZI DFz
This is true for both the npn-type and pnp-type transistors. It is useful to confirm that the defective lots were not pro-
Since the chip contains both transistor types, and the steps cessed in a group around the time of some event in the his-
are performed using different diffusion tubes, it is important tory of the equipment. Diffusion tubes are cleaned (or
to determine if either of the two steps has contributed to the replaced) after a specified number of machine cycles. We can
yield failures. graphically illustrate the effect of the number of shots since

The count of lots from each group (good and bad lots) which cleaning has on the product yield. Figure 6 shows the lot
average yield plotted against the shot number for an nplus

were processed using each of the di tubas diffusion tube. A lowess smooth curve [Cleveland, 1979]
obtained from the wafer fab data table of the database. The points out the trend in shot yield over the range of shot num-

data were entered into a 2X2 contingency table, and Fisher's bers the best per sormane of the fu nte is nuth
exac tet fr inepedene btwee th caegores as er- bers. The best performance of the diffusion tube is in the

exact test for independence between the categories was per- center of the range, about 7 or 8 shots after preventative

formed. The data for the npn transistor appears in Table 3. maintenance, with another 7 or 8 shots to go. There are no

The null hypothesis of independence between the groups can apparent anomalies which cluster the shots containing bad

be rejected with a two-sided p-value of about 0.02. Similar lots.

tests for the pnp transistor emitter diffusion showed a non-

significant p-value of about 0.50. This substantiates the Figure 6 Yield by Shot, DFZ2
hypothesis that the source of the yield disturbance is the npn
emitter diffusion. It

0

Table 3: NPN transistor N+ (emitter) diffusion "' * S

Category DFZ1 DFZ2 . S .
Good Lots 17 4

Bad Lots 5 7

2 4 6 S 10 12 14
A comparative boxplot of the yield for the lots processed hac Numbe

through each tube appears in Figure 5. While the confidence During the time pericd which was examined, it appears that

interval on the boxplot illustrates a questionable difference the probability of defects being introduced in lots processed

in medians at the a=0.05 level, the t-test is significant at the in DFZ2 was higher than those processed in DFZ1. It is

0.01 level, interesting to note that both of the tubes were shut down for
about two weeks over the holidays during the time period.

While not illustrated in this example, it may be useful in
other cases to create similar comparative graphs to test for A Second Case Study
differences among shifts or operators who have handled the On a particular device type, occasional lots with uniformly
product instead of, or in addition to the tests for equipment. low yielding wafers were observed. That is, the low number

of total saleable dice in the lot was due to all the wafers in
the lot having similarly low numbers of good chips. The type
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of failure which was observed can often be associated with Figure 8
photolithography defects. Photolithography is the process by Plate 29Y '20-Jul-90'
which chips are patterned by exposing photoresist through
(photo)masks. Different instances of a mask are referred to
as plates. A worker chooses one of several identical plates of 0.

the same mask to expose a lot on a high-volume product at a
particular process step. "! :

Since the defects are known to be possibly photolithography Can

related, and occurred on all wafers of certain lots, a compari- 5
son of the yield across different plates was warranted. Con- 01
tour graphs were created which illustrate the value of ICC
(an electrical test) across the surface of the wafer for several
mask plates which had been used to expose a particular level S.95 0.1 s
of the device. The graphs were obtained by calculating the
median ICC for each x-y coordinate (chip location). The
graph is therefore in the shape of a wafer, and represents a i i',_ 20 'O A 'o0 15

projection of the ICC data over several hundred wafers. The
maximum value of ICC for a good chip is 0.12. Contour
lines are drawn at 0.10, 0.15, 0.20 and 0.25. Conclusion

Comparison of the contour plots illustrating the value of ICC Simple graphical techniques, when coupled with easy access
for the sites on the wafer usually revealed a random pattern to relevant data in a relational format, can substantially cut
of failures for most mask plates (Figure 7). One plate the time required to isolate manufacturing yield changes. A
showed a consistent pattern (Figure 8) of gross failures on graphical technique which allows the comparison of the pro-
the upper portion of the wafer. Later examination of that par- cess flow through various operations would be helpful to
ticular plate revealed a defect which had escaped the usual determine what pieces of equipment certain product groups
screening process, and had resulted in the loss of a consider- have in common.
able number of chips.

Figure 7 References
Plate 29Y #1
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A COMBINED SHEWHART-CUMULATIVE SCORE PROCEDURE
FOR PROCESS VARIABILTY

Matoteng M Ncube
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Pensacola, FL 32514-5751

ABSTRACT control chart such that corrective
Combined Shewhart-cumulative score action should be taken if either any

(cuscore) quality control schemes are sample range falls outside the action
available for controlling the mean of a line or if any prespecified consecutive
continuous production process. In many sample range values fall between the
industrial applications, it is warning and action lines. Page (1963)
important to control the process also discussed range cumulative sum
variability as well. The proposed (cusum) scheme for controlling the
combined Shewhart-cumulative score standard deviation of normal
(cuscore) procedure for detecting populations. Sample ranges are
shifts in process variability uses the cumulated continuously and corrective
procedures developed by Ncube and action will be taken as soon as the
Woodall (1984) to monitor shifts in the cumulation crosses some predetermined
process mean of continuous production action line, namely the upper control
processes. It is shown, in the one- limit (UCL) or the lower control limit
sided case, by average run length (LCL). These procedures are more
comparisons, that the proposed scheme sensitive to small and moderate shifts
performs significantly better than in the standard deviation than the
comparative Shewhart procedures and ordinary Shewhart type scheme.
compares favourably to the standard Alt (1985) discusses Shewhart type
cusum scheme. procedures based on the sample

variance, (s 2-charts), the sample
INTRODUCTION standard deviation (s-charts) and the

The problem of detecting shifts in multivariate cases for controlling
the process variability has not process variability. In this case we
received as much attention as that of cumulate the sample variances or the
detecting shifts in the process mean of sample standard deviationns. An out-
continuous production processes even of-control condition is indicated as
though it is important in the context soon as the cumulation crosses a pre-
of quality control, determined action line.

Shewhart (1931) introduced the Hawkins (1980) and BS57003 part3
range chart (R-chart) to control (1981) suggested using the
variability of continuous production transformation to variables that
processes. At regular time intervals a measure variability for cusum
sample of size m >2 is taken and its procedures to detect shifts in the
range, Rn = largest observation minus standard deviation. In particular the
smallest observation in the sample. transformed random variable (Sn/t )0.625

Shewhart limits are appropriately set has been shown to be approximately
so that if any sample range falls normal for control purposes.
outside these control limits an out-of- Ncube and Woodall (1984) proposed
control signal would be indicated, a combined Shewhart-cumulative score

Page (1963) discusses the range quality control scheme for detecting
Shewhart type quality control scheme shifts in the process mean when the
with warning lines. In addition to the underlying process control variable is
Shewhart control limits, Page suggested normal. A rcore of value 2h, 1, 0 or -
the addition of warning lines to the 1 is assigned to the sample mean less a
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reference value depending on the pre- variance =2 2 + 2 +

specified interval in which its value n-i (n-1) 2  3(n-1) 3

falls. These scores are then cumulated 16 ,n = 2,3,....
and an out-of-control condition is 15(n-1) 5

indicated as soon as the cumulation
crosses a pre-assigned integer value,
h, Thich is called the decision THE PROPOSED SCHEME
interval of the scheme. It is
important to note that a cumulative Suppose there is a continuous
score (cuscore) is a discretized production process whose underlying
cumulative sum (cusum). That is we process control variable is normal with

2discretize the sample statistic and mean 0 and variance at At regular
then cumulate the scores. It has been time intervals a sample of size m>2 is
shown that for detecting shifts in the taken and any one statistic which
process mean, the cumulative score measures variabilityis calculated. Some
procedures perform better than Shewhart commonly used statistics which measure
schemes and compare favorably with process variabilty are: the sample
cusum procedures. We hope that this range, the sample variance, the sample
better performance of the cuscore standard deviation, and the transformed
procedure over the Shewhart procedures random variables. We shall assume that
for detecting shifts in the process these sample statistic values are
mean will also be true for cuscore obtained successively and are mutually
procedures for detecting shifts in independent.
process varaibility. In this paper we shall only

To this end we propose a combined discuss the one-sided case, assuming
Shewhart-cumulative score (cuscore) without loss of generality that we want
procedure for process variability that to detect increases in process standard
uses any one of the following deviation. For the purposes of
statistics which measure process illustating the proposed procedure we
variability: shall use the logarithm of the sample

a) The sample range,R 2 variance statistic, Ln= ln( S2 ). Any
b) The sample variance, 5 ,n or of the other sample statistics: the

the sample standard deviation, Sn. sample range,R,,the sample variance,
c) The transformed variable, T, = S2 , or the sample standard deviation

(Sn/at)0"625, n = 1, 2, where at is the Sn could be used in place of Ln. The
target standard deviation value and motivation for using the transformed
Sn is the sample standard deviation random variable, Ln, is that its
value. This random variable, for distribution is normal which is also
samples of size 3 through 20 from a the distribution of the target or
normal distribution with mean, yi, and parent population. For pre-assigned
variance, U2, has been shown to be values K, kl, and k2 a score, Y,' is
sufficiently close to a normal recorded as follows:
distribution for control purposes,
(BS57003 part 3 (1981)). We shall That is:
assume without loss of generality that
Ut = 1. 2h, k2 < Ln - K < oo

d) The tranformation to a natural Y,= 1, k1 < Ln - K < k2
logarithm of the sample variance , Ln = 0, -k 1 < Ln - K <k,
ln(Sn ), which is known to have an -1, -oo< Ln-K<-k1 ,n=l,2,.-..
approximate normal random variable where K is the reference value of the
with: scheme. For detecting shifts in the
mean =PL=ln a2- 1 1 + 2 process mean for cusum charts, Ewan and

n-i 3(n-1) 2  15(n_1) 4  Kemp (1960) recommended a reference
and value to be halfway between the target
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mean, value, pt, and a value of the P[Y = -1]= P(Tn- K < -kl),= r-i + K - JUL)
process mean, pl, that needs to be al,

detected quickly. Similarly, for = 1-p-r-s, =q
detecting shifts in the process where €(.) is the cumulative standard
standard deviation, using approximate normal distribution function. If the
normal random variables, the sample variance, Sn or the sample
recommonded value of the reference standard deviation, S,, were used in
value will be halfway between the place of Ln, the values of s, p, r and q
expected value of Ln at the target would have been obtained from the chi-
standard deviation value, at, and at square distribution function with (n-l)
the value of the process standard degrees of freedom. RnIf the studentized
deviation, a, that needs to be tected sample range, Wn = -•-, is used instead
quickly. Accordingly: of Ln, the values of p, q, r and s will

b- obtained from a chi-variate with
E(LnIgt) + E(LnIUl) For other non- appropriate degrees of freedom.

normal random variables that measure For the one-sided case, assuming
process variabilty the recommended without loss of generality that we want
value of K is the geometric mean( to detect increases in the process
square root) of the expected values of standard deviation we cumulate the
the random variabl at the target scores, Yn, in such a way that the
standard deviation value, at and at the cumulation , Zn, is never allowed to be
value of the process standard deviation negative, and is restarted at zero
that needs to be detected Quickly. a1 . whenever it becomes negative.
Accordingly K = VE(LnIat)E(LnIal) . Corrective action is taken as sson as
If we are taking samples of size five the cumulation exceeds some preassigned
and we want to detect a 20 percent value called the action line of the
shift in the process standard scheme.
deviation, a shift from a, = I to a, = That is: Z. = 0, and
1.2, the rule suggests taking K to be Zn = min [h, Zni + Yn], n = 1, 2,.
0.1. For detecting a 50 percent shift
in the process standard deviation, a For this one-sided case, Zn takes only
shift from at = 1 to at = 1.5, the rule the integer values 0,i,2, ... ,h. This
suggests taking K to be 0.135155. cuscore procedure is essentially a

The values of kl and k2 are discretized cusum procedure. One way
usually chosen to be the number of of analysing the properties of this
standard deviations above or below the scheme is to consider it to be a
target standard deviation value. Markov chain since the current value of

Under the assumption that Ln, n = the cumulative score, Zn only depends
1, 2, .-. , are independent normally on the immediate past value of the
distributed random variab-:s with mean, cumulative score, Zn_1 . We shall say

PL, and standard deviation, aL, the random that the Markov chain, cuscore
scores, Yn, n = 1, 2, ... , are procedure, is in state i (i < h)
independent and identically distributed whenever Zn = i, i = 0,1, ... . h-1.
with probability mass function given As long as the Markov chain (Zn)
by: 1k + K remains in these states, the process is
P[Y =2hP[Ln-K>k2],=1_L s, said to be in-control. These states

are called transient because they can
P[Y=I]= P( k< LnK < k2], communicate. When Zn > h the process

(k 2 +K-pL,) ((kl+K- -L\ is said to be in an out-of-control
aLL p, state or in an absorbing state. The

transition probabilities of this Markov
P[Y = 01 = P(-k 1 !Ln - K < k), chain are given by:

= kl+K-pL)\ •k 1 +_K- "=r
JL I L K -
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q+r, i=O,j=O, values of the ARL when various shifts
p,j=i+l,i=0,1,... ,h-1, in the prucessstandard deviation. The
c,,j=i-l,i =0,1, ... ,h-1, i.,-control ARL is the average run

Pi,j= r,j=i= 0,1,... ,h-l, length of the scheme when the process
s,j=h,i=0,1, ... ,h-l, standard deviation is at its target
p+s,j = h, i = h-1, value, at=O. The scheme which has lower

1, j = i = h, ARL values for a given range of shifts
0, otherwise. in the process standard deviation

values is said to perform better than
For a Markov chain the transitional one with higher ARL values for the same
probability matrix, P can be written in range of shift values. Table I gives
the form: the average run length comparisons for

SP the cuscore S-chart, the S 2 -chart, the
R 1 ln(S 2 ), the T-chart and the Cusum S-

I = 1 chart. The cuscore ln(S 2 ) procedure
where for a cuscore procedure R is a performs uniformly better than the
tridiagonal matrix of transition other four procedures for shifts in the
probabilities from one transient state process standard deviation considered.
to another, p is a column vector of Table II gives the ARL values for the
absoption probabilities, 0' is the zero Shewhart S-chart, the cuscore S-chart
vector. in which for small to moderate shifts

Let Ni be the number of samples in the process standard deviation, the
taken, starting from any transient cuscore procedure performs better than
state, i , before an out-of-control the Shewhart procedures.

signal is indicated. Ni is called the
run length of the process and the
expected value of Ni (usually when i = REFERENCES
0) is called the average run length
(ARL) of the process. That is : ARL = Brook, D. and Evans, D.A. (1972). An
min[ n : Zn > h ]. The ARL is widely Approach to the Probability
used as a means of comparing control Distribution of CUSUM Run Length.
charts and ideally we expect the ARL Biometrika, 59, 539-549.
values to be high when the process is Ewan, W.D. and Kemp, K.W. (1960). Sampling
in-control and to drop sharply when it Inspection of Continuous Processes with no
is out-of-control. Autocorrelation Between Successive Results,
BLook and Evans (1972) showed that the Biometrika,47, 363-380.
ARL (average run length) of a scheme Munford, A.G. (1980). A Control Chart Based on
whose transition probability matrix is Cumulative Scores. Applied Stati:.ics, 29,252-

like P above can be obtained by adding 258.
all the elements in the first row of Ncube, M.M. and Woodall, W.H. (1984). A
the matrix ( I - R )-1. ARL(1) will Combined Shewhart-cumulative Score quality
denote the value of the average run Control Chart. Applied Statistics, 33, 259-265.
length when the process standard Page, E.S. (1954). Continuous Inspection
deviation is at its taget value, at = 1 Schemes. Biometrika, 41, 100-114.
or when the process is in-control. Shewharý, W.A. (1931). Economic Control of Quality

of Manufactured Product. New York, D. Van
Nostrand Co., Inc.

COMPARISONS

Performance comparisons of the
different schemes will be based on the
ARL. The in-control ARL of all the
schemes will be set at the same high
levelof 200 and we will ineqtigate the
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TABLE I

ARL COMPARISONS FOR THE CUSCORE
S-CHART, S2 -CHART, ln(S 2 )-CHART AND

CUSUM S-CHART

Cuscore Cuscore Curscore Cusum
S-chart S2-chart InS 2  S-chart

h=3 h=3 h=3 h=3.2
k=1.2 k=1.5 k=O.2 k=2.8
kl=0.3 kl=1.0 k1=1.0
k.=0.8 k9=2.8 k9=1.7

1.0 200.0 200.0 200.0 200.0
1.1 51.4 56.6 31.6 46.0
1.2 20.6 22.9 10.5 19.0
1.3 11.2 12.3 5.4 10.0
1.4 7.3 7.8 3.3 7.1
1.5 5.3 5.6 2.3 5.3
2.0 2.2 2.2 1.1 2.5

TABLE II

ARL COMPARISONS FOR THE SHEWHART S-
CHARTS, AND THE CUSCORE-S-CHART

Shewhart Modified Cuscore
S-Chart Shewhart S-Chart
H=1.9275 S-Chart t=2, H=3

W=1.5798 k=1.151
H=1.907 k1 =0.2875

_ _ K2 = 0.837

1.0 200.00 200.00 200.00
1.1 65.04 59.93 51.40
1.2 28.27 25.07 20.60
1.3 15.04 13.20 11.20
1.4 9.25 8.16 7.30
1.5 6.32 5.66 5.30
1.6 4.67 4.25 4.20
1.7 3.66 3.39 3.40
1.8 3.01 2.83 2.90
1.9 2.56 2.44 2.50
2.0 2.24 2.16 2.20
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Application of Experimental Design
in Chemical Process Simulation
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Abstract • Model validation
- Case studies

Chemical process simulators are very useful in analyzing • Process optimization
economic options, optimizing processes, and developing
operating strategies. This paper illustrates the use of exper-
imental design in model parameter estimation, process opti- Experimental Design in Process Simulation
mization and visualization of the effects of process variables When one deals with simulations as opposed to actual
on product characteristics. The use of orthogonal arrays can Whenaory eai s th problem characteristics changeaid in the study of the effects of control and noise factors laboratory experiments, the polmcaatrsiscag
simultaneously with the minimal number of simulations. somewhat. One typically deals with a large number of factors,Examples are used to illustrate the principles of robust design stror g nonlinear behavior, multiple responses, reproduciblein chemprcal manufacturing, results, no missing data, and the need for randomizationvanishes.

Introduction
The available statistical designs are (Box et al., 1978):

Experimental design has been and is being used success- - Factorial designs
fully in R&D labs and manufacturing locations throughout the • Fractional factorial designs
world. Experimental design in these environments is used for - Orthogonal arrays
several ends among which are the screening type designs, * D-optimal designs
which are used to narrow down the number of factors to the • Response surface designs
ones that have the most impact on the desired effect(s), and • Mixture designs
the response surface type designs which fits a model of the • Nested designs
desired effect(s) as a function of the various factors, which can - Supersturated designs.
be then used for optimization studies.

The above uses of experimental design can be employed The technical issues and the decisions that have tobe made
in "computer" experiments in the form of simulation runs, and a priori are the scope of the study, the number of runs, selection
in particular, we have employed it in chemical process of the particulardesign,optimization technique, dataformodel
simulations. When one has asimulationprogram ofachemical validation, visualization system, and the choice between a
process, experimental design can be used to build a simple statistical model or a neural network based technique.
model of it, estimate the model parameters, visualize the
effects of the process variables that have the most impact, and Examples
optimize the process. We will use two examples to illustrate different points. In

In this paper we will illustrate through the use of examples the first, we will use a response surface design to fit a model
the benefits of the application of experimental design in to a styrene-maleic anhydride copolymerization reactor, then
chemical process simulation. use this model to optimize the reactor. In the second, we will
Process Simulation in the Chemical Industry use a simple process synthesis example to illustrate the

importance of using a simulation that includes the economicsSimulation in the chemical process industries is found in of the process in order to lead to meaningful conclusions.
steady state flowsheet simulation, reactor kinetic modeling,
batch scheduling and simulation, and dynamics and process Styrene-Maleic Anhydride Copolymerization
control. The use of simulation leads to a better understanding As seen in Figure 1, styrene and maleic anhydride and the
of the process, it saves on costly experimentation, enables at aeed to re 1, at an m perature and
extensive what-if studies, speeds up commercialization, and initiator are fed to reactor 1, at a certain temperature TI, and

in gnerl i canhel miimiz cots.the products, along with more of the feeds, are fed to reactor
in general it can help minimize costs. 2 at temperature T2.

The stages in process simulation are: The process variables are:
"* Model development
"* Parameter estimation
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* Reactor #1
Styrene feed, SI
Maleic anhydride feed, MI
Initiator feed, II
Reactor temperature, TI EIMPIRI.L MODEL - 1ST R IAC Rt/lUP-.7O DUG C

* Reactor #2
Styrene feed, S2

Maleic anhydride feed, M2
Initiator feed, 12
Reactor temperature, "I'2 ss

The response v'.uiables are:

* Conversions
Molecular weights
Product distributions 2102 3

We generated a 50-run response surface design, and fitted
the results into a full quadratic model. Figures 2-7 area ae
visualization of this model, where optimum values can be
discerned. ,asr V-,0 4 0,3

Figure 2.

Styrene - Maleic Anhydride EMPiSICAL MODEL - 1ST PJrACTOR/IEMP-70 DEG C
Copolymerization

Initiator 1 Initiator 2 Sty MA
2.53?

MA Rxn I Rxn 2 0 •
•---I I 9t

I Sit P~~~s tllX ,r..

Figure 1. * R•

Figure 3.
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EPIRICLL MODEL - 1ST RZACTOR/TIMP-7O DE• C EMPIRICAL MODEL - 1? RZAMCTOR/TIMP-70 DiG C
STIIY t7A• Io
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Figure 4. Figure 6.

EMPIRICAL MODEL - IST RZACTOR/TEMP-70 DNO C EMPnRICAL MODEL - 1ST RZ"RA /TEMP-70 DEG C
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Figure 5. Figure 7.
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Process Synthesis
Process synthesis is simply the conceptualization of a A -> B -> C

process that will realize on a commercial scale what had been
accomplished in the lab. In Figure 8, we depict a simple
process for the production of product B from feed A. B then A
reacts further to produce an undesired product C. The results ________

of the chemical analysis in the lab system are shown in Figure A System ----

9, which shows an optimum yield to product B at about 95%
conversion of A in the reactor. Once the economics of the
plant are added, Figure 10 shows that the optimum conversion A
is actually a lot less, at about 65% (Safadi, 1990). sea Sy,•,

These results can be arrived at also when a signal-to-noise Al - B
ratio study is performed (Phadke, 1989). Figure 11 shows that -

when the appropriate signal-to-noise ratio measure (Figure 12) A -

is applied to both the yield and the plant profit, we arrive at - C
two different optimal plant operating points. Obviously, the
point that has the plant economics accounted for is the better
choice. A

Seamvoi SVVem 41

Conclusions A a 7_11A -- -- c
Experimental design is very useful in parameter estima-

tion, optimization, and visualization of chemical process
simulations. Utilization of the design principle minimizes the
number of simulations and improves the quality of the Figure 8.
rerulting informations. Robustness of products and processes
can be greatly improved by using this approach.

References Product Yield
1. Box, G., E., P., Hunter, W. G., Hunter J., S., Statistics for A ---> B ---> C

Experiments, John Wiley and Sons, New York, 1978. 1

2. Phadke, M. S., Quality Engineering Using Robust
Design, Prentice Hall, Englewood Cliffs, NJ., 1989. 0.70.7.

3. Safadi, R., B., Reactor System Synthesis and Design 06.-
Based on Process Economics, Ph.D. dissertation, Chem- 0.5

ical Engineering, University of Massachusetts, Amherst, 0.4

MA, 1990. 0.3-I0.2-
0.1

0.06 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 I

Convewson of A

l-- C-_A/O - CBICA0 - CC/CAO

Figure 9.



140 Chemical Process Simulation

Plant Profit
A-> B-> C

1.9

1.65 1 Signal-to-Noise
"Ratios

0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 if ..... y. represent values of a performance character-
Istic. then the Taguchi SiN ratios are as follows:

-1.-- T20 - T.50 -- T-70 When the larger the performance charactenstic the belter

SIN = -10 - og(!71~

Figure 10. When the smaller the performance characteistic heoet-
to(:

SIN =-10 log(11Y2J

When a spectific (nominal) value of the performance char-
acteristic Is best:

Signal-to-Noise Ratio SIN=_,o

where

nI
101

0- Yield Figure 12.

Z "*" Profit1

) ... . . . . . . . . . .

2 3

Plant Operating Points

Figure 11.
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Abstract X-Y paired data without viewing a plot of the data are well
known'. For that matter a histogram plot of a single variable's

A new patent pending method of plotting multivariate data distribution is an essential first step for many types of analysis
is presented. This method allows one to see a coarse-grained which may, for example, presume that all relevant variables
or fine-grained representation of the n-dimensional data have normal distributions or even that the normal distribu-
itself, not just projections of the data onto possible pairs of tions have the same standard deviation. A classic example of
variables as is the case for methods that are based on scatter an analysis task that requires an X-Y plot is that of determin-
plot matrices. The new method involves the concepts of hier- ing whether or not x and y are correlated. Blind evaluation of
archical axes which represent more that one variable by the linear correlation coefficient can lead to both false posi-
establishing a hierarchy of metrics for the variables and hier- tive and false negative results1 which may be difficult to
archical symbols which represent the data in small n-dimen- detect in general even if one supplements the linear correla-
sional cells, along lines of n-dimensional cells, planes of tion coefficient r with other measures such as the number of
cells, etc. A variety of rules can be used to define these hier- sign changes for Ay (after sorting on x), or the mean distance
archical symbols. Different rules are used for different types of all the points from (5,ý) where _ and y are the mean values
of multivariate visual data analysis such as fitting, condi- of x and y respectively etc. And yet the inappropriate nature
tional probability determination, significant mean differ- of r, for a wide range of both false negative and false positive
ences, conditional distributions, factor and cluster analysis, cases, can be made immediately obvious by simply viewing
etc. The technique allows one to visually analyze high dimen- an X-Y plot of the data. This type of problem and other prob-
sional data involving millions of bins and hundreds of mil- lems to be discussed below can of course be present in multi-
lions of records in real time on a low cost workstation. The variate data sets as well. It is imperative that methods of
new method has significant performance and visual insight plotting multivariate data be found in order to avoid the false
advantages over methods based on scatter plot matrices, positive and the false negative conclusions that can result

from applying inappropriate statistical techniques to multi-
variate data sets.

Introduction In the simple two variable case a false positive for r can be
obtained when for example all data points cluster around two

For every data record taken as part of a carefully designed points x1, y, and x2, Y2.A false negative for r can be obtained
statistical study there are probably thousands if not millions if, for example, x and y are strongly correlated but only over
of records that are gathered by business, government and var- a sub-interval of X. In the case of multivariate data the possi-
ious institutions for other purposes. This latter type of data is bility of both clustering and/or conditional correlations are
sometimes referred to as "serendipitous data". Since seren- present. Consider Figure 1 which shows what appears to be
dipitous data is not gathered in order to test a specific hypoth- uncorrelated X and Y variables both distributed more or less
esis or set of hypotheses a new type of data analysis, often uniformly. If the data of Figure 1 correspond to the X and Y
called exploratory data analysis, is required. Exploratory data values of data points involving not two but say five variables
analysis makes extensive use of graphs to guide the user in e.g., u, v, w, x and y then Figure 1 would represent the projec-
the selection of appropriate analysis procedures. Applying tion of the 5 dimensional data onto the X-Y plane as is the
statistics without viewing data plots is always a dangerous case for example for one of the 5(4/2)= 10 distinct plots in the
procedure even for data involving only a few variables and corresponding scatterplot matrix. It is entirely possible that if
gathered as part of a seemingly well designed study. Large one constrained the values of one or more of the other vari-
multivariate serendipitous data sets pose special problems ables i.e., u, v and/or w to lie in some narrow interval(s) then
which we address with new hierarchical multivariate visual- the corresponding subset of points in Figure 1 could show
ization methods. strong correlation. In dynamic scatter plot matrix type multi-

The problems associated with applying statistics to simple variate plotting 2 this constraining of one or more variables is
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Figure 1 - X and Y values that appear to be uncorrelated B)
when other variables are not constrained (see text).

done manually by the software user and is referred to as
"brushing". The problem with this approach is that even for 5
variables the number of brushings required is large, and for
10 variables becomes astronomical. Consider for example the
case where there are 5 variables u, v, w, x and y and one
wishes to look for conditional correlation of any 2 of the 5. If
one wishes to resolve each variable to 10% i.e., 10 equal Y
intervals then there are 5x10=50 brushings corresponding to
constraining just one variable, 5x4x102t2=1000 correspond- x
ing to constraining two variables and 5x4x3x1lo/
(3x2)=10,000 corresponding to constraining three variables W
for a total of 11050 brushings. If one considers 10 variables
instead of 5 and again one wishes to resolve each variable to C)
10% the number of ways of brushing I to 8 of the 10 variables
in order to look for conditional correlation is 5,937,424,600.
Clearly looking at over 5 billion brushed scatterplot matrices 0 ()
would be tedious even if the process were automated.

One of course is interested in a variety of visual tasks ® Q @
besides looking for conditionp] correlation of two variables..
For example one may be interested in conditional probabili-
ties or significant mean differences or factor analysis or clus- - -
ter analysis etc. For the 10 variable case with each variable
resolved to 10% there are generally on the order of 1010 sta-
tistical queries involving a single number e.g., conditional Z ®
probability and of the order of 102° statistical queries involv-
ing two numbers e.g., significant differences of means. Y
Clearly if one is to attack the problem of visually analyzing
large multivariate data sets new plotting techniques must be w
invented along with new interactive viewing tools.

The New Multivariate Plotting Method Figure 2 - Axes for 4 or more variables. A) vectors w, x, y,

z and a for the corresponding variable axes can have any
The starting point for understanding our new method of length and angular orientation. B) A 4d cube when w, x, y

plotting multivariate data on a 2d surface (i.e., paper or com- and z have compatible metrics. C) a 4d cube when w and
puter monitor) is to recognize that one may simply generalize y have smaller metrics than x and z.
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the familiar method used for plotting 3 variables on a 2d dis- 3a)
play. For a starting orientation one normally picks X as hori-
zontal, Y as vertical and Z at some intermediate angular - 1  92  93
orientation. Similarly for 4 or more variables one simply
draws 4 or more vectors on the 2d surface as shown in Figure
2a. The fact that a particular display coordinate may corre- H cell
spond to many different points in the n dimensional space is height
not a new problem (for n > 4) but in fact is present even for
n-3 i.e., conventional 3d graphics, and has led to a variety o
techniques that help us cope with this multiplicity such as [ LU Il
rotation of the coordinates or the dropping of normals from A t-4 i... t - .. . t_. t_- t_. t-. tI

the points to say (the Z=O) X-Y plane. In Figure 2a the angles B 1 ,J .1. .l.- 1 1L.-I.I I
and the metrics (lengths) of the variable axes are to be consid- C
ered as totally adjustable. Shown in Figure 2b are the 16 C
points corresponding to the vertices of a 4 cube (or to the six- D ------
teen 4d bins that would result when each variable in the 4
space is binned to 2 values each). In Figure 2b the metrics for
variables Vi (i=1 to 4) or w, x, y and z are chosen to be of the 3b) g1
same magnitude and all edges between each point and its 4
nearest neighbors are shown. Figure 2c on the other hand
shows the same 16 points (and associated 4d bins represented
as simple squares) for the case where the angles (pi (i=l to 4)
or (P,, (P9, (gy and 9, are identical to those of Figure 2b but
differing metrics are chosen and edge lines have been omit- g2
ted. Clearly Figure 2c is far less confusing and can easily be
extended to cases where each variable is binned to higher res- T
olution (more bins) and also to a higher number of variables
while still remaining visually uncluttered and easy to under-
stand. On the other hand extending the type of rendering D C
shown in Figure 2b to either more bins/variable or more vari- A L L .. .L.. 4 _
ables quickly results in a totally incomprehensible graph. B _ _ _ _ _ _ _
Both the hierarchical metrics and the dropping of edge (or
grid) lines in Figure 2c play an important role in producing its
visual clarity. In previous articles we have considered impor-
tant special cases that correspond to: 1) all vectors being 3C) g3
colinear (say for example in the horizontal direction) but with 21  .
hierarchical metrics (see Figure 3a) so that the entire "first" -*4 g *-
variable's binned axis (range) fits inside a single bin of the
"second" variable and the entire "second" variable's binned
axis (range) fits inside a single bin of the "third" variable etc.
-this special case is called the one hierarchical axis method3'
4.5 and 2) all vectors being divided into 2 sets of hierarchicalA

axes (see Figure 3b) (normally chosen to be at right angles to B
one another) -this special case is called the two hierarchical C6.7
axis method6 ' . In this article we will also consider the case
where all angles (9i are distinct but the metrics will differ D
from variable to variable. Figures 2c and 3c show examples
of this type. Figure 3 - Three ways to represent a space of 4

independent variable A, B, C and D which have been

binned to 2, 3, 2 and 2 intervals respectively (see text). All
of the gaps gi are adjustable.
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4- sum Symbols and Hierarchical Symbols
Smaximum Note that inside of the cells shown in Figure 2c circles of
Smeaximumvarying radii are drawn as well as the 16 points that corre-

.4- mean + o spond to the vertices of the 4 cube. These circles can represent

.-- mean + am either the number of points in the corresponding 4d cell or the
mean mean - am minimum or maximum or mean etc. of a fifth variable via

.-- mean - a either their radius or their area. Similarly each cell could con-
tain multiple circles or any multiple attribute glyph and hence
represent multiple dependent variables or multiple statistical

.... minimum attributes of one dependent variable e.g., maximum and min-

imum and mean etc. Similarly one could drive the radii of
-a + A concentric circles and/or the heights of colinear parallelo-

a a - A grams using a variety of statistics as shown in Figure 4a and
-- 0 Figure 4b.

Shown in Figure 5 is the case of 6 variables each binned to
Figure 4a - Some important options for statistics which four values for a total of 46=4096 six dimensional cells or
drive the heights of vertical parallelogram data symbols. bins. Note that instead of using circles or parallelograms the

value of the dependent variable or the number of points in the
cells is indicated by gray scale (dark being large). This tran-
sition eventually becomes necessary when the number of
cells becomes very large and hence the area of each cell
becomes too small to meaningfully drive the size of a symbol
or symbols via either the number of points or the value of
some other dependent variable or variables. Note however
that if one zooms into a particular subspace of figure 5 for
example the t=l, w=1 four dimensional subspace, or more
precisely the 4 dimensional stack of 6 dimensional cells, then
the representations of the cells can become larger and one
can, for example, drive the radii of circles as shown in Figure
6. A complete set of tools are available that allow for viewing
any subspace at any degree of granularity consistent with the
total number of pixels.

If the total number of n dimensional bins exceeds the num-
ber of pixels then one must resort to hierarchical symbols rep-
resenting data which has been summed or averaged etc. over
two or more variables and/or degrees of granularity. For
example Figure 6 could also represent the total number of
points in u, t, v, w space with the two variables x and y having
been summed over. Similarly Figure 5 could represent data
with more than 6 variables in which case the smallest cells
shown would represent sums or averages etc. over these vari-

a + Aables, or Figure 6 could represent data involving 6 variables
minimum -j- which are shown at a coarse granulation of 4 values per vari-mean -a -o

Smean - am able instead of at a fine resolution of 16 values per variable
Smean + am (since the latter would require (4096)2 cells). In the latter case
Smean + a if one performed a "resolution zoom" into one "coarse" cellS~~maximum ,

Ssum of Figure 5 one would obtain another figure similar in struc-
ture to Figure 5 (i.e. containing 4096 cells) but now each cell
would correspond to a much smaller domain in the 6 dimen-

Figure 4b- Some important options for statistics which sional space i.e. each coarse variable bin is sub-divided into 4
drive the radii or diameters of circular data symbols. bins so that the 6 dimensional volume of the new finer cells is
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The min/max rule is useful for visual fitting. Figure 7b
v shows the function w = e-*CeY*Yez again for a simple one

| * •hierarchical axis case. Note that the data are generated on aI : : ". • . . •grid centered on the cells so that the narrowest rectangles
have no vertical extent. That is there is only one point per cell

Y o1 .- hence Wmax = Wmin in each of the smallest primitive cells.
The mean ± the standard deviation of the mean is useful

for locating significantly different means. Figure 7c shows
the same census data used for Figure 7a again using a simple
one hierarchical axis but now income is plotted on the vertical
versus sex, education level and age. The narrowest rectanglesE IM Y E I show the mean income ± the standard deviation of the mean
for males and females versus education level for each of the

*age brackets. The second narrowest rectangles show mean
****income irrespective of (averaged over) sex versus education

•level for each age bracket. The next wider rectangles show
. omean income ± the standard deviation of the mean irrespec-

tive of (averaged over) sex and education level versus age
bracket. Finally the widest rectangle spanning the entire

U width of the Figure shows the global average for the sample
Figure 6 - A zoomed view of Figure 5 for w=1 and t=l. ± the standard deviation of the mean. In all there are 77 aver-
Here N is proportional to the radius (or area) of the age incomes shown so that 77x76/2 = 2926 tests of signifi-
circles. cance can be made visually. To a first approximation two

means are significantly different if they do not overlap in their
vertical extents.

1/4096 that of the original coarse cells.

All Possible "Derived" Variables

Visual Analysis Tasks and Rules for One problem present for both the one and two hierarchical
Hierarchical Symbols axis methods presented previously and for the current

The rule or rules used to define the hierarchical symbols approach is that the hierarchy of metrics appears to imply that

illustrated in Figures 4a and 4b are selected according to the only certain sums or averages or minimums or maximums
etc. over variables can be viewed for a given hierarchy of axestype of visual analysis one wishes to perform. For example mtis o xml nordsuso fhwFgr

use of the sum rule and parallelograms is useful when consid-6
use f te sm rle nd araleloram isuseul henconid- involving 4 variables might relate to the parent data of Figure

ering all conditional distribution functions and all possible 5 involving 6 variables we remarked that a sum or average

conditional probabilities. Figure 7a shows a plot of N the over 6 variables we remarked that a y ma y
numbr o pepleverus geeduatin lvelandsex using over the two variables with the smallest metrics x and y maynumber of people versus age, education level andasest have been performed on Figure 5 to obtain Figure 6. We could

the sum rule and a one hierarchical axis plot. The narrowest of course have chosen to say that a sum or an average over t
rectangles give the number of people versus age for each of and w or u and v etc. may have been performed but then no
the fixed education levels and for each sex. The intermediate unique assignment of axis labels would have been possible.
width rectangles give the number of people versus education Similarly not all possible sums, min/max or means were
level for each sex (the ages are summed over). The two next shown in Figures 7a, 7b and 7c. A way to avoid these prob-
widest rectangles give the number of males and females in the lems is shown in Figure 8 which demonstrates how one may
sample irrespective of ages and education levels (which have generalize Figure 6 to obtain all possible derived variables
been summed over). And finally the one widest rectangle has gea Fu re 6t o Bainall ossible derive valea heghtdrivn b th totl nmbe of eope i thesamle. e.g., sums on one graph. Basically one simply adds one value
a height driven by the total number of people in the sample. for each variable and displays in the corresponding "extra"
Hence several conditional distribution functions are visually cell the average or sum etc. over that variable. Consider the
represented. Moreover if one re-normalizes the height of any E circle indicated near the lower left comer of Figure 8 i.e.
particular rectangle to unity then one can find the conditional near crle ict ner t be 43 coms of the d e .near u=l, v=l. There must be 43 = 64 sums of the dependent
probabilities represented by all narrower rectangles contained variable over x corresponding to the 64 possible values of
within it.
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Figure 7 - Graphs illustrating three rules for deter'mining the vertical sizes andior locations of the hierarchical rectangles
namely the sum rule, the mininum/nmaxim urn rule and the mean plus or minus the stand:h, d deviatic, of the mean rule
for 7a, 7b and 7c respectively (see text).
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(offset from the other 4) for each var able x, y, u and v, g ! ] i] floebydiatn
one can show all possible sums as indicated. For each Figure 9 - Widgets used to display domain and resolution

single sum e.g. Yx~ there are 43=64 values, for each double levels (See text.)
sum 42=16 etc. (see text).

(y,u,v) i.e. each variable x, y, u, v has been binned to four That is one treats all variables as the independent variables
intervals. One can quickly find the other 3 circles represent- that are binned to form the space and also as dependent vani-
mng L for (u,v)=(l,l). They are the 3 circles directly above ablfs as well.
the one in questuon. Hcnce the 4 circls vertically aligncd for

(u,v)=(1 ,1) represent the 4 values of Yx for u=l, v=l, y=l to
4. There are 16 such vertically aligned groups of 4 circles cor- Tools, Graphically (Guided Statistical/Database
responding to the 16 choices for (u,v) for a total of 64 values Queries and Granulationt
for 7,x. Similarly there are 42 = 16 value,, for double sums, 4
values for triple sums and of course only one qluadruple sum. Since the multivariate visualization system is capable of
It shou'd be noted that all cells correspond. ,g to a single sum handling categorical as well as ordinal and continuous vani-
have the same scale. Similarly all cells corresponding to a ables (at variable granulation levels) it is ideally suited for
double sum have the samle scale (different fromi the single viewing large hierarchically organiiied databases that occur in
sum scale) etc. Similarly if one wished to show all possible the physical sciences and engineering as well as the social
derived variables originating from two operations e.g. sum- sciences, finance, actuarial sciences etc. A complete set of
ruing and averaging one would add two "extra" values per graphical widgeLs which represent the variables and their
variable. hierarchical gra2 glation can be used to set any boolean alge-

bra query or animate a set of queries. Shown in Figure 9a is a
4d space represented by 4 widgets with each variable

All Possible Correlations "coarse" binned to three values.. Shown in Figure 9b are the

same widgets but here one has zoomed into the first two
Since sme is often interested in whether or not v4.3=6bl4s are coarse values for w (level , granulation), the second for x (but

correlated or conditionally correlated it is useful to plot all its resolution has been increased to level 2), the third variable
derived variables as just discussed but not for just one depen- y is being animated at coarse level I and the last variable z has
dent variables but rather for all possible dependent variables, had its resolution increased but has been decimated to every
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other bin. Hence as the animation proceeds through the three References
coarse level 1 values for x one sees a space corresponding to
2 coarse w bins, 3 fine x bins, and 5 fine z bins or 2x3x5=30 1. Chambers, John M., Cleveland, William S., Kliener,
cells for each frame of the animation. Beat and Tukey, Paul A. in "Graphical Methods for Data

Analysis", Wadsworth International Group, Belmont,
CA., 1983, pp7 5-82 .

Conclusions / Future Directions 2. Becker, R.A., Cleveland, W.S., and Wilks, A.R., in

"Dynamic Graphics for Statistics", eds. W.S. ClevelandBy utilizing suitable subsets of the circle or parallelogram and M.E. McGill, Wadworth and Brooks/Cole, Belmont,

renderings shown in Figure 4a or Figure 4b, hierarchical a, 1988 , pp1-12.

granularity, and hierarchical symbols representing the data

over lines or planes of cells etc. one can in fact perform a wide 3. Mihalisin, T., Gawlinski, E., Timlin, J. and Schwegler, J.,
variety of visual data analysis on large multivariate data sets Scientific Computing and Automation Vol. 6, No. 1, Oct.
which is virtually impossible utilizing other multivariate 1989, pp. 15-20.
visual analysis systems. In addition certain special cases for 4. Mihalisin, T., Suntech J., Vol. 3, No. 1, winter 1990,
the angles and metrics shown in Figure 2a but not discussed pp.25-31.
here or in prior articles3 7 have very important applications
particularly for data sets involving large numbers of variables 5. Mihalisin, T., Gawlinski, E., Timiin, J., and Schwegler,
or high dimensionality d where 2 exceeds the number of pix- J., Proc. IEEE Conf. Visualization, San Francisco, Oct
els (-106) i.e., for d > 20. These cases will be the subject of 1990, pp. 255-262.
future articles. Finally it should be noted that although the pri- 6. Mihalisin, T., Timlin, J., and Schwegler, J., IEEE
mary application of this multivariate visual system is for large Computer Graphics and Applications, Vol. 11, No. 3,
data sets wherein the numbers of points in the finest granular- May 1991, pp. 28-35.
ity cells are generally greater than one, the technique can also 7 Mihalisin, T., Timlin, J., and Schwegler, J., Proc. IEEE
be useful for sparse data. For example the space of Figure5 Conf. Visualization, San Diego, Oct 22-25, 1991, pp.
(6 dimensional) could be utilized to visualize a small number 171-178.
of points say I to 100 so that even at the coarse resolution
level most of 4096 cells would be empty.
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GRAPHICAL METHODS FOR PERMUTATION DATA

Georgia Lee Thompson
Department of Statistics

Southern Methodist University
Dallas, Texas 75275

Abstract but on the vertices of a permutation polytope.
To accommodate partially ranked data, the

Ranked data occur when a group of "judges" are definition of permutation polytope is generalized. A
asked to either fully or partially rank a set of n items generalized permutation polytope is defined to be the
in order of "preference". The frequencies with which convex hull of the points in Rn whose coordinates are
each ranking is chosen cannot be satisfactorily the distinct permutations of n not necessarily distinct
displayed with bar graphs or histograms because numbers. Then, as with fully ranked data, the
permutations do not have a linear ordering. However, frequency with which each partial ranking is chosen is
both full and partial rankings of n items have a displayed at the appropriate vertex of the generalized
partial ordering that can be represented in a natural permutation polytope.
way on generalized permutation polytopes in Rn-i. The resulting graphical displays are especially
This paper illustrates the graphing of ranked data on useful as diagnostic tools because they are compatible
generalized permutation polytopes [Thompson (1992)], with two commonly used metrics for modeling ranked
and discusses solutions for the multivariate data: Kendall's r and Spearman's p. For fully ranked
visualization problems encountered when graphing data, Kendall's r is the minimum number of edges
ranked data on higher dimensional polytopes. that must be traversed to get from one vertex of the

permutation polytope to another. And Spearman's p
is proportional to the straight line distance between

1 Introduction vertices. For partially ranked data, the straight line
distance between two vertices is proportional to the

Fully ranked data occur, for example, when judges are fixed vector extension of Spearman's p [cf. Critchlow
asked to rank n items in order of preference. Each (1985)]. And the minimum number of edges thal
observation is a permutation of the first n integers, must be traversed to get from one point to another on
and the resulting set of frequencies is a function on a generalized permutation polytope induces a new
the group of n! permutations. In partially ranked extension of Kendall's r for partially ranked data.
data, the judges give a partial ranking of n items. Closely related to this is the observation by
For example, they may be asked to specify their first, McCullagh (1990) that the n! permutations of n
second, and last choices. Each observation can then distinct numbers lie on the surface of a sphere in Rn-l

be written as a permutation of n not necessarily in such a way as to be compatible with both Kendall's
distinct numbers, and a set of partial rankings is a r and Spearman's p. Straightforward calculations
function on the set of all possible distinct further show that generalized permutation polytopes
permutations of the n not necessarily distinct are inscribed in spheres in n - 1 dimensional subspaces
numbers. of Rn. Hence, generalized permutation polytopes for

Although the group of permutations do not have displaying rankings of 3 and 4 items are inscribed in
a linear ordering, they do, however, have a natural circles and spheres, respectively.
partial ordering. It can be represented geometrically If more than four things are ranked together, then
by the location of n! vertices of a permutation the problem of visualizing the polytope in higher
polytopes. A polytope is the convex hull of a finite dimensions must be addressed. One approach to this
set of points in Rn, and a permutation polytope is the problem is to explore a higher dimensional polytope
convex hull of the n! points in Rn whose coordinates by examining its two, three, and four dimensional
are the permutations of n distinct numbers. Thus, to faces. In particular, for full rankings, all of the two-
represent a set of fully ranked data, the frequencies dimensional faces are combinatorially equivalent to
with which the permutation are chosen can be either squares or hexagons, and all three dimensional
displayed, not on a line as is done with histograms, faces are combinatorially equivalent to either
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truncated octahedrons, cubes, or hexagonal prisms. If ordering corresponding to v into the ordering
the data is partially ranked, then the two dimensional corresponding to o. The placement of the vertices in
faces can also be triangles, and the three dimensional Figure 1 is also compatible with Spearman's p which
faces can also be equivalent to cubeoctahedrons, for any n is defined as
tetrahedrons, truncated tetrahedrons, octahedrons, n(•I )1/2.
and triangular prisms. Theorems that can be used to p(i-,q) -- (iri - oi)2

characterize all of the four and higher dimensional
faces are found in Thompson (1992). If the edges of the regular hexagon are all of length

Other existing graphical methods for ranked data -T2, then Spearman's p is the Euclidian distance
include multidimensional scaling, minimal spanning between two vertices.
trees, and nearest neighbor graphs which are discussed These ideas extend to n=4 by placing the 24
by Diaconis (1988) for fully ranked data and by permutations on the vertices of a truncated
Critchlow (1985) for partially ranked data. Cohen octahedron, as shown in Figure 2 [McCullagh (1990)].
and Mallows (1980) propose graphical methods based The truncated octahedron has 8 hexagonal faces and 6
on multidimensional scaling and biplots. Cohen square faces. As in Figure 1, r is the minimum
(1990) presents alternate exploratory data techniques number of edges that must be traversed to get from
for ranked data. And Baba (1986, 1988) proposes one vertex to another, and p is the Euclidian distance
plots for ranked data that yield tests for concordance. between two vertices if each edge has length 4 [cf.

In Section 2, the graphical methods proposed by Schulman (1979)]. On the truncated octahedron, the
Thompson (1992) are discussed in detail for fully and 4 vertices of a square have the same 2 items ranked in
partially ranked data when n=3 and n=4. An the first 2 positions and the other 2 items ranked in
example is provided. Section 3 illustrates the the last 2 positions. Similarly, the 6 vertices of a
graphical techniques in higher dimensions with several hexagon all have the same item ranked either first or
examples, and addresses the multivariate visualization last. The idea that each face has a "defining
issues. property" is fundamental in the proposed graphical

methods for n>4.
The plotting of ranked data with n = 4 on

2 Graphical Methods For n=3,4 truncated octahedrons is illustrated by the following
example. At the start of a literary criticism course,

Before discussing the proposed graphics for n>4, we 38 students read a short story and ranked 4 different
will first focus on n = 3 and n=4. Ranked data can styles of literary criticism in order of preference. At
be recorded either as an ordering or as a ranking. We the end of the course, they read another short story
will label items with letters, and orderings are denoted and again ranked the same four styles of literary
by permutations of the first n letters, bracketed by criticism. The 4 styles were authorial (a),
< >. For example, <b,c,a,d> means that item b is comparative (c), personal (p), and textual (t); and one
ranked first, and item d last. A ranking is a question of interest was whether or not the post-course
permutation of n numbers written as a row vector rankings had moved in the direction of the teacher's
!r = (r ... , 7rn) where 7ri is the rank of the item own preferred ordering <p,c,a,t> [see Critchlow and
whose label is the ith letter of the alphabet. The Verducci (1989)]. The frequencies of the 38 pre-course
ranking corresponding to <b,c,a,d> is (3,1,2,4). rankings are shown in Figure 3a and the 38 post-

Figure 1 shows the orderings and rankings of the course rankings are shown in Figure 3b. Most
6 permutations of 3 items. Two adjacent points are obviously, the frequencies do change a great deal
connected by an edge if their orderings differ by a between the two sets of rankings. First, there is an
pairwise adjacent transposition, or equivalently, if increase in the frequencies at the 6 vertices that
their rankings differ by the inversion of two correspond to orderings that begin with c. The post-
consecutive values. Hence, the minimum number of course ranking do not seem to have moved toward the
edges that must be traversed to get from one vertex to teacher's preferred ranking, <p,c,a,t>, but they do
another is equal to Kendall's r. Formally, if 7r and o appear to be closer to <p,c,a,t> than are the pre-
are two full rankings of n items, then r(jr,o) is the course rankings. The orderings seem to have moved
number of pairs (ij) such that 7r i<irj and oi>aj . toward <c,p,t,a>. McCullagh and Ye (1990)
This is equivalent to the minimum number of illustrate a similar conclusion by plotting the vectors
pairwise adjacent transpositions needed to change the of the average pre- and post-course ranking on a
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truncated octahedron. Other observations are 1) the together into one point. Similarly, the two orderings
frequencies at the 6 vertices corresponding to the beginning with b are pinched into one point as are the
ordering ending in (c) decrease; 2) style (a) is rarely two orderings beginning with c. The resulting figure
chosen as either a first or second choice after the is a triangle in which each vertex corresponds to one
course is completed; and 3) the incidence of style (t) the three possible first choices. If n=3 and the judges
as a first choice decreases. are asked to specify only their last choice, the

Because the truncated tetrahedron is inscribed in resulting figure is again a triangle, but with each
a sphere, it can be mapped onto the plane via a vertex corresponding to one of the three last choices.
central projection from any point of the sphere. The The generalized permutation polytopes for partial
result is a Schlegel diagram as described by Banchoff rankings with n = 4 can be determined similarly. If
(1990). This mapping can also be described as the first and second choices are specified, but no
"puncturing" one of the two dimensional faces and distinction is made between the last two choices, then
then stretching the resulting hole out big enough until the resulting figure is a truncated tetrahedron as
the polytope can lie flat in a plane. The stretching shown in Figure 5a. Each of the four triangular faces
and distortion that occur around the edges can often corresponds to the partial rankings in which the same
be minimized by puncturing a face that is as far away item is ranked first; each of the four hexagonal faces
from the bulk of the data as possible. The pre- and corresponds to the partial rankings in which the same
post-course rankings of the literary criticism styles (cf. item is ranked last. Similarly, if the third and fourth
Figures 3a and 3b) are plotted on projected truncated choices are specified, but no distinction is made
octahedrons in Figures 4a and 4b. In these figures the between the first two, the figure is again a truncated
hexagon containing all orderings that end with c has tetrahedron. If just the first choice or just the last
been punctured. Most of the same features of the choice is specified, then the resulting polytope is a
data seen in Figures 3a and 3b are evident in Figures tetrahedron shown in Figure 5b. Next, suppose that
4a and 4b. To enhance the visual content of the both the first and last choices are specified, but no
graphs, the stretching is not uniform around the distinction is made between the second and third
figure. However, all convex faces are still convex, choices. Then the resulting polytope is the
Also, if a square face had been punctured instead of a cubeoctahedron shown in Figure 5c. It has twelve
hexagonal face, the resulting projection would look vertices, six square faces, and eight triangular faces.
quite different. And lastly, if two items are selected as first choices

To make the plots perceptually accurate, the and two items are selected as last choices, then the
areas of the circles in Figures 3a, 3b, 4a, and 4b are resulting polytope is the octahedron shown in Figure
based on Steven's Law which says that the perceived 5d. Partially ranked data of 4 items is plotted on one
scale, p, of the size of an area is of the above polytopes by placing at the appropriate

p cx (area)"7  vertices circles scaled according to Steven's Law.
(Cleveland, 1985). Hence, the radii of the circles are
calculated as radii oc f5/ 7 , 3 Graphical Methods For n > 4
where f is the frequency. If the areas are proportional
to the values, i.e., area cx f, then small circles appear As discussed in detail in Thompson (1992), the
too large and large circles appear too small. ideas in Section 2 can be extended to higher
Conversely, if the radius of the circle is proportional dimensions. The generalized permutation polytope for
to the frequency, i.e., radius oc f, then large values are a data set of either full or partial rankings of n items
magnified and small values are minimized, is inscribed in a sphere in Rn-l. The vertices on

Generalized permutation polytopes for partial which the frequencies are graphed lie on the surface of
rankings can be constructed from permutation the sphere. On the higher dimensional polytopes, the
polytopes for full rankings by simply pinching metrics Spearman's p and Kendall's r have the same
together the vertices corresponding to the full properties as they do for n=3 and n=4. However,
orderings that are not distinguished by the partial graphing data on the higher dimensional polytopes
ordering. For example, if n=3 and the judges are presents visualization problems.
asked to specify only their first choice, then the One approach to the multivariate visualization
vertices of the hexagon in Figure 1 that correspond to problem is to determine all of the two, three, and four
the orderings <a,b,c> and <a,c,b> are pinched dimensional faces of the higher dimensional polytopes
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[cf. Thompson (1992)]. Often, the data can be to 4 other vertices. The polytope has 10 three
effectively illustrated by a sequence of three dimensional faces: 5 tetrahedrons, each of which has
dimensional polytopes in which the frequencies are the same candidate ranked first, and 5 truncated
plotted on the appropriate vertices. Frequently, it is tetrahedrons, each of which has the same candidate
also useful to plot one or more of the 4 dimensional ranked among the last three. One projection of the
polytopes. One technique for plotting 4 dimensional polytope into R3 is shown in Figure 7a with the data
polytopes is to use the fact that the four dimensional graphed on it. The polytope in Figure 7a can be
face is inscribed in a sphere in R4 . The surface of this drawn from the one in Figure 6 by replacing each of
sphere in R4 can be mapped into R3 just as the the 5 vertices with a tetrahedron. The tetrahedron in
truncated octahedrons in Section 2 were mapped into which candidate 2 is ranked first is shown off to the
the plane in Figures 4a and 4b. Frequently, this side; in the projection it is hidden behind the
mapping can be chosen in such a way as to preserve tetrahedron with candidate 3 ranked first.
some distance information and to minimize, in some Immediately evident from Figure 7a is that the data
sense, the distortion due to the stretching at the is not uniform. Candidates 1 and 3 are chosen as a
edges. In particular, the polytopes in R4 for full and pair much more frequently than are any other pair of
partial orderings of 5 things can be mapped into three candidates. Candidates 4 and 5 are also chosen
dimensions, and their projections drawn on a piece of slightly more often than the remaining pairs of
paper. candidates.

To illustrate this idea for graphing rankings of 5 The polytope in Figure 7a was obtained by
items, we consider the partial rankings found in the puncturing and stretching the three dimensional
APA voting data [Diaconis (1988)]. The data set truncated tetrahedron whose vertices correspond to
contains the results of an election in which each the rankings in which candidate 3 is not a first or
member of the American Psychological Association second choice. If, instead, a tetrahedron is punctured
voted for the president of the association by ranking and stretched, the resulting projection into R3 looks
the 5 candidates. While many ballots contained full quite different. Figure 7b shows the resulting
rankings of the 5 candidates, a number of ballots projection with the data graphed on it. It is formed
contained only partial rankings. Three different by puncturing the tetrahedron whose vertices
partial rankings were obtained: just a first choice; correspond to candidate 1 always being first choice.
just a first and a second choice; and a first, second, The vertex <1,2> is shown to the right of the Figure
and third choice. In this example, the candidates are 7b; in the projection it is hidden behind <2,1>. The
labeled with the numbers 1 through 5 instead of with same features of the data seen in Figure 7a are also
the letters a, b, c, d, and e. visible in Figure 7b.

Looking first at the ballots in which only a first Lastly, we graph the partial rankings that contain
place candidate was indicated, we see that the first, second and third choices. The generalized
corresponding generalized permutation polytope has 5 permutation pol Itope for this data, which is inscribed
vertices: one for each candidate. The 5 vertices, which in a sphere in R , has 60 vertices and 90 edges. Each
lie on the surface of a spher, in R4 , are all connected vertex is connected to three other vertices. It has 20
to each other by a total of 10 edges. The polytope three dimensional faces: 5 truncated tetrahedrons, 5
has 5 three dimensional faces, all of which are truncated octahedrons, and 10 triangular prisms. In
tetrahedrons, and 10 triangular two dimensional faces. Figure 8 the data graphed on a projection of this
If one of the tetrahedrons is punctured and stretched polytope. The polytope is obtained from the polytope
out, the polytope can be projected into R3 . Figure 6 in Figure 7a by changing each tetrahedron into a
contains the graph which results from puncturing the truncated tetrahedron, and each line segment
tetrahedron with vertices 1,2,4, and 5. The most connecting tetrahedrons into triangular prisms. The
obvious feature of the graph is that the 5 candidates truncated tetrahedron with vertices that have
were chosen almost uniformly, with candidates 3 and candidate 2 ranked first is shown to the side of the
being prefe.rred somewhat more than candidates 1, 2, figure; in the projection, it is hidden behind the
and 5. truncated tetrahedron in which all vertices have

The partial rankings containing just first and candidate 3 ranked first. Figure 8 shows that the
second choices for president can be graphed on a data is not uniform. Points on the triangular prism
polytope with 20 vertices and 40 edges that is in which all vertices start with candidates 3 and 1
inscribed in a sphere in R4 . Each vertex is connected ranked either first or second are chosen frequently.
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Methods for the Analysis of Coordinate Measurement Data

Fred L. Hulting
Alcoa Technical Center, D-AMCT

100 Technical Drive
Alcoa Center, PA 15069

Abstract data from experiments designed to address a number of
measurement system characteristics, including accuracyMeasurement systems that record (z, y) or (z, y, z) (bias), precision (variation), calibration, resolution, and

coordinate data are widely used in industry to measure response time.

the dimensional characteristics of manufactured parts. In assessing the precision of a measurement sys-

Because successful monitoring and control of the manu- ten, the sources that contribute to measurement vai-

facturing process depends, in part, on the validity of the ation are identified, and their contributions are quan-

measurements provided by these devices, periodic eval- tified. Statistical methods for identifying and quanti-

uations of measurement variation are required. These fying components of variation in one-dimensional data
evaluations typically involve the statistical analysis of are well-developed, and are familiar to many practition-
experimental data. While the coordinate measurements ers (Hunter 1985). As a result, coordinate measurement
provided by these devices are inherently multidimen- data are often analyzed by applying these methods either
sional, the data is often analyzed by applying traditional to (i) each coordinate axis (z, y, and z), or to (ii) one-
univariate statistical methods to each of the coordinate dimensional summaries of the coordinate data - e.g.,
axes, or to one-dimensional summaries of the coordinate the distance from the nominal value along a given direc-
data. This reduction in dimensionality prior to analysis tion, or the first principal component.
may produce misleading results, and it would be prefer- There are, however, potentially significant problems
able to have methods which enable direct analysis of the with these approaches. The first approach ignores re-
original coordinate data. This paper considers one mul- lationships between the measurement- along individual
tivariate method obtained by extending traditional uni- axes. As for the second approach, reducing the dimen-
variate methods based on random effects linear models. sionality of the multivariate data prior to analysis can
The method is illustrated using data from a study of the result in lost information. The original coordinate data
measurement variation in a coordinate measuring ma- will generally be a richer source of information than ei-
chine. ther an individual axis or a one-dimensional summary,

1. Introduction and one must question whether the variation in the sum-
mary data is fairly representing the variation in the mea-

In order to ensure the quality of manufactured parts, surement system. To avoid this problem, one can analyze
the location of features (e.g. holes, slots, surface points) the variation in the original coordinate data, perhaps us-
on parts (e.g., subassemblies of automobiles or planes, ing a multivariate method which is similar in spirit to
electronic packages, etc.) are checked for conformance to one of the traditional methods for one-dimensional data.
specification during the manufacturing process. These One such method has been proposed by Demeter (1989),
checks involve recording the three-dimensional (x, y, z) although the method is limited in scope. A general sta-
coordinates of feature locations and comparing these tistical approach to the problem has not been developed.
measured coordinates to nominal (design) values. Gen- This paper describes and illustrates one method for
erally, the measurements are taken by a computer- analyzing multivariate measurement data. The method
controlled device, such as a coordinate measuring ma- is an extension of univariate analysis of variance method-
chine or a vision system, and successful control of the ology and is based on well-known results from linear
manufacturing process depends, in part, on the validity models and multivariate statistics. The presentation is
of these measurements. Thus, periodic assessments of primarily expository, with technical details contained in
the performance of the measuring device are required. the appendix. I will first introduce notation and discuss
These assessments are typically based on the analysis of a model for the coordinate data. Then I discuss the de-
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tails of the proposed analyses. Finally, I apply them to where nj = (4°, y0, zO)' i the nominal (design) coordi-
example data from a coordinate measuring machine. nate for the !u" feature, and

These methods have other advantages besides protect-
ing the information in the data. Often, part feature lo- = j -

cations are toleranced using a geometric approach. This is the observed deviation from nominal. Subsequently,
approach recognizes that deviations from nominal may we will treat the djp, as the observed data. Further-
occur in any direction, and it places engineering toler- more, unless noted, we will assume that we are focusing
ance limits on the position of the feature, resulting in a on data for a single feature, and drop the subscript I.
spherical tolerance region. The multivariate analysis is Generally, both parts and operators are treated as ran-
a natural complement to geometric tolerancing because dom factors: the parts are assumed to be drawn ran-
it enables the variation in all directions to be quantified domly from the process that produces them, and the
simultaneously. This is useful when more than one axis operators represent a sample from a larger pool of work-
or direction is to be considered, or when it is not known, ers who operate the measurement system. In some some
a priori, which directions should be of concern, instances there may, ii fact, be very few operators, in

The sources of variation that are to be studied will which case the operators are treated as a fixed factor.
depend on thr particular measurement system and ILs In this paper, operators will be treated as a random fac-
environment. Traditionally, in the manufacturing con- tor. Modifications to accommodate the fixed factor are
text, two sources of variation have been targeted for mea- straightforward.
surement systems: within-operator and between-operator CMM Example: There are many types of measure-
(sometimes referred to as repeatability and reproducibil- ment devices that yield two- or three-dimensional coor-
ity, respectively). The within-operator variation is that dinate data. This paper was motivated by work with
which is intrinsic to the use of the measurement system CMMs. A CMM is a computer-controlled device that
by a single operator (including "setup"). The between- uses a contact probe mounted on the end of a robotic arm
operator variation is that which is due to differences in to record data. The CMM tracks the location (x, y, z)
the way operators use the measurement system. Because of the probe tip as it mov, s in three-dimensional space.
this context is familiar to many practitioners, I will use Measurements are made by noting the coordinates of the
it for this discussion. However, the methods I describe probe when it makes contact with the part feature of in-
can be generalized to situations where other sources of terest. In the automobile industry, CMMs are used to
variation are of interest. measure the locations of various features on complete

bodies, subassemblies, production parts, fixtures, dies,
2. Modeling Coordinate Data etc.

Consider data from a CMM measurement study in-
In this section I will introduce the ideas behind col- volving a sheet metal panel for an automobile. Twenty

lecting and modeling coordinate data for a measurement features on ten parts were each measured five times by
study. I will also exemplify this discussion with the de- three operators. So, in our notation, I = 10, J = 3,
scription of a measurement study for a coordinate mea- K = 5, and L = 20. Only one of the features - a
suring machine (CMM). hole center - is discussed here. The data were coded
2.1. Collecting Data so that the nominal coordinate is (0, 0, 0). The units of

Data for a measurement study are often collected from measurement are millimeters.
a multi-factor experiment involving one or more ran- 2.2. Modeling One-dimensional Data
dom factors. In the context considered here, there are Before considering a model for the observed devia-
usually two factors: parts and operators. Consider an tions dijk, recall one univariate approach to modeling
experiment in which I parts are measured K times by data from a measurement study. Let Wijk be a one-
each of J operators. Typically, a "run" in this experi- dimensional measurement, ard assume that the w 1jk are

ment would consist of an operator loading a part into random quantities that follow the random effects linear
the measurement device and then recording measure- model
ments for some number of features (L) on the part. Let wijk = J + oti + )3 j + Aij + ij, (1)

Uijkl = (Xijki, Yijk1, Zijk1) be the coordinate of the Ith which can be thought of as
feature recorded on the kth measurement of the iVh part
by the j~h operator This observed value can be written wijk = (part mean + measurement bias) +
as part effect + operator effect +

uijkl = nt + dijkl , + part-operator interaction effect + error.
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The unknown parameter p represents the sum of the dimensional random effects linear model:
true mean for the part and the bias of the measure-
ment system. The independent random effects ai, ), wik = 1A + ai + 13 + Aij + "filk (2)
and ,ij represent the deviations from p that are due to
parts, operators, and the interaction of parts and oper- Her js is andunknown mre 1nparameter vectorand
ators, respectively. The 7ijk are considered independent a,, ctor , and "Ti,, are independent m x 1 random
random "errors" associated with the repeats by a sin- vectors such that ck, - .,(0, Er), /3- Nm(0, ,
gle operator. In this model, the measurement errors are Ai,- Nm(0, 7po), and -i;ý •- Nm(O, 2r). The nota-

represented by e,,k = fli + Aij + 7yjk. We assume that tion "Nm" refers to an mr-dimensional normal distribu-

a, -_ N(Oo2), Oj - N(Oo'2 ), A,, - N(O,o' 2 ), and yijk tion (e.g., Johnson and Wichern, p. 121). This model
N(0, a0), where "N(., .)" refers to a P is the natural generalization of model (1), and the ran-

N(O o,),whee N(. -" rfes t anormal (Gaus-ro dom effects and parameters are interpreted in the samebeindependenilityof thesothert ndomheeffects. Thusedeo manner as their univariate counterparts. In particular,be independent of the other random effects. Thus, eijk

, N(O, o-'o + ,, + a 2 ) The variances a', a'2 and 2 the random vector ejk = )3j + XiA + 'Yijk represents the

are assumed to be > 0; ao, is assumed to be > 0. measurement error, with e,,k -. Nm(0, Eoo+Xpo+2r).The primary difference between the two models is that
The goal of our analysis is to characterize the com- model (2) uses covariance matrices to describe variation

ponents that contribute to the variation in our observed in several dimensions while model (1) uses variances to
measurements. Under this model, those components are describe variation in a single dimension. These matricesrepresented by functions of a2, 2, a2o, and a'_ . Specif-rlep rinresen ted by functionsof a', a, o', and a1 00 SPecf- are more difficult to interpret than simple variances, but
ical, wvareiant ted: a2 + 07 tthe focus of our analysis does not change. The quanti-
opcrator variance; ap, the variance in repeat measure- ties of interest are still: the between-operator variation
mets the total (characterized by an = Zoo+EX0 ), the w=hin+operator
measurement error variation. Assessments of measure- variation (characterized by Tr), and the total measure-
ment variation will be based on estimates of these vari- ment error variation (characterized by Ee E + Z,).
ances obtained from the experimental data. However, because the covariance matrices are difficult to

The univariate model is applied 1o coordinate data by interpret, it will be necessary to develop useful numerical
taking wik to be a real-valued linear function of the ele- and graphical summaries of these matrices.
ments of kjL.. That is, Wijk = r/Cdkij where 7 is a known CMM Example: Initial analyses showed the varia-
3 x 1 vector. For example, wijk = Zjk - z° is the devia- tion along the z-axis to be negligible compared to the
tion from nominal along z-axis. Another commonly used variation along the x and y axes. This was expected be-
summary is the distance from nominal wiqk = V'dik, cause the z axis is aligneu with the surface containing
where v is a unit-length directional vector. This is just the hole prior to measurement. Given this knowledge, it
the projection of the deviation from nominal djk onto an is reasonable to use only the x and y data in the analysis.
axis defining a particular direction in coordinate space. That is, we -ill treat the
Typically, the direction is chosen based on engineering
concerns; for example, the vector may be normal to the (1 0 )dijk ( j k
surface containing the feature of interest. However, one wk = 0 1 0 Yij k
might also choose the vector v based on a principal com-
ponents analysis of the data (see, fo. -xample, Jackson as the data to be analyzed under model (2).
1981). The usual analysis of the CMM hole center data is
based on this latter type of a ansformation. However, in 3. The Analysis of Coordinate Data
the caz,. of the CMM hole center data, the distance from As with model specification, the methods I propose for
nominal is simply the euclidean distance (jkdijVk)1/ 2 . analyzing multivariate measurement variation are natu-
2.3 Modeling Multidimensional Data ral generalizations of commonly used univariate proce-

One approach to modeling multidimensional data is to dures. To motivate the multivariate methods, this sec-
use a multivariate generalization of the univariate model tion begins with a brief description of a, approach to
(1). Let wik be any rcal- or vector-valued linear func- analyzing yriation in one dimension.
tion of the coordinate data, that is, wip = Tdijk, where 3.1. One-Dimensional Approach
r is a known m x 3 matrix (1 < m < 3). For example, For the one-dimensional problem, the variance compo-
both t'ie original dip (r = I), and the distances from nents completely characterize the variation of the miea-
nominal v'dijkl (r = v/), are of this form. Assume surement system (assuming the model is correct). Of
that the wiik follow the two-way (with interaction) m- course, these variances are unknown hI practice, we use
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estimates of the variance components - denoted ^, o2, 3.2. A Multi-dimensional Approach

r2, and &- in place of the true quantities and pro- The simplest way to extend from one-dimension to
ceed as if rv, a, a, and ar, are known. For balanced several dimensions is to simultaneously consider many
data, the variance estimates can be easily obtained us- one-dimensional summaries of the coordinate data. Be-
ing the analysis-of-variance (ANOVA) method (Hunter cause each summary of the form wijk = rj'd,,k is a pro-
1985; Montgomery 1991, pp. 222-224). jection onto a vector in the three-dimensional coordi-

Once we have estimates of the variance components, nate space, analyzing different summaries provides one
the next step is to determine whether the measurement method of examining the variation along different di-
variation is sufficiently small. Traditionally, this deter- rections in the coordinate space. This "one-at-a-time"
mination is made by comparing the "size" of the mea- multidimensional approach may be appealing to many

surement variation to the size of the tolerance region for practitioners because it relies on familiar quantities such
the part to be measured. This is one way to quantify as the variance components and associated ratios. How-
the ability of the measurement system to correctly iden- ever, it is not a general framework for multidimensional
tify parts that are out of specification. Let ka be the data.
value such that Prob{-ka/2 < Z < k,/2}= 1 - a, To move to a fully multidimensional approach, we
where Z is a N(0, 1) random variable. For example, must abandon the easily-interpreted variances and work
k00o = 5.15. Also, let TOL be the width of the to derive summaries of the covariance matrices. I will de-
engineering-determined tolerance interval. A compari- rive extensions of R,(a) anu EFF under the assumption
son of measurement variation to tolerance is given by the that model (2) is adequate, and that the covariance ma-
variance-to-tolerance ratio Re(a) = kac&e/TOL. Note trices have been estimated. As before, I will proceed
that the middle 100(1 - a)% of the normal distribution as if the covariance matrices are known. Procedures
with variance &2 is an interval of width k,,&e. So, R,(a) for estimating the covariance matrices can be adapted
makes the natural comparison of the lengths of the two from Amemiya (1985) and Calvin and Dykstra (1991).
intervals and may be interpreted as the amount of the One procedure is described in Appendix A. Computa-
tolerance region that is occupied by the "bulk" of the tional expressions for the quantities discussed here may
measurement error distribution. Comparable measures be found in Appendix B.
involving &, and &, [i.e., Ro(a) and R,(a)] can be de- The key to the extension of R,(a) is the one-to-one
fined, correspondence between a covariance matrix Z and the

100(1 - at)% elliptical contour of the N,,.(0, E) distribu-Often, suitability of a measurement system is deter- tion. Represent the measurement error covariance ma-

mined by comparing R,(a), or a similar measure, to tio Repby the mesurement error conce a-

a standard or corporate "rule-of-thumb," derived from trix E, by the corresponding 100(l - a)% contour, and
assume a spherical tolerance region. Then, a size com-

past experience. For example, Re(ot) _< 0.10 might imply parison of the measurement variation and the tolerance
that the measurement system is satisfactory. Such com- can be thought of as a size comparison between an ellip-
parisons are essentially probability statements. Letting sod and a sphere. Two ratios that compare the sizes of

e represent the true, but unobservable, measurement er-

ror, the statement "Re(a) < 0.10" is equivalent to the ellipsoids and spheres are:

statement "Prob[I e 1> (0.10 x TOL)] < a." Vol of 100(1 - a)% N,.(O, ±,,) ellipsoid
Comparisons of measurement variation to part toler- Re(V)(a) Vol of tolerance sphere

ances arc not very useful to an organization practicing and
continuous process improvement. The reason for this
is that, from a process m onitoring or process control R e(L)(a ) =Diameth of tolera nc sph ere
point of view, it is more important to have the mea- Diameter of tolerance sphere
surement variation - represented by &,, &,, and &,r The first ratio is a comparison based on volume (V); the
- be small relative to the actual process variation - other is based on length (L).
represented by P,. Thus, we would like to have mea- In the preceding discussion, we have assumed that the
sures which compare measurement variation and process tolerance regions are spherical, as might be derived from
variation. The signal-to-noise (SN) type ratios &P/&,, a geometric tolerancing approach. If the shape of the tol-
Yp/&,, and &p/&r are one choice. Desirable values of erance region is not spherical, appropriate modifications
the SN ratios are those that are much greater than one. should be made.
Another commonly used measure is the efficiency ratio Now consider the extension of efficiency ratio EFF to
EFF-/( + / & ), which compares the actual process more than one dimension. EFF can be viewed as a com-
variation with the observed process variation. parison of the lengths of the two intervals that represent
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the middle 100(1-a)% of the N(0, &2) and N(0, & + &) 4. Example: Coordinate Measuring Machines
distributions, respectively. The multivariate counter-
parts to these two intervals are the two ellipsoids that We now turn to an analysis of the hole center data

represent the middle 100(I-a)% of the MVN(0, ±p) and from the CMM experiment described in Section 2. The

MVN(O, E p+.e) distributions, respectively. Extensions contour+data plots are given in Figure 1. Tables 1 and
of EFF may be based on a ratio that compares the sizes 2 summarize the statistics for the two-dimensional anal-

of these ellipsoids. As with Re(v)(a) and Re(L)(a), the ysis. Figures 2 and 3 offer visual interpretations of the

comparison of size can be based on volume or length. An ratios defined in Section 3. The positional tolerance re-

extension based on a volume comparison is gion used in these plots is a circle of radius 0.3 mm. In
Figures 2 and 3 a line has been drawn to indicate the

( Vol of 100(1 - a)% N-,(0,,) ellipsoid 2 direction used for length comparisons.
EFF(V) - (Vol of 100(l - a)% N,(0,- + b.) ellipsoid) . In Figure lc, the principal axes of the within-operator

ellipse are nearly aligned with the x and y axes, respec-

An extension based on a length comparison is not as tively, suggesting independence of the x and y within-

straightforward This is because the ellipses may not be operator measurement errors. In Figures Id and 2, how-

oriented in the same direction and a comparison of the ever, the total measurement variation ellipse is oriented

main axes would not be meaningful. In situations such along an angle of about 20 degrees. This change in orien-

as this, "length" comparisons can be made along spe- tation is due to the difference between operators that is

cific directions. Letting g be a (unit length) vector that clearly depicted in Figure lb. It is also notable that the

defines a chosen direction, we have principal axis of the part ellipse is oriented differently
than the measurement error ellipses, as seen in Figure

EFLength of 100(1 - a)% N,,(0, E,) ellipsoid 2 3. This would not have been revealed had the data been
EF(L)(9) = (Length of 100(1 - ca)% N-(0, £, + t•) ellipsoid) ' reduced to a single dimension prior to analysis.

What can be said about the variation in the mea-
where the lengths are taken along g. Two interesting surement system? Certainly some improvements are
choices for g are those vectors which yield the maximum needed. The efficiency volume ratio is EFF(v) = 0.24,
and minimum values of EFF(L)(g). Note that although while the efficiency length ratio can be as small as
these definitions depend on a, the values of EFF(v) and EFF(L)(g) = 0.37 (for g = (-0.99, -0.14)', the main
EFF(L)(g) are invariant to the choice of a. axis of the Ep + X. ellipse) - see Figure 3. These
3.3. Graphical Methodology values suggest that the part variation is overshadowed

It should be clear that the numerical summaries of by the measurement variation, and thus the measure-
the covariance matrices will generally be insufficient for ment system is incapable of monitoring the process. Be-
a thorough analysis of measurement variation. Contour cause only three operators were involved in the study,
plots can form the basis for useful data displays that one should be careful about generalizing these results
supplement those summary statistics. A particular con- - the between-operator "variation" may simply reflect
tour, say the 99% contour, is enhanced by plotting "data systematic differences between these three particular op-
points" that have a sample covariance matrix equal to erators. However, the fact that the largest component
the estimated covariance matrix which defines the con- of the measurement variation is due to between-operator
tour. Such displays are referred to as "contour + data" differences suggests that operator training and/or a fix-
plots. ture redesign may improve the results. Indee 1, it was

The 99% contour associated with k, would be accom- later determined that the observed operator ",driation
panied by the residuals obtained from fitting model (2). could largely be attributed to differences in the manner
The 99% contour computed from ±, would be enhanced in which the three operators mounted and fixtured the
by "measurement error residuals," which are defined in panel.
Appendix C. It is not possible to define suitable data 5. Summary
points to accompany the contours for ±P and ±,. In
that case one could simply overlay the means for the Coordinate measurement systems are commonly used
parts or operators, respectively. When the dimension in industry, and there has been little work concerning the
m is 2, each contour+data plot is constructed using a analysis of data arising from these devices. In this pa-
single two-dimensional scatter plot. When m = 3, the per a multivariate extension of the traditional univariate
more appropriate display consists of the three pairwise method for assessing measurement variation is proposed,
scatterplots x-y, z-y, and z-z, arranged in a scatterplot and it is illustrated by an application to coordinate mea-
matrix. suring machines. Simple numerical and graphical sum-
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maries are developed for conveying the results of the Johnson, R. A., and Wichern, D. W. (1908). Ap-
analysis. The method provides a more complete char- plied Multivariate Statistical Analysis. Prentice-
acterization of measurement system performance than Hall, Englewood Cliffs, NJ.
the traditional univariate approach. Montgomery, D. C. (1991). Design and Analysis of Ex-
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Appendix A. Estimation of the Covariance
This work was initiated while the author was a mem- Matrices

ber of the Mathematics Department of General Motors
Research Laboratories. Helpful discussions with Jeff In this Appendix I describe one method for esti-
Robinson and Laslow Demeter are gratefully acknowl- mating the covariance matrix components of model
edged. The methods in this pc - r have been imple- (2). The total (corrected) variability in the data isI J K---

mented in the S language (Beck-r, Chambers, and Wilks ST = -- -- Z k=1(Wl~ijk-'w )(wijk-- .)', where
1988), and the software is available from the author on the dot notation is used to denote sums over sub-
request. scripts, and the bars denote means. This variabil-

ity can be partitioned as ST = Sp + SOO + Spo +
REFERENCES S, where S, = JK F_=I(,i1i_ - i...)(-ti.. - !..),

Alt, F. B. (1985). "Multivariate Quality Control." In j= K = - -i...)('i.,. -=..), 5,o
Encyclopedia of Statistical Sciences, eds. S. Kotz K 'F=1  .... )('wij -Zi -Uij +
and N. L. Johnson. Wiley, New York, Vol. 6, pp. U.. )', and S, = /I --1k(KWjk - Wi)k --

111-122. i Such a partitioning of the variability in a data set
Amemiya, Y. (1985). "What Should Be Done When can be summarized in an ANOVA table. The ANOVA

An Estimated Between-Group Covariance Matrix Is table for this partitioning in shown in Table 3. The ex-
Not Nonnegative Definite?" The American Statis- pected mean squares are computed under the assump-
tician 39, pp. 112-118. tions associated with model (2).

Anderson, T. W. (1985). "Components of Variance in The ANOVA table suggests the usual method-of-

MANOVA." In Multivariate Analysis - V, P. R. moments procedure for estimating the covariance ma-

Krishnaiah, ed. Elsevier, New York. trices Ep X. Z,,, and Zr - equate the mean
square matrices to their expectations and solve for

Becker, R. A., Chambers, J. M., and Wilks, A. the covariance matrices. The estimators obtained
R. (1988). The New S Language. Wadsworth in this way are ±,p = (1/JK) [Mp - Mpo], oo =
&Brooks/Cole, Pacific Grove, CA. (1/1IK) [Moo - Mpo], ±..po = (1/K) [Mpo - MWr], and

Calvin, J. A., and Dykstra, R. L. (1991). "Least ±,. = Mr. The same method can be used to ob-
Squares Estimation of Covariance Matrices in Bal- tain estimators of sums of these covariance matrices,
anced Multivariate Variance Components Models." e.g., ±o = (1/1IK) [Moo + (I - 1)Mpo - IM,], and
Journal of the American Statistical Association, 86, ±, = (1/IK)[M~o + (I - 1)Mp,+ I(K - 1)Mr]. Note
388-395. that all estimators are linear combinations of the mean

Demeter, L. (1989). "Gauge Repeatability and Re- square matrices from our ANOVA. Also, as with our
producibility: Improvements Needed to Elevate the model, this estimation procedure reduces, in the case of
State of the Art to Meet Evolving Industry Stan- p = 1, to the usual estimation procedures for the uni-
dards." Technical Paper 890772. Society of Auto- variate case.
motive Engineers. Although not stated in the text, it is assumed that

Hunter, J. S. (1985). "Measurement Error." In Ency- E, is positive definite (PD) and EP, Too, and Epo
clopedia of Statistical Sciences, eds. S. Kotz and N. are nonnegative definite (NND). However, it is possi-
L. Johnson. Wiley, New York, Vol 5, pp. 378-381. ble for the estimates ±, and ±'o to be negative defi-

nite. In that case, the estimates must be adjusted so
Jackson, J. E. (1956). "Quality Control Methods for that they lie in the parimeter space. One way to do

Several Related Variables." Technometrics 7, pp. this is to extend the procedure suggested by Nnderson
4-8. (1984) and Ame.niya (1985) for the one-way multivari-

Jackson, J. E. (1981). "Principal Components and ate random effects linear model. Let MA be a m x m
Factor Analysis: Part I - Principal Components." NND matrix and MB be a m x m PD matrix. As-
Journal of Quality Technology 12, pp. 201-213. sume that a method-of-moments estimator of a covari-
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ance matrix X is of the form ± = C* [MA - MB] for coordinate representations of the two 99% ellipse asso-
some constant C*, and that the estimate obtained for ciated with Ep and ,p + Xe are computed. Denote
the current data set is not NND. Using the character- these as {0, r(P)(0); 0 < 0 < 2ir} and {0, r(P+e)(0); 0 <
istic roots and vectors associated with the determinan- 0 < 27r), respectively. Letting O(g) be the angle cor-
tal equation I MA - 17MB 1= 0, it is possible to write responding to a directional vector g, it follows that
MA - MB = [MA - Mb]+ + [MA - Mb]-, where EFF(L)(g) = (r(P)[O(g)]}/{r(P+e)[0(g)]}) 2.
[MA - MB]+ is a NND matrix, and [MA - MB]- is
a negative definite matrix. The matrix [MA - ME]+ Appendix C. Measurement Error Residuals
is "closest" to [MA - MB] among all NND matrices
having the same characteristic vectors in a certain met- Recall, from Appendix A, that. e =
ric. Since [MA - MB]+ = MA - MB when b = m, it (1/1IK) [M00 + (I - 1)Mpo + I(K - l)M,] . Letting
appears natural to use the following as the estimator of sijk = (Uj.- 1)/J]1l2(w,,k+-IUj.), ±, can
X7: be rewritten as [IJ(K- 1)]-1 E'' 1 '' r=sijks'ijI"

±+ C*[MA-MB)+ 0 < b < m So, treating the sijk as data, the sample average
0 b = 0 would be 0 and the sample covariance matrix would be

The details of the procedure may be found in Amemiya {[IK(J - 1)]/[IJK - 1]}±,e. Thus, a reasonable choice
(1985). for data points to accompany the contour plots derived(1985). a tfrom X. is &pk = {[IK(J - 1)]/[IJK - 1]}sij,. Note

To apply this general procedure, it is only necessary to that pij• represents the major contribution of wi• to
identify, for each linear combination of mean square ma- the estimate lh. Thus, the Zek might be used to iden-
trices, the constant C* and the matrices MA and MB t
However, the matrix playing the role of MB may not be y
PD for some of the linear combinations considered here.
To correct this, I substitute a PD estimate of E(MB)
for MB, as suggested by Amemiya (1985).

Appendix B. Computational Expressions for
Re(v)(a), Re(L)(a), EFF(v), and EFF(L)(g)

Let 6be) > ... > 6Q) be the eigenvalues of

Ee and let ii),..., be the associated eigen-
vectors. The "volume" of the 100(1 - a)% el-
lipsoid for a Nm(0,, e) distribution is given by

V(1)-(a) = W 6z)) 1/2 (2[irxC(a)],/ 2/[mr(m/2)I),

where X2,(a) is the upper-a point of the chi-squared
distribution with m degrees of freedom, and r(.) is
the gamma function (Johnson and Wichern 1988, p.
103). Also, the lengths of the principal axes of that
ellipsoid (which are defined by the lc)) are z.48)(e) =
[6$e)I1/2 x 2[X2(t)]1 / 2 (Johnson and Wichern 1988, p.
126).

Now, assume a spherical tolerance region with di-
ameter TOL. Then, the two extensions of R,(a) are
R,(v)(a) = V(e)(a)/VOL, where VOL is TOL (for
m = 1), 7r(TOL) 2/4 (for m = 2), or 7r(TOL) 3 /6 (for
m = 3), and R.)( e)(a)/TOL.

Now, let 6bp) > ... >Ž b() be the eigenvalues of ±p and
let 6 (p+") > ... > 6(p') be the eigenvalues of ±' + .

Then, FFF(v)= ([in'I 6ýP)I/[H-11 6(P+e)])2 The com-

putation of EFF(L)(g) is more complicated. First, polar
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Table 1. Results from Two-dimensional (z, y) Analysis of Hole Center Data

Covariance Matrices Axes of Ellipse Axis Length'j X 104oP (P 'P

9.76 -3.88 -0.879 -0.476 0.209
-3.88 4.70 0.476 -0.879 0.098

XC 103 10) 4(0) V(o)

1.85 0.80 0.887 -0.461 0.289
0.80 0.73 0.461 0.887 0.108

X 104 (r) I() _ (r)

8.91 -0.78 -0.994 -0.113 0.182
-0.78 2.19 0.113 -0.994 0.088

S103 (e) I) (e)

2.74 0.72 -0.944 0.331 0.332
0.72 0.90 -0.331 -0.944 0.160

Table 2. Ratio Estimates from Analysis of Hole Center Data (a = 0.01)

Comparisons to Tolerance Comparisons to Total

Source of Region Variation

Variation Volume Length Volume Length(')

Part Jp(v) = 0.06 RV(L) = 0.35 EFF(v) = 0.24 EFF(L)(g) = 0.37
Between Operator R0 (v) = 0.09 R&(L) = 0.48 0.37 0.60

Within Operator R,(v) = 0.04 Rr(L) = 0.30 0.19 0.44

Within + Between R,(v) = 0.15 Re(L) = 0.55 0.63 0.84

( Comparison along main axis of 9, + 1p ellipse, i.e., g = (-0.99,-0.14)'

Table 3. An ANOVA for the Multivariate Linear Model

Degrees of Sum of Mean Expected

Source Freedom Squares Squares Mean Squares

Parts I - I SP MP Er + KL.o + JKE,,

Operators J - 1 SOO M,, Er + KEpo + IKEoo

Parts x Operators (I - 1)(J - 1) SP0  Mo 0  X,. + KEPo

Error IJ(K - 1) Sr Mr Ir

Total IJK - 1 ST
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Figure 1: The contour+data plots for the two-dimensional analysis of the hole center data. The
dashed line represents the positional tolerance region. The ellipses are the 99% contours from the
two-dimensional normal distributions with mean vector 0 covariance matrices: (a) ±p, (b) ±.o, (c)
Er, and (d) ±E. Tables 1 and 2 contain the numerical summaries that accompany these illustrations.
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Figure 2: An illustration of the Variance-to-Tolerance ratios comparing Xe and the positional
tolerance region. Here, the volume ratio is R,(v)(0.01) = 0.15 and the length ratio is Re(L)(0.01) =
0.55 (See Table 2).

d

0

9

-0.3 .02 -. 1 0.0 0.1 02 0.3

Figure 3: An illustration of the Efficiency ratios comparing Xp and EX + Xp. Here, the volume
ratio is EFF(v) = 0.24 and the length ratio is EFF(L) = 0.37 (See Table 2).
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Exploring Time Series Using Unlvarlate Phase Maps

Edmund L. Russell, EI[

Advanced Micro Devices MS-524
5900 East Ben White Blvd.

Austin, TX 78741

Abstract: Over the past few years, principally due to the Xi e (0,1)
study of fractals, there has been an increased awareness
that even relatively simple, completely deterministic, When the growth parameter, r, is set to 2.99, the iterates
recursive systems may produce time series data that appear converge on 0.665552 approximately.
to be highly chaotic in nature. Very slight perturbations in
the constants controlling these systems can lead to widely In other systems we find that the iterates converge to a set
differing behavior of the same underlying process. of points that recur periodically. An example of this

occurs again in the Verhulst model for a growth parameter
The univariate phase map, in movie form, can be a highly set between 3 and 3.4495, in which case the iterates
sensitive detector of shifts or changes in the underlying eventually cycle between two numbers and the orbit is said
model of a time series. This paper explores some of the to have a period of two. In particular, when r is set to 3.01
uses of the univariate phase map, in movie form, for the iterates cycle between 0.632849 and 0.699377
exploring time series data and discovering modelingdifficulties prior to actually fitting time series models. In still other dynamical systems the iterates appear to

behave randomly but remain close to a set A of points.
That is, the orbits that come near the set A tend to remain
close to A. This set of points, A, is called an attractor. If

1) Introduction the set A is a fractal set, then the set I is called a strange

attractor. The converse of an attractor is a rem Iler, and a
Over the past few years researchers in a variety of fractal repeller is called a strange repeller.
disciplines have become highly interested in dynamical
systems. Dynamical systems are recuisive systems that Completely deterministic dynamical systems that contain
map back into their own domain. The relationship either a fractal attractor or repeller may exhibit chaotic
between dynamical systems and time series analysis behavior. Falconer suggests that such systems commonly
becomes obvious when the iterates of a dynamical system exhibit the following properties:
are tracked over time. In the language of these systems,
these iterates are said to trace out an orbit. Frequently the a) the orbit of a member of the attractor or
orbits themselves become an object of study. This is repeller is dense in the attractor or repeller
particularly true for orbits that have a large number of
iterates. b) the periodic points of the iterates of the

attractor or repeller are dense in the attractorIn some systems we find that the iterates tend to converge or repeller
to a fixed point. An example of this occurs in the Verhulst
population growth model: c) the iterates exhibit sensitive dependence on

initial conditions, that is points in the attractor
Xi = r*Xi_1 *(1 - Xi_1) or repeller that are initially close together do

not remain close together.

where
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The concept of deterministic chaos is conceptually For a familiar, simple physical example of chaotic
challenging at first glance. The idea implies that entirely behavior, consider the Quincunx in Figure 1. This simple
deterministic systems can appear to exhibit random device has been used for years to demonstrate how one can
behavior. Even more challenging is that relatively simple get a normal distribution from a large number of
deterministic systems can exhibit apparent randomness. independent Bernoulli trials.

This should not be a surprise to statisticians and computer A ball is dropped on the top bar and it bounces down onto
scientists because of the use of such systems in generating the bars below in each case going to the right or left with
pseudo-random numbers. For example, one of the better equal probability. The ball finally comes to rest in one of
systems for generating uniform pseudo-random numbers is the bins located below the last row of bars. The balls
the Super-Duper algorithm which has been shown to hold accumulate in the bins approximating a normal
up in five-dimensions: distribution.

However if we believe in the Laws of Physics, there are no
independent Bernoulli trials. The entire outcome is fully

Seedi = ((Seedi-1 * 69069) + 1) mod 232 determined the moment the ball is dropped. So where does
U Seedi the normal distribution come from? The answer is from a

- Sd field of repellers present on the top bar. This field of
232 repellers, in the limit, appears to be a fractal set.

For another example we can consider once again the Real physical dynamical systems that are believed to
Verhulst population growth model. When the population exhibit chaotic behavior have been discovered. Some
growth parameter, r, is set to 3.569, the population examples include: kneading ingredients into a bread
eventually oscillates about 16 fixed values. However the dough, turbulent fluid flow, the time between drips of
behavior changes radically when the population growth water from a faucet, Brownian motion, the spinning of a
parameter is set just above 3.56999. In this region, the water wheel, transmission errors on phone lines, and the
modeled population can assume an infinite number of beating of a heart.
values, seemingly at random.

Time series obviously could be generated from any of the
above mentioned physical dynamical systems. These
systems can easily be thought of in terms of standard
ARIMA models with more or less "noise" tossed in.

The Quincunx (Galton's Board) However, from the point of view of physics, the
randomness enters the system in the uncertainty in theo initial conditions orly. All successive time points are
purely deterministic.

0

* 0 U) Univariate Phase Map

One of the traditional plots that is examined in times series
analysis is a plot of the data against itself lagged by one or
more time periods. This plot is typically presented in the
form of a scatter plot of all of the data against itself as seen
in Figure 2.

Figure 1.
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Scatterplot number of problems that are encountered in trying to fit
autoregressive time series data.

X(t)
To begin answering these questions, consider an

autoregressive process of order 1, an AR(I) process, where
we define:

X, = O*X, 1 +,

Now if we ignore the noise term, et, then we find that the
expected slope of the points plotted on the univariate phase

X(t+l) map movie for an AR(1) is 0. This is because the slope of
the line through any two plotted points at times (t+1, t+2),

Figure 2: Scatterplot of times series data potted against and (t't+l) is given by:
itself lagged by one time interval.

(X,12 - X1 )
(x,+1 -x,)

It is well known that this type of plot can show that
neighboring points in time are autocorrelated. Another which simplifies to 0.
name commonly used for such plots is the univariate phase
map. This slope is realized if there is essentially no noise in the

process. If the noise term needs to be included then there
Drawing upon the concept of strange attractors from is no ready simplification.
chaotic systems, it might be inferred that there is a
possibility that the univariate phase map might show However if we consider an autoregressive process of order
evidence of such an attractor. The attractor would become 2 defined as:
evident since orbits of the iterates that are near an attractor
tend to remain near the attractor. In fact, phase maps are X, = 01 *X,_1 + 02 * X1-2 + E,
commonly used to assist in finding attractors of dynamical
systems. there is no readily interpretable reduction of the slopes of

One enhancement to the traditional scatter plot form of a the lines in the univariate phase map movie. For instance,

univariate phase map is to connect successive points with ignoring the noise term as before the slopes of the two

lines. If a lot of points are plotted, then the resulting plot joined lines through the plotted points at times (t+2,t+3),

may become very messy. To reduce the clutter, we can (t+l, t+2), and (t,t+l) is given by:

present the connected points in smaller groups. Since we
don't know what the optimal breakpoints are for this type
of presentation for any given data set, we can present the (X,+3 - X,+2_ )
univariate phase map as a movie. (X -X

We would like to know if, for any given autoregressive and
time series, the univariate phase maps are stable and in
what sense. We would also like to know if the univariate
phase maps are distinctive enough to allow the investigator
to determine which model underlies the time series data. =(X,2 - X,++

(X,÷, -X, )
If there is some stability and the univariate phase map

movies of different models appear distinctive, then the
univariate phase map movies can aid in uncovering a
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These slopes simplify to: Even with simple casual examination of the univariate
phase map movies it is easy to see that there is a distinct
difference between autoregressive models with positive

(01 + 02 - 0 )Xt+1 + 02 (1 - )X, coefficients and negative coefficients. In particular,
m?2 =models with positive coefficients Lend to have phase map

(01 - 1)X,+1 + 02X, movies that move back and forth on a 450 line from the
origin. This can be seen in Figures 3 to 5 but is more

and evident in movie form.

( - 1)x,÷1 + €p2x,(1 -1 +Autoregressive Time Series AR(1),
X"+ + X, Coefficients Positive

It becomes obvious that this becomes worse with even
higher order autoregressive processes. And worse yet if
the noise terms are included in the equations.

I) Synthetic data examples of Autoregressive
Processes

To overcome our lack of awareness of the properties of the
univariate phase map movies based on recursive equations
in the presence of noise, we turn to simulated processes. In
this paper six simulated autoregressive time series are Figure 3
examined, and portions of the univariate phase map movies
are presented. Only a small percentage of noise was
included in the synthetic data series. The series examined
are:

Coefficients negative: Autoregressive Time Series AR(2),

Coefficients Positive

X, = -0.95X,'_ + E,

X, = -0. 95X,-, - 0. 95X,_2 + E,

X, = -0. 95X,_- - 0. 95X,_2 - 0. 95X,_3 + E,

Coefficients positive:

X, = 0.95X,-, + e,

X, = 0.05X,-, + 0.95X,-2 + e, Figure 4

X, = 0.01X,_t + 0.01X,_2 + 0.95X,_3 + e,
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Autoregressive Time Series AR(3), Autoregressive Time Series: AR(2),
Coefficients Positive Coefficients Negative

Figure 5 Figure 7

Autoregressive Time Series: AR(3),
Models with negative coefficients tend to move Coefficients Negative
perpendicular to the same 450 line, see Figures 6 to 8. It is
also readily apparent that models of different orders do
appear to behave differently.

Autoregressive Time Series: AR(1),
Coefficients Negative

Figure 8

One of the more surprising results is that the observed
"patterns apparent in the univariate phase map movies are
not unconditionally stable. This is most apparent in the
higher order models. There appear to be occasions,
perhaps corresponding to data points at which the noise
term dominated, upon which the pattern of the phase map

Figure 6 tends to change to a similar pattern. Compare Figures 8
and 9. In addition there are cases in which the dominant
pattern is temporarily abandoned - see FigurelO.
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Autoregressive Time Series: AR(3), IV) Example of uses of the Univarlate Phase Map
Coefficients Negative Movie

....... One of the uses that has been made of the univariate phase
map movie is to examine data sets for problems. In one
case, the author received an electronic copy of a data set
taken from the Box, Hunter, Hunter text. Upon running
this particular data set through the movie, it was
immediately noticeable that the movie completely retraced
itself, see Figure 11.

Box, Hunter, Hunter Data Set

Figure 9: Notice that the pattern has shifted to a pattern
similar to that in Figure 8. I

I7
Autoregressive Time Series: AR(3), i

Coefficients Negative

Figure 11: Region of the data set in which the data values
were accidentally duplicated. Note that the univariate
phase map traces over itself.

. - - Using some of the features in the program, the beginning
and end of the retrace was discovered. The data in this
section, about 20 observations long, was compared to the
data published in the text. It turned that there was a data
entry error of 20 duplicate observations. Correcting this

Figure 10: Notice that this pattern is not characteristic for error did in fact change the partial autocorrelations for this
the synthetic data in this data set. series.

Another data set which was examined that yielded
interesting results is some star magnitude data also

The impact of this lack of stability on the usefulness of the provided with another time series analysis package. The
univariate phase map to identify autoregressive time series full story of this data set is not known to the author at this
in noisy data remains to be evaluated, time, however it is apparent that either the star (if it is real)

is behaving in a very peculiar manner from time to time or
there has been some manipulation of the data in the data
set, see Figures 12 and 13.
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Star Magnitude Data Set reasonable to believe that the underlying model changes
from time to time and that the geological processes
operating in an area will change over time. In addition, the
processes will repeat from time to time.

What made this data set uninterpretable was that th, re
were no dominant features for the sonic log analysts to use
for "correlation" purposes. Most interpretations from this
region are based on well-bore core instead of sonic log
data.

Upon comparing obvious dominant patterns in the
univariate phase map movie of this data set to an
interpretation based on actual well-bore core examination,
it was found that whenever similar patterns were evident in
the univariate phase map of the sonic log, that the same

Figure 12:se S ar magnitude, daTas it appelars i the interpretation appeared based on the core. For an example
univariate phase map movie. This is similar to the seFgrs1 n 5

majority of the data in the data set.

Star Magnitude Data Set Sonic Log Data, Offshore Bar

Figure 14: Core corresponding to this portion of the sonic
Figure 13: Star magnitude data as it appears in a few log data was interpreted as coming from an offshore bar.
small portions of the data set in the univariate phase map Depth is approximately 9,905 feet.
movie.

The author does not know how seriously this affects the
partial autocorrelations for the data.

Another interesting data set that was studied by the author
is some geophysical conic log data that had been declared
as uninterpretable. In this type of data, there is reason to
believe that the data contains very little noise. It is also
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Sonic Log Data, Offshore Bar usual noise components. There is a potential that if the
suspect autocorrelation pattern, generally very short, is
known from past history, that process intervention can
begin at earlier times than previously possible using
traditional SPC methodology.
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Abstract The programs we have in mind should (i) be well-suited
to problems users typically wish to solve, (ii) require rel-

This paper discusses software, currently under develop- atively little information from the user in order to make
ment, for application of subregion-adaptive numerical in- them run, and (iii) be well-tested and documented. In
tegration methods to multiparameter Bayesian inference addition, (iv) experienced users should be able to access
problems. Following Genz and Kass (Proceedings of the key components for customization. Ideally, a wide vari-
23rd Interface), a parameter transformation is used to ety of integration strategies should be available. This not
transform the domain of integration to a multidimen- only may increase applicability, but furnishes important
sional unit cube. On the cube, well-tested software devel- checks on results.
oped by Genz and colleagues may be used. We consider Our thinking currently focuses on what we have called
(i) the kinds of problems this software should be able to (Genz and Kass, 1991) "subregion-adaptive" integration
solve, and the inputs to it required of the user and (ii) methods (Genz and Malik, 1980; Berntsen, Espelid, and
desirable features the software should have. We also men- Genz, 1991). Well-tested software based on this ap-
tion current progress in implementation. proach is available (obtainable from the third author or

through netlib), but it is not especially well suited toKEY WORDS: Gaussian quadrature, multiple integrals, typical Bayesian integration problems. The subregion-
posterior calculations. adaptive algorithm assumes the region of integration is

an m-dimensional box; it then divides the region into

1 Introduction subregions, attempts to identify those in which the in-
tegrand varies most, and goes on to further subdivide the

Although a variety of methods have been used to com- subregions of high variability. The difficulty in Bayesian
pute integrals arising in Bayesian inference (e.g., Evans, applications is that the integrand is usually very highly
1992, this volume), their impact on statistical practice is peaked, so that it is nearly zero throughout most of what-
limited by lack of widely available and easily-used soft- ever box one might reasonably pick as the domain of
ware. Especially useful would be a modular collection of integration. Thus, the subregion-adaptive method inef-
FORTRAN subroutines for statistical multiple integra- ficiently searches for the subregion where the action is,
tion. In this note we outline desirable characteristics of and might even miss it entirely.
such a collection. On the other hand, it is not hard to fix this prob-

1
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lem: the region of peakedness is roughly known once e The probability content of a joint region, especially
the posterior mode and approximate covariance matrix the content of elliptical regions based on the modal
are found, and these may be used to define transfor- normal approximation.
mations to the unit cube. Genz and Kass (1991) used
normal distribution functions following an approximate * For real functions of the parameter vector, such as a
orthonormalization (from the Cholesky decomposition of log odds ratio, modes and modal approximate stan-
the approximate covariance matrix), and improvements dard deviations, expectations, variances, marginal
to this relatively naive approach are certainly possible. densities, and marginal probabilities.
Employing any such transformation, the basic steps in us- A class of models deserving special attention, which
ing subregion-adaptive methods are (i) compute the mode Kass and Steffey (1989) have called Conditionally Inde-
and modal covariance matrix (i.e., the inverse of the neg- pendent Hierarchical Modes, consists of two-stage hier-
ative Hessian of the log posterior density), (ii) transform archical models that arise in parametric empirical Bayes
to the m-dimensional unit cube, and (iii) apply subregion- applications. These hierarchical models result in likeli-
adaptive integration. These are also essentially the same
steps that need tu Ue followed for a variety of other meth- hood functions that are themselves products of integrals,modiyingso that posterior calculations involve iterated integrals.
ods (substituting for (iii) and correspondingly modifying Where possible, this special structure should be consid-
(ii)) including Laplace's method, Gauss-Hermite integra- ered.
tion, and Monte Carlo importance sampling.

The guiding heuristic here, of course, is that under reg-
ularity conditions and for large samples, posterior distri- 3 Desirable Features of the Soft-
butions are approximately normal; in many applications
the approximating normal distribution is itself of interest, ware
On the other hand, in some applications posterior distri-
butions are clearly not close to normal and alternative We would like the final software to be organized into a
methods are needed. Subregion-adaptive integration is portable package of FORTRAN subroutines with the fol-
often applicable in irregular as well as regular cases, but lowing features.
in illustrating our discussion here we presume we would
be in the "well-behaved" situation. * Both "easy" versions, which require relatively little

user input, and "detailed" versions, which allow user
control.

2 W hat We Would Like to Corn- For example, in computing expectations and vari-

pute ances a relatively simple routine might have the fol-
lowing inputs and outputs.

Several items are essential for Bayesian data analysis.
inputs:

" The posterior mode and the Hessian of the log pos- log-posterior - a user-defined
terior density, which furnish the modal normal ap- function
proximation to the posterior, data - a user-defined subroutine

that returns an array with
" Expectations and variances of components of the pa, dimensions specified by

rameter vector. data.dimensions
data-dimensions-a o-ngr

"* The marginal densities of components of the param- data-dimensions - a two-integer

eter vector. vector giving number of rows
and columns in array returned

"* Interval probabilities for components of the parame- by the subroutine data
ter vector, mode - a vector: the posterior

mode
In addition, it is highly desirable to be able to compute modal-covariance - an array: the
the following, posterior covariance matrix

parameter-dimension - an integer
* The marginal density of the data. giving the dimension of the
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parameter vector 4 Concluding Remarks
outputs:

expectation - a vector We have been investigating alternative transformations
covariance-matrix - an array to the unit cube. An initial prototypical driver program
posterior-constant - a number: the has been written by the first author to exemplify calling

normalizing constant for the modules for (i) maximization (ii) Hessian computation
posterior (iii) transformation and (iv) subregion adaptive integra-

tion for the computation of expectations and variances.
Some revision, testing, and documentation of this mini-

On the other hand, a more detailed version might mal first step is necessary before we will be able to make
include inputs involving alternative functions to be it available. Once this is done, we would like to go on
included, types of transformations to be used, the in- to the much larger project we have outlined here. We
tegration method, desired accuracy, and limits on the are hoping to receive advice and suggestions from many
amount of work required to obtain the results. Ad- colleagues concerning the design of this collection of soft-
ditional outputs could, for instance, include assess- ware.
ments of accuracy. In addition, an especially simple This work was partially supported by NSF grant DMS-
version could encorporate evaluation of the mode, 9008125 and NIH grant 1-54037.
rather than leaving the user to apply two separate
subroutines.
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the noncentral t distribution given by
ABSTRACT Marakathavalli (1954); and, when 5 =X =0, T

becomes Student's central t random variable.
Krishan (1968) and Bulgren and Amos (1968) Several applications of the doubly noncentral t
gave representations of the doubly non-central distribution are given in Robins (1948), Patnaik
t distribution and its computations. Their (1955), Krishan (1968) and others. Krishan
techniques involve both double summations and (1968) and Bulgren and Amos (1968) have given
integrals. Recently Kocherlakota and series representations using functions including
Kocherlakota (1991) have given an alternative incomplete beta, hypergeometric (Gauss and
representation of the distribution. Their Confluent) and modified Bessel functions.
techniques involve the singly noncentral t However, their techniques involve series of
distribution and uses the IMSL subroutine double summations as well as integrals.
DTNDF. In this paper we propose simpler Calculations of the double infinite series of
methods for computing the doubly non-central integrals involving three parameters n, 5, and X
t Probabilities. Our techniques do not involve are not simple due to problems both in terms of
the subroutine DTNDF and have better the time and the termination of the
efficiency and accuracy. These techniques summations.
have been implemented in a computer program Kocherlakota and Kocherlakota (1991)
written in ANSI 77 FORTRAN. have given an alternative representation for

the doubly noncentral t distribution involving
KEY WORDS: Doubly and singly non central the single noncentral t distribution. Their

t distribution; Poisson distribution function; technique uses the IMSL subroutine DTNDF to
series representation; incomplete beta integral; evaluate the singly noncentral t distribution
error bound. function. This representation reduces the

double infinite series of integrals to a single
1 INTRODUCTION infinite series. Singh et. al. (1992) have

proposed an alternative technique for small,
Let z denote a normal random variable with moderate and large values of (n, 5), as well as a
mean 5 and unit variance, and let Y be an computer program, DNONCT, which
independent chi-square random variable with n implements the procedure. In comparing
degrees of freedom and non-centrality results, it has been shown that DNONCT does a
parameter X. Then the random variable T better job in terms of speed and accuracy, and
defined as a ratio zvrn/vy follows a doubly DNONCT can provide a given, desired

accuracy. It is noted that this technique onlynoncentral t-distribution with n degrees of works for integer or half integer degrees of
freedom and non-centrality parameter s and X freedom. This is not a serious limitation,
When X = 0 and 5 • 0, T reduces to the usua however, since fractional degrees of freedom
(singly) noncentral t random variable given by hwvr ic rcinl dgeso reo
Amos(singly ) , nocenta t andom variabler en b7 occur rarely in applied statistics (Satterthwaite,
Amos (1964), Resnikoff and Lieberman (1957) 1946; Gayler and Hopper, 1969).

and others. Recently Singh et. al. (1992) have In this short note, we propose a method

provided a simple method to compute the tail for evaluating the doubly noncentral t

probabilities of the singly noncentral t distribution incorporating the technique given

distribution. When 5 0 and X # 0, T follows by Singh et. al. (1992) for evaluating the singly



J.M. Hardin and K.P. Singh 183

noncentral t probabilities into the expression and for t <0,
recently developed by Kocherlakota and
Kocherlakota (1991). We compare our results P(T -t n,",' )
for selected values of (t, n, 8, X) with those
obtained by using the expression of P(.!k - - L)_y [ii 1 1. + +2k
Kocherlakota and Kocherlakota (1991) and the 2 k4 j4 2 ( 2 2 J
IMSL subroutine DTNDF. The IMSL (2.3)
subroutine DTNDF is based on approximate where
formulae whereas our subroutine is based on
exact expressions for the incomplete beta P(O,k) f q,(O), w = , and
(Singh and Relyea, 1992). Table I shows that
our method does better in terms of accuracy
and is a good alternative for IMSL. A 1 ,
FORTRAN computer program has been Jw(pq) = P-- f _X ( -x
developed to implement this method. The B(p,q) (
program can be easily converted to any (the incomplete beta function) with B(p,q), the
computer supporting ANSI FORTRAN 77 and complete beta function.
it is available upon request. Similar expressions are given by Bulgren

and Amos (1968). Note that expressions (2.2) and
2 COMPUTATION OF DOUBLY NON- (2.3) involve double infinite series and present
CENTRAL t PROBABILITIES problems with respect to terminating the

summations in evaluating these expressions.
Let Z, Y and T be the random variables defined Kocherlakota and Kocherlakota use an
in section 1. Then following Kocherlakota and interesting trick to make expression (2.1) a
Kocherlakota (1991) Poisson-weighted sum of singly noncentral t

cdA's. Let X = 0 for the random variable T. The
P(Tstln,6,A) - qk(1/2) f * [-a8t(Y)t12]dy distribution function of T is then given by

k-0 0 n

(2.1) P(TstIn,8,0) = f*.(y). [-8+t(y/n)112]dy (2.4)where 0

e-k Using (2.4) in (2.1) and adjusting the degrees of
qk(O) ±= (Poisson weight), 0(-) freedom for the singly noncentral t distributionk1

function in (2.4), (2.1) can be rewritten as ais the standard normal distriubtion function and Poisson-weighted sum of singly noncentral t

distribution functions with n + 2k degrees of
ip(y) efreedom and non-centrality parameter 6. The

2m12 n2 expression then can be written as

(the pdf of the central chi-square random
variable with n degrees of freedom). P(T stIn, 8,7.) = Eqk (.1/2) P[Tt' In+2k,6] (2.5)

By differentiating the cumulative k4

distribution (2.1), we easily obtain the pdf of T.
Krishan (1968) has given a different where t' = t and q*(O) = e-e0k/kJ
representation for the cdf of T. His expression \n )
for t >0 is given by Following Lenth (1989) and Singh et. al. (1992),

P(Tct In, 8, ) the singly noncentral distribution function,
P[T :5 t'ln+2k,b], can be rewritten as

( P(Ak)P(a2,L)((1y + J + .!+22.k ;. 6)2. k4 o 2 1,2 2 j' 2(s'n.ka 2 PIQ+.,.).~V1~.]45

(2.2) (2.6)
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where= ______ D2 = i' I' a -'S/1

xgLlb- . 5- "•-5 r 1-x)'-', and
(t2 n + 2k]' - ai-1 a t+.-5

P 1 = 41 (62/2y D 3 m= ( 2 11'

U 2 j! i-I (6.1 cc + 1)

1 jl Now, 1. 0J+/2, 8/2), IA (j+1, k+ 12), P,, and P~j for
P =2 p[r2 P+I.)] each j and for fixed k can be computed using

ad 1the following recursive formulae:
and

Aj- Aj_ C - 1 (1-x)b
Eft < 2 1- P Is(m+3 k. k ) (2.7)

E.0I- )P2 2 1 a2

Note that E. is an upper error bound. a

A computationally simpler technique for
evaluating (2.6) for integer or half-integer 1 - 2
degrees of freedom is given in Singh et. al. (1992). PV 2 2j+1 PV-1
Based on this technique, a documented
FORTRAN computer program (which can be run

on an 386 IBM-PC compatible with Math Co- A. I-(a, b), Aj = Is(a+j, b),
processor (33MH)) has been developed. A sketch

of the details for recursive formulae are given 1 212, 6 = a _/1)

If the degrees of freedom, n, is an even
integer, then the incomplete beta integrals
I,, (j+l/2, k+0/2) and I 0+1,k+*/2) can be evaluated with a =.5 or 1 and b =k+n/2.
exactly for each j, for a given k, as follows:

Also, note that
1-(l-x)bE H,- I*- b+i- I(~i b+m-1 X

.0 &-1 , ais an integer

if a is an integer b

S(a() a+Ci- )I H j b is an integer
b- -1 a 1-

otherwise

if b is an integer (a+j-l)B(a+j-lb)

The algorithm of Pike and Hill (1966) can beIf n is an old integer, then Ib 0y+ /2' k+'/ 2) 15 used to evaluate CF., when neither a nor b are
exactly evaluated by integers.

-1 2 -b [x(1-zx)l' DI(D2-DJ)- 1ui'(l_-2x) (2.8) Using the above results we compute the
2(,b) x X noncentral t probability, P(T < t' I n+2k, 6) for

where each k. We terminate the sum in (2.5) whenever
the absolute difference between two consecutive

b-s/ . terms is less than 10'. We can get the tail
- [ E probability by subtracting the cumulative

probability from 1.0. When t is negative we use
the following equality (Krishan, 1968; Bulgren,
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1968): Resnikoff, G.J., and Lieberman, G.J. (1957).
P(T 5 -tln,6,X) = I-P(T < tln,-6,X) (2.10) Tables of the Non-Central t-Distribution.

Stanford University Press.
The results and comparisons of this method for
selected values of (t, n, 5, X) are given in Table 1. Robbins, H. (1948). The Distribution of Student's

t when the Population Means are Unequal.
3 CONCLUSION Annals of Math. Statist., 19, 406-610

In this short note we have proposed a simple Satterthwaite, F.E. (1946). An Approximate
method to compute the doubly noncentral t Distribution of Estimates of Variance
probabilities. This method gives both greater Components, Biometrics Bulletin, 2, 110-114.
accuracy and higher efficiency. At present we
are developing an upper bound to terminate the Singh, K.P., Relyea, G.E., and Bartolucci, A.A.
infinite sum in (2.5). These new results will be (1991). On the Tail Probabilities of the Non-
presented in a future communication. Central t-Distribution, Computational Statistics,

7, 67-80.
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ASYMPTOTIC TEST STATISTICS FOR INFINITELY

D, ISIBLE DISCRETE DISTRIBUTIONS I

John J. Hsieh, University of Toronto

ABSTRACT ThiL article establishes the conditions for the (AUNS) for compound Poisson distributions in general and
weak convei.-nce to normality of compound Poisson for three IDDDs in particular. In Part 11 of the paper we
distributions and obtains approximate test statistics for the will compare various transformed statistics so obtained for
general compound Poisson distribution and three specific the Poisson and three discrete compound Poisson
infinitely divisible discrete distributions, distributions with the ones in use with respect to the

accuracy of approximation to normality.
In Section 2 we describe the convergence theorem that

1. INTRODUCTION will be used to generate the A JNSs. In Section 3 we use the
The theoretical importance of the Poisson distribution theorem and two simple transformations to obtain the test

and its frequent occurrences in the modeling of real-world statistics for Poisson distribution, which are Z,, Z2 and Z3
phenomena arise from the fact that the stationary independ- given in (10), (13) and (16), respectively. Section 4 demons-
ent increments and infinite divisibility properties (abreviated trates the convergence in law of compound Poisson variables
as SIIIDP) of the (homogeneous) Poisson process ensures to normality and obtain the conditions for such convergence.
preservation of the Poisson distribution under filtration, Section 5 derives the three general test statistics for the
thinning, superposition and decomposition. Furthermore, the compound Poisson distribution, namely, Z7, Z", and Z73
SIIIDP of the Poisson process carries over to compound and given in (28), (29) and (30), which are then specialized into
generalized Poisson processes. This underlies the common the corresponding statistics for two IDDDs: Z4, Z5 and Z,
practice of employing compound or generalized Poisson for negative binomial distribution given in (36) and 7,, 4,
distributions to improve the goodness of fit of the ordinary and 7, for doubly Poisson (Neyman's type A) distribution
Poisson distribution when the orderliness condition of the given in (41). The AUNSs presented in this article are
Poisson process is no longer tenable. The SIIIDP also en- generated on the basis of two criteria: -,nplicity and
sures that the Poisson process and under certain conditions, accuracy. If accuracy alone were the sole concern, one
its generalizations will tend to Gaussian Processes as limits could do better using asymptotic expansion methods, such
as a quantity of information (such as the number of process- as the Cornish-Fisher inversion of direct Edgeworth expans-
es under superposition or the sample s-' or the indexing ion and saddlepoint expansion (see, e.g., Barndorff-Nielsen
parameter value) increases, the Gaussiam limit so obtained and Cox (1989)) to improve the existing standard test
being the only continuous process that preserves SIIIDP. statistics. But this would not directly produce the kind of

Modeling of the ordinary and compound Poisson simple statistics we seek. Instead we shall in Part 11 of the
processes have found wide applications in various scientific paper use these asymptotic expansions to assist in assessing
disciplines and real life situations, and much work has been the accuracy of the test statistics generated in this article.
done in this area (see, e.g., Haights (1967) and Snyder and
Miller (1991) aud references cited therein). Our main 2. A USEFUL CONVERGENCE THEOREM
concern in this article is in the other area where more work The AUNSs to be generated in this article are based on
is needed, namely, the use of these models in statistical the concept of infinite divisibility. Ess itially, they are
tests of significance and determination of confidence deduced from the fact that averages of random samples from
regions. In particular, we are interested in making statistical Poisson and, under certain conditions, from compound
inference of the infinitely divisible discrete distributions Poisson distributions have asymptotic normal distributions.
(IDDD). To do so, it would be convenient (computationally and so smooth transformations of sample means of Poisson
at least) to obtain simple expressions of the asymptotically and compound Poisson distributions are also approximately
normal test statistics for these distributions, normally distributed. By suitable choice of the transform

The objectives of the present article are (i) to establish and proper application of convergence theorems one
the conditions for the weak convergence to normality of endeavor to produce simple test statistics that hopefully will
compound Poisson distributions and (ii) to use simple accomplish good approximations to normality. We describe
transformations to derive asymptotic unit normal statistics below the convergence theorem for approximating the

distributions of functions of sample averages of independent,
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identically distributed (i.i.d.) random variables. To meet the either do not have a simple form (such as the Peizer-Pratt
infinite divisibility requirement and to generate the simple (1968) statistics) or do not provide as good approximations
statistics we want, we have restructured somewhat the more as those deduced from Theorem 1 (see last paragraph of
general theorems available in Rao (1973, Ch.6) or Serfling Section 3).
(1980, Ch.3). Because of its importance and the fact that it requires
Theorem 1: Let{Uj, n=1,2,..., be a sequence of i.i.d. no condition for convergence to normality, we shall study
random variables with mean E(U.) = A' and positive, finite the special case. )f Poisson distribution in Section 3 ahead of

the general results in Sections 4 and 5.variance Var(UJ=oz(j&') and let •='•~ U1 In be the

3. ASYMPTOTIC STATISTICS FOR POISSON
average of the first n observations. If DISTRIBUTION

(U-)O() -k-. Z, (1) Suppose the random variable U. in Theorem 1 has
where Z has the unit normal distribution and .... signifies Poisson distribution so that E(U,)=Var(Ud)=j'>0 for all
convergence in law (in distribution), and (i). if g is a n. We must first establish the asymptotic normality of U. :

continuous function of a real variable having a nonzero Let 4A(s) = E[ee"1 be the characteristic function (c.f.) of
derivative g'(p") at A*, then W w (U.-1 s')/V/'" where U, 'as poisson distribution with c.f.

ZL. z. (2) -,u(s) = Ec 1u1= exp[L'(eu'1)I. (6)

(ii). If g' and o are also continuous, then Then

_n z (3) n -U-gsp)= *ieh[g --s_ (7)

Proof: The theorem is proved in three steps: First, (1) = - s 2/ + O(1/7)-
implies (4): which tends to -s2/2 (which is the log c. f. of the unit normal

-- ) Z. (4) distribution) at rate 1/V': (a rather slow rate) as A,- oo.
Then, in view of Theorem 1, expressions (2) and (3) hold

This follows from the preservation of normality under linear with o2(u) = 14'. Now let
transformation and the use of continuity theorem. Second, y = n-U. (8)
(4) implies (2): This is proved by Taylor expansion of the

be the sum of n i.i.d. Poisson random variables. It follows
tranfored tatsti g(~) aoun jiup o te frst from (6) that Y is a Poisson random variable and that

derivative term fcllowed by the use of (4) and Slutsky's
v = nWx (9)

theorem to obtain the convergence in probability of U,, to
14'. Third, (4) implies (3): This folows from the first and is the mean and the variance of Y. It then follows from (7)
second steps upon using the fact that convergence in law that, as v -b 00,
(equivalently, convergence in probability to a fixed * a Z, (10)
parameter) holds for continuous functions, so that

U P, W s implies gk(U.)o(Ud -E lL. J5) which says that the standardized Poisson variate converges

I in law to the unit normal distribution as its mean (variance)v

To use Theorem I to generate the AUNSs one must first -* 00. Note that expression (10) can also be obtained by
establish (1) and then choose a suitable transformation g for applying the linear transformation (11) to (2) followed by
expressions (2) and (3). Two simple transforms that serve the use of (8) and (9):
to improve normal approximation of data are the square root g(x) = Vx. (x)
transformation and the log transformation. The former also
serves to stablize the variance for the transformation of the Clearly, Poisson processes {U,(t)) and {Y(t)} obtain
compound Poisson (and hence Poisson) variate while the when U, and Y are also indexed by a parameter t (which
latter serves to remove positive skewness and equalize may be interpreted as time) and in this case 14'= E[U,(t)] =
variances (the log transformation is stronger than the square Var[U,(t)] = At and v = E[Y(t)J = Var[Y(t)] =nX t, for some
root transformation). We therefore expect that use of these A >0, for n= 1, 2 ..... Thus, a Poisson random variable
two transforms for the function g in (2) and (3) would (process) can be regarded as the sum (superposition) of n
produce AUNSs that are in general more accurate than the Poisson random variables (processes) with independent
standardized normal variate Z, below. Other theorems and identical distribution whose mean (which equals variance) is
techniques can also be derived to produce more asymptotic n times the common mean (equaling the common variance)
statistics. However, statistics deduced from other methods
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of the component random variables (processes), n-- 1, 2, The distribution of the sum of a random number of i.i.
Thai is to say, the Poisson variable (process) is infinitely d. random variables is known as the compound distribution,
divisible, so called because in the case of discrete distributions, the

Next, let probability generating function (p.g.f.) of the sum is

g(x) = rx (12) obtained by compounding (or compositing) that of the
random number with that of the i.i.d. random variables.

Substituting (12) in (2) and using (8) and (9), we obtain Specifically, let N be a counting random variable and X a

Z2 ' 2(r[-qr) ..- Z. (13) discrete or continuous random variable such that

Note that substitution of (12) in (3) instead of (2) would Y = E I I(i,;N)Xi (18)
produce the same result. Using the fact that Z, is i-1 ill

asymptotically normal, the convergence in law of Z, to the If N has Poisson distribution with mean JA, say, and X, X2,
unit normal distribution as v - co can alternatively be .... are i.i.d. copies of X which is also independent of N,
proved as follows: then Y is said to have a compound Poisson distribution -- or
Alternative Proof of (13): a generalized Poisson distribution when X is discrete. In

terms of the compound or generalized Poisson process, (18)
_Z•x) .- (2(Vi•-V.cx1 ,. 'Y•'2+P (14) becomes

-({Yx 2/4+x .v) - z,:÷x+x2/4V/. NO) (18a)
Thus, 4ý and Z, will have the same asymptotic unit normal Yt) = E X, = E )X,
distribution as v - oo. 0 i-c1c-.

Finally, let where the ti's are the times at which jumps occur at a

g(x) = ln(x). (15) Poisson rate X. In (18a) Xj may be interpreted as the size
or mark of the ith jump at each jump time tý of the N(t)

Substitute (15) in (3) and use (8) and (9) to yield jumps, N(t) being a poisson process with mean a = X t, and

Z3 VY ln(Y/v) --- Z. (16) Y(t) as the cumulative sum of the XY up to time t. Just as in
the Poisson process, the intervals (t%, t•+,) between jump

Alternative proof of (16): times in compound Poisson processes are independent
Using the relations in (14) one establishes below the exponential variables. When X has the degenerate

asymptotic equivalency of the two events {Z 2:5x} and distribution with Pr(X=I)=I, then Y=N, almost surely,

{Z3 <x} as v - co. and the compound Poisson distribution (process) specializes
fZ2s-.x)..{Z - - -- L7to the Poisson distribution (process).

{ZzAI " U•2 +• Xx2 /+x 2/4v) (17) From the definitions above it is not difficult to see the

(2+-N)[_ + -_2_(-+-) +O(v )j = x+O(v")). connection of compound Poisson processes with the SIIIDP.
2 r v 2 4v In fact (see Loeve (1977) and Lukacs (1970)), every

This result together with the fact that Z2 has aymptotic infinitely divisible (decomposable) discrete distribution is a
normal distribution provides an alternative proof of the compound Poisson distribution and every infinitely divisible
asymptotic normality of Z3. E distribution (i.e., any distribution the nth root of whose

By choosing appropriate fractions as exponents, power characteristic function is a characteristic function for
transforms other than square root can be used to improve n=2,3,...) is the complete limit of compound Poisson
normal approximations. However, the resulting formulas are distributions (de Finetti's theorem). Furthermore, a mixed
not as convenient as the square root. Simple statistics other distribution becomes a compound distribution if the

than ZI, 74 and 7_3 obtained above (such as Z,' =(Y-v )A/y parameter being mixed is the number of convolutions of a
and _q'=-vr'•ln(Y/v )) can also be derived from the distribution with itself. When the number of convolutions

and ' =71n(~v) ca als bederved romthe has a Poisson distribution, then the resulting convolution
convergence theorem given in Section 2. However, they are

not nearly as accurate as the three obtained here. By a slight mixed distribution is the compound Poisson distribution.

modification of (2) or (3) one can also obtain slightly more These explain why many well-known distributions can be
omodicate tion oh () a derived as compound Poisson distributions and so rendered

new interpretations and why compound Poisson processes

7." -(Y/Vv)ln(Y/v). But again these statistics are not more have such wide theoretical and applied interest.
accurate than the three obtained here. We now establish the conditions for the weak converge-

nce of compound Poisson random variables to normality and
4. ASYMPTOTIC NORMALITY OF THE COMPOUND rederive a general recursive formula for computing the dis-

POISSON DISTRIBUTION crete compound Poisson probability ..'stribution. Note well
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that in this article u and a. always stands for the mean of We can also compare the asymptotic cumulants Y," of
the Poisson random variable N in (18) or N(t) in (18a). the standardized variate Y'= (Y-/E(X))/V/'/xE(X2) as A -0* 0,

with those of the standard normal to assess the asymptotic
Proposition 1: For the compound Poisson distribution and normality of the compound Poisson variate Y. From (20) we
process defined in the first paragraph of this section, obtain:
supp.•se moments of all orders for the distribution of X
exist, then the compound Poisson variable Y converges in KI =0, K 2 =" 1, x=II-'E(X')/Er'2(X1), r=2,3,...
law to normal distribution with asymptotic mean uE(X) and Thus as i -• oo all cumulants of orders greater than 2 tend

to zero while the first and second cumulants remain as 0 and
varianced fo ) as Z: 3 1, respectively, provided E(X')/E'"(X 2 ) is bounded for r > 3.
bounded for rt3. These are precisely the cumulants of the standard normal
Proof: For the compound Poisson variable Y defined by distribution. Thus, under the condition just stated, the

(8), the c.f. is, upon using (6) and the compound relation compound Poisson distribution does in fact tend to the
•y(S) = 4N(In~x(s)Ii), given by normal form as the Poisson mean p -• oo. Furthermore, Y

N has kurtosis K4/K 2
2 > skewness K31/K 2

3 . (This follows from
(s) * E~e"t J] = E[E[expis•X•) IN]]iM (19) (21) and Cauchy-Schwarz inequality E(X4)E(X2) E2(X3)).

epiA -l"lJ = eJZO)-1, When the compound Poisson distribution specializes to the
Poisson distribution, the Cauchy-Schwarz inequality abovewhere X has finite moments of all orders and has the same

distribution as each X1 in (18), so that becomes an equality and hence K 4'/K 2
2= K3

2/ K2
3 . This says

that for the same degree of long-tailedness, a compound
i s2E(X2)+- _' Poisson distribution is generally more symmetrical than the

2 ,3 Al'E(X•b) Poisson distribution specialized from it.

for all s such that -!1> limsup( I E(X )I /kl)•k . For application of Proposition 1, the condition on the
I S t-- moments of X is translated into the conditions on the

From (20) we immediately obtain a simple general parameters associated with the distribution of X. For the
expression for the rth cumulant (semi-invariant) of Y: Poisson distribution the condition of Proposition 1 is always

satisfied. For most compound Poisson distributions, the
Kr=IiE(X'), r=1,2,3 .... SO t (21) condition is satisfied only on a restricted parameter space,

v =E(Y)=K 1 =5•.lE(X), a=uVar(Y)=x,=pE(X2), but there are compound Poisson distributions for which the
condition is not satisfiable. Thus, not all compound Poisson

Now, write the c.f. of (Y-v)/o in terms of that of Y and ditions (as well , not all DDosn haessot

expand the exponential function in it and use (20) and (21), distributions (as well, not all IDDDs) have asymptotic
to yieldnormal distributions. This will be illustrated in Section 5. 1.

to yield From the infinitely divisible c.f.(19) (which clearly

lnO-..., (s) = -is-+ln~r(S/O) = -- s satisfies the infinite divisibility condition 0''(s;/A) =
0 2 (22) o(s;p//n) for n=2, 3 .... ), we can now derive the probability

+ •- i' E(X ' -4 -s2/29, as ip provided distribution of any infinitely divisible discrete variable Y in

P-3 r!pAF'A Er'(X 2) terms of the probability distribution of X (For continuous
E(X')/E'O(X2 ) remains bounded for r=3,4,... distributions the inversion of (19) is generally more

This completes the proof of the Proposition. By substituting difficult). If X is nonnegative integer-valued, so is Y (seeA=Athisncomple the proof abofe te P osiion. Be sutiting (18)), and in this case it helps to replace the two c.f. Oy(s)
Coo- ayt into the proof above we also have the following and ,(s) in (19) by the corresponding p.g.f. 7ry(u) and
Corollary: The compound Poisson process Y(t) is asymptot- 7rx(u) simply by replacing exp(is) in (19) by u, yielding
ically normal with (asymptotic) mean ) tE(X) and variance -1] (23)

AtE(X'), as t -- , 0c provided Xd'E(XJ)/Er(X 2) is Xi(u) = e""'X'S = exp~pP(X=k)[u 1]) u 1 1
bounded for r>3. * 1

Note that by employing instead of (19) the L.vy- Eq.(23) expresses an infinitely divisible discrete process as
Khintchine's canonical representation for infinitely divisible the superposition of independent decomposed discrete
characteristic functions (see Steutel(1973) and Lo.ve(1977)), compound Poisson processes ofjump size k, each associated
the condition for the complete convergence of the general with a Poisson process with mean uP(X---k), k= 1, 2,....
infinite divisible distribution to normality can also be obtain- Now, differentiate (23) k times with respect to u and then
ed. Note also that for the special case of Poisson process, substitute u=0 in the resulting equations, to obtain
E(X')= I for all r, so that all cumulants in (21) reduce to the A'1 k-I) (k--• .

Poisson mean p (or It) and (22) also reduces to (7). .(0) - j E
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which yields the following recursive formulas for computing 1 (for Poisson distribution, E(X) =I and so v =4). Note
the discrete probability distribution of Y. also that just as was done in (29) and (30), the expression

k-I (28) can also be obtained by using the linear transformation
P(Y=k) - _ (k-j)P(X--k-j)P(YEj), k",2,... (24) (11). The alternative proofs given in Section 3 of the asym-

wih P(Y=O ) = e -,(-PX-0)I ptotic normality of Z 2 and Z, can be generalized for proving
Mth P= =ethe asymptotic normality of Z,* and Z" here as well.

The recurrence relation (24) seems to have been first The expressions for Z,', Z; and Z3' given in (28)-(30)
obtained by Adelson (1966). Note that (24) includes the are the three asymptotically unit normal test statistics in
Poisson probability distribution as a special case (simply general forms for compound Poisson distributions, be they
substitute P(X = 1)= 1 and P(X =j)=0 for j=+1= in (24).) Eq. continuous or discrete. They reduce to the expressins for Z1,
(24) will be employed to obtain probability distributions of Z2 and Z3 given in (10), (13) and (16) in Section 3 for the
two discrete compound Poisson variables in Sections 5.1 and Poisson distribution when E(X)=E(X2)= I is substituted in
5.2 and in Part II of the paper. (28), (29) and (30). We next obtain their specific expres-

sions for two discrete compound Poisson distributions, the
5. ASYMPTOTIC STATISTICS FOR COMPOUND negative binomial distribution (Section 5.1) and the doubly
POISSON DISTRIBUTIONS Poisson distribution (Section 5.2).

We now use Proposition 1 and Theorem 1 to generate
AUNSs for compound Poisson distributions. Suppose the 5.1 Negative Binomial Distribution
random variable U. in Theorem 1 has compound Poisson Negative binomial distribution serves as an example
distribution with mean E(U.) w A*= MoE(X) for all n, so that of the compound Poisson distribution that can not be equated
we have from the above definition of A* and (21), to Poisson mixing. In the definition of compound Poisson

Var(U7) Ea 2(tL) L *E(X2)/E(X). (25) distributions given in (18) suppose X has logarithmic series
distribution with parameter p (0O5p:5 1) so that

Note that (25) is positive as E(X2) and the Poisson mean 14o P(X=k) = -( 1 -p)k/(kinp), k=1,2,... (31)
are. Then, under the assumed condition of Proposition 1, U.
has asymptotic normal distribution as a. - oo, with Then a substitution of the p.g.f. of X
(asymptotic) mean ý" and variance given by (25). In view of 7X(U) = In(1-(1-p)u)llnp (32)
this result and Theorem 1, expressions (2) and (3) hold.
Now, let into (23) yields the p.g.f. for Y as

Y = f nU. (26) 79yu) = (p/[1-(l-p)u])-'W', (33)

Then Y is the sum of n i.i.d. compound Poisson random which shows that Y has negative binomial distribution with
variables U9 ,... ,U. and consequently Y has a compound parameters -tullnp and p. Alternatively, one may substitute
Poisson distribution with mean the logarithmic series probability function (31) into (24) with

v = np* = ýiE(X) (27) P(X=0)=0 to yield the probability function for Y:

where =njlk, and variance v E(X2)/E(X) (This easily PYk) - r(-Win+kpn()
follows from (19) and (21)). It then follows that

Y- v - - (28) Moments about the origin of X is easily obtained from
__ _-v E-- Z. (28) (32). With E(X)=(p-l)/(plnp) and E(X 2)=(p-l)/(p'lnp) we
Iv E(X2 )/E(K) obtain

Now, put u" and U, in the square root transformation (12) E(X)/E(X2) = p. (35)

and then substitute the resulting expressions together with
(25) into (2), followed by the use of (26) and (27), to obtain Upon substituting (35) into (28)-(30), the expressions for the* 2VP~,R1EX)/(X) .. ~ ~three general statistics Z1°, Z" and 7_4 reduce to

S2( )E(IE() Z. (29)(Y-v) Z5  2 (-v) (36)

Similarly, an application of (25) with 1" replaced by U., and Z6  F p•y ln(Y/v),
(26), (27) and the log transformation (15) to (3) leads to where v =-14(l-p)/(plnp) is obtained either from (33) or

Z; , lYE(X)/E(X2) ln(Y/v) -A- Z. (30) from (32) and (27). To check the condition of Proposition
Noe tc in 1 we use again the calculated moments of X and find that

Note that all asymptotic distributions withof oosin E(X')/E"'(X 2) is bounded for all p in (0, 11 and that
(28)-(30) hold under the assumed condition of Proposition
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lim E(X')/E'(X 2) = , for r=3,4.... (37) Upon substituting (40) into (28)-(30), the expressions for the
pto three general statistics Z,', .2" and Z3' reduce to

Thus, under the condition 0 <p < 1, the three statistics in 7 (Y-v)1y1 7?1 3 0) , Z& u 21(1+0)(fy-r)
(36) for the negative binomial distribution all converge in a (l - r( - 2•y l "(Y/v-, (41)

law to the unit normal distribution, as It (and hence v )-o ao.
The above implies that Z4, Z, and Z6 may be used as where v =-tO is obtained either from (38) or from (6) and

approximate unit normal test statistics for large ;t provided (27). To check the condition of Proposition 1 we use the
p is not too small (or when A is replaced by A t, for large t moments of X calculated from (6) and find that

provided both I and p are not close to 0). E(X')/E't(X 2) is bounded for all positive 0 and that

From (33) or (34) we observe that by setting A = - lim E(Xr)IEr(X 2 ) = m , for r=3,4,.... (42)

Inp, the negative binomial distribution of Y reduces to the 0

geometric distribution with Oy(u) = p/(1-(I-p)u) or P(Y=k) Therefore, under the condition 0 >0, the three statistics in

= p(1-p)k. In this case, as jt tends to co, p must tend to 0, (40) for the doubly Poisson distribution all converge in law

which implies that E(X')/E0'(X 2) -- co for all r> 3 (see to the unit normal distribution, as It (and hence v ) -c o.

(37)). Therefore, the condition of Proposition 1 cannot be The above implies that Z7, Z8 and Z9 may be used as
satisfied and the geometric distribution are not accurately approximate unit normal test statistics for large At provided
approximated by a normal distribution. 0 is not too small (or when Ai is replaced by A t, for large

The geometric distribution provides an example of t provided both A and 0 are not close to 0).
infinitely divisible discrete (and hence compound Poisson) Note that the doubly Poisson distribution can have
distributions that is not asymptotically normal. That the more than one mode and depart considerably from the
geometric distribution is a compound Poisson distribution normal form when 0 is large and 1A small, but this does not
can be seen from the definition given in (18) where N has affect its good approximation to normality when 1t is large
Poisson distribution with mean -Inp and X has logrithmic while 0 is not large but not too small.
series distribution with probability function given by (31).

5.2 Doubly Poisson Distribution REFERENCES
From the second paragraph of Section 4, it is clear that

any distribution which has a parameter in the exponent of its Adelson, R. M. (1966), "Compound Poisson Distributions,"
c.f. can be used as a compounding distribution for the Operational Research Quarterly, 17, 73-75.
compound Poisson distribution that is equatable to Poisson Bamdorff-Nielsen, 0. E., and Cox, D. R. (1989),
mixing. We study an example of this kind in this section. Asymptotic Techniques for Use in Statistics, London:

When the random variable X in (18) has a Poisson dist- Chapman and Hall.
ribution with parameter 0, say, then the resulting compound Haight, F. A. (1967), Handbook of the Poisson
Poisson variable Y has Neyman's Type A or doubly Poisson Distribution, New York: Wiley.
distribution, which, in view of (6) and (21), has p.g.f. Loive, M. (1977), Probability Theory 1, 4th ed. New York:

wr(u) = exp(p[exp[0(u-1)]-1]). (38) Springer-Verlag.
Lukacs, E. (1970), Characteristic Functions, 2nd ed.

The probability function of Y is obtained from (24) upon London: Charles Griffin.
using P(X=0)=e"e as Peizer, D. B., and Pratt, J. W.(1968), "A Normal Approxi-

fi mation for Binomial, F, Beta, and Other Common Related
P(Yuk) Te O -, P(Yk-I-) Tail Probabilities I & II," JASA, 63, 1416-1483.

k -0 (39) Rao, C. R. (1973), Linear Statistical Inference and Its
= e -8j(ej)-.!. Applications, 2nd ed. New York: Wiley.

k• j,. ji Serfling, R. J. (1980), Approximation Theorems of
From the last expression of (39) one can also interpret the Mathematical Statistics, New York: Wiley.
distribution of Y as a mixture of two Poisson distributions - Snyder, D. L., and Miller, M. I. (1991), Random Point
- by mixing the conditional random variable Y N which Processes in Time and Space, New York: Springer-
has a Poisson distri- bution with mean ON with the random Verlag.
variable N which has a Poisson distribution with mean ;t. Steutel, F. W. (1973), "Some Recent Results in Infinite

With E(X) E Var(X) = 0, we obtain Divisibility," Stochastic Processes Appl. 1, 125-143.
E(X)IE(XI) - 1 .0. (40)
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Multiple Component, Linear Conditional Probability Models for Finite
State Markov Processes

Jeffrey P. Benedict and William F. Szewczyk
National Security Agency

Ft. George G. Meade, Maryland

Abstract. In this paper, a generalization of Raftery's linear column stochastic matrix, and _X, = 1. Of course, Q and
conditional probability (LCP) model (a finite state mixture X = d.... *' .) must generate p (i i W. . . . . . . 's .  0. This
transition distribution model) is developed - the multiple constraint is satisfied if X2 0 but useful LCP models are
component, linear conditional probability (MUCLICOP) excluded by requiring nonnegativity of the X's (see Tavart
model. It retains the parsimony and interpretability of the and Raftery(1991)). When X 0, however, the LCP model
LCP model while expanding the range of finite state pro- has a ready interpretation: X, = the probability that the X-pro-
cesses that can be approximated. First the MUCLICOP cess returns to a condition similar to that it was in I steps in
model is introduced and some of its properties described. the past; q (iij) = the probability that the process then tran-
Several statistical issues are then discussed including a back- sits from statej to state i. One can think of such an LCP model
fitting algorithm for parameter estimation. The paper con- as an explicit formulation of a hidden Markov model. The
cludes with an example that showcases the MUCLICOP LCP model can be extended and modified in several ways
methodology. (see Section 4 of Raftery(1985)); MUCLICOP models are

one such extension.

1. Introduction The remainder of this paper is organized as follows: In
Section 2, the MUCLICOP model is introduced and several

Finie sateMarov pocesesarean iporanttoo in of its properties are described. Model fitting by maximum
applied probability. Unfortunately, an M-state, Lth-order ofisppetsardscbd.M elitngymxmu
Markov process has, in general, (M-a)ML parameters, mak- likelihood is discussed in Section 3 where a backfitting algo-

Markv prces has ingeneal, M~1ML pramters rithm is presented. An example showcasing the machinery of
ing modeling using such a process a difficult or impossible Setin is presented in Sesionc4.in the e acpler CL

taskforMs nd s ofeve moerae sze. n tis ape, a Section 3 is presented in Section 4. In the example, MUCLI-task for M's and L's of even moderate size. In this paper, a COmoesaeudtooelartriag.Tsexpe
COP models are used to model a raster image. This example

generalization of the linear conditional probability (LCP) c
model of Raftery is developed - the multiple component, lin- hlearl ovityat ve arelags o m final coments

ear conditional probability (MUCLICOP) model - that and osrvati appear in S on 5.

retains the parsimony and interpretability of the LCP model

while expanding the range of finite state processes that can be
approximated. 2. MUCLICOP Models

Let X1, X2, .... be an M-state process. (Without loss of The MUCLICOP model for {X,),
generality, the state space for the X's will be taken to be (0, 1,
.... M-1).) The LCP model for {X,) is p(i i'...L)

. .(X. 4.X, - 'I .. ....... X,_L= iL)

P( U i I.... L) IK L
=P(Xl= iXI='I ..... IXL=d-, - ),7lqk(i

= • .q(i i,) is a mixture of LCP models, i.e., "k = 1 and Y 20. As for
I-I LCP models, the number of parameters in a MUCLICOP

where i0,,i ... iL {O, 1, ..... M- 1 , Q=(q(i = i))M is a model grows linearly with L, the number of independent
parameters being K-I+KI(L-1) +M(M-1)), The
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MUCLICOP model can be interpreted in almost the same times that pattern i appears in the data stream, i.e.,
way as the LCP model. Unlike the LCP model, however, the T

MUCLICOP model can accommodate qualitatively different n (io'I' .... I') = 1 lo" , " I ..- L 'L"

behavior of the dependence between the present and the past t- L +

at different lags. The (conditional) log-likelihood of a K-component, L-lag
MUCLICOP can be written

Let Q = YkQk and let x denote a stationary distribu-
tion of Q, i.e., Q% = 7c with it, + ... + 79 = 1. Assume that logP (x1,..., xd X1 .... XL)
{X,) follows a MUCLICOP model. = 7 n(io0,i1 ..... id)iogp(i i ... 'L)

Theorem 1. i:R (i) >o

Suppose p (i i ... iL) > 0 for all io, il, ...., iL in {10 ... , M- = n (io, i K )

1) (=* Q > 0 =i x exists, is positive and is the stationary dis- i:n(i)>O k-I 1-1

tribution of the Markov chain having Q as its transition
matrix..) Then The increased flexibility introduced by allowing more

lim P (XI -=jl X, = j,...,..XL = jL) than one model component makes enforcing nonnegativity
-- constraints on the X's in a MUCLICOP model much less

limiting than in an LCP model. Designing algorithms for fit-The process defined by a MUCLICOP model is, accord- simpler
ing to Theorem 1, ergodic and has the same stationary distri-

than allowing them to take positive or negative values; there-bution as the Markov chain defined by Q. Curiously, this fr 0fralkadIi h ULCPmdl

distribution depends in no way on the X's. The proof of this

result is very similar to that of Theorem 1 in Raftery(1985). It described in this paper. With these nonnegativity require-

uses the standard trick for L&I-order Markov processes of ments, maximizing this log-likelihood with respect to the
forming the Markov chain (Z4) = (X, . .... X•-tzt. 'Me sta- 's, X's and Q's is a linearly constrained optimization prob-fionrmingstheiMutkovcn of(Z) is then manipulated toget The- a lem. Many techniques are available for problems like this -
tionaryNodistribution ofa(4)histthennmanipulatedutoogetfTheo-) Fletcher(1987) and Gill et a/.(1981) are excellent sources of
rem 1. Note that if ZL has the stationary distribution of {Z4)

then (74) is stationary and, therefore, so is [Xj. optimization methods.

Theorem 2. A 4-component, 20-lag MUCLICOP model for a 10-
state process has 439 independent parameters - many fewer

Suppose that (X,) is stationary and let P(n) be the M x M than the 9 x 1020 for the general Markov model, but still too
matrix with elements pij(n) = P(X, . = i, X, = j), many to use the generally preferred linearly constrained New-
i,jQ { 0, ... , M- 1 , n e Z. (Thus P(O) = diag(,, .. ton method. (Newton's method would require solving a sys-

7CM).) Then tem of 439 equations at every iteration). MUCLICOP models
K L of this size or larger are expected to be useful so an alternative

P (n) = , k T*Qic XkjP (n- 1). to Newton's method is needed.
k-1 l -I

The bivariate marginals of the stationary distribution of (X,) A nonlinear extension of the Gauss-Seidel algorithm
satisfy, according to Theorem 2, a simple matrix recursion. A known as backfitting is an optimization technique that has
proof of this theorem can be based on that of Theorem 2 in found many statistical applications. The idea behind backfit-
Raftery(1985). ting is "divide and conquer." Arguments of the function

whose optimum is desired are put in groups and the search for

3. FittingMUCLICOPModels to Data by Maximum the optimizer proceeds one group at a time; this process is
Likelihood iterated. Almost any optimization technique can be used in

backfitting. The backfitting algorithm that the authors have
Let x1,x2 ,...., xrbe consecutive observations from an M- developed, BAFIM, uses the following parameter groups:

state process and n (ioi d .... L) = n (i) be the number of Q, = (q,(il ))xM' X1 = (X11n ...XXL) ..... Q', XK,
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Y = ('fY ..... yK)- BAFIM cycles through the parameter model with a component for each set. It may turn out that a
groups applying one linearly constrained Newton step per single component is all that is necessary but it is better to

parameter group per cycle, allow for the possibility of two different generating mecha-

The backfitting strategy used in BAFIM greatly reduces nisms at the two sets of lags. The basic idea, then, is to group

the number of equations that must be solved at any one time; neighboring lags with similar significant autocorrelations

for the model in the above example, the number drops from together and assume that each group requires a component.

439 to a maximum of 90. Many models that would be too Once the number of components K has been identified.
large to fit using Newton's method on anything but a super- the initialization of the parameters themselves can be
computer can be fit on a workstation or even a personal com- addressed. In the absence of a priori information, it is not
puter using this backfitting algorithm. unreasonable to initialize each entry of y with 11K. The pro-

fthe parameters in a MUCLICOP model might cess of identifying the number of components based on the
Some ofACF described above produces groups of lags. Information

have preassigned values; in particular, X's might have preas-

signed zero-values. The current version of BAFIM can handle related to these groups can be used to initialize the Q's and the
Vv's. Experience has shown that the initialization of the Q's isX's with preassigned zero-values but BAFIM can generate
more critical. Let nk denote a representative lag near the mid-zero-valued parameters as well. BAFIM uses an active set

strategy to handle parameter values on the boundary (see die of the klh group and let

Chapter 5 of Gill etal.(1981)). P,°(n) - T-n +I i. x,-j)

As with other iterative techniques, different initializa-
tions of the BAFIM algorithm can result in different fitted By taking the starting values for Qk as
models with similar likelihoods. MUCLICOP models form a M I

non-identifiable class; it is unsurprising that many different- Qk Pij (nk)/ ,Pit (nk)
I-0

looking models might fit the data about equally. A good start
can make the difference between an interpretable model and using estimae of the condit o iitie
one that fits well but seems nonsensical. Care must be taken P(X+=ilX,=j), i,je {0,1(=M-1)1 to initialize

in finding these good starts. The authors have more experi- the Q-matrices. (These initial estimates tend to be well inside

ence fitting MUCLICOP models to binary data than to data the parameter space whereas the fitted values tend to be on the

with M > 2; initialization in the binary case is focused on here. boundary.) Finally, there are a number of ways to initialize the
V's. One method that has proved useful is to set Xk to the nor-

The authors have found that the sample autocorrelation malized absolute values of the autocorrelations for the lags in
function (ACF) gives good indications of the order L required the k"' group. (Sometimes the authors have found it useful to
to fit the data with a MUCLICOP model. The ACF can be set the Xk entries for lags outside the kth group to a small pos-
used to pick L by setting it equal to the largest lag at which a itive value prior to normalizing so that BAFIM starts with

significant autocorrelation is present. (For "significant" here, estimates in the interior of the parameter space.)
in the above discussion of the spectrum and the remainder of
this paper, read "not small.") The sample ACF can also be A

used to pick K, the number of components. Recall that the 's a MUCLICOP model, one could turn Theorem 2 around by

in a MUCLICOP model are constrained to be nonnegative. A fixing the P's at their sample estimates P (n) = (pi, (n))
and solvin,,, for various n-values,

single component (one Q) cannot, therefore, favor a I now ar
K L

given a 0 at one lag and a 0 now given a 0 at a different lag; p (n) = L YkQk • X.,P (n -l)

positive and negative autocorrelations imply the need for a k- 11=

multicomponent model. In the initial stages of model fitting, for y, the Q's and the X's. This alternative method would work
the authors believe it is better to include too many compo- for any size state space. Unfortunately it is also a nonlinear
nents in the model than too few. If correlations of the same problem.
sign occur at sets of lags that are separated, one should fit a
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4. An Example This fit is easy to interpret in light of the actual data. The

The data for the example is a 64 x 64 raster plot of 0's majority of the time the process uses the first component
which stays in current state yielding runs of 0's and l's. The

(white) and l's (black). Since the data are written on a torus, second cmoent stat1 to rans o a 0.
second component forces a I to transit to a 0.

A simulation based on the this model shows that while

_h C ftedtth uhr osrce aStwacomonen
iný thdrgnldt.ThrC-fteoiinldt s hto

am -%

a• =0.9,'• = O.1 UL 1
*L

* Sa0 1

A1 Ar'~

one should see significant lags at multiples of 64. Based on b- a

the ACF of the data, the authors constructed a two component th
model each component involving 200 lags. the model generates "islands:' the runs of I's are longer than

in the original data. The ACF of the original data vs. that of
The parameters of the model were estimated as Series.: daia

= 0-99 =1 0.01,

0 1 lkiI
Q,=0 1 0.02 - a -

1 0 0.98 Seriles: aimi

and 1hi

0 1 the simulated data reinforces this impression. Perhaps this
2 0 0.43 1 effect could be reduced if j?2 were set to a larger value, 0.05,

1 0.57 0
say.

The X's display the expected periodicity at the appropriate 5. Concluding Remarks
Fiala Lamb&a The backfitting algorithm introduced in Section 3 is not,

of course, the only alternative to Newton's method for gener-
ating (local) MLE's of a MUCLICOP model. Gradient search

SI ,.methods are simple alternatives that do not require equation
solving and do not need to calculate or store approximations
to the Hessian. They do not depend on the objective function
being similar to a quadratic function near the optimizer for

1.their convergence properties. Gradient search methods are,
*g~ u J~i Iihowever, slow. An EM algorithm similar to those of Le et

a/.(1990) and Schimert(1990) for mixture transition distribu-
lags. (Note that the above plots are on differing scales.) tion models could possibly be developed for fittine MIJCLI-
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COP models. Such an approach might prove useful if the X-

process can only be observed with "noise."

Many other parsimonious model families have been pro-

posed for high-order, finite state, Markov processes. In a

series of papers (Jacobs and Lewis(1979a, b, c; 1983)),
Jacobs and Lewis developed a family that's analogous to

ARMA models for gaussian time series. Also see
Logan(1981). MUCLICOP models are, in the authors' opin-
ion, simpler to use and interpret in practice than are these

alternatives.
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Abstract ence, work was presented in Lloyd [4] which took an em-
pirical approach to some questions concerning a slightly

Lattice-based nearest-neighbour contact models have simpler model. Repeated simulation runs were collected
been proposed in the past as useful models for the spatial and hypotheses drawn; these hypotheses were more thor-
aspects of infectious disease behaviour. Such models are oughly tested in [3]. This paper draws on a similar phi-
linked to established areas of research such as percola- losophy of empirical testing to elucidate areas where for-
tion theory and cellular automata. Despite these connec- mal mathematical results are not available. Specifically,
tions, progress towards a general understanding of their the topic of endemicity, or long-term stability of a non-
dynamic properties has been slow. This paper presents trivial state, is considered for a model containing the
results from recent work involving extensive computer basic processes of recurrent epidemics: infection, death
simulation of a particular epidemic model. Some discus- and rebirth. It is stressed that this model is not tied to
sion is made of the issues in visualization in this context, its epidemic interpretation, nor is it posited as a realis-
and some graphics are used to illustrate mathematical tic description of any particular disease. Rather, it is a
results for the underlying stochastic process. core model type which must be fully understood before

more complex infrastructures are built upon it in any
1. Introduction application of spatial spread modelling.

The model considered here comes from the general 2. The Model To Be Considered
class referred to as Interacting Particle Systems which
have been receiving increased attention in recent years, Divide the plane R2 into a regular array of hexagons;
at least in part due to the increasing capacity of comput- for definiteness, arrange that the centre-to-centre dis-
ers which aid in the visualization of, and in the forma- tances between neighbouring h,.xagons is 1, that there is
tion of hypotheses about, such systems. This particular a hexagon centred on the origin, and that each hexagon
model has been hypothesized for use in epidemic mod- is oriented with two sides parallel to the x axis. Each
elling by Mollison and Kuulasmaa [5] (where it was used hexagon is thought of as representing an individual, and
in the context of rabies transmission in European fox will initially be assigned to one of the three states in the
populations). It is also related to the forest fire mod- model: susceptible, infectious and emptiy. We permit
els considered in the central work of Cox and Durrett three transitions, as follows:
[1] (and references therein), and particularly closely to
the recent advance in Durrett and Neuhauser [2]. These Infection: at rate 1, an infectious individual randomly
models are all straightforward to describe, driven by a selects one of its nearest neighbours; if susceptible,
small number of possible interactions between an indi- this site becomes infectious.
vidual and a specified set of neighbours. However, they Death: at rate 6, an infectious site becomes empty.
have proved to be anything but trivial to analyze. Af-
ter several decades of effort, rigorous results are still Rebirth: at rate p, a susceptible individual randomly
confined to asymptotics of various sorts. Very little is selects one of its nearest neighbours; if empty, this
known about the finite-time dynamic behaviour of these site becomes susceptible.
systems, or about their approach to the known limiting
distributions or states, although a number of hypotheses An event which happens 'at rate r' occurs at the first
have been aired. event time of a Poisson process of intensity r. All the

In the proceedings of the previous Interface confer- processes specified above are independent.
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Having established this process, we can readily imag- similar model, and have hypothesized that they also ex-
ine an outline of what will start happening if we begin ist for the model defined here. It is then reasonable
the process with all sites susceptible apart from the ori- to expect that model settings which will persist indef-
gin, which is to be infectious. So long as the rate 6 is initely on an infinite lattice will usually last for a 'large'
slow enough', we would expect an epidemic to get going amount of time on a moderate-sized finite area, and con-
with high probability. Such an epidemic would take the versely, those which die out on the infinite lattice will do
form of an expanding cluster around the origin. As time so quickly and are likely to behave in the same way on
passes, this area will continue to expand, but the first a finite section. The following experimental scheme is
infected sites (near the centre of the cluster) will begin therefore suggested:
to become empty. We might guess that a ring shape
will emerge, with a wave of infection spreading into the 1. Select a cut-off time T to represent 'endemicity'
plane of susceptibles, but leaving behind an empty area2 . 2. Pick 6 and p at random from some reasonable range
If any susceptibles manage to get 'inside' this ring, then of values
they will be able to regrow into a fresh susceptible pop-
ulation, and it is here that the real complications begin. 3. Simulate the (6, p) model for up to a maximum of
There is no longer a ready intuition at this point to say T time units
what the model will do.

Computer animation and visualization techniques can 4. Record t, the time to extin'tion of the epidemic,
be of immense assistance at this point, allowing many ex- or the value T if the model still contains infectious
periments to be performed and observed, with a view to sites
formulation of hypotheses about the range of behaviour
of the above system. Clearly, the above regular tessella- 5. Repeat 2-4 a large number of times to cover the
tion of space, the small number of states, and the simple range of possible (b, p) values
(independent) transition rules mean that the model lends
itself well to computer simulation (over a finite area, with

0periodic boundary conditions). It is perhaps slightly un-
usual to prefer the hexagonal lattice structure (a square.
lattice being more common in the literature); see Lloyd . .....

[3] for a discussion of the details in implementing this.-
form, and also for a demonstration of its superiority over ..

four neighbour and eight neighbour square forms for a
particular (related) growth model. .........

3. Empirical Approach

The first feature of the model considered here is en- 0 5 10 15 20

demicity. In the real world, this term refers to a disease
which can sustain itself indefinitely in a given popula- Mean Death Time

tion without the need for introduction of fresh infectious
individuals. When simulating the above process over a Figure 1: Local Means for Time to Extinction of the
finite section of the lattice, however, it is clear that true Epidemic Model
endemicity is impossible; with only a finite number of
possible configurations of the system and the fact that This scheme has been implemented, and the output
the model is ergodic, we know we shall always reach is shown in Figure 1. Note that interesting values of 6
an absorbing state with no infectious individuals in a and p would be very small since the infection rate of 1
finite amount of time. However, it is conceivable that must be relatively large for an epidemic to get, going, so
the model on the full infinite lattice does not have this the parameters are replaced in this plot with the mean
problem; indeed, Durrett and Neuhauser [2] have proven time to next event in the respective processes, i.e.,
that non-trivial stationary distributions exist for a very and 1. The range chosen for the mean times was 0 to 20

p
"Slow enough' would formally mean something corresponding for each parameter, and parameter pairs were selected

to standard threshold results - that if 6 is less than some critical using a uniform distribution over this rectangle. Each
value 6C there will be an epidemic with non-zero probability, square in the plot is shaded according to the mean time

2 akin to the shape theorem of Cox and Durrett W1] to absorption of all the simulations whose parameters
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fell within that square, with paler shadings represent- 5. Breakdown of the Phase Portrait
ing shorter times and black representing t = T, models
which were still not absorbed at the cutoff time, here set
at 1000.

4. Visualization Issues

There is a great deal of interesting information to be
extracted from the observations underlying Figure 1, but
the difficulties in presenting all the available detail are
substantial. In essence, the data are naturally in the lw 1m-
form of a scattercloud: a set of (z, y) points (Q, 1), each 0 _

with a single z value t. However, conventional rotating 0 50 100 150 200 2M0 300

cloud techniques do not give a particularly strong sense
of the nature of the data, are also rather slow when deal- EnilncUon limes below 300

ing with many tens of thousands of observations, and
are notoriously awkward for publication purposes. The Figure 2: Distribution of Extinction Times up to 300
first problem relates to the fact that the parameter space
does not divide up cleanly into phase regions in the con- To explain the arbitrary alteration to the data of Fig-
ventional sense; that is, wherever endemicity occurs, it ure 1, consider Figure 2. This plot shows a histogram
occurs only with a certain probability. Observations in of the observed t values which lie below 300; what is
such a region of parameter space will also produce an not shown (so that detail can be resolved) is the near-
appreciable number of failed epidemics, so the t obser- zero density to the right of the plot until 1000 (= T).
vations in this area will have a distribution rather than a This distribution is therefore trimodal, with two readily
single value (albeit a distribution concentrated largely on explainable peaks: many observations at the endemic
the value T). The human eye is not especially good at cut-off T (not shown) or at values very close to 0, corre-
making deductions about such distributions when pre- sponding to endemicity or near-immediate failure of the
sented with the information in the form of a rotating epidemic respectively. However, there is a third region,
cloud, where the patterns are shifting throughout the apparently centred around times of 140. Using tech-
plot and the density of points is very high. niques such as plot linking, it is possible to investigate

As an alternative, various fixed plots have been used the spatial organization of these three modes iM phase
in the analysis of this data, most notably localized means space, and we very quickly observe Figure 3.
plotted in grey scales, like Figure 1. However, this plot
did require some manipulation before the desired fea- C'
tures were clear; it does not, in fact, show simple means
in each region. Such a plot suffers from the phenomenon . U

of failed epidemics mentioned above, resulting in the P
black 'endemic' region being harder to see. To overcome F B

this, all observations below 75 were removed before local i:5

means were calculated. This seemingly arbitrary alter-
ation to the data will be justified below.

A number of other approaches have been used to por-
tray the features of this dataset, but space restrictions 0
preclude their reproduction here. Successful alternatives
and complements to the above include three-dimensional
surface representations of the local mean data (both Mean Death Time
treated and untreated by the lower cutoff of 75), various
contouring techniques (which were useful for compara- Figure 3: Schematic Breakdown of Phase Space Dia-
tive overlays of related datasets), and two-dimensional gram, showing Failure, Endemicity and Burn-out regions
scatterplots of the unaggregated data where colour cod-
ing over some simple scale (typically 2 or 3 colours) was This diagram represents the three observed regions of
used to represent the third variable t. phase space in this model, notwithstanding the point
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made earlier that these regions are less sharply defined Again, the development of ideas to do with this ques-
than in other fields where phase diagram regions are de- tion is greatly helped by animated simulation. With the
lineated. Instead of saying that a particular event will aid of the above phase space portrait, custom simula-
happen in a region "-e sometimes can say only that there tion software can be set to display various parts of the
is a non-zero probability of that event in the region and Endemic region, looking for visual characterizations and
that it does not occur outside, variations.

The Failure region consists entirely of points near zero The most important conclusion to come from such vi-
in Figure 2; this situation is normally referred to as an sual analysis is the oscillatory nature of the model. That
epidemic 'below threshold', or with R0 < 1, meaning is, there is no apparent convergence to a stable equi-
that the expected number of new infections produced librium with a certain prevalence of infection Instead.
by a single site is less than one and hence by analogy there is large-scale organization into complex clusters of
with branching processes, any cluster of infection must similar states, and from this comes a form of 'boom and
die out at least exponentially fast. The Endemic region bust' quasi-periodic behaviour in the number of infec-
contains those parameter pairs for which there will be a tious sites present. To illustrate this, Figure 4 shows the
long-lasting epidemic so long as there is no early failure oscillations in prevalence for one particular model. These
to spread. Consider again the outline of behaviour in oscillations are remarkably stable and pervasive; they
Section 2; this endemicity will generally take the form of appear to occur throughout the endemic region, and if
an expanding ring which leaves behind a nearly empty disturbed (by, say, randomly 'stirring' all the sites) they
region, but the few susceptibles which are passed over re- quickly re-assert themselves.
populate the lattice, and eventually this new population A full explanation of these oscillations is proving elu-
will encounter an infectious individual left from the orig- sive, but they certainly point to very rich behaviour in
inal wave, which will start the process again. However, if the model. Clearly, it is necessary to be very careful
the regrowth process is too slow or too few susceptibles about what is meant by an 'equilibrium' state here, and
are left by the first wave, we can imagine situations where asymptotic results (where they can be found) will need to
the new population does not encounter any infectious be sufficiently sophisticated to incorporate the fact that,
sites before it becomes dense enough to support a new for all finite times, it appears that local prevalence levels
wave. This gives the phenomenon of Burnout, where the do not stabilize. The oscillations are also not particu-
infection is too devastating in its effect to be sustained larly easy to characterize; visually, they appear to have
in a finite population. The expanding ring described in fairly regular amplitude, and the upward and downward
Section 2 moves out to the edge of the simulation area slopes appear quite regular from peak to peak flowevet.
and has to die out, because there are insufficient num- the spacings of the peaks are not regular ---- there appear
bers of susceptibles for it to continue. This explains the to be 'pauses' of random length between succes.',ie cv-
third concentration in Figure 2; the time for a burnout ties - and this renders most usual frequency donial )
to occur is roughly fixed since the infection rate is set techniques invalid. A straightforward Fourier transform
at 1, so the time to reach the edge of the simulation of this series has a surprisingly broad peak due to this
area is always the same (the small variation then comes irregularity. Work is continuing on this point.
from the time to death of the last infectious site, which
depends only on 6). 7. Finite Size Effects

Now to see these regions clearly in the local mean plot
of Figure 1, we note the density of the 'troublesome' It is worth making a few points about finite size ef-
failurp events: it is 1 throughout the Failure region, and fects here. It is certain that the burnout pheimume*ionl
then decreases to the right but does not move to 0 very described above is dependant in its actual occurrencuo
quickly. Hence to observe the important distinction be- on the grid size; it will take longer and longer for the
tween the Endemic and Burnout regions we remove all expanding ring to move through the full population as
the early failures, using the cut-off of 75 suggested by the grid size increases. Therefore we can hypothesize
Figure 3. that the boundary between the Endemic and Burnout

regions in Figure 3 will move as grid size changes: we

6. The Nature of Endemicity expect that larger grids will give more possibilities for
subsequent waves to get started. However, it is unclear

Having observed the Endemic region, we can now b,-- whether the reginn d•Qoppears altogether over the mfti-
gin to ask questions about what this endemic behaviour nite lattice. The hypothesis of Durrett and Neuhauser [2]
is; certainly the intuitive description in Section 2 does mentioned in Section 3 would imply that it does disap-
little to suggest what any 'equilibrium' would be like. pear, but this has yet to be rigorously proven. Whether
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Figure 4: Proportion of Infectious Sites over Time with (6, p) = (1, .1)
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On a Family of Autoregressive Processes and Cantor Sets

Chamont Wang, Trenton State College
and

Arthur Silverberg, American Cyanamid

Abstract

We will present a variety of fractal images derived from a random chaotic game. We also prove certain mathematical
properties of a family of Cantor sets, the compact supports of certain autoregressive processes. In addition, we investigate the
distributions, "densities", Poincare maps, the fractal dimensions and the Renyi information dimensions of the time signals.

TIME SERIES AND POINCARE MAPS

Consider a univariate time series such as the one in Figure I
(sample size-lO00):

Figure 1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

The problem here is to discern patterns in the series, or hope- Figure 2
fully touncover the mechanism that generated the data. Given
the above time signals, eyeball examinations by 42 students Using these two equatii,. ý :ile noting that about 70%
in classes at TYenton State College disagreed on repeated pat- of the data are on the let ý -t: histogram, we infer that the
terns or quasi-periodicity in the graph. A histogram of the mechanism which generatc b.- 4ra-.)h in Figure 3 (and hence
data (using 200 cells) looks like the New York skyline, see the graph in Figure 1) •:c•i, !" formula:
Figure 2.

The graph shows a distinct pattern which is not like that X.+1 = A],M+ + )AX., 1)
of a Gaussian or any other commonly used distribution. A 1 I with probability p,
scatterplot of X,,+, versus X, is shown in Figure 3. .+1 0=ihpoaiiyI-p

The plot reveals two Cantor sets with identical slopes.,. 0 with probability 1 -
The equations of the two lines are where A = .4 and p = 0.3. In the statistical time-series

literature (see, e.g., Box and Jenkins, 1976), tests for the
Xn+i = .4X, + .4 and goodness-of-fit of the model include primarily residual anal-
X,+, = .4Xn. ysis, R 2, X2 statistics, etc. In this example, we will take a

different route to assess the validity of the model in (1).
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.,--., v ,L , x~n) We first plot the scatter diagrams for Xn+L VerSUS Xn, L = 2
-....- .- - and 31, (see Figures 4 and 5). These diagrams are called the

Poincare maps in the chaos literature.
These graphs lend support to the model in (1). For in-

-.... - stance, by (1) we have

X X+2 = .In+2 + .161n+l + .16X..

Note that there are four different possibilities of (10+2, I,+1),
•..- - and indeed there are four different line segments with slope

.16. The same argument applies to the case L = 3.
..- There are other pieces of evidence that can be used to

support the model in (1). First, AR(1) model in (1) is a sta-
tionary process; and apparently the graph in Figure 1 supports

- " .. ,this conclusion. Second, Cov(Xn, Xn+L) = (A4)L, which
"'rigur, 0 decreases as L increases. This is another fact that matches the

x,(n+a ,,-ue x-0) Poincare maps given in Figures 3, 4 and 5. The sample corre-
-..... lation coefficients (n = 1000) are 0.422, 0.162 and 0.063 for

-.-- lag 1, 2 and 3, respectively. Another major question in this
- -- study concerns the missing parts in these Cantor lines. Note

that by (1),

Xn = AI, + AI.ý_ 1 (2)

where A = .4. Hence

-- ..-. A..- -< foralln;
--- '" X <?- if In = 0; (3)

>---- ifI, =1.

__. - - -For 0 < A < 0.5, it is therefore impossible for X,, to be
- ..... between A2/(l - A) and A. In general, if AIn = ... =

A•-•1._k+1 = 0 (i.e., Xn is in the far left segment), then
Flaure 4

x(n÷S) voraes x(n)

...... X. <Ž i~fl._k=, (4)S..... .. .. ... > A kz) if In-k = 1•

.......... -...... It is therefore impossible tohave an X, between Ak+ 21(1 - A)
and Ak+1. Formula (4) also implies that the length of the right

-.. part equals the length of the left part = A(1+ 2)/(l - A), and
that the length of the middle (missing) part is

SA(k + 1)(1 - 2A)/(1 - A). The total length of the missing parts
-...... " ..... is A/(1 - A). Therefore the total length of the Cantor set

...... ...- - -.. .... equals zero.
It can be shown that the distribution functions

•,. ... • ..... F&(t) = Prob[X0 < t] obey the following iterative relation-
-.. . . -- .. . . . .. . . ..s h i p :

• . .-_-3. -..- - . 3,

rigur. 5 F0 (i) = pF.-I (j) + (1 - p)Fn.- 1) (5)

Poincarc delay maps with lag-I and 2 were shown to students. The
following question was theo asked: "How many Cantor lines are we going to
have if lag-3?" Sixty percents of the students said "six lines," the remaining

forty percents said, "8 lines".
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Let u,, = E[Xn], then by algebraic manipulations one can singularities (when A is near 0.6 and f(t) - 0) is:
show that Un+1 = Aun + Ap. When p = 0.5 we can also
show that the singularities occur at 1-A- and

A A~a+•)(10)
F,(un -0) = I - Fn(u, + t) (6) symmetrically at A - -k+-•

Therefore, Fn is symmetric about the mean, u,, when p =
0.5. Assume that X0 is a random number from the unit interval,

In (1) we may also investigate the time series if A is so Fo(t) = t, 0 < t < 1. By (5), the precise functional forms
negative. If -1 < A < 0 (e.g., A = -. 4), then the Poincare of Fn(t) and hence the probability densities fn(t) can be
maps remain the same for even lags but have negative slopes calculated accordingly. For instance when 0.5 < A < 1,
for odd lags. To investigate the support for negative A we P = 0.5,
may assume p = 0.5 since the support does not depend upon
p. P, is symmetric about the mean when p = 0.5 and A is
negative. The odd moments are therefore zero and the even
moments are functions of A2. Therefore since the support iq a
finite interval, the distribution functions for A and -A are of
the same type (see Feller, 1971). We have therefore proven
that the ratio of the major middle missing part to the whole
length is 1 + 2A (0.2 if A = -. 4) as is the case for positive A.

The kolmogorov capacity of the compact support of Xn
in (1) is

D- ln(2)(7
D n(,\)(7

Note that D = 0.756 or 0.431 if A = 0.4 or 0.2, respectively.
By comparison, the Lebesque- measure of the Cantor sets
equals 0, no matter whether A = 0.4 or A = 0.2. The related
Reyni information dimension is

pln(p) + (1 - p) ln(1 - p)
Dn(A) (8) . Fure 6

A,-0.7

IfA = 0.4 andp = 0.5,then D, = D = 0.756,butif A = 0.4
and p = 0.3, Dr = 0.667.

DENSITY FUNCTIONS WITH
INFINITELY-MANY SINGULARITIES

Given the first-order autoregressive model

Xn1= A X (Xn + In), (9)

with p = 0.5, this section investigates the "probability density
function" of X,, as n approaches infinity. We put "probably
density function" in quotes since for singular distributions
the density function is zero almost everywhere. For A = .6,
simulating n = 10, 000 iterations (after ignoring the initial
100 iterations) the histogram of X, is shown in Figure 6.

Thegraphappearsself-similarandseemstohaveinfinitely ' ' ' ' ' ,
many singularities when the density function f(t) - 0. We Figure 7

note that the histogram for X, when A = .5 is a rectangle
and it can be proved it gives a uniform distribution. Also of
interest is the histogram when A = 0.7, Figure 7.

At this moment, we do not have a mathematical expla-
nation of the phenomena when A > .5. A conjecture of the
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F/(t) = t(2A) forO < t < 2A
F2(t) = t/(4A2) for0 < t < A (11)

t/(2A2) - 1/4A forA <t <2A2  .- o.. ,-.

.5 + 0/(4 2) - 1/4A for 2A'2 < t < A + 2A2

Here are graphic representations of the density functions fn
for n = 1, 2, 3, 4, 5 and 10 when A = 0.6 (see Figures 8-13).

The graphs and calculations similar to those of (11) lead
to the next conjecture.

The derivative of the density function
(as n - co and A is in a neighborhood of 0.6) (12)
does not exist a.e.

Note that if A = .7 (Figure 7), the histogram (simulation
n = 10, 000 iterations) is close to a bell-shaped curve. For
this reason, we further investigate the cases where A = 0.617,
0.618, 0.61806 and 0.619 (see Figures 14-17),near the region ....

of the conjectured singular point at A2/(I - A2). These four v.o

Figures were calculated by a numerical approximation not a X O0 n-3

simulation.
At A = 0.617 and 0.618, the curves almost touch the x-

axis at x = A2/(1 - A2) - 0.6147 and 0.6179, respectively.
The case of A = 0.61806 is not obvious, but however when
A = 0.619, the curve lifts off the x-axis. We are currently
investigating this phenomenon.
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Visualizing the embedding of objects in Euclidean space

Michael Littman, Deborah F. Swayne, Nathaniel Dean, and Andreas Buja
Bellcore

Morristown, NJ 07962-1910

ABSTRACT closeness and dissimilarity as distance gives D a nat-
ural graphical interpretation. The Euclidean distances

Matrices representing dissimilarities within a set of ob- among three objects arranged in the right triangle shown
jects are familiar in mathematics, statistics and psychol- in Figure 1 precisely match the dissimilarity matrix D.
ogy. In this paper we describe XGvis, a software system In general, a geometric interpretation for a dissimilar-
which accepts diverse input data, such as graphs and ity matrix D is created by representing each object by
multivariate data, develops a dissimilarity matrix from a point in some k dimensional space such that the dis-
the data, and then iteratively and interactively embeds tance between two objects i and j approximates Dij as
objects in a Euclidean space of arbitrary dimension. Us- well as possible.
ing a technique called multidimensional scaling, objects The process of creating these graphical representa-
are positioned so that their pairwis• distances match the tions is known as multidimensional scaling (MDS) and
target dissimilarities as well as possible. Users can inter- has been studied for many years. Recently, interactive
act with XGobi, a software system for visualizing high- tools for visualizing these representations have become
dimensional data, to browse the resulting embeddings. accessible. In this paper, we describe a system called
Mathematicians and statisticians have found XGvis to XGvis which combines procedures for computing and
be useful for discovering and exploring structure. displaying distance embeddings with a collection of func-

XGvis runs under the X Window SystemTM. tions for generating input dissimilarity matrices from
several data sources.

1. Introduction and motivation How might such a system be useful? Dissimilarity
information is very common in mathematics, statistics

A dissimilarity matrix D is a matrix in which Dj rep- and psychology. Potential sources include shortest path
resents the degree of dissimilarity between each pair of distances among vertices in a graph, measured dissimi-
objects i and j. The row objects and the column objects larity among test objects in a psychometric experiment,
are usually the same and dissimilarity is assumed to be and distances among cases in multivariate data.
a symmetric relation. Matrix D is then a square sym- The use of XGvis for graph theory applications is
metric matrix, Dij = Dj1,, with zeros on the diagonal driven by another visualization tool developed at Bell-
and non-negative entries everywhere else. core. NETPAD (Dean et al., 1991) is an interactive pro-

gram for creating graphs and graph layouts and analyz-
ing these structures with a library of algorithms. NET-

2 PAD is capable of producing many interesting two di-
0 4 3 mensional layouts, and when NETPAD and XGvis are

D 4 0 5 used together, they can create and display layouts of
graphs in three or more dimensions. To the degree that

3 5 0 1 a higher dimensional layout better captures interesting
aspects of a graph's structure, it can lead to special in-

tgraphical in- sights into properties of the graph. These insights can
Figure 1: A dissimilarity matrix and its be helpful in a mathematician's search for conjectures

terpretation, and counter-examples.

Dissimilarity information can also serve as an inter-
The matrix in Figure 1 tells us how dissimilar 3 ob- mediate step between a high dimensional collection of

jects are from one another. Object 1, for instance, differs data and a lower dimensional view of it. By computing
firi the distance between pairs of points in a ten dimensionalfrom oe2y sro .ospace and fitting these distances with objects in a three

X Windowu System is a trademark of MIT. dimensional space, one can often get a more intuitive
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feel for the original data. This process is called dimen- XGvis can accept a dissimilarity matrix directly.
sion reduction and is widely used in data analysis and These matrices are assumed to be symmetric. In the
visualization. XGvis is well suited for this task. event that a non-symmetric (though square) matrix is

There are some cases when a dissimilarity matrix it- passed in, XGvis' default action is to create a symmet-
self is the raw data to be viewed. It is a fairly common ric matrix from it by computing the elementwise mean
technique in experimental psychology to extract similar- between the matrix and its transpose. The resulting ma-
ity judgments from human subjects about a collection trix is symmetric and can be used by multidimensional
of objects. These similarity judgments are easily trans- scaling for creating a graphical layout.
formed to dissimilarities and viewed using XGvis.

By molding diverse input data into the form of a dis- 2.2. Multidimensional scaling
similarity matrix and creating graphical views of the dis-
similarity information, XGvis has proven to be a power- Multidimensional scaling has a long and interesting his-
ful tool for people in many disciplines, tory. The defining goal of multidimensional scaling

(MDS) is to take an n x n dissimilarity matrix D and to

2. The Method produce vectors x1 ... , zx, such that the computed dis-
tance between every zi and zj approximates Dij. Up

XGvis accepts various types of input data and develops to 1964, people used classical or Torgerson-Young MDS

a dissimilarity matrix from each. It then uses a form (Torgerson, 1958) in which the dissimilarities are con-
verted to an inner-product matrix and an eigenanalysis

of multidimensional scaling to iteratively determine an ierformed.

embedding for the data. is performed.
In the early 60s, an alternate view of MDS began to

emerge. The seminal contributor was Shepard (1962)
2.1. Handling of different data types who showed that to construct a faithful embedding it

XGvis handles three primary data types: graphs, multi- is sufficient to know the ranks rather than the actual

variate data and dissimilarity judgments. A dissimilar- values of the dissimilarities. That is, if for every two

ity matrix is developed from each of these using either a pairs (ab) and (cd) of objects it is known whether a

default method or one chosen by the user. is closer to b than c is to d, then a faithful embedding

A graph consists of a set of objects called vertices can be constructed. Shepard gave evidence that this is

and edges where vertices can be represented as points possible and Kruskal (Kruskal, 1964a, 1964b) devised

and edges as lines connecting pairs of points. For ex- an optimization criterion which incorporates this idea.

ample, vertices could represent cities and edges could Kruskal defined a measure of fit called "stress" (S).

connect pairs of cities that have a direct flight between Ei [f(Dij)- 11xi - j 1]2
them. Graphs are used to represent such diverse sys- S(D, a, f) : = [ w w (2.1)
tems as telephone networks, molecules and patterns of Ej 11i - ,l (21
bibliographic references.

XGvis accepts graphs in several forms. The simplest Given a current configuration of the objects x =
is as a list of edges. Edges in XGvis are undirected - xl,...,z,, the target dissimilarity matrix D and a
that is, if i is connected to j then j is assumed to be monotonically nondecreasing function f, S is a measure
connected to i. A user can also optionally indicate a set of how poor the current embedding is. It is a normalized
of initial locations for the vertices. If these are omitted, residual sum of squared differences between each f(Dij)
vertices are placed at random. and the distance from x, to xj. Kruskal provided a pro-

The default approach for creating a dissimilarity ma- cedure for minimizing the stress by computing partial
trix from the graph is to compute, for all pairs of vertices derivatives and applying the classical steepest descent
in the graph, the number of edges on the shortest path method.
between them. XGvis uses a dynamic programming ap- Kruskal's MDS based on this criterion with optimiza-
proach for finding all the shortest paths quickly. tion of f over all monotonically nondecreasing functions

When multivariate data is passed to XGvis, a dissimi- is called "nonmetric MDS." It is called "nonmetric" since
larity matrix is created by computing the Euclidean dis- the actual values Dij are thrown away by transforming
tance between each pair of cases in the raw data. The them, while their ranks and only their ranks are retained
Dij cell of the matrix is the distance between case i because of monotonicity of the function.
and case j. Non-Euclidean metrics are computed at the The version of MDS used in XGvis is a metric relative
user's request. of Kruskal's MDS. It optimizes x but leaves the function
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f for the user to choose interactively from the set of rent embedding.
powers of D. Typically, the user will set some MDS parameters and

Solving for the zi's in metric Kruskal MDS is a then "run" MDS. The points are visible in a display win-
sticky non-linear optimization problem. It does not boil dow while MDS moves them. When the user is satisfied
down to an eigendecomposition such as the one used in with the layout, MDS can be stopped and the result-
Torgerson-Young MDS. Metric Kruskal is a more pow- ing embedding examined with an integrated version of
erful method than classical Torgerson-Young scaling, the XGobi visualization program (Swayne et al., 1991b,

Unlike performing an eigenvalue decomposition, there 1991c).
does not seem to be a closed form algorithm for finding All interactions take place in two windows on the
a metric Kruskal MDS embedding. Instead we use an workstation or personal computer screen. The XGvis
iterative algorithm for finding the zi's which minimize control panel window is used to start, stop and restart
S. MDS as well as to control the MDS-related parameters.

The algorithm starts with some initial layout, which The XGobi display window is used to watch the progress
may be random, and minimizes S through a series of gra- of the optimization and to interact in various ways with
dient descent moves on the point locations. With each the view of the data or figure.
step, the program moves every point a small amount in
the direction which causes the stress to decrease maxi-
mally.

Aside from problems with local minima, easily avoided X is . . .

by using a large step size, the points settle to a reason-
able layout quickly. n di

Visualizing an iterative algorithm offers two main ben-
efits. First, it is possible to observe changes in the op- Reset , ower of D: 1.0
timization behavior that might result from changes in
the parameters of the stress function. For instance, one
could experiment with an additional penalty term for 0.01
constructing constrained layouts. Second, a user can
find a good layout visually without having to construct
a stopping criterion such as "run for z steps" or "run
until the error drops below c." An iterative method al-"t
lows a user to implicitly use the criterion, "run until it
looks right."

We have found this particularly important for setting
the step size p aram eter. L arger steps help M D S m ake d o.............
fast progress early and skip over local minima. Later in
the run, a smaller step size is needed to let MDS settle on D
a solution. Terms like larger, later and smaller are very
much problem dependent but are easily determined (at
least in 2 and 3 dimensional embeddings) by watching Figure 2: XGvis Control Panel
the points move.

Interactive MDS optimization was implemented by
one of us on a workstation in 1982, but it was never 3.1. Control panel
documented other than in a film (Buja, 1982).

The XGvis control panel is shown in Figure 2. The left-
3. Control and Visualization most subwindow contains a Run button that allows a

user to start and stop the optimization and a Reset but-
Embeddings in XGvis proceed as follows: a user begins ton that returns the data or figure to its original config-
an XGvis session by invoking the program with some uration. The labels, buttons and scrollbars in the right-
initial data. Using defa-It routines, XGvis creates a most windows allow a user to adjust various optimiza-
dissimilarity matrix from the data. The user is then tion and scaling parameters. These parameters can be
presented with a graphical interface for controlling the set before MDS begins or while it is running; they are
progress of MDS and manipulating the view of the cur- briefly described here.
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required to interpret the resulting structures. The inter-
face actually permits embeddings in up to twenty dimen-
sions but we have not found use for nearly that many.
Occasionally one dimensional embeddings (all points on
a line - unidimensional scaling) are interesting and they
are also supported.

Transformation: The user adjusts the scrollbar be-
neath the label power of D to select the power to which
each element of D should be raised. In this way, XGvis
allows some variation in the function f shown in Equa-
tion 2 We restrict f(Dij) to D.P,. where p is the value

ad from the scrollbar. Typically, a value of p = 1.0 is
-e most meaningful: this tells XGvis to fit the dissimi-

larities in D directly.
Striking and useful effects can be obtained by chang-

ing p from its default value. Small values of p tend to
minimize differences in the dissimilarity matrix, often
resulting in a "rounder" or more compact layout. A
25 node graph connected as a 5 x 5 grid appears per-
fectly square when displayed with p = 1.0, but note the

Figure 3: Grid, power of D = 0.5 rounded appearance of the 5 x 5 grid as it is shown in
Figure 3: this embedding was produced using p = 0.5.
In the limit p = 0.0 and MDS tries to make all pairs
of objects distance 1 from each other. See Buja et al.
(1991) for a mathematical treatment of this "null" case.

Larger values of p (with 3.0 being the highest setting
on the scrollbar) have an opposite effect. Differences in
dissimilarity are accentuated resulting in more "spiky"
pictures. Figure 4 demonstrates the effect of setting p =
2.0 for the 5 x 5 grid graph.

Step size: The MDS update rule involves moving each
object in the direction of the gradient of Equation 2.1.
The stepsize scrollbar controls the size of the step in the
direction of the gradient. Larger values cause the embed-
ding to proceed rapidly, often skipping over dangerous
local minima. However, they run the risk of causing the
embedding to "thrash," that is, jump out of control from
one configuration to another. Smaller values are useful
when a figure has begun to settle.

Iteration control: With n iters set to 1, XGvis will
update the graphics window after every MDS step. For
more complex embeddings, it is sometimes more efficient
to take several MDS steps before redrawing. Larger val-
ues of n iters accomplish this. The do n iterations button
allows a user to perform a fixed number of MDS steps.

Dimension: By typing an integer into the text window Distance metric: The user can bring up a menu of rou-
at the right of the label n dims, the user specifies the di- tines for recomputing the target dissimilarity matrix D.
mension of the Euclidean space in which to embed the The metrics implemented include shortest path distance
point cloud or figure. Reasonable choices are 2 (XGvis for graphs and Euclidean and Manhattan distances for
embeds the points or objects in the plane), 3 (XGvis multivariate data. This function is primarily useful for
constructs a three dimensional layout), or up to 5 or experimenting with different types of dimension reduc-
6, in which case special techniques and imagination are tion methods or in cases where there is ambiguity as to
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what the default dissimilarity matrix should be. NETPAD is an interactive computer program for cre-
ating and analyzing graphs and graph algorithms. It

3.2. Visualization with XGobl contains a graphical user interface and an expandable
toolkit of graph algorithms. It can be used like an elec-

When the optimization is running, the plot displayed tronic pencil and notepad to create, modify, save, re-
in the XGobi window is redrawn with each iteration so call and delete graphs and their associated attributes
that the motion of the points can be observed. If the or attribute values. NETPAD has a library of programs
data under study is a graph, setting the figure in motion for manipulating and analyzing graphs. These programs
while the optimization proceeds is particularly helpful. can be predefined functions which are part of NETPAD
Using XGobi's Rotate or Tour mode, a viewer sees a or user-defined programs such as XGvis which are inter-
smooth sequence of two-dimensional projections of the faced to NETPAD.
changing figure. Viewers describe this as watching the All of the graph layouts displayed in NETPAD win-
figure "unfold" or "puff out." dows are two dimensional, and it is this limitation that

Once the user decides that the figure or point cloud XGvis enables it to surmount. Users can create and ma-
has become stable, many of XGobi's other interactive nipulate graphs using NETPAD and smoothly pass them
functions can be used to advantage. Selecting the Scale to XGvis to be embedded in a higher dimensional space
mode allows the figure to be stretched or reshaped on and then viewed using interactive motion graphics.
the screen using mouse motions: this is especially use-
ful if the viewer wants to zoom in on a subsection of a 5. Examples
complex figure. In Brush mode, a user can interactively
change the color of selected lines or points or change the In this section, we provide two in-depth examples of ap-
shape and size of the plotting character used for selected plications of the XGvis system. They were chosen to
points. Using Identify, a user moves the cursor near a demonstrate the range of possible uses for the system,
point of interest, and its label appears. The label can from abstract mathematics to data analysis. The first
be any user-supplied text string; by default, it is simply involves using XGvis to construct and view a three di-
an identification number, 1 to n (the number of data oh- mensional layout of vertices for a well-known graph. In
jects). Point brushing and identification are linked: that the second example, we use XGvis to find structure in
is, if a user is working on the same data in another XGobi empirical confusion data.
window (which could be part of another XGvis session
or an independent instance of XGobi), then a point that 5.1. Adjacent Transposition Graph
is brushed or identified in one window is simultaneously
affected in the second. Creating views of graph structures can be helpful to

Some useful ways of selecting subsets by brushing and discrete mathematicians who are generating conjectures
rerunning MDS on the brushed subsets were provided in about attributes of a mathematical system. Graphs are
an earlier implementation (Buja, 1982). These have not useful in statistics for representing relationships between
been included in the current XGvis system. data measurements (Thompson, 1991). A good picture

XGvis calls XGobi as a function (Swayne et al., 1991). of a graph can make important trends in the data more
In this use of XGobi, its data structures are defined by apparent.
XGvis, the parent program, and yet all the interactive Creating higher dimensional views of graphs was one
methods of XGobi are available for use on that data. of the primary motivations for embarking on the XGvis

Figures 3 - 12 in this paper were produced using project. We identified numerous methods for moving
an XGobi facility which enables the user to create a from a set of edges and vertices to a set of spatial lo-
PostscriptTMrepresentation of the contents of the plot- cations for those vertices. We implemented and stud-
ting window, ied several of these including spring embeddings, iso-

metric decomposition (Winkler, 1987), and a higher di-
4. External Interfaces: NETPAD mensional generalization of the Tutte embedding (Tutte,

1963).
Command line arguments allow a user to call XGvis in Most of our efforts were focused on the multidimen-

several ways: with a dissimilarity matrix, point loca- sional scaling algorithm described in this paper. Our
embednstaeywstmaenanoybewn

tions, a graph specified as edges and point locations or edding strategy was to make an analogy between

a graph specified in NETPAD format. shortest path distance in the graph and Euclidean dis-
tance in the resulting embedding. Starting with a graph

Poastcript is a trademark of Adobe Systems, Inc. represented as a list of vertices and edges, we compute,
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Figure 5: Adjacent transposition graph, first position Figure 6: Adjacent transposition graph, unotatdving
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using dynamic programming, a matrix D in which Dij of the remaining three digits enumerated. Each square
is the number of edges along the shortest path between consists of the permutations which have the same sym-
vertex i and vertex j in the original graph. bols in the first two positions and the last two positions.

We start with some initial assignment of vertices in What was invisible is now clear. We can see in Figures
the graph to positions in k dimensional Euclidean space; 7 and 8 that 2134 and 1423 are just 3 flips apart and
this initial mapping could simply be random. Then we that there are two paths of that length. Interestingly,
use iterative multidimensional scaling to move the ver- the sequence 1243 lies on both of them. The pair of
tices to positions that better reflect the shortest path nodes corresponding to 2134 and 1243 are both on a
distances in D. Larger k's make it possible for MDS single square face. This face consists of all sequences
to fit the data better while smaller k's give humans a which start with 1 and 2 and end with 3 and 4. The
better chance of interpreting the resulting layout. The pair 1243 and 1423 are together on 2 hexagonal faces,
most instructive pictures involve trading off these forces one represents all sequences ending with 3 and the other
and choosing the smallest k. that appears to capture the all those starting with 1.
significant structure in D. Often this involves a bit of We have used XGvis to examine other graphs from
trial and error. this family including n = 3 (3! = 6 nodes connected as

Let us consider a graph, shown in Figure 5, known a hexagon) and n = 5 (5! = 120 nodes which requires

as the n = 4 adjacent transposition graph. This graph 4 spatial dimensions to draw sensibly and is therefore

has special meaning to discrete mathematicians. It was difficult to visualize).

passed on to us by Winkler, who was using it to study ex-
tensions of partial orderings. Thompson (1991) has also 5.2. Morse code confusion data
used this graph to depict relationships between surveyed In the previous example, the dissimilarity matrix that
preference judgments. For exploratory and explanatory XGvis derived was based on the structure of a graph.
purposeb, it is useful to have a drawing that shows nodes Now we experiment with fitting an explicit dissimilarity
as close together if and only if they are close together in matrix.
the actual graph. In Figure 9, each point represents a Morse code se-

The graph is generated as follows. We start with all quence - one for each of the symbols a-z and 0-9. A
permutations of the sequence 1,2,3,4. There are 4! or 24 matrix of confusion rates for these symbols was deter-
such sequences and we make each a vertex in the graph. mined in a psychological experiment by Rothkopf (see
We connect two vertices by an edge if one permutation Gnanadesikan, 1977, pg. 44ff for an accessible account).
can be turned into the other by simply transposing two To prepare the data for XGvis, we needed to convert the
adjacent elements. Figure 5 shows an initial layout for confusion rates - the percentage of times one symbol was
this graph; three of its nodes are labeled with their cor- mistaken for another - to dissimilarities. This was ac-
responding permutations. Observe that the node corre- complished by subtracting each of the confusion rates
sponding to 1423 is connected to 1243 because one can from 1. The resulting matrix is recognized by XGvis
be turned into the other by swapping the middle two as asymmetric and is made symmetric by the transfor-
digits. However, 2134 is not connected to 1423 because mation described in Section 2.1. It has been discovered
there is no way to move from one to the other with a sin- empirically that a good layout is found for this data in
gle adjacent flip. How many flips would it take? What two dimensions. This is especially true if the dissimi-
we'd like is a representation of the graph that makes that larity matrix is transformed by cubing each cell; i.e., let
easier to see. f(Vi) = Dý.

Figures 6, 7 and 8 show XGvis finding the optimal Starting from a random layout, as shown in Figure
three dimensional Euclidean layout for this graph, with 9, the points gradually migrate to positions that better
the power of D set to its default value of 1.0. Figure 6 approximate the target dissimilarity matrix. With the
shows an intermediate stage in the "unfolding" of this user watching in anticipation, they soon sort themselves
graph, and Figures 7 and 8 show two views of the final out. The final layout is shown in Figure 10. It has been
position determined by the MDS algorithm, augmented by hand with some information useful for

A three dimensional embedding clarifies the structure interpreting the result.
a great deal. The resulting shape is equivalent to a trun- Figure 11 contains an XGobi plot of the percentage
cated octahedron. One striking feature of the graph is of dots used to represent each symbol versus its length
its collection of six cycles and four cycles - hexagons and in characters. (Recall that symbols are represented in
squares. Each six cycle is the collection of all permuta- Morse code by a sequence of one to five dots and/or
tions in which one end is held fixed and all permutations dashes.) The plot in Figure 11 has been brushed along
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Figure 9: Morse code data, initial positions Figure 10: Morse code data, final positions; here the
plot is brushed by the length of the Morse code repre-
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Figure 11: Morse code data, XGobi plotting window Figure 12: Morse code data, final positions; here the
plot is brushed by the percentage of dots in the Morse
code representation of the symbol.
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the horizontal axis so that symbols with the same length tails (dfs@bellcore.com for XGobi; nate(gbellcore.com
representation in Morse code are drawn with the same for NETPAD).
glyph; for example, symbols represented by two char-
acters (specifically i, a, n and m) are plotted using an 7. Acknowledgments
"e.
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Statistical Visualization
John Sail, Sr. Vice President, SAS Institute

Every statistical fit is the result of a balancing and Springs
optimization process. That is one of the keys to bringing Lets take the statistics of norm..•-theory least-squares fitting
a visual understanding to statistical methods. The and find the appropriate mechanism. We need a mechanism
balancing and optimization help one understand the picture that costs energy as the square of the distance. With this we
by translating visual displacements and distances into can equate least squares with minimum energy. We need a
conceptual forces and energies. The hypothesis leverage mechamism that exerts resistance with force linear to distance.
plot, the comparison circles plot, and the contingency We need a mechanism that can equate the linear algebra
mosaic plot are good examples of graphs that are principals of orthogonality to the mechanical notion of
consistent with mechanical conceptual models. balance.

This paper condenses material from SOl (1989, 1990, Let's take the simplest case, fitting a mean to a batch of
1991a, 1991b, 1991c and 1992). Some of the ideas are values. Get a spring for each point, connecting one end to
also covered by Farebrother (1987). the point, and the other end to a movable junction that is

Visualization with Inner Vision going to be used to estimate and test means.

Visualization is not just what you see, but what you Give every response a spring!
envision as the conceptual mechanism to recognise and
understand what you see.

movable junction
Imagine that there is a little man in your head that point, mean tension (x-t)/o2
watches television, i.e. he watches the images from your t n(.
retina and tries to make sense of them. Most of the time it , X - 2
is pretty dull material. His job is to try to match what he ixe data values energy '
sees with what he remembers in his cognition memory,.
and find important features.

Fit to Minimize the energy - least squares..
In discussing visualization, one of the most important Fit to balance the tension. - the mean
neglected topics is how to consider and train this inner
vision. Much has been written about how to make
statistical graphs neat and informative, but little about Estimation-least squares
how to approach our inner vision. Cognitive scientists The best estimate of the mean is the junction point of
like Don Norman do think about such things. They worry the springs where least energy is stored.
about why most people don't learn how to program their Estimation-orthogonality
VCR's. They help explain why people find the Macintosh The best estimate of the maen is the junction point
so much easier to use than other computers. The principal where the forces pulling it from above and below
lesson of their work is that the key to good user interface bAlance.
is to follow a familar conceptual model. The conceptual TebLing Hypotheses
model is the metaphor that our inner vision uses to make To test the hypothesis that the mean is some value,
sense of what we see. Without a conceptual model, graphs move the junction point to that value, and record how
are just a collection of pixels, and statistics is just a much additional energy it took to do that.
bunch of mathematics. Sample Size

Add more points with more springs and the mean
Force and Energy estimate is held more securely. It is easier to test

hypotheses.
With a conceptual model, you can visualizc .iaýties that Error Variance
are not directly seen. I think that the most useful qualities If you use springs with a higher spring constant I/s
are force and energy. So in educating our inner vision, we (smaller variance), the mean is held move securely. It
should seek mechanical models that translate statistical is easier to test hypotheses.
concepts into forces and energies. Simple Regression

If you are fitting a line to a scatter of points, the same
idea works. The line is balanced both up-and-down and
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rotationally to estimate the intercept and slope Multiple Regression Tests
simultaneously. You can test that the slope is zero by Tests in multiple regression are performed, as before, by
moving the line to a horizontal position at the mean, comparing the total energy stored in the springs as yo'-
and recording the energy needed to do that. constrain a fit to the hypothesized parameter values while

letting the remaining perameters free to seek a balance. In
Fitting an equation to data. the following 3D graph, there are two fitting grids shown.

One for the whole 2-regressor fit. The other results when
7- one regressor (runtime) has been constrained to have

parameter zero. Now imagine how much more energy
needs to be stored in the springs of the constrained fit than

6- the whole regression.

4-- Observed values4- • •(x markers)

3- •
i.,•__.xSubset

Regression Plane

2-1 (square markers)

Bivanate
"I I-I II _Regression Plane

5 10 15 20 25 30 (diamond markers)

Robust estimation To get a nice perspective of the hypothesis test, spin the
Since springs exert a huge force when a point gets far 3D plot so that you can see both fitting planes edge-on,
away, it might be prefered that a diffe.'ent mechanism and roll this so that the constrained plane is horizontal, as
be used. For example, you could envision a spring shown in the first plot below. This is a very useful
with a gradual release mechanism if it is stretched perspective, because you are reducing to 2-dimensions the
past a limit. Or you could use strings and weights problem of seeing a test in three dimensions. The
instead (LI estimates) with strings attached to the residuals are the distance from each point to the plane. The
line, and led through holes at the points, with test is just the difference between one sum of squared
weights pulling on the string. (Farebrother, 1987) distances and the other. You can judge the distances even

Correlation though the distances are somewhat tilted from the vertical
If the springs were not constrained to go vertical, then representing the response. If you correct for the tilt, you
the balance line of minimum energy would be the get the perfect perspective of a test in a multiple
first principal component. If the scale were made so regression, as shown in the second plot. Note that the
that the balanced horizontal and vertical lines used the points are nearly in the same position in both plots. The
same energy, the this would be with respect to the second plot is called an "hypothesis leverage plot".
correlation matrix. One minus the square root of the
percent energy saved by the free line would be the
correlation.

Multiple regression
The same idea works in more dimensions for more
regressors. For two regressors, you are fitting a plane
to a bunch of 3D points with vertical springs.
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push the line of fit down to the horizontal line. Now you
= y can appreciate the concept leverage as how far out a point

is horizontally from the middle so that its springs force
can have a leveraged effect on the test statistic. Changing
the slope to the horizontal line will use up much more
energy on the points that are farther out horizontally.

N So we have the general leverage plot (Sail, 1990), a
% •hypothesis-eyed view of the data. It is a generalization of
"0.:.I the partial-regression leverage plot of Belsley, Kuh and

Welsch (1980) or the added variable plot of Cook and
"q!5 Weisberg (1982).

60 One-way Anova, k Means
What conceptual mechanism is useful for comparing

55- means in a one-way classification? What plot can be used
to show if there are significant differences in the means?

x The springs can be used again for the conceptual model.
0 For each group in the classification, a vertical scatter of

4- points can be shown, with imaginary springs suspending
4 a different mean for each group. To test that the means are

all equal, we constrain them to be the grand mean and
35- measure the energy we needed to add to the springs.

7 8 9 10 11 12 13 14 15
Runtime Leverage total response

sample mean

Hypothesis Leverage Plot
...... turns ... that ..... idea.of.showin.a.

It turns out that the idea of showing a multiple regression 95%d.c ~ma
test can be generalized to any hypothesis test. You just indevale
apply the constraint representing the test -nd obtain the _____

residuals from both the constrained and un onstrained fit.
Then you plot the constrained-fit residual as the vertical
position, and the difference as the horizontal position.
You end up with a plot that can be interpretted just as it is group sample sizes
with a simple regression.

But how can we visualize comparing each mean with each
other mean in one plot? That is hard. We start with a
student's t test, which can be written as a formula for the

unresdual residual constrained distance such that if the means are farther apart than this
by hypothesis least significant distance, they are significantly different.

0 LSD = tl2 std(. 1-t2)

[std(•t-j1t2)] = [std(- 1)]2 + [std( t,)]2

L S D - [t ~ td j~i j ~ )] [t(,'O td (- 1 ] + tczastd Q( 2)LSD +-/sdý1+) L

With the dimensionality reduced to show the essential Now we look for something that we can use in the
details of the test, you can now visualize what is going geometry of a plot. Notice that the LSD relationship is a
on. Now you can see point-by-point the composition of square equal to a sum of two squares, which can be
the test statistic. Now you can see the test as the spring mapped into a Pythagorean triangle of standard errors of
energy metaphor in a reasonable number of dimensions. the means and their difference.
The test is how much energy it costs in the springs to
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The hypotenuse gives us the LSD as measuring stick.

Now suppose that two means are exactly different by the 5
LSD and draw circles around each mean with radius equal 3dokl 3dok4 3dok5 3dok7 compos
to the 95% confidence interval for each mean. 3dok13
Geometrically, the circles much intersect at right angles. Strain

Smaller circles ame "better" so that differences can be
"92  detected. The more springs (more observations), the more

tightly bound the mean is.

tc J2) Sample Size: "How many observations do I need to
t '¢2std(9) drive the radius of the circles down in order that circles a

6" s tdcg, LI.J.) given difference apart intersect at less than 90 degrees to
become significantly different?"

Design: "The way to get the circles significantly
separated with the minimum number of observations is to

tma/std(•i) allocate an equal number of observations to each of the
two experimental conditions."

Since the circles for two means that are different by the 2.5
LSD intersect at right angles, we can make the rules for
what happens if the means are separated by more or less
than the LSD. 2

angle greater angle equal angle less 1.5
than 90" to 90* than 90°

S0 B
0.5

not significantly bordeine signifntyA

different significantly different
different -0.5

Applied to a set of data in a one-way layout, the circles are
drawn in a vertical line, with centers at the means, and the
radius taken from the 95% confidence interval. If circles do
not intersect, the corresponding means are significantly Strange, but true--two widely separated means from small
different. If they nest, then they are not significantly samples A and D are not significantly different. Two
different. If they intersect, then you look at the angle of narrowly different means from large samples B and C are
intersection to determine if the difference is significant. significantly different.
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Comparison circles can be extended to cover multiple To see how the machine works for fitting probabilities,
comparisons, such as the Tukey-Kramer HSD. The consider estimating the probability that a person will buy
arithmetic is the same except for the HSD quantile instead an American, European, or Japanese car. Let's take 13
of the the student's t. observation and suppose that we obtain 6 cars that were

American, 2 European, and 5 Japanese. For each type of
250 car, place a gas cylinder in the compartment for that type

of car in the frame shown below. The frame compresses
2the cylinders so that the total distance is one. The

movable dividers between compartments are adjusted so
0 that the energy in the gas cylinders is minimized, which is

Y Y F l A l also when the forces on each side of the compartment
dividers is balanced. The result is the familar estimates of

0 the probabilities, Pi = ni/n.

The mechanics of fitting car choice probabilities

so 7 ausing thirteen responses for three response levels.
1 2 3$ 5 $ 7 Each Paik AS P*s

WNW $Wawa t Tuwy-KmamerBr Siddr O. t O~i~l.OS
10.05 0.0

Categorical Response W *,.a r"Pe. 5/13

Define unexpectedness to be the negative log of the ,.. o n
probability attributed to the event. Expected "&'l,, 2/13

unexpectedness is entropy. In statistical fits, the goal is to
choose the fit to minimize the unexpectedness:

H = • -log pYi
i= I Fit the probablities to minimizethe nwgy.

where Yi is the response that occurred. Fit the probabilities to balance the prewmure.

For continuous normal responses, the log of the density n1 - np - nA
takes the form of a sum of squared residuals, and the PJ PE PA make the forces equal
conceptual model for this is springs. For categorical
problems that deal with the probability directly, a different P1 + Pt + pa =1 make them sum to I
conceptual model of forces and energies is needed to help The solution:
visualize the fit.

nt n____ nA
pi = • , PE =' PA=

The gas-pressure cylinder works perfectly. The piston is at nj'nr+nA nj+ng+nA nj+ng+nA
some distance p from the bottom of the cylinder. At p=l,
we make the pressure inside and out the same, so the force To put this idea into a graph, consider the divided bar
acting on the piston is zero. As the piston is moved down chart. Now imagine gas pressure in each compartment
the cylinder, the force increases as the reciprocal of the ching on ivide sepratin e compartment
distance (Boyle's law). If we integrate this from I to p, the pushing on the dividers separating the compartments.
energy stored in the cylinder becomes -log(p).

Divided Bar Chart

Give every response a pressure cylinder. Shows the partition

hn~ . Japafor each level such
SPressure = 1/height that the sum is 1.

Energy = -log(helght) oPressure(I) = 0 Consistent with the
pressure cylinder

Pressure(O) = f , vision.

Improbable Events cost "energy" "Mosaic Plot"
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To test that the probabilities are some hypothesized value,
constrain the fit and measure how much additional energy Leverage plots, comparison circles, and mosaic plots are
was needed to impose the constraint, three tools that harness the power of the conceptual

models to serve our understanding of the fit.
In the one-way categorical layout, there is a set of
compartments for each group. It is natural to test that the References
probabilities art; the same across groups, by so
constraining the fit, and adding up the change in energy Belsley, Kuh, and Weisch (1980), Regression
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Conclusion

Statistical visualization needs conceptual models to relate
what we see to statistical concepts. Think mechanics
rather than geography. Think in terms of balancing of
forces and and the minimization of energy. Then you will
understand what the statistics are really doing rather than
just decorating the expression of quantities.
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Abstract: We describe ViSta, a research and development available, including a command-line interface and support
testbed for statistical visualization techniques. Our work for batch jobs. ViSta also provides familiar textual reports of
focuses on visualization techniques (1) for entire data analy- analysis results. So, while it may be that a single picture is
sis sessions; (2) for high-dimensional multivariate data; (3) worth a thousand numbers, this is not true for everyone all
for exploring models of high-dimensional data; and (4) for the time, and, in any case, a picture and a table are worth
guiding novice data analysts. more than either by itself.

ViSta combines its novel visualization techniques with stan-
1.0 Design Goals and Principles dard statistical system features that have proven useful over

the years. This combination means that ViSta provides a
ViSta is a Visual Statistics research and development testbed visual environment for doing data analysis without sacrific-
for visualization techniques designed to improve the quality, ing the strengths of command lines, batch processing, and
accuracy and satisfaction of the statistical data analysis pro- textual reports. ViSta's design rests on the assumption that
cess. Included are techniques for visualizing the overall combining traditional approaches with cutting edge visual-
structure of the data analysis session; for visualizing the ization techniques gives the user the most complete under-
results of analyses; for visually exploring the effects of re- standing of the data.
parameterizing models; and for visually guiding novice ana-
lysts. These design principles are reflected throughout our discus-

sion of the ViSta environment (Section 3.0) and of ViSta's
ViSta is designed for an audience of users having a very statistical visualization techniques (Section 4.0). ViSta is
wide range of data analysis sophistication, ranging from written in Lisp using the Lisp-Stat environment for statistics
novices to experts. ViSta provides data analysis environ- and dynamic graphics developed by Tierney (1991). Contact
ments specifically tailored to the user's level of expertise. the first author about availability.
Guidance is available for novices, and tools are available for
experts to create guidance for novices. A structured graphi-
cal user interface -- called a workmap - is available for com- 2.0 Visualization Techniques
petent users, and a command line interface is available for
sophisticated users. ViSta emphasizes four statistical visualization techniques.

These techniques are outlined here, and are discussed in
ViSta's design understands that visualization techniques are greater detail in the remainder of this paper.
not useful for everyone all of the time, regardless of their
sophistication. Thus, all visualization techniques are Session Visualization - The overall structure of the on-going
optional, and can be dispensed with or reinstated at any time. data analysis session is presented visually as a "workmap" of
In addition, standard non-visual data analysis methods are the session. As the session progresses, the workmap grows,
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showing each step taken. Thus, when data are input, an icon 3.0 The visual data analysis environment
appears that represents the data. When an analysis takes
place, a "method" icon appears that is connected to the data One of ViSta's main design principles is that a data analysis
icon, representing the fact that the data have been processed environment should reflect the sophistication of tihc user's
by the method. Then, a "model" icon appears connected to data analysis knowledge. Thus, one goal of ViSta's software
the method icon. This shows that the data have flowed design is to maximize the data analyst's productivity and sat-
through the method to yield a model. This workmap can be isfaction by providing the analyst with a suitable data analy-
used to remind the analyst about the analysis that has taken sis environment.
place, and can be used to return to previous analysis steps.
Workmaps are based on work of Young & Smith (1991). ViSta is designed to accommodate the complete range of

sophistication on the part of data analysts, from novice to
Statistical Visualization - Statistical visualization tech- expert. Since the data analysis environment which does this
niques are designed to accurately and efficiently communi- for a novice user is different from the one which does this for
cate data structure and modeling results. Results are a sophisticated analyst, the design includes four kinds of
presented visually via dynamic statistical graphics. Included environments. These environments include:
are scatterplot matrices, scatterplots, spin-plots, tour-plots, 1. Guidemaps to guide novice data analysts through com-
histograms, box-plots, etc. These graphics are displayed in plete data guidest
multiple windows that are linked by their observations and plete data analyses.
their variables. When an observation is high-lighted or 2. Workmaps to inform competent data analysts of the
labeled in one window, it can be high-lighted or labeled in overall structure of their data analysis sessions.
any of the other windows. These graphics are designed to 3. Command Line Interface to let sophisticated data ana-
help the analyst visually explore spaces representing the lysts dispense with the visual aids when they find them
data's structure or the structure of a model of the data.The unnecessary.
graphics are complemented by standard textual reports. The
concepts here are based on work by Stuetzle (1987) & 4. Guidance Tools to let expert data analysts create the
Young, Faldowski & Harris (1992). guidance diagrams that are used by less expert analysts.

Interactive Graphical Modeling - Interactive graphical These four environments are very tightly coupled -- seam-

modeling techniques are designed to help the analyst visu- lessly integrated -- within ViSta. Analysts can switch

ally explore the effects of revising a model's parameter esti- between them whenever desired. We discuss each of these

mates. The parameter estimates are represented by graphical environments in this section, along with the notion of tight

elements such as points or vectors.These estimates can be coupling. Finally, in addition to these four environments,

revised with graphical tools for moving points or vectors, which are all highly interactive, ViSta provides a batch mode

Once new estimates are obtained, the implications of the for automated analyses in repetitive data analysis situations.

new estimates are rapidly displayed as changes in the model, This mode is also discussed in this section.

its fit, and its residuals. While the new estimates may not be
mathematically optimal, they may be more meaningful, lead- 3.1 Guldemaps for Novice Users
ing to greater insight about the data. Geometrically, views of For novice data analysts the ViSta environment guides the
the data and it's model are simultaneously manipulated in For nouice data analysis Guidanceviro vided the
high-dimensional space, giving new views of the data and user through the data analysis. Guidance is provided by amodel which are unchanged relative to each other. These visual diagram that indicates to the novice analyst which
concepts are discussed further by Young, Faldowski & Har steps should be chosen next - a guidemap. The structure of
ronceptsaredis cusse (1992)rbyYou, Faldowski (19 , a- cthe guidemap doesn't change as the analysis proceeds,
ris (1992), Faldowski (1992), and McFarlane (1992). although its highlighting changes. The steps are indicated by

Guidance Visualization - Users with no knowledge about buttons, and the sequence of steps by arrows pointing from

data analysis can benefit from an environment which visu- one button to the next. Figure 1 shows an example of a gui-

ally guides their analysis. To this end, the sequence of steps demap for multiple regression.

which expert data analysts think should be taken are pre-
sented visually as a cyclic graph. The graph guides those The user makes choices by pointing and clicking on the but-
with less expertise through the series of steps in a complete tons with a mouse. Active buttons (which are dark) are sug-statstial ataanalsis Th coceps prsened ereare gested actions, whereas inactive buttons (the light ones) arestatistica l d ata ana ly sis. T he co ncep ts p resen ted here are ac i n th t re ot s g s ed A f r a su e t d a t o n s
based on work by Lubinsky, Young & Frigge (1990). actions that are not suggested. After a suggested action isbase onwor byLubnsk, Yong Frgge(190).taken the selection of active buttons changes to show the
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Figure 1 - A Guidemap

user which actions can be taken next. In this diagram the analyses and to create the structured analysis diagram. Note
user has already selected data - that button is inactive and the that the workmap is an acyclic graph whose nodes are the
following buttons are active. When the user clicks on one of possible actions and whose edges are the sequence of possi-
the three active buttons, the corresponding action takes ble actions. For more details see Young & Smith, 1991.
place, the button lightens in color, and the following buttons The workmap shown in Figure 2 is a structured analysis alia-
become active. For example, once the model is defined byclicking the "Define Model" button the "fit-moder' button gram created during a ViSta analysis session. In this analysis
becomes inactive. Note that the guidemap is a cyclic graph the analyst first loaded a datafile named "car-ratings", creat-
whose nodes are possible actions, and whose edges are the ing a data icon with the same name. These data were then
possible action sequence. For more detail see Lubinsky, standardized, creating a new data object with an icon named
Young & Frigge (1990. "STD:car-rafings". The analyst then loaded a second datafile

named "car-prefl4", creating a third data object and another
data icon with the same name. These data were analyzed by

3.2 Workmaps for Competent Users the "PrinComp" method for principal components analysis.
This produces a method icon named "PrinComp", and

ViSta provides a graphical interface for competent data ana- model icon named "PCA:car-prefl4". The analyst then
lysts called a workmap. A workmap is a visual diagram of requested that the model create three new data objects of
the steps taken in the analysis. Unlike a guidemap, whichdoesn't change, a workmap is created and expands as the scores, coefficients and input data. Finally, the analyst
analysis takes place. The user points and clicks to perform merged the standardized ratings with the principal compo-

Prinqomp

:car, b PCA :€•r

:car-prefl 4•oel's :PCA :¢ar-prefl 4 Input :PCA :car-prefl 4

rats- scrs!|
rats-5scrs

Figure 2 - A Workmap
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) (def car-ratings (load-data ":ViSta:Data:car-ratings. Isp"))
CA-R-T I NGS
> (def std-car-ratlngs (standardize-data :dialog nil :mean 0 :stdv M))
STD-CAR-RAT I NGS
) (send std-car-ratings :report-data)
NIL
> (def car-prefs (load-data ":UiSta:Data:car-pref14. Isp"))
CRR-PREFS
> (def pca-car-prefs (principal-components :dialog nil :Corr t))
PCA-CRR-PREFS

(send pca-car-prefs •ereote-data-obj ects dialog nil
:scores t :coefs t :input t)

*<Object: 1870806, prototype = MV-DORTR-OBJECT-PROTO>

Figure 3 - Command Line Interface

nent scores. Any of the icons in this diagram can be opened called "batch" mode because all commands are run as a
in various ways to visualize or report data or results. This batch.
example corresponds to the example in Section 3.3 on com-
mand lines, and the example in Section 3.5 on batch mode. An example of a ViSta batch mode file is shown in Figure 4.

(def car-ratIngs (load-data "car-ratings. Isp"))

3.3 Command Lines for Sophisticated Users (def std-cor-ratings
(standardize-data

For sophisticated data analysts, ViSta provides a command dialog nil
:-mean 0

line interface. These commands, which are shown in Figure :stdv 1))
3, are entered through the keyboard, causing the analysis to (send std-car-ratings :report-data)

(send std-cr---ratings :visual ize-data)take place.They also create the workmap (which may be hid- (send std-car-rat i ngs :summar i ze-datao)

den, if desired). The commands in Figure 3 follow the same (def em-prefs (load-data "car-prefl4. Isp"))
(def pca-cor-prefsseries of steps as those outlined in Section 3.2, and generate (p,-,ncipa)-components

the same workmap shown there. :dialog nil
:Corr t))

(send pea-car-prefs :report-model)
(send pca-cor-prefs :visual ize-model)

3.4 Guidance Tools for Expert Users (send pca-car-prefs :create-data-objects
:dialog nil

For expert analysts ViSta is designed to provide tools to cre- :scors t
:coefs t

ate guidance diagrams that can be used by other users. These : input t
diagrams can be constructed by using the mouse to point and Figure 4 - Batch Mode
click, or by using the command line to type commands. A
guidance diagram has already been shown in Section 3.11. In this example the analyst has loaded data concerning car

ratings, which are standardized. He/she then obtains a report
(listing) of these data, fcllowed by a visualization and some

3.5 Batch Mode - Automated Analysis in summary statistics. The analyst then loads data about car
Repetitive Situations preferences. These data are submitted to a principal compo-

The four kinds of environments discussed above are all nents analysis. A report and a visualization is obtained of the
highly interactive. This means that as soon as an icon is results and then output data objects are created. This batch
clicked, or a command is typed, ViSta responds. This is code corresponds to the analyses discussed in Section 3.2 on
desirable in many situations, especially when analyses are workmaps and in Section 3.3 on the command line interface.
being performed on a one-shot or exploratory basis. How-
ever, in other situations, such as when an analysis will be
repeated again in the future on a new wave of data, it is pref- 3.6 Tight Coupling of All Environments
erable to be able to collect all commands together into a file The five data analysis environments are tightly coupled, as
and run them all at once without user interaction. This is can be seen from the previous sections. The guidance dia-

grams used by novice analysts generate commands that are
1. Note that guidemaps and guidance tools are not yet implemented identical to those typed by sophisticated users with the com-
at the time this paper is being written, but we anticipate they will be mand line interface. The graphical interface used by compe-
by the time it is published, tent analysts also generates the same commands. The
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commands, in turn, generate the structured analysis diagram 4.1 Empirically Linked plots - Groups of
and perform the data analysis. These commands can be used Interacting Plots
in batch files. One of the primary statistical visualization tools in ViSta is

the linking of several plots through their data's observations
It is possible to switch between the several kinds of environ- and variables. This was discussed by Stuetzle (1987). We
ments at any time. When the sophisticated user moves into call these "empirically" linked plots since they are linked
an unfamiliar type of data analysis, or when any analyst through the data. In his paper he discussed linking via the
looses ,:.k of the overall structure of the analysis, the ana- observations of the data. In ViSta, plots can be empirically
lyst caý, switch from the command line interface to the linked via either the data's observations, or their variables.
graphical interface, with the entire structured history of the
analysis session being presented. Similarly, the moderately Figure 5 presents an example of a layout of four plots. At the
competent analyst can switch guidance diagrams on or off as upper-left is a plot-matrix. To its right is a spin-plot. At the
desired. bottom-left is a scatterplot, and to its right is a histogram.

These plots are empirically linked via their observations:
The labeled. points in the scatterplot are high-lighted in the

4.0 Statistical Visualization Methods spin-plot and histogram (and could be in the plot-matrix). As
one selects points in any plot (by clicking or dragging the

One of the main design principal of ViSta's Statistical Visu- mouse), points for the same observations can be high-lighted
alization methods is that a single picture is worth a table of a in any other plot. Being able to see where observations
thousand numbers. Statistical Visualization uses geometri- appear in several plots lets the analyst get a better idea of the
cally based statistical models to provide visual insight into data's structure.
the structure of data. Consider the general linear model. It
can be viewed as a geometric model that represents observa- The four plots are also empirically linked via their variables:
tions as points in one or more high-dimensional spaces. By clicking on a cell of the spreadplot the user can choose
These spaces have dimensions for variables or for linear which variables are plotted in the other plots. Notice that the
combinations of variables. The statistical visualization of a scatterplot and histogram are showing variables which corre-
general linear model presents the results of the analysis as a spond to the cell in the plot-matrix which has the "finger"
group of interacting plots, the purpose being to intuitively cursor located on it. These are also two of the spin-plot's
communicate the results of the analysis through pictures. three variables. Clicks and shift-clicks on cells in the scatter-
When this visualization is combined with traditional report- plot-matrix determine which variables appear in the other
ing techniques (i.e., tables of results), the user gains a greater plots. Being able to display various combinations of vari-
understanding of the results than when either technique is ables in the other plots lets the analyst look at many views of
used alone. That is, most of the time most of us find a picture the data's structure.
and a table to be worth more than either by itself.

Three kinds of statistical visualization tools are available in 4.2 Guided Tours - High-Dimenslonal Spinnable
ViSta. They are used for three different purposes: Plots

1. Linked Plots: This set of statistical visualization tools is A tour-plot (the large window in Figure 6) is a spin-plot that
used to present data structure and to present the results of spins in more than 3 dimensions (Asimov, 1985; Buja & Asi-
statistical analyses. mov, 1986, Young, Kent & Kuhfeld, 1988). A guided tour-

2. Guided Tours and Spreadplots: These statistical visual- plot spins as directed by the user. Just as a spin-phIL is2.zGuided tours aneused toexplore Thes statisticl vhisu- designed to help the user understand structure in three-
ization tools are used to explore the structure of high- dimensional data, a guided tour-plot is designed to help the
dimensional data and of models of such data.

user understand structure in high-dimensional data.
3. Interactive Graphical Modeling: This set of statistical

visualization tools is used to help search for meaningful ViSta's implementation of a guided tour is shown in Figure
and parsimonious model parameterizations. 6. This implementation uses real-time dynamic graphics

which are guided by the user with high-interaction, immedi-
These statistical visualization aspects of ViSta are discussed ate feedback, point-and-click mouse actions. ViSta's guided
next, followed by a discussion of ViSta's more traditional tour lets the user create and control rotation in a portion of a
reporting techniques. high-dimensional space which can have up to six dimen-
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Figure 5 - Empirically Linked Plots

sions. The user can also control which six-dimensional por- The figure shows the guided tour prior to spinning, so it
don of the high-dimensional space is usedfor rotation. shows a point cloud that is the same as the Left Target. When

the space has spun 900, the cloud in the guided tour window
The Guided Tour figure shows a group of four linked plots, will be the same as the Right Target. When it spins a funher
In addition to the tour-plot in the large window, there are two 2700 it will return to the Left Target orientation. Spinning
spin-plots ("Left Target" and "Right Target"), and a partially can occur horizontally (involving the two targets' horizontal
hidden scatterplot matrix. High-dimensional spinning (tour- axes), vertically, or both at once. In addition, the third axis in
ing) takes place from the Left Target's orientation to the each target can also be involved in spinning, so that spinning
Right Target's orientation. The scatterplot matrix is used to can involve all six axes. See Young & Rheingans (1991b) for
determine which variables appear in the two target windows, a video example of guided tours.
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Figure 6 - A Guided Tour Spreadplot

4.3 Spreadplots - Algebraically Linked Plots Figure 6 is titled a "Guided Tour Spreadplot" because there

ViSta includes spreadplots (Young, Faldowski & Harris, are algebraic links between the plots. There are two kinds of
1991) among its statistical visualization techniques. A algebraic links. First, there are equations which link the two
spreadplot is the graphical equivalent of a spreadsheet: It is a target plots with the tour-plot. These equations create the
group of several interacting dynamic plots, with the several specifics of the high-dimensional spinning that occurs in the
plots being algebraically linked by equations. Note that alge- tour-plot. The user actually has the choice of two sets of
braic linkage is fundamentally different from empirical link- equations for two different types of tours. One set of equa-
age Empirical linkage involves the data's observations and tions (Buja & Asimov, 1986) implements the high-dimen-
variables. Algebraic linkage involves a model's equations. sional rotation model mentioned above. The other set
ViSta's spreadplots can have both kinds of linkages between (Young, Kent & Kuhfeld, 1988) implements a linear interpo-
plots in the same spreadplot. lation model. Both are discussed by Young & Rheingans

(1991a).
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The second type of algebraic link between the group of plots 4.4 Interactive Graphical Modeling - Graphical
implements the residualization model proposed by Young, Tools for Fitting Models
Kent & Kuhfeld (1988). When the "New Tour" button is Interactive graphical modeling is the final statistical visual-
clicked the specific position of the tour-plot in its spin ization technique in ViSta. An example is shown in Figure 7.
between the two targets is used, along with the residualiza- This is a statistical visualization technique for visually
tion equations, to update the two target windows. These new exploring the nature of alternative parameterizations of sta-
targets are then used, via the high-dimensional spinning tistical models. The technique uses graphical tools to modify
equations that link the windows, to modify the path taken by a model's parameterization, with the implications of the
the tour-plot during its high-dimensional spin. modifications being displayed as changes in the dynamic

graphs that portray the model, its residuals, and its fit. A data
analyst would use this tool to explore for a model of the data
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Figure 7 - Interactive Graphical Modeling
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which provides better understanding of the data than the one
provided by a traditional algebraic analysis. IIULTIUARIATE REGRESS ION ANALYSIS

Dependent Uariabl,.: (Chinups Situps)
Interactive graphical modeling assumes that an explicit data Independent VariabIes: (Weight Waist)

analysis model has been fit to the data by some means that For Dependent Variable Chinups
generates initial estimates of the model's parameters. Cur- Least Squares Estimates:

rently, research and development is underway for interactive Constant 46.4511 (12.624)
graphical modeling that are appropriate for multiple regres- Weight 0.0801815 (0.0857006)

i, l ist-1.44976 (0.655084)
sion, principal components and multidimensional scaling, all Waist

of which are fit, in ViSta, by standard OLS techniques. A Squared: 0.338996
Sigma hot: 4.54364
Number of cases: 20

Figure 7 presents the results of fitting the Principal Compo- Degrees of freedom: 17
nents model to the well known Fisher Iris data. At the top are
a scatterplot matrix and a spin-plot of the scores of the irises For Dependent VarIable Si tups
on the principal components. The lower left-hand "Biplot" Least Squares Estimates:

(Gabriel, 1981) is a scatterplot of these scores plus a vector Constant 634.437 (137.982)
plot of the coefficients that the variables have on the princi- Weight 0.717825 (0.93672)

W4aist -17.4319 (7.22307)
pal components (variables are labeled, one being hidden).

These coefficients are the model's parameters. The "Scree R Squared: 0.43627
Sigma hot: 49.6627Plot" is a plot of the proportion of variance accounted for by umbera oh cases: 20

each component. Degrees of freedom: 17

The user can interactively change the model of the data by Figure 8 - Regression Report

using the graphical "vector-moving" tool that is available in 5.0 Conclusion
the biplot. This tool is represented by the cross-shaped cur-
sor shown located near the tip of the "Sepal Width" vector in In this paper we have presented ViSta, a testbed for research
the biplot. When this tool is located directly on one of the and development in statistical visualization. Our work
vector tips, the vector tip can be dragged to a new location
by holding the mouse button down and moving the mouse, emphasizes visualization techniques (1) for entire data anal-
This creates new estimates of the model's parameters, which ysis sessions, (2) for high-dimensional multivariate data; (3)
in turn cause new scores and fit to be calculated, which in for exploring models of high-dimensional data; and (4) for
turn are used to modify all four plots. Note that the set of guiding novice data analysts.
plots are a spreadplot, since they are algebraically linked via We believe that data analysis systems of the 21st century will
the equations that re-estimate the model and its fit when incorporate methods like those we have presented, and that
parameters are modified. they will help the data analyst to have a more insightful, pro-

ductive and satisfying data analysis experience than is possi-
4.5 Reports - Traditional Reporting Techniques ble in current data analysis environments.

The visualization techniques that have been outlined above
are state-of-the-art features for reporting data analysis
results. However, our design sees them as supplementing,
not supplanting, the traditional methods for reporting results
that have been developed and widely used over the past sev-
eral decades. Thus, ViSta is designed to have a full range of
standard reporting techniques. For example, when a Multi-
variate Regression analysis is performed, the user can view
the report shown in Figure 8. Similarly, when simple statis-
tics are desired about data, the user can obtain the report
shown in Figure 9. Thus, when these traditional reporting
methods are combined with ViSta's statistical visualization
reports, the data analyst has the greatest information for
understanding data that current technology can provide.
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DESCRIPTIUE STATISTICS FOR cars

VARIABLE IMEAN StDv VARI ANCE
MPO 24.76 6.55 42.87
Weight 2.86 0.71 0.50
DrlueRatio 3.09 0.52 0.27
Horsepower 101.74 26.44 699.33
DIsplacement 177.29 98.88 7809.08

MINIMUM, 2nd QUARTILE, MEDIAN, 4th QUARTILE, MAXIMUM
MPO 15.50 18.55 24.25 30.25 37.30
Ueight 1.92 2.21 2.69 3.41 4.36
DrIveRatio 2.26 2.70 3.08 3.61 3.90
Horsepower 65.00 79.00 100.00 122.50 155.00
Displacement 85.00 105.00 148.50 228.00 360.00

IMTERQURRTILE RANGE, RANGE
MPG 11.70 21.80
Welght 1.20 2.45
DrleRatio 0.91 1.64
Horsepower 43.50 90.O0
DIsplacement 123.00 275.00

CORRELATION 1iATRIX
1 -0.9 0.42 -0.87 -0.79 MPG

-0.9 1 -0.69 0.92 0.95 Weight
0,42 -0.69 1 -0.59 -0.8 DriveRatio

-0.97 0.92 -0.59 1 0.87 Horsepower
-0.79 0.95 -0.8 0.87 1 Displacement

Figure 9 - Simple Descriptive Statistics
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ADVANTAGES AND DISADVANTAGES OF
DENSITY ESTIMATION WITH WAVELETS

Gilbert G. Walter1

and
Jugal K. Ghorai

Department of Mathematical Sciences
University of Wisconsin-Milwaukee

Milwaukee, WI 53201

They are: (i) the estimators are at the same time con-
sistent for continuous densities and rapidly convergent

Abstract for COO densities; (ii) their parameters have an easy in-
terpretation in terms of the scale; (iii) all calculations

Wavelets constitute a new orthogonal system which are recursive; (iv) the error is given in terms of sim-
has many practical and theoretical advantages over the pie wavelet expansions; (v) their localization proper-
classical systems. It gives better localization properties ties lessen the effect of outliers. However it is not clear
as well as better convergence properties. This gives it that they will perform better as density estimators in
better asymptotic properties when used to construct relatively small samples. The principal thrust of this
estimators of a probability density function. However, work will therefore be to compare estimators based on
its small sample properties seem to have little advan- wavelets with those based on kernels. The procedure
tage over the kernel methods and indeed often do not will be to generate samples from various densities, con-
give as close an approximation to the true density. struct the estimators and see how they compare. We

first present some background in wavelets, and some

1. Introduction. theoretical properties of the estimators.

The subject of nonparametric probability density es- 2. Background on Wavelets.
timation has spawned a huge (mostly forgetable) lit-
erature. In addition to the traditional histogram The subject of wavelets has had an extremely rapid de-
method there are methods based on kernels (Parzen velopment in the last few years. It began with a tech-
(1962), Rosenblatt (1956)), on Fourier series (Kron- nique, poorly understood first, that seemed to work for
mal and Tarter (1968)), on Fourier transforms (Davis seismic analysis better than previous methods (Morlet,
(1974)), on orthogonal polynomials (Schwartz (1967)), et al (1982)). This involved representation of signals
on splines (Wahba (1975)) and on general delta se- by means of integral transforms (Grossman and Mor-
quences (F61des and Revez (1974)). Most of the meth- let (1984)), but was soon extended to nonothogonal se-
ods give mean square and almost sure consistent esti- ries representations (Daubechies (1988), Heil and Wal-
mators at points of continuity of the density, but most nut (1989)) and eventually to orthogonal series (Meyer
converge slowly even when the density is infinitely dif- (1988), Daubechies (1988)).
ferentiable. Some, the higher order methods, have In addition to the applications in seismic analysis
more rapid rate of convergence for such densities but wavelet representations have been found to be useful
may fail to converge for densities that are merely con- in image processing, signal analysis, and data compres-
tinuous (Walter and Blum (1979)). sion (Beylkin et al (1989), Strang (1989), and Mallat

With so many choices available it seems superfluous (1989)). They have proved to be useful in pure math-
to introduce yet another method of density estimation. ematics also since they provide unconditional bases of
But the method to be discussed based on orthogonal certain Banach spaces such as HI and LP (Daubechies
wavelets (Daubechies (1988)) seems to have a number (1988)).
of advantages over other methods. The wavelet estimators we use in density estimation

are based on orthogonal series but are similar to kernel

'Research Supported by NSF Grant #DMS-901526
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estimators. They may be given in the form where P is a probability measure with support in
[-E, L]. For this work we take dP(w) = C((Z) 2 -

()= (W--Xm) where x" is the indicator function of
'n = [-= 1] and C is a nomalizing constant, (15(3) 5). In

(2.1) the case of the Daubechies Wavelets, the scaling func-
where X 1 ,...,X1 is an i.i.d. sample and 0_.(x) = tion is defined by its "dilation equation"
2m/24)(2m, - n). Here O)(x) is the scaling function;
its translates are orthogonal in L 2(1?) and {f,..(x)} is )0.(t) = Z c.O,, (2t - n) (3.3)
an orthogonal basis of a subspace V_ of L2(1Z). This
V,_ also has a reproducing kernel q.(t, z) in terms of where in the simplest case c. = (1 + V3-)14, c, = (3 +
which (2.1) becomes V/3)/4, c2 = 1- c, c3 = 1-c, and c. = 0 for all

1 N other values of n. These 0,D are continuous but not
L.(z) = Z q,(X,, ) z E Rl, m E Z. (2.2) differentiable functions with support on [0, 3).

_' By allowing more terms in (3.3) the {cj} can be

A third expression is in terms of the wavelets{4, ~ chosen (Daubechies (1988, pg 980)) so that 4) is smooth

themselves. These constitute an orthonormal basis of but has support on a larger interval.

L2 ( R) and have the form V, .(x) = 2rn/fl(2mx - n)
where O&(x), the "mother wavelet" is based on O(x). 4. Convergence Results.
The estimator is, for m E Z,

m 0o N As indicated previously, wavelets have nice conver-
,(x) = • X (~�E•,I(X,))•b,(x), E , gence properties. These are based on the following

k=-oon=-oo i=1 lemma (Walter (1992)).
(2.3) Lemma 4.1 Let the scaling function 4) E S, r > 0,

which is analogous to other orthogonal series estima- and suppose that
tors. The infinite series in(2.1) and (2.3) will be trun-
cated in most cases since both O(x) and Vk(x) often (i) 4(w) = 1 + O(1wIA)
have compact support. Even if they do not, the con-
vergence is rapid and the tails may be safely ignored. (iE) , ¢(t - n)e-iW(t1-) = 1 + O(IwIA)

as jwj --+ 0 for some A > 1; let q_ (t,x) be the repro-

3. Examples of Wavelets. ducing kernel of V_. Then (i) {q_ (t,x)} is a quasi-
positive delta sequence on R and (ii) the Sobolev norm

There are three approaches to constructing orthogonal flq,,(., y) - 6(. - =)jj-, - O( 2 -mA) for a > A + .2

wavelets. They all involve construction of the scaling Remark 4.1 This hypothesis is satisfied for all scal-
function 0)(t) first. ing f unc t his hypo th A =t 1 . For oth er

In the case of Franklin Wavelets, the 0(t) is found ing functions 4 E S,, r > 0 with A = 1. For oter 4,
by orthogonalization of the basic spline function o(t) = notably the Meyer Wavelet , A may be taken arbitrarily

X[o, 21(t)(I-It- 11). That is, 0)(t) is chosen in the space large. These two properties are not shared by any of

spanned by O(t - n) in such a way that it is orthogonal the classical orthogonal systems.

to its translates. The resulting function is, in terms of Theorem 4.1 Let the scaling function 4 E S, and
its Fourier transform, satisfy the hypothesis of the lemma for some A > 1.

S sin 2 (,/2)( s2( Let X,..., XN be an iid sample from the continuous
(w) (w/2)2  sin(w/2))- (3.1) bounded density f(x). Define

The scaling function for the Meyer Wavelets is also IV

given in terms of its Fourier transform. It is chosen ()= q-(xX,), xER. (4.1)

directly as a function whose Fourier transform satisfies
the orthogonality condition and is given by Then

u(w) = {.,,_,+W dP}½ (3.2) (i) EII,_"(x) - f(X)s 2 - 0 uniformly on compact sets
as m -~ oo and m = O(log N),
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(ii) If f E HO, a > A + 1, m r log log N We choose the finest scale rf of interest; calculate a.,
EI]m(Z) - f(z)12 = O(N-2A/C2A+1)). from the data and then use (5.2) to find a and

b,.. ~ We keep decreasing m until the MISE takes
Proof: The variance of the estimator is given by a jump. It is not too difficult to show that

EIf,(x) - f.(x)I < -y I q2 .(, y)f(y)dy MISE(m) - MISE(m - 1)

< 1 Ilfllq_(xx) f 00 2m q(2m z, 2m z)f(z)dx
N+ 1 b2

= _11f l2mq(2mxz,22z) N l "b2N A

= O(2tm/N) (4.2) The integral above can be approximated by

since q(z, z) is continuous and periodic. From this the 1 V q(2m X,, 2mX,). This will allow to choose an
results follow from the lemma and Schwartz inequality appropriate m.

for the Sobolev spaces. 0
Wavelets do however, have one theoretical short- 6. Results of Simulation.

comming in comparision to the classical orthogonal
systems. The trigonometric series on [-7r, 7r], given A sample of size 200 was taken from each of four dif-
by {einx}, has the property that the expansion of a ferent densities. These densities were formed by linear
periodic function f(z) has partial sums combinations of normal f, (zxl, a) and double expo-

N nential densities f 0 (x) and were
S.(x) = 1: a.ei=" (4.3) Wi Az W f. W)

n=-N

which are invariant under translations. That is the N- (ii) f() = 0.7fI(z) + 0.3fN(zI - 1.5, 0.6)

partial sum of f(x - a) is SN(z - cc). This does not (iii) f.(z) = 0.3fN(xI - 1, 0.7) + 0.7f,(x10.5, 0.45)
hold for most wavelets. The translates are not in the
same subspace V_. (iv) f4 (z) = 0.7fo(z) + 0.3f,(xl - 1.5, 0.6).

The last two densities, f, and f. were in COO but are

5. Choice of m. not symmetric. The density f1 is unimodal and f, is
bimodal. This tested the ability of the estimators to

The asymptotic results are not of much use for choos- discriminate between them. Most estimators should

ing the parameter m. In general the coefficients in the work well for these densities. In the case of f, , the

density estimator are a_,,, and b,,, where density is not differentiable at z = 0; we were inter-
ested in determining which estimators would give a

N good approximation to the peak. In f. we again have
=-h Z ¢,(X,), bimodal density in which one peak is sharp and the

3=1 other smooth.
N Kernel estimators were based on two different ker-

k= N'-¢,h(X,). nels
i= 1 1i , x - 1I 1 X < I

The dilation equation (3.3) and the relation (i) k0() = {0, IzI >1

3(t) = ch,+--l)k(2t + k) (5.1) (ii) k.(x) = e
k 7-

In each case the usual estimator
give us the following decomposition algorithm.

a._,. 2- ,o ,+, (•)I N

a.-,,, = 2A c a(x)= N-- k(( X,)/h), h =2'
j i-1

= 2 - Zc,•,(-1)ja,,, 2 +,. (5.2) with window width h were used. The optimal window
3 size was chosen by the method of Chiu (1991).
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Wavelet estimators were based on the wavelets with have much greater spurious oscillations than even in
scaling function given by (3.2) and (3.3). The two the case of 24.

choices of the scaling function made were , Meyer The oscillations could be reduced by choosing m
scaling function 0, and Daubechies scaling function smaller but then they fail to pick up the peaks. How-
OD = 24 and go, in the notation of Daubechies (1988). ever by allowing the m to vary with z, one should be
The estimators were then given by (2.1) or equivalently able to control the oscillation and pick up the peaks
(2.2) or (2.3). Since the parameter m has discrete val- simultaneously. This is particularly easy to do with
ues, it was possible t,. try all reasonable values and wavelets since the errors in going from one value of m
choose the one which seemed to give the best smooth- to the next are given in terms of the wavelets them-
ing. An alternate approach, which however we did not selves. This remains to be explored.
use, would be to start at the finest scale of interest
and work backwards to a smoother version. At each
stage the error is given by the wavelet coefficients. The
process is continued as long as the error is small.

The results of some of our simulations are shown
in Figures 1 to 20. We would expect the wavelet and
kernel estimators both to estimate the smooth densi-
ties f, and f. well and they do. But the localization
property of the wavelets should have made them su-
perior estimators for f, and f2. This is not apparent
from the graphs. In Figures 1 - 4, the the four densi-
ties are estimated by the kernel method using k2 . The
estimators picked up the two modes in Figure - 4 and
the bumps in Figure - 3 quite well. However in the
case of Figure- 1 the peak at the origin was not picked
up while in Figure - 2 the two modes were not picked
up either.

The results for the kernel density estimator based
on k, are shown in Figures 5 - 8. The results are
almost identical to figures 1 - 4 except the estimators
are somewhat smoother.

The wavelet estimators using the smooth
Daubechies scaling function go are shown in Figures
9 - 12. The normal densities are estimated quite well
except that a slight oscillation has been introduced. In
addition, in the double exponential density, the peak
at 0 is picked up a little better than with the kernel
based estimators. The two modes of the density in
Figure - 10 are reflected in the estimator but so are
others which should not have been there.

The wavelet estimator using the Daubechies scaling
function 24 are shown in Figures 13- 16. This scaling
function, though continuous, is highly irregular as can
be seen from the graphs. It does pick up the peak in
Figure- 13 and 14 much better than other estimators.
However it does also introduce a number of spurious
oscillations which detracts from its usefulness.

In the case of the scaling function for Meyer
wavelets, the results are shown in Figures 17 - 20.
Again the estimator is better at picking up the peacks
in the two densities with double exponential tails.
However the estimators of the two normal densities
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Double Exponential Density Mixture of Dexp and Normal
n=200, h=0.99899. kernel 2 n=200. h=.99899, Kernel 2
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Double Exponential Density Mixture of Dexp and Normal
n=200, h=0.463, kernel 4 n=200. h=.467, Kernel 4
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Double Exponential Density Mixture of Dexp and Normal
Daubechies(9), n=200, m=O Doubechies(9). n=200. m=O
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Double Exponential Density Mixture of Dexp and Normal
Doubechies(2). n=200. m=O Doubechies(2). n=200, m=-I
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Double Exponential Density Mixture of Dexp and Normal
Meyer. n=200, m=O Meyer, n=200, m=O

.50- .40-
.45- 91 .35- ,I

.40- .30-
,15- 25-

.30- 25
25- 20-

20- 15-

.15 .10-

.10-
05- 

05-

.00 ��00-

-. 05 I I I I I I I -. 05- 1 1 II I II

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

True Density = Dotted Line True Density = Dotted Line
Esimated Density = Solid Line Esimated Density = Solid Line

Fig- 17 Fig- 18

Mixture of Two Normal 2 Mixture of Two Normal 1
Meyer, n=200, m=O Meyer, n=200, m=O

.70, 70-

.60- 60-

.50- 50-

.40- I.40-
I I
I I I.30- g.30

.20- 20

10- 10-
00- 000

-. 10 - I I I- .10 I I I I I I I I I

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

True Density = Dotted Line True Density = Dotted Line
Esimated Density = Solid Line Esimoted Density = Solid Line

Fig- 20 Fig- 19



G.G. Walter and J.K. Ghorai 243

References Wahba, G. (1975). Interpolating spline methods for
density estimation I. equi-spaced knots. Ann.

Beylkin, G., Coifman, R., and Rokhlin, V. (1989). The Statist., 3:30 - 48.
fast wavelet transform. Technical report, Preprint.

Walter, G. G. (1991). Approximation of the delta func-
Chiu, S. T. (1991). Band width selection for kernel tion by wavelets, to appear in. J. Approz. Theory.

density estimation. Ann. Statist., 19:1883 -1905.
Walter, G. G. and Blum, J. R. (1979). Probability

Daubechies, I. (1988). Orthogonal bases of compactly density estimation using delta sequences. Ann.
supported wavelets. Communications on Pure and Statist., 7:328 - 340.
Applied Mathematics, 41:909 - 996.

Davis, K. (1977). Mean integrated squared error prop-
erties of density estimates. Ann. Statist., 5:530 -
535.

F6ldes, A. and R~vez, P. (1974). A general method
of density estimation. Siudia Sci. Math. Hungar.,
9:82 - 92.

Grossman, A. and Morlet, J. (1984). Decomposition
of hardy functions into square integrable wavelets
of constant shape. SIAM J. Math. Anal., 15.

Heil, C. and Walnut, D. F. (1989). Continuous and
discrete wavelet transforms. SIAM Review, 31:628
- 666.

Kronmal, R. and Tarter, M. (1968). The estimation
of probability densities and cumulative by fourier
series methods. J. Amer. Statist. Assoc., 63:925 -
952.

Mallat, S. (1989). Multiresolution approximations and
wavelet orthogonal bases of L2 (1Z). Trans. AMS,
315:69 - 87.

Meyer, Y. (1988). The Franklin wavelets. Technical
report, Preprint.

Monrlet, J., Arens, I. F., and Giard, D. (1982). Wave
propogation and sampling theory, Part II. Geo-
physics, 47:203 - 236.

Parzen, E. (1962). On estimation of a probability
density function and mode. Ann. Math. Statist.,
33:1065-1076.

Rosenblatt, M. (1956). Remark on some nonparamet-
ric estimates of a density function. Annals Math.
Statist., 27:832-837.

Schwartz, S. C. (1967). Estimation of a probability
density by an orthogonal series. Ann. Math. Stat.,
38:1261-1265.

Strang, G. (1989). Wavelets and dilation equation.
SIAM Review, 31:614 - 627.



244 Linearity of a Nonlinear Function

Investigating the Linearity of a Nonlinear Function
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Abstract based on three yields, namely yp., Yo and Yr:
Consider a fitted predictive function or + Y .

response surface that is nonlinear in the explanatory cost =
variables. Nevertheless, for certain values of the fit- Yp + Yo "Y, " P + (1 - Yp - Yo "y,)
ted parameters and for some region in the space of where p and 8 are given constants and each of the
explanatory variables, the function might in fact be yields are fitted functions of seven discrete explana-
effectively linear with no interactions and therefore tory variables having from two to nine levels. The
more easily interpretable. We propose and study cost factor is not an observed value and cannot be fit
some graphical displays to investigate this question in directly to the explanatory variables, but it was devel-
the context of a problem where the explanatory vari- oped from the fitted yields and given constants using
ables take on discrete values. We use a series of economic principles. It is obvious from the above
graphs showing the fitted function against each equation that the cost factor is a nonlinear function of
explanatory variable. The graphs are calculated con- the seven underlying discrete explanatory variables.
ditionally on certain specified combinations of the Statistical models and techniques for detecting
other explanatory variables, where the combinations departures from additivity have been used for some
are based on the data from which the model was fit or time, for example Tukey's (1949) one-degree of free-
the region in which predictions are desired. The dom test for nonadditivity and Mandel's (1971) mod-
methods are illustrated on a problem with seven eling framework for dealing with nonadditivity in
explanatory variables and approximately 800 cases. two-way tables. Numerical tests and graphical dis-

plays can help to identify types of nonadditivity
1. Introduction within a class of models and have been studied, for

Suppose we have a nonlinear function of sev- example, by Marsinghe and Johnson (1981) and by
eral categorical variables. Such functions can arise, Snee (1982), who uses a plot to help assess the ade-
for example, as a response surface from fitting a sta- quacy of a certain model for interaction. DuMouchel
tistical model to categorical data, or from the (1988) presents an adjusted-Y plot, which is analo-
observed responses from a computer experiment run gous to the partial residual plot, for assessing certain
at some combination of categorical design variables, interactions. Cook and Weisberg (1989) suggest
This paper presents several graphical displays that are using three-dimensional added variable and residual
useful for determining whether the given function is plots along with dynamic graphics rotation to check
nearly linear in some region of interest. We consider for interaction.
the situation in which the explanatory variables are Techniques such as these could be applied to
discrete, so linearity of the function implies that it has our problem, but they were devised for the situation
additive effects in the individual explanatory vari- where the analyst is studying the response for two (or
ables. Thus, in effect, we are investigating the extent maybe three) explanatory variables and the observed
to which the given function is additive in the vani- response includes error. The challenge is to detect an
ables on which it is defined, interaction from the noisy data. In contrast, this

This work was motivated by a direct question paper considers a situation with many (here seven)
from a colleague requesting "approximate impact explanatory variables and where the potential nonad-
factors" for each variable in a fitted nonlinear ditivity could involve any combination of them.
response function. These factors can be thought of as Moreover, we are not concerned with choosing an
linear approximations to the marginal effects of the appropriate statistical model including some random
levels of each variable. It would not make much variation term, but with detecting regions where the
sense to try to calculate such factors if the variables function is effectively additive. Our plots are
were not nearly additive near the combinations of designed to help visualize and understand the func-
explanatory variables that are possible or of interest. tion. We are not dealing with predicted or residual

Our particular function is a cost factor that was standard errors for the function. Secticn 2 describes
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three plots that axe useful for examining the nonaddi- Throughout this paper we study the additivity
tivity. They arc shown for all possible combinations of our cost function in terms of a particular explana-
of the explanatory variables. Section 3 focu•ses on tory variable with four levels. There are 2,592 combi-
using these plots near the region of the data that nations of the remaining explanatory variables, so the
determined the function, and Section 4 gives the sum- interaction plot shown in Figure 1 contains this many
mary and condusions. traces though they are not necessarily unique. In the

notation of the previous paragraph, the subscript j
2. Additivity of the Function Across All Combina- corresponds to the four levels of explanatory variable
tions of the Variables A and the subscript i indexes the specific combina-

This paper investigates the additivity of a func- tions of the other six variables. Figure 1 gives a
tion of discrete explanatory variables when the under- strong overall impression of parallelism, but it is
lying function is algebraically nonlinear. Additivity impossible to judge any details of departures from
here is equivalent to no interactions among the parallelism because there are so many traces and the
explanatory variables. Therefore, our approach is to plot is such a mess.
assess if and when two or more explanatory variables Figure 1 is related to Wegman's (1990) parallel
have an appreciable interaction by modifying coordinate representation for high-dimensional data,
ANOVA interaction plots. For the problem with two apart from being rotated by 90 degrees. Wegman rep-
explanatory variables, the interaction plot shows co, resents each four-dimensional data point by a line and
(cost at level i for variable 1 and level j for variable produces a display that looks like Figure 1; he dis-
2) plotted against j with a line, or trace, connecting cusses ways to use this display as a general data anal-
the poims associated with a given level i of variable ysis tool for analyzing high-dimensional statistical
1. There is one trace for each level i. If the plot dis- data. In order to attack the special issues for our
plays parallel traces, then there is no interaction problem, we dcve~op and use such displays differ-
between variables 1 and 2. If the traces are not paral- ently than does Wegman. Jones and Rice (1992) dis-
lel, then there is some sort of an interaction. For cuss *he general problem of displaying the important
examples, see Hicks (1973), pages 89-90 and 157- features of large collections of similar curves, such as
159. in Figure 1. They propose a principal components

analysis followed by display of a few particular
__arves that represent the original large collection.

The difficulty in assessing the degree of paral-
lelism of the L:-ces in Figure 1 leads us to plot

0i c. - ci + c.. againstj, which we call the adjusted
interaction plot. This plot retains the main effect of
explanatory variable A but eliminates the overall

Oc effect for each combination of the other explanatory
C variables. What we have done is move each trace i

up or down so that they all have the same mean over
(Uj, namely E... If there were no interactions of variable

.G--" A with anything else, this plot would be a single
,_ . ...-.. -~ ----.... trace. The adjusted interaction plot for our function
0 ------ _ is shown in Figure 2. This plot is not a single trace;

U . ..... - .... thus, variable A does not enter our model in an
ý .... .- ...- exactly additive fashion over all combinations of the

0-. ... ••----. other explanatory variables. This plot also permits

judging the size of the interactions versus the size of
"the main effect for this variable. Here the main>
effects for the different levels of variable A have a
range of approximately 0.08, while the maximum

I .spread, or interaction, is approximately 0.02. It is1.0 1.5 2.0 2.5 3.0 3.5 4.0 difficult, however, to follow an individual trace

Explanatory Variable A across the plot and to look for clusters of traces that
are nearly parailel, which is what would be needed to

Figure 1 learn minre about the interaction structure that exists.
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Individual traces can be followed more easily easily enables one to distinguish them from the oth-
in a plot which we call the residual interaction plot, ers. In the next section all traces with level 9 are
This plot takes the points from Figure 2 and removes plotted using a dashed line type.
the mean of each column. The residual interaction
plot has cqj - "Fi. - -dEj + F3.., the usual ANOVA 3. Additivity in the Data Region
interaction term, plotted againstj. If there were abso- Section 2 described three interaction plots cal-
lutely no interactions involving explanatory variable culated over all combinations of the remaining
A, this plot would be a single horizontal line at zero. explanatory variables. If no effective interactions had
Figure 3 shows the residual interaction plot for our been discovered, there would be no need to proceed
data. A larger version of this plot suggests two clus- further to understand the effects of this explanatory
tered groups of approximately parallel traces, with variable. When some effective interaction is discov-
one group having residual interaction greater than ered, however, an important next question is whether
approximately 0.005 at level I of A. Using different or not it occurs near the region containing the data
colored line types also helps to suggest this structure. from which the function was produced. Our example

We investigated the other explanatory variables has 778 data points which correspond to only 143
associated with these traces using a dynamic graphics unique combinations of the seven explanatory vari-
system for brushing a scatterplot matrix. Each trace ables. We are primarily interested in whether or not
is treated as a data point on four variables, where the function is additive in the region where it would
each variable represents the residual interaction at be used, which should roughly correspond to being
one level of variable A. Highlighting scatterplot near the region where previous data occurred. In this
points (each representing a trace) and identifying section we subset and adapt the thre interaction plots
their levels on explanatory variables other than A for this purpose.
revealed that the top group in Figure 3 contains We produce the interaction, adjusted interac-
exactly those combinations with level 9 of the vari- tion, and residual interaction plots, but now showing
able with nine levels. Thus, it appears that the largest the traces for only those combinations of the explana-
interaction with variable A involves this combination. tory variables that occur in the data. For each such
Once this is discovered, plotting Figure 3 with all combination, we plot the trace across all possible lev-
traces from level 9 of this variable in a different color els of variable A, as before. Figures 4 and 5 show the
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interaction and residual interaction plots. The points tires 4 and 5 showed that this interaction is not really
represent the actual levels of variable A. There were close to most of the data since there is only one trace
143 traces used to construct these plots, though they corresponding to level 9 exhibited in these plots. We
do not all give unique lines because of the nature of were then able to identify an interaction of smaller
the cost function, magnitude that is more complicated and involves dif-

In Figure 4 it is still difficult to assess the par- ferent levels of this variable, but which does occur in
allelism of the traces. We now note, however, that the region of the data.
only two actual data values give a cost much lower The plots just described, however, can still
than 0.8 and they have level 4 for variable A, while show interactions in regions that could be far from
Figure I showed many such combinations. The line the underlying data. For example, consider an actual
showing lowest cost is dashed, indicating that it is combination with variable A at level 1; showing this
from level 9 of the identified variable. The adjusted trace all the way across to level 4 could suggest an
interaction plot is not shown because of space limita- interaction involving variable A at levels 3 and 4,
tions, and Figure 5 is the residual interaction plot. It say, that is actually relatively far from the data region
shows two separate traces starting at the upper left at level 1. To correct for this possible problem, we
and also suggests two distinct groups, which are modify the interaction plots to show only the seg-
apparent especially at levels 3 and 4. To interpret this mentis of the traces adjacent to the actual level of this
structure we used dynamic graphics brushing and explanatory variable. This modification gives
identification on this plot as described earlier. We another series of three plots. The adjusted and resid-
discovered that the group of traces going from the uial segmented interaction plots cannot be centered
lowest values for level 3 of A to middle values for using easy formulas as before, since now each trace
level 4 correspond to a higher-order interaction does niot include values at all four levels for variable
involving one level of the nine-level variables, but A. We have an unbalanced data situation and calcu-
not level 9, and three of the remaining explanatory late the adjustments by fitting row and column effects
variables. Figure 5 shows these traces as dotted lines, using linear models for unbalanced data.

Thus, from the first set of figures we discov- Figure 6 shows the segment version of the
ered that the largest overall interaction with variable residual interaction plot, which corresponds to Figure
A involved level 9 of the identified variable, but Fig- 3 in the first series. The actual level for variable A is
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denoted by a point. Traces from combinations of the 4. Summary and Conclusions
explanatory variables that have level 1 for A have a We explore the nonlinearity of a function of
segment starting with a dot at 1 and extending to its discrete explanatory variables through three types of
value for level 2. Those with level 2 have a dot at its interaction plots, since nonlinearity in this situation
value plotted twice with a small gap above 2 and line reduces to nonadditivity (no interactions) for the
segments extending to its values at levels 1 and 3. function. The three types of plots are used to exam-
The other levels are handled similarly. ine the function over all combinations of the explana-

tory variables, and also to restrict the exploration to
regions near the observed data by showing appropri-

8 ate subsets of the initial plots.
SniqueThese plots give a practical yet powerful tech-

nique for visualizing a large and possible complicated
function. For our particular cost function, only a few

o important interactions were identified.
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Abstract that they are designed for strategic, not tactical, appli-
cation. Just as the tactical tools require the supervision

The methods (tactics) of regression data analysis such of a statistician for appropriate use, these strategic tools
as variable selection, transformation and outlier detec- are not meant to be blindly or automatically applied.
tion are characterised as functions acting on regression Gale(1986) and Phelps(1987) contain several articles in
models and returning regression models. The ordering which expert systems and statistical strategies are dis-
of the tactics, that is the strategy, is studied. A method cussed.
for the generation of acceptable models supported by the
choice of regression data analysis methods is described We view the pursuit of an appropriate model by the
with a view to determining if two capable statisticians statistician in the following way: The desired model (or
may reasonably hold differing views on the same data. models) should satisfy several requirements, unimpor-
Optimal strategies are considered. The idea of influential tant variables should be excluded, outliers identified, etc.points is extended from estimation to the model building An initial model is proposed and these requirements are

poins i exendd fom stiatin t th moel uiling checked sequentially by numerical or graphical methods
process itself both quantitatively and qualitatively. The c kd seqentaly by merical or apial methd
methods described are not intended for the entirely au- and if necessary the model is changed in a way suggested
tomatic analysis of data, rather to assist the statistician by the particular method. For example, variable selec-in examining regression data at a strategic level, tion methods can detect redundant variables and pro-

pose their elimination. When the current best model sat-

1. Introduction isfies all the requirements the analysis ends. The choice
of requirements and methods used to test these and make

Textbooks on linear regression have several chapters, appropriate model changes is made by the statistician.
each devoted to one particular aspect of building a re- We take particular interest in the order of application of
gression model and checking it's adequacy. One chap- the methods and the influence of individual data points

ter may study variable selection and another diagnostics on the final model chosen. There are two main diffi-
for the detection of outliers. If these may be viewed culties with the tools we propose. We must automate

as tactics in the pursuit of a regression model, what of the methods used due to the amount of repetitive analy-
the strategy? Very little is said about how these vari- sis required. Graphically-based methods are difficult to

ous techniques fit together, other than that it is a skill automate because they rely on human perception and
gained by experience. Daniel & Wood(1980) is a no- because the automated methods are context-free, the
table exception in this respect. There are outstanding statistician must examine the results to determine the
questions concerning the interaction between these tac- sense or lack of it. These tools are not intended to re-
tics and the order in which they should be carried out. place the standard analysis - they are an optional extra
In this paper we will look at, not a particular specific of and the results should be interpreted with due care.
regression analysis, but the process as a whole. Regression analysis is influenced by the taste of the

Regression strategy is usually discussed within the statistician. The choice and ordering of methods are
context of expert systems for Statistics but production of not universally agreed upon and so it quite possible that
such systems for the automatic analysis of data has been two experienced analysts will construct different valid
stalled primarily by the difficulty of integrating the real- models and come to different conclusions from the same
world context of the data. Nevertheless, this does not data. If one was aware of this, then one would hesitate to
preclude worthwhile study of regression strategy. This seize upon one conclusion and discard the other, rather
article does not describe an expert system and the tools one might say that the data do not support any strong
discussed are not intended for the automatic analysis of conclusion. However, it is quite possible that th first
regression data. These methods should be regarded in two statisticians may agree and a third disagree, or a
the same way as the usual tools of the regression ana- fourth or a fifth. Given that the number of reasonable
lyst, such as Box-Cox transformations. The difference is analyses is likely to be large, one is unlikely to have the
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resources to collect all these opinions. Often, one will be j = 1, ... ,p. and that we consider models of the form:
the sole analyst so that it will be difficult to know if the P,
data support many or only one conclusion, (0 = A + L Ojfj A~j) + wi-i

Lubinsky & Pregibon(1987) discuss the search for (++
"good" regression models although their methodology
and motivation differ from ours. They view data analysis where the primes (1) indicate that some initial predictors
as the search for characteristics rather than an accept- may excluded or additional predictor. Jike squared or
able regression model as we do here and they describe an interaction terms may be introduced. So p' may greater

expert system for this search. See also Brownstone(1988) than, less than or equal to p. The wi are weights, which
and Adams(1990). could be set to zero if we wish to exclude a point from

We show a way, given a particular choice of methods, the model. The g and f1 are transformations. Thus a

of generating all (or as many as possible) of the accept- regression model, in our sense, is specified by the original

able models arrived at by different orderings of the meth- data, the transformations and the weights.
ods chosen. Thus the statistician may discover if there We wish to characterise RAP's as functions acting onare several competing models for the data which support regression models and returning regression models. Forare eveal ompeingmodls fr te dta wichsuport some procedures such as variable selection and transfor-
different conclusions, in which case suitable doubt may some pcus suchla stvaia stionwand trfor-be expressed, or that only one model is indicated, whence mation, this is relatively straightforward, but for other
the conclusion may be infused with greater confidence. diagnostic based methods, it is not so easy. Thus, theRAP's provide only an approximation to a regression

Regression analytic methods are sometimes quite in- data analysis by a human but the information provided
exact, perhaps depending on the statistician's interpre- by this approach is additional to that given by a standard
tation of a plot, but since a large number of possible analysis, not a replacement, so nothing is lost and much
regression analyses need to be considered, these meth- may be gained. See Faraway(1992) for more discussion
ods need to be exactly specified. This we do in section of this.
2, so that they may be programmed. In section 3, we When constructing a regression model, we have cer-
discuss the generation of acceptable models derived by tain requirements for what is an acceptable final choice -
the various orderings of the methods. for example, that there be no redundant predictors, that

We also address the question of which of the generated the expected response should be linear in the predictors,
models is best in section 4 and whether there is a strategy that there be no outliers included in the model etc. The
that might reliably generate this "best" model in section RAP's are a response to these requirements in that they
5. We conclude that one should not usually pick out a examine a candidate model and if necessary change that
best model and even if we could there is no one strategy model to make it acceptable with respect to that par-
that will surely find it. ticular requirement. Thus, a minimal list of RAP's is

Traditionally, influence has been defined as the effect determined by the requirements we wish our model of
of one point on the estimation for a given model. Using choice to satisfy. An acceptable final model would be
the methods discussed earlier, we can extend the idea of one which is not changed by the application of any of
influence to the effect of one point on the whole process the RAP in the list.
of building a regression model in section 6. The following RAP's have been programmed. The

names for the methods are given brackets for refer-
ence. Check and remove outliers (outlier-test), Check

2. Characterising Regression Data Anal- and remove influential points (test-influence), Check for
ysis non-constant variance (hetero-test), Check for a Box-

Cox transform on the response (box-cox-test), Check
The process of building a regression model may con- for transformations of the predictors (tran-predictors),

sist of several stages such as outlier detection, variable Backward elimination of variables (bw-elim). Details
selection and transformation which we shall call regres- may be found in Faraway (1992). LISP-STAT - Tier-
sion analytic procedures (RAPs). At each stage there is ney (1990) is an ideal package for the programming of
a candidate model which may be supplanted by another such procedures. Code is available from the author by
model according to the result of the RAP. A regression e-mail (julianOstat.lsa.umich.edu).
model might be specified by the original data, the func- This list is obviously not exhaustive but is representa-
tions specifying the link between the predictors and the tive of the sort of data-analytic actions that may occur
response and weights on the observations, in practice and is appropriate for some common require-

Suppose we have data (Xij,Y,) with i = 1,...,n and ments for acceptable regression models. Note that these
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procedures allow no possibility that observations or vari- jacent island) and number of species as the response,
ables excluded by the analysis at one stage may later be described in detail in Andrews & Herzberg (1985)
restored to the model and that no interaction terms will The Chicago dataset: 47 cases being zip codes in
appear. This, again, is restrictive, but not importantly Chicago, 5 socio-economic predictors (% minority corn-
so. Furthermore, I am not implying that these are the position, fire rate, theft rate, age of housing and income)
best methods to use all the time only that the ideas that and no. homeowner insurance policies is the response,
follow are not restricted by these particular choices. described in detail in Andrews & Herzberg (1985)

The Swiss dataset: 47 cases being provinces in 1888
3. Generation Of Acceptable Models Switzerland, 5 socio-economic predictors and a stan-

dardised fertility measure is the response. Described in
In this section we consider the generation of accept- Mosteller & Tukey (1977)

able models by changing the order in which RAP's are Some data will generate several possible models, oth-
applied. A natural, although arbitrary, choice of initial ers only one. For example, using the RAP's outlier-
model is the regression of all possible predictors on the test, test-influence, box-cox-test, tran-predictors, bw-
response with unit weights on the observations. Clearly, elim, there are 5!=120 possible sequences. The Chicago
there are situations when there will be several reason- dataset produces 7 acceptable models, the Galapagos
able initial choices, but for now we will use only that dataset produces 5, where the transformations used, the
one initial model. Our ideas are not affected by this variables included and the points excluded can all differ.
restriction. In contrast the Swiss dataset produces only one accept-

Even for very small lists of RAP's, the number of se- able model.
quences we must try will be very large so we must usu-
ally be satisfied with just a sample from the possibilities. 4. Selecting a Model
Random sampling from the possible sequences may not
be the best approach so we have used a systematic sam- Having generated a list of acceptable models, can we
pling method: Generate the n! permutations of the list choose which one is best? We have nothing new to say
of RAP's and apply these cyclically to the data until each about model selection, rather, we are providing a wider
action has been applied with no change in the model. So choice of plausible models to the analyst, models that
one of these data analyses, given a list of RAP's {tran- might have been discovered by hand given limitless time
predictors, bw-elim, outlier-test, box-cox-test }, might and patience.
consist of the application of the following sequence of Expert knowledge of the particular area may allow one
RAP's: {outlier-test, box-cox-test, tran-predictors, bw- to choose one model with confidence or at least eliminate
elim, outlier-test, box-cox-test }, where the last change some of the competitors. Some model selection methods
to the model occurred when box-cox-test was applied to are criterion based, like the adjusted R 2 or the Akaike
the model for the first time. Since the final model is un- information criterion. Given that the response may be
changed by any of the RAP's, we consider it acceptable. transformed in different ways in the competing models,

Now, certainly some of these analyses might consist of the criterion may have to allow for this, so Mallow's Cp
sequences of RAP's that no statistician would ever try may be inappropriate.
in practice, but the final model should be the real sub- We could simply pick the model that maximises the
ject of attention and sequence of actions that generated chosen criterion, but this may be precipitous. Suppose,
it is of no intrinsic interest. The statistician should ex- prediction is our goal then the predictions from the ac-
amine these models to ensure that they are physically ceptable models may vary greatly even if the criterion
sensible and discard those that are not. The difficulty is does not. Given that the value of the criterion may be
not that unreasonable models will be included amongst sensitive to small perturbations of the model, it would
those considered, since the statisticians can easily screen seem inadvisable to put too much weight on it. Also, one
these out, rather that important models will not be dis- reason for constructing the list of acceptable models was
covered due to the inflexibility of the RAP's. Thus we do the possibility that two capable analysts may differ in
not claim that this method will produce all reasonable the ordering of their analysis and arrive at different final
models, but it may well find some that otherwise might models. So it's also quite possible that using different
have been missed. We shall use several datasets in the criteria may result in different choices from the list.
following discussion: Another objective in regression analysis is to assess

The Galapagos dataset: 29 cases being islands 5 ge- the dependence of the response on a particular predictor.
ographic predictors (area, elevation, distance to nearest This dependence is quantified by the appropriate regres-
island, distance from Santa Cruz island and area of ad- sion parameter. If different transformations are used in
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Table 1 - Analysis of Chicago data
Model Predictors [Excluded Adj. R2  # Seq. f32 sge(/32) P-value
1 1,2,4,5 7,24 87.0 70 -0.0172 -0.00791 3.58
2 1,2,4,5 7 83.6 10 -0.00519 0.00793 51.6
3 1,2,4,V4" 24 83.3 3 -0.0306 0.00815 0.05
4 1,2,4 24 81.6 7 -0.0318 0.00854 1 0.06
5 1,2,4 1 77.9 30 -0.0197 0.00820 1 2.06

the acceptable models, say a log transform on the re- 5. A Best Strategy?
sponse in one model and a square root in another, it will
be difficult to directly compare the relevant parameter Suppose that we wished to find the model with the
estimates. One possibility for a consistent method of highest criterion value, say adjusted R2 . A programmer
comparison is to assess the change in the response as the of an expert system for regression data analysis might
relevant predictor is changed (both in the original scale) wish to know what the optimal strategy (that is ordering
at a specific point in the range of X. Alternatively, the folAs)is to m iisthsct Cons e
t-statistic (or a robust version thereof) could be used as following example: Construct all 120 data analyses as
a scale-free method of comparison. Another concern in in section 3 using the RAP's outlier-test, influence-test,
interpreting regression coefficients is collinearity, which box-cox-test, tran-predictors, bw-elim. Apply the sameis not specifically addressed here. sequences to the Galapagos and the Chicago datasets

and record the adjusted R2 for each pair of analyses.
Here is an example - suppose we are interested in the The correlation between the adjusted R2 's is 0.38 and

dependence of the 2nd predictor, fire rate, on the re- a plot indicates a low association between the two. Sim-
sponse in the Chicago dataset. We perform all 120 anal- ilar results have been observed with other data. This in-
yses as before but restrict the RAP's from eliminating (or dicates that what may be a good strategy for one dataset
adding polynomial terms to) the variable fire rate. Five may do poorly for another and that the best strategy (in
acceptable models are found and are described in the fol- the sense of optimising some criterion) may depend on
lowing table (the response is square-rooted in all these the data itself. This has obvious implications for those
models so there is no consistent interpretation problem) who might try to automate regression data analysis in a

We can see that analysts might come to some very simplistic manner - there can be no "best" strategy to
different conclusions here - no evidence of association fit all datasets.
(P-value of 51.6%), some evidence (P-values of 3.58%
and 2.06%) and strong evidence (0.05% and 0.06%). It's 6. Extending the idea of Influence
difficult to choose between these and one shouldn't try
to. It might be better that the analyst be aware that The original idea of an influential point was a point
there are several possible candidate models giving differ- that if deleted would radically change the parameter es-
ent answers and that to select one of them capriciously timates or fitted values. Cook statistics were devised
and discard the rest would be to ignore the real uncer- to measure influence in that sense. LUger and Altman
tainty in the problem. It would be far better to report (1991) extend this idea to the influence of an observa-
the full range of acceptable models and the estimates tion on variable selection. W'e can extend this further to
they make. If, however, there is only one acceptable influence on the whole course of an analysis i.e. seeing
model generated, then the analyst can be a lot more how the selected model is changed by the elimination of
confident in the estimate. one point.

It should be emphasised here that it would impru- Cook statistics are a popular way of measuring influ-
ence on estimation:

dent to rely on the generated models alone. We advise

that the statistician perform their usual analysis with-
out using the RAP's and paying particular attention to Di =

graphical methods and physical context. A weakness of
the RAP's iq th-,, 1-r the hi'•- p---ption of graphi- where ý(i) indicates the fitted value where y, has been
cal displays and thus may miss important features. The excluded from the estimation. We may adapt this by
generated models should be regarded as additional in- considering the fitted values ý after the data analysis and
formation not as a replacement for a standard analysis. the ý(i) as the fitted values after the same data analysis
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on the data with the i-th point eliminated. Note that all these ideas requires a more comprehensive and versatile
fitted values must be transformed back to the original set of RAP's.
scale of the response if the data analysis caused some We recommend that the statistician do the analysis
transformation and that no economy may be made in their usual manner and use the methods we have de-
computing these modified statistics - all n analyses must scribed to provide additional information. It would be
be performed as opposed to just one for the regular Cook unwise to rely solely on the models generated automatic
Statistics. &2 and p could be taken from the final model, procedures we have described because it is quite possible
although these are just scaling factois to enable the use that important visible features will be missed by them
of the F-distribution for calibration. This might well be and that physical context will be ignored.
tenuous here because 82 may not be a good estimate We wish to emphasise that without the full incorpo-
and might not be in the right scale. In any case the rela- ration of physical context into the RAP's, which is a
tive influence will be apparent from the modified Cook's quantum leap beyond what we have here, and without
statistics even if the scale is incorrect, a much more comprehensive set of RAP's, the methods

To illustrate this idea, we calculate three different we have discussed here are only appropriate for careful
Cook's statistics for the Galapagos data using the data use by statisticians and not for unguided application by
analysis sequence based on (outlier-test, box-cox-test, the uninitiated.
tran-predictors, bw-elim), where the sequence is reap-
plied until no further changes in the model occur. The References
regular Cook's statistics for the initial and final model
and the modified Cook's statistics for the whole data Adams J. (1990) Proc. Stat. Comp. ASA

analysis. Point 12 is the only point indicated as being in- Andrews D. & Herzberg A (1985) "Data: a collection

fluential from the Cook statistics for the final model but of problems from many fields for the student and

point 16 is the only point indicated as being influential research worker" New York, Springer- Verlag.

from the other two sets of Cook Statistics. Traditional Brownstone D. (1988) "Regression strategies" Proceed-

analyses might miss the influence of point 16. Point 16 ings on the 20th Symposium on the Interface, Ed.
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cal difficulties include the complete specification of the vironment for statistical computing and dynamic

methods of regression data analysis and the program- graphics." Wiley, New York

ming of RAP's in sufficient generality. The extension of
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tion of regression data analysis. Further development of
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A Gibbs Sampler Approach to the Nonlinear Mixed Model
Jack Gerson
Veterans Affairs Medical Center, San Francisco
VAMC-116R, 4150 Clement St, San Francisco, CA 94114

ABSTRACT the use of Markov chain Monte Carlo methods to
estimate posterior distributions in the nonlinear mixed

Monte Carlo Markov process methods based on the model for repeated measures data.
Gibbs sampler and the Metropolis algorithm are
employed to estimate the posterior distributions of j2. Nonlinear mixed model for repeated measures
parameters in the nonlinear mixed model. A data.
hierarchical Bayes approach is used to specify the
nonlinear mixed model, enabling estimation of the By repeated measures data we mean a characteristic
posterior distributions of the variance components as (the outcome) measured multiple times on each of
well as the fixed and random effects. several individuals (the observational units).

Commonly in such a setup, observations within
The Gibbs sampler requires iterative sampling from individuals are correlated, while observations between
conditional distributions, which are not always individuals are uncorrelated. When between-
available for direct sampling in the nonlinear mixed individual characteristics can be assumed to be
model. To sample from such unavailable normally distributed, repeated measures data is
conditionals, Gibbs-Metropolis chains are introduced: frequently handled by the linear mixed effects model
Markov processes based on the Metropolis algorithm (Laird and Ware, 1982), which takes the form:
are nested within the Gibbs sampler iterations. This
technique appears to have significant advantages over (2.1) yi = Xsa + Zsbi + e i = 1,..., M
rejection sampling and ratio of uniforms. Related
Markov chain Monte Carlo methods based on cycles where yi is a (random) vector of observations for the
and mixtures of Metropolis kernels are introduced; ith individual, a is a (non-random) vector of fixed
these Metropolis-Hastings chains retain much of the effects, bi is a (random) vector of random effects, ei is
simplicity of the Gibbs sampler (moving one a (random) noise vector for the ith individual, and Xi
coordinate at a time, based on one-step conditional and Zi are design matrices. Here, the bi are assumed
distributions) while requiring considerably less
computing time than the Gibbs-Metropolis method. to be iid N(O,a 2D) and the ej independent N(O, (y2 R,)

where or2 D and O2Rj are variance components for
Two applications to repeated measures data are respectively random effects and noise.
presented.

In many instances (e.g., growth curves;
11. Introduction pharmacokinetics), the appropriate model for

longitudinal data is nonlinear in the fixed and/or
The recent explosion of desktop computing power has random effects. Lindstrom and Bates (1990)
made practical the everyday application of very generalized the Laird-Ware model (2.1) to a nonlinear
computationally intensive statistical methods. Where mixed effects model for repeated measures data:
in 1985 as many as 20 or more research statisticians
typically developed on VAX 750's and 780's, today it (2.2) Vi = r¢i-) +,,
is common for a statistician to have a desktop
workstation with 20 to 100 times the computing where Oi = Xia + Zbi, the 9i are non-linear
power of the old VAXes. Consequently, formerly functions, and bi and ei follow the same distributional
Intractable problems have become tractable; the door assumptions as in (2.1).
is open to the qualitative development of new
graphical and simulation methods. There is no general closed form solution for the

marginal posterior distribution of the random effects
In this paper, we shall explore one such application: bi in (2.2), since
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(2.3) The Markov chain with transition matrix P converges

Of(bb, YO f f f udadDda 2  in distribution to r; to sample from ir, run the chain
f 1(66) f f f f Id~d~ ' until a pre-chosen convergence criterion is met and) = ui) f f f f udadl dodbi then sample from the chain.

where v = f(yiI b, a,cr)g(bi D)h(G2 )j(&, D) The Metropolis algorithm has a simple interpretation:
if a candidate step has probability no less than that

and w = f(y I bi, a, 2)9(b I D)h(q2)j(a, D), of the current state, always accept it; otherwise,
accept the candidate step with probability equal to

The denominator involves the integral with respect to the ratio of the candidate probability to the current
6i of a term with a nonlinear exponent, which is not probability. Notice that it is not necessary to
generally analytically integrable over bi for nonlinear evaluate x; only the ratio 7r(y)/7r(z) is needed.

'1i.
53.2 Gibbs Sampler or Metropolis Algorithm.

In the remainder of this article, we employ an
hierarchical Bayes extension of Lindstrom and Bates's In its simplest form, the Gibbs sampler estimates a
empirical Bayes specification (2.2) and suggest joint distribution [U1 ,...,Um] by sampling round-
alternative estimation procedures based on Markov robin from the conditional distribution of each
chain Monte Carlo to solve (2.3) numerically, random variable given all the others.

53. Markov chain Monte Carlo. When exact forms cannot be computed for some of
the conditional distributions, it may be difficult to

Markov chain Monte Carlo methods estimate a obtain the exact samples needed by the Gibbs
distribution F and functionals of F (e.g., moments) sampler. Gelfand el al. (1990) suggest using ratio of
by constructing a Markov chain (or process) that uniforms (Ripley, 1987). Zeger and Karim (1987) use
converges to F, sampling from this process once rejection sampling (von Neumann, 1951).
suitable convergence has been achieved, and then Unfortunately, in many applications both of these
calculating the desired estimates from the sampled methods require unacceptably long computing times
values. These methods date to the Metropolis (Ripley, 1987). Instead, we apply twi. alternative
algorithm and simulated annealing (Metropolis et at., methods:
1953). Hastings (1970) generalized the Metropolis
algorithm and applied it to mainstream statistical (i) Gibbs-Metropolis dynamics. Construct a round-
problems (Hastings, 1970). Geman and Geman robin Gibbs sampler as follows: when conditional
(1984) presented a variant that they named the Gibbs distributions are "available" (i.e., when a closed form
sampler. can be computed), draw from that distribution. For

each conditional distribution that is unavailable,
$3.1 The Metropolis Algorithm. construct a Metropolis chain that converges to that

conditional distribution; run the Metropolis chain for
Algorithm (Metropolis): To sample from a finite- j steps to obtain suitable convergence, then sample.
state distribution with pdf •r (where 7r is not Repeat this process at each iteration of the outer
constant), choose any symmetric transition matrix Q, Metropolis loop. Specifics of implementation
and define P by (computation of ir(y)/ir(x); selection of auxiliary

kcrnel Q; choice of j) are taken up in section 4. (A
(3.1) p(z,y) = c(z,y)q(z,y) (x 0 y), where similar method is discussed in Mueller (1991)).

7 0ry) (ii) Metropolis-Hastings dynamtcs. Hastings (1970)
a(z,y) = min 1, - suggested a one-coordinate at a time approach to the

f z- Metropolis algorithm that shares much of the

p(z,X) = 1 - E p(z,y). conceptual simplicity of the Gibbs sampler: namely,
y.4 x breaking a multi-dimensional transition kernel into m
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one-dimensional kernels and applying the Metropolis
algorithm individually to each such one-dimensional (2) the conditional distribution of the random effects
kernel. To see why this works, suppose P1 ,..., P. are variance, [D I a, bi, a2, Y]"
transition matrices (or kernels), each with stationary
distribution 7r. Then the sequential chain with kernel (3) the conditional distribution of the fixed effects,
P = P PT2 -'P. and the random chain with kernel [a I bi, D,a 2,y;

m
P = wiPi (4) the conditional distributions of the random effects,i i[bi I a, D , o, ,Yj];

(where Wi = 1) each have stationary distribution 7r. (Note: since we are always interested in estimating the
i1 variance component o.2D, rather than D alone, we

The random chain is aperiodic and irreducible henceforth let G = a2D.)

if the Pi are, and thus will converge to 7r whenever all Each of these conditional distributions is derived in
the Pi do; this is not necessarily true for the Gerson (1992), where it is shown that (3) and (4) are
sequential chain, which thus must be examined for not generally available. Therefore, in the applications
these properties. that follow, (3) and (4) are sampled l'y either Gibbs-

Metropolis or Metropolis-Hastings dynamics.
Note that in each round-robin cycle, Gibbs-Metropolis
dynamics sample j times from each conditional J5. Applications.
distribution, while Metropolis-Hastings dynamics
sample each conditional once per round-robin cycle. 55.1 Introduction.
It is thus reasonable to consider intermediate ferms
(sampling each conditional five times in succession; This section applies the Markov chain Monte Carlo
sampling different conditionals a different number of methods for nonlinear mixed models developed in
times in succession; etc.). previous sections to two data sets. The first data set

contains data on tree growth, the second contains
54. Applying Markov-chain Monte Carlo methods to data on the uptake velocity of a chemical in the tissue
the nonlinear mixed model, of guinea pigs. We chose these data sets because they

were the two examples given in Lindstrom and Bates
Lindstrom and Bates specified an empirical Bayes (1990).
form for the nonlinear mixed model with repeated
measurements data. We adopt an hierarchical Bayes
specification by adding to Lindstrom and Bates's 55.2 Tree growth data application
distributional assumptions (see section 2 above)
noninformative prior distributions on the variance Draper and Smith (1981, p.524) present data on the
components and the fixed effects. We also assume trunk circumference of five orange trees, each
that the prior distributions of or and D are measured seven times over the course of 1582 days.
uncorrelated. Finally, we assume that the noise is iid- Lindstrom and Bates fit this data with a nonlinear
-in the notation of section 2, we assume Ri = I. mixed effects model

Application of any of the methods discussed in section (5.1) Yij+ = 1 il +(ij,
3 to this model-Gibbs sampler, Gibbs-Metropolis, or 1 +O 32e3ij

Metropolis-Hastings--requires specification of the
appropriate conditional distributions. For the where the bi are iid N(0, a2 D) and the tij are iid
nonlinear mixed model for repeated measures data N(0, o2 ).
(2.2), these conditional distributions are:

We applied a hierarchical Bayes version of (5.1), but.
(II the conditional distribution of the noise variance, used Metropolis-lHastings dynamics for estimation.
[a I a, bi, D, yj; We ran 10 chains for 1,000 iterations each, as



J. Gerson 257

described in section 3. Variances were estimated
adaptively, using inflation and deflation factors of where P = (011 021,33)' is a vector of fixed effects;
respectively 1.2 and .7.

b = (bl,...,bM)' is a vector of random effects such that
We used the density() routine from the S statistical
package (Becker et al., 1988) to estimate the bi = (bilIb 2) N id N(O, D).
empirical density function of each of the parameters
)31 ,f 2,fi 3,bi 1,0"2, and or2D. We applied Gibbs-Metropolis dynamics to (6.5),

running 100 Gibbs chains each for 500 iterations;
Our estimates of the posterior modes for the tree
circumference data were: Our estimates of the posterior modes for the uptake

velocity data were:
P = (196.617,8.230, - 0.00289)
6 = (- 26.57,27.08, - 36.09,37.46, - 5.32) p = (0.203,2.453,0.00434)
01 = 61.4 bi = (-0.164,0.00105)
or2D = 1325.0. = (-0.213,0.00124)

b3= (- 0.179,0.00101)
Lindstrom and Bates's estimates were: 64 = (0.134, - 0.00078)

b= ( - 0.209,0.00126)
O = (191.184,8.1530, - 0.00290) 6= (0.211, - 0.00135)
b = ( - 29.51,31.68, - 37.13,40.16, - 5.20) 67 = (0.161, - 0.00100)
a,2 = 18.88 6 = (0.202, -0.00117)
0r2D = 1244.9. 0, = 0.00990S6"48x10"2  -3'48x10"4  I-
;5.3 Uptake velocity data application. 

9r2D =

L-3.48xi0"4  2.14x10"6 j
Johansen (1984, p.99) published and modeled data on

the uptake velocity of the chemical B-methyl- Lindstrom and Bates did not publish estimates for the
glucoside in the small intestines of guinea pigs as a random effects. Their estimates of the fixed effects
function of concentration, where x,. is the jth and variance components were:
concentration level of B-mnethyl-glucoside in the ith
guinea pig, yiJ is uptake velocity for the ith guinea P = (.201,2.393,.00445)
pig at the jth concentration, 01 is maximum uptake a.2= .00908
velocity, 0. is an affinity constant and 03 is a 2 6.07x10-2  -2.99x10-41
diffusion constant, a2Dl -2.99x=0 4  1.70x10 6

In the data set published by Johansen, eight guinea
pigs were observed at ten concentration levels.
Johansen, recommends taking logarithms of both the J6. Conclusion.
observed velocities and the model in (6.3), which leads
to the random-coefficient model Future directions for this work include extending the

(_ i method to (i) nonlinear mixed models with noise
(6.4) ln(yi,) I + + f1 . correlated within and/or between subjects; and (ii)• 0 2. + X i 7 0 - j "

.1 nonlinear mixed models with non-Gaussian noise
Lindstrom and Bates applied a mixed model to this and/or random effects distributions.
data, treating 01 as fixed and 02 and 03 as random.
Thus, Lindstrom and Bates's model was REFERENCES
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ESTIMATING COEFFICIENTS OF TWO- coefficients of two-phase linear regression model
PHASE LINEAR REGRESSION MODEL WITH with autocorrelated errors. The theory is presented

AUTOCORRELATED ERRORS in Section 2. An iterative algorithm to implement
the theoretical results of Section 2 is given in

Tze-San Lee Section 3. Both feasible applications and a
Dept. of Mathematics numerical example are given in Section 4.

Western Illinois University
Macomb, IL 61455 2. THEORY. Consider the two-phase linear

regression model with autocorrelated errors given
Abstract. From the frequentist's standpoint, by
here is presented an iterative algorithm for a 1 + P1xt + et, t= 1 m, (2.1 a)
estimating the unknown coefficients of two-phase =
linear regression model with autocorrelated errors.
The case in which a change-point is unknown was aC2 + 32xt + et, t = m+l,..., n, (2.lb)
considered. Applications of two-phase linear
regression model with autocorrelated errors are and et follows a first-order Markov process given
mentioned. Finally, a numerical example using the by
sediment settling data was used to illustrate the et = pet-1 + Et, t = 2,...,n, I p I < 1 , (2.2)
proposed algorithm.

Key words: Change-Point; First-Order Markov where el = F-1, the Et's are measurement errors
Disturbances; Linear-Spline, Segmented, or having normal distribution with E( Et ) = 0 and
Switching Regression Model. Var( et ) = (y2 > 0, 31 # P32, and all the parameters

1. INTRODUCTION. The two-phase (linear- Xi, 2, 31, 032, M, p are unknown. The two
spline, segmented, or switching) regression could straight lines of Eq. (2.1 a-b) are assumed to
provide a satisfactory statistical model if the intersect at a point with x-coordinate
underlying population which generates the data has
a structural change at some point (Hudson[7]). y = (1I - a2)/(P2 - 0 1), (2.3)
The statistical modelling by two-phase linear
regression has been applied in many areas of
sciences including biology (Sprent[ 13]), where y is called a change-point for two-phase
economics (Poirier[8]), reliability engineering linear regression model. We further assume that
(Singpurwalla[1 1]), and medical sciences (Smith- xl < x2 <...< Xn. Consequently, y satisfies
Cook( 121). When the error terms in the model is
assumed to be independently normally distributed _ M
with mean zero and constant variance, statistical xm < Xm+l. (2.4)
inference about two-phase linear regression was
studied by Hinkley[5,6] and Esterby-El- In practical applications, y is often unknown and
Shaarawi[4]. However, if the dependent variable has to be estimated from the data.
in the model is monotonically increasing or To estimate the parameters ax's and P's by
decreasing for a while and then level off gradually, the method of maximum likelihood, we apply the
the assumption of independence among the error autoregressive transformation (Cochran-Orcutt[21)
terms in the regreesion model is often not valid. In defined by
this case, a model assuming the correlated errors
seems more plausible. The two-phase linear
regression model with autocorrelated errors was Yt = yt - pyt-I, (2.5a)
studied by Salazar, e! a][10] by means of Bayesia,1  x = xt- pxt-1, (2.5b)
analysis. Yet no attempts from the standpoint of
the frequentist were found in the literature, to Eqs. (2. la-b). It follows that Eqs (2. la-b) and

It is the aim of this paper to pfesent a (2.2) can be written as follows:
frequentist's approach for estimating the
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A

yt a=o + i1xt + Et, t = 2,..., m, (2.6a) y = xM+l. For M = 2,..., n-2, compute L(i'M).A

Ym-l C= Z2 - pal + 032Xm+1 - Pf3 1Xm+Em+l, Thus, yis chosen such that
(2.6b)

yt = o2" + 132x* + et, t = m+2,..., n, (2.6c) L(f) = rinfL(-T))M=2,n_2. (2.10)

where al* and a2* are given by 3. ALGORITHM. An algorithm to implement
the theory developed in Section 2 described as
follows:

al* = (1 - p)czl, (2.7a)

a2* = (1 - p)a2. (2.7b) Step 1. Set p = 0. Let the overall optimal
A A

solutions to Eqs. (2.3-4,9) be denoted by al, or2,
Now the estimators for the unknown a's , andy.

and P's can be obtained by maximizing the

logarithm of normal likelihood function which is ^
equivalent to the following minimization problem: Step 2. Compute the residuals Et defined asfollows:

A A

Minimize Y-t=2,m (Yi - al* 131x1)2 + (Ym+l - X2 2t = Yt- Yt, t=l,... n, (3.1)
+ pal -3 2Xm+1 + p131Xm) 2 + Xt=m+2,n (Yi - a2" - where Yt is the predicted value obtained by

A A A
132xt2 (2.8) substituting al, a2, P1, P2 into Eqs. (2.la-b).
subject to Eqs. (2.3-4). Step 3. To determine whether the residuals of Eq.

To estimate the unknown g, an iterative procedure (3.1) random or not, plot the residuals against the
is set up. By letting p = 0, the contrained predicted values and then make a judgementalis st u. Byletingp = , te cotraneddecision (Draper-Smith[3]). If Eq. (3.1) are
minimization problem of Eqs. (2.3-4,8) is reduced d
to the following: judged to be random, stop. The ai, 1•i, i = 1, 2,A

and y obtained in Step 1 are the desired estimates
Minimize Xt=l,m(yt - a, - 131xt) 2 + YXt=m+l,n(Yt - for the parameters in Eqs. (2.1a-b, 3-4).

aX2 - 132xt)2  (2.9) Otherwise, go to Step 4.

subject to Eqs. (2.3-4). Step 4. Compute the maximum likelihood

Conditional on m=M, Eq. (2.9) can be minimized estimator for p defined by
over al, a2, 031, N32 as two seperate local least A AA AA^

squares problems. Let al, a2, 0t1, 62 be the P = Y-t=2,n EtEt-I/(Y-t=-,n Et2 ). (3.2)

optimal solution to Eq. (2.9) and L(-YM)the Step 5. Set p = p. By conditioning on that m =
corresponding residual sum of squares, where iM M, solve Eqs. (2.3-4,8). For M = 2, n-2, repeat a
is computed from substituting At a2, [i, [2into similar procedure which leads to Eq. (2.10). Go to

A Step 2.
Eq. (2.3). Let y be the overall solution to the
constrained minimization problem of Eqs. (2.3- Remarks.

A

4,8). It was shown in Hudson[71 that ycan be 1. If we can make a reasonable guess about the
computed by noting that there exist three possible vu of we can tewe area able tkeep theA = ý' (,) if value of (x0, yo), then we are able to keep the first
cases: (i) if XM < M < xM+ I, then Y = YM, (ii) if observation in the process of autoregressive
M < XM, then y = XM, and (iii) if XM+l <AM, then transformation. Consequently, t = 2 in Eqs.(2.6a,8) and (3.2) can all be replaced by t = 1. The
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effect of keeping the first observation on the (4.3a)
regression estimates was studied by Poirier[9]. Xml -- 2 < Xml+1, (4.3b)Xm2 -• '2 < Xm+l (4.3b)

2. The theory and algorithm proposed here are 01 * 02, and all the parameters ao, Pj, mj, yj, p,
readily being extended to the case of more than one C2 are unknown for i = 1, 2 and j 1, 2, 3.
change-point occurring in the regression model. Although the linear regression model of
All we have to do is to apply the algorithm in a
sequential way, i.e., first finding the first change- Eq.s. (4.1 a-c,2a-b,3a-b) has more than one change-
point, then a second change-point, so on and so point, we began, just as was commented in Section
forth. 3, by treating the entire data as if it were having a

single change-point. After locating the first
4. APPLICATIONS. The proposed algorithm change-point, we then moved to seek the second
was first applied in modelling the anti-G valve data change-point. A nonlinear procedure, called
collected by the Crew Technology Division of the (piecewise regression' in SYSTAT
U.S. Air Force School of Aerospace Medicine (Wilkinson[15]), was facilitated in the computation
(Burton, et all1]). For security reasons, the anti-G of unknown change-point. It took five and two
valve data can not be published. Other feasible iterations, respectively, in finding the first and
applications include the growth curve modelling, second change-point in the model. Results of
nonlinear saturable dose-response models, and numerical calculations are given in Tables 1 and 2.
calculating a practical dose threshold in radiation The residual plots for both Tables I and 2 are
carcinogenesis. omitted, but available upon request from the

To illustrate the proposed algorithm, a author. From Tables 1 and 2, it was found that p I
sediment settling data taken from Watts-Bacon[ 14] A A

is used as an example. This data set was analyzed = 0.882, and P2 = 0.632. From the values of ylA

and found that the measurement errors were and y2 of the last iteration in Tables 1 and 2, it was
serially correlated. By examining the scatter plot of found that ,i, = 32 and = 44. After fitting
the data points, it was noted that there likely existed m2 A
two change-points. A three-phase linear regression separately the data set partitioned by ml = 32 and
model with autocorrelated disturbances was A

tentatively proposed as follows: m2 = 44, we obtain the following prediction model:

0.002 + 0.078xt, t = 1,..., 32, (4.4a)ail+ [hxt +et, t =l1.....ml, (4.1a) A

Yt= 2.414 + 0.037xt, t = 33,..., 44, (4.4b)
y={ X2 + 2 32xt + et, t = m+l, ... m2, (4.1b) 5.478, t= 45,..., 48. (4.4c)

0t3 + et, t = m2+ 1....n, (4. lc) A

The estimates for the unknown change-points, y'
and et is assumed to follow a first-order Markov An
process given by and y2 of Eq. (4.3a-b) can be calculated from usingA A

Eqs. (4.4a-c) and found to be that yl = 58.8 and y2
et = P let-i + et, t = 1,..., m2, I P1 I < 1, (4.2a) = 82.8. Incidentally, (xo, yo) = (0, 0) and (xo, yo)

et=P2etI + Et, t = m2+ 1, n, I P2 I< 1, (4.2b) = (x32, Y32) = (58, 4.42) were used, respectively,
in the computation of Tables 1 and 2. In contrast
to the hyperbola transition model used by Watts-

where xt and yt denote, respectively, time Bacon[ 141, a three-phase linear regression model
(minutes) and clear height (inches), (xo, yo) is with autocorrelated errors of Eqs. (4.1 a-c, 2a-b,
taken as (0, 0), the et's are normally distributed 3a-b) seems more appealing because of its simple,
with mean zero and constant variance Y2 > 0, the yet informative, structure.

x-coordinates of the unknown change-points, yj
and y2, satisfying the inequalities
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TABLE 1. Number of iterations used in finding [5] Hinkley, D.V. (1969), Inference about the
the first change-point, intersection in two-phase regression, Biometrika,

56, 495-504.
#A A A

iteration# P al 1 1 [6] Hinkley, D.V. (1971), Inference in two-phase

1 0.0 0.040 0.075 70.51 regression, Journal of the American Statistical

2 0.970 0.185 0.006 19.80 Association, 66, 736-743.

3 0.730 0.014 0.076 19.36 [7] Hudson, D.J. (1966), Fitting segmented
4 0.423 0.023 0.075 40.76 curves whose join points have to be estimated,
5 0,882 0.004 0.076 8.71 Journal of the American Statistical Association, 61,

TABLE 2. Number of iterations in finding the 1097-1129.

second change-point. [8] Poirier, D.J. (1976), The Econometrics Of

A A A Structural Change, North-Holland Publishing
Iteration # p ax2 P2 '(2 Company, Amsterdam.

1 0.0 2.082 0.042 79.36 [9] Poirier, D.J. (1978), The effect of the first
2 0.632 -0.015 0.074 27.08 observation in regression models with first-order

autoregressive disturbances, Applied Statistics, 27,
67-68.
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Multiple Comparisons for Correlated Means
Bounds for Conservatism

Paul N. Somerville
University of Central Florida

Orlando, Florida 32816 USA

Summary: A bound for the conservatism of the Tukey- 2. APPROACH
Kramer procedure for the correlated case is given. We follow the geometric approach of Somerville and

1. INTRODUCTION Van Brackle (1989). Let x be the column vector of means
Suppose we have k normal populations with unknown

means Vi, i -1,2, ...k and common variance 0P. Let x. Let a be the covarianceofx, andx 1 and J be the variance

x,,x 2,... ,x, be means of samples of size n from the k covariance matrix for x. Let caq be a vector (column) with

populations, and let s2 be an independent estimate of o2with the ith element -1, the jth element +1 and the remaining
v degrees of freedom. Let q be the (1 -a) quantile of the elements0. Thenwemaywritethesimultaneous confidence
studentized range fork means and v df. Then Tukey (1953) interval estimates as
showed that (1-a) -level simultaneous confidence inter-
vals estimates for all pairwise difference i, - tij are given by (&, - t) E [a',x -- (qt24) (c'i, Lau)]

it, - E[(x, -x) ± qs/nw] . (1) l[a-C-I J
or (i-ijGa Ux / at # L•4)*q2

For the case where x, is the mean of a sample of size nh,
Tukey (1953) and Kramer (1956) proposed the following Define
(1 - a) -level simultaneous confidence interval estimates: 0 - , C

i•-p e[(xj-xj).(qt2&)s(n.+n;')] (2) 0 0 22 C2  C2

Hayter (1984) proved the procedure conservative for all
values of k. Somerville (1992) gave bounds for the -(k-1)c,_1 c,._ c,_, c,_, c,_,

conservatism of the procedure for certain limiting cases.

Extending the procedure to the case where the x, are where ci - (i(i + 1 ))-, i - 1, 2,..., k - 1.

mutually correlated, we may write the simultaneous con-
fidence interval estimates as

(tj- itt) E [(x -x,) * q/2l12 Qar (x, -x))1] H - k*&~iI

or (p, - pi) ( [(x, -xj)/ar(x -,-))1 * q/2"4]. (3)
We first make the orthogonal transformation (Hel-

For the correlated case where k -3, Brown (1984) has ( /a
shown that the procedure is conservative. In this paper we mert's)u - Hxwhereu"' and u is acolumn vector
give a bound for the conservatism of the procedure. of k - I elements. It follows directly that ax'x - ac'O,'u.
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Without loss of generality, set I.-0, i - 1,2,...,k. The wb, ±q/2"ý
region where the simultaneous confidence interval state-
ments are correct is then the region in the u%, u2, ..., %; space For the region to have probability content of 1 - Ca, we

bounded by the 2) sets of parallel hyperplanes must have z4 - q/21 a,(Iknown). If L is known except
for the factor o2 which is estimated by S2 with vdf, we must

(I• q/12 have q - 22()

#'x / _0 ) 4 _ k q/2-". We make two more trans-

It is obvious from geometrical considerations that it is
formations. Let 71, k .. .~. •,_ 1be the characteristic roots of not possible for more than 2 sets of parallel planes each a

Y and V be the matrix of the corresponding normalized distance q12"2 from the origin to have greater probability
characteristic vectors. Let A-Diag(,n r - .Seond, Fikst content. Thus, the solution of q for given a (and v) is the
make the orthogonal transformation r - Vu. Second, make most conservative possible for correlated variables. It

the transformation w - A-r. The first transformation should be noted that the conservative value of q is the same
- -for all values ofkA; and is the value of q for k -=2.

results in r1,r2, ...,rj_ 1 being uncorrelated, and the second
results in variables w1,w 2,...,wk_1 which are N(0,1) and 3. EXAMPLES
mutually uncorrelated. Let 1. be a k - 1 by k - 1 variance covariance matrix

We may write with elements uq and characteristic roots 4. Border 1. with
a'x - LU'Ok'u elements u,&.-_1 -u-,,, and uk > 0 to form the matrix 7.. It

= aOVALw is clear from the methods for calculation of a determinant,

- " that it is always possible to choose the border elements such

- a 'Pw where P - Ok'V'Aw. that Y. is positive definite. Now obtain Lz - HJ.H'.

Example 1: Let k -3, X, - 10,000,X2- 1. Rotate the
Also, _o.'L cax- aj'P.,P'oa. Some straightforward axes by 48O in the u, u2 plane. Set u u - 3- u23U32 -0,set

algebra gives p..1, the (a, b) element of P (and the coefficient U33 - 10, 000. We obtain
of wb in the a? row of Pw) as ( 7015.4 - 1378.3 4363.01

"- -1378.3 9363.5 2014.91
pi,- -- "k-a)ck_,vi,V-.+Ck,...*Vb,.÷,,+...Ck_1 Vb.,-.)Xf, a <k 4363.0 2014.9 3622.2)

Pk, - (Cevl, + C2Vk, + ... + C, .- v, Y.,), (4) The correlation matrix becomes

where v11 is the (ij) element of V. Suppose for some b, (1. -. 17006 .86551)
kblk -cor, a ob. Then, theelement in the a*row of Pw -. 17j06 1. .3 .

approaches pwb. Also .86551 .34598 1.

Example 2: Let k - 4, ). - 100, X2-0,-.001. Rotate
.c'P L P'CzF(-p,+ Pjb)2  (5) the u, ,u2 axes by 29" and then the u1,au axes by 72". Set

u14 - uA - u34 - u43 - u42 - U - 1, u- 100. We obtain
The hyperplanes ct,'x / (c'YL a) -M± q/2" approach 76.807 36.148 -20.366 7.2384"
Wb .± q/21•". 36.148 27.373 15.176 21.198

The region of correct bounds is the region between the - -20.366 15.176 64.583 40.605 "
two hyperplanes 7.2384 21.198 40.605 31.239 )
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The correlation matrix becomes Somerville, P. N. (1992). On the conservatism of the
Tukey-Kramer multiple comparison procedure. Sub-

1 .78835 -. 28917 .14777 mitted for publication.
.78835 1 .36093 .72493 Tukey, J. W. (1953). The problemof multiplecomparisons.
.28917 .36093 1 .90402 Unpublished manuscript. Princeton University, NJ.
.14777 .72493 .90402 1 J

The region of correct bounds is bounded by 12 hyperplanes,
each 1 standard unit from the origin. The direction cosines
of 6 of these are given below. The other six may be obtained
by multiplying each direction cosine by -1.

-1.000 -. 023 .0073
1.000 -. 0039 .0001
1.000 -. 0009 -. 0012
1.000 -. 0018 .0047
1.000 .0045 .0017
1.000 .0074 .0077

It should be noted that in both the above examples, it is
not at all obvious that J, approximates a "most conserva-
tive" case.

5. CONCLUSION

We have given bounds for the conservatism of the
Tukey-Kramer procedure extended to the case of correlated
means.

6. REFERENCES

Brown, L D. (1984). A note on the Tukey-Kramer
procedure for pairwise comparisons of correlated
means. Design of Experiments: Ranking and Selection,
edited by T. J. Santner and A. C. Tamhane, Marcel
Dekker, Inc., 1-6.

Hayter, A. J. (1984). A proof of the conjecture that the
Tukey-Kramer multiple comparisons procedure is
conservative. Ann.atiL, 12, 61-75.

Kramer, C. Y. (1956). Extensions of multiple range tests
to group means with unequal numbers of replications.
Big 1d, 12, 307-310.

Somerville, P. N. and Van Brackle (1989). On Tukey's
multiple comparison procedure when the sample sizes
are unequal. Proceedings of the 21st Symposium on the
Interface, Orlando, FL.



266 Influence Diagnostics with Gibbs Sampler

Influence Diagnostics with the Gibbs Sampler

ROBERT E. WEISS*
Biostatistics, UCLA School of Public Health, Los Angeles, CA 90024-1772

Abstract an n x 1 data vector Y is compared to the perturbed
posterior p(OIY(,)) given data omitting the ith case us-

Gibb's sampling has opened up complicated statistical ing a distance or divergence between densities. Past
models to the possibility of exact Bayesian posterior in- research on case deletion diagnostics in Bayesian analy-
ference. With this power has come a need for simple sis has used the Kullback divergences (Kullback 1959, p.
methods for assessing the sensitivity of posteriors to as- 6). Much work has concentrated on making these diver-
sumptions. Sensitivity to an assumption is assessed by gences interpretable; Johnson and Geisser (1982, 1983,
perturbing the assumption, computing a perturbed pos- and 1985) and Pettit and Smith (1985) evaluate the
terior, and comparing the perturbed posterior to the un- divergences explicitly in terms of familiar leverage and
perturbed posterior. Previous Bayesian work has used a residual quantities; McCulloch (1989) suggests inspect-
Kullback divergenice between these two posteriors, and ing the Kullback divergence between simple univariate
most work has concentrated on the effects of case dele- densities; Carlin and Polson (1991) compare the Kull-
tion. back divergence to its expectation in repeated predic-

In this paper, the L1 norm between posteriors is used tive sampling. In a different approach, Weiss and Cook
to assess the effect of the perturbation. The L1 norm (1992) suggest direct plotting of p(OIY) and p(OIY(2 ))
is easier to interpret than a Kullback divergence and and give a method for reducing these densities to a sin-
straightforward to compute. Either divergence can be gle dimension in generalized non-linear models.
used to assess the sensitivity of the posterior to prior This paper extends this past work in several direc-
specification, case deletion, predictor perturbation, and tions. First, an alternative to the Kullback divergence,
case weight perturbation. A linear regression example the L1 norm is considered and deemed more inter-
is examined. pretable. Second, in addition to case deletion, prior per-
Key words: Bayes Theorem, Diagnostics, Sensitivity turbations are analyzed; and sampling variability and
Analysis, Influential Observations. predictor perturbations could also be included. Third,

analysis of the influence measures are shown to have
interesting exploratory data analytic interpretations in

1 Introduction terms of samples from the posterior distribution of a
Several methods now exist to perform numerical inte- particular scalar quantity.

Seveal ethds nw eistto erfom nmercalIn section 2,1I define perturbations and discuss a gen-
gration for posterior calculations. The Gibbs sampler eral form of Bayes theorem for perturbations as well

(Gelfand and Smith 1990; Gelfand, Hills, Racine-Poon eas a m i Bayes theorem. Se tion s 3s ielu

and Smith 1990), is the latest of these techniques, and as a marginal Bayes theorem. Section 3 discusses influ-
it hs bcomean mporantmetod fr nmerial os- ence statistics and computations. Section 4 gives a briefit has become an important method for numerical pos- regression example. The paper closes with discussion.

terior evaluation. With this power has come a need for

simple methods for assessing the sensitivity of posteri-
ors to assumptions. This article explains how to com- 2 Perturbations and Posteriors
pute numerical Bayesian case influence diagnostics for
models fit using the Gibbs Sampler and other numerical 2.1 Bayes Theorem
integration techniques. The posterior p(0IY) is related to the prior (0) and the

Case deletion is the most common form of sensitivity kelihood p
analysis. The posterior p(OIY) of the parameters 0 given likelihood L(0GY) = fj,__ f(yj 10, zj) by Bayes Theorem

*This research was supported by grant number CA42710-07 P(0y) = P(O)L(OIY)
from the USPHS/NCI. f p(8)L(OIY)dO
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where f(y, 10, zj) is the sampling density of the jth ele- zit is the Ith covariate of the ith case can be assessed by
ment yj of Y given 0 and covariates zj. The covariates choosing h(O, Y) = [f(y 10, zi)]- 1 f(yj 10, zx + wet) with

may be collected in an n x p matrix X with jth row . the vector of zeros but for a one in the Tth place.

The influence of the ith case is assessed by removing Covariate perturbation might be of interest in models

its likelihood contribution from the likelihood, giving with measurement error, particularly where the extra

L(1)(0) = -j,,,j f(yj10, xj), calculating a modified pos- step of modeling that error has not yet been taken.

terior The choice of perturbation is still something of an
p(O)L(,)(O) art. Cook (1986) discusses several perturbation schemes

p(OY(,)) f p(O)L(,)(O)dO (2) for linear and generalized linear models. Perturbations

must be interpretable and they must be chosen to reflect
and comparing p(01Y(,)) to p(01Y) using a distance or plausible model misspecification. Response and predic-
divergence between posteriors. tor perturbations require continuous yj and xi, as well

Deleting the ith case results in a perturbed likeli- as choices for w. Case deletion perturbations are appro-
hood Lh(O) = L(,)(0) a h*(0,Y)L(O), where h*(0,Y) = priate for data sets with independent observations. In
[f(yIO1, xi)]-I is but one example of a perturbation. Ad- models with random effects, multivariate responses or
ditional examples are given in the next subsection. The missing data, even a simple perturbation scheme such
perturbed posterior is related to p(01Y) by a Bayes the- as case deletion has several non-trivial extensions.
orem for perturbations. Formally, we may write

(OW) = p(0Y)h*(0,Y) 2.3 A Marginal Bayes Theorem
) E[h(O,Y)] ( In Bayes Theorem (3), the parameter vector 0 = (01, 02)

where E[h*(0, Y)] = fp(0IY)h*(0, Y)dO is the posterior includes all parameters and unknown quantities includ-

expectation of h*(O,Y). ing parameters of interest, 01, and nuisance parameters

The perturbation acts like new information used to 02 in the problem. In problems with missing data Xmis,
update the posterior. As a simple example, suppose 02 includes the missing data; in random effects models,
data Y and X is collected and used to update the prior 02 may include some or all of the random effects. To

p(O) to p(01Y) as in (1). Later it is discovered that ex- find out how the perturbation h affects p(91 JY), we re-

perimental unit i was not a member of the population quire a marginal Bayes Theorem. First we rewrite (3)
under study. There is no need to start over with p(O), as
L(j)(0) and equation (2), rather (3) can be used with ph(O91Y)ph( 0 210 1,Y) = h(O,Y) (4)
h*(O,Y) = [f(y4j0,xj)]-1 as the likelihood generated p(OiIY)P(0 2 [11,Y) E[h(O, Y)] "

by this new information. From (3) it can be seen that Multiplying both sides by p(02 101,Y) and integrating
perturbations are similar to likelihoods: two perturba- with respect to 02 gives a marginal Bayes theorem
tions h(O,Y) and h*(0,Y) are equivalent if h°(0,Y) oc
h(O, Y). For the remainder of the paper, I will work with ph(o1 jY) F
the perturbation h = h(g, Y) =_ h°(0, Y)(E[h(0,y)])- p((0,y - ]h(, Y )p(XO10 1,Y)dO(
with posterior mean 1. It will be assumed throughout
that h has the same support as the posterior p(01Y). Equation (5) generalizes the marginal Bayes theorem

of Weiss and Cook (1992). The marginal perturbation

2.2 Perturbations hl = h1(01 ,Y) is not the obvious marginalization ofh(0, Y).
Other perturbations besides case deletion can be con-

sidered. When the perturbation h(O,Y) - h(O) is
not a function of the yi's, it is a prior perturbation. 3 Influence Assessment
For example, h(O) oc q(0){p(0)} 1- is a perturbation
that can be used to investigate the influence of dif- 3.1 Influence Statistics
ferent priors on the posterior. Case weight perturba-
tion might correspond to h(O,Y) oc [f(y !.),xj)]--, for The divergences of CsiszS-r (1969) are useful for reducing
w > 0. Response perturbation might correspond to the differences between the two high dimensional den-
h(O,Y) o• (f(yI10, zi)-I1f(yj + w1O, x) with w a fixed sities p(OiY),ph(OIY) to scalar summaries (Weiss and
constant. The effect of changing xi, to xit + w, where Cook, 1992). For example, the axiomatic reasoning in
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Bernardo (1985, 1979) suggests the influence statistic where the min function is taken at each value of 0.
Now generate random variables with densities pro-

flog fPh(OlY)\ portional to the two pieces min(p(OIY),ph(OjY)) and
K(h) = lg\p(�POW ) ph(OIY)dO. (p(OjY) - min(p(OIY),ph(01Y))) in proportions 1 - L,

and L1. The proportion 1 - L, is the proportion of
Johnson and Geisser (1985) also consider random variables that can be reused in generating the

sequence for the perturbed density. Thus L, is direct

J ph--og ) )P(I1Y)dO measure of similarity of two densities.
(PIog) All of the statistics K1, K2 , J, and L, suppressing the

dependence on h, are influence statistics of the classand Pettit and Smith (1985) and Johnson and Geisser

(1985) consider as well J = Ki(h) + K 2 (h). The diag- 19(h) g (Ph(OIY))p(eY~ d
nostics K1, K2 and J are all Kullback divergences (Kull- =( g \P( 9•(Y) d8.
back, 1959, p.6).

A more easily interpreted statistic is the L, norm Weiss and Cook (1992) discuss this class in the context
of generalized nonlinear models and case deletion. For

1i Ki, g(a) = alog(a); for K2, g(a) = -log(a); and for
Ll(h) = •]iPh(6IY)-p(9lY)id9, J, g(a) = -log(a) + alog(a) = (a - 1)log(a). All of

the g(a)'s are convex with g(1) = 0, which seem to
The statistic Lj(h) E [0, 1] is an upper bound on the be minimal requirements for influence statistics (Weiss
change in coverage of any posterior credible interval for and Cook 1992), but see Carlin and Polson (1991) for
any marginal of any function /(0) or prediction Z due an alternative viewpoint.
to the perturbation h. It is also an upper bound on the
L,(h) statistic for any marginal density of 6 or any pre- 3.2 Computation
dictive density. The proofs of these statements depend
on the convexity of the function g(a) = ½ la-1I; Lj(h) = Assume that 9(a), a = 1,..-, A is a random sample from

f g(h(9))p(OjY)d0. The bound cannot be improved; the the posterior p(OIY) as might be produced by Monte
set Sh = {h(6) > 1} is one where the difference in Carlo or Gibbs sampling.
posterior probability content under p(0Y) and ph(OIY) The influence statistics I9(h) can be estimated by
achieves the bound Li(h). The perturbation h(O) is
also a scalar random variable with a posterior density g((h) - _h--,g (0h(O-))
p(h(9)IY). It has the property h 0=" \- E[h'(0)] (6)

L (h) l [ ph(h(O)IY) - p(h(O)IY) dh(O) . where ![h*(o)] = A- Eh*(O(a)). Inspection of (6)
2 i reveals interesting exploratory data analysis interpre-

tations of the statistics K2, K1, and L,; exp(-K2) is
Like K1, L, = 0 means that p(O1Y) = ph(GIY) and the the posterior geometric mean of h; similarly, exp(KI)
perturbation has absolutely no influence. If L, = 1, it is the perturbed posterior geometric mean of h; the L,
means that the two posteriors do not overlap, distance is the posterior mean absolute deviation of h

The L, norm can be interpreted in terms of the ef- from its mean. Given that E[h] = 1, and h > 0, then
ficiency of generating random variables from both pos- the statistics L1, K1 and K2 can be considered as dif-
teriors. Suppose that two streams of random variates ferent measures of either variability or of skewness.
are to be generated, {B}.),=, from p(e1Y) and {Gh}a= When the density p(01Y) is used as an importance
from ph(OIY). One mechanism for generating the two function for Monte Carlo sampling from ph(OIY), then
streams is to require as many elements as possible to h(0(a),Y) are the weights corresponding to each 0(a).
be identical, that is 0(a) = 8(a) for as many a as possi- The statistics K, and L, have interpretations for the
ble, while the remaining elements of the two sequences efficiency of the sampling. The divergence K, is the
should have different supports. This is equivalent to mean information in a single sample 0(0) from ph(O]Y)
writing either density as, for example, for discriminating between p(OIY) and ph(OlY) (Kull-

back 1959, p. 6). Large values of K, indicate that it is
p(O1Y) = min(p(OIY),Ph(OIY)) easy to tell the two densities apart. When A, the num-

+ (p(O1Y) - min(p(OIY),ph(OIY))), ber of draws is fixed, or when all draws 0(') are stored
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for later computation, the statistic Li is a possible im- Case Cost E W Y L1  Ki IK2
1 15.783 3.00 2.00 2 0.142 0.0730 0.0641

provement on Geweke's (1989) idea of recording the 5 2 12.570 1.66 2.33 3 0.0775 0.0197 0.0191
largest weights to diagnose a poor fit between p(OlY) 3 19.600 3.33 2.33 2 0.253 0.233 0.194

and ph(0iY). Perturbed posterior summaries from in- 4 8.206 1.66 1.66 2 0.0877 0.0263 0.0248

fluential perturbations will be poorly estimated when 5 15.333 2.33 2.33 5 0.391 0.819 0.442
o 6 14.955 5.00 3.00 2 0.181 0.157 0.1.11

Li(h) or Ki(Ia) are large. Sýimilarly, large values of fi, 7 13.710 4.33 3.00 2 0.118 0.0540 0.0467

for example, indicate that K1 is itself poorly estimated. 8 11.388 2.33 2.33 3 0.0823 0.0224 0.0215

In practice, this does not matter greatly, as influential 9 4.802 1.33 1.66 Z 0.174 0.112 0.0944

perturbations will still be identified; exact values of in- 10 12.547 3.00 2.66 2 0.0725 0.0168 0.0164
11 13.677 3.00 3.33 2 0.0879 0.0269 0.0252

fluence diagnostics are rarely needed. 12 9.683 1.33 2.33 2 0.0876 u.0269 0.0252

13 16.798 2.66 3.00 4 0.100 0.0386 0.0343

14 25.615 3.00 3.33 4 0.456 0.926 0.628
3.3 Influence on a Parameter Subset 15 15.734 3.00 3.00 2 0.0947 0.0308 0.0289

16 13.510 3.00 3.00 2 0.0760 0.0187 0.0182
The statistics 10(h) assess influence on the posterior of 17 13.855 3.33 3.00 2 0.0755 0.0184 0.0179

0; 0 will include all parameters plus missing data and 18 3.986 2.33 1.66 2 0.304 0.373 0.284

random effects. To assess influence on a parameter sub- 19 5.997 2.33 2.00 2 0.146 0.0758 0.0676
set requires calculation of hl(91,Y) as in (5). This is 20 9.778 2.00 2.66 2 0.0868 0.0259 0.0244

21 18.108 1.00 1.00 2 0.787 3.88 2.34

best calculated in closed form. The obvious numerical 22 10.152 2.00 3.00 2 0.109 0.0472 0.0409

calculation of (5) apparently requires a Gibbs sample of

02 for each value 0OK). As long as 01 is a subset and not Table 1: Housing data: Case number, Cost in $1000's,

a transformation of 0, this will be straightforward with predictors E = Eaves, W = Windows and Y = Yards

Gibbs sampling. In normal theory linear regression with ratings. Columns E and W give entries truncated at two

missing x's and in normal linear random effects mod- digits, but calculations used 6 digits. Columns LI, K1 ,

els, the missing data or random effects can be removed and K 2 are based on a Gibbs sample of length 10000.

by exact computation. Often in situations where Gibbs The four largest diagnostic values are in bold face.

sampling is tractable, h(0) can be marginalized over one
parameter since the integration Mi (5) will be available VaL 1 2 4 10 20 40 100 200clsdfr.L 1  .880 .772 .638 .448 .313 .203 .102 .056
in closed form. K1  3.16 1.94 1.20 .585 .305 .140 .040 .013

Much of the time influence on parameter subsets is K 2  28.6 13.1 5.80 1.83 .706 .251 .056 .016
not necessary. By convexity of g, Table 2: Prior perturbation diagnostics.

Ig(h) Ž I9(h 1 ) > 0.

Thus the influence of any perturbation is never greater (good) or 5 (bad). All are averaged over three raters to

on a subset than it is on the full parameter vector. Ob- get a single rating per house.

servations uninfluential on 0 are uninfluential on 01. The data and case deletion diagnostics L1 , K 1 , and
K 2 are given in table 1. All calculations were performed
in Lisp-Stat (Tierney, 1990) and are based on a single

4 Linear Regression Example Gibbs sample of size 10000. Case 21 is the most influ-
ential observation with an L, diagnostic of .787 and a

Here I use a linear regression example to illustrate K, of 3.88. The diagnostics agree on the ordering of
the L1 diagnostic. The model is Y = X,6 + c, c ,'- influential cases, not surprising since they all belong to
N.(0,o'2 1), p(#3,0 2) OC a-2, with n = 22 cases indexed Csiszir's (1967) family of divergences.
by i, and three predictors Eaves, Windows, and Yards Computations based on a subsample of size 2000 usu-
to be used to predict C(ot, in, $1000's of dollars, to re- ally differed from those in table 1 by only I or 2 in the
habilitate housing in St. Paul. The Cost variable is second significant digit. Computations for cases 5 and
a contractor's estimate, while the predictor variables 21 differed the most. The maximum relative error over
are the averages of three surveyors' ratings of various 22 cases for L1 was 8%; for K, was 28%; and for K2
structural elements of the outside house and immediate was 16%. The maximum absolute difference was always
vicinity. The ratings for Eaves and Windows are on an for case 21: .034 for LI; .68 for K1 ; and .24 for K 2.
integer scale from 1 (best) to 6 (worst). Yards are ei- The effects of using different proper priors for 3 was
ther in good or bad condition, and are rated either as 2 also studied. Consider the family of priors p(fl) with
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c ox N(O, cI). Table 2 gives values of the three influence [8] Geweke, J. (1989). Bayesian inference in econo-
statistics for c = 1,2,4,10,20,40,100,200. metric models using Monte Carlo integration.

Econometrika 57, 1317-1339

5 Discussion [9] Johnson, W. & Geisser, S. (1982). Assessing the
Predictive Influence of Observations. In Statzstics

While the discussion in section 3.2 assumed a simple and Probability: Essays In Honor of C. R. Rao,
random sample {0()}K=1 from the posterior p(0IY), the Eds. G. Kallianpur, P. R. Krishnaiah, J. K. Ghosh,
methods apply to Markov samples, Monte Carlo impor- pp. 343-358. Amsterdam: North-Holland.
tance samples (Geweke 1989) and systematic samples
such as produced by Gauss-Hermite quadrature prod- [10] Johnson, W. & Geisser, S. (1983). A Predictive
uct rules (Naylor and Smith, 1982). If the sample is View of the Detection and Characterization of In-
weighted, then formula (6) and the formula for E[h (0)] fluential Observations in Regression Analysis. J.
need minor adjustments to account for the weights. Am. Statist. Assoc. 78, 137-44.

The diagnostics L 1, K, and K2 generally indicate [11] Johnson, W. & Geisser, S. (1985). Estimative Influ-
similar observations as influential. All are based on ence Measures for the Multivariate General Linear
posterior expectations of functions of the perturbations Model. J. Statist. Plan. Inf. 11, 33-56.
h(O). Thus the choice, if choice need be made, may
be driven by other considerations. The L1 diagnostic, [12] Kullback, S. (1959). Information Theory and
it has been argued, is more interpretable. If more de- Statistics, Gloucester, MA: Peter Smith.
tailed analysis is required, then the plots of Weiss and
Cook (1992) can be inspected. [13] McCulloch, R. E. (1989). Local model influence. J.

Am. Statist. Assoc. 84, 473-478.
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Abstract What follows is a description of RMG and some example

We describe experiences with a prototype tool for sup- components and systems. The last two examples are a

port of reliability modeling called Reliability Model Genera- fault tolerant processor and a network fromthe IAPSA [4)

tor (RMG). RMG is a graphical interface between designers architecture used as a test case for RMG.

of systems and the existing reliability modeling tools AS- A Simple Example
SIST and ASSURE. RMG represents a system by a block
diagram of the system's components and interconnections. Figure 1 depicts a simple example of a system with

RMG uses the block diagram and information about relia- components, ports and connections (see also Figure 3).

bility behavior and failure effects of components to create There are two component types, A and B, where Al and

an aggregate reliability model for the system and generate A2 are 2 "instances" of component type A. Output from Al

an input file for the reliability analysis tool ASSIST. is input to B. Components in the system have either failed or
not failed. Component output is characterized as "good" or

Introduction "bad". Component type A transmits "good" information if it
has not failed. Component type B transmits "good" informa-

The Reliability Model Generator (RMG) is a tool to tion if it has not failed and if it receives "good" information.
support reliability modeling. It is a graphical interface The system fails if neither B nor A2 have "good" output.
between designers of fault tolerant systems and the existing
reliability modeling tools ASSIST and ASSURE (see [7] and
[8]) used to assess the reliability of these systems. Al BIj

RMG represents a system by a block diagram of the
system's components and interconnections. RMG uses the
block diagram, reliability models of components, and infor-
mation about failure effects of components on each other to
generate a system reliability model and create an input file
for ASSIST (see [7]). RMG has three essential parts.

1. RMG has a graphical user interface for creating compo- A2

nents, entering reliability models and connecting com-
ponents to form systems and subsystems as "building
blocks". Building blocks are saved in knowledge bases Figure 1 A Simple System
accessed through windows which display component
pictures and connections between components. They Figure 2 depicts the Markov model for the simple
may be copied or copied and modified and used to form example system. The Markov model describes states of the
new candidate architectures. system, represented by circles or "nodes", in terms of states

2. A reliability model aggregation system creates and sim- of components. In this example component states are NOF
plifies a system reliability model from component mod- (not-failed) and FAIL. The system changes state when a
els. The aggregation algorithm is described in its origi- component makes a "transition", represented by the arrows.
nal form in the RMG specification document [5], except In this example the component transitions have an initial
for recent changes. state (NOF), a final state (FAIL) and a rate (LA, LB, etc).

3. A model reducer/encoder generates an input file for AS- Note that the Markov model is relatively complicated
SIST. RMG generates the model after prompting the even though the system is very simple. Evaluation of system
user for information such as initial states of compo- reliability requires determination of the failure states of the
nents, failure rates and system failure conditions, system and estimation of the probability the system is in a

failure state before a given time. There are tools available for
evaluation of system reliability via markov models. Some of

Research supported by NASA Contract NASI-18586 them are SURE[2], HARP[6], and CAREIII[1 ]. These tools
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A ,, = lA-IL" outputs may not be known or may not be of interest. In RMG
'W IN •,yone only specifies "characteristics" of the inputs or outputs.

"Li They are good (g), bad (b), or nil (n). These characteristics
ALAI LI have no special meaning to RMG although the intent is

for them to be used in the following way. A component's
output has characteristic "g" if, for example, the component
has not failed and it has not received faulty information

A2N _LA2FAL U ~a from other components. The characteristic "b" represents
W I 1IFL corrupted output (or input) that, for example, results from a

component failure. The characteristic "n" represe- output
LI LM LM which is not produced on time or output from a c. mponent

which has been turned off (no output).

AlNF LI Al FAIL lO0CATES IYSTDMo - hratrsis
i - W" FAWURE TATE Conditions RMG descriptions of output characteristics,

transitions and system failure are with "conditions". There
Figure 2 Markov Model are two basic types of conditions. A "port condition" rep-

resentw.' here in the form
require some or part of explicit modeling and identification (port label characteristic)
of failure states. and a component mode condition in the form

(component name mode).
Components in RMG General conditions may be conjunct*.ins (logical "and") or

This section gives the content and form of information disjunctions (logical "or") of the above types along with a
RMG needs to describe a component. A components has a few "predicates" used for short cuts: NUMBER (list of con-
graphical representation and a model of the behavior of the ditions), understood as "the number of" conditions that are
component called a Local Reliability Model (LRM). true, ALL (list of conditions), or SOME (list of conditions)

Representation of Components Figure 3 shows a Local Reliability Models A local reliability model
graphical representation of a typical component in RMG. (LRM) describes the component's output in terms of inputs
It is a rectangle with a component name, ports, and port and modes and its changes or "transitions" from mode to
labels. The user creates a component by selecting "create mode. A local model of a component has:
component" from a menu. RMG then prompts for the
component name, and each port and port label. Components 1. A list of input ports, output ports, and modes.
can have 3 types of ports: input, output, and input/output. 2. For each output port conditions under which the port
Input/output ports are a short cut to drawing both an input has the characteristics "g", "b", or "n". This is a list of

and output port. The component also has states, called "output characteristic definitions" (OCD).
"modes" in RMG. They are not depicted graphically. 3. Conditions under which mode transitions occur.

Scowo.nt ,OCD A description in RMG of each output port's charac-

teristics in terms of conditions such as the modes of the com-
ponent and input characteristics is called an "outpul char-

* acteristic definition" (OCD). RMG represents an OCD as
an expression tree. For example, the trees representing the
OCDs for components A and B are shown in Figure 4. Note
that input port conditions and component modes correspond

pot to leaves of a tree and output port conditions correspond to
roots.

Transitions An LRM also has a list of component
port 1.bol modes and transitions (from mode to mode) in the form:

Figure 3 Graphical Representation of a Component IF (<cond>) TRANTO (<mode>) BY <rate>
where <cond> is a general condition, <mode> is a mode

Input and Output Characteristics Inareliability condition and <rate> may be a number or a symbolic
analysis of a component, the actual values of inputs or name for a rate.
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,) ,The aggregation process creates system OCDs. The
process gets conditions for a port characteristic from the

(A IP ,on AIL) port OCD. For each input port mentioned in the OCD, RMG
I,^-HOP, BY ,LA looks at output ports connected to the input port in the graph-

,,0, ,A. LA ical representation and substitutes from their OCDs into the

,.b) conditions. Aggregation terminates when all unsubstituted
conditions are on unconnected inputs, component modes or
part of a cycle (see below). A condition being aggregated09 ) (B FAIL) .d

.. d may also be part of a condition for transition.

Figure 5 illustrates the aggregation process in terms of
(a9 HOP) (Ib) (6NOF) OCD trees for the simple example system. Since output

IF _°NOP TRAM fO EFAI. BY LO from Al is connected to input to B in the RMG picture
of the system, the aggregation process substituted from the

Figure 4 LRM Transitions and Tree Representation of OCD component Al's OCDs for (Al-o g) and (Al-o b) for
the conditions (B-i g) and (B-i b) in the OCD forOther Modeling Devices Some other features and B. The resulting trees are system OCDs. The aggregated

capabilities were added to RMG to accommodate modeling model is shown in Figure 6.

the IAPSA architecture.. See [3] for details. Hierarchical

modeling in the form of parent-subcomponent relationships (B,9 (.ob)

allows one to create a high level model of the behavior
of a component or subsystem and add more detail to the
model as information becomes available. Transition effects (A, No) (o (BFJAL (A• FAIL)

provide a way to have transitions in any component cause
a change in mode in any other component. Component (A-0g) ,,o.b)
groups allow one to model relationships among components
whose physical location in the RMG representation makes it
impossible or difficult to put the components inside another -A-,OF) I- FDJI

component or for components which may be a member
of two "subsystems". Finally, very complicated transitions F (AlMOF) TRANTO (Al FA1L BY LAIF {A2 NOF TANTO(Ai2 FAILIB{YLmay be created outside of RMG then loaded into RMG and IF* NTI.TO(B FAIY LA

encoded into ASSIST later.
Figure 6 An Aggregated Model

Aggregation and Simplification
There are two steps in the process of building an over- Once a tree for an aggregated model is constructed,

all model from component LRMs and system connections. the simplification process puts the resulting OCDs for the
They are aggregation and simplification, aggregated model into disjunctive normal form (DNF). This

form enables reduction of the expressions in the system OCD
(B-..) ,..ob, and removal of redundant conditions.

Examples
(S4b) (a MOP) (B FAIL) Wnd

"4 Node Network Figure 7 is a network with one root
node (R), 3 other nodes (N), and 6 links (L). The lines

(.4b) (B ,OF) with arrows at each end indicate that connections are made
A ... "C .to input-output ports. The local reliability information can

(l.@-g .. be described succinctly. A node or link can transmit good
information if it can get it from one of its inputs. The rootS(A•lb nod must ge g rmtet ine nus

,,, b) node must get "g" from the input labelled "i". Aggregation
#on [of this example results in a cycle. As the process constructs

the expression tree, shown in Figure 8, generated when

(l PAIL) RMG traces the condition "(o g)" on node N3 a cycle occurs
because the condition (il g) is repeated along a path below

Figure 5 The Aggregation Process the first occurrence of the condition in the tree. Continued
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o channels are subcomponents of FTP. The output character-
istics for the output ports from FTP are determined by the

N2 .. .. OCDs for the lowest level components NI. FTP is initially in
12, 13 mode UP. Some CHs and NIs are in a mode that means they

are communication links to a network (not shown). Channel
output is voted. Failure of a CH or NI may cause FTP to
change to a recovery mode (RECOV). FTP then recovers[ý FLvia a transition back to UP, changes modes of failed CHs to

Li non-operational (NOOP) and designates new CHs and NIs
as communication links. Output from non-operational chan-
nels becomes "n" so they are no longer used in the vote.

F"
Figure 7 4 Node Network • I

(o g) [

001 o)-n (Ug) "

(U2NOF) or (N2 nOF

enid -Figure 9 FTP

(LI n (i n (L5 NOF) on Network The network, NET-l, is shown in Figure 10.
NET-I has root nodes (R), nodes (N) and links (L) as
subcomponents. Outside NET-I are devices (DA, DB, DC
and DD) and device interface units (DIU). NET-1 has three
modes, UP, FAIL, and RECOV. Outputs from NET-I to

(A Nn (itNon (3 " ) 00 N devices are "g" if the network is UP and the nodes connected
to the outputs are not failed (NOF). They are "n" if the(h g) 02 o)

network is recovering (RECOV) and "b" if the network has
failed (FAIL) or if the network is UP and the node connected

Figure 8 Tree with a Cycle to the output has failed. This output behavior is given in the
node OCDs. The node OCDs depend on the NET-I modes.

tracing will lead to an infinite tree. When this occurs then

the tracing on the branch stops and all OR branches of the When NET-I is in mode RECOV it tries to make a
treeup tr on the firanstoAND arentrimed. T , OR nches of g)is recovery transition that renders enough links "in-use" sotree up to the first AND are trimmed. Thus, since (ii g) there is a path from the root node to every other node.
true at the top of the tree, "(il g) or (i2 g)" can be trimmed. The network fails if there are not enough links or nodes

If a condition is contradicted then RMG also stops tracing to reor. The r y tra are an exhastivenlis
and trims all AND branches off the tree until the first OR. to recover. 'Me recovery transitions are an exhaustive list

of initial states of NET-I, the nodes and the links and the

inputs which give resulting "regrow" configuration which
FTP Figure 9 is a fault tolerant processor FTP with 4 sets some links as in use and some as not in use.
channels (CH) and 6 network interfaces (NI). In the model The function of the network is to transmit information
for FTP, the NIs are subcomponents of the channels and the from devices. Devices of each type are voted and the system
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4 n. n•The RMG model for the IAPSA architecture in [4]
demonstrates the feasibility of a building blocks approach
to reliability modeling. It was created in three stages. A
model of the fault tolerant processor (FTP) was created firSL.
A model of a single network (NET) was created second. One
FTP and two NETs were copied into a new knowledge base

U and connected. System level transition effects were added.
U System failure conditions were added for generation of an

ASSIST model.
The regrow model for the network in the IAPSA ar-

y •chitecture revealed limitations of the language RMG uses
to express OCDs and transitions. Over 2000 of these com-

- Iplicated transitions had to be generated outside of RMG. A
proposal for remedy of this situation is enrichment of the
ASSIST language to allow the user to create functions that
compute complicated transitions such as network regrow.

Figure 10 IAPSA Network Acknowledgements
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and connections provide a simple way for the user to spec- [4] Cohen,G.C., C.W. Lee and MJ. Strickland, "Design of
ify effects of component changes on other components and an Integrated Airframe/Propulsion Control System Ar-
on the system. The aggregation process performs a useful chitecture", NASA Contractor Report 182007, March,
failure mode effects analysis (FMEA). The examples from 1990.
the IAPSA architecture demonstrate that an algorithm for [5] Cohen, G.C., M.C. McCann, "Reliability Model Gener-
performing such a FMEA is feasible for complex systems. ator Specification", NASA Contractor Report 182009,

The graphical representation is limited in that it does March, 1990.
not display modes, transitions, and transition effects in a way [6] Dugan, J.B., K.S. Trivedi, M.K. Smotherman and R.M.
immediately accessible to the user. A detailed specification Geist, "The Hybrid Automated Reliability Predictor",
of complex components such as FTP and NET models with Duke University, 1985.
the basic modeling tools and the graphical representation [7] Johnson, Sally C., "ASSIST User's Manual", NASA
is impractical. Specification of these models is facilitated Technical Memorandum 87735, August 1986
by hierarchical modeling, i.e., creation of parent- and sub- [8] Palumbo, D.L. and D.M. Nicol, "Generation and Analy-
components, and use of transition effects to model complex sis of Large Reliability Models", Ninth Digital Avionics
dependencies. Logical expressions resulting from the aggre- Systems Conference, pages 350- 354, October 1990.
gation process can be prohibitively large.
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Computer-Aided Immunization and Opportunities for Data
Visualization

Giles L. Crane
NJ State Department of Health

Division of Epidemiology
Hamilton, NJ 08625

Abstract There was also considerable experience within the
NJ Health Dept. with EPI-INFO Version 5.0, micro-

The importance of childhood immunization in NJ has computer software developed jointly by cooperating
become apparent once again because of the resurgence of small groups in the CDC and WHO, and currently sup-
measles in NJ. A National Health Goal has been set to plied to EIS (Epidemiology Intelligence Officers of the
bring about immunization against childhood diseases of Public Heatlh Service). While there are serious faults
diptheria, pertussis, tetanus, infantile paralysis (polio), with the underlying parsing and memory management
measles, mumps, and rubella by the age of two, rather algorithms of the current version (Version 5.01b) of EPI-
than be the age of school entry. Furthermore, Congress INFO, the package appeared to draw upon very specific
has acted to encourage the manufacture of vaccines and features relevant to Epidemiological Surveillance from
practice of immunization by controling litigation [5]. many existing software (BASIC, DBASE, SAS), to have

As part of a NJ task force effort to initiate early immu- "immediacy" in data entry and validation techniques, to
nization in hard-to-reach inner city areas, staff designed, have low cost in case many more stations were necessary,
wrote, and debugged a program for registering, evalu- and to have support for improvement in future versions.
ating, and scheduling immunizations according to age An additional source of inspiration was the Johns Hop-
appropriate immunization rules. Part of the work is on kins project to provide Haemophilus Influenza Type B
the interface of statistics and computer science, and also vaccination to Navajo Infants via 11 remotely located
offers many opportunities for data visualization. This immunization stations [8]. Shortage of NJ funds did not
paper will describe this work, point out essential refer- permit detailed consultation with personnel supporting
ences, and present opportunties and directions both for this project.
data visualization and for increasing immunization cov-
erage. 2. Three Sets of Vaccination Rules

1. Attempts at a Computer Aided Sys- In order to write data editing, date projection,
tem and evaluation programs, age apropriate vaccination

rules for DPT, Td (adult tetanus and diptheria), po-
Initially, program staff looked for an established soft- lio, hemophluous influenza, measles-mumps-rubella, and

ware and hardware systems. Among these was a WIC single dose measles, mumps or rubella from three medi-
(Women, Infants, and Children Program) related pack- cal authorities had to be reconciled. The three medical
age written in DBASE III+, a stand-alone program in authorities were the American Academy of Pediatrics [1],
RBASE written as a prototype, and a user interface writ- the CDC Immunization Practices Advisory Committee
ten in DBASE IV. All three proved to be false starts, (ACIP) [6], and the NJ Immunization Program [7] within
though each contzrbut-i insight to the present system. the Div. of Epidemiology. No graphical display of any of
The DBASE III+ system appeared to be too integrated these schedules were available. A future goal may be to
into an out-of-state WIC program system for easy adap- visualize the schediiles for individuals and populations,
tation to NJ requirements; the RBASE system was ad- perhaps with reference to the Parisian train schedules
mirable in logical structure, but appeared to be too slow popularized by Edward Tufte [11]. The rules differed
for the interactive situation at the two immunization sta- slightly in numbers of shots required, minimum inter-
tions; thirdly, the DBASE IV interface appeared to be vals, and various conLingencies related to cutoff times.
costly and difficulty in implementation, although per- Obtaining information on the rules from personnel in
haps offering more general programming facilities than on-going immunization programs, proved to be more
EPI-INFO Version 5.0 [10]. time consuming and demanding of patience than ex-
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pected. The Immunization Initiative, as a start-up pro- Thus the demonstration phase of this project might
gram, required very active participation by the Coor- be viewed as a 2 ** 5 factorial design [11]. Other impor-
dinator in order to establish the effort among other tant factors which might lend themselves to systematic
projects competing for resources at the Health Dept. evaluation are hours, length of interview, and incentives.

A fourth source of vaccination rules is the WHO Ex- Other states with more station sites might have the op-
panded Program for Immunization (EPI) [4]. In order portunity for evaluating these factors and their interac-
to provide an effective program in a large bureaucracy, tions. Since there were only two stations available in NJ,
the World Health Organization has simplified vaccina- we could not set up an improvement design, and had to
tion requirements and the list of contraindications to a content ourselves, at least initially, with looking for large
schedule mu -h more basic than that in current NJ use. negative effcts or large positive effects.

3. Example of Programming 5. Simple Computer-Aided Immuniza-

Exhibit 1 below is an example segment of the program- tion
ming for data entry and checking of Polio shots, written Exhibit 2 presents both the two screens necessary
in the EPI-INFO check language. While very "close", in for entry and review of demographic and immunization
a software sense, to the entry process of the date of the records, and the page as printed for the child's parent or
first Polio shot (OPV), the available programming struc- sponsor. The top half of the form (demographic infor-
ture is very limited (virtually just if-statements). Facili- spons The top h al o e frm (emoraphic formation) is a screen and can be printed separately from
ties to undertake complex computations are also limited, the bottom (immunization record) screen of the form.
although there is a facility to call a subroutine written
in Pascal. Date handling, including missing dates, is In a simple situation, a parent brings a child to thepreser~t, but memory variables (in distinction to vari- immunization station within the WIG clinic, fills out the
presentbutdmemodariabtems (inthe dataset) are confined demographic information in the first screen, and uses
ables included as data items in the paper immunizatiorn record (yellow card) to fill out

the second screen. The evaluation and due dates are
shown immediately, and are printed, so that the parent

4. Microcomputer Hardware can take one copy with her to the nurse who will per-

To start this initiative quickly, the Initiative Task form any vaccinations due. The clerk and nurse follow

Force borrowed a 286 laptop with modem and a small up children and parents to encourage age appropriate

dot-matrix printer for one site, and a 286 desktop (no immunization. There is some opportunity to evaluate

modem) and a wide carriage, dot-matrix printer for the the general vaccination status of difficult to reach, inner

second site. Development time was available most days city populations. In the brief setup time before the clinic

on an IBM PS/2 386 tower with a modem and wide car- opens in the morning, Initiative staff bring out the mi-

riage, dot-matrix printer located at the NJ State Health crocomputer and printer, which are kept in secure areas

Dept. The software which is now in use can be operated at night and on weekends. At noon and at the end of
Dept.the clinic day, staff backup all datasets.

on an XT microcomputer with 640K of main memory.

To continue the initiative and the concept of a move- Various types of immunization records are encoun-

able, immunization team, the task force selected and or- tered: NJ Immunization Record (yellow card), U.S. Mil-

dered two notebook micro computers with modems and itary Immunization cards, and foreign private, national,

small (under 10 lbs) dot-matrix, narrow carriage print- and military records. Currently there is no provision to

ers. A third notebook system as a backup is under con- record unconventional vaccines (e.g. IGO, Hepatitis B,

sideration. The microcomputers are powerful enough for etc.) or exceptional characteristics of previous immu-

much future enhancement to the software and hardware nizations.

(an ethernet enhancement is available). At present, it
is felt that, probably, the Initiative teams will operate 6. The Immunization Initiative After 3
in offices rather in a van with daily changes in location. Months
Nevertheless, the ordereci hardware includes the possibil-
ity. The task force also ordered a desktop for archivinp. After operation from December, 1991 until Febru-
program administration, and survey use. ary 1992, the immunization station in the inner city

The two sites may be seen as the beginning of a sta- in Northern NJ has 1423 enrollees, is enrolling aprox-
tistically designed improvement experiment. Important imately 500 new children per month, of which 30% come
factors included in the design are listed below: into the station from outside the WIC program in order
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Exhibit 1.

* WICIMM Version 1.0: EXAMPLE OF CHECK LANGUAGE: POLIO DOSE 1
0PV1
RANGE "01/01/40" "01/01/99"
type 11*11 -1 +0 48
enter
type " " -1 +0 48
if OPV1 < BIRTHDATE then

HELP "SHOT DATE BEFORE BIRTHDATE !\nPLEASE CHECK SHOT DATE." 24 12
CLEAR OPVI
GOTO OPV1

endif
if OPV1 > today then

HELP "SHOT DATE IN FUTURE !\nPLEASE CHECK SHOT DATE." 24 12
CLEAR OPV1
GOTO OPV1

endif
if OPV1 = DOB then

CLEAR XOPV1
CLEAR OPVI
GOTO OPV1

endif
if OPVI < BIRTHDATE + inimos then

XOPV1 = OPV1
CLEAR OPV1
endif

if OPVI = . then
n1 = in2mos
if XOPV1 - XOPVI = 0 then

n1 = XOPV1 + in2mos
endif

if agedays >= in33mos then
n1 = in33mos
endif

if agedays >= in7yr then
nl = in7yr
endif

if nl < agedays then
nl = agedays
endif

OPVldue = birthdate + n1
else

CLEAR OPVldue
endif

UPDATE
END
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FACTOR AFFECTING OPERATION FACTOR LEVELS

(i) Latitude of clinic North, south.
(2) Minority population Afro-American, Hispanic.
(3) Computer Desktop, laptop.
(4) Printer Large dot-matrix with with pull tractor,

small dot-matrix with sprocket platten.
(5) Immunization site With computer station at WIC,

Not with computer but at health center.

to obtain immunization. In the southern inner city, op- the female Anopheles mosquito [21, as can be seen in the
eration for 2 months from January until February 1992, crude disease rates given below in Exhibit 3.
916 children have been enrolled, about 450 new children
per month are enrolling, 24% of whom were from outside 8. Current Statistics of Interest
the WIC program.

In both inner cities, enrollment appears to be con- Statistics of scientific interest at present are the cov-
centrated from a relatively small area: most clients are erage at 24 months (percent of babies completing vac-
from 5 zipcode areas in the northern inner city, and from cination by the age of two years), and coverage curves
4 zipcode areas in the southern inner city. (percent of children competing age apropriate shots at

A preliminary evaluation of need revealed that shots various ages from 2 months to 5 years). Coverage will be
were overdue for 52% of children in the northern site explored by various racial groups, locations, WIC pro-
and 46% of children at the southern site. The target gram particiation, and other factors of interest.
populations are approximately 10,000 children at one site Statistics of programatic and administrative include
and 7,000 children at the other. (Initial enrollment data Need (percent of babies requiring shots at entry into the
will be used to indicate the service area, and to improve Initiative), and Impact (percent of children gaining im-
the estimates of the target populations.) munization protection as a result of the Immunization

Initiative. Thus, envisioning information for the Immu-

7. Sources of NJ Health Statistics nization Initiative may fall into two broad areas: pro-
gram administration and epidemiology, wherein we are

Routinely collected health statistics also offer many concerned with identifying the populations and locations
opportunities for envisioning information. NJ health of low coverage and problems which r -n be addressed.
statistics are available from many diverse sources, most
of which can be obtained in computer-readable form. 9. General Principles
Principal among these are birth tapes, death tapes (in-
cluding Multiple Cause of Death tapes), Hospital Dis- At the 150th Anniversary of the American Statisti-
charge tapes (MIDES or UB82), and the Cancer Reg- cal Association, held in Washington, D.C., 1990, J.W.
istry. Other sources include drug treatment discharges, Tukey reminded us of four cornerstones of statistical
birth defects registry, medical claims tapes, the AIDS practice: First, to give estimates of mean values; second,
registry, communicable disease reports, sexually trans- to estimate variation; third, to indicate the multiplicity
mitted disease (STD) reports, TB cases, and sexual as- of possible effects; and fourth, to explicate possible bi-
sault counseling forms. Still other sources within State ases which might affect results.
government are fetal death tapes, poisoning reports, Analogously, in envisioning information, it would ba-
cervical cancer screening reports, fatal accident reports sic to display mean values; show possible variation by
homicide reports, family planning forms, hemophilia fi- confidence limits, by sets of realizable curves, or by some
nancial assistance data, mental retardation services, and other techniqueor; indicate multplicity of effects by many
community mental health center reports. Quality, com- views under various assumptions; and fourth, to indicate
pleteness, and data gathering plan vary widely: some are possible biases. I believe that the indication of possible
required by law to be complete, some are voluntary, and bias (both direction and magnitude) has been neglected
many are accumulative in nature. in many past and current attempts to envision informa-

Childhood morbidity from vector bourne diseases is tion.
still present, for example malaria, long associated with For example, in communicable disease work in the
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Exhibit 2.

-----------============DEMOGRAPHIC RECORD SCREEN--------------------------
WIC/SURVEY ID No. W - SITE - INITIAL DATE /__/_

CLIENT:LAST --------------- FIRST ----------- MI - NO.VISITS __
STREET

CITY ------------------ , STATE ZIP
PHONE DEM. CHG. _

BIRTHDATE /_/__ SEX - ETHNICITY - LAST DEM.CHG. /__/

MOTHER:LAST --------------- M.FIRST M.AGE:##
FULL TIME RESPONSIBILITY FOR CLIENT _

HOUSEHOLD:NO. CHILDREN ## UNDER 5 #

AFDC: RECIPIENT(Y/N) - AFDC NUMBER ATTEND DAYCARE _

SOURCE OF HEALTH CARE: i=W, 2=S, 3=Imm.,4=WS.,5=WI,6=SI, 7=All, 8=NONE,9=UNK
LOCAL PUBLIC HEALTH _ COMMUNITY CLINIC - HOSPITAL CLINIC -

EMERGENCY ROOM - PRIVATE DOCTOR - OTHER(SPECIFY)_

HEALTH INSURANCE(CODE) _ PAYS FOR WELL CHILD CARE (Y/N) -

BARRIERS (CODE) - EXEMPT - IMM.RECORD INIT.(Y/N) - AVAIL _
======================-IMMUNIZATION RECORD SCREEN--------------------------
CH _ID ---------- L ------------- F ------- DOB-/-/- AGE-DAYS##I##
DPT/DT DPTI _/_/_ DTI - DPTI Due ./_ XDPT1 _

DPT2 __/__/_ DT2 - DPT2 Due /__/__ XDPT2 //__
DPT3 ___/_DT3 _DPT3 Due ___/_XDPT3 _/__

DPT4 _ DT4 _ DPT4 Due _ XDPT4 _/__/__
DPT5 /__/_ DT5 - DPTS Due /_/_ XDPT5 _

Td TDI _____ TD1 Due _____ XTD1 __1_/_
TD2 /__/__ TD2 Due _/_/__ XTD2 /__/_

TD3 /_/__ TD3 Due /_/_ XTD3 _
Polio OPVi _/__/__ OPVI Due __/__/__ XOPVI _/__/__

OPV2 __/__/__ OPV2 Due __/__/__ XOPV2 __/__1__
OPV3 _/_/_ OPV3 Due __/__/__ XOPV3 /__/__
OPV4 ___/_OPV4 Dut____ XOPV4 _/__

BIB HIB1_I ___ HIBI Due ___IXHIB1_I_._
HIB2 ___IHIB2 Due ___IXHIB2 _I__

HIB3 /_/_ HIB3 Due _ XHIB3 /__/__
HIB4 /_/_ HIB4 Due /__/__ XHIB4 __[__/__

MMR MR _/_/_ M1 MR1 Due _/__ XMRi /__1__

MR2 /____ M2 - MR2 Due _ XMR2 __1__1__
ME3 ___IM3 _MR3 Due ___IXMRS ____

Me __ _/ _Mu __ _/ _Ru _/ _ _
PPD - IMM. CHG /__ TODAY _ EVALUATED BY ---
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Exhibit 3.

NJ MALARIA MORBIDITY

YEAR Number Rate/ 100,000

1974 12 0.16
1975 15 0.20
1976 17 0.23
1977 19 0.26
1978 30 0.41
1979 19 0.26
1980 66 0.90
1981 50 0.67
1982 39 0.53
1983 29 0.39
1984 41 0.55
1985 19 0.25
1986 36 0.47
1987 41 0.53
1988 59 0.76
1989 62 0.80
1990 81 1.05
1991 61 0.79

Public Health Departments, bar charts and line charts universal Hepatitis B vaccination).
are very common indeed. They are certainly used to Outreach activities may involve a risk analysis of drop-
display the numbers of confirmed cases of a specific dis- ping out; this will be very useful in guiding outreach ac-
ease found in surveys, and sometimes varieties of confi- tivities. For outreach, labels can be produced, as well as
dence limits based on sampling or yearly variation are lists of those requiring future shots for volunteer workers
envisioned. Multiplicity of effects (age, race, sex, loca- within the communities, or perhaps zipcode areas. Tech-
tion, other subpopulations) are often shown in multiple niques involving autodialing, autodialing in combination
charts. However, bias, even such matters as reporting with voice as well as reminder cards may be attempted
delay, possible selection bias, etc. may not be indicated to reach those with telephones. It may also be possible
graphically. The result may be a less than satisfactory to initiate enroll starting with birth certificates rather at
feeling for the actual numbers of cases which may exist, WIC or other agency sites, providing mothers, or who-
and consequently, an unjustified feeling of security by of- ever is sponsoring the child, can be persuaded of the
ficials who see just reported cases displayed. Clearly, im- importance of immunization.
provements in envisionng possible bias. in data in many Further medical input as well as information on the
fields as well as in Public Health data, can be made. health condition of the child in order tn provide the opti-

mum immunization FOR THIS PARTICULAR CHILD.

10. Future Directions One large step in this direction would be to implement
the list of contraindications.

Besides conventional data visualizations (scatter dia- There have been suggestions by authors in the medi-
grams, histograms, graphs), envisioning individual age cal literature as well as in various programs to establish
appropriate schedules as well as population results may a State or National Vaccination Registry, an enormous
aid in popularizing the project, helping mothers to re- undertaking. On a smaller scale, the present Immuniza-
call shot schedules, and other program evaluation charts tion Initiative will be the object of a program evaluation
to provide visual guidance. Hepatitis B vaccination may study, and perhaps other studies aimed at increasing cov-
be required in future (Singapore, for example, requires erage and early immunization. At present we are survey-



282 Computer-Aided Immunization

ing the experience of other states. At the time of writ- Association, 1015 Fifteenth Street, NW, Washing-
ing, other memoers of our task force have concluded that ton, DC. 20005
our computer-aided registration and assessment system 4 -(1991). Plan to Provide Immunization Services.is state-of-the-art. 4 -(91.Pa oPoieImnzto evcs

Expanded Programme on Immunization, World
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ABSTRACT measures suggested may depend on the mission

This paper develops objective U.S. Army doctri- involved as well as the unit(s) employed in the accom-

nal measures of Direct Fire Synchronization of plishment of that mission. To the extent possible, all

Brigade, Battalion, and lower level units. Graphical sugested measures will be illustrated with actual

portrayal of these measures, using emerging Visual observed data from NTC and/or the Janus(A) contbat

Data Analysis techniques including 3D, color, and model. (See Figure 1.)

animation of small multiples is demonstrated. Such
objective measures are of use in assessing the current
capabilities of Army units employing new tactical con-
cepts. These graphical displays will provide enhanced ...........
capabilities in meeting current and projected combat .. ........... ....

IXCmN GRAPMClSsimulation analyses of weapon characteristics, unit
mission effectiveness, and battlefield operating system VA FX
m easures. .............

PROJECT CONCEPT

Objective: BEAM will develop objective
measures of tactical doctrinal tenets to resolve defi-
ciencies in data collection requirements at Combat NOMUNPA-IANCEDI
Training Centers and improved identification of key IATLErANALYSM AT LE
performance weaknesses in the use of tactical doctrine. W X

Approach: Definitions of doctrinal tenets of
tactical forces will be solicited from doctrine and sub-
ject matter experts, including personnel at the
Command and General Staff College and the National
Training Center (NTC). All definitions received from . .
these sources will be considered in terms of available
measurable quantities, from NTC battles and Janus(A)
combat model simulation of such battles, with the goal
of deriving objective measures of performance reflect-
ing the selected tenets for tactical units. The frame- Figure 1
work for the presentation of these visual display indi-
cators will be investigated in terms of user interface
and system requirements. Selected visual displays PROJECT OBJECTIVES
will be prototyped. Should other measures seem
appropriate, requiring data not currently available The main objective of the BEAM project is the
from NTC or the Janus(A) combat model, these will be development of computer displays which meaning-
described with appropriate indications of additional fully picture synchronization at the tactical level. This
data needed for their evaluation. It is anticipated that in turn requires the identification of measu able
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attributes which portray synchronization. operations (page 3-28), it is stated that the commander
Synchronization is a broad term and encompasses and staff synchronize and integrate all combat, combat
many different activities and processes, including support and combat service support assets organic and
coordination and integration of separate parts, both available to the battalion task force. It does not indicate
before and during the battle; indeed it is also meant to how this is to be achieved. In discussing synchroniza-
be a result, as stated in Field Manual 100-5 (FM1005 tion of defensive operations, (page 4-24) it states that
[1]), with the gual of maximizing combat power at the "The success of the defense is determined by how
decisive point. In FM 100-5, "combat power" is effectively all supporting organizations are integrated
defined to have four components: Maneuver, into the maneuver plan." A .4iscussion of the sequence
Firepower, Protection and Leadership. Of these, FM of the defense is given, but no reference is made to
100-5 identifies Leadership as being the most essential. synchronization. References [2], [4]-[71 provide similar
Unfortunately, as al o pointed out in this manual, guidance.
there are no ready formulas for measuring this esse. In addition to guidance provided by these refer-
tial element, so it has not been considered as a possible ences, the Tactical Commander Development Course
candidate for displays. The two components of (TCDC) at Ft. Leavenworth, Kansas, provides tactical
Protection (making soldiers, systems, units difficult to level training for unit commanders and staff person-
locate and destroy, plus health and morale issues) are nel. The course stresses that effective synchronization
also not easy to quantify for display and have not been requires many things, including:
actively considered. • Anticipation of enemy actions

The remaining two components of combat power, 0 Mastery of time-space relationships on the bat-
Maneuver and Firepower, can be quantified in a ntrm- tlefield.
ber of ways and have been studied as candidates for • Unity of purpose
useful computer displays of synchronization of a tacti- * Understanding cf weapons capabilities
cal force. The following sections provide discussions * Knowledge of battlefield decision points.
and illustrations of possible ways to usefully display This course is very useful in illustrating the complexi-
these two components of combat power. ties involved in tactical level planning and execution,

and in highlighting the many facets of synchroniza-
DOCTRINE REVIEW, EXPERT OPINIONS tion.

A survey of current U. S. Army doctrine has been The National Training Center (NTC) at Fort
undertaken, to find the latest interpretations of the Irwin, California, is the Army's primary tactical train-
battlefield tenets: Initiative, Agility, Depth and ing location. This center features a highly instru-
Synchronization. The main focus of the initial effort is mented one thousand square mile force-on-force train-
synchronization, which has many facets, some of ing range. It employs laser devices to simulate
which are more easily quantified and portrayed than engagements and their results, with a highly moti-
others. Field Manual 100-5 (FM 100-5 [11) defines syn- vated Soviet-style force pitted against the visiting tank
chronization as follows: Synchronization is the battalion. After Action Reviews (AARs) are employed
arrangement of battlefield activities in time, space, and (at many levels) following the battles fought by the
purpose to produce maximum relative combat power visiting battalion to highlight correct use of current
at the decisive point. Synchronization is both a process tenets, and to suggest possible areas of improvement.
and a result. This manual stresses the importance These AARs make use of the JANUS(A) combat model
of synchronization in both offensive and defensive to portray the battle just fought, indicating position
operations. Indeed, it points out that a good defensive deployments, kills made and suffered, movements and
procedure is to interrupt the synchronization of the timing, and many other things. The proposed BEAM
attacker, displays are expected to improve the objective tools

In Field Manual 71-2 (FM 71-2 (31), synchroniza- available to illustrate correct use of the battle tenets

t;on is called one of the four characteristics of success- and highlight areas for improvement.
ful operations (the other three are the remaining tenets USERINTERFACE
listed in FM 100-5). On page 1-6 it ;s referred to as
"Synchronization is the process of integrating the The current candidate BEAM User Interface is
activities on the battlefield to produce the desired pictured in Figure 2 This has been discussed with
result. Synchronization of operations is required in personnel at both the TCDC and the NTC for possible
order to maximize the combat power of the combined modification. As pictured there, the user would select
arms team. It requires a command, control, and com- one of the current tenets, the scenario type, the
munications system that can mass and focus the com- Battlefield Operating System (BOS) of interest, as well
bat power of the task force at the decisive time and as which aspect of the tenet-BOS combination is of
place." In discussing synchronization of offensive interest. This would then bring to the screen an
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appropriate display for the combination selected. colors over a given area reflect the changes in the
Several candidate displays have been designed, two of massing of the lines of sight, for the given disposition
which are briefly mentioned below, of the weapons used. A display of this type is given in

Figure 3.
CANDIDATE• AM USER

INTEFACEMANEUVERIDIRECT FiRE
S..."'SYNCHRONIZATION DISPLAY

... hanced (LINE OF SONTDENSITl)

- Iattle. AITLI 111 0 II

105

WAMWrrtl 104

Figure 2"AM1W,

Figure 3

LINE OF SIGHT (LOS) DISPLAY

As discussed previously, a result of synchroniza-
tion is the production of maximum relative combat This figure portrays a portion of the NTC with 10
power at the decisive point; one contponent of combat Blue tanks located in the top center of the screen, in an
power is Firepower, the provision of destructive force area bounded by y-coordinates 105 and 107, x-
essential to defeating the enemy's ability and will to coordinates 51 and 53. The number of tanks which
fight. Direct fire weapons are a major component of can see any given point then varies from 0 to 10; since
this destructive force; the effectiveness of these each tank has an effective maximum firing range, there
weapons, in turn, depends on their lines of sight, the is no purpose in portraying the existence of lines of
(possible) target areas they are able to see. If a force sight beyond this range (in terms of the firepower of
has placed its direct fire weapons in locations where the defending tanks). Thus, the figure gives the
they cannot see the main battle area, they will not be number of these tanks which can see a given point, so
effective in contributing to the combat power in that long as that point is within the effective firing range of
area. Thus, the lines of sight for any particular place- the tank. These numbers in turn are color coded with
ment of direct fire weapons control their effectiveness dark blue representing 1 tank having LOS; the colors
in any battle. If the lines of sight are massed at the range through lighter blue to green to yellow to red to

decisive area of the battle (at the correct point in time) signify the number of tanks with lines of sight varying
these weapons will be able to contribute to the combat up to 10. Thus, the massing of the lines of sight is
power of the force; if lines of sight do not exist (at this given by the hot red color, with the cold blue color
time) they do not contribute to the combat power. indicating a single tank is able to see the point. The

This line of reasoning leads to consideration of a lines of sight are aggregated only for points within the
graphical display of the lines of sight available to firing range of the given weapon.
direct fire weapons, given their deployment positions This type of display gives a single-shot picture
(and realistically, their orientation at these positions). which is useful in portraying the massing (or lack of
The JANUS combat model, within its own resolution, massing) of part of the combat power of the force at a
is able to determine the lines of sight between any two given point in time. Constructing such snapshots at
points within the area being depicted. This then allows various points in time, and running them sequentially,
one to build an LOS surface whose height at any point can give a valuable indication of how the massing of
on the ground is given by the number of direct fire lines of sight changed during the battle, due to either
weapons, within the force, which are able to sec that movement or attaition of the weapons portrayed. The
point; the higher the surface at a given point, the opposing force locations can also be overlaid on the
greater is the massing of lines of sights at that point, same picture, giving a more complete description of
This surface can then be colored according to its height the dynamics of the battle. (See Figures 4, 5, 6 and 7.)
and displayed in two dimensions. The changes in
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"••• l &"" YNmt~tAToM^NEUVER/DIR-CTFRm,-YkE DESTRUCTION POTENTIAL (DP) DISPLAYS

• hanticd (LIIIo,.IoNT,,.EIT, Displays similar to the LOS displays describedattle SATTh,-IE:I "s MIN above can also be useful in providing additional

'* information. The LOS display simply describes the
* ,f absence or presence of line of sight between points,
S .. giving no indication of how much damage the

........ weapons which have line of sight might be able to
,. .. inflict on the corresponding point. There are a number
,03 of ways that a display can indicate the amount of

destruction that could be inflicted at each point in a
given area; this type of display is called a Destruction
Potential display.

4 6 4? 1 -0 W 51 52 53 54 W' S' W• •The DP display can be constructed in a number of
different ways. Three different candidate DP displays

Figure 5 are currently under study. One possible measure for a
DP display is based on the expected number of kills, if

MAaCy MMANEUVERIDIRECT FIRE every weapon available were to fire rounds at its max-
"- SYNCHRONIZATION DISPLAY imum possible rate over a short period of time, say one

anced (LINN OF aoNTD EWnU minute; this measure is similar in spirit to the
BATTl.E TIN' $0 NINE Quantified Judgment Model of [8].

log Rather than basing a DP display on the expected
lop number of kills, as above, a single-shot kill probability

could be employed instead. That is, if all weapons
, , which have LOS to a given point were to simultane-

ously fire one round at a target located there, it is a
simple matter to compute the probability of scoring a
kill at that point. This measure does not account for

10i the rates of fire of the firing weapons, a quantity most
would agree is an important contributor to the combat

,,44.4......__,_ power of the force. To also bring this effect into play,
K' the DP surface could be modified to represent the

probability a target at the given point is killed, granted
Figure 6 all weapons fired at maximum rate for a one-minute

period. Which of these alternative methods of display-
ing a DP surface may be more useful for the Battalion
Commander is currently under study.
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In addition to these candidate DP displays, a
number of possible displays illustrating maneuver are
currently under development.
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ABSTRACT affected by LTF or other waste management/disposal
operations.

Collection and chemical analysis of soil and soil-pore-
liquid samples during a two year RCRA Land Treatment Figure 1 portrays a conceptual diagram of a land
Demonstration (LTD) generated several megabytes of treatment facility. The treatment zone extends from the
data to be used to determine the efficacy of a land original land surface to a depth of 5 feet. The depth
treatment facility (LTF) in degrading, transforming, and orientation of this diagram is exaggerated to emphasize
immobilizing waste constituents within the treatment zone. the three dimensional (3D) aspects that were important
A relational database implemented on a Unix workstation during data analysis.
was used to manage and query data leading to data
analysis. However, evolution of the experimental design
left investigators with a large volume of data and little
information. This paper presents the graphical and-'"
traditional statistical techniques used to determine ....
constituent distribution throughout the LTF soil profile "...... .. ".....:..........:. ..

and identify possible mechanisms for constituent
migration. Graphical techniques ranging from simple dot
plots to use of the SAS INSIGHT exploratory data analysis
tool will be presented along with the known problems each Z*
tool solved and the unsuspected problems each tool
identified.

INTRODUCTION

A Land Treatment Demonstration (LTD) is
conducted in accordance with regulations of the Resource Figure 1.
Conservation and Recovery Act (RCRA) to determine the
ability of a land treatment facility (LTF) to degrade,
transform, or immobilize hazardous waste constituents The original sampling design for this LTD was
applied to the land surface under a specified set of established assuming that waste migration would be
operating conditions. The criterion for determining the homogenous throughout the soil profile and quarterly
efficacy of the facility is presence or absence of waste sampling for two years would adequately characterize the
constituents below the treatment zone. The presence of entire soil profile. This design was based on EPA
naturally occurring constituents (for example, inorganics guidance for unsaturated zone monitoring. Since this
like barium, manganese, etc) is defined as statistically sampling design was statistically simple, the experimental
greater concentrations of constituents below the LTF than design called for a simple means comparison of LTF
in the background. The absence of these naturally samples and background using the Student's t-test.
occurring constituents is defined as concentrations below However, there was a stipulation that other statistical
the LTF that are not statistically greater than in the methods could be proposed during data analysis if the
background. Background concentrations are those found Student's t-test was shown to be inappropriate.
in the same soil series but in an area that has not been
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The magnitude of the number of data points collected progression of data analysis methods. SQL is a very
made data analysis more complex than had been expected, powerful tool and did enable us to query the database in
based on the simple sampling design. This paper presents fairly complex ways, but the tabular reports that contained
some of the problems encountered during initial data output from queries were still too detailed to help the
analysis efforts and describes two graphical data project team focus on priority issues for data analysis. In
visualization techniques that gleaned information from the effect, we couldn't see the forest for the trees.
mass of data collected.

THE DATA ANALYSIS PROBLEM
DATA MANAGEMENT

The magnitude of data available for this LTD was
A relational database was designed and implemented almost as formidable as the cost of the project (-$1.3

to manage data collected during the LTD. This database million); both emphasized the need for effective data
managed sample information, field data, analytical analysis. This was not a project that could be redone.
chemistry results of all samples, and quality control (OC) Therefore, graphics were used to summarize data and help
data for the analytical chemistry. Figure 2 presents a lead and focus data analysis efforts. The rest of this paper
summary of the types of data managed during the LTD. describes two examples of how graphics were used to solve
In total approximately 25 megabytes (Mb) of data were problems and focus data analysis efforts.
collected and managed in the database.

Examples of problems using tabular data reports

The two examples presented in this paper solve the

SAMPLE ANALYCAL CHESTRY RSULT following two problems encountered using tabular data
3.191 RECORDS 3.,019 RECORDS reports:

Constitue.nt An unexplainable, apparent increase over time of oneSample ID m|lhad
Etc.Typo R.slt f constituent in soil-pore liquids.

Deecin e.l
1. Etc.

* Difficulty in visualizing the location of detectable
concentrations below the treatment zone in relation to
detectable concentrations within the treatment zone.

These two problems are described in more detail below
with the graphical technique that was used to solve the
problem.

OC DATA
23.361 RECORDS

First Example - Problem
$lank. (5.01 *.cowds)
Spflks (12.575 "Cords)
Oupllcao.s (5.66, •ecords) The objective of the LTD was to analyze two

environmental matrices (soil and soil-pore liquids) to
determine the ability of the LTF to transform, degrade, or
immobilize waste under a specified set of operating
conditions. Query output tables of the detectable

Total -•25Mb concentrations in the below treatment zone seemed to
Tabular Report -2000 Pages indicate that one constituent was increasing over time in

soil-pore liquids. This was a concern because this
Figure 2. constituent had never been detected in the waste that was

being applied to the LTF soil surface.
The relational database package chosen for
implementation of the data management plan used the First Example - Solution I
Standard Query Language (SQL). It was originally
planned that querying the database through SQL would The data visualization technique used to solve this
enable us to identify and implement an appropriate problem involved graphing the sampling round (quarter)
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against concentration detected in the samples; and label project team focus on constituents that were a primary
each point with a location identifier. Figure 3 presents an problem in the interval below the treatment zone. Figure
example of this graph. In Figure 3 it was apparent that 4 presents four bar graphs indicating the count of
there was no increase over time at any one location, detectable concentrations in each depth of the LTF ("4"
While this resolved the problem of an increasing trend, it depth was the interval monitored below the treatment
raised the problem of low-level concentrations that were zone); in each unit (the LTF was divided into two units);
fairly consistent in several of the soil-pore-liquid sampling and for each constituent (a short list was used for this
locations. But now an engineer or geologist could focus example). Note that the bars represent total number of
their efforts on determining the source for this constituent detectable concentrations, not total number of samples.
instead of trying to identify a mechanism that would cause Figure 4 uses INSIGHT's highlighting capability to indicate
concentrations to increase. which records in the unit and constituent graphs are

associated with the "4" depth in the dIepth graph.
Iwo *L- INSIGHT is an interactive tool that allows the user to

highlight portions of any graph and view the corresponding
records in other graphs that are active on the screen. Of

M the 13 possible constituents, only "C", "D", "E', "G', "K',
M and "M" were detected in the depth below the treatment

zone (see Figure 4). This kind of data visualization helped
focus our analysis efforts.

Second Example - Solution 2

INSIGHT has a rotating 3D capability and it was
'L- .L-" - thought this would help us to understand some of the

-L- 0- .- 4 .L-a %1 I spatial relationships of the data. However, the 3D scatter
1 2 a 4 5 0 7 s plot shown in Figure 5 was not expected. The planes of

3- results were an artifact of the sampling plan. The
sampling plan used compositing to collect 4 samples that

Figure 3. would represent the 0-12", 12-36", 36-60", and 60-66"
depths). Routinely, compositing is used to collect samples
that represent a larger area, or volume, of soil than a

Second Example - Problem discrete sample might. Compositing is similar to
"averaging", some vertical variability information is lost,

No one could reasonably expect to read the but knowledge of the average over an interval is gained.
approximately 2000 page tabular report containing all While this made economic sense, it did limit data analysis
results from the LTD and understand where waste efforts due to the loss of some vertical information in the
constituents were detected in both treatment zone and soil profile.
below treatment zone soils; let alone prioritize their efforts
to determine why constituents were detected. Therefore, However, the rotating 3D capability could still be used
determining the mechanism for possible constituent to look across any depth to see if waste constituents were
migration (if any were in fact migrating) posed and evenly distributed across the depth interval. Figure 6
extremely difficult problem. To resolve the problem the presents a combination of bar graph and 3D scatter plot
project team decided to use SAS/INSIGHT's data that was used to look at the spatial distribution of
exploration capabilities to glean information from the detectable concentrations. With labeling, it was possible
dataset. to identify the constituents that were detected in each

sample. After using Figure 6 to identify locations of
frequently occurring constituents, a 3D scatterplot similar
to Figure 7 could be used to look for concentration trends.

Second Example - Solution I

Initially, bar graphs (i.e., histograms) were created and
reviewed. INSIGHTs interactive capabilities let the
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A series of these kinds of 3D scatter plots and bar
graphs helped to determine trends in detectable
concentrations throughout a depth and throughout a
vertical profile. Together, these scatter plots helped to
focus data analysis and interpretation on priority problems
such as:

* determining the kinds of constituents detected
throughout the LTF;

* determining critical waste constituents;
• determining possible mechanisms for migration; and
* identifying appropriate operating conditions for the

LTF.

Answers to "other" problems

Graphics helped throughout data analysis efforts and
reporting to visualize information. Not only did the
graphics help identify priorities and glean information
from raw data, graphics also helped present both the data
to be compared and the statistical decision tree used to Figure 9.
determine an appropriate statistical comparison. Figure 8
presents a series of bar graphs that would be placed in a methods that were used to compare LTF and background
report to help indicate the distribution of detectable results, depending on the frequency of occurrence
concentrations in both the LTF and background. These (detectable concentrations) and ability to meet statistical
graphs helped demonstrate graphically when detectable assumptions.
concentrations were greater in the LTF than in
background; a demonstration that is easier to interpret CONCLUSIONS
than a table of probability values indicating the statistical
conclusions. These kinds of graphs also helped cognizant In conclusion, the old adage, "A picture is worth a
reviewers evaluate the statistical conclusions in light of thousand words, or tabular report pages." was found to be
practical considerations (i.e., a pictorial evaluation of the true. Graphical data analysis helped to identify priority
practical consequences of alpha and beta error). Figure 9 issues and focus personnel and monetary resources.
presents the decision tree that led to the statistical
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MISHA - A Computational and Graphical Tool

James W. Hardin and Henrik Schmiediche*
Department of Statistics

Texas A&M University, College Station, Texas 77843

Abstract the program grows unchecked in simulations, we decided
to write an alternative program. An additional incen-

Sophisticated data analysis requires both the use of a tive was to provide a more complete graphical analysis
powerful data analysis language and the ability to dim- package. In Table 1, we present evidence for the speed
play that data in a comprehensible yet visually stim- and memory efficiency of MISHA for programs that have
ulating manner. Many programs have been written to loops. Experienced S users typically have invested time
address either the data or graphical analysis needs of the into building Fortran or C language object files that they
researcher, but few satisfy both criteria. The S program link into S functions to handle these cases, but in MISHA
by Becker, Chambers, and Wilks (1988) is a notable at- the user can accomplish simulation type programs in a
tempt to bridge the gap between these two different re- reasonable amount of time. In other comparisons, S and
search needs. Yet S has limitations including very slow MISHA are similar in performance and MISIA, at this
execution speed (in loops) and limited advanced graph- time, does not support dynamically linked object files
ics. An important point to be made at the outset is that though this support will be added. Note how the S pro-
a newer version of S, as yet unavailable to us, is said to gram in Table 1 almost triples in size even though the
have solved its memory leak and, thus, is much faster only memory required by this function is for the i, a,
than the version to which we refer here. In this paper, and b variables. We believe that this is the reason be-
we describe a new program that is our attempt to bring hind why loops in this language execute so slowly. It was
to researchers a fast and reliable method to perform data also the incentive for us to begin writing MISHA. Once
and graphical analysis on UNIX workstations. Its main the project started, we decided to include a number of
features are: 1) A flexible and powerful interactive pro- different graphical analysis algorithms and to change the
gramming environment that is fast enough for simulation syntax to a C language format.
studies; 2) Extensibility via user defined functions; 3) In- We contend that a good interactive program should
teractive graphics featuring two and three dimensional exhibit the following five characteristics:
data plots, use of color as a fourth dimension, color im-
age (surface) plots, 3-D color surface plots, rotating 3-D 1. The user should have the ability to run programs in
surface plots and color cycling; 4) sophisticated colorbar both batch and interactive mode.
generation; and 5) publication quality graphics. 2. The event of an error (syntactical, lexical, or com-

1. Introduction putational) should result in a meaningful error mes-
sage.

One of the most popular data analysis tools on UNIX 3. The user should be able to define functions and then
workstations for statisticians is the S program. This be able to use them as easily as the program's builtin
interactive language allows the user to easily calculate functions.
probabilities, obtain random numbers, write special pur-
pose functions, and produce publication quality graph- 4. The program should allow data structures and nu-
ics. The expandability and permanent variables give the merical types that are intuitive and transparent.
user the freedom to write powerful analytical tools, yet
this power is sometimes used inefficiently. Loops are 5. The program should provide the means to have rela-

implemented as a matter of habit when much more ef- tional constructs, looping statements, and graphics.
ficient code may be used taking advantage of the fact
that S supports matrix and array structures. Because of 2. Interactive Programs
the poor execution time of S in loops and the fact that

"James W. Hardin and Henrik Schmiediche are graduate stu- The S program has enjoyed a good deal of popular-

dents, Department of Statistics, Texas A&M University, College ity among statisticians and exhibits all of the properties
Station, TX 77843. mentioned in the last section with a small exception to
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MISHA COMMAND less than 10,000 (NOTE: the author of TIMESLAB has
for U=1;i<=10000; ++i) ported much of his program in the form of S functions,
•o { ;where this limitation does not exist, and made them

a = cmat(rnor=(9),3,3) available on statlib). Another useful interactive pro-

b = inv(a) gram (first demonstrated at another Interface Sympo-
sium) is the MATRIX program (Alexander, 1989) which

EXEC. TIME I START SIZE END SIZE provided users with a powerful PC-based matrix oriented

14 seconds 252K 252K programming language. MATRIX supports user-defined
functions and will output PostScript code. TEX (Knuth

S COMMAND 1986), although not a computational tool, is the em-
for(i in 1:10000) bodiment of a good program. It provides an extremely

{ valuable tool, contains thoughtful and entertaining docu-
a <- matrix(rnorm(9), 3,3) mentation, and meaningful and sometimes humorous er-
b <- solve (a) ror messages-although some users may argue that after

Itracking down errors in a TpX file, nothing is humorous.
EXEC. TIME [ START SIZE END SIZE
26.5 minutes 604K 1728K 3. Graphics

Table 1: Comparison of execution time and program size MISHA has a very powerful graphics engine and sup-
for creating and inverting 10,000 random matrices in a ports user defined plots. Graphics are drawn using in-
loop as run on a Sun Sparc IPX. Sizes are taken from ternal objects and the user has access to any and all
the ps -u command and reflect the size of the combined of these objects in order to define a layout for a plot.
STACK and DATA segments. Comparisons are made with MISHA graphics can be displayed interactively under X
the January 1990 version of new S (X Window System, Version 11 Release 4) and in color

PostScript to produce a hard copy of the plot. Under X,
MISHA will allow the user to display an arbitrary num-

property number 4. For example, if one attempts to cal- ber of plots simultaneously (limited only by computing
culate the square root of -1, an error message will appear resources). MISHA makes every attempt to produce a
on the screen even though the program supports corn- WYSIWYG (what-you-see-is-what-you-get) plot even to
plex data types. This is not to say that this is not a the point of scaling line thickness and fonts to the appro-
viable problem in S, however the user is first required to priate sizes when the plot window is interactively resized.
define a complex structure with -1 as the real part and 0 Some compromises had to be made since X does not sup-
as the imaginary part and then a call to the square root port continuous font scaling (MISHA will use the closest
function will return the appropriate solution. Our point available font size) and font rotation.
is that since complex numbers are included in the pro-
gram, one should not have to employ this extra step. 3.1. Graphics Engine
TIMESLAB (Newton, 1988) has also enjoyed success
among statisticians. The reasons for this are not lim- The heart of MISHA graphics is a graphics engine that
ited to the fact that the program provides a valuable allows for the creation of sophisticated plots using an
computational tool for those interested in time series object oriented approach. The graphics engine manipu-
analysis, but in many ways because users are able to lates two basic kinds of objects which we will refer to as
interact with the program and to write macros. Addi- graphics objects and graphics drawables.
tionally, this program, which differs from S in its ori- A graphics object is simply a low level graphics corn-
gin, TIMESLAB was developed by a statistician while mand to perform some graphics related action. For ex-
S was developed by a team of computer scientists at ample, a graphics object might draw a line between two
AT&T Bell Labs, is distinguishable from many statisti- points or it might place text on the plot. Any graphics
cian written programs in that the main impetus of the object can have several attributes that define the precise
program does not limit the user to specifically that arena. composition of the object. For example, a simple line
The limitation with this program is that it is written between two points will have the following attributes: 1)
for the IBM personal computer family and allows only (xi,yi) and (X2,y 2 ), 2) line width, 3) line color, 4) line
10,000 elements at any one time. Since some of the func- style (solid, dashes, etc.) and so on. Many of these indi-
tions require workspace of twice the length of the data vidual graphics objects are chained together to form the
set, the user is actually limited to data of length much desired plot.
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drawable graphics
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Figure 1: A MISHA graphics drawable with a chain of Figure 2: A MISHA directed tree of graphics drawables.
three graphics objects. The drawable defines the screen Each drawable could contain a chain of graphics objects.
parameters, while the graphics objects draw the desired The MISHA graphics engine would traverse the tree in
picture. the following order: A1 , B1 , C 1, C2 , C3 , D 1, E1 , E2,

B2 , B3 , F1, F2, F3 , G1, G2, F4 .

The second basic type of graphics object is the graph-
ics drawable which, in a sense, provides the canvas on
which MISHA "paints" or draws the plot. More specif- (c) Go to the parent drawable and repeat step 3.
ically it serves the following purporis: 1) it is the be- (d) Exit.
ginning or "anchor" to a chain of graphics objects; 2) This process insures the entire tree is traversed and all
it defines an area on the screen on which these graphics graphics objects are drawn.
objects will function; 3) it defines the coordinate system Even though only one drawable is necessary to con-
for its graphics objects and 4) it performs any necessary struct any given plot, the ability to link graphics draw-
graphics clipping. In addition to these basic functions, ables together in a tree like fashion gives MISHA graph-
the graphics drawable also has a set of attributes like ics increased flexibility and power. It allows the user
foreground and background color, transparency or opac- and/or programmer of MISHA graphics to break a
ity, etc. Figure 1 is a visual representation of a draw- graphic or plot into reusable component parts. For ex-
able and its corresponding graphics objects. Any draw- ample, a standard two way scatter plot generally con-
able can contain any number of multiple descendant or sists of at least three parts-the data points, the x-axis
child drawables. Each descendant or child drawable with and the y-axis. MISHA creates three separate draw-
the same parent drawable are considered siblings of each ables, with arbitrary internal coordinate systems, that
other. Figure 2 shows what a directed tree of drawable create the x-axis, y-axis and the data driven scatter
graphics objects might look like. For more information plot. The final plot would consist of a graphics draw-
on directed trees see Lewis and Smith, 1982 or Knuth, able that places these three drawables in their respec-
1973. tive positions within the parent drawable to create the

Using these two basic types of graphics objects, the final plot. The advantage here is that many plots make
MISHA graphics engine simply constructs any desired use of the above three graphics components and, once
plot through the following series of steps: programmed, they are easily reusable. For example, an

1. Initialize the current drawable (beginning with the n x m matrix plot could be constructed by chaining the
root drawable). scatter plot drawable n x m times off of a root or parent

drawable. We can visualize this process as pruning and
2. Process the graphics objects of the current draw- grafting branches of MISHA graphics trees in new ways

able. to construct new plots. An additional advantage to this

3. Do the first possible of the following choices: approach to graphics is that any changes that are made
to individual drawables will automatically be available to

(a) Go to the next child drawable and repeat all all graphics that uses them. Note that this is also true
steps. for individual graphics objects which is a basic feature

(b) Go to the next sibling drawable and repeat all of object oriented design.
steps. MISHA's method of displaying graphics might seem
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Misha 2D Plot Misha Surface Plot
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Figure 3: A MISHA plot. A plot of the function described Figure 4: A MISHA image plot. The function plotted is
in figure 4 where x: 27 < x < 2,r and y= -, 0,7r. f(xy) = sion(x +y)/ + (x - y)')) where x and y go

from -27r to 2r.

daunting and complicated at first. Note, however, that
actually displaying a plot that has already been pro- nication) and is based on work by Yngvesson and Wallin
grammed into MISHA is easy and generally requires only (1991) and Jones and Saupe (1991). The main reason
one MISHA command. The power and flexibility of the for the choice of this algorithm is speed. The algorithm,
graphics engine comes into play when new plots need coded in C, can interpolate 120,000 data points (pixels)
to be designed while classic plot layouts are included as in under a second on a workstation like the SPARC IPX
commands in the language. with excellent results. In an interactive MISHA session

the user could additionally cycle the color scale. If the
3.2. Graphics Objects color scale is set up properly, this amounts to animating

MISHA provides a variety of basic graphics objects to contour lines over small changes allowing for a visually

construct plots and other graphics. Some MISHA graph- stunning and very informative insight into the precise

ics objects perform tasks like drawing a line between two contour structure of the data.

points, drawing a sequence of connected lines, placing The 3-D surface graphics object three dimensionally

some text anywhere on the screen using numerous fonts projects an image plot on the screen. This is similar

(any font available in postscript), drawing rectangles and in nature to the 3-D mesh plots that some programs

so on. Using these basic objects MISHA with a single generate. Figure 5 is an example of such a 3-D surface
command, can create a standard line plot like the one plot. In an interactive MISHA session, the user could

presented in figure 3. rotate the 3-D surface plot in real time. An additional

Some of the more advanced MISIJA graphics are gen- feature of these 3-D surface plots is the ability to map a

erated using specialized image and 3-D surface graphics fourth dimension of data to the color scale with height,
objects. The image graphics object displays an image depth and width being the first three data dimensions.objets.The mag grahic obect ispays n iage Color cycling is also possible.
plot of three dimensional matrix data. It maps the two

index data dimensions onto the x-y plane and maps the 3.3. Color
third dimension onto a color scale. An image plot is per-
haps best described as a color contour plot. Figure 4 Color can be used in MISHA to enhance the visual
is such a image plot where the color scale is from grey appeal of a plot. Any and all graphic objects that draw
to black. A grey to black color scale does not do jus- something will allow the user to specify a color. By de-
tice to the visual impact that such a plot can produce. fault, graphics objects will use the foreground and ba-k-
The image graphics objects will optionally smooth the ground colors of the graphics drawable to which the)
data to generate smooth contour lines. If it did not, are chained. Thus, changes in foreground and back-
image plots for low resolution data would have a block ground colors will propagate to the individual graphics
like appearance and contours would be jaggy and diffi- objects. Color is specified in MISHA by name, from a
cult to follow. The smoothing algorithm MISHA uses is 700 color name database, or using any one of three com-
based on univariate cubic spline interpolation and was mon color models: RGB (Red-Green-Blue), HLS (Hue-
developed by Graham Dunnett (1992, personal commu- Lightness-Saturation) and HSV (Hue-Saturation-Value).
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Mieha 3D Surface Plot an array of diagnostics along with the usual estimates
and associated p-values.

M 1.00 As the program matures, more of these types of func-

1.0. tions will be added. One of the most important fea-
0.0 0 tures to be offered is the ability of the user to interact

with graphics. This program will offer a new tool for
0.mm the computational statistician and will continue to grow

. and expand directed by its users. With the speed and
graphical abilities in place, time will be taken to expand

-- o.o the intrinsic functions to reflect a more diverse arena of
.3 .14 scientific thought.
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Interactive Analysis of Gappy Bivariate Time Series Using
AGSS

Peter A. W. Lewis and Bonnie K. Ray
Dept. of Operations Research, Naval Postgraduate School

Monterey, CA 93943

Abstract The problem of missing values in time series has
been studied by several authors in recent years, pri-

Bivariate time series which display nonstationary be- marly in a state space framework. Jones (1980)
havior, such as cycles or long term trends, are common used a Kalman filter recursion to calculate the ex-
in fields such as oceanography and meteorology. These act likelihood of a univariate stationary autoregressive
are usually very large scale data sets and often may moving average (ARMA) process with missing values,
contain long gaps of missing values in one or both se- while Harvey and Pierce (1984) and Kohn and Ans-
ries, with the gaps perhaps occurring at different time ley (1986) extended the Kalman filtering method to
periods in the two series. We present a simplified but nonstationary autoregressive integrated moving aver-
effective method of interactively examining and filling age (ARIMA) processes. Ansley and Kohn (1985) gave
in the missing values in such series using extensions of a method of recursively calculating the likelihood for a
the methods available in AGSS, an APL2-based statis- multivariate state space model with incompletely spec-
tical software package. Our method allows for possible ified initial conditions which can be used to interpolate
detrending and removal of seasonal components before an arbitrary pattern of missing values in multivariate
automatically estirnating arbitrary patterns of missing time series. Both the computation and derivation are
values for each series. Interactive bivariate spectral much simpler in the univariate case than in the mul-
analysis can then be performed on the detrended and tivariate case. More recently, Ljung (1989) derived an
deseasonalized interpolated data if desired. We illus- exact expression for the estimates of missing values in
trate our results using a bivariate time series of ocean a univariate ARIMvui process in a form that is useful
current velocities measured off the California coast. for examining the estimates and their mean squared er-

rors. For an arbitrary pattern of missing values, how-
ever, the computations are not very efficient. None

1 Introduction of the above methods is thus easy to implement in

practice for bivariate series which are possibly nonsta-
Gaps of missing values of various sizes are a common tionary and have arbitrary patterns of missing values
problem in many data sets. in oceanographic data, in both series.
for example, a single large gap may arise in the gath-
ering of tidal data when an instrument stops worl ing In this paper, we present an algorithm for semi-
and the malfunction is not detected for several days. automatically filling in gaps in bivariate time series,
Many small gaps are more characteristic of data gath- allowing for trends, cycles, and cross correlation in the
ered from satellites. The missing value problem is com- data. The interactive implementation of the algorith-
plicated for bivariate series in that the gaps may not m allows for visual examination of the data at each
fall at the same time periods in both series. Ad hoc step, giving the practitioner the opportunity to view
univariate methods, such as basing "suitable" replace- the original data with missing values, the "patched"
ment values on the range of values assumed by neigh- data in which the missing values have been filled in
boring points or points of the same periodicity, fail using linear interpolation, and the estimated autospec-
to account for possible cross correlation in the data. trum of the crudely interpolated data. After this ex-
In order to successfully analyze the spectrum of gap- amination, one may choose to remove a trend or cycles
py data sets, or use the data for other purposes, the from the drea. The remaining series is automatically
missing values need to be estimated in a way that is modeled as an autoregressive process and the estinat-
characteristic of the rest of the bivariate data set. ed model is used for interpolation. The method allows
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for joint interpolation of two correlated series, incor- least squares applied to the initial "patched" se-
porating an estimate of the autocorrelation for each ries. The resulting series is
series, and the cross correlation between the two se-
ries, into the interpolated values. At the end of the X2(t) = x 1 (t) - & - it,

interpolation phase, the user has the choice of exam- where a is the estimated constant and b is the
ining the coherence function of the interpolated series, estimated cs tn ih
as well as producing more detailed plots of particular estimated slope.
segments of the series. The following section presents 5. The sample periodogram is automatically esti-
the interpolation algorithm in detail, while Section 3 mated and plotted for the interpolated and de-
gives an application of the algorithm to a bivariate se- trended data, x2 (t). (see, for example, Priestly
ries of ocean current velocity meter readings measured (1981) for a definition of the periodogram and its
off the California coast. interpretation).

6. The program calculates the probability of obtain-
2 Algorithm ing the computed values for the 20 largest val-

ues of the normalized periodogram under the as-
The following algorithm has been coded in APL2 sumption that x2 (t) is a Gaussian white noise pro-
using the IBM APL2 AGSS program as a comput- cess. A small probability indicates that a cycle
ing platform. Thus functions such as regression, the may be present in the data. The probabilities
Fast Fourier Transform used for computing the peri- are computed using the large sample test statis-
odogram of the series, and random number generation tic for Ij, j = 1,2, [n/2], where Ii denotes the
from AGSS are used, as well as some of the AGSS jth largest ordinate of the periodogram. (Priestly
graphics screens. The algorithm is available in a AGSS 1981, p.407).
library from the authors for mainframe or microcom-
puter data. The algorithm is as follows: 7. Using the information obtained in the previous

step, as well as any intuitive or physical knowledge
1. The user is asked to enter the name of the original of cyclic behavior in the series, the user specifiesseries containing gaps and the series is plotted. cycles to be estimated and removed from the in-

Denote this series by x(t), t = 1, 2, ... , n. If there terpolated and detrended data, if desired. The

are two series containing gaps, and the two series

are cross correlated in some way, the user is asked cycles are assumed to be of the form

to enter the name of the second L,.ries and the J
second series is plotted as well. Denote this series st = E{-yjcos(wit) + 3j sin(wjt)},
by y(t), t = 1,2,... ,n. The two series must have j=1
the same length, but the location and length of where j = 27rfj are the frequencies that you
gaps in the series may differ, would like to remove and J is the number of cy-

2. The user is asked to enter the number used on the cles. The -y and 3j are estimated using least
data record to indicate a missing value, squares. The resulting series is za(t) = x 2(t) - St.

3. The program then computes the locations of the 8. A first order autoregressive (AR) model is fitted
gaps and fills in the missing values for each series to the detrended and deseasonalized data x3 (t).
by linearly interpolating between the two points An AR(1) model has the form
on either side of the gap. Denote the linearly in-
terpolated series as x1(t) and yi(t) respectively. X3 (t) = OX3(t- 1)+ ttx(t) t= 2, 3,.. .,n.

The resulting series are then plotted and can be We assume that a,(t'- u2). The pa-
visually examined by the user to decide whether rameter 0 is estimated i east squares. The
removal of a linear trend is necessary. residual series &(t) is

Note: Steps 4-8 are applied to both the x, (t) and ak(t) = X3 (t) - 4X3 (t - 1), t = 2, 3, ... , n.

Yi (t) series in exactly the same manner. Only the 9. The variance of {k(t)} is calculated and a white
results for the xi(t) series are given below, noise series of length n having the distribution

4. If so desired, the program removes a linear trend N(0, &2,) is generated. Denote this series by
from each series. The trend is estimated using a'.(t).
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10. Let I denote the length of a particular gap in the noise term in the usual expressions for the backward
series and let X3(t) and X3(t + I + 1) denote the and forward forecasts of an AR(1) model. This is to
points on either side of the gap. The program eliminate unrealistic "smoothness" in the interpolated
forecasts and backcasts from each end of the gap values, which will occur if the gap is very long. Real-
using the following recursive equations for j = istic noise in the series is important if the interpolated
1,2,... ,l. series will be used to estimate the spectral density of

the series. Similarly, in Step 11 we incorporate an esti-
t -3(t+) = (t+ j -- 1) + a-(t + j) mate of the contemporaneous correlation between the

:a(t +1+1 - j) = ýx3(t +1+2-j) two series into the estimates of the interpolated values
of the second series by including a noise term taken

+ a(t + L + 1 - ).from a simulated bivariate Normal pair of series with

Then the interpolated value is correlation c. The method for generating a bivariate
Normal pair with specified correlation is taken from

i3 (t+j) = u1j 3(t + j) + wu'2 j 3(t + I + 1 - Lewis and Orav (1989, p.301). A discussion of con-
temporaneous bivariate time series models made be

where w1d = 1 - (j1l + 1) and u)2j = 1 - w 1 . found in Camacho, Hipel, and McLeod (1987).

11. If interpolating values for two correlated series,
the standard deviation of the residual series
{&t(t)} and {&,(t)} found in Step 8 is calculat- 3 An Example
ed and the sample cross correlation at lag 0 be-
tween {&a(t)} and {f,(t)} is computed. Denote We apply the above algorithm to a vector pair of

this by c. A white noise series of length n having ocean current velocities collected off Point Sur, Cal-

the distribution N(0, &.,) is generated. Denote ifornia over the period 0000 hours, Sept. 19, 1990

this series by a,(t). A second white noise series of to 2300 hours, Oct. 30, 1990, a total period of 1008

length n is generated using the following relation: hours. Current velocities are just one set of variables
which are collected regularly by oceanographers at the

a+(t) = c(cr~,,/&, 3)az(t) -at Naval Postgraduate School in order to provide infor-mation related to the long term variability in sea sur-
face temperatures off the California coast. The veloci-

12. The values for the y3(t) series are interpolated as ties were measured using a paddlewheel and electronic
in Step 9, with a'(t + j) replaced by a,(t + j) counter assembly located at the top of the recording

13. The estimated trend and cycle are added back to unit placed at a depth of 350 meters. Velocity, in units
the interpolated series and the series containing of cm/s, was determined from the number of revolu-
the final estimates of the missing values is plotted. tions made by the paddlewheel during each sampling

interval, to an accuracy of ±1.0 cm/s. The data was
14. The user may choose to plot the coherence func- initially recorded at 30 minute intervals. After initial

tion for the detrended and deseasonalized inter- visual inspection for outliers or periods suspect of in-
polated series if desired. strument failures, and manual editing if necessary, the

15. The user may also choose to plot more detailed data was filtered using a Cosine-Lanczos filter with
a centered 25 point data window and interpolated to

segments of the final interpolated series if desired. specified 60 mint inta At thi intere ro
specified 60 minute intervals. At this point, there re-

Using a weighted average of backward and forward mained a period of 63 consecutive hours of missing da-
forecasts made from each end of a gap using an es- ta, in which the data gathering instruments were not
timated univariate ARMA model, as was used in Step working. There were also a few scattered individual
10, was discussed by Abraham (1981). He calculates missing values.
the weights to minimize the mean-squared error of the Figures 1 and 2 show plots of the E-W (or u) corn-
interpolated value, thus the weights depend in a com- ponent of the current velocity, and the N-S (or v) com-
plicated way on both the estimated model parameters ponent of the current, with missing values coded as 0.
and the length of gap. Our method, although sim- Figures 3 and 4 depict the same series with missing
ple, is intuitively appealing in that it gives less weight values "patched" using linear interpolation. There ap-
to interpolated values at long lead times and is easy pear to be regular cycles in the data, as expected for
to implement when the lengths of the gaps are dif- current data, as well as the prescnce of a long term
ferent. Note that in Step 10, we include a simulated trend. We fit a linear trend to both the u and v cur-
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rent components, with estimated constants of 3.91 and 4 Summary
1.60, respectively, and estimated slope coefficients of
-0.0018 and -0.0003. Standard t-tests on the signifi- We have presented a simple algorithm which permits
cance of the regression coefficients are not appropriate interpolation of arbitrary patterns of missing values in
because the residuals are not assumed to be uncor- both univariate and bivariate time series, allowing for
related. Figures 5 and 6 show the periodogram for the possibility of non-stationarity. The implementa-
each detrended series. Diurnal and semi-diurnal cy- tion is interactive and has graphical capabilities avail-
cles are clearly indicated for the v-component of cur- able at each step. It is also much easier to implement
rent velocity, with only the diurnal cycle clearly seen in practice than the state-space approach of Ansley
in the u-component. In addition, there appears to be and Kohn(1985), which requires modified versions of
some long range dependence in the data, as evidenced the Kalman filter and the fixed point smoothing al-
by the large values of the periodogram at small fre- gorithm. The estimated contemporaneous correlation
quencies, which remain even after the removal of a between the two series is used in the interpolation al-
long term trend. See Lewis and Ray (1992) for a dis- gorithm in order to estimate the missing values in a
cussion of long range dependence in sea surface data. manner that is consistent with the rest of the data.
Based on the approximate p-values of the test statistic Although we have assumed that each series follows a
for each of the 20 largest periodogram ordinates and simple AR(1) model, the algorithm could easily be ex-
knowledge of the tidal cycles, we remove cycles at fre- tended to model each series as an ARMA(p, q) model,
quencies (in cycles per 1008 hours) 81, 82, and 84 in with the orders of p and q chosen by the user after
the u-component and frequencies 42, 81, 82, and 84 examination of the sample autocorrelation and par-
in the v-component. Table 1 gives the values of the tial autocorrelation functions of the detrended and de-
normalized periodogram values at these ordinates and seasonalized "patched" data. Functions necessary to
the resulting p-values for the test statistic. After this compute the sample correlation functions and estimate
step, the missing values are automatically estimated the parameters of an ARMA(p, q) model are already
for the detrended and deseasonalized data. Figures 7 present in the IBM APL2 AGSS package. (The AGSS
and 8 show the two series with final estimates of the application disdussed here is available from the au-
missing values, after the trend and cycles have been thors; the AGSS package is available from IBM.)
added back to the series. The estimated values appear
to follow the pattern of the data quite nicely.
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Figure 1: U-component of Current Velocity (missing
Tables and Figures values coded as O's)

Table 1: Normalized Periodogram Values for Ocean
Current Velocities

U-component of current velocity
Frequency Norm. Periodogram Value p-value PLOT OF YWtR.NT

1 106.14 0.00 I s MWNG MM
81 88.52 0.00
2 35.67 0.00
82 22.42 0.00
84 20.85 0.00

V-component of current velocity
Frequency Norm. Periodogram Value p-value J

81 195.51 0.00
1 69.88 0.00
84 34.81 0.00

2 20.90 0.00
82 14.40 0.00
42 10.09 0.11

4o 1o 1o 1 1 1 1 1 1

7WE

Figure 2: V-component of Current Velocity (missing
values coded as O's)
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PLOT OF UCURRENT WITH INITIAL ESTIMATES OF MISSING VALUES ESTIMATED SPECTRAL DENSITY FOR UCURRENT
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Figure 3: U-component of Current Velocity (missing Figure 5: Periodogram of U-component of Current Ve-
values linearly interpolated) locity after linear detrending
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Figure 7: U-component of Current Velocity (missing Figure 9: Cross-amplitude Spectrum (top), Phase
values estimated using complete interpolation proce- Spectrum (middle), and Coherence (bottom) of
dure) U-component and V-component of Current Velocity
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values estimated using the complete interpolation pro- V-component of Current Velocity after final estima-
cedure) tion of missing values
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A COMPARATIVE VISUALIZATION STUDY OF A
GRAPHICAL MULTIVARIATE NORMALITY GOF TEST.

Jorge Luis Romeu
Department of Mathematics
SUNY Cortland, NY 13045

jromeu@suvm.bitnet

Abstract 10 The Graphical Test.

An ordered sequence of plots of a new graphical The Multivariate Qn (Ozturk and Romeu, 1992)
multivariate normality test, performed on samples of graphical procedure can be divided into three parts: (i)
selected distributions, is presented. The multivariate the confidence ellipse, (ii) the lower half of the pattern
sample is transformed into a set of linked vectors in and (iii) the upper half (Figure 1). When a sample comes
a bivariate space. According to where the vector from a multivariate normal distribution, the
endpoints fall, in relation to the confidence ellipse, corresponding linked vector closely follows both halves
multivariate normality is accepted or rejected. If of the pattern and ends within the confidence ellipse.
normality is rejected, we visually analyze where the When the sample comes from another distribution, its
vector's endpoints fall, outside the confidence vector endpoint falls outside the confidence ellipse. But
ellipse. We also compare the linked vector pattern, the area, outside of the ellipse it falls, and the pattern it
in relation to the null (solid line) pattern. This visual follows, is closely associated to the distribution it comes
analysis provides an indication of how does the from. In this paper we present a study of test patterns
alternative non normal distribution looks like. from non normal alternative distributions.

V

0.6-

0.4-

0.2

ist. Half

0.0

-0.2 0.0 0.2 0.4

U

Fiqure 1.



306 Graphical Multivariate Normality GOF

2.0 Non Normal Alternatives. Finally, we chose the Chi Square distribution with 10
d.f. as one which would be skewed and kurtic at the

The bivariate distributions in this study (Figure 2) same time. But the degree of skewness would be
were chosen as to be (i) more skewed, (ii) more consistent with that of the GLD used. And the degree of
kurtic than a bivariate normal and (iii) a combination kurtosis, with that of the t distribution.
of these. In this paper we only present results for
three special cases: skewed, kurtic and combination. We sampled these distributions extensively in a Monte
Samples of size n= 100 were drawn and submitted to Carlo power study for our test (Romeu, 1990). In this
our graphical test. paper, we undertake a visual study of the patterns

obtained when samples come from such distributions.
We used the Generalized Lambda Distribution
(GLD) to obtain an increasing sequence of bivariate Existing multivariate normality GOF tests are not
skewed distributions. We chose the bivariate graphical. Ours allows the user not only to accept or
Uniform to have a flatter distribution than the reject, but to obtain a sense of where to go next (i.e.
bivariate normal. We chose the bivariate T with 8 what does de alternative distribution looks like) in the
d.f., -to have a peaked distribution. Both of these last case.
were purely Kurtic (i.e. no symmetry problems).

Skewness Bivariate Distributions:

1.5 
GD

Sk wed

1.0

0.5 0.5 Syrm metric

Platikurtic K/P7-k

00 LKurtosis
6.0 7.0 8.0 9.0 10.0

Normal Distribution has Skewness 0.0 and Kurtosis 8.0

Figure 2. Statistical Distributions in the Skewness vs. Kurtosis plane.
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3.0 Purely Skewed Distributions. 0.6

The pattern shown in Figure 3 corresponds to a
sample taken from GDLI, a bivariate distribution
with skewness of 1.5 and kurtosis of 8.0 (purely
skewed). We see how the endpoint of the sample
linked vector falls off the upper left quadrant of the 0.4-4-- '
confidence interval. This allows us to reject bivariate
normality at all (90%, 95%, 99%) levels.

In addition, we observe the distinct pattern of the
sample linked vector, sharply increasing in the first 0.2
half, then changing direction before ever crossing
the null distribution pattern.

We can use this test pattern to recognize a purely
skewed non normal alternative. 0.0o

-0.2 0.0 0.2 0.4

Figure 3.

4.0 Purely Kurtic Distributions.
V

0.6- In Figure 4 we show a sample from a bivariate Uniform,
having skewness of 0.0 and kurtosis of less than 6.0
(purely kurtic).

We observe how the sample vector endpoint now falls
.way above the confidence ellipse, but on its vertical

0.4 -center axis. In addition, we can now observe a totally
different vector pattern on the two halves of the linked
vector path. The first half is much closer to the null
pattern, crosses it and changes direction beyond the point
where the null pattern does. Then, the upper half moves

0.2 sharply upward.

This is a totally different pattern from the one presented
in Figure 3, and allows us to recognize the sample as
coming from a symmetric, flat, non normal distribution.

0.0O_ _ _ _ _ _ _

I The pattern corresponding to a leptokurtic distribution is

-0. 2 0.0 0.2 0.4 not presented for lack of space, but is also distinctive
(Table 1).

Figuzre 4._
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5.0 Combined Skewed/Kurtic Distributions. V

In Figure 5, we show a sample of pattern from a 0.6-
mixed skewed/kurtic distribution: the Bivariate Chi
Square with 10 d.f.

We can see how the sample linked vector endpoint
also falls off the confidence ellipse, entirely to its 0.4
left. We can also notice how the vector pattern
remains, during its entire trajectory, before (1st.
half) or below (2nd half) the pattern of the null
vector, which it never crosses. This characteristic
pattern of the sample linked vector also provides a 0. 2
distinct test visualization.

It is with this graphical visualization that we
recognize this sample as coming from a combined
skewed and peaked non normal distribution. 0. 0

-0.2 0.0 0.2 0.4
6.0 Results. Figure 5.

On Table 1, we show a graphical comparison of six
patterns of the sample linked vectors. The patterns
have been subdivided into three parts: (i) lower and
(ii) upper halves of the vector trajectory and (iii)
endpoint position with respect to the confidence
ellipse, distribution we want to test next. Or we may want to (ii)

assess the type of non normal departure we are dealing
We have classified the six non normal distributions with in order to implement the transformations necessary
under study into three groups: (i) skewed, (ii) kurtic to redress the problems.
and (iii) combination. GLD-2 and GLD-3 are two
bivariate distributions generated using the None of the other multivariate normality tests studied
Generalized Lambda Distribution. Its objective is to provides this capability.
provide, for comparison, an intermediate
(skewed/kurtic) result between, respectively, the flat 6.0 Bibliography.
bivariate Uniform and the highly skewed GLD-1.

Ozturk, A. and J. L. Romeu (1992), A New Method for
We can observe three distinctly different linked Assessing Multivariate Normality With Graphical
vector patterns, corresponding to these three non Applications, Communications in Statistics; Simula.,
overlapping distribution classes. Hence, when 21(l), pages 15-34.
rejecting multivariate normality, it is now also
possible to identify the pattern of the sample and Romeu, J. L. (1990), Development and Evaluation of a
then to, (i) make an educated guess as to which (non General Procedure for Assessing Multivariate Normality,
normal) alternative CASE Center Technical Report No. 9022, CASE Center

of Syracuse University. Syracuse, NY. 13244-4100.
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Some Integration Strategies For Problems In Statistical Inference

Michael Evans Tim Swartz
Department of Statistics Department of Mathematics and Statistics

University of Toronto Simon Fraser University
Toronto, Ontario Burnaby, British Columbia
Canada M5S 1A1 Canada V5A 1S6

Abstract all situations, give us some guidance in the design of
appropriate algorithms. For example Chen(1985) gives

This paper surveys the techniques and approaches general conditions for the asymptotic normality of the
available for the numerical approximation of integrals, posterior.

There are many problems in statistics where the approx- Also in Bayesian problems our primary interest may

imation of integrals is necessary. In particular imple- be in ratios of integrals as in (1.2). Some algorithms

menting a Bayesian data analysis typically requires the explicitly avoid the evaluation of (1.1). There are, how-

evaluation of many integrals and the dimensionality of
ever, many contexts where the norming constant (1.1) isthese can be very hi~gh. The study of Monte Carlo algo- required, e.g. assessing model adequacy and choosing a

rithms, suitable for such problems, is a research topic of model.

great current interest in the statistical community. These considerations give characteristics of integration

problems in statistics which tend to distinguish them
1. Introduction from the general kind of integration problem a numerical

With many problems in statistical inference we are analyst might be confronted with. We now proceed to

faced with the need to evaluate discuss four broad categories of integration techniques
and their relevance to the evaluation of (1.1) and (1.2).

IRk f(x)dx (1.1) We classify these as:

1. asymptotics
for some f : Rk -- R. In particular in Bayesian inference
f Ž 0 is the product of the likelihood and prior and (1.1) 2. sampling from the posterior
is the normalizing constant for the posterior. We will
denote the posterior density by p, namely p is f divided 3. multiple quadrature
by (1.1). More generally, in the Bayesian context we 4. importance sampling.
want to evaluate the posterior expectation of g : Rk --+
R, namely 2. Asymptotics

fik g(x)f(x)dx (1.2) Lindley(1961, 1980) proposed a normal approximation
fR. f(x)dx to the posterior density p. Chen(1985) gives general con-

for many different g. ditions for this approximation to apply. The approxima-
Sometimes highly accurate estimates of integrals are tion is

required in statistical contexts, e.g. the approximation of
distribution functions for commonly used distributions. 1
When these integrals depend on data produced by some p(x) z (27r)-k 2 (det •)-/ 2 exp{2 (x - .j):- i (x -.. )}
random process, however, there is no point in pursuing (2.1)
a level of accuracy much beyond the level of variation in where is is a local maximum of f and f is
the value of the integral we would expect due to sampling
error. In most Bayesian problems the latter situation (-42 logf(x)/49Zaz)-, (2.2)
obtains and hence even very high dimensional integrals
can be realistically approximated. evaluated at ji. This leads to approximating (1.1) by

In many statistical problems we often have asymptotic
results which, while not necessarily accurate enough for (2wr)k/ 2(det ') 112 f(&A). (2.3)
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If we can integrate g with respect to this multivariate There is a full discussion of the many algorithms which
normal then we have a natural approximation to (1.2). we might use for solving this problem in Devroye(1986).
Alternatively we could expand g about i4 in a Taylor's Of particular interest is the rejection algorithm due to
series and integrate the first few terms of this expan- von Neumann(1951). For this we need a density w satis-
sion. Using only the first term in this expansion gives an fying f <_ cw, for some constant c and an algorithm for
0(1/n) approximation when f is the unnormalized pos- generating from w. We then generate X from w statisti-
terior and n is the sample size. If this is not feasible we cally independent of U generated from the Uniform(0,1)
can approximate (1.2) 'y generating X 1,..., XN from distribution. If f(X) >_ cUw(X) then we accept X and
the Nk(4A, f:) distribution and computing it easy to show that in this case X -, p. Suppose to

obtain our sample Xi, ... , XN from p, we actually gen-
I Jverated N* values from w. Then, in addition to (2.4) as

N" Eg(Xi). (2.4) an estimate of(1.2), we have that cN/N" estimates (1.1)
i=1 in the sense that it converges almost surely to this value.

We note that (2.3) is Laplace's approximation to (1.1). The variance, times the Monte Carlo sample size N, of
Applying Laplace's method to both the numerator and this estimate of (1.1) is given by
denominator of (1.2), Tierney and Kadane(1986) gave an
asymptotic approximation for this posterior expectation / d -(
when g is nonnegative. Further they discussed the ap-
plication of this technique to approximate the marginal which is estimated by
density of the posterior distribution of g. This was ex-
tended to deal %% ith nonpositive functions in Tierney, c2 N ( N (3.4)
Kass and Kadane(1989). The advantage of using the 7- -
Laplace technique for the numerator and denominator The difficulty in implementing the rejection algorithm,
in (1.2) is an increase in the order of approximation to and the reason it does not generally provide a realistic
0(1/n 2) without the need to compute derivatives beyond solution to the problem, is that it is typically extremely
order 2. difficult to find a w satisfying the inequality. Even when

Other features and applications of this approach to this is possible the resulting algorithm is often inefficient
approximate Bayesian calculations have been discussed in the sense that most of the computing time is spent in
by Kadane, Kass and Tierney and other authors. These computing generated values which are rejected. This
methods have been shown to give remarkable accuracy in difficulty increases as the dimension of the integral rises.
a number of contexts and to be computationally efficient. A current focus of interest in the statistical community
One difficulty lies with how to assess the error in an is a class of algorithms which do not exactly generate a
approximation in a given context. value from the posterior but only do so approximately

with the approximation improving with the length of
3. Sampling From The Posterior time the algorithm is run. As most of these algorithms

Given the relatively low-level of accuracy demanded in are based on the probabilistic structure of a Markov

many statistical situations, it can be argued that an ideal chain, they are sometimes called Markov chain meth-

solution to integration problems in Bayesian inference ods, see for example Tierney(1991). The basic idea is

would be an algorithm to generate a sample from the to construct a Markov chain X1 , X 2 ,... which has p as

posterior density p. Thus we would generate X1 , • •. , XV its unique stationary distribution. Then as we run the

from p and approximate (1.2) by (2.4). By the Strong chain XN converges in distribution to p as N - co. Fur-

Law of Large Numbers the estimate converges almost ther, via an appropriate ergodic theorem, (2.4) converges

surely to the correct value. If the posterior expectation almost surely to (1.2). Error assessment is primarily car-

of g2 exists then the error in the approximation can be ried out by comparing Pstimates from runs of different

measured by the variance of (2.4) and N times this quan- lengths and inferring convergence when differences are

tity is given by small. Estimating (1.1) is not quite so straightforward
but there are several possible strategies which we willJ 2 (x)p(x)dx - g(x)p(x)dx)' (3.1) not discuss here.

JR IRA. Markov chain methods are generally related to the
which is in turn estimated by Metropolis algorithm, the basic version of which was

N first presented in Metropolis, Roser.bluth, Teller and
1 [Zg 2(X,)_ N(1N- g(X,)) 2]. (3.2) Teller(1953). For this we specify an initial, time ho-

N 1 N i=1 mogeneous Markov chain on suppf, say with transition
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density functions q(. I x) for each x E suppf and an ini- densities is log -icave then Gilks and Wild(1992) have
tial state Xo E supp f. Then we generate a new Markov developed an adaptive rejection algorithm for generating
process as follows : given that we are we are in state from each of the conditionals. More generally Gelman
XN at time N, generate Y from q(. I XN) and put and Rubin(1992) describe a generalized Metropolis al-
XN.+1 = Y with acceptance probability gorithm which allows the conditionals to be replaced by

approximations.
A(XN,Y) -in= f(Y)q(XN I Y) 1) (3.5) 4. Multiple Quadraturemi/(XN)q(YI [XN)' 4 utpeQ artr

else generate a new Y. See Tierney(1991) for a discus- Multiple quadrature rules perhaps represent a more
sion of what conditions are necessary for p to be the traditional approach to integration problems. While
unique stationary distribution of this chain. A more they are the technique of choice for relatively low dimen-
general form of this algorithm can be given; see Gel- sion k, as k grows they become impractical and Monte
man and Rubin (1992). The essential difficulty with this Carto methods become necessary. Research on these
algorithm is an appropriate choice of q to ensure rapid methods seems to be steadily increasing the- dimension
convergence, where they are suitable and may lead to practical meth-

As a special case of the generalized Metropolis al- ods for high-dimensional problems as well.
gorithm we have the Gibbs sampling algorithm. This First we will discuss quadrature rules; i.e. rules for
was first presented in the context of a Bayesian ap- k = 1. A quadrature rule for approximating
proach to image restoration problems by Geman and
Geman(1984). Its broader implications for Bayesian (.h())w(x)dx
statistics were noted by Gelfand and Smith(1990). We 00o
describe a special case of this algorithm. Let pi(. I where w is a density on R, takes the form
X11..., Xi-1, Xi+., ... , Xt) denote the conditional pos-
terior density of the i-th coordinate of X given the re- m
maining coordinates. The algorithm then proceeds as jwih(xi) (4.2)
follows. We specify an initial state X0. Then given
the N-th state XN = (XN,1,. .XN,) we generate the for points zi and weights wi. For calculating (1.1) we
N + 1-st state ink steps: put h = f/w when suppf g suppw. For a thor-

ough treatment of quadrature rules see Davis and Ra-
generate XN+I,1 - Pl( I XN,2, ... , XN,k) binowitz(1984).
generate XN+1,2 - P2(" I XN+1,xXN,3, ... ., XN,k) There are many different classes of quadrature rules,

determined by how we select the weights and points.
Givwn that we have selected distinct points xl,. .. , x. a
common method of determining the weights is to inter-

generate XN+I,k - pk(" IX+i,1 ... ,XN+1,L-i). polate h at these points by a polynomial of degree m-I
and integrate this times w, assuming of course that w

The convergence of this algorithm is discussed in has its first m - 1 moments. Such a rule is called an
Scher .,ish and Carlin(1990). This can be very fast in interpolatory rule and it obviously exactly integrates h
many important practical problems. The convergence is whenever h is a polynomial of degree less than m. For
affected, however, by the shape of the posterior and it example when w is the uniform density on some interval
can be very poor, see for example Evans, Guttman and and the zi are equispaced in the interval and include the
Olkin(1991). end-points, we get the Newton-Cotes rules. When m = 2

The Gibbs sampling algorithm described above re- this is the trapezoid rule and when m = 3 this is Simp-
quires that we have algorithms to generate from each son's rule. In an application these rules are often com-
of the conditional distributions. Hence implementation pounded; i.e. the interval is divided up into subintervals
of the algorithm described above is restricted. This can of equal length and the rule is applied in each subinter-
be addressed in a number of ways. Sometimes latent val. It can be shown that provided the rule integrates
variables can be added to the problem, increasing the di- constants exactly then the compounded rule converges
mension of the integral, in such a way that it is relatively to (4.1) as the number of subintervals increases.
straight-forward to generate from all o" the conditionals Given that we are free to choose the p "nts, we might
of this augmented set of variables. This technique is due try to choose them optimally so that they exactly inte-
to Tanner and Wong(1987). If each of the conditonal grate all polynomials up to some maximal degree. Such
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rules exist whenever w has all its moments up to order matrix. Hence Naylor and Smith(1982) use an adap-
2m. They are called Gauss rules and the maximal degree tive approach which computes an initial approximation
is 2m - 1. For example when w is the N(0,1) density we to the posterior means, variances and covariances, us-
get the Hermite rules, when w is a Gamma(a) density ing product Hermite rules. They then transform the in-
we get the Laguerre rules and when w is a Beta(a,fl) tegrand using these quantities, so that the transformed
density we get the Jacobi rules. Obviously Gauss rules posterior now has approximate mean 0 and variance ma-
have significance for many statisitical applications. For trix I. They then iterate this until the process stabi-
a particular f the idea is to choose w so that h = f/w is lizies. Of course this may not work if the shape of the
well-approximated by a low-degree polynomial and then posterior is far from the normal but it makes the point
use a Gauss rule for w to approximate (1.1). To assess that successful application of a multiple quadrature ap-
the error in the approximation we repeat the calculation proach requires that the integrand be appropriately lo-
with a rule containing more points and compare the re- cated, scaled and not have the bulk of its mass concen-
sults. This is the usual method for assessing error when trated near a hyperplane.
using multiple quadrature rules. Various attempts have been made to avoid the dimen-

The simplest methocd of constructing multiple quadra- sional effect described above. One idea, due to Ham-
ture rules; i.e. a rule for k > 1, is to form product rules. mersley(1960), suggests that we estimate (4.4) by sam-
Hence if pling the terms in this sum via Monte Carlo. When each

f f(XI,. . -) rule in the product is a Gauss rule then wi,i, > 0 and
.W(I),... Wk(X) (4.3) wi,j, +"" + wi,m, = 1. Hence we can sample the terms

of the sum using the weights as a discrete probability
where the wi are densities, a product rule approximates distribution. Evans and Swartz(1988) give an extensive
(1.1) by analysis of this technique.

Another approach to avoiding the computational

m ,,, • mproblems associated with product rules, is based on the

S... : wl.i ... wk,ik ( 1,i ..... --- Xki,) (4.4) fact that, when the i-th rule in the product rule inte-
,l i.l grates exactly all polynomials of degree ni or less, then

the product rule will exactly calculate
where the xi,i, and wi,i, are the points and weights of
i quadrature rule associated with wi. Ignoring the diffi- [ z" ... 4' w(x)dx (4.5)
culty of how to choose the wi for the moment, we note JRk

that such rules suffer from a dimensional effect, namely where w(x) = wI(XI) ... Wk(zk) and ij < nj for j =
to implement (4.4) requires mi ... mk function evalua- 1,... k. We then look for rules with similar properties
tions. For even modest dimensions, e.g. k = 10, this but requiring far fewer function evaluations. For a gen-
requires far too much computation to be practically use- eral density w on Rk a rule takes the form
ful. Further it can be shown that if we take all the rules
to be the cornponded trapezoid rule then the error in m
(4.4) is O(1/N 2 /k) where N is the number of function -wih(xi) (4.6)
evaluations. Hence it would appear that, since the rate
of convergence of importance sampling , see the next and if it calculates (4.5) exactly, whenever il+. • .+ik < d
section, is Op(l/N"/2 ) under fairly general conditions, it is called a monomial rule of degree d. The problem
then the product trapezoid rule is not competitive with then is to find a monomial rule of degree d with the
Monte Carlo whenever k > 4. Similar results hold for smallest m. An important class of monomial rules is
other product rules. given by the fully symmetric rules. These arise when

Product rules can be effectively used, however, in w is invariant under permutations and sign changes of
lower dimensions. For example Naylor and Smith(1982) the coordinates; e.g. the uniform density on [-I, ilk,

use product Hermite rules successfully in a number of and the xi arise from applying these transformations to
problems. Their usage also illustrates another point con- some finite set of points called the generators of the rule.
cerning the application of multiple quadrature rules. For There is one weight for each generator which is then also
it is unlikely that f is well-approximated by a Nk(0, I) associated with each transformed point. Fully symmetric
density times a low degree polynomial. Asymptotics sug- rules with smallest or close to smallest number of points
gest, however, that this often will be the case if we re- have been obtained for a number of w. These are in
place the Nk(0, I) density by a Nk(p, E) density where general not easy problems to solve and sometimes the
IA is the posterior mean and E is the posterior variance rules suffer from some of the points lying outside supp w.
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Davis and Rabinowitz(1984) contains a more extensive ancy
discussion.

An interesting approach to generating multiple Dav =_1 f NI(X.)- .

quadrature rules gets away from the requirement of ex- N J[0= 1 N I ---1 .]
actly integrating monomials but constructs rules which (4.11)
will be good, in an average sense, for a class of integrands For example the Hammersley sequence, see Davis and
which arise from a stochastic process. This is sometimes Rabinowitz(1984) for a definition of this, has been shown
called Bayesian quadrature as choosing the stochastic to satisfy D;"'" < O((logN)k-1 /N) and hence has a
process is analogous to choosing a prior. Hence suppose better error rate than importance sampling. A recent
w is a density and we want to calculate result of Wozniakowski(1991) shows that a minor ad-

justment of the Hammersley sequence has an optimalityIRh(x)w(x)dx (4.7) property when using average-case complexity, to = I and
h distributed as a Wiener process on C[O, 1]k. For a dis-

where h arises from a Gaussian process with some mean cussion of the use of these rules in statistical contexts
and covariance functions. The conditional distibution see Shaw(1988).
of (4.7) given the values of h at xi, . . ., x, is then nor- The subregion adaptive algorithms, as described in
mally distributed with mean and variance determined van Dooren and de Ridder(1976), Genz and Malik(1980)
by the mean and covariance function of the process and and Genz(1991), make use of multiple quadrature rules.
the xi. This conditional mean is of the form of a con- For these algorithms the problem is transformed so that
stant plus (4.6) and is a natural estimate of (4.7). The the domain of integration is [0, 1]J. The algorithm pro-
problem then is to choose these points to minimize the ceeds iteratively as follows. Let f > 0 and start with one
mean-squared error. This is discussed at some length region B1l = [0, 1]k. At the n-th step (0, I]k has been
in O'Hagan(1992). There are several problems which partitioned into n subregions Bn1 , ... , Bnn and multi-
remain to be solved, not the least of which being the pie quadrature rules have been applied in each subre-
optimality problem, but the possibility exists that new gion to get estimates RP1 , .-. •, Rnn of the integrals of
and useful multiple quadrature rules will be obtained by the integrand over these sets and also error estimates
this approach. E/ 1 ,...,En,.. The error estimate Eni is obtained by

Lattice or quasirandom rules form another class of computing RPi using rules of different orders and com-
multiple quadrature rules. These typically require that paring the results. If En, + ... + E,, < c the algo-
the problem be transformed to rithm stops and otherwise splits the region Bni with

E=i = max{E~i 1 1 < j 5 n}. The partitioning algo-
0 h(x)dx (4.8) rithm takes the regions to be rectangles with sides paral-

,10o1]h lel to the coordinate axes and uses a criterion to choose
which side of the rectangle to split to form the subrectan-

where h is periodic; i.e. h(zl,..., i-1,, ..0 .z) = gles. The algorithm has been applied in some statistical
h(zl .... ) 24-1) 1, xi+,,..., ,z ). A lattice rule then takes
the form of a specified sequence of points X1, X 2,... in
[0, 1]k and approximating (4.8) by 5. Importance Sampling

I h(X,) (4.9) Suppose that w is a density on R' satisfying suppf C
"E i ( suppw and tbat we have an algorithm for generatingsamples from w. Let X 1, . .. ,XN be a sample from to.

for some N. Error assessment is performed by computing Then the importance sampling estimate of (1.1) is given
(4.9) for different N and comparing results, by

When using such a rule the problem is to determine
good sequences. To measure this there are num,:r :F I N f (Xi)
criteria; e.g. the worst-case discrepancy N" w(Xi) (5.1)

N and the estimate of the numerator of (1.2) is
=1wee0,N =fsu [0,up0,thavrg-case dic(

tc~~I N= 9 (X,)f(X,)
where (0, t] = r'Ii=: [0, t,], and the average-case discrep- N" Wt(X,) "(.2
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By the Strong Law of Large Numbers these quantities the optimal choice, in that it minimizes (5.3), is w oc f.
converge almost surely to the quantities they are esti- This is of course unrealistic, but it underscores the point
mating. Also the ratio of (5.2) to (5.1) converges to that the success of importance sampling depends on the
(1.2). We have that N times the variance of (5.1) is closeness of w to p, the normalized version of f, and
given by f(f 2 (x)/w(x))dx provides a suitable measure of this.

f 2(x)dx- f. X2 (53) We now discuss methods of selecting a suitable w.
w(x) - (jfJx)ax) For this let W = {Wx I A E A) be a class of possible

and N times the variance of (5.2) is given by importance samplers for a problem. For example, and
this is a commonly used class, we could take W to be

g(x)f2(X) the class of distributions generated by a + BZ where

W(x)f dx (x)f(x)dx) 2  (5.4) a E Rk,B E Rkxk is lower triangular with positive di-
agonal elements and Z is distributed as a k-dimensional

and these integrals are implicitly over suppw. If both Student(r) distribution. Hence in this case A = (a, B, r).
(5.3) and (5.4) are finite then the asymptotic variance of Naturally we would like to choose A E A to minimize
the ratio of (5.2) to (5.1) is f(f 2 (x)/wx(x))dx. This is generally a difficult problem

to solve but it may be worthwhile computationally to
'l(')2 [( -2- L 2 - 2(týLi)(L)•JP12  (5.5) do so, particularily if we are going to use w to compute

N P1 0i a2 al a2 many posterior expectations.

where y, equals (1.1), o,2 equals (5.3), P2 equals (1.2), Given the difficulty of solving the optimality problem
2 u there is a natural alternative, namely choose a w E W

02equa )and P12 = 2/'1'2 with which agrees with p in some set of selected characteris-

f g(x)f 2 (X) tics. We call this matching characteristics. For example
O'12 = dx - PIP2- (5.6) when using the Student family discussed above, a natu-

ral choice is to take a to be the mode of the distribution

Thus the variance of the importance sampling estimate and B to be the Cholesky factor of (2.2) evaluated at
of (1.2) is estimated by substituting the importance sam- the mode. Of course this requires the unimodality of
pling estimates of each of the relevant quantities into f. The choice of r is more difficult but as the finiteness
(5.5). For example we estimate (5.3) by of the variance of our estimators is determined by the

tail-length of the importance sampler, it is best to be

1 .I N--.f(Xi) )2 - N( I N fXi) (5.7) conservative and choose r low.

N-i W(X) N w(Xi))2] Using the Student family means that we are implic-
itly relying on the posterior having roughly elliptical

Of course we want to choose w to ensure finite variance contours. There are many examples where this is not
of our estimates. If we can choose w such that f < cw the case and hence we would like families of impor-
for some constant c then the importance sampling esti- tance samplers which exhibit a wider variety of shapes.
mate of (1.1) has finite variance. Due to the complexity Geweke(1989) generalizes the Student family to the split-
of many of the integrands which arise in Bayesian infer- Student family and provides a fitting algorithm. This
ence this is often very difficult to guarantee. Hence we allows for some skewness in the distribution but at the
should be conservative and select a w we feel has a good cost of a discontinuity in the density.
chance of achieving a finite variance for all the quanti- An alternative approach to choosing w E W by match-
ties we want to estimate. When the above inequality is ing characteristics is to do this via adaptive importance
achievable a direct comparison between (5.3) and (3.3) sampling. For this we select a vector of characteris-
shows that importance sampling is always at least as ac- tics Mr(A) E R' of wx, each of which can be expressed
curate as rejection sampling and hence is the preferred as an expectation; e.g. moments, probability contents,
algorithm in this context. etc.. Let m. be the corresponding characteristics for

The basic problem in using importance sampling is the posterior p. Now select an initial importance sam-
in determining methods for choosing an appropriate w. pier w\, E W. Then generate a sample X1, ... XN from
In a Bayesian problem we will want a w which leads to w., and estimate the components of m. using the im-
good estimators of (1.2) for many different g. Typically, portance sampling estimates. Denote these estimates by
however, f is the dominating influence in the integrand m. 1 . Next find A1 E W which minimizes II m. 1 -m(A) I.
gf and so this is achieved when we have w suitable for Then generate XN+,. .. , X2N from w and combine
estimating (1.1). For this problem it is easy to show that this with the previous sample to get a new estimate
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Posterior Integration in Dynamic Models
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Abstract Except for special cases like a normal/linear model
and extensions thereof Bayesian analysis of general dy-

The analysis of general dynamic models involves a se- namic models leads to analytically intractable posterior
quence of posterior distributions corresponding to the integrals, with the additional difficulty that we have to
subsequent stages of the dynamic model. In the absence deal with a whole sequence of posteriors 7r(OtjDt) and
of normal/linear structure numerical integration schemes r(0tgD,_i), corresponding to the consecutive stages of
are required to estimate features of these posterior distri- the dynamic model. Here Dt = {yj,...yt} is the set
butions. of all data up to time t. The posteriors 7r(0tjD,) and

This paper reviews some previously suggested Monte wr(0tDj_) reflect the information about the parameter
Carlo based algorithms and suggests a new scheme which vector Ot in light of all the observations up to time t and
makes use of a Metropolis type algorithm to propagate t - 1 respectively.
a Monte Carlo sample simulated from the initial prior A complicating feature of these models is that in gen-
distribution through all stages of the dynamic model. eral it is not even possible to give closed form expres-
For each of the posterior distributions in the dynamic sions for the posteriors 7r(0t+i Dj). Before advancing to
model, the algorithm makes a Monte Carlo sample avail- inference at time t + 1, it is therefore necessary to some-
able which allows then to estimate posterior integrals as how reconstruct 7r(Ot+jjDt). Previously suggested solu-
desired. tions include the use of normal/linear approximations,

Before proceeding to the analysis at time t, the algo- splines, simple multivariate normal approximations and
rithm requires reconstruction of the posterior distribu- use of mixture of multivariate t distributions (Pole and
tion corresponding to period t - 1. This is solved by an West 1988, Pole and West 1990, West and Harrison 1989,
implementation of a mixture of Dirichlet process model, West 1990b and Mueller 1991).
making use of the already available Monte Carlo sample.

1 Introduction 2 Monte Carlo Integraion in
General Dynamic Models.

A general dynamic model is defined by an observation
equation which specifies the sampling distribution for the 2.1 Outline
observations jg conditional on a parameter vector 0, attime r and an evolution equation which determines the In Mueller (1991) a Monte Carlo integration scheme forchange o the unknown parameter vector between the general dynamic models was suggestee which pushes ahanges of the unknownami rd e r vsimulated Monte Carlo sample from the initial prior dis-stages of the dynamic model. tribution through all the steps of the dynamic model,

Observation equation: yt p(ys jot), making for each step a Monte Carlo sample from the cur-
Evolution equation: Ot = gg(0 1 - I) + wt. rent posterior available.

(i) The algorithm starts with a Monte Carlo sample
Here p(yjI) is a known, but not necessarily normal, con- Al = {0j,...0,,), simulated from the original prior dis-
ditional p.d.f., g(O) is a known, possibly non-linear func- tribution 7r(0 1 IDo).
tion and w, is a random vector with arbitrary, possibly (ii) Using a Metropolis type of algorithm this initial
non-normal distribution. See Pole and West (1988, 1990) prior sample A, is transformed into a Monte Carlo sample
or West and Harrison (1989) for more discussion of the Bi = j(i,... Y,,) from vr(01 IDI). Details of this step are
general dynamic model. explained in Section 2.2.
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(iii) By direct simulation of the evoulution equation
B, is transformed into a Monte Carlo sample A2 =

{1,,.... 0,} from w(e 2ID1). This is done by generating .

wi from the distribution given in the evolution equation 0

and setting e, = gl(q,) + wi. 0
Continuing in an inductive way eventually provides a c

Monte Carlo sample from each of the relevant posteriors a
I(OtIDt). These Monte Carlo samples can then be used

to estimate posterior integrals as desired.a
Figures 1 and 2 illustrate the outlined scheme.

The two figures depict the posterior distributions
ir(039 1D3 8), i(# 39 jD39 ) and w(0 40 (D39) for two parame- 0

ters in a dynamic model. The points in Figure 1 repre- 13'
sent a Monte Carlo sample from 7(0g39jD 3s), the set of
contours centered more towards the right represents a re- 0
construction of this posterior. The incoming observation 0
y39 shifts the posterior distribution towards smaller val- 0 a
ues of the first parameter. The contours of w(039ID39) , *0

are the concentric ellipses on the left of Figure 1. Adding
the evolution noise slightly flattens the posterior again. o02 -0.01 0 0.01
Figure 2 shows a Monte Carlo sample and contours for

(040°ID 39 ). Figure 2: MC sample from p(0(40)ID39 ).

CD

a Bayesian density estimation model will be suggested to
derive a reconstruction rr(109 _ IDt).

400
S2.2 Metropolis Algorithm

With respect to the isolated experiment of observing y,,
the distributions ir(OtIDt-.) and r(OtjDg) play the roles
of prior and posterior. Transforming the Monte Carlo
sample from ir(G, Dt- 1) into a Monte Carlo sample from

S 0 r(-(IDt) corresponds thus to "simulating" Bayes theorem
for this experiment. While this is difficult in a general

S40setting, it is facilitated in the dynamic model context by
the fact that the additional observation yt typically does
not dramatically shift the posterior, i.e. i(lIJDt.-.1) can in

0 general be expected not to be too far away from wr(0, ID,).
This feature makes application of the following algo-

[ rithm attractive. Starting with a Monte Carlo sample
point from 2r(Pt, Dt- 1) simulate a Markov chain, Zk,k =

0..-0.015 -0.01 -0.005 3.47e-18 0.005 0.01 0, 1,... M, which is defined such that 7r(t IDt) is assymp-
totic distribution. Since the initial distribution is already

Figure 1: MC sample from p(0(3 9)D 3as) (contours cen- close to the assymptotic distribution, only a few simulated
tered more on the right) with contours for p(0(39)ID39) iterations suffice to obtain an approximate draw -M from
(contours more on the left). i(8, IDt). An easily implemented Markov chain is given

by the Metropolis algorithm described in Metropolis et al.
The weak point of this scheme is that the application of (1953) and Hastings (1970). Tierney (1991a and 1991b)

the Metropolis algorithm in Step (ii) will require the re- discusses the application of this algorithm and extensions
construction of the density i(Ot IDt-.1) from the available to exploration and simulation of posterior distributions.
Monte Carlo sample At. In Section 2.3 an application of Let p(.) denote i(et I Dt). Starting with a sample point
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9, from ir(OtIDt-1) simulate the following Markov chain view, using the predictive density P from an MDP model
zk. as density estimate is very similar to using a conventional

(i) Start with zo = 8j. kernel density estimate. West (1990) discusses this par-
(ii) Generate a "candidate" y -, g(ylro). allel.
(iii) With probability a(zo,y) = min(1,p(y)/p(xo)) For a full discussion of the MDP model see Antoniak

move to y, i.e. z1 := y, else zx = zo. (1974), Ferguson (1973), Escobar (1988) and Escobar and
(iv) Repeat to generate Z2, Z3 etc. and stop after M West (1990). Escobar and West also give an efficient

iterations. Take ZM as approximate sample point from and easily implemented Gibbs sampling scheme to esti-
p(.) - p(6(0) IDt). mate the MDP model. Although often only formulated

The "probing distribution" g(ylz) in (ii) is an arbitrary in terms of univariate distributions, the MDP model is
conditional distribution, chosen with the only restriction without modifications applicable for multivariate density
that g(ylz) = g(zly). For example g(yjz) might be speci- estimation as well.
fled as N(z, E) with E an estimate of the covariance ma- Figures 3 and 4 illustrate the flexibility of the MDP
trix for ir(Otg Dt). The rationale is that the candidates model for density reconstruction. The first figure shows a
should preferably be generated in directions of high pos- Monte Carlo sample with some of the sample points clus-
terior probability. tering around what might be secondary mode. The MDP

The drawback of simulating the transition from reconstruction picks up on this feature and estimates a
r(Ot IDt- 1 ) to V(O I Dt) by this scheme is that it requires second mode. The other figure shows a Monte Carlo sam-
pointwise evaluation of the posterior 7r(O t ID1) when eval- pie from a bivariate normal distribution truncated to be
uating the acceptance probabilities a(zk, y), between 0 and 1. While the implemented MDP model

does not allow for truncated distributions, it mimics the

2.3 Mixture of Dirichlet Process truncation quite closely by using an appropriate mixture
of normals.

A problem particular to posterior integration in dynamic Both these situations can become important in the
models is that the target distribution is in general not analysis of dynamic models. Heavy tails, common in
even available for pointwise evaluation. Following the some applications, easily lead to multimodality. An ex-
scheme outlined in the earlier part of this paper how- ample is the model in Section 4. Appropriate modelling
ever, there would be an available Monte Carlo sample of constraints on the parameters becomes important in
At from xr(0tjDg.-). If At could be used to derive a re- high dimensional parameter spaces when simple discard-
construction ((OtJD1- 1), we could evaluate wr(OtIDt) by ing becomes problematic.
*(O4Dt) oc fr(OtgDt_.)p(ytgIt). Pointwise evaluation of
the posterior w(OtIDt) would then be enough to apply
the Metropolis algorithm described in Section 2.2., thus 3 Monte Carlo integration with
completing the scheme outlined in 2.1.

A convinient, because technically straightforward, way N'.DP density reconstruction
to reconstruct the unknown density from the available
Monte Carlo sample is given by an application of the mix- Combining the Metropolis type simulation of Bayes the-
ture of Dirichlet process (MDP). orem and the MDP reconstruction with the basic Monte

The MDP model gives a framework for Bayesian den- Carlo scheme outlined in Section 2.1. leads then to the
sity estimation of an unknown p.d.f. p(z), given a sample following algorithm.
{zi, i = 1,... n} from p(z). (i) Start with a Monte Carlo sample A, = {01,... 0rm}

Assume that zi = pi + ci where pi "- G, with G drawn from the initial prior distribution 7r(91 JD0 ).
from a Dirichlet process D(GO, ca) with base measure Go (ii) Assume a Monte Carlo sample At = {1,, i =
and concentration parameter a. The ci are assumed i.i.d. 1 ... m} from 7r(Ot1 D1 - 1 ) is available. Use the sample
N(O, V). If the base measure Go of the Dirichlet process At to estimate a MDP model for 7r( 0

1 jjDt-), giving an
is assumed to be a normal distribution as well, then it can approximation fr(O8jjDt-).
be shown that the posterior predictive distribution j3(z) (iii) Using fr(OtiDt-.) proceed according to the
for an additional draw z = z,,+, is a mixture of normals, Metropolis type algorithm outlined in Section 2.2. This
respectively a mixture of Student-t's when the covariance will transform At into a Monte Carlo sample B, =
matrix V is allowed to be random. The estimate 3(x) {j?,... rn) from i(0tIDt).
will be a combination of the a priori predictive distribu- (iv) By simulating the evolution equation transform B,
tion which is determined by Go and point masses spread into At+,. Use the Monte Carlo samples Bt and At+, to
out around the estimated ji's. From a practical point of estimate posterior integrals as desired, including param-
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eter estimates, forecasts and more.

4 Example: Exchange rate data

The statistical properties of exchange rate data have at-
1 atracted considerable interest in the literature. The prob-

o 0 lem with analyzing exchange rate data is best highlighted

* ,by Meese and Rogoff's (1988) paper. They compare a va-
to e riety of structural and time series models with a simple

- • 0 random walk model, and conclude that the random walk
P~r 0 _model performed best amongst all the competing models

V in terms of out-of-sample root mean squared forecasting
o 0 error.

Friedman and Vandersteel (1982) argue for a normal
C•j osampling distribution with time-varying mean and vari-

ance parameters to model the often noticed leptokur-
tosis of exchange rate data. Hsieh (1988) and Diebold
(1988) have modeled time-varying variance by versions of

o the ARCH (autoregressive conditional heteroskedasticity)

0.4 0.5 0.6 0.7 0.8 model introduced by Engle (1982). Quintana and West
(1987) suggested a dynamic multivariate Bayesian model.

The model which we consider in this paper combines
Figure 3: MC sample from p(b4., ps7[Dss) in the exchange elements of both, the ARCH model and the dynamic mul-
rate example of Section 4. tivariate model. The univariate ARCH model is extended

by allowing covariances between the time series and in-
troducing dynamic parameters. Motivated by the discus-
sion in the literature about the leptokurtosis of exchange
rate data a multivariate Student t sampling distribution

. is chosen. The data consists of daily observations on the
exchange rates for US dollar (D,), German mark (Mt)
and French franc (Ft) quoted in terms of Swiss franken.

.4 The data has been transformed to log differences.

0 Observation:
S(DA MA F,)' = (t4 +'+et,

Set -• MV-t (0, Et; v),

Evolution:
Et = CECt+ BQ, Bt,

4 ~ ~~~Qs = [x,_,,....T,] -R .Ttq..X
0t+I = 0 + wt,

Wt -, N (O, %• ),

where 0g = vec(pJt, Et, Bt, Rt) is the parameter vector at
Stime t, which contains the coefficients (pf, ", MpF,), the

elements of the observation covariance matrix Et, and the0 0.05 0.1 0.15 0.2 ARCH coefficients Rt, Bt and Cg (0* replaces Et by E*).

To reduce the dimensionality of the parameter vector theFigure 4: MC sample from p(a I,• #IDO) in the advertising matrices Rt, Bt and Ct are modelled in terms of only two
awareness example of Migon and Harrison (1985). scalar parameters bi and rg: Bg = diag(V~T, -,/Fl, V/•t)

and Ct = max(0, I - Bt). The matrix RI is given by
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Rt = diag(wi,... wQ) with linearly increasing weights wi

w, = (1 - rt)lq + 2. i(q 2 + q) rt.

Both parameters, bt and rt, are restricted between 0 and
1.

If bt = 0 then the ARCH component of the model drops
out and the evolution for Es reduces to a random walk.
On the other extreme, if bt = 1 then E• would be mod-
elled only in terms of the most recent q observations. V

The interpretation of rt is as a "down-weighting" pa- d

rameter. If rt = 0, then all q previous observations xt-i,
i = 0,...(q - 1) enter with the same weight 1/q into
the residual matrix Qt of the evolution equation. On the '
other extreme, rt = 1 implies that the observations enter
with linearly increasing weights, starting with weight 0 a
for ZXt-40. The decreasing ARCH coefficients wi are con-
sistent with the intuition that high volatility in the dis- od79 jingo ApeS Jul80 Od0 J"8 Avx8

tant past has less of an effect on current volatility than
high volatility in immediately preceding periods. Diebold
(1988) considered linear and geometric models for the wi's
and found strong evidence in favor of the linear law. Figure 5: Log exchange rates for dollar (solid line) mark

The covariance matrix of the evolution noise was chosen (dotted) and franc (dashed) - all relative to 1979.
using the concept of discount factors as 11g = bWt, where
Wt is the posterior covariance matrix of the full parameter
vector at time t. See West and Harrison (1989) for more
discussion of the idea of using discount factors to specify
evolution noise. We chose b = 0.09.

The lag length q for the ARCH equation was set to
q = 40. The degree of freedom v for the multivariate t
sampling distribution was chosen v = 2.

The initial prior specification is guided by the results
of the studies of Hsieh (1988) and Diebold (1988). The pt
parameters are all given a zero-mean prior with standard
deviations corresponding to the range of parameter esti- 0.05

mates obtained by Hsieh and Diebold. The prior on the
covariance matrix p(E1 ho) is modeled with a Wishart
prior distribution with mean corresponding to a diago- 0.010
nal matrix with a 2 = 1.69. 10-6 in the diagonal and
widest possible variance (i.e. degrees of freedom of the
p = 3 dimensional Wishart are chosen as v = p + 1). The .oos
ARCH parameters r, and b, are specified with a normal "•, .. I\
N(0.6,0.22) prior for r, and a N(0.8, 0.22) prior for b1. •"-::'. / *.-% "
In the context of a dynamic model with discounting, the 0.0
initial prior specification has importance only for the first I. . . . .
few periods and is quickly washed out by the evolution JWW Aix J" 0 Jon8 A"trS,

noise wt and the - over many periods - relatively strong da

information from the data.
Figure 5 plots the three time series as log exchange Figure 6: Posterior means E(aii,JI,) for dollar (solid

rates relative to 1979. Figures 6 and 7 plot the trajec- line), mark (dotted) and franc (dashed).
tories for the variance and correlation parameters. The
high correlation between franc and mark towards the later
part of the time series reflect the increasingly closer co-
operation within the European monetary system. The
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Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models

Mike West
Institute of Statistics & Decision Sciences
Duke University, Durham NC 27708, USA

Abstract density estimation techniques. With an importance sam-

This paper reviews the development of discrete mix- pling function g(G) close to the true density p(O), kernel
ture distributions as approximations to priors and poste- density estimation (or other smoothing techniques) pro-
riors in Bayesian analysis, focusing on the development vides continuous estimates of joint and marginal densi-
of simulation based techniques in sequential updating ties. In simple, univariate random sampling problems,
and the analysis of dynamic models. Adaptive density kernel type density estimates have direct Bayesian in-
estimation techniques enable construction of mixtures terpretation as approximate predictive distributions in
of elliptical distributions useful as direct approximations models based on mixtures of Dirichlet processes (West,
and as importance sampling functions. Illust-ations in 1990); multivariate analogues are similarly derivable (Er-
sequential modelling are discussed. kanli, Mfiller and West, 1992). West (1992a) uses weight-

ed variations on multivariate kernel estimates as impor-
1. Adaptive mixture modelling tance sampling functions and, with some modification,

1.1 Importance sampling and mixtures to more directly estimate marginal densities of p(6). The

With the recent mushrooming application of simula- basic idea is as follows.

tion based methods of numerical analysis, Bayesian anal- Given a chosen importance sampling density go(0),
yses often involves the approximation of continuous prior the sample, of size n, e and associated weights 0, the

and posterior distributions using discrete sets of points exact density p(O) may be approximated by a weiqhted

and associated weights based on a Monte Carlo approx- kernel estimate of the form

imation. West (1992a) introduced an adaptive impor- n

tance sampling scheme to develop such discrete approx- gi (0) =1 wi d(010j, Vh2 ) (1)
imations, and methods to provide smooth reconstruc- j=1
tions, in cases when the prior and likelihood functions
separately, or the posterior directly, may be (at least ap- where d(O[m, M) denotes a p-variate, elliptically sym-
proximately) evaluated up to irrelevant constants. Sup- metric density function (determining the 'kernel'), with
pose p(B) is the continuous posterior density function mode m and scale matrix M, V is an estimate of the
for a continuous parameter vector 0. An approximating variance matrix of p(O), (usually the Monte Carlo es-
density g(6) is used as an importance sampling function timate based on E and 11), and h is a 'window-width'
(Geweke, 1989) as follows. Let E = {f,, j = 1,..., n) smoothing parameter, depending on the Monte Carlo
be a random sample from g(O), and define weights f = sample size n. A key example has d(O6m, M) as the
{wi, j = 1,...,n} by wj = p(Oj)/(k9(6,)), for each density of a multivariate T d;stribution with some a > 0
j, where k = •', p(Oj)/g(Oi). The weights are evalu- degrees of freedom, whence the density gl(0) is a dis-
ated via wj oc p'w)/g(8j), and then normalised to unit crete mixture of n component T distributions. Conven-
sum. Then inference under p(O) is approximated using tional density estimation techniques (Silverman, 1986)
the discrete distribution having masses wj at Oj, for each choose the window width h as a slowly decreasing func-
j = 1,.... ., n. The conditions on g(O) required to achieve tion of n, so that the kernel components are naturally
reasonable approximations typically reduce to requiring more concentrated about the locations 9j for larger sam-
g have the same support as p and that the tails of g be pie sizes, and the approach of West (1990) indicates how
heavier than those of p, so that variations on multivari ate currently popular rules for choosing h may be interpreted
T distributions have become popular (Geweke, 1989). In within a Bayesian and, more importantly, model based
West (1992a) mixtures of T distributions are proposed, framework. If h does decay to zero at the right rate as
one additional reason being that mixtures have the flexi- n increases, then gi(O) approaches p(O) as n increases.
bility to represent the possibly quite complex and varied For moderate sample sizes, g9(O) will tend to be uverdis-
forms of (posterior) densities. This is done using kernel persed relative to p(O) if V is, as is usual, the Monte

Acknowledgement: Research reported here was prttafliy supported by NSF under grants DMS-8903842 and
DMS-9024793
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Carlo estihnate of V[0, under p(O). This feature proves (2) Construct a revised importance function g1(0) using
useful in developing kernel forms as importance density (1) with sample size ao, points Ooj, weights wud,
functions, though can be counte.-balanced using 'shrink- and variance matrix V0 .
age' of kernel locations to provide more direct direct ap- (3) Draw a larger sample of size n, from gl(B), and
proximation of the true density and its margins (West, replace r0 with r1 = {g , n , 01) ftl}.
1992a). (4) Either stop, and base inferences on rl, or proceed,

Adaptive methods of posteitr approximation based if desired, to a further revised version g2(0), con-
on the generalised kernel technique are now discussed. structed similarly. Continue as desired.
Note first, however, that there are obvious ways in which Even though the initial go(O) may poorly represent p(O),
they may require modification in specific applications. A successive refinement through smaller samples can, and
key issue concerns the possible patterns of local depen- usually does, mean that, after one or two revisions, Lhe
dence exhibited by p(O), and the use in (1) of a global resulting kernel estimate is a much better approxima-
estimate of covariance. In many problems, this will be tion to p(O). Hence, once the process of refinement is
quite adequate, but it is not uncommon to encounter terminated, a much smaller sample size. is necessary for
problems in which different regions of parameter space the desired accuracy of approximation. Often just one
are associated with rather different patterns of depen- refinement is sufficient to adjust a very crude approxi-
dence, so that a local estimate of covariance structure, mation, go(O), say a single multivariate T density, to a
with V in (1) varying with locale j and more heav- mixture g1(0) of, say, 500 T densities, that much more
ily depending on Oi values near Oj, is required. Other closely represents the true p(9). In approximating mo-
modifications involve the more formal modelling founda- ments and probabilities, a Monte Carlo sample of two or
tion for kernel type techniques that derive from the ap- three tho,,-nd draws from g1(0) may do as well as, or
proach to density estimation using Dirichlet process mix- better than, a sample of two or three times that from the
tures of normal distributions (West, 1990; Escobar and original go(O). Useful diagnostic information is generated
West, 1992). Current developments of the dynamic mod- in this process at each stage, such as the configuration of
elling applications using these ideas are mooted in Miller points in each dimension of the parameter space, and the
(1993). Finally, some of the modifications mentioned in distributions of weights. This can be ired to guide suc-
West (1992a), especially a neat data augmentation trick cessive choice of sample sF-s, and possible interventions
used to effect dimensionality reduction and significantly to adjust succesrive kernel smoothing parameter values,
reduce computations in multiparameter models, may be and also to assess whether further refinement is likely to
directly applied in sequential problems. be additionally effective. Several illuminating examples

1.2 Adaptive importance sampling appear in West (1992a).

Adaptive importance sampling describes any pro- 1.3 Approximating mixtures by mixtures
cess by which the importance sampling distribution is Suppose the above adaptive strategy has no = 500,
sequently revised based on information derived from suc- so that g, (0) is a mixture of 500 p-diinensional T distri-
cessive Monte Carlo samples. Let go(B) be an initially butions, and that the revisioji process stops here, g1(8)
chosen importance sampling function. For a sample size being adopted as the 'final' importance sampling density
n, this leads to points O0 = {00j,, j = 1,.. ... no,}, and to be used for Monte Carlo inference. It is straight-
weights f2o = {w0,j, j = 1,... ,no}, and the summary forward to sample E1 = {01,i, i = 1,...,nl) from

gj(O) - the computational benefit of the components
ro = {go, no, o, Sl0}. sharing a common scale matrix Vo is apparent here.

It is also straightforward to then evaluate the weights
Adaptive importance sampling suggests taking nu zather 01 = {wii, i = 1,..., n'), though the denominator
small, say several hundreds, and, based on the Monte of wl,i requires evaluation of the mixture gi(Ol,i). The
Carlo outcome r 0 , revising go(O) to a 'better guess'. It computation-.i burden here clearly increases if further
is natural to use a mixture such as (1) as a second step r"finement of importance functions with rather larger
importance sampling function, and the following adap- sample sizes, is desired. One way of reducing such com-
tive routine arises: putations is to note that, quite typically, approximating
(1, Choose an initial importance sampling distribution p(O) using a mixtures of several thousand T, or other,

with density go(O), draw a fairly small sample no distributions is really overkill; even ve.y irregular den-
and compute weights, deducing the summary Fo = sities can be adequately matched using mixtures having
{go, n 0,o 0,lo). Compute the Monte Carlo esti- far fewer compo'ents. The Monte Carlo kernel density
mates 00 and V0 of the mean and variance of p(O). construction, in particular, typically leads to a huge re-
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dundancy, with many points 0 oj closely grouped and 2. Sequential updating and dynamic models
contributing essentially similar components to the over- 2.1 Introduction
all mixture density. In the context of raw density es- A central concept in Bayesian analysis is that of
timation, West (1990) discusses the reduction of kernel updating a prior to posterior distribution for a random
estimates to mixtures of much smaller numbers of com- quantity or parameter vector 0 based on received data
ponents, often lower than 10% of the original sample size summarised through a likelihood function for the param-
number, using a particular form of clustering. The dis- eter. With discrete approximations, this involves map-
cussion in West and Harrison (1989, Section 12.3), on is- ping a prior set of points and weights to a posterior set,
sues and techniques involved in approximating mixtures possibly with some form of smoothing involved at both
generally, is also relevant. prior and posterior stages. These issues, and others,

A very basic method of 'clustering' mixture compo- are sharply evident in sequential modelling of time se-
nents, combining ideas from each of these two references, ries using dynamic models (West and Harrison, 1989),
is used in West (1992a). At the simplest, it involves re- where the progressive revision of posterior and predic-
ducing the number of components by replacing 'nearest tive distributions requires calculations that are typically
neighbouring' components with some form of average, impossible to perform exactly. Modellers have devel-
The examples below, and those in West (1992a), involve oped a variety of approaches to anal- V- and numeri-
reducing mixtures of n in several hundreds or thousands, cal approximation of such distributior.. .i..Iding direct
to around 10% (though sometimes rather less) of the ini- quadrature methods (Kitagawa, 1987) and more efficient
tial value, and perform this reduction using the following adaptive methods (Pole and West, 1990). The current
simple clustering routine (see West, 1992a, for further paper extends the adaptive importance sampling tech-
details). niques just reviewed to the dynamic modelling context

(1) Set r = n, and, starting with the r = n compo- to overcome the problems associated with quadrature
nent mixture (1), choose k < n as the number of techniques: notably, the need for 'grids' of evaluation
components for the final, reduced mixture. points in parameter spaces to be changed as time pro-

(2) Sort the r values of O8 in E in order of increasing gresses and as data indicate support for different regions
values of weights wj in 0; thus 81 corresponds to in parameter space, the severe computational demands
the component with smallest weight. in problems with more than very few parameters, and

(3) Find the index i, (i = 1,..., r), such that Oi is the the difficulties in reconstructing smooth posterior distri-

nearest neighbour of 01, and reduce the sets E and butions based on approximate evaluation at only very

0 to sets of size r - 1 by removing components 1 few points in what may be several dimensions. These is-
and i, and inserting 'average' values 0. = (w,01 + sues currently limit the development of quadrature tech-

wOi,)/(wi + wi) and w. = w, + wi. Set r = r - 1. niques quite generally, outside the dynamic modelling

(4) Proceed to (2), and repeat the procedure, stopping framework, and have led investigators in other fields to

here only when r = k. turn to simulation based approaches of one form or an-

(5) The resulting mixture has the form (1) with n re- other. Building on these approaches, the development in

duced to k, the locations based on the final k aver- West (1992a) of adaptive importance sampling functions

aged values, with associated combined weights, the based on mixtures of standard distributions, and smooth

same scale matrix V but new, and larger, window- reconstruction of posteriors using generalised kernel den-

width h based on the current, reduced 'sample size' sity estimates, may be naturally extended to the sequen-
t rather than n. tial dynamic modelling context.

The reduction process can be monitored, by evaluating 2.2 Dynamic models
and plotting margins of the mixture over fairly crude Interest lies in analysis of a dynamic model for a
grids, at stages in the reduction process. If in reducing time series of (possibly multivariate) observations Yt,
from, say, n to 80%n components, these densities do not (t = 1,2,...,), described as follows (West and Harri-
anpear change much, then further reduction may pro- son, 1989, Section 13.5). At each time f, Yt has a known
.ved, and so forth in later stages of reduction. This is one sampling distribution with density (or mass function)
possible route to approximating mixtures of large num- po(Yt[Ol); here 0t is a p-vector of parameters, the state
bers of components with mixtures of far fewer. There vector, and, conditional on Ot, Yt is assumed indepen-
are other possibilities, using alternative clustering algo- dent of Y, and 0, for all past and future values of s. The
rithms, such as those and with foundation in Bayesian state vector is assumed to evolve in time according to
density estimation models (West, 1990), as illustrated a known, Markovian process described by a,, cvolution
by Muller (1993). density p,(O:lOe.-); given Ot-1, 0, is conditionally inde-
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pendent of past values e, for s < t - 1. Summarising the analysis, the entire evolution/updating process at each
model, for each t = 1,2,..., the defining equations are time can be viewed as one of appropriately updating such

components, with subsidiary computations for forecast-
Observation model: (Yt80t) , po(YtIOf) (2) ing, etc. This directly parallels the usual, analytic pro-

Evolution model: (0t0t-_1) - pc(0g I0t- ) (3) cess in linear, normal models, (West and Harrison, 1989),
and the numerical process using quadrature of Pole and

The sampling, or observation, density is suffixed 'o', and West (1990).

the evolution density is suffixed 'e', in order to identify Suppose that p(Ot-..lDt-) has been previously ap-

them in the discussion below where 'p' is used generi- proximated via rt- 1 = {gt-t,nt-t,8t-., ~t-1, where

cally to denote densities. Note that these densities may 9t-:(Os-i) is a (final) importance density used for infer-

depend also on t and on other available historical in- ence about (0t-1iDt-1), ns-1 is the (final) Monte Carlo

formation, though the notation ignores this for clarity, sample size in that inference, E,_ 1 = {Ot-,i, i =
At each time t, available information, including the ob- 1,.. t-} is the sample from 9t(-(0t-.), and Qt_ I =

served values of Y1, Yt-1, etc, is denoted Dt. Currently, {wt-i,i, i = 1,...,nt_-} the associated weights. The

at time t - 1 prior to evolution through (3), historical in- objective is to perform the evolution/ updating and fore-

formation is summarised through (an approximation to) casting computations and finally summarise p(OtI D) in

the posterior p(Ot-.:DI -1). The primary computational terms of rt = {gt, nt, Or,,!Qg}, and this may be done as
problems addressed are: follows.

(a) Evolution step: compute the current prior for Ot, 2.3 Computations: evolution step
defined via The following facts are of use in computations for

the evolution step.
p(O'lDt-1) = fPe(OtOlt-O)p(Ot-IlDt-1)dOt-1; (a) Various features of the prior p(O8,Dt_ 1) of interest

(4) can be computed directly using the Monte Carlo

(b) Updating step: on observing Yj, compute the cur- structure rg- 1. The prior mean, for example, is

rent posterior computable as

p(0, I Dj) cx p(O, D~t - )p .(Y t IOt). (5) [ ,I _ ] t liE t tl _L '

Subsidiary calculations include forecasting ahead (dis-
cussed below) and filtering problems for retrospection where Ee stand for expectation under the evolution
(not considered in this paper). It is important to note distribution Pe, if this expectation is available in
that analysis proceeds sequentially over time, and it is closed form.
explicitly recognised that the summary posterior of his- (b) Similarly, the prior density function can be eval-
torical information, namely p(Ot-1lDt-1), is the only in- uated by Monte Carlo integration at any required
formation relevant to the past that is currently (at time point, viz
t - 1) available for further analysis, and this must be
borne in mind when developing numerical (or any other) n,_J
approximations to dynamic model analyses. In addi- p(OtlDA-1) ; s wt-i,ip,,(OtlOt.-.i). (6)
tion, the process is to be repeated as time progresses,
so the form of any approximation to the posterior af-
ter the updating step must be such that, moving from (c) An initial Monte Carlo sample of size nt-I may be
time t to t + 1 when this posterior becomes the in- drawn from the prior by generating one value of 0t
put to the evolution/updating analysis for 0,+1, the re- from p,.(Ot]O,-i), for each i = 1,..., nt--. The re-
quired calculations can proceed similarly. In developing sulting sample points, denoted E), provide, at the
Monte Carlo based approximations (or any other nu- very least, starting values for the evaluation of the
merical approach) the objective is therefore to provide prior as in (b) above, for display purposes, and, im-
structured information about (O, ID,), after the updating portantly, regions of 6t parameter space to concen-
step, that has the same qualitative form as that input trate on in beginning the updating step, below.
for (Ot-,IDA-). With reference to development above, (d) This prior sample E; may be used with weights
a Monte Carlo/importance sampling approximation to flt- 1 to construct a generalised kernel density es-
any distribution reduces to summary components given timate of the prior. In many models, this is of
by the four elements 17, so that, with such an approach to little interest since the prior may be evaluated as
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in (b) above (unless the evolution density is ex- then proceed using adaptive Monte Carlo density esti-
tremely complex and difficult to work with.) Con- mation of Section 2. This begins with an initial 'guess'
sider, however, a model in which the evolution equa- at the posterior p(0t IDt- 1), denoted gto(8j), to be used
tion is degenerate, Ot = Gt(Ot- 1 ) with probability as an initial importance sampling function. Choice of
one, for some known, possibly non-linear and time- this density depends on context, though may be guided
dependent function Gt. This covers many interest- by general ideas described in the examples below. This
ing examples, such as that appearing in Section 4.4 provides the starting point for application of the adap-
below. Then prior evaluation as in (b) is vacuous, tive strategy of section 1. On completion, this results in
and so, since values of the prior are required as input a final summary of the posterior given by the quadruple
to Bayes' theorem (5) in the updating step, some rt = {gt, ni, Oe, fit}, where gt(Ot) is the final importance
form of interpolation/ smoothing is needed, sampling density for the posterior p(Og [Dt), nt is the final

(e) Note, at this point, that subsidiary computations Monte Carlo sample size, and Oe is the set of n, points
for forecasting ahead can be performed along these in parameter space at which the Monte Carlo weights in
lines. Forecasting (YtDt-t), for example, requires Qt are evaluated.
computing f p0 (Yt IOt)p(O IDt- 1 )dOt. The observa-
tion density typically has a standard form, so that 3. EXAMPLES
Monte Carlo computations can be performed to ap-
proximate forecast moments and probabilities. For Example 1
example, the forecast mean is evaluated as The first example concerns a familiar and simple

model, chosen so that exact calculations can be per-
E[YtID,-.] . t1 1: w-.i,jEo[YtjdO], formed to provide comparison with approximation based

0,Ee; on the above strategy. The model is a normal, linear,
first-order polynomial model (West and Harrison, 1989,

where E. stand for expectation under the observa- Chapter 2), in which p = 1, so that 9, = 0t is scalar,
tion distribution po, assuming this expectation is the observation density is normal with mean 0t and unit
available in closed form. Forecast probabilities are variance, (Ytl0t) -• N[0,, 1], and the evolution density
similarly derived. By simulating from the obser- is normal, (0tlOt-.) - N[Ot- 1 , 1). If it is assumed, ini-
vation density for each value of Ot E E), and us- tially, that (01lDO) is normal, then the standard anal-
ing the associated weights Ot-1, regions of inter- ysis applies to give easy calculation of prior, posterior
est in Y, space can be identified, and the predic- and forecast distributions for any time t, such distribu-
tive density/mass function evaluated there. Similar tions being, of course, normal. The example here uses
comments apply to forecasting more than one step a series of length 100 generated from this model with
ahead; the process of simulating from the evolution 00 = 0. The numerical analysis is structured as fol-
density is repeated into the future, generating sam- low: (i) The initial prior is standard T with 9 degrees
ple of future parameter vectors, and proceeding to of freedom; (ii) in each updating step, computing the
inference about the future values of the series. This prior densities p(OtIDt-1) for evaluation of the (unnor-
too is illustrated below. malised) posteriors is done via equation (6); (iii) updat-

It is important to note the generality of the above strat- ing uses adaptive Monte Carlo density estimation, the
egy for computations. At no stage is it necessary, or sample size of all final approximations set at 1500 - the
interesting, to worry about functional forms of evolu- first approximation g1,o(0) at each stage generated as
tion equations, or to cater for many special cases, as follows. The summary r,- for (0t- 1 1D,- 1 ) (with sam-
alternative approaches, such as using quadrature in Pole pie size ng- 1 = 1500) is used to generate an initial sam-
and West (1990), must. This simplifies programming the pie eI = {e0,j, i = 1,..., nt-.I for et, the estimate of
analysis; all that is needed is a collection of general rou- mean and variance given by at = E7'-' w-,O,,j,, and
tines for evaluating and sampling from the evolution and R2= ,)r

observation densities, and, if required, generating kernel reduces this nt,,0 = 100 components e,0 = {Ct,j, r =

estimates. 1,..., 100), with reduced weights Q,,o = {wt,.0, j =

2.4 Computations: updating step 1,..., 100). Then g1,o(0) is taken as the mixture (1) us-
Followingevolution, the prior p(OtIDt-1) to input to ing these reduced weights and points, the variance V =

Bayes' theorem (5) for updating is available in approx- 16R,, window-width h chosen as in Silverman (1986) but
imate form either via evaluation in (6) at any desired using a T 9 kernel. The factor 16 inflates the spread to
points, or in terms of a generalised kernel form as de- provide a conservative initial guess. The adaptive strat-
scribed in (d) of the previous section. Updating may egy now proceeds with nt,0 = 250, nt,, = 350 and, fi-
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nally, nt = nt,2 = 1500. After sampling and computing vations that induce 'conflict' between priors and likeli-
moments in the first two stages, the components, of sizes hood functions. The facilities for outlier rejection and
250 and 350 respectively, are reduced to 100 by cluster- adaptation to level changes in heavy-tailed models are
ing before sampling for the next iteration. illustrated in West (1992b) using the numerical methods

Inferences at each stage are based on the final, fil dscribed here.
Monte Carlo summaries of size 1500. Some posterior Example 3
densities at times t = 10, 20, ... , 90 appear in Figure 1, A simplified version of a model of Andrade Netto el
with the iurrent, actual value of 0t appearing on the axis al (1978), discussed in Kitagawa (1978), illustrates uni-
as 'X', the corresponding datum Yt as 'Y'. In fact each parameter analyses further, with some interesting fea-
frame plots two densities, the second being the exact, tures. The model is
normal posterior based on the usual normal theory anal- (Yt 10,) - N[0.050?, 10],
ysis. In none of these plots, and indeed over all time (Gi-) ~ N[0.50,_ 1 + 250,_1/(1 + 1), ].
t = 1,...,100, is there a meaningful difference between

the exact and numerical approximation. The evolution structure here is bifurcating; the condi-
tional mean E,[Otl0tIt] near Oj-1 = 0 is approximately
linear with gradient 25.5, so that small values of 0t-1
tend to evolve to very much larger values of 0t; as a re-
suit, very regular posteriors p(Ot--Ii Dt- 1), unimodal near

"U U• • " zero, evolve into bimodal priors p(O, ID,_.), the mass be-
ing pushed away from the origin through the determin-

U \istic component of the evolution equation. The observa-
..U . tion equation leads to further irregularities. For negative

4 observed values of Yt, the likelihood function, propor-
tional to p0(YtJOt) is unimodal at zero, and symmetric

Thx*4.,ThU 50o TUo about its mode; for positive observations, however, the

..C C$ 4 likelihood has an antimode at zero, and is symmetric
about zero with modes at ±V1(20OYt).

The analysis for just three observations generated
- .. .- 1 - .... from this model is summarised here. The process is

4 4 Y .. simulated from 00 = 0, the three simulated 0, values,
and the corresponding simulated Yt values, noted on the

Thfl070 TIIImaO T0 "e0 lower axes of the frames of Figure 2. Analysis is as fol-

- lows. (i) The initial prior for (01 IDo) is Student T on
u.C 9 degrees of freedom, with mode at 0 and scale factor

, / . / \, . 100; thus 01/10 is standard Ts. (ii) Values of the prior
S...... - .~ * densities p(OtDt_ 1), required for evaluating the (unnor-

4............. ...... 'C ' malised) posteriors in Bayes' theorem (5), are calculated
using the exact evolution density in the Monte Carlo ex-

Figure 1. Posterior densities for normal process pression (6). (iii) Updating uses adaptive Monte Carlo
density estimation, the sample size of all final approxi-

Example 2 mations set at 2000. The first approximation gt,o(Ot) at
A similar example, though not normal, is analysed each stage being generated as follows. First, rt- 1 (with

in West (1992b) - the normality of evolution and ob- sample size nf-I = 2000) is used to generate an initial
servation errors replaced with Student T distributions, sample EO = {O*,i, i = 1,..., n-1 for 0t. Clustering
Such models have been popular in the literature (Kita- then applies to reduce this from 2000 to n,,o = 100 com-
gawa, 1987; Pole and West, 1990, and references therein; ponents Oe,0 = {t,oj, j = 1,..., 100}, with associated
West, 1981). This permits larger 'jumps' in the level 0t reducted weights f(?,o = {ws,oj, j = 1,. .. , 100). Then
of the time series Yt, and also accommodates outlying gg,o(Ot) is taken as the mixture (1) using these reduced
observations. West (1992b) demonstrates the efficacy weights and points, the variance V = Rt, and the kernel
of the adaptive mixture techniques in analysing such a is again T9 . The adaptive strategy now proceeds using
model. Unlike the normal case above, the posteriors for nt,o = 250, ni,1 = 500 and, finally, n, = ng, 2 = 2000. Fi-
level parameters can become heavily skewed and even nally, the components, of sizes 250 and 500 respectively,
bimodal, evidencing occurrences of very extreme obser- are reduced to 100 before sampling for the next iteration.
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For t = 1,2 and 3, the evaluated prior p(Ot Dt_1), tified inferences are based on the actual Monte Carlo
and the likelihood function proportional to p.(Yt 10t) (the approximations rt, rather than by using the importance
latter standardised to unity at the maximum), appear in densities as approximations directly, so that the under-

estimation of density heights near peaks is irrelevant. As
importance sampling densities for the displayed 'exact'

Pr1W 111 im Id L,411, 1 PoatTm.e posteriors, the displayed forms are excellent. Very sim-
ilar results are achieved by repeating the analysis with
larger sample sizes in the Monte Carlo. With the adap-
tive kernel density estimation used here, samples of 2000

"ma at the final stage are typically quite adequate.
As final comment, it may be shown that, in fact,

LOW ,the prior and posterior distributions in the example are
.. .- theoretically guaranteed to be symmetric about zero, for

a....... ....... all time t, when the initial prior p(011DO) is itself sym-
metric about zero (as is the case in the above analy-

P,",Wator2 UkUhoodatT6.2 Poa-Wdat Th,2 sis.) None of the estimated densities in Figure 2 departs
"LIN significantly from symmetry about zero, although, due
.* to the randomness inherent in Monte Carlo approaches,
"64 small deviations away from symmetry are apparent. It

LN .. LN should be noted that knowledge of such a feature, or any
"IL LA J other theoretically based information about form, may

be incorporated into the analysis if required. The sym-
u :,A LMUmetry about zero here could easily be incorporated by

.0. I 4N .10 IN U taking absolute values of all sampled Ot, and then reflect-

Pda TiWw3 dIoa• .•km3 Posbmwm. m.t3 ing resulting samples, and smoothed densities, about the
origin.

.I. .S f, 1 Example 4
... I A final example revisits a class of models used in as-

,• • sessing the effect of television advertising on the 'aware-

-, mI I 1 ness' of consumer populations, introduced in Migon and
,... . " Harrison (1985), and discussed in West and Harrison

INIIta 41 ....... ...... .... .. (1989, Section 14.4). The particular model chosen for il-
lustration here is one in which prior evaluations using (6)

Figure 2. Inference in bifurcating model are impossible since the evolution distribution is degen-
erate. This example thus provides (a) a multi-parameter
model, with p = 3; (b) an opportunity to explore numer-

the first two frames of each row of graphs in Figure 2. ical analysis in this familiar model class, and establish
The third frame in each row displays, as a broken line, a basis for possible future comparison with previous an-
the final density g,(Ot), a mixture of 100 T 9 densities. alytic approximations; and, (c) a case in which direct
As a full line in the final frames, the 'exact' posterior generalised kernel estimation is used to sequentially re-
based on the displayed prior and likelihood function is construct posterior distributions from Monte Carlo anal-
graphed. This is computed as the approximately nor- yses.
malised product of the prior and likelihood, with eval- Much detail on the models and context of the ad-
uations made over a fine grid of 300 points across the vertising problem appears in the above references, to
displayed interval of ±20. In the cases of extreme bi- which the reader may refer, although the data analysis
modality, the importance density is naturally less peaked here is somewhat different to previous analyses. Raw
at the modes, though probabilities computed under the 'advertising awareness' data, in the form of binomial
two densities are substantially similar. Continuing anal- counts, are collected over a period of 56 weeks, together
ysis to t = 4,5,..., this pattern of behaviour is repro- with an associated regressor variable 'TVR' measuring
duced, with the two densities in the third frame essen- weekly advertising expenditure. Indexing weeks by k,
tially coinciding apart from cases of extreme bimodality (k = 1,.. ., 56), let Zk denote recorded counts in week
when minor differences appear around the modes. Quan- k, and Xt > 0 the 'TVR'. The model assumes Zk to be
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conditionally independent with binomial probabilities irk deterministic transformation. Values of the prior
defined (using the notation of West and Harrison, 1989, p(DJDt-.) required for evaluating the (unnormal-
Section 14.4) via ised) posteriors in Bayes' theorem (5), are calculated

from a kernel density reconstructed version, based
7rk =0.1 + Ek, on this evolved Monte Carlo approximation r'• and

Ek =0.7 - (0.7 - pEkl)exp(-KXk), (7) using trivariate T 9 kernels.
(iii) Updating uses adaptive Monte Carlo density esti-

for k = 1,...,56. Quantities p and x, and the initial mation, the sample size of all final approximations
effect E0 , are initially uncertain. The data are the first set at 4000. The first approximation gt,0(0,) at
56 weeks of series in Table 14.1, Section 14.4 of West and each stage is the weighted kernel estimate based on
Harrison (1989). Analysis here groups the raw weekly Monte Carlo summary rF but with the variance ma-
data into seven, 8-week periods, defining data Yt via trix scaling the kernels inflated by a factor of 4; this

has the same location characteristics as the recon-
Y9 = {Zst- 7, Z8s- 6,. .. ,Z8 }, (t = 1,...,7). structed prior p(Ot IDDg-1), but greater spread. The

process of adaptive refinement proceeds through two
For each t, the three uncertain parameters are p, we and stages, as in the examples above, with sample sizes
Etshep, the effect Evis - being that in the final week of successively increased from 1000, 1500 and then the
the previous 8-week period. In the first 8-week period, final 4000. Between stages, the clustering technique
for example, t = 1 so that Eas.-s = E0 , the current of Section 2.4 is applied to reduce the number of

effect just prior to starting the advertising campaign. components (from 1000 and 1500 respectively) to

The sampling density in period t is the product of 8 500.

component binomials, I'Ik=s9 7 p(Zk1rk), in which the

7rk can be evaluated as functions of p, Ke, and Est-8 by At the end of analysis at each stage t = 1,..., 7,

repeat application of equations (7). In evolution to times the final summary rF of p(O, ID) is evolved to rF+ 1 and

t = 2,..., 7, p and iK remain unchanged, and the third further evolution over the (t + 1)"t 8-week period is per-
parameter Est- 8 is a deterministic, non-linear function formed to produce step-ahead forecasts of the probabil-
of that previously, Ef.t- 16 ; given E8a- 16 , evolution calcu- ities irk in (7); thus, at time t, direct transformation of
lations again just involve repeat application of the second rt leads to Monte Carlo predictive distributions for Nrk

equation in (7) to evaluate E8 t- 8 . Note that the param- for each k = 8t - 7, 8t - 6,..., 8t. Figure 3(b) displays

eters are restricted by inequalities 1 > p > 0, K > 0 and the TVR inputs Xk versus time k. In Figure 3(a), the

0.7 > E8 t- 8 > 0. Since importance sampling densities raw data proportions Zk/66 are indicated at each time

are to be constructed as mixtures of tri-variate T dis- k, joined up over time with a full line. The step-ahead
tributions, the restricted parameters p, Pc and E8 1 ., are forecast distributions for 7rk, generated at the end of each

transformed to real-valued versions et = (01, 02, 0t,)3 8-week period (marked by vertical dotted lines) for the
where 01 = log(p/(1 - p)), 02 = log(K) and 09,3 = coming 8 weeks, are indicated in terms of medians (the

log(Eat-s/(0.7 - E8 a-s)). The analysis summarised here small circles) and vertical lines representing 90% equal-
(validated by repeat analysis using different, and larger, tails intervals. Note that data variation about the 7rk is
Monte-Carlo sample sizes at each stage) has the follow- binomial; these intervals are for the irk directly, so fore-
ing features, again essentially similar in structure to pre- cast intervals for the Zk would be similarly located but
vious examples, wider due to the additional binomial variation. At these

(i) The initial prior for 01 = (p, K, Eo)' given Do is levels of rk, around 0.3-0.4, binomial standard devia-
trivariate T with 9 degrees of freedom; the prior tions are around 0.06. The analysis compares well with
mean is (2.0, -3.5, -0.75)', and the prior scale fac- similar displays (albeit from a rather different model and
tors are (0.20,0.25,0.25)', so V[0iIDo] = 0.20(9/7) analysis) in West and Harrison (1989, Section 14.4).
and V[02 1Do] = V[031D0 ] = 0.25(9/7). The data set With the time independence of the parameters p
used here is taken from Section 14.4 of West and and K, the data could alternatively be analysed as one,
Harrison (1989), and this prior specification is con- rather than sequentially. Here, to illustrate the tech-
sistent with that of the analysis there. The prior niques in sequential modelling, it has been assumed that
has no non-zero correlations. summary inferences are required after each 8-week pe-

(ii) The Monte Carlo summary r,_1 of p(6t_..Dt_.) riod, and that this summary at each stage is all that is
evolves by just mapping the third elements of vec- carried forward to the next; previous data, and there-
tors in E,.- 1 = {Ot-1,i, i = 1,...,nfl}. Thus fore any opportunity to perform revised analyses using
rt-1 evolves to the prior summary r; via just this, all data so far, is assumed lost at the end of each stage.
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McLean, Virginia

Abstract On the other hand, process metrics
focus on the development process and the

This paper discusses the characteristics decisions which are made during the
of multivariate statistical models for the conduct of the development project. These
analysis of software metrics. The choice of metrics include measures of software reuse,
model is related to the data available, to the requirements volatility, and staffing effort
desired scale of the analysis, and to the devoted to various development activities.
purpose for which the model is used.
Statistical models for the software quality A subset of the product/process metrics
factor of reliability are discussed. These relating to software development outcomes
models relate reliability to measures has been the subject of study in the
characterizing the software product and the literature. These metrics relate to outcomes
characteristics of the development that development managers or government
environment. contract officers may want to track or

predict. They include development effort,
1.0 Introduction productivity, and various software quality

factors such as reliability and
Over the years, there have been a maintainability. These metrics are treated

multitude of research activities aimed at as "explained variables," i.e., those whose
measuring software development efforts. values may be determined to some extent by
The utility of these activities is that software one or more of the other process/product
development organizations and government metrics. In this way, product/process
contract officers may learn how to better details at some phase of the development
control the development process, and effort could be used to predict software
potentially improve the software product. development outcomes at some future phase.

The quantitative characterizations of A modeling exercise determines the
software development loosely fall into two relationships of development outcomes to
classes: product metrics and process product/process metrics. The relationships
metrics. Product metrics may either be are hypothesized, and tested with real world
derived exclusively from the software data. Carefully controlled experimentation
product itself (e.g., design documentation or of software development projects is not
implemented code), or from various probes generally practical. Statistical analyses
to the product (e.g., test programs must be conducted on "naturally occurring
generating defect counts). experiments" without experimental

controls. Multivariate statistical models are
a tool for these kinds of analyses, and will

* This research was supported by the be used in the analyses presented here.
Mission Oriented Investigation and
Experimentation (MOIE) Program of The This paper discusses the characteristics
MITRE Corporation. of these models and relates the choice of

model to the data available, to the desired
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scale of the analysis (e.g. project, student subjects writing computer code. For
subsystem, or software module), and to the example, the effort needed to develop
purpose for which the model is used (e.g. programs was related to measures of
predictive or prescriptive), program complexity. But when dealing

with human subjects, it is often difficult to
2.0 Software Metrics Analysis as completely control for other variables such

Empirical Science as student intelligence or experience.
However, a carefully designed statistical

An empirical science is one in which experiment can minimize the effects of
models are built to test theories or these variables.
hypotheses related to measurable empirical
reality. A model associates two or more As interest in software metrics analysis
variables with each other. The variables moved to "real life" development projects,
are operationally defined so that they can controlled experimentation became remote.
be empirically measured. The theory or The large size and complexity of these
hypothesis will be sustained if the model projects prohibited repeating them under
has explanatory or predictive power controlled conditions. Thus, software
relative to the empirical world. metrics shifted toward being an "historical"

science. Controlled experimentation was
Empirical science is divided into replaced by the collection of data from

experimental science and "historical" software artifacts and development process
science. Experimental science allows for characteristics. The potentially obfuscating
the conduct of controlled experiments for effects of other variables were controlled
empirical data collection. If a relationship by analytical rather than by experimental
is posited between two variables, an means.
experiment may be designed to fix the
values of all other variables. In this way 3.0 Software Development Outcomes
the systematic dependence of one variable
on another may be established. Physics and The assumption of most previous
chemistry are examples of experimental software metrics studies has been that
sciences. product complexity influences software

development outcomes such as reliability or
On the other hand, there are fields of maintainability [5]. Product complexity

study qualifying as "historical" science. may be indicated, for example, by measures
These include astrophysics and economics. of lines of code or cyclomatic complexity [8].
With "historical" sciences it generally is not Software with intricate processing
practical to conduct controlled experiments, relationships may be more difficult to
The empirical data of astrophysics took implement correctly or test effectively,
place many eons ago and evidence of such leading to lower reliability. Similarly,
events may just be arriving at earth complex software may be more difficult for
(limited by the speed of light). Economics is a maintainer to understand and modify
often concerned with large socio-economic correctly.
systems, and controlled experimentation
may be either prohibitively costly or Early software metrics studies used a
impractical. univariate approach to correlate

development outcomes and complexity
Is software metrics analysis an measures. Various complexity measures

"historical" or an experimental science? were compared (e.g., lines of code,
When software metrics research was first cyclomatic complexity, Halstead measures
conducted in universities, it was conceived [6]) for their abilities to explain
as an experimental science. Relatively development outcomes.
controlled experiments were conducted on
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The emphasis in more recent software Lower aggregation levels yield a
metrics studies [1, 4] has been to recognize broader base of observations, allowing for
the multi-dimensional nature of complexity. statistical models having more explanatory
Two systems with identical numbers of variables. The disadavantage of lower
lines of code can have greatly different aggregation levels is the larger statistical
cyclomatic complexities. If defects or fluctuations of the observations, which
maintenance effort were being predicted, leads to lower levels of explained variation.
then both lines of code and cyclomatic At higher aggregation levels, these
complexity might affect the outcome. Thus, statistical fluctuations tend to smooth out.
the explanation of a software development
outcome is a multivariate problem. For example, an important determinant

of productivity at the module level may be
4.0 Levels of Analysis the experience of the programmer. If this

measure is not available, then this
Statistical analyses can be conducted at determinant will be ignored, and the

different levels of aggregation. The choice explained variation may be lower. At the
of level is often limited by the availability project level, the variations in average team
of data. experience across projects might be

expected to be smaller than programmer
At the highest level, the data is experience across modules.

expressed at the project level. Development
outcomes are collected as project totals or In the following sections, we focus
project averages. The total number of only on subsystem level and "module" level
defects identified during project testing is a analyses, and present results for software
project total. Effort per thousand lines of reliability analyses. The software project
code (i.e., the inverse of productivity), and data and the associated development
the average time to fix a defect are examples environment from which the data was
of project average metrics, extracted are discussed in [1, 2].

Project level data require consistent 5.0 Subsystem Level Analyses
measurement definitions across projects. If
different projects measure effort data in The subsystem level analyses are
different ways, inter-project comparisons demonstrated for twenty-one observations
of productivity will be difficult. Statistical from four Ada projects. The objective is to
analyses require a multitude of observations relate measures of software reliability to
exhibiting a variation in the explanatory product and process measures collected in
variable(s). Collecting a large number of the design phase. Reliability, as the term is
consistent cross-project data for statistical used in this paper, refers to the defects
analyses can be difficult. identified during the testing phase. The

analyses discussed below use both total
Consequently, lower data aggregation defects and defect densities as outcome

levels are attractive. Data may be collected variables.
for configuration items, subsystems, or
"modules." Moreover, this data may be The statistical models can be usea as
pooled across projects. For example, four follows: Given product/process measures at
projects with a total of thirty subsystems the design phase, the software reliability as
will yield thirty observations for subsystem revealed in the testing phase can be
level analysis rather than four observations predicted, and the relative contributions of
at the project level. If desired, statistical each explanatory variable can be identified.
models with lower levels of granularity,
may be aggregated to higher levels. Such models have utility for a number

of reasons. First, development managers
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may want to know the expected number of library unit aggregation 1 to import visible
defects in each of the subsystems in the declarations from another library unit
testing phase. With this knowledge, test aggregation. The extent of context coupling
plan refinement and test resource in a subsystem can be measured by the
allocations can be made. number of "with" clauses per library unit.

We hypothesize that a larger value of this
Second, reliability models can provide metric implies greater complexity since the

prescriptive recommendations to improve library units (LUs) will be more highly
the design or the development process. A coupled. All else being equal, a design with
large number of defects predicted for a high context coupling will lead to more
subsystem may indicate that its design is too defects than one with low context coupling.
complex. In this case, action to simplify The coefficient of this variable, "WITHS PER
design can be taken in the design phase, LU," shown in Model 2 of Figure 1 is positive
using the reliability model to assess the and highly significant, supporting this
impact of individual changes. If design hypothesis.
characteristics are coupled (e.g., improving
one worsens another), then the model can Dependent Variable: DEFECTS
be used to analyze the net effect of design Explanatory
changes. Variables Model 1 Model 2 Model 3 Model 4

5.1 Software Defect Analyses Constant -13.6 -6.0 -6.3 -.65

The results of statistical analyses SLOC .81 .97 .9 6 .9 5
treating defects as a dependent variable are (.19) (.14) (.13) (.13)
shown in Figure 1. All the variables are WITHS PER 46
entered into the regressions as logarithmic LU (.11)
transforms. The numbers in parentheses
are the standard errors associated with the IMPEXP .47 .50

coefficient estimates, and the R 2 is the (.09) (.09)

adjusted coefficient of determination. VISIBILITY .27
(.18)

SLOC, measuring source lines of code, is R 2
an important determinant of subsystem (adjusted) .46 .71 .75 .77
defects. Larger subsystems tend to have
more defects. Forty-six percent of the Coefficient estimate

variation in defects is explained by lines of - Standard error of estimate

code alone. Based on the coefficient Figure 1 : Regression Results for Four Models
estimates for all four regressions shown in With Defects as Outcome Variable
Figure 1, we cannot reject the hypothesis
that defects trend linearly with source lines A more refined measure of context
of code. coupling complexity can be defined by

recognizing that "with" statements are not
The remaining explanatory variables all equal. The "withed" library units have

in Figure 1 are motivated by considerations different numbers of visible declarations.
of structural complexity in Ada designs as Those with more visible declarations should
discussed at greater length in reference [1, be given greater weights. Weighting the
2]. "with" clauses in proportion to the number

Within the Ada programming
language, context coupling allows one I A library unit aggregation is defined here

as a library unit along with its associated
secondary units.
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of imported visible declarations gives the where the DEFECT DENSITY is expressed as
total imports within a subsystem. Setting defects per thousand lines of source code.
the proportionality factor equal to the
inverse of the total number of exports, the Figure 2 shows the statistical analyses
summation of the weighted "withs" is equal treating the logarithm of the defect density
to the ratio of the imports to the exports as the dependent variable. The explanatory
denoted by IMPEXP. variables also enter as logarithmic

transforms. In Model 1, the imports and the
Model 2 of Figure 1 shows the results exports are entered as independent

when IMPEXP is used as an measure of variables. They are both significantly
context coupling. The associated coefficient different from zero, but not significantly
is positive and highly significant, the different in value from each other.
explained variation is higher than for Recognizing that:
"WITHS PER LU".

log(IMPEXP) = log(IMPORTS)
The variable, "VISIBILITY," indicates - log(EXPORTS),

the extent that the imported declarations
are visible to the various compilation units the analysis for Model 2 uses only the
composing a library unit aggregation. If a import-export ratio with no decline in the
library unit is "withed" into a specification, value of the coefficient of determination.
the imported declarations are visible to the
corresponding body and subunits (if any). )ependentVariable: DefectDensit,
When imported declarations are used only at Explanatory
the body level and below, then there will be Variables Model 1 Modei2 Model3 Mode!4
unnecessary visibility at the specification
level. The visibility variable is defined as Constant .6 S** .27 -.04 .65
the number of imports times the number of C.9 6) (.28) (.35) (.3 6)
compilation units to which the imports are -.49
visible, divided by the number of imports. EXPORTS (.10)
For a subsystem, the visibility variable is

averaged over all library units in the IMPORTS (.12)
subsystem.

.48 .51 .27

The VISIBILITY variable enters with IMPEXP (.09) (.09) (.1

the expected positive sign and somewhat VISIBILITY .26 .05

improves the coefficient of determination; (.1 8) (.1 6)

but the coefficient has a large standard MODSPLU .27
error and is not significant. (.08)

R2.5.5.6 .75.2 Software Defect Density (adjusted) 58 8 .62 .76

Analyses
* Coefficient estimate

Since the coefficients in Figure 1 for Stan dard error of estimate

the source lines of code measure are not Figure 2 : Regression Results for Four Models
significantly different from unity for any With Defect Density as Outcome Variable

of the regressions, SLOC can be eliminated
as an explanatory variable by recognizing The visibility metric is introduced in
that: Model 3. While it has the expected positive

log(DEFECT DENSITY) = log(DEFECTS) sign, the metric is not significant on the
- log(SLOC/1000) basis of its standard deviation. However, the

visibility metric increases the explanatory
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power as indicated by the coefficient of consequential defects. For the data used in
determination, this analysis, seventy-eight percent of the

defects occurred in library units having
For Model 4, a process variable bodies and possibly subunits

measuring the volatility of the software
development environment is introduced. Although a defect count is an integer,
This variable is the average number of at the subsystem level the relatively large
(non-defect) modifications per library unit, number of defects may be approximated by
and is denoted by MODSPLU. A volatile a real iiumber. But at the library unit level,
development environment having large with fewer defects per library unit, the
numbers of software changes contributes to discrete nature of the defects becomes
the complexity of the development effort, apparent. Thus, appropriate statistical
and may lead to more software defects. techniques for the analysis of defects at the
MODSPLU enters with the expected sign, and library unit level must be employed.
also substantially contributes to the
explanatory power of the equation. In thc following analyses, we use a

discrete categorical dependent variable
The graphical comparison of the model as discussed by Ashford 13]. The

subsystem actual defect densities with the library unit defect counts are classified into
predicted for Model 4 is shown in Figure 3. seven categories: 0, 1, 2, 3, 4, 5, and >5

defects. As with the subsystem level
Additional product variables (e.g., analyses, reliability measured by library

subprograms per library unit) and process unit defects depends upon complexity, and
variables (e.g., reuse) were identified, but this complexity is a multidimensional
are not shown in the above analyses. With variable.
only twenty-one observations, the number
of explanatory variables entering the We assume that a composite complexity
regression analyses is limited. Moreover, measure can be defined as a linear
the small number of observations led to combination of the different complexities,
substantial correlations among the various X I, X2 ..... Xm. Thiis composite c,-)mplexity
explanatory variables. More sophisticated can be written as:
analyses at the subsystem level will have to
await the building of a larger subsystem C - ao - aI * XI- a2 * X2
database. ... am * Xm +E (1)

6.0 Library Unit Level Analyses for where the minus signs are chosen for
Defects convenience. The parameters, ao al.....am,
In order to circumvent the problems are to be estimated statistically, and c i:., a

Inorert crcmen teresidual error term representing thc
with subsystem level observations, analyses difference between the estimated and actual

of defects were conducted at the library unit

level. We restricted these analyses to composite complexity measures.

library units consisting of a specification, a
body, and possible subunits for a total of 290 The composite complexity measure, C
observations. Such library units specify is not observed directly. However, as this
subprograms or tasks within them, and measure crosses thresholds the number of
require a body and possible subunits for defects increases, and these defects arc

their implementation. Library units, for observed. Expressed mathematically,
example, containing only types and objects
require just a specification. Such library P3i-1 < C* <_ fi (2)
units are less complex, and may be expected => (i-I) defects if i=l.2....6
to account for both fewer and less => > 5 defects if i=7
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where the P i represent the thresholds with Note that the probabilities given in (5) sum
P0"-"O and P37 = +oo and Pi < Pi+1 for i=l ,...,5. to unity, the expected number of defects is

given by:

Substituting equation (1) into equation
(2) and rearranging provides constraints 5
on the residual, e: Exp(Defects)= Y i*Prob(i defects)

i=O
Pi-I +A*X < e <Pi +A*X

=> (i-1) defects if i=1,2,...,6 (3) +exp(>5defects)*Prob(>5defects) (6)
=> > 5 defects if i=7

where exp(>5 defects) is the average
where the parameters and the variables are number of defects for those library units
expressed as vectors: with more than five defects.

A = (aO al a2 ... am) The results of the analysis are shown
(4) in Figure 4. The values of the Pi car.not be

XT(1 X1 X2 ... Xm) determined uniquely because of the
translation invariance. Instead, what is

where XT is the transpose of a column reported is the sum of 0 i and ao (the

vector, X constant term of A*X). These values are
expected to increase monotonically with i

Given a probability density function based on the constraint equations (3).

(PDF) for the residual, the probabilities of Each explanatory variable is expressed
0,1 -...5, >5 defects in a library unit can be Eat axlarger va le i s greater
calculated. The PDF is arbitrary relative to so that a larger value implies greater
scale and translation transformations, and complexity. Since we hypothesize that
may be chosen with unit standard deviation greater complexity leads to more defects, the
centered at the origin It is denoted by the associated parameters for all of thefunction PDF(u) with corresponding variables are expected to have negative
cumultive istriutionfuncton, oC diug. signs. Since the probabilities sum to unity,
cumulative distribution function, CDF(u). the probabilities for larger defect numbers

Thus far no assumptions have been increase as the complexity variables

made regarding the probability distribution increase while those for smaller defects

of the residual, e. If we assume that the decrease.

residual is distributed normally, then the Aside from the variables used In the
CDF is the error function, denoted by erf(u),
and the defect probabilities can be written previous regression analyses, three new

as: complexity measures were introduced.
These are the:

Prob(O defects) = erf(P11 + A*X) number of visible program

Prob(1 defect) erf(P2-vA*X) units per library unit

- erf( I+ A*X) source lines of code per

Prob(2 defects) = erf(P3 + A*X) (5) program unit

"erf(P2+A*X) * parameters per program unit.

A larger number of visible program units
may be expected to increase the

Prob(>5 defects) 1- erf(06+ A'X) implementation complexity, leading to more
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Explanat ory Model 1 Model 2 Model 3 Model 4 Model 5
Variables

8o+13l .41 (.09) .41 (.11) .83 (.14) .86 (.16) .95 (.17)
ao0+ 2  .82 (.10) .83 (.12) 1.26 (.14) 1.29 (.17) 1.43 (.18)

ao+133 1.13 (.11) 1.13 (.12) 1.57 (.15) 1.60 (.17) 1.80 (.18)

ao+ 04 1.36 (.12) 1.37 (.13) 1.83 (.16) 1.86 (.18) 2.10 (.19)

0 + P5 1.52 (.12) 1.53 (.13) 2.00 (.16) 2.03 (.19) 2.31 (.20)

So+-PG 1.69 (.13) 1.69 (.14) 2.19 (.17) 2.22 (.19) 2.54 (.21)

WITHS -. 07 * -. 07 -. 04 -. 04 -. 03
PER LU (.009)** (.009) (.009) (.01 1) (.00 9)

VISIBLE -. 0008 -. 01 -. 01 -. 007
PROG UNITS (.006) (.006) (.005) (.006)

SLOC PER -5.11 -5.09 -3.75
PROG UNIT (1.03) (1.04) (1.07)

PARAMETERS/ -. 01 -. 05
PROG UNIT (.003) (.03)

MODSPLU -. 09
(.01)

R2  .23 .33 .44 .48 .51

* Coefficient Estimate
Standard error of estimate

Figure 4: Results of Discrete Categorical Analyses--
Number of Defects in Library Unit
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defects. Given two library units with the

same number of visible program units, the Many studies have been handicapped
implementation complexity may be greater by a lack of data to conduct sophisticated
for the library unit with more source lines statistical analyses. Relatively limited
of code per program unit leading to more project level data was used, and cross-
defects. Finally, the number of parameters project comparability of various measures
per program unit is a crude measure of the (especially those relating to outcomes like
processing requirements. Greater development effort or software defects) was
processing requirements may lead to questionable.
greater complexity and the potential for
more defects. The analyses presented in this paper

overcome these problems by focusing on
The parameter values ao + Pi , i=l,...,6 subsystem and module level aggregations of

increase monotonically with i as expected. data. However, even at the subsystem level,
The coefficients for all of the variables data limitations restrict the analyses. The
have the expected negative sign. They are twenty-one subsystem observations could
significant to within the ten percent level not support a larger number of explanatory
of significance with the exception of the variables. Moreover, a number of proposed
visible program units in Models 2 and 5, and explanatory variables were found to be
the parameters per program unit in Model correlated (probably spuriously).
5. The coefficients of determination are
calculated from Maddala [7] using: On the other hand, the library unit

analyses, involving several hundred
observations, did not exhibit the problems

R2 1-(L(/LQ)n/ 2  (7) cited above. The analyses were limited,
wher nish nu r ohowever, by the unavailability of certain

where n is the number of observations, Le software product and process data. For
is the likelihood function for estimators example, complexity associated with the
based only on the constants, while Lg is the functional call tree was not introduced
likelihood function when the variables are because the software analyzer used could
also entered into the equation. not extract this information. Similarly,

process measures, such as the experience of
Equation (6) was used to calculate the the software development staff, were not

expected defects by library unit. The taken into account because of the difficulty
library unit results were then aggregated to of collecting such data.
the subsystem level and the actual vs.
predicted defects is shown in Figure 5. The Although the data came from different
correlation between actual and predicted projects, these projects were, nevertheless,
defects is .85. conducted in a common, and relatively

stable software development environment.
7.0 Conclusions This assured that the defect data was

comparable across projects, and many
Based on the above analyses, the process variables, such as software

perspective that software complexity is a development methodology employed, were,
multidimensional problem is substantiated. in effect, held constant.
No single complexity metric can completely
characterize a software development The future of software metrics, and
project. Rather, the project can be their application to software development
represented by measures of the software depend upon the collection of larger
product complexity and measures of the amounts of accurate and compatible data.
complexity associated with the development From this perspective, it would be
environment, worthwhile to instrument software
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development projects for the automated 8. McCabe, T. and C. Butler (1989), "Design
collection of much of this data, and to Complexity Measurement and Testing,"
provide this data (assuring project Communications of the ACM, Vol. 32, No.
anonymity) to qualified researchers in the 12, pp. 1415-1425.
software metrics field. Doing so requires
some investment which would mean added
costs to software development efforts.
However, the payoffs are large in terms of
the potential to influence and improve the
process of software development.
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Abstract functions [3, 5]. Many investigators have found that at
least one of these three mean value functions can be

Stochastic models based on the non-homogeneous Pos- used to describe the failure process in most situations.
sion process are increasingly being used for software In some cases, all three are applicable but one may give
reliability assessment. A major difficulity in their prac- better results than others.
tical use is the estimation of model parameters which One major difficulty in the practical use of these
are obtained by numerical methods and are generally reliability models is the estimation of the model param-
very sensitive to the initial values. In this paper we eters. In general, the estimation equations have to be
address this problem for the delayed S-shaped NHPP solved numerically and the results tend to be very sen-
model but our results are also applicable to other pop- sitive to the initial values chosen for the numerical pro-
ular NHPP models. cedure. In this study, we address this problem for the

DSS model by first studying the characteristic points of
the theoretical mean value function and its derivatives.

1 Introduction Then we derive some relationships between the model

An important measure of the quality of a software parameters and the characteristic points. Finally, we
system is its estimated reliability at various points dur- use these relationships and the data derived trend test
ing system testing. A commonly used approach for de- to develop guidelines for determining good initial val-

termining the reliability is to fit an appropriate stochas- ues for the model parameters.

tic model to the available failurL data and, based on
this model, determine the current system reliability. 2 Delayed S-Shaped NHPP
Future reliability values are then obtained by judi-
ciously extrapolating the fitted model. A commonly Model
used model that has been found to be useful for this The NHPP-DSS has a two parameter mean value
purpose is based on the non-homogenous Poisson pro- the NP-S = a two parameter a vatecess (NHPP). It was originally proposed by Goel and function, re(i) = a(1 - (1 + bt)e-bt), where a is related

to the number of faults and b to the fault detection
Okumoto in 1979 [2]. Since that time, it has been em-
ployed in a variety of environments [3, 5, 7]. In addi- rate. Let Y be the number of observed failures by time
tion to its simplicity, it has very good theoretical and 4, i 1,2.n. Then
practical interpretation. The original model was based P{m(t1) = Y1, M(t2 ) = Y2, ... , m(tW) = y. /a, b)
on the exponential (NHPP-EXP) mean value function,
and since then several modifications to the exponential = {mt)-
form have been proposed by other authors. Two pop- =1-
ular modifications are the delayed S-shaped (NHPP-
DSS) and inflection S-shaped (NHPP-ISS) mean value

"This work was partially funded by AIRMICS under contract
No. DAKF 11-90-C-0022 Given observed values Y1, Y2, ... ,Yn, the log likelihood
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of parameters a and b is easily obtained as K3 : the time at which di(') is minimal.

L(a, b) =- L For the NHPP-DSS model, only K2 is relevant while
n K 1 , K2 and K3 all play an important role in parameter

SE(- y-i_l)ln{m(t,)- m(ti-1)} estimation of other NHPP models. Now, for the DSS
i=l model,

- E ln{(yi - Yi -)!} - m(tn). (2) t - m(i) - ab2 iebt
i=1 Taking the derivative of A(t) and equating it to zero,

Taking the derivatives of L with respect to a and b and we get
setting them equal to zero, we obtain ab2(ebi - bte-5 ) = 0.

yn
1-(1 + btn)eb.' (3)

and (The solution for the above is t = 1/b and from the
definition of K 2 , we have K2 = 11b.. On substituting

t2 ebt n )/K2 for b in equation (5), the estimation problem re-
a -n E(Yi - Yi-1) duces to finding the value of K2 . The objective of this

,=1 subsititution is that, if an approximate value of K12 can
O~e-bti -2 t? -bti-i- s- (4) be determined directly from the observed data, it can

x (i + bti_1)e-6-- - (1 + bti)e-bt" (4) be used as an initial value for the root finding proce-

dure. This will ensure that the solution obtained is the
The estimate of b is given as one of the solutions of the desired one.
following equation which is obtained from equations (3) One difficulty with this, however, is that the observed
and (4). Then a can be obtained by substituting for b data tend to be subject to much noise and it is not easy
in (3). to determine where ,(t) has attained a maximum, i.e.

determining K2 visually can be difficult. To overcome
neb n D i the difficulty, we use the Laplace trend test as described

-y(-1 +teb = t(Ya -- Ys-) below.-(1 +btn~ebt" =1

The Laplace trend test of observed data is given by
(1 + bti_1)e-bi-I - (1 + bti)e-bts" (5) E4].

We have found that equation (5) may have multiple u1 2

solutions and some of them could be misleading. We

have developed an approach to overcome this estima- where zi = yi-yi-1 We have found that a plot of u(k)
tion problem based on the trend test and some charac- versus time k can be used to approximate the value of
teristic points of the observed data to find initial values the characteristic point K 2 . In particular, if u(k) has
for the model parameters. ti

only one peak, then we use this value as K 2. If u(k)
has multiple peaks, we use a weighted average as an es-

3 Characteristic Points for an timate of K2 for the root finding procedure. Although

NHPP M~odel it is a heuristic approach, in many applications we have
found that it yields very good results.

There are three characteristic points which are useful
in determining the initial estimates for model parame- 4 Illustrative Example
ters. These are associated with the failure rate function
A(t), where A(t) = dm(t). These points are defined as Consider the failure data given in Table 1. The data
follows. were obtained from the test reports of a medium size
KI: the time at which dA(') is maximal. software system over a thirty month period. A plot of

dt the Laplace trend factor is given in Figure 1. We note

K2: the time at which A(t) is maximal. that this plot indicates three positive relative maxima
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at (3, 2.74), (14, 22.91) and (25, 22.54). A weighted [4] H. Ascher and H. Feingold, Repairable Systems Re-
average of these yields an estimate of K2 as liability: Modeling, Inference, Misconceptzons and

2.74 3 + 22.91 .14 + 22.54 . 25 Their Causes (Lecture Notes in Statistics, Vol. 7),
K 2  - 2.74 + 22.91 + 22.54 1984.

= 18.52. [5] M. Ohba, "Software reliability analysis models,"

Using b = 1/K 2 = 0.054 as the initial value for nu- IBM J. Res. Develop., vol. 28, no. 4, July 1984.

merically solving equation (5), we obtain b = 0.046. [61 A.A. Abdel-Ghaly, P.Y. Chan, and B. Littlewood,
Substituting this in (3), we get a = 4312.28. A plot of "Evaluation of competing software reliability pre-
the actual failure data and the fitted NHPP-DSS model dictions," IEEE Trans. Software Eng., vol. SE-12.
is given in Figure 2. no. 9, Sept. 1986.

It should be noted that, without using b = l/K 2 as
the initial value, a root b -- 0 was found and obviously [7] K. Kanoun, M.R. de Bastos Martini, and J.M. de
was an unreasonable estimate of parameter b. Souza, "A method for software reliability analy-

sis and prediction application to the TROPICO-R
Table 1 Switching System," IEEE Trans. Software Eng.,

vol. 17, no. 4, April 1991.
Cumulative number of failures of a software system

0 Time # of faults Time # of faults]
1 20 16 740
2 40 17 780
3 80 18 850
4 90 19 920
5 95 20 920
6 100 21 1000
7 105 22 1150
8 110 23 1260
9 130 24 1460
10 150 25 1560
11 180 26 1640
12 280 27 1680
13 490 28 1700
14 650 29 1710
15 700 30 1720
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Abstract assume that responsible developers of software would
not release their products without first assessing their

The assessment and demonstration of software reliabil- reliability using methods of proven effectiveness. To the
ity is a controversial topic addressed by three principle contrary, however, the methods most often used to as-
approaches: software testing, program verification, and sess software reliability are ad hoc and unsatisfactory
statistical inference Although each of these approaches even to those who apply them. Computer scientists have
has apologists who dogmatically assert its primacy, none extensively investigated means to rectify this problem.
of the approaches has proven universally superior. Each Three principal approaches to software reliability assess-
approach is well-suited to some applications but not to ment have emerged from these researches: software
others. The proper roles of software testing, program testing, program verification, and statistical in-
verification, and statistical reliability assessment vis-d- ference. A program is tested by evaluating its behavior
vis each other have not been established heretofore. We when it is executed on test data selected to reveal faults
propose a delineation of these roles, based on an anal- it might contain. A program is verified by logically de-
ysis of the relative strengths and weaknesses of each ducing its correctness from a set of axioms. A program's
approach. reliability is assessed statistically based on the behavior

the program exhibits when it is executed on a random
sample of inputs from its operational environment. Un-

1 Introduction fortunately, there is no consensus about the utility of
these three approaches. Debate between their propo-

As computers have pervaded our daily lives, we have be- nents has often proven dogmatic and futile. Because of
come dependent upon computer software and vulnerable this controversy and other obstacles, the practice of soft-
to harm caused by its failure. Such commonplace activ- ware reliability assessment stagnates in an unacceptable
ities as using the telephone, driving, shopping, banking, state.
and air travel now involve software. Although comput- It is a startling fact that, despite these problems, the
ers have often been portrayed as engines of mathemati- principal approaches to software reliability assessment
cal certainty, precise and infallible, they and their soft- are satisfactory in many cases. None of these approaches
ware are often far from perfect. Software fails when is universally superior to the others; however, each is
it is invoked to carry out a computation which it was well-suited to circumstances that the others are not.
not correctly designed for. Many harmful software fail- These facts are not widely recognized, due to the spe-
ures, leading to economic loss, injury, and even death, cial nature of scientific inferences concerning program
have been reported [Leve86, Neum92]. Software users behavior. We endeavor to clarify this nature and to de-
are not the only victims of such failures. Those who sell lineate the proper roles of software testing, program ver-
software or products employing it are harmed by loss of ification, and statistical reliability assessment vzs-d-vis
sales and by legal liability for defective software [Salt89]. one another, by analyzing the strengths and weaknesses
The dangers of software failures have led governments of each approach.
to investigate and even legislate the manner in which We argue in Section 2 that software testing is best
software is developed [UK88, US89]. suited to subjective reliability assessment, and should be

Given the evident risks of software failure, one might used intuitively by someone with well-focused concerns

*Professor Podgurski's research was supported by NSF Re- about a program, in the manner of a mathematician
search Initiation Award CCR-9009375 seeking a counterexam)'i to a conjecture. We contend
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that many systematic testing methods are ill-suited to if the original program contains a fault that a muta-
subjective reliability assessment, because they are too tion corrects, the fault will be revealed during testing.
abstruse to permit intuitive interpretation of testing re- Specification-based testing methods call for exercis-
suits. ing certain aspects of a program's requirements speci-

Because programs are artificial, some believe that in- fication. For example, functionality testing involves
ferences about them should be made deductively, as in attempting to exercise each type of functionality that a
program verification [Dijk76, Hoar69, Hoar86]. How- program is required to provide.
ever, in Section 3 we present new arguments supporting Reliability assessments based on testing are generally
the view expressed in [Fetz88, DeMi79] that purely de- subjective, even when test data is selected systemati-
ductive assessment of large software systems is an illu- cally. There are significant obstacles to making objec-
sory goal. Nevertheless, program verification is appro- tive reliability assessments via testing. For starters, it
priate for certain programs, which we describe, is known that no algorithm can decide whether an arbi-

Although statistical inference is objective and widely trary program is correct or not [Loec84]. Furthermore,
accepted in other fields, it is relatively neglected in soft- although testing may be viewed as a form of sampling,
ware reliability assessment. In Section 4, we describe statistical sampling theory cannot be used to make in-
the reasons for this and argue that they are not well- ferences based on the results of either subjective or sys-
founded. We describe the necessary conditions for sta- tematic testing, because neither approach calls for se-
tistical assessments of reliability to be predictive, and lecting test data randomly. It is plausible that one might
we describe a technique called random input logging for demonstrate experimentally that a particular relation-
ensuring that these conditions are satisfied. Finally, we ship typically holds between the reliability of a program
present a theoretical result from [Podg9l] that clarifies and the results of testing it with a particular method.
the role of randomness in statistical reliability assess- For example, one might demonstrate that with a cer-
ment by relating the accuracy of an assessment to the tain testing method, the frequency of failures during
randomness of the input sample used, the size of the testing is usually an upper bound on the long term fail-
program being assessed, and the size of any correct im- ure frequency. However, no strong results of this type
plementation of the program's requirements. are known.

Objective reliability assessments are obviously better-

2 Software Testing suited for communication than subjective ones, par-
ticularly for contractual purposes. Nevertheless, well-

By far the most commonly used method of assessing founded subjective assessments are valuable for some

software reliability is testing. Software testing involves purposes. Testing can sometimes be used to make such

executing a program on selected inputs, evaluating the assessments more cheaply than objective assessments

program's behavior, and appraising the program's re- can be made, as we now describe.

liability in light of the results. Often, test data is se- A programmer's confidence in the reliability of their
lected subjectively, based on the tester's intuitions. Sys- program is based on knowledge of how the program
tematic testing methods, on the other hand, incorpo- works and of how it will be used. Testing can be allevi-
rate objective rules for selecting test data. System- ate concerns about how a program works in two ways.
atic testing methods are distinguished on the basis of The first is an incipient form of statistical inference. The
these rules. Coverage-based testing methods require tester selects test data they perceive to be "representa-
that test data be selected that covers (executes) given tive" operational inputs. If no failures are observed dur-
program structures, such as statements, branches, con- ing testing, the tester infers that few failures will occur
trol flow paths, or data flow relationships. For exam- during operational use of the program. We defer fur-
pie, statement coverage is a coverage-based testing ther consideration of statistical reliability assessment to
method that requires each statement in a program to Section 4. The second way that concerns about a pro-
be executed at least once during testing. Fault-based gram can be alleviated by testing is very similar to the
testing methods call for selecting test data that will re- way that a mathematician comes to believe an unproven
veal specific types of faults whose presence in a program conjecture. Fetzer has likened a program and an execu-
is suspected. For example, mutation testing is a fault- tion of it to a conjecture and to a refutation, respectively
based testing method in which mutants of a program [Fetz88]. We believe this comparison holds the key to
to be tested are created by making small changes to understanding the proper role of software testing.
the program [Budd80]. Test data is selected to distin- In mathematics, conjectures arise from various
guish the mutants from the original program. Thus, sources, including knowledge of proven theorems, gener-
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alization from examples, and, especially, intuition. The lecting test data to execute a certain program state-
author of a conjecture is not necessarily confident of its ment, although no algorithmic method can do this in
truth. If a conjecture is difficult to prove, strong doubts general.
may arise. This may lead a mathematician to try to re- Let us consider a simple example of how testing might
fute the conjecture, perhaps by providing a counterex- proceed according to the conjecture-counterexample
ample. If this succeeds, the conjecture must be modified paradigm. The developer of a compiler for an object-
or abandoned. Often, however, an attempt to refute oriented programming language is confident that their
a conjecture provides new evidence for its truth'. A compiler is largely correct. This confidence is based
failed refutation may even suggest a way of proving the on the compiler-writer's past experience and on their
conjecture. It is not uncommon for a mathematician to knowledge of the compiler in question. However, they
alternate repeatedly between attempting to prove a con- are concerned about the garbage collection algorithm
jecture and attempting to refute it, learning a little more used by the new compiler to reclaim dynamic storage in
from each attempt. A mathematician's attempts to re- object programs. The compiler writer had never imple-
fute a conjecture are not haphazard. They are guided mented garbage collection before and found the problem
by knowledge and intuition to investigate particular cir- subtle and difficult. In particular, they are concerned
cumstances satisfying the hypothesis of the conjecture. that the storage for objects that become unreferenced
This suggests a paradigm for software testing. may not be collected under certain circumstances. They

If a tester is profoundly confused about how a pro- test the compiler using source programs that give rise
gram actually works, they cannot make useful infer- to the circumstances in question, and observe, using a
ences about its reliability without resorting to some- debugger, that the object programs reclaim storage cor-
thing resembling statistical inference. If, on the other rectly when executed. This helps convince the compiler-
hand, they largely understand the program but have writer of the reliability of their compiler.
certain well-focused concerns about its behavior, they It is important to note that some systematic test-
are in a position to judiciously select test data in or- ing methods are incompatible with the conjecture-
der to explore the basis for those concerns. If a tester counterexample paradigm for software testing. Whereas
believes that a program can fail only in certain spe- the paradigm calls for selecting test data in an intu-
cific circumstances, they can select test data that gives itively meaningful way, to explore well-focused concerns
rise to those circumstances and observe the results. If about a program, the systematic testing methods in
failures are observed, their doubts are confirmed; how- question call for exhaustively exercising certain generic
ever, if no failures occur, their doubts may be exorcised. aspects of programs. An example of such a systematic
In this paradigm, tests are essentially proposed coun- testing method is path coverage, which calls for exercis-
terezamples to the conjectured reliability of a program. ing every control flow path in a program. It is difficult
Thus, we call this the conjecture-counterexample to imagine how a tester could intuitively comprehend
paradigm for software testing2 . the results of path coverage, since the method is es-

The author of a program is best prepared to con- sentially divorced from the tester's knowledge and intu-
duct this type of testing. They have extensive knowl- ition about the program to be tested. The view that
edge about the program's development that can be used many systematic testing methods do not lend them-
to guide testing. They know what parts of the pro- selves to intuitive assessment of reliability explains the
gram they found difficult to write and which parts they often-heard question (lament?) of practitioners, "If I
found easy. They know what kinds of mistakes they test with method X and no failures occur, what do I
typically make. They have some understanding of the know about my program?"
consequences of different types of failures. When a pro-
grammer decides that they wish to test a certain aspect
of their program, their knowledge of how the program 3 Program Verification
works is invaluable in selecting appropriate test data.
For example, a programmer may have no difficulty se- In principle, deductive inference suffices to completely

explain a computer program's behavior. This is be-
'For example, the main support for the P $ NP conjecture cause the basic mechanisms of programs are accessible

of theoretical computer science is the failure of many attempts and well-understood. Hence, it natural to consider us-
to devise polynomial-time algorithms for NP-complete problems ing deductive methods to assess software reliability. In
[Gare79).

2Note that the conjecture-counterexample paradigm for soft- program verification, one seeks a deductive proof that a
ware testing does not requires that testing be used hand-in-hand program is correct, that is, that the program will never
with program verification, although that is natural to consider, fail. Obviously, such a proof is an ideal characteriza-
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tion of reliability, once obtained. Proponents of program correctness is that such proofs can be checked automat-
verification prefer the seeming certainty of deduction to ically. Formal proofs that are annotated to indicate
the inherent uncertainty associated with inductive in- what axioms, rules of inference, dnd previously proved
ference. The latter is used extensively in the natural statements are used at each step can be checked rather
sciences, because the basic mechanisms of many nat- efficiently by a simple program. This doesn't, of course,
ural systems are poorly understood and because the obviate the need to construct a formal proof of cor-
complexity of natural systems often precludes purely rectness in the first place. Although some advocates
deductive explication. Ironically, many programs exist of program verification have suggested that with train-
now whose complexity rivals that of natural systems and ing a programmer can manually derive formal proofs
renders the use of program verification problematic. of correctness by "calculating" [Dijk89], there are fun-

Program verifications may be either formal or infor- damental impediments to such calculative verification3.

mal. An informal verification yields a proof like those Firstly, long calculations are error-prone - indeed, that

typically written by mathematicians. The proof is in- is why computers were invented! Secondly, humans

tended to be understood readily by humans and so is ex- calculate using manual algorithms, but the question of

pressed in a mi, Wure of natural language and mathemat- whether an drbitrary program satisfies a specification is

ical notation. Rules of inference are applied implicitly, not even decidable algorithmically. Automated vertfca-

The proof may omit deductions that its author judges ti.,a is an example of the word problem for rewi'ting

the reader can easily supply. A formal verification, on systems, which has proven intractable in all but its most

the other hand, yields a complete deduction within a for- restricted forms [Benn87I.

mal proof-system. This consists of a sequence of state- It is plausible that interactive theorem proving, in

ments expressed in a formal language. Each statement which a human interacts with an automated theorem-

is either an axiom of the system or follows from earlier prover, might beconie a very useful approach to program
statements in the sequence by an explicit application of verification [Rush9l]. Will interactive theorem-proving

a rule of inference. The last statement in the sequence eventually permit the "programmer in the street" to
asserts that the program in question is correct. Formal verify large programs in a timely fashion? This seems

proofs tend to be much longer than informal ones, be- unlikely. Interactive theorem-proving requires consid-

cause the latter are much less detailed than the former. erable expertise with formal logic and automated de-

A formal proof of a program's correctness contains an duction. The user of an interactive theorem-prover
explicit deduction for every operation in the program. must guide it by suggesting lemmas leading to the goal-

theorem. Thus, the user must be a skilled theorem-
Attempted proofs of correctness, whether formal or

informal, are subject to flaws much like those that oc- prover himself and must thoroughly understand the

cur in programs. This problem is acute with large pro- capabilities and limitations of the automated prover.

grams, for which correctness proofs are extremely long Worse, to verify typical programs the user would need

and complex. Manually constructing and checking such to be a proficient logician. The formal analogue of a

proofs is a laborious and error-prone task. Although programmer-defined data type is an abstract data type

informal proofs are shorter than formal ones, this ad- [Wirs90]. The definition of a particular abstract data

vantage is weakened by an element of subjectivity in- type contains statements of formal logic that charac-

evaluation. Formal proofs, while objec- terize the semantics of the type. Ensuring that these
herent to theirlevasuto often defy h ile obpe- statements appropriately characterize required behaviortive, are so detailed as to often defy human compre- i rbe ftegets utey ntehsoyo

hension. DeMillo, Lipton, and Perlis argue that proofs is a problem of the greatest subtlety. In the history of

of program correctness are of dubious value because mathematics there are many examples of controversies

they are not likely to be subject to the kind of com- among great mathematicians about the proper constitu-

Munal scrutiny that important proofs in mathematics tion of axiom systems4 [Klin90]. Formal verification of

are [DeMi79]. Fetzer asserts that while algorithms can software with programmer-defined data types requires

be proven correct with respect to abstract models of a human verifier to supply data-type axiomatizations in

computation, programs written to execute on physical bulk!

machines cannot be proven correct, because unknown 3 An auxiliary benefit of "intuitionistic" program verification

factors can affect program behavior. In any case, many is that even a flawed attempt at verification may help to ensure

software failures are caused by inappropriate require- that the form of a program is nearly appropriate, by enhancing

ments specifications, and program verification does not the verifier's understanding of the program. This benefit is not

address this problem at all. realized with purely calculative, formal verification.4 Perhaps the most famous of these is the controversy surround-
One potential advantage of formal proofs of program ing Euclid's "Parallel Postulate".
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Despite the aforementioned limitations of program There are several ways to characterize reliability sta-
verification, it is reguiarly and successfully used in some tistically, and there are seve,al statistical procedures
domains. In the area of theoretical computer science that can be used to assess reliability, e.g., [Brow75,
known as the Design and Analysis of Algorithms, infor- Cho87, Goe185, Thay78]. In order to illustrate the basic
mal verification is the primary vehicle for demonstrat- issues of statistical reliability assessment we present one
ing the correctness of algorithms. Research papers that simple but useful formulation of the problem. Suppose
present an algorithm usually include an informal proof that we wish to assess the reliability tha. a determinis-
of its correctness. Of course, theoretical computer sci- tic program P exhibits when it is executed repeatedly
ence is much like the mathematics in that the ultimate in an environment E during a time period [t 1,t 2]. We
acceptance of a proof depends on a "social process" a la might characterize P's reliability as the proportion 0 of
DeMillo et al. Moreover, the algorithms in question are P's runs that succeed. Let R = {ri, r 2 ,... , rN} be the
usually rather small, albeit intricate. The cost of veri- set of runs of P that occur in E during [t1 , t2 ]. Asso-
fying them is justified by their fundamental nature, and ciate a binary variable y with these runs as follows: if
unlike most software, these algorithms are not subject run rk succeeds then the value yk of y associated with
to frequent modification. Any software sharing these rk is one; if rk fails then yk = 0. The proportion 0 is of
properties is a good candidate f'r verification, course the population mean Y9R 1/N 'k=1 yk

When possible, it is appropriate to verify the soft- Usually, one wishes to predict 0 for some future time
ware in critical systems, because failures of such soft- period [tl,t 2]. Unfortunately, it is rarely possible to de-
ware may lead to catastrophic consequences, such as loss termine how a program will be invoked in the future.
of life [Leve86]. Howeve., the software for some critical Thus 0 cannot be determined or estimated directly. In-
systems is too complex to permit effective verification, stead, P is executed in an environment E' similar to E
Leveson has argued that the benefit of some of these and P's behavior is observed in order to approximate
systems may outweigh their risk [Leve92b]. We contend 0. Suppose that P is executed N' times in E' during
that, otherwise, the construction of such systems should a time period [ti, t']. Let R' = {r', r, . . ., r',, } be the
not even be attempted unless a simple mechanism can corresponding set of runs of P, and let yk be one if run
be identified that is ipdependent of the primary soft- 7-, is successful and zero otherwise. It is assumed that
ware and that ensure. the safe, if not completely cor- the long-term relative frequency of the different inputs
rect, behavior of the overall system. Such 2_ mechanism to P is approximately the same in E' as in E. Thus, if
need not involve software at all, although it. is a good the iatervals [tI, t2] and [t', t2] are sufficiently long, then
candidate for verification if it does. An example of a it is likely that 0 s YR, = 1/N'ENk' I y', because the
simple fail-safe mechanism is the potentiometer even- behavior of P is determined by its inputs. The number

tually used to prevent the Therac-25 radiation-therapy N' of runs in R' is normally too large to permit the pop-

machine from delivering dangerous doses of radiation N'tof run in R' is n allytoo larecto per ause phe

[Leve92a]. Other examples of such mechanisms are dis- ulation mean P, to be calculated dIrectly, because the

cussed in [Dunn9O]. success or failure of a run must usually be determined
manually. However, YR, can be assessed statistically by
randomly sampling from R'. For example, we can test
the hypothesis Ho that !R' < 0.999, based on the nun,-

4 Statistical Reliability Assess- ber X of successful runs that are observed in a simple
ment random sample of 3000 runs drawn with replacement

from R'. The random variable X has a binomial distri-

The statistical approach to software reliability assess- bution with parameters 3000 and YýR, It is not difficult

ment has some significant advantagt, over software test- to show that the procedure that rejects Ho (accepts the

ing and progr .m verification. Unlike testing, it yields hypothesis that -91, > 0.999) if X = 3000 is a uniformly
objective reliability assessments. The cost of statisti- most powerful test [Case90J at the level of significance
cal reliability assessment does not necessarily increase 0.9993000 = 0.0497 ....
substantially with program size, as does the cost of The flexibility of software makes it possible for a pro-
verification. However, the cost of siatistical reliabil- gral., to facilitate its own reliability assessment. This is
ity assessment is n t insignifirant. Moreover, statisti- achieved by instrumenting the program to randomly
cal assessments are not certain, althoughi he degree of log its inputs. At the beginning of each run, the pr(
uncertainty associated with them can be characterized gram psuedorandomly generates a real number r front
probabilistically. When it comes to assessing software an (approximate) uniforn, distribution on the interval
reliability, there is, apparently, no free lunch [0, 1] The program then tests whether r is less than a
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fixed logging probability 7r. If so, the program records Some authors contend that statistical methods are
all elements of its input in a permanent file, called the incapable of demonstrating ultra-high reliability, by
log; if r > 7r, the program does not record its input. In which is meant a long-term failure frequency of one
either case, the program carries out its normal compu- or fewer failures per billion runs [Butl9l]. They ar-
tation. After the program has -un many times, its log gue that such a demonstration would require evaluating
contains a random sample of operational inputs, which a program's behavior over billions of inputs, which is
can be used to reinvoke the system during reliability impractical5 . This argument is compelling with respect
assessment in order to evaluate the outcomes of a ran- to programs whose behavior must be evaluated manu-
dom sample of runs. In practice, random input-logging ally. However, if a program's behavior can be evaluated
would be employed in a program's intended operating automatically, then demonstration of ultra-high relia-
environment or in an approximation to it. If a program bility is possible, provided that the relative frequency
is intended to operate in many environments, then the of different inputs does not change. For example, the
technique can be applied over a random sample of them output of a program to compute the square-root of a
to study variations in reliability across enviionments. number can easily be checked by squaring it and com-

The predictiveness of statistical reliability assessment paring the result to the program's input. Thus, such

depends on the degree to which the usage of a program a program's reliability can be evaluated automatically

during reliability assessment resembles its operational over a massive sample of inputs, permitting the demon-
usage. Random input-logging in the operational envi- stration of ultra-high reliability.
ronment permits current usage to be characterized faith- The reservations of many programmers about sta-
fullyr However, some software engineering researchers tistical reliability assessment bespeak an unfamiliarity
fully.d tHatoweertsomel uso are canbeng uinee angr earher with the crucial role of randomness in statistical in-
contend that operational usage can be quite changeable ference. We close this section by stating a theoretical

[Haml87]. There is no doubt that individual uses of a res.lt thas to clif y th at in theonetiof

program can vary considerably. Nevertheless, myriad result that helps to clarify that role in the context of

applications of statistics have demonstrated that varia- software reliability assessment [Podg-l]. This theorem

tion between individuals does not preclude regularity in relates the accuracy of a statistical reliability assess-

an aggregate. If a program's operational environment ment to the randomness of the input sample used and

seems unlikely to change dramatically, it reasonable to to the nature of the program assessed. In the theorem,

hypothesize that the long-term failure frequency of the the randomness of a sample is characterized in terms

(unmodified) program will either be stable or change of Kolmogorov complexity [L90e . Strictly speaking,

only gradually. Such a hypothesis requires confirmation Kolmogorov complexity is a measure of the randomness

and periodic reconfirmation, although this is unusual in of strings (finite sequences of characters). However, it

current practice. Random input-logging provides a con- can be used to measure the randomness of a sample

venient mechanism for collecting the data necessary to from a finite population by equating this with the Kol-

conduct period reassessments of software reliability. mogorov complexity of the characteristic string asso-
ciated with the sample. The latter string is the binary

Many programmers are extremely resistant to the string whose length is equal to the size of the popula-
idea of statistical assessment of software reliability. To tion from which the sample was drawn and whose ith
them, random selection of test data seems hopelessly bit is one if and only if the ith element of the population
naive compared to thoughtful, purposive selection. This belongs to the sample.
attitude frequently indicates a confounding of the role Intuitively, a string is random if it has no simplc pat-
of software testing in reliability assessment with its role tern or if, put another way, there is no succinct de-

in fault removal. Testing is often used to find faults so scription of the string. The definition of Kolmogorov
that they can be corrected to improve reliability. In fact, complexity is a formal characterization of this intu-
testing is used for reliability assessment and fault re- ition. Informally, the Kolmogorov complexity Ix(x) of
moval simultaneously. Whereas objective reliability as- a strin,, x is the length of the shortest program that
sessment calls for the selection of "representative" sam- generates x. Note that a string x can always be gener-
pie inputs, fatult removal calls for selecting inputs that ated by a program that actually contains a copy of x. so
are likely to -eveal latent faults. It is therefore plausible IC(x) < JxJ + c for some constant c that is independent
that subjective or systematic selection of test data is of x. 6

apiropriate for fault removal, although such test data 'Others suggest that ultra-high reliability requirements are un-

s.,lection is not appropriate for ,tatisticJi reliabihity ;Ls- realistic [littl].

sessment. Few programmers recognize this suItl I,but CNot, that we denote the length of a stnng r by tr- and the

critical distinction. cardinality of a set S by ISI, relying on context to make clear the
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Informally, our result states that if a statistical reli- in software reliability assessment. At present, soft-
ability assessment of a program's reliability is grossly ware testing permits only subjective reliability assess-
misleading, then either: the input sample used was not ment. However, it may be the method of choice when a
very random, the program is very long, or every correct tester largely understands a program but has a few well-
implementation of the program is very long. focused concerns about aspects of its behavior, because

testing can be used intuitively to explore those con-
Theorem 1 ([Podg9l]) Let S be a nonempty subset of cerns in the manner of a mathematician seeking a coun-
[N] = {1, 2, ... , N} for some N > 16, and let x be the terexample to a conjecture. However, some systematic
characteristic string of S with respect to [N]. Suppose testing methods are incompatible with this conjecture-
that P and P' are programs that compute total functions counterexample paradigm for testing, because they select
gp and gp,, respectively, from [N] to R for some set R. test data in a manner that is divorced from a tester's
Then intuitions about a program. Program verification is an

ideal method of reliability assessment when a program's
K(x) < IPI + IP'I + 2(6 + c + 1)Rlog 2 (N + 1)1 + c, requirements are well-understood and when the pro-

gram itself is relatively small; however, it. is ill-suilted
where 6 = I{i E S:gp(i) $ gp'(i)}l, I ={i E to large programs with highly contingent requirements.
[N] - S:gp(i) = gp'(i)l, and c is a constant that is Interactive verification with the aid of an automated
independent of P, P', N, and S. theorem-prover may extend the applicability of formal

verification, but it is likely to remain a specialized tool.
Suppose that P is a program whose reliability we wish Statistical inference is a neglected tool for software relia-

to assess, and suppose that P' is any program satisfy- bility assessment, which can provide objective reliabilityv
ing the requirements for P. Then 6 is the number of blt seset hc a rvd betv eiblt
tings thet requiremns for Pe TleSand 6 is the numbr o assessments at relatively low cost. The predictiveness of
times that P fails on the sample S, and w is the numP- statistical reliability assessment requires that the usage
ber of inputs in [NI - S for which the output of P" is of a program during its assessment be very similar to

correct. Theorem 1 implies that if we assess the reliabil- operational usage. Random input-logging can be used

ity of P based on the value of 6, but this assessment is operethat ts condon ispmt. How e sat
grosly isledin (oerlyoptmistc) n te sese hat to ensure that this condition is met. However, statisti-grossly misleading (overly optimistic) in the sense that cal demonstration of ultra-high reliability does not seem

6 is a small fraction of N but N -- ISI - f is a large practical, except when the correctness of a program's

one, then, for large enough N, either S is not very ran- behavior can be checked automatically.

dom or the sum of the lengths of P and P' cannot be

much smaller than N. This is because in these circum-
stances the term 2(6 + c + 1)[log2 (N + 1)1 is negligible
relative to N. (Note that the method used to prove
Theorem 1 can easily be adapted to prove an analogous
result about overly pessimistic reliability assessments.)
It is not surprising that a reliability assessment obtained
by executing a program on a nonrandom sample of in-
puts may be misleading; that is conventional statistical
wisdom. However, Theorem 1 implies that if an assess-
ment of a program's reliability is sufficiently misleading,
if the program is not too long, and if there is a correct
implementation of its requirements that is not too long,
then the sample cannot be random. Theorem 1 can be
extended to apply to programs P with non-integer in-
puts and to samples drawn from arbitrary operational
distributions [Podg9l].

5 Conclusion

We have seen that software testing, program verifica-
tion, and statistical methods each have a useful role

intended meaning of the notation.
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Inspiration for this work comes from discussions with 2.0 Design Considerations
Mark Andrews, Rick Becker, Murray Cameron, Bill
Cleveland, Nick Fisher, Kenny Leung, Branka Hoffman Our approach is to generate a toolkit that allows menus
and Ken Yap. and dialog boxes to be quickly defined for use with the S

language, use this toolkit to build some fairly specific
GUI's (to gain experience), then extend the toolkit to

1.0 The Objective support a desktop metaphor, and finally build a general
purpose GUI for S (or more specifically for S-PLUS).

Our aim is to design and build a general purpose Graph-
ical User Interface for S. It should give users access to Specific aims are:
the full power of S, without its complexity. Potential We want conformance with the Open Software
users can be characterised in terms of: Foundation's Motif GUI standard as a first stage

"* Experience with other GUI's (G). (other versions may follow, but we consider it

"• Knowledge of data analysis and statistics (D). impractical to try and conform with several style

"* Knowledge of the S language (S). guides simultaneously).
We want the GUI to work with the existing unmodi-

Users who measure low in all attributes (---) require fled S-PLUS product.
complete and detailed help and guidance, demonstra- * We want to effectively use UNIX and network facili-
tions, and an environment where it is almost impossible ties. For example, it should be possible to run the S
to unwittingly destroy data or results. At the other process on a powerful compute server and display
extreme, users who are strong in all attributes (GDS) are output on the local workstation.
stress-testers, and want to be able to use their expert * We want to preserve the data analysis and statistics
knowledge of S when appropriate. An important class of strengths of S, and allow users to access the power of
user is (GD-) - those users who know what they want to the S language if they choose.
do, have familiarity of GUI's gained from experience
with spreadsheets and WYSIWYG word processors, but
who do not know the S language.
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3.0 The Menu Building Toolkit This produces a widget with two buttons as shown.

Specifications for the interfaces of menus and dialog ,
boxes are written in Motif's User Interface Language
(UIL). The toolkit contains a UNIX process which reads
this specification when it starts up and then presents the
specified menus. This process also initiates the cooperat-
ing S process and sets up communication channels
between the two processes. This two process design
allows the GUI process to be fully committed to listen- -mo m
ing for keyboard and mouse inputs, and showing results,
while the S process evaluates expressions supplied by
the GUI and returns the resulting outputs. The button on the left (Hello), when activated, pops up a

graphics window with the "Hello World message"
A user of the toolkit proceeds as follows: drawn by the S vu0 function. This button can be pressed

"* A specification for the menus and controls is pre- repeatedly, generating a new window each time. The
sthat simplify this process. other button (Exit) quits the process and removes allpare usig maroswindows. A typical output is shown below

"• Callbacks to build the S expressions for execution

are embedded in this code.
"• The specification is compiled using the command

Splus MC mygui.m. This produces a compiled file
nmygui.uid.

"* The compiled GUI is run with Splus MRUN mygui.

4.0 A Simple Example

Here is the specification for the ubiquitous Hello World

example.

include(MUIS-header)

include(MUIS.JASI

BULLETINBOARDDIALOG(MainWIndow. "Hello World".,.

MUIS-starLSplus("), .

ROWCOLUMN(.... HORIZONTAL, 1, COLUMN .....
PUSHBUTITON(, STRING. "Hello',...80... 5.0 A Desktop for Bringing Operations

MUISexecuteliteralSplusexpr and Datasets Together
("new.Gwin(\'HeUo\');

vu(c(\'.F ge\', \'Hello WorldV))'::'.)) The remainder of this paper deals with the concepts of

PUSHBUTTON(, STRING. Eit'.Ei .... 80.... the GUI which are currently in development.

MUS_Wexit.applicationo, * There is a strong intuitive appeal for the concept of

using a desktcp of icons in order to bring together
datasets and operations. Manipulating the icons
directly manipulates the datasets and operations. A
desktop is made up of following parts:
A menu bar with standard Motif options such as File,
Edit, and Help, and statistical options, such as
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Explore. These options provide access to all availa- • The complexity of this model for Splus, in that many
ble operations. operations need a number of datasets as inputs, per-

- A tools panel below the Menu bar. This holds useful. haps in a specific order.

or time saving, tools which may be used at any time.
Possibilities include Print, Subset, Delete, Cut,
Copy, Paste, Edit, and Annotate. Following the style 6.0 Mouse Operations on the Desktop
of popular spreadsheets (Excel and Lotus), these can
be small icons (16x16 rather than 32x32) so that 15- We refer to the following mouse operations:

20 can be accommodated in one row. The user is a Select. Clicking the left button (or a single click of a
given a larger set to choose from and can tailor the one-button mouse) highlights the icon as selected.
tool bar as required. The selected icon is the object of the action of the

* A work area to display icons of S objects. Generally various tools, such as Delete, and operations.
there is a one-for-one correspondence between S - Multiple Select. Multiple items may be selected by
objects in a given directory (or list) and the icons using Shift-Select to extend selections, or by drag-
displayed. However, there may be a need tc, .,;ate ging a rectangle around the bunch of objects to be
hidden S objects. selected (A la Macintosh).

Difficulties that need to be considered include: - Open. Double-clicking the left-button, or possibly
single-click on another button pops up a window to

* Cluttered work areas where there are too many icons display the S object associated with the icon. In the
to conveniently deal with. case of an operation, the displayed window is a dia-

log box. In the case of S data objects, the displayed

Folder Name

File Edit View Explore ... Help

N'A

.Data ms836

I' Folder Name

'--__ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _
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window shows the object in a format such as pro- collections of objects into sub-folders once a given
duced by the S printO or summary() commands. In folder is becoming unmanageable.
the case of a folder, the displayed window is another
desktop showing its children datasets. In the case of We see several classes of folder:
output objects, the displayed windows are either Normal or Desktop folder. This contains any S
graphics or text windows with the approprate objects including folders. Such a folder will proba-
results. bly be implemented as UNIX directories for security.
Drag. Holding the left-button down and dragging Results will often be placed into a folder of this
the mouse moves an outline of the icon with the class.
mouse. The action depends on its destination. If just * Table folder. This is constrained to contain vectors
within the current desktop, the icon is moved, and its of equal length. Such a folder could be implemented
new position should be remembered. If it is dragged as lecth. or a folded S implemes
to another desktop window, the action is to move the as U n dectries atched ta-f ram
dataset between folders. If it is dragged to an input depending on security/efficiency trade-off considera-tions.
field of a dialog box, the action is to enter the name
of the dataset into that input field. When a multiple • Loop folder. This contains an ordered set of objects
selection is dragged to an input field the names of the which will specify a look for mass-production sce-
members of the selection should appear in selected narios. These could be implemented as attached lists
order. The separators between the names could be and could even contain expressions (as pointers to
any character, such as a +, a comma, or a space, data) rather than the actual data objects. A loop
depending on context. folder acts differently from a normal folder when

supplied as input to an operation. The ordering will
be displayed by the position of icons in reading

7.0 Look and Feel Issues order. Where several arguments need to be supplied
to the loop, each row of icons relates to one argu-

"• Icons. Icons essentially follow the style of Micro- ment.
soft Windows. The icon picture will be 32x32 in
color, but with a reasonable black and white likeness
(this can be seen while dragging any icon in Win- 9.0 Data-frames and Lists
dows). The text field is under the icon graphic and
can be any width (although very wide ones are Data-frames and lists behave like other S objects most
clumsy). Selecting the icon changes the text field to a of the time, and can be displayed and edited, and so on.
grey backdrop. But sometimes we want to treat them like folders so that

"* Object-Action Model. The GUI works on an we can open them and interact with their component-
object-action model. The user selects an object or s.The system provides two operations (commonly
group of objects, and then the action to be performed accessed from the tool bar) to:
on the selection. For example, to delete a dataset, o Convert a data-frame to a folder.
select it, then select Delete from Edit menu (or theDelee tol romthetoobar. T e Dlet opraton • Convert a folder to a data-frame (if all objects theDelete tool from the toolbar). The Delete operation sm egho let it
requests confirmation, same length), or else to a list.

"• Keyboard Alternatives. The Microsoft Windows This could be implemented in two ways. The folder
and Motif style should be followed for these. could be created by making a UNIX directory and mov-

ing the data-frame components into this directory. Alter-
natively the data-frame could be attached directly

8.0 Datasets - how and when they will without copying it into a directory. Or the implementa-
be seen tion may involve accessing components of a data-frame

or list without attaching it. The first method is safer (a
Cluttering of icons on the desktop can be controlled by system failure will not lose much data) but is slower, as
providing a hierarchical structure using folders A la copies are made (significant for large data-frames).
Macintosh, and UNIX directories. The user can move Users, especially power S users, may like to select their

preferred implementation.
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10.0 Operations - How and When 12.0 Connecting Data with Operations

" The operations offered are high-level like "Smooth- Click Open on the required operation to reveal the dia-
ing" and not specific like "loess". This means that log box. Then drag appropriate datasets onto the appro-
there is not a one-to-one relationship with S func- priate input fields. The dragging does not remove the
tions. dataset - an outline of the icon just follows the mouse to

"* The full list of operations offered is available the field, and, when dropped, the visible action is the
through a menu hierarchy. Possible names for the completion of the text field with the dataset name.
statistical operations include Inspect, Modify,
Compare, Model, Interpret, Manage Data,
Transform and Display. 13.0 Output from Operations

"• When an operation is selected from the menus, an S
object of class operation is created in the current Dialog boxes, both graph (like Histogram) and explora-
folder that contains the setting of the dialog box for tory (like AOV), produce one or more output objects
this operation. The icon of this object appears in the which may be:
folder, and is opened automatically to show the dia-
log box. The S object keeps a record of the partially * Graphics. For example, a Histogram dialog boxor completely filled in state of the dialog box. should produce a histogram in the output window.

There is an S object with an appropriate class corre-
"* Operations can readily be deleted at any time since sponding to this graphics window. The graph can be

they can be regenerated from the menu-bar. recreated at any time from this object.

Text. For example, an AOV dialog box should pro-
11.0 Format of Dialog Boxes duce an AOV table, with appropriate data format-

ting, in the output window. This also corresponds to

" Data fields. Data fields can have S objects dragged to an S object (usually a list) with an appropriate class.

them. This results in the name of the dataset being There is usually a print or summary method that can

entered in the text-field. Users may type directly to generate the output window from this object.

these input fields, and the knowledgable user can * Folders. Where there is more than one output object
enter S expressions. from an operation, the objects produced are pack-

" Configuration panel. This is a panel of widgets such aged into a folder which also contains an icon for the

as buttons, sliders, and text-fields which allow the filled-in dialog box of the operation. This is as a

user to configure the exact behaviour of the opera- record of the recipe which produced this output, and

tion, and appearance of outputs. These may lead to also can be used like any other operation. This out-

other dialog boxes for fine detail. put folder is opened as a desktop window, showing
"icons in a sequence, and the first output object of*Control panel. This is a panel of buttons at the bet- teei pndfrveig

tom of the dialog box. The buttons would be:

OK. The action specified by the dialog is carried
out and the dialog box closed to an icon. An output 14.0 Output - New Window or Append?
icon (or icons) appears in an output folder (which
may already exist or may be created) which then By append we mean to add further output to the existing
opens to reveal the main output. window - which means adding extra output to the exist-

Apply. The action specified by the dialog is carried ing S object since there is a one-for-one correspondence
out, and the dialog box remains open. An output between S objects and windows/icons.
object is created and opened.objet i cretedand pend.• Graphi-s. Appending will generally overlay theReset. Sets the dialog box to default values. Grpis.Aenngwlgnrayoerythnext graphic over the first (like contours overlaid on
Cancel. Closes the dialog box to an icon. scatter-plots)

Help. Gives context-sensitive help. • Text. Simply append the extra text to the existing

text display window.
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Folders. While possibly creating new graphics/text 17.0 Metadata
windows they should be added to the current output
folder. All objects can have metadata attached using the Anno-

tate tool. In operations, this takes the form of help
A common default behaviour is that, when a new opera- (which could be edited by users to produce context-spe-
tion is brought from the menu hierarchy to the desktop, cific help, along the lines of "When we get these results,

a new output folder is created and contains all the plots we d o thi i n ds ga t is ese asuafr,
and rinout genratd fom tis pertionin hiswe do this..."). In datasets, metadata is seen as a form, in
and rinout genratd fom tis pertionin h~~which the system records the creation date and time, and

folder. Generally the default is for each new graph and the ser records the p reatisntstcildreniaeasans

printout to generate a new window/object. The specific observations on the dataset, conclusions about the data-

details of default action are decided by the designer of set based on the observations, consequences of the con-

each operation. clusions, and general notes, such as background
information on the data. This might encourage usefulTo override defaults, each dialog box for an operation heuristics to be recorded. The metadata contains audit-

should show the three proposed names for output folder, trail information which shows this data object was

graphics output, and text output. Clicking on these pops derived from others.

up a scrolling list selection box with alternative settings.

These menus include the option of New as well as names
of existing output objects. 18.0 The Tool Bar

e the The tool bar provides short-cuts for frequently used
operations. The system provides standard tools which

Same Operation fill some of the bar, and these are referenced in docu-
mentation. The remaining slots can be filled by users

The mechanism we use is to select a group of datasets from other suggested possibilities, or using their own
and drag them to an input field. This implies that the functions. Some tools are:
operation has to be repeated for each member of that Print. Print is also found in the File menu. It prints
group. S loops can be used to implement this, and so the any selected object with datasets as the result of
simplest approach is to only allow one input field to pinto, folders as a listing of the objects in the folder
receive a group of inputs. in some fairly informative format, and graphics out-

puts as a hardcopy of the plot.
The concept of a loop folder introduced earlier is a way

of solving the problem where groups of inputs could * Delete. Delete is also found in the Edit menu. It fol-

either mean looping or could just mean include all these lows the Microsoft Windows style of deletion.

variates in one use of the operation. There are tools in e Edit. Edit is also found in the Edit menu. It applies to
the tool-bar for making a normal folder become a loop all objects, allowing the user to edit data, plots, and
folder (and vice-versa), text outputs.

* Subset. Subset leads to a subset Dialog for the
selected object. This action is only sensible for vec-

16.0 Recipes and Cakes tors, matrices and data-frames.

* Summary. Summary gives more concise outputs
If all output objects are regarded as the cakes, then it is than Print. It can be usefully applied to selections of
useful to keep a copy of the recipe with every cake. In many objects.
this way, by applying some operation (possibly from the * Find. Find provides a facility for finding objects by
tools bar) to an output operation, it is possible to popup name, or class, or such in the complete data hierar-
the appropriate dialog box with all settings and input chy.
fields completed as they were to get that output. For
example, if outliers have been detected and removed, it Commonly, tools operate on a single selected object.
may be appropriate to repeat a range of operations with They do not produce an operation object on the desktop,
the newly censored input file. Mass production provides and so are useful for very commonly used operations
a simple mechanism for such cases. where there shouldn't be a trail of actions left around.
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Hence tools provide another method for avoiding clut-
ter, and so it is important that users can choose their
own.

The desktop GUI to S is an application of the toolkit
which focuses on letting a statistician perform his/her
job as efficiently as possible. It seeks to combine the full
power of S with an intuitive GUI which makes analys-
ing and viewing data easy. As always, though, the final
test is in the use.
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1. Introduction A basic , .t of date routines was easily defined:
is.date(x): true/false, is x a date

The August 1991 release of S, in conjunction with the book
"Statistical Models in S," introduced a new set of tools for as.date(x): if x is numeric, floor(x) if x is character, parse
integrating the various aspects of statistical modeling into a it otherwise fail
unified package. Based on an object oriented paradigm, it
includes methods for specifying model formulae, fitting, mdy.date (month, day,year): compute the Julian date, based
printed output, residuals, fitted values, and plots, on a short but rather obtuse algorithm

Several years ago I had created a collection of survival date.mdy (x): return a list giving month, day, and year
functions for use with S, which have subsequently been
posted to the statlib archive and have been included in the date.ddmmyy: formatting function
S-plus package. It seemed like a good idea to try and date.mmddyy: formatting function
"repackage" these using the new paradigm. The result of
this effort has (mostly) lived up to expectations: it is easier So far, there is nothing very different from old S. But now we
to use, with greater functionality, can define methods for special actions:

The focus of what follows is not a description of the print.date: Since different people may have different
survival package itself, but of the issues that arose in its opinions, it checks the "print.date" option. If
design and implementation. How were the routines none is set it defaults to "15Oct91" style, i.e.,
organized to fit into the "S model," what was particularly my preference.
easy or hard, what is missing or deficient in the S tool set
for this problem? as.character.date: The as.character function is called by

several other S functions. For instance, table
II. Date functions calls as.category which calls as.character.

Any work with medical survival data involves the Math.date: atan, log, cumsum, etc., are made illegal
subtraction or other manipulation of dates. The input data
set will contain the dates of entry, follow-up, and other Summary.date: min, max, and range result in a date all,
events (in a variety of formats). The analysis variable is any, prod, sum are illegal
usually the time from entry to a key event. A collection of
date functions was created as a first "training exercise" in Ops.date: & and I are illegal
the new language. They form an extension to the simple date + numeric = date
julian date routine given in the S manoal, date - date = numeric

numeric + date = date
A date is defined as the number of days since 12/31/1959, A,/, ^ are made illegal
i.e., 1 January 1960 is day 1. It is represented as an integer
vector with class "date". The chosen baseline date is Here I discovered the first fly in the ointment. Though an
arbitrary but convenient: our group frequently moves data expression like date/10 seems nonsensical, it arises during the
sets between SAS and S, and SAS dates are also based on axis computation when a date is used as the x or y variable of a
1/1/1960. A natural extension would be a date-time class, plot. The original definitions given above had to be relaxed to
where the fractional portion records the time, but this has allow multiplication and division, treating the date as a numeric
not been implemented. in that case. I suspect that other functions such as log may also

need to be relaxed as more experience is gained with these
routines.
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As expected from the book's example of a "factor" class, a Table 1
subscript method was required that preserves the "date"
class of the result: a subset of a date vector is still a date Ma*n Cnfines laU s Methods
vector. Not expected were the functions that preserve the coxph coxph, survreg print
class when they should not. For example, is.na returns a or coxphnull summary
T/F vector with class = "date". If one tries to print this plot
result, print.date is invoked and the display is "1Jan60" residuals
instead of T, "31Dec59" instead of F. This was easily predict
solved by creating a simple is.na.date function that drops the surv.fit
class:

is.na.date <- function (x) { survreg survreg, Im print
class (x) <- NULL summary
is.na (x) plot
} residuals

predict
A similar problem exists with format, but unfortunately it is survfit
not currently set up as a method in S, so that aformat.date
"override" is not possible. survdiff survdiff print

The plot.date function reveals a shortcoming in the S survfit survfit print
inheritance model. Since method recognition depends only summary
on the first argument, a plot.date function can be written plot
which gives proper labeling to the horizontal axis when x is lines
a date, but not when y is a date. In this case, what is really points
required is an axis method. Consideration of this along with
other functions such as mean and quantile (the result should survexp survexp, survfit print
be a date-time?) leads to the conclusion that all of the basic
S functions will need to be implemented as methods.

a. The left-hand side must appear to be a valid S expression for
As well, some functions will need to have internal methods the formula to be parsed. Thus something like
based "hooks" so that they can be expanded. One example stime,status-x is illegal.
is data.frame and its cohorts scan, read.table, and
print.data.frame. In order to add dates as a legal class, an b. The expression is passed to the function unevaluated and
addition must be made internally to the function, it does not could be "torn apart" at that level. For instance, the SAS
suffice to create data.frame.date. like notation stime (status=2) -x could be dealt with even

though stime is a variab!e and not a function; another choice
III. Survival would be slime/status -x. Something like this is done with

the vertical bar notation in the coplot function.
A display of the survival routines is shown in Table 1. All
told, there are about 40 S functions, 2/3 of which are c. The actual items passed forward to the model frame
"behind the scenes" and would rarely be involved directly function must evaluate to data frames or matrices of n rows,
by a user. or numeric vectors of length n: list(stime, status)-x won't

work because the list has length 2.
Some of the design issues in organizing these were:

d. The returned model frame will have a single variable or
1. Model formulae object identified as the response.

The dependent or y variable in survival is usually subjected The solution chosen was to create a "packaging" function
to some sort of censoring, representation of which requires Surv(time,status). Its returned value is a matrix of 2 or 3
an extension to the y-xl+x2 notation of an S formula. columns with class = "Surv" and a type attribute of "right",
Several ideas were considered, subject to the following S "left", "interval", or "counting" that identifies the censoring type.
rules: Advantages of this form are that it required the least meddling

with the standard model handling routines and that we can use
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Surv objects outside of the modeling language. For 4. Returned values
instance, y +- Surv(stime, status); coxph(y-x) is a legal
construct. Methods have been defined for print, is.na, Ideally, the object returned by coxph, survfit, and etc., should
mathematical operations, and subscripting. The latter is contain all of the relevant information about the fit, so that
interesting in that both single and double subscripts are residuals and other summaries can be extracted without
allowed. If you think of Surv only as a packaging function, reference to the original data. For the simpler routines such as
it is reasonable to view its result as vector of survival survdiff this was possible, but for coxph and survreg it was not
times-the matrix nature is only an artifact of using a matrix feasible. The issue is that some of the summaries require the
for the packaging medium. On the other hand, within the original X matrix (or an object of essentially the same size as X).
body of a function I often want to extract a particular A decision about what should be saved "by default" is a tradeoff
component (column) of the Surv object. of space for the fit object, time to reconstruct X, and an

estimation of which summaries will be used most often in actual
Inclusion of Surv objects in a data frame remains an open practice.
issue, as it is for date objects.

5. Inheritance
2. Strata

One of the more elegant features of the new system is its ability
In the Cox model there is an intercept function At(t) rather to "bootstrap" new methods onto old. The glm and gam
than an intercept term in the X matrix. The X matrix should functions inherit much of linear model's functionality by
not contain a column of Is, but dummy variables are coded representing their results as an iteratively reweighted least
as if there were acolumn of Is. Multiple intercepts, referred squares (IRLS) solution. To the extent that survival models
to as strata, are common. could do this, they also would gain.

The design of S formula processing was tailor made, it After some exploration it became clear that this was not feasible
seems, to handle this case. A function strata was created to for the Cox model, for two reasons. First, the likelihood is not
deal with the multi-strata situation, which like intercept, represented as a sum of independent terms, straining the
returns a factor. A formula is processed as: representation. Secondly, null models are fairly common, i.e.,

models with only -1, an offset or a strata term on the right hand
T 4-terms (formula, specials = 'strata') side. These lead to a null X matrix and the Im functions are not
M 4 model.frame (T, data) •et up to handle this case.
SS +- attr (T, 'specials')$strata
T$intercept - 0 The IRLS representation is possible for parametric survival.
x +- model.matrix (T[-SS], m) This was one reason for separating parametric and Cox

regression into two separate functions.
(The actual code is slightly rmorc complicated than this, in
order to deal with SS=null or multiple strata statements.)
The key is that terms is called with the formula, including IV. Missing values
its implicit "+1", and it is this function that makes decisions
about the coding of dummy variables. After terms has The proper method for management of missing values has
processed the formula, the intercept is forced to be "none" generated fairly intense debate within the S community. The
and model.matrix is called to construct the actual X matrix. essential issues have been that there are multiple opinions about

how missing values should be handled, and that only one of
3. Implicit interactions them could be incorporated into the S package. Using the new

S methods, we can begin to relax this second statement
The survdiff routine provides the survival analog of a multi
group t-test. For both this routine and the Kaplan-Meier The survival routines implement a missing value strategy based
survfit, I decided to allow an alternate interpretation in the on the following goals. First is that the user should be able to
modeling language. That is, since the "x" variable must specify a strategy globally, as part of their setup. Second, once
delineate groups, the model chosen, a missing value "plan" has impact on three areas:

survdiff(Surv(time, status) - rx + sex) I. Transformation of the input data to make it suitable for
model processing.

is processed as though the right-hand side were
interaction(rx,sex).
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2. The printout of the fitted model should include
information about the action taken in 1.

3. Residuals and predicted values may need to be
modified based on the action.

The survival routines are able to fulfill these with some
simple extensions to S. Keep in mind that although the
goals are clear, the following implementation of them is a
trial and needs further comment and refinement.

a. A new option "na.action" is used to signal the global
default na action, e.g., options(na.acdion='na.omit'ý
One of the base S routines, model.frame.default, had to
be modified to check for this.

b. Item number I is already addressed by the na.action
routines of S. However, in order to effect items 2 and
3, the naaction routine needs to pass along some
ancillary information about what was actually done.
This is added as an attribute na.action to the data frame.
The content of the information is unrestricted, but it
must have its class set appropriately, i.e., class="omit"
for na.omit. The modeling routines add this to the
returned fit as the na.action component.

c. The print.coxph, print.survdiff, summary.coxph, etc.,
routines all make a call to naprint(fit$na.action), and
print out the character string that it returns.

d. The residual and predict functions make a call to
naresid(fit$na.action, x), where x is the vector or matrix
that they would have returned if there were no
na.action. The routine returns a new x.

In particular, my own implementation of the na.omit
function returns a vector of the deleted observation
numbers. The naprint.omit routine returns the string
"__deleted due to missing", and the naresid.omit routine
expands x back to the original dimension of the input data
by re-inserting the missing residuals or predicted values.

V. Summary

The new modeling and methods paradigm gives the user a
large scope for innovative statistical programming. Several
areas remain to be worked on, including methods for a
larger number of S functions, inclusion of new data types
into data frames, and extension of missing value methods,
but they represent completions of the proposed framework
rather than departures from it.
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The Minimal Spanning Tree for Nonparametric Regression

and Structure Discovery

David Banks, Department of Statistics, Carnegie Mellon University

Michael Lavine, Institute of Statistical and Decision Sciences, Duke University

Abstract: C.T. Zahn (1971) and Bhavsar and Ling to contamination of the sample by spurious values.
(1988) describe nonparametric structure discovery meth- The next section presents graphics that illustrate the
ods based upon minimal spanning trees. This paper un- potential of the method. The third section describes a
dertakes to unify and extend these ideas, resulting in simulation study of regression structure in IR2, and com-
an appraisal of the potential of minimal spanning trees pares the results of several regression strategies across a
across a range of simulated situations. We generalize range of situations. This discovers the advantages of the
minimum spanning trees to minimum spanning hyper- spanning tree technique, and the limits of its capability.
surfaces, and discuss the value of these objects for high- The final section uses insights gained from the simulation
dimensional data analysis. study to propose methodology for general submanifolds

in high-dimensional spaces.

1 Introduction
2 Illustrations

Much effort has been spent on nonparametric regres-
sion and structure discovery. Previous work has tocused Figure 1 shows simulated data for which one wants to
on smoothing techniques (Hirdle, 1990), local adapta- discover the underlying regression function. The descrip-
tion (Cleveland and Devlin, 1988), and, to a lesser ex- tion of the simulation that generated these are deferred
tent, robust regression (Rousseeuw and Yohai, 1984). to the discussion of Figure 6, so that the reader may

This project examines the use of minimum spanning enjoy the thrill of the hunt.
tree ideas as a tool for identifying submanifolds on which Figure 1: Raw Data
probability mass concentrates. As an example, suppose
one observes (XI, Y1),. . . , (X,,, 1Y,). If one is interested
in nonparametric regression structure, then the usual -. .

model takes the form Yi = f(Xi) + ci with f an un- "
known function. We assume that the c,..., c, are inde-
pendent but not necessarily identically distributed, each O" "

with probability mode at 0. The object is to estimate1. f. "
The proposed algorithm forms the minimum spanning , ." .

tree on the data, and then prunes the tree until it it
contains no branches. Pruning removes the longest 10%
of the edges, which typically produces a disconnected • . .

graph. Then one deletes the smallest remaining graph
fragments, and trims the longest edges from the largest ...

remaining fragment until exactly two nodes have degree .

1, and all others have degree 2. This eliminates branches .j .'. .

in the resulting graph, and is one way in which the're- ..

gression perspective is enforced. Modified pruning could
be used to ensure that the trimmed graph corresponds
to a function; i.e., that no z value gets mapped to more I ,
than one y value. 0 2 , 6

In cases in which one is not estimating the regression
function, but rather the high probability regions of a
bivariate density, then one can use alternative pruning
methods that permit branching and which treat the X Figure 2 shows fits from three standard methods. The
and Y variables symmetrically. It turns out that proce- solid line is obtained from simple linear regression, the
dures based on the minimum spanning tree are robust dotted line is obtained by quadratic regression, and the
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dashed line is a kernel regression estimate (section 3). ing the 10% of the edges that have greatest length.

Figure 2: Other Fits Figure 4: Graph Fragments

a •

CY• •

"..* " . : . \

I I I I I

0 2 4 6 a I0 0 2 4 6 8 10

Figure 3 shows the minimum spanning tree (for Eu- Figure 5 shows the trunk, our estimate of the regres-
clidean distance). sion function.

Figure 3: Spanning Tree Figure 5: Trunk

Fiue4sostafamnsta eanatrdlt h rn sfudb rmigtelnetegsfo
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the largest fragment in Figure 4. Trimming continues Figure 7: Data and Regression Function
until the graph has no nodes of degree greater than 2;
this precludes branching. A drawback is that some por-
tions of the graph show one-to-many correspondence, so
that the estimate is not a proper function.

Figure 6 shows the actual regression function. The
points were simulated by sampling 40 points randomly
from the line y = z and adding N(0, .25) noise. For fur-
ther complication, we added 160 observations generated
independently from the bivariate uniform distribution on
[0, 10] x [0, 10].

Figure 6: Regression Function

* . ." ". "N. .

04 6 8 10

"Figure 8 shows the results of the three conventional

fitting procedures.

:Y - .Figure 8: Other Methods

I• *0 2 4 68 10 .

The minimum spanning tree technique highlights the
conditional mode of the data, whereas the competing
kernel regression technique estimates the conditional
mean. This enables the spanning tree technique to ig-
nore many kinds of spurious data. Also, the spanning
tree does not use smoothing, thereby avoiding the in-
flated bias that typically results from this operation. The
minimum spanning tree relies in part upon the result
from Hartigan (1981), showing that the longest gap be- -

tween points is a consistent estimator of low-probability I

regions. 0 2 6 o

For a more complicated regression function, consider
the data generated by sampling 40 points at random
from the function y = 8 + sin z, with N(0, .25) noise and
40 spurious observations chosen independently from the Figure 9 shows the trunk estimate of the regression
bivariate uniform distribution on (0, 10] x [0, 10]. function for this problem. Notice how it tracks the os-

The data and function are superimposed in Figure 7. cillation.
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Figure 9: Trunk Estimate [0, 10]. For these, we inflate the estimated integrated
mean squared error in proportion to the coverage, so
that the results are comparable across methods. We also
record the proportion of the domain for which the esti-
mator exists.

• , Space limitations preclude a complete tabulation ofthe results. One minimum spanning tree method essen-

tially dominated the other, and so the inferior one was
dropped. Also, for the noise factor, all methods per-
formed poorly for oa > 4 (with trivial exceptions, such
as linear regression when y = z), and thus the table
excludes large values of o,.

Column a indicates the total number of observations.
Column b indicates the value of o (1 implies .1, 2 implies
.5 and 3 implies 1). Column c indicates the contami-nation (1 implies none, 2 implies that half the sample
is spurious, 3 implies that 80% of the sample is spuri-
ous). Columns d, e, f and h give the estimated integrated
mean squared error for linear, quadratic, spanning tree

0 2 4 6 8 10 and kernel regression, respectively. Column g indicates
the average percentage of the interval [0, 10] for which a
spanning tree regression estimate existed.

Abbreviated Simulation Results: y = z
a b c d e f g h

3 Simulation Study 10 1 1 0.02 0.06 0.07 .35 3.9
20 1 2 31.03 38.44 13.38 .54 45.0

The simulation study examines 5 factors. These are: 50 1 3 55.90 57.16 34.61 .67 60.3
S 10 2 1 0.60 1.94 1.64 .38 5.8Signal: The three regression functions are . - , 20 2 2 27.51 34.61 18.26 .55 39.3

exp(:/4.3) and y= 8+sinz. 50 2 3 57.08 58.69 43.99 .65 61.8

Noise: The y values are measured with normal error; 10 3 1 2.42 5.69 6.11 .42 9.0
the mean is zero, and the six noise levels are o = 20 3 2 29.94 35.52 24.54 .59 40.9
.1,.5,1,2,4 and 8. 50 3 3 59.18 61.24 55.30 .69 64.4

40 1 1 0.00 0.00 0.06 .10 0.5
Sample Size: The study took n observations from the 80 1 2 21.75 22.91 2.151 .46 25.3

regression function, for n = 10, 40, 60. 200 1 3 54.30 54.97 24.64 .72 56.5
40 2 1 0.12 0.19 1.36 .21 0.8

Contamination: Spurious observations, sampled inde- 80 2 2 22.35 23.31 4.93 .53 25.8

pendently from the bivariate uniform distribution 200 2 3 53.95 54.45 22.00 .72 55.9

on [0, 10] x (0, 10], contaminated the data. The three 40 3 1 3.5 0.85 4.89 .31 1.8

levels were 0, n or 4n spurious values, for n the sam- 80 3 2 21.75 22.68 8.44 .58 25.4

pie size. 200 3 3 54.14 54.63 32.72 .71 56.0

Estimator: Five estimators were compared-linear re- 160 1 1 0.00 0.00 0.05 .09 0.3
gression, quadratic regression, kernel regression, 320 1 2 21.23 21.45 0.21 .40 23.3
and two methods minimum spanning tree methods. 800 1 3 53.36 53.48 4.78 .68 54.6

160 2 1 0.03 0.04 1.06 .23 0.3
For each combination of factor levels, 200 datasets were 320 2 2 21.54 21.73 1.57 .54 23.6
generated and analyzed. The competing methods are as- 800 2 3 53.83 53.93 14.13 .75 55.0
sessed in terms of integrated mean squared error. For the 160 3 1 0.11 0.19 3.63 .32 0.6
minimumspanning tree methods, the regression function 320 3 2 20.86 21.19 5.31 .58 23.1
estimator usually does not exist over the entire domain, 800 3 3 53.62 53.74 19.66 .76 54.8
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Abbreviated Simulation Results: y = 8 + sin x as the Nadaraya-Watson estimator, with normal kernel
a b c d e f g h and bandwidth 1. Slightly better nonparametric regres-

sion methods exist, but this was easy to program and
10 1 1 5.52 7.85 0.91 .35 1.7 offers a realistic benchmark for the level of performance
20 1 2 33.63 37.61 13.24 .58 40.1 traditional methods achieve.
50 1 3 74.12 75.56 68.73 .70 77.1
10 2 1 6.14 8.34 2.63 .37 2.9
20 2 2 36.63 40.23 19.11 .63 42.5 n gher
50 2 3 72.79 74.13 54.49 .72 76.1 The encouraging performance in R 2 suggests that min-
10 3 1 7.44 11.60 7.26 .44 7.820 3 2 35.37 39.55 7231 .64 4.0 imum spanning tree methods may have value in higher
50 3 235372 739.45 23.14 .71 75.2 dimensions. If one seeks to estimate hypersurface struc-
40 1 1 42.6 73.945 0.7 .11 0.5 ture rather than linear structures, one must define mini-
80 1 2 31.19 31.25 2.80 .5 30.0 mum spanning surfaces in analogy to minimum spanning80 1 2 31.19 31.25 2.80 .55 30.0 tes

200 1 3 70.24 70.26 33.28 .73 69.8 tes40 2 1 4.71 4.14 1.58 .25 0.8 Our extension takes the minimum spanning (d - 1)-
80 2 2 31.56 31.48 10.14 .64 30.5 hypersurface on data in IRd to be the collection of (d- 1)-

200 2 3 70.18 70.21 49.62 .78 69.9 simplices on the data that are joined at their (d - 2)-
40 2 1 5.10 4.72 5.77 .37 1.6 hyperfaces and which have the smallest possible volume.
40 3 1 5.10 4.72 5.77 .37 1.6 Although well defined, it is difficult to discover this sur-
80 3 2 -31.35 31.31 14.04 .64 30.4 face since the spanning tree's greedy algorithm does not

200 3 3 70.80 70.94 56.07 .75 70.3 extend (the optimal surface can have holes, and a simple
160 1 1 4.45 3.65 0.05 .08 0.320 1 2 30.4531 2.84 0.43 .52 2.8 construction shows this creates problems for the ana-
800 1 3 70.21 69.95 10.63 .75 69.1 logue of the usual algorithm). However, one can gen-
160 2 1 4.48 3.70 1.06 .22 0.4 erally find a very good approximation to the optimal

320 2 2 30.32 29.81 3.51 .64 27.8 surface, and this may suffice.
800 2 3 69.66 69.40 19.95 .76 68.3
160 3 1 4.58 3.85 3.50 .34 0.6 5 References
320 3 2 30.26 29.77 9.25 .69 27.7
800 3 3 70.32 70.11 27.34 .76 69.1 Bhavsar, S. P. and Ling, E. N. (1988). "Are the Fil-
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Regarding the coverage, note that removing the 10% Rousseeuw, P. and Yohai, V. (1984). "Robust Regres-
of the edges that are longest sharply reduces the cover- sion by Means of S-Estimators," in Robust and Non-
age when contamination is absent. This is because we
are removing signal rather than noise. We emphasize linear Time Series Analysis, p. 256-272, ed. by
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described in section 1 can surely be tuned to provide tics 26, Springer, NY.
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On Orthogonal Series Estimators for Random Design
Nonparametric Regression

By Sam Efromovich *
Department of Mathematics and Statistics, University of New Mexico

Albuquerque, New Mexico 87121

Abstract Here the inf is taken over all possible estimators in

based on known Y = Y(a, Q) and n data points Z" =

The problem of using orthogonal series estimators for (Z 1 , Z2 , ... , Zn).
optimal nonparametric regression is considered for the Our goal is to investigate asymptotically (when n
case of a random design predictors. Optimality means oo) sharp-optimal procedures for nonparametric regres-
the best rate and constant of minimax mean integrated sion, that is, the procedures with the best constant and
squared error convergence as sample size tends to infin- rate of MMISE convergence, and to show that orthogo-
ity. The estimated regression function is assumed from nal series estimator is one of these procedures.
the Sobolev class of functions with square-integrable The problem of nonparametric estimation with opti-
a-th derivative. Both a case of given a and unknown mal risk convergence has become popular in recent the-
smoothness of response function are considered; the op- oretical and applied research. It is well known that the
timal adaptive estimators are suggested. The possible choice of the smoothing coefficients plays a central role
extensions of the present setting, including sequential in an optimal nonparametric estimation. Eubank (1988)
estimation and design of experiment, are considered as and Hardle (1990) give nice discussion of this issue.
well. In our problem the optimal smoothing coefficients are

functions of o and Q which are unknown for most prac-

1 Introduction tical problems. Hence a key point for optimal nonpara-
metric regression is an estimation for the case of un-

Consider the random design nonparametric regression known a and Q. Efromovich (1986) suggested a sharp-

model optimal adaptive estimator for an orthogonal series es-
timator and equidistant predictors. Speckman (1985)

Y = f(Xi) + ,i = 1, 2,., (1) solved the similar I Toblem for the case of spline esti-
where observations Xi are taken independently from a mators and equidistant predictors. The random design
uniform distribution on the interval [0, 1], and the errors setting is considered in this paper.
fi are independent normal random variables with mean The most relevant publications on nonparametric
0 and variance 1, independent of {X,} . The data set regression are those by Nussbaum (1985), Speckman
is Z' = (Z1,Z 2 ,...,Z,,), where Zi = (Y,,Xi) . Let (1985), Golubev and Nussbaum (1990). These authors
a = q+ c, where q is nonnegative integer, and 0 < ic < 1. establish sharp-optimal convergence of MMISE for the
The response function f is assumed only to belong to a case of a fixed sample size n and a Sobolev class of
subset of an a-th order Sobolev space 37(a, Q) = {f : functions over equidistant points {zi}. The suggested
f has q absolutely continuous and periodic derivatives, method of estimation is spline smoothing.
f 0[f2() + (f(G)(x)) 2 ]dx < Q). Here f(*) is the Weyl Section 2 is restricted to the case of the model (1) and
a-th generalized derivative, for this model a sharp-optimal procedure is suggested.

We are interested in the limiting Minimax Mean Inte- An adaptive estimation, when a and Q are unknown, is
grated Square Error (MMISE): considered in section 3. Extensions of the main setting

are discussed in section 4 including sequential approach

MMISE (.F, n) = inf sup Ef (.f_ jn)2dz and bona fide estimation. Many examples, including

IEY(O,Q) " missing value situations, applications to grouped, cen-
sored or truncated data, finite mixtures models, are the

*Ths remearc supported by NSF grant particular cases of these extensions.
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2 Procedure of a sharp-optimal is the method of moments estimate of 6,.
orthogonal series estimation The following theorem gives us a more precise result.

We use the notation [zJ for the integer part of z.
The main goal of this section is to find for the model Theorem 2. The projection estimator P(x, J, 1, n)
(1) an optimal estimator for a response function. This with J = [nl/(2a+I)J is an asymptotically rate-optimal
problem is converting into finding a sharp-optimal lower and
bound for MMISE and a sharp-optimal estimator.

The following result gives us a lower bound for MMISE sup E! { (f(z) - 3(z, J, 1, n)) 2 dz}
convergence. Hereafter o(1) - 0 as n --- oo. fEY(a,Q) Jo

Theorem 1. Let a, Q, and n are given. Then < n-2a/(2a+l)(I + 2Q)(1 + 2n-1/(2a+1)) (5)

{/01
inf sup E ] (f(X) - fn,(X, a, Q, Zn)) 2dx Note that this very simple projection estimator with

F(0,.) only one smoothing parameter J (window size) gives us a
> Pn-2a/(2a+i)( 1 + o(1)) , (2) rate-optimal risk convergence and simultaneously a strict

(nonasymptotic) upper bound (5) for risk cenvergence.
where inf is over all possible estimators f,,(x, a, Q, Zn) We are now ready to define a sharp-optimal estimator
and which has both optimal rate and optimal constant of
p = Ql/(2 a+i)(2oa/(27r(a+1)))2 ol(2a+l)(2o+1)1l!(2+1) MMISE convergence. We again use an orthogonal series

estimator but with a different estimator for 6j and with
The best possible convergence (2) of minimax risk special fixed smoothing coefficients.

gives an orientation for construction an estimator. It The suggested linear estimator is
is useful to note that this best convergence is the same
as for the case of the equidistant points {Zi} (see Nuss- A(x, N, J, r + 1, n) = j(z, J, 1, n)
baum (1985)). N

For proving that (2) gives a sharp lower bound we are + E (1 - (i/N)e)[j2j-l02i- 1 (Z) + 0 2jP2j(Z)], (6)
investigating two different orthogonal series estimates. j=J/2+i
The first estimate is only rate-optimal, but this estima-
tor is very simple and will be used as a pilot estimator where 0, = 0,(J, r + 1, n),
for construction a sharp-optimal one. This estimator is a
projection estimator. The second estimator is a smooth- n
ing orthogonal series estimator, and smoothing coeffi- Oj (J, r + 1, n) = (n - r)- • [Y• -P(X 1 , J, 1, r)]vj (XI)
cients are prior fixed for the known a and Q and are 1=+1

estimated for unknown a and Q.
The underlying idea is based on the following well is a modified method of moments estimator of 6j , and

known representation of the Sobolev class of functions.
Using the classical Fourier trijnometric basis {j}, N = N(n, a, Q) = [[n(2a + 1)(a + 1)
where vo0(z) = 1, (o2i-1(z) = /2sin(2riz), and 92i(Z) =

vf~cos(2rix), i = 1,2,..., we can rewrite F(a,Q) as xQ/(2a(2r) 2,)]l/( 2a+l)J + 2Lln(n) + 2J
:F(a,Q) = {f : f(X) = oOi + ,iX[0 +
(27ri) 2 *][o0,2 1 + 2J] <Q 2i ; 2O = < f, •p >) , where the Hereafter r = r(n) = Ln/ln(n + 1)J + 1. The statistics
inner product < f, Vi > = f, f(x)wi (x)dx. and sequences defined up to this point can be chosen in

From the last definition it is natural that a projection many different ways.
estimator Theorem 3. Let n > 1 and J = 2Lln(n) + 1J. Then

J the linear estimator A(x, N, J, r + 1, n) defined in (6) is
3(z, J, nI, n2) = EZ i(ni, n2)Pj (X) (3) asymptotically minimar and

j=O

is rate-optimal for some J, n1, and n2, where sup E! (f(x) - f(xN,J,r+ 1,n))2dx}
ni2

Pj(n1,n2)= (n2 + 1 - ni)-i E Ylop(Xi) (4) - Pn- 2 a/( 2 a+)(1 + o(1))
I=nI
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3 Adaptive estimator with the fixed sample size r = n . If a and Q are un-
known but fixed and a > 1/2 then sharp-optimal se-

For the case of unknown a and Q the method of smooth- quential estimator is the adaptive estimator (7) with the
ing is based on the estimation the optimal smooth- fixed sample size r = n.
ing coefficients. Introduce some new notation. Let Sequential estimation with guaranteed preci-
d(0) = 21Ln(n) + 1J, d(k) = d(k - 1) + 2k, T(k) = sion. The problem is a sequential minimax estimation
{d(k - 1) + 1, d(k - 1) + 2, ... ,d(k)}, J(0) = d(O), with risk no greater than e. Subject to this condition,
J(k) =d(k - 1)/(1 +1n2 k)J , where k = 1, 2, . Recall optimality of a sequential procedure is defined as a min-
that r = r(n) = In/ ln(n + 1)J + 1 . Define statistics imization of the maximum over f E F of mean stopping

]2 ) (time, that is an optimal procedure is a sequential plan
(k,n)=(2k)-' E [j(J(k)r+ln)]2 -(n-r)-l with a minimax stopping time subject to guaranteed pre-

jET(k) cision of estimation.
We are interesting in the sharp limit (as c -- 0)

of the Minimax Mean Stopping Time MMST(Y, c) =
L~, n)= 0(k, n)x(G(k, n) - In-'(k + 1)(n - r)-') infsup Ef {r). Here the sup is over f E F and the inf

k(k, n) + (n - r)- 1  is over all possible sequential plans H, = ({fm(x), m =

1,2,...}, r) based on known F and such that the Mean
where x(x) = 1 if z > 0 and x(x) = 0 if z <0. Integrated Squared Error (MISE) is not greater than c

Theorem 4. Assume that a and Q are unknown but for any f E Y, that is, that
fired and a > 1/2 . Then an adaptive estimator

fa(x,n,S) =.3(z,J(O), 1,n) sup E, J (r(z) - f(z))2dx} _ . (8)

S
+ L(k,n) E 0,(J(k),r + 1,n) oj(z) (7) The following lower bound for MMST is valid

k=1 jET(k) MMST('(a, Q), c) _> n*(a, Q, c) (1 + o(1)) (9)

is asymptotically minimax and as c --+ 0, where

sup E f MX) f(xn, S)2 d n'(a,Q,c) = I(cP- 1)-(2.l)/ 2a)j + 1 (10)

JE.F(aQ) I For given a and Q a plan with a prior fixed sample

size n is optimal. The case of unknown a and Q is sig-
= Pn-2/(2a+1)(1 + o(1)) nificantly more complex problem and in this case a se-

where S = Ln1/4J . quential procedure is optimal. An idea of this sequential
The suggested adaptive estimator is asymptotically ef- estimation is the following.

ficient over all linear estimators in the sense of Efro- It is assumed that a and Q are fixed a-d that for given
movich (1985). y the inequalities 1/2 < 7 < a < 2-y < oo are valid.

If a, Q, and r = n are given then in accordance with
Efromovich (1986) the MISE of a minimax estimator is

4 Extensions asymptotically equal to (1 + o(I))Rn, where

Sequential estimation. Let consider the wider nI + Ok S11

class of estimators which allow the sample size r to Rn = E(2k)ek + n-1 + ' (2k)0• , (11)

be statistic (stopping time) with a moment restriction k=1 k=S,+l

sup E] {(r/n)O} < 1, where sup is over f E F(a,Q) ek = (2k) 1 jET" 12 , S' > (2N)1/ 2J + 1 , and S" is
and P is a fixed constant not less than one. any sequence of natural numbers such that S' < S" and

Efromovich and Pinsker (1991) show that for the case N = o(1)(S")2 as n --* oo. Efromovich (1985) proved
of given a and Q sequential procedures can not improve the following asymptotical equality
the convergence of MMISE. The same conclusion is true
if a and Q are unknown but fixed and a > 1/2. However, sup R, = Pn-2 a( 2 a+l)(1 + o(1)) . (12)

the optimal estimators are surely different for these two 1-(cQ)
cases. The equalities (11) and (12) give us an idea of design-

More precisely if a and Q are given, then sharp- ing a stopping time. We do not know f(x) and conse-
optimal sequential estimator is the linear estimator (6) quently Ek , nevertheless it is poswile to estimate E&
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fairly well, use these estimates for estimation Rn , and A method of a sharp-optimal estimation is an ana-
then find an optimal stopping time. log to the scoring estimator with o(n -'I)-convergent

An interesting feature of this problem is that the con- orthogonal series pilot estimator. Let !m (Z) = A(z, Zm )
dition - < a < 27 is necessary for the sharp-optimality be a o(n-1/ 2)-convergent estimator, that is, that
the lower bound for MMST. This discussion may be
found in Efromovich and Pinsker (1991). E (jm(i) -(X))2d4 =

General setting for lid observations. This is a LJO )
setting when we observe Zn = (ZI, Z 2 ,. . . , Zn) with the
Zi = (Y,,X,) iid according to distribution with density and m. = m(n) = o(l)n. Then, under some additional
p(y, z) = ir(z)p(yjf(z)). More exactly we consider a conditions of regularity, a nonparametric scoring estima-
statistical experiment E" 0 - {G,UE e}. tor

Hereafter EyIj is a product of n identical statistical
experiments Ey19 = {A, U,p,Pe, 0 E 0}, where p is (Z)= [m(z)]N-(n-m)-1 E [W(Xi)I(1m(X1))I 1

a o-finite measure in U and all probability measures 1m+1

Pe , 0 E E are absolutely continuous with respect to p
and p(yJO) = dPe/dp is a conditional density. N

Let the following Hajek conditions of regularity, which X(p'(Yi1.m(Xi)/p(Yilfm(XI)) E(I - (j/N)Q)
are sufficient for uniform local asymptotic normality of j=0
this experiment, be true:

R1. For every 0 E E the condition densities p(y]O) are X [ý0-l(Xl)ý02j -I(z) + p2 1 (Xi)o 21 (z)] (15)
absolutely continuous in 0 for all y E A and 0 E 0. is sharp-optimal. Here [f()N =f >

R2. For every 0 derivative p'(ylO) = &p(ylO)/80 exists
for p-almost all y E A. xVoAXY)

Hence in general setting the problem of the sharp-
R3. The Fisher information optimal estimation is converted into a o(n- 1/2)_

r0 = 2 1 convergent estimation. If a > 1/2 then this pilot estima-

I Y:p(Y) 8>0 '(yO))/p(y[O) p(dy) tor exists and may be constructed by using orthogonal
series estimator.

exists, is continuous, and is bounded below from zero. An applications of this method are different applied
Define a localized Ellipsoid Y(fo, p, a, Q) = problems, including location and scale distribution fam-

{(f: fl(fo(z) - f(z))2 dx < p, f(X) - fo(s) E .(o, Q)}. ilies, mixtures, as well as missing data situations and- I applications to grouped, censored, or truncated data.
If, for example, function 7r(z)I(fo(z)) is continuous in As an example consider the case when indirect obser-

z and bounded below from zero over an interval [0, 1] vations T's are censored, say at fixed point a. The direct
then observations Y's can then be represented as Y = T, if

ino E Ti <a and Yi = a otherwise. Hence the value a of Y
inf sup Ec ] (f(z) - f(x)) 2 dz has no significance. Suppose that g(tJf(z)) is a condi-

E(Io ,Po,Q )~ tion density of T given f(X). Then the direct obser-

> P(nF) -2al(2a'+)(1 +0o(1)) (13) vations (Y, X)'s are iid with density ir(z)p(ylf(z) where
- p(y+O) = g(y[O) if y < a and p(y[O) = 1 -f 0 . g(tIO)p(dt)

where o(1) -4 0 as first n -- oo and then p --+ 0, if y = a with respect to the measure v which is equal to
measure p on (-oo, a) and assigns measure 1 to the point

F = I/ [(14) y = a.
F =(Hence this censored nonparametric regression is a

particular example of the considered general setting.
and inf is over all estimators f,. The suggested nonparametric scoring method gives us

Hence F is z. new factor for a nonparametric Fisher a sharp-optimal estimation, a pilot estimator is a tradi-
information quantity when we consider this general set- tional for this problem general method of moments esti-
ting, that is, when the distribution of the predictors is mator.
not necessary uniform, family of conditional distribu- Design of experiment. The investigated sharp-
tions is not necessary normal location one, and the min- optimal risk convergence is a functional of 7r(x). Suppose
imax is considered around a given function fo which is that fo(x) is given. Then it is of interest to minimize
not necessary equal to zero. this convergence further by optimal design of r(z). By
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Cauchy-Schwartz inequality moment of a stopping time. A special sequential proce-
dure ;s necessary only for sharp-optimal estimation with

[r(x)l(fo(x))]_x> I/2
1dz >(x))d guaranteed precision and unknown smoothness of the es-

- ( timated response function.

This optimal feature of the orthogonal estimator is
wit11 equality for valid for the general setting as well. The general set-

ting includes important applied problems such as miss-

°(z) -Il/2(fo(x))/ J-'/2 (fo(t))dt . (16) ing data, grouped and censored data, different location
Jo and scale families of distributions.

The design of experiment with this density is optimal.
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ABSTRACT exp(-r 2/b 2). Such a smoothing operation is often per-
formed in meteorology and oceanography. In our appli-

In many practical situations, data constrained to a uni- cation, the problem arises while iteratively minimizing a
formly spaced, large dimensioned orthogonal grid in two quadratic functional using a conjugate gradient algorithm.
dimensional space is to be smoothed using a convolution where it is required to multiply a covariance matrix. E-.,
with a Gaussian weighting function, w(r) = exp(-r 2 /b 2 ). with a vector, g, defined on the grid. With such multiplica-
The smoothing operation may have to be performed re- tions occurring repeatedly, and with the dimensions being
peatedly. Such situation occurs quite frequently in atmo- extremely large, there is a need to find a computationally
spheric and oceanic data assimilation, where model obser- efficient algorithm to estimate this multiplication.
vations are optimally combined with the observed data. Be-
cause of the large numbers of data points, direct application Derber and Rosati (1989) implemented an efficient al-
of this smoothing operation may be computationally pro- gorithm to compute atmg, when E is based on a Gaussian
hibitive. We derive a computationally efficient algorithm function. The algorithm looks at the continuous analog of
to estimate this smoothing operator by employing poly- the matrix multiplication by expanding g(x, y), the cont'n-
nomial operators, P(Di), on the gridded data, f(m,n), uous analog of g, in a Fourier expansion, and approximates
where D2, and D2 are averaging operators in the X and Y Gaussian smoothing by applications of a large number of
directions: Df(rn,n) = [f(m + 1,n) + f(m - 1,n)]/2, Laplacian operations. Although, this algorithm is compu-
D2 f(m, n) = [f(m, n + 1) + f(m, n - 1)]/2. The polyno- tationally much more efficient than the actual matrix mul-
m~al P is the interpolating polynomials over the expanded tiplication, it still needs further enhzncement for it to be

Chebychev points, zx on the interval [a,b], i.e., used on an operational basis. The enhancement that we
propose is based on the direction suggested by the Derbe,-

1i [a + b + (a - b) cosR oos ( 7osati algorithm of approaching the problem in the Fourier

2 ( b ,cos) 2n + 2 ~ 2co ~ + 2 domain.

of the function g(O) = 1 + F,>;)o e-92 /b2 (2cos27rsO)• Us- This new technique uses spectral decomposition in dis-
ing spectral analysis, the smoothing achieved through ma- crete coordinates. First, using the convolution property of
trix multiplication is shown to be well approximated by the the Fourier transforms, the matrix multiplication Fmg is
operation P(D 2 )P(Di)f(m, n). This estimate is nearly expressed as an inverse of the product of Fourier trans-
optimal in the infinity norm. Simulations show that the forms of two two-dimensional arrays, g(m, n) and u(k, 1),
degree of the operator polynomials required for satisfac- where o(k, 1) are based on the Gaussian function. This ex-
tory approximation is quite small, which makes the algo- pression of Sing is then shown to be approximated by the
rithm computationally efficient by a factor of - 25 over one obtained by the application of polynomials in simple
the actual matrix multiplication procedure. The algorithm averaging operators on the vector g.
is being generalized to higher dimensional space, and withelpoal(instead of spherical) contours of the weighting First, in Section 2, we develop the statistical formu-
ellipsoidal lation in terms of data assimilation application leading to
function.

the need for an efficient algorithm for matrix multiplica-
tion. In Section 3, by a brief description of the Gaussian

1. INTRODUCTION smoothing algorithm (Derber 1990, personal communica-
tion) used by Derber and Rosati (1989). In Section 4 we

This paper describes a computationally efficient algo- develop our new smoothing algorithm, which is based on
rithm of smoothing a data field constrained to a uniformly operators that are polynomials in simple averaging opera-
spaced, large dimensioned orthogonal grid in a two dimen- tors. We then compare the Gaussian smoothing achieved
sional space using a Gaussian weighting function, w(r) = by the two algorithms with that obtained by the actual ma-
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trix multiplication. In concluding remarks, we mention the Ordinarily, this minimization should be quite simple,
future improvements and enhancements of this algorithm, but for the fact that the dimension N of the model grid,

and hence that of the covariance matrix, Fm, are extremely
large so that routinely used procedures are quite inadequate

2. SIATEMENT OF THE PROBLEM and efficient minimization algorithms must be devised.

In meteorology and oceanography, scientists often com- The data assimilation algorithm is determined by spec-
bine the observational data with the output of a numerical ifying the covariance matrices Em, and E0 , and by the
general circulation model to arrive at the best current state method of minimizing Q. With a given E, one efficient
of the atmosphere/ocean. The process of model/data com- algorithm for minimizing Q is the preconditioned conjugate
bination, referred to as data assimilation, is performed using gradient algorithm which avoids computing E,; (Navon
the method of least squares to achieve minimum variance, and Legler, 1987). It iteratively reduces the gradient vec-
The statistical framework is as follows. tor g to zero; i.e.,

We want to estimate the true state of the ocean, 0,
by combining the model output, Tm, and observations T,. E-,T + D'E-'(D(T,) - Tco) - 0. (5)
The vectors 0 and Tm are N x 1 vectors defined on the m +

model grid, Cm; the observation vector, To is an M x 1
vector defined on the observation grid g,. Usually, M << Each iterative step computes
N, and To can not provide an adequate representation of
0. The assimilation has to be performed on the 9,,, as
the resultant estimate will be used as initial conditions for h = Emg. (6)
numerical integration of the model equations.

We assume there exists a mapping such that D(Cj,) =

G.. Then 0o, the true state of the ocean at the observation Unless the E, is diagonal, the matrix multiplication in
grid, can be written as 0, = D(O). Often D is assumed (6) is quite expensive. This is especially so for repeated

to be a linear mapping so that: applications. The situation becomes more ponderous when,
due to large dimensions, it may not be possible to store -,n

00 - DO (1) in computer memory, and Em has to be computed again
and again.

Assuming the model output Tm and the the obser- We present an algorithm that alleviates the above dif-
vations T. as unbiased, we can write the following linear ficulties, when the covariance structure of Em is based on
model: a Gaussian function

(T_ "(0 (9e) (2)
kTo) D0 \eo Cr x(r2l ) 7

where em and eo are the zero mean random model and C~r) = aexp(-r 2 /b 2 ). (7)
observation error vectors, respectively. Let I" be the co-
variance matrix of em and M. be the covariance matrix of and g is constrained to a uniformly spaced, large dimen-
e.. Assuming the errors in T. and Tm as statistically in- sioned orthogonal grid in a two dimensional space, compu-
dependent, the least squares solution to the true state 0 tationally efficient algorithms can be devised that are quite
is obtained by minimizing the quadratic functional: accurate, and a lot faster than the actual matrix multi-

plication. Here C(r) represents the covariance between
Q -- (Tm - G)' (T_ 0) (3) two model grid values, with r as the separation distance

+ (T. - DO)'Eo'(T, - DO) between the two grid points, and b is referred to as the
correlation length scale. The parameter a represents the

where the prime indicate matrix transposition. It is cus- error variance of the model values.
tomary to write Q in terms of corrections to the model
values: The matrix multiplication, in (6), amounts to smooth-

ing a field g with a Gaussian function when Em based on
Q = T'cE-Tc + (DTc - Tco)',oE(DT, - To), (4) the Gaussian function (7). Apart from the data assimilation

algorithm, such smoothing is often performed in physical
where Tc = Tm - 0 and T,. = T0 - DTm. science applications.
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3. LAPLACIAN SMOOTHING The implementation is affected by comparison oftwocanon-
ical expressions which are quite similar in form. The first

The brief details given below are based on a method one is obtained by Fourier transform of a convolution, and
due to Derber (1990, a personal communication). Accord- the second is obtained by applying the polynomial prod-
ingly, The Gaussian smoothing of a gridded field could be uct operator, P(D 1)P(D 2 ) to the Fourier representation
achieved in a manner similar to when F and and g were of g(m, n).
continuous. A Gaussian covariance function in a two di- Theorem 1. Let 9(0,0) be the two dimensional Fourier
mensional Cartesian coordinates is given by transform of g(m, n). Then

C(x,y) = aexp[-(_X 2 + y2 )/b 2 ] (11) 1 1

A continuous function g(X, y) can be expanded in the two- f(m, n) = jj 0 #(, q(9)q(4,)e2vi(m8+n)dOdO (15)

dimensional wave number Fourier spectral decomposition: where

g(z, y) = E Zamn exp[-i(mx + ny)] (12) q(O) = E exp(-2vrisO) exp(-6 2s 2 /b 2 ), (16)
m=On=O S

Then the effect of matrix multiplication is approximated by and 6 is the uniform distance between two consecutive
x's and y's.

gc(O,O) = [ f g(x,y)C(x, y)dx dy Theorem 2. Let Dj, j = 1,2 be the averaging operators

0 (n2 +m 2 )b2  from (14). Then

Sare amn ex" P2 (D 2 )Pl (DO)g(m, n) =
m=On=O

This is easily seen to be approximated by: j0j (0, O)P2(cos 27rO)P 1 (cos 2,r0)e 2 wi(m6+n )dOdO.

gc( ,O) -(1+ 6 
(17)

where V2 is the Laplacian operator, and N is large. Thus, Note that the right hand sides of (16) and (17) are

the multiplication of Em, which is based on a Gaussian similar in functional form. Also, an examination of the two

covariance function, is approximated by an application of left hand sides indicates that we could approximate f(m, n)

a large number of Laplacian operations at each model grid as
point. f(m,n) _ P2 (D 2 )Pj(DI)g(m,n) (18)

As stated earlier, this algorithm is computationally provided Pl(cos22T) _ q(9), and P2 (cos27rO) s- q(O). In

quite fast as compared to the actual matrix multiplication, fact, since P 1 and P2 approximate the same function q, it

but it requires further enhancement for it to be practical. t hat P8 = P2 = h ow good an approxima -

However, it suggests a new direction to view the problem tion (18) is depends on how well we can approximate q by

in the spectral domain that leads to our enhancement tech- a polynomial over the domain of q.

nique. In the following, we first prove the two results in (15)
and (17).

4. POLYNOMIAL OPERATOR SMOOTHING Lemma 1. f(m,n) is a convolution of g(m, n) with a

4.1 Derivation of Canonical Forms two-dimensional array o'(k, 1), given by

[ 62k 2 
+ 6212 (19)

Let f(m, n) be the obtained by smoothing the gridded b2(k, l) = a exp J
field g(m, n) with a Gaussian weighting function. We will
like to show that f(m, n) can be approximated by succes-
sively applying polynomials operators, P(D1) and P(D2) Proof. Note that f(m,n) is obtained from Emg as:
where Dj,j = 1,2 are simple averaging operators, given by ri n2 + (y _ yt)2

Dxg(m, n) = g(mr+ 1,n) + g(m- 1,n)]/2, (14a) f(mn)b= 2g(s,t)aex r m -Z)j-y
2

D2g(m, n) = [g(m, n + 1) + g(m, n - 1)1/2. (14b) (20)
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Since g(m, n) is defined on a uniform grid such that 4 - 4.2 Polynomial Approximation
x, = 6(m - s) and 1n -y; = (n - t), (20) can be written

as
The above analysis indicates that an application of

f(m, n) = • '-jg(s, t)a exp [ 62(mb-s)2 +1 2 (n-t) 2 1 polynomial operators will approximate matrix multiplica-
I I tion provided we appropriately choose 14(0) c q(O), and

g(s, t)o(m- s, n- t) P2(0) = q(0). First we note that P, = P2 , since P1 and
P 2 are to approximate the same function, q(-). Next con-

S't sideration is determination of the polynomial P.
g * r, (21)

e* indicates Following a method suggested in deBoor (1980), P is
where n convolution, chosen to be the interpolating polynomial of degree n for

The proof of Theorem 1 is an immediate consequence the function q at the expanded Chebychev points 4, Z

of the convolution (21). 1,..., n, on the interval [a,b] (deBoor, 1980)

Proof of Theorem 1. Denoting the Fourier transform by a
hat, we get from (21), 1FCos ( 12+2

X=, [a+b+(a-b) - . (22)
f:g *o, a. (22) 2 cos (n-+7

Also, from (19), we get
Here [a, b] is the domain of the function q(O). Rewriting

&(=, 0) = q(O)q(O), (16) as

where q(O) is given by (16). Theorem 1 is proved on taking 9(0) = 1 + 2Ecos2,rsO)e 2/02

the inverse Fourier transform of (22). 1>0

Proof of Theorem 2. With § as the Fourier transform of
g, we can write we note that q(0) involves cos(27rs0) terms, for different

integers, s (> 0. Using the recursion relation
g(m, n) - ff (0, ,)2+m+•)o¢ (23)

n 0 X( cos(2,r(s + 1)0) = 2 cos 27r,0cos 2,rsO - cos(2,r(s - 1)0),

Applying operator D1 from (14) to (23), we get

f1f1 (e21 9 + e 2Te) mwe note that q(0) is a function oft = cos 2'0 with domain
Dg(m, n) =1-1 J (O0, + 2 r6 [-1,1].

= 1010 §(0, 4) cos(27r0)e2 li(m6+n0)d0d4,.

5. NUMERICAL SIMULATIONS
We note that , every time Di operates on g, we get an extra

factor of cos(27re) inside the integral. Thus, computing
D1 , it is easy to see that for a polynomial operator The three Gaussian smoothing algorithms - Laplacian
PI(DI), we obtain: smoothing by Derber, the Polynomial Operator smoothing

algorithm, and the actual matrix multiplication (6) were
P1(D1)g(m, n) § •(0, 4,)PI(cos 2r0)e"i(m0+n0)d0d•,. used in an actual data assimilation application. For the

J0J10 polynomial operator algorithm, we found that polynomials
A similar application of operator polynomial P2(D 2) yields of degree around 8 are adequate to estimate the convolution

product with error around 10-4. This is for values of 6 = 20
jo

1 o1  and b = 50 kilometers. In general, the three algorithms
P 2(D 2)g(m,n) =1 fI (0, 4)P 2(cos 27r4)e 2 #(n+n)dOd4,. provided results that were almost identical. However, our

present method was about ten times computationally faster

Thus, a successive application of two polynomial operators, than that of Derber, and about 25 times faster than the
P1 and P2, gives the desired expression (17), proving The- actual matrix multiplication. We ran this on an actual data
orem 2. and on simulated data.
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Abstract form of the linear parametric version of the quantile re-
gression problem, and the solution, i.e. the ath quantile

We adapt and modify the algorithm of Barrodale smoothing spline, is a parabolic spline. The ath nuantile
and Roberts (1973) to compute the quantile smoothing smoothing spline divides the observations on y into two
splines defined as solutions to parts with roughly an of them falling below or on the

fitted spline and (1 - a)n of them above. These quan-
min •P.(Yi - g(xi)) + A Ig"(x)Idx tile smoothing splines, unlike the classical 12 smoothing
gEC' spline, are qualitatively robust to gross errors in the oh-

with p.(u) = (a - I(u < 0))u and 0 < a < 1. Quantile servations on y.. As the smoothing parameter A -- 0,
smoothing splines provide a general approach to nonpar- the solution becomes the quantile interpolating spline
metric estimation of conditional quantile functions, just while for A sufficiently large it yields the bivariate lin-
as classical smoothing splines offer a general approach to ear regression quantile estimate. Following the approach
estimating conditional mean functions. The entire path of parametric linear programming, the whole family of
ofquantilesmoothingsplines for a given penalty parame- quantile smoothing splines for a fixed A as well as the
ter A as well as all the distinct solutions corresponding to entire path of solutions in A for a given quantile a can
distinct A for a given quantile a can be found by perform- be easily found.
ing sequences of simplex pivots following the approach In this paper, we detail the computation of the quan-
in parametric linear programming. tile smoothing splines and the parametric linear pro-

gramming in finding the whole sequences of A and a
1. Introduction through adapting and modifying the well known simplex

algorithm of Barrodale and Roberts [1] for i, regression.
In practice nonparametric regression is virtually syn-

onymous with the estimation of flexible models for condi- 2. Theory
tional mean functions. Koenker and Ng [4] suggested, as
an alternative measure of conditional central tendency, Given observations {(yi,xi) : i = 1,... ,n) with 0 <
median smoothing splines which estimate the conditional x, < ... < z, < 1, we define the ath quantile smoothing
median function of y given z. Aspects other than the spline, g,,%, as the solution to (1.1). Koenker and Ng [4]
central tendency of conditional distributions are, how- showed that there exists a quadratic spline of the form
ever, frequently of substantial interest. For examples, A,) = ai(X - zi) 2 + ,(z - zi) + -t
we might consider estimating the seasonal pattern of for xi < z < x+, i = 0,...,n
extreme temperatures, water levels, or pollution read-
ings. Are estimated trends in mean incomes or SAT which solves (1.1). Schuette [5] studies a closely related

performemce consistent with trends in extreme quan- problem with a discrete penalty for equally spaced ob-

tiles? Quantile smoothing splines provide one way to servations.
answer this question. Let hi = xj+1 - xi, for i = 1,...,n - 1. From the

Koenker and Ng (4) showed that the problem of continuity constraints of the quadratic spline, we have

n I (;j+j) "- +ri 1 -I lihi + -ti + 7j+1

min, ,,p(i -g( X)) +A Ig"(4)ldx (1.1) (2.1)
=EC'(O,=1 §'(xi+1 ) = 2aia + fl, = #j+j

where CI[0,1] is the space of continuous functions on 13o = 01, -to = y, for i = 1,...,n - 1. Note that
(0, 1] with continuous first derivative, p.(u) = (a-l(u < the quadratic spline must be linear in the exterior inter-
0))u and 0 < a < 1 retains the linear programming vals [0, x1 ) and (x,,, 1] otherwise the "roughness" term
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in (1.1) could be reduced without affecting the "fidelity" in which Ai = I(i < n) + AI(i > n). With this linear
portion. This gives us ao = ar = 0. Eliminating the programming formulation, we can then modify the effi-
fli's in (2.1) yields cient simplex algorithm of Barrodale and Roberts [1] to

FT,+2- %+1 1 r - 7i solve for u, v, b, c and hence G.
a/hi + ai+lhi+l = hi+ h i Following the parametric linear programming ap-

i = 1,...,n-2. proach, the whole family of quantile smoothing splines
for A E (0, oo), and the whole path of solutions in the

We have 3(n+u) free parameters and 2(n+.) constraints, smoothing parameter A for a given a may be efficiently
which leaves us with n-I+ 1 free parameters. computed.

Letting 0' = (ci1,i, .... ,,) be the n + 1 free param-

eters and noticing that the roughness term in (1.1) can
be written as 3. Implementation

1g"(z)dz =2 h- 3.1. The Simplex Method

J=1 Denote ti = ui - vi. The marginal costs for

we may rewrite (1.1) as {b, c, u, v) in (2.3) are
min~ r [1 (a_ 1)sgn (•i -•i) l_-_iO R_,_

mi•i , + a=1 i -= [1 + (2a - 1)sgn° (ci; -ii)]
OER.+E R 2 Obj i=1

2n- I (ci; - iij) (-xi,)
+ •, !&•,- AiOl (2.2) 2n_

where fl (OOn- 1),

IOc - Obj

)0 = 0 ORb; -,A 2a1(ci > O)I(i < n)
...... Oui

A (2n-I)X(.+l) + Al(ci Ž 0)l(i > n1)

A = HD-1B, H = diag(h), D a (n - l)x(n - 1) OR',,k (2 - 2a)I(c, <O)J(i < i)
banded matrix with Ovi

d l ,l = 1, ddj-j = h,..j - + AI(ci < O)t(i > n)

for j = 2,... ,n- 1, and B a (it - l)x(n + 1) banded where
matrix with 1 sgn(w) if w $ 0

b1,1 = 1, b JIt J+1=7 1  = -(/171 + /1') sg(w;z) = sgn(z) if w=0

bn-l,n+l = hIan, j = 2,...,n - With the objective function expressed as a linear pro-Notice that the objective function (2.2) can be ex- gramming problem along with the marginal costs of the
pressed as a linear programming problem coefficients, we can then adopt and modify the algorithm

of Barrodale and Roberts [1]. We only describe the fol-
mn l v, b, c) = lowing modifications to make the algorithm work in our

n ( n+1 setting. Readers are referred to [1] for the details and

Z Ii + (2ar - 1) sgn ji- Ej(bj - ]j-i theory of the original linear programming algorithm.
d=1 I= 1. The initial full simplex tableau for (2.3) is as follows,

2n-I in which
(Ui + Vi) + A (Ui + Vi) (2.3)

n 7 1 ,J = m2 +nasdA+nM4 4 a
s.t. i, : A, Z(bj - ci).i + ui -v

a=d 1712• = E[ - sgn'(,;ij)]and bj, cj, n, vi > 0 i=1
for i = I,- .. ,2n - 1, and j = ,.., sgn'((j; -ij)•iq
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Basis R b, ... 61+ 1 C ... C,

U 1 Z 1 ,1  . . .: . :.n

Un Yn Xn,! I -.n,n-f. -- X.,l ... -- =n,n+ |

Un-i 1in I3 X1,1+. •. . Xn+ .--+- - •n+l, -Zn+I.n+l

U2n*-- nI2n- n -2.111 . •.. 2n-- .n I -X2n.-I .. •--T2n-- n,114

M) Mii ... Ml,n+ I -174, . . - 'vn ,,+ I

3T2 M2.3 ... M .11+,1 -11%2.1 ... -- n2,n÷ I
Mfi3 M'/3.1 ... • n3,nj -- n3,1 . -- wn3,.+

M 4 _M 4.1 ... tn 41n- -- 114 .1 . -?114 tn .

B sis R Ul ... Un Un+1  ... U2n_1  us ... Vn 'n+.I • - lV2n-j

Un1 1 -i1

U' n1 i - 1
"11+3 If,+2 -I

lS~n-I V•2,--I ________ -- |

M1 -2ac -A ... - (-2 + 2a) ... (-2 + 2ca) -A ... -A
M2 0 ... 0 0 ... 0 -2 ... -2 0 ... 0
m3 0 ... 0 -1 ... -I 0 ... 0 -1 ... -1

m -2 ... -2 0 ... 0 2 ... 2 0 ... 0

2n-1 negative marginal cost and during Stage 2 is the
m3j E sgn(c,;-zi,)z:, one among the nonbasic vectors ui and vi with the

i=n+l slmallest negative marginal cost as in [1). Once a bi
n= or cj is entered into the basis, it is not allowed to

m4d 2Esqgn*(t;.ijj)xi leave the basis. However, notice here that the sum
i=1 of the negative marginal costs of each pair of b6 and

where m3J and m4, are the coefficients of A and cj is zero while the sum of the negative marginal
a in mij respectively while m2., is the term inde- costs of each pair of ui and vi is -2 if i E H,
pendent of both. The negative marginal cost ml and -2A if i E H2 , where H, = {1,...,n) and
is broken down into three pieces mainly to facilitate H2 = {+ 1,.. .,2n - I) corresponding to the in-
the computation of "next A" and "next a" described dices in the "fidelity" and "roughness" portions of
in the next section. (2.3) respectively.

2. The condensed tableau is stored in a (2Yi+4)x(n+3) 4. As in [1], the vector chosen to leave the basis in
array. The first (2n - 1) rows and (?a + 1) columns both Stage I and Stage 2 is the one among the basic
store the i"j. The first (2n,- 1) rows of the (n+2)th vectors ui and vi which causes the maximum reduc-
column store the gi. The first (2n - 1) rows of the tion in the objective function. The modified simplex
(n + 3)th column store the labels of the initial basis transformation rule in [1) is further modified as fol-

ui as (n + 1) + i. If vi enters as the basis, the label lows. First apply the normal rule to determine the

becomes -(n+ 1)-i. The labels for the initial non- pivot. If subtracting twice the value of the pivot
basis bj are stored in the ((2n - 1) + 5)th row as j. from mIj yields a nonpositive number, proceed to
The ((2n- l)+2)th, ((2n- 1)+3)th, ((2n- l)+4)th the simplex transformation. Otherwise, if the pivot
and ((2n- 1) + l)th rows store the 112,j, "13j, 14j belongs to H1, subtract twice the pivotal row from
and mjj respectively, the rnj row and the "12,j row, multiply the pivotal

row by (-1), and replace in the basis the vector u,
3. During Stage 1 the vector chosen to enter the basis or (vi) corresponding to the pivotal row by vi or

is the one among bi and cj that has the smallest (ui). If the pivot belongs to H2 , subtract twice the
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pivotal row multiplied by A from the mIj row and 1712 , + 3JA r ai m 2 + M2.1 + r3J
twice the pivotal row from the m3 j row, multiply 14 j IEH2 -n 4 a

the pivotal row by (-1), and replace the basic vec- + mn j
tor ui or (vi) corresponding to the pivotal row by A +j
vi or (ui). This operation is repeated until eventu- A

ally a chosen pivot cannot be rejected and the usual Again the iteration is carried out until ap+1 = ap which
simplex transformation is then carried out. This gives the 1.0th quantile smoothing spline.
movement through several neighboring simplex ver-
tices in a single pass has been shown to be much 4. An Example
more efficient than the earlier versions of simplex To illustrate the methods discussed above Figure 4.1
transformation for 11 type problems. depicts three quantile smoothing splines for the well-

3.2. Paramnetric Linear Programminig known motorcycle data, see Hirdle [2]. Obviously, the
estimated quantiles reflect a substantial degree of non-

Since the simplex algorithm terminates when there is homogeneity in the shape of the conditional distribution
no nonbasic ui or vi with negative marginal cost and of the response at the various time coordinates.
with the sum of the negative marginal costs for each
pair of ui and vi being -2 if i E HI and being -2A if
i E H2 , we can easily perform the following parametric 2
linear programming on A and a.

3.2-.1 Next A

To compute the entire path of solutions in A for a given
a, we start from Ao = 0, the ath quantile interpolating
spline. The solution , remains optimal if and only if

-2< M2j + rnaJ 1\+ n14J 50, j E Hl1
n

(3.1)

-2A 5 M2j + r"13JA + rn4 j a 5 0, j E H-2

Hence, the next value of A at which gaA cease to be 20 ;0 ;0

optimal is Figure 4.1: Three Quantile Smoothing Splines for the

A1  m minm [. 2 + n1 2J + n14Jk Motorcycle Data
A>Ao ,iEHa I 1713.j

M ,mj + M Jcf m+ t3 3J References

m 2, + rn4JC] '1 [1] Barrodale, 1. and F.D.K. Roberts, (1973), "An Im-
m3uJ f proved Algorithm for Discrete i Linear Approxi-

Continuing this iteration until A,,+, = A,.. will yield mation", SIAM J. Numer. Anal., 10, 839-848.
all the distinct ath quantile smoothing splines with the (2] Hiirdle, W. (1989), Applied Nonparametric Regres-
solution for A > Am corresponding to the linear ath re- sion, New York: Cambridge University Press.
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[3] Koenker, R. and V. d'Orey, (1987), "Computing Re-
3.2..2 Next a gression Quantiles", Applied Statistics, 383-393.

Similarly the entire family of quantile smoothing
splines for a fixed A can be obtained by starting the iter- [4] Koenker, R. and P. Ng, (1992), "Quantile Smooth-
ation at ao = 1/n, which yields the 0th quantile smooth- ing Splines", in Nonparameiric Statistics and Re-
ing spline, as in Koenker and d'Orey [3]. The solution lated Topics (ed: A.K.Md.E. Saleh), (North-
gao,% remains optimal if and only if the constraints on Holland: New York).
the marginal costs as stated in 3.1 are satisfied. Hence, [5) Schuette, D. R, (1978), "A linear programming ap-
the next a is proach to graduation", Trans. Soc. of Actuaries, 30,

ra i = Min in [2 + "12J + nr3 J A, 407-445.*>*aoo L I t74
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A New Nonparametric Estimation Method: Local and Nonlinear

Andrzej S. Kozek"
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Przesmycki Str. 20, 51-151 Wroclaw, Poland

Abstract Hirdle et al. (1988) and Hall and Jones (1990)) that
the most frequently considered nonparametric estima-

In the paper we consider a new class (called NoLoess) tors such as Nadaraya-Watson (NW), k-Nearest Neigh-
of nonparametric estimators of regression function bor (NN), and p-Optimal Quantile (OQ) (see Kozek and
r(z) = E(Y I X = z). The new estimators link non- Schuster (1990) for more details) are minimizing a local
parametric and parametric methods. NoLoess extends fit function
the class of Macauley, Cleveland, and Stone estimators
and replaces their locally linear models (Loess) given by ( = (K(Z , (1.1)
(1.3) with a general locally parametric nonlinear model Mom = E ( _ )2
g(z, 0). The parameter 0 is estimated locally by fitting where suitable window bandwidth h, is specific for a
g(z,0) to asub-sample (Xi,,Y,,) ... ,(Xi,(.),Yik(,)) with wheresti t ype andw h h. is apecific for
Xi,,..., Xi(,) beeing close to z. The resulting nonpara- given estimator type, and wherelK(.) is a nonnegative- kernel.
metric estimator of r(z) is of the form g(z, i(z). Under We propose to extend (1.1) to the form
proper regularity assumptions it is strongly consistent.

An interactive software package FS 2.0 running under n Ix - ',

MS DOS on IBM PC and compatible, and implement- M(O) = M(Yi - g(Xi, 0)) K X h, ) WM(Xi),
ing a variety of nonparametric Loess- and NoLoess-type (1.2)
estimators has been developped. where

g(z,0) is a 'trial' parametric regression function (in
1. Introduction general g may be a nonlinear function of the vector pa-

The importance of the use of the correct model or its rameter 0),
M is a convex function defining a conditional M-satisfactory approximation is well recognized in Statis- functional,

tics. In this direction, in 1990 Parzen proposed a unifi- WM is a nonnegative weight function.
cation of methods in statistical data analysis. His four The estimators of conditional M-functionals are of the
step scheeme for the model identification process is based form g(x, 0)(x), where 0(x) is the value of 0 which nin-
both on parametric and nonparametric methods, and on imizes (1.2). They extend several important classes of
their comparison. Consistent tests of fit of parametric nonparametric estimators considered so far. We men-
models for regression function r(x) = E(Y I X = x) tioned already NW, NN, and OQ estimators of the regre.s-
have also been proposed in Kozek (1990,1991). The tests sion function which are of the form (1.2) with M(y) =
are based on a comparison of parametric and nonpara- Y 2 and g(x, 0) = 0, 0 E R'. If M(y) = y2 and
metric estimators of r(z). For tests and discussion on
similar subject in case of non-random design x we refer g(X,9) = ao + a . X (1.3)
to Eubank and Spiegelman (1990). with -standing for the usual inner product on RP and

In the present note we follow the idea of compar-ison of parametric and nonparamnetric estimators and 0 - (ao,ai,. . .,a,) =- (a0,a) then we get the class
propoe panamextensioand nonparametric mestathods for of estimators locally linear in parameters, called Loesspropose an extension of nonparam etric methods for es- (C e la d 19 )) ndi t o u d by M c l y( 93 ,
timation of a regression function. Here we consider (Cleveland (1979)) and introduced by Macauley (1931),only the random design. Let (X,Y) be a (p + 1)- Stone (1977), and Cleveland (1979). Since our estima-
dimensional random vector (r.v.), b a , ( + I tors can be considered as nonlinear Loess we shall useand (X,iY),s(Xi , ),.. (X, ,) be independent iden- abbreviation NoLoess in the sequel."n Case of 0 E R' and a convex function M with atically distributed (i.i.d.) r.v. It is well known (cf. bounded derivative admits an easy interpretation. Then

*The author is visiting thru academic year 1991.1992 at The M'(y) = c. (G(y) - x), where G is a cumulative distri-
University o( Arkansas, Fayettevile. bution function (c.d.f.) of some r.v. Z, and the integral



390 A New Nonparametric Estimation Method

f M(y - O)F(dy) achieves its minimum at a (1 - T)- argmin of
quantile of the c.d.f. of the r.v. Y - Z, where Y - F
(Kozek (1984), p. 155). If the probability distribution n

of Y has a symmetry center and M is symmetric about Ol(v) = T '(Y, - g(Xi, WP,))• * (2.1)

zero then the minimum of the integral coincides with the i=1
symmetry center, median, and expectation of F. Clearly, where TP meets the same conditions as M in (1.2),
this coincidence fails in general when F is not symmet- f K(o) •
ric. Since M is used to make the corresponding estimator F* K= W(Xi),
robust and no deviation from expectation is acceptable, and W, is a bounded and positive weight function.
the conditional M-functionals require additional symme- User can either supply his own value of a smoothing
try assumption on the conditional probability distribu- parameter v or choose an 'automatic' selection of an opti-
tion of Y given X = z. Estimators of functionals of mal smoothing parameter v0. FS 2.0 provides a collection
conditional probability distributions have been already of penalizing functions -- including those listed in Hardle
considered in the literature, cf. Hardle et al. (1988), Hall (1991), p. 15 7 and also a Fit Short Curve option of op-
and Jones (1990), and the references quoted in these pa- timality in the form considered in Kozek and Schuster
pers. (1991).

Our experience with software packages FS and FS 2.0 1 All calculations reported in Section 5 were obtained
shows that Loew type estimators are typically perform- using FS 2.0. We postpone a more detailed description
ing much better in small and moderate sample sizes than of the modular structure of the package and implemented
NW, NN, and OQ estimators do. This should not be numerical solutions to another paper.
surprising since in case of a box-type kernel NW, NN,
and OQ are approximaiting r(z) using piecewise con- 3. Technical Requirements for NoLoess
stant functions while Loess uses locally a linear space of
functions, e.g. polynomials. Smooth kernels are smooth- In this section we list assumptions necessary for the
ing the resulting fit and 'make up' the lack of any for- consistency result from Section 4.
mal smootheness requirement present in case of splines. A. (X, Y) is a random vector in AX x R 1 , X C RP such
Formal justification of better performance of Loess esti- that
mators in terms of the reduction of the Mean Squared Y = r(X) + c, (3.1)
Error (MSE) can be found e.g. in Fan (1991). NW, NN,
OQ and Loess lack however the superb feature of para- where r is bounded and has bounded and continuous
metric models: the ease of parameter interpretation. We derivatives on X.
hope that NoLoess and interpretation of the dependence B. X and r are independent, and c has symmetric
of parameters 0(z) on z may help researchers to im- probability distribution; both X and c are assumed to
prove nonadequate parametric models or, in 'weak or no have probability density functions, fx and f, respec-
dependence' case, may support the model and its inter- tively, which are differentiable and have bounded deriva-
pretation. We recommend for g(z,0) a function which tives.
represents experts knowledge about the actual regression C. M is a symmetric strictly convex function on R1
function. In this case only almost a parametric fit and satisfying condition M(2t) _ C .M(t) for all t, and with
typically small or moderate corrections through depen- a continuous, bounded derivative M'.
dence of parameters on z are required. D. g(z, 0) is bounded for every 0 and has a continu-

ous vector of derivatives ge(z, 0), the euclidean norm of
which has a bounded envelope on AX x E, E C Rf.2. Fit Short 2.0 - an Implementation of E. For every z E X

NoLoess (r(z) - c,r(x) + )C Ia E R : a = g(z,0), 0 E E}.

Fit Short 2.0 (FS 2.0) is an interactive package writ- F. K(z) = k(Izl), where k is differentiable, bounded,
ten in Borland's Turbo PascalD2. FS 2.0 implements positive and decreasing on [0, 1), and k(1) = 0. Wm and
NoLoess in the form given by (1.2) for z E R1 and with W* are bounded and positive.
a broad range of options. G. E M(c) < oo, and E (M'(c))2 < oo.

Smoothing parameter vo is called 'optimal' if it equals H. For every z E AX and h > 0 the function
A(z,o,h) =

1FS and FS 2.0 wer written by the author with an assistance of

K. K. Kosek and use a system of windows written by J. Witkowski. E M'(Y - g(X, 0)) g,(z, 0) K((z - X)/h) WM (X)
2Turbo Pascal is & registered trademark of Borland Int., Inc. has a unique zero at 00(z, h).
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I. For every 0 < c < £0, and 0 < h < h0  and the convergence obtained above contradict property
(4.1) of the estimator.

inf I A(z, 0, h) I > c. hPc, (3.2) The consistency in case of the parametric model fol-
where the infimnum is over (z,0) E X x B(Oo(z,h),c), lows from Theorem 2 in Huber (1967) and the obser-
whdB6, ere standsfor the inlu is ovwither (at 6) and h) vation that under assumptions of Section 3 the func-
and B(6, e) stands for the ball in Rp with center at 6 and tion EM (Y - g(X, 0)) K K(- ) attains for a.e. z
radius c. its minimum at the same point 00 which is unique for

every nonsingular probability distribution of X. In-
4. Consistency of NoLoess deed, (3.1), independence of X and c, and the Ander-

Theorem. Let (X,Y),(Xi,Yj),i = 1,...,n be in- son Lemma imply that g(z,Go) = g(z,0(z)) for a.e.
dependent random variables, and assume that the condi- z, where i(z) minimizes the conditional expectation
tions stated in Section 3 are fulfilled. If E (M(Y -g(X,0)) . K(--) x X = z). Now, (3.2) im-

plies that 6o = 6(z) a~s. <

h. -. 0, and nh /(logn) -. oo,

5. Exampleand estimator g~z, ())satisfies
We applied NoLoess and FIT SHORT 2.0 for data from

Ep. M'(Y -g(X, 0)). go(z, i)K((z - X)/h,n) = 0, volatile organic compounds (VOC) emission considered
(4.1) in Dunn 3 and Chao (1992). Dunn and Chao considered

where P, is the empirical probability measure generated models based on systems of differential equations with
by (Xi, j),i 1,...,n then linear terms which relate several factors. These authors

obtained the corresponding analytic solutions and fitted
g(z,i(z)) -- r(z) a.s. the parameters by the nonlinear least squares method.

The original fit was not satisfactory, but it was consid-
If r(z) = g(z, Oo) for some Oo then the convergence holds erably improved with a proper system of weights.
also for a constant window bandwidth hn = h and for In the remaining part of the paper we briefly report on
the constant kerne .K(z) - 1. our attempt to answer the question if simplified models
Proof. Let .'-1 = { M'(y- g(z, 0)). go(z, 0) : 0 E 0) with variable coefficients can be useful in modelling the
and- 2 = {K((z - z)/hn) : z E X} be families of func- VOC emission effects. One of the considered simplified
tions. It is easy to see that the conditions of Sec- models was given by a differential equation (d.e.)
tion 3 imply P. and F 2 have polynomial discrimi-
nation. Thus-by the triangle inequality-the family (d/dt)c(z) = a - b . c(z) , c(zo) = d,
X. = 1f.f2: fE Pf 2 EF 2} also has polyno-
mial discrimination. By Approximation Lemma (Pollard with solution for z 0 = 48.0 of the form
(1984), p.27) we get a bound for the covering number

N,(c,P,F.) < Ae-w, c(z) = A + Bexp(-C(z -48.0)). (5.1)
where constants A and W do not depend on c E An alternative trial model was suggested by a linear fit
(0,I). Since for every function f E .F, we have
If I < const ' K(L-) we get (Elf 12)112 < consti hP for a log-log plot of data and was given by a d.e.

(see Pollard (1984), pp. 35-36 for more details). Now, (d/dt)c(x) = a. c?(z), b > 1.0 , c(zo) = d.
we infer from Theorem 37, Chapter 2 in Pollard (1984)
that Its solution is of the form

sup I Ep. f - Ep f 1: const h- .
fEC. c(z) = Al(z + B)C. (5.2)

Let i stand for a function from F1 . By Lemma 1 in
Greblicki et al. (1984) we get We let 0 = (A,B,C), and use g(z,A,B,C) =

A + B exp(-C(z- 48.0)) in the 'exponential' case (5.1),
n and g(z, A, B, C) = A/(z+ B)C in the 'power' case (5.2).

(1/(nhd.)) E (Xi, Yj, 0)J(((- Xi)/h) Since the data are highly non-uniform we have chosen
i=1

E (t(X, Y, 0) I X = z) . fx (z). 3The author would like to thank Professor J.E. Dunn for call-
ing his attention to VOC emission modelling problems and for
permission to use in his research data from U.S. Enwironmental

Suppose that estimator g(z, 6(z)) is not consistent with Proteclion Agency, Air and Energy Engineering Research Labora-
probability 1. Then assumption (3.2) on A(z,6,h) tory. Research Triangle Park, NC.
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the OQ type of the window bandwidth. Greblicki, W., Krzyzak, A., and Pawlak, M. (1984),
Figure 1 shows behavior of parametric estimators "Distribution-free pointwise consistency of kernel

(K = T1 = -:-_ = = Ws S 1.0) and nonparamet- regression estimates". The Annals of Statistics, 12
ric ones (OQ,K(z) = c. (1 - z) 2 , M(X) = T(z) = 1570-1575.

IzI - ln(1 + Izi), w(u) = 1/(1 - u) 2 , W* = WE = 1.0). Hall, P. and Jones, M. C. (1990), "Adaptive M-
The nonparametric estimators have optimal p = 0.12 in estimators in nonparanetric regression", The An-
the 'exponential' case and p = 0.16 in the 'power' case. nals of Statistics, 18,1712-1728.
Model (5.1) shows very weak dependence of the fit n
given by (2.1) on the window bandwidth and the corre- Hirdle, W., Janssen, P., and Serfling, R. (1988),"Strong
sponding parametric estimator practically coincides with Uniform Consistency Rates for Estimators of Con-
the nonparametric estimators (cf. the better fit on Fig. ditional Functionals", The Annals of Statistics,
1). This suggests that d.e. describing model for VOC 16,1428-1449.
emission should include nonlinear expressions of c(x), Huber, P. J. (1967), "The behavior of maximum like-
and may indicate presence of slow desorption processes lihood estimates under nonstandard conditions",
resulting from interactions between the VOC particles. In Proc. Fifth Berkeley Sympos. Math. Statist.
Such interactions are adequately described in a model IProc. 1, 221-233. Univ .or aPrss,
d.e. by c2 (z) and correspond to value C = 1 in (5.2). Probab. 1, 221-233. Univ. of California Press,

Figure 2 shows the joint pointwise behavior of param- Berkeley.

eters A, B, C in cases of small window and 'exponen- Kozek, A. S. (1984), "Influence curve for minimum dis-
tial' model, and for both small and large windows and tance estimators and supremum metrics", Statistics
'power' model. The nine graphs show their rather small & Decisions, Supplement Issue No 1, 131-158.
stochastic fluctuations and display the amount of nu-
merical instability. It seems to be caused by a tolerant Kozek, A. S. (1990), "A nonparametric test of fit of a
but speeding up the calculations stopping rule in finding linear model", Co7mun. Statist.- Theory Meth.,19,
minimum of (1.2) and by a flat graph of M near the 169-179.
minimum. Kozek, A. S. (1991), "A nonparametric test of fit of a

Whenever a parametric model g(zO) is acceptable parametric model", Journal of Multivariate Analy-
function 10(p) given by (2.1) and the value of p minimiz- sis 37, 66-75.
ing it provide an information on how many observations
are necessary to estimate adequately the parameters of Kozek, A. S. and Schuster, E. F. (1990), "Optimal

the model. In the present case model (5.2) seems to quantile principle for selecting variable bandwidth

meet this requirement and also suggests changes in the in regression estimators", Proceedings of the Com-

full model of the VOC desorption. puter Science and Statistics: 22nd Annual Sympo-
sium on the Interface, ed. R. LePage, pp. 401-405.
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AN EXPERIMENT TO INVESTIGATE THE EFFECTS OF REDUCED DATA INK
IN VERTICAL BAR CHARTS

Mark Eakin, University of Texas at Arlington

Abstract - Tufte in his book The Visual Display of EXPERIMENTAL METHOD
Quantitative Information supports reducing redundant
datta-ink in graphs. This study reports an experiment to The experiment used a cross-over design and was
compare verrtical bar charts with and without redundant conducted in a computer laboratory. The following
data-ink. The bar graphs without redundant data-ink discuss'r' of the experimental design includes the
resemble the types (Aescribed in Tufte's book. The subjects, the lab & software, the task, the factors, the
examines the influence of unnecessary data-ink on a sub- protocol, the measured and created dependent variables.
ject's estimated ratio of the lengths of two bars. MBA students from an advanced statistics class

volunteered for the experiment in return for free group
INTRODUCTION tutoring in statistics. The majority of the students were

familiar with bar charts and PCs.
Tufte (1983) supported increasing the data to ink ratio The lab consisted of 20 386 SX computer:. Each

in a graph by removing all redundant data ink. An machine was running a program in compiled Quick bsi'ic
example of redundant data ink would be the widths of that depicted the lengths on high resolution VGA color
bars in a bar graph if only the height had information graphics.
value. Cleveland (1984) introduced the dot chart that After viewing two lengths depicted on the monitor,
follows Tufte's recommendations by reducing the the task involved asking the subjects to enter their best
redundant dimension in a bar chart to a series of dots. estimate of the ratio of the larger to the smaller length.

Twenty-five pairs of lengths were generated and
displayed as both a regular and reduced bar chart. The
order of depiction of each pair was randomly sorted
within each type of bar chart. The program recorded both
the error in the subject's guess and the time that it took
for the student to respond with an answer.

The independent variables consisted of four
experimental factors and one blocking variable. The fac-

M) tors consisted of the graph type, the length of time the
chart was displayed on the screen (unlimited or one

Figure 1. Example Bar Graphs. Example of (a) reduced data second) and two presentation order factors. Because all
ink and (b) regular bar chart as shown to the students during ex- graphs were seen first with either unlimited or one-
permet. second display times, the first presentation factor

recorded the sequence of presentation: either unlimited
graphs followed by one-second graphs or visa-versa. The

However, the results of recent experiments, have second order factor recorded the set of graphs that a
questioned the need to remove dimensions that have no subject saw first and the set saw second; this factorinformation content. Eakin and McKinney (1990) found attempts to capture any learning effect that might exist.
no significant difference between dot and bar charts for Recording subjects' student identification numbers (IDs)
estimating ratios of two lengths. Spence (1990) found allowed control of variability due to subject's age,
that ornamental extra dimensions (bars and solids) do not experience, graphical perception ability, etc.
decrease the accuracy of estimating the ratio of two All subjects were shown the procedure in the same
kengths and may be faster than line segments. session. Correct and incorrect responses were dem-

This paper reports the results of an experimenit that onstratcd and every subject was trained on five displays
explicitly tests a form of a bar chart suggested by Tufte. of each graph type for both display lengths. Due to the
The experiment compared "rufte's form, a reduced bar limited number of computers, the subjects were then as-
chart, Figure 1(a), to a regular bar chart, Figure l(b). No signed into two groups. In each group, half the subjects
significant difference in estimating th( ratios of two were assigned to each sequence of display lengths. The
lengths were found between the two bar chart types.
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students responses were recorded automatically by the effect from the first to the second set of graphs shown to
computer. the subject. The difference in graph types appear to

The variables recored were the time for the subject to decrease from the first to the second set. While this ap-
respond and the absolute difference (error) between their pears to indicate interaction, no significant interactions
guess of the ratio and the actual ratio. From these were found.
responses, the dependent variables used in the analysis
were the median and mean error per subject, the mean Error
and median time to respond per subject, and the natural .24

logarithm of the mean and median error.

ANALYSIS

The data was analyzed using an anlysis of a cross-
over design and the results given in Table 1 and .1"
graphically in Figure 3. As expected, there is a
significant amount of variability (file to differcnces in .16
students. The group, the sequence, and the time to
respond did not significantly affect cilher the mean or .14

mcwan error or its logarithm. Hlowever significant
differences were found when using median responses
that were not found using mean rcsponscs and visa-versa. 12 22

This difference in patterns of significance could be due
to the skewness of the errn.r values. First -- DISPLAY -- Second

- ORDER -

Table 1. P-Values. The analysis of variance was I Second - DISPLAY -- I Second

performed using either tile vi:ean, or miedian error or t:nlimicd LENGTH or Unhimitcd

response per subject and using both error and the natural
logarithm of error. Figure 2. One Slandard Error Bar Chart. These valucs

have been corrected for the group, the sequence of

(a) Mean (b) Median presentation and the subject. The reduced bar chart

Factor Err Logcrr Err Logerr prodluccd the top four connected means with the bottom

Group .197 .145 .287 .192 four belonging to the regular bar chart. The lour means

Sequence .208 .329 .548 .483 on the left belong to the first set of graphs presented to

Student .001 .001 .00 1 .001 the student and the the right belong to the second set.
Display Length .010 .007 .185 .128 The first two means on the left set of four occured if the
Order .182 .118 .040 .087 graphs were presented for only I second while the
Graph .462 .762 .047 .043 second two on the left were for unlimited presentation

Response Time .388 .572 .883 .840 lislc. Sinulxrl', this Is true for the second set of four.

The variable of interest, Graph, showed nio sigtilicant 5. CO-•
difference using mean reponses but wiee significantly
different using medians. The mcan of the .median error Ohc he experiment lend to suppolt the

for regular bar charts was .166 while the reduced bar results io... , aakin and McKinney and Spence. For

charts had .189 error; the mninimum significant difference estimating the ratios of two quantities, the choice of

was .0225 with a significance level of 0.05. When the regulalr or reduced data ink bar charts does not greatly

mean of the mean errors were analyzcd, the retgtlar bar allfct accLuracy. Any differences found appear to become

chart showed .558 error to .582 error for reduced bar less wilh prictice.
charts; the minimum significant dtflcrentc was 0.066.
The increase in mean error going Irom medians (o n sill. BIBLIO(GRAPH|Y
per subjec, indicate how skewed tile responses NA re.

Even though the learning effect was only signiificant Cleveland, William (1984), "Graphical Methods:

for median response, Figure 3 appears to show a learning Full Scale Breaks, Dot Charts, and Multibased
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Logging", The Amcrican Statistician, Vol. 38, p. Spence, lan (1990), "Visual Psychophysics of Simple
531-534. Graphical Elements", Journal of Exerimental

Psychology: Human Perception and Performancc", Vol.
Eakin, Mark and Vicki McKinney (1990),"Expcriments 16, No. 4, p. 683-692.
Comparing Dot Charts and Bar Charts", Proceedings
QfJthe Section on Statistical Graphics 1990 Annual Tufte, Edward (1983), The Visual Display of

.Meetings of the American Statistical Association, p. Quantitative Information, Graphic Press, Chcsire,
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Statistical Graphics Laboratory Implementation

Lorrie L Hoffman*
Department of Statistics

University of Central Florida, Orlando, FL 32816

Abstract industry-standard equipment, rather than anythingthat was
vendor proprietary. This would allow the greatest flexi-

The aim of this paper is to explain the motivation, bility when it came to enhancing the platform with either
planning, acquisition and installation of the statistical new hardware or software. Additionally, we emphasized
graphics laboratory in the Department of Statistics at the functionality over performance. We wanted the most
University of Central Florida (UCF). Problems and pitfalls capability for the money in spite of the possibility of slow
will be discussed. Portions ofthe paper will address current turn-around times at the terminals. And we planned at the
accomplishments and future plans. The author offers leading edge of technology. We were aware that the
suggestions to others to aid in the design of graphical process of grant endowment, formal equipment reviews
computer hardware projects. and bidding, and general paperwork would create a large

time span between this initial planning phase and final
MOTIVATION implementation. This translated into the act of including

system software in the proposal which might still be under
The primary objective for acquiring a graphics complex development.

was to introduce a general curriculum course in Statistical
Graphics which would be open to quantitatively oriented The proposal was submitted to NSF in the fail of 1988.
undergraduate students. The course itself was to focus on We were granted funding in the amount of $46,500 the
familiarizing the student with a cross-section of graphics summer of 1989 (plus equal matching monies fiom the
hardware and software, and enhance the student's capa- University). We transformed the NSF proposal into a
bilities in collecting and describing data. We also wanted formal requirements document which went through
to provide for convenience of locality of the equipment numerous channels internal to our university. Oneofthoseand good connectivity of existing and proposed facilities stops was with our Computer Services division. They
which allows for conservation of resources for future suggested adding an uninterrupted power supply (UPS) tosoftware expenditures, protect our equipment from power hits (which are com-monplace in lightening-prone Orlando) and a large

capacity high-speed tape device for backups. After
PLANNING rewrites, we submitted our equipment needs document to

four vendors: IBM, SUN, AT&T and DEC. Each of them
A team of professors from the Statistics Department arranged presentations of theirwares and preliminary price

drafted a proposal for NSF funds. The responsibility of quotes.
the initial hardware design fell to this author due to her
previous industry employment as a computer hardware
designer. Working closely with an AT&T Value-Added ACQUISITION
Reseller, a preliminary graphics complex platform was
proposed. The formal request was made public by our purchasing

department during the spring of 1990 and several vendors
Several key issues were resolved at this early stage. We made bids. After opening and reviewing these, the team

decided to use personal computers (PCs) as workstation/ reminded themselves that the platform was built around
terminals rather than diskless workstations or X-terminals the idea of getting hardware which could most readily use
(Coulson, 1991 and McMullen, 1990). Here we sacrificed software which already existed (on mainframes, networks,
resolution for functionality. X-terminals are 1024 x 1024 etc.)-our resource conservation philosophy. DEC's
pixels whereas the PCs are 640 x 480 pixels, but PCs can solution offered the greatest flexibility from this stand-
additionally run graphics software packages instand-alone point, mostly because UCF has a free site license for all
mode. It was also clear at this point that we should purchase DEC developed software.

"This implementation was made possible by an equipment
grant #USE-8951299 from the National Science Foundation.
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The signing of the contract was delayed because one of ACCOMPLISHMENTS
the vendors filed a protest which our purchasing office had
to resolve. Further delays ensued when our equipment Implementation of the functionality was tackled in
room modification took longer than anticipated. Finally steps. Our goals can be described as: 1. get SPLUS
in the spring of 1991 the DEC hardware installer arrived. capabilities operational, 2. attach to the UCF mainframe

During this time our initial DEC sales representative and 3. link to the campuswide NOVELL® LAN. Goal 1
retired and the interim sales representative was again has been achieved and will be described below. Goal 2 is
replaced mid-summer, 1991. This caused some commu- currently in system testing and goal 3 is part of our future
nications problems and lack of continuity on the account plans.
which contributed to subsequent troubles with product
functionality. A possible scenario for data analysis could be: a student

brings data in on a 3 1/2 inch diskette. She brings a PC up
in native mode and using ftp (a command available due to

INSTALLATION DEC's PATHWORKS) transfers the data to an ULTRIX

The complex itself consists of two minicomputer file on the DEC 3100. The student then activates the
windows environment and lists the data set on the DECservers attached to the UPS. One of the servers (supplying 3100. She then calls up SPLUS® and an Xl I (MIT, release

the graphics software capabilities) is a DEC 3100 mini- 4. She window. up SPLUS® ann le

computer which is RISC based (reduced instruction set 4.0) graphics window. Choosing SPLUS commands like

chip) with 12 MB main memory, a 94 MB cartridge tape contour or plot, she can visualize the data on screen. The
drive with 665 MB of SCSI (small computer system final task is to print a hardcopy of the graph. Unfortunately

interface) hard disk storage with a monochrome terminal. (see PROBLEMS section) a click on Printgraph does not

It runs ULTRIX V4.0 and has TCP/IP along with DECnet currently suffice. The default command assumes either
networking capability. The principal graphics software is that the printer is P r compatibleorisan HP

SPLUSS from Statistical Sciences, Inc. The other server Laserjet printer. After translation the graph can be printed

(providing support for networking of the PCs) is a VAX on the LN 03 or color LJ 250.

3100 with 8 MB main memory, a 94 MB cartridge tape
drive with two SCSI hard drives of 105 MB and 332 MB
storage and a monochrome terminal. It runs VMS V5.0 PROBLEMS
and has DEC's PATHWORKS-server software which
supports TCP/IP and DECnet communication. Our problems can be summarized by the four P's:

The ten 316SX personal computers based on INTEL's proprietary, performance, payment and personnel.
80386SX chip running at 16 Mhz are hooked up via
thinwire ethernet to DEC's DEPCA cards. The PCs have We had several problems which stemmed from instal-
2 MB main memory, 40 MB hard disk and 3 1/2 inch ling proprietary software. The initial hookup of the
diskette drives with mouse and VGA color monitors. They networked complex was done using DECnet.
run on Microsoft's MS/DOS2 and use DEC's PATH- Unfortunately, when SPLUS® was installed we found
WORKS for DOS to communicate on the complex. ourselves unable to call up an X11 graphics window. This

was solved by reconfiguring with TCP/IP packet corn-
The printing facilities are controlled by the VAX 3100 munication protocol. Additionally, DEC delivered print-

talking to a DECSERVER200 on a LAT (local area ers which communicated in DEC's sixel graphics
transport). We currently have DEC's LN03 laser printer language. The problem was circumvented by purchasing
and their .,250 dot matrix color printer. aDECsoftware product called PS-PRINTwhichtranslates

The PCs have locally resident software which loads on Postcripte files to sixel. Unfortunately, the translation is

boot. A menu selection allows the user to activate the a painfully slow process.

MS/DOS environment and then subsequently to issue a
site-tailored request for DECWINDOW usage. This This leads to the discussion on performance (read
brings up both a window to the VAX 3100 and one to the "user's response time"). With an ex-computer perform-
DEC 3100. The other menu selection readies the user to ance design engineer on the team, we were aware of the
logon to UCF's mainframe (this connection is accom- potential for disk and cpu bottlenecks, excess memory
plished through the VAX 3100 communicating with usage (paging) and network contention. We are working
DEC's DEMSB (an SNA box) via a modem. to alleviate these troubles.
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In the payment arena, we found the entire order- SUGGESTIONS
ing/billing/receipt phase to be a nightmare. We were
frequently working with the technicians at the last minute To anyone contemplating a computer complex acqui-
to order software which should have been shipped earlier. sition we offer the following tips: get the vendor to show
Plus, DEC's invoice numbers rarely corresponded to those you a working installation similar to what you need, badger
listed in the bid. This was troublesome to our university the sales representative for the best deal, get a commitment
property office who was trying to tag equipment. from your boss for ongoing system administrator support,

carefully define objectives and prioritize needed func-
Lastly, ongoing maintenance of a hardware platform of tionality (you probably "can't get it all"), be prepared to

this sort is a personnel sinkhole. Routine maintenance be patient. Our installation process extended a full year
activities such as adding user accounts, doing backups, beyond what we anticipated.
license updates and software upgrades consume a lot of
manpower. manpower.REFERJENCES

FUTURE PLANS Coulson, C. J., 'The Performance Road Test," DEC
SER INA June, 1991, pp. 50-58.

Our main goals in the near future are to write a user's
manual, to investigate public domain software and to finish McMullen, J., "Have PCs Buried the Graphics Terminal
goal 3 (NOVELL .LAN connection). Market," Datamation June 1, 1990, pp. 69-72.
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The POSTSCRIPT Imaging Model

Chen-Chi Shing
Computer Science Department, Radford University, Radford, VA 24142, USA

Abstract 2. PostScript

PostScript was designed and developed at Adobe Sys-
The PostScript imaging model is the set of rules tems Incorporated by John Warnock, Chuck Geschke,

that are incorporated into the design of a graphics sys- Doug Brotz, Bill Paxton and Ed Taft in 1982. It is a
tem. The PostScript, a device independent page descrip- powerful device independent interpretive language and
tion language is designed to integrate text and graphic mainly used for graphical printing in two dimensional
images. Any graphics package which can generate a printed pages. And It is used in software packages rather
PostScript output file, such as SAS/GRAPH , Mathe- than by programmers. However, it includes most pro-
matica, Maple or Island Graphics running on SUN work- gramming language features and powerful built-in graph-
stations, can be integrated iaiýo a LATEX Postscript file. ics primitives.
Unix tools are created to print them on APPLE Laser-
Writer II or viewed in SUN Openlook. 2.1. Language

The character set of the language includes all ASCII
characters, character space, tab and the newline charac-
ter. Some characters are used to represent data types.

1. Introduction For example, the character % starts for a comment. The
character / starts a name literal. The characters ( and )

The campus of Radford university has been under net- enclose a string. The characters I and I enclose an array
working since 1990. Basically, at least one subnet was and the characters f and } enclose a procedure body.
set up within each department and there is one SUN All data accessible to the language, exist in the form
file server running under SUN/OS 4.1 and serving as the of objects. Each object has a type, some attributes, and
master of the Network Information System in its subnet. a value. The complete list of object types is: integer,
Users can share data and software within campus local real, boolean, array, packedarray, string, name, dictio-
network and communicate with any other internet users nary, operator, file, mark, null, save and fontID. The
through tcp/ip. Graphics packages are spread within name of an object is any token containing any number
different subnets. For instance, Maple V, MathStation of ASCII characters except special purpose characters
1.2 and MatLab 3.5 are within math/statistics subnet; described as above. The attributes of an object affect
SAS 6.03 and SPSS 4.0 are used in computing center the behavior of the object when it is executed or when
subnet; however, Mathematica 1.0, Island Graphics 1.0 certain operations are performed on it. It can be either
and Latex 2.95 were installed within computer science literal or executable.
subnet. There is a need to integrate the output of dif- While in execution of a PostScript program, the in-
ferent graphics packages into a file and print them in a terpreter manages four different stacks. The first kind
PostScript laser printer, is operand stack, in which it holds any valid operand

object and results of the execution of the PostScript op-
So far there doesn't exist a software in the network erators. The second kind is dictionary stack. It is the

which can integrate any other graphics output. Because context in which name lookup and definitions occur. The
PostScript is a device independent page description lan- third kind is execution stack, in which it holds only ex-
guage which can perform graphics capabilities and most ecutable objects, such as procedures and files, that are
graphics packages can generate PostScript output, it is in partial stages of execution. The last kind is graphics
possible to integrate them easily. state stack, in which it holds all graphics operator after

This paper will first describe what PostScript language using the gsave operator.
is and how it is used in graphics. Then we will explain 2 2
how to integrate some graphics output using PostScript. .2. Graphics
An example of a SAS/GRAPH output combined into a PostScript is a page description language. It allows
LATEX file will be shown. your software and printer to communicate about the



C.C. Shing 401

shape and placement of text and graphics on a page. 3. Integration of Graphics Package Out-
Basically, it is a graphics package developed to insulate put
the application writer from the machine dependent de-
tails of printers, and to aid in the layout of printed pages Some graphics packages such as Maple, MatLab and
in the publishing industry. SAS/GRAPH can create generic PostScript output. To

PostScript has more than 250 operators. Those oper- integrate them, one needs to first arrange the output lay-
ators form six major groups. The first group is graphics out on paper by changing the coordinate system used in
state operator that defines the context in which the other each package and scaling, rotation and reflection if neces-
graphics operators execute. The second group is coordi- sary. Then the coordinate system must be changed back
nate system and matrix operator. The matrix operators to the default user coordinate system before combining
can be used to achieve any combinations of translation, the next PostScript file.
scaling, rotation and reflection of any graphics in the user Some graphics packages such as Mathematica and Is-
coordinates. The third group is path construction oper- land Graphics create only special PostScript files. Then
ator. The operators can construct straight and curved in order to integrate them, one needs to write utility pro-
line segments to the current path. The fourth group is grams which use Unix scripts sed and awk to change
painting operator. They can place marks on the current them to generic PostScript files first.
page in raster output. It may use a variety of color mod-
els to specify output color, halftone screens, and sample The following example shows how to combine a

images. The fifth group is character and font opera- SAS/GRAPH into a Latex PostScript output file:

tor. There are different kinds of Times and Helvetica The first step is to allow a SAS program to create a
fonts available. The last group is device setup and out- PostScript file for SAS/GRAPH. One needs to enter the
put operator. These operators establish the association following two lines in the SAS program:
between raster memory and a physical output device. filename infile 'outfllename';

The default user coordinate system used in PostScript and
has the origin at the bottom left corner of a 8.5" by 11"
letter. The unit in the coordinate system, point, is 1/72 goptions device=psepsf gaccess=sasgaedt gsf-
inch. In other words, (Xmaz,Ymaa)=(612,792). name=inffle gsfmode=replace noprompt;

The basic graphics operators can allow users to move In the filename line the temporary file infile links
to any point in the user coordinate system and draw a the permanent file outfilename, where infile is the file
line or an arc in the current path. In fact, users can created by SAS during execution and outfilename is the
create any forms of objects, such as a circle, an ellipse PostScript file created and stored in the current directory
and a polygon easily based on line and arc objects. It after execution. On the other hand, in the goptions line

is very easy for users to draw graphics since they can the device driver for the PostScript software is psepsf.

save any graphics state in the stack while working on This driver will group the PostScript output as a file. In

any other graphics. the mean time gaccess=sasgaedt will automatically
add a carriage-return and a line feed at the end of each
record of the PostScript file.

Since the graphics output created above is a
2.3. Editor PostScript file which can be edited, we can combine it

into a Latex file now. We first change the size of the
In any Unix environment one can invoke a text editor graph so that it can be fit into the page of the Latex

vi to compose a PostScript file. However, in SUN Open- output. Since the origin of the default coordinate sys-
Look environment there is an interactive PostScript pre- tem for any SAS/GRAPH PostScript file is set at the
viewer pageview. Pageview renders a document, one upper left corner, we need to first move the origin to
page at a time, onto an offscreen bitmap which may be the bottom left hand corner (200,2500) before draw-
of arbitrary size, resolution and orientation. The tool ing the graph. Then we need to invoke the PostScript
brings up a text editor with the PostScript document commands in the Latex PostScript output Obeginspe-
in it and a window which contains all of the errors and cial and @endspecial to the SAS/GRAPH PostScript
other output from the document. The user may make output file which will start drawing the graph. A shell
changes to the document and press the run button to script program using sed, awk and tail commands was
rerender the page. created to combine the files.
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4. Conclusion

As shown above graphics packages can be integrated
through PostScript descrition language. Because a few
foreign characters such as Chinese characters can be
drawn by any graphics package, e.g. Island/Draw, those
graphics objects can be created in the form of PostScript
procedures. They can be called easily in an integrated
PostScript program. Finally, a nice report can be gener-
ated by integrating graphics output from many different
graphics packages and word processor LATEX.
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Handwritten Digit Recognition Using Deformable Templates
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Abstract We have been given a large dataset of hand-written
digits by the German company Daimler-Benz. The

A new method for recognizing hand-written digits is dataset consists of 20,000 examples of the digits 0-9 with
presented. The method is based on the idea of "de- 2000 examples of each digit. The characters are digitized
formable templates" originated by Ulf Grenander. Each onto 16x16 pixels with 256 grey-levels per pixel. They
of the ten digits 0-9 is represented by a stochastic model have been normalized so that they all have roughly the
consisting of a series of linked rectangular segments. The same size and stroke width. Daimler-Benz's main inter-
coordinates of the start- and end-points of the segments est is the recognition of German Zip codes which consist
form a multivariate normal distribution. Provisional re- only of digits. To be of any commercial use recognition
sults are presented for a dataset of 20,000 handwritten rates of over 99% are required.
digits gathered from Zip codes on letters. This dataset has been provided as part of the ESPRIT

project 'StatLog' [Sutherland &Feng, 1992]. As part of
1. Introduction this project many discrimination algorithms have been

applied to the dataset, including Fisher's linear discrim-The recognition of hand-written characters is a subject inant analysis, Rumelhart's backpropagation algorithm

of great commercial interest. The most immediate areas [Rumelhart e' al, 1986], decision tree algorithms such as

of application are the recognition of postcodes [Le Cun, CART and 1D3, Bayesian algorithms, nearedt neighbor

1990] and figures on checks. Other areas include signa- and kernel-density algorithms. The best performances

ture verification. If the technique could be extended to were as follows

Chinese or Japanese characters it would make easier the

design of a computer interface for Chinese or Japanese k-nearest neighbor 98%
people in their native language [Gao & Li, 1989). k-ne agetior 95%

A survey of early methods in character recognition is backpropagation 95%
given by Mantas [1986]. Most are based on first of all kernel-density estimation 93%
thinning or skeletonizing the character and then classi-
fying each pixel, given its neighbors, as an end-point of a None of these methods use any background knowledge
line, a crossing point, a T-junction or a point along a line. about the data. For instance, we all have a rough idea
This leads to the identification of the various strokes and of what a'should look like. It is possible that an algo-
then to a classification of the character. However, this rithm which did use such background knowledge would
method is not very robust to noise. Common features achieve a higher recognition rate.
of hand-written characters such as gaps in lines, strokes
which do not join up, extra flourishes and non-straight
lines can lead to mis-identification of the strokes and so 2. Deformable Templates
to mis-classification of the character. Because of theseprolem atenton as ow withedto eurl ntwoks To make use of this background knowledge we now
problems attention has now switched to neural networks propose a new algorithm based on the idea of deformable
as the best hope for improved recognition rates. In this templates. Rigid templates have been used extensively
proposal we hope to compare the performance of neural in image analysis but deformable templates are much
nemplatwork amore recent and differ from rigid templates in that theyconsist of a number of constituent parts which can move

"Funded by European Commnunity under ESPRIT project 5170 relative to one another according to some probability
"StatLog" distribution. This idea grew out of work by Grenander
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et al [Chow, Grenander & Keenan, 1991, Grenander & co-ordinate of one of the end-points is distributed over
Keenan, 1989] who originally applied it to the recogni- the whole width (16 pixels) of the image. Simulated
tion of images of hands. It was applied to galaxy classi- annealing is used because it avoids being trapped in lo-
fication by Ripley and Sutherland [1990] and to segmen- cal minima, unlike other optimisation techniques such as
tation of biological images [Ripley, 1990 and 1992]. It conjugate gradients. It has the disadvantage that it is
is the galaxy classification work which is most relevant very slow, some 40,000 iterations are required to reach
to digit recognition. Galaxies were modeled by chains the minimum in this case. However, the training phase
of rectangular segments whose angles, lengths, widths is carried out only once, so speed is not important.
and brightnesses formed a Markov chain. Samples S Some of the original digits and the fits achieved by this
were generated from the probability distribution defined process are shown in figs.2-3. Note how the algorithm
by this model and accepted or rejected with probability has correctly identified the length, width and orienta-
P(ZIS), where Z is the original data. tion of each stroke. The fitted template still has to be

We propose to apply a similar idea to the hand-written inspected visually to check that the right part of the
digit problem. Each digit will be modeled by its own template has been fitted to the right part of the image.
template consisting of a number of rectangular segments. However, this is a reasonably quick process. Once we
The templates for the digits '4' and '0' are shown in have fitted some large number of digits we can then es-
fig.1. Each segment is defined by five parameters: the timate the covariance matrix for each template.
coordinates of its start- and end-points and its width. In
the case of the '4' two of the segments have a common 2.2. Classification Phase
point and so the number of parameters is reduced by two At the moment an ad hoc method is used to classify
- the total number of parameters is therefore thirteen. In new digits. Each of the ten templates is fitted to the new
the case of the '0' there are four common points, so the digit and the one which fits best is chosen as the clas-
total number of parameters is 5x5-8=17. Instead of a sification. The fitting process, as in the training phase,
Markov random chain we now assume these parameters again uses simulated annealing to minimize the number
obey a Multivariate Normal Distribution (MVN). of mismatched pixels. But this time, at each iteration,

In this paper we will work with a version of the data, in the new sample is generated from the MVN, instead of
which the greylevels have been binarized. The templates from a uniform distribution. This requires far fewer it-
therefore have a brightness of 1 inside each segment and erations to reach the minimum. The problem with this
0 outside. It is possible to extend the method to the case method is that the MVN can generate samples which do
of 256 grey-levels but at the expense of computational not resemble the digit on which the template was based.
speed. This allows the template to fit onto digits other than

The covariance matrix of the MVN must be estimated, the one which it represents. For example, fig.4 shows
This is done in the 'training' phase of the algorithm, us- how the template for an eight can distort to fit onto a
ing a subset of the data. The accuracy of the algorithm seven, by reducing the size of the lower loop until it vir-
is then tested in the 'classification' phase when the algo- tually disappears. To prevent this, we have to insert
rithm is used to classify new data. The classes predicted constraints into the fitting process. For example, in the
by the algorithm are compared to the true classes to case shown in fig.4, we could impose a minimum limit
calculate the accuracy rate. on the diameter of the loops of the eight. At each it-

eration of the simulated annealing procedure the new
2.1. Training Phase sample genarated by the MVN is tested to see if it obeys

the constraints. If not, it is rejected and a new sam-In the training phase the algorithm estimates the co- peisgnrtd Hovrvnwthuccntans

variance matrix of the MVN as follows. We take a subset ple is generated. However, even with such constraints

of the total dataset and treat it as a 'training' set. The mismatches can still occur, like the one shown in fig.5,
training set consists of 500 examples of each of the ten where a zero template has fitted onto a digit which is
digits. We then try to fit the appropriate template to actually a one. Using this method, an accuracy of 94%
each digit so that the number of mismatched pixels is is achieved.

a minimum. Simulated annealing is used to minimize
the number of mismatched pixels. At each iteration of
the simulated annealing procedure a new sample of the Clearly, we need to achieve a higher accuracy than
template is generated by changing one of the parame- this. The problem with the above method is that it does
ters at random. The new value is chosen from a uniform not use the prior probabilities of the fitted templates
distribution over as large a range as possible, e.g. a when deciding the c!?qq- classification is based only on
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the number of mismatched pixels. Therefore, a new digit 4. References
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realistic expression for P(ZIS). Ripley, B.D. (1990) "Recognising organisms from their
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wrong part of the digit the human user can adapt the
template model so that this does not happen.
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Figure 1: Ezamples of templates for the digits 4 and 0.

44A44
Figure 2: Some examples of originai handwritten fours.

It t tit

Figure 3: Templates fitted to the digits in fig.2
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Figure 4: A template for an eight (left) which has fitted onto a seven (right)

Figure 5: A template for a zero (left) which has fitted onto a one (right)
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Abstract 1.0 Introduction

The meaning of data quality is associated with fitness for New hardware and software currently allow fast processing and
use. The life span and multiple use of data within a display of large volumes of information. National spatial
Geographic Information System (GIS) generally requires that databases are becoming available, and regional and local
quality be assessed repeatedly and from the varying databases are beginning to accumulate. These databases are
perspectives mandated by varying types of analysis. becoming accessible to large numbers of people to support a
Collection and maintenance of data quality information has wide range of applications. With the development and
been a goal for producers of digital data, however its dissemination of these databases, users of spatial data become
incorporation into digital databases only recently has become increasingly removed from the details of data collection and
a priority. The well-known advantage of GIS analysis is processing. Historically, data collection and preparation were
that data can be composited in both numerical and visual the basis for an awareness and understanding of data quality.
fashion, to facilitate interpretation of patterns of spatial As databases become distributed and shared by multiple users,
autocorrelation, covariance, and similar measures. The this intimacy with the data and an understanding of its
intention of integrating data quality with data is to provide limitations are lost. Computer generated maps, the standard
numerical and visual interpretation of certainty and output of a GIS, offer no clues and generally imply an
reliability of interpreted pattern, accuracy not warranted by the data. Misinterpretation of GIS

results can lead to false claims, poor judgments and even
The credibility of statistical inference and spatial reasoning litigation (Epstein and Roitman 1987). There is a sense of
using GIS may depend on the incorporation of quality urgency within the GIS community to address these problems
information within the database and the display. The by developing capabilities to accumulate, store, and
disadvantages of visual tools in analysis relate to bias and communicate metadata, that is the information describing the
distortion that may occur in interpreting illogical or poorly data in the database (see Lanter and Veregin, 1990).
designed graphical displays. This paper reports on a research
initiative on visualization of spatial data quality. The Information on the quality of spatial data and databases has
primary goal of the initiative is to explore, adapt, and formed a major concern for both developers and users of GIS
evaluate visualization techniques for the representation and (Chrisman 1983). Producers are concerned about the utility and
communication of spatial data quality. The research builds credibility of their products, and users need to be concerned
on traditional cartographic methods combined with about the reliability of interpretations and decisions which can
visualization techniques made possible by new technologies, be made from such products. The quality of spatial
The paper begins with a discussion on the nature of spatial information and spatial information products is
data quality which borrows from the definition of quality multidimensional and complex. The quality of information
incorporated in the current federal Spatial Data Transfer varies spatially and temporally, and the need for such
Standard. From this discussion the paper identifies problems information will vary by application. If one assumes that data
and research directions needed to build the theory and have been processed and checked sufficiently that gross errors
methodologies for the visual display of data quality for have been removed, the problem of informing users of the
spatial analysis. The structure of the discussion is based appropriateness of data for their needs must still be addressed.
around one of the research initiatives of the National Center
or Geographic Information and Analysis (NCGIA). The volume of information required to adequately describe

spatial data quality is potentially quite large, and
communicating this pool of information to users presents a
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challenge for GIS development. Visualization has recently It is curious that error is often incorporated in statistical
been proposed as a technique for making complex information models yet there is no analysis of error in most statistical
more comprehensible. It has been variously described as: packages in current use. Sensitivity to error varies with the

type of data and use. One tends to look for error less in
0 the organization of abstract concepts into meaningful census data because it is the best data provided. One tends to

pictures; look more for error in a soil map, whose quality can usually
0 the transformation of numerical data into be improved with additional money and sampling resources.

understandable images; and The understanding of spatial data quality has recently been
o the manipulation of geometry, color, and motion. extended beyond assessment of error by The Proposed

Standard for Digital Cartographic Data Quality (Moellering,
Although visualization has been the essence of cartography, 1988). This standard introduced a broad framework for
the employment of visualization tools for the representation evaluating data quality and has been refined in subsequent
of quality have not been well developed or are not available years in the Spatial Data Transfer Standard. This standard is
in exi.ting GIS packages. Visualization is an efficient currently under review for acceptance by federal agencies
means of communicating spatial representations and producing digital data, including the US Bureau of the
multivariate data and is thus a potentially effective method Census, the US Geological Survey, and the Defense
for capturing, interpreting, and communicating quality Mapping Agency. The standard includes measures of
information to users of GIS. accuracy (positional and attribute accuracy), consistency,

completeness, and lineage. Temporal data quality is
This paper reports on a research initiative currently being subsumed in the Transfer Standard under lineage.
conducted at NCGIA sites. The primary goal of the
initiative is to pursue research to explore, adapt, and evaluate Positional accuracy generally refers to geodetic, surveying,
visualization techniques for the representation and or mapping errors, measured with respect to horizontal and
communication of spatial data quality. The initiative began vertical position within a geographic coordinate system
a year ago, and will continue throughout the coming year, (latitude-longitude) or a statistical coordinate system, for
with research projects under investigation in a number of example the multidimensional axes generated by principal
disciplines, including GIS, spatial statistics, computer components factor scores. Attribute accuracy refers to errors
science, and psychology. The highest priorities cited for associated with thematic variables, which may be due to
initiative research include development of conceptual categorization, classification, or interpolation. Completeness
frameworks that link spatial data quality components with relates to issues of missing data and methods of
visualization methods, prototype development of specific compensating for missing values. Logical consistency
visualization techniques, database management of quality applies to the data structure used to organize information in
information in support of visual representation, and question. In standard database terminology, logical
evaluation of visualization techniques in the context of user consistency assures that there are no contradictory facts in
needs and perceptual and cognitive skills. Each of these the database. In GIS, spatial consistency typica!!y refers to
general research areas are discussed in the sections which compliance with a set of topological rules (an internal
follow. They include some examples of research ptiorities consistency) and attribute consistency, a compliance with a
and of projects currently under investigation. As background given set of feature codes or expected relationships between
for this discussion, however, we first present a description of codes (an external consistency). Consistency can be inferred
spatial data quality. from redundant measurements, from past data, or by

compliance with a set of expected relationships. For
2.0 Data Quality Components example the logical consistency of a topographic map might

measure whether contour lines cross and whether they follow
In order to visualize data quality, we must first understand in logical sequence. Lineage tracks information on data
what it is and then determine what aspects can be effectively sources and processing methods that may have been applied;
visualized. One of the most commonly cited components of it is more a chronological record than an indication of error
data quality is error. Commonly recognized errors include per se.
those associated with data collection (source error) and the
processing of data (process error). Process errors have Sinton (1978) models theme, location and time as
proven difficult to analyze in many cases, for example in interdependent observation required for any spatial analysis.
studies of digitizing error, oi in modeling error associated Sinton observes that in data collection one of these
with soil mapping (Fisher 1991). In statistics, the concept components is typically fixed, another is controlled, and the
of least squares error has been applied to determine reliability third is measured. For example in mapping Census data, the
or 'confidence' in hypothesis testing. A third error controlled component (location within enumeration districts)
component (use error) defined by Beard (1989) is associated may be associated with errors due to aggregation levels; and
with the appropriate application of data or data products. the fixed (time) component of Census enumeration may

distort the currency of the representation. These errors differ
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from the error associated with the measured attribute or
theme (e.g. age, income level, or ethnic background), which Quality reports should include as much detail as possible
may incorporate both data collection (source) error and about the data, but the question is how much of this
(process) error inherent in the classification algorithms information do users really need and whether they prefer
applied to the data. aggregate measures over disaggregate ones. The framework

in Figure 1 decomposes quality into several separate
A framework for a more systematic assessment of data components, but aggregate indices may be preferable on
quality components can be built from the combination of occasion. The obvious problem with aggregate indices is
Sinton's observation requirements and the proposed standard formalizing how measures of quality aggregate, and in what
components. Figure 1 illustrates this framework. Within situations the aggregate measure is statistically as well as
this framework resolution has been substituted for conceptually meaningful.
completeness. The matrix implies that for any geographic
observation we potentially have locational, thematic, and 3.0 Research Priorities
temporal components that can be assessed on different levels
of accuracy, resolution, and consistency. Lineage would This section addresses in greater detail the research priorities
include the respective narrative for each component. identitied for an investigation of visualization of spatial data

quality. The objective is to develop and assess visualization
methods which can realistically communicate the accuracy

Location Theme Time and reliability of spatial data.

Accuracy 3.1 Conceptual Frameworks
The development of conceptual frameworks for visualizing

Resolution data quality follows logically from the discussion of quality
components. The important question is how do individual or

Consistency aggregate measures of quality map to visual representations.
The specific research focus lies in matching data quality

Lineage components with a specific graphical symbolization method,
that is, 'choosing the right tool for the job.' Bertin (1983)

Figure 1. Components of Spatial Data Quality. formalized the mapping of visual variables (size, shape,
texture, color, orientation ) to map data through the scales of

Each cell of the matrix in Figure 1 may include specific measurement (Stevens 1946). A conceptual framework for
measures or indices. For example a measure of locational visualizing data quality can be built on the same paradigm.
accuracy could be root mean square error (RMS). Locational Formal specification of a quality component, for example,
resolution could be the 30 meter resolution of Landsat positional accuracy measured as a ratio scale variable, can be
Thematic Mapper data or alternatively a spatial collection mapped to a visual variable exhibiting the same (ratio scale)
unit such as a census block, or tract, a town or a county. A behavior (Clapham and Beard 1991). Research in this area is
measure of locational consistency could indicate compliance linked to achieving an intuitive representation of quality that
with a prescribed set of rules, for example the consistency of can be easily grasped by users of spatial data.
topological rules that require 0-cells to bound I-cells, and 1-
cells to bound 2 cells, etc. Measures of thematic accuracy 3.2 Software and Prototype Development
could include the variance or standard deviation of a set of The second major research focus covers the design and
observations. For example it could be a measure of the implementation of specif&- visualization techniques for data
probability that a soil map unit class is the same as the soil quality. In exploring design decisions several additional
identified on the ground, or that a classified pixe' is research questions arise. These include issues of scale,
representative of a class on the ground. A measure of contextual dependency of quality, the dynamics of data
thematic resolution would indicate the units of quality, the relationships among various quality components
measurement. For nominal or ordinal data this would refer and maintaining the link between data representation and
to the number of classes or ranks. Thematic consistency quality representation. Each of these sub-topics is explored
would assess compliance of there: relationships with a set in greater detail below.
of rules. For example the c,,-.' : .n would be that all
links of the Interstate networl, wo .J. have consistent major 3.2.1 Issues of Scale
and minor USGS DLG co,; -I measure of temporal All geographic or cartographic representations have an
consistency would assure that , collection of temporal facts associated scale and the quality of data may vary with this
were consistcrit. For example an inconsistency would exist scale. In geographic information systems, the representation
in the following three facts: Event 1 occurred in the interval scale is dynamic and thus any quality components linked to
[t], t2J, Event 2 occvrred in the interval [t4, t6], Event I and scale may be dynamic. This is particularly true of locational
Event 2 overlap accuracy and resolution. The implication is that visual
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representations of quality linked to scale may need to change on the age and structure of buildings, the presence of
as scale changes. hazardous contents, and currency of this information may be

critical. In the context of spatial decision-making the
A related issue involves the design of visualization requirements for data quality information are potentially the
techniques to accommodate scale. If the scale of a quality less rigorous and the most varied. The requirements are not
component is quite fine and the size of the geographic area simple, consistent and pre-defined as in the case of digital
we wish to view is large, a selected geographic scale may be data production. In the case of scientific research we would
too small to effectively show the quality component. For expect the most rigorous requirements for assessment of data
example if we wish to show positional accuracy using error quality. In the proof or disproof of some theory, the quality
ellipses and the chosen graphic scale is 1:100,000, error of the data must be rigorously established and tracked.
ellipses less than 10 meters will be indecipherable. Quantitative assessments of quality measures would likely
Additionally the grain of two different quality measures may be required in addition to qualitative assessments and thus
be orders of magnitude different in which case they can not visualization techniques supportive of quantitative analysis
be effectively shown at the same scale. This raises the issue would be required. The design of the visualization tools in
of whether we can support local and global views each case should be tailored to requirements of an application
simultaneously. Fournier et al. (1982) state that often for quality information.
visualization techniques model objects at predetermined fixed
scales regardless of their suitability for different viewing 3.2.3 Dynamics of Data Quality
distances. Thus very fine visual detail may be In the context of geographic information systems, each GIS
indecipherable at one extreme (small scales) and large procecs applied to the data can potentially change the quality
featureless areas result at the opposite extreme (large scales), parameters of the data. Tracking the propagation of errors
Ideally the level of detail provided by the visualization through GIS analysis is an important function which can
technique should be linked and or varied appropriately with potentially be supported with visual aids. Visual support
the scale of the quality measure which is to be displayed. In could potentially require the generation of a new graphic
some instances the visual display could be used to indicate representation after each process and comparison against the
the gravity of the problem relative to scale. For example if preceding ones. An alternative would be a graphic
a quality component were significant at a particular scale it highlighting the changes produced by each process. The
would be visible and if it were not significant it would be design requirements for visual representations would be that
invisible, the changes be easy to detect and compare. One possible

method currently being explored is the use of reference grids
3.2.2 Contextual Dependency of Quality shown in Figure 2.
The rigor and level of detail with which quality information
needs to be examined varies with the application or task. I
Too much quality information or computationally expensive
visualization techniques may not be cost effective or
appropriate for certain tasks. If we consider three different
tasks

"* digital data production "
"• spatial decision-making
"• scientific research

we can envisage three quite different sets of visualization
tools to support each task. In the case of digital data
production, the visualization techniques may be designed to
support a very narrowly defined set of quality control
parameters for a specific data product. If it is a high volume
production environment, visualization methods will need to
be simple and efficient. For example, quality control for a
product may be based on several fixed thresholds for
positional accuracy attribute code accuracy and consistency.
The visualization techniques might be a simple color
scheme which would immediately indicate compliance or -
non-compliance with the product thresholds. In the spatial
decision making context we could imagine a breadth of
applications from land fill siting to emergency response. Figure 2. Example of a reference grid as a visual technique
The requirements for quality information are respectively to detect and compare change in data quality produced by GIS
broad and variable. For example in responding to a fire, operations. The grid in this case indicates the nature of
positional accuracy may be irrelevant but attribute accuracy geometric distortions produced by rubbcrsheeting.
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link between data and quality is maintained and a single view
The reference grid acts as a backdrop to the data. In one is not overloaded. Additionally, views which are more
approach a GIS process (transformation) applied to the data amenable to quantitative diagnosis than the map view are
is also applied to the grid. Changes which are not possible (e.g. a graph).
necessarily detectable in the data may be detected in the grid,
since the expected uniformity of the grid provides a reference
for easy detection and comparison of changes. 3.3 Data Models and Data Quality Management

Issues
3.2.4 Relationships Among Data Quality
Components The third research area focuses on data model and database
There are certain advantages to decomposing data quality into management issues. The objectives here are two-fold:
separate components as was described in Section 2. This
decomposition allows users to isolate the components of • to develop data models and structures which explicitly
primary concern and to track them separately. However in incorporate quality information
many cases these quality components are not independent • and to develop visual representations which can
and an understanding of the relationships between them indicate both the structure of the database and aspects
becomes important. In this case the research questions of its quality.
include: What are the relationships between quality
components (i.e. locational and thematic accuracy) and can 3.3.1 Data Models and Quality
visual techniques be used to help understand and graphically Data presuppose a theory and make assumptions about the
illustrate these relationships? Similarly can measures of real world. Levels of validity and reliability may be implicit
these quality components be combined and can these in the theory. Spatial data models are developed to support
composite measures be expressed visually? different types of data, but the models can only be as good as

the underlying theories. Current spatial theory is not well-
3.2.5 Linkage of Data Representation and attuned to quantification of data quality, especially in
Quality Representation. categorical data analysis. Consider for example the low
Another important design consideration for quality reliability of inference associated with soils data underlying
visualization techniques is to assure that there is an current wetlands delineation procedures.
unambiguous association between a quality measure and the
map component it describes. Quality could be represented as Data quality must be model-based to measure uncertainty.
a continuous field underlying an entire map or a discrete There will always be uncertainty and error at some level of
measure applying to a discrete object. Once this resolution, and users need to be aware of such limitations.
determination is made, several questions on visual For example soils data are collected as measured attributes at
representation arise. In cartc raphic representations, graphic a point and transformed to polygon maps. These polygons
symbols and visual varin.bles carry data values. In are not intended to reflect the actual soil type at any one
considering design solutions for visualization of quality, point, but for purposes of management we consider points
choices can be to load the same symbols with quality within the same polygon to be the same type. In this
information, a different set of symbols in the same plane, context scale again is an important issue. In moving across
or to use an entirely different visual mode. Where a line scales we often must make inferences about areal data based
symbol was used to represent the location of a town on the uncertainty of point measurements.
boundary, color or line type (dotted or dashed) could indicate
quality. In this case the link between data and quality is The fitness of data for a particular purpose is clearly
maintained through the same symbol. Alternatively important, but assessment is difficult. What is reasonable or
positional accuracy of the boundary could be represented by a unreasonable cannot be determined without a model
band or set of probability bands around the line. In this case describing the behavior of the data. The error in raw data and
a different symbol is employed but the association between error introduced during data manipulation cannot always be
data and quality is clear from the spatial relationship in the controlled, and for many GIS operations there is no direct
same plane. The inclusion of quality information in the way to obtain error measures. A particular statistical
same plane when the data representation is complex could problem with spatial data is that replications of GIS models
lead to visual overload and alternate solutions would are not typical. Another computational issue centers on the
therefore be required. Linkage of data between different views lack of robust models describing error propagation during
offers one solution. As an example, data in scatterplots in GIS operations. Without formalized expectations, it is
one window can be linked to the mapped representation of difficult to monitor or predict the generalized behavior of
the same data in another window (Monmonier 1989, Haslett analytical procedures.
et al 1990). Color, highlighting, or flashing provide the
visual clues for the user indicating which data are the same Research questions that relate to data models include a
in the two views. The advantage of this technique is that the diverse range of topics. One question might be posed as
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follows: At what level of aggregation (primitive, object, indices. If the quality of information is variable over an
object class, layer, tile, database) should the data quality area, it should be possible to decompose the area into
information be stored and/or linked to the data? For quadrants until each quadrant has a uniform level of quality.
example, the Census Bureau must aggregate some This may provide for automatic system warnings (for
information due to confidentiality requirements. The level at example) to users attempting to make inferences about data
which quality information is stored may depend on the type below the usable limits of resolution, as defined by
of measurement, and on what levels of aggregation make homogeneity in the data quality hierarchy. One way to link
sense or are commonly used. For example, a surveyed point data with metadata in the quadtree structure would be to
or line contains measurement error but the commonly asked make data quality and data density interdependent, such that
question is what is the error in the area of a polygon formed metadata density would vary with data density.
from the point and line measurements. Until a model of
aggregation is established and verified, only simple data Thirdly, we can ask what types of error models are most
quality assertions are possible. For triangulated points, effective? Using the temperature of a room as an example,
where errors tend to cancel, the aggregation model may be an error model could state that there is a Gaussian standard
driven by the number of redundant observations. Where distribution with an error of 2 degrees. One could generate a
location is inferred by resampling a satellite image, the map of temperatures within the room, differing only in
aggregation of error will likely not cancel, requiring a error. The source of the error differs. The readings could
different error model. differ in reliability, due to systematic error (which could be

adjusted for), or due to the way in which the thermometers
A second question might be posed as follows: What data were used. The Gaussian model restricts the level of
models lend themselves to particular representations of data complexity in the model. The Gaussian model describes the
quality? Here the term 'representation' is construed in the probability but gives no information about clustering of data
general sense, as in digital representation, and not limited to points or sub-areas within the room, as for example near an
a specific mode such as graphical representation. Dutton open window, where errors are likely to be systematic. The
(1989) proposed a hierarchical tesselation based on platonic process of finding systematic errors can be anecdotal and
solids in which the tesselation level is indicative of the thus difficult to incorporate into data models even though
locational accuracy of the data. Dutton's model offers both a their existence can be verified. With anecdotal information
data structure which incorporates quality as well as an there is a need to archive metadata in a form that is not
effective visual epresentation of data resolution (see figure readily codified in numeric tabulation or by mathematical
3). formula.

Aggregate measures are complex and statistical models can
help. For example, when using attribute variance to predict
error, each attribute has a value associated with it. Ideally
one would associate an aggregated value with each level of
data aggregation. At the Castine meeting, Noel Cressie
(Iowa State University) presented the group with an example
of a problem whose objective is to map the sudden infant
death rate within 100 counties in a contiguous region, and
predict the measure of quality. Starting at a low level of
aggregation and working up through higher levels of
aggregation requires knowledge of covariances between
counties, including 100 variance values and a 100 x 100
matrix. Storage of this volume of metadata may not be
supported by current storage capabilities. However, it may
be most efficient to reduce the covariance information to the
computational formula, storing the process to derive
metadata if not the actual values.

3.3.2 Management of Data Quality Information
Research questions that relate to data management also

Figure 3. Dutton's quartenary triangular mesh shown to include a diverse range of topics. Management of data quality
level 3. The model includes both structural and visual within a GIS database requires attention during manipulation
representations of quality, and update, and will likely impact upon future versions of a

spatial database.
Other hierarchical models similar to the quadtree data
structure (Samet 1989) may be useful for some quality
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One of the basic research questions is: Where in the data Does the incorporation of visual representations of quality
management process can visualization be used most within a GIS make a difference? For example, does visual
effectively? It is worthwhile to distinguish between presentation of information about uncertainty alter spatial
visualization for specific tasks in the life cycle of data decision making?
product generation and use. Ideally management of quality
should begin with data collection and continue over the life One effort currently underway is to compile a compendium
span of the data. Visualization techniques could be of error or quality classes and associated visualization
effectively used at several stages. Visualization techniques techniques. These techniques could then be tested by real data
could be used during actual data collection. Systems users to determine which techniques work best for each error
designed for field use could, for example, rovide visual clues or quality component.
to indicate where denser sampling might be needed. Such
clues could help soil scientists to better capture transition
bands. Differing rates of change could be represented by a 4.0 Summary
menu of differing plausible values. Visualization techniques
could also be designed to transfer information known by the This paper has summarized the research agenda formulated
data collector to the data analyst. by participants in an NCGIA specialist meeting. The

research efforts are quite broad and indicatie that the
There is also a need for database software designed to visualization of data quality will involve the efforts of
examine and manage quality information, for example in several disciplines. It is largely a multi-disciplinary problem
query processing. Query languages have only recently been which will require input from such fields as cartography,
extended to include spatial queries but should also be spatial statistics, computer graphics, exploratory data
extended to support queries of quality. For example queries analysis, scientific visualzation, psyhcology, cognitive
of quality might request: data that is no more than 5 years science, and graphic design. So far research efforts have
old, or areas on the map which have positional inaccuracies only touched the surface of the problem. Through
greater than 10 meters. In most cases the response to such publication of the research agenda we hope to enlist the
queries will require an appropriate visual representation of wider efforts of other disciplines in the creation of solutions
the results. to this important problem of managing and communicating

spatial data quality.
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Abstract digital store. We use the term 'accuracy' generically,
and assume that it subsumes error from a variety of

Fuzzy classification has the potential to yield richer sources: uncertainty of definition, imperfect replication
information from remotely sensed images, but there between observers making subjective judgments, the
have been few efforts to deal with the issues involved consequences of mixed pixels in remote sensing,
in working with fuzzy classifications in GIS. digitizing error etc. A spatial database is a
Analogous data are also obtained when the multinomial representation of geographical reality in digital form,
classification given to land is treated as mixed, fuzzy or and the output of a GIS process is an estimate of the
probabilistic. The paper reports on a series of efforts to results of making an equivalent measurement on the
develop visualization techniques for such data. To ground. In that sense, accuracy in spatial data handling
support visualization of the inherent variability in such is a measure of the difference between the digital
data, and to propagate uncertainty effectively through estimate and ground truth. In cases where ground truth
GIS operations, it is necessary to introduce the concept is poorly defined, we include variation between
of an error model as a stochastic process, and to define observers in this definition of accuracy. Thus a failure
a method for creating individual realizations of that of different observers to agree on the class of land
process. cover at a point contributes to the inaccuracy of land

cover data.

Introduction Although inaccuracy is pervasive in spatial data, some
types are clearly less accurate than others. A GPS

Increasing emphasis on analysis, modeling and decision survey provides known levels of positional accuracy,
support within the GIS applications community in down to millimeter levels. We focus in this paper on a
recent years has led to a general concern for issues of class of data known to be subject to relatively high
data quality. If the purpose of spatial data handling is levels of uncertainty, and for which there are no such
to make maps, then perhaps it is sufficient to require straightforward measures of accuracy. In this class,
merely that the output map product be as accurate as every point on the plane is characterized by a single
the input. But the detailed analytic and modeling value measured on a nominal scale; examples include
applications that underlie much of the recent literature soil class, land cover class, and land use. We refer to
of GIS (Tomlin, 1991; Laurini and Thompson, 1992) this as a multinomial field. Two data models are
demand much more stringent and robust approaches. If commonly used to build digital representations of such
the input is known to be inaccurate, uncertain or error- fields. The first, the raster model, is used when the
prone, then it is important that the effects of such field is obtained by remote sensing, by making use of
inaccuracies on the output also be known. Without one of a number of standard procedures for
such knowledge, the apparent value of GIS in classification. In this model, all information on within-
supporting spatial decision-making may be illusory, pixel variability is lost. The second, or polygon model,

partitions the plane into a number of polygons of
In this paper we take the position that all geographic homogeneous class, thus losing all variability within
information is inaccurate to some degree, because it is polygons. The polygon model is also commonly used
impossible to represent the continuous variation of the in mapping multinomial fields, although the boundary
Earth's surface perfectly in the finite, discrete space of a
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lines on such maps are drawn as continuous curves and within GIS. We include with this term not only the
need not be discretized to polygons. results of fuzzy classification in remote. sensing, but

also derivatives of the polygon model where each pixel
Both models are clearly approximations, and although is associated with a mixture of classes, or with
both are in common use, it is rare for the degree of probabilities of class membership. The next section
approximation to be made explicit in either case, or for discusses the meaning of such data from a statistical
uncertainty to be propagated through GIS processes. In perspective, and introduces the concept of an error
the raster case, fuzzy classifiers provide one way of model. The third section discusses a rule-based fuzzy
describing uncertainty, by associating each pixel not classifier for use in interactive visualization of scenes.
with a single class, but with a vector of class This is followed by a description of the environment for
memberships, each one interpreted as a measure of visualization of fuzzy-classified scenes developed by
belonging. Thus pixel x's degree of belonging in class i the authors. The final summary discusses directions for
might be denoted by 7ti(x), and the vector of class future research.

memberships might be written:

7rt 1(x),nt2 (x)....n(X)} Probabilistic Perspective

where n is the number of classes. Consider a raster in which each pixel is associated with
a vector of class memberships. The various possible
sources and interpretations of this data were discussed

In the polygon case, inaccuracy occurs in the form of in the previous section. To provide a probabilistic
variation within polygons, perhaps at the edges where interpretation, we assume that the memberships are
boundaries are merely approximations to zones of normalized by pixel:

transition (Mark and Csillag, 1989), or perhaps

centrally where small inclusions and islands of different
classes have not been mapped. Neither of these issues Pi(x) = 1ti(x) / " nk(X)
is dealt with effectively by giving the polygon a fuzzy k

class membership. Instead, it is necessary to abandon
the polygon model because it is fundamentally unable Thus pi(x) is interpreted as the probability that pixel x

to serve as an adequate basis for representing within- belongs to class i out of the n classes. This might be
polygon variation. Instead, we see the geometry of the interpreted in a mixed pixel context as the proportion of
polygon model as an artifact of the mapping process, pixel x's area that is of class i; or the proportion of
having little value in an effective approach to data interpreters who would have assigned the pixel's area to
quality, and transform to the raster model. Thus both class i; or the proportion of pixels with the same
heterogeneity of polygon class and transition near the spectral response as x that are truly i; and numerous
boundary are represented through the use of pixel class other interpretations are possible also.
memberships.

We define the term multinomial probability field
While the concept of fuzzy pixel classification is a (MPF) as a vector field whose value at any point is a
familiar feature of the remote sensing literature, there normalized vector of class membership probabilities of
has been very little research on the processing of such length n. A raster provides a suitable way of creating
data within GIS. In part this may be because of an acceptable approximation of such a field in a digital
concerns over data volume, since n memberships must database.
be stored for each pixel, rather than one integer
between 1 and n. In practice, however, it is rare for Although a display of pixels showing the membership
more than two class memberships to be significantly in each class is informative, it nevertheless fails to
greater than zero in any one pixel. Fuzzy-classified convey in impression of uncertainty, suggesting that
scenes are difficult to visualize for similar reasons, and memberships are expressions of deterministic
it is not clear how measurements such as class area can knowledge, rather than of lack of knowledge, or of
be made from such data. Thus despite the availability fuzziness. A similar situation in geostatistics has
of fuzzy classifiers, and the greater information content recently been the focus of a paper by Englund (1992).
of fuzzy-classified scenes, it is tempting to convert such When the technique of Kriging is used to create an
data to a simple maximum likelihood classification on interpolated surface between sample points of known
the grounds that the latter are much easier to handle. value, the result is both a surface and a map of

uncertainty. In fact the surface is the estimated mean,
The purpose of this paper is to discuss methods of and the map of uncertainty shows estimated variance
visualization and processing for fuzzy-classified scenes around the mean. Englund deviates from common
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practice by showing not the map of estimated means, accuracy standards, the statistics of the
but sample maps from the distribution of possibilities misclassification matrix used in remote sensing, and the
defined by the means and variances. These, rather than reliability diagram found on many topographic maps.
the estimated mean, are then used in GIS processing. All of these are useful error descriptors, but fall short of
As a result, Englund is able to provide visually being useful error models. Neither is there a useful
dramatic illustrations of the uncertainty expressed by connection between many such descriptors and the
the estimated variances, but norimaly ignored in necessary parameters of error models. For example, it
analyses based on estimated means. is not possible to connect the parameters in the model

described above with such measures as positional
Englund's Kriging means and variances provide an accuracy of polygon boundaries, or per-polygon
error model, or a stochastic process whose outcomes or misclassification of attributes.
realizations represent the uncertainty inherent in the
data. Goodchild, Sun and Yang (1992) define an error
model in the context of spatial databases as "a A Rule-Based Fuzzy Classifier
stochastic process capable of generating distorted
versions of the same reality". The best known error Uncertainty is endemic to land classification or
model is the Gaussian, used to describe uncertainty in regionalization, because with few exceptions the Earth's
measurements of a simple scalar quantity like the surface is not naturally divided into regiorns of uniform
elevation at a point. Each of the outcomes of such an attributes divided by clear boundary lines. In practice,
error model provides one possible version of the truth, while some boundaries between classes may follow
as it might be interpreted by one soil scientist, or as it well-defined lines such as roads, rivers or ridges, other
might be digitized by one operator. boundaries must be drawn through zones of transition,

ecotones, or similarly fuzzy areas. As a consequence,
In the context of an MPF, the probabilities are the maps of land cover made by different observers may
equivalent of Kriging means, and a map of them show different boundary positions, and also different
similarly fails to convey an impression of uncertainty, numbers of regions and different boundary network
Goodchild, Sun and Yang (1992) describe an error topologies. Such uncertainty may be further
model for an MPF. Each realization is a map in which complicated by imprecision in our language for
each pixel is assigned to a single class. Its two essential classification (Leung, 1984, 1985, 1987). Therefore it
properties are: is essential to have a built-in mechanism for analyzing

and displaying uncertainty within a spatial data
1. between realizations, the proportion of handling environment.

times pixel x is assigned to class i
approaches pi(x) as the number of Conventionally, classification of remotely sensed
realizations becomes large; and scenes is performed algorithmically. In supervised

classification, techniques such as maximum likelihood
2. within realizations, the outcomes in (see for example Nilsson, 1965; Duda and Hart, 1973)

neighboring pixels are correlated, the and the minimum distance method (Wacker and
degree of correlation being controlled by a Landgrebe, 1972; Borden et al., 1977; Phillips, 1973)
spatial dependence parameter. are all procedural. In unsupervised classification, the

most common method is cluster analysis (see for
When the spatial dependence parameter is zero, example Duda and Hart, 1973; Coleman and Andrews,
outcomes are independent in each pixel (the case 1979) which is again algorithmic in structure.
illustrated by Fisher, 1991). However, this is almost
certainly unrealistic since few if any real processes are A common drawback of all of these methods is that
likely to create such independent outcomes. As the they cannot handle uncertainty. Fuzzy cluster analysis
parameter increases, outcomes are correlated over (see for example Ruspini, 1970, 1973; Bezdek, 1981)
longer and longer distances; one suitable interpretation and fuzzy graphs (see for example Leung, 1984) can
of this is that larger and larger inclusions within analyze and depict uncertainty in classification in
polygons are ignored, or fall below the the minimum general and image analysis in particular. Nevertheless
mapping unit area. these methods are mechanical, and cannot

communicate to users any knowledge behind the
Many commonly used descriptions of map error fail to classification.
meet the requirements of an error model, since they fall
short of the complete specification of a stochastic To make fuzzy classification more flexible, informative
process. Such descriptions include the width of an and intelligent, a rule-based classifier has been
epsilon band, the measures mandated by many map developed within an expert system environment (Leung
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and Leung, 1992a,b). In place of an algorithm, the MPFs. As we argued in the first section, classification
classification scheme is represented by a set of rules procedures are important for remotely sensed imagery,
indicating how spatial classes are conceptualized and but it is also desirable to be able to visualize MPFs
spatial data are classified. A rule in the rule set is from sources such as land cover maps, in which
generally expressed as: classification is performed by other means. For this

reason, the system is modular in design, and includes a
(rule <rule-name> classification module, display module, and modules for
if <object 1> <operator 1> <value 1> and/or data manipulation. It is interactive and uses a graphic

<object 2> <operator 2> <value 2> and/or user interface, all instructions and operations being
triggered by selecting appropriate screen buttons.
Windows are opened and closed as appropriate. The
system has been developed in C and X Windows for the

then <object n> is <value n> IBM RS/6000 under the AIX operating system.
) certainty is <certainty factor>.

Within the classifier module, fuzzy rules are managed
The operators can be ordinary inequalities (>, <, =, >=, by a built-in mechanism with fuzzy logic connectives.
<=) or fuzzy inequalities (._, <5., =, >-, 5=, where To facilitate rule editing, fuzzy concepts can be
means approximately). The certainty factor can be a modified on-screen by changing critical points in the
precise value in some fixed range, a fuzzy number, or a domain over which the associated membership
linguistic probability (Gopal and Woodcock, 1992). functions are defined.

In the identification of water from MSS data, a typical In the display module, images can be displayed directly
rule might read: by associating colors with spectral bands without

classification, in order to support direct visualization of
If the spcctral value in Band 3 (X3 ) is the preclassified scene. However the most important
approximately less than 8 and the spectral component of the module supports the display of
value in Band 4 (X4 ) is approximately less classified images. In general, techniques of dithering

and bit-mapping can be used to display uncertainty
than 5 then the pixel is a water body, certainty (Leung and Leung, 1990) in terms of levels of class
is 1. membership, to expose the spatial variation in

membership within regions or across region
Based on evaluations, ground truthing, experts' boundaries. In addition the system r ,wides several
experience and knowledge gained, rules can be other measures and methods for conveying informationmodified, deleted or added according to the rule set about an MPF to the user. The following sections

without having to rewrite any part of the program, in briefly describe the principal tools.

expert system enviroments such as those provided by

Leung and Leung (1992a,b). The knowledge-based I. Unclassified image
approach is thus more versatile than algorithmic
approaches. Colors can be assigned to spectral bands to create

conventional false-color representations of theRegardless of which approach is used (algorithmic or unclassified scene. This allows the user to see the raw

rule-based), fuzzy spatial classification differs from the data before classification.

non-fuzzy scheme in that it can depict the intrinsic

uncertainty of spatial data. Intermediate areas, fuzzy 2. Classified image
boundaries and fuzzy regions can be identified by
gradation, while precise boundaries can be handled The RGB color model is used to display the results
within the same framework by coupling high levels of generated by the fuzzy classifier, or input from some
certainty with spatially sharp changes in class other source. Each class is associated with a point in
memberships. However, to communicate uncertainty to RGB space, and each vector of class memberships is
the user, we need to devise an effective scheme for mapped to an intermediate point in the color space by
visual display. linear interpolation. This method is successful for two

classes (n=2) provided the pure-class colors are chosen

Tools for Visualization carefully, but it is difficult for the eye to decode the
results for n=3, and for n>3 the mapping from class
membership vector to color space is no longer unique.

In this section we describe the tools we have developed Moreover mapping is non-unique for n=3 if the class
for rule-based fuzzy classification, and visualization of
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memberships have not been normalized to sum to 1 pixel are independent of outcomes in neighboring
(see above), pixels (zero spatial dependence) then the uncertainty

associated with area estimates can be determined from
It is possible to display each pixels degree of belonging the statistics of the binomial distribution in the form of
to each class as a numerical value, or graphically as a a standard error:
bar chart. The corresponding location in color space
can also be displayed. Sei = b { pi(x) [1-pi(x)] }

To deal with the difficulty of visualizing membership in
many classes, it is possible to display each class's where s is the root mean square uncertainty in
memberships separately using a grey scale. By using ei
multiple windows one can display the general estimate A, (Fisher, 1991, used Monte Carlo simulation
distribution of each class for up to four or even six to estimate standard error). But when spatial
classes simultaneously. dependence is present, as it almost always is, and

outcomes in neighboring pixels are correlated, it is
Sometimes it is desirable to have a non-fuzzy image of necessary to resort to the methods described by
a fuzzy scene. A simple defuzzing mechanism is Goodchild, Sun and Yang (1992).
maximum likelihood, where the displayed class f(x) = i
if ri(x)>1r(x) for all ij, i not equal to j; that is, a pixel 4. Entropy

is assigned to class i (and displayed with class i's color)
if its degree of membership in class i is highest. The The degree of certainty in a pixel's classification can be
user has control over the colors assigned to each class, measured in various ways, but one that expresses the
Frequency distributions of the entire image can be degree to which membership is concentrated in a
displayed, and the user can zoom into a selected area, particular class, rather than spread over a number of
or display the contents of any pixel. classes, is the information statistic or entropy measure:

3. Area H(x) =- (I/In n) I pi(x) In pi(x)
i

Calculation of the area occupied by each class is a
common GIS function. For conventionally classified where H(x) is the entropy associated with pixel x. H(x)
scenes or other forms of raster data it is calculated by varies from 0 (one class has probability 1, all others
counting the pixels assigned to each class and have probability 0) to 1 (all classes have probability
multiplying by pixel area. However the solution is less equal to l/n). The system allows a map of H to be
clear in the case of fuzzy-classified scenes. If pi(x) is displayed using a grey scale; light areas have high

interpreted as the proportion of pixel x that is truly class certainty (probability concentrated in one class) while
i, as in a mixed pixel interpretation of fuzziness, then dark areas have low certainty.
the area of class i will be the sum of such fractions
added over the scene. On the other hand if pi(x) is The degree of fuzziness associated with membership in

interpreted probabilistically, the same estimate must be each class can be assessed by another form of the

interpreted as the expected area of class i. Similar entropy measure:

approaches are appropriate if pi(x) is given other Hi -(/N In 2') 7- {Pi(X) In pi(x)
probabilistic interpretations. Thus the calculation of H
area on a fuzzy-classified scene seems adequately + [1-p.(x)] xIni
addressed by calculating: i

Ai = b I pi(x) where the sum is now over the pixels and N is the
x number of pixels. Hi is zero if the probability of

membership in class i is 0 or I in all pixels, and I if
where b is the area of each raster cell. probability is 0.5 in all pixels. The overall entropy H of

the entire fuzzy scene can be obtained by adding these
More difficult is the estimation of error variance, measures over all classes.
standard error, or the uncertainty associated with such
estimates. In the mixed pixel interpretation Ai is 5. Realizations

deterministic, with zero uncertainty. In a probabilistic As noted earlier, an important aspect of visualizing
interpretation, and assuming that outcomes in each uncertainty is the ability to view individual realizations
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of an error model, rather than its parameters. All of the An MPF is inherently multidimensional, and this paper
previously noted methods display some aspect of the has presented a number of techniques for improving the
probability vectors, which are the parameters of the user's ability to understand this particular form of
error model's stochastic process, rather than its spatial variation. However any communication system
outcomes. Viewing a display of probability vectors must satisfy the requirements of the user as much as it
necessarily diverts attention from the variation between exploits the capabilities of the system, and it seems
realilations, and focuses more on the average or clear to us that an ideal design can only come from the
expected case. experience of working with these tools in a real analytic

environment.
The system includes the ability to display realizations
of the error model, using user-determined levels of
spatial dependence. Goodchild, Sun and Yang (1992) Acknowledgment
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Abstract Introduction
Graphic scripts are automated sequences of maps, Dynamic graphics can be user-driven or system-

text blocks, statistical diagrams, and graphs. Graphic driven. Most contemporary systems for interactive
scripts can be orchestrated to introduce a data set, statistical graphics ;re user-driven: except for the
explore salient trends, or reveal anomalies. A graphic simple spin rotat.: , the point cloud in a three-
script can include graphic phrases, which are dimensional scatterplot, the analyst uses a menu and
programmed, data-driven graphic sequences with a pointing device to select every view, or change of
specific focus, such as presenting and exploring the screen. In contrast, a system-driven dynamic
geographic pattern of residuals for a bivariate presentation could consist of a logical or traditional
regression. Graphic scripts and phrases can have sequence of graphics, such as juxtaposed frequency
important roles in exploratory analysis as training aids diagrams for a pair of variables followed by a
and programmed overviews. As expository tools in an scatterplot to which the system adds first a least-
exploratory environment, graphic scripts and phrases squares regression line and then a smooth curve
require a comparatively smooth, logically structured generated by a lowess operator (Cleveland 1979). In
flow of informative views analogous to the flow its broadest sense, a system-driven dynamic sequence
required for clarity in expository prose. Experience in can be responsive to the goals of the analyst, the
developing two graphic scripts, one addressing method of data collection, and trends and anomalies in
bivariate correlation and the other exploring spatial- the data. The user might control the pace of the
temporal trends, suggests the existence of four basic presentation, and even alter its direction te recali a
strategies for using sequence and motion to integrate previous screen. A system-driven s,-quence of
maps and statistical graphs. The 'graph-then-map' statistical graphics can range in complexity from a
strategy follows a graph addressing the overall region simple rotating point cloud to the computationally
(such as a frequency graph for the United States as a sophisticated technique called 'the grand tour' (Buja
whole) with a map addressing the constituent and Asimov 1986) to an even more varied script
subregional units (such as a map of the states). The designed to present a thorough visual analysis of a
'graph-as-a-key' strategy links a map to a graph that large and complex data set.
serves as the map key and uses a programmed Scripted sequences of views can be particularly
examination of this key to generate an animated useful in exploring geographic data. These sequences
exploration of spatial trends. In contrast, the 'map-as- can vary widely in sophistication and duration. At a
a-key' strategy uses an animated region-by-region basic level, a highly focussed graphic phrase can
examination to explore spatial patterns or statistical describe a single variable by generating a
relationships. The 'complementary-juxtaposition' complementary set of maps that avoids the analytic
strategy places two (or more) major graphics on the myopia and graphic inadequacy of the traditional one-
screen for simultaneous viewing. Neither graphic is map cartographic solution (Mpnmonier 1989).
markedly subordinate, and if the display is dynamic, Another kind of graphic phrase might link a
its constituent graphics are linked and synchronized. cartographic view of the data to a statistical view, such
The paper also discusses signature hues and the roles as a frequency histogram or scatterplot. At a higher
of text and speech. level, a more comprehensive graphic script might

generate a relational seouence of maps and statistical
diagrams that first explores the individual variances of

"The author gratefully acknowledges the support of a two variables, then their cross-correlation, and finally
National Science Foundation grant (SES-90-22845). the residuals resulting from fitting one distribution to



424 Maps and Graphs in Graphic Scripts

the other. Graphic scripts might include graphic for each of the 91 years from 19(X0 through 1990. For
phrases that examine the effects of areal aggregation simplicity I merged counts for th'2 District of Columbia
and spatial autocorrelation, and a data profile could with those for Maryland, and used territorial data for
direct the sequence of graphics to address uncertainty Arizona, New Mexico, and Oklahoma, which were not
in the data, problems of measurement and definition, yet states at the beginning of the period.
and relevant complementary relationships with I organized each script into acts and scenes.
related variables. Furthermore, a user profile could According to Philip Gersmehl (1990), a geographer
ensure a graphic sequence attentive to the user's who identified nine animation metaphors, this 'stage
experience, interest in specific places, and research and play' strategy is especially appropriate for
objective, however vaguely defined, complex scripts with a geographic setting. The first act

The goal of these tools for geographic visualization introduces each variable in a separate scene. Because
is thoroughness and efficiency, not the replacement of the prototype scripts have no sound track, each
serendipitous discovery with a hurried, banal introductory scene begins with a large block of text
sequence of dazzling, Nintendo-like images. I call this that lists the variable by both its full and abridged
approach 'atlas touring' because it can orchestrate a titles, defines the variable concisely, and mentions
tailored, user-relevant introduction or overview of a important exceptions or refinements. Like the
geographic database, sometimes called an 'electronic correlation script, the historical script employs two
atlas'. Although atlas touring might provide some primarily variables, a raw count described by the brief
uasers with a graphic summary (Monmonier 1992b), it title "Number of Firms" and a derivative variable with
could serve others as an intellectual stimulus, the abbreviated name "Pct. of Maximum." This
electronic tour-guide, or analytical pump-primer, second measure represents each yearly count as a

This paper is an early attempt to develop a theory percentage of the maximum annual count recorded for
for authoring graphic scripts. It draws on two recently the state during the 91 years of record.
developed prototype scripts, one designed to examine I extended the stage-and-play metaphor by
relationships among two geographic distributions, and dressing each variable in a signature hue used to color
the other intended to examine spatial-temporal trends area-fill patterns on its maps, bars on its histograms,
for a single historical series of measurements. After a and brushes on its scatterplots. Contrast is important
brief description of these two graphic scripts and some in selecting signature hues. For the correlation script I
of their constituent graphic phrases, I discuss four used red for "Female Officials," blue for "Females
basic strategies for using sequencing and motion to Working," and magenta for the residuals from
integrate the geographic-space representation of the regression introduced in the third act. In the historical
map with the attribute-space representation of the script magenta serves as the signature hue for
statistical diagram

Two Prototype Graphic Scipts
Because no one had devised a graphic sequence

with the functionality and visual variety I envisioned, I
chose to begin by addressing two relatively
straightforward geographic problems for which I had L(z•
data. The sequence I call the 'correlation script' looks
at two variables, females as a percentage of elected
local public officials and the proportion of civilian /Z 7 %I§women 16 and older in the labor force. Both variables
were measured for 1987 for the 50 states of the U.S. 1
assigned the first variable the brief title "Female
Officials" and treated it as the dependent variable.. (2
And the second variable I called "Females Working"
and employed as the independent variable. My
second prototype, which I call the 'historical script', Figure 1. Visibility base map represents states with
examines temporal change for a single variable, the noncontiguous, computationally simple geographic
number of daily newspaper firms recorded annually caricatures.
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"Number of Firms" and cyan represents "Pct. of screens such as Figure 2 use natural language to the
Maximum" because I reserved red and blue to describe the statistical-cartographic narrative's lead
differentiate gains from losses in an extensive series of characters, map titles and axis labels to identify these
maps portraying both absolute change and rates of characters in their various guises, and small text blocks
change. at the top or bottom of the screen to announce the

Like both the cost-conscious producer and the intent of the scene or graphic phrase to follow.
director wary of confusing the audience, I avoided Adding a sound channel would promote a fuller,
complexity by using concise labels and titles; by more efficient integration of narrative text and
establishing standard positions for maps, diagrams, narrative action. Because the viewer cannot
keys, and blocks of text; and by employing a visibility simultaneously read text and watch animated
base map (Figure 1) with caricatured state polygons graphics, my next stage of development will use
enlarged to provide readable area-fill patterns for recorded or synthesized speech to supplement text
Delaware, Rhode Island, and other small states. blocks and labels in some cases and to replace them in
(Graphic parsimony has other advantages: by keeping others. But even where listening might replace
the number of props to a minimum and assigning reading, careful sequencing will be important because
them fixed places on the screen, I also conserved the viewer often requires a verbal explanation to
memory and simplified programming.) comprehend the action that has begun or is to follow.

Sequencing is important at two levels. At the Indeed, graphic scripts can use a meticulously
macro level, the plots of both graphic scripts move synchronized audio channel in at least three ways: (1)
progressively yet carefully toward a climax. The to announce what the viewer will see shortly, (2) to
correlation script, which examines each variable describe or interpret what she is seeing currently (or
separately in the first act and both variables jointly in should be able to see,) and (3) to summarize what she
the second act, culminates in the third and final act has just seen.
with a revealing dynamic examination of the
geographic pattern of residuals from regression.
Similarly, the historical script, which examines its Strategies for Integrating Maps and Graphs
count and percentage indicators separately in the first The remainder of this paper examines four
act and addresses spatial-temporal patterns of change strategies for linking maps and statistical graphs.
in the second act, caps the presentation with a Devised while preparing the two prototype graphic
sequence of dynamic centrographic maps that relate scripts, these approaches are useful for fully authored
change in the newspaper industry to the westward scripts as well as for graphic phrases provided as
and southward advance of nation's center of dynamic analytical tools in an interactive system for
population. At the micro level, each graphic phrase exploratory data analysis. Although this four-strategy
requires a coherent, carefully paced succession of framework does not exhaust the range of integrating
images, in which new information is added to older mechanisms, it offers script authors and software
information one piece at a time. For example, before designers a broad variety of choices. The discussion
initiating a cartographic animation the screen might that follows also examines useful variations within
reveal in discrete steps separated by noticeable pauses each strategy.
(1) the base map to be used, (2) a text block describing
the nature or point of the graphic phrase, (3) a map
title to identify the variable and its treatment, (4) the 1. The Graph-then-Map Strategy
static elements of the map key, and (5) any temporally The simplest and most obvious approach to map-
variable elements of the key or title, such as the year- graph integration is the graph-then-map sequence in
date or a linear time scale. which a graph presenting an overview or summary for

Text is an important element in the two prototype the entire study region precedes a map showing
graphic scripts. As narratives presented without a information for the region's component parts. This
programmed audio channel, the scripts use text approach parallels most written and oral narratives by
screens and small part-screen text blocks in the same examining geographic details immediately after
way that silent films employed intertitles to establish a providing a more general context for the map's
context for the action to follow and to supply reading and interpretation. Thus, for a spatial-
background information not easily woven into the plot temporal distribution a time-series graph might
by other means (Fleishman 1992, 23-24). Thus, text usefully point out whether the snapshot map that
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follows reflects a period of relative growth, decline, or The graphic phrase in which Figure 5 appears also
stability. For a map portraying the geographic pattern uses dynamic blinking to reinforce the link between
of change over a stated period, a preliminary time- map and grapn. A canvass-by-category blink
series graph might either (1) integrate a relatively sequence highlights each of the map's five categories,
short span of time represented by the map into a starting with the highest category represented by the
longer historical record or (2) describe the coherence, rightmost group of bars and their linked polygons,
volatility, or cyclic character of the period at a finer and moving in sequence to the lowest category.
level of temporal resolution. Among other examples, Blinking consists of simultaneously changing the
graphs preceding maps might inform the viewer about interiors of all bars and polygons for the category from
disparities among subregions or about differences the unaltered fill pattern in Figure 5 to white and back
apparent when demographic or socioeconomic data again. (For contrast, the white fill for the lowest
are disaggregated by gender, race, ethnicity, income, category alternates with solid black.) Blinking is rapid:
or place of residence (urban or rural). despite ten simultaneous alternations for each

Early scenes in the historical script illustrate the category, the entire five-category canvass takes no
importance of the graph-then-map strategy in more than 15 seconds.
dynamic cartography. Introductory scenes in the first The first two scenes of the correlation script
act introduce the script's two main variables with an introduce the link between map and graph with a
animated time-series graph for the entire United States simpler, more elementary two-category map.
(Figure 3) in which vertical bars are added rapidly, Immediately following a text screen similar to Figure
year by year, from left to right. A short blink-sequence 2, the system juxtaposes a blank map and graph
then highlights the minimum and maximum values otherwise similar to those in Figure 5. Action begins
and their positions within the 91-year period. The with the upward-sweep-by-rank sequence described
scene then uses a rapid series of cartographic by the screen snapshot in Figure 6. The single
snapshots for individual years to portray the historical category break moves swiftly across the graph from
evolution of the variable's geographic pattern. As left to right at a uniform rate, filling all the bars in its
Figure 4 illustrates, a sufficiently large monitor wake with the variable's signature hue-red for the
allowed the addition of this dynamic map to the same dependent variable or blue for the independent
screen, above the time-series graph. An identical variable. Because each polygon is linked to a bar in
signature hue, which colors both the bars of the graph the graph, the instantaneous view in Figure 6 shows
and the interior variable-height indicator bars of the the states with the 13 lowest values. After this upward
map's frame-rectangle symbols, also promotes sweep by rank fills all bars and polygons with the
integration of the graph and map. variable's signature hue, a downward sweep reverses

the process by moving the break back across the graph
to the left. The next graphic phrase is an upward

2. The Graph-as-a-Key Strategy sweep by value, in which the level of the thermometer-
As its name implies, the graph-as-a-key strategy like indicator to the left of the bar graph rises at a

employs a statistical graph as the map's key, or legend. uniform rate so that periods of relative inaction in both
As with most map keys, the graph usually would be map and graph reflect gaps in the distribution. Again,
subordinate to the map in role, complexity, position, after the sweep reaches the rightmost bar and the top
and size. Figure 5, used in the introductory scenes of of the indicator, the system sweeps backward toward
the correlation script, is a good example of this the minimum data value at the lower left.
relationship. The vertical bar graph below the map A variation of the graph-as-a-key strategy takes
describes the numerical distribution of data values, advantage of the time-series graph in Figures 3 and 4.
arranged in rank-order from left to right. Each state In the historical script's second act, several dynamic
accounts for one polygon on the map and one bar in maps address the direction and amount of change for
the graph. Bars and polygons are linked so that when various time periods within the 91 years of record.
a quintile (equal-fifths) classification is imposed on the The first of these cartographic animations treats only
map, the graph serves as the map key. More the occurrence and direction of change. As Figure 7
informative than the standard key of a choropleth illustrates in monochrome, the map's simple, three-
map, the bar graph illustrates both the internal pattern key describes change with the labels "gain",
homogeneity and size (number of members) of each of "loss", and "same", which the prototype script
the map's five categories. portrays in red, blue, and white, respectively. As the
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Map Title Number of Dailies As a Percentage of the
State Maximum for Any Year

Brief Title PcL of Maximum

Description Number of daily newspaper firms as a
PERCENTAGE OF THE MAXIMUM
number of such firms for any year between
1900 and 1990. Tabulated separately for
the U.S. and the 50 states. District of Figure 2. Text screen names and describes the second
Columbia is treated as part of Maryland.
Each state has a value of 100 percent for principal variable in the historical script. (Graphics for
at least one of the 91 years examined, this paper were produced with MacDraw II to provide

more aesthetic and readable versions of color screens
generated in real time on a Macintosh II by programs
written in Think C.)

Youe
1943

Histogram for the entire United States
U.S. Summary

1908
SNumbrofFirms Figure 3. This dynamic time-series graph precedes a
I..,,,,,,,,,,,,,,,2,: . .--dynamic spatial-temporal map in the introductory scenesI2 11M IIl I I I I of the historical script. Screen snapshot freezes the

1,000 action for 1943 in a rapid dynamic sequence reaching

1900 1915 1930 194M 1960 1975 19O0 from 1900 to 1990.

Number of Daily Newspapers, 1900 through 199 0 /N

1 I y
hso "1948

S~U.S. Summary

' t 1884
Numbw of Firms

3,000 _Figure 4. This dynamic spatial-temporal map shares the
2,:0001000 screen with the dynamic time-series graph that pre-
"0-0i0 cedes it. As the dynamic sequence moves forward in

. 900 191 M 193 1945 196o 1975 199 time, the system regenerates the graph below the map.



428 Maps and Graphs in Graphic Scripts

Female Percentage of Elected Local Officials, 1987

Female Officials
h•igh Figure 5. Bar graph serves as key for a five-category

choropleth map in the correlation script's first act. In the

1 0 WO color version, the bars and polygons for the second

Fifths: highest 1/5 to l owest 1/5 through fifth categories appear in red, the signature hue
for the dependent variable.

Female Labor Force Participation Rate, 1987

Females Working

high Figure 6. Snapshotof an upward sweep of thebar graph
.shows the geographic pattern of the 13 lowest states for

ilw IIIU the]orrelation script's independent variable. On a

Upward Sweep, by rank color monitor, the signature hue blue fills the darkened
bars and polygons.

CHANGE in Number of Newspaper Firms Over a..

S Figure 7. Contiguous group of colored bars moves
across the time-series graph below the map to describe

SME "not only the position and duration of the time period
10-year period portrayed on the map but also the overall, nationwide
ending In 1983 change for the period. In this monochrome version of a

Pet. of Maximum _ screen displayed in color, the darker, upward-slanting
10 1. diagonal patterns represent red and the lighter, down-
0% ward-slanting patterns represent blue. The full-color

3 image uses solid hues (red, blue, white) for the three
1900_. ls 13 1946 ..1960 1975 ""0 J categories.
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time period represented by the map moves forward In the snapshot in Figure 9, a clustering of points
from 1900 to 1990, a color reflecting the corresponding above the regression line indicates that the five states
national pattern for the instantaneous time period of the East North Central division have a somewhat
advances across the graph from left to right. On the greater tendency to elect females to local public office
screen represented in Figure 7, the contiguous group than their proportions of females in the labor force
of bars for 1973 through 1983 would be blue because of would suggest.
the nationwide decrease during this ten-year period. Although graphic phrases canvassing the study
But for an eqnivalent view near the beginning of the area region by region will account for most
century, the colored group of bars would turn red to applications of the map-as-a-key strategy, the map
show, for example, an overall increase from 1902 to could also portray one of a series of trend directions or
1912. In this way the graph serves as a second key to control variables described on a richer, more
describe not only the length and position in time of the interesting accompanying graph.
period portrayed on the map but also a net gain, loss,
or sameness for the nation as a whole.

4. The Complementary-Juxtaposition Strategy
Juxtaposed maps and graphs can be so closely

3. The Map-as-a-Key Strategy integrated that neither dominates the other during an
Sometimes the graph is more central to a graphic act or scene. Both elements might change

sequence than its accompanying map. The historical simultaneously, or the focus of animation might
script employs this map-as-a-key strategy in a canvass- alternate several times throughout the scene. The
by-region sequence that examines the temporal trends second act of the correlation script provides a good
of its two principal variables. In this graphic phrase a PXample of complementary juxtaposition with a screen
separate dynamic sequence addresses each of the nine layout that includes a scatterplot and separate maps
regional divisions recognized by the Bureau of the for each variable. The initial scene uses automated
Census. As Figure 8 illustrates for the South Atlantic brushing to explore first the dependent variable and
Division, the map at the top of the screen highlights then the independent variable. Figure 10 illustrates
the states comprising the region, while the two time- the horizontal brush (Becker and Cleveland 1987) that
series graphs immediately below the map describe moves up and down the scatterplot along the vertical
temporal change in the region, and a time-series graph axis, which represents the dependent variable. The
at the bottom of the screen puts the lower of the two upper map, which also represents the dependent
regional time-series in perspective by presenting the variable, highlights all polygons linked to points
same variable for the nation as a whole. The map is instantaneously within the brush. After two cycles of
constant for each region, but the graphs are animated an upward stroke followed by a downward stroke, the
through the simultaneous addition of vertical bars brush rotates 90 degrees to explore the horizontal axis,
from left to right as the year-date window advances representing the independent variable. During this
rapidly in time, year by year, from 1900 to 1990. The sequence of horizontal strokes, the lower map
bars are color coded with each variable's respective highlights states instantaneously selected by the
signature hue: magenta for the upper graph and cyan vertical scatterplot brush. Throughout this scene
for the middle and bottom graphs. A region-name signature hues promote map-graph integration as the
window to the right of the map supplements the upper map highlights polygons in red when a
pattern of highlighted polygons. screened-reddish brush travels along the vertical axis

Figure 9 demonstrates a similar use of the map as and the lower map highlights polygons in blue when a
a key for the graph. In the final act of the correlation screened-bluish brush explores the horizontal axis.
script, a graphic phrase presents a scatterplot that Other scenes in the correlation script use
includes a data point for each state and a least-squares simultaneous motion to link maps and graphs. Later
regression line summarizing the modest (r = 0.31) in the second act, for instance, a four-hue bivariate
general relationship between the two variables. A cross-classification map (Dunn 1989) shares the screen
canvass-by-region sequence then locates each regional with a four-hue scatterplot partitioned into four
division in geographic space by highlighting its states regions, each linked to one of the map's four
on the map while the scatterplot locates the same categories. Although the scatterplot serves as the
states in bivariate attribute space by temporarily map's key, a graphic sequence that explores the
suppressing the data-point symbols for all other states. stability of the variables' geographic covariance by
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~ The United States by
Census Division

South Atlantic

Mumbar of Finns

Pet of lMobumi
100%

50%

v00 of i ... Figure 8. Map identifies the region represented by the
. middle two dynamic time-series graphs. Signature

33% hues color the histogram bars: solid magenta for the
upper histogram and solid cyan for the two lower

1900::.:91 1930 19485 1960 1975 1990 histograms.

Correlation coefficient is 0.31 F!emale Offical...s..

East North Centra

1 to hi Figure 9. Map points out the states comprising the

Females Worklng region highlighted on the accompanying scatterplot.
Non-highlighted polygons and scatterplot background

Examining the Nine Census Divisions are in black, highlighted polygons and scatterplot dots
are in yellow, and the regression line is in magenta.

FFemale Officials

oo

so
11

S0o 0 00

Femalles Worklng 000• 00 °o•

•i0 00
to Co

S• .: : hi

Females Working
Figure'10. Asa horizontalbrushexploresthescatterplot's

i Brush selects points on scalterplot vertical axis, the upper map highlights polygons linked
____ to points instantaneously within the brush.
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varying the category breaks produces simultaneous avoid run-on sentences and choppy prose, authors of
motion.on both map and scatterplot. And in the graphic scripts must consciously avoid overly busy
correlation script's final act, as another example, a screens and erratically unpredictable graphic
joint, category-by-category canvass of a scatterplot and sequences. Indeed, graphic scripts can benefit from
a map of residuals dynamically links complementary, the same exact stylistic principles that promote lucid
juxtaposed views of bivariate-attribute space and narrative prose (Monmonier 1992a). These principles
geographic space. include the early announcement of the narrative's

Simultaneous motion on juxtaposed maps and point, or purpose, and a smooth, coherent flow from
graphs might easily tax the viewer's ability to process old information to new information (Williams 1990).
visual information. Yet closer examination of the Signature hues, consistent labels, and text windows
examples discussed here reveals that predictable, describing a graphic phrase's goal or purpose also
script-driven action in one element allows the viewer contribute to this coherence. Indeed. the visually rich
to concentrate on less systematic, data-driven action in and complex sensory environment of a multimedia
the other element. In Figure 10, for example, cartographic presentation requires logical and
'automated brushing' of the scatterplot lets the viewer consistent sequences, symbols, and screen layouts,
focus on the map while merely keeping track of the which the viewer can rapidly decode and
direction and relative position of the scatterplot brush. comprehend. Synthesized or digitally recorded speech
In the two examples not illustrated, the map is also the might make these devices even more effective by
focal element. But were a geographic brush to sweep making their roles more apparent to the user. After
across the map from north to -,outh, perhaps in an all, as a narrative approach to information retrieval
application concerned with climatology or skin cancer, and analysis, the graphic script can benefit greatly
the viewer could focus on the scatterplot, instead of from a fuller integration of graphics and natural
the map. The need for a single, coherent focus might language.
explain why the historical script, which is based on an
inherently more complex set of spatial-temporal data,
provides no examples of the complementary- References
juxtaposition strategy. Becker, Richard A., and Cleveland, William S. (1987)

"Brushing Scatterplots," Technometrics, 29: 127-142.

Concluding Remarks
I want to conclude with two additional points. Buja, Andreas, and Daniel Asimov (1986) Grand tour

First, although the foregoing discussion of map-graph methods: an outline. Computer Science and Statistics:

integration might imply that visual objects to be The Interface, ed. D. M. Allen, pp. 63-67. Amsterdam

integrated are either maps or aspatial statistical and New York: Elsevier Science Publishers.

graphs, a graphic script might well include a hybrid Cleveland, William 5. (1979) Robust locally weighted
graphic that assigns one of the graphic plane's two reveland William s.at7eRot loal oegte

dimensions to an attribute and the other to distance. I regression and smoothing scatterplots. Journal of the

have described the use of such 'half maps' elsewhere, American Statistical Association, 74: 829-836.

in the context of static representations of geographic Dunn, Richard (1989) A dynamic approach to two-
data (Monmonier 1988) and spatial-temporal data variable color mapping. The American Statistician, 43:
(Monmonier 1990). In a dynamic context, either 245-252.
sequencing in time or juxtaposition in space can
position a hybrid map-graph between a full map and a Fleishman, Avrom (1992) Narrated Films: Storytelling
full graph. Indeed, any of the four strategies outlined Situations in Cinema History. Baltimore: Johns Hopkins
here can further integrate such a hybrid into a graphic University Press.
script and thereby enhance its role as a visual bridge
between statistical-graphic and cartographic Gersmehl, Philip J. (1990) Choosing tools: Nine
representations. metaphors of four-dimensional cartography.

My second point is that coherent and effective Cartographic Perspectives, no. 5, pp. 3-16.
integration of maps and graphs in a graphic script
requires careful planning and editing. For the same Monmonier, Mark (1988) Geographical representa-
reasons that journalists and nonfiction writers must tions in statistical graphics: a conceptual framework.
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American Statistical Association, Proceedings of the Section Monmonier, Mark (1992a) Authoring graphic scripts:
on Statistical Graphics, 1988, pp. 1-10. Experiences and principles. Cartography and Geographic

Monmonier, Mark (1989) Graphic scripts for the se- fo Systems, 19: forthcoming

quenced visualization of geographic data. Proceedings Monmonier, Mark (1992b) Summary graphics for in-
of GIS/LIS '89, Orlando, Florida, Nov. 26-30, 1989, pp. tegrated visualization in dynamic cartography.
381-389. Cartography and Geographic Information Systems, 19: 23-

36.
Monmonier, Mark (1990) Strategies for the visualiza-
tion of geographic time-series data. Cartographica, 27, Williams, Joseph M. (1990) Style: Toward Clarity and
no. 1: 30-45. Grace. Chicago: University of Chicago Press.



A. Gelman 433

Iterative and Non-iterative Simulation Algorithms

Andrew Gelxnan*
Department of Statistics
University of California

Berkeley, CA 94720

Abstract lems faced by users of all of these methods. Second,
the general formulation suggests potenltially useful new

The Gibbs sampler, Metropolis' algorithm, and simi- methods, such as the iterative importance resampling of
lar iterative simulation methods are related to rejection Section 3.3 and the Metropolis-approximate Gibbs sam-
sampling and importance sampling, two methods which pler of Section 4.4. Third, noniterative simulation can
have been traditionally thought of as non-iterative. We be important for obtaining starting distributions for it-
explore connections between importance sampling, iter- erative algorithms, as discussed in Gelman and Rubin
ative simulation, and importance-weighted resampling (1993).
(SIR), and present new algorithms that combine aspects
of importance sampling, Metropolis' algorithm, and the
Gibbs sampler. 2. Normal-based Inference

1. Introduction 2.1. Modes, Standard Errors, and the Normal
Approximation

Currently, one of the most active topics in statistical A point estimate and its associated standard error (or,
computation is inference from iterative simulation, espe- more generally, its variance-covariance matrix), are mo-
cially the Metropolis algorithm and the Gibbs sampler tivated, explicitly or implicitly, by the normal approxi-
(Metropolis and Ulam, 1949; Metropolis et al., 1953; mation. Typically, the mean of the normal approxima-
Hastings, 1970; Geman and Geman, 1984; Gelfand et tion is set equal to the mode (i.e., the maximum likeli-
al., 1990). (The Gibbs sampler is in fact a special case hood estimate or the posterior mode), and the inverse
of the generalized Metropolis algorithm; see Section 4.3 variance matrix is approximated by the negative of the
below.) The essential idea of iterative simulation is to second derivative matrix of the log posterior distribution
draw values of a random variable x from a sequence of at the mode. Computing these can be difficult in highly
distributions that converge, as iterations continue, to multivariate problems. Just finding the mode can re-
the desired target distribution of x. For inference about quire iteration, with Newton's method and EM (Demp-
z, iterative simulation is typically less efficient than di- ster, Laird, and Rubin, 1977) being popular choices for
rect simulation, which is simply drawing from the tar- common statistical models. Estimates of the "variance
get distribution, but iterative simulation is applicable matrix" can be computed by analytic differentiation, nu-
in a much wider range of cases, as current statistical merical differention, or combined methods such as SEM
literature makes abundantly clear (see, e.g., Smith and (Meng and Rubin, 1991).
Roberts, 1993, Besag and Green, 1993, and Gilks et al.,
1993). 2.2. Approximation Using a Mixture of Nor-

This paper presents iterative simulation methods as mals
an outgrowth of the non-iterative methods of rejection
and importance sampling, both of which use simulation When the distribution is multimodal, it is necessary to
to correct an approximation of the target distribution.' run an iterative mode-finder several times, starting from
The connection between iterative and non-iterative sim- different points, in an attempt to find all the modes.
ulation is of interest for three reasons. First, a unified This strategy is also sensible and commonly used if the
treatment is appealing, and highlights the similar prob- distribution is complicated enough that it may b- mul-

timodal. Once all the modes are found (possibly a diffi-
"Thanks to Donald B. Rubin for helpful comments and the cult task) and the second derivative matrix calculated at

National Science Foundation for financial support. each mode, the target distribution can be approximated
I Another related and important topic, which we will not dis-

cuss here, is analytic approximations to integrals; see Tierney and by a mixture of k multivariate normals, each with its
Kadane (1986) and Morris (1988). own nnd- pk ;%nd viriance matrix P,, that is, the tar-
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get density P(x) is approximated by The above step- can be repeated to obtain additional
K independent samples from P. Rejection sampling cannot

i(X) =/E 1k ') be used if no finite value of M exists, which will happen
k=1 (2,)d/ 2 Ilkl/2 exp" ( - Ak)tEk (X - Lk when P0 has lighter tails than P, as when the support

of P 0 is smaller than the support of P. (Hence the use
where K is the number of modes, d is the dimension of of a multivariate t, instead of a normal, for a starting
x, and wk is the mass of the k-th component of the mul- ditsribution.) In practice, when Po is not a good ap-
tivariate normal mixture. The masses Wk can be calcu- proximation to P, the required M will be so large that
lated by equating the approximate density P to the exact almost all samples obtained in step 1 will be rejected in
density P at the k modes, so that P(1 e) = P(pk), for step 2. The virtue of rejection sampling as an iterative
k = 1,... , K. Assuming the modes are well-separated, simulation method is that it is self-monitoring-if the
this implies that for each k, the mass w,: is roughly pro- simulation is not working, you will know it, because no
portional to IJd "/2P(lk). simulated draws will be accepted.

2.3. Student-t Approximation 3.2. Approximate Rejection Sampling Using

In general, one can replace the normal approximation Importance Ratios

by a multivariate t, with the same center and scale, but When no bound on w(x) is known, rejection sam-
wider tails. A mixture of Student-t densities with 7i de- pling is impossible. However, one can still draw sam-
grees of freedom has density ples X(1),... , (N) from Po(x), and calculate their im-

portance ratios, w(x(1)), for I = 1,... , N, known only up
fWX( - I-k) (x -/•)) -C(d+)/2 to a proportionality constant. The method of importance
"T) 1 + Xkk12  + -- 1 weighting seeks to adjust the sampling by using w(x(O)

1=1 (2.1) to weight each random sample, x(l). Instead of discard-

and can be simulated by first drawing from the normal ing samples, those values x(0 with low importance ratios

mixture of Section 2.2 and then dividing the sampled are just downweighted.

vector by a Xrandom deviate, divided by 1. Because of For any finite N, importance weighting gives only ap-
its wide tails (and that it can be easily simulated and its proximate results; it can thus be thought of as an itera-density function is easy to calculate), the multivariate t tive simulation method, improving as N increases. Forwill turn out to be useful as a starting distribution for importance weighting to be effective, the starting distri-the exact simulation methods described below. bution P0 should cover the target distribution P, in thesense that the importance ratios should not get too high.
3. Using Analytic Approximations and Even if importance ratios are unbounded, the method

UImporng Analyttc A oxi tations Ean can still be useful-in contrast to rejection sampling-
Importance Weights to Obtain Exact but the large values should be rare with respect to the

Simulations target distribution.

3.1. Rejection Sampling Importance weights can be used to get a sequence of
draws that approximately follow the target distribution

A simple way to draw samples from a target distribu- by using the method of importance resampling (called
tion P, using an approximate starting distribution P0, is SIR for "sampling-importance resampling" in Rubin,
rejection sampling, which requires the ability to calculate 1987, 1988). If N draws from the approximate starting
P(x)/Po(x), up to a proportionality constant, for all x. distribution P0 have been created, a sample of n < N
We will label w(x) ox P(x)/Po(x), the importance ratio draws from a better approximation can be simulated as
of x. In addition, rejection sampling requires a known follows.
constant M that is no less than sup w(x). The algorithm
proceeds in two steps: 1. Sample a value x from the set {x(m'....,(N)

where the probability of sampling each x(l is pro-
1. Sample x at random from Po(x). portional to the weight, w(x(O).

2. With probability -)-, reject x and return to step 2. Sample a second value using the same procedure,
1; otherwise, keep x. but excluding the already-sampled value from the

set.
An accepted x has the correct distribution P(x); that

is, the conditional distribution of drawn x, given it is 3. Repeatedly sample without replacement n - 2 more
accepted, is P(x). times.
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3.3. Iterative Importance Resampling 4. A Review of Markov Chain Methods
for Exact Simulation

For any fixed N, importance resampling yields draws 4.1. Why is Markov Chain Simulation Needed?
from an approximation to the target distribution. We Markov chain methods are especially desirable when
can allow the approximation to improve in a smooth way no starting distribution is available that is accurate
as n --o oo by simply increasing N as n increases, that is, enough to produce useful importance weights. If the
by expanding the pool of candidates (x('),..., x((N)) as starting distribution is not close, the importance weights
more values are subsampled (without replacement) with will be so variable that, for reasonable values of n and N,
probabilities proportional to their importance ratios; for the set of draws from importance resampling will be a
example, N could increase as the square of n. poor approximation to tl"e target distribution. In order

The simulation procedure thus becomes iterative: at to correct the defects of the drawing distribution, PO, we

each time t = 1, 2,..., a single draw xt is taken from the must rely on a very large N.

set (x(i),..., x(N)), with probabilities of sampling pro- In contrast, with any starting distribution that even

portional to importance weights. The set (x('),... ,x(N)) loosely covers the target distribution, the steps of a

is created by supplementing the cet of previously unsarn- Markov chain simulation directly improve the approxi-

pled draws at time t - 1 with new independent draws mate distributions from which samples are drawn. Thus,

from the approximate distribution PO. (We use the no- the distributions, used for taking each draw, themselves

tation t for samples taken in succession, as opposed to converge to P as t increases. In a wide range of prac-

n, the number of values in the final sample.) tical cases, it turns out that the iterations of a Markov
chain simulation allow accurate inference from starting

If the importance ratios Po(x)/P(x) are bounded, the distributions that are much too vague for useful results
distribution of the samples xt converge to the target dis- from rejection or importance resampling. See Tierney
tribution as t --, oo.2 The importance ratios will be (1991) for a unifying overview of many Markov simu

bounded if the starting distribution P0 has support at lation methods and Gelfand and Smith (1990) for an
all the modes of interest in the target distribution P and example in which importance resampling compares un-

has at least as heavy tails. We then say that the starting favorably to the Gibbs sampler.
distribution is overdispersed, which is desirable. 4.2. The Method of Metropolis and its Gener-

The sequence x 1 ,x 2 .... can be thought of as (depen- alizations

dent) draws from successively improving approximate Given a target distribution P(x), the generalized
distributions P1 , P2 ,... that form a transition from the Metropolis algorithm (Hastings, 1970) draws a sequence
starting distribution P0 toward the target distribution P. of random points (x(i), x(2),...) whose distributions con-
This is a conceptual imp ovement upon the basic attack verge to the target distribution. The sequence (x(t)) may
of importance resampling, which provided no intermedi- be considered a random walk whose stationary distribu-
ate steps between the starting and target distributions. tion is P(x). The algorithm proceeds as follows:
An obvious limitation, however, is that for all t, the sup-
plemental draws are from P0 , which may be a much less 1. Draw a starting point x(5), for which P(x(0 )) > 0,
accurate approximation to P than that afforded by Pt-1. from a starting distribution Po(x).
Section 4 reviews Markov chain methods, which modify
the drawing distribution as t increases. Related ideas 2. For t = 1,2,...:

connecting importance weighting to iterative simulation (a) At iteration t, take as input the point X(t-i).
appear in Tanner and Wong (1987), Gelfand and Smith (b) Sample a candidate point i from a jumping dis-
(1990), and Kong, Liu, and Wong (1991). tribution at time t, J f(aipx(-)).

(c) Calculate the ratio of importance ratios,
r PP) Jt(X('Ii)P

2With unbounded importance ratios, the simulations may still P(x(t,-)) Jr(flX(t-1))"
converge to the target distribution. In general, the distributions
of the resampled draws depends on the rate of increase of the pop- (r is always defined, because a jump from x(-')
ulation sample size N. Determining the necessary and sufficient
conditions for convergence of importance resampling is a difficult to i can only occur if both P(x(,- 1 )) and
problem not addressed in this paper. Ji(;Ix(tl)) are nonzero.)
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(d) Set 4.3. Gibbs Sampling

z(t) = {with probability min(r, 1) Geman and Geman (1984) introduced "Gibbs sam-
x(t-i) otherwise. pling," a procedure for simulating a multivariate proba-

bility distribution P(X) = P(x,... ,zd), by performing

This method requires the calculation of the relative im- a random walk on the vector x = (Xz,... , xe), alter-

portance ratios P(x)/Jt(xlx') for all x, x', and an ability ing one, possibly vector, component xi at a time. At

to draw x from the jumping distribution Jt(xlx') for all iteration t, an ordering of the d components of x is cho-

x' and t. sen and, in turn, each x-t) is sampled from the condi-

The proof that the iteration converges to the tar- tional distribution given that all the other components
get distribution has two steps: first, it is shown that remained fixed:
the simulated sequence (P(t)) is a Markov chain with a P(XiJX?)
unique stationary distribution, and second, it is shown where x-i = (xi,... IXi-1, i+,..., d). Each of these
that the stationary distribution equals the target distri- d steps can be interpreted as one iteration of the gener-
bution. The first step of the proof holds if the Markov alized Metropolis algorithm, with the following jumping
chain is irreducible, aperiodic, and not transient (see, distribution, which only jumps along the i-th compo-
e.g., Feller, 1968). Except for trivial exceptions, the lat- nent, and does so with the conditional probability of x,
ter two conditions hold for a random walk on any proper given x-i = x obtained from the target distribution:
distribution, and irreducibility holds as long as the ran-
dom walk has a positive probability of eventually reach- i I if i-i =ing any state from any other state; that is, the jumping Jit[Gibbs]( 0 othe Pise.

distributions Jt must be able to eventually jump to all
states with positive probability. Under this jumping distribution, the ratio of importance

To see that the target distribution is the stationary ratios is
distribution of the Markov chain generated by the gen-
eralized Metropolis algorithm, consider starting the al- r P(p) Jit(x(t- 1)li)
gorithm at time t - 1 with a draw x(t-') from the tar- p(x(t-i)) Jit(;ilX(t-1))
get distribution P(x). Now consider any two points y Pp) P(XtI-1)i )(t-1)

and z with positive probability under P, labeled so that = P)
P(z)Jt(y1z) Ž_ P(y)Jt(zly). The unconditional probabil- P(x(t-1)) P(pilx tT 1)

ity of a transition from y to z is 1,

Pr(x(t-1)=y, x(t) =z) = P(y)Jt(zly), and so jumps always occur, as prescribed by the Gibbs
sampler. Obviously, as described, the Gibbs sampler re-

and the unconditional probability of a transition from z quires the ability to draw from the conditional distribu-
to Y is tions derived from the target distribution.

Usually, one iteration of the Gibbs sampler is defined
Pr(x(t-1)=z )=) = P(y) Jt(zly) as above, to include all d Metropolis steps corresnonding

P) P(z)Jt(yz)P(Z) Jt(yz) to the d components of x, thereby updating all of x at
= P(Y)Jt(zIY), each iteration. It is possible, however, to define Gibbs

sampling without the restriction that each component
which is the same as the probability of a transition from be updated in each iteration.

y to z. Since their joint distribution is exchangeable, x(P)

and P-1) have the same marginal distributions, and so 4.4. Gibbs Sampling with Approximations
P is the stationary distribution of the Markov chain. For some problems, sampling from some, or all, of the

The method of Metropolis et al. (1953) is the same
as that described above, with the restrictions that the ondit distribu tion s impossibleindone must resort to approximations g(xzilx-). Trying
jumping distribution be symmetric and not depend on
t: Jt(ylz) = Jt(zly) = Jo(zly) for any y, z. 3  which the jumping distribution J(ylz) is replaced by

3 Barker (1965) suggests a method identical to Metropolis', JlBarkerl(ylz) = J(ylz) P(Y) for all y t z.
except that the switching probability at each step is changed P(y) + P(z)
from min(r,1) to 1 P()+p( ))Alternatively, Barker's See also Hastings (1970) for further discussion of Barker's,
method may be considered a generalized Metropolis algorithm in Metropolis', and related algorithms.



A. Gelman 437

to perform the Gibbs sampler directly, using the condi- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977),
tional distributions g instead of P, A-ill not work. The "Maximum likelihood from incomplete data via the
generalized Metropolis algorithm, however, is suited for EM algorithm (with discussion)", J. Roy. Stat. Soc.
the task. As in the Gibbs sampler, we must choose an B, 39, 1-38.
ordering for altering the d elements of x; the jumping
function at the i-th Metropolis step at iteration t is then Feller, W. (1968), An Introduction to Probability The-

SPf- -1) ory and Its Applications. New York: Wiley.

Ji tI)- 0o otherwise, Gelfand, A. E., and Smith, A. F. M. (1990), "Sampling-

and the ratio of importance ratios is based approaches to calculating marginal densities",J. Amer. Stat. Assoc., 85, 398-409.

r p(:0)i=(P-4) Gelfand, A. E., Hills, S. E., Racine-Poon, A., and
P(X(t-')) Jit(:iJX(t ')) Smith, A. F. M. (1990), "Illustration of Bayesian

P(;iiX'1)- g(x-1) x~I -i)) inference in normal da~a models using Gibbs sam-

p(zt-l)Ix(•i)) g(iz~x¶-i)) pling", J. Amer. Stat. Assoc., 85, 398-409.

which is identically equal to 1 only if g(xlz.-) Gelman, A., and Rubin, D. B. (1992), "A single series
P(xrx-i). If g is only an approximation, the Metropolis from the Gibbs sampler provides a false sense of
step will have a positive probability of not jumping. security", in Bayesian Statistics 4, ed. J. Bernardo,

Oxford University Press.
5. Discussion

Gelman. A., and Rubin, D. B. (1993), "Inference from
A large and expanding family of iterative and non- iterative simulation using multiple sequences", Stat.

iterative simulation algorithms exist for approximating Sci., to appear.
a target distribution using samples from a starting distri-
bution. Despite the non-iterative appearance of rejection Geman, S., and Geman, D. (1984), "Stochastic re-
and importance sampling, all the available methods (ex- laxation, Gibbs distributions, and the Bayesian
cept for direct simulation) yield exact simulations of the restoration of images", IEEE Trans. on Pattern
target distribution only in the limit that the number of Analysis and Machine Intelligence, 6, 721-741.
samples n -- oo. (Rejection sampling, however, has the
advantage that once samples have been obtained, they Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best,
are known to follow the target distribution.) In every ap- N. G., McNeil, A. J., Sharpies, L. D., and Kirby, A.
proach, the starting distribution is key; an overdispersed J. (1993), "Modelling complexity: applications of
start has long been recognized as necessary for rejection Gibbs sampling in medicine", J. Roy. Stat. Soc. B,
and importance sampling, and more recently been advo- 55, to appear.
cated for Markov chain simulation (Gelman and Rubin,
1992, 1993). Hastings, W. K. (1970), "Monte-Carlo sampling meth-

Monitoring convergence of all these methods (except ods using Markov chains and their applications",
for rejection sampling) can be difficult for any of these al- Biometrika, 57, 97-109.
gorithms in practice. Gelman and Rubin (1993) present I
one approach based on performing multiple independent 'ong, A., Liu, 3., and Wong, W. H. (1991), "Sequentialsimulation runs which, while designed for iterative sim- imputations and Bayesian missing data problems",simuatin rus wich whie dsignd fr ieratve im-Technical Report #321, Department of Statistics,
ulation methods such as the Gibbs sampler, might also Univerof Chicago.
be useful for inference from importance sampling. University of Chicago.
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Software for the Gibbs sampler

W. R. Gilks, A. Thomas and D. J. Spiegelhalter
Medical Research Council Biostatistics Unit, Cambridge, UK

Abstract dealing simultaneously with a large num-
ber of intricately related, unknown param-

Gibbs sampling has enormous potential eters and missing data, into a much sim-
for analysing complex datasets. However pler problem of dealing with one unknown
routine use of Gibbs sampling has been quantity at a time, sampling each from
hampered by the lack of general purpose its full conditional distribution (see Sec-
software for its implementation. Until now tion 5). Methods of sampling from com-
all applications have involved writing one- plicated full conditionals include adaptive
off computer code in low or intermediate- rejection sampling (Gilks and Wild (1992);
level languages such as Cor FORTRAN. Gilks (1992); Gilks et al (1992a)) and the

We describe some general purpose s3ft- ratio-of-uniforms method (Wakefield et a]
ware we are currently developing for (1992)). We pass over a description of
implementing Gibbs sampling: BUGS the basic methodology of Gibbs sampling,
(Bayesian inference using Gibbs sam- this having been presented already at this
pling). The BUGS system comprises three meeting (Gelman (1992)).
components. First, a natural language
for specifying complex models; second, an
'expert system' for deciding appropriate ity of Gibbs sampling, its routine use

methods for obtaining samples required by has been hampered by a lack of general

the Gibbs sampler; and third, a sampling purpose software for its implementation.

module containing numerical routines to Until now all applications have involved

perform the sampling. S objects are used writing one-off computer code in low or

for data input and output. BUGS is writ- intermediate-level languages such as C or

ten in Modula-2, and runs under both DOS FORTRAN. In our own experience, writ-

and UNIX. ing and debugging a Gibbs sampler for a
moderately complex application can take
anything from a few days to several weeks.

1 Introduction Thereafter, modifying the program (for
example to elaborate the model or to ap-

Gibbs sampling (Geman and Geman ply it to different data) might take several
(1984), Hastings (1970)) is a technique for hours. This compares dismally with model
simulating samples from the joint poste- fitting in GLIM or S, for which model
rior distribution of the unknown quantities specification may take just a few minutes,
in a statistical model. It has been shown to and modifications may take just a few sec-
have enormous potential for the statistical onds. The fact that increasing numbers
analysis of complex data sets (see, for ex- of statisticians are expending considerable
ample, Gelfand and Smith (1990), Gelfand effort to use Gibbs sampling clearly indi-
et al (1990), Smith and Roberts (1902), cates that currently available software is
Gilks et al (1992b)). Gibbs sampling suc- inadequate in many applications. It is our
ceeds because it reduces the problem of aim to make Gibbs sampling as easy to
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implement as generalised linear models in gebraic form, as in other statistical mod-
GLIM or S. To this end we are develop- elling software. The only common fea-
ing BUGS (Bayesian inference using Gibbs ture of the applications listed above is that
sampling). In this paper we describe our models are specified through a series of
approach. model components or submodels. To focus

The main requiremeiltý of BUGS are the following discussion, we now briefly
that it should present one such application.

"* accomodate a very large class of mod- An example
els;

"Gilks and Richardson (1992) describe an* enable models to be specified con- application of Gibbs sampling in occupa-
cisely; tional epidemiology. In this application

"* construct and sample from full condi- the aim is to estimate disease risks asso-
tional distributions automatically. ciated with chronic exposure to industrial

agents (chemicals, dust or fibres). A dis-
We discuss these requirements in the fol- ease study has been conducted in which
lowing Sections. each individual's status for a particular

disease has been recorded, but his expo-
sure status on each of several agents is

2 Class of models unknown. In another study (the expo-

The class of models we would like to sure study) on different individuals, expo-

be able to handle in BUGS is exten- sure statuses have been recorded but dis-

sive. This class should include most if ease statuses are unknown for each indi-
vidual. Thus we have the usual ingredi-

not all of the models that have been ap-

plied in the Gibbs sampling literature, ents for a logistic regression model: inde-

including cluster analysis models (Gilks pendent variables (exposure statuses) and

l(1989)); survival analysis models a dependent variable (disease status); butet al unusually weknowvbothnofthese foreno

(Clayton (1991)); image analysis models unusually we know both of these for no-
(Besag et al (1991)); econometric mod- one. The vital link between the two setsels (Besag bet and (1 eomge ti mod91));n- of individuals is occupation: we know the
els (Blattberg and George (1991)); gener-

alised linear random-effects models (Zeger job-description of every individual.
For the disease-study individuals Gilksand2)) K mplex (199) eltas andels (Smith and Richardson (1992) propose the follow-

(1992)); complex genetic models (Shee-

han and Thomas (1992), Thompson and ing model:

Guo (1992), Thomas (1992)); disease map- Di -Bernoulli(O0) (1)
ping models (Bernardinelli and Monto-
moli (1992), Clayton and Bernardinelli where Di is the disease status (0 = not dis-
(1992)); hidden Markov models (Kirby eased; 1 = diseased) for the ith individual,
(1992)); change-point models (Carlin et a] 0i is his probability of disease and
(1992)); non-linear pharmacokinetic mod-
els (Wakefield et al (1991), Berzuini et 0i = logit-'(l00 + EZ/3kEik), (2)
a) (1992)); and constrained data models k

(Gelfand et a] (1992)). Moreover, Gilks et
a] (1992b) point out that many applica- where logit-'(x) denotes the inverse logit
tions comprise several linked submodels. function 1/(1 + exp(-x)) and Eik is the

Clearly we cannot hope to define the (unobserved) exposure status (0 = unex-
class of models of interest in a tight al- posed; 1 = expused) of individual i to
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agent k. Equations (1) and (2) together distribution from (1)-(7) is:
define a classical logistic regression model.

For the exposure-study individuals, k' p(Dil6,) 1-J p(.klhsk, t.)
Gilks and Richardson (1992) propose:

x I7 p(Eikllrji),k) 1" p(mjkl 7rik, ni)
Mnk - Binomial(Vrk, nj) (3) ik ik

where nj is the number of exposure-study Ik
individuals in job type j; mik is the num-
ber of these who were exposed to agent k; where deterministic equations (2) and (6)

and 7rik is an exposure probability. The are assumed to hold.

set {mik, nj} comprise a job-exposure ma- That the directed Markov assumption

trix. is natural for model (1)-(7) is most easily

The link between the two studies is then seen from a graph of the model (Figure 1),

provided by in which round nodes denote unobserved
stochastic variables (model parameters or

Eik ", Bernoulli(rj(i),k) (4) missing exposures); square nodes with a
single border denote observed stochastic

where j(i) denotes the job type of disease- variables (i.e. data); square nodes with
study individual i. a double border denote fixed quantities

The Bayesian model specification is in prior distributions; triangles denote de-
completed with priors terministic variables; and edges (arrows)

denote dependencies specified in the sub-
Ok - Normal(Ik, af), (5) models. Figure 1 is a directed acyclic graph

and (Whittaker (1990)), since all the edges are
directed and it is not possible, just by fol-

1rik = logit-l7 1tk (6) lowing the directions of the edges, to re-

with turn to a node after leaving it. Thus there

Ojk -" Normal(yZ, ak 2) (7) exists a partial ordering of the nodes, and
the directed Markov assumption is seen

Directed acyclic graphical models simply to be a natural Markov-type as-
sumption on the partial ordering.

The model set out in submodels (1)-(7) in- We will refer to the node on the left of
completely specifies the joint distribution a submodel (e.g. Di in (1)) as a child of
of the model parameters and data. These the nodes on the right of that subinodel,
submodels merely tie down a few condi- and the nodes on the right of the sub-
tional marginal distributions. However, in model as the parents of the node on the
an intuitive sense, model (1)-(7) is already left. A stochastic parent of a given node
complete: if further structure had been re- is a stochastic node which is an ancestor
quired it could have been specified explic- (in an obvious extension of terminology) of

itly. Thus to complete the joint distribu- the given node, where only determinstic
tion of the parameters and data, one seeks nodes intervene between the two. Like-
some kind of assumption of 'independence' wise, a stochastic child of a given node is
between the submodels. This is provided a stochastic node which is a descendant
by the directed Markov assumption (Lau- of the given node where only deterninstic
ritzen et al (1990)), which simply states nodes intervene between the two. For ex-
that the joint distribution of all the model ample, from Figure 1, Oi is the only parent
parameters and data is given by the prod- of Di, and Di is the child of 0i; Eik is one
uct of all the submodels. Thus the joint of the stochastic parents of Di, and Di is
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Figure 1. Graphical representation of model (1) - (7).
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the stochastic child of Eik. InProd(beta[1 : nA], E[i,]);. (10)
We will refer to a set of submodels (such Each of these model statements declares

as (1)-(7)) corresponding to a directed the node on the left of the expression. The
acyclic graph, together with the directed in (9) declares D[i) to be a stochas-
Markov assumption, as a directed acyclic tic node, and the -- in (10) declares
graphical (DAG) model. DAG models pro- theta[%] to be a deterministic node. In
vide a very rich class of models which (10), InProd denotes an inner product;
are particularly amenable to estimation by beta[1 : nA] denotes 31,•2,. . . , 3nA; and
Gibbs sampling (see Section 5). Within E[i,] denotes E 1,E 2,...,EnA (where nA
this class we would like the family of al- isisthe number of agents in this example).
gebraic and stochastic forms for the indi- The full BUGS specification of model (1)-
vidual submodels to be very general, acco- (7) is given in Figure 2.
modating non-linearity and all commonly Explicit for loops and implicit loops as
used statistical distributions. Thus we in (10) enable models to be specified suc-
have developed a user interface and cor- cinctly. Also, to aid succinctness, some of
responding facilitating algorithms, as we the structural details of the model can be
describe below, suppressed in the model specification, in-

stead being read into BUGS as data. For
3 Model specification example, the occupation of each individ-

ual in the disease study appears in Figure
It is tempting to try to devise a graphical 2 only in the form J[i]; and J[i] must be
user interface to BUGS, allowing models read in as data. (BUGS deduces this since
to be specified through drawing graphs on Jlf) does not appear on the left of any dec-
the screen. However, a graph gives only laration.)
structural information: the precise form of In principle, the Gibbs sampler easily
each submodel would still need to be speci- handles missing data by treating them
fled. Moreover, a graph may not even give as unknown model parameters. Since
full structural information. For example there could be many haphazardly scat-
in Figure 1 the structure of the mapping tered missing data in a given application,
of jobs onto individuals j(i) is suppressed. it would be rather tedious to have to iden-
To express the full model structure in the tify them through individual model state-
form of a graph on the screen would en- ments. To avoid this, BUGS adopts the
tail drawing one node for each of possibly convention that any stochastic variable de-
several thousand variables in the model. clared on the left hand side of a model
Thus a graph, whilst of conceptual value, statement, but which is not found in the
is of limited practical value for model spec- data file, is to be treated as a free model
ification. parameter in the Gibbs sampling and up-

Instead we have developed a semantic dated at each iteration. Any variables
interface to BUGS which mimics as far as found in the data file are assumed known,
possible the natural model specification, and will not be updated.
as set out for example in equations (1)- It is important to understand that
(7). Thus the stochastic relationship (1) model specification statements in BUGS
is specified by: are declarative; that is, they are not in-

D[i] - Bernoulli(theta[i]); (9) structions to perform calculations per se;
rather, they are declarations: specifying

and the deterministic relationship (2) is the type of each node and its relationships
specified by: with other nodes. Indeed, in the Gibbs

Logit(theta[i]) -- betafnAil + sampling, D[iJ is never actually sampled
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Figure 2. Model specification in BUGS.

model Jobs;
data in "bugs\dat\Jobs.dat";
inits in "bugs\in\Jobs.in";

const
nI = 1000, # number of individs
nA = 4, # number of agents
nJ = 2, # number of jobs
nAl = nA + 1;

var
D[nIJ ,J[nI] ,theta[nI] ,E[nI,nA] ,pi[nJ,nA],
phi [nJ, nA] ,mu -star[nJ,nA] ,tau-star[nJ,nA),
m[nj,,nAJ ,n[nAJ ,betallnAl] ,mu[nAl] ,taujjnAl];

for (i in 1:nI)

# disease model
D[i] - Bernoulli (theta [i]);
Logit(theta[i]) <- beta[nAl] + InProd(beta[l:nA],E[i,]);

for (k in 1:nA)

# exposure model
E[i,k] - Bernoulli (pi[j[i],k]);

fo} ji :j

for (k in 1:nJ)

# measurement model
m~j,k] - Binomial(pi~j,k],n[j]);
Logit(pi~j,k]) <- phi[j,k];
phi(j,k] - Normal(mu-star~j,k],tau-star[j,k]);

for (k in 1:nAl)

betark] - Norrnal(mu[k],tau[k]);
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from the Bernoulli distribution specified found in the inits file is assigned an initial
in (9), since D[i] is fixed. Thus the or- value by forwards sampling, provided the
der of model specification statements in user did not assign it an improper prior.
BUGS is, to a considerable extent, arbi- Currently, all data and initial values read
trary. For example, the for loops in Figure into BUGS must be stored in the input
2 could have been specified in a different files in the form of S objects.
order, perhaps starting with the measure- A number of consistency checks are car-
ment model loop. Equally, the order of ried out by the parser, for example to en-
statements within the inner loops in Fig- sure that all nodes not appearing on the
ure 2 is arbitrary. left hand side of a model statement are

assigned values in the data file; and to
check that each stochastic and determin-

4 Structure of B UGS istic function has the right number of ar-

BUGS comprises three distinct modules: guments, of the right type.

the parser, the code generator and the
Gibbs sampler. The code generator

The code generator fills out the node tree
The parser constructed by the parser, to store at each

node pointers to its stochastic children
The parser is responsible for reading the (see Section 2). For example, in the ex-
user's code in the specification file and as- ample in Figure 2, pointers to nodes E[i, k]
similating node declarations and depen- for all individuals i in job j are stored at
dencies. For example, in Figure 2, node node phi[j, k].
E[i, k] is set up as a stochastic node hay- Having filled out the node tree, the code
ing a Bernoulli distribution, and a pointer generator uses a small expert system to
to node pi[J[i], k] is stored at node E[i, k]. decide, for each node, how best to sample
Thus, the parser builds up the partial or- from its full conditional distribution in the
dering (the node tree) representing the full Gibbs sampling module (see Section 5).
structure of the graphical model. For de- The code generator generates a low-level
terministic nodes, such as that defining language which is output to a system file.
theta[i] in Figure 2, the functional form The contents of this file are intelligible to
of the deterministic relationship is stored the user, although it should not be neces-
in the form of a stack assocated with the sary for the user to concern himself with
node, containing instructions in reverse this. The low-level language describes all
Polish notation. For example, the expres- the attributes of each node, including ref-
sion: b * x + c would be stored as a stack: erences to parents and stochastic children,
b, x, *, c, +; which will be interpreted as: as well as an indicator of the method to
"push b; push x; pop b and x; push b*x; be used for sampling from its full condi-
push c; pop b*x and c; push b*x+c". tional distribution. In this low-level lan-

The parser reads data from the data file guage, subscripts are not used: each node
specified by the user, and stores these data has equal status with all other nodes, re-
at the relevant nodes. The parser also dis- gardless of whether it derived originally
cerns which nodes are to be updated in from a subscripted variable.
Gibbs sampling and which are to remain
fixed, as described in Section 3. Initial
values for model parameters (and missing
data) are obtained from the user-defined The Gibbs sampler operates on the low-
inits file. Any free model parameter not level code produced by the code genera-
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tor. In principle, the Gibbs sampler could is no obvious rule here, analogous to the
be run on a machine other than that which directed Markov assumption, for obtain-
produced the low-level code, since the low- ing joint distributions from user-specified
level code can be read from file. The submodels. Moreover, it is easy to con-
Gibbs sampling module interprets the low- struct sets of submodels for which no con-
level code (in particular the reverse Pol- sistent joint distribution exists. The rule
ish of deterministic nodes); constructs ap- used by BUGSin constructing the full con-
propriate quantities relating to full condi- ditional distribution for a given node in
tional distributions (see Section 5); sam- a non-DAG model is to form the product
ples from full conditionals; controls the of the submodel declaring the given node
order in which nodes are resampled; and with the submodels declaring the stochas-
prints results to a file in the form of S ob- tic children of the given node, excluding
jects. any submodels declaring stochastic chil-

dren which are also stochastic parents of
5 Full conditional distri- the given node. This rule may not always

make sense, but it allows BUGS to acco-
butions modate the above non-DAG models and

would allow, for example, the full condi-
Construction of full conditionals tional for a given node to be supplied ex-

The full conditional distribution of a plicitly by the user.
stochastic node is its conditional distri- Note that in (11), the full conditional for
bution conditioning on the current values 61 involves only a subset of the other nodes
of all other stochastic nodes in the graph. in the graph. This is generally true for
For a DAG model, the full conditional dis- DAG models, and is important for com-
tribution for a given stochastic node is pro- putational efficiency. The ingredients re-
portional to the product of the submodel quired for constructing a full conditional
declaring the given node with the submod- for a given node are all identified explicitly
els declaring the stochastic children of the through the list of pointers at that node
given node (see Section 2). For example, in the low-level language produced by the
the full conditional for 31 in model (1)-(7) code generator.

is proportional to:

p(13 lp,, al ) p(Di[Oi) (11) Sampling from full conditionals

The code generator contains a small ex-

where deterministic equation (2) holds. pert system for deciding the best method

The proportionality constant, required to of sampling from full conditionals. Cur-
make the full conditional integrate to rently, the first choice is to identify con-
unity, will be a function of nodes other jugacy (where the full conditional reduces
than 0i1. However, methods of sampling analytically to a well-known distribution)
from full conditionals used in BUGS (see and sample accordingly. For example,
below) do not require explicit evaluation if y -,• N(p, a2 ) and p - N(v, r2 ),
of integration constants. then the full conditional for p will be

" 2 Y7 2 "1"
BUGS also has a mechanism for dealing N , T+- ). The expert system

with models which are not DAG models, recognises a small number of canonical
for example image analysis models (Besag cases of conjugacy, and also recognises
et a) (1991)) and disease mapping mod- conjugacy in situations which reduce to a
els (Bernardinell and Montomoli (1992), canonical case through linear transforms.
Clayton and Bernardinelli (1992)). There For example if it is replaced with a lin-
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ear form a + bp, then the full conditional Besag, J., York, J., and Mollie, A. (1991)
for p still reduces through conjugacy (to Bayesian image restoration, with applica-
N( y-+•2+ ,2 )) tions in spatial statistics (with discussion).

The method of second choice for sam- Ann. Inst. Statist. Math., 43, 1-59.
pling from full conditionals is adaptive re- Blattberg, R. C. and George, E. I. Shrink-
jection sampling. The original method age estimation of price and promotional
of adaptive rejection sampling (Gilks and elasticities: seemingly unrelated equa-
Wild (1992)) requires the density to be tions. (1991) J. Amer. Statist. Assoc.,

log-concave (d2'i9#( < 0) and the user 86, 304-315.
to supply subroutines to calculate deriva- Carlin, B. P., Gelfand, A. E., Smith, A. F.
tives of the log density. A second ver- M. (1992) Hierarchical Bayesian analysis
sion (Gilks (1992)) does not use deriva- of changepoint problems. Applied Statis-
tives but still requires log-concavity. The tics, 41, 389-405.
most recent version (Gilks et a) (1992)) ac- Clayton, D. G.(1991) A Monte Carlo
comodates non-log-concavity through use method for Bayesian inference in frailty
of a generalised rejection function and a models Biometrics, 47, 467-485.
post-acceptance Hastings-Metropolis step Clayton, D. G. and Bernardinelli, L.
(Hastings (1970)). (1992) Bayesian methods for mapping dis-

ease risk. In: Small Area Studies in Ge-
6 Discussion ographical and Environmental Epidemiol-

ogy, (Eds. Cuzick, J. and Elliott, P.), Ox-
The BUGS program is still under develop- ford University Press, (to appear).
ment. It is our hope to have a basic beta- Dellaportas, P. and Smith, A. F. M. (1992)
test version working within three months Bayesian inference for generalised linear
of this meeting. Beyond that we have models and proportional hazards models
several plans for further development. In via Gibbs sampling. Applieu Statistics,
particular we plan to allow input of data (submitted).
which are not S objects; to provide an
interface to enable key parameters to be Gelfand, A. E., Hills, S. E., Racine-Pooh,monitored during the Gibbs sampling; and A. and Smith, A. F. M. (1990) Illustra-

moniore duingtheGibs smplng;andtion of Bayesian inference in normal data
to allow the user to control which param- mod o sin infsrencelin normal dt
eters are output. We have no immediate models using Gibbs sampling. Journal of
plans to incorporate convergence diagnos- the American Statistical Association, 85,

tics into BUGS, as this field is still evolving 972-985.

rapidly and most convergence diagnostics Gelfand, A. E. and Smith, A. F. M. (1990)
already proposed can be applied post-hoc. Sampling based approaches to calculating

marginal densities. Journal of the Ameri-
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ABSTRACT

A particular Markov chain Monte Carlo algorithm is constructed to allow Bayesian
inference in a hidden Markov model used in hematology. The algorithm has an
outer Gibbsian structure, and incorporates both Metropolis and Hastings updates to
move through the space of possible hidden states. While somewhat sophisticated, this
algorithm still has problems getting around the infinite-dimensional space of hidden
states because of strong correlations between some of the variables. A two-step
variant of the Metropolis algorithm is introduced for posterior simulation.

Keywords: hidden Markov model, Metropolis algorithm, Gibbs sampler, Hastings
algorithm, hematopoiesis

1. A MODEL system of a large animal, (see Abkowitz et al., 1990), marrow
samples are taken periodically (every 2 weeks or so) from female

Suppose that each of N people in a room is holding a coin-the Safari cats. These cats are heterozygous for the X-linked enzyme
probability of heads for each coin is p. Independently of one glucose-6-phosphatedehydrogenase(G6PD), and because ofX-
another, each person flips his/her coin at random exponentially- chromosome inactivation early in embryogenesis. every cell in
distributed time intervals specified by a rate parameter A. Over such a cat expresses either the paternal or maternal G6PD type.
time, X, the number of facing heads, fluctuates between 0 and Thus every cell can be identified by its binary marker, the heads
N. In fact, the state X is a continuous-time, finite-state Markov or tails from the coin model above. The proportion of paternal,
process whose stationary distribution is binomial(N, p). An say, cells in a sample of ni cells is recorded at sampling time ti.
observer, not knowing how many people are in the room, sees The sampled cells come from a special population of cells in the
a sample of size n, with replacement from the faces of the N marrow; cells committed to a particular developmental lineage
coins at time t, = 0. The observer records Y], the number on the road to becoming mature blood cells. It is the evolution
of observed heads, which given X(t1 ) has a binomial distribu- of this special population which is of interest to the investigator,
tion with success probability X(tt )/N. Similar observations but about which only limited information is available, through
Y2,.... Y,, are made at subsequent time points t2 . . . . . tm =: T. periodic sampling. In the model proposed in GNA, the popu-
Based on this time series of counts, the observer is asked to lation of interest is assumed to consist of a fixed number N of
estimate the number of people in the room, the flip rate A, and clones, a clone being all the descendants of a single cell. Some
the success probability of the coins. Moreover, from a prior number X of these .A clones are of the paternal type, because all
distribution on these three parameters, the observer is asked to the constituent cells have inherited the paternal G6PD type from
derive the joint posterior distribution given the observed time their founding ancestor. The remainder are of the maternal type.
series. Cell death and the activation of new clones force fluctuations in

A model having precisely this probability structure has been X, which is modeled like the fluctuating number of heads in the

proposed by Guttorp, Newton, and Abkowitz, 1990, (hereafter coin problem above.

GNA), todescribetime-seriesofproportionsofa particular kind In this paper, we construct a Markov chain for simulating a
of cell in the bone marrow of a special kind of cat. In an ex- posterior distribution of the parameters N. p, and A. A combina-
periment to study early cellular development in the blood-cell tion of Gibbs sampler and Hastings and Metropolis algorithms
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form an algorithm similar to the hybrids of Tierney, 1991. Be- about the shape of the likelihood surface, it is natural to search
cause the hidden state lives in an infinite-dimensional space, a for other methods of computation. Markov chain simulation
straight Gibbs sampler is not possible. A fairly elegant hybrid forms a important class of such methods, and a particular one is
algorithm is constructed, however it moves very slowly through constructed to simulate the posterior of 0 in this problem.
the support of the posterior distribution. The essential problem
is one that might have been foreseen: several of the variables 3. MARKOV CHAIN MONTE CARLO

are highly correlated a postiori. The goal is develop an algorithm which simulates [6jY], the
The Metropolis-driven Hastings algorithm is introduced asan alternative way to run a standard Metropolis algorithm for posterior distribution of the parameters 0 given the data Y, andanmulternative waysteorun aistandar Mgiven a particular prior distribution, denoted [0]. (Following

simulating posterior distributions. Gelfand and Smit', 1990, we use square brackets to denote the
First, we describe the deterministic likelihood calculations probability density. or more loosely the distribution, of the ar-

based on recursive updating techniques used by GNA. guments.) Here, as is often the case, the Markov chain Monte

2. RECURSIVE UPDATING Carlo method paradoxically involves increasing the dimension
of the space in which computation takes place. The joint con-

The likelihood function of 0 = (N, A,p) based on an ob- ditional distribution [0, X[0 ,T] Y1] is actually simulated, where
served series y = (yi ...I, y7) is XIO,T] represents the unobserved Markov process; the number

irk of heads in the room at all times during the sampling period

L(O; y) = PO(Y = yi f(y1 lyt .... ) [0, T]. The space is augmented so as to make each step in the

i=2 algorithm as simple as possible. Following Tierney. 1991. or
Geyer, 1991, an irreducible Markov process is constructed on

where the space of (0, X[0.1 T']) such that the stationary distribution of

S P0'; = Y = Y1, . I I this process is [0, X[o,.] 1Y].
It is convenient to distinguish between the process X defined

Marginally, the I't's are not Markov, but this likelihood can on the entire positive real line, and its restriction to tme sampling
still be s mplified by noting that the i"h factor is a function window, X[o,T]. The process X can be represented by the
of the (i - 1)th factor. This is accomplished by expanding initial state X0 := X(0),a sequence of event times rl. 2 ..... a
the 1"h factor as a sum over the possible values of the hidden sequenceoldeathsdI, d2 ... , anda sequenceofbirthsbl, b2 ,. ....

state X(ti) at that time point, and using the Markov properties The event times record times (in ascending order) at which a
of the hidden state (see GNA). A recursive algorithm, akin to a coin in the room gets flipped. The deaths and births determine
method in Baum, 1972, can be developed which takes advantage changes that happen at the event times. The binary d, indicates
of this characterization. The algorithm requires calculation of the face of the coin about to be tossed by the tosser at time -ri.
transition probabilities of the hidden state between the sampling Thus d1 = 1 indicates that the first coin tossed in the room was
times. Defining Xi := X(ti), a head just before it was tossed. Similarly, the birth bi indica'ts

the outcome of the toss at time 7i, 1 for heads and 0 for tails.
P(X kIX_ 1 =j) = N 'hialk eXl)[-lA(t, - t. 1) Putting 70 := 0, forany time t which happenstoliein [7-i, 7i+ 1),

1=0 X ( (t) = X(ri) for allI

where = X(7i- I) - di + bi ifi > 1. (3.1)

0N-i)^J N 1 --"Aj If Xo is binomial(N,p). then the X process is stationary, and
i= (_l)J(1 _ p)V/2 Z (- a b, so this is assumed throughout. Being minima of A' indepen-

v=0v~j-u) dent exponentials with rate A. the inter-event times 7, - 7, 1

and are iid exponential random variables with rate NA. Also, the
births b, are iid Bernoulli(p). and the deaths di have a Bernoulli

a- i = J-b )A, distribution depending on the current state:
NP[d, = IIX(T,_,) = .r] = x/N.

When N is reasonably small (N < 40), calculation of the tran-
sition probabilities is quite feasible. Because of large negative This describes the state distribution [XO1]. The restriction
and positive aoi's for large N, the calculation gets somewhat X[o,'r] of X to the sampling window [0,T] is characterized
tricky and is subject to error. In GNA, likelihoods are computed by the first k eents of X: A" being the index of the largest event
on a grid of parameter values up to N = 40, and for differ- time smaller than T. Marginally. k has a Poisson distribution
ent values of the other parameters. Without analytical results with mean NAT.
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Conditionally on the state, we have the observation distribu- their full conditionals. Finally, a candidate update N' is sampled
tion from

[YIX, 01 = Binomial ni,( - . Poisson(N)iN > 0]

That is, the observations Yi depend on the state X only through and either N is accepted or N is kept, depending on a test using
the state's values at the fixed sampling times. An approximate the ratio r above.
directed-graph representation of the model is shown in Figure 1.

The algorithm to simulate 10, X[O,T] IY] has an outer Gibbsian

structure in the that it proceeds by simulating [OIX[o,T], Y] and 5. THE STATE UPDATE

then [XI0,T] 10 , Y]1 Because the number k of events within the sampling window

4. THE PARAMETER UPDATE is random, the state X[0,oT actually lives in an infinite dimen-

sional space. This space represents all the possible coin-flipping

Simulation of [OIX[o0T], YJ is itself almost completely Gibb- histories of the room over the sampling period. Gibbs sampling

sian. The full conditional of the rate parameter is cannot work for such a point process, but other Markov chain
simulation schemes can be devised. We describe three chains,

[AIN, p,X[oT, YI] xi e -'NA1\A [Ak(N, ip1 which, if used in isolation, are not irreducible. When used to-
gether, they produce a combined chain which is irreducible and

which is Gamma if the prior (A[N,p] is conjugate. The full which has [X[OTI10, 1'] as its stationary distribution.

conditional density ofp given the rest, (pIN, A, X, y], is propor-
tional to 5.1. The addition/deletion chain

pX'o+ k b,(1 _)N+k-Xo-Z' bi The first chain allows changes in the number of events in theP I - _IpJNA, sampling window [0, T]. In particular, it involves changing the

which is a Beta when the prior is conjugate. The parameter number of tied events-the set of which is denoted

update would be completely Gibbsian if the conditional distri-
bution of N given the rest was easy to simulate. In fact this is 'tied = { di = bi and ri < T}.
not the case. as h(N) := [NIA,p, Xot0,, Y] is proportional to

These events are important because the state X remains constant

( N Nk - N across a tied event time. Suppose first that 'tied is not empty.

'NIO'PJ ~Xo0  ((1 - p)e) so k > 0 and at least one of these events is a tied event, and

introduce a user-supplied probability a E (0, 1/2). The tran-

"x () ( Nsition kernel Q, determining the probability distribution of the

i= Nfirst chain comes from the following rule. Add a tied event with

k (X(.._) (NdiN X(r• .) i -di probability a, and drop a tied event with probability a, and do

"× J N N nothing with probability 1 - 2a. If an event is to be added, in-
i=1 troduce a death d* and a birth b which are tied, (d" = V'), that

take place at an event time r' sampled uniformly in 10, T]. The
for N no less then all X(ri). AHastingsupdateofN is possible common value of d = bV is chosen at random from the possi-
by generating a candidate N" from a driving density q(N, N) hilities given the current state. For instance, if r, < T" < T,+1

and then computing and X(r,) = N, then d"1 = = 1 with Q1 -probability 1.

There are no toils in the room to be killed, only heads. This
h(N) q(N, N) describes the addition of a tied event. If a tied event is to be

-h(N) q(N, N) dropped, then select its index 1 at random from 'tied and simply

remove that event from the record. In the case of no tied events,and moving to N" with probability r A 1 (the minimum of r

and I) A simple q is Poisson, centered at the current value, and change the selection probabilities. That is, add with probability
truncated at 0, which has a and do nothing with probability 1 - a.

The addition/deletion algorithm always takes you from the

qi " -it current state X to a candidate state X' which is a possible coin-
q(J f, ,) - n!(1 - e .... ) ' flipping history of the room. This algorithm does not produce

an irreducible chain, because although the number of events in
Therefore given the hidden state and the data, parameter update 10, T) can fluctuate aibitrarily, the level of the state can never
is a three-step procedure. First A and then p are sampled from change. With respect to a paiticulai dominating measure, the
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Figure I: A directed-graph representation of the model: For instance, the births bi all have parent p, are conditionally iid given p,
and together with the deaths determine the level of the state. A death di has a distribution determined by the current state, and in
turn affects the probability distribution of the future state.

A rl 72  . . -' -Tj times

N p bb.. bk births

2 ... , d deaths

x(0) - x(-ri)--- X(7-2)- . . . x()

X(t1 ) X(t 2 ) X(t 3 ) X(tm)I I I I
2 1'3 Y,,, data

density q, of the transition kernel Q, has the form These marginal probabilities can be computed from the con-
siderations of section 3. Noting that the deaths and births areIa/(J + 1) if deletion,ineednoftevntims

a/2 if non-boundary addition,
a if boundary addition.

q1 1(XX) 1 - 2a if X" = X and J > 0. [XI0] = p(Xo) fJp(rIr,-) Jljp(djlX(rj-,l)p(bj).

1-a ifX' =XandJ=0, i=1 j=1

0 otherwise. In forming the odds ratio ri, all factors associated to event times

Here, J is the cardinality of 'tied for X, and the conditions ri, > T cancel because no changes occur in the state outside

on the right say how X° came from X in the addition/deletion the sampling window. In fact, we need only conceptualize the

chain, A boundary addition is one where the level of X equals existence of such an infinite sequence, as it never needs to be

0 or N at the event time r. The density at a non-boundary used in the computations. If X" comes from an addition to X
at a time when the level is x, we have

addition is half that at a boundary addition because there are

two possible values of d" = b in that case, as opposed to one ri = NA(px/N)" Q1 - p)(1 - x/N))'-b"
for a boundary addition. Note that qt is not symmetric, so this
algorithm is necessarily Hastings rather than Metropolis. Similarly, if X" comes from a deletion in X of event i having

Upon generating a candidate X" from the addition/deletion level X(;i) = x, then
chain, we compute

Sf(X') q1 (X°, X) r1 = [NA(px/N)b,((1 - p)(1 - x/N))'

-(X) ql(X,X°) Combining r, with the definition of qj, one complete step

where f(X) = Y]is the conditional density of the state of the addition/deletion algorithm involves generating X" from
X. The i tr Q and then computing r from above. With probability r A 1.X.Teimportance of adding and deleting ties is now apparent moetX.lssayp.

because the observation distribution is the same for both X and

.X'. (the level of X is not changed in X'). Thus 5.2. The level-change chain

f(.\") [.V'18 A second chain is derived by changing the outcome of coin
f(X) [xi.0 tosses in a certain way, while keeping the number k of coin
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tosses in [0, TJ fixed. The transition kernel of this second driver The final case is i = k = 0. In this case, there are no births or
is denoted Q2. This section describes the construction of a Q2 deaths in X during the sampling window, and so the update X"
which is symmetric. In this implementation, Q2 is not used as a comes from X by changing X0 by 9. 1, cr - 1.
simple driver of a Metropolis algorithm, rather it is used as the The Q2 driver takes a state X into another state X' which is
basis of what we call a Metropolis-driven Hastings algorithm a possible coin-flipping history of the room. As with Q1, this
which is described in section 6. Markov driver is not irreducible. This time because although

The basic idea behind Q2 is to change births and deaths arbitrary level shifts are possible, the number of events k in the
locally in time. It is important that the changes are local because sampling window always stays fixed. In contrast to Q1, Q2
if a single change at one event time modifies the entire future does have a symmetric density q2. To see why, consider the case
level of X, then the computation of the odds ratio involves where X* comes from X through Q2 and the modified index
all the data beyond that event time. By making local changes i is not on the boundary (an argument for the boundary case is
in deaths and births that only affect the level of X in a small analogous). The output X" can be different from X only in
time interval, the odds ratio computations stay very simple. Of the configuration of deaths and births at two subsequent event
course, if you make a change by simply applying a binary switch times. All event times and all other deaths and births must be
to a single birth or a single death, then this can indeed change the same for X and X'. In fact, there is a finite set S of all
the entire future level of X. The trick is to make switches at states which equal XT except possibly in the configuration of the
randomly selected event times, then to counteract these switches deaths and births at the two event times of interest. This set S
by making complementary changes in the births and deaths at includes both X and X'. By the random choice of legitimate
the next event time. This means that level changes are restricted possibilities in Q2, all states in S are equally likely outcomes
to times t in between two event times; they are local rather than of the level-change chain when any state in S is used as input.
global changes in level. Hence

More specifically, the level-changing chain works as follows.
An index i is sampled at random from the set {0, 1.... }.j(AXA) = q2 (T, ) = 1/card(S).
First consider the case 0 < i < k which is slightly different The use of Q2 as a driver to simulate [XIO, Y] is described
from the boundary cases. Select two deaths d•, d•+i and two in section 6. Before secing this, we study one more method for
births b', b*+ at random from all the legitimate possibilities transforming the state X.

given X(r7i- 1) and X(rTi+i). In the candidate X*, the level at
t in [ri, ri+i ) is, from equation 3.1, 5.3. The time-shifting chain

X'(t) = X*(ri) = X(Ti-t) - di + b. The final method for moving through the state space of X
keeps fixed both the number k of events in [0, T] and all the

The first death and the first birth must keep X.(ri) within one births and deaths at those k event times. This final driver Q3
step of both X(r_ t) and X(Tr+ ) and of course in between 0 changes only the location in time of a randomly selected event.
and N. Also d• must be consistent with T(ri_ t)- Further, the keeping it within [0. T]. Specifically, an index i is sampled
second death and birth must satisfy at random from { 1, 2 . }.. . If i < k. then a new state

d*+ -b'+ = 7(rl) - X(,r+j) X is derived by sampling a 7" uniformly from the interval
(ri-1, Ti+ I). If i = k, then the time 7T" is sampled uniformly

and the death must be consistent with X*(ri). All these various from the interval (rk. 1, T). The new state X' is identical to
constraints define the legitimate possibilities of death/birth pairs the current state XT except for the iPh event time. If k = 0, then
given X. The resulting X" differs in level from X only in Q3 is the identity map.
[r-. ri+I ). Symmetry of the density q3 of Q3 follows from an argument

The boundary case i = k > 0 just involves the first equation analogous to the one of the previous section. Let S be the
above. That is, a single death dZ. and a single birth bZ. are (infinite)setofallstateswhichareidenticalto Xexceptpossibly
sampled at random from the legitimate possibilities so that for t in the location of the iPh event time. All states in S are equally
in [rk, T], likely outputs from any input state in S, thus symmetry. The

X"(t) = XT(-rk) = X (rk ) -I k + b;. . driver Q3 is used as input into a Metropolis update. The odds
ratio depends only on the observation distribution, since any X

When i = 0 and k > 0. we are updating A.g, and in fact are and .g pair have the same density [[.]01. This ratio is
dealing only with the second equation from above Get d* and
b; which keep the future level of X" the same as the future level_ []" ..,]
of X. That is, choose d7 and b7 at random from all legitimate [1"I', N]
possibilities and put =,(V't) ' ( N - X"(t)) "'

xj X(7 + ,)+,t + -i X-.(t,)/
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where Ii is the index set of all sampling times tj that are affected 7. IMPLEMENTATION AND PROBLEMS

by the movement of ri to ri*: Computer code has been developed to implement the algo-

Ii = {j : tj is in between ri and ri* }. rithm described in the previous sections, however it was not

In combination, Q, and Q2 can reach any state from any other fully operational at the time of writing. Some general properties

state in the space of X1OTJ given enough steps. The third chain have been determined-most notably that the algorithm appears

Q3 is added to speed up movement through this space, but is not to be very slow, especially for large N. In running thousands of

necessary for the global chain to be irreducible, complete scans, each one including every updating chain, very
strong serial dependence was observed on many of the com-

6. A METROPOLIS-DRIVEN HASTINGS ALGORITHM ponent variables. The cause of this dependence is the shape
of the posterior distribution over the state space. Basically, an

Suppose that a symmetric driver Q is available for sampling attenuated cigar-shaped distribution exists. The rate parameter
candidate states X* from the state space. A Metropolis algo- A is highly associated with the number of events k. Because
rithm to simulate a chain with stationary distribution [XI0, Y] we use an outer Gibbsian structure, the overall chain has trouble
involves sampling X* from Q(X,.) and moving to X* with moving both k and A simultaneously.
probability r A 1 where To see how this problem arises, ignore conditioning on the

[X- 10, y] data (in reality we do not want to do this since this is the algo-
r = IO 11]. rithm's raison d'etre). The problem stated above is equivalent to

the problem in the simpler model described below. Consider the
The Metropolis algorithm creates a Markov chain induced by joint distribution of two variables A and k defined by a marginal
the driving chain with kernel Q and using the single rejection and conditional distribution
test above.

An alternative, two-step algorithm is possible in any model A -, Exponential( mean = 10)
where the Metropolis algorithm can be used to simulate a pos- kJA - Poisson(mean= NA)
terior.. As above, use Q to generate a candidate state X*, and
then run a Metropolis algorithm on the marginal distribution of where N is constant. If a Gibbs sampler is used to simulate
X. That is compute this joint distribution, the full conditional distributions must be

[X'jI] sampled. One of these is Poisson, given above, and the other,

[XI0] the distribution of A given k, is Gamma. Contours of this joint
distribution are shown in Figures 2 and 3 for two different valuesLct Z = X" with probability ii A 1, and X otherwise. This of N. As N increases, we see a strong attenuation of the joint

marginal Metropolis algorithm has its own kernel H, and Z was o .A nraew e togatnaino h on
mrginerald Mrop +AlgorithmughQ has its ownmk e trnel H deand s distribution into a cigar shape. It is well-known that Gibbs sam-
generated from H(X, .). Although Q has a symmetric density, piers have difficulties with such distributions, because updates

H does not. However, we can still use H as the driving chain

for a Hastings algorithm whose stationary distribution is the sample from conditional distributions parallel to the coordinate
axes, and thus never move very far. A standard trick is to repa-

conditional distribution of interest. Take Z and compute rameterize the model so that the coordinate axes form the major

r [ZI0, 1'] h(Z, X) and minor axes of the dominant ellipsoidal shape. There arer-= [XI' y] h/(X, Z) two reasons why this does not work here. Firstly, one of these
variables, k. is ar integer. Secondly, and perhaps more impor-

With probability 'r2 A 1, move to Z else stay at X. In fact )'2 IS tanly, in th in m elof thi perhe mbre i

quite easy to compute, as it simplifies nicely to depend only on tantly, in the main model of this paper. the number of events k

the observation distribution: isjust a summary of an entire state X. 16 reparameterize k and
A, we would have to somehow modify the entire state, and A

= [1,"10 Z] simultaneously. It would appear that the only way to do that is
[Yi0, X]" to abandon the outer Gibbsian structure altogether.

This Metropolis-driven Hastings algorithin is different from a
standard Metropolis update because it breaks the test into two ACKNOWLEDGEMENTS
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ABSTRACT
We are fortunate to have many different tools - statistical packages, spreadsheets, or
database systems - for analysis and presentation of data. But often the first step in
an analysis is manipulating or massaging the original data into a form that can be
read by the package. Experienced Unix" users may use sed, awk, or shell scripts for
this. Recently a more powerful language, perl, has been made freely available. It
provides a superset of the capabilities of sed, awk, and sh as a scripting language. We
describe its use for simple data manipulation and for querying a membership directory.
Finally we outline a more complicated query program in perl for the Current Index
to Statistics.

Keywords: sed; awk; shell scripts; database query; Current Index

0 Unix is a registered trademnark of Unix System Laboratories

1. INTRODUCTION 2. A BRIEF OUTLINE OF PERL

Often the first step in a data analysis consists of manipulating The source code for perl is freely available via anonymous ftp
the raw data into a form that can be read by a statistical package or on the Internet from sites such as prep.ai.mit.edu (in the directory
database system. For a single analysis on a small data set, this pub/gnu) or ftp.uu.net (in the directory pub/languages/perl). It
manipulation can be carried out with a text editor but editing can be straightforwardly installed on most workstations. The
such files by hand becomes tedious and error-prone when the source file contains the source for an extensive manual entry
data set is large or when there are many data sets to process. It (about 90 pages long) that describes the syntax and use of the
then becomes worthwhile to create a special purpose program language. A more complete reference is the book "Programming
or ý,ript to perform the manipulation. On Unix systems this perl" (Wall and Schwartz, 1990).
will often be done with shell scripts that use the stream editor, The simplest uses of perl involve reading one or more text
sed, or the awk programming language (Aho, Kernighan and files a line at a time, changing the line in some fashion, and
Weinberger, 1988). sending the result to an output file. Usually, the perl program

Recently Larry Wall of Jet Propulsion Laboratories created is stored in a file but simple, "one-liner" applications can be

a language called perl - the Practical Extraction and Report written on the command line after a -e flag as in sed and awk.
Language. This powerful language for creating scripts provides Three types of variables are used in perl: scalars, whose
the facilities of sed, awk, and the -;tandard shells. It simplifies names must begin with the $ character; arrays, whose names

writing data manipulation scripts because you only have to learn must begin with @- and associative arrays whose names must

onc language instead of three or four. It also provides capabilities begin with %. As in awk, a scalar can be either a numeric value
not in any of these other languages. or a character string, depending on context. There are many

special variables in perl. The most important is $_ which is theIn section 2. we give a brief outline of the perl language and default argument for many functions. Its value is usually the

follow that with a couple of simple examples in sections 3. and defaunt argument line.

4. In section 5. we describe some of the advantages of perl and contents of the current line.

conclude with discussion of two larger applications that are more Algorithms in perl are expressed with functions and control
in the line of tools to enhance statistics research than statistical structures. The syntax is very rich so we will introduce specificin te lne f tolsto nhace tatstis rseach hanstaistcal functions and control structures as we need them.
applications. These are query programs for the Joint Statistical A per p rog touprocess o e o emr tex s

Diretor andtheCurent nde to tatstis daabaes.A perl program to process one of more text files usually hasDi,'ectory and the Current Index to Statistics databases. tefr
the form

'This research supxorted by the National Science I:oundatioIn under research # !/usr/bin/per 1
grati I)MS-9005904. # initialize any variables
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while (<>) { using requires the fields to be separated by blanks instead of
chop; commas. In other words, you want the file to look like

# process the line 5 3 001 000 692
# print the result 5 2 138 000 698

5 3 146 000 698
# final processing if needed

As in shell scripts, the # character introduces comments. The Here we develop a simple tool for changing the field delimiter
first line here is a special comment that allows the name of the in such flat files.

script to be used as a command. Most shells for Unix systems
adopt the convention that a file with the execute bit set (with 3.1. Commas to blanks
chmod +x) and beginning with the characters #! is treated as
input for the program specified immediately afterwards. One Arsonmwith eprnce uing
set of options can also be specified on this line. We assume that
the perl compiler is stored as /usr/bin/perl or linked to that sed -e 's/,/ /g' < conma.dat > blank.dat
name. The edit command, given after the -e flag, causes a global

The whi 1 e loop is testing for the availability of another line substitution of commas by blanks. A perl equivalent is almost
to process. Generally, reading a line from a file handle in perl identical
is indicated with broken brackets as in perl -p -e 's/,/ /g;' < comma.dat > blank.dat

Sthis_line = <STDIN>; If there are several files, say inl .dat, in2 .dat, .... to be
When no file handle is specified, the convention is to check manipulated in this way, the sed script can be used as
for arguments specified on the command line, treat them as
names of files, and try to open them for reading. If there are no
arguments (actually if the array 8ARGVI is empty the first time a but this would direct the output from all the input files to a single
line is requested), the file handle STDIN is used instead. This file. Often we want to take each of the input files and create a
reproduces the behaviour of many Unix tools that accept input separate output file for it, something we cannot do directly with
from files whose names are given as arguments and otherwise sed. But perl does allow such "in-place" editing with a - i flag
accept input from the standard input stream. perl -i -p -e 's/,/ /g;' in*.dat

To make it easier to write simple scripts, the flag -p to perl Each file will be overwritten with its edited version. If this seems
indicates that it should behave as in the loop above with the a file wil ritten wh tsed i f th
current value of $_ being printed at the end of the loop. The a little too risky to you, you can change the - i flag to
flag -n has a similar meaning except that $_ is not printed; the perl -i.bak -p -e 's/,/ /g;' in*.dat
programmer must explicitly call a print function to produce Now the files will be edited in place but the original will be
any output. preserved under a name created by adding the extension. ba k to

When perl reads a line from a file, it retains the newline the current name. This allows you to back out of unanticipated
character at the end of the line. Since we often want to remove and undesired changes.
that character, it is common to "chop" the line immediately after As an example of such an undesired change, you may discover
reading it. The function chop removes the last character in a that the file can contain comments as well as data and you
string. If no argument is given to chop, it removes the last want to preserve the comment lines intact. If the comments are
character in $-. introduced by a # charact.r as the first character on the line. it is

easy to cause those lines to be preserved by adding an unless
3. CHANGING FIELD DELIMITERS clause to the substitute command as in

Asasimpleexample, suppose you have a data file with entries perl -i.bak -pe 's/,/ /g unless /'#/;' in'.dat
like The pattern following the unless keyword is a regular expres-

5,3,001,000,692 sion, similar to those used in other Unix tools, that only matches
5,2,138,000,698 lines with a # character at the beginning of the line.
5,3,146,000,698

3.2. White space to commas

where each line represents a single case and the values of differ- The preceding example is rather trivial; we would expect any
ent variables for that case are separated by commas. This is a kind of editing tool to be able to replace commas by blanks. But
typical organization of data as aflat-file where thefield delimiter consider the opposite operation of taking a file whose fields are
is a comma. You may find, though, that the package you are delimited by white space and creating a comma-delimited file.



458 Data Manipulation in Perl

It may not be sufficient to use a simple text substitution where delim.pl in*.dat
any occurrence of a blank is replaced by a comma since there Because we now use variables to define the input and output
may be multiple spaces between fields or a tab character may be delimiters, we can change the behaviour of the script. One of
used instead of a space or there may be spurious spaces or tabs the most convenient ways to do this is on the command line
at the end of a line. itself with flags like -i for the input delimiter. -o for the output

Here we can use some facilities of perl that arc more like delimiter, and -c for the pattern indicating a comment line that
the awk language which splits each input line into fields. The should be preserved intact. Since the command line is available
simplest version of the split function in perl splits the input within the perl script as the array @ARGV, we could write code
line into fields delimited by white space. The inverse to spl it to check for the various flags and their arguments but it is much
is join so it is tempting to think that simpler to use the standard perl library subroutine Getopts.

perl -i.bak -p -e 'join( ',, split);' in*.dat This subroutine takes a string specifying which single character
options are allowed and whether they take a value. It signals

would accomplish the desired transformation. But it turns out the preseceof an option by asgi a value t t iale
thatthi coman reult intheoutut ilebeig acop ofthe the presence of an option by assigning a value to the variable

that this command results in the output file being a copy of the $opt-i for the flag -i. It also removes the flags and their
input file.

arguments, if any, from the array @ARGV. Using this subroutine,To understand why this command does not cause any changes, the script becomes

we have to remember that the -p flag means to print the current

contents of $_ at the end of the loop. This was useful to us # !/usr/bin/perl -i .bak

in the earlier examples because a substitution like s/, / /g is require 'getopts. pl';

applied to $_ in place. But join is a function that creates a &Getopts ( 'i :o:c: ');

new character string. Unless it explicitly printed or assigned to Sin = $opt.i ? $opt_i

a variable, it will be discarded. We can still make the delimiter $out= $opt.o ? $opt.o '

transformation a one-liner by doing the printing explicitly and while (<>) {

changing the -p flag to -n. The command is then if ($opt.c && /$opt.c/) (print; next; )
chop;
print join($out, split(/$in/)),"\n";

perl -ne 'print join(',', split),"\n";' in*.dat

The newline character must be added explicitly since the perl As in the C programming language (Kernighan and Richie,
print function does not implicitly add one. We indicate the 1988), the line
newlinecharacterby "\n". There is a subtle difference between Sin = $opti ? $opt_.i
strings enclosed by single quotes and those enclosed by double
quotes. Substitution of patterns like \n, \t, .... or variable is equivalent to
names by their corresponding special characters or string values if ($opt-i) (Sin = $opt.i; } else (Sin = ' ' ; I
is only done on strings enclosed by double quotes. In checking for the comment pattern we first check to see if

$opt.c is defined. If we didn't do this and no pattern was given,
3.3. A general delimiter transformer we would be matching against the null pattern and that would

By this point things are getting a little complicated for a one always be a successful match. The program would preserve
line command. Also, we are getting close to a general method every line intact.
for changing delimiters - split on the current delimiter and A sample usage to change commas to blanks but skipping
join with the new delimiter. To exploit the generality, we lines starting with # would be
should create a script, say delim.pl, and explicitly perform delim.pl -i ',' -o ' ' -c '-#' in*.dat
operations such as cycling over the input lines. Such a script is

#!/usr/bin/perl -i.bak 4. FIXED FORMAT FIELDS

Sin ' '; The few lines of data shown in the previous section were
$out - obtained from an administrative data file. When I receive this
while (<>) { file it is in the form

chop;
print join($out, split(/$in/)),"\n"; Smith, John A. LS 5 3 001 000 692

Jones, Mary E. LS 5 3 001 000 692
The perl code defines two character strings, Sin and $out, and Thompson, J. Walter LS 5 3 001 000 692
uses them in the split and join functions. A sample usage Miller, Susan LS 5 3 001 000 692
would now be
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where the person's name occupies the first 20 characters of the value more general and to force a conversion to a numeric type
line, the college occupies the next 4, the level occupies the next before pushing the value onto the array. Here is such a modified
2, and so on. This is an example of a fixed format data file. program

This file is convenient for a person to read but not as con- #!/usr/bin/perl -i .bak
venient for a statistical package to read. If we wish to read require 'getopts.pl';
such data into a package like S (Becker, Chambers and Wilks, &Getopts ( 'f:');
1988; Chambers and Hastie, 1991) we have to indicate that the die "A format string must be specified.\n"
name should be treated as a single unit by enclosing it in quota- unless $opt.f;
tion marks. We want to transform the file to look like while (<>) {

"Smith, John A." "LS" 5 3 001 000 692 undef @rec;
"Jones, Mary E." "LS" 5 3 001 000 692 foreach (unpack($opt-f, $_))
"Thompson, J. Walter" "LS" 5 3 n01 000 692 s/^\s+//;
"Miller, Susan" "LS" 5 3 001 000 692 if (/^([-+]?\d+\.?\d*l\.\d+)$/)

(push(@rec,$_ + 0);)
else (push(t@rec, '"' . $.. . '';

Because the surname and the given names are separated by e

blanks and because everyone does not have the same number of print join (' ', @ rec),"\n";
given names, we cannot approach this by splitting the input line
into fields delimited by white space. Instead we use the unpack
function to separate the fields according to position. Here is the that produces the output
program that transforms the first data file into the second. "Smith, John A." "LS" 5 3 1 0 692

#!/usr/bin/perl -i.bak "Jones, Mary E." "LS" 5 3 1 0 692
"Thompson, J. Walter" "LS" 5 3 1 0 692$format = "A20 A4 A2 A5 AS A6 A6"; "ilr ua""S 9

while (<>) ( "Miller, Susan" "LS" 5 3 1 0 692

undef @rec; . "

foreach (unpack ($ format, $)) As you might imagine, it is not easy to formulate the pattern
s/-\s,//; that determines whether a string looks like a number. Even
if (/^\d+$/) (push(Orec,$_);} the one given above is incomplete because it does not take
else {push(@rec, " $ . ,,) ; into account cases where an exponent is given. A alternative

approach is to recall that the only reason for the double quotes is
print join(, ' , @rec), "\n"; to protect embedded white space in text fields. We can change

} the whole algorithm to check for the presence of white space
rather than something that looks like a number. Here is the

The $ format variable specifies the format of the line. Here alternate version
an "A" followed by a field width indicates that the field is to
be interpreted as an ASCII character string with trailing white #!/usr/bin/perl -i .bak
space suppressed. An array, @rec, will be used to accumulate require 'getopts .pl ;
the fields before printing. Since values will be added to it by &Getopts (" f : s' ) m
pushing them onto the end, it must be initialized to a null array die " or tsti
at the beginning of the loop. The input record is then split with unless $opt) f ;
the unpack function producing an array value. The foreach while (<>)
control structure cycles through the elements of the array assign- unde f @ raec ;
ing each value in turn to the variable $_. Assignment within the foreach (unpack ($opt_f, $_

foreach loop does not change the value of $_ outside the loop. $_/ = \s+ i /\;
$_ = ,", $ . ' ' i k

The substitution line s/^\s+// strips leading white space push(@rec, $_j
from the current field. If the field consists solely of digits, it is
pushed onto the @rec array as it is, otherwis.. it is surrounded p
by quotation marks before being pushed onto the array. Finally print join (' ', @rec), "\n";
the array is joined into a single string and printed.

Here the format of the line is hard-coded into the program. 5. REASONS TO USE PERL
This program could be made more general by using the sub-
routine Getopts to pick up the format from the command line. The examples I have given have only begun to illustrate some
Two other enhancements are to make the pattern for a numeric of the uses of perl. Some of the reasons that you may want to
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use perl as a data manipulation language are: create client/server pairs that can run on different machines.

Perl is freely available. Larry Wall has chosen to make perl Reading and writing binary data types. If necessary, you
freely available under the same conditions that the Free Soft- can even read and write binary data types, either in the native
ware Foundation applies to their software. The code is well byte order or in network byte order.
maintained and supported. There is the documentation for the
language mentioned in section 2. and there is an active Usenet 6. DATABASE SEARCHES
newsgroup comp.lang.perl discussing the evolution of the lan-guage and programming methods in the language. Within the last two years the American Statistical Associa-

Theufree avdprogramiat otheosourcede meanshat. ytion and the Institute for Mathematical Statistics have made twoT he free availability o f the so urce code m eans that you can m c i e r a a l a a a e v i a l o u c a e h u r nmachine-readable databases available for purchase. The Current
install new releases as soon as they become available and you Index to Statistics database contains bibliographic information
can install it on any machine that you wish. Considering the
complexity of the language, it is remarkably easy to install on ontboos andratice of itre to statticlas. It p ra workstation. There are also pr'ecompiled versions of pert for contains information on more than 100,000 articles, books, or
VMS, workstati. M O are asorteAmig. vreviews from the last 12 years. It can be ordered from the IMSVMS, for MS-DOS and for the Amiga. (send mail to ims@ucdavis.edu). The Joint Statistical Directory

Libraries and a symbolic debugger. Many library subrou- database contains membership information for the American
tines are included with perl. The use of Getopts has been Statistical Association, the Institute of Mathematical Statistics,
illustrated in section 3. and the look subroutine will be illus- and the Statistical Society of Canada. Itcan be ordered from the
trated in section 6.. The language has been designed to facilitate ASA.
the use of libraries. The requi re and provide functions make
it easy to load libraries. In addition, the conventions for symbol 6.1. Directory Lookups
names allow you to avoid name conflicts between symbols in a The utility of both of thesedatabases isenhancedsimple query
librar, with those in the main script, programs. Since it is much easier to write a query program for the

The most important library is the perldb library that pro- directory, we consider that case first. The database is distributed
vides a symbolic debugger for perl. Interestingly, the symbolic as separate files for surnames beginning with each letter of the
debugger is itself written in perl. One can use this to set break- alphabet. Each line the the directory entry for one person and
points in a script, toexamineortochangethevaluesof variables, begins with "I " followed by the person's surname. Since a
to step through the execution of a script, and so on. Once you binary lookup on the name will be very quick in perl, all these
have started to use such a tool, it is difficult to overestimate its files can be combined into a single file that we will call AZ. The
value. For those who have gotten used to using a debugger like file should then be sorted by
gdb or dbx from within GNU emacs, there is a per ldb emacs
mode as well. sort -f AZ > temp; my temp AZ

because the entries in the original files are not strictly in the
Tools for conversion of existing scripts. The standard perl ASCII collating sequence. A simple query program would then
distribution includes the programs s2p for convertingsed scripts look up an individual's entry by surname. Such a program is
to perl, a2p for converting awk scripts, and find2perl for
converting find scripts. These conversion routines will produce # !/usr/bin/perl

a pert script that produces the same output as the original script require 'look. pl';
although it may not be the best pert code for doing so. They do $DIR = I/usr/tlocal /lib/ASkmembers";
provide a starting point for an idiomatic perl implementation, $Prompt = '=> ';
though. chdir($DIR) II die "Can't chdir to $DIR: $!\n';

The perl compiler and the code it produces are reasonably open (DB, "AZ")

efficient. The scripts are as easy to write as shell scripts and II die "Can't open file ${DIR}/AZ: $!\n*;

tend to run faster than shell scripts because they run as a single if (@ARGV) {for (@ARGV) (&do-query;})

process. else (
print $Prompt;

Access to many low-level facilities. Many of the functions while (<>)
in perl are patterned after functions in the C library. Within chop;
perl you have access to system administration files (getpwent, &doquery;
etc.), dbm files (accessed as associative arrays), information in print $Prompt;
directories (opendir, seekdir, readdir), and file status
information (stat). You can also use sockets and shared mem- print "\n";
ory calls on machines that support them. Sockets are used to }
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sub doquery { To make it easier to distribute the database to custemers on
$key = $_; floppy disks, it is divided into two data files for each yeai.
&1ook(*DB, "I $_", 0, 1); Typically these are about0.5 Mb. in size. We combine the files
while (($- = <DB>) =- /'1\ $key/i) (print;) for each year and leave them under a name like 80 forthedata

from 1980. Each line contains fields listing the citation source,

Considering what the program does, it looks remarkably com- the title, the authors' names, keywords, alternate spellings of

pact. This is because most of the work is done by the library authors' names, and altr.rnate spellings of words in the title.
subroutine look which performs a binary lookup on the given We first create an inverted index for all the non-trivial words
file for the a key. (truncated to six characters maximum) that occur in the title, the

Going through the program in sequence, it declares the name authors' names, and the keywords. This is an intensive process
Goin thoug theproramin equeceit eclaes he ame that takes about an hour on a moderately fast workstation butof the directory that holds the database and the prompt to use. thtaksaotnhornamdeteyftwrsain u

The working directory is then changed to the database directory. it only has to be done once a year when a new version of the
In this case it is not really necessary to do that but in other database is released. The index is a two-stage index. A master

index lists all the keys and indicates which data files contain
programs where more than one file from the database needs to
be accessed, it is helpful to change the directory. Another perl records matching that key. For each data file with that key, itlists the numbcr of records matching the key and a pointer to the
idiom is illustrated here, functions such as chair and openreturn 0 if they are unsuccessful. Only in those cases will the byte position in a secondary index that gives the byte positions
oetheropran d of te be unsuevafuluatedyand that causes the p m of all of these records. At Ron Thisted's suggestion we adoptedother operand o f I I be evaluated and that causes the program t e c n e t o h t h n t e e i n y o e r c r n t e flthe convention that, when there is only one record in the file
to halt with an error message. (The behaviour is similar to thestop () function in S (Becker et al., 1988).) It is common to matching the key, the pointer in the master index is to the record

this as "change directory or die!", itself, not to a secondary index. To save space in the index, all
readthis s cange dinetory or names the data files are given single character abbreviations. A separate

This script can be used in two ways, the desired name or names configuration file matches the abbreviations to the names of the

can be listed on the command line or the script will go into a
prompting loop. The if statement %:s~s if any arguments have At esandte inde fie.
been listed on the command line. In either case, the subroutine An eampe may mp
do-query is called to look up the listing. The look subroutine
positions the file at the first line which begins with a sequence thlit lindne C 2 163613 D 1 519124 J 1 1201041
is lexically greater than or equal to the key. The characters" I " This indicates that there are two citations in the file with abbre-
are prepended to the key because all records in the database start viation C, and one citation in both D and J. The "C" file is 79
with those. Finally, all records that match the key are printed, and has a secondary index called 79. ix. The line
For example, 287293 421922

= watts, d begins at position 163613 in this file. Those numbers are the
I WATTS, Donald G. byte positions of the beginnings of the two records with this key

IWATTS, Donna Lucas in the file 79. For files D and J a reference to a secondary index

=> is not necessary because there is only one record to be indexed.
There is much more information printed on each line but I have The number 519124 gives to the byte position of the beginaing
omitted that here in the interest of conserving space. of the record with this key in the file 80.

Some reasonable enhancements to this program are to add a One advantage of this two level index method is that it keeps
special case of q to mean "quit" and the format the records as they the master index to a manageable size. If every byte position for
are printed. This script and a version that formats the records every file were listed in a single level index, it would be very
a bit more pleasingly are available for anonymous ftp from difficult for a human to try to browse it to check on correctness.

the machine wingra.stat.wisc.edu (128.105.5.32)in the directory A more important aspect of this organization is that it makes it
pub/ASA. easier to intersect the set of references that match different keys.

It is common for a user to want to find those citations that match
6.2. Current Index Lookups all of a set of keys. For example, a favorite test case at Texas

Creating a query program for the Current Index database is A&M is the following

considerably more complicated than a simple binary lookup in > CIS
the membership directory. Since the scripts that Paul Tukey Keyword access to CIS database.
and I have created for the CIS database are rather long and Type '?' for help.
complicated, l will not discuss them in detail but rather give the => time series timeslab
broad outlines.
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Frequencies: time(4239) series(3104) timesl(4) Wall, L. and Schwartz, R. L. (1990). Programming perl,
O'Reilly & Associates, Sebastopol, California.

[Number of combined matches in 87: 1]

%AUTHOR = H. Joseph Newton
%TITLE = TIMESLAB: A time series analysis ...
%JOURNAL = ASA Proc. of Busn. and Econ.

Note that there are more than 4000 citations for the key 'time'.
more than 3000 for 'series' and only 4 for 'timesl'. We want
to find those citations which match all these keys. We can tell
immediately that there are no citations contai_.ing 'timesl' before
87 so we don't even have to consider the individual citations with
'time' or 'series' before then. Similarly in the 87 file we only
have to match the citations with 'time' or 'series' against the
one citation with 'timesl'. Doing the intersections a data file at
a time results in considerable time savings.

Once the index is established a server program can be started.
As mentioned in section 5., perl scripts can bind to sockets and
accept connections over sockets. This means that the access to
the database can be divided between a client run by the user on
one machine and a server daemon running perhaps on another
machine. In this case, the server accepts a connection to a socket,
forks a child process to handle the instance of the connection,
and goes back to listening on the socket. The child process
accepts requests of keys to lookup and returns the citations. All
the interaction with the user of prompting, decoding the user's
commands, and formatting the output is carried out by the client
script possibly running on another machine.

The scripts for creating the inverted index, running the
server and the client are available for anonymous ftp from
wingra.stat.wisc.edu as the file pub/src/CIS. shar. Z.

It is remarkable that a language which can be used as readily
as shown in the simple examples of section 3., can also perform
such powerful feats as communicating through sockets or fork-
ing child processes. It means that learning perl to write simple
data manipulation scripts is a good investment of time because
you can continue to use the same language if your needs become
more complicated.
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DE - the Data Entry Program
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Abstract field definitions, organizing fields into screens, screens
into forms and forms into collections called projects.

DE - the Data Entry program, was created to meet the DE was also written for heterogeneous computing en-
needs of people involved in the collection and comput- vironments. DE's predecessor GIF (General Input Facil-
erization of large quantities of forms-oriented material. ity, M. Conlon, 1986[3]) .vas used in clinical settings on
Data entry software improves the management of data laptop computers, as well as by professional data entry
by preventing a large class of common errors which oc- clerks operating in production data entry shops, but was
cur during the keying of data. DE has many features limited to MSDOS computers. DE is a C language pro-
which make it useful for this work. DE runs on a vari- gram which uses the curses[4J screen access library to
ety of platforms - UNIX, VMS and PC. It has many achieve portability, curses is available in the public do-
field checking features - double entry, range checking, main for a large variety of computing systems. DE has
character set restriction, forced entry, table lookup, date been compiled and tested under Ultrix, NeXT/Mach,
and time fields - plus the usual auto entry functions MSDOS, VMS and AIX/370, and on a variety of key-
- dup, increment, skip, and date stamp. Hierarchical boards. Little effort should be required to make DE run
data is supported through multiple record types. All DE on other systems as well.
commands are two keystrokes each and can be entered DE was also designed to be easy to learn and er-
from a numeric keypad with one hand for sustained nu- gonomic to use. Previous experience with data entry
meric entry. Mnemonic sequences are also available a software led to the development of a simple function key
is on-line help. All DE files and definitions are stored as sequence paradigm that permits one-handed operation,
simple ASCII files, which can either be fixed or delim- and complete operation of the program from a numeric
ited. DE can export its definitions as programs for other keypad. DE has on-line subject help and context sensi-
systems (SAS[1], perl[2]) to use in reading its files. tive help.

DE has the standard data entry software automatic

1 Introduction functions such as auto-duplication of values from pre-
vious records, auto summing of fields, auto counting

DE is a data entry program for forms-oriented raw data. (sequencing), insertion of date and time stamps into

Forms-oriented data frequently occurs in health-related records, as well as features to improve the management

research where subjects are measured repeatedly. Such of data entry personnel. DE can keep log files of work

forms may be several pages in length, may be used sev- done on various projects with time stamps and produc-

eral times for each subject (longitudinal data) and many tivity measures.

forms may be used to report the data for a single sub- In addition to standard data entry features, DE also

ject in a study. Forms-oriented data is organized into writes programs in common statistical analysis lan-
fields, where each field contains the response for a par- guages that can be used to read the data files that DE
ticular question or measurement. Fields typically have produces. DE data files are always clear ASCII, but with
associated definitions that indicate what are valid con- many forms and variables it could be tedious to create
tents for the field. Values collected that do not fit these SAS input statements for the DE files from a complex
definitions are errors that must be corrected by human data entry system. DE solves this problem by writing
intervention during the data collection and management complete SAS data step programs that can be used tu
phases of any project. DE contains features for creating create SAS datasets from DE data files. DE also writes

access programs for perl. In this way, the records pro-
*Work on DE has been supported by NIDA grant R01- duced by data entry personnel can be read into statistical

DA05854-0IA2 and NIH grant ROI-NR02444-OI analysis and/or data management software without the

I
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typical delay involved in writing programs to read the shows the DE functions available in the DE modes.
data.

3 Screens
2 The Keyboard Since DE uses curses to access the screen, screens of

The DE accepts input from the keyboard as characters arbitrary size are automatically supported. On systems

to be entered into fields of on-screen forms. To signal capable of creating them, DE can operate with screens of

a command to DE, the user presses one of four func- size larger than the MSDOS standard '0 columns by 24

tion keys, followed by a mnemonic single character. The rows. Thus screens can truly reflect t, - printed form and

four function keys are typically available in VT100 mode greatly improve the readability of the data entry screens.

under UNIX (PF1, PF2, PF3, PF4), or as Fl, F2, F3 Snapshots of the screens can be taken and printed or

and F4 on an MSDOS computer. The actual keys de- written to files for comparisons with the hand-written

pend on the machine being used. When function keys paper forms. Screens of size 65x54 are useful for em-

are not available, for example NeXT, the functionality is ulating the printed page since an 8.5" by 11" piece of

obtained by using the top keys on the keypad as functior paper has a 6.5" by 9" usable area after 1" margins are

keys through software written for this purpose.[5] subtracted from four sides. At 10 characters to the inch

DE uses the names Help, Format, Record and Field for and 6 lines to the vertical inch, this translates to 65 by

the four function keys to coi espond to classes of func- 54 characters on the printed page. DE screens of this

tions. Help provides access to system-wide information dimension thus imitate the printed page perfectly.

and services. Format is used to access functions related Creating DE screens for use in a data entry project is

with the collection of screen formats that make up the a three step process:

current project. Record functions are related to record-

level operations, such as insert record, delete record, and 1. Screen images are created using an editor or DE

search functions. The Field functions are directed at in- define mode.

dividual fields (erase, duplicate) and characters.

Functions are accessed by pressing a function key fol-

lowed by a single alphabetic character. There is never 3. Screens are tied together into a "project".

any shifting involved, so one-handed operation is sup-
ported. By using key sequences predicted by function Each of these steps is described below.

keys, all ASCII sequences are available for data entry. DE screens can be created using any edito, capable

The alphabetic characters may be sent as upper or lower of producing ASCII files. It is done most easily with an

case, so the shift state of the keyboard never needs to editor that can also address the screen size being created.

be changed to type a function key sequence. Figure 1 Any text cdn be put anywhere on the screen. DE reserves

shows the functions available under each function key. the first line on the screen for status information. This is

The key sequences are easily learned and are listed shown in Figure 3. Data entry fields are marked on the

on-line through the Help-K sequence. DE is exited by screen using the underscore character (_). Consecutive

using Help-Q which automatically saves work. DE writes underscores are considered to be single fields. Fields can

new records into the data file being created as soon as be of any length. Once the ASCII image of the DE

data entry on the record is finished. Explicit saving is screen has been completed, it is run through a2def, a

never required. In this way work cannot be lost by power perl program supplied with DE. a2def creates a DE

failure, system failure or operator negligence, definition file from the screen image text. The definition

DE operates in one of four modes: Define, Enter, Ex- file is used to assign attributes to each of the fields and

amine and Verify. A mode corresponds to a task per- is used by DE to redraw the screen for data entry. DEF

formed with DE. Define mode is used to define new files can also be created using DE define mode described

screens. Enter mode is the default and is used for data in the DE manual[6].

entry. Examine mode is the same as Entermode, except Once a DEF file has been created, attributes can be

that changing the data is not allowed. Verify mode is added using dedef. dedef is a DE session that uses the

a special mode for double entering data that is already DEF file as data and uses DE to allow the user to fill

on file. Verify mode has limited movement functions as in "fields" that correspond to attributes of the fields in

entry is intended to proceed as done previously. A mode the screen being created. In this way DE operates on its

can be chosen from the command line when DE starts, own DEFs in a recursive manner. Assigning attributes

or by mode switching function key sequences. Figure 2 to fields is always optional. Attributes can be added or
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Help = PF1 Format = PF2 Record = PF3 Field = PF4

Help System Help Help Format Help Help Record Help Help Field Help
F Field Info S Snapshot D Delete C Correct
C Context L Single line I Insert X Delete Char
A About DE T Top-of-form R Release E Erase
B Basics N Jump to # N Jump to# N Jump to #
K Keyboard P Project Info F Search D Dup
Q Quit R Release B Search Back S Single corr
E Enter Mode W Write File T To prev rec ,- Home
V Verify Mode I To next rec -- End
X Examine Mode -- To begin rec T To prev fld
D Define Mode -- To end rec I To next fld
T Table info A Toggle Auto

I Toggle Insert

Figure 1: The DE keyboard

ENTER REC 4 FMT 1 FLD I INS AUT first 1,y
2,1 ,demographics,demo, 1,2

Name THIS IS A NEW FIELD ------------------- 2,2,visit,visit,O,3
2,3,exit,exit,1,1

Addrl:

Addr2: -------------------------------------- Figure 4: A DE project file

City : ------------------- ST __ Zip ----- The type 1 record is a header that controls file formats.

In this case the y indicates that a fixed column file is
to be created. The type 2 records define the screens.

Figure 3: A DE screen Three screens are referenced. The first is stored in a file
named demographics . def. Records created using this
DEF will be marked with a record identifier at the front
of the record containing the text "demo". The screen

changed at any time during the creation and use of the is toe ued oncand l e the second screen

screen.is to be used once and followed by the second screen.
The repeat count on the visit screen of zero indicates

Screens are tied together into DE "projects" by cre- that any number of visit records can be entered. The
ating a PRJ type file with an editor. A PRJ file lists operator will have to release the format to proceed to
the screens to be presented and can contain instructions the exit form.
regarding repetitions of the screens and how the records
should be formatted in the data file. DE can produce
delimited ASCII, where each value is separated from the 4 Files
next by a delimiter (often a TAB), or column-oriented
ASCII in which each value occupies the same relative All files used and created by DE are clear ASCII. This
position on each record. Projects that consist of single makes them easy to transport between various systems
screens - such as elementary questionnaires - do not and makes them directly usable by other software such
require project files. In this case, a default project file as editors. DE uses a variety of file types to contain
is provided. Project files may contain any number of information. A list of the types is provided in Figure 5.
references to screens. Each reference is the name of the DAT and LOG files are created by DE during normal
DEF file containing the screen and it's field attributes, use. DEF, P1t] and TBL files are created prior to use to
In this way, the same screen can appear in any number define the data entry work to be done. TBL files can be
of projects. A sample nroiect file is shown in Figure 4. created using detbl, which like dedef uses DE to create
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Mode
Function Keys Enter Examine Verify Define
About Help Help-Help e e
Field info Help-F 0
Context help Help-C 0 0 0 0
Table Info Help-T 0 0 a
About DE Help-A 0 0 0 0
Keyboard Help Help-K 0 0 0 0
Goto Define Help-D 0 0 0
Goto Verify Help-V 0 0 0
Goto Examine Help-X 0 0 0
Goto Enter Help-E • •
Quit Help-Q 0 0 0 0
Format help Fmt-Help . 0 • •
Snapshot Fmt-S 0 • 0 0
Single line Fmt-L 0 0 0 0
Top of form Fmt-T 0 0 a •
Jump to format Fmt-N 0
Format release Fmt-R 0
Write file Fmt-R •
Project info Fmt-P 0
Help record Rec-Help a . 0
Next record Rec-T 0 a
Prey record Rec-1 0 0
Search forward Rec-F 0 0
Record release Rec-R • 0
Search backward Rec-B 0 0
Insert record Rec-I •
Delete record Rec-D 0
Jump to record Rec-N 0 0
Home record Rec-4--
End record Rec----+ 0
Help Field Fld-Help 0 0
Field Correct Fld-C
Single correct Fld-S
Jump to Field Fld-N 0 0
Dup Field Fld-D 0
Erase field Fld-E 0
Toggle Auto Fld-A 0 0
Toggle Insert Fld-I 0 0
Home field Fld-4-- 0
End field Fld---
Next field Fld-1
Prey field Fld-T
Delete char Fld-X
Insert char any e

Figure 2: DE functions and Modes
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File type Usage table. This implies that a value for the field is required.
.DAT Data. The records entered by the If no value is permitted, a mechanism must be provided

operator are stored here. for the operator to enter the "no value." If "no value" is

permissable, a table entry must be created that defines
.DEF Definitions. Field definitions are the permissable "no value" value.

stored here. One line is used per field. The VFY file is automatically maintained by DE dur-
One DEF file is created for each screen ing verify mode. Verify mode is used to perform double-
in the project. entry verification of data that has already been entered

once. During double-entry, the operator is presented
.PRJ Project file. This file controls the with a blank form, and as characters are typed, DE

order of record formats and the format checks them against the values previously entered and
of the data file. on file. If the characters agree, verification proceeds.

When a conflict occurs, DE signals an error with a mes-
TBL Table file. Used to store tables of sage on the screen, and the operator must override the

information for field validation, value typed or the value on file. As records are com-
pleted in verification the VFY file is updated to contain

* VFY Verify file. Contains the record number the record number of the highest record number verified.
of the last successfully verified record in In this way verification can resume at the appropriate
the data. spot in the file should verification be interrupted.

LOG Log file. Contains a record of the use
of the corresponding project. 5 Availability

Figure 5: DE file types DE is distributed under a GNU[7] general license
via anonymous ftp from banana. stat.ufl. edu as
de. tar. Z. C language source, makefiles, examples, sup-

1,Five point Likert Item porting per1 scripts and manual ('IEX and PostScript)
2,1 ,Strongly Disagree are included in the distribution.
2,2,Disagree
2,3,No Opinion
2,4, Agree References
2,5, Strongly Agree [1] SAS Institute, Inc. SAS Language and Procedures:

Usage, Version 6, First Edition, 1990.Figure 6: A DE Table file [2] Larry Wall and Randal L. Schwartz. Programming

perl. O'Reilly & Associates, Inc., 1991.
table definitions for attachment to fields. Tables are lists
of appropriate values for fields with optional descriptors [3] Michael Conlon. GIF: General Input Facility. De-

on the values. A typical table file for a 5 point Likert partment of Statistics, 1986.
type item is shown in Figure 6. [4] C.R. Hoare. Screen Updating and Cursor Movement

The first entry on each line is a record type. A ta- Optimization: A Library Package. UC Berkeley,
ble file has two types of records, a table identifier record 1976.
and a collection of table entry records. The table en-
try records each have record type 2, followed by a value, [5] Brian Burton. TCKEYS. Penn State University,
followed by a descriptor. If this table is stored in a a 1991. computer files.
file called likertS.tbl and likert5 is entered as a ta-
ble name for a field during DEF file creation, then when [6] Michael Conlon. DE: The Data Entr9 Program. De-
the operator is using DE for data entry, only values ap-
pearing in this table will be allowed in the field. An [7] Richard Stallman. Emacs reference manual, 5th edi-
attempt to enter a value not in the table will result in tion. Free Software Foundation, 1986.
an error message. The operator can view the table from
DE during data entry to be reminded w' the va!id field
values. Note that "blank" is not a legal value in this
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Writing Unix Commands

Phil Spector
Department of Statistics

University of California, Berkeley
Berkeley, CA 94720

Abstract Figure 1: Examples of UNIX Commands

One of the most attractive features of the UNIX op- cc pgm. c creates executable (a. out)
erating system is it's extensibility, that is, the ability cc -c pgm. c creates object file (pgm. o)
to add new or modified commands to the collection of CC -0 pgm pgm.c creates executable name pgm
commands which is already part of the operating system.
This paper will discuss a variety of ways to write com-
mands to run in the UNIX operating system, beginning assumed that the commands will be interpretable by the
with collecting a set of commands in a file to execute in a Bourne shell (/bin/sh). To override this default, the
"batch" mode, passing arguments to a set of commands first line in your shell script should be of the form:
in a file and concluding with an outline of how to pass V prograra.name
arguments to a C program through the command line in
the fashion of standard UNIX commands. as in

#!/bin/csh
1. What is a UNIX command? to specify that the statements contained in the file should

be interpreted by the C shell (/bin/csh). The shell
Any file on a UNIX file system can be inroked as scripts in this paper are all assumed to be interpreted

a command, provided that it has been marked as ex- by the Bourne shell.
ecutable. To make a file executable, issue the UNIX The simplest shell scripts just consist of a series of
command "chmod sx tilename". If an executable file commands identical to those which would be typed in to
contains text, then it is interpreted as a series of shell a terminal in a usual interactive session. For example,
commands, that is, a set of commands which will be we could create a shell script containing the lines:

understandable by the command interpreter known as

the shell. Alternatively, commands can be created by cc -o prog program.c -1nag

compiling a program written in a programming language prog < prog. in > prog. out

such as C or Fortran. vi prog.out

to allow us to compile, run and view the output from

2. Conventions for UNIX Commands a program with a single command. Even such simple
scripts can be useful, for example, when several com-

Most UNIX commands are invoked by a command mands need to be run in a specified order - the shell
name, followed by zero or more options, which are spec- script can be run in the background, and the order in
ified as a minus sign followed by a single letter. Some which the commands are run is guaranteed by the order
options require additional arguments; others are flags they are entered in the script. However in most cases,
which signal a particular feature of the program should it is useful to pass information through command line
be invoked. Filenames are often not preceded by a mi- arguments. When writing a shell script, you have ac-
nus sign/letter combination, are are usually the last ar- cess to the command line arguments through the fol-
gument on the command line. Figure 1 illustrates some lowing scheme. The symbol $0 represents the name of
examples. the command which invoked the script; the symbols $1,

$2, ... $9 represent the first nine arguments to the
3. Shell Scripts script, and $* repro•.se.r !.ll the arguments. As always

when dealing with a shell, special care should be taken
As mentioned previously, an executable file contain- when using special characters such as *, $, C, I and

ing text is assumed to contain commands which will be ". If you don't want these characters to have their spe-
interpretable by the shell. Specifically, by default, it is cial meaning, they should be preceded by a backslash (\
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or enclosed in single quotes (''). As a simple example will have already been expanded into a list of file
of a shell script with arguments, consider a program to names which match the pattern given. To pass a
print a specified field from a file, where a field is defined literal special character to a shell script, precede
as text in the file separated from other text by any num- it with a backslash (\), or surround it with single
ber of white spaces (blanks or tabs). The UNIX program quotes (").
awk can do this very simply; in awk, fields are simply re-
ferred to as $1, $2, etc.; the conflict between the use 3. Redirection To direct the output of your shell
of the dollar sign in the shell and in awk can be resolved script to a file, instead of having it appear on the
through careful use of the backslash. In this simple ex- computer's screen, you can use the greater than
ample, the field number is given as the first argument, symbol (>) before the file name on the command
and the filename as the second: line. Similarly, to read input from a file instead of

#!/bin/sh the keyboard, you can use the less than symbol (<).

# first argument is field number, Thus, when you write a shell script, you don't have

# second is filename to worry about opening and closing files, since redi-

awk "{print \$$1}" $2 rection can take care of most simple cases.

One word of warning about names for shell scripts - 4. Command Output Inside a shell script, you can
avoid using the name test, since it is a built-in command set a shell variable equal to the output from any
in some shells, and it is often difficult to "convince" the UNIX command bv enclosing the command in back-
shell that you're referring to your command and not the quotes (" ). If the output consists of more than one
shell's. word, you can break them apart by using the set

command as illustrated in this example:
4. Shell Services

$ set "date"
To write effective shell scripts, it is important to be $ ec $t

aware of the services which the shell provides. These Thu

features are automatically available when you execute eho

your scripts, and make developing useful and flexible May

shell scripts very easy. These services include: ec 3
$ echo $3

1. Shell Variables The shell allows you to create and 7
manipulate arbitrarily named variables, either in re-
sponse to the UNIX prompt, or within a shell script.
To set a variable, use the form variable=value; Since this method overrides the previous meanings

there should be no spaces surrounding the equal of the variables $1, $2, etc., you should be sure

sign. To refer to a variable in a script, precede it's you have stored the command line arguments before

name with a dollar sign $. Sometimes it is impor- using this technique inside a shell script.

tant for other programs which are run to be aware
of the values of shell variables. To make the value of 5. Testing Operators The command test allows

a shell variable known to any shells which are cre- you to test relationships among shell variables. The

ated after the variable's value has been set, you can form of the test command is "test vi op v2", where

use the command export. op is = for string comparisons and -eq for numeric
comparisons. (Shell variables are basically strings,

2. Wildcard Expansion You can use a variety of and special commands are necessary to make them
special characters as part of filenames to represent be treated like numbers.) Expressions for test may
any filename which matches a particular pattern, also take the form "test -key filename" where -key
The simplest example of a special character used can be -f to test if filename is a file, -d if it is a
this way is the asterisk (*), which matches anything directory, etc. See the UNIX manual page for sh(l)
in a wildcard; for example *.c will be matched by or test(l) for more details.
any filename which ends with the extension ".c".
The important thing to remember about wildcard 6. Shifting arguments The shift command re-
expansion is that it takes place when the command names the current arguments so that $3 becomes
is interpreted, so by the time your shell script is $2, $2 becomes $1, etc. This is useful for parsing
reading the command line arguments, any wildcards arguments, as later examples will show.
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7. Echo command The command echo writes text case $i in
to standard output, which can be redirected if neces- -f ) f=$2
sary to write to another location. By default, echo shift
always terminates it's output with a newline; this shift
can be overridden with the -n option. -s ) sep=\'$2\"

shift
8. Reading input The command read reads a line shift

from standard input and places it into a shell v * ) filenamei ;s;

able. The format is simply "read variable". This esac

can be combined with the echo command to prompt donesac

a user for information:

echo -n "Name of file? test $f -eq 0
thenread filename echo "No field number given. Exiting ...

exit
The shell variable $filename will now be equal to fi

the name of the file the user specified. Note the use
of the -n option of echo to keep the prompt and the if test "$filename" =
user's input on the same line. then

9. Control of Flow The shell provides many flow echo "No filename given. Exiting ...
control commands, such as if-then-else, while, exit
for, etc. Some of these will be illustrated in sample fi
shell scripts in the next sections.

awk "BEGIN{FS= esep}{print \$$f}" $filename
10. Arithmetic While the shell is not very well suited

for arithmetic, the expr command allows simple in-
teger arithmetic. Keep in mind, however, that shell
variables are essentially strings, even if some com- As is often the case with shell scripts and other user writ-
mands treat them like numbers. When using expr, ten commands, the bulk of the program processes argu-
spaces must be placed between operators and val- ments and traps errors, printing appropriate messages.
ues, and the multiplication and division operators As usual, backslashes are used to protect special sym-
must be escaped with a backslash, that is, the sym- bols such as quotation marks and dollar signs. The for
bol for multiplication is \* and that for division is loop at the beginning of the file can provide a model for
\/. The output of expr is especially well suited for parsing command line arguments in the standard way.
trapping in backquotes, as will be shown in the sec-
ond example.

5. A More Complex Example

Consider the field extraction example presented in Sec-
tion 3.. Suppose we wish to enhance the command by
allowing an optional field separator to be supplied (with
the -s option), as well as lifting the restriction on the 6. Example Shell Script using Arith-
ordering of the arguments, by using the -f option to rec- metic
ognize the filename. The following shell script uses the
features described above to achieve these goals, using the
standard UNIX conventions mentioned in Section 2.:

#!/bin/sh The following shell script writes the contents of one
sep="\" \"" or more files to an output location, and writes an index
filename."" of starting and ending lines to standard output. The
f=0 name of the output file is read from standard input after

a suitable prompt. The output of the expr command is
for i in $* ; do used to perform the necessary arithmetic.
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# /bin/sh 7.2. Conversion of Strings to Numbers

start=O Since the command line arguments contained in argv

end=0 are pointers to character strings, conversion is necessary

file="" before these arguments can be used as numbers. The
most effective way to convert them is to use the C system

e cho -n 'Name of file for output: routine sscanf, which allows a formatted read from a

read out character string into any C object. To convert the first
command line argument to a long integer, for example,

rm -f $out we could use the following code:

long n;
for i in $*
do sscanf(argv[1],"Ild" ,&n);
n='cat $i I wc-i"statf'expr Send + " Note that the destination argument must be passed to

$n+ Sn -sscanf as an address, since it's value will, by necessity,
end='expr $start +be changed.
cat $i >> Sout
echo $i $start Send
done 7.3. Opening Files

The command wc is used to count the number of lines The basic routine for opening files is fopen. The fol-

in each file before writing it to the output file. A pos- lowing example illustrates it's use:

sible enhancement to the script would be check for the #include <stdio.h>
existence of the output file before simply removing it.

FILE *fp;

7. Writing Commands in C char *filename *type;

When the functionality of a command becomes too if((fp = fopen(filename,type)) == NULL){
fprintf(stderr,"Can't open file V~s .\n",

complicated for a shell script, or when maximizing effi- filename) ;

ciency becomes a critical issue, the C programming lan- exim();

guage can be used to write UNIX commands. Often a
shell script can serve as a prototype for a command, al-
lowing you to test it out and see if it is useful, before The first argument is a pointer to a character string con-
investing the time to develop a similar command in C. taining the name of the file you wish to open, and the
Since many standard UNIX commands are written in C, second is a pointer to a character string describing the
the language provides a wide range of features to sup- type of open: "r" for read only, "w" for write only, or
port development of commands. Some of these features "a" for append. Note that when the type is "w", an
are discussed in the subsections below, existing file of the same name will be overwritten. As

implied by the example, f open returns a NULL pointer if

dLine Arguments it can't successfully open the file. This possibility should
always be checked when calling f open and appropriate

To parse command line arguments in a C program, action taken if the open fails.
the main program should be declared with the two ar- In addition to FILE pointers created through f open,
guments argc and argv as follows: inclusion of the file stdio.h also gives you access to the

three FILE pointers stdin, stdout and stderr, corre-
main(int argc, char **argv) sponding to standard input, standard output, and stan-

dard error, respectively.
When the program is invoked, argc will contain the

number of command line arguments (including one for 7.4. Reading Files
the command name itself), and argv will be an array of
character pointers, each pointing to one of the command Reading Character-by-Character To read a char-
line arguments. (argv [0] is a pointer to the name of the acter at a time from a file represented by a FILE pointer,
invoked command itself.) use the function getc. This function will return the
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character which is read or the special value EOF (de- and the file pointer, as illustrated by the following code
fined in stdio.h) when the end of the file is encoun- fragment:
tered. To read from standard input, you can either use #define BUFSIZE 1024
getc(stdin) or function getcharo, which is equiva- #include <stdio.h>
lent.

Formatted Reads The function fscant allows for- FILE *fp;
matted reading from a file. It accepts a variable number char but [BUFSIZE]
of arguments: the first is a FILE pointer, followed by a
character string containing formatting information. The while(fgets(bufBUFSIZEfp) != EOF){
remaining arguments are the addresses of the objects .t..
which are to receive the values described in the format- }
ting string. Some of the codes which can appear in theformatting strings are shown in Table 1. Both gets and fgets terminate the buffer with a nullterminator, but fgets discards the newlines it encoun-

ters, while gets transfers them to the buffer.
Table 1: Codes for Formatting Input

8. An Example
Code Type Code Type

%d integer %s character string As a simple example of a command written in C, con-
7.ld long integer %f float sider a command to count the number of tabs (or some
7.h short integer Vlf double other character) in a file. Such a program would also be
%c single character useful if written as a filter; that is, if no file name is spec-

ified, then the standard input (with FILE pointer stdin
In each case, the format code is enclosed in quotation as defined in stdio.h) should be used as input. The -c

marks, and the final arguments to fscanf must be the option on the command line allows counting a character
address of the intended target. For example, to read two other than the tab. The following program shows one
integers into the variables m and n, and then to fill an way to achieve this goal:
array with the mxn values which follow the integers, the #include <stdio.h>
following code could be used (assuming that fp had been #include <ctype .h>
set to an appropriate value by f open)

long i,j,n,m; main(int argc,char **argv)

double x[lOO100] FILE *;
FILE *; int i,n,nf,nfiles,argind[256];

fscanf(fp,"%ld %ld",kn,&m); long tot;
char chk =

for(i=0;i<n;i++)for(j=0;j<m;j++) i = 1;
fscanf(fp,1"/lf",kx[i] [j]); nfiles = 0;

Each item in the file must be separated by at least one while(i < argc)
occurence of white space (blank, tab or newline). When {if(argv [i](0] == '-')goto doopt;
reading from standard input, the function scanf can be argind [ntiles++] = i;
used; it's arguments are used in the same way as those i++;
of fscanf's, but there is no file pointer argument. continue;

Reading Line-by-Line If the items in your input file doopt:
are not separated by white space, you may have to read if(argv[i] (1) == 'c')
an entire line of your file, and break it up as necessary. chk = argv [i] [2);
(A line is defined as a string of characters ending in a else
newline character.) To do this, you can use the function printf('"%s unknown option. \n",argv[i]);
fgets (or gets for standard input). You must declare a i++;
character string long enough to hold the longest line of }
your file before calling fgets. The three arguments to
fgets are the address of the buffer, the size of the buffer, tot = (long)0;
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nf = 0;
do

{if(nfiles == O)fp = stdin;
else fp = fopen(argv[argind[nf1J,"r");
if(fp - NULL)

{printf("can't open %s\n",
argv Cargind Cnf++] I);

continue; }

n = 0;
while((i = getc(fp)) != EOF)

if(i == chk)n++;

tot += (long)n;

if(fp == stdin)printf("%8d\n",n);
else printf("Y%8d %s\n",n,

argv [azgind [nfl));
fclose(fp);
nf++;

}
while(nf < nfiles);

if(nfiles > 1)
printf("%8d total\n",tot);

}

The position of arguments representing filenames is
stored in the array argind; since the array argv which
is automatically allocated to hold the command line ar-
guments, is not volatile, the filenames can be reliably
found in that array for the duration of the program.
The use of a do-while loop insures that the counting
process will take place for at least one file. If no file is
specified on the command line, the FILE pointer is set
equal to stdin, allowing use of the command as a filter.
Finally, when more than one file is processed, the com-
mand prints a total of the number of occurences of the
specified character in all the files considered.
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Abstract duce indices which are adept at finding large structure
such as clusters and outliers. Higher order truncations

We propose two different projection pursuit indices produce indices which are sensitive to fine structure, be-
that are derived from estimators of the fractal dimen- cause they are, by construction, multimodal from the
sion. One index is based on the Grassberger-Procaccia nature of higher order orthonormal functions. However
estimator of fractal dimension, and the other is derived this also makes them difficult to optimize [2].
through maximum likelihood estimation. These indices Ideally, to complement the strengths of these indices,
are designed to expose data lying on lower dimensional we'd like to construct an index which easily finds fine
manifolds and other low level non-random structures. structure, in particular data which lies on a low dimen-
An example of such data comes from points generated sional (especially non-linear) manifold, and other low
by the RANDU random number generator which when level non-random structure. To derive such indices we
put into a three-dimensional unit cube lie on 15 parallel discard the notions of searching for deviations from nor-
planes [11]. mality and turn to ideas of data dimension in the liter-

ature on dynamical systems.
1 Introduction

2 Fractal dimension
Projection pursuit is a data analytic tool for exploring

multivariate data, which attempts to find interesting low There are many quantities that go under the name "di-
dimensional projections. The original idea was proposed mension." The one we will discuss here was introduced
by Kruskal [12] but the 'phrase "projection pursuit" was in Grassberger and Procaccia [5] for dynamical systems.
coined in further work by Friedman and Tukey [3]. The For the purpose of this paper we are not going to give
procedure involves searching high (p) dimensional data an account of dynamical systems, but we will introduce
for interesting low (k = 1, 2 maybe 3) dimensional pro- a few basic definitions.
jections through the optimization of a criterion function, Consider a set A generated by the sequence {P.}J of
called the projection pursuit index, which measures the points in the p-dimensional real space. Suppose that A
interest in each projection. is a subset of a manifold M. In the case of a dynamical

These early notions of projection pursuit indices have system this is the orbit g, nerated by iterating a smooth
been crystallized into the formulation of indices based map from the manifold M into itself, starting at some
on measures of deviation from normality [9],[7], [10]. initial point, Pi.
Various indices have been proposed and implemented Define dimension of A at a point P to be:
along these lines: Negative Entropy and Moment [9],[10], 1 N .(r)}
Fisher Information [8], L2-distances of the density of the d(P) = lim - lim log r ~'
projected data from a normal density [4], [6], [13], [2]. r-O logrN-oo I n

Each of these measures depends on some form of den- where N.(P, r) = #{P,: i < N, JP. - P1 < r).
sity estimation and variously uses kernel methods or ex- Notice that, even if manifestly invariant under smooth
pansions in terms of orthonormal functions. The kernel changes of coordinates, this dimension is not a geometric
methods do well in 1-dimensional indices, because they property of the set A but rather of the measure defined
can be computed rapidly, with the advantage of the Fast by the sequence {Pi1}, in a neighbourhood of the point
Fourier Transform, and they can find a large variety of p.
structures by varying the bandwidth of the kernel. How- The above definition implies that for large n and small
ever for 2-dimensional indices the kernel methods are too R we can use the approximation:
slow computationally to be practical. On the other hand
the orthonormal expansions methods are fast to compute N.(P, r) - C. r 0<r<R,
for any dimension, with the proviso that the expansion
is truncated within reason. Very low truncations pro- where C is a constant which does not depend on r.
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In practice, since we only observe a finite set of points,
the calculation of the dimension is done by selecting a
ball of radius R centered at P and measuring the slope.*. ,,,

of a log/log plot of the number of pairs of points at a<" ""/

distance less than r versus r, for a few values of r < R. lanes "
This is: .

ji(P) = Slope[{log(ri), log(N,(P, r)))'=], "
0 < r, < ... < r,, < R

Clearly this calculation should be done only for a range . .

of r's which are sufficiently small to be close to the limit .. /.'.'/.

but which are large enough to contain a significant num- ,'.//, ;

ber of points. This estimator is similar to the one pro- ' / p n
posed by Grassberger and Procaccia [5]. /.'.": . *.

The above approximation suggests that if we restrict
the measure defined by the sequence {Pi}00 to the ball
with center at P and radius R, namely BR(P) we obtain.
the probability measure: .

N.:(P,.r).r d(P) . noise
Prob[B,(P)] = lim - -. , '91--00 gn(P, R) I J:".:.:;(:• :) .' ." .-' :

Then the function:

F r) = d(PI [,) (r [,]F(r) = j R I[0,R)(r) + l[R,oo](r) Figure 1: RANDU - matr .r of pairwise plots

is a distribution function for the random variable r. We methodology does not apply. Fortunately the estima-
can obtain a simpler form for this function by applying tors do not rely on these assumptions, so we construct
the transformation u = -log(r/R). Then the variable u projection pursuit indices along these lines, and exam-
has an exponential distribution with parameter d(P) . ine their performance in finding low level non-random

In practice we only observe a finite piece of the se- structure in data. We propose two projection pursuit
quence, namely {Pi}n, and only m of them {P(,)})' are indices, derived from the two dimension estimators, each
within a distance R of P. Their corresponding values of which is calculated by taking their median value over

of r are {ri}', where ri = d(P(,), P) < R, and let the sample points. The median, rather than the mean,
u, = -log(ri/R). Under certain assumptions about the is used to ensure resistance to fluctuation in the values

original sequence we can treat the ui's as an independent in boundary areas.
sample and therefore we can estimate d(P) by maximum The first index, li, proposed is based on estimator
likelihood: di(P). To calculate d1(P), at point P,, the m nearest

neighbours, P(2 ), are used to approximate the slope of
dJ(P) }- = log(r,)l log(j) versus log(ri), j = 1....m, whereri = IP(w}-PI

4 is the Euclidean distance from P, to P(3 ). This method
of estimation requires that R = max{ri,j = 1 ... }

For more information in this topic and further expla- is variable which we found to give better results than

nation for the case of dynamical systems see Cabrera and keeping R fixed. Also because the nearest neighbours

Llave (1]. are needed this method is heavy computationally.
The second index, f2, is based on estimator d2 (P).

3 A new class of projection pursuit in- In this caqe, R is fixed to a quantile q. of the empiri-

dices cal distribution of pairwise euclidean distances between
points. In our experiments this was sufficient to obtain

Some of the underlying assumptions, such as ordered good results without using computationally intense near-
data, of the definition of dimension are not satisfied for est neighbours schemes.
multivariate data, so in a strict sense the dimension Finally, another way to speed up the computation of
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C4C

->'t spiral :K••.••
spiral &I

Figure 2: RAND U - solid: Index 1, dashed: Index 2

the indices is to compute the dimension estimators in a
small (50 or 100) subset of the points only.

4 Examples noise
Although for most p-dimensional data it is not possi-

ble to visualize the entire 2-dimensional projection pur-
suit function, to a limited extent we can visualize 2-
dimensional projection pursuit on 3 and 4-dimensionalnos
data. noise

We consider two examples to illustrate the behaviour
of the fractal indices. The first is a sample from the in
famous RANDU random number generator, used widely
in the 1970's. It is based on the multiplicative congruen-
tial scheme: x,,+, = (216 + 3)x,, (mod 231). Points Fgr :Sia an fpiws lt
generated by it lie on 16S parallel planes defined by
9:,, - 6z,,+r + ,,+2 E 0 (mod 231), when sequentially (0, cos 4), 0, sin 0), 0, 4) E (--ir/2, ir/2)}. Then (6, 4)) form
placed into a 3-dimensional cube [11]. Figure 1 contains the axes of the plots in Figure 4 and the surface is gen-
a matrix of pairwise plots of the sample. Figure 2 shows erated by calculating the index over a grid of angle val-
plots of the two indices, f, (solid line) and .12 (dashed ues. The surface, then, represents an interpolation be-
line), calculated over a 180', (--r/2, ir/2), rotaton of tween the first two variables and the se-ond two vari-
the data with the planar structure falling in tb,- center, ables. When 0 = 4) = 0 the corresponding projection is
ir= 0. Despite the jagged nature of the lines it is clear that of the first two variables, that is, the spiral. When

that the values fluctuate around a plateau of values close 101 = 1, 1 = 7r/2 the projection is of variables 3 and 4,

to two, and then drop dramatically near the planar pro- whilst when 0 = 0, 141 = 7r/2 it corresponds to variables
jection. Both indices pick up this projection as being 1 and 4, and to variables 2 and 3 if 101 = 7r/2, 4)= 0.
of dimension less than the rest. (The values for index 1 All the plots show a steep peak centered at (0, 0) which
were calculated with m = 20, and index 2 was calculated means that both indices respond strongly to the projec-
with R fixed at the quantile generated by a = 0.05). tion containing the spiral. (The negative index valucs

Figure 4 contains contour plots and perspective plots are plotted because the dip due to dimension reduction
of 2-dimensional projection pursuit with fl, (a), (b), is best seen as a peak in the perspective plots. Index 1
and i2, (c), (d), on 4-dimensional data with points dis- was calculated with m = 20 and index 2 was calculated
tributed on a spiral in the first two variables and ran- with R fixed at the quantile generated by a = 0.05.)
dom normal noise in the second two variables. This In both examples we see that the second index, based
is pictured in a matrix of pairwise plots in Figure 3. on the maximum likelihood estimator of the fractal di-
The space of all 2-dimensional projections of V can mension, produces sharper changes at the projection
be reparametrized in terms of two angles, (0,0)). Let- containing the structure of interest. So this method is
ting the angles each range from (-di 2,i/2) gives the not only more computationally efficient but it also makes
set of 2-projections ) : = (coo8, 0, sinu, 0su' = the structure easier to find.
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(a) (b) indices is that they don't have this requirement, so solu-
tions can be given in the original coordinate )asis.
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Abstract ing solutions ideally illuminate low dimensional structure
in the data not necessarily found by methods such as

Projection pursuit is a procedure for searching high principal component analysis.
dimensional data for "interesting" low dimensional pro- "Interesting" structure is equated with non-normality
jections via the optimization of a criterion function called by Jones (1983) and Huber (1985). They propose pro-
the projection pursuit index. Two recently proposed jection pursuit indices which are measures of deviation
indices, Legendre (Friedman,1987) and Hermite (Hall, from a null model of normality. Integral to this model is
1989), based on density estimation using expansions in the notion of aflme invariance of the indices. This sug-
terms of orthogonal polynomials, are particularly use- gests discarding structure such as location, scale and co-
ful because they are computationally speedy. A general variance, which can be fouiid reasonably well with other
form for this type of index is introduced which highlights methods, by sphering the data before beginning projec-
some problems and leads to a new index, the Natural tion pursuit. Consequently we have a framework for
Hermite. More practically we show that adjusting the considering a family of projection pursuit indices based
truncation in the series expansion tailors the indices to on an assumption that a p-dimensional data vector Z
be sensitive to different levels of structure. Low order is a random variable on BY', such that EZ = fa and
indices have a "myopic" quality enabling them to find Cove. = IP.
large structure from a distance, whilst higher order in- From Z we want to construct a k-dimensional pro-
dices are fine tuners, able to find intricate structure in jection pursuit index. For simplicity, let k = 1, so we
data but needing to be much closer to 3ee it. consider all 1-dimensional projections of Z,

1 Projection Pursuit Z.-- X = .Z- E R (a EP-),

Our interest in the structure sensitivity of projection where SP-1 is a unit (p - 1)-sphere in RP. Then X is a
pursuit indices stems from implementing projection pur- random variable on R?. In the null case if Z• d '(0, Ip)
suit dynamically (Cook, Buja, Cabrera, 1991) in XGobi, then X di Y(0, 1). Let the random variable X have
which is dynamic graphics software being developed by the n function 1 ) and varial X hav
Swayne, Cook and Buja (1990). The projection pursuit distributonsfuctio b) andrdensty f ev).Then an
algorithm can be watched as it searches for interesting index, I, is constructed by measuring the devaition of
projections. Through watching this procedure, using dif- A(z) from a standard normal density.
ferent indices and parameters on a variety of data, we be- A useful, practical index of this kind was proposed
came curious about differences in the types of structure by Friedman (1987), but he detoured from the aboveuncoere. Beoreelabratng o thse dffeence we route by first mapping X into a bounded interval I-1I, 11
uncovered. Before elaborating on these differences we by the transformation Y = 24D(X) - 1, where 4 is the
need to briefly describe the projection pursuit procedure db uthe function Y a 2tndr nore B ing
and development of the indices, distribution function of a standard normal. By doing

The term "projection pursuit" was coined by Fried- this he hoped to concentrate attention on differences in
man and Tukey (1974) to describe a procedure for the center producing an index robust to tail fluctuations.
searching high (p) dimensional data for "interesting" low In the null case if X - Y(0, 1) then Y t! U[-1, 1].
(k = 1 or 2 usually, maybe 3) dimensional projections. Let Y have distribution function G(y) and density 9(y).

The procedure, originally suggested by Kruskal (1969), Friedman's proposed index is an V-distance of g(y) from

involves defining a criterion function, or index, which the density of U -1, 1]:

measures the "interestingness" of each k-dimensional IL 1((y)
projection of p-dimensional data. This criterion function = - )2 dy (11)

is searched over the space of all k-dimensional projec-
tions of p-space, for global and local maxima. The result- We call this the Legendre index because g(y) is expanded
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in terms of the natural polynomial basis with respect to f(z) and the standard normal density with respect to
U [-1, 1], Legendre polynomials. Lebesgue measure:

Friedman's approach suggests a framework for a gen- i0 2

eral class of indices,I, based on L2-distances between the = (f(z) - d

data density, f(z), and a null density, O(z). There are
two important details of this class of indices: This index, interestingly, can be obtained through a

1. 1 is a functional of f. transformation as well. Equating the implicit weight 1
with O(z)/(TV(z))

2 we find (T'(z)) 2 = O(z), or T'(z) =
2. f depends on the projection vector, •, 0 0(z) and hence T(X) c 4).=/,(X). Such a transfor-
that projection pursuit entails the search for mation seems unnatural, and perhaps a better under-
local maxima of I over all possible aL. standing for what it means is obtained by noticing that

IH gives equal weight to all differences along R between

2 Transformation Approach f(z) and O(z). Aside from this, Hall's motivation for

Friedman's detour can be generalized by considering the design of the index is from an established approach

a transformation T: 1R --+ JR on the random variable X in density estimation.

so that Y = T(X). Then if X has distribution function We return then to Friedman's original idea of giving

F(z) and density f(z), let Y have distribution function more weight to differences in the center, which can be

G(y) and density g(y). Given that the null density of achieved by letting T(X) = X, the identity transforma-

y(z) is O(z) we denote the null density of g(y) to be P(y). tion, giving

The transformation, T, can be considered to transform IN - fyx) - O(x))'O(z)dx
the index, I, into a form suitable for estimation by an
alternative orthonormal basis, and to adjust its sensitiv-
ities to particular structures. We call this index the Natural Hermite index, and

In somewhat reverse logic, now start with I, defined Hall's index the Hermite index because both use Her-
in its transformed state (with L2-distance taken w't mite polynomials in the expansion of f(z), but IN is
i(z)dz), and map it back through the inverse transfor- "natural" since the distance from the normal density is
mation: taken with respect to normal measure.

I = f(g(y) - 0(y))•2 (y)dy 3 Density Estimation

2 In each of these indices f(z) (or g(y) in the trans-
AX(y(z) O'(z) dx ( formed version) is expanded using an orthonormal func-

-" • ) T'(z) d tions, as follows, f(z) = E=o aip, (z).
(f(X) _ 2 (z) d In the Natural Hermite index, {p,(z), i = 0, 1 .... I is

= - (z)) (- )2 the set of standardized Hermite polynomials orthonor-
mal with respect to (o.n. wrt) O(z). (Note that O(z) is

This form clearly shows that the index is a weighted also called the weight function of the polynomial basis.)

distance between f(z) and a standard normal density, More specifically, pi(z) = (i!)-'Hi(z) where H,,(z)
with weighting function O(z)/(T'(z)) 2 . is a Hermite polynomial defined by the recurrence re-

Using this formulation the Legendre index, 1 ", (1.1) lation, He,(z) = zH.,_,(z) - (i - 1)He.,-, H.o(Z) =
becomes: 1, He, (z) = z. (The subscript "e" is a convention used

Sfi ( to distinguish this Hermite polynomial basis from the
JL- 2() z) dz, basis o.n. wrt 02(z).)In addition, O(z) is expanded as cc bipi(z). Insert-

since T(X) = 21(X) - 1 =* T'(X) = 2q0(X). Ironi- ing both of these expansions into I gives,

cally the mapping proposed by Friedman to reduce the I 0

influence of tail fluctuations does exactly the opposite. IN = J (a( - bi)pa(z)) #(z)dz

The 1/0S(z) effectively upweights tail observations leav- = i0

ing the Legendre index very sensitive to differences from 0 . )2

normality in the tails of 1(z). = 0(ai - b) since pi's o.n. wrt O(z)

Through different considerations Hall (1989) observed i--

the same phenomenon. It motivated him to propose an where aj =< f(z),p,(z) >#(z)d,
alternative index that measures the Lz-distance between b, =< O(z),p 1 (z) >#(.)d (= ai when f a 0).
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Because ai depends on f, it is unknown and must (a) aO min (b) aO max
be estimated in order to estimate IN. We can rewrite
ai in integral notation as a, = fRpi(x)O(x)f(x)dx =
fRpi(x)ý(x)dF(x), which can be reinterpreted as an

expectation, a, = EFfp,(X)O(Z)}. In practice, a, is
estimated from the data by a sample average, &i =

" pj(xi)O(xj), and then IN is estimated by using
ai and truncating the sum, .3 -1 1 3 -3 -1 1 3= (c) al min (d) al max

i=O

Notably the truncation at M constitutes a smoothing of
the true index, I".

The approximations in both Legendre and Hall's Her-
mite indices are similarly constructed. In the Legendre ...
index, the set {pi(z),i = 0, 1,.. .} becomes the set of -3 -1 1 3 -3 -1 1 3
standardized Legendre polynomials. Hall's Hermite in- (e) I1 max (f) Ii max
dex uses Hermite polynomials o.n. wrt 02(x) defined
by the recurrence relation Hi(x) = 2xHi-.(x) - 2(i -
1)Hi-2(z) with Ho(z) = 1, HI(z) = 2x.

4 Structure Detection

Using the Natural Hermite index as an example, in I I
projection pursuit we are interested in maximizing I4 - -3 -1 1 3 -3 -1 1 3

1.1o~ai - b,) 2 over all possible projections. Light can Figure 1: Distributions which maximize Natural Hermite
be shed on this by examining the maximnization of the Fgr :Dsrbtoswihmxmz aua emtbe sed n ths b exainig te maimiatio ofthe index, (a) minimizes a0 , (b) (nearly) maximizes ao, (c)

components (ai - bi) 2. Being a square in aj each compo- (nearly) minimizes ao, (d) (nearly) maximizes a o, (e),(f

nent is maximized by either minimizing or maximizing (nearly) maximize ari.

ai. When ai is rewritten as EF{pi(X)O(X)} it shows

the problem reduces to finding the types of distributions, Proposition:
F(z), which minimize or" maximize the expectation. In (i) ao is minimized at 1/v12'¶", by a distribution
practice, F(z) is restricted to the set of distribution func- with equal mass of size 0.5 at ±1. (Call this
tions of all 1-dimensional projections of Z_, however to distribution type I, or a "central hole").
understand the general types of distributions to which (ii) ao is maximized at 1/V/i, by a degenerate
a, responds consider F(x) belonging to an expanded set, distribution with all mass at 0. It also maxi-
Y = {F(z) : EX = 0, VarX = 11. d Nistibi at ( ll a at/0. C_ thiso isu-

To consider minimizing or maximizing ai over Y one mioes typ at (-,f o"h /4av . (Call this distribu-
also needs to consider the limit points of F which may tion type II, or "heavy central mass").

not satisfy the variance constraint. Also it can be shown Proofp 1 _X2
that the distribution which minimizes or maximizes each (i) ao = 2-Ee- 2

ai has at most three point masses, which makes the sub- 1 -- X b
sequent analysis simpler. >__ e 2 by noting that e` is convex,

4.1 Truncation at First Term and Jensen's inequality

Consider the simplest case, truncation of the sum at 1 by the mean/variance constraints
M = 0, P1o = (ao - bo)'. In our implementation of =b
projection pursuit we found that the Natural Hermite (ii) ao - L1 e-fx'
index truncated at 0 is particularly valuable for finding /2
large structure, such as clusters, easily. Since p0 (z) = 1, 1
ao = fO @(x)dF(x), and bo = 1/(2vr). - because e- 2x is monotonically

decreasing in X 2
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Intuitively (i) says that to minimize EF4(X), F(z) 4.3 Higher order indices
should have mass as far out in the tails of R as possible, There is a general trend for odd order indices to be
but the mean and variance constraints restrict this mass maximized by skewness, type III distributions, and even
to be no further out than ±1. (This type I distribu- order indices to be maximized by heavy central mass,
tion is plotted in Figure l(a).) Conversely (ii) says that type II distributions, but as the order increases the type
because O•() has one maximum at x = 0, to maximize II distributions tend to dominate both. However this
EF46(X), F(n) needs all mass at 0. This does not satisfy global behaviour is not as interesting as it was for the
the variance constraint but it is easy enough to see that low order indices because their real power in detecting
is a limiting point of any sequence of distributions in F finely structured projections stems from their increased
with most mass near 0 and small amounts of mass in the multimodality.
tails. A member of such a sequence is plotted in Figure There is a big difference between the three indices in
1(b). the speed at which they can detect fine structure. The

Practically this behaviour means that !o. will respond Legendre index needs considerably fewer terms to collect
to projections with either heavy central mass and scat- the same intricacy as do the Hermite indices. A rationale
tered outliers or central holes. The behaviour of I-6 is for this is given by asymptotic results in Hall (1989).
identical but unfortunately the Legendre index doesn't
have an equivalent term. In fact IL = 0, for all F(z). 4.4 Two-dimensional Indices

The behaviour exhibited by the 1-dimensional indices
4.2 Truncation at Second Term extends fairly directly to 2-dimensional indices. The low
4.2.1 Second Term alone order indices have the "myopic" quality of simply and

The second term is ax where a1 = fR x~b(z)dF(z) easily finding large structure from a distance whilst the
TP(h ) = n, and bs = 0. In this case it can be higher order indices are fine tuners to intricate structure.

since =The order 0 Hermite indices are attracted to central holes
shown that the set of distributions which maximize alhavemas atonl twopoits.Givn ths, ix 0 > to because they are maximized by a distribution with all
beahe pssiationlof thewlargest points. mass, then 0 the on mass placed symmetrically on a unit circle. The order 1be the position of the largest point mass, then the con-

straints give the size of the mass at x0 to be 1/(1 + o2 ) indices respond to bivariate skewness.
and the second point mass will be of size z0/(1 ÷+ A)

at -1/no. Then taking first and second derivatives of 5 illustrations of Projection Pursuit
a, with respect to zo gives the maximum (- 0.122) at To illustrate the 1-dimensional index behaviour we
zo * 0.439. This is a right-skewed distribution, and use data from Lubischew (1962). There are 6 physi-
the reflection of this distribution exhibiting left-skew will cal measurements on 3 species of flea beetles. To con-
minimize a, at - -0.122. (These are plotted in Figure struct 2-dimensional data we take the 4th and 5th vari-
1(c),(d).) So the second term detects skewed distribu- ables, and in this view the clusters are separated but
tions. (Call these distribution type III). closely knit and the points lie on parallel lines because

This behaviour is essentially the same for both Her- the 5th variable contains discrete measurements. On
mite and Legendre indices. this data we conducted 1-dimensional projection pur-

suit with indices of order 0, 1 and 25. For the anal-
4.2.2 Piecing Components Together ysis a set of projection vectors has been generated by

Truncating the sum at two terms gives the order 1 taking a. = (cos 0, sin 0), 8 = 0V, 1I ..... 1790. The 2-
index, If = (ao- 1/(2vAw)) 2 +a, so the behaviour of I, dimensional data is projected into each 0 and the in-
depends on the interactive behaviour of the two terms. dex value is calculated. Refering to Figure 2, the data
The distribution which maximizes 1f^ is of type III but is plotted in the center of the figure and the index value
it is drawn more towards the type II distribution than is plotted in relative distances from the center, in both
the type III distribution which separately maximizes the positive and negative directions along the relevant pro-
second term, because of the contribution from the first jection vector, g. The maximum value is denoted by "x"
term. This is pictured in Figure 1(e),(f). and the dotted circle is a guidance line plotted at the me-

Practically, then, the order 1 index responds to skew- dian index value. In plot (a) 4• is calculated for each 10
ness in the data when it is present, otherwise its be- incremental projection, and (b) contains a histogram of
haviour will be the same as the order 0 index. The Her- the projected data corresponding to the maximum index
mite index will behave much the same, but the Legendre value. It is interesting to see that this has a dip in the
index will respond only to skewness because it lacks a center and relatively equal mass on either side near ± 1,
contribution from the first term. approximating a type I distribution. Plot (c) shows If,
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(a) Nat Herm(O) (b) Global Max we switch to the Legendre index. In contrast to the or-
der 0 and 1 indices the global maximum of the order
25 Legendre index, 45, corresponds to the discrete mea-

.. - surements. (Note the increased modality means a severe
tradeoff in smoothness, though.)

o. 6 Discussion

A few related matters are worth mention. One is that
the terms in the expansions are themselves measures of

- -1 o0 non-normality and rate as reasonable indices for spe-
(c) Nat Herm(1) (d) Global Max cific structure in their own right. Being specific in their

responsiveness makes them interesting in practice: one
2 - knows what one is looking for. Another matter concerns

the introduction of wavelets as a tool for density estima-
e tion, and these like the polynomials are fast to compute,

and have more tailoring capacity.
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Maximum Entropy Density Estimation
using Random Tesseflations'

Leonard B. Hearne and Edward J. Wegman

Center for Computational Statistics, George Mason University, Fairfax, Virginia

Abstract shifts increases. The idea of letting the location of
A tessellation of the support for a probability the data define the location of the bins, called data
density estimator is developed as a set of minimum directed tessellation, was developed by [Robertson,
tiles in a d-dimensional real product space. These 1969] and [Wegman, 1975] for one-dimensional data.
minimum tiles are defined by d + 1 elements in a set In particular, Wegman showed that a class of
of observations. A class of estimators is then estimators that is strongly consistent could be found.
presented that maximizes the entropy or information Maximum entropy density estimation using
in a density estimate, given a tessellation based on random tessellations also builds on, and in many
minimum tiles. This class of estimators is shown to cases extends, a number of the founding principals
be consistent. and results from computational geometry [Preparata

et al., 1985] [Edelsbrunner, 1987]. The synthesis of
1. Introduction these theoretical results has yielded a technique that

The development of density estimation provides a strongly consistent density estimator that
procedures on observation spaces of dimension is more tractable in a computational sense than the
greater than one or two has been pursued by many kernel density technique, and does not make
investigators. The technique that is presented here smoothness assumptions about the true density.
owes much of its intellectual heritage to work in The implementation of this technique would
kernel density estimation, binning methods, and have been much more difficult without the
data directed random tessellation. The development availability of object-oriented program design and
of kerne! density estimation procedures, [Rosenblatt, implementation languages. In particular, this
1956], [Parzen, 1962], and the extension of these technique has been implemented in the C+ +
techniques to dimensions greater than one in the programming language. (Stroustrup, 1986] The
1960 and 1970s by many authors, gave statistics a capacity of the language to encapsulate complex
technique that could be employed for estimating computations, particularly those operating on data
probability densities on finite dimensicnal spaces. structures, or objects, that are of unknown size a
Inherent in these techniques is the assumption of priori, has significantly reduced the time required to
smoothness of the class of estimators, which is implement a reasonably stable computational
controlled by the choice of the kernel weighting algorithm.
function, and the size of the weighting window.
More computation efficient techniques for density 2. Properties
estimation on multidimensional observation spaces The technique of maximum entropy density
have been proposed by [Scott, 1985], and [Carr et estimation using random tessellations provides a
al., 1987]. These techniques use fixed size and probability density estimate for observations drawn
location bins, and estimate the density by the from a finite dimensional observation space. In
proportion of observations in a given bin to the total particular, this technique has application to
number of observations. These binning techniques problems where the observation space can be
can then be refined by shifting the location of the characterized as a real product space and the support
bins multiple times and averaging the resulting for an estimate can be assumed to be the convex
density estimates. This technique, called an Average region defined by a set of observations. Many
Shifted Histogram, has been shown by Scott to problems in spatial statistics and in other
converge pointwise to the kernel density estimate for application areas where the basis for the observation
a kernel with constant weight, as the number of space is known to be orthogonal would benefit from

1This work was supported in part by NSF grant DMS-9002237 and ONR grant N-00014-92-J-1303.
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this estimation technique. distribution converges to the true distribution. This
The empirical distribution on a finite is also true for a density that is estimated using the

dimensional space is defined as the amount of maximum entropy technique. The density estimator
probabilistic weight on the subspace of the converges almost surely to the the true density as
observation space that is less than some finite the number of observations goes to infinity. The
dimensional limit vector, divided by the total proof is sketched in Section 7.
probabilistic weight of all observations. Between
observations, the empirical distribution is constant, 3. Assumptions
where the definition of between will be presented in There are two fundamental aspects of a
Section 3. As defined, the empirical distribution probability density function that we will focus on.
does not have a density function, since one can not The first is that there be a relative ordering of
take a derivative with respect to location. For a observations, such that they may be partitioned into
distribution function to have a density function the sets based on this ordering. The empirical
derivative of the distribution with respect to location distribution has this property. The second is that
in the supporting observation space must exist. In the underlying distribution function have a
that way the integral of the density over a derivative with respect to location in the supporting
measurable region in the support gives the observation space. Then the integral of the density
probability that a random observation will occur in over a measurable region of the support will give the
that region. probability that a random observation will occur in

In the maximum entropy density estimation that region of the support. It is because this
using random tessellations technique, the density property is missing from the empirical distribution
function is assumed constant between observations, that the empirical distribution does not have a
The integral of the density is assumed to be a density function.
connected manifold in a (d +I )dimensional space. With kernel density techniques both of the
This assumption gives this technique the general above conditions are met. The relative ordering is
flavor of the empirical distribution. This is provided by assuming that the observation space is a
discussed in Section 3. real product space. The density has a derivative by

The likelihood function is constructed in virtue of the motion of the kernel weighting function
Section 6 for the class of estimators that are part of on the supporting observation space. Kernel
this technique. This function is convex with respect techniques also implicitly assume additional
to the assignment of probabilistic weight. The derivatives from the kernel weighting function.
likelihood function is maximized by assigning all Thus with kernel density estimation techniques
probabilistic weight for an observation to the certain smoothness assumptions are being made.
adjacent element of a tessellation that has the These are related to the number of derivatives
smallest integral measure. This may leave elements implicit in the density estimator.
of the tessellation with no probabilistic weight, and Maximum entropy density estimation using
thus they would not be in the support for an random tessellations also assumes that observations
estimate. Viewed globally, under maximum come from a real product space in order to give a
likelihood there may be holes in the support for an relative ordering with respect to each element of the
estimator. If the probabilistic weight for an basis to a set of observations. Instead of assuming
observation is distributed among all adjacent that there is at least one derivative of the density
elements of the tessellation, proportional to the estimator however, it assumes that the density
content of adjacent elements, then the difference in function is constant between observations. This is
the density estimate on adjacent elements of a much the same as the assumption for the empirical
tessellation will be minimized. Also, all elements of distribution function that the distribution is constant
tie tessellation of the support will have some between observations.
probabilistic weight. This assignment of probabil- Some of the geometric concepts and definitions
istic weight maximizes the information, or entropy, that may be helpful in understanding this technique
of an estimate. are the following.

The empirical distribution has the property e A d-dimensional observation space can be
that it is strongly consistent. As the number of projected to a flat, or V1 variety, in a (d + 1)I
observations goes to infinity then the empirical dimensional product space.
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* A set of observations can be used to define the into the tessellation in vertical rank order and
vertices of a set of polytopes, of positive integral connected to all visible points then the tessellation at
measure, that form a tessellation, the top of the figure results. If instead the points are

* If a polytope in a d-dimension space has d+ 1 entered in horizontal rank order then the bottom
vertices, then this polytope is called a minimum tile. tessellation results. For an estimate to be

* In a d-dimensional space a point z is said to be unambiguous, given a set of observations, then the
between a set of d + 1 points if z can be represented tessellation of the support should be unique.
as a convex combination of the d + 1 points in the
set.
* If the distribution function, based on a density

estimate, is a connected manifold in a (d + 1)
dimension space, and the density estimate is
constant between observations, then the support for
this manifold must be a tessellation of minimum
tiles. _"

Figure 2

A minimum tile is defined by d+ 1 points.

These same points uniquely define a circumscribed d-
dimensional sphere, almost always. If this sphere

" ....." does not contain any observations in its interior then

the minimum tile defined by these d + 1 points has
the Delaunay property. If all of minimum tiles in a

Figure 1 tessellation have the Delaunay property then the
tessellation is unique. For n observations in a d-

4. Unique Tessellation dimensional space, with d < n, there exists a unique

To construct a probability density estimate tessellation that has the Delaunay property.
given a set of observations, first construct a [Preparata et al., 1985]
tessellation of d-dimensional minimum tiles defined
by as set of observations. This is a convex subspace
and is the support for an estimate. Each observation
is assumed to have some probabilistic mass, and
each observation is a vertex for one or more
minimum tiles in the tessellation. For each
observation assign its probabilistic mass to adjacent
minimum tiles in proportion to the integral measure
of the adjacent tiles. Then the density estimate on ', ......
each minimum tile is the probabilistic mass that is
assigned to that tile by its d + 1 vertices divided by
the total probabilistic mass of all observations times -.

the integral measure of the tile.
A tessellation of a d-dimensional observation

space, given a set of observations, is not necessarily
unique. Consider the observation points in the two Figure 3
dimension space in Figure 2. If points are entered
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In Figure 3 the spherical cover for the of the log of the likelihood function with respect to
minimum tile formed by the points P1, P3, P4 to the weight that is assigned to a given tile:
contains the point P2 in its interior. So this 82 m 1 - 1

minimum tile does not have the Delaunay property. 2,lL<Z)) = j(A) W(A.)
The spherical cover of P1, P2, P4 does not contain OW(A) I= I
P3, and for the set of four points in two dimensions, it is clear that the likelihood function is convex. To
this minimum tile has the Delaunay property. maximize the likelihood, all of the weight of each

observation must be assigned to the adjacent tile of
5. A Class of Estimators minimum integral measure. If one wishes to

Now a class of probability density estimators minimize the variation between adjacent tiles which
can now be presented. Let A" denote the support is the same as maximizing the entropy in the
for an estimator J(z), Ai denote an element of the estimate, then the probabilistic weight for each
tessellation of the support, p(Ai) denote the integral observation should be assigned to adjacent tiles in
measure of Ai, W(Ai) denote the total probabilistic proportion to the integral measure of the adjacent
weight on Ai, and W(A") denote the total tiles.
probabilistic weight of all observations, where n is
the number of observations. Then: 7. Strong Consistency

W(A,) Let A(z) be definedi as above. Then
) W(A ) I(Z) P (iimfcxi = f()) 1.

I x E Ai A sketch of the proof follows.
1(z) = otherwise, * Let A be the support for the true density f/z)

Given a set of observations (Y} drawn from A, then
where m is the number of minimum tiles in the A" C A and lim A"= A.
tessellation. n-foo

If W(Ai) = 0, then A(z) = 0 and Ai will not be * Let D be the maximum diameter of the spherical
in the support for the estimator An. So all A1 must covers for all Ai E An. Then lim D = 0.
have some probabilistic weight or An will not be n-+w

convex. card{Yi E {Y}:Yi < z- D}
S <_ f...f f(,)

6. Likelihood A" < z
The likelihood function for this class of card{Yi E {Y}:hY <z + D}

estimators can be written in terms of elements of the < n
set of observations: where card denotes cardinality.

n .. Taking the limit as n--oo,
L(z) H f(z,) F.(z)< lim f ... f 7(z):< F.(z)

-n A" <z

n W(Ai Under suitable regularity conditions the derivative
-= W(A) (z). with respect to location can be taken and

j=IWi~~(A ) f(z)5 <Jim f-(Z) <- fAz)
Equivalently, the likelihood function can be

rewritten in terms of the .lements of the tessellating Therefore P (lim!(z)= f(x)) = 1 0
set. Then: m ( 6

--i) =-11 -1WA)W(Anz A) 8. Example
= W(An)pA 1), Consider the set of four points

IM W(Ai) VW(Ai•/,<Ai)) {PI,P2,P3,P4), in Figure 4, each with unit
-_l= W(I .probabilistic weight. These four points define three

iW(An),4A 6 )j minimum tiles {A1,A2,A3}-A", each with the
Since each observation is, by construction, an Delaunay property. Let the integral measure of

element in one or more minimum tiles, the amount these tiles be: pA1) = 1, p(A2) = 2, 1(A3) = 3.
of probability mass that is assigned to any adjacent The attribution of probabilistic weight for each
tile is variable. If one looks at the second derivative point to individual minimum tiles to give both a
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maximum entropy product and a maximum assumptions for this technique are the density
likelihood product is shown in the following table. estimate is constant between observations and the

distribution is a connected manifold, are much in the
flavor of the empirical distribution and lend
significant analytic poLential to this technique.
Some of the areas of direct application of this
technique are:
9 Density estimation on finite dimensional

observation spaces;
e Spatial statistics;
e Analytic treatment of statistical models;
* Estimation of prior and posterior probability

densities on finite dimensional spaces.
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AN EFFICIENCY STUDY IN
NONPARAMETRIC REGRESSION WITH CORRELATED ERRORS

David B. Holiday

UT Health Center at Tyler, P.O. Boz 2003, Tyler, TX, 75710

ABSTRACT Consider a general linear estimator,

Directly optimized weights are used to examine = (

squared error loss for arbitrary linear estimators int= (1.2)
a repeated-measures nonparametric regression model V(zgt) = I y,(z) t =1....n,
which admits correlated-errors. Recent work has shown - . I
that uncorrelated-errors lead to symmetric optimality, which subsumes a large class of kernel, spline, and other
which matches the form that common kernels induce in
equi-spaced designs for kernel estimation. Correlation inatorsin mri fd
induces asymmetry in the unrestricted optimal weights
and prevents consistency in some models. It is of in- g,, = W' . (1.3)
terest whether restricted optimal estimators, derived
under symmetric, normalized, and/or nonnegative con- where W is n x n weight matrix, and
straints, would entail a significant loss of efficiency, and = ( ) ... (x,)], g", = [g,(xi) ... 91(O,,)].
whether asymmetric kernels would be more appropriate
for correlated data. The shape of directly estimated ef- A discrete estimate of the mean integrated squared er-
fective kernels, not assumed to belong to any particular ror, known as the mean averaged squared error (MASE),
bandwidth-kernel structure, such as the Gasser-Miller e.g. Rice (1984), is defined
estimator, is explored for range of correlation settings,
regression functions, and optimality criteria. Symmetric M(W) = E g(1.4)
weights are more efficient than nonnegative/normalized n
weights. However, a trade-off exists in choosing be-
tween them for fixed-designs, depending on whether and can be expressed as a matrix function of W, the
correlation or regression-function invariance is desired, true regression points g' = [g(zI) ... g(T,,)] and the

covariance of y, which is E,,, = m-'E. Under this

1. INTRODUCTION model, Holiday (1991) showed

M(W) = -tr{ W'(E,,, + gg')W - 2W'gg' + gg'}, (1.5)
Hart and Wehrly (1986), Holiday, Wehrly, and n

Hart (1987), and Holiday (1989,1991,1992) have consid- with an unrestricted (unr) minimizer of
ered the fixed-design nonparamnetric regression model: ,. = (E,,. + gg')' gg'. (1.6)

Y,(zO) = g(zt) + e,(xt); s = 1, ... , m; t = 1, ... , n; In Holiday (1992), common constraints on the weight

cov{e,(zt),f,,( ()) = 6b,, 0,2 Y(xt - zX). (1.1) matrix in (1.3) were imposed before minimizing, yield-
ing theoretically optimal symmetric (sym), nonnegative

This model is plausible for some growth curves where m (nng), normalized (nrm), and nonnegative-normalized
independently-behaving animals are observed at n times (nnn) weights. Let

SI,..., z,,, usually equi-spaced, and it is desired to esti-
mate the population average regression 9. A parametric B E, + gg' = HDH', (1.7)
or nonparametric positive-definite function "y(.) is pos- where H is orthogonal and D = D[d1 ,..., d,,] contains
tulated, which introduces potential correlation among eigenvalues of B. Then the jth column of the optimal
the within-subject errors. The model also generalizes symmetric W = W' is
the usual uncorrelated-errors model obtained by setting
m = l and -y(O) = 1 with y(u) = 0 for u • 0. W ,, :w = 2HDJH'g, (1.8)
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where the diagonal matrix Dj is Both yield symmetric or near-symmetric W for equi-
spaced designs and even kernel functions K(.), such

" g(T,)hpht , n g(x,)hjh,, as the Epanechnikov. Therefore for uncorrelated-errors
DE dt + d, E d+d,, - models, a symmetric W1, (as a function of the bandwidth
8=1 tl =1 t=1 h) would seem to naturally do well since it matches the

For the optimal nonnegative weights, it turns out form of the optimal. The main question of this paper is,
that each column of the optimal matrix is the solution when symmetry is destroyed by introducing correlation,
of a quadratic programming (QP) problem: can one optimize symmetrically and retain efficiency, or

if not, would asymmetric kernel functions be suggested?

min B w + c; wj (1.9) In addition to the symmetry question, other corn-
WJ Wmon constraints, such as nonnegative-normalized, are

examined. The estimator of Nadaraya (1964) and Wat-
son (1964) with K(.) Ž 0 yields nonnegative columns

W,,: 3At. wi 0, (1.10) summing to unity for Wl,. This estimator has histor-
- 0ically been preferred for the case of random x-points

for j = 1,...,n; furthermore, B is from (1.7) and (Chu and 'Marron, 1991). The behavior and shape of
similarly-restiicted effective kernels are also of interest

ci = -2 g(zx) [g(nx)," ",g(z,,)]'. for a variety of g and E.

The optimal normalized weights use (1.9) with 2. EFFICIENCY STUDY

si.8-t- (I t) - = 1(1.11) For a given m , n, define the efficiency ratios,

where 1,, is an n-vector of l's. The nonnegative and
normalized weights use (1.9) with EFF(sym, unr) = MASE(W .., r) x 100% (2.1)

MASE(W, .... )

W, .t i (1,,1,) wj = In, (1.12) EFF(nnn, unr) = MASE(W,,)x 100%. (2.2)

wi > 0. MASE(W,,,,r)

These weights obviously are not estimators due to Smaller values imply greater efficiency. Underlying
dependence on unknown g and E. However, MASE val- effective kernels for choices of g and a E under (1.1)
ues, evaluated at the minimizers, are approximate effi- and (1.13) are examined. W,.,,,,, differing little from
ciency bounds in linear estimation, especially for Wnn,,. Wn,, and W,,,,,, erratic and hard Lo characterize, were

, may be a benchmark for equi-spaced designs omitted.
that use popular kernel estimators with symmetric ker- For an equi-spaced design, Holiday, Wehily, and
nels, such as the Epanechnikov, without bias-reducing Hart (1987) calculated the minimal M(Wl,) with a
boundary modification. bandwidth search for W1, induced by the Epanechnikov

Holiday (1991) demonstrated for the parametric kernel in the Priestley-Chao, Gasser-Miiller, Nadaraya-
correlation model Watson, and normalized Gasser-Mfiller estimators, com-

paring against M(W,,,.). Severe inefficiencies were
"= pn,, 0 < p < 1 (1.13) noted, although this was prior to knowledge of the re-

stricted minimizers given by (1.7) - (1.12). Some of the
that M(W,,,,,) 74 0 for fixed rm with n --+ oo, unless same g were chosen here (Figure 1):
p = 0, precluding the possibility of any mean-square
consistent linear estimators when p 6 0. Also, the form A : g(x) = sin(w x + (7r/2))
of (1.6) is generally symmetric only if E is a diagonal B : g(z) = 20 + sin(t x + (7r/2))
matrix (uncorrelated errors). The Gasser and Mfiller C: g(z) = 1 - X (2.3)
(1972) or Priestley and Chao (1972) estimators are
traditional kernel smoothers, the latter defining the wi(
in (1.3) as

Wh • z,+- XiK(x ). (1.14)
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Figure 1. Regression functions Table 1. Efficiencies (2.1), (2.2) for (2.3),(2.4)

M(W,, 7,) %EFF %EFF

g(X) 0o2 /m p (1.5,1.6) (2.1) (2.2)

0 A 0.1 0.0 0.0098 100 831

o0.2 0.2 0.0172 102 441

S0.0or 0.7 0.0062 100 1485

-0o. 1.0 0.0 0.0833 100 258

-0•.0 8-+Pntjsow) A 0.2 0.1311 102 543
-0.,s 0.7 0.0561 100 1639

__._1.0 _ 10.0 0.0 0.3333 100 400
0+06 0.18 0.26 0.5 0.48 0.66 0.66 0.76 0.88 0.086 0.2 0.3902 100 1588

x

0.7 0.2792 100 3187

Other design values were B 0.1 0.0 0.0110 100 220

0.2 0.0582 108 130
n = 10; x, = (j - 0.5)/10; j= 1,..., 10, 0.7 0.0850 105 109

(a 2 /m, p) E {0.1, 1, 10} x {0, 0.2,0.7}. (2.4) 1.0 0.0 0.1000 100 189

0.2 0.5781 109 123

An additional sample size (n = 25) in Holiday, Wehrly, 0.7 0.8678 102 106

and Hart (1987) did not yield additional insight, at least 10.0 0.0 0.9975 100 134

for W,,,,,, and was not considered. The ratios (2.1), (2.2) 0.2 5.7060 108 109

are given in Table 1. Figure 2 displays the effective 0.7 8.3074 105 107

kernels, i.e , plots of the columns of W, for a 2 /rn = 1, C 0.1 0.0 0.0097 100 215

p E {0, 0.2}. Kernel features v ere less affected by o:/m. 0.2 0.0313 140 227
Tendencies for increasing p are saliently described for 0.7 0.0178 306 513
only two correlations. 1.0 0.0 0.0769 100 189

In Table 2, W.Y,,, often achieves near 100% effi- 0.2 0.1695 115 374
ciency. Interestingly, M(Wi,,,,) and/or M(W 1y,,,) lack 0.7 0.1202 169 744
monotonicity, as a function of p (for fixed u2 /m), for 10.0 0.0 0.2495 100 431

all g except B, which makes general tendencies harder 0.2 0.3033 102 1940

to spot. This apparently does not hold for M(W,,,,), 0.7 0.2826 109 3074
which steadily increases for all functions. It is easily D 0.1 0.0 0.0098 100 2005

shown that WM,,... is invariant to location shifts in g, as
confirmed in Figure 2 for A, B. 0.7 0.0023 14 79

The empirical ev; lence suggests that W,,,, under 0.7 0.0023 214 4009
this covariance structure is highly invariant to changes 0.2 0.0804 142 3

in p, but not for changes in ao2 /m (data not shown). 0.2 0.0804 142 863

Since W,,,,, for p = 0 is inherently symmetric (even for 0.7 0.0221 201 4136

unequally-spaced designs), and thus must equal Wy,,,, 10.0 0.0 0.3333 _10 400

there is the implication that W,,,, can be obtained for 0.2 0.3286 111 1868

any p by assuming E = '2 I. The changing penalty of 0.7 0.1582 148 5601

using , when varying p • 0 is not much worse than
using the corresponding optimal and asymmetric W,,,...

Before Wy,,.. is declared the victor, observe W.V,,,, In Figure 2, the shapes of 1,,,.. are similar to g
for B in Figure 2, which indicates that a near flat for p = 0, but become distorted near the boundary as p

constant is the optimum in all cases. Since the curvature is increased, but apparently less so if g is near 0 at the
i- B is the same as A, apart from a constant shift in boundaries, as in D. This is perhaps specific to (1.13).

g, this is unappealing. B, W,,,,,, and p = 0 in For p = 0 and linear g, as for C in Figure 2, coluains

Figure 2 exhibits the intuitive tendency, with a nice of Wu,,, and of W.,,,, for all p (not shown), appear

redistribution of weights around the point of estimation linear as well. Also for C, W,..., kernels appear linear
as it moves across the interval. In Table I for B, W ..... or piecewise linear; for p = 0, WM,.. may vanish at the
is almost as efficient as W,m,,. in all cases. axis confluence, although this .vas clearer for another
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& Uwz ,ho-O A. urkr. rtio-O.2 C, urv. rWi-O C. wzy "t~=02

A, eyff%1 Ifl-O A.wr, sym ro-O.2 C, WON. &0a- C, &jM "h-0-2

A, nnn. rWo-O A, nnn, ,ho-O.2 C, navi, rtao-O C, man, rho-O.2

0 ,v IINKrh-0 B, urv. rho-O.2 0, urw. rho - 0 , Lay, rta-O.2

13, myMn rho -0 S, sv, rt*a-O.2 D, myM .0 Dh . wsyi, &*O-O.2

B. nm, di-0 8, MW16 tao-O.2 D, rn arho - 0 D, nrnrho-0.2

Figure 2. Effective kernels Wuir W,,,r, and Wjjjj given by (1.6), (1.8), and (1.12), respectively. Design is given

by (2.3) and abridged (2.4), using only (a/rn = 1, p E {0,0.2}. Axis description: upright =weighits,

scaled -0.3 to 0.6 by 0.15; lower left = design points, x, = (j - 0.5)/10, j = 1,, .,10; lower right

columns of W, corresponding to point at which estimation is being made (j).
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g(x) = 2 + 3x (not shown); for p : 0, W,.,,,. appears present. Effects of partially negative correlation models
to have three segments, as for C, p = 0.2 in Figure 2, are presently unknown.
where the kernels take on a more inverted shape as p
increases. W,,,,, kernels are also affected by the size of ACKNOWLEDGEMENTS
g at the boundaries, less so for D, as mentioned above.

In Holiday, Wehrly, and Hart (1987), it is argued
that the amount of kernel smoothing is governed by the The author would like to thank Jonathan Raz for
relative sizes of a 2/m and f g2 . Therefore, when a 2 /m a critical reading. The technical assistance of Trey
is relatively small or W,&,, is used, the percentage of Spencer is also greatly appreciated.
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of the dominating bias has been eliminated. Although
W,,,,, changes a lot for some functions and not others
as p is varied, this is not terribly important since the [1] Chu, C.-K., Marron, J.S. (1991). Choosing a
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function models, dynamically creates new generation of
Abstract function models using a hierarchical genetic algorithm, and

optimizes the coefficients of the function models using the
Given data in the form of a collection of (x,y) pairs of Levenberg-Marquardt nonlinear regression algorithm, and

real numbers, the symbolic function identification problem tries to make the function models "best" fit the given sample
is to find a functional model of the form y = f(x) that fits data points. A system called HGSFI (Hierarchical Genetic
the data. This paper describes a system for solution of sym- System for Symbolic Function Identification) was imple-
bolic function identification problems that combines a mented using this design method. This system does not
genetic algorithm and the Levenberg-Marquardt nonlinear need any priori knowledge about the system or function
regression algorithm. The genetic algorithm uses an model to find a function, in symbolic form, that fits a given
expression-tree representation rather than the more usual sample data points.
binary-string representation. Experiments were run with
data generated using a wide variety of function models. The 2 Nonlinear Regression
system was able to find a function model that closely
approximated the data with a very high success rate. Regression analysis is a statistical technique for inves-

tigating and modeling the relationship between variables.
1 Introduction Suppose that we have n pairs of observation data points (x1,

Y,), (x2, Y.), ... , (xN, y,), and the univariate nonlinear
The function identification problem is to find a functional regression equations are as following

model of an experimental system, in symbolic form, that fits yk = f(xk, B) + ck (2.1)
the experimental data points produced by the system. In where f(x, B) is the known response function, x is an
this problem, fundamental properties of an experimental independent variable, B = [b1, b2. ... , b.11 is an M di-
system are to be determined from observed behavior of that mensional vector of parameters to be estimated, the ck
system. The functional model is a mathematical idealization represents a random error with mean zero and unknown
that is used as an approximate model of the system, and is variance o2, and the subscript k = 1, 2, ... , N ranges over
chosen to give good fit to the given experimental data the N observations. The sequence of values of the indepen-
according to a chosen evaluation criterion. dent variable (x,} is treated as a fixed known sequence of

This paper describes a computer program to solve the constants, not as a random variable [3].
one-variable symbolic function identification problem. Re- The error sum of squares for the nonlinear model and the
searchers in artificial intelligence (machine learning) have given data is defined as
investigated the mechanisms of machine discovery and
designed some machine learning systems to find empirical SB = E [yN -f (xk, B) (2.2)
laws (function models) from the observations [1][2]. Most k1k-l
of these methods vary widely by task domains. The purpose
of this research is to investigate the feasibility of designing
a general-purpose machine function identification system There are several algorithms for minimizing the error sum
which can automatically build a function model to fit the of squares. The Levenberg-Marquardt algorithm works
given experimental data. The new method to solve the very well in practice and has become the standard of
function identification problems is to combine a symbolic nonlinear least squares routines 141.
computing method (the hierarchical genetic algorithm) and
a numeric computing method (the Levenberg-Marquardt 3 Genetic Algorithms
nonlinear regression algorithm) to build a general-purpose
machine function identification system, which can find a Genetic algorithms are randomized search algorithms
highly fit function model to a given sample data set. The based on the mechanics of natural selection and natural
machine function identification system searches the space of genetics [5][6]. A population of potential solutions to the
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problem is generated randomly. These potential problem +
solutions are called individuals, and each individual is
represented by a "chromosome'. Each individual is + +
assigned a fitness that represents how well it solves the
problem. In an optimization problem, the fitness is nor- C * * *
mally a rescaling of the objective function. In HGSFI, each rLI L.... L.. ...
individual consists of a function model together with values C2 X * c 4  pow
of parameters for the function model. .. L......j

Most genetic algorithms use a generational approach. X X X 3
The process of producing a new generation involves two
major phases. In the selection phase, the more highly fit Figure 1: One expression tree for the
individual are reproduced, and the less fit individuals are cubic polynomial model
deleted from the population. In the genetic operator phase,
genetic operators are applied to the population to generate The solution domain is the set of valid function models
new individuals. The most commonly used genetic opera- that can be recursively created by compositions of the
tors are crossover where two individuals are combined to available function operations and the available terminals for
produce one or two new individuals, and mutation, where the problem. This is represented in the computer as the set
a single individual is modified in a random way to produce of expression trees with a terminal at each leaf and an
a new individual. It is expected that the genetic operators function operation at each interior node. In our system, the
have some chance of producing individuals that are superior knowledge (i.e. function models) are represented as expres-
to their parents. The genetic algorithm goes through a sion trees.
sequence of generations.

The most common way of representing the chromosome 3.2 Generation of the Initial Population
of an individual is as a bit-string. However, many genetic
algorithms that have done well in practice have used a Genetic algorithms begin with an initial population.
chromosome representation that is tailored to the particular Generation of the initial random population in HGSFI begins
problem. by selecting one of the functions from the set F at random

to be the root of the tree. For an interior node with an k-
3.1 Knowledge Representation argument function, k lines are created to radiate out from

the node. Then, for each line so created, an element is
To represent various complex function models, we chose selected at random from entire combined set S = F u T

the hierarchical structure representation to represent chro- (which is the set of functions and terminals) to be the label
mosomes (or population members), which was developed by for the endpoint of that line. If a terminal is chosen to be
John R. Koza [7]. In a hierarchical structure representa- any node, the process is then complete for that portion of
tion, population members for a particular domain of interest the tree. If a function is chosen to be the label for any such
are represented by expression trees. For instance, the cubic node, the process continues.
polynomial model

3.3 The Fitness Functiony = C1 + C2X + C3 X 2 + C4X

In HGSFI, the Levenberg-Marquardt algorithm is applied
can be represented as the expression tree shown in Fig. 1. to optimize the parameters of each function model before its

Suppose that in a function identification problem the performance and fitness are evaluated.
available set of n functions is F= {f,, f2, ... , fQ} and the In our system, the performance of an individual function
available set of m terminals is T= {a,, a2, ... , a,). The model i at generation t is defined as following
"terminals" may be variable atomic arguments or constants.
Each particular function f in F takes a specified number z(t Perf (i, t) N 1
of arguments b1, b2, .... bg. Depending on the particular N

problem of interest, the functions may be standard arithme- l iYk-i (xk, Bit) I
tic operations such as addition, subtraction, multiplication, 1=2

and division , and/or standard mathematical functions (such
as exp, sin, etc.). where f;"•(xk, B,("') is the function equation of individual i at

generation t. B,(" is the estimated parameter vector of
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individual i at generation t. The larger the performance, the The two offspring resulting from crossover are shown in
better an individual in the population. Then, the fitness of Figure 3.
individual i at generation t is calculated as

Offspring 1 Offspring 2
f(iPer(i,t) / +

PS I I

Perf (k, t) + exp C, *

C, * *C 2  +
where P. is the population size. The fitness lies between 0 1 1_.__.L.....

and 1 and is larger for better individuals in the population. C2  x C3  x + *
The sum of the fitness values in a population is 1. Then the rL.. F
expected number of individuals cloned from an individual in C3  * C5  *
the selection phase is this normalized fitness times the rL, r-Lm
population size. C4  x x x

3.4 Genetic Operators Figure 3: The two offspring resulting
from crossover

The genetic operators manipulate individual structures in
a population and produce new structures. The two primary After crossover, a small number of random nodes of some
operations for modifying the structures undergoing adapta- individuals in the population are selected and changed
tion are crossover and mutation. A third genetic operator, through mutation. The mutation operation selects an
permutation is also used in this paper. individual from the population and a node of the tree

In the crossover operation, individuals in the population representing the individual at random. Then a member of
are randomly chosen for crossover, employing a user- set S of terminals and functions is chosen to replace the
specified crossover probability. Crossover can be imple- function or terminal at the selected node. If the new
mented as the following. First, two parents are chosen from function operation has different number of arguments with
the population randomly. Then one tree node in each parent old function operation at the selected node, the mutation
is selected randomly and independently according to a operation needs to add a randomly generated tree branch to
probability distribution. The two offspring are produced by the node, or delete the extra branch.
exchanging the subtrees lying below the crossover points. The permutation operation selects an individual from new
For instance, consider the two parental expression trees in population, and a function (internal) node of the selected
Figure 2. individual randomly. If the function at the selected node is

Assume that the nodes of trees are numbered in a depth- a binary function, then left child and right child are
first way starting at the left. Suppose that the seventh node swapped. Note that if the function at the selected node is
(out of the 17 nodes of the first parent) was selected as the commutative, there is no immediate effect from the permu-
crossover node for the first parent and that the fifth node tation operation on the individual tree.
(out of the 8 nodes of the second parent) was selected as the The kernel of HGSFI is the genetic algorithm. The main
crossover node of the second parent. loop of HGSFI is an iterative procedure which maintains a

constant-size population P(t) of candidate solutions.
Parent I Parent 2

/ + 4 Experimental Results

+ + C, * We used a wide range of function models from many task
r--!--I I I I • domains to test and evaluate the performance of HGSFI

C, * + * C2  exp machine function identification system. These experiments

rL- r-'-- r were run under the UNIX (Ultrix) operating system on a

C2  X C3  * C5  * * DEC-5500 system.

r-1-1 r-F--7-- The test function equations are listed in Table 1. The
C4  X x X C3  X sample data (no noise) of the test problems were uniformly

generated using the test function equations in the given X
Figure 2: The two parental expression trees ranges with the given number of points. For all of the test
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problems, we randomly generated initial function models. model that generated the data. Especially for complex
The only prior knowledge used was the primitive functions, nonlinear models, HGSFI was likely to find a high-degree
such as +, -, /,I, exp, log, sin, cos, etc., that were used polynomial that closely approximated the data [8]. In part,
in representing the population of function models. The this is because the space of parameterized function models
detail of setting control parameter values to run HGSFI is will include many function models that closely approximate
discussed in [8]. a given data set. In addition, a polynomial model that

The experimental results for the test problems are listed approximates the data reasonably well can be improved by
in Ta'He 2. In the table, the total runs columns contains adding on additional high-degree terms with small coeffi-
the total number of runs for the given problem. The cients.
success rate means the ratio of the number of successful Limited experiments show that choosing a stricter con-
runs to the total number of runs for a given problem. We vergence criterion would improve the ability of HGSFI to
define a run to be successful for the given sample data set find the function model that generated the data. We
if the convergence test value of some function model in the speculate that a search strategy that forces HGSFI to
run concentrate on simpler models in early generations before

going on to more complex models in later generations would
substantially improve the performance of HGSFI in finding

=1 -f -k=1 N x(4.1) the "correct" function model.Ctest =iNfi (4.1)
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HGSFI was less successful at finding the same function



M. Jiang and A.H. Wright 497

Table 1: The set of test problems

Problem Function Equation X range Pts

4.1 Y = X + X2 + X3 + X4  [-2.0, 2.01 100

4.2 Y = sin(X) + cos(X) + X + X2 [-5.0, 5.01 150

4.3 Y = cos(X + X) [0.0, 6.01 20

4.4 Y = X2 - X7  [-5.0, 5.01 150

4.5 Y = 3.1416*X+2.718*X2  [-5.0, 5.01 100

4.6 Y = 0.808162*exp(-1.21*X) [-2.0, 8.01 100

4.7 Y = -2.3+3.0*X+0.45*X2-1.23*X3  [-5.0, 5.01 100

4.8 Y = 21.10-19.81*exp(-0.00177*X3'. 80 ) [0.0, 14.01 140

4.9 Y = 3.2*sin(X)+2.5*cos(X) [-2.0, 18.01 200

4.10 Y = 0.45+6.032*exp(-X) [0.0, 20.01 100

4.11 Y = 0.1-2.0*X+0.5*log(X) (0.0, 20.01 100

4.12 Y = X/(0.3 + 0.06*X) [0.0, 10.01 100

4.13 Y = 10.0/(1+25.0*exp(-0.8*X)) [0.0, 10.01 100

4.14 Y = 0. 6* (e4 3X-e- 6X) / (0. 6-0. 3) [0.0, 20.01 100

Table 2: Experimental results of the test problems
with LM optimization

Prob Tot Suc- Avg. CPU Average Average Average
-lem -al cess gen. for time test test best

run rate suc. per run value value R for
s (%) runs (min) for suc. for all st1'

runs runs runs

4.1 26 100 10.5 37.58 .998411 .998411 .999994

4.2 20 100 10.65 79.33 .998450 .998450 .999983

4.3 30 100 1.066 0.425 .999952 .999952 1.00000

4.4 30 80.0 31.13 84.44 .997754 .923638 .999957

4.5 20 100 3.65 6.94 .999929 .999929 1.00000

4.6 20 100 2.05 3.92 .999880 .999880 .999994

4.7 50 100 10.44 30.10 .998385 .998385 .999992

4.8 49 100 14.31 107.4 .993469 .993469 .999791

4.9 20 100 4.8 16.62 .999776 .999776 1.00000

4.10 23 95.7 10.36 95.75 .999231 .991547 .999993

4.11 25 100 1.0 2.04 .996607 .996607 .999830

4.12 20 100 8.4 99.84 .999674 .999674 .999996

4.13 30 96.7 18.55 350.3 .999344 .998610 .999998

4.14 20 95.0 11.42 152.5 .995469 .994697 .999951
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Abstract - A critical issue in neural network design is the linear models and have recursive forms, it is difficult to
determination of an optimal structure of the network for a derive the exact characteristics of the networks.
given task. It is known that the number of hidden units must
be sufficient to discriminate each observation correctly. One common method for structure determination is
However, a large number of hidden units requires long to increase the number of nodes or layers so that the model
computational time in training and prediction results may not can reduce the training errors. Adding nodes or layers may
be reliable, result in fitting the training data closely. However, it

introduces a danger that the model will be overfitted. In
This study attempts to develop a formal procedure other words, constructing the network with an excessive

to determine the structure of a multi-layered neural network. number of nodes or layers not only increases processing time
The paper applies a statistical model building procedure to but also sometimes loses a generalization capability [17].
neural network design. Principal component analysis (PCA) Generalization refers to the characteristic that a model can
is proposed to determine the optimal number of hidden units accurately predict untrained data as well as trained data.
for a multi-layered feedforward network. Therefore, it is crucial to have an objective way to determine

the network structure which produces the minimal errors
with the smallest size.

I. Introduction
Another point to be made here is that most previous

Interest in neural networks has expanded rapidly in studies on selecting the optimal structure for a network have
recent years. The Parallel Distributed Processing (PDP) been done in the context of discrete classification problems
research group has greatly contributed to the resurgence of [4], [15]. However, this paper concentrates on the issue in
neural network models [13]. Much of the success of neural the context of continuous cases, especially time series
networks is due to their characteristics of parallel processing, forecasting cases.
non-linear processing, non-parametric and distributed
representation, etc. [9]. II. Review of Previous Studies

While there have been considerable efforts to Previous studies on selecting a network structure
develop various neural network models, such as feedforward can be categorized into four approaches: the ad-hoc
multi-layered networks, recurrent networks, self-organizing approach, the dynamic approach, the distribution approach,
maps, etc., and learning algorithms such as the Perceptron and others. The ad-hoc approach means that an experimenter
and the generalized delta rule, the design for the optimal usually has a clear idea of the problem and he/she decides
structure of a network for a given task has still remained a the structure of the network arbitrarily based on his/her
problem. Designing an optimal structure involves finding a experience. The justification for this approach is the
structure with the smallest size network which produces the robustness of the neural network, that is, the network
minimal errors for trained cases as well as for untrained structure may not affect the performance of the network
cases. The size of the network is defined as the number of significantly [16]. Although neural networks are quite robust
parameters to be estimated. with a given structure, the structure still makes an impact on

the performance. To illustrate this argument, Table 1 shows
The difficulty in finding the optimal network an experiment done with Sunspot data from 1770 to 1869.

structure for a task is due to the complex nature of neural As the network model changes the internal structure of the
network models. Because neural networks are usually non- network, the mean square error (MSE) also changes. It
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clearly shows that the internal structure of the network Hwang's algebraic projection (AP) method [10] checks the
affects the performance of the network. regularity of the training data set and determines the number

of hidden nodes based on the regularity. Frean [5] suggests
Table 1. Sunspot Data 1770 - 1869 adding a hidden unit whenever a classification error occurs
MSE from Each Network Structure so that the hidden unit can eliminate the error. When there

is another kind of error, it adds another hidden unit to
control the error.

Network Structure MSE
In summary, although many researchers have made

2 x 5 x 3 x 1 204.27575 efforts to find the optimal structure for a network, success
2 x 2 x 2 x 1 207.46329 has been very limited and I results are sometimes
2 x I I x 1 175.74534 contradictory. Still mo. -posw approaches are on a trial
2 x 3 x 1 169.97752 and error basis rather , , mathematically proven. In the
2 x 1 x 1 208.78760 next section, the paper proposes a method to find the optimal
2 x 0"x 1 245.73909 structure for a network.

* represents a network without hidden units. III. A Method to Determine the Structure of a Network

Note 1: All networks are trained with the learning rate 0.3
and the momentum factor 0.7. Structure determination in this paper refers to the

questions: (1) how many layers are required and (2) how
Unlike selecting the structure on an ad-hoc basis, many nodes are required in each layer. Structure

the dynamic approach automates the structure selection determination does not include the selection procedure of
procedure. The idea is to increase or decrease the number of input nodes and output nodes.
hidden nodes dynamically during the training process based
on system errors. The procedure is repeated until there is no As Lippman [11] points out, the two-layered
change in the system errors. Typical examples are the network - a network with only one hidden layer - can
method proposed by Hirose et al. [61, the cascade-correlation describe a fairly complex non-linear relationship as well as
method proposed by Fahlman and Lebiere [3], and the a linear one between the input variable and the output
weight-elimination method by Weigend et al. [17]. variable. Although the three-layered network is more flexible

in describing a complicated relationship, it has a drawback,
The distribution approach is an attempt to either i.e., an increase in processing time. Hornik et al. [7] and

find or assume the distribution function of estimates; it tries Hornik [8] prove that the two-layered network with a
to derive a statistic to measure the performance of the sufficiently large number of hidden nodes can represent any
network. For example, White (181 proposes a technique to functional relationship between the input variable and the
test whether a current network ignores any non-linear output variable. Therefore, this study concentrates on the
components, i.e., hidden units. Fogel's [4] method is another second issue: how many nodes are required in the hidden-
example for the distribution approach. Under the assumption layer in the two-layered network.
that the input to the final node has a normal distribution he
proposes a statistic called the Final Information Statistic As mentioned earlier, when a network has a large
(FIS), which is a derivative of Akaike's information criterion number of hidden units, it may not produce reliable
(AIC) [1]. To select the optimal number of hidden nodes, the estimates from the training data and the computation is
method requires a calculation of the FIS for each proposed costly. However, if the network is not large enough, it will
model and chooses the model which has the smallest FIS fail to describe the relationship between the input variable
value. Another technique which belongs to the distribution and the output variable. Therefore, the optimal number of
approach is Sietsma and Dow's pruning approach [14, 15]. hidden units is important for network design.
Pruning refers to a process that determines unnecessary units
in a solution and removes them from a network [14]. If.1. Proposed Technique
Sietsma and Dow divide the pruning process into two stages
to eliminate unnecessary units. The idea of the proposed method is to check

whether there is any redundant information on the outputs of
Along with the approaches mentioned above, there the hidden nodes and, if there exists any, then the method

are some other techniques for this problem. Kung and eliminates the redundancy by using principal component
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analysis (PCA) [121 so that a fewer number of nodes can for the principal components. In this case, however, the
describe the relationship without losing information. The principal components can be considered as the equations to
steps of the proposed method are as follows: define a hyper-region and p" is the number of equations to

be required to define the region.
1. Initially train a network with an arbitrarily large number 4. Unlike other methods which require many experiments
of hidden nodes. with different structures, the proposed method requires
2. Obtain the covariance matrix (pxp) of outputs of the training of only two network structures. Another advantage
hidden nodes. P is the number of the hidden nodes in the is that it may not require new learning when the principal
initial network. components are highly correlated with the selected hidden
3. Apply the principal component analysis technique to the nodes. Because the reduced number of nodes have most of
covariance matrix, the information possessed by the original nodes, it may not
4. Obtain the eigenvalues of the matrix, require retraining of the network.
5. Count the number (p") of eigenvalues whose value is
greater than 1. IV. 1llustrations
6.a. If p* is less than p, pick p nodes out of p by examining
the correlation between the hidden nodes and the selected This section illustrates how the proposed method,
principal components. especially PCA, can be used to select the network structure.
6.b. Otherwise, it confirms that there is no redundant An experiment is done with yearly Sunspot data from 1770
information. However, it is not guaranteed that the current to 1869. This series also has been analyzed by Box and
network has the optimal number of hidden nodes. The Jenkins [2] and is identified as an AR(2) model. A 2xllx1
system may need more hidden nodes to improve its network which has Y,., and Y,.2 as inputs is initially trained
performance. In this case, the method proposed by White to predict one-step-ahead forecasted value Y,. After training
[18] can be used to test whether the system needs additional the initial network, the covariance matrix of the outputs of
hidden nodes. However, as long as the initial network has a the hidden units is calculated to determine the optimal
sufficiently large number of hidden nodes, this seldom structure of the network. The eigenvalues produced by the
happens. matrix are 8.3093, 2.5978, 0.0568, 0.0359, 0.0001, 0.0001,
7. After determining the number of hidden nodes, there are 0, 0, 0, 0, and 0. Two principal components can explain up
two ways to retrain the network with a new structure: one is to 99.15% of the total variation. Therefore, two units are
to randomly generate initial weights again and to retrain the selected as an optimal size for the hidden layer and a
network from the start. The other approach is to use the network with two hidden nodes is retrained. For comparison
estimated weights, especially the ones between the selected the same data set is trained by four other different network
hidden nodes from step 6.a and the output node as starting models as well. Table 2 shows the MSE from each of these
values. The second approach is expected to reduce the models. All networks are trained with a learning rate 0.3 and
number of iterations required for training, a momentum factor 0.7. As illustrated in Table 2, the

proposed network has the smallest training error. When the
In summary, the method examines the covariance same data set is estimated by the AR(2) model, the MSE

matrix of outputs of the hidden nodes in order to test the from the AR(2) model is 222.95538.
optimal structure of the network. Each node in the hidden
layer has as input the linear sum of the input variables and Table 2. MSE from Each Network Structure
produces as output the sigmoidal transformation of the input.
If there is any redundant information, for example, a hidden
node can be represented by another hidden node or a set of Network Structure MSE
hidden nodes, the rank of the covariance matrix will be less
than the number of hidden nodes. The advantages of this 2 x 11 x 1 175.74534
method are: 2 x 3 x 1 169.97752

2 x 2 x 1" 163.34526
1. It is simple and easy to implement. 2 x 1 x 1 208.78760
2. It does not require any assumption on the distribution of 2 x 0"x 1 245.73909
estimators. AR(2) 222.95538
3. The technique, PCA, is already a well-established
technique in multivariate statistics. A drawback of the PCA * indicates the proposed optimal structure.
method is that it is hard to get a meaningful interpretation ** represents a network without hidden units.
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Theresult shows that the proposed networknot only Vol. AC-19, No. 6, December 1974, 716-723.
produces the smallest training error among the networks but
also has a smaller error than the AR(2) model. [2] G. E. Box and G. M. Jenkins, Time Series Analysis:

Forecasting and Control, San Francisco: Holden-Day, 1970.
So far, the series have been examined only in terms

of training error. However, it is also important for a model [31 S. E. Fahlman and C. Lebiere, "The Cascade-Correlation
to have the capability to accurately predict values outside of Learning Architecture", Advances in Neural Information
the training data set. To examine such a capability of the Processing Systems, edited by Touretzky, David S., Vol. 2,
neural network model, the first 88 observations from 100 San Mateo, CA: Morgan Kaufmann, 1990, 524-532.
observations of the Sunspot data are used for the training
data set and the other 12 observations are stored as the [4] D. B. Fogel, "An Information Criterion for Optimal
testing data set. To compare the power of this model with a Neural Network Selection", IEEE Transactions on Neural
time-series model, the AR(2) model is also used for Networks, Vol. 2, No. 5, September 1991, 490-497.
estimation and forecasting with the same data sets. MSE
from the AR(2) model for the testing data set is 177.2645 [5] M. Frean,, "The Upstart Algorithm: A Method for
and MSE from the selected neural network model is Constructing and Training Feedforward Neural Networks",
163.3360. It shows again that the neural network model has Neural Computation, Vol. 2, 1990, 198-209.
smaller forecasting errors than the AR(2) model for the
outside training data set as well. [6] Y. Hirose, K. Yamashita and S. Hijiya, "Back-

Propagation Algorithm Which Varies the Number of Hidden
For this Sunspot data series, it is concluded that the Units", Neural Networks, Vol. 4, No. 1, 1991, 61-65.

neural network model proposed by this paper produces better
forecasted values for the training data set as well as for the [7] K. Hornik, M. Stinchcombe and H. White, "Universal
outside training data set than the AR(2) model. Approximation of an Unknown Mapping and Its Derivertives

Using Multilayer Feedforward Networks", Neural Networks,
Another interesting finding is that when a network Vol. 3, No. 5, 1990, 551-560.

has more hidden nodes than the proposed size, the MSE
difference is not as significant as when a network has fewer [8] K. Hornik, "Approximation Capabilities of Multilayer
number of hidden nodes than the proposed size. This is Feedforward Networks", Neural Networks, Vol. 4. No. 2,
consistent with the findings of other neural network research 1991, 251-257.
on the so called "robustness" of the structure [16].

[9] K. Knight, "A Gentle Introduction to Subsymbolic
V. Conclusions Computation: Connectionism for the A.I. Researcher",

Carnegie Mellon Univ. Working Paper, CMU-CS-89-150,
This paper reviewed and proposed a procedure to May 1989.

design the optimal structure of a neural network model for
a given task. Especially, it concentrated on a method to [10] S. Y. Kung and J. N. Hwang, "An Algebraic Projection
determine the optimal number of nodes in a hidden layer. Analysis for Optimal Hidden Units Size and Learning Rates
The empirical example supported the proposed method. in Back-Propagation Learning", Proceedings of the
When the method is implemented into DSSs (Decision International Joint Conference on Neural Networks, Vol. 1,
Support Systems), it will help users who may or may not be San Diego, CA: 1988, 363-370.
familiar with neural network models to easily construct a
network for a given task. The method proposed in this paper [III R. P. Lippman, "An Introduction to Computing with
is limited only to the feedforward multi-layered model but Neural Networks", IEEE ASSP Magazine, Vol. 4, No. 2,
the authors believe that the method can be extended to other April 1987, 4-22.
models as well.

[12] D. F. Morrison, Multivariate Statistical Methods, 2nd-
edition, New York: McGraw-Hill, 1976.
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Abstract 2 The Post Enumeration Survey

In this paper we describe a calculation, which was After the 1990 Pensus the Bureau of Census con-
done as part of the Census Post Enumeration Survey, ducted a post enumeration survey-intended to assess
and several computing environments which we used for the accuracy of the census. The survey looked at approx-
performing the calculation. The calculation involves much imately 5,300 block clusters and 172,000 housing units.
linear algebra and a great deal of storage. Such a calcu- Based on the housing units in the post-enumeration sur-
lation should parallelize well. The environments consist vey there were two evaluations. One, called the P-sample,
of combinations of hardware and languages. We used looked at all people in the sampled blocks and tried to
UNIX workstations, a Cray Y-MP and a Connection match them with official census records. The other eval-
CM-2. The languages included Fortran, C, and Linda uation, called the E-sample, found all census records that
(a coordination language for distributing Fortran and C should have been in the sample and tried to find the cor-
programs). We discuss the ways in which the basic cal- responding sample records. There were then two types
culation is adapted to the different environments, and we of error:
compare the environments based on the running time forthe calculation. 1. The first (the undercount) was for the people who

were found to be in the sample but not in the cen-
sus.

1 Introduction and Summary 2. The second type of error was people who were in

The 1990 Post Enumeration Survey (PES) was de- the census but not in the sample. These were called

signed to produce Census tabulations of states and local erroneous enumerations and are often people whose

areas corrected for under- or over-count. The size of the address is incorrectly recorded or "fictitious" peo-

PES is too small to produce direct estimates for many ple.

states and most smaller areas. Therefore estimates were In order to adjust individual census blocks it is im-
formed for poststrata created by grouping areas across portant to be able to estimate the undercount (and erro-
states. Using a statistical model these estimates were neous enumerations) on a block by block basis. This is
smoothed. A detailed description of the methodology clearly not possible, but it is possible to estimate the un-
can be found in Hogan and Isaki (1991). dercount (and erroneous enumerations) for racial, ethnic,

The original calculations were written in SAS-IML gender, tenure, and age groups which are a priori known
and performed on a VAX 9000 at the Bureau of the to differ. This is the concept of post-stratification. Each
Census. Broadly speaking, we were interested in the individual in the PES is placed into one of 1392 post-
costs and benefits of doing these calculations in various strata, constructed by crossing 6 age categories with sex
other computational environments, particularly in some and a classification with 115 groups formed using the ge-
of the very high-performance environments available to ographical and other variables plus 12 Native American
us. This investigation looked at implementations of the
same calculations in Fortran and C in several different
environments: a Cray-YMP, a Connection Machine CM-
2 with 32K processors, and Unix workstations, both in- 3 Statistical Calculations
dividual and collectively, using C-Linda.

1This project was partially supported by the Bureau of the Cen- Raw estimates of the under-/over-count for each stra-
sus under Joint Statistical Agreement 91-25 with the Department tt,m are given by simply taking the ratio of the sample
of Statistics, Carnegie Mellon University. count to the Census count. These ratios have a high

variability across the various strata, much higher than
the actual variability that is expected. Consequently,
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the Census Bureau staff have devised various smoothing have an estimate a of a2 and we form Ej = iII + V.
procedures. We used one as a sample calculation for our We then plug this in for E in Equation (1) and find
exploration. It is described in more detail by Hogan and Pi. Pretending that )3 = 6j, we find the MLE of Io 2

Isaki (1991). from Y - N(XO3,YZ) and call it +o . This procedure
continues until the estimates stabilize. The choice of

3.1 Variance Components Model predictor variables to comprise X was made using a best-
subsets regression (Furnival and Wilson, 1974).

A variance components model was used to fit the The above procedure leads to serious compu.ational
adjustment factors by poststratum as follows. Let difficulties. In the model originally conceived, there are

1392 poststrata. So D is a 1392 x 1392 matrix. For corn-
Y "XJ + W +- E putational reasons (the arrays were too large), separate

where Y is the vector ot obqervej adjustment factors, X models were fit to each of four regions (called the re-

is the matrix of explanatory variables, 0 is the vector gional models). There were 25 poststrata groupq in the

of regression parameters, w is the model error assumed North East, 38 in the South, 25 in the Midwest, 27 in

to be N(0, o21) independent of the sampling error e as- the West, and I on Nat ,'e American reservations. (Each

sumed to be N(0, V) with V known. The X's are strat- group is 12 pcststrata.) The X matrix contained an av-

ification variables (including interactions); among them erage of 20 variables for each of the regional models, and

are variables reflecting the "degree of census difficulty." the estimates of pt2 were around 0.00055.

In Section 3.2, we explain how the estimates 62 and i There were many poststrata with highly variable fit-

are obtained. Once those estimates are obtained, one ted values, so an alternative model was also fit. This

calculates second model is also less computationally intensive. It
collapsed the 12 age/sex cross-classifications to 6 cate-

- 621 + V gories and removed the Native American group to pro-

=- X,+ 6 21- 1 (Y - Xg) duce 690 = 115 x 6 poststrata. This model is called the
2 naiional model. There were 14 variables in X in the

2) = t 2- national model. The matrix V was block diagonal with
'x = trace[•- -] blocks varying in size from 18 to 66. The estimate of

= v -V--V a12 was 0.000285 in the national model. The homoge-

niety within the collapsed poststrata leads to a lower
+ V -X(X E-X)-X -V estimated model error.

+ V-'Gt-'V . Va•r(a 2) Totals for the various poststrata were ratio-adjusted
so that the national totals would agree with those from

where the raw data separately for minorities and non-minorities.
G = t-1(Y - X1)(Y - Xf)Tt-l For example, let ci be the original census count for post-

The smoothed adjustment factors g differ from the re- stratum i. If poststratum i is a non-minority poststra-

gression estiw'ates X/ by a term which is like a fraction turn, the fitted value for poststratum i, Yi, is replaced

of the residual. The fraction used is the ratio between by 1',, = Yi/r,1 , where

the estimated model error and the total of the model and Enon-minority j Yjcj
sampling error. r'7 =-

snon-minority 
j Yjcj

3.2 Estimation Similarly, a minority poststratum fitted value is divided
The procedure by which the parameters of the model by

are estimated was described by Hogan and Isaki (1991). Zminority j Yjcj
We summarize their description here. If we assume that Tm = -i

V and a2 are known, then the generalized least squares Eminority j YC,

estimator of 6 is The sum of Y,.rci over all minority or non-minority i will
equal the raw sums of Yici even though the indi idual

-'= (XTE- X)-(XT'7-Y), (1) Y1 may differ markedly from P,,. The ratio-adjustment

where E - a 2 [ + V as before. Although V is assumed factors for the national model were rm = 1.00692 and

known, 2 is estimated by an iterative procedure. After r, = 1.00017. We used .ie national model in our com-

iteration j (j = 0 means before the first iteration) we putational explorations.
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4 Computing Environments array dimensions; each processor gets a value from its
neighbor on an n-dimensional grid representing the ar-

4.1 Hardware ray.

The original computations were done on a VAX 9000
under the VMS operating system. The program was
written in SAS-IML, an interactive matrix language ex- The workstations we used consisted of a collection of
tension of the basic SAS system. While the programs DEC UNIX workstations of the following types:
are easy to write because of their use of matrix notation,
they are not particularly efficient, in part because the a 3100 MIPS R2000/20MHz 12MB

programs are interpreted. e 5000/120 MIPS R3000/20MHz 16MB

4.1.1 Cray Y-MP * 5000/200 MIPS R3000/33MHz 24MB

The Cray YMP is a multiprocessor pipelined vector . 5000/240 MIPS R3000/40MHz 40MB
machine. It has a similar architecture to the Cray X-MP.
The CPU cycle time is 6 nsec, and it has 8 processors. They were configured to be used by only one person at

The vectors have length 64. We used both C and Fortran a time, so they have relatively small primary disks. This

on the Cray but did not attempt to use the multitasking means that the amount of space for paging and swapping

(multiple processors) capabilities, is a critical constraint on their performance. Communi-
cations among the workstation are Ethernet-based with

4.1.2 The Connection Machine - CM-2 a nominal 10Mb/sec bandwidth.

The CM-2 system consists of a collection of simple
processors, each with its own memory all acting under 5 Languages
the direction of a Sun SPARCstation called the front
end. The system depends on virtual processing. Virtual 5.1 Fortran
processing is a method by which each physical processor One concern was the amount of storage which would
simulates some number of virtual processors by subdivid- be needed. There were many large arrays in the SAS
ing its memory so that each element of data is assigned code which were freed when no longer in use. The op-
to a unique processor. tion to free memory is not available in standard Fortran.

A program is executed on the front-end and that por- Instead, we chose to equivalence arrays which would not
tion of the program which is parallel (as determined by be needed simultaneously. For example there were 10
the Fortran-90 array operations which it invokes) is ex-

ecutd o th CM2. he rontendperorm al seial arrays of size 690 x 690. This would take 38 megabytes
ecuted on the CM-2. The front end performs all serial if all 10 arrays were to be stored at once. However, no
arrayoperations. Whscalardataan d the CM-2 reves m an imore than 4 of them were needed at once, so they were
trrayonperachtvirtual processohex ecuves th instructn o equivalenced in 4 groups with each group containing onetion each virtual processor executes the instruction on of t e 4 w i h ou d b n e ed a t e s me i e.C rof the 4 which would be needed at the same time. Care
its own data. Since there is only one set of instructions was needed to be sure that no 2 arrays in the same equiv-
the processors are naturally synchronized. alence group were needed simultaneously. It turned out

The CM-2 has three mechanisms for interprocessor that using equivalence made certain of the matrix cal-
communication: culations simpler to program. In several places, each of

1. Global communication; 21 matrices is manipulated and then the results are ap-
pended to each other for future use. For example, the
vector /3 is multiplied by each of the matrices of inde-

3. Nearest-neighbor communication. pendent variables in the regression model to find Ys.
If the individual matrices of independent variables areGlobal communication is used for array reductions, each equivalenced to part of an overall independent varn-

spreading arrays along additional dimensions, and other abhes matrix, th mult opera ll bendone in

operations where all processors contribute to the result.
one statement. It was unfortunate for the readability of

Router communication is used for transpositinss, permu- the code that the independent variable arrays had to be
tations, and other array transformations where each pro- qiaecdi rnpsdfr u otewyta

cessor gets a value from an arbitrary processor. Nearest- equivalenced in a transposed form due to the way that

neighbor communications is used for shifting data along Fortran stores matrices by columns. This assured that
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each of the 21 sets of independent variables would be in After the translation was finished, a long debugging
contiguous memory locations, session was completed. This involved tediously check-

With regard to matrix multiplication, since Fortran ing intermediate results from the original SAS/IML pro-
stores matrices by columns, care was taken to access the gram with intermediate results from the translated C
elements of large matrices in a natural order. In par- code. After this was completed, some profiling was done
ticular, since the form BTAB appeared so often in the for optimization. Profiling can be done via the -p option
calculations, a special routine was written to perform in the UNIX compiler cc together with the UNIX com-
this calculation while accessing both matrices one col- mand prof. Profiling returns a detailed listing of the time
umn at a time. A similar routine was written for BTAC each subroutine in the program is being called. This is
which also occurred several times. useful for identifying subroutines which take excessive

Several other special purpose routines were written amounts of time as well as evaluating the efficiency of
to insert submatrices into diagonal principal minors of a changes. A final stage of optimization was done which
larger matrix, accumulate a sum of matrices, calculate involved copying the three fields of the record to tempo-
the trace of ATA, and other tasks. Linpack routines rary variables within the linear algebra functions. This
were used to solve linear systems (except on the CM-2). reduced the number of pointer references and improved

the speed of the program by a factor of 2.

5.2 C

The C port was done independently of the Fortran 5.3 Porting to the Cray YMP/48

port. Three main problems had to be solved. First, since The Fortran code ported relatively easy from work-
swap size was a critical factor, memory had to be con- station to Cray. We only had to change the names of
served. This was done by using the dynamic memory the Linpack routines to the single precision names for
allocation routines malloc, and free. In order to actually the Cray. Some loader directives were needed to enable
store the matrices in memory, a structure was used which Fortran to read long (more than 512 characters) records
consisted of three fields. These were the number of rows, on the Cray.
the number of columns, and a one dimensional array used The C code also needed changes related to the differ-
to store the actual entries. A one dimensional array was ent floating point size on the Cray. The heap (dyrami-
used instead of the more natural two dimensional ar- cally allocated memory) size had to be specified through
ray because of speed considerations. Subsequent tests a loader directive, as the default size was not big enough.
showed the one-dimensional array took roughly half the With the increased heap size the program could not be
time required by the two-dimensional version (presum- run interactively as it exceeded memory limitations for
ably because of the simplicity of address calculations). high priority jobs.
Another structure that was used in the program was an
array of 21 matrices. This structure was used because 5.4 Porting to the Connection Machine
the block diagonal structure of E has 21 blocks. Many
calculations are therefore done in loops involving these The Fortran 77 programs can run on the front end
21 blocks, computer that is the host for the CM-2. However, they

The matrix routines from SAS/IML then had to be will not use the Connection machine and run i.s slow as
duplicated in C. Some of these routines, specifically In- the front end workstation runs. To use the power of the
vert and Solve, were linked from the Linpack subroutine CM-2 special software needs to be used and the program
library. The remainder were written in C. The main has to be ; 1odified substantially.
problem here was that the one dimensional array in- The software on CM-2 is not as extensive as that
volved manual calculation to determine which elements for the Cray. To be mor- exact, a very large portion
should be used. After the matrix routines were written, of any program runs on the front end, but only a small
the actual translation of the code was fairly straightfor- fraction uses Connection Machine itself. There are C-
ward. One problem that arose was that many of the com- Star and CM Fortran compilers on the Connection Ma-
mands in IML involved multiple subroutine calls in the chirte as well as Paris directives that could be used from
same line. Following the same method in C would have bno. ?rtran and C. C-Star is not as simple to use as
let to huge memory losses, because the memory used *ývi :- -,ran and Paris directives are very low level, so
to store the intermediate results would have been lost. only tre F'ortran version was ported to the CM-2. The
Therefore each subroutine call had to be done singly, !; ), - onsisted of fully rewriting the Fortran version of
with the intermediate results stored in temporary vari- the program. One of the reasons was that the worksta-
ables and then freed at the end. tion version of the program was designed to minimize
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the amount of storage and used a number of equivalence only a formal place holder, then any t whose corre-
statements, as well as specific iterative functions that sponding field is of the same type as that in s will
could not be efficiently translated into array operations do. If no matching occurs, the process invoking
that are executed on CM-2. Equivalence statements can in(s) will suspend until it does.
not be used for the CM arrays that reside on the Con- As an example, suppose that x is a variable of type
nection Machine. float. Then

in ("a string", ?x, y)

5.5 Linda will withdraw the tuple ("a string", exp(7.0),

Linda is a coordination language built on top of other Y)

languages such as Fortran and C for parallel program- Hre the first an el

ming. The Department of Statistics at CMU uses Net- Here the first and the last field match exactly (i.e.,
work C-Linda, the C version of Linda that runs on its both in type and content), while the second field

network of DECstations for distributed computing. in in matches only the type of the second field in

The advantage of using C-Linda is that its codes are out (by the use of the operator'?). In addition, x

very portable over different parallel computing environ- is now assigned the value of exp(7.0).

ments. The end-user need not be modified his code be- 3) rd(). rd(s) is the same as in(s) except that
tween a shared and a distributed memory environment, the matching tuple remains in tuple space and is
Only the compilation and execution procedures need to accessible by other processes.
be modified. Moreover, C-Linda is easy to learn and
implement because of the simple set of operations in- 4) evalO. eval(t)is similar to out(t) . However,
volved, as described later. This does not mean that the each field in the tuple t is evaluated asynchronously
programs run efficiently in the differing environments, from the invoking process and of each other. This

C-Linda achieves parallelism by implementing the implicitly creates a new process to evaluate each
concept of a "tuple space", a shared memory where data field of t. This is how one spawns multiple pro-
are stored. Processors do not communicate with each cesses from the master program to achieve paral-
other directly, rather data are sent to the tuple space by lelism. (In this case the tuple t is usually a function
one processor, and fetched by another. (Of course, this call.)
is implemented in our environment by communications The sequential nature of this particular program, and
between the processors over the Ethernet.) the large amount of memory occupied by the data, lim-

There are four basic function calls in C-Linda for the te lar aunt of memory ocpe th data, l-opertios dscrbed bov. Dta re ent o, r ftchd ied our success. We were only able to parallelize rela-
operations described above. Data are sent to, or fetched tively small and adjacent segments of the code. Unfor-
from, tuple space in the form of a tuple. A tuple is tunately, these efforts are to disappointing results in the
defined to be a logically ordered set of data. There are tuny these efots are to oiting re in the
two kinds of tuples: data tuples and process tuples. The attempts below.
latter "evaluates" to the former.

As an example, suppose y is some typed variable. (a) In computing X'E-X, X'E-'Y, and E-1. Re-
Then ("a string", exp(7), y) is a process tuple that member that E-1 = crI + V and note that / =
evaluates to the data tuple ("a string", 1096.63.... (X'E- 1X)-1 (X'E- 1Y).
Y) " Because of the block-diagonal structure of E-1, the

The four basic calls are: computation of each of the three quantities above

1) out(). out (t) evaluates a new tuple t and adds can be reduced to 21 smaller sets of calculation in-

it to the tuple space. This is how data are sent to volving the submatrices along the diagonal of V.

tuple space. So we fork 21 sub-processes at this stage for this
purpose, and accumulate the results in the appro-

2) W). in(s) withdraws from the tuple space, priate locations in the respective matrices when the
some arbitrary tuple t that "matches" the argu- processes are complete.
ment a. s is called an anti.tuple - a sequence oftyped fields which may be actual values or formal (b) In computing two sets of large matrix rnultiplica-
place holders. If a field in w has an actual value, tions, each involving two matrices of same dimen-plac hoder. Ifa feldin ahasan ctua vauesion (690x690). These two sets of calculation alone
then a tuple t must have the same value in the cor- ian up These toe of calculation aloE
responding field to result in a match. If the field is take up nearly 1/3 of the elapsed time on a DEC-station 5000/240. Because each set is independent
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of zhe other, a slave processor is used to calculate we made any special efforts to speed up the program.
one set while the master does the other at about Table 3 gives revised times after these changes had been
the same time. made.

(c) One slave processor performed the calculation of References
the four component matrices of Var(g) while the
master processor did other variance-covariance ma- Furnival, G.M. and Wilson, R.W. (1974). Regression

trix calculations. by leaps and bounds. Technometrics, 16, 499-512.
Hogan, H. and C.T. Isaki (1991). The effect of alter-

(d) The "other variance-covariance matrix calculations" native groupings on local area estimates of undercount.
in (c) were performed on a second slave processor. Proceedings of Statistics Canada Symposium 91, Spatial

Issues in Statistics.
(e) Separately, we investigated whether it pays to par-

allelize the matrix multiplication routine itself. The
matrix product C = AB can be calculated sepa-
rately as Cx = A1 B and C2 = A2 B, where

(t A and 0 =A2  C2

The largest matrix multiplication in the code in-
volves two matrices of dimension 690x14 and 14x690
respectively, and this happens only twice. On a
DECstation 5000/240, 10 repetitions of such a ma-
trix multiplication takes 120.6 seconds. A com-
bination of a DECstation 5000/240 (as the mas-
ter processor) and DECstation 5000/120 takes 195
seconds of elapsed time, with the master operating
at 20% of its capacity only. This shows that the
dimensions of the matrices involved are not large
enough to compensate for the communication over-
head.

The C-Linda codes are modified from the existing C
codes. Table 1 gives the results. All times are in seconds,
rounded to nearest integer. Usertime is in reference to
the master processor. All slave processors were DECsta-
tion 5000/120's.

It is obvious that our attempts to achieve a shorter
running time have failed. While it may be that a com-
plete rewrite of the program will provide a greater im-
provement (i.e., a better parallelization), at this point
we can only attribute the failures to the large overhead
associated with the network implementation of the C-
Linda computing environment relative to the amount of
speed-up that an additional processor or two can offer,
for this particular problem.

6 Other Results

Here, we summarize the results of pcrforming the sta-
tistical calculation on the various machines in the various
languages. Table 2 gives the initial running times before
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types master slaves usertime totaltime
None 5000/240 0 94 98
None 5000/120 0 189 566
(a) 5000/240 2 93 100
(a) 5000/120 2 189 529
(b) 5000/240 1 79 108
(b) 5000/120 1 160 577
(a+b) 5000/240 3 78 119
(a+b) 5000/120 3 157 544
(c) 5000/240 1 85 104
(c) 5000/120 1 172 555
(c+d) 5000/240 2 80 186
(c+d) 5000/120 2 162 664

Table 1: Running Times in Seconds for C-Linda Version

Compiler Switches Cray Y-MP 5000/240 5000/120 CM-2
cf77 32.7
cf77 -Zp -Wf"-o inline -A fast" 33.6
cf77 -Zv -Wf"-e mcx" 32.8
cc -d "HEAP=25000000" 44.0
cc -d "HEAP=25000000" -02 40.9
cc -d "HEAP=25000000" -03 DNC
gcc -02 float.c 133.0
cc -04 -Olimit 600 111.0 224.2
gcc float.c 278.3
cc -00 235.1
gcc -02 -DPRECISE 150.0
cc -04 -Olimit 600 -DPRECISE 127.4 354.6
f77 604.1 1215.4
f77 -04 -Olimit 2000 184.9
cmf (8k) NEM
cmf (16k) busy 43.2
cmf (16k) elapsed 73.8
cmf-0 (16k)busy 37.7
cmf -0 (16k)elapsed 65
cmf -0 (32k)busy
cmf -0 (32k)elapsed
f77 -0 (front end) 468.2

DNC - program did not compile.
NEM - insufficient memory available

Table 2: Initial Running Times in Seconds
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Compiler Switches Cray Y-MP 5000/240 5000/120
cf77 30.9
cf77 -Zp -Wf"-o inline -A fast" 30.6
cf77 -Zv -Wf"-e mcx" 30.9
cc -DCRAY -d "HEAP=10000000" 14.8
cc -DCRAY -d "HEAP=10000000" -02 15.9
cc -00 128 261.9
cc -00 -DPRECISE 139 282
cc -04 -Olimit 600 51 103
cc -04 -DPRECISE -Olimit 600 67 135
gcc float.c 191 388
gcc -DPRECISE float.c 206 416
gcc -02 float.c 58 118
gcc -02 -DPRECISE 77 162
f77 592 1205
f77 -04 -Olimit 2000 127 266
f77 -04 -Olimit 2000(modified) 104 223

Table 3: Revised Running Times in Seconds After Optimization
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BOOTSTRAP CONFIDENCE INTERVAL ESTIMATION
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Canberra, A.C.T. 2601 Australia Canberra, A.C.T. 2601 Australia

Abstract tion means or totals and adversely affect coverage prob-
Model-based approaches to survey estimation allow abilities of confidence intervals. Royall and Cumberland

auxiliary population information to be directly incorpo- (1978) obtained estimators of the error variance of the
rated into the estimation process. This auxiliary infor- finite population total estimator which are robust under
mation is sometimes available for each unit in the popu- variance misspecification of the underlying superpopula-
lation and then is referred to as benchmark information. tion model. Dunstan and Chambers (1986) generalised
In multipurpose survey situations when the benchmark this variance estimator to the case where ridge regression
variables are almost collinear for the particular sample techniques are used to construct the sample weights. Mis-
chosen, a solution to this problem is to resort to a ridge- specification of the mean structure in the superpopulation
type model-based method. We consider here the prob- model is a significant problem and may also cause con-
lem of estimating confidence intervals for the population siderable bias in finite population estimators. We do not
totals where the vector of weights are ridge-type sam- investigate this problem here as its treatment has been
ple weights. Attention is focussed on different methods thoroughly investigated using techniques such as balanced
for setting large-sample confidence intervals about the resampling, see Royall and Herson (1973a, 1973b), and
weighted total estimator T of the population total T when robust methods such as those examined in Chambers
the assumed model generating this estimate has misspec- (1986). Variance misspecification may be more difficult
ified variance structure. We proposed bootstrap methods to detect even though its effects on finite population es-
in constructing confidence intervals and compared these timators may be significant. In this paper we compare
bootstrap confidence intervals to the more conventional confidence intervals obtained using the robust variance
ones. We conducted a simulation study comparing these estimator of Dunstan and Chambers (1986) with the cor-
approaches applied to a range of variables collected in responding confidence intervals obtained from the boot-
the Australian Agricultural and Grazing Industries Sur- strap. We show that the bootstrap-based confidence in-
vey conducted annually by the Australian Bureau of Agri- terval is considerably more accurate when the variance is
culture and Resource Economics (ABARE). misspecified.

2. The Working Model
1. Introduction Suppose the total population P consists of N dis-

In multipurpose survey situations where the selected tinguishable elements from which a sample S of size n
sample is unbalanced with respect to important bench- was taken. We systematically use upper case letters
mark variables, model-based estimation techniques have to refer to variables defined on P, and the correspond-
been proposed in the face of such problems. These tech- ing lower case letters to refer to their restrictions to S.
niques allow for auxiliary population information to be Let Y = (Y1 ,..., YN)T denote the N-vector of popu-
directly incorporated into the estimation process; for ex- lation values for a given survey variable and y is the
ample, a linear model can be fitted at the estimation n-vector restricted to S. We assume that there are k
stage of the survey which results in the use of ridge- benchmark variables and denote the vector of bench-
type sample weights that optimise the trade-off between mark variables associated with the ith survey variable
bias and variance for this situation. See Bardsley and as Xj = (Xil,..., Xik)T, then X = [X 1,. . . ,XN]T is the
Chambers (1984), Dunstan and Chambers (1986). The N x k matrix of benchmark variables for the whole popu-
problem studied here is that of estimating confidence in- lation and x is the n x k matrix defined by the restriction
tervals about population means and totals estimated in of X to S. For each Yi (i = 1,..., N) we assume a model
this way, in particular when the variance structure in the of the form
underlying model is misspecified. Model misspecification
can cause considerable bias in the estimation of popula- Y, = XT19+ej; E(c,) = 0; E(JTe) = 0•o , (1)
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where f is a k x 1 vector of unknown variables (depending where Y = -jis wi Yv/,Ej wi. Hence the simple for-
on Y), and 01 is an N x N diagonal matrix of known mula that ABARE uses to construct a (1 - a)-level con-
constants f'i (i = 1 ... , N) independent of Y (w is the fidence interval for T is
n x n analogy of 0 restricted to S).

Let T(Y) denote the unknown population total. The (T(Y) - Vc ` -'Z(a/2), !i(Y) + Vvc -'(a/2)) .
model (1) allows one to model the non-sampled units in
terms of the sampled units and benchmark information 3.2 Dunstan-Chambers method
known for every unit in the population. Using this ap- Dunstan and Chambers (1986) proposed a method
proach Bardsley and Chambers (1984) constructed the of constructing a confidence interval which was robust
following estimator of T(Y). Specifically, they used against variance misspecification in (1). They obtained

+ (2) the formula for (1 - a)-level confidence interval as

isS E•ES S ((Y) - 6R- $-1(1 - a/2)v/0'2 , T(Y)

where 
/)where ~ c~ UC' - R+ -''(1 - a2/2)1/2), (8)W = 1,,+W-1x(,\UC-1U

+X T W- x)E Zxi, (3) where bR is an estimator of the ridge bias obtained
T -i , ( by replacing 8 in its formulation with JWLS =

and (xTw-Ix)-ixTw-ly, the best linear unbiased estima-
tor of fl under (1), and fO is a robust estimator of

= (AUC-u xTW-1x)- xTW- 1 y, (4) V0 = var[T(Y) - T(Y) - bR].

is the ridge estimator of 3 and U = diag[U1,..., Ut] with 3.3 Confidence intervals based on the simple bootstrapN
U, = = Xij denoting population benchmark totals, From (6) we can obtain an expression for the predic-
C is a diagonal matrix of non-negative cost coefficients tion error in terms of the residuals as
measuring the degree of error we are willing to accept in
"estimating" the benchmarks X and A is a real-valued T(Y) - T(Y) = > (wi - 1) i- Ec i
ridge parameter. iES ii's

3. The Problem N
Given an estimator T(Y) of T(Y) satisfying (2) where + (E wiXT - E XT) t. (9)

w is the set of some pre-calculated normalised ridge iEs i=1
weights satisfying (4) for known (1, U, C, X and A, we
are interested in calculating confidence intervals for the where for i E S the residuals can be estimated by ii =

population total T(Y) estimated in this way. We have • - xT.

The distribution of T(Y) - T(Y) and hence confidence
i(Y) - T(Y) = E(wi- 1),i - ei +bR, (5) intervals for the population total can be simulated by

iES i~s applying the bootstrap technique to the first term on the

where RHS of (9), approximating the second term, and finally
N estimating the third term.

bR = (.wiXT - >.XT)P (6) Consider first how to estimate the distribution of
iES i"iS (wi - 1)ci by the bootstrap. Suppose we are resam-

is the bias term introduced by ridge regression and can pling residuals where an element (i*, w°) in a bootstrap
be estimated by replacing O with P. resample is selected at random from {(•i, wi), i E S} with
3.1 Simplified robust model-based method uniform probability pi = 1. This resampling is repeated

This is the conventional method that ABARE uses to independently B times and a single bootstrap resample
obtain an estimate of the variance of the prediction error is obtained as
as described in Chambers (1986), specifically it is

[V-2 + {(w),..., =}.
'ES ,ES N) The statistic-of-interest here is R = (wi - 1) ci and

X 2 irW-? W? its bootstrap analogue is R*=~ (
-(y, -Y I - 2 Ewu The exact bootstrap distribution of R is in general al-

iES iES iEs most impossible to compute. One way around this prob-

W,] + [(Z W)' 2/( )E 2] (7)lem is to independently replicate R* many times. This
ies + ES w E7 is called the straightforward bootstrap and we label the
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B replicated bootstrap values Ri,..., R. The distribu- 3. We replace the sorted values L 1 ... ,LB with
tion of Ejes (wi - 1) ci may then be estimated by the ... , LB by a recursive method of matching sam-
empirical distribution of {R•,..., Rý}. pie cumulants with theoretical cumulants.

To approximate the distribution of the second term on
the right hand side of (9), as the number of non-sampled 4.F we can calculate corrected percentiles
units is usually very large, it is reasonable to make the F- 1 (1 - a/2) for Sb = Lb + Mb. Consequently our

approximation improved bootstrap confidence interval for T is of the
form

Ze aPproxl Normal(0, a2Z1 Q). -TY 1 eB TF(a/2), T(Y)
ijris 

iES

+ SeBOOT F(1 - )
Note that

or2 Z f' 5. To obtain a bootstrap estimate Vb of

iES

may be estimated using i, the robust estimator suggested var{T(Y) - T(Y)} = varZ (w, - 1)fi I
by Dunstan and Chambers (1986) and referred to earlier iss
in this paper. Thus the distribution of EiS fi may be + var(E ,,
approximated by a normal random variable with mean \.,
zero and variance f.

The third and final term on the RHS of (11) may be let VB = V1 + V2 where V1 is a bootstrap estimate
estimated by replacing P with the ridge estimator f. for the first term

In summary, to construct a (1-a)-level bootstrap con- - E (W, _
fidence interval for the finite population total, we compute var (wi - 1) ci= 1)2 Gi

R*, N, a random value from a Normal(0, ý) distribution iES iES
and compute(. )

and V2 is an estimate of var(ziZ S )i ,perform the
N

T" = R' - N* + (E wixT - E xT)O " following steps:

iES i=1 . Bootstrap EiES (i to obtain

Repeat this independently a large number of times, &2 Gi =
B = 50, 000, say, to form B bootstrap values r = E i varBooT (E Ei

{T,..., T'}. Select the a/2 and 1 - a/2 quantile values iES iES

from r, denoted by T (a/2) and T*(1- a/2) respectively. 9 Assume
The simple bootstrap confidence interval is then

(T - T*(a/2) , T + T-(1 - a/2).) is iS eS iES i0S

3.4 Efficient bootstrap confidence intervals then
For the blh bootstrap resample Sb, let Lb and Mb de- EiES _ --

note the respective linear and remainder terms where V2 varBooTw Zi).

Sb = Lb + A 
iES

denote the n x B matrix (P 1 ,. . . ,PB). We can correct 4. Simulation Study

the linear parts by fitting distributions with appropriate 4.1 Description of data
Our primary aim in this section is to see how the tech-

niques developed in the previous section perform when
1. Let (0, &/,v/, j/vrn, 6/Vrn) denote the cumulant of applied to rea! survey data. In particular, we will see

the empirical distribution of Lj,..., LB which can how the bootstrap variance estimator and confidence in-

be calculated from the resamples. tervals compare to other more conventional techniques
both when the assumed super-population model is cor-

2. Let (0, a'a/vun, "t,,, b/vfni) denote the theoretical cu- rect and when it is misspecified.
mulants of L. For a precise calculation of the theo- Data for this analysis was obtained from the 1989
retical cumulants we refer the reader to Efron (1990). Agricultural and Grazing Industries Survey (AAGIS) run
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by the Australian Bureau of Agriculture and Resource method is better at tracking skewness and other anoma-
Economics. Three different regions were selected cover- lies in the sample distribution; a more rigorous investi-
ing a wide range of climatic conditions and enterprise gation in this direction is a goal of our future research.
mixtures typically encountered in Australian broadacre Overall, by sacrificing some additional theoretical com-
agriculture. putation and programming efforts, a careful application
4.2 Simulation results of Efron's efficient bootstrap computation will help us to

In this section we summarize the results of a simula- achieve reliable estimates especially when necessitated by
tion study which compares the performance of the two financial and humanpower constraints.
bootstrap confidence intervals with more conventional References
confidence intervals. Australian Bureau of Agricultural and Resource Eco-

To test the accuracy of the various confidence intervals nomics (1991). Farm Surveys Report 1991, Australian
against variance misspecification in model (1) we perform Government Publishing Service, Canberra.
a simulation study based on the data introduced in sec- Australian Bureau of Statistics (1983). Australian Stan-
tion 4.1. The simulation is not the traditional 'repeated dard Industrial Classification 1983 (Cat. No. 1204.0).
sampling' study, but is rather one in which the data is Bardsley, P. and Chambers, R.L. (1984). Multivariate
reconstructed to follow a specific model form while main- estimation from unbalanced samples. J. Roy. Statist.
taining the structure of the original population. Soc. Ser. B 33, 290-299.

In our tables the simple and the robust Dunstan- Chambers, R.L. (1986). Outlier robust finite population
Chambers model-based methods are abbreviated to "Sim- estimation. J. Amer. Statist. Assoc., 81, 1063-1069.
ple M-B" and "Robust D-C" respectively. Table 1 reports Chambers, R.L. and Dunstan, R. (1986). Estimating dis-
95% confidence intervals calculated by the three different tribution functions from survey data. Biometrika, 73,
methods for each of the three different regions: A,B, and 597-604.
C. It can be seen that the simple model-based method Do, K.-A. (1992). A simulation study of balanced and
gives the widest intervals. The bootstrap intervals grow antithetic bootstrap resampling methods. J. Statist.
narrower and stabilise as B increases. Note that here we Comput. Simul. (to appear).
are using Efron's efficient computation method for confi- Do, K.-A. and Hall, P. (1992). Distribution estimation
dence intervals, otherwise we would require B to be much using concomitants of order statistics, with applica-
larger to attain similar results. tion to Monte Carlo simulation for the bootstrap. J.

Table 2 reports the coverage probabilities for 95% Roy. Statist. Soc. Ser. B 54, (to appear).
confidence intervals based on the three methods. These Dunstan, R. and Chambers, R.L. (1986). Model-based
coverage probabilities were estimated using M = 5000 confidence intervals in multipurpose surveys. J. Roy.
simulations. When -y = 1.0 it can be seen that the Statist. Soc. Ser. C 35, 276-280.
Dunstan-Chambers robust model-based confidence inter- Efron, B. (1982). The jackknife, the bootstrap, and other
val performs best of all, the bootstrap confidence interval resampling plans. CMBS 38 SIAM-NSF.
is slightly worse and the simple model-based method is Efron, B. (1990). More efficient bootstrap computations.
very conservative. However, as - moves away from 1.0, J. Amer. Statist. Assoc. 85, 79-89.
the bootstrap confidence interval remains fairly accurate Rao, J.N.K. and Wu, C.F.J. (1988). Resampling inference
and definitely superior to the Dunstan-Chambers robust with complex survey data. J. Amer. Statist.Assoc.
model-based confidence interval, which has poorer cover- 83, 231-241.
age probability the further -y is from 1.0, while the simple Royall, R.M. and Cumberland, W.G. (1978). Variance
model-based confidence interval remains overly conserva- estimation in finite population sampling. J. Amer.
tive. Statist. Assoc. 73, 351-358.

5. Conclusions Royall, R.M. and Herson, J. (1973a). Robust estimation
The above results indicate that both the bootstrap in finite populations, I. J. Amer. Statist. Assoc. 68,

and robust Dunstan- Chambers model-based confidence 880-889.
intervals are considerably more reliable than the con- Royall, R.M. and Herson, J. (1973b). Robust estimation
ventional simple model-based confidence interval, par- in finite populations, II. J. Amer. Statist. Assoc. 68,
ticularly under variance misspecification of the assumed 890-893.
model (1). Although the Dunstan-Chambers method is Silverman, B. (1986). Density estimation. Chapman and
asymptotically equivalent to the bootstrap method, our Hall, London.
simulation results reveal that the bootstrap method is still
superior under more extreme variance misspecification.
A heuristic explanation to this fact is that the bootstrap
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Table 1. Approximate 95% confidence intervals for the weighted total of farm cash operating surplus

Region Method 95% confidence intervals

A Simple M-B [2.69158 X 108, 4.44415 X 108]
Robust D-C (7 = 1) [2.92161 X 10, 4.21412 x 108]

T 3.55787 x 108 Bootstrap B 200 [2.93170 x 108, 4.20402 x 10"]
B 500 [2.94063 x 108, 4.28025 x 108]

B Simple M-B [2.28711 x 108, 3.51614 X 108]
Robust D-C (7 = 1) [2.40535 x 108, 3.45786 X 10s]

T 2.93165 x 108 Bootstrap B 200 [2.42934 x 10", 3.47387 x 10"]
B 500 [2.43003 x 108, 3.45315 x 108]

C Simple M-B [8.37196 X 107, 1.72874 x 108]
Robust D-C (7 = 1) [1.02915 X 108, 1.53679 X 1081

- 1.28297 x 108 Bootstrap B 200 [1.03275 x 108, 1.53379 X 108]
B 500 [1.03264 x 108, 1.53333 x 108]

Table 2. Monte Carlo estimates of coverage probabilities for 95% confidence intervals

Method Region 431 Region 22 Region 122

Bootstrap .955 .948 .949

Simple M-B .977 .968 .972

Robust D-C 7 = 0 .960 .940 .963

Bootstrap .949 .948 .952

Simple M-B .972 .981 .966

Robust D-C 7 = 0.5 .954 .958 .960

Bootstrap .943 .952 .949

Simple M-B .965 .957 .978

Robust D-C 7 =-1.0 .951 .950 .954

Bootstrap .950 ,955 .953

Simple M-B .965 .968 .970

Robust D-C 7 1.5 .962 .963 .964

Bootstrap .960 .959 .957

Simple M-B .978 .977 .980

Robust D-C 7 y 2.0 .963 .965 .969
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Graphic Representation of the Effects of Skewness and Kurtosis on the Power of the Two-Sided Student's t Test

Mark Eakin, P.O. Box 19437, Information Systems Dept., University of Texas at Arlington, Arlington, Texas 76019

Sam Bowman, Alcon Laboratories, 6302 South Freeway,
Fort Worth, Texas 76133

The effect of non-normal distributions on the t-test have
Abstract been examined by Srivastava (1958) and Tiku (1971).

Srivastava investigated the amount of non-normality that
It is well known that skewness affects the power of could be allowed in a near normal population without
student's t test more than does kurtosis. However, it is seriously affecting the significance level or the power of
often difficult to estimate the relative importance of each of the Student's t-test and what the effects would be in dif-
these factors when sampling from populations with ferent non-normal situations. His data demonstrated that
different skewness and kurtosis. the effect of skewness was greater on the probability of

Type I error than that of kurtosis. The effect of skewness
This investigation evaluates the ability of graphic was shown to be more prominent when the kurtosis in the
interpretation of the contributions of skewness and kurtosis parent population was of low order, however, as the parent
to provide an understanding of the effect of each on the population increases in kurtosis (becomes highly lepto- or
power of the one sample, two sided t test. Previous studies platy-kurtotic), the effects of skewness and kurtosis on the
have used tables and mathematical interpretation to depict power of the t test tend to negate each other. He cites the
these effects. This study uses simulation to develop the example of a parent population which is leptokurtotic and
power curves of size 5, 10, and 30. The Tadikamalla and positively skewed. In this case, the power of the one sided
Johnson system was used. to generate populations with t-test is close to the "normal theory" value. Finally, he
different values of skewness and kurtosis. on both the points that the effect of increasing the sample size causes a
distribution and power functions. Graphs of these decrease in the effect of non-normality on the power of the
functions are superimposed on a graph of skewness versus t-test.
kurtosis. Another investigation of the effect of non-normality of

Student's t was done by Tiku (1971). His work showed
The study verifies the effects of skewness and kurtosis in clearly that, the power of the two sided t-test is not greatly
small samples taken from nonnormal populations. Graphic affected and could be employed for a large number of
depiction emphasizes the importance of knowing the effects symmetric, near symmetric, and moderately non-normal
of skewness and kurtosis on the power of the t test for populations, It was also shown that, for moderately large
small sample sizes. The graphic presentation of the effects sample sizes (n > = 30), the effect of non-normality is
of skewness and kurtosis on both the distribution and negligible and the effect of non-normality on the Type I
power functions allows quick assessment of any potential error is negligible even for small samples.
deviation from the assumption of normality. The approaches taken by Tiku and Srivastava differ

markedly. Tiku derived an expression for the power of the
Introduction two-sided t test by using the joint distribution of the mean

and standard deviation of a sample. His approach
Students are told in many textbooks that skewness concludes with the devclopment of non-normality

affects the power of the Student's t-test more than kurtosis. correction functions. The values of these functions are
However it is often unclear to the student the relative compared to evaluate the effect of Student's t under non-
importance of each. If a one unit increase in skewness normal conditions on the power of the expression. Sri-
causes a certain effect on the power, then how much does vastava investigated the power of the one-sided t test using
kurtosis have to change in order to get the same effect on the first four terms of an Edgeworth series.
power? This paper examines graphically the effect of Both Tiku and Srivastava only reported a
changes in skewness and kurtosis on the power curves of comprehensive table of power values for a narrow grid of
the one sample t-test. The power curves are generated by skewness and kurtosis values and then for just a single
simulating and sampling from the Tadikamalla-Johnson sample size. For 20 degrees of freedom, Tiku gave power
family of distributions. values of the one-sided t test for skewness of -. 5, 0, .5,
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and 1, kurtosis values of 2, 3, 4, 5, and 6, and of Srivastava that not only is the effect of skewness is
noncentrality of 0, 1, ... , 4. For samples of size 10, greater on the probability of Type I error than that of
Srivastava explored a grid of values for skewness of -.6, - kurtosis but that there exists combinations where high
.4 .... ,. 6, kurtosis of 2, 3, 4 and 5, and noncentrality of kurtosis tends to reduce the effect of skewness.
0, 1 ,...,4 standard errors. However, the Srivastava power Sample size has been well known to affect power.
table, reported these values for a t test that has been ad- Sample sizes as large as 30 have power curves as
justed for non-normality, symmetric as a normal distribution for any of the dis-

Both of the above approaches have deficiencies. They tributions depicted. However, sample sizes of 5 from
give complete power values for only a small number of populations having large skewness may have very
noncentrality values and only for one sample size. deformed power curves with true Type 1 error rates as
Additionally, Srivastava reports values for an adjusted t- high as 0.3 for t-tests.
value. Furthermore, these approaches rely on the This paper extends Wie work of Tiku and Srivastava to a
mathematical interpretation of the derived expressions by wider range of skewness kurtosis, sample size, and
the reader to visualize the effect of parameters such as noncentrality, illustrated possible density functions giving
sample size and power. This paper graphically presents the these skewness and kurtosis values, and depicted all the
power curves of an unadjusted, two-sided t test over a power curves simultaneously. The distributions in Figure
wide range of skewness and kurtosis values for different 1 show the types of prob.,bili'y density functions that can
sample sizes and noncentrality. generate certain combinations of skewness and kurtosis.

The graphs presented in Figure 2 allow an investigator to
Methodology easily determine the extent that non-normality in a "near-

normal" population affects the significance level or the
Construction of the power curves used a Monte Carlo power of the Student's t test. The graphs also allow an

simulation sampling from the Tadikamalla-Johnson (1979) investigator to quickly see how changing either skewness
Lu and Lb family of distributions. The Tadikamalla- or kurtosis affects the power.
Johnson family of distributions covers a region of
skewness and kurtosis that is shown in Figure 1. Twenty- BIBLIOGRAPHY
seven different combinations of skewness and kurtosis
were chosen for this simulation. The probability density Srivastava, A. B. L.,(1958), "Effect of nonnormality on
functions of these distributions are shown in Figure 1. the power function of t-test," Biometrika, 45, 421-429.

The simulation design contained three factors: sample
size, skewness and kurtosis combinations, and Tadikamalla, P. R. and Johnson, N.L. (1982), "Systems of
noncentrality. The sample sizes consisted of n--5,10, and frequency curves generated by transformations of logistic
30. As mentioned, there were 27 different combinations of variables", Biometrika, 69, 461-465.
skewness and kurtosis. The null hypothesis stated that the
mean of the population was zero against an alternative of Tiku, M.L., (1971), "Student's t distribution under non-
not being zero. The true value of the mean was allowed to normal situations", Australian Journal of Statistics, 13 (3),
vary from 2 standard deviations below to 2 sLandard 142-148.
deviations above zero in increments of 0. 125. Each com-
bination of the three factors were replicated at least
100,000 times to obtain a value of power; some
combinations were sampled up to 180,000 if necessary to
achieve stable estimates of power. Figure 2 depicts the
resulting power curves.

Conclusions

The power curves shown in Figure 2 graphically
validate the results of Srivastava and Tiku in that the
effects of skewness and kurtosis are not uniform. If one
selects a value of skewness, of say 1.5 , and then
increases skewness , the lower curve approaches a more
symmetric shape. These results agree with the observation
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Figure 1: Distribution Shapes for Simulaion Values
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POWER COMPARISONS FOR TWO-SAMPLE RANK TESTS

Sudha Jain and J. 0. C. Templeton
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ABSTRACT

The asymptotic power of the Wilcoxon, relative efficiencies (ARE) of the linear rank tests are
Savage, Normal Score and Maximum Efficiency discussed in section 3.
Robust tests is compared numerically for the two- Finally, in section 4, the power of the Wil
sample scale problem when the underlying distribu- coxon, Savage, Normal Score and Maximum
tion is a Gamma distribution. In addition, the Max- Efficiency Robust tests is computed when the under-
imum Efficiency Robust Test is shown preferable in lying distribution belongs to the Gamma family for
comparison to Wilcoxon, Savage and Normal Score various values of the shape parameter. The Max-
tests. imum Efficiency Robust test is recommended as the

1. INTRODUCTION best applicable rank test for queueing models.

Gastwirth and Mahmoud (1986) proposed a 2. RANK-TESTS
so-called Maximum Efficiency Robust Test (MERT) L X ... ,N be independent random var-
for the hypothesis that two samples come from a com- ables with continuous distribution functions
mon distribution against the alternative that they F (x),F2 (X),t cFN(x) respectively. A linear rank
differ in scale. They compared the asymptotic rela- statistic S is def red by
tive efficiency (ARE) of the MERT with the ARE's of statistic S 15 defined by
the Savage and Normal Score tests for observations N

from a Gamma distribution. Woinsky (1972 b) and S= cia(Ri) .(2.1)

Whiteside, Duran and Boullion (1975) compared the
ARE's of the Wilcoxon, Savage and the Sum of where c's are known regression constants, R) is the
Squared Ranks tests for the two-sample scale problem rank of X; among X.X, ...,XN and a(Ri) is the value
using samples drawn from Gamma distributions, of the "score function" a() at Ri .

These tests can be used for comparing the perfor- THE TWO-SAMPLE CASE
mance of different queueing systems, for instance, the Let X,,X 2,...,xm be m independent observations
service time distributions of two different servers can
be compared to see whether they have the same scale on a random variable X with CDF F(x) and
parameters. The performance comparison of the xr+ndXm+2 ....,X, be n independent observations on a
rank-tests required the estimation of the power of random variable Y with CDF s(y). Consider testing
these tests. The asymptotic power of these tests will the hypothesis
be developed based on Hajek and Sidak's (1967) N

work. H.: p(x,x2,.....XN) = [-f(xi)
i-1

Section 2 deals with the developments of the
linear r2 --test statistics. The asymptotic power of against an alternative differing in scale
the test statistics is defined based on the fundamental N

principle of Hajek and Sidak (1967). The asymptotic H1: q(x&,x 2 , .... XN) = exp(-Ydi)
i-1

This research wa supported by Natural Sciences and Engineering Research Council of Canada (OP0131722) and (A5639)
for the flirst and second authors, respectively.
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x(Mf (xjexp (--dm testing H, against the alternative (2.2) is
i,,i A RE =e•=p1p2 (3.1)

N
x( fi f (xi)), (2.2) From (3.1) and (2.4) the asymptotic power of the S,

iW,+I -test for one-sided alternatives equals
where d=(dtd2.....dN) is an arbitrary vector and Power = 1--O(Z ,-e12b). (3.2)
N=m+n.

Hajek and Sidak (1967) defined the following Similarly, the asymptotic power of the S -test
statistic S, for testing the hypothesis (2.2): for two-sided alternatives equals

N Power= l--4P(Z 1- 2n-et 2b)+0(Zn--eb) . (3.3)
S.= 7_(c--F) a(Rj) , (2.3)

i=1 WILCOXON TEST

where F= -1 -sc;. If we put a(i) = i and ca=l for 1_• i : and
Ni. cic=0 for m < i : in linear rank statistics (2.1), we

The asymptotic power of the one- and two- obtain the two-sample Wilcoxon statistic
sided S, tests at level a (Hajek and Sidak (1967)) is e,

given by S = ,R1 . (3.4)
iml

Power = 1-0(Z .1, - P1 P2 b) (2.4) For the Gamma density the general form of the

for the one-sided test and ARE for Wilcoxon statistic is given by Woinsky
(1972 b) as follows:

Power=l-4(Z -.t2-p'p2 b)+0(Zv2-p1 p2b) (2.5) ARE2- = F(2k) ]2 (3.5)

for the two-sided test, where notations b, p, and P2 k Pr-
2 (k)

have the usual meanings given by Hajek and Sidak where k is the shape parameter.
(1967, page 268 ), and (D(x) is the standard normal
cumulative distribution function (cdt). Applying Stirling's approximation to the

Gamma function to (3.5), we have
REMARK. Let CI=C2 ... =Cm = 1; 3
C,n+l Cm+2 ... CN = 0 ; ARE(WilCoXo) = -exp(-1/4k) + 0(k 3 ). (3.6)

nd =-d 2 o .h =A; dmw+I = dTh+2 eN = 0 Thus, as k--oo , the Gamma density approaches nor-
and cj=4=-n otherwise. Therefore, mal density and the ARE is given by

c = m/N, and d = mA/N. 3

It can be easily noted that k W-4- = -) (

P2=1 for A> 0, (2.6) VAN DER WAERDEN ( or NORMAL SCORE)

P2=-', for A<O (2.7) TEST

and The Van der Waerden statistic (or Normal

b 2 = (f )A 2 (mn IN) , (2.8) Score statistic) is determined by
MI

where S = Ta(Ri) , (3.8)
i-I

1(f)= J(_Ix f'(x) )2 f(X)dX (2.9) where
f(x) a (R,) = E(S ())

3. ASYMPTOTIC RELATIVE EFFICIENCY OF and S(j)<...<S(,M+,) are the m+n order statistics from
RANK TESTS the N (0,1) distribution.

Hajek and Sidak (1967 , page 268) proved that
the asymptotic relative efficiency of the S, -test when
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SAVAGE TEST parameter. The power of the various rank-tests dis-

The Savage statistic is defined by cussed in section 3 will be compared.

N
S = •a(Ri), (3.9) For the Gamma density function

where f W(= x)ffi x exp(- x0)r(k) , x>0, k,?>0,
N

a(i) = (.). we have from (2.9)j•f-i+1 J , ,_,_,, .xkx-lexp(-)

It can be shown that -,(f) J - 7ex-•-X (k) dx . (4.1)
N 1
I - = E[-ln(l-U('))], (3.10) The integral (4.1) can be easily evaluated and is given

J.4.V-"f+J by

where U0') is the Pth order statistic in a sample of size 1(f)=k (4.2)
N from the uniform distribution over (0,1).

Hence, b2 for the Gamma distribution is given by
MAXIMUM EFFICIENCY ROBUST TEST

Gastwirth and Mahmoud (1986) proposed a m+n
Maximum Efficiency Robust Test (MERT) based on a
rank test as follows: where A= In(-).

R(u)= [-ln(l-u)-"+0-' (u)] (3.11) X2

(2(1+p))(. To apply the theoretical formulas developed so

where far, power of the various tests was estimated for test-
ing the equality of scale parameter for Gamma distri-

p = f(-ln(1-u)-1)0-'(u)du bution, assuming that the shape parameters are equal.

0 If the shape parameter k equals one, then the

Define Z and Z_ by Gamma distribution reduces to the exponential distri-
bution, that is

Z= -In(l-u)-1 (Savage component) f(x) = %exp(-Xx) . (4.4)

and
Comparisons of Power for various rank-tests

Z.. = (Z- (u) (Normal Score component), are presented in tables 4.1 and 4.2 for various sample

Thus, the standard normal form of MERT (3.11) is sizes when the underlying distribution is exponential.
given by Tables 4.3 and 4.4 present the power of the

ZI+Z. rank-tests for Gamma distribution with shape parame-
R(u) = (2(l+p))l .2 (3.12) ter k=2 and for different scale parameters. Table 4.5

presents the power when the shape parameter k--4 and

The value of p was obtained by numerical integration, the scale parameters are X1=1.0 and X2=2.0.
and is approximately equal to 0.90228. Hence, the
MERT test is given by 5. CONCLUDING REMARKS

Z1+Z. Tables 4.1 to 4.5 revealed that for a given shape
R(u) = 1.9505 (3.13) parameter k, all the four tests are more powerful with

the increase in the number of observations. The

The ARE of the Normal Score, Savage and Savage test is more powerful than the other three
MERT when the underlying distribution is Gamma rank-tests for the exponential distribution. It is well-
given by Gastwirth and Mahmoud (1986). known that the Savage statistic is the optimum rank

statistic for an exponential distribution (Savage,
4. APPLICATION 1956). The Wilcoxon is the least powerful test for the

To show how the rank-tests would work in value of scale parameter considered for any fixed
queueing models, we will illustrate their application value k: however, as the value of shape parameter k
to Gamma distribution for various values of the shape increases all four rank-tests become consistently more
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powerful for a fixed value of the scale parameters. TABLE 4.1. Power of the Wilcoxon, Savage, Normal Score and
The tables 4.3, 4.4 and 4.5 showed that the power of MERT for die exponential distribution with 74 - 1.0 and X2 =2.0 at

the MERT is maximum in comparison to the Wil- significance level a-0.05.

coxon, Savage, Normal Score tests when the shape
parameter for Gamma distribution is equal to 2 and 4 In n b Power
respectively. The power of all the four rank-tests I Wikoxon Savage Normal Score MERT
approaches maximum when the difference between
the two sample sizes decreases to zero. Further, 5 15 1 1.3423 0.3147 0.3805 0.3322 0.3682
MERT has the advantage in terms of its simplicity to P
use and is also more powerful than other rank-tests. 8 12 1.5187 0.3708 0.4491 0.3918 0.4346
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TABLE 4.2 Power of the Wilcoxon, Savage, Normal Score and TABLE 4A. Power of dte Wilcoxon. Savage, Normal Score and

MERT for the exponential distribution with X, = 1.0 and X, - 3.5 at MERT for the Gamma distribution (k-2) with , - 1.0. and )=3.5

significance level a = 0.05. at significance level a = 0.05.

I ____ Power- -

m n b PowerIWilcoxon Savage Normal Score MERT m~ n b4 ____Wilcoxon Savage Normal Score MERT

12 18 3.3615 0.8972 0.9566 0.9174 0.9486 5 95 9 3.1763 0.8984 0.9332 0.9132 0.9343

15 15 34308 0.9076 0.9626 0.9266 0.9553 6 8 3.2805 0.9144 0.9455 0.9279 0.9465

15 25 3.8358 0.9532 0.9856 0.9653 0.9819 7 7 33145 0.9192 0.9496 0.9322 0.9501

18 22 3.9417 0.9615 0.9891 0.9720 0.9859 8 12 3.8815 0.9726 0.9860 0.9788 0.9864

20 20 3.9616 0.9629 0.9896 0.9732 0.9867 10 10 3.916 0.9769 0.9886 0.9823 0.99

25 35 4.7840 0.9937 0.9991 0.9962 0.9987 - -

30 30 4.8519 0.9947 0.9993 0.9969 0.9989

TABLE 4.5. Power of the Wilcoxon, Savage, Normal Score and
MERT for the Gamma distribution (k-4) with 7, = 1.0., and

TABLE 4.3. Power of the Wilcoxon, Savage, Normal Score and = 2.0 t Gnii a dsvel ( w 0.05.

MERT for the Gamma distribution (k=2) with X, - 1.0 and 2 -2

2.0. at significance level at a 0.05.
Power

nm n b
Power Wikoxon Savage Normal Score MERT

m n b

Wilcoxon Savage Normal Score MERT 4 6 2.1476 0.6514 0.6711 0.6706 0.6906

15 25 3.0014 0.8669 0.9077 0.8842 0.9091 5 5 2.1919 0.6668 0.6883 0.6860 0.7060

18 22 3.0843 0.8826 0.9205 0.8989 0.9218 6 8 2.5669 0.7842 0.8041 0.8021 0.8202

20 20 3.0998 0.8854 0.9228 0.9013 0.9240 7 7 2.5935 0.79 15 0.8112 0.8092 0.8270

20 40 3.5794 0.9498 0.9712 0.9593 0.9719 8 12 3.0372 0.8910 0.9057 0.9042 0.9170

25 35 3.7434 0.9635 0.9804 0.9711 0.9809 10 10 3.0998 0.9017 0.9156 0.9142 0.9261

30 30 3.7965 0.9673 0.9827 0.9743 0.9831 15 25 4.2446 0.9912 0.9936 0.9934 0.9952

30 50 4.2446 0.9879 0.9947 0.9912 0.9949 2D 20 4.3838 0.9939 0.9957 0.9955 0.9968

35 45 4.3495 0.9906 0.9961 0.9932 0.9962 -

40 40 4.3838 0.9913 0.9965 0.9938 0.9966
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SMALL SAMPLE EMPIRICAL CRITICAL VALUES
AS A TOOL FOR THE COMPARISON OF

MULTIVARIATE NORMALITY GOF TESTS.
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Abstract. refer the reader to Romeu (1990),
for a complete list of references.

Existing Multivariate Normality
(MVN) Goodness of Fit (GOF) We soon realized how several of
Tests either follow a known these MVN tests lacked any
asymptotic distribution (e.g. asymptotic distributions. And those
Mardia's) or are empirical (e.g. who had one, converged to it very
Malkovich and Affifi). When slowly, rendering them impractical
samples are small the asymptotic when samples were "small".
theory cannot be safely invoked. We also observed how some of these
Hence, their asymptotic tests (i) were prone to detect
distribution percentiles are no certain types of departure from
longer accurate. In such cases multivariate normality (say
empirical critical values (ecv) skewness) but not others (say
are derived via Monte Carlo. kurtosis). Or how (ii) correlation

among p-variates affected some
We have thus obtained ecv's for tests very seriously. Or how the
eight well known MVN GOF tests ecv's were (iii) severely affected
for n=25(25)200, p=2(1)6(2)10 by sample size or (iv) by number of
and medium and high p-variate p-variates. Or how (v) certain
correlations. Using the ecv's we algorithm results varied from one
statistically study several computer to the other. Or a
characteristics of the unknown combination of any of the above
small sample distributions of mentioned problems.
these MVN tests. Then we present
criteria as to when and where We wanted to further investigate
the asymptotic critical values such problems and to study how the
can be safely used. different tests fared under them.

But, lacking the theoretical tool
1.0 Introduction and Background. to undertake such comparative study

(i.e. small sample distributions)
This research stems from the we took an indirect approach. We
work to demonstrate our newly thus, used the ecv's obtained by
developed MVN GOF test (Ozturk simulating five or ten thousand
and Romeu, 1992). We conducted test results, to characterize the
an extensive Monte Carlo power unknown statistical distributions.
study (under a Cornell Theory
Center award) to compare it with 2.0 Research Methods.
eight carefully selected and
well established MVN GOF tests: The validation of our Monte Carlo
Mardia's Skewness and Kurtosis, study is discussed elsewhere
Royston's W, Cox and Small, (Romeu, 1992). In this paper we
Malkovich-Affifi, Hawkins and present the statistical results
Koziol's Angles and Chi Square regarding the mentioned problems of
tests. For space and brevity we the eight MVN GOF tests.
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First, the effect of sample size Table 2: Approximate CI for ecv's.
was investigated by regressing
ecv's on inverse sample size MTD n p COV n p COV
1/n, for fixed number of p-
variates and percentile (PCT). MSK 50 2 NO 50 8 NO
Some results, for bivariate MSK 100 2 NO 100 8 NO
normals, are shown in Table 1. MSK 200 2 YES 200 8 YES
Each test (MTD), their MKT 50 2 NO 50 8 NO
asymptotic critical values (CV), MKT 100 2 NO 100 8 NO
the regression independent term MKT 200 2 NO 200 8 NO
(Bo) and Index of Fit (IF) are
given. A 95% confidence interval
(CI) for each regression's Bo, Next we investigated the effect of
for Mardia's Skewness (MSK) and p-variate correlation. In practice,
Cox-Small (Cox) test, cover the covariance matrix is seldom
their asymptotic CV. However, known. Instead, it is estimated
Mardia's Kurtosis (MKT), from the data and used in the GOF
converges much slower and its tests. In our power study we had
95% CI for Bo doesn't cover its also observed wide differences for
asymptotic CV. low and high correlation.

Table 1: Regression ecv = f(n). We investigated this problem by
taking, at prefixed and regular

MTD PCT Bo CV IF intervals of the order statistics
(at 0.9(0.05)0.995) differences of

MSK 0.90 7.79 7.78 0.99 ecv's obtained for rho=0.5 and 0.9.
MSK 0.95 9.67 9.49 0.98 There were two alternatives: (i)
MSK 0.99 13.77 13.28 0.98 this difference was statistically
MKT 0.90 1.63 1.65 0.99 zero (no correlation effect) or
MKT 0.95 2.08 1.95 0.99 (ii) there was an effect of
MKT 0.99 2.90 2.58 0.92 correlation. If so, this effect
COX 0.90 4.58 4.61 0.98 produced a shift problem or a scale
COX 0.95 5.99 5.99 0.94 one. Hence, the differences in
COX 0.99 9.10 9.21 0.94 ecv's would (or would not) be

independent of how far out they
were obtained. In the first case we

Next we investigated the used (i) paired (Wilcoxon/Sign)
"smallest" sample size n, tests. In the second, (ii)
required for the safe use of regression of these differences on
asymptotic critical values, its percentiles. If there was a
Table 2 show examples of significance difference in (i)
coverage (COV) of the 95th above, we obtained its 95% non
asymptotic percentile (CV) by a parametric CI.
95% non parametric CI, derived
for that sample size (n) and no. In Table 3 we report some of these
of p-variates (p). Verify how, non parametric 95% confidence
for different n and p, methods intervals for ecv differences, for
varied widely. Again, Mardia's those methods that showed none or
Skewness ecv's cover the true very small effect of p-variate
asymptotic percentile for n=200 correlation.
while Kurtosis, which converges
at a slower rate, doesn't.
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Table 3: CI for ecv Differences parametric paired comparisons
between ecv's obtained in Syracuse

MTD p Lower Upper University's IBM 3090 and Cornell's
Supercomputer. Differences (fixed

Skewness 2 -0.22 -0.16 p=2, n=50) for correlations of 0.5
Skewness 4 0.12 0.26 and 0.9 were obtained for
Hawkins 2 0.018 0.025 successive ecv percentiles
Hawkins 4 -0.008 0.015 0.9(0.005)0.995. We followed the
Cox-Small 2 -0.077 -0.012 same approach above described for
Kurtosis 4 0.047 0.062 the analysis of correlation effect.

Descriptive statistics of some of
our analyses are presented in Table

We also investigated the effect 5. For relative comparison of the
of the number of p-variates on effect of these differences on
ecv's. Several MVN methods (e.g. ecv's, the mean ecv value, by
Koziol) required large n and method, is also given.
small p for its use, which is
not always met in practice. We Table 5:Hardware effect comparison.
again used regression of ecv's
on p-variates (for MTD Q.25 Q.5 Q.75 Mean
p=2,3,4,5,6,8,10) for fixed
sample size and asymptotic MSK -0.048 -0.020 0.075 8.75
percentile. We verified how, ROY 0.883 0.975 1.208 5.26
with the exception of Koziol's HAW 0.008 0.014 0.039 1.30
Angles and Hawkins' tests, all CHI 0.002 0.005 0.006 0.22
others heavily depend on p-
variates too.

Notice how ecv's for Royston's test
We then reanalyzed ecv vary in the order of 15%, while
differences for low/high those for Skewness (MSK), Hawkins
correlation, now for fixed and Koziol's Chi Square tests are,
asymptotic percentile (PC) and for practical purposes, negligible.
n, but increasing no. of p- We conjecture that calculation of
variates. We verified how, with sensitive quantities (e.g.
the exception of Royston's and eigenvalues/eigenvectors) in the
Koziol's Angles tests, all other denominators of Koziol's Angles and
power results could be pooled. Royston's algorithms account for
An example is shown in Table 4. such large differences, when

processed in two significantly
Table 4: 95% CI for ecv diff(p). different machines as those used.

Test PC n LB. UB. A complete set of tables of small
sample ecv's for the MVN GOF tests

Skewness 0.90 25 -0.48 0.13 discussed in this paper can be
Skewness 0.95 25 -0.47 0.36 found in Romeu and Ozturk (1991).
Skewness 0.99 25 -1.02 1.40

3.0 Research Results.
Of practical consideration is
the effect of hardware on the The main result of this paper
calculation of ecv's. We concerns the determination of the
observed some variation for two appropriate sample size for
tests (Royston's and Koziol's asymptotic values. Mardia's
Angles). We performed non skewness test requires more than
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100 observations before the use quite sensitive to hardware effect:
of asymptotic critical values is Koziol's Angles and Royston's W. We
appropriate. The same holds for caution the practitioner to
Cox and Small and Koziol. For calibrate our results with those of
n=200, our ecv's 95% CI results his own machine before using our
cover the asymptotic values. ecv's.
Mardia's Kurtosis test converges
much slower and 95% CI obtained Finally, we have also shown how
for n=200 do not cover the empirical critical values, obtained
asymptotic percentiles. Hence, from simulation, can become
a sample of size 200 is still effective tools. The statistical
inadequate for using asymptotic study and comparison of the small
critical values. Since, in sample (unknown) distributions of
practice, samples may be much these MVN GOF tests was, both,
smaller than that, our empirical required but infeasible with the
critical values provide a useful conventional research tools (closed
tool for the practitioner. form distribution). We had few

other alternatives, since the true
Our ecv's regression results distributions were either unknown
also indicate that test that or available only when the sample
don't have a known asymptotic size was very large, which rendered
distribution (e.g. Malkovich and them useless for our needs.
Affifi) also converge as a
function of 1/n. Hence, a The use of the ecv's as a
function may be found that characterization of these unknown
approximates this test's unknown small sample distributions allowed
asymptotic distribution for us to investigate this problem.
large samples.

4.0 Bibliographv.
The next result of interest
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matrix is generally unknown and
estimated from the samples. We Romeu, J. L. (1990). Development
concluded that only two and Evaluation of a General
procedures, Royston's W and Procedure for Assessing
Koziol's Angles test (as well as Multivariate Normality. CASE Center
the Sigma Inverse implementation Tech. Report 9022. Syracuse
of our own multivariate Qn test) University, Syracuse NY 13244.
are seriously affected by p-
variate correlation. Separate Romeu, J. L. (1992) Small Sample
ecv's have been provided for Empirical Critical Values For
medium (0.5) and high (0.9) rho, Multivariate Normality Tests. ASA
for those two tests. All other Winter Conference. Louisville, KY.
methods analyzed may be
considered, for practical Romeu, J. L. and A. Ozturk (1991).
purpose, as approximately A Comparative Study of Goodness of
correlation free and single Fit Tests for Multivariate
tables of ecv's are provided. Normality. (Submitted for

publication).
Two MVN GOF tests have been found
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Table 6: Example of ecv's power comparison results (n=25; p=2).

PERCENT REJECTIONS FOR N- 20000 TOTAL CASES.

METHOD: ALPHA-0.10 ALPHA-0.05 ALPHAO0.01

CHOLESKI 0.09710 0.04675 0.00920
SIGMA 0.09755 0.04845 0.01025
N-SKEW 0.09860 0.04645 0.00910
N-KURT 0.09960 0.04975 0.01060
COX-SMAL 0.09560 0.04860 0.00895
ROYSTONW 0.10585 0.05415 0.01065
MALKOV 0.09960 0.04860 0.00910

KOZ-CHI 0.10155 0.05135 0.00985
KOZANGLE 0.10230 0.05140 0.00975
HAWKINS 0.10150 0.05100 0.01005

* ---TABLE NiO. 7 CRITICAL VALUESFORTHECASEP_:_2__VARIATES. -----------
*R140-O-.S SKWWEI K UR T0S I OSO HLOVICHOKZO CXSA*AKN KOZIOL
aN aTEST LOWER aUPPER aW AFIFI * CHI -SQR .* REG,,a TEST *AGLE

a 2 9 a8.7 -~z ao~a *s~a .03 o.... 1 5.13 - 1.036 4.53

! 5 g~a748 a 1.3 * 1.4__*__5:! a.95__*_ I .0a120a58

a25 9 9 a11.i24 -i.52 2.03 ; 9.28 0. a .317 11.62 a1.937 i .07a

*50 go0 6.67 -- .1.3~7 -- i:19--;-4.50 -- ;-0.953 a 0.173 a 4.73 a 1.074 * 4.45--a

a50 gj 58.27- -1535*J93 0 sg *0945 a 0.219 * 6.29 * 1.346 *5.94a

a50 99 a 12.18 -1I.76 2.49 - gi~9 0.026 a 0.337 9 9.97--;-1.997- -- ;-15--a
----- ;s go -a 703 -- - 14 ;*i~ -- 3g- ; 4.07 ---- 0.965 0 .1-2 4.79 * 1.067 a 4.59--a
a75 90 7 7*5 a-.3 *18 *3 a099 ~i .8a131a59

* io 9 a 3.6 *-1.5 *2.9 a9~4 ~ 0.957 * 0.3268 * .628 * 1.321 S .4a

7 15 95 a 9.35 a -1.70 64 93oa56 ~iia027a~g a133a58

a 15 99 a 13.35 a -1.o0 * .93 - 8.93 a 093a.37 94a198*8.746
---------- ---------- ----------------------------

100s 90-;-a 3 7 -44 ;-~ --14 -- 1.47 a -4.25 i .977 - 0.170 * 4.79 - 1.035 4.642
--------------------------------- --------------------------------------- ----toio 95 9.148 ; 17 18 .9o ; .7 .1 61 .9 .85-

100--------------------------------------------------:Iii------------------- -;- : o 3F;----------
-.-- - - - - - ------------- ....-.- 7---- 45--a 175 90-;-3 * ( ;*-1.81..52 4.4 ; .76 *; 0,170 4.712 1.4 7 .6
---------------------------------------------- ... ...------------------------- ; - ----------

a125 95 - a.3 -169--.0 5.680 -- 0.97 a~il-._ 0.2214 5.359 1.30 4 5.82

S175 99*1.7 *-.6 a27 .s a0960 - 0.337 1 gasa2.2 a 93

15 ioio 7.64 -1-.517 1.57 *4.73 i.0.979 a 0.i74 4.629 1.063; a 4.61 a;

15 qoo an 9 33 212 a3 .94 0-.9.672 0.30a 9.6 4 ~a 9.076
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --------------- ----------
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On the Accuracy of Binomial and Proportion
Estimators: an Absolute Rule

Eugene F. Schuster
Department of Mathematical Sciences

El Paso, Texas, 79968-0514

Abstract the accuracy of the normal approximation to the bino-
We consider the problems of estimating: 1) a probabil- nmial inferred the theorem for p E (0.1, 0.5] with samplesWey c,2)abinonsidt paro tems of emating: 1) a probatil- p sizes r > 200; finally, numerical methods were used to

ity p, 2) a binomial parameter p and, 3) the proportion p analyze the remaining possibilities, 0.1 < p _< 0.5 and

of a finite population of size N having a given attribute. 1 the <200.

In each case, our estimator is the usual proportion of Of course, the same theorem holds when estimating a

successes P in a random sample of size r. Our main re- binomial proportion p by the proportion of successes

sult is a simple, absolute rule: P ± 1/ ie, is always wicocin ro tias i, by the isoalwaysoat least a

at least a 91.0% confidence interval (C.I.) for the 91.0% confidence interval (i.e.) for a binomial parameter

parameter p. In case 3), this rule holds whether sam-

pling is with or without replacement. In fact, we have P"N) -Prob~j3 is Several people, working with sample survey type data,
shown that h(p) = h(p; r, N) = Prob(IP - Pl 5 l/ V is have inquired if a corresponding theorem holds in the hy-at least as large under the hypergeometric model of sim- pergeometric case of estimating the proportion p, having
ple random sampling without replacement as it is under a given attribute (say success) in a finite population of
the corresponding binomial model of random sampling N by the proportion s of successes in a simple random
with replacement. The significance of our rule is that it sample without replacement from the population. Our
is a good, easily stated accuracy rule, holding for all r, answer to this question is in the affirmative:
N, and p, which can easily be understood by the lay-
man when assessing accuracy of the estimator P3 and dis- Theorem 1.2 Let the random variable X record the
cussing the relationship between accuracy and sample number of successes in a random sample (with or with-
size. We give a table which indicates the lowest proba- out replacement) of size r, 1 < r < N, from a population
bility coverage of p by P ± -/1Vs for each r < 200. The of N containing n successes. If we estimate p = n/N
lowest probability coverage is not monotone in r as one by P = X/r then at least 91.0%5 of the time (i.e., with
might expect. There are only 18 sample sizes where the probability at least 0.910) P5 will be within 1/v? of p
probability coverage is below 0.94. In all three cases, the for any r, N and p. Furthermore, h(p) = h(p; r, N) =
probability coverage rounds to at least 0.93 for r > 13, Prob(IP - pl < 1/V/) is at least as large under the hy-
rounds to at least 0.940 for r > 31, and is less than the pergeometric model of simple random sampling without
asymptotic normal value 0.9545 for 2 < r < 700 in the replacement as it is in the corresponding binomial model
binomial case. of random sampling with replacement.

1. Introduction and Summary iThe details of the proof of Theorem 1.2, are given

in Schuster (1992) where we prove Theorem 1.2 from
In Schuster (1978), we gave a good easily stated rule Theorem 1.1, utilizing results following from Uhlmann's

regarding the accuracy of probability estimates: (1966) relations between the binomial and hypergeomet-
nric cumulative distribution functions (c.d.f.'s). We show

Theorem 1.1 Let A be an event associated with a ran- that (for fixed r,p, and N) the hypergeometric c.d.f.
dom experiment a. Suppose we make r independent trials starts out and remains below the corresponding bino-
of t and A occurs X times in these r trials. If we es- mial c.d.f. until it crosses at an integer close to the com-
timate p = Prob(A) by l = X/r then at least 91.0% of mon mean and then remains above until both c.d.f.'s
the time (i.e., with probability at least 0.910) p. will be reach one at r. This observation sheds further light on
within 1/vtr of p for any r and P. the relationship between binomial and hypergeometric

Noting that it is sufficient to consider p < 0.5, we probabilities, C.I.'s, and c.d.f.'s.
proved Theorem 1.1 via three cases: Chebyshev's in- In Schuster (1978), we showed that the lowest con-
equality easily handled p E [0,0.1]; published results on fidence level under the binomial case of Theorem 1.1
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occurs when r = 6 with p approaching 5/6 - 1/v1 -: is of independent interest in that for any fixed sample size
0.425085 from the left. Here the confidence level per- r it gives an algorithm for calculating the exact value of
centage dips to nearly 91.011%. If the sample size r is the infimum of
fixed and the population size N tends to infinity in such
a manner that the proportion of successes p = n/N re- h(p) = h(p; r) = Prob(13 - pl <_ 1/vS )

mains constant, then the hypergeometric value of h(p)
decreases to the binomial value of h(p). Thus the 91.0% as well as an exact location (and direction) where the
is also the best overall confidence level percentage one infimum occurs. These results are given in Table 2 for

can achieve in both cases of Theorem 1.2. The lowest 1 < r < 200. This table has four entries: r, inf h(p; r),
percentages again occur when r = 6 with N large and location p, d. Here, r is the sample size, inf h(p;r)

p approaching 5/6 - 1/06- from the left, i.e. when the is the infimum of h(p; r) over 0 < p <_ 1 and location

hypergeometric model approaches the binomial model p gives a point p where the infimum is realized. The d

having the lowest confidence level. (for direction) heading indicates that the infimum occurs

In Section 3 we sketch a new proof of the numerical from the right(+) or left(-) at the given location p. A

part of the proof of Theorem 1.1 which we use to produce sketch of the argument justifying these table entries is

Table 2. This table gives the lowest probability coverage contained in Section 3. We give the exact value of the lo-

of p by P ± 1/./r for each r < 200 in either the binomial cation as well as a six digit approximation and round the

or hypergeometric case (we computed Table 2 entries to infimum to six decimal digits. Note that the sequence

r = 700, but report only the first 200). Hr = inf {h(p; r) : 0 < p _< 1} is not monotone in r as

How conservative is the 91.0% confidence bound? The one might expect. For example, the lowest confidence

Central Limit Theorem tells us that for large r and (usu- level coverage of P 1/±/r for r = 16 is 0.950958 while it

ally unknown) p not too close to 0 or 1, P± 1/,/r is about dips to 0.929369 at r = 20. This table suggests that as

a 95% C.I. for p. Table 2 suggests that as the sample size the sample size r becomes large, asymptotically the low-

r becomes large, asymptotically the lowest confidence est confidence level occurs at p = 1/2 where the lowest

level coverage does indeed occur at p = 1/2 where the confidence level (0.954500) is given by the the normal

confidence coverage (0.954500) is given by the the nor- approximation to the binomial. We have shown that the

mal approximation to the binomial. However, except for lowest probability coverage of p by P ± 1/VF rounds to

the degenerate case r = 1, the lowest binomial probabil- at least 0.94 in all three cases for r > 21. The coverage

ity coverage is below 0.9545 for every r < 700. There are probability is above 0.940 for r > 43 except for the value
only 2, 4, and 18 sample sizes where the probability coy- 0.939641 at r = 56.

erage is below 0.92, 0.93, and 0.94, respectively. These Table 1.
18 cases are listed in increasing order in Table 1. Note Probability Coverages Below 0.94
that the binomial probability coverage is at least 0.93 for [Sample size r inf h(p; r)
r > 13 except for a value of 0.929369 at r = 20 and at
least 0.940 for r > 43 except for a value of 0.939641 at 6 G.910113

r = 56. When considering theoretical models to approx- 2 0.914214

imate real world problems, there is often little practical 12 0.922074
difference between confidence levels in the range from 3 0.924501
91% to 95%. Thus the significance of Theorems 1.1 and 8 0.927673
1.2 aie that they give a good, simple, easily stated accu- 20 0.929369
racy rale, holding for all r, N, and p, which can easily 5 0.930495
be unJerstood by the layman when assessing accuracy 15 0.932670
of estimates and discussing the relationship between ac- 11 0.932957
curacy and sample size. 30 0.934054

24 0.935862

2. Lowest Probability Coverages 19 0.935884
42 0.937285

Since 1978, available numerical methods in the form of 4 0.937500
exact arithmetic capabilities have improved substantially 29 0.938338
and we can now use an incomplete Beta representation 35 0.938548
of the tail of the binomial and the power of the software 56 0.939641
system Mathematica to give an alternate proof of the 7 0.939671
numerical part of the proof of Theorem 1.1. This proof
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Table 2. Lowest Probability Coverage 1-50 Table 2. Lowest Probability Coverage 51-100

r I inf h(p; r) iocation p [ p Id r inf h(p;r) location p • p FT]
1 1.0 0 0 51 0.949993 (18 + v'51)/51 0.492969 +
2 0.914214 (2 - V2-)/2 0.292893 - 52 0.94809 (33 - 2v'3)/52 0.49594 -

3 0.924501 (3 - V'3)/3 0.42265 - 53 0.946128 (19 + 453)/53 0.495851 +
4 0.9375 1/2 0.5 + 54 0.94406 (34 - -/5)/54 0.493547 -
5 0.930495 (1)/V5' 0.447214 + 55 0.941872 (20 + v'5)/55 0.498476 +
6 0.910113 (5 - V-')/6 0.425085 - 56 0.939641 (35 - v56)/56 0.491369 -
7 0.939671 (6 - V7)/7 0.479178 - 57 0.952429 (36 - V5-7)/57 0.499126 -
8 0.927673 (1 + 2V2)/8 0.478553 + 58 0.950929 (21 + -F58/)/58 0.493375 +
9 0.9486C9 4/9 0.444444 - 59 0.949284 (37 - v59)/59 0.49693 -
10 0.941889 (8 - V/0)/10 0.483772 - 60 0.947604 (22 + 2V'T5)/60 0.495766 +
11 0.932957 (2 + V'T I)/11 0.48333 + 61 0.94583 (38 -V'-)/61 0.494914 -
12 0.922074 (9 - 2V3)/12 0.461325 - 62 0.943178 (23 + V6-2)/62 0.497968 +
13 0.946211 (10 - VT3)/13 0.491881 - 63 0.942077 (39 - 3V7-)/63 0.493059 -
14 0.940294 (3 + rl/4-)/14 0.481547 + 64 0.953647 1/2 0.5 +
15 0.93267 (11 - v '5)/15 0.475134 - 65 0.952348 (40 - v/)/65 0.49135 -
16 0.950958 1/2 0.5 + 66 0.950951 (41 - vF6)/66 0.498121 -
17 0.947235 (4 + v"'7)/17 0.47783 + 67 0.949527 (25 - V-7)/67 0.495304 +
18 0.941875 (13 - 3Vr)/18 0.48652 - 68 0.948013 (42 - 20,7)/68 0.496379 -
19 0.935884 (5 + vf"9)/19 0.492574 + 69 0.946453 (26 + V6"9)/69 0.497197 +

20 0.929369 (14 - 2vi)/20 0.476393 - 70 0.944838 (43 - V-0)/70 0.494763 -

21 0.949209 (15 - V'21)/21 0.496068 - 71 0.943147 (27 + V'7f)/71 0.49896 +
22 0.94549 (6 + r22)/22 0.485928 + 72 0.941433 (44 - 12V2-)/72 0.49326 -
23 0.940946 (16 - -f/)/23 0.487138 - 73 0.952861 (45 - vii)/73 0.499397 -
24 0.935862 (7 + V24)/24 0.495791 + 74 0.951661 (45 - 7-V)/74 0.49186 -
25 0.952342 12/25 0.48 - 75 0.950373 (46 - 5V/3)/75 0.497863 -
26 0.949366 (18 - v26)/26 0.496192 - 76 0.949067 (29 + 2Vl-9)/76 0.496287 +
27 0.946167 (8 + 3V3)/27 0.488746 + 77 0.947695 (47 - v/77)/77 0.496429 -
28 0.942429 (19 - 2v,7 )/28 0.489589 - 78 0.946283 (30 + V/78)/78 0.497843 +
29 0.938338 (9 + V/2)/29 0.49604 + 79 0.944831 (48 -- V9)/79 0.495086 -
30 0.934054 (20 - vTO)/30 0.484092 - 80 0.943316 (31 + 4Vr)/80 0.499303 +
31 0.950826 (21 - r-v-)/31 0.497814 - 81 0.953833 40/81 0.493827 -
32 0.948224 (10 + 4V2-)/32 0.489277 + 82 0.952757 (50 - f82)/82 0.499325 -
33 0.945192 (22 - V4)/33 0.492589 - 83 0.951665 (50 - Vr)/83 0.492645 -
34 0.941971 (11 + vf')/34 0.495028 + 84 0.950503 (51 - 2v(2i)/84 0.498034 -
35 0.938548 (23 - f-5)/35 0.488112 - 85 0.949325 (33 + V8)/85 0.4967U1 +
36 0.952969 1/2 0.5 + 86 0.948096 (52 - v'6)/86 0.496818 -
37 0.950883 (24 - vf3/)/37 0.48425 - 87 0.946835 (34 + Vr87)/87 0.498016 +
38 0.948467 (25 --/38)/38 0.495673 - 88 0.945541 (53 - /-8)/88 0.495672 -
39 0.945959 (13 + VF)/39 0.493461 + 89 0.944198 (35 + V'-9)/89 0.499258 +
40 0.94323 (26 - V44)/40 0.491886 - 90 0.94284 (54 - 3Vfh)/90 0.494591 -
41 0.9403 (14 + v'41)/41 0.497637 + 91 0.953171 (55 - Vri)/91 0.499567 -
42 0.937285 (27 - -f4-42)/42 0.488554 - 92 0.952188 (55 - 2,/-)/92 0.493569 -
43 0.951798 (28 - -V)/43 0.498664 - 93 0.951151 (56 - V93)/93 0.498455 -
44 0.949863 (15 + 2v')/44 0.491665 + 94 0.950102 (37 +V9/)/94 0.496759 +
45 0.947686 (29 - 3Vr5)/45 0.495373 - 95 0.949008 (57 - vr5)/95 0.497402 -
46 0.945432 (16 + rV4)/46 0.495268 + 96 0.947891 (38 + v/6)/96 0.497895 +
47 0.943038 (30 - v4-7)/47 0.492433 - 97 0.946743 (58 - V7)/97 0.496404 -
48 0.940482 (17 + 4Vt3)/48 0.498504 + 98 0.94556 (39 + 7\/2)/98 0.498974 +
49 0.953398 24/49 0.489796 - 99 0.94436 (59 - 3\/-1)/99 0.495456 -
50 0.95172 (32 - 5V\)/50 0.498579 - 100 0.953956 1/2 0.5 +
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Table 2. Lowest Probability Coverage 101-150 Table 2. Lowest Probability Coverage 151-200

[r i inf hp;[r) location p p P d r( I inf h(p;r) location p :zP ip
101 0.953077 (60 - V1-01)/101 0.494556 - 151 0.949416 (63 + V151)/151 0.498597 +
102 0.952159 (61 - v1-0)/102 0.499024 - 152 0.948694 (88 - v'1"5)/152 0.497837 -

103 0.951232 (41 + vT'0)/103 0.496591 + 153 0.947959 (64 + 3vti7)/153 0.499146 +
104 0.950261 (62 - /-T'04)/104 0.498096 - 154 0.947215 (89 - V'h"4)/154 0.49734 -
105 0.949278 (42 +v-5)/105 0.49759 + 155 0.946455 (65 + 1V'")/155 0.499677 +
106 0.948263 (63 - v'16/)/106 0.497211 - 156 0.94569 (90 - 2v39)/156 0.496859 -

107 0.947225 (43 + V-1-07)/107 0.498543 + 157 0.953711 (91 - v'/T)/157 0.499809 -
108 0.946167 (64 - 6V3)/108 0.496368 - 158 0.953117 (91 - VlT5)/158 0.496394 -

109 0.945075 (44 + V-10)/109 0.499452 + 159 0.952506 (92 - V-1i)/159 0.499311 -
110 0.943974 (65 - v' '0)/'11O 0.495563 - 160 0.951891 (67 + V'1T6)/160 0.497807 +
111 0.953401 (66 - v/i-i)/111 0.499679 - 161 0.951258 (93 - V-/T6)/161 0.498829 -

112 0.952581 (66 - 4V'7 )/112 0.494795 - 162 0.950621 (68 + 9v/2)/162 0.498321 +
113 0.951726 (67 - vfi-T)/113 0.498848 - 163 0.949969 (94 - v'T6)/163 0.498361 -

114 0.950864 (46 + -v/iY)/114 0.497167 + 164 0.949309 (69 + 2V4-1)/164 0.498819 +
115 0.949969 (68 - V-1-15)/115 0.498054 - 165 0.948639 (95 - V\16)/165 0.497908 -

116 0.949061 (47 + 2v/2)/116 0.49802 + 166 0.947956 (70 + v-6)/166 0.499302 +
117 0.948129 (69 - 3v'Th)/117 0.497294 - 167 0.947268 (96 - v'/T6)/167 0.497468 -

118 0.947176 (48 + v'iT8)/118 0.498837 + 168 0.946563 (71 + V-16)/168 0.499771 +
119 0.946209 (70 - v '19)/119 0.496565 - 169 0.95418 84/169 0.497041 -
120 0.945212 (49 + Vi-0)/120 0.49962 + 170 0.95363 (98 - V'17)/170 0.499774 -
12i 0.954053 60/121 0.495868 - 171 0.v53076 (98 - 3vi-9)/171 0.496628 -
122 0.953306 (72 - V/1-2)/122 0.499628 - 172 0.952507 (99 - 2v43)/172 0.499332 -

123 0.952549 (72- ,/1-2)/123 0.495199 - 173 0.951934 (73 +VT17)/173 0.497994 +
124 0.951763 (73 - 2v,/)/124 0.498907 - 174 0.951347 (100-vT74)/174 0.498903 -
125 0.95097 (51 + 5vr5)/125 0.497443 + 175 0.950755 (74 + 5v 7 )/175 0.49845 +
126 0.950151 (74 - 3v/4)/I26 0.498215 - 176 0.950151 (101 - 4v')/176 0.498486 -
127 0.94932 (52 + Vi-27)/127 0.498184 + 177 0.94954 (75 + ./i7)/177 0.498893 +
12d 0.94847 (75 - 8v'2)/128 0.497549 - 178 0.94892 (102 - V/18)/178 0.498081 -

129 0.947603 (53 +V/2"9)/129 0.498898 + 179 0.94829 (76 +v17)/179 0.499325 +
130 0.946722 (76 - v/-o)/130 0.49691 - 180 0.947654 (103 - 6v5')/180 0.497687 -
131 0.945818 (54 + vi'3i-)/131 0.499584 + 181 0.947005 (77 + v1/1-)/181 0.499744 +
132 0.944908 (77 - 2v3)/132 0.496295 - 182 0.946354 (104 - 1/-182)/182 0.497304 -
133 0.953575 (78 - v'133)/133 0.499755 - 183 0.95382 (105 - v/T-8)/183 0.499848 -

134 0.952882 (78 - v/'h3)/134 0.495703 - 184 0.953305 (105 - v'/1-8)/184 0.496931 -

135 0.952164 (79 - v'-I/ )/135 0.499119 - 185 0.952777 (106 - V/8)/185 0.499452 -

136 0.951442 (56 F v/3)/136 0.497514 + 186 0.952247 (79 +v/i18)/186 0.498055 +
137 0.950695 (80 - vI3)/137 0.498506 - 187 0.951704 (107 - vf/)/187 0.499065 -

138 0.949941 (57+vrt3)/138 0.4Y8169 + 188 0.951157 (80 + 2V4)/188 0.498464 +
139 0.949168 (81 -- v1-39)/139 0.497915 - 189 0.9506 (108-1V89)/189 0.498689 -
140 0.948383 (58 + 2vf')/140 0.498801 + 190 0.950036 (81 + vri)/190 0.498863 +
141 0 -47585 (82 - V/1i)/141 0.497345 - 191 0.949465 (109 - V-1/T)/191 0.498323 -

142 0.946768 (59 + v'/ )/142 0.499411 + 192 0.948885 (82 + 8V3)/192 0.499252 +
143 0.945945 (83 - -v-3)/143 0.496795 - 193 0.9483 (110 - vr/f9)/193 0.497967 -
144 0.954123 1/2 0.5 + 194 0.947704 (83 + vi'-9)/194 0.499631 +
145 0.95349 (84 - v/'4)/145 0.496265 - 195 0.947105 (111 - v'-5)/195 0.497619 --

146 0.952839 (85 - V'i)/146 0.499431 - 196 0.954223 1/2 0.5 +
147 0.952184 (61 + 7v3-)/147 0.497445 + 197 0.953747 (112 - 61-97)/197 0.497281 -
148 0.951506 (86 - 2'f)/148 0.498882 - 198 0.95326 (113 - 3V22)/198 0.49964 -

149 0.950824 (62 + V-9)/149 0.498031 + 199 0.952772 (113 - V1-99)/199 0.496951 -
150 0.950124 (87 - 5v,6)/150 0.49835 - 200 0.952271 (114 - 10V/2)1200 0.499289 -
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3. Proof for Table Entries made by computing the minimum of h(p; r) for r < 100
over a grid with spacing s = 0.0001.

Let the random variable X be binomially distributed a gral gidanc p = tbeaprc

with parameters r and p. Then the incomplete Beta

representation of the right tail probabilities of X is: square seems to do quite well. For r a perfect square

f(k;representtion ) Of righ t -il kprobaiitisP ok-is larger than one, the probability coverage increases with r
f(k;r,p) =P(X Ž k) = f3(k,r- k+1)-jfot-(1- (at least tc 700), has the lowest value of 0.9375 at r = 4, a

t)r-kdt. But then value of 0.948609 at r = 9, and is above 0.95 for squares

h(p) = h(p; r) = Prob(Ip - pi 1/vs) r > 16 (0.95 is within 0.0045 of the upper asymptotic
value!). See the Table 4 summary for squares below 700.

can be written in the form h(p) = h(p; r, x, y) = P(x < It also appears (check the entries in Table 2) that if r is
X < y) = P(X > x) - P(X > y + 1) for x = x(p) = a perfect square, then inf h(p;r), the lowest probability

Ceiling(rp - VV r and y = y(p) = Floor(rp + v/r). For coverage at r, is larger than inf h(p, ro) for any integer

fixed r, the function h(p) uses the same x and y for all r0, 1 < r0 < r.

p in some interval, say I(p), and is therefore continuous
and differentiable as a function of p except possibly at Table 3. Form of Jump Function j(p)

the endpoints of the intervals 1(p) where the x and/or d l integer I not integer

y might change. These change points p belong to the u integer - b(u) b(u)

set E = E(r) = {pip = (k± V/)/r,k = 0,1,-..,r}fn + b(l) 0

[0, 1]. Using this Beta representation, one can take the u not integer - 0 0

derivative of h(p) on any interval I(p) and show that + b(1) 0
h(p) is concave down on each of the intervals I(p). Thus

the infimum of h(.) will occur from the left or right at Table 4.

one of the points in E. Coverages for Perfect Squares

The infimum of h(.) over the finite set E can be com- [ r [ infh(p;r) lirl infh(p;r)

puted as follows. Let b(x) = b(x;r,p) = P(X = x;r,p) 1 1.0 196 0.954223
be the probability mass function of the binomial with 4 0.937500 225 0.954260

parameters r and p. Then the left and right hand limits 4 322

of h(.) at p are of the form h(p±) = h(p) - j(p) where 9 0.948609 289 0.954313

the jump function j(p) is given in Table 3 f'r the vari- 16 0.950958 324 0.954333

ous cases. The entries in the table are obtained by taking 25 0.952342 361 0.954350

the left and right limits of Ceiling(l) and Floor(u) where 36 0.952969 400 0.954365

1 = l(p) = rp - v/j and u = u(p) = rp + lr-. There are 49 0.953398 441 0.954377

four cases depending on whether or not I and u are inte- 64 0.953647 484 0.954388

gers. For example, consider the case when I = l(p) is in- 81 0.953833 529 0.954398

teger, but u(p) is not. Then both the left and right hand 100 0.953956 576 0.954406

limits of y(.) at p equal Floor(rp+ Vr) = Floor(u(p)) = 121 0.954053 625 0.954413

y(p). Moreover, x(p+) = Ceiling((rp - /r-)+) = 144 0.954123 676 0.954420
Ceiling(l(p+)) = Ceiling(l(p)) + 1 = x(p) + 1 = I + 1, 169 0.954180 oo 0.954500

but x(p-) = x(p) = 1. Thus h(p+) = h(p) - b(l) and
h(p-) = h(p) and the corresponding jump functions are 4. References
b(l) and 0 as given in the last row of Table 3. The re-

maining 6 cases in Table 3 follow in similar fashion. The Johnson, N.L. and Kotz, S. (1969), Discrete Distribu-

important point is that we have exact expressions for tions. Houghton Mifflin, Boston.

both h(p+) and h(p-). The Table 3 coluLin headed Schuster, E.F. (1978), " On the accuracy of probability

by d (for direction) uses + and - to designate the ap- estimates". Mathematics Magazine,51, 227-229.

propriate j(p) function corresponding to limits from the

right(+) and left(-), respectively. Schuster, E.F. (1992), "Accuracy of proportion estima-

The software system Mathematica was used to pro- tors", preprint.
gram the entries in Table 3 to compute the exact and

apprximte vlueof if~hp~rI0 ~p •1} a wel ~ Uhlmann, V.W. (1966), " Vergleich der hypergeomet-a p p r o x im a t e v al u e o f in f f h (p ; r ) 1 0 <_ p :_ 1 } as w e ll a s i c e m t d r b n o al v t i u g " M t ik , 0
an the exact and approximate point p where the infimum rischen mit der binomial-verteilung". Metr1ka,11,

was realized for all r < 700. A summary for r < 200 is 145-158.

given in Table 2. A numerical check of this routine was
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Simulating Gaussian Random Processes with Specified Spectra

Donald B. Percival
Applied Physics Laboratory, HN-10

University of Washington
Seattle, WA 98195

Abstract II. An Exact Time Domain Method

Abstract-We discuss the problem of generating re- If the acvs {s,,y } is readily known out to lag N - 1,
alizations of length N from a Gaussian stationary pro- there are well-known time domain techniques for gener-
cess {Yt} with a specified spectral density function Sy(.). ating samples of {Y,} (see, for example, Franklin, 1965).
We review three methods for generating the required re- Typically these involve an lower-upper Cholesky factor-
alizations and consider their relative merits. In particu- ization of the inverse of the N-th order Toeplitz covari-
lar, we discuss an approximate frequency domain tech- ance matrix for Yo,.... , YN- i (see Demeure and Scharf,
nique that is evidently used frequently in practice, but 1987, for a good review). This factorization can be ac-
that has some potential pitfalls. We discuss extensions complished using the Levinson-Durbin recursions and
to this technique that allow it to be used to generate re- then used to generate the desired samples, as follows.
alizations from a power-law process with spectral density Let Wo,..., WN-1 be a set of N independent and iden-
function similar to S(f) = If I' for a < 0. tically distributed Gaussian random variables (rv's) with

zero mean and unit variance. With Yo = aoWo, we gen-

I. Introduction erate the N - 1 remaining samples recursively via

Let {Yt} be a real-valued Gaussian stationary pro- t
cess with spectral density function (sdf) Sy(.), autocor- Yt = Z j,tYt-_j + Wtat, t =1...,N - 1.
relation sequence (acvs) {st,y} and zero mean. If we de- j=1
fine the sampling time between observations Yt and Yt+l
to be unity so that the Nyquist frequency is ½, then the The 2r's and c are obtained by first setting u0 = so,

acvs is related to the sdf via the usual relationship and then recursively computing for t = 1. N - 1

S = Sy(f)e' 2 tf df, where i V-- . (1) = ,- E}5_11

A problem of considerable practical interest is to gener- 2 2

ate a sample of length N of this process (i.e., a realization 01 = 01-2 (1 -

of Y0,.. ., YN- 1) on a digital computer by suitably trans-
forming samples of a zero mean, unit variance Gaussian (for t = 1 the summation in the first equation is taken
white noise process {Wg}. In this paper we discuss three to be 0, and the second equation is skipped).
methods for doing this: an exact time domain method There are two potential drawbacks to this exact
that is valid for all sdf's (Section II), an exact frequency method. First, once we have computed the at's and
domain method that is valid only for some sdf's (Sec- Ojj's, the number of floating point operations needed to
tion III), and an approximate frequency domain method generate a sample of length N is O(N 2 ). There are ways,
that can be used for all sdf's (Section IV). We place par- however, of reducing this number to O(N) if in fact the
ticular emphasis on generating time series from station- Toeplitz matrix possesses enough special structure (this
ary and nonstationary power-law (long memory) pro- is the case if, for example, {Y1} is an autoregressive-
cesses (Sections V and VI). (The three methods we dis- moving average process-see Kay, 1981, for details). Sec-
cuss here are. certainly not the only ones that have been ond, if we are given the sdf Sy (.) instead of the acvs, we
advocated in the literature-one important omission is must first obtain the required s,,y,'s. In principle this can
an approximate time domain method Lased upon the always be done via numerical integration, but in practice
class of autoregressive-moving average models.) this approach can be error-prone and time consuming.
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III. An Exact Frequency Domain Method (the asterisk denotes complex conjugation). Note that

Davies and Harte (1987) recently outlined a fre- } f Sj, if j = k;
quency domain technique for simulating {Yt} that makes cov {t)j, kI = E{V*V~1 = O otherwise.

use of a fast Fourier transform (fit) algorithm and hence

requires only O(N log(N)) operations. As these authors We next define the process {Vt} via

noted, their method is not completely general in that it 1 M-1
can fail to work for some processes. The situations for Vt - vie 2  ' t = 0,...,M-1. (3)
which their method is applicable are easily described by • j=0
a nonnegativity constraint. Their method has in fact By construction, the process {Vt} is real-valued. Because
appeared previously in the literature in the context of V is a linear combination of Gaussian rv's, the process
simulating Gaussian moving average processes of order is Gaussian. A straight-forward exercise shows that {IV}
q, for which the nonnegativity constraint holds as long is a stationary process with zero mean and acvs {s,,v}

as N is greater than q (see Davis, Hagan, and Borgman, given by
1981, and the discussion of their work in Ripley, 1987). 1 M-1

Let M be any even positive integer (typically a sv - E Sjei2wf. (4)
power of 2), and define fi = -L. Let M

M-1 In contrast to {Y }, however, the stationary process {V,}
Si =- 2 SrYe'-291i, 0 < j < : . (2) is a harmonic process; i.e., it does not possess an sdf,

2 -but its spectral properties are given by an integrated
spectrum that is a step function with steps at the ±fj 's.

Note that we can rewrite the above as This fact implies that realizations of {Vt} are periodic

(Mo1 _1- with period M, and hence so is its acvs {s7,v}. Note

S3 E srye-2rf•7+ E sM 7,ye-21rfr I that, if M is a power of 2, we can readily compute both

r=O 7=4'1 {Vt} and {s,,v} using a conventional fit algorithm.
By substituting the definition for Si in Equation (2)

so we can obtain the .,'s via the discrete Fourier trans- into Equation (4) and interchanging the order of the two
form of the following sequence of length M: summations, we obtain

s0,y,8sl,y, .. , s _,y, 0, s 1,Y, s _•, , 2 • ,si,y. 1 e i2wf(r-

We can also reexpress Equation (2) as S E Z
=J W(fj - f)Sy(f) df, From the result

whO fir) M, for 1) = 0, ±M, ±2M....
where E 1-2f) 0, otherwise,W(f) E_ sin((M - 1)7rf) j=0

sin(Trf) we obtain

Because W(.) oscillates between positive and negative M
values, it is possible that some of the S i's are negative. Sr,v = ST,Y for all Irl < -2
Note, however, that, if {Yt1 were a moving average pro- Hence the statistical properties of VO,... , VN.- 1 are iden-cess of order q < AL - I so that s-,g o r .,M

So- = 0 for WI 2, tical to those of Yo,.. . , YN- if we set N <
then we would have Sj = Sy(fj) so that Sj > 0. In or- As is true for the exact time domain method, we

der for the simulation method to work, we must impose might need to obtain the required sdyo's via numerical

the nonnegativity constraint that S. > 0 for 0 < j < T. integration if we are given the sdf Sy(.) instead of the
Let Wo....., WM-1 be a set of M independent and acvs. Also, because of the nonnegativity constraints on

identically distributed Gaussian rv's with zero mean and the Si's, this method cannot be used for all stationary
unit variance. Define processes. As we noted previously, it does work for mov-r v WO, j =0; ing average processes of order q < ! - 1. Since everyJ !- (W2i-l + iW2 ,), 1 < j < M; nonnegative lag window spectral estimate has an sdf cor-

V /j = ,E'2 ( -I 2 responding to that of a high order moving average pro-
WWM-, j =M2 cess, this exact frequency domain method is useful for

V/t< M2 j < M - 1 simulating time series from such spectral estimates.
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IV. An Approximate Frequency Domain Method perhaps due to the following result. Consider the peri-

We consider here the construction of a zero mean odogram of U.,..., UM-, :

Gaussian process {Ut) whose acvs {St,U} agrees-to a M-1 2

good approximation-with {st,y} out to lag N - 1. To 4.(P)(f) - I
begin with, we make the assumption that the sdf Sy(.) U M E Ute-i2OTf t (7)

is continuous over [-i, 1] (we relax this restriction in

the next section). Let M be any even integer greater If M is a power of 2, we can evaluate the periodogram

than or equal to the desired sample size N. Let Wj, quickly over the grid of Fourier frequencies fj using an

j = 0,..., M - 1, be a set of M independent and identi- fit algorithm. When M = N, we have E{Sýf)(fj)} =
cally distributed Gaussian rv's with zero mean and unit Sy(fj) by construction-hence realizations of {Ut } have
variance. Let fj -' as before. We define the process a periodogram in good apparent agreement with the tar-
{Ut) via get sdf Sy(.) at the Fourier frequencies. Unfortunately,

the periodogram for Y0,... , YM-1 can be a badly biased
M- i estimator of Sy (-), so this intuitively pleasing agreement

U E UJe-S2  , t = 0,..., M - 1, (5) is misleading. Figure 1 illustrates this important point.
VIM = =_ Mitchell and McPherson (1981) also discussed this

approximate scheme. To avoid the "M = N" prob-
where lem discussed above, they advocated that M should be

made larger than N commensurate with the "correlation
/ • )j -O 0; length" of {Y,}, but-beyond this brief statement-they

,M; did not provide explicit guidelines for selecting M rela-
2 -tive to N. We can do so by noting the following useful+iWM-1,), ertduigEutoM6.orapriua au fM

=-F measure of how well the sv's approximate the s,,y's

M for N-. Let denote the value of s,u gen-

erated using Equation (6) for a particular value of M.

By construction, {Ut) is a real-valued Gaussian process. Define S({M)(.) as the function whose Fourier coefficients
straight-forward exercise shows that {Ut } is a station- are equal to s"/') for 1- < N - 1 and equal to sry for

ary process with zero mean and acvs {sT,u) given by Irl > N. Parseval's theorem then tells us that
Al-i N-i

1 )SS ) - i (M) 2
ST,U = Z S(fj)e (6) S(M)TU -STY

j=7 -- (N-1)

(note that this acvs can readily be computed using an = iS(M)(f) - SY(f) df.

fft). In contrast to {Y,}, however, the stationary process
{ U} is a harmonic process (as was the case with the Vi's SS(M) can be interpreted as the average squared dif-
in Equation (3)). ference between the sdf Sy(.) and the function SQ("(.).

Because the right-hand side of Equation (6) can be As M gets large, SS(M) will decrease to zero. If we
regarded as a Riemann sum approximation to the inte- know the sTy's, we can readily comnpute SS(M) and
gral of Equation (1), we have srU ; sty for possibly find a value of M such that Su(M)(.) is sufficiently close
some values of r, but certainly not all: whereas {s,,u} i5 to Sy(.) in terms of average squared difference. If the
periodic, {s,,y} must damp down to 0. Note that, if we s,,y's cannot be readily computed, we can increase M
let M be a power of 2, Equation (5) can be quickly com- by, say, factors of 2 until
puted using a conventional fit algorithm-realizations of
{Ut} of length M can thus be readily generated. By N- 2

making M large enough, we can make s7,u arbitrarily S(M) 5(2M)

close to sry for r = 0 ... ,N - 1, and hence the simula- ,=-(N-1)
tions of Uo,. . . , UN- should have statistical properties
that closely match those of Yo, .. , YN- 1. is small, indicating that the effect of doubling M is small

This scheme was evidently first proposed by Thomp- in that the average squared difference between s(M)(-)
son (1973), who advocated just letting M = N. This and 5 UM)(.) is small. Figure 2 illustrates how increasing

formulation is in common use in the physical sciences, Al yields a better approximation to {sTy ).
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Figure 1. The thick curves in plots (a) and (b) show 0 64
the true sdf Sy(.) (on a decibel scale) for a particu-
lar stationary process {Y,}. The thin bumpy curve in
plot (a) shows the expected value of the periodogram
for a sample of size N = 64 from this process. The thin Figure 2. The thick curves in all three plot show thebumpy curve in plot (b) shows the expected value of true acvs {Sr~y} for lags 0 to 63 for a particular station-
thepy p urveio a pary process {Yt) (in fact, the same process as was used in

t of Equation (7) for M Figure 1). The thin curves show {s,,u) of Equation (6)
64. If the statistical properties of {Uj) closely matched f
those of {Y}, there would be good agreement between for, from top to bottom, M = 64,128 and 256-the thin

curve in plot (c) agrees so well with the thick curve thatthe two thin bumpy curves, but in fact they are sub- they are visibly indistinguishable.
stantially different. In particular, note that ii, plot (b)
E{5(P)(f)} =Sy(f) for f =fj = -j- andj = 0,...,32,

U64 given by
whereas E{SýP)(.)) and Sy(.) in plot (a) differ at some
of these frequencies by more than 2 orders of magnitude Sy(f) = (21 sin(7rf)I)', If < 2'.
(20 dB).

This process also has an acvs {sTy} that can be com-

V. Stationary Power-Law Processes puted recursively by a simple formula. Using these easily
computed s,,y's, Davies and Harte (1987) found that the

Suppose now that {Yt} is a stationary power-law exact frequency domain method can be used to simulate
process, which-by definition-has an sdf given by fractional difference processes. Since a similar simple

formula for the acvs is not readily available for other
S1 stationary power-law processes, it is of some interest to

Syf "- fSo), Vl < 2' (8) see if we can modify the approximate frequency domain
method for use here. The main difficulty is that this

where -1 < ce < 0, and So(.) is strictly positive, contin- method requires that Sy(O) be finite, whereas Equa-
uous and has bounded variation. A specific example of tion (8) tells us that Sy(O) = oo. We thus need to find
such a process is a fractional difference process with sdf a suitable replacement for Sy(O).
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To do so, let us return momentarily to the setup of VII. Concluding Comments
the previous section, namely, a process with an sdf that We have described three methods for simulating a
is continuous over [-., 1]. An easy exercise tells us that stationary Gaussian process {Y1} with a specified sdf

Sy(.). If the sTY's for the process are readily avail-
-1 U SY(0)Wo able, then the best choice is the exact frequency domain

u - -t=o u, = m= vM method if the Sj's of Equation (2) are in fact nonneg-

from which we obtain ative. If the s,,y's are not readily available or if one
or more of the Sj's are negative, then-with care-the

tar{O =Sy(O) 1 w approximate frequency domain method can be useful.
v - var1Y, where Y = 7 L O However, the "M = N" formulation of this method that

= is sometimes used should be avoided.
(Priestley, 1981, p. 320). We can thus regard Sy(0) as
an approximation to M .var{Y}. Kiinsch (1991) shows Acknowledgement
that, for a stationary power-law process {lY}, The author thanks the Office of Naval Research

- 4S 0 (0)F(1 + a)sin(-rcra/2) - for support under contract number N00014-81-K-0095.
(27rM)l+aa(a - 1)
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)2' rections in Robust Statistics and Diagnostics, Part

an equation which is used to define Sy(.) (for a < -3 I, edited by W. Stahel and S. Weisberg, New York:
we define Sy(') using an appropriate higher order differ- Springer-Verlag, 131-140.
ence). Mitchell, R. L. and McPherson, D. A. (1981) Generat-

Because we define {Y1 ) for -3 < a < -1 in terms ing Nonstationary Random Sequences. IEEE Trans.
of its first difference process {X,}, we can simulate {Xt} Aero., Elec. Sys., 17, 553-560.
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Abstract tal divided-difference operator, rather than the conven-
ffitting linear recursive models to sig- tional shift operator, to represent the dynamics of sam-

The problem of hig rates relative to th un- pled data. This approach leads to an alternative sig-
nals that are sampled at high rates relative to their un- nals calculus that allows for a unification of continuous

derlying dynamics is considered. This time-series model- and discrete time formulations, enables a smooth transi-

ing regime is of particular interest in applications such as tim sapld-ata ors toathei contins-

digital feedback control, wideband communications, and time counterparts, and consequently enhances the n u-

high-definition video, in which high relative sampling merical conditioning of algorithms in the high-speed

rates are often dictated by system stability or format reg i ng of ale, in the highpeed

considerations rather than by signal-processing needs. regime. For example, in the AR-modeling problem, as
Monstderadtionsratherlth y signal-processing algori enee, the sampling period goes to zero, the coefficients from
Most traditional signal processing algorithms are inher- the divided-difference model converge to certain regreb-
ently ill-conditioned when applied in such situations. Re- sion parameters that depend directly on the statistics of
cent work has shown that a representation of discrete- the continuous-time process. This phenomenon is in con-
time signal dynamics based on incremental difference op- trast with the standard AR parameters, which converge
erators can lead to alternative algorithms that are both to meaningless limits in this regime.
numerically stable and computationally efficient in this In this paper, we will discuss this approach to time-
rapid-sampling regime. This methodology is reviewed series modeling. We will first give an overview of the ap-
here, with the Levinson or autoregressive modeling prob- proach, including its motivation in the context of several
lem serving as a paradigm. applications, a brief historical perspective on the use of

1. Introduction difference operators in numerical analysis and signal rep-
resentation, and a look at the use of this approach in the

Several emerging signal processing applications in- Kalman-Bucy filtering formulation. The remainder of
volve the modeling of discrete-time series that are de- the paper will then focus on recent results involving the

rived through rapid sampling of continuous-time pro- application of this approach within the aforementioned
cesses. Such applications include wideband communica- Levinson framework of finite linear stochastic modeling.

tions, digital feedback control, and high-definition video It will be seen that, despite the loss of Toeplitz structure
transmission, in which high relative sampling rates are resulting from the transformation to divided-difference

often dictated by format or system stability consider- representation, recursive algorithms of complexity com-

ations. Many traditional procedures for fitting mod- parable to that of the well-known Levinson-Durbin algo-

els, such as autoregressions, to time series are poorly rithm (which exploits the Toeplitz structure of the shift-

suited for data obtained by sampling continuous-time operator representation) can still be used to fit an ap-

processes at rates that are rapid relative to the dynam- propriate incremental-difference based model. Other as-
ics of the underlying continuous processes. For exam- pects of this problem, including a Schur-type algorithm

pie, when the Levinson-Durbin or Schur algorithm is and a lattice structure based on the divided-difference

used to estimate the parameters of the standard au- formulation, will also be discussed briefly.

toregressive (AR) model, large computational errors can
occur due to the ill-conditioning of the Toeplitz covari- 2. Motivation & Background
ance matrix of data in this high-speed regime. Consid-
erable recent progress toward ameliorating such prob- Conventional statistical signal processing algorithms
lems has been made through the use of an incremen- suffer from several disadvantages when applied to sam-

'This research was supported in part by the National Science pled data taken at high sampling rates relative to the dy-
Foundation under Grant CDA-91-21709, and in part by the Office namics of the underlying signals being processed. Some
of Naval Research under Grant N00014-89-J-1321. of these disadvantages are numerical. For example,
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sampled-data statistical signal processing problems be- cess (e.g., compress) such signals, then the raison d'etre
come ill-conditioned at high sampling rates. This is of the high-definition format is destroyed. In the some-
because most such algorithms involve the inversion of what different context of digital feedback control, it is
the covariance matrix of the observed data. As the well known that sampling at system Nyquist rates can
sampling rate increases (for fixed continuous-time band- produce closed-loop instability due to the resulting time
width) this covariance matrix becomes increasingly stiff; delay. In order to avoid such instability, sampling rates
and therefore numerical conditioning becomes a serious of 10 times bandwidth (or higher) are usually recom-
problem. A related difficulty occurs in the representa- mended [1].
tion of sampled data by linear state-space models. As In this paper, we consider an approach to such prob-
the amount of real time represented by the discrete time lems based on a fundamental reformulation of discrete-
index decreases, the eigenvalues of the state matrix in time dynamics, as opposed to the conventional approach
such a representation will cluster about unity. If such dy- of decimation. In particular, we reformulate discrete
namics are to be represented with finite-precision arith- time in terms of a divided-difference operator instead
metic, the preponderance of accuracy will then be de- of the conventional forward shift (q) operator. That is,
voted to the representation of the near-unity eigenval- we replace the basic dynamical operation
ues of such a system; whereas the interesting dynamics
will be relagated to the higher-order bits in the repre- qYk = Yk+1 (2.1)
sentation. Such considerations are also manifested in
several aesthetic problems. It is widely recognized that on a sequence {Ykl, with the alternative
many discrete-time algorithms are formally dissimilar to
their continuous-time counterparts. For example, the 6Yk = Yk+l -- Yk (2.2)
continuous and discrete Kalman-Bucy filters are differ- A
ent. Moreover, discrete-time quantities do not converge where A is the sampling interval. So the operator 6 is
smoothly to their continuous-time counterparts. Again, related to the operator q via
the Kalman-Bucy filter is an example. These various
problems are, of course, interrelated; and as we shall see 6 = q (2.3)
here, they are manifestations of the representation of dis- A
crete time dynamics using a basic dynamical operator It should be noted that q and 6 describe (theoretically)
(the forward time shift) that does not well-approximate equivalent models, since there is a one-to-one mapping
the basic continuous-time dynamical operator (the time relating the two. However, the delta operator, which
derivative), is a numerical derivative, has the advantage that it ap-

When faced with the above difficulties, one might ask: proximates the time-derivative, which is the fundamen-

why not simply decimate (i.e., downsample) the sam- tal dynamical operation of continuous time. As we shall
pled data, and avoid such problems? Certainly, for ban- see below, this difference is key to solving the afore-ple daa, nd voi suh poblmsCerainy, or an- mentioned numerical and aesthetic problems associated
dlimited signals, one would expect to be able to oper- m ention al shet pror. asscia

ate at the Nyquist sampling rate without undue diffi- with the conventional shift operator. In particular, in a
culties. However, since real signals are never truly ban- finite-precision computing environment, representationsculties.Howev, suchdecainc rl usialsy arenevr wtry ban- in terms of the delta operator will lead to preferable al-
dlimited, such decimation is usually associated with a grtm o ttsia inlpoesn.O ore h

performance penalty. More significantly though, there gorithms for statistical signal processing. Of course, the
are several important applications in which high-speed shift-operator representation is central to a good deal

of the development of fast and efficient algorithms for
sampling is unavoidable. For example, wideband com-
munications formats (i.e., spread-spectrum) are central ial processing, so a key challenge in using an alter-to mst f te ke emrgig wieles tlecomuncatons native operator such as 6 is to find similar algorithms
to most of the key emerging wireless telecommunications that are computationally competitive with their shift-
services, such as mobile radio, personal communications,
and indoor wireless. In such formats, sampling rates oerat counter.
are dictated by the radio-frequency bandwidth, which Bere this paper.
is considerably higher (often by a factor of several hun- Before continuing, it is worthwhile to take a moment
dred) than the bandwidth of the underlying data signals to discuss the choice of the operation 6 = 1over
of interest [12]. Similarly, in high-definition imaging and other commonly used numerical derivatives, such as
video, the images are oversampled both in time and in
space for the purpose of providing much higher visual- 1 - q-1 2(q - 1) q -q-1
quality. If it is necessary to downsample in order to pro- A ; A(q + 1)' 2A (2.4)
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Although use of any of these operations to represent where, as before, A denotes the sampling interval, and
signal dynamics would alleviate the numerical difficulties where e denotes the matrix exponential. (Here, the sub-
inherent in fast sampling, the operation 6 has several scripted variables represent discrete-time versions of the
practical advantages from the viewpoint of algorithm corresponding continuous-time processes.) The corre-
development, implementation and interpretation. For sponding optimum filter involves the propagation of the
example, 6 has the advantage of flexibility, since it is dynamics desribed in (2.6) as part of the filtering oper-
easily transformed to q. Moreover, as A -- 0+, 6 is a ation. Note that these dynamics are described here by
natural forward differential, which mimics the forward- the state matrix eAA, which approaches an identity as
differential representations prevalent in stochastic calcu- A decreases towards zero. Thus, for small A, a conven-
lus. And finally, from an implementation point of view, tional finite-precision representation of these dynamics
it should be noted that dynamical equations such as will place most of its accuracy in the unit diagonal terms,

and the true dynamics (represented by the higher-order
6Y = AY + Bu term AA) will be relegated to the higher-order bits of

the representation.
are in "direct" form for implementation. If we represent the same recursion in terms of the in-

Of course, the use of incremental difference operators cremental difference 6, we have instead the representa-
in discrete approximation problems is not a new idea. tion
Such use dates to the early Seventeenth Century, and has =(eA -I I + Lk
its origins in the problem of subtabulation in tables of 6Yk = KA VY (2.7)

logarithms. The early formal study of incremental differ-
ences was intertwined with that of shift-operator repre- Note that the state matrix now captures the dynamics

sentations from the Seventeenth through the Nineteenth as A -. 0. A recursive filter for state estimation in such

Centuries, and involved such well-known figures as New- a model has been derived by Salgado, et al. in [14], and

ton, Stirling, Lagrange, Laplace and Cauchy, among oth- it is seen there that this reorganization of the dynam-

ers. (A brief account of this history is found in [4].) ics improves the numerical conditioning of the filtering

In the early Twentieth Century, the shift operator be- equations and allows their smooth convergence to con-

came central to the development of discrete-time filter- tinuous equations as A - 0.

ing, control, and time-series analysis; whereas, the differ-
ence operators became a mainstay of numerical analysis. 3. The High-speed Levinson Problem
In more recent times, difference operators have found
their way back into system and signal analysis problems, t ur n to the poe ffasalorithms fo
including stability theory, low-sensitivity digital filters, tierieding witin th framewor discussedi
and improved finite wordlength digital control and state the p i ton. As A moretis problem,
estimation. we consider the autoregressive (AR) modeling problem,

As an illustration of this more recent work, it is of also known as the Levinson problem. This problem is,
interest to consider briefly the problem of Kalman-Bucy of course, a fundamental one in the modeling of discrete
filtering (see, e.g., [14]). In continuous time, the Kalman- time series, and it is rich in algorithmic structure. Thus,
Bucy problem involves a linear stochastic model of the it is an natural problem to consider in this context.
form: 3.1. The Classical Levinson Problem

dY(t) = AY(t) + dV(t) , t >_ 0 (2.5a)
The classical Levinson autoregressive modeling prob-

dZ(t) = CY(t) + dW(t) , t > 0 (2.5b) lem is concerned with choosing a parameter vector a,, =

where {Y(t);t > 0 is a vector state process; {Z(t);t > [an,o,anA .... ,an, IT with an,o =1 to minimize the

01 is a vector measurement process; {V(t);t > 0} and mean-squared prediction error E{fd(t)} where En(t) is

{W(t); t > 0} are independent vector Brownian motions; the error in the model

and A and C are matrices of appropriate dimensions. n
The Kalman-Bucy filter is a recursive (in t) implementa- Yt+ 1 + E akYyt+l-k = fn(t), t E Z, (3.1)
tion of the conditional-mean estimator of the state Y(t) k=1

based on measurements {Z(s);0 < s < t}. The conven-

tional sampled-data model used to derive a discrete-time and {Yk}lk=_ is an obser-ed wide-sense-stationary

version of this filter is (w.s.s.) random sequence.
As is well known, the coefficients minimizing this

qYk = eAAYk + Vk, (2.6) mean-squared error are the solutions to the so-called
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Yule- Walker equations: the sampling interval used to produce the discrete-time
signal under study.) Since the problem is due to the

In) poor conditioning of R., it cannot be solved by using

R1an= , (3.2) alternative algorithms, like the Schur algorithm, to solve
(3.2), as noted in [2] and by Yagle and Levy in [18].

0 /Moreover, in this sampled-data case, the following re-
sult can be proved.

where Rn is the (n + 1) x (n + 1) Toeplitz matrix whose

i,jth element is cli-il, the ji-ji-lag correlation coefficient Proposition 3.1 (Vijayan, et al. [17]) Assume that
of the signal. The Levinson-Durbin algorithm is an algo- the continuous-time process satisfies the following con-
rithm for recursively solving the Yule-Walker equations ditions:
of successively higher order. This algorithm is given by
15]: i.) {Y(t);t E R)} has n - 1 mean square derivatives.

_ I +... Jn+1 ii.) The random vector of derivatives [Y(n- 1 )(0),
... Y(x)(0), Y(O)] has a non-singular covariance matrix.

for n = 0, 1,2,..., with initialization a = 1, where, for

each positive integer k, Ik denotes the k x k identity Then,
matrix and Jk denotes the k x k matrix that has all zero
entries except for l's in its anti-diagonal. The reflection
coefficients {-y} are given by lim an, = (-1)J j = 0, 1,..n, (3.4)

Yn+l = an / 7r, (3.3b) and
lim rn = (-1)'. (3.5)where A-0

an• = 0, - 0,11] P•+I [an] (3.3)
S ... c) Thus we see that, as A -- 0, if the continuous-time

process has sufficiently many mean-square derivatives,
and the coefficients obtained by the Levinson algorithm will

rn = E ()= [ 1,0,.. .,0] Rn a • (3.3d) converge to the binomial coefficients (- 1)j (n) inde-

pendently of the underlying process. This points to a
The mean-squared error sequence {Trn} satisfies the re- major difficulty with the standard Levinson formulation

for finite-length linear modeling; namely, the parameters
rn+1 == 7n -- Q,2 / 7r,. , n = 0, 1.... (3.3e) of this model contain no information about the statistics

of the underlying process except in terms that are of

with initialization 7r0 = c0 . higher-order in A.
The numerical stability of the Levinson-Durbin algo-

rithm for solving (3.2) has been established by Cybenko 3.2. The High-speed Levinson Problem
in (2]. However, as pointed out in [2], in many cases In order to correct the difficulties noted above, we will
of practical interest the matrix Rn is ill-conditioned, consider the reformulation of the autoregressive model-
which results in unacceptable errors when the algorithm ing problem (3.1) in terms of the divided-difference op-
is implemented. This ill-conditioning occurs when the erator (2.3). To do so, we assume henceforth that the
prediction error 7r is very small, or, equivalently, when signal {Y} I'kL=_. is obtained by uniformly sampling a
the reflection coefficients are close to ±1. An important continuous time process {Y(t); t E RZ} at interval A.
case where ill-conditioning of this nature occurs is when Note that the nth-order autoregressive model (3.1) can
the discrete-time signal of interest is obtained by sam- be rewritten in terms of the shift operator (2.1) as
pling a continuous-time process {Y(t);t E R7} at fairly
rapid rates. In this case, the matrix Rn is very stiff An(q)Yt+,-n = cn(t), t E Z, (3.7)
since lima._0 clk-..I = co for all k and i, if the underly-
ing continuous-time process is sufficiently smooth (i.e., with An(q) = E ankq-k. (Here, of course, qt de-
mean-square continuous). (Here, as before, A denotes notes f repeated applications of q; i.e., q1 Yk = Yk+t.) In
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this context, it is of interest to consider an alternative lower submatrix is T.-I, with To = 1. The inverse of
model of the form this matrix is given by

n,kbn-k Yt+l-n =Vn(t), E Z (3.7) (T'l),Ik = An-l 0 < Ik < . (3.12)
k=O n -k) 1 0 < -,k<n.(.2

whereft_ = [ .,o, fl,0n, 1 ,. ,, with #,n,o -= , and It is straightforward to see that the vector On that solves
vn(t)jt4=_,. is the sequence of modeling errors in this

nth-order model. Note that the interation of the delta
operator is min E{vin(t)} = (3.13)

blYk = b1-IYk+1 -- 6t-Iyk.(-8
AY =(3.8) is given by

so that
2y = Y+- 2Yk+A + Yk (39) (T,)ooT-la- = A`-la (3.14)

and so forth. where a, solves the Yule-Walker equations (3.2). So the
One motivation for considering the model (3.7) is parametrization (3.7) is simply a linear tranformation

its parallelism with the continuous time autoregressive of the conventional one (3.1); i.e., both describe the es-
model given by sentially same linear relationship among the same set
dY(n-')(t) + a,,Y(n-')(t)dt+...+ai,,Y(t)dt = dW(t) of random variables. Of course, they key difference be-

tween the two description is in how they represent the

where {W(t) ; t E R} is a Wiener process. Another coefficients in this relationship.

continuous-time model that has been used in [3], [7] and It is the Toeplitz property of R•, the n'4-order co-
[8] is the following, which is based on an integral opera- variance matrix of the signal, that makes it possible
tor: to solve (3.2) recursively using 0(n 2) computations via

t (3.3). Since Tn is triangular, if we knew R1, it would
dY(t) + I a(T;T - (t - s))dY(s) = dW(s). (3.10) be possible to solve (3.13) using O(n2) computations, by

Lt-T first solving (3.2) for ag. using the Levinson-Durbin al-

In [3], this model is approximated by using the standard gorithm, and then using (3.14) to obtain # . However,
in this procedure, any numerical errors in caaculating andiscrete-time AR, model with order n = T/A. As A - 0, due to the ill-conditioning of RP• would carry over to the

n -- oo and the limiting values of the discrete AR pa- cu la tion of A , tof calculato t

rameters anj are related to the continuous AR function calculation of On. Also, this type of calculation is not

a(T; t). The disadvantage of this apprzoach is that, for

small A, the number of parameters in the model becomes Exploiting the special structure of the matrix T,, Vi-
very large (the number n of parameters should grow at jayan, et al. [17] have obtained an 0(n 2 ) algorithm for
a A 1 rate). In comparison, (3.7) gives a parsimonious solving (3.13), that only requires knowledge of the non-

parametrization that also converges to a continuous-time Toeplitz covariance matrix of (6 nYk, 6-lYk,...,Yk).

model. This algorithm has the added advantage of being recur-

Note that the variables 6nYk,6n-lYk,...,Yk are sive, like the Levinson algorithm. It is summarized in

obtained by linear transformation of the variables the following:

qnyk, qn-,yk,....,Yk. Since 6 k = (q- 1)h/Ak, this trans-
formation can be represented by Tn, an (n + 1) x (n + 1)
matrix whose 1,kth element is given by Proposition 3.2 (Vijayan, ef al. [17]) The argument

solving (3.16) is given recursively (in n) by

( Tn) tk = I - k I ,n + 0 _< 
...0_ 

n . ( .1 1 j7n1 l1 0rol

(Here, we follow the convention that the binomial coef- _ A- ' C._ -

ficint n) 0 or k< 0andk >n.) hus T, is(3-15a)ficient = 0 fork <0 and k > n.) Thus, Tn is for n- 0,1,..., with initialization 03 = 0,0 = 1,

an invertible lower triangular matrix whose n x n right and jo = -A- 2 . Here Cn is the (n+2) x (n+ 1) matrix
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defined by for j = 0,... ,n, which is the same as a Levinson type
recursion for continuous-time autoregressive models de-
rived by Pham and le Breton in [10]. Thus, the recursion

A 0 0 ... 0 itself takes on a meaningful (and stable) limiting form.
1 A 0 ... 0 These favorable limiting properties suggest that the

1 0 1 A ... 0 (3.15b) delta-Levinson formulation will be more stable numeri-
S= :cally for small A than is the standard Levinson formu-

0 0 ... 1 A lation. Numerical results using floating-point calcula-
0 0 ... 0 1 tions reported in [17] support this supposition; and, in

fact, the numerical performance of (3.15) for high sam-
i, is defined by pling rates is considerably better than that of the classi-

cal Levinson algorithm. (It should be noted that alter-
Yn+1 = an / irn , n = 1,2,..., (3.15c) native versions of the Levinson-Durbin algorithm have

been derived, for example, by le Roux and Gueguen in
with [9], that are also more robust to finite precision effects.

[-a 1 However, the divided-difference formulation provides a
= [ 0,..., 0,1] Q+i , (3.15d) formal, generalizable approach to this problem.)

L -1 This superior numerical stability of the delta model

for n = 1,2,... ,and can be explained in terms of the limiting results dis-
cussed above. In particular, there is a one-to-one cor-

&o = E{x(t)6x(t)} + E{X2 (t)} / A ; (3.15e) respondence between the parameter vectors a, and On.
However, the limiting value of a. is independent of the

and statistics of the process. Hence, the useful information in
the parameter vector is being "compressed". As a result

irn = E{v.2(t)} = [1,0 ... , 0] Qnln , (3.15f) of this, small perturbations in the coefficients can cause
large variations in the modeling error. The delta coeffi-

for n = 0,1,2,..., with Qn the covariance matrix of cients do not suffer from this problem since their limiting
( 6 "Yk, ... ,yk, Yk). (Qn does not depend on k due to values contain useful information about the process.
the assumed stationarity of the signal.)

4. Discussion
The algorithm (3.15) can be derived directly by sub-

stitution of (3.14) into (3.3) and then making use of the We see from the previous section that the delta version
combinatorial structure of the matrices Tn. The matrices of the Levinson problem offers a number of advantages
Q,n also have special structure that make them amenable over the standard one for high-speed processing. How-
to fast inversion within the more general theory of Heinig ever, the Levinson formulation has several useful prop-
and Rost [6]. In particular, they are Toeplitz like. This erties that are not obviously present in its delta coun-
structure will be discussed further below. terpart. Such issues as lattice implementation for lay-

In comparing (3.15) with its Levinson counterpart ered adaptivity [5], Schur realization for parallelizability
(3.3), it is straightforward to see that the complexity [18], and direct forms for calculating reflection coeffi-
of the new algorithm is of the same order despite the cients with covariance data [13], fall within this category
fact that the algorithm inverts a non-Toeplitz matrix, of problems. Other interesting issues include estimation
It should be noted, however, that (3.15) does involve techniques for extracting the covariance matrix Q, from
more operations than (3.3); but, the difference in the noisy data (a process almost certainly to require regu-
two complexities is a constant scale factor. However, un- larization).
like the Levinson coefficients, it can be shown that (un- Progress has been made on some of these issues within
der sufficient smoothness) the delta-Levinson coefficients the delta context. For example, in [15] a parallelizable
converge to meaningful statistical parameters of the un- Schur-type delta algorithm has been developed by ex-
derlying process - namely, the regression coefficients of ploiting the Toeplitz-like structure of Qn, defined in the
the nt' mean-square derivative on those of lower orders. sense of Heinig and Rost [6). This algorithm exhibits
Moreover, in the limit (3.15) has the form the parallelizability of the conventional Schur algorithm,

while retaining the numerical advantages of the delta-
=+ n-l0 (,-1 Levinson algorithm. Lattice structures based on the

j= t•n-i,j + - fn-2,j-2, (3.16) divided-differences have also been developed recently, as7rn- 2,0
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described in [16]. Unlike the Schur algorithm, however, 9. le Roux, J. and Gueguen, C. (1977), "A fixed
these lattices do not enjoy all of the favorable properties point computation of partial correlation coeffi-
of the conventional shift-operator lattice. For example, cients," IEEE Trans. Acou.'t., Speech, and Szgnal
the shift-operator lattice can be adapted in layers, since Processing, ASSP-25, 257-259.
the first p stages of the lattice depend only on the first 10. Pham, D. T. and le Breton, A. (1991), "Levinson
p lag covariances. However, this is not the case for the Durbin type algorithms for continuous time autore-
delta-based lattices described in [151. The development gressive models and applications," Mathematzcs of
of a layered lattice based on the delta operator is an open Control, Signals, and Systems, 4, 69-79.
problem.Aroblt h t11. Poor, H. V. (1988), An Introduction to Signal De-A lth o u g h th e L ev in so n p ro b lem is p erh ap s th e m o st t c i n a d E t m t o , N w Y r : S r n e - e l g
fundamental of time-series modeling problems, it is of tection and Estimation, New York: Springer-Verlag.
course only one of many such problems. Whether the 12. Poor, H. V (1992), "Signal processing for wide-
methods described herein are suitable for other modeling band c,! nnuiications," IEEE Information Theory
problems is largely an open question, although progress Society Newsletter, 42 (2), 1-10.
has been made in the ARMA identification problenm [4]. 13. Rialan, C .". and Scharf, L. L. (1989), "Fixed-point
However, in view of the success of these methods in the error analysis of the lattice and the Schur algorithms
Levinson problem, they offer a promising methodology for the autocorrelation method of linear prediction,"
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Resampling permutations in regression with exchangeable errors

Raoul LePage*and Krzysztof Podg6rski*t
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East Lansing, MI 48824

Abstract Suppose that the distribution of 7r, conditional on c, is
also uniform over all n! permutations, and therefore that

For linear regression with exchangeable errors we ob- ir is independent of c. We will observe that, provided
serve that random permutations of the sample residuals (d - 1)/(n - 1) is small, v. i7re-±IY is with high probability
can with high probability approximately recover the joint a close approximation of v- •relF. Notice that the last
sampling distribution of the errors of arbitrary contrasts, distribution is eq~ial to v. el.F since e is exchangeable.
conditional on the order statistics of the errors actually Proposal: Estimate the joint F-conditional sampling
present in the data. distributions of contrasts vk • e by the Y-conditional dis-

1. Introduction tributions of vk . re1 , k < m.

Our proposal is related to, but fundamentally differs

Let Y = X03 + e where X is an n x d finit. matrix of from, the approach taken in [7] when developing descrip-
reai n.umbers, 6 is a d x 1 vector of real numbers, and e tive tests of linear hypotheses. To quote from [7], "our

is an n x 1 exchangeable random vector. An n x 1 vector reference sets a-,e derived by permuting residuals, and

v of real numbers is called a contrast if the entries of v our significance level is a descriptive statistic rather than

sum to zero, equivalently if the Euclidean scalar product a probability."

v. 1 = 0 where 1 denotes the vector of l's.
Ordinarily one is interested in estimating the joint dis- 2. Main Result

tribution for several v of v • e since it is equal to the es- We assume the notation of the introdccauou. As be-
timation error, i.e. v , e = (v . Y) - (v. X#). For i.i.d, fore, c is assumed to be exchangeable and independent
errors with finite variance, the central limit theorem is of a random uniformly distributed permutation 7r. If u
popularly used for this purpose. Bootstrap methods ap- is an n x 1 vector then by ii, u' .ve will denote the arith-
ply to this case as well [5], [6j [9] but how are we to know metic average and the vector of squares of coordinates,
if the underlying assumptions have practical application respectively. By s2 we will denote the (n - 1)-divisor
to the data at hand [8]? sample variance of u i.e. su = n(u - - 1). Notice

Instead, we propose to estimate the sampling distri- that for any contrast v both v • 7re'IY and v - re(jFare
bution of v • e conditional on the sigma field F genei- centered at zero since, by i--dependence of 7r alid e and
ated by the order statistics of the coordinates of e. We the fact that E(iru) = fil = n-1 (u • 1)1 for any n x 1
use the notation v 4lF to denote this condit.onal dis- vector, we have
tribution. Denote by e1- ,he vector of residuals Y - Y,
where Y = Y/X is the projection of Y to the column E(v. lrE'IY) = E(rv. -(lE) = E(7rv) . E(e±IE) = 0
space of X. Let ir denote a uniformly distributed ran- and
dom permutation applied to the coordinates of n-space.

"Research partially surported by ONR Grant N00014-91-J- E(v lrEjF) E(7rv - ELF) = E(7rv)- E(EIF) = 0.

1087. In all that follows E7, E' v.u i denote conditional ex-
tOn leave from Hugo Steinhaus Center, Technical University of pectation with respect to F and c, respectively.

,, roclaw
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Proposition 1 . If 1 is in the column space of X which One can notice at once that
has rank d and vk, k = 1, ..., m are contrast vectors, then I = E x 2

e/X f-.jF1+jXj2 2

EF Ik'k E'[(vk. irE) - (V• . ,re)1
2  cd - 1 2aln

Ek=, Ec(vk. ir-)2  
n - 1'

a .1+ax = 2/

For a contrast vector v, y(e) = E'(v'ire-v'ire_)
2/E'(v" = + X 2  2a
Sand dn ny , h0

Ire) 2 and denoting by F1, F2 the distribution functions of
v.e/ VE(v .)

2 jY, v. lre'/ E(v.-• e•)lY, respectively,
we have the following inequalities. 0

Corollary 1 . For any positive 61,62 we have and thus
a - 2a/n

P(y) > - 1 d -_1 -2a/n
P( - 6) -< V 16

n- -1-'

"E) = -2aln
F1(x)E [F2(X - 62) - 2-(2, 2 (X + 6 + 0

2 22

For the proofs see Section 5. 0

3. Example Let us take for our contrast vector v the second column
X2 of the matrix X. One can easily observe that the

We now present a simple example which illustrates distribution v. el4F is concentrated on two points a and
the advantage of resampling by permutations vs other -a with the equal weights 1/2. This can be illustrated
methods including traditional bootstrapping. The vec- as follows.
tor of errors considered here has one value dominating
the other ones and typifies what can happen when the
distribution of errors has a long tail (in particular when
our errors do not satisfy the usual assumptions about ex-

istence of moments). Consider an n x 2 matrix X defined
as follows ~1

_ 11X=
1-1

-i -a a

We assume that n is even and the columns X, = 1 and Fig.3.1. Distribution of v - ce-F.
X 2 of X are orthogonal. Suppose that our actual errors
consist of an n-vector e given by We will compare three different methods of estimat-

ing this distribution: the resampling by permutation
0 of residuals, the traditional bootstrap with replacement

0: and the normal approximation. The next three pictures
present first order approximations of these distributions

0 for n = 625. See Section 6 for details.

I /
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4. Computer simulation of resampling
0.2,• for stable errors

0.5 0.5

As a second illustration we have made computer sim-
ulations which compare resampling permutations of er-
rors vs resampling permutations of residuals in a linear
regression model fitting a cubic polynomial. Consider a
101-dimensional symmetric a-stable error e with inde-
pendent coordinates and a 101 x 4 matrix X obtained

Fig.3.2. The resampling by permutation. by substitution of equally spaced x-values in the interval
[0, 1] to the vector of monomials (x, xIx 2, x 3 ), so Xij =

4_ 1 j = 1,2,3,4, x- = (i - 1)/101, i = 1,..101. We
have used the Chambers et. al. formula [31 to gener-

0.2a ate stable errors by pseudo-random numbers. Since our
result does not require any assumption on moments of
errors we have observed three notable cases: the normal
distribution (a = 2), Cauchy distribution (a = 1) and

0.96e- �a = 0.8. We first compute three 101 x 1 row vectors

0.42e-1  0.42e-' vi, i = 1, 2,3 of the matrix (XTX)-1XT as well as the
matrix of projection on the column space of X. Then,
by generating pseudo-random permutations 7r we get a
sample of two hundred errors v• ire, residuals vi • 7re-1

and projections of errors vi - iri, i = 1,2,3. Visual com-
parison of the values of these samples is made on par-

-a a allel plots. Since scale changes in e apply equally to
Fig.3.3. The traditional bootstrapping. vi • ire, vi • 7re"-, vi • iri it is the relative comparisons be-

tween these plots which are important. Four parallel
lines represent the coordinate axes of four dimensional
space and any point of this space corresponds to a polyg-

0.050- onal line which joins values of the coordinates on each
axis. For convenience all polygonal lines are started at
the origin. For details concerning parallel plots see [4]_

In these parallel plots we see a very close agree-
ment between the multivariate sampling distribution of
{vi . ire,i = 1,2,3} and that of {vi. 7r-1 , i = 1,2,3}
conditional on the given E. As might be expected the
agreement is even better than suggested by the sampling
distribution of {vi. iri, i = 1, 2, 3}. For this example
(d- 1)/(n- 1) = .03.

Fig.3.4. The normal approximation.
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23.61 232.6

i=2 i=3 i=4 i=2 i=3 i=4

Fig.4.1a. a = 2, vi 7 re. Fig.4.2a. a =,vi ? r,-.

23.61 232.6

i=2 i=3 i4 i=2 i=3 i=4

Fig.4.1 b. ce 2, v*i re. Fig.4.2b. a= 1, vi re1 .

23.61 232.6

-23.61 i23-232.6i2 3i4

Fig.4.lIc. at = 2, vi -ri. Fig.4.2c. a 1,vi . K.

Fig.4.1 Fig.4.2
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2290935. Appendix I

Variants of the following two lemmas are apparently
well known ([4] Section 4.1, [7], pg 297, (21)). We present
their simple proofs.

Lemma 1 . Let v be a contrast vector and ý a random
n x 1-vector independent of a random permutation 7r.
Then

E'(v . =r): IIv=I2E'(s').

Proof. We have-229093'
i=2 i=3 i=4 EF(v" ir) = 7r ýj E7(v _U) 2 =

Fig.4.3a. a = 0.8, vi - 7re. nirE.
n

22909____---__= E-FIZ V2,2(a) + EI V.Vb(G(a)(a(b)] =

a=1 aEb

"n - 1
= 7( a ~ (1ZVaVb) (1Z a.b)]

IIV12a=nI 11 -1 1) a~b ai~b

= vII2 7EQ + n-_ l[lvl - (v. 1)JE7(7- n- ),

where En denotes the set of all permutations of 1,..,n.

Since (v. I) = 0 we obtain

-22909_- B_(v" .r)2 = IIv-12 _ • (Eý(- ý)2 = IIVI12E7(s2).
i=2 i=3 i=4

0
Fig.4.3b. a = 0.8, vi • 7re.

Corollary 2 . For any contrast vector v we have
229093

E'(v. ()2 = JI~VI2s52

Proof. It follows immediately from Lemma 1 if we no-
tice that v. i•rjF = v -cF and that s2 is F-measurable.

0

The next result can be interpreted to mean that the
relative error caused by resampling irel instead of 7re is
on the average small provided d - 1 is small relative to
n-i.

-22909 i=2 i=3 i=4 Lemma 2 . If 1 is in the column space of X which has
rank d and v is a contrast z,ýctor, then

Fig.4.3c. a = 0.8, vi • re.

E YE (( ,. ,re) (v. ,f,)1 2  = d - 1
Fig.4.3 EE(v• -rf) 2 n - 1'
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Proof. Notice that by Lemma 1 Finally, the facts included in Corollary 2.1 follow from

EE(v.- 7re)' =E
7(v. -re)' = lIIVI 2s". the Markov inequality and from

The same lemma gives us also F,(T) <_ F2(X + 6) + P(- - Z1 6 > 0

EY E'[(v• ire) - (v . 7re'L)] 2  = E 7 (v . re/x) which is true for any random variables Z1, Z2 with
marginal distribution functions F 1, F2.= IIVI12 E 'Cs'/x
6. Appendix II

and since s2 is F-measurable it proves that

We present some facts about exact distributions and

E.,EI[(v. 7re) - (v. re'L)]2 = ET °,/X. their approximations which were described and illus-
ElEl(v • 7re) 2  s2 trated in Section 3.

We propose v • 7rE±je as a good approximation of v •
The proof is completed using an equality E7 s 2  = /refJ--. Notice first that this random variable has the same

((d - 1)/(n - 1))s2 obtained by Box and Watson ([2], distribution as 7rv. -'LIE and thus takes the values

Section 4.1) in their study of F-distribution approxima-
tions for s X/S2 with non-normal errors E. It may be = ±(a - 2am - 2ak/n + 2a(1 - k - 1)/7)

obtained from Lemma I as follows = =2a(1-2(k+ 1)/n)

EXs2 x 1 1EF( 2/XII2 - (E/X 1)2 /n) with corresponding probabilities,/X ;- E a- e/1

- El1

11 2 ( )-1
d )2 - 1

n =- 1where k = 0,..., 1 - 1 and 1+ = n/2. This follows from
d- 1 2 the fact that it corresponds to the distribution which
n-1 samples one's or minus one's. The above probability

is assigned to the event when the choice consists of k
one's (minus one's) and i - 1 - k minus one's (one's).

Notice that the proof of Lemma 2 can be applied with- The weight 1/2 comes from the two symmetric events in
out any change to obtain Proposition 1. which the first value of irv is equal either to one or to

Further, if we denote by X the orthogonal complement minus one.
of 1 in the column space of X we have then Let y denote the hypergeometric distribution with pa-

E,-EIJI[(rE - 7re'L)/X[12  d - 1 rameters n - 1,1 - 1,1 - 1. Then around points ±a our
E-EII(lr)/X112 - conditional distribution corresponds to the distribution

of the random variable +{ = ±2a(1 - 2(j, + 1)/n). Since

Indeed, for any vector u we have by the definition of s2=t h a =~ 2- E (U7 ) = (U _ 1)) 2C -1) .822
that su /X and huh2 

- (u 1)2 /n + (n - 1)s•. Thus

E'(ir- _IrE')/X1l 2  = (n- 1)E-8s2 / an (- 1)and
=r(f/. ) Var(-y) -( - )1 n/i6,

= (n - 1)E•7 s•x (n - 1) 2(n - 2)

for large n we have approximately
and

E'11(ie)IXll2 = (n - 1)E s,. E(±+) zý ±(a - 4a/n) ;z ±a,
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and e- .Af(O, a2 /n), which gives asymptotically the mass
Var(ý) • E(-4a/n(-y - n/4) - 4a/n))2  equal to e- 1. In fact the mass will be even bigger since

2 2 22we should take into account not only k, = k2 = 0 but
= 16a 2 /n 2 E(-y - n/4)2 + 16a 2 /n 2  also all cases when k, - k2 = 0. This implies that in

a a2/n(1 + 16/n) - a2 /n. this case the traditional bootstrap fails to recover the
distribution v -I.F.

This confirms the fact that our distribution is concen- It is possible to explore the distribution of v • (E')*1E
trated pretty close to points a and -a and thus is reason- even more carefully since it is equal to the distribution of
able approximation of the distribution of interest. One r.a - 2a/n1
can also argue through the normal approximation of y for 2a/n , where a two dimensional vector -y has

large n. Namely, it follows from Theorem 3 of [1] that a trinomial distribution with parameters 1, 1/n, 1/2 - 1/n
(4-y - n)/./?- converges in law to the standard normal and g' denotes of a random variable X. So we can find
distribution AN(O, 1). So for large n distribution of - is that the distribution will have the positive mass around
approximately equal to Afr(n/4, n/16) and consequently all points of the form ±ka, k = 0, 1, 2,....
the distribution of ý is equal to Af(a, a 2/n). As the last method considered here we will consider

Now consider the traditional bootstrap where the dis- the normal approximation N(0, &211vI12 ) of our original
tribution of interest is approximated by the distribution distribution, where
of v. (E±L)*IJE, where (E-±)* indicates random variable ob-
tained by sampling n-times with replacement from val- &2 = s2 (a - 2a/n) 2 + (I - 1)(2a/n) 2

ues of the vector E±. This random variable is distributed = n - 1
over points of the form We have then &211v112 z a 2 (1 - 2/n) and this method

(k2 - k2)(a - 2a/n) + 2a(12 - 11)/n fails completely in recovering the distribution of v- el.F,

with probabilities and of course the unconditional distribution may be far
from normal.

Tl•½•(ki,l 1) Tj ,½-•j_ (k2,12),
2 n 7. Conclusion

where kj,k 2 = O,...,n, 11 = 0,...,l - ki, 12 = O,...,l -
k2 . Here and henceforth Ti, p2 stands for the trinomial We propose resampling from the permutations of
distribution given by residuals as a method of estimating the conditional sam-

pling distributions of contrasts; without moment as-
T1,, (X- Y) )(p 1)x(p2 )Y(p3)L-z- sumptions and assuming only exchangeable errors. The

X y idea of resampling permutations of residuals occurs in

where x = 0,...,I, y = 0,..., 1 - x and P3 = 1 - PI - [2],[7] and possibly elsewhere. Both papers place consid-

P2. Similarly, Ba,P will denote the binomial distribution. erable emphasis on establishing conditions under which
Now one can notice that the distribution of v • (e±)*Je F-distributions associated with standard tests in regres-
has asymptotically nonvanishing mass around zero. sion are recovered by resampling permutations. In fact

Indeed, from the following equality [2] does not otherwise recommend the method while [7]
recommends it, but only as a descriptive method. Nei-

P.• (x, y) = B, (x)B_,P (y), ther paper makes the crucial observation thate the rela-
tions of iemmas 1,2 imply that with probability tending

and taking kj = k2 = 0 we obtain that the points 2a(12 - to one v, rELIY t v. e.jF as (d - 1)/(n - 1) -' 0. In
l 1)/n, 11, 12 = 0,..., 1 are distributed with probabilities fact we have independently discovered lemmas 1,2 in the

(1 - 1/n)'B,;,-2 (l) Bi,.:. (12). course of extending the results of 18) which exploit re-
sampling the signs of residuals in much the same way:

and using the Poisson approximation for the binomial v . 6c'IY • v. -EIF for symmetric errors. We believe that
distribution and Central Limit Theorem we will ob- methods which approximately recover conditional distri-
tain for large n the approximate distribution equal to butions by resampling will be applicable to time series.
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Abstract efficiently. Their recursions have recently been general-
ized by Jajoo and Patel (1992) to encompass groupedWe provide an alternative to the maximimum likeli- data.

hood method for making inferences about the param- This paper describes the underlying theory for exact

eters of the logistic regression model. The method is conditional inference. summarizes recent algorithmic de-

based on appropriate permutational distributions of suf- conditsothat make this type of inference computa-

ficient statistics. It is useful for analysing small or imbal- tionally feasible, and provides several illustrative exam-

anced binary data with covariates. It is also applicable pies that contrast exact conditional inference with the

to small-sample clustered binary data. We illustrate the moe custoary un conditional imum lik h tp-

method by analysing several biomedical data sets with mreach.

LogXact (1992), a new software package developed by proach.

Cytel Software Corporation. 2. Models, Likelihood, and Sufficient

1. Introduction Statistics
We consider two classes of models; logistic regression

This paper deals with exact conditional inference for forcunsife r data, and logistic regression

the parameters of the logistic regression model. It is cus-

tomary to maximize the unconditional likelihood func- stratified binary data. In this section we discuss a uni-
form method of exact inference for both models, based

tion for parameter estimation, and to perform hypothesis
tests with either the Wald, the likelihood ratio or the ef- oprtationi
ficient scores statistics. However for small or imbalanced
data sets, and for highly stratified data, these asymptotic 2.1. Logistic Regression for Unstratified Binary
methods are unreliable. An alternative approach is to Data
base the inference on exact permutational distributions Consider a set of independent binary random van-
of the sufficient statistics corresponding to the regression

parameters of interest, conditional on fixing the sufficient ables, Y,, Y,• . CorrespondIng to each random vari-

statistics of the remaining parameters at their observed able, Y,, there is a (p x 1) vector xj = (x-_i), • ... XP)
values. This approach was suggested by Cox (1971) but of explanatory variables (or covariates). Let 7rj be the

was not. considered to be computationally feasible un- probability that Yj = 1. Logistic regression models the

til fast algorithms for deriving these distributions were dependency of - on x1 through the relationship

developed by Tritchler (1984), and Hirji, Mehta and Pa- l =f+ O( .
tel (1987),(1988), and Hirji (1992). A related asymptotic lo I- =7+x/3, (2.1)
conditional approach was developed by Breslow and Day
(1980) for logistic regression on matched sets. These where y and 3 =_ (i1,i32 ... flp)' are unknown parame-
investigators proposed treating each matched set as a ters. The likelihood function, or probability of an ob-
separate stratum and eliminating all stratum-specific pa- served set of values, Y1, Y2,... yr, is
rameters from the likelihood function by conditioning on exp E'-= I Y' (xf,3 + 7)]
their sufficient statistics. The inference is then based on Pr(Y1 = Yi, Y2 = Y2, .. Y. = Yn) =
maximizing a conditional likelihood function. Although 1"= [I + exp(xý 0 + 1)]
easier, computationally, than the exact permutational (2.2)
approach, conditional maximum likelihood estimation is The usual way to make inferences about / and t is to
not a trivial problem. Gail, Lubin and Rubinstein (1983) maximize (2.2) with respect to these regression coeffi-
developed a recursive algorithm to do the computations cients.
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Suppose we are interested in inferences about f/, and 2.2. Logistic Regression for Stratified Binary
regard - as a nuisance parameter. Then, instead of esti- Data
mating 7 from the above unconditional likelihood func- Suppose there are N strata, with binary responses in
tion, we can eliminate it by conditioning on the observed each of them. Let the ith stratum have m, responses and
value of its sufficient statistic ni-mi non-responses. For all 1 < i < N, and I < Ij _< ni,

" let Yi = 1 if the Ath individual in ith stratum responded;
m = Z yj . 0 otherwise. Define r.' = Pr(Yij = I I xij) where xjj is a

j=1 p-dimensional vector of covariates for the jth individual
in the ith stratum. The logistic regression model for a"i

This yields the the conditional likelihood function, is of the form

pr(Y = Y1,Y2._ Y2, Y.. = .yn I M) = exp (,"•= 1 Yj xj' ) lo(•i) i+ ij 26ER(exp E( =l yjx•/3) ' (o ,I, (2.6)

(2.3) where 7, is a stratum specific scaler parameter and 0
where the outer summation in the denominator of (2.3) is a (p x 1) vector of parameters common across all N

strata. We are usually interested in inferences about
/3, and regard the j 's as nuisance parameters. One

R= {(Y1, Y2. .... Y-): Yj = M1. could of course estimate these the nuisance parameters
j=l by the maximum likelihood method. However, Bres-

Inference about P3 can now be approached in two ways, low and Day (1980) have shown that, for large N, this
asymptotic and exact. An asymptotic approach is to leads to inconsistent estimates. Moreover if there are

dfunction (2.3). This too many regression coefficients, and the data set iswould be a special case of the Breslow and Day (1980) small or imbalanced, the observed data frequently fall
woul bea secil cse f th Brslo an Da (180) on the boundary of the likelihood function. When this

method discussed in the next section for handling strat-

ified data. Exact inference about #3 is based on the per- happens the maximum likelihood estimates are unde-

mutational distribution of its sufficient statistics. One fined. (See, for example, Hirji, Tsiatis, Mehta, 1989).

can observe from the form of (2.3) that the (p x 1) vec- An alternative approach, proposed by Breslow and Day

tor of sufficient statistics for /3 is (1980), is to eliminate the nuisance parameters by con-
ditioning on their sufficient statistics, in this case the

n number of responses. mi, in each stratum. The condi-
t = YXj , (2.4) tional likelihood, or conditional probability of observing

ji= Yij = Yij,J= 1,2.. .ni,i= 1,2.... N is then

and its distribution is exp , .i y/j(x~j1)
S-, Eexp [,• 2- yij (x'3j'3)]

Pr(T 1 = t1,T71 = t .,,...Tp = tp) = c(t)e t 0R3 ex N (2.

(2.5) where the outer summation in the denominator is over
where the setc(t) --1 SWt I , n'

" " R, = {(:.... Y,): nY,) = in,}.
S(t) = {(y,1,y2,- ): ZEy = m, yi ij = t, i = 1,2 .... p}, j,=

j=1 j=I

Notice that the nuisance parameters, 7i, have been fac-
a S [ denotes the number of distinct elements in the set u , tored out of the above conditional likelihood. The Bres-
and the summation othe denominator is over all u for low and Day (1980) approach is to make asymptotic in-
which c(u) > 1. In other words, c(t) is the count of the ferences about /3 by maximizing (2.7). Exact inference
number of binary sequences of the form (yi , y•..y, is based on the sufficic it statistics for /3.

which are such that F, yj = m and Zj yz. = t, for From (2.7) it is seen that the vector of sufficient statis-

i = 1,2,.. .p. Exact inference about /3 requires us to com- tics for /3 is

pute coefficients like c(t) in which some of the sufficient N n,

statistics are fixed at their observed values and others t = E yii, (2.8)
are required to vary over their permissible ranges. j=1 J=l
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and its conditional distribution is The exact p-value is obtained by summing (3.1) over

c(t)eO't some specified critical region E:

PT T- uU)eU, p = Z f(v I3p = 0). (3.2)

where uEE
c(t) =1 Q(t) I The critical region E can be specified in different ways,

leading to different types of tests. Two popular tests are

Q(t) = {(yij,j = 1 .... ni, i = 1 .... N) the "conditional probabilities" test, and the "conditional

N scores" test. In the conditional probabilities test the

critical region, denoted by EGp, comprises of all values
j= x = = of the test statistic yielding a conditional probability no5=' ~1 jllarger than the conditional probability at the observed

I Q I denotes the number of distinct elements in the set value of tp:
Q, and the summation in the denominator is over all
u for which c(u) > 1. In other words c(t) is the count = {v: f(v I/3, = 0) <f(t, I/3, = 0)}
of the number of ways of selecting the binary sequence In the conditional scores test the critical region, denoted
{yij, i = 1,... N, j = 1,... ni} so as to satisfy the two by Er,, comprises of all values of the test statistic whose
conditions conditional scores equal or exceed the conditional score

N n, at the observed value of the test statistic:X= / EX== {v: (V _ p) 2 2 > tp - -2}

andn where pn and are the mean and variance of Tp,

E Yjj = mi (2.9) based on its conditional distribution as specified by
j=1 (3.1) at /30 = 0. For both types of exact tests we

Notice that the distribution of T is of the same form for need an algorithm which can give us all thecoefficients,
both stratified and unstratified logistic regression. This c(tI, t 2 ... tp-I, v), with tl,t 2 ... tp- 1 fixed at their ob-

makes it possible to develop a single numerical algorithm served values, and u varying over the entire range of Tp.

for both cases. Once we obtain these coefficients, computing the exact
p-value is simply a matter of appropriate sorting and

3. Exact Conditional Inference summing.
An asymptotic version of the conditional scores test

3.1. Conditional Inference for a Single Parame- is also possible. Here we obtain the p-value by referring
ter the observed score, (tp - pp)tp-2 . to a chi-squared dis-

Suppose without loss of generality that we wish to tribution on one degree of freedom. Note though that
even for this asymptotic test it is necessary to computemake inferences about the single parameter i3,. By the the conditional mean. up, and the conditional variance,

sufficiency principle the conditional distribution of TP ap. Asymptotic approximations to these conditional mo-
given t1, t2 , . . ., tp-,1 depends only on /3,. Let f(tp I/3p) ments are available in Zelen (1991). We are currently
denote the conditional probability Pr(7p = tI - man9t
tl .... Tp-. -= tp- 1 ). Then developing a fast algorithm for obtaining the exact con-

ditional moments.
c(ti, t2 .. .ttp)esj'Pt Estimation: To obtain a level-a confidence interval,

(t/3,,) = - c(t,, t, . ...tp_, U)eu (3.1) (/3-,/3+) for /3p, we invert the above test. Define

where the summation in the denominator is over all val- F,(tp 1/3) = f(v 1 /3)
ues of u for which c(ti,t2,.... tp-.,u) > 1. Since this Vý!,
probability does not involve the nuisance parameters and
(01, 032,... ,-, it may be used for inference about /3p. F2(t, 1/3) = (_, f(v 13)

Hypothesis Testing: Suppose we wish to test V<9,

H0 : /3', = 0 Let tmin and tmax be the smallest and largest possible
values of tp in the distribution (3.1). The lower confi-

against the two-sided alternative dence bound, /-, is such that

Hi: O3P, #0. F1 (ti, 1/3_) = a/2 iftrin t <p 5 tmax,,
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= - if tp = tmin. The exact two-sided p-value for testing H0 is obtained

Similarly the upper confidence bound, 3+, is such that by summing (3.3) over some critical region E:

P = F, f (v 1/32 = 0) .(3.4)

F(tp3+) = a/2 if trin _5 tp < tmax, v=(

00~ if tp = tmax. Again we have two types of critical regions leading re-
spectively to the conditional probabilities test and the

One can show that this definition does indeed produce conditional scores test. The critical region for the con-
an interval, and the interval is guaranteed to have the ditional probabilities test is
desired (100)(1 - a)% coverage for Op. Ecp = fv: f(v 1 32 = 0) < f.(t2 1 2 = 0))

A point estimate for 3fp may be computed in two ways.
The conditional maximum likelihood estimate, p3cme, is The critical region for the conditional scores test is
obtained by maximizing f(tp 113) by choice of 3. How- E, = {v: (v-..2 )')E2 1(v-p 2 ) > (t2-Ž2)')E21(t2-P2),
ever if either ip = trin, or iftp = tm&, I3 cmle is undefined,
as the likelihood function cannot be maximized. An al- P2 is the mean, and '2 is the variance covariance matrix

ternative estimate for 3p that has several useful proper- Of M 2 132 = 0). For both types of tests we need an

ties (see, for example, Hirji, Tsiatis, Mehta, American algorithm that can give us all the coefficients c(tl,v)

Statistician, vol 43, 1, 1988) is the median unbiased es- with t1 fixed and v varying over the entire range of T2 .
timate An asymptotic version of the conditional scores test

+3mue = (13++/3)/2 is obtained by referring the scores statistic (t 2 -
u2)')E2'(t2 - P2) to a chi-squared distribution on

where 03- and 13+ are evaluated at a confidence level (p2 - 1) degrees of freedom.
a = 0.5. If 3- = -co, we define , = 63+, while if
#3+ = oo, we define/ 3,n, = #3. Thus, unlike the maxi- 4. Numerical Algorithms
mum likelihood estimate, the median unbiased estimate
is always defined, even at the extreme points of the sam- We will confine ourselves to referencing the most re-

pIe space. cent algorithmic developments for exact logistic regres-
sion, rather than describing these algorithms in detail

3.2. Conditional Inference for Several Parame- here. Bayer and Cox (1979) developed an early algo-
ters rithm in which all possible binary sequences of the Y

To make inferences about several parameters simulta- variable are enumerated exhaustively. Tritchler (1984)

neously we need the joint distribution of their sufficient provided a substantial improvement relative to exhaus-
tive enumeration, using a specific application of the in-statistics conditional on the observed values of the re- tv nmrtouigasecfcapiaino h nmaining sufficient statistics. Suppose we partition the verse Fourier transform algorithm of Pagano and Tritch-

n s n sler (1983). However Tritchler's algorithm is only applica-
(p x 1) vector of regression parameters 13 into two parts;
a (P, x 1) component, 01 , and a (p2 x 1) component, 02. hie to models with a s3ngle covariate, with 2ossible strat-

Let t 1 and t 2 be the corresponding vectors of sufficient ification for matched sets. Hirji, Mehta and Patel (1987)

statistics. We wish to test the null hypothesis developed a general and efficient algorithm for the eval-
uating the permutational distribution of T2 I T1 = t,

H0 : 32 = 0 (see equation (3.3)) for unstratified data. and subse-
quently extended it to the stratified case (1988). Their

against the two-sided alternative that at least one of the algorithms are incorporated into the LogXact. an new
elements of 32 is not 0. By the sufficiency principle statistical package for exact logistic regression. We have
the conditional distribution of T 2 given T 1 = t, is used LogXact to generate the examples in the next sec-
free of the nuisance parameters 01. Thus we denote tion. Hirji (1992) has recently extended these algorithms
the conditional probability Pr(T 2 = t 2 I T 1 = t1 ) by further to allow for polytomous regression.
f(t2 I 132), where

5. Examples
_~2[•) c(tl' t 2 )e~ t 2

"u Itl,2)e) -V2 The examples in this section were all provided by in-
12)= U c(t, u)e (3 vestigators who were either unable to perform the con-

ventional logistic regression analysis on their data, or
The summation in the denominator of (3.3) is taken over who distrusted the results of the conventional analysis,
all values of u for which c(t 1 , u) > 1. because of the small sample sizes.
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5.1. Advance Indicators of HIV Infection in In- sufficient statistic for 3, is Ti= xz Yj, and the suffi-
fants cient statistic for the constant term is To = F Y), the

We are grateful to Dr Shengan Lai, University of summation being taken over all subjects. An exact test

Miami, for providing this example. A hospital based of Ho is based on f(t6, 4 1/33 = /34 = 0), the null permu-

prospective study of perinatal infection and human im- tational distribution of (T3 , T4 ) given that the remaining

munodeficiency virus (HIly-i) by Hutto, Parks, Lai, et. sufficient statistics are fixed at their observed values; i.e..

al. (1991) investigated, among other things, the possibil- (To = 14,7'T = 5, T2 = 8). This distribution was com-

ity that the CD4 and CD8 blood serum levels measured puted by LogXact.

in infants at 6 months of age might be predictive for their For testing H0 , we may use either the conditional

eventually developing a HIV infection. The data on HIV probability test or the conditional scores test. The ob-

infection rates and blood serum levels are tabulated be- served value of (t3 ,t4 ) is (6,4). Its corresponding con-

low. ditional probabilit: is f(6,4 I/33 = ý/4 = 0) = 0.00532.

We wish to determine if the CD4 and GD8 serum Thus the critical region for the conditional probability

levels are statistically significant in the logistic regres- test, E consists of all (64 4) points in the sample

sion model HIV = CD4 + CD8. Now although each of space with probabilities less than or equal to 0.00532.

these covariate is at three ordered levels (0, 1, 2), it The exact p-value is

was felt that they should be included in the regression
model as qualitative or "factor" variables, rather than pcp =- f(t 3 , t4 1,3 = 4 /3 0) = 0.0323

as quantitative variables. Otherwise one would have EC,

to assume, erroneously, that 0, 1, and 2 were the ac- An alternative exact test for H0 is the conditional scores
tual numerically observed blood counts. This requires test. For each (t3, t4) in the sample space of the condi-
CD4 and CD8 to each be split up into two dummy tional distribution, one can compute a conditional score
variables (0 versus 2, and 1 versus 2) in the regression of the form
model. The model may be specified formally as:

l 4 q = ((t3, f4) - ,t4) - ( 4))

log (\ )~ = -+ Ti(5.1) where p3 is the mean of T3 , p4 is the mean of T4 and

E3 ,4 is the variance-covariance matrix of f(t 3 ,t4 N /33 =
where, for the jth subject, xl = 1 if CD4 is at level 0 /64 = 0),. The observed conditional score is q = 7.293.
and 0 otherwise; Z2j = 1 if CD4 is at level 1 and 0 Thus the critical region for the conditional scores test.
otherwise; X3j = 1 if CD8 is at level 0 and 0 otherwise; Ec,, consists of all (63. t4) points in the sample space
X4j = 1 if CD8 is at level I and 0 otherwise. with conditional scores greater than or equal to 0.7.293.

As is often the case with small and imbalanced data The exact p-value is
sets, the regression parameters in model (5.1) cannot
be estimated by the maximum likelihood method be- P., = f(t3, 4 1 33 = 34 = 0) = 0.0256
cause the observed data fall on the boundary of the sam- E_

pie space; you will find that conventional packages like Below we have tabulated the exact p-values for CD4 and
BMDP, GLIM, EGRET, SAS, or SYSTAT, are unable to GD8, based on bo.h the conditional probability and con-
produce any output. Nevertheless the observed rates of D8, ses te A otionaluproba sed on-
HIV infection do vary considerably with the serum lev- ditional scores tests. Asymptotic p-values based on 2-
els and formal tests of significance would be useful. The degree-of-freedom chi-squared analogs of the conditional
exact conditional distributions of appropriate sufficient scores tests are also reported.
statistics enable us to perform such tests. To determine The two exact tests give similar answers and bothif he D8levls repreiciveof IVinfctin e mst demonstrate the important role of the CD4 and CD8
if the CD8 levels are predictive of HIV infection we must counts in predicting HIV infection. In the above table
test the null hypothesis we have also reported an asymptotic p-value for the con-

H0 : 83 = ?4 = 0 . ditional scores test. This p-value is the area to the right
of the observed conditional score from a chi-squared dis-

Since the maximum likelihood method fails to converge, tribution with 2 degrees of freedom. For example, the
the usual 2 degree-of-freedom likelihood ratio, Wald, and observed conditional score for testing CD8 was 7.293.
scores tests are undefined. However the joint and con- Thus the asymptotic p-value is the area to the right of
ditional distributions of the sufficient statistics are well 7.293 from a chi-squared distribution with 2 degrees of
defined and can be used for the exact inference. The freedom; i.e. 0.0261. We notice that the asymptotic
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Proportion Developing Serum Levels at 6 Months
HIV CD4 CD8
1/1 (100%) 0 2
2/2 (100%) 1 2
4/7 (57%) 0 0
4/12 (33%) 1 1
1/3 (33%) 2 2
2/7 (29%) 1 0
0/2 (0%) 2 0
0/13 (0%) 2 1

Type of Test Exact P-Values Asymptotic P-Values
CD4 CD8 CD4 CD8

Conditional Probability Test 0.009 0.0323 - -

Conditional Scores Test 0.007 0.0256 0.0095 0.0261

conditional scores tests are very accurate. They closely ith family in terms of the birth-complications index, zij:
match the corresponding exact tests. However in order
to compute the conditional scores we actually needed log __r_ _ 7_
the exact conditional moments of f(t 3 , t 4 1 f83 = #4 = 0). 1 - 7rij
These moments could only be derived from the exact
conditional distribution. Thus there is at present no We eliminate nuisance parameter yi, corresponding to
computational advantage in substituting these asymp- the family effect, by conditioning on the total number of
totic p-values for the exact ones. A fruitful area of re- schizophrenics within each family. We then estimate fi
search would be to obtain accurate asymptotic moments by the methods of Section 2.2. The results are tabulated
for the conditional distributions of the sufficient statis- below.

tics of logistic regression parameters. For this small data-set there are noticeable p-value
differences between the exact conditional scores test and
the Wald or Likelihood Ratio asymptotic '!sts. On the
other hand, the p-values for the exact and asymptotic

5.2. Schizophrenia and Birth Complications conditional scores tests are very similar. This is what we
observed in the HIV example also. While this suggests

We thank Dr. Armando Garsd for providing this ex- that one could get away with using the asymptotic condi-
ample. A case-control study (Garsd et. al., 1988) was tional scores test rather than its exact counterpart, there
designed to determine the role of birth complications in is, as explained previously, actually no computational
schizophrenics. The sample consisted of 7 families with advantage to doing so. In order to compute the condi-
several siblings per family. An individual within a fam- tional scores statistic one needs the mean and variance
ily was classified either as normal or schizophrenic. A of the conditional distribution of the sufficient statistic
"birth-complications index" was available for each indi- for 3. So far no accurate method for estimating these
vidual, ranging in value from 0 (uncomplicated birth) to conditional moments is available, short of actually gen-
15 (severely complicated birth). The data are displayed erating the entire permutational distribution of the suf-
below: ficient statistic. In that case it is just as easy to perform

Is there a positive correlation between the chance of the exact test.
schizophrenia and the birth-complications index? The
data do indeed suggest some such tendency. But the 5.3. Cross-over Clinical Trial of Analgesic Effi-
numbers are small, and the magnitude of the effect ap- cacy

pears to vary across families. This is an ideal situation The data below are taken from a three-treatment,
for exact logistic regression on matched sets. Treating three-period cross-over clinical trial. The three drugs
each family as a separate matched set, one can model 7r#, are A=New Drug, B=Asprin, C=Placebo. The primary
the probability of schizophrenia for the jth sibling in the end-point was analgesic efficacy, here dichotamized as
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Family Birth-Complications Number of Siblings
ID Index Normal Schizophrenic Total
1 15 0 1 1
1 7 1 0 1
1 6 1 0 1
1 5 1 0 1
1 3 2 0 2
1 2 3 0 3
1 0 1 0 1
2 2 0 1 1
2 0 1 0 1
3 9 0 1 1
3 2 1 0 1
3 1 1 0 1
4 2 0 1 1
4 0 4 0 4
5 6 1 0 1
5 3 0 1 1
5 0 0 1 1
6 3 1 0 1
6 0 3 1 4

7 6 0 1 1
7 2 1 0 1

Inference for Beta
Conditional Maximum Likelihood Estimate 0.325
Exact 95% Confidence Interval (0.0223 to 0.741)
Asymptotic 95% Confidence Interval (-0.004 to 0.654)
Exact P-Value (Conditional Scores) 0.0167
Asymptotic P-Value (Conditional Scores) 0.0129
Asymptotic P-value (Wald) 0.0528
Asymptotic P-value (Likelihood Ratio) 0.023

0 for relief and I for no-relief. See Snapinn and Small response probabilities within a matched set may be re-
(Biometrics. 42, 583-592, 1986) for details. garded as independent if they arise in a logistic regres-

The question to be addressed is whether the three sion model containing a covariate term for the effect of
sare differen WV answer this question by cross-over. The cross-over term will have four levels (in-treatments ar'ifee e anwrtisqeto by in duction, cross-over from treatment A, cross-over from

cluding treatment as the primary covariate in a logistic treatment B, cross-over from treatment C), and three

regression model for matched sets. In this model, treat-
degrees of freedom. Technically the model should also

ment is included as an unordered categorical covriate include a two degree of freedom covariate term for the

at three levels, and hence, with two degrees of freedom. g
period effect. However, for this small data set, the period

Weeffect and the cross-over effect are aliased. The model
matched set there are three observed responses, one at m ay th e sp cfed as:

each of the three time periods P1, P2 and P3. Now al- may thus be specified as:

though these responses are all on the same patient, and log rjk =

are therefore dependent, we assume that this dependence 1 - •r•kt-

can be removed by appropriate modelling. See Jones and where -. is the stratum effect for the jth matched set (or
Kenward (Statistics in Medicine, 6, 555-564, 1987). subject), '6k is the effect of drug k, and -Y, is the effect of
For the ,,resent data set we will assume that the three the th cross-over level.
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Patient Drug Response
Sequence P1 P2 P3

I ABC 0 1 1
7 ABC 0 1 1
2 BCA 0 1 1
8 BCA 0 0 0
3 CAB 1 0 0
9 CAB 1 0 1
4 CBA 1 0 1
10 CBA 1 0 0
5 ACB 0 0 0
11 ACB 0 1 0
6 BAC 1 0 0
12 BAC 0 0 1

The following results are obtained for the two degree Any Ostoid Pathology?
of freedom test that there is no treatment effect: DFI3 No Yes Total

Thus it appears as though the conditional scores test No 4 13 17
fits the exact test very well, but there are wide variations Yes 17 12 29
among the other asymptotic tests. Total 21 25 46

5.4. Predictors of Disease Free Survival for Os-
toegenic Sarcoma sion model, along with SEX and AOP, the maximum

In a 46-patient study of non-metastatic osteogenic sar- likelihood estimates of the regression prarmeters do not
coma, (Goorin et. al., J. Clin. Oncology, 5, 1987), the in- exist. All the conventional logistic regression packages
vestigators were interested in determining the predictors fail on this data set. Exact inference is possible how-
for a three year disease free interval (DFI3). The covari- ever, and does provide new insight about the data.
ates of interest were gender (SEX), any osteoid pathol- Let tl,t2,t 3 ,t 4 be the sufficient statistics correspond-
ogy (AOP), and lymphocytic infiltration (LI). The data ing to LI, SEX. AOP, and the constant tern,, respec-
are displayed below, one covariate at a time, and overall. tively. Note that ti is just the sum of covariate-i values

Osteogenic Sarcoma Data; Covariate by Covariate over all subjects with a three year disease free interval.

Thus ti = 19, 1, = 16, t3 = 12, and N4 = 29. The distri-

Lymphocytic Infiltration? bution of counts.
DFI3 No Yes Total C(t1,t2 = 16,t 3 = 12.14 = 29)
No 0 17 17
Yes 10 19 29 for all possible values of t1 is displayed below.
Total 10 36 46

tj c(t1, 16, 12, 29)
19 29,445,360

Sex 20 147,312,480
DFI3 Female Male Total 21 271,271,448
No 2 15 17 22 231,819,344
Yes 13 16 29 23 95,325,644
"Total 15 31 46 24 17,473,144

25 1,204,008
26 19,448

Marginally, the effect of LI on DFI3 is certainly sta- 26 19,8

tistically significant; no subject with lymphocytic infil- Total 793,870,896
tration had a three year disease free interval. Unfortu-
nately if this covariate is included in the logistic regres- It is interesting to notice
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Type of Test Chi Squared Value P-value
Likelihood Ratio 5.6 .06
Bivariate Wald 2.47 .291

Unconditional Scores 4.56 .099
Conditional Scores 3.684 .1585

Exact 3.684 .1525

DFI3 LI SEX AOP Frequency Count
1 0 0 0 3
1 0 0 1 2
1 0 1 0 4
1 0 1 1 1
1 1 0 0 5
1 1 0 1 3
1 1 1 0 5
1 1 1 1 6
0 1 0 1 2
0 1 1 0 4
0 1 1 1 11

Table 1: Osteogenic Sarcoma Data; Overall

"* There are nearly 800 million binary sequences of Binary search rapidly yields/f+ = 0.161.
the y, values which are such t 2 = 16, t3 = 12, and The conditional distributions of the other sufficient
4 = 29. And yet they all "club" into barely eight statistics and the corresponding parameter estimates can
distinct values of ti. A good algorithm must exploit be obtained similarly.
this clubbing, because otherwise, exhaustive enu-
meration of all possible binary sequences would be 5.5. Bupenorphine Treatment for Drug Addicts
computationally explosive. We thank Dr. Edward Lee, Substance Abuse Treat-

"ment Unit, Department of Psychiatry, Yale University,SThe exact conditional distribution of T1 is extremely for providing this example of multiple binary responses
asymmetric. Normal approximations would not on five substance abusers. The five individuals werework too well, though Edgeworth and saddlepoint treated with both Placebo (X = 1) and Bupenorphine (Xapproximations might be worth trying. = 2) at each of four doses (0, .125, .250, .500 mg/mi2 ).

"* The observed value, t1 = 19, is at the minimum of The binary response measured at each dose level was
its range. This is the reason for the failure of the presence/absence of abnormal heart-beat (Y = 1/0).
maximum likelihood method to produce estimates The data are displayed below:
of the regression parameters. The question of interest was, whether Bupenorphine

increased the probability of abnormal heart-beat relative
Exact inference about the parameter corresponding to to placebo. The data were complicated by the fact that

LI is now straightforward. The exact one-sided p-value each individual was treated several times, at different
for testing 61 = 0 is dose levels of both treatments, thereby providing a se-

p = 29445360/793870896 = 0.037 quence of clustered binary responses. We handled this
problem by using stratified logistic regression, regarding

Since ti is at its minimum value, the lower 95% confi- each individual as a separate stratum. The model was
dence bound for #i is -oo. The upper 95% confidence thus

bound, P+, is the solution to

c(19, 16,12, 29)e1 9 p+ = 0.025. rij

, c(ti, 16, 12,29)et,#+ where i indexes the strata, i = 1,2...5, j indexes the
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Patient Dose Response Treatment Patient Dose Response Treatment
1 0 0 1 1 0 1 2
2 0 0 1 2 0 0 2
3 0 0 1 3 0 1 2
4 0 0 1 4 0 0 2
5 0 0 1 5 0 0 2
1 125 0 1 1 125 1 2
2 125 1 1 2 125 1 2
3 125 0 1 3 125 1 2
4 125 0 1 4 125 1 2
5 125 1 1 5 125 1 2
1 250 1 1 1 250 1 2
2 250 1 1 2 250 1 2
3 250 1 1 3 250 1 2
4 250 1 1 4 250 1 2
5 250 1 1 5 250 1 2
1 500 1 1 1 500 1 2
2 500 1 1 2 500 1 2
3 500 1 1 3 500 1 2
4 500 1 1 4 500 1 2
5 500 1 1 5 500 1 2

different dose levels within each stratum, j = 1,2, ... 4, permutational distributions of sufficient statistics. The
z1 ij is the jth drug dose in the ith stratum, and Z2ij is permutational approach for clustered binary data is a
the jth treatment in the ith stratum (1 for placebo; 2 useful complement to the generalized estimating equa-
for Bupenorphine). tions approach (Zeger and Liang, 1986), for it is valid in

As with several other examples presented in this pa- small samples, while the latter is valid in large samples.
per, the maximum likelihood method failed to produce We have seen that with small and imbalanced data the
estimates of the regression coefficients. However the ex- maximum likelihood approach may fail, even though the
act method, based on the permutation distribution of covariates in the model are statistically significant. The
the sufficient statistics produced the following results: permutational approach on the other had provides valid

The exact method reveals that Bupenorphine does in- inferences for this situation.
deed induce a statistically significant increase in abnor- We have identified one useful problem for future re-
mal heart beat, after adjusting for the effects of cluster- search. The asymptotic conditional scores test yields
ing, and varying dose levels, p-values that are very close to corresponding exact p-

values. If one could compute the conditional scores

6. Conclusions quickly, one could simply refer them to appropriate chi-
squared distributions and thereby obtain very accurate

We have provided a way to analyse small-sample bi- p-values without the need to derive complicated permu-
nary data with covariates, and have illustrated our ap- tational distributions of sufficient statistics. Some work
proach through several examples that could not be anal- along these lines is available in Zelen (1991).
ysed by conventional methods of logistic regression. For Software for exact logistic regression is available in the
data in the form of independent binary observations we LogXact (1992) software package, distributed by Cytel
use the unstratified logistic regression model, and base Software Corporation. Cambridge, MA.
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nary observations on each unit, we use the stratified lo- Breslow NE, Day NE (1980). Stat Methods in Can-
gistic regression model. Each unit is treated as a sepa- cer Research. IARC, Lyon.
rate stratum or matched set. The inference on the re-
gression parameters proceeds as before and is based on Byar L, Cox C (1979). Algorithm AS142. App. Stat.
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Abstract
Current operational approaches to data correlation

Modem surveillance and monitoring activities in employ linear discriminant functions, although the elements
manufacturing, medicine, meteorology, and the military in the discriminant function might be nonlinear in the
frequently require processing data from multiple sensors. incoming data. Problems with this approach, particularly in
The incoming data must be associated or correlated with arms control monitoring and military surveillance, have led
previously observed data to produce an estimate of the to interest in improved methods. This paper focuses on the
current environmental state. The correlation decision data correlation problem in emitter identification, and
determines if the incoming data represent changes in the describes our use of visual data analysis to suggest
environment; if they do, the environmental state is updated improvements to existing algorithms. The next section
to reflect the changes. Operational approaches to this defines the data correlation problem and introduces the
problem generally employ linear discriminant functions. specific emitter identification application studied. Section 3
This paper shows the results of applying visual data analysis presents our testing results and data analysis, and Section 4
to the evaluation of competing approaches to data contains our conclusions.
correlation. The specific application examined is the
location of radars using data from superheterodyne receivers. 2. Data Correlation
A simulation of the performance of these receivers
implemented on a multiprocessor is used to generate the Let E(t) be the environment of interest at time t
data. Three dimensional projections in feature space show (Figure 1). e is the sensor function that maps from E(t)
clearly the deficiencies of the linear discriminant approach. into a set of measurements x(t) = (xl(t),...,xn(t)). R(t) is
At the same time, the projections provide a clear indication the representation of the environment in the machine at time
of the minimal error obtainable through nonlinear methods. t. R(t) can include as many of the past sensor reports as
A video demonstration of these results is available, machine address space and algorithm performance allow (see

Barker, et al. 1991, for a complete discussion of these
1. Introduction issues). The correlation algorithm, A, acts on R(t) to

produce an estimate of E(t). Hence, the data correlation
Data correlation lies at the heart of most modern problem is to design A to optimally estimate E(t).

surveillance and monitoring systems. Data from multiple (Spillane, et al. 1989 discuss the notion of optimality for
sensors is continually correlated or merged with existing data this problem.)
to maintain an estimate of the changing environmental state.

SM
Applications of this type of correlation problem exist

in a number of fields. For example, in medicine, sensors
monitor the current state of a patient and physicians attempt ,. l• _
to use this information to detect changes resulting from R(t)
either the application of treatment or the onset of disease. In
the military and arms control, sensors monitor the current
disposition of forces and analysts seek to detect changes that
foreshadow specific military operations. In manufacturing, U
sensors and human operators monitor the condition of
products and subsystems passing through an assembly
process to detect changes in quality. The correlation Figure 1: The Data Correlation Process
decision is typically made by a human; however, as sensors
have become less expensive they have become more There is no known way to formally prove the
numerous and easy to employ. Hence, most fields face an superiority of one correlation algorithm over another across
explosion in the amount of data that must be correlated, all application domains, so testing in the domain remains
which has necessitated the deployment of automated the basis for algorithm comparisons. Here, we examine data
correlation systems. correlation for the problem of emitter identification.
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For emitter identification we want to locate ground- the classes by use of the linear (LI) discriminate function.
based radars and transceivers; hence, E(t) consists of point However, including the similarity metric, as in Figure 3b,
sources in a plane, and x() contains location measurements, ij. In Figure 3a, missclassification errors appear on the
error estimates, and electronic parameters (e.g., pulse "hull" of the center of the space, surrounding the correlated
repetition interval). For our analysis we modeled the reports, as would be sought (confusion only on the
performance of airborne sensors (superheterodyne receivers) boundaries). In Figure 3b, the errors are more obvious.
detecting four types of ground-based radars. Each of the four
radars could operate in one of five modes (e.g., different • ".'"
frequency settings). Two hundred of these radars were.. "
randomly placed in a 120 x 80 km. region according to a ,:: . .

uniform distribution. . .• ." *,... .•.." .>,

Our simulation allowed us to judge the performance of " v.

correlation decisions, since (in this test problem) we know ... ' -. "..., , •
whether sensor reports should correlate or not (i.e. we know . .. !.. • ..
whether they were produced by the same or different radars). ... •.
Competing algorithms were judged by their accuracy on . fi '.&.r. ,.
classifying pairs of reports using 24 hours of simulated . ;.. ...
sensor operation (about 4000 sensor reports). ": " "" •"• • "•""'0 ,• . . " •.. •

3. Data Correlation Tests and Visual Analysis" :• " : •'

The current approach to data correlation of emitters

uses a linear discriminant function (Wright, 1980), although
each element of the weighted sum can be nonlinear in the
sensor report measurements. Three electronic factors are Figure 3a: Projection of Electronic Factors
available: pulse repetition interval (PRI), pulse duration
(PD), and frequency. The fourth input, Euclidean distance
information, is monotonically transformed by a chi-squared .,.,

function to obtain a measure of similarity (0: close - 1: far).

As illustrated in Figure 2, this classifier is a
"perceptron" form -- linearly weighted factors summed and "'
submitted to a threshold. This approach has a number of • .

problems (see Brown, et al. 1992). Our concern here was ... 0. .
the sources of correlation decision errors. .. "o, •0 .o 0 . 0,,o a o O o

"" ,0 .00 0

Dist X2() W1rl.° " I0 110

1: Don't Correlate 0 0001

IAP!I-C ® 0 %r_0

0A PDC._cw3z Figure 3b: Projection with Similarity Measure

Note that only a subset of cases are shown. Since all
Figure 2: Linear Method takes Perceptron Form features are difference magnitudes (i.e., non-negative),

roughly half the values were randomly assigned negative
Figures 3a and 3b are two-dimensional projections (of signs, to improve visualization. Correlated pairs, which

a 4-d space) of the pairs of sensor reports, highlighting the normally occur only a fraction of the time, are here about
errors made by the linear discriminant approach ("I": half the cases (3401 out of 6912). This balance was made
correctly classified correlated pair; ".": correctly classified possible through use of a pre-filter capable of discarding a
uncorrelated pair; "o": misclassified pair). The view of priori all pairs with extremely small correlation
Figure 3a, with the three electronic parameters, is not probabilities. Thereby, all clearly mismatched pairs can be
inconsistent with the "diamond shape" implicitly assumed of removed from the data (deterministically, and with zero
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error), preventing the classification stage from being 300

swamped by cases of one type -- an important consideration
for empirical methods.

To investigate the factor distributions further, Figures 200

4-6 show the marginal distributions for the pairs of reports
that correlated (a), and those that did not (b), for PRI, PD,
and the similarity measure. 100

400

300 -1.125 -0.375 0.375 1.125

Figure 5b: Marginal Distribution for
Uncorrelated Reports for Pulse Duration

200 150

100
100

-0.95 -0.35 0.25 0.85 50 -

Figure 4a: Marginal Distribution for Correlated
Reports for Pulse Repetition Interval

300 t

0.00 0.33 0.66 0.99

Figure 6a: Marginal Distribution for Correlated
Reports for Similarity

2000

100 
10

leo • ]•1500

1000

-2.250 -0.875 0.500 1.875
Figure 4b: Marginal Distribution for

Uncorrelated Reports . Pulse Repetition Interval 50

400 L

0.00 0.33 0.66 0.99

300 Figure 6b: Marginal Distribution for
Uncorrelated Reports for Similarity

200 Note that the conditional electronic distributions

(Figures 4 and 5) have roughly the same (Gaussian) shape,

100 but a lower variance for the correlated cases (a) than for the
uncorrelated cases (b). (Were all parameters like this, the
conventional "figure of merit", or linear discriminant,
technique of Figure 2 might prove competitive.) The

-0.300 -0.120 0.060 0.240 distributions of the similarity metrics however, are

Figure Sa: Marginal Distribution for Correlated strikingly different: That conditioned on correlated pairs

Reports for Pulse Duration (Figure 6a) is roughly uniform[0,1], while the uncorrelated
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distribution (6b) is exponential in shape. Given this discriminant approach to data correlation for emitter
information, we investigated several alternatives to linear identification. The data show that linear discriminant
discriminants, and two in detail: 1) a parametric approach approaches to this problem cannot easily handle the
using the marginal distributions derived from the training set nonlinearities in the data, particularly due to the distance
and 2) logistic regression. The results are shown in Table 1 information. (10.4% of the pairs were misclassified.)
(where 0 now refers to uncorrelated cases; 1 to correlated). Parametric approaches (3.0% error), and logistic regression

(3.2% error) did however, exhibit positive performance. In
Table 1: Misclassification Results fact, it was also determined that several other inductive

methods, including k-nearest neighbors, kernel estimation,
0->1 1->O total and neural networks, also performed well. Hence, we can

error build data correlation algorithms with improved performance
using any of a variety of nonlinear approaches.

FOM 544 174 718
(linear) 7.87% 2.52% 10.39% . .. . "

Para- 171 36 207 .... .

metric 2.47% 0.52% 2.99%

Logistic 167 51 218 .
2.42% 0.738% 3.15%

The nonlinear approaches have less than a third of the
error of the conventional technique, and about twice the
likely minimum error (i.e., all three techniques misclassified
107 (1.55%) of the cases). When the linear FOM judgments
are employed, the model for the sensor environment appears .. .0 ...
as in Figure 7a, where the ellipses represent a given (high) . .
confidence interval for the location of the emitter (small
ellipses are best). Use of the parametric model leads to the " ."'•

more precise representation of Figure 7b.

". .. o Figure 7b: Parametric Environment Model
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Abstract In addition to expanding PPR goals and tools, both the
interpretability of projections and the speed and quality of

A system is proposed to help analysts discover patterns in the global search can be enhanced. The proposed Inductive
high-dimensional data. Projection pursuit and inductive Data Exploration Algorithm (IDEA) combines
modeling techniques are reviewed, with an intent toward
their combination in an interactive graphic environment to 1) interactive graphics (including 3-D rotation,
effectively extend the scope of one's judgement a few brushing, and plot linking) able to rapidly reveal
dimensions. The proposed Inductive Data Exploration low-dimensional structure,
Algorithm (IDEA) will help statisticians to better build 2) automated statistical induction algorithms
models from sample data by enhancing the process of capable of discovering much of the structure of"pondering point clouds", noisy data in high dimensions, and

3) information-theoretic criteria able to regulate the
1. Introduction complexity of model approximations.

In the low dimensions of everyday experience, the human Still, it is anticipated that perhaps a chief strength of the
ability to rapidly recognize patterns in noisy data will likely algorithm will be its step "backwards" to critical reliance on
never be matched by automata. However, the speed and the analyst in the structure search and removal process.
persistence of computers must be harnessed to explore
spaces of high dimension. Projection Pursuit (PP) 2. Inductive Modeling Overview
algorithms (Friedman and Tukey, 1974) seek low-
dimensional views of the data which score well by some The goal of inductive modeling is to .-fficiently and robustly
index of "interestingness". When striving to model the data model high-dimensional data. As shown in Figure 1, given
with PP regression (PPR; Friedman and Stuetzle, 1981),, any two components of the set (Inputs, System State,
this perceived structure is iteratively removed and the filtered Outputs) induction can be employed to estimate the third.
data is resubmitted, until only noise apparently remains. For example, a training data base of inputs, X, and system

states, S, can be employed to estimate the ensuing outputs,
The power of this idea is weakened in practice by several Y, (for unseen cases) in a forecast or prediction model.

factors. Though PP was inspired by early graphical data Likewise, it is a design problem to obtain a system, S, for
manipulation systems, most PPR-like stagewise induction given inputs and outputs X and Y and a control task to
programs are run in batch mode, excluding potential mid- seek the best X for a given S and Y.
course contributions by an analyst. (Such induction
programs include the Group Method of Data Handling,
GMDH (Ivakhenko, 1968; Farlow, 1984); Classification and Inputs, X Outputs, Y
Regression Trees, CART (Breiman et al., 1984), the System
Algorithm for Synthesis of Polynomial Networks, ASPN
(Elder, 1985); and Multiple Adaptive Regression Splines,
MARS (Friedman, 1988).) PPR programs explore a single
index (seeking unusual entropy, clustering, or skewness,
etc.), and any structure found is addressed by a family of
model components (e.g., splines). However, many types of
patterns (with different properties and shapes) may prove Estimate Estimate
interesting, so one could instead simultaneously unleash Output Input
several projection index searches, as well as employ an (Forecast) System State (Control)
arsenal of corrective basis functions (e.g., polynomial,
threshold, and logistic elements).

Figure 1: Three Types of Inductive Models
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There are two broad classes or inductive techniques: than distant ones, then kernel estimation (Parzen 1962) is
appropriate. There, a kernel function, ho (such as a

1) Consensus methods, which parametrically rectangle, triangle, or guassian node) of a given width is
summarize data points, and centered over each known case, i, and is evaluated at the

2) Contributory methods1 which retain the training location of interest (the new case, J) to supply the relative
data and may employ one or every training case in weight, wi:
the estimate for a new location in input space.

2 ; w . i i = I ..N
With the former, the training data are employed only to Y X - Ywi: i
obtain a model (then discarded); in the latter, at least a subset
of the data are retained for operation of the model. A brief for N training cases, where w= h( IIXi-XjII ). (A
overview of representative inductive techniques follows. rec tan ing isesiwhent to a h( approach, ). krectangular kernel is equivalent to a k-NN approach, with k

By far the most popular consensus technique is linear depending on location.) In classification, the relative sum of
(least-squares) regression (LR). Usually, all the terms (i.e., weights of each class at a location provides an estimate of
the full model structure) are specified by the analyst and only its conditional probability; and, in density estimation, it
the parameters are estimated by the computer. This is also forms the density surface itself. This last is analogous to
the case for conventional artificial neural networks (ANNs); dribbling unit piles of sand (for 2-d gaussian kernels) over
however, the nonlinear effect of changes in the ANN each case location to build up the density estimation surface.
parameters force use of a much slower search technique (e.g., Kernels lead therefore, to a type of histogram with "bins"
the stochastic gradient descent of backpropagation) than the following the data, rather than forcing data into pre-
closed-form matrix inversion of LR. Combining these two established bins. Indeed, averaged shifted histogram
approaches, networks of regression nodes are employed in techniques have been employed (Scott, 1985) which have
the family of GMDH techniques including the Polynomial properties intermediate between the smoothness of kernels
Network Training Algorithm, PNETTR (Barron et al., and the speed of histograms.
1984) and ASPN. A significant strength of those techniques Radial basis functions (RBFs) are a contributory
however, is their allowing the model structure to grow out technique with a consensus aspect. Radially -symmetric
of the data, rather than being set by an analyst beforehand. t ion s wimila to ne ls , aspe c t. may- incretre
Other such adaptive inductive tools include: CART, which functions (similar to kernels, although they may increase
employs piecewise constants for estimation; Hinging with distance, if desired) are centered over each training case.
Hyperplanes (Breiman, 1991), using sums of multi- Yet, instead of being used directly (as with kernels) these wi
dimensional ramp functions; and Class (Cellucci and Hess, values become variables in an LR data base. That is, each
1990), employing logistic regression elements. training output, Yj, is modelled as a weighted sum of a

constant and the N-I distance functions h( UiXi-Xju1 ), i-j.
The estimation surfaces formed by polynomial and As the number of constraints, N, matches the degrees of

sigmoidal methods are potentially quite nonlinear, although freedom available, there is an exact model (zero training
smooth. Spline techniques, like MARS, can adaptively error) which is used to interpolate new cases. In practice
construct similar surfaces (with a few continuous though, the variables are often too numerous for model
derivatives) which typically demonstrate more local response robustness, and the training data is sub-sampled (e.g., Chen,
to "bumps" in the data. That is, a polynomial equation is Cowan, and Grant, 1991); that is, features are removed to
global; a change to affect it one place, affects it everywhere reduce collinearity (e.g., Elder, 1990).
(to varying degrees). A piecewise collection of splines
however, can be adjusted more locally. Wavelets are a contributory technique receiving

increasing attention due to useful theoretical properties and
Contributory techniques embody this property of local their ability to describe functions with rapid level transitions

effects. A classic example is the nearest neighbor (NN) (see, for example, the Bock, Chui, Johnstone, or Walter
algorithm, wherein the output for a new case is estimated to papers in these proceedings). Another recent estimation
be the output of the known case closest by some measure method can be taken from these proceedings as well:
(e.g., Euclidean distance) in input space. (The k-NN method Delaunay planes. In (Elder, 1992) the expected value of a
just combines, e.g., averages, the outputs of the k nearest stochastic function, known only at a set of training
cases.) If closer neighbors are to be weighed more heavily locations, is represented by a piecewise planar surface, where

each plane intersects a simplex of points defined as a set
according to the "empty circumsphere" rule of Delaunay

1Contributory methods are most often referred to as triangulation. The variance of this estimate (assuming a
nonparametric techniques, though some parameters are random field, or fractal surface) is gaussian, and grows from
usually involved; e.g., bin or kernel widths, number of a minimum at the known points to peak at uncharted
neighbors, type of wavelet, etc.
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locations -- forming a piecewise quadratic "variance canopy" c) Malleable. The model is a composition of
which arches over the expectation planes. Though designed functions drawn from a given family (e.g., GMDH
for a global optimization a'g(.nthm, this method could also polynomials); thus, the form is very flexible and is
be employed directly foL- imation. capable of growing in large chunks. Thereby, the

short-term optimality of greedy growth is extended
A wide range of algorithms for automatically inducing more to the medium-term. Malleable techniques

models from sample data are emerging in this rapidly are capable of building new candida-te features when
growir; field. (A sample of further promising methods lower-order versions of those features prove useful.
includes locally weighted regression (or loess; e.g.,
Cleveland and Devlin, 1988); stochastic models (Sacks, 4. General: The analyst provides little more than
Schiller and Welch, 1989); slicing inverse regression (Duan representative data, and the algorithm searches across
and Li, 1991); Fit-Short (an adaptive kernel method; Kozek model families (sets of basis functions) and perhaps
and Schuster, 1991), and composite models (Skeppstedt, even across error metrics. No implementation of such
Ljung and Millnert, 1992).) Most of the techniques have an ambitious method is known, though the Minimum
distinct strengths, especially in the (often implicit) Description Length (MDL) model selection criterion
assumptions made about the data, and in the requirements (Riscinen, 1978) and other recent means of complexity
made of (or opportunities available to) the user to direct the regulation (A. Barron, 1991; Faraway, 1991) may be
analysis. An environment that allowed a subset of these capable of judging between candidate models generated
(semi-) automatic methods to augment visual search (as by such a search procedure.
discussed below) should prove quite useful.

A further distinction can be made between closed
3. Induction Hierarchy techniques, for which the library of potential terms must be

specified by the analyst beforehand, and open methods,
To help classify the growing list of viable induction which effectively expand their libraries of potential terms as
methods, a hierarchy of induction is proposed, scaled by the the model grows. The former includes branch and bound
increasing degree to which modeling "decisions" are left to regression (e.g., Furnival and Wilson, 1974), which could
the computer: be labelled a "reverse erodible plastic method" optimal for its

closed library of polynomial terms. Along with techaiiques
1) Heureka: The analyst specifies the entire model. (Like in the GMDH family, CART provides an example of open

the legend of Athena from Zeus, it springs forth fu'!y (plastic) modelling. During synthesis of its decision tree,
formed from one's head -- terms, weights, and all.) additional bifurcations are -,3nsidered for each impure leaf

(i.e., each currently terminal node with more than one class
2) Knobby: One specifies the structure (e.g., inputs and or estimation value held within it.) As the tree grows (or is

terms) and the computer searches for parameter settings pruned in a later simplifying stage), the list of input space
(weights) wl:cX, best fit the data. This is the most partitions (the "terms" of the model) changes, so the CART
common categoiy of models, including LR and ANNs. term library can be considered "open". 2

3) Plastic: The analyst specifies the model class 4. Visualization Helps
(polynomials, for example) and initiates a search for
both structure and weights. This class can be further The trend in the above hierarchy is to turn over more and
subdivided into: more of the modelling process to our untiring, precise,

obedient 3 , blindingly fast (but dimwitted) assistant, the
a) Stretchable. The structure can grow in only one computer. But what does our trusty aide perceive"

dimension (say, the order of a polynomial in one Typical algorithms key on summary statistics of the data
variable); so, the decision concerns the best cutoff being modelled. However, Aoscomb (1973) showed that, in
point. Further examples include determining the terms of LR error statistics, data sequences as diverse as
number of useful terms of a power series
expansion, or the frequencies of a low-pass spectral 2 With univariate thresholds (the CART default), potential
approximation. cuts are a subset of the power set of threshold functions of

the training data, and so are a logd set. Though the greedyb) AccretablelErodible. The structure can grow and/or accretion and erosion algorithm of CART only considers a
diminish in several dimensions. Ex: Adaptive fraction of the O(Nk) potential terms for N cases of k
regression techniques, such as "greedy" forward variables, the number is large enough to be effectively Q9n.
term selection (add that term which most helps), 3
greedy reverse term removal (cut the term least I ally hate this darn machine;
aiding the model), and their step-wise combination. I wish that they would sell it.It never does quite what I mean, but only what I tell it."
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those of Figure 2 can appear identical. Surprisingly, those (unexpected) simplicity of the relationship, marred only by
graphs have the same mean squared error (MSE=1.25), an outlier -- the cause of which was quickly tracked down.

coefficient of determination (R2 =.67), and linear fit (y = .5x This paper, in essence, merely attempts to outline a formal

+ 3). Only for Yl is the LR assumption of gaussian errors joining of such automatic and interactive tools.

about a line upheld; the data of Y2 are instead quadratic, an
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outlier upsets the trend of Y3, and an influential (non- Figure 2: Anscomb's Quartet
outlying) case drives the estimator for Y4. A "stretchable"
inductive method could correctly specify the quadratic 5. Projection Pursuit
structure of Y2, but case analysis (e.g., Belsley, Kuh, and
Welsh, 1980) is required to discern problems with the latter In high dimensions, visual strategies include plot matrices, a
two -- something not yet built into most induction methods. "grand tour" (Asimov, 1985), and projection pursuit (PP).

Though a plot matrix, or pairwise arrangement of
Of course, visual representation of low-dimensional scatterplots, is only a set of two-dimensional views of the

problems (as in the Figure), make the situation clear in a data, this is often sufficient to provide useful insight. Also,
way statistical summaries cannot, and suggest remedies that graphic programs are increasingly enforcing case links
might otherwise go unnoticed. An instructive experience for between graphs (through different symbols and colors,
this author occured (years ago) on a data set eventually brushing, etc.; e.g., Cleveland and McGill, 1988) --
revealed to be similar to that of Y3, but with the outlier (due extending the effective dimension of perception. The grand
to a recording error) on one end. An otherwise powerful tour strategy presents the analyst with a single 2- or 3-
inductive algorithm chose a high-order model to fit the data, dimensional projection of the data where the view
having no explicit ability to flag or down-weight the (projection matrix) smoothly transitions in such a way that
outlying case. However, the algorithm was able to winnow the analyst is eventually presented with "all sides" of the
away a mass of variables confusing the picture and identify point cloud. Interesting views are meant to be saved for
the one essential data feature. Plotting then revealed the later analysis, or to cause the tour to be postponed for local

exploration.
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In high dimensions, a grand tour can take overlong, so it beginning) analysts in perceiving structure in noisy data --
is useful to have the ccmputer score candidate views (noting in the low dimensions of human experience. Of course, in
low entropy, high clustering, unusual skewness or Fisher high-dimensional applications, where the structure of the
information, etc.), and present, or steer the tour through, underlying "data generating machinery" is unclear, automated
only the best views. This is projection pursuit, and such a induction algorithms are quite useful. Often through
PP tour has recently been implemented in the workstation nothing more than trial and error, they can construct
package, XGobi (Swayne, Cook, and Buja, 1991). The PP compositions of small functions into empirical
index could also include factors such as interpretability approximations of a function interpolating (and smoothing)
(Morton, 1989) complexity, or novelty -- the choice might the training data. However, automated methods must handle
depend critically on the application. In Figure 3, a 2-d point a host of data hazards, including influential and outlying
cloud of two classes is plotted, surrounded by some cases, and collinear and redundant variables. Most
(histogram) projections of the data. The index (to be importantly, empirical methods must avoid overfit; that is,
minimized over 1800 of 0) is the #misclassifications from the tendency to fit the noise, as well as the signal, in the
the best 0 threshold for that view. data.4 Also, the typical summary statistics monitored by

XX H(135) --6 most algorithms do not always reveal key data relations.

x
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0 000XX OO xOOX X0

xxooo 0 0 O
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tl(90)=S X x 0 x X
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Figure 3: 1-Dimensional Views of 2-d Data

Note that the search space wraps around (0=180+0),
causing a redundancy which could save search time if
exploited (though its complexity has apparently prevented
that, thus far). For example, when reducing 3-d data to a 1-
or 2-d view, the projection axis can be represented as a point ."
on a unit hemisphere, as in Figures 4a and 4b, where the ,........ ."score" for a location is represented by its distance from the
center of the sphere. However, for search continuity, the
most distant points on the base of the dome should actually Figures 4a,b: 3-Dimensional PP Surface Views
be connected (a 3-d wrap-around). As indicated by the
Figures, projection spaces can be quite rough; they also can Fortunately, sophisticated interactive graphic
vary in shape widely due to changes in the projection index environments are becoming more widespread. A system is
(the score function) (e.g., Cook, Buja and Cabrera, these envisioned wherein such an environment would form the
proceedings). Therefore, a sophisticated global (not local) base, and would be augmented by a variety of automated
search is required to discover and rank the projections to be algorithms of two forms: structure exploration (like PP)
presented to the analyst.

6. Summary 4Performance is monotonic with activity; that is, everything
improves the training accuracy of the model. One must relyAutomated induction and projection pursuit algorithms, on other data (e.g., GMDH "checking set"), training subsets

despite their variety, are not (yet?) competitive with (even (cross-validation), or a -omplexity penalty (such as MDL).
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and structure removal (i.e., approximation). That is, in the Regression: An Approach to Regression Analysis by
background 5 of one's graphical manipulations, the computer Local Fitting, J. Amer. Stat. Assoc. 83 #403: 596-610.
could continually search for, and queue up, a list of low- Cleveland, W.S., M.E. McGill (1988). Dynamic Graphics
dimensional views of the data which score well by any of a for Statistics. Wadsworth, Inc., CA.
number of PP criteria. Then, when a significant bump or Duan, N., K.C. Li (1991). Slicing Regression: A Link-
trend (or blip or ...) is found, a variety of approximative Free Regression Method, Ann. Stat. 19 no. 2: 505-530.
methods could be employed (kernels, polynomials, etc.) to Elder, J.F. IV (1985). User's Manual: ASPN: Algorithm
fit it. The model could then be removed from the data for Synthesis of Polynomial Networks (4th Ed., 1988).
(leaving a residual, and requiring an update of all extant Barron Associates Inc., Stanardsville, Virginia.
views) and the process repeated until only noise appears to Elder, J.F. IV (1990). Feature Elimination Using 'High-
remain. (To avoid overfit, it is anticipated that a complexity Order Correlation, Proc. Aerospace Applications of
budget even more strict than usual must be adhered to, Artificial Intelligence, Dayton, OH, Oct. 29-31 p. 65-72.
because of the increased approximation flexibility.) Elder, J.F. IV (1992). A Novel Efficient Global Search

Algorithm for Multiple Dimensions, Proc. 2 4 1h
In this manner, perhaps the muddled view the computer Symposium on the Interface: Computing Science and

has of high dimensions can be enough to lead us "walking Statistics, College Station, Texas, March 18-21.
pattern recognizers" to the select low dimensional views in Faraway, J.J. (1991). On the Cost of Data Analysis, Tech.
which all is made clear. Rpt. 199, Dept. Statistics, Univ. Michigan, Ann Arbor.
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Abstract formance was compared based on overall probability
of misclassification. A review of a 'best' linear dis-

Discriminant procedures are often used to classify criminant function is described by Marks and Dunn
data based on observed characteristics of the response (1974). Both the quadratic and best linear discrimi-
variables. This paper discusses the validation tech- nant function are Fisher's linear function if covariance
niques in the use of discriminant function approach. matrices are equal.
Numerical example is used to illustrate its application. Seber (1984) discussed many simulation studies to

make comparison between linear discriminant func-

1 Introduction tion and quadratic discriminant function approach.
The problem with quadratic discriminant function is

Numerous classification procedures exist in statisti- that the large numbers of parameters to be estimated

cal literature. For example, some of the classifica- leads to unstable estimates. Dillon (1979) reviewed

tion procedures include likelihood ratio test [Ander- the performance of the linear discriminant function in
son (1958)], information theory [Kuilback (1959)] and situations where the assumption of equality of covari-

Bayesian techniques [Geisser (1964 & 1965)]. How- ance matrices is violated. He also discussed a proce-

ever, in this paper, we focus our attention to discrim- dure, in which the total sample is split into two sub-
inant function approach suggested by Fisher (1936), samples: one subsample is used to construct the dis-

for classifying data based on various characteristics criminant function and the other subsample is used

of the response variable. The choice of method for for validation. The method was evaluated based on

classifying the observation depend on the nature of misdassification error rates. The assessment of pre-
the data. If the data are multivariate normal and dictive accuracy in discriminant analysis was further
the covariance matrices are not too far apart, then discussed by Huberty, et. al (1987). He examined
the linear discriminant function approach can be used. the estimation technique of these error rates: optimal,

However, if the covariance matrices differ unduly, the actual and expected actual error rates. Monte Carlo

quadratic discriminant function can be used. Marks sampling was used to compare the performance of var-

and Dunn (1974) discussed the performance of these ious methods described by Huberty, et. al (1987).
discriminant functions (viz., Fisher's linear discrim- The purpose of the present study is to examine the
inant function, the best linear discriminant function application of discriminant analysis procedure to med-
and quadratic discriminant function) in classifying ob- ical data and evaluate the performance based on clas-
servations into two groups when covariance matrices sification error rates. In section 2, the discriminant
are unequal, based on Monte Carlo studies. The per- function approach to classify observations into various
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groups is reviewed, the score used to classify a obser- probability density function of x if I E Gi. The prob-
vation is described, and the performance statistics are ability of misclassifying an observation of Gi is
defined. In Section 3, the medical data are described
to illustrate the application. The statistics used in ex- P(i) = • P(j/i) (2)
plaining the discriminant function approach based on j=ljoi
misclassification rates are discussed. Finally, in Sec-
tion 4, the importance of the various forms of training where
samples based on simulation studies is discussed. P(j/i) =Ij f(X_)d.,

and {R 1 , R 2 ,... , R.} is a partition of the sample space
2 A Brief Review of Discriminant R such that a member of population assign to Gi if

Procedure K_
The total probability of misclassification is

The discriminant analysis is used to develop a rule for = irP(i). The optimum assignment rule based
classifying an observation (viz., status of disease) into on minimizing the misclassification probability is dis-
one of G groups (i.g., well, moderate and severe, etc.) cussed by Seber (1984). A test of multivariate of
on the basis of p measured variables using a training normality and equal covariance matrices is given
sample with n cases. Suppose we have ni observations by Hawkins (1981). When the covariance matrices
_(i = 1,2,... ,g,j = 1, 2,..., ni) from multivariate are unequal, the quadratic discriminant function ap-
normal distribution with 4. and covariance matrix '. proach should be used.
Let

g

S = - 1)S1/n - g, 3 Application

where The data for this study include 450 cases, classified as
types IIa, Ilb, and IV called hyperlipoproteinemias,

n= ni and normal. The following variables axe measured
for each individual case: high-density lipoprotein, to-

and_ _ tal cholesterol, triglycerides, low-density lipoprotein,
if.- _ ) . and pseudocholinesterase. BMDP7M computer pro-ni - 1 gramme is used to randomly splitting the sample and

be the pooled estimate of E. The linear discriminant cross-validating the classification function. A series

function is given by of simulated training samples based on sample size
of 10, 20, 50, 60, 70, and 80 percent of the total

-'(s 1- sample axe obtained to investigate the performance
) 2-1 )of linear discriminant function. 40 training samples

are generated for each set of combinations. Let
A detailed description of assigning observations to var- be tenesated por tion of correct La tio
ious groups are discussed in Seber (1984). be the estimated proportion of correct classification

based on 40 training samples generated for each in-

dividual combination. Table 3.1 presents the results
Probability of Misclassification of estimated proportion of correct classification based

Let iri be the proportion of population in group Gi(i = on cross-validation over the held-out sample.

1,2,...,g) such that E!=_ 7ri = 1. Let fi(x) be the
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Table 3.1. Estimated Proportion of 3. Fisher, R. A. (1936). The use of multiple measure-
Correct Classification. ments in taxonomic problems. Annals of Eugen-

ics, 7, p. 179-188.
Percentage of 1 Standard

Training Sample • Deviation of p 4. Geisser, S. (1964). Posterior odds for multivari-

10 0.7444 0.0689 ate normal classification. Journal of the Royal

20 0.7631 0.0672 Statistical Society, Series B, 26, p. 69-76.

30 0.7701 0.0666 5. Geisser, S. (1965). Bayesian estimation in multi-
40 0.7856 0.0654 variate analysis. Annals of Mathematical Statis-
50 0.7948 0.0638 tics, 36, p. 150-159.
60 0.7967 0.0636
70 0.7989 0.0634 6. Hawkins, D. M. (1981). A new test for multi-
80 0.8035 0.0629 variate normality and homoscedasticity. Tech-

nometrics, 23, p. 105-110.

Concluding Remarks 7. Huberty, C. J., Wisenbaker, J. M., and Smith,

J. C. (1987). Assessing predictive accuracy inJain et. al (1983) used the classification procedure to discriminant analysis. Multivariate Behavioral

classify hyperlipoproteinimias on the basis of the con- Research, 22, p. 307-329.

centrations of cholesterol, triglycerides, and pseudo-

cholinesterase, etc. Identifying the significance and in- 8. Jain, R. K., Kutty, K. M., Huang, S., and Kean,
dependence of various patients characteristics related K. (1983). Pseudo-cholinesterase/high- density
to disease-process is vital. This paper examined how lipoprotein cholesterol ratio in serum of normal
large the training sample should be to ensure that persons and of Hyperlipoproteinemics. Clinical
the discriminant function approach is applicable. Ta- Chemistry, 29, p. 1031-1033.
ble 3.1 indicates that the estimate of proportion of
correct classification stabilizes as the sample size in- t Kullback, S. (1959). Information Theory and
creases. It seems that splitting sample 50-50 would Statistics. Wiley.
give the desirable results. However, further research 10. Marks, S., and Dunn, 0. J. (1974). Discriminant
work for different sets of medical data is under inves- functions when covariance matrices are unequal.
tigation to set some sort of guidelines in choosing the Journal of the American Statistical Association,
training sample. 69, p. 555-559.
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1. Introduction has been selected: X1, ,Xk (k < n). The selection of
the final n - k points is based upon the solution to the

Data collection methods are quickly outstripping the constrained optimization problem: [ref Sydarovski]
ability of current computer analysis and visualization
routines. In addition to limitations in processing ca- Minimize: n - k
pabilities, the user is obviously being overwelmed with max
information. subject to: Z [Var(Zo - Z)) _< c

Recent advances in medical data collection have pro- where e is the maximum allowable estimation error
vided users with vast amount of data in the form of CAT, variance across the surface composed of the points:
MRI, and PET scans. Satellite image analysis has be- (X,... , z,, t1 , . . .',itnk). Note that the dependence of
come more important with the need for treaty verifi- the estimation variance on the number of samples n is
cation and the increased role of third world nations in explicitly included here.
global politics. The technological breakthroughs in rapid A number of techniques can be employed to determine
prototyping coupled with the expanding capabilities of the optimal set of additional points t 1, ... , t,-k includ-
computer-aided design tools and data collection meth- ing exhaustive search or branch and bound but generally
ods have given the design engineer the capability to go at a high computational price. Alternatively, methods
from concept to production in a matter of weeks, such as sequential inclusion suggested by Szidarovsky

However, all of these advances have one problem in (1983), while sub-optimal, provide an attractive compro-
common: vast amounts of data that needs to be re- mise. However, for the size of the data set investigated
duced for analysis with limited loss of accuracy. The here (N > 71,000), this is still computationally inten-
problem is not one of data compression, but rather data sive. A simplification of this method has been employed
reduction: removal of selected data points from the orig- that adds points where the largest immediate reduction
inal data set while preserving the integrity of the data. of the estimation error variance can be achieved.
Current data compression methods, while reducing the The data reduction approach outlined here accounts
amount of data, in terms of total bytes, are inherently for local redundancies in the data, and specifically char-
lossy. This is acceptable when only the visual charac- acterizes those redundancies with a spatial variograrn
teristics are important, but when dealing with medical function:
images or computer-aided design environments, this loss
of information and accuracy is not acceptable. 7 (hj) = 2Var{Z(xi) -

2. Approach where hii is the vector distance between the points
xi = (Xi,Yi) and xj = (Xi,Yj) , h0j is the distance

It is desired to represent the surface S with a reduced between the point to be estimated, zo, and the known
number of points such that the resulting mean squared point, zj, and Var(.) is the statistical variance. For the
error associated with the new surface can be controlled applications to be discussed here (medical and satellite
by the analyst. Let X1, ... -, XN denote a complete set of imaging), the value zi will represent the two-dimensional
points available to describe the surface S C 7IZ3. Assume location of a particular point and Zi = z(zi) will repre-
that we wish to describe this surface with a maximum sent the grey-scale value at that location; extension to
of n < N points and that an initial subset of points three-dimensions is straight forward.

This work was performed under the sponsorship of Armstrong It is desired to represent to estimate the surface Z0
Laboratory, Human Engineering Division, Wright-Patterson AFB, at location (Xo, Yo) using an optimal linear predictor of
OH 45433 the form: Zo = = wiZi. Given an estimate for the
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correlation structure of the image and a sample from The spherical model is defined by three parameters:
the original surface, the best linear unbiased prediction a, C, and Co. The first parameter, a, is refered to as the
of the complete surface is found by the simultaneously range and is used to determine the range of influence
solving the set of linear equations: or neighborhood. The third parameter, Co, is known as

the nugget effect, while the second parameter, C, is used
= A-l' in conjunction with Co to determine the sill, (C + Co).

where: The parameter k is a scaling factor to account for any

= ,, a 2 , w1, w2,.... , Wn}I geometric anisotropy that may be present.

[3 = {1, Xo, Yo, y(hio), 7 (h 20), ..... y(hno)IT 2.2. Selection of Minimal Sample Set

and: Two methods for minimization were developed. The

0 0 0 1 1 •.. 1 first takes advantage of the lattice structure of the data

0 0 0 X1  X2 ... X, to minimize the computational time. The second method

0 0 0 Y, Y2 ... Yn is general in nature and can be applied to any mulidis-

A - 1 X, Y, 7 (h 1 1) 7(h12 ) "- (hn) tributed data set. Both methods are based upon achiev-

1 X2  Y2  y(h21 ) 7(h 22) -" 7 (h2n) ing an estimation variance less than a given bound using
a minimal number of observation points.

1 Xn Y,, -y(ha 1) 7(h. 2 ) ""(hnn) 2.2..1 Lattice Data

In general, once the variogram is known, the variance
The best estimate of the surface at point (Xo, y:) is then of the estimation error at a point is a function only the
given by: relative distance and location of the known points in the

Zo = WIZ 1 + W2 Z 2 + W3 Z 3 + ... -+- WnZn neighborhood to the point to be estimated. If a 'pattern'

of points could be chosen such that the largest variance is
and the associated variance of the error between the es- just within the maximum allowed (c) then that pattern
timated value ZO and the true value Z is: of points would constitute the optimal (minimal) data

n set.
Var(Zo - Z) = Z wiy(hio) + A + cx1Xo + C12YO When the original data has a lattice structure (as in

1=1 most graphic images) the pattern selection of the data

2.1. Variogram pattern is a matter of selecting a set of points such that
the maximum distance between any pair of neighboring

As mentioned previously, the method proposed de- points in the pattern is just less than that which pro-
pends heavily on characterizing the local redundancies duces the maximum error allowed variance. If the points

that exist in the surface. An estimate of the variogram are closer than this distance then the data set may not

function used to characterize these redundancies is found be minimal. If the points are farther apart than this dis-

by using weighted-least squares to fit a function to the te thn the maimum ariane critea won' be
tance then the maximum error variance criteria won't be

points: met.

INI This suggests that a rectangular pattern, due to ge-
7*(h) = - ZN[z(z + h)- z(x0)]2  ometric anisotropy, would produce an optimal minimal

l=1 data set and this observation was verified in the final

where INI is the number of pairs of data values at a application. A typical rectangular pattern is shown in

distance of h apart from one another, xi is the location Figure 1 where * is a known point in the data set and

of point i, xi + h is the location of a point at distance o represents points to be estimated. The location of the

h from i, and z(xi) and z(xi + h) are the values of the point with the largest estimation variance will be at the

quantity of interest at i and xi + h. From experience, point that is farthest from all known points. For a rect-

the spherical class of variogram models has been found angle this will be at the intersection of the diagonals.

to the most appropriate (and sufficiently robust) for the Therefore, only that point at the intersection of the

type of data analyzed. The general form of the spherical diagonals of the rectangular pattern needs to be con-
model: sidered to determine the maximum estimation variance

within that kriging area. The routine starts with an ini-J ( -a ) + Co if h < a tial sample of points chosen such that the distance be-
y(h) C + Co if h > a tween the center point and the corner points is an integer

0 if h = 0 value just less than the variogram range. The distance
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0 0 0 0 0 ... Table 1: Slice Statistics6`46.0 0 0 0
?w Figure Largest Percent

0 z 0 0 0 0 qO t Variance Reduction

0 0 0 o 0 0 2.a original data 0 0.0
2.b 42.9 50.0

0 0 0 0 0 000 2.c 50.2 87.36

0 0 0 0 0 00T 2.d 57.1 94.34

0 0 0 001
was introduced.

However, by using a rather simple, automatic partion-

Figure 1: Lattice Data Neighborhood Representation ing algorithm to first identify regions of the image where
isotropic behavior was clearly present, and then mini-
mizing each partition independently, a further reduction

is then iteratively reduced until the estimation variance was always possible. This further reduction was depen-

is just less than the maximum allowed variance set by dent on the size of the 'interesting partition' relative to
the background; as the background began to dominate

the user. the image, data reduction increased proportionately.

3. Application and Results 4. Conclusions

Magnetic Resonance Image (MRI) scans were used to In conclusion, this paper develops and demonstrates
demonstrate the applicability of the method. The scans the application of spatial statistics for the determina-
are comprised of several parallel planes of data in which tion appliction of s atattics rate detina
each plane, or slice, is 268 measurements, (pixels) wide complex surface. The degree of accuracy is controlled by
and 267 measurements, (pixels) long. Each measurement the user through the specification of a maximum allow-
is an intensity represented as a grey scale value between able error variance. Lossless data compress/reduction
0 and 255. For this application the pixel location in each a ble e o vrane. exsedata comressreduton
slice, row and column, are used as the coordinates of the is possible to whatever extent the user desires, however,

point and the grey scale value is used as the quantity of the required quality of the resulting image will obviously

interest at each point. be the final deciding factor.

Due to the nature of the data no global trend was For large data sets (more than 71,000 points) contain-

removed. It is important to note that, for this effort, the ing lattice data run times varied from 1 to 10 minutes.

background of each image (noise and possibly support Further refinements are in progress to automatically ac-

structure), which is normally filtered out by the display count for zonal anistotropic behaviour.

program, was considered to be known data in addition 5 References
to the scan data from the specific image area associated
with the brain. Table 1 summarizes the results for a Cressie, N. (1991), Statistics for Spatial Data, New
particular MRI slice. The analysis was duplicated on York, Wiley and Sons.
over 100 slices on three different subjects with similar
results. The magnitude of the data reduction indicated Carrera, J., F. Szidarovszy (1985), "Numerical Corn-
in Table 1 was extreme, in that typically much higher parison of Network Design Algorithms for Region-
reductions were seen. However, the slice presented here alized Variables," Applied Mathematics and Corn-
contained the most detail and was the most sensitive to putation, 16:189-202..
quality judgements. Gonzalez, R., R. Woods (1992), Digital Image Prccess-

Obviously the most important aspect of the image nzag, Reading, MA, Addison-Wesely.
is the area containing information regarding the tissue
density of the brain. It was noted previously that back- Szidarovszky, Ferenc (1983), "Multiobjective Network
ground noise and clutter that occurs during the MRI Design for Regionalized Variables," International
scan was also included in the results. This was done so Journal of Mining Engirevir, 1:331-42 (1983)
that there could be no possibility of bias in the mini-
mization procedure; no knowledge of the original image
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Figure 2: Original Image and Reductions of 50%, 87.4%,94.3%
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Abstract * 1Pi has n - i + I clusters of which n - i are the same
a~s n1 - i clusteors in 7P,_ . and the (n - i + 1 )Lh cluster

Assessing cluster structure indimensionls > 3 is dif- a 1-iCroesi P-I n h n-i+Ii lse
A - is formed by joining the remaining two clusters of

ficult. We propose to combine density estimation with Pi-I into one (i = 2, 3, ... , n).
the computation of the minimal spannining tree (MST)
on n iid observations to produce a plot encoding a lot of Hierarchical methods have certain advantages that
information in a two dimensional curve. The technique make them popular. Some of them are:
involves the recording of changes in the size of the MST
edges as the low density observations are filtered out. We * They describe the clustering structure of the data

will discuss: set without the need to prespecify the number of
clusters we must look for. Choosing the number of

"* The theoretical results that provide the motivaltion clusters can he then based on inspection of the hier-
for this approach. archy of partitions. Note, however, that inspecting

"* Interpretation of the plot. in various siniilated samn- the partitions is not a trivial task for large data sets
ples. in high dimcusions.

"* Questions of computational complexity. o Using the concept of reciprocal neighbors it is pos-
sible to form a full hierarchy in O(n 2 ) steps (see

"• Applications to marketing. [LMW84], pages 128-129). Partitional methods
need iterarive algorithms to produce a single par-

1. Introduction tition. Even worse, the work done to compute a
ranalysis is summarized partition in, say, three clusters cannot be generally

The main problem of cluster used in calculating a partition in four or two clusters
in [MKB79], page 360: when using a partitional method.

Let z..z, be meas•uremrll.ts of 1 variables o(i Identifying clusters is often a subjective decision.
each of n objects which are believed to be heleroge- What some people may see as one cluster, some oth-
neous. Then the aim of cluster analysis is to group ers might consider as two or more. It is often a ques-
these objects into g honiogetia~oiis (:ta.'*s where y lion of how fine a partition we want to find, that de-
is also unknown (but usually aissuiled to be much termines the answer. This feature of the clustering
smaller than n). problem is best captured by hierarchical methods.

Several methods have been proposed to tackle thisproblem. Detailed listings are included in hooks and In higher dimensions, we can no longer rely on our nat-
problem. Detailers lstings a re i.,c[uved, iar] hooks a ural ability to spot cluster structure. Techniques, such
review papers such as, e.g., [Eve749, [Pi ar75], [Gor8w], as principal components, often implemented to choose
(Gor87], PJD881 and [TR901. Partitional methods, which interesting projections may also fail to alert us about
seek a partition of the sample that optimizes a cer- the possible existence of clusters. In this paper, we are
tain criterion, form one of the oldest groups of methods inaiiiv concerned with diagnostic tools which can play
(e.g. (FR67]). Iterative algorihmis inisi. he, used to hid thisroly aondeguid usin a(intertive t searchf cnplu
such optimal partitions (see. e.g., (.]1)88], page 96i and this role and guide us in an (interactive) search for clus-
[KR90], page 102). Al~erlmatively, hlierarchical iethods I.er st.ructure.use the observations to proiuce a seqrnece oh n partiod- F'or the reasons mentioned above, we will use a hier-
t hobservatio, (oftoen refered to as a hirparrh- of archical method, namely the single-link method. It is
partitions) with the properties: weill known that this method is closely connected to the

computation of minimal spanning trees. The approach

P ?I is the partition into n one-element clusters, to be taken is simple: We will rely on the longest edge of
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the minimal spanning tree and the way its length varies on the set {X1 X, . ., X")}.I Then M(P.) - M(P)
when we discard observations friom low-density regions. almost surely as u - oo.
We will therefore be using a hybrid method combining Is that., however, the solution to the clustering prob-
density estimation and hierarchical clustering analysis. len? Unfortnnately, Figure 3 shows that things can eas-

ily go wrong. Suppose that we contaminate the sample
2. Minimal spanning trees from the mixture of two uniforms in Figure 2 with some

The notion of minimal spanning trees formed by points additional observations from a bivariate normal. The re-
in Rd is quite common but we define it here for complete- suiting tree in Figure 3 fails to separate the two clusters
ness. by a large edge. In Figure 4 you can compare the box

plots from the uncontaminated and the contaminated
Definition 2..1 Given a graph G = (V, E) with vertices cas fn the contaminated ano ede stan as

case. IIn tile contaminated case, no edge stands up as
V and edges E: significantly larger than the others!
(1) a treeT = (VT, Er) is a subgraph of G. (i.e. V7r g V The problem we run into, is often called the chaining
and ET g E) which is connected and contains no cycles, problem. A few observations lying between the clusters
(2) a spanning tree is a tree for which 1/'I = can form a chain through which the MST joins the two
(3) a weight function is a function -u' : E - R.+, clusters without. having to use a long edge. It is really a
(4) the weight of a tree is u'(T) = ZE'E.:T w(c) and robustness problem.
(5) a minimal spanning tree of (G, u') is a tree TO
such that w(To) = minT w(T) where the minimum is Theorem 2..2 The gross-error breakdown point of the
taken over all spanning trees of G. sequence M(Pn) is 0 for all probability measures P

whose support is compact and disconnected.
The usefulness of the MST in identifying clusters can

best be realized through a couple of examples: In the Proof: For any E > 0, consider, instead of P, the
case of a uniform distribution (which has connected sup- measure Q, = (I-e)P+cR, where supp(R,) is compact,

port), the edges of the MST are all comparatively small connected and contains supp(P).

and about the same size (see Figure 1). In the case of a If Xi,X .  X,, - Q, then M(Q•,.) - M(QJ =

mixture of two uniforms with dis joint. supports. there is 0 and so Pr(A1(Q.,,J > 6) - 0 for all 6 > 0. But
one edge of the MST that, is quite larger I hani tIie others, A(P) > 0, so the breakdown point is 0. 0l

as can be seen in Figure 2.
How can we make this observation more precise? If a 3ý Dealing with Contamination

probability measure has a compact support with a finite The question now is what we can do to cope with this
number of connected components, then it makes sense to problem. The main idea comes from the observation
talk about the MST computed with vertices these com- that chains consist of points from low-density regions.
ponents. Unless the support is connected (one connected Were we to use only high-density points to construct
component only) the MST has at least one positive edge. our MST, we would avoid chaining! Suppose that P had
If we were to draw a sample from this distribution and a density f with respect to Lebesgue measure. Then, the
compute the MST of the observations we would observe conditional measure PIf ? 6 for some 6 > 0 has density:
the following:

fil(1_61
"* The edges of the tree within each connected comnpo- f := p(f > 6)

nent are small and go t.o 0 as n goes to x..

"So, instead of looking only at P (whose support may be* Edges joining observations f'roiui different. colpo-

nents are large and their lengths converge to the just barely connected, just as the support of Q, in the

distance of the corresponding components. previous theorem) we can look at Plf > 6 for various
values of 6 > 0. Let M(P, 6) be the length of the largest

Let us formulate this into a consistency result: edge of the MST computed on the connected components

Theorem 2_1 Let P be a Borel probabiiy easure of fA. Let XI, X. ..... X, - P and define M(Pn, 6) to
RdTwheosem 2..1t is compact ad B thel ro nnicted csren be the length of the largest edge of the MST computedR d whose support is com pact and has the connected ro rn i i e e.i: A x ) ý )ponents C =............Ck}. on the set {X1 : f(Xi) > 6).
LetS M(. b e lt of t g oI'h next st-ep is to understand the dependence of
Lei M(P) be the lengthcd on ahn ,. Cd m- A(P,,,b) ou A. Take the case of a unimodal densityLet X , X, .... fXe - P aod let -;(P-) tc I/i hCigth f . Then supp(fh) is going to be connected for all 6 > 0

the longest edge of any nitnimal slamnwny Irre( cowpultd 'P,, is i fir hinp,'ir:ll m,,,hre: ;L
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and so sup 6 M(P,6) = 0. We would then expect. Ihat max{d(A, 13) : .4 U B = S.(fn, b), .4 n B = 0}. So we
limn sup 6 M(P,,, 6) = 0. But how does NI(Pn, 6) change are led to the following:
with 6? Here is an answer:

Theorem 3..1 Assume that f6 has a compact and con- ALGORITHM:

nected support for all6 >0. If there zs a c>0 such that * A,,. := {X)}, Bn.1  , Mn(f,,61) :=.

V6 > 0, Vx,y E supp(fa), 3 a ball with radius at least
c 11 x-y 11 contained in both supp(f6) and in the ball c Fori=2 . n
with diameter zy, we have: Let dA,i := min{d(Xi,Xj), Xi E An,i- 1}.

ktogii v d13,, := min{d(Xi,,Xi ), Xi E Bn,i-I}.
Pr supM(Pn,,,)d< kd o ) d, := miu{d..,,,d,}).Pr 6 cdd 71 Assume: di = dA.i (the other case is symmetric).

as n - oo for all k > 2 where Wd is ihe volhewc of the If d, > AI,(f,, ,_ thel:
unit bal in Rd. • An,, := {.V,}, Ba,, :=A~,.,_U B,•._.

What the last theorem states is that. A(Pn, 6)d Ii1,St, * A,,(f,, bi) := di.
eventually, lie below the hyperbola K/h for a constant - if di = dA~i S Mn(fn,b•,-) < dB~i then:
K that depends on n but not on 6. Therefore, we know
what to expect when plotting jI(P,,,)d against 6 when * An. := A,.-I U {Xi}, B, = , I

f is unimodal. We explore this idea in the next section. * Aln(fa,6i) := Mn(f.,bi-I).
- If di = dA.i < dBi < Mn(fn,6bi- 1 ) then:

4. Diagnostic plots Calculate the MST on S,(fn,,i) from scratch
to obtain .4,,.,, 3,,,i and 1n(fn, 6i).

The conclusion we should keep from the previoUs SAC-

tion is the following: As long as we are adding observations from the same
mode, we can expicr niot to use the third case (which

"* In the case of a uniniodal densitly. the (Iiuantity is the only one requiring an 0(n 2 ) step), therefore com-
M(Pn,b)" decreases with b, roughly like l1/. plet.ing the computations in less than O(kn 2 ). Let us see

"* In the case of a multimodal density, we expect how the method works in a couple of examples:

M(Pn,6)d to increase as the modes become more 1. First, let us look at a unimodal density, e.g. the
separated when increasing 6. bivariate normal. Notice that the support of such

In practice, of course, f is not. known. Therefore. a density is not compact, but the support of f6 is

we will have to use a density estimator f,, ii.mead, compact for every 6 > 0. Figure 5 shows the MST

Since such an estimator will only be used to decide for the data while Figure 6 shows the cluster plot

whether f(Xi) _> 6, we are hoping thai (ihe p)revious (it = 200, k = :30).

conclusion will not be affected. Suppose we are KIV(VI As expexted. the cluster plot shows a curve going
X1 2, -. .., Xn iid - f. Let. fn be a uniformly coiisis- to 0 roughl) like a hyperbola K/6, attaininlg the

tent density estimator of f. Let AI(f,, 6) be the length maximum for small 6 which corresponds to no trun-
of the longest edge of the MST computed on the set. cation. This a typical unimodal pattern easily
{Xi : fn(Xi) > 6). Let 6i := fn(Xi), I < i < n. recognizable.
We choose a positive integer k << n and compute
M(fn,6(,)), where s := [n/(k + 1)] and I < i < k. 2. On the other hand, let us go back to the contamina-

Then, we plot: Mn (f,, 6(j ))d vs h(j for I < j < k and tion of the mixture of two uniforms. The MST corn-
call this a cluster plot. puted on the whole sample didn't help us in iden-

Before looking at some examples, we have to address lifying the cluster structure (see again Figure 3).
the complexity question. Obviously, we (-an coll lmte Ilowever. the ciuster plot (Figure 7) is very reveal-
one MST at a cost of O(n2). So a staighltforward 1se of ing. The length of the largest edge of the MST is in-

MST algorithms would require O(kii-) t.imv'. Ilowever, creasing with 6. The maximum is achieved around
the following suggestions may, in practice, reduce this 6 = 0.'20 which corresponds to a truncation of 0.8
cost. of the mass. After that we have a sudden drop, a

For simplicity, let us assume that. 61 > 6., > ... 6,,. It. pat.t.ern indicating that, at this level, a mode is lost

is easy to see that if Sn(fn,6i) := {.\j : fn,(.\') > 6bi and the conditional distribution PI1 > 6 becomes
then Mn(f,6,i) = d(A,,., Bnj) where d(A,,.j, B,,11) : unimodal with all edges of the MST around 0.
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5. Market Segmentation ing the plot pattern).

It is time now to try our diagnostic plots with sonie I solat~e the structure fromn con tami nation.
reai u..a. Some of thle most interesting applications The Important thing to note, is that this can be achieved
of cluster analysis come from marketing reserach (see wtotbigal oatal oka h aa
[Chu91] and [PS831). One particular problem the use wtotbigal oatal oka h aa

of a questionnaire to obtain informiationi about thle exis- Rfrne
tence of segments in a particular market. So, for exam- Rfrne
ple, a manufacturer may be interested in Identifying ho- [Chu9l] Gilbert A. Churchill, Jr. Marketing Re-
mogeneous groups (segments) amiong clients In order to search,. Mletodological Foundations. The Dry-
target them with produtct~s particularly suited For those deni Press, Chicago, fifth edition, 1991.
groups. Since the process of develop Ing such custoin-
made products is always costly. the iruaniifact tirer- iiiist [Eve74) BI. lEverit.t.. Cluster .Analysis. Hlalsted Press,
be convinced that such segmients (d0 exist.. The quiest ions New York, 1974.
asked in such a research will almost. certainly Iniclude le- (I-I. .FidmnadJ.Rbn Olsm
mographic characteristics (age, income, number of chli- invarian cIP ritedman and Jgroubing Onta some
dren etc) but other questions may also be included. For ijiariafth crierican frtgroupingdaa. As oirion
an informative Introduction to the subject., se[\Vii78]. 62119118 ofte 19rca6 ttitcl7so.ain

In our example, we will use dat~a collected on behalf of6219-7,16.
Fabhus, an Atlanta manufacturer of prefabricated holines [Gor8 11 A .D. Gordon. Classification. Chapmian arid
who saw their business decline inI the late 80's, after a flall, London, 1981.
booming start in the late 70's. The researchers miai led
questionnaires to old cuist~omers In an effort to reveal [Gor-87I A. 1). C;ordon. A review of hierarchical clas-
the customer profile as %vell as collect infori at ion about silicat io.1 unlo h oa ttsia o
preferences, previous hiousinig choices muid degi ee ol .-t- cring, Scrie-s .4, 150, Part 2:1 19-137, 1987.
isfaction. We will concent rati' on the( deniographic qnes- ia-5 J.AHrtgnUulm loihs.on
tions, namely: (1) Age group. (2) number of childre. lliril .1 A N'ilarfga New/w Yogorkh, 1975.
(3) sp~ouse's employment status, (A1) p~rofessioin andi (5)WiNeYok175
income bracket. [J D88] A. K. Jain and R. C. Dubes. Algorithms

Notice that the variables are not continutous lbut, as we for clustering data. Prentice Hall, Englewood
shall see, this does not affect thle diagnostic analysis we Cliffs, NJ, 1988.
will perform. As a first. attempt. to locate clusters (if they
exist) we tried to took at scatter plots, of pairs ofprincipal N R90] L. Kaufman and P. J. Rousseeuw. i'-idzng
components (PC). PC are often succesfuil inI idenutifyiuig Groups in Dauta. .John Wiley, New York. Iz'-
directilons on which cluster st ructire is apparent . Asyo 10W.]voni eat lanMrna. n ,'
can see, however, in Figm re S. this is not tIe caisi 1ere.1t 1111 NIW.] ulo WcLearwick. lai ii Morinauc and phen-
where little can be saidl by lookinig ;i tt I he' fi rt Iw P. Sieth.%h I Anarysisk Mulvruaees rtptn( nely

Let us attempt now to construct, a cluster- 1)101 (Fig- sis and Related Techniques for Large N1faitr-
ure 9). The cluster plot shows that the lenmgt~h of the ces. John Wiley &I S3ns, New York, 1984.
longest edge of thle NIST begins to Increase at about.
b = 0.0 1, reaching a mnaximumiat about b = 0.025. Since [M K 179] K V. Niardia, J. T. Kent, and J. MI. Bibby,.
6 = 0.01 already corresponds to a truncation of 0.45 of Afultivariate Analysis. Academic Press, Lon-
the mass, we decided to take a look at the dat~a after don, 1979.
that truncation (Figure 10). Thiis time the scatter plot
of the new PC reveals the existenice of two clusters, oi( [IPS831 Girish Punj and David W. Stewart. Cluster
substantially larger t han the other, analysis in) marketing research: Review and

Thus, we have succeeded in vistiuahiiig ulisiser sit ric- suiggesti'ons for appliIcations. Journal of Mfar-
ture in 5 dimensions where tIhe i non' t radlitional gnii't hod cugl?.EiI,2:1-I'8193
(PC) fiailed. The mnain use of thIe diaginostic plots Is, ;I.- 7~,10 )1%~'i ,in1. Issueps j!IId adjvan~ce~siis
in this last example, ititeract lye. Tlwie caiu gmthid ii., IIIrsac.Junlo aktn e

an efortto:search, 15:317-337, 1978.

.Decide whether cluster structure exists (by exarnini-
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Graphical and Formal Tests of Fit for Discrete Distributions
based on Probability Generating Functions

T.W. Epps
University of Virginia
Charlottesville, 22901

Abstract--The adequacy of a proba- the normal, the goodness of fit can be
bility model for discrete data may be judged by the near linearity of the plot,
assessed by comparing the empirical and the location and scale can be inferred
probability generating function, Pn(t), from the intercept and slope. When
with the p.g.f. of the model itself. dealing with discrete (usually count)
Both Pn(t) and its model counterpart, data, probability plots are rarely used
P0 (t;O), always exist and are continuous because the standard models are not
on [0,1] Graphs of P,(t) and P0(t;b) location-scale families. Most statist-

"o 1 icians just compare the sample and
against t, where 0 is a consistent theoretical histograms. This paper
estimate, afford quick indications of proposes using the empirical probability
fit. Discrepancies between the func- generating function (p.g.f.) as a tool
tions are easily interpreted, and their for visual analysis and describes also a
statistical significance can be roughly formal test based on the p.g.f.
assessed by comparing with approximate The p.g.f. corresponding to sample
confidence limits. xl,...,x. is Pn(t) = n-1-E ti, t E R; and

Formal test of fit can be based on that corresponding to model ffrO) is
various measures of distance between P. tht;O) E s tx.oO). P always exists on
and I PO. The . statistic 1v(,1 - [0,1] Eand its behavior there fully
Vn.fo[Pn(t)-Po(t;O)]'dt, which measures characterizes f. As the sample mean of
the net area between the functions, is i.i.d. random variables, P. has
often a simple function of the data, is straightforward properties: Pn -4 P0
asymptotically normal, and typically uniformly a.s. under H0 : P=Po, and
yields tests of much higher power than In'(Pn-Po) converges weakly on (0,1) to
the traditional omnibus test for discrete a mean-zero Gaussian process. Since Pn
data--i.e., Pearson's X2. and P0 are continuous, their graphs are

easily interpreted visually. In many
1. Introduction cases a plot of an appropriate trans-

The applied statistician often has to formation of Pa--denoted TPn--allows
choose an appropriate probability model parametor estimates to be inferred from
for a random, univariate sample. Before the graph. just as from probability
formally testing a specific null hypo- plots of continous distributions. Plots
thesis, an exploratory graphical analy- of Pn(t)-Po(t;ý) are also informative and
sis may be conducted to see whether th easily interpreted. Just as the chi-
rior belief merits further study. The sily terted.r Justzas the chm-
est-known such graphical method is thecom

probability plot. Applied to location- parison of frequency functions, there is
scale families of distributions, such as
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p.g.f.s. 1(0,1) - J [Pn(t)-P0(t;6)].dt tion. Figs. 3 and 4 illustrate for the
measures net distance between Pn(t) and Poisson and binomial data. Dotted linesm u one[0,1 It d ist e betwen asip le a are 2-o pointwise confidence limits
P0 on [0,1]. It is often a simple based on the asymptotic variance,function ofthe data, and its large- n-t.{Po(t2;O)-Po(t;O)2.[l+O. (t-l)2]}. The

sample distributions under Ho and Poisson t;lies ell wthin The
specific HI's are easily found. The Pisson plot lis well within the 2-ou
test based on 1(0,1) is usually much bounds except near t=0--again indicating
more powerful than the chi-squared test. too few zeroes-- while the binomial plotThme lies everywhere outside. The behavior
graphical and formal procedures. An of Pn-Po near t-1 is revealing also.
graphicaio asnd f ectiormal pc . A The kth derivative of the p.g.f. at t-1

corresponds to the kth factorial moment.

2. Graphs of p.g.f.s Since for both samples the means of the
Contrasts between Poisson and binomi- data and the fitted model agree, the

al models will illustrate how plots of slopes of the plots at t=1 are zero, and
the curvatures-- second derivatives--TPg and Po-Po can be used to assess indicate differences in dispersion. The

goodness of fit. The data are pseudo- linearity of the Poisson plot near t=l
r3a) and Binomial (10,.3) laws. The shows good agreement between variances,

irst method (epends lw Thedin while the concavity of the binomial plot
f tmto depends on finding a idctsudriprintransformation T such that TPo(t;O) is a indicates underdispersion.
simple function of t and unknown 0. For 3. A formal test of fit
the Poisson Ho--Po(t;O) = ezp[O(t-1)] -- anobvouschoce s Yo - lo(Po/(t1). Just as the Pearson chi-squared test
obvious choice is TIut a log (Po)/t is based on differences between observed
If the model is adequate, a plot of TPn an xetdfeuncetedsaivs. t should be roughly a horizontal ad expected frequencies, the dispari-

ties between empirical and theoretical
line. Since TPn(t) -, 2 as t-4, the plot p.g.f.s can be the basis of a formal
indicates the m.l. estimate of 0. The test of fit. The Kocherlakotas (1986)

asymptotic variance of TPn(t-X is have devised a quadratic-form test using
n.1(t-1%'.ezp[0(t-1)2] - }. Figs. the p.g.f. Here we briefly describe aand T(;t-2 showplo(ts j] of P forttest based on the integrated difference.
and 2. show plots of TPn for the Poisson Details are in Fpps(1gg2b).
and binomial samples, with pointwise
2-a confidence limits. The first plot 1(0,1) E fl [Pn(t)-Po(t;O)]'dt measures
(Poisson sample, 2 = 2.98) lies near the the net difference between p.g.f.s of
horizontal through t except near t--O. sample and fitted model on (0,1). This

)P(0) -fn(O the large value of interval is the natural choice, since
Since) = o the p.g.f. necessarily exists there and
TPn(0) 109 l[fn0)) for this sample fully characterizes the distribution.
indicates a paucity of zeroes relative For computation 1(0,1) can be expressed
to a Poisson with 0 = 2.98. One would
rightly conclude that the Poisson law as n-'.Z (Xj+1)-i - f Po(t;O).dt.
describes the data well except at the pEpps(1992b) gives expressions for the
origin. Fig. 2, on the other hand, integral term corresponding to several
shows that it does not adequately standard distributions--for the Poisson
represent the binomial data.

A plot of P.(t)-Po(t; ý) vs. t is also a it is 0-1[1-exp(-0)]. This can always
usefl Pnt)P0 t;0)als 9  be appoimae numerically via theuseful graphical tool. Although requir-

ing 0 to be estimated first, the plot is identity . Po(t;0).dt = ) (zxi1)1-fo(•,0).
more easily interpreted, and there is no Vn.I(0,1) is asymptotically normal under
need to find a simplifying transforma- H0 if 0 is c.a.n. and fo(.;O) is smooth
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in 0--conditions that hold when 0 is the (Fig. 7) tell an entirely different
story. Their values at t-0 show that

m.l.e. and fo is regular. Since 0 is there is excess frequency at the origin,
then asymptotically efficient, it and the convexity of Pn-Po near t-1
follows [Epps(1992a)] that the asymptot- indicates overdispersion. The test
ic variance, ,2[1(0,1)], equals statistic based on 1(0,1) has the value
a2[J1Pn(t).dt] - a2[JlPo(t;0).dt]. The first 3.22, indicating rejection at level .01.

term on the right can be expressed as References
n-111 Po(st;0).ds.dt - [f Po(t 0).dt]2
n-1. 1(X+1)-2] - E2[1Y+1)-]ý}.. The Epps, T.W. (1992a) On a property of
second? term can be approximated to min-variance estimators. Manuscript.
Op(n-1) by expanding Po(';O) about 0.For example, in the Poisson case the Epps, T.V. (1992b) An omnibus test forF o r xamp e , n th P oi so n c ase th ed iscrete d ist s , u sing p .g .f .s .
asymptotic variance of the second term Presented at ASA meetings, Boston.
is n-.' 0I{exp(-0)-0-[1-exp(-@)]2. Ho is
rejected at level a when 1(0,1)1/ Kocherlakota, S. and Kocherlakota, K.
o[I(O,1l0 exceeds 1-4(a/2). (1986) Goodness of fit tests for

Epps i1992b) presents Monte Carlo screte dists. Commun. in Statist.,
estimates of the test's type-I errors 15, 815-829.
for Poisson, positive Poisson, geome-
tric, and logseries Ho's. The test is
usually very accurate even with samples
as small as 50. Power comparisons among
many distributions in these families and
in binomial, positive-geometric, Neyman
Type-A, negative-binomial, Poisson-
logseries mix, and zeta families show
that the p.g.f. test essentially
dominates the chi-squared test. In some
cases, as logseries vs. zeta, the
chi-squared test is almost useless in
small samples, whereas the p.g.f. test
has respectable power.

4. An application
The graphical methods and the test

are used to assess whether the trans-
action rate of American Home Products
stock follows a Poisson distribution.
The number of transactions during 1:00-
1:30 p.m. Eastern time was recorded for
each of the 243 trading days of 1972.
The mean number is 2.235. Fig. 5 shows
the difference between the observed
relative frequencies and those of a
Poisson distribution with parameter
2.235, along with pointwise 2-o
confidence limits (open bars). This
gives no clear impression that the
Poisson model is inadequate, but the
plots of TPn (Fig. 6) and of Pn-Po
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F'•g. 1: Transformed p.g.f.. log(P(t)l/(t-1 ) Fiq. 2: Transformed p.g.f.. logLP.(t)1/(t-1)
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Fig. 5: Difference, fn(x)-fo(x). of sample & Poisson relative frequencies F"9. 6: Poissori-transformed p.q f.. loqLP.(t)]/(t-1)
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Optimal Allocation for Estimating the Product of Two Means

Janis P. Hardwick1  Quentin F. Stout 2

Statistics Department EECS Department
University of Michigan, Ann Arbor, MI 48109

Abstract and for Population 2, let

Suppose we wish to estimate the product of the means of y 0, if part j is defective;
two independent populations of Bernoulli random vari- = )= 1, if part j is ok,
ables, the parameters of which, themselves, are modeled
as independent beta random variables. Assume that the where the X's and Y's are mutually independent. Then
total sample size for the experiment is fixed, but that at each stage, M, of the experiment, one of the random
the number of experimental units observed from each variables XM or YM will be observed, where
population may be random. Using a decision theoretic
approach, we seek to minimize the Bayes risk that arises
from using a squared error loss function. Yi i.i.d. B(1, P2) i = 1,....

Although selecting the form of an optimal estimator
is critical to solving this problem, the real difficulty lies 0 = Pd * po
in determining an optimal strategy for sampling from and define the loss due to any estimate 2 N by the mean
the two populations. The problem of optimal estima-
tion reduces, therefore, to a problem of optimal allo- squared error of 0 and ON

cation which can be solved exactly using dynamic pro- L(O, ON) = (0 _ ON)2.
gramming. We utilize similar programming techniques
to evaluate exactly some of the other strategies that have We take a Bayesian approach to this problem, as-
been proposed for this problem. (The term exact is used suming that prior information of some sort is available
repeatedly here to stress the fact that none of the com- and may be modeled in the form of beta priors on p,
putational results depend on simulation studies.) and P2. Let ý(pl,P2), the prior joint density function on

(Pi,P2) E Q = (0, 1) x (0, 1), denote the product of the

1 Introduction independent beta random variables:

Suppose we have two populations of assembly parts that (2) Pi -" Be(ao, bo) and P2 "" Be(co, do).

we intend to use together in the manufacture of a prod- The Bayes risk, 7R, for an estimator 0N is defined as the
uct. Each population has a certain defect rate: expected loss of (O, N)

1 - P1 for Population 1
1 - P2 for Population 2. R (. ,ON) = E[L(O, ON)] = El[(O - iN)

2 ]

In order for the product to work - both parts must be where the expectation, EC, is taken with respect to the
defect free. We wish to obtain an estimate of the chance Bayesian model (2) in which (1) holds conditionally given
that both parts will work by doing some sampling from (piP2) E Q.
each population. It is assumed that the sample size for
this experiment is a fixed number, N, but that the num-
bers sampled from each population, ni from Population 2 Minimizing the Risk Function
1 and n2 from Population 2, may be random. Minimizing the Bayes risk may be tackled in two stages.

Now, for Population 1, let The first problem is to find the form of the optimal esti-

, imator and the second is to determine how many units to
Xi= , if part i is defective; i = 1,... sample from each population. Fortunately, these prob-

,ifpart iisok, lems are independent and the first is straightforward.

'Research supported in part by National Science Foundation Suppose that, at any time Al < N, we have observed
under grants DMS-8914328 and DMS-9157715. mn = # parts from Population 1 and

2 Reswcmch supported in part by National Science Founda-
tion/DARPA under grant CCR-9004727. r172 = # parts from Population 2.
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Then the posterior density function, tM on P, and P2, is asymptotic lower bounds for the Bayes risk of any pro-
the product of the individual posterior densities cedure, and then to seek ad hoc sampling rules that ei-

ther achieve or come close to achieving the lower bounds.
(P I i,J) ~Be(a,b); (P2 j k,I) "Be(c,d) Rekab (1989) takes this approach for estimating the

where i, j, k and 1 are sufficient statistics for P, and p2: product of two normal means using a quadratic loss func-
tion. Hardwick (1990) considers a similar approach in

i `X, = m,- i;k= E=12~ =
i = 1 j*m -i; k m2 Y = M2 - k, estimating the difference of two binomial means using a

and a = i+ao; b=j+bo; c= k+co; d= l+do. 'loss plus cost' formulation.
Here, we do not study the asymptotic behavior of sam-

Due to the independence of the prior distributions, it pling procedures, but instead determine exactly optimal
is easy to show that, for any M = 0,..., N, the opti- sequential rules (OS). To establish the potential advan-
mal, or Bayes, estimate of 0 is simply the product of the tages of using such rules, we define and compare three
posterior means: sub-optimal procedures - Equal Allocation (EA), Best

EN [PI * _[p2 a c Fixed Allocation (BF), and Local Sequential (LS).
a + b c + d' In Section 4, we compute the efficiency of each proce-

What remains to be determined, therefore, is how to dure for various sample sizes and parameter configura-

carry out sampling from the two populations. tions. The efficiency of a procedure 6 is defined as
(4) "'N ((, b )

3 Sampling Procedures (4) 6*
pig where, for a fully efficient sampling procedure, the ratio

A sampling procedure, 6, is a sequence of indicator func- in (4) is one.
tions, 6 -- (61,62, ... 6N), such that 3.1 Best Fixed Allocation Rules

1, if Population 1; When examining this problem, an obvious question that
6 0, if Population 2. arises is how well one fares when sampling from each

for i = 1, ... , N where 6i+I depends only on the infor- population equally. However, since equal allocation is a
mation available up until time i. For convenience, we special case of fixed allocation (in which nj and n2 must
denote partial sequences as be specified in advance) we consider the more general

problem here, and the former in Sections 4 and 5.
b(mI, M2) = (61, b21 ..., IMI+M2) For fixed allocation rules, 6(nj,n2 ), the risk function

takes on a simplified form. With nj and n2 no longer+random, the Bayes risk reduces to
where i 6= mi for any 0 < M1+ M2<:N.[pNRaN (Cdo (nm , tn2)) B Etp P2(1 - P2)]

lZN ~,6(i~n2 ) -(c 0 + do + n2 )

The Bayes risk of a procedure 6, denoted by RZN(C,6 ), E•[p2(1 - P()] E[pi(1 - p1)p2(1 - p2)]

is the expected loss when 6 is the sampling procedure (5) + V 2_p)] V _[__1_____P_(1-_2)

and 0 N the terminal estimate. The problem is to find b" (ao + bo + ni) (co + do + n2 )(ao + bo + nj)

such that which can be minimized directly since the moments of
.N(C,6 *) = min (R , 6), the prior distributions are constants. In this case, the

6 optimal sample sizes n1 and n2 are obtained by solving
One can show that, for any procedure 6, a quadratic equation.

N2(1P2) p~pi(1-Pi) ] Note that the third term on the right hand side of (5) is
P P2( + P2) P22 P1an order of magnitude smaller than either of the first two

(co + d0  n2 ) (ao + bo + nj)] terms. If we ignore this term and choose nj to minimize

(3) -E( [ Pl - P0)P2(0 -P2) 1 only the first order approximation of the risk function,
I(co + d0 + n2)(ao + bo + ni) the difference in the risks obtained is barely visible (on

r nthe order of 10-4). A very close approximation to the
where n1 = • l 6, and n2 = N-nj. However, locating best fixed allocation rule, then, is attained if we select
values of ni and n2 to minimize (3) is non-trivial, since nj such that
the sample sizes themselves are random variables. a0 + bo + nj - /p ( -

A standard approach to finding good or optimal sam- =
pling procedures for allocation problems is to locate c0 +do +n- VEEp~p2(1-p2)]
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3.2 Local Sequential Rules To improve still further, however, one needs not only

Because optimal sample sizes actually depend on the to utilize incoming data, but also to anticipate future

true parameter values, we can diminish the risk by using losses. Suppose, for example, that we are at stage M,
sequential sampling procedures that utilize information having observed (i, j, k, 1). Let A(i,j, k, 1) be the set of

in the data as it comes in. Thus, instead of selecting ni procedures, 6(i, j, k, l) = (6 I i, j, k, l), that are consistent
and n2 at the beginning of the trial, one can expect to with the data at stage M. It is useful to work with the

do better by continually re-estimating parameters and optimal interim risk function

basing sampling decisions on the most recent estimates. IM(i, j, k, 1) = min EfM[TZN(,6)],

One ad hoc approach to sequential sampling is to use 6E&(isj,k,l)

a local or myopic rule (LS). Here, we consider a local rule which is the minimum expected risk incurred if one were
in which we compare the expected risk associated with to start at stage M, given (i, j, k, 1), and proceed opti-
each sampling option given the data observed so far. For mally to stage N. Note that the optimal interim risk
example, suppose that at time M we have sampled m, at stage N is simply the posterior risk computed for
and m 2 from Populations 1 and 2 respectively; then the M = N:
posterior Bayes risk at M is

JZM (VM, 6(mi, M2 )) = EfM L] E'M [p2(l - P2)] IN(i'j, k, 1) = lZN (EN, 6(i,j, k,l)).
(co + do + M2 ) If we take the next observation from Population 1 and

E•M IP•] ECM [P1 (1 -- P)] then proceed optimally to the end of the experiment, at+ (a2 + b0 + in1 ) stage M + 1 we will incur a conditional expected interim
E ao 1 p I)M ( P2)]risk ofE' f [PI (I1 - Pl )] E-'- [P2( 1 - P2)]

(CO + do + m 2 )(aO + bo•+•mi) E m[IM+'(i,j, k,l) 1 bM+I = 0] -

The expected risk if we sample next from Population 1 EIM[Pi]IM+i(i+ 1,j,k,l)+
and then stop is E M[1I -pi] M+l(i, J + 1, k, 1).

lZM+ 1 ('M, b(mi + 1, M 2 )), Similarly the conditional expected interim risk if the next

and if we sample next from Population 2 and then stop, observation is from Population 2 is
we expect E(M[IM+l(i,j,k,1) 1 =M+I = 1] -

lZM+I (ýM, 6 (m1,m2 + 1)). ECM[P 2 IM+I(i,j,k + 1,l) +
The myopic rule indicates that we sample from Popula- E"'[1 - P2] IM+1(i,j, k, 1 + 1)
tion 1 if

lZM~i (ýI, MI + 1, m2)) < 7ZM+i (ýM, (MI, M2+1)). Interim risk obeys the recursive optimality principleIM+ ((M, jm k, 1, =n) mi (Et+ (-M [ImM m'ijk+l)). +1= ]

The computations necessary to define the LS rule are IN(i,j,k,l) = min{E NM[IM+l(i,j,k,l) I 6 M+i = 0],
straightforward, but determining the properties of the (6) EfM[IM+l(i,j,k,l) 1 6 M+1 = 1]}
rule is more complicated. To obtain the Bayes risk (or This optimality principle is the heart of the dynamic
other summary characteristics) of the LS procedure, it pro ptiming proach f s tertiof the dynamilis necessary to keep track of what can happen at each programming approach for determiuning the optimal rule,

working from the end of the experiment towards the be-stage. However, instead of following the sampling pro-cess forward in time, as one does in a simulation study, ginning. Once the optimal interim risk has been deter-
cessforard n tmeas oe des i a imuatio stdy, mined for all possible observations at stage M + 1, it canwe record what happens beginning from the last stage thnedetermine fo r observations at stage M b us-

and work backwards toward the first. This technique is then be determined for observations at stage M by us-

known as backward induction; and, while one rarely sees ing (7). If at stage M we have observed (i, j, k, 1), then

it used to evaluate allocation rules, similar approaches the optimal population choice for the next observation is

have been taken in Berry and Eick (1987) and Hardwick the one which attains the minimum in (7), randomizing

and Stout (1990). in the case of ties.

3.3 Optimal Rules 4 Examples and Heuristics

One expects the LS rule to improve on fixed allocation Often, prior distributions utilized in Bayesian decision
rules because information about study parameters accu- problems tend to be chosen more for their mathematical
mulates and is put to use as the experiment progresses. tractability than for their inherent reflection of beliefs
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about design parameters. In this problem, however, one Sample Size Efficiency (Risk Ratios)
finds that a wide variety of perspectives can be repre- (% on Pop 1)
sented by judicious selection among the beta priors at OS LS BF EA
our disposal. N = 20 1.000 1.000 0.927 0.792

Here we examine four different parameter configura- (10%) (10%) (00%) (50%)
tions. These examples are intended to illustrate not only N = 50 1.000 1.000 0.937 0.882
how prior configurations may be used to characterize pre- (28%) (29%) (30%) (50%)
vailing experience, but also how different prior configu- N = 100 1.000 1.00 0.930 0.917
rations can affect the sampling schemes discussed in 3. (40%) (40%) (42%) (50%)

The first example is relevant when we wish to empha-
size differing degrees of faith in our prior knowled,--. In Table 1: P1 " Be(20, 10) and P2 "" Be(2, 1)
such cases, for example, we might have EVr ' = E d ITab1,

but increase proportionately the values of parame-
ters for the distribution we believe we know mt,'e about. Sample Size Efficiency (Risk Ratios)
The effect of such modeling is that the optimal sampling (% on Pop 1)
rule will sample more often from the population with the oS LS BF EA
smaller initial parameters. N = 20 1.000 0.999 0.927 0.862

Take the case depicted in Table 1, where (74%) (74%) (67%) (50%)

p1 - Be(20, 10) and P2 - Be(2, 1). N = 50 1.000 1.000 0.906 0.846
(70%) (71%) (65%) (50%)

The mean for each distribution is 2, but we have less N = 100 1.000 1.000 0.898 0.837
3,

faith in the accuracy of the prior information for P2 than (70%) (70%) (64%) (50%)
for Pl. While the sampling scheme reflects this, one can
see that, as the total sample size increases, the propor- Table 2: pi - Be(1,2) and P2 - Be(2, 1)
tions sampled from the two populations approach each
other. distribution where the probability that the process is out

Next, consider the case in which P, -" Be(l, 2) and of tolerance is ten times greater than the probability that
P2 - Be(2, 1). In this parameter configuration, one it is in tolerance. After only a couple of observations we
might expect the EA rule to be nearly optimal, since should be able to determine, with high probability, which
with ao + b0 = co + do and EV[p 1] = 1 - EV[p 2], the state we have encountered. From that point on, since
distributions are mirror images of one another. As is p2 -" Be(l, 1), we know that we should sample more
evident from the Table 2, however, this is not the case. from the population with the smaller expected mean.
On average, the optimal rule samples approximately 70% Given the circumstances, the fact that the information
from Population 1, and the EA rule turns out to be only in the prior with the small parameters is dominated so
about 85% efficient. This observation leads to a second quickly by the data is precisely what we expect.
heuristic regarding sample size selection: if the prior in-
formation indicates that one mean is less than the other 5 Conclusions
(all else being equal), an optimal rule will tend to sam-
ple more from the population with the lower expected In writing this paper we were working towards two goals.
mean. The first was to solve a fairly straightforward nonlinear

Our last two examples, Table 3 (in which a0 = estimation problem, and the second was to acquaint the
0.1,b 0 = 0.01,co = 1,do = 1) and Table 4 (in which reader with certain useful, but relatively underutilized,
a0 = 0.01,b 0 = 0.1,c 0 = 1,d0 = 1) may appear at first computational techniques.
to be pathological since the small values of ao and b0 in- After reducing the statistical decision problem to one
dicate that very little information is known in advance, of optimal allocation, we considered four classes of rules
Suppose, however, that the first of the two batches of that could be used to address the problem.
parts under consideration comes from a manufacturing
process that is either in tolerance (working) or out of l OS = Optimal sequential rule - defined recursively;
tolerance (not working). In such a case, it is the third located and evaluated via dynamic programming.
moment (shape) of the distribution that is of interest * LS = Local sequential rule - an ad hoc myopic strat-
rather than the first two moments (center and spread). egy which can be located directly (at each stage),
In the case where Pi -" Be(0.1, 0.01), we face a u-shaped but which is evaluated using backward induction.
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Sample Size Efficiency (Risk Ratios) of the computational technique of backward induction.(% on Pop 1) For many years, statisticians have known that, in the-

OS LS BF EA ory, backward induction serves as a useful means for

N = 20 1.000 0.998 0.917 0.626 computing solutions to sequential allocation problems.

(16%) (15%) (12%) (50%) For example, in discrete state space allocation problems,

N = 50 1.000 0.997 0.892 0.583 one can often express the optimal solution via a set of re-

(15%) (14%) (12%) (50%) currence equations that can be solved dynamically. His-
torically, such programming has been too computation-

N 100 1.00 0.997 0.88 0650 ally intensive to be very practical, but increasingly, real-
(14%) (13%) (12%) (50%) istic problems can be solved in this manner. A less well

Table 3: p " Be(0.1,0.01) and P2 - Be(l, 1) understood ability of backward induction is its capac-
ity to evaluate, exactly, properties of all types of alloca-

tion rules. Even if an allocation strategy is not defined

Sample Size Efficiency (Risk Ratios) through a set of recursion equations, one can still deter-

(% on Pop 1) mine its attributes through backward induction. This

OS LS BF EA exact approach is highly preferable to the usual method

N= 20 1.000 0.997 0.823 0.754 of seeking approximate characteristics of an allocation

S(92%) (92%) (33%) (50%) rule asymptotically or through simulation studies.

N = 50 1.000 0.998 0.793 0.707
(90%) (92%) (32%) (50%) References

N = 100 1.000 0.998 0.778 0.686 [1] Rekab, K (1989), Asymptotic efficiency in sequential
(90%) (91%) (31%) (50%) designs for estimation. Sequentiai Analysis 8, 269-

Table 4: P, - Be(0.01,0.1) and P2 - Be(l, 1) 280.

[2] Hardwick, J. P. (1989), Computational problems as-

"* BF = Best fixed allocation rule - defined to be the sociated with minimizing the risk of a simple clinical

optimal rule when n, and n 2 are fixed in advance. trial, Contemporary Mathematics 115, 239-256.

Sample sizes and risk may be obtained directly. [3] Hardwick, J. P. and Stout, Q. F. (1990), Ban-

" EA = Equal allocation - defined as any allocation dit strategies for ethical sequential allocation. Sym-

rule such that L observations are sampled from each posium on the Interface: Computing Science and
population. Statistics.

[4] Berry, D. A. and Eick, S. G. (1987), Decision anal-
Our statistical conclusions are typified by the results in ysis of randomized clinical trials: comparison with

Tables 1-4. By definition, the OS rule is uniformly best, adaptive procedures. Unpublished manuscript.
and subject to heuristic arguments of the sort detailed
in previous section, the performance of the other three
allocation rules depends on the configuration of the prior
parameters and the sample size for the experiment.

In particular, we found that, without exception, the
LS rule is so close to being fully efficient that it appears
to offer the best overall combination of practicality and
efficiency. Furthermore, for a variety of parameter con-
figurations, both the BF and EA rules performed sur-
prisingly well. Still, it is interesting to note how poorly
the EA rule performs in settings such as those described
in Tables 3 and 4. On the whole, however, given the
performance of the LS rule, it seems reasonable to ac-
knowledge that locating the optimal rule here is more an
academic question than a practical one. Nevertheless, as
mentioned, we had another reason for pursuing an en-
tire solution. We believe that this problem serves as an
excellent vehicle for illustrating the diverse applications
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Optimal Adaptive Equal Allocation Rules

Janis P. Hardwick1  Quentin F. Stout2

Statistics Department EECS Department

University of Michigan, Ann Arbor, MI 48109

Abstract fore patient i+1 is assigned. Responses to treatment will
be either successes or failures, where, for each patient,

Suppose we wish to decide which of two treatments is the probability of success on Treatment i is pi, i = 1, 2.
better, where the outcomes are Bernoulli random vari- Our study design is set up to allow the incorporation of
ables, the success probabilities of which, themselves, are prior information on the success rates p, and P2. This in-
modeled as independent beta random variables. Assume formation is modeled in the form of a joint distribution
that the maximal population size for the experiment is function t on (PI,P2) and is taken to be the product of
fixed, but that the length of the study and the number two independent beta random variables:
and order of patients assigned to each treatment may be
random. Our goal is to maximize the likelihood of mak- (1) Pi - Be(ao, b0 ) and P2 -' Be(co, do)
ing the correct decision by utilizing a curtailed equal for (PI,P2) E 9 = (0, 1) x (0, 1).
allocation rule, but we wish to do so with a minimal As was mentioned, our main goal is to select the better
average study length. treatment, but we have a secondary goal as well. We

We show that this experimental design problem re- wish to make the decision based on as few patients as
duces to a problem of optimal adaptive allocation which possible, and we take advantage of the sequential nature
can be solved exactly using dynamic programming. of the data to do this. A design is comprised of two parts
We compare the optimal allocation procedure to the

aoio t - an allocation procedure, -(t), and a decision rule. An
commonly-used approach of curtailed alternating allo- allocation procedure is a rule for deciding what to do
cation and show that the optimal allocation procedure at each stage of the trial. Let r(t) represent the class
is noticeably superior. The evaluations of allocation pro- of all allocation procedures with the following features:
cedures are all exact, calculated via backward induction. At any stage i, the procedure may indicate one of three
Since the optimal adaptive allocation procedure can be options: assign patient i to Treatment 1, to Treatment
easily determined and evaluated on workstations, and 2 or stop the trial. At each stage, the decision of how to
stored on personal computers for ready access during ex- proceed may depend only on the prior distribution and
periments, it is a practical improvement over alternating the information available from preceding patients.
allocation. Regardless of what procedure is used, the form of the

optimal decision rule remains the same. The rule states

1 Introduction that we select the population with the higher observed
mean at the end of the trial.

We are interested in the simple and common decision
problem of trying to pick the better of two Bernoulli pop- -

ulations. For concreteness the problem will be described 2 Optimal Decision Making
in terms of a clinical trial, but it is equally applicable to Unfortunately, our two goals of making good terminal
other areas such as product testing. decisions and keeping study size to a minimum are some-

Suppose two treatments are available to treat a certain what contradictory, so our concern is to study tradeoffs
disease and we need to design an experiment to decide between these criteria. First, however, it must be noted
which is better. A maximum of N exchangeable patients that, even for fixed sample size experiments, there are
can be used in the trial, but the trial may be stopped no allocation procedures that make optimal decisions for
earlier. (To simplify exposition we assume N is even.) all (PI,P2) E Q. A useful method of examining optimal-
We assume that the patients enter the trial sequentially, ity in a more restricted sense is to consider procedures
and that the outcomes of patients 1, . . . , i are known be- that offer optimality along lines of constant difference:

IP2 - PI -- A-1Research supported in part by National Science Foundation Let P'( [(P, P2); N] represent the probability of making
under grants DMS-8914328 and DMS-9157715.

2 RFesearch supported in part by National Science Founda- a correct decision after N observations using procedure
tion/DARPA under grant CCR-9004727. -y, when (PI,P2) are the true treatment success rates.
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Next, define and where we randomize to select a winner if a tie is
declared. Throughout, we will assume this decision rule

A mP2_P [i>A is used whenever the trial is terminated. Note that the

state also contains enough information to determine the
then we say a procedure, 7", is A-optimal if study length (namely M), the number of failures (j +

p = maxTP. 1), and the number of patients assigned to the inferior
-YE -treatment (either k + 1 or i + j, depending on whether

Treatment 1 or 2 is declared the better).
3 Curtailed Allocation Procedures Now, suppose we are using some alloc ' n procedure

Let C be the class containing all procedures that are 7, and that during an experiment a stat, ý is reached.
optimabethl ass fontaining allAE(0 . propularesu lass ae C Further, suppose that -y will allocate future patients so
optimal for all A E (0,1). A popular sub-class of C ts that all terminal states that can be reached from a will
the set of fixed horizon equal allocation rules, where the have the same decision D. In such a case, one can go
term 'horizon' refers to the number of patients actually ahead and make decision D at state a without affect-
observed in the study. This class of procedures, CEA, ing the A-optimal status of -y. This simple concept is
contains all allocation rules that assign M patients to called pruning or curtailing, and we denote the class of
each treatment alternative. Since we are concerned both all curtailed equal allocation procedures as CCEA.
with making good decisions and keeping study length to Consider, for example, the equal allocation procedure
a minimum, we work here with a class of procedures that referred to as alternating allocation, which is a commonly
retain the optimal properties of those in CEA, but which used oblivious allocation procedure which ignores all pre-
also may be stopped prior to N. vious outcomes and simply alternates back and forth be-

Before characterizing the procedures in this new class, tween treatment assignments. If alternating allocation
we must first define what is meant by a state of the gen- is being used with N = 10, and after the 7th patient
eral process that represents our clinical trial. Suppose the state is (3,1,0,3), then no matter what happens on
that we are at Stage M, 0 < M < N, of the study and the 8th, 9th and 10th patients (assigned Treatments 2,
have observed 1, and 2, respectively), the decision will be that Treat-

i = # patients succeeding on Treatment 1, ment 1 is the better. Clearly, one may as well prune

j = # patients failing on Treatment 1, the decision tree (or curtail the experiment) and declare

k = # patients succeeding on Treatment 2, and Treatment 1 the better.

I = # patients failing on Treatment 2.
Note that M = i+j+k+l. The vector (ij,k,1) which is
sufficient for (Pl, P2), coupled with the prior density func- When considering our second criteria for procedure opti-
tion t, is referred to as the state (i, j, k, 1; t). Thus, at any mality, study length, we must again resort to a restricted
time M, the state provides all information incorporated notion of optimality. Since no procedure offers the mini-
in the posterior density function, t(PI,P2 I i,j,k,l), mum expected studv length for all (PI,P2) E Pi, we turn
which is simply the product of the individual posterior to a Bayesian concept which we refer to as the average
densities study length of a procedure -: £V'. Let LV(pi,P2) denote

(Pi I i, j) - Be(a, b), (P2 I k, 1) -, Be(c, d), the expected number of patients in a trial when the pro-
cedure y is used for the fixed parameter configuration

where (pi, P2). Then

a=i+ao b=j+bo c=k+co d=I+do. £- = (pip2)dt(pjp2),

Often, the prior density function will be understood, and and it is our goal to find procedures that simultaneously
only the stage of the trial and the sufficient statistics will minimize C and are contained in CCEA. In other words,
represent the state. we seek procedures 7 E I*, where

If, for some M > 1, the trial is terminated at a state
(i,j,k,l; t), then our decision rule is to declare as better F = {7' : = mi C -.
the treatment with the higher observed mean - selecting Our goal is minimize the average study length among

1 f i {>I k the curtailed equal allocation rules, but one potential dif-
2 if < k.. ficulty is that there are a very large number of equal al-
tie +- = j k location procedures, totaling 2 2 8(N). Fortunately the use
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Comment: This algorithm determines the minimal average study length, ML(O, 0, 0, 0), among
all curtailed equal allocation rules, for a given prior distribution.

For all states a with N patients, ML,(a) := N.

For M := N - down to 0 do
For all states a with M patients

If a prunable then ML(a) := M
else

If Treatment I permissible
then MLI :=expected minimal study length allocating Treatment I
else MLI :=oo.

If Treatment 2 permissible
then ML2 :=expected minimal study length allocating Treatment 2
else ML 2 := 00.

ML(a) :=rnin(ML1 , ML 2).

Figure 1: Algorithm for Minimal Study Length among Equal Allocation Rules

of sufficient statistics reduces the number of nonequiv- Note that, at any stage M < N, at least one treatment
alent procedures to 2 e(N4 ) since there are only E(N 4 ) must be permissible.
states for which allocation decisions are need. To decide if state (i,j, k, 1) is prunable, note that one

The algorithm for determining the minimal average can stop and declare Treatment 1 the better if and only
study length appears in Figure 1. For the given fixed if the number of successes on 71reatment 1 exceeds the
prior distribution (1), it determines the minimal possi- number of successes Treatment 2 would have if all future
ble average study length among the class of curtailed assignments to Treatment 2 resulted in successes. That
equal allocation rules. It works in the following way: is, Treatment 1 will be the winner in all possible final
For each state a, the algorithm determines ML(a), the states that are reachable from this state by equal alloca-
minimum average study length given that the study tion rules if and only ifi > N/2-1. Similarly, Treatment
reaches a and then proceeds optimally to the end of the 2 will be the winner if and only if k > N/2- j. While ties
study. The value ML(a) is computed via dynamic pro- can occur, in this problem no state with M < N is prun-
gramming, which works from the last stage towards the able with a tie outcome; although such states can have
first. The variable M in Figure 1 denotes the number tie outcomes among the reachable states, they must also
of patients treated so far, and the final value calculated, have at least one reachable state with a nontie outcome.
ML(0, 0, 0, 0), is the answer. Thus the condition a prunable is

While this is similar to Bellman's classic dynamic pro-
gramming algorithm, [1], to minimize expected failures, (i > N/2 - l) or (k > N/2 - j)
there is a critical difference. With equal allocation pro-
cedures, there are states for which allocating one or the
other of the treatments is prohibited. To decide if Treat- Finally, ML 1 and ML 2 are the minimal possible aver-
ment I permissible, note that in the state (i, j, k' 1), an age study lengths if the study reaches (i,j, k,l) and the

equal allocation rule can assign another patient to Treat- next patient is assigned to Treatment 1 or Treatment 2,
ment 1 if and only if the number of patients that have respectively. To determine ML 1 , note that assigning the

previously been assigned to Treatment 1 is less than N/2; next patient (patient M + 1) to Treatment 1 will either

i.e., if and only if result in the state (i + 1, j, k, l) or the state (i, j + 1, k, l),
depending on whether the treatment is a success or fail-

i + j < N/2 . ure. Given t and M, the posterior probability of success
is

Similarly, the condition Treatment 2 permissible is
ao +i

k+I<N/2 . ao+i+bo+j
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N --- 201 501 100 200 400-1 N-. 20 50 100 200 400
Curt. Alt. 16.2 39.4 78.1 155.3 309.8 Curt. Alt. 16.1 39.2 77.7 154.6 308.3
Optimal 15.2 [ 36.1 70.8 140.2 278.8 Optimal 15.1 36.1 71.0 140.7 280.0

Table 1: p, - Be(I, 1), P2 " Be(I, 1) Table 3: P, "- Be(l, 1), p2 - Be(40, 10)

N --. 20 50 100 200 400 N -- 20 50 100 200 400
Curt. Alt. 16.7 41.0 81.4 162.3 324.0 Cu'rt. Alt. 18.0 44.6 88.9 177.5 354.7
Optimal 15.9 38.4 75.9 150.8 300.5 Optimal 16.1 38.7 76.3 151.6 302.2

Table 2: pi -" Be(l, 1), P2 "" Be(25, 25) Table 4: pi - Be(4, 1), p2 - Be(40, 10)

and thus ML1 is 2. As the difference between the means becomes

a0 + i ML(i+ smaller, the average study length becomes greater.
ao + i + bo +j The first point is illustrated by comparing Table 1, where

bo +3 jboth treatments have a uniform prior, with Table 2,++bo + j • ML(i, j + 1, k,l) where Treatment 2 has a prior whose mean is still 1/2
but whose variance is much smaller. The second point is

Similarly, ML 2 is given by illustrated by comparing Tables 2 and 3, where in Table

co + k 3, Treatment 1 continues to have a uniform prior, butML2(i~j,k,i) = ML(i,j,k+ l,l)+
co + k + do+l + now Treatment 2 has a prior with a mean of 4/5.

do + I Finally, in Table 4, we are trying to choose the bet-

co + k + do + I ML(i, j, k, 1 + 1) ter treatment when one has a prior of Be(4,1), and the
other has a prior of Be(40,10). Comparing to Table 3,

The assignment ML(a) := min(MLI, ML 2 ) is the we see that the equal means in Table 4 increases the
essence of the principle of optimality which is being ex- expected study length for both procedures, and does so
ploited by dynamic programming. The principle indi- much more dramatically for alternating allocation than
cates that the minimal average study length of any study for the optimal allocation.
passing through the given state is the smallest of the
minimal average study lengths for each permissible treat-
ment. 6 Further Remarks

The algorithm does not explicitly show the alloca- In this short conference paper, we have illustrated only
tion procedure that achieves the minimal average study the ability to minimize the average study length within
length, but it can be determined by noting for each state the class of curtailed equal allocation rules, which were
whether the algorithm decides to terminate or, if not, selected because they are A-optimal. However, the
which treatment gives the smaller expected study length. same algorithmic approach can be applied to other sit-
This information can be stored and usetd to conduct the uations. Within the class of curtailed equal allocation
study. rules, one can apply the constrained dynamic program-

ming method described in Section 4 to such problems
5 Results as

In Tables 1-4 we have given results comparing curtailed 1. Minimizing the expected number of failures;
alternating allocation to the optimal curtailed equal al- 2. Minimizing the expected number of patients as-
location. Each table corresponds to a different config- signed to the inferior treatment; and
uration of the prior parameters ao,bo,co,do, and gives 3. Minimizing the expected cost of the experiment
the average study length for several different values of when different costs may be incurred for each dif-
N. All the entries are exact to within roundoff errors. ferent (treatment, result) possibility,

The basic heuristics to be learned from the tables are where expectation is taken to mean average with respect
as follows: to the prior distribution on (pl, p2).

1. For similar means, smaller variances correspond to For these alternative optimizations, the only changes
greater average study lengths; needed are in the assignment of ML at states that are
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terminal. For example, to minimize the number of fail- was the posterior estimate of the failure rate for the bet-
ures, the new value of ML at terminal states is just j + 1. ter treatment, based on the prior and the observations

Another extension that is easy to incorporate is that during the study.
in which a a third decision is allowed at the end of the Intuitively, in such an approach, for fixed N, increas-
study. For example, rather than randomly picking one ing P increases the importance of correctly selecting the
of the treatments as better if the observed means are better treatment, while decreasing P increases the im-
similar, one may prefer to declare a study outcome of portance of minimizing failures during the initial study.
"no difference". In this case, a new decision rule would While this idea is certainly not unique to Berry and
be specified and the test for prunability of a state would Eick [2], the approach that they take with respect to
become slightly more complicated. Otherwise the algo- "selecting the better treatment" is a Bayesian notion.
ritlhm would be just as in Figure 1. In this paper we use a frequentist version of the proper-

There are many other easy variations. For example, ties of the decision rule and a Bayesian version of average
the present program allows us to optimize on one criteria, study length. This latter approach is part of a general
such as study length, and then to evaluate the resulting program of blending Bayesian and frequentist ideas in
pr cedure on other criteria, such as number of failures, both the design and analysis phases of an experiment.
Another goal may be to determine how robust a design is. Such a blending, while often controversial, is highly flex-
Here, one can create a procedure using one set of priors ible. Not only can it be useful in a wide range of appli-
but evaluate it using a different set. All such evaluations cations, but it can also yield designs satisfying a variety
would be exact, performed using backward induction, of statistical criteria.

Historically, the use of backward induction to help
so~ve sequential allocation problems has been limited References
due to the method's computational intensity. Lately,
however, it has become quite practical given the current [1] Bellman, R. (1957) Dynamic Programming. Prince-
speeds and memory capacity of computers. For exam- ton University Press.
pie, on a large workstation one can carry out designs and [2] Berry, D.A. and Eick, S.G. (1987), Decision analysis
evaluations for N > 400, and on a parallel computer one of randomized clinical trials: comparison with adap-
can handle N > 1000. Further, having used a worksta- tive procedures. Unpublished manuscript.
tion or departmentai computer to design and evaluate an
allocation procedure for, say N = 400, the procedure can [3] Hardwick, J. and Stout, Q. F. (1992), Computational
be compressed and stored on a personal computer, avail- aspects of sequential allocation for testing with .ml-
able for ready access in many testing situations. These tiple criteria. In preparation.
computational points will be explored more fully in an
expanded version of this paper and in [3].

The binomial selection problem has been examined in
settings far too numerous to note here. One paper that is
particularly worthwhile to reference here, however, is an
unpublished work of Berry and Eick [21 that was called
to our attention during the presentation of the present
paper. The special relevance of Berry and Eick [2] is that
it is one of the few papers of which we are aware that uti-
lizes backward induction to perform exact evaluations of
non-recursive procedures. In their paper, the goal was to
attain a tradeoff between failures and the probability of
selecting the better treatment, without curtailment. In-
stead of maintaining optimal probability of selecting the
better treatment b" searching through equal allocation
rules, dynamic programming was used to minimize the
sum ,of the mmwinmber of failures obsrved during a study
of A' palti'n s plus the expected nimnber of f;ailures in a
ftumre population of size P, assuming that the treatment
declared better from the study was used for this popula-
tioi,. The expected failure rate in the second population
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History of Statistics in Real Time: Hammers and Nails

After Dinner Talk
by

Emanuel Parzen
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Texas A&M University, College Station, TX 77843

Contents An after dinner talk traditionally should make people
laugh. After all, it should be a fun talk.

1. Is what statisticians do fun? Short run fun is provided by the stand up comic ap-

2. Statistical hammers and nails can help guide what proach about statistical personalities. (I could tell you

statisticians do. a story about a Fellow Tezan or a Fellow Texan).
Among performers who make people laugh one can

3. Hammers that make statisticians dull. distinguish comedians, comics, and humorists. A come-
dian says funny things. A comic says things funny. A

4. History of Statistics in Real Time and Stigler's Book humorist delivers a message. All tailor their material to
5 E c r h fit their audiences. Let me adapt a story told by hu-

.Esoteric research should provide exoteric hammers. morists.
6. Quality control of the art of statistical science. In my story the cast is computational statisticians

from Texas, the San Francisco Bay Area, New Jersey,
1. Is what statisticians do fun? and New England who met tonight before dinner at the

drinking hour.
What statisticians do is even analyzed in comic strips! My life has been interesting because I have lived

I quote "Miss Peach: Arthur's Career Advice". on all four American coasts (East, West, Great Lakes,
Question: "Arthur, I'd like to become a statistician, and Gulf), have Mathematics degrees from Harvard and

What are my chances?" Berkeley, been a Statistics Department faculty member
Answer: "If you don't know, you've made the wrong for many years at a diversity of universities (Columbia,

choice." Stanford, SUNY Buffalo, and Texas A&M), and visited
A statistical tradition is that a statistical talk should widely (geographically and intellectually).

begin with a joke. I can tell many jokes of the form: The Texas computational statistician poses as a fish-
"How many statisticians does it take to change a light erman. He says to the West Coast statistician: "You
bulb?" One answer: "Can we get back to you on that; should have been with me last night. I caught a 65 pound
our computers are working it out." catfish." They are joined by the New Jersey statistician,

But instead of telling you a cryptic joke, I would like and the Texan tells him: "I caught a 35 pound catfish
to begin my talk just as cryptically by telling you the last night." When the statistician from New England
proverb which motivates my title, joins them, the Texan tells him: "You should have been

"To the statistician with a hammer, every problem is fishing with me last night. I caught a 25 pound cat."
a nail." The Californian exclaims: "That fish of yours is kind of

My talk will propose a revised proverb: shrinking, isn't it." The Texan explains: "I learned a
"The statistician needs a unified set of classical and long time ago that you never tell a man more than you

modern hammers, so that almost every problem can be think he'll believe."
transformed to a nail. The statistician needs nails, so A.s an example of how art stimulates life, let me note
that the hammers can be fun 'runctional and fundamen- how I am stimulated by the reverse word order defini-
tal). The computational sk 'i i -an needs graphs which tions of a comedian (funny things) and comic (things
are fun in the sense thaf thfe, reFresent plots of func- funny) to conjecture reverse word order definitions of
tions." statistical computation (computation of statistics) and

Let me note that the Box Plot introduced by Tukey computational statistics (statistics from computation).
may not be fun (a representation of a function). I pro- "Statistical computation" uses computing science to
pose a Density Quantile Box Plot. conveniently compute statistics, while "computational
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statistics" creates new (often, computer intensive) statis- to estimate (often using wavelet or kernel estimators).
tics made possible by advances in computers, computer Another statistical nail (for the hammer of wavelet esti-
science and signal processing. mation) is dependence density functious that disclose or

expose the regions where two variables X and Y have a
2. Statistical hammers and nails can positive association.

help guide what statisticians do. In 1955 I was starting to do research on the founda-
tions of modern time series analysis (spectral analysis,

My approach in my after dinner talk is to seek long extraction of signals from noise). To my statistical col-
run fun by preaching "fun statistics". My goal is to offer leagues I said in jest "After all, regression analysis is
you the equivalent of a fortune cookie which clearly is the discrete parameter analogue of continuous param-
appropriate as after dinner fun. eter time series analysis". I strongly recommend that

The good fortune that I would like to offer you tonight in 1992 this jest should be taken seriously; as we study
is one that I believe statisticians would like to have at wavelet theory (and reproducing kernel Hilbert spaces)
their side as they take the many "Oral Exams" that a we should ask what are the analogues in regression anal-
statistician encounters in a long career. These exams ysis.
occur during the statistician's interactions with clients
with whom one is collaborating or with whom one is 3. Hammers that make statisticians dull.
counseling on how to apply statistical methods.

Your fortune cookie of the night reads: One problem that statisticians traditionally seem to
"You have good friends who will come to your aid in have is that they may have overdeveloped the art of in-

time of need." sulting each other's work. Henry Mann (a mathemati-
Tonight I would like to introduce a good friend which cian who spent his mid-career in statistics) said to me in

may be able to provide guidance to the past and future 1967 after a talk I had just given:
(real time) practice of statistics. This friend is your ap- "That's why I left statistics. Instead of discussing
preciation of the history of statistics and classifying what what you did, they discussed why you should not have
happened in the past (and what ought to happen in the done it."
future) as being either new hammers or new nails. If one does theory, the reaction one usually gets to

Hammers are instruments or tools or "statistical data- one's work is a three pronged attack:
scopes" analogous to telescopes and microscopes. Nails
are the applied phenomena and data that we research * "It won't work."
with these instruments tools, or scopes. * "If it works, it's not new."

When one proposes a symposium to a funding agency,
they demand a justification; "what's new to discuss?" 9 "If it's new, it's trivial."
they ask. The answer can be either "new theory and
methods (new hammers)" or "new applications and data If one does applied work, typical of our colleagues'
(new nails)". attacks is the attitude expressed in the proverb that I

Early in my career in my interaction with electrical quoted at the beginning of my talk:
engineers I would try to clarify our relationship: "Why "To the statistician with a hammer, every problem is
is it if I know something, you call it 'theory' while if a nail."
you know it you call it 'applied'?" I would explain this One interpretation of this criticism is one often ex-
situation today by saying that something known to the pressed by dissatisfied clients of a statistician (denoted
statistician is usually a hammer, and something known S). "S hardly listened to my problem (nail), before assur-
to the applied researcher is usually a nail. ing me he had the solution (hammer) already available in

It should be noted that there are several levels of being his tool kit." The motto of a statistician who works as a
a hammer (theoietical) and a nail (application). There consultant is equivalent to: "have hammer, will travel."
is an exciting new field of approximation theory called This criticism compares statisticians to Procrustes,
"wavelet theory". It is a mathematical hammer devel- the mythical inn keeper, who had one bed in his inn
oped by applied mathematical scientists to represent and which he transformed all travelers to fit; his motto was
approximate a function defined abstractly. It is a math- "one bed fits all".
ematical nail and simultaneously a statistical hammer I mention the Procustes criticism because I believe it
when used by statisticians; my personal research goal is illustrates the main point of my talk which is that to
to develop nails which are statistically meaningful func- understand the many influences that have contributed
tions (such as the comparison density or change density) to the past history of modern statistics, and can guide
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the development of its future history, we should think of I believe that evidence for my proposition can be pro-
new developments as being of two types which we can vided by quoting the last 3 pages (pp. 358-361) of Steve
call hammers and nails. If we think this way then we Stigler's impressive 1986 book (The History of Statis-
might conclude that graduate education in statistics is tics: The Measurement of Uncertainty before 1900). My
dull because it has too much recipe theory and recipe interpretation of Stigler's summary: during the period
methods! 1750-1900 in which statistics developed into a science,

I believe that computational statisticians are more there was one hammer (it was least squares all the way)
ready to implement education in "adaptive theory" and a progression of nails (the fields of application of the
which integrates theory and methods and makes it easier developing science of statistics changed over many fields
to adapt theory to new problems and thus have the abil- from astronomy to social sciences to genetics).
ity (on the occasions when it is needed) to provide each Yule's work provides a symmetric ending to
nail (client) with custom made hammers (rather than this narrative: We began this history with the
off the shelf hammers) adapted for realistic probability method of least squares and we shall end withmodelsof fort thereclient'ssallnails.t
models for the client's nails. the method of least squares. Yet the story is

yof Statistics in Real Time and far from being circular. Over a two-century pe-
4. History riod there had been sporadic progress in the

Stigler's Book measurement of uncertainty, a sequence of de-

The history of statistics is being increasingly fashion- velopments we may think of as leading toward

able to study. Important and exciting books are a completion of the logic of the quantification
of science, by eventually permitting the formal

Todhunter. (1865). A History of the Mathematical The- evaluation and comparison of measurements.
ory of Probability from the Time of Pascal to that In this sequence the early achievements in as-
of Laplace. tronomy and geodesy were in some respects like

David, F. N. (1962). Games, Gods and Gambling. the later successes in the social sciences. In
both cases a key barrier had been the lack of a

Hacking, Ian (1975). The Emergence of Probability conceptual structure that permitted the com-

Stigler, Stephen (1986). The History of Statistics: the bination of observations; and in both cases the

Measurement of Uncertainty before 1900. theory of probability had played a crucial role
in overcoming the barrier, with the method of

Porter, T. M. (1986). The Rise of Statistical Thinking: least squares supplying the means for complet-
1820-1900. ing the calculations. Beyond these broad sim-

Edwards, A. W. F. (1987). Pascal's Arithmetical Trian- ilarities, however, lay a number of important

gle. differences.
In astronomy the combination of observations

Daston, Lorraine (1988). Classical Probability in the En- hadtre do th the ancho of thervathe-
lightement.had required both the anchor of the mathe-

lightenment, matical theory of gravitation and the grow-

Hald, A. (1990). A History of Probability and Statistics ing knowledge of the behavior of random sums.
and Their Applications before 1750. The theoretical structures of celestial niechan-

About the history (in real time) of computational ics not ony defined the goals for the as-
statistics we are fortunate to have available two impor- tronomers' empirical work but also helped the
tant and marvelous books: astronomers to reach those goals. By giving

Tufte, Edward (1983) The Visual Display of Quantita- a link between different measurements of the

tive Information same body, Newtonian theory provided a route
by which the measurements could be combined,

Tufte, Edward (1990) Envisioning Information. a way in which the relatively small numbers
What I would like you to remember from my talk is of major causes could be incorporated in one

my concept of "history of statistics in real time" which equation and related to the observations. Yet,
proposes that we should study history from the point of as the example of Euler shows, that link was
view of how it guides us in our current practice of the not enough by itself. A theory of errors was also
discipline and profession of statistics, and to accomplish needed, both the idea that combining measure-
this the history of statistics should be appreciated as the ments was beneficial, not harmful, and a means
history of hammers and nails. for turning the combination to inferential use.
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Mayer grasped this intuitively in 1750 and a ing from an exterior theory. In 1900 the co-
few years later Simpson added a formal anal- efficients were interior theoretical constructs,
ysis for simple means, but it took over a half- given their meaning in the context of Galton's
century before the grand Gauss-Laplace syn- variance component models as what we now
thesis of 1810 was achieved. The delay is am- characterize as conditional expectations of mul-
pie testimony to the difficulties of formulating, tivariate distributions. In this new framework
much less solving, the problem. Nevertheless, least squares provided the homogeneous sub-
by the time of Laplace's death in 1827 a ma- classifications for analysis Quetelet had sought
jor success had been recorded, and the use of while offering a sufficiently restricted setting
probability to measure, compare, and interpret that Cournot's worries about post-data selec-
uncertainty was well on the way to becoming a tion could be addressed in at least limited ways.
commonplace in astronomy and geodesy. The realization that the regression and corre-

In the social sciences the problem took on a dif- lation concepts that had emerged in Galton's
ferent face. It was not that theory was lacking: studies of heredity were intimately related to
By the middle of the nineteenth century several the least squares of the beginning of that cen-
economists had given mathematical expression tury was the second great synthesis of the his-
to the theories of Adam Smith and David Ri- tory of statistics. In this second synthesis,
cardo. But even though these theories might probability had played a role rather different
have captured the major causes that were of from that in the theory of errors. In the theory
interest to the economist, they did not incor- of errors, the probability calculus had revealed
porate the myriad causes of little concern in order in chaos with the central limit theorem,
economic theory that nonetheless had a major and that discovery had made the measurement
impact upon the data used to test that the- of uncertainty in aggregate measurements pos-
ory. Cournot could relate price and demand sible. In the social sciences the same magnifi-
in theory, all other things being held constant, cent theorem had posed a problem of seemingly
but he could not hold all other things constant incredible difficulty: How could the known di-
in the real world. A new conceptual approach versity of causes be reconciled with this always
was needed, and it arose from an unexpected present order? How could the normal distribu-
quarter-from studies of heredity. tion Quetelet had found be disassembled to al-
Galton, Edgeworth, and Pearson assembled the low a study of causes? Galton's quincunx had
structure; Yule completed it by finding a vari- led to the answers to these question, by sug-

ation on their advances that finally provided a gesting a new role for conditional probability.
formulation and analysis for questions in the In the theory of errors, conditional probability

formlaton nd nalsis or uesion inthehad permitted inference about the constants
social sciences. It is ironic that in some re- of asrmer tere re ssionsanty

spects the tool Yule used was an old tool, the of astronomers' theories. In regression analy-

method of least squares. Of course, the matter sis, conditional probability made possible the
very definition of the quantities about whichwas much subtler than that; it was not Legen- tesaitca a neetdi aigifr

dre's or even Gauss's or Laplace's least squares the statistician was interested in making infer-

that Yule found, but a superficially similar tool ences.

that had transformed by the concepts devel- Looking back, we can see four distinctly dif-
oped by Galton and others. Legendre's least ferent solutions to the problem of the combi-
squares had been around and freely available nation of observations, four ways in which the
for ninety-five years. But when it had been variation in external factors could be allowed
tried before, in isolated instances, it had not for in order to permit an attempt at aggre-
answered the right questions. By 1900, though, gation: through external theory (as in astron-
the questions could be reformulated so that omy); through experimental design (as in psy-
the astronomer's least squares could be used chology); with internal regression analysis; and
to new purpose. It was not merely an ele- with large amounts of multiply classified data,
gant variation of language that called for the through fine cross-classification. Actually, the
term regression analysis for this conceptually last of these was not really feasible in the nine-
new use of least squares. In 1805 the coef- teenth century. When data were plentiful (for
ficients were constants, deriving their mean- example, a census), it was in principle possi-
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ble to look at all manner of categories; but in 4. Nonparametric regression (random effect).
practice it was not. In regard to the U. S. cen-
sus, Herman Hollerith wrote, "Until the census I would like to make a plea that (before the year 2000)
of 1890, we never even knew the proportion of the fundamental statistical hammers of function estima-
our population that was single, married, and tion should become ezoteric (consumer products for ap-
widowed. .. To have divided the native born plied statisticians) rather than esoteric (just an intellec-
into those of native parentage and those of for- tual game of specialized smoothing statisticians). Even
eign parentage, would have been practically im- members of the esoteric group may not be aware of the
possible with the methods of 1880. To obtain latest recommendations for algorithms to compute ker-
the population classified according to age, sex, nel estimators.
and birthplace of mother could not have been The concepts of esoteric research yielding exoteric
considered" (Hollerith, 1894, p. 678). This di- hammers (spinoffs) are intended to raise our conscious-
rect assault upon the de Keverberg dilemma ness about a research trend that often becomes appar-
would require modern tabulating equipment, ent to senior scholars with many years experience the
even when the data were plentiful and at hand. researchers in a field individually prosper doing research

The conceptual triumphs of the nineteenth cen- which adds to their reputation but the field as a whole is

tury had been the product of many minds work- not prospering in the sense that it is not doing important

ing on many problems in many fields, and one things that have an impact outside of the field. I believe

of the most striking of their accomplishments that there is a remedy: researchers in the field should

was the creation of a new discipline. Before organize to do strategic planning, to act collectively to

1900 we see many scientists of different fields define the missions of the field and to ensure that things

developing and using techniques we now recog- get done that (under the system of individual initiative)

nize as belonging to modern statistics. After are alleged not to add to one's reputation.

1900 we begin to see identifiable statisticians Examples of how groups can aim to continuously im-

developing such techniques into a unified logic prove the quality of their field: (1) stimulate expository

of empirical science that goes far beyond its review articles which call attention to methods which are

component parts. There was no sharp moment the "best" hammers for applications and to important

of birth; but with Pearson and Yule and the advice that were once published somewhere (and often

growing numbers of students in Pearson's labo- are not given exoteric exposure because they are part of

ratory, the infant discipline may be said to have the folklore known to esoteric researchers); (2) raise con-
arrived. And that infant was to find no short- sciousness about good taste in choice of research prob-age of challengest lems (which research problems are internally generated

rather than externally generated, and which optimiza-

5. Esoteric research should provide exo- tion criteria have scientific significance).oteric rearcs h Modern British poets complained that modern mathe-
teric hammers maticians were better treated because clerks would write

My current research program, which I call Change letters to newspapers complaining that they did not un-
Analysis in the wide sense, has among its goals the unifi- derstand modern poetry but never complained about
cation of parametric and nonparametric statistical meth- not understanding modern mathematics. The future of
ods for discrete and continuous data and the detection statistics (and of computational statistics) requires the
and measurement of change. Our basic goal is a frame- statistical public be sufficiently concerned to write let-
work which emphasizes the development of "analogies ters complaining that (1) esoteric statisticians should be
between analogies" (a concept created by von Neumann more concerned to be exoteric by constructing statis-
and Ulam to describe the next level of mathematical the- tical hammers more applicable to increasingly complex
ory after "analogies between theorems"). statistical nal,., (2) applied statisticians should be more

I am excited by the "analogies between hammers" that statistically cultured and more effectively use the con-
can be developed between four fundamental distinct the- tinually improving statistical hammers available, and (3)
ories of statistical function smoothing: computational statistical software packages should help

achieve goals (1) and (2).
1. Probability density estimation I believe that to succeed one has always needed (in
2. Spectral density estimation addition to talent) a "hook" which promises an impact.

Being an eternal optimist, I believe that the future is
3. Nonparametric regression (fixed effect) very promising for those mathematical, statistical, com-
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putational scientists who are aware of both esoteric and
exoteric goals.

6. Quality control of the art of statistical
science

Question: Why do I propose that hannmers and nails
are useful concepts to describe respectively methods and
applications in the discipline and profession of statistics?

Answer: They can aid statisticians' understanding
(and public understanding) of past and future history
of statistics, can help us communicate with the public,
and can help provide control procedures to continuously
improve the quality of the art of statistical science. The
means by which statisticians can achieve these ends is
to practice fun statistics that is elegant (award winning
hammers) as well as useful (award winning nails).

Statisticians need to support each other with more
awards. To improve their image (and avoid decline)
statisticians must improve how their contributions are
recognized and propagated by other researchers.

The future of the statistical sciences requires: im-
provements in hammers; improvement in abilities to
transform problems to nails; and improvements in sta-
tistical history, culture, and communication. I hope I
have stimulated your interest in discussing with your col-
leagues the question of how to improve the quality of the
arts of statistical science and computational statistics.

In this talk on the history of statistics in real time it is
very appropriate to pay tribute to the vision and initia-
tive of the pioneers of the annual Interface symposia (be-
gun in 1967 in Southern California by Arnold Goodman
and Nancy Mann) and to those who created the Interface
Foundation to perpetuate the vision and initiative. The
tradition of great organizers has been maintained this
year by Joe Newton (who is also my esteemed colleague
and friend, Head of the Statistics Department at Texas
A&M, and author of the important book TIMESLAB).
Let's toast Joe!

I would like to conclude with a computational statis-
tics variation of the statistical joke with which I began
this talk.
SOne statistician to another: Colleague, I'd like to be-

come a computational statistician; what are my chances?
Answer: If you don't know, you should attend the

next Symposium on the Interface of Computer Science
and Statistics.
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